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Preface

The discourses of equity and quality in mathematics education have permeated the 
international debates about mathematics education whether they occur in the con-
texts of research, policy, curriculum or teaching and learning. Few would doubt that 
both provide valuable objectives to aim for—yet they provide serious challenges 
to confront in the planning and implementation of any endeavour in mathematics 
education. However, rather than being directly articulated, they often remain im-
plicit and assumed. When they are articulated, their understandings are not clearly 
theorised. Arguably, of greater importance is that the relationship between them is 
often left unexamined. For some it may seem that equity and quality are distinct as-
pirations—yet not necessarily mutually exclusive. Others may see a necessary unity 
between them that one cannot be promoted without the other. Still others place more 
emphasis on the potential tension between attempts and resources targeted towards 
their promotion.

In putting together this compilation of chapters, we do not take these terms to 
have an essentialist meaning. Perhaps many debates in mathematics education can 
be constructed as debates about the meaning of equity and quality as much as a de-
bate about their relative worth and ways to promote them. In our call for chapters, 
we identified from our review of the literature, some common associations of the 
two terms.

Concerns about quality mathematics education are often posed in terms of the 
types of mathematics that are worthwhile and valuable for both the student and 
society in general, and about how to best support learners so that they can develop 
this mathematics. Quality mathematics is sometimes measured from within the dis-
cipline of mathematics itself and is seen as a reflection of its rigor, formality and 
generalisability. Alternatively, the value of mathematics is often argued based on 
perceptions of its utilitarian importance such as individual mathematical literacy, 
the economic and technological well-being of a society, the participation of an 
informed citizenry in the challenges of a democratic society, and/or for opening 
up future opportunities for students in terms of their career goals and access to 
higher education. Trends gleaned from international comparisons have ignited de-
bates within many countries about the low level of achievement of their students  
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internationally regardless whether mathematics is valued for its academic rigor or 
utilitarian literacy.

Concerns about equity, on the other hand address issues about who is excluded 
from the opportunity to develop quality mathematics within our current practices 
and systems, and about how to remove social barriers that systematically disad-
vantage those students. Equity concerns in mathematics education are no longer 
seen at the margins of mathematics education policy, research and practice. Issues 
relating to ability, gender, language, multiculturalism, ethnomathematics, the ef-
fects of ethnicity, indigeneity, and the significance of socio-economic and cultural 
backgrounds of students on their participation and performance in mathematics are 
widely discussed in the literature. This is not to say, however, that the problem of 
equity is exclusive of students who are positioned as disadvantaged due to their as-
sociation with any of the categories above; nor that the growing focus on the issue 
has in any way been totally resolved across countries and within any society. Rather, 
insofar as access to quality mathematics is thought to confer benefits on individuals 
and the larger society, concerns for equity and access revolve around the impacts 
on an individual’s life and social participation and on the larger society’s continued 
well-being when that access and its benefits are systematically restricted from and/
or systematically provided to people on the basis of their or their parents’ social 
placements.

In our international invitation for chapters, we identified one overall aim behind 
this collection as mapping the terrain of mathematics education research and prac-
tice—that is on how to understand and advance the quality and equity agendas. The 
main requirement for chapters was that they consider both agendas and how they 
relate to each other. We did not have a vision that this collection would provide a 
comprehensive inventory or a summary of all our individual and collective learn-
ings about them. Rather, we attempted to illustrate the different views and perspec-
tives on the issues in order to move forward the debate on their importance and 
promotion in the field.

Process Adopted in the Compilation: The initial idea of the book came out of a 
plenary panel discussion at the International Congress of Mathematics Education in 
Mexico in 2008 under the topic of Quality Mathematics Education for All1. A call 
for chapter proposals was distributed electronically using several electronic lists 
of mathematics educators and teachers. Potential authors were encouraged to send 
printed copies of the call to others who may be interested but may have had limited 
access to email or international contacts. Similarly, we targeted our own individual 
contacts from countries that are less technologically developed.

The submitted proposals represented a wide range of academic and profes-
sional backgrounds (school teachers, researchers and university academics), lev-
els of expertise in publications and academic writing (first-time authors, recent 
doctoral graduates, published authors and authors of books) and from a range of  

1 The plenary discussion was lead by Bill Atweh (Australia), Olimpia Figueras (Mexico), Murad 
Jurdak (Lebanon) and Catherine Vistro-Yu (The Philippines).
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methodological investigations (from theoretical to empirical qualitative and quanti-
tative studies) and theoretical perspectives (critical, social justice, postmodern and 
ethical). We were less successful, unfortunately, in attracting voices from countries 
less well represented in international dialogue and from countries of non-European 
language background. This remains a challenge to all international collaborations.

Submitted draft chapters were peer reviewed by the authors2 in a non-blind re-
view process. Our intention was to create a community of critical friends dedicated 
to the improvement of the quality of our publication rather than the traditional gate-
keeping roles. It is fair to say that the reaction of the authors to this process was 
mixed. The modified chapters have undergone a second round of review by us as 
Editors.

The Structure of the Book: The chapters in the book are grouped into four parts; 
each part contains several contributions and a response chapter by one of the edi-
tors. The Part I, The Theoretical Landscape, consists of eight chapters which adopt 
different theoretical stances on the issues of equity and quality. As Secada observes 
in his reaction to the chapters:

1. Equity and quality are inherently political terms whose common political bed-
rock is obscured by being taken for granted.

2. Equity and quality have nuanced meanings in everyday use and philosophically.
3. Scholarly inquiry about the nature of equity and of quality—either alone or 

linked—has taken a decidedly qualitative turn, focused on textual deconstruc-
tion and/or interviews with key informants.

Part II, Mapping Social Constructions and Complexities, consists of 11 chapters 
which address issues concerning quality and equity as well as their relationships, 
and highlight particular dimensions of what could be called the social and politi-
cal constitution of the discourses of equity and quality in mathematics education. 
As Valero notes in her reaction contribution, the chapters in this section illustrate 
with empirical material, analysis and discussions, the way in which the discourses 
of equity and quality move in constant construction and recontextualisation from 
broad societal trends to the constitution of subjectivities, passing through policy, the 
media, pedagogy and reaching the learners. Valero concludes her comments on the 
chapters by raising the question of the social construction of quality and equity and 
the personal responsibility of an academic or teacher to attempt to promote them.

Part III, Landmarks of Concern, consists of ten chapters dealing with the spe-
cial needs of different social groups traditionally identified as equity groups. The 
different authors cover a wide range of areas of disadvantage and exclusion from 
gender and social class; to race and ethnicity, and to physical and social alterna-
tive abilities. As Graven points out in her reaction to the chapters, discussion in 
this Part points to the need to dispel the myth that ‘same education’ for all results 
in equity. They illuminate the way in which a one size fits all as an approach, as 
often reflected in slogans such as ‘education for all’, tends to only provide quality  

2 Special thanks to two additional reviewers Jeanne L Higbee and Irene Duranczyk.

Preface



xx

education for dominant groups. Specific groups require that curriculum and pro-
grams acknowledge their needs, the resources they bring and, perhaps more of a 
challenge is that conceptualisations of ‘quality’ need to be reconsidered from the 
perspective of marginalised groups.

Part IV, No Highway, No Destination, consists of ten chapters representing dif-
ferent lessons learnt by academic researchers and/or school practitioners from at-
tempts to manage equity and quality within various educational contexts and with a 
variety of marginalised populations. As Atweh notes in his reaction to the chapters, 
collectively the chapters in this section point to the fact that action towards the 
objectives to raise the levels of both equity and quality in mathematics education is 
not only essential (as the many other chapters in this book argue) but that it is also 
possible. The message that there are many different paths towards promoting equity 
and quality and that the pathway may not always be smooth and journey remains 
always incomplete.

We submit this collection to the international community in mathematics educa-
tion, not as summary of our collective knowledge in the area, nor as a catalogue of 
the different perspectives and views; rather as a means for continuing the dialogue 
on the discourses of equity and quality in mathematics education for the general 
benefit of the discipline itself and the societies it serves.

 The Editors
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Chapter 1
Disrupting ‘Development’ as the Quality/Equity 
Discourse: Cyborgs and Subalterns in School 
Technoscience
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 Anita:   I used to like mathematics and I was good at geometry. Yet, there is this 
oxymoron [...]. And, indeed, everybody believed –towards the end of 
secondary school- that I will become a scientist.

Anita:  All these years [...] I have come to realise that mathematics and technol-
ogy are fields unfamiliar to women.

Anita:  No, look, to be more specific the case is different for young children. If 
they, already, have family support [..], if they have a computer at home, 
they can work creatively. The issue is access to computer at home. Then, 
there will be time and space for girls. I believe that the children of tomor-
row will show us that certain taboos can be broken.

Anita, 37 years old, female school teacher, Greek  
[Gender, Mathematics, Technology Project Data File]

Giorgos:  […] men are more into technology. They like it. Whilst women –those 
who get involved-because not all of them get involved, they do so, I 
believe, out of necessity. In other words, men have a passion (for tech-
nology), they buy magazines about technology […] whilst women do not 
care much.

Giorgos:  Look, in my school (engineering dept) … men might get involved much 
more with computers, with technology and  the like, but, I think that 
the girls in my school  […] also cover this gap. Because, they handle 
whatever is required from technology. They do not go beyond it. Only to 
cover the school demands. Whether they like it or not.

Giorgos, 20 years old, male engineering student, Greek  
[Gender, Mathematics, Technology Project Data File]
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Afrodite:   I feel very repressed in all possible ways in what concerns school […]. 
I can manage many challenging things, but I fear [...] something I can-
not explain even to myself. I have discovered that I have the abilities to 
improve my life. And I am not saying this in order to praise myself. At 
some stage, [...] my family encouraged me [...]. They (people from her 
family) were saying ‘you make the beginning of a new life’. And this 
was for me an important point in my life. It made me think of school as 
the most important thing in the world. It made me think like this until I 
started coming into contact with completely different things [..]. I then 
started re-considering how helpful school is since I knew that I would 
not use it in my future. For I knew that I would repeat my parents’ story. 
Namely, I will get married, I will raise children, and I will be involved in 
housekeeping and child caring. In this way, my world was demolished. 
My whole being was demolished. Why? At this moment, I started taking 
the words of others seriously, that it is a shame for somebody, especially 
for a girl, to attend elementary school.

Afrodite, 12 years old, female school student, Gypsy Greek  
[quoted in Dafermos (2005): 257–259]

Women, Mathematics, Technology  
and other Dangerous Things

Lakoff (1987) used the catch phrase ‘women, fire, and dangerous things’ as a title 
of a book concerned with how human thinking is totally immersed in metaphors 
and depended on their role to produce meaning in everyday talk. His choice to place 
the word ‘women’ next to ‘fire’ and next to ‘dangerous things’ intended to show the 
power of metaphor-use in language-use. It, also, served to produce a certain ‘image’ 
of the possible meanings concerning the category ‘woman’. First, a woman is a 
thing—not really a person. In addition, a woman, like fire, is a dangerous thing. The 
semantic categories of ‘mathematics’ and ‘technology’ along with those of ‘women’ 
and ‘fire’ in Lakoff’s choice of words seem to exemplify, when placed together, a 
similar ‘dangerous’ liaison, for good reasons, as will be shown in the sections below.

‘[M ]athematics and technology are unfamiliar fields to women’ says Anita, a 
primary school teacher in her late 30s, whilst Giorgos, a young engineering student, 
argues that although some female students can cope well with what is required to 
do with technology during coursework, they lack a passion for it. Coping well with 
school subjects, including mathematics and technology, creates emotional conflicts 
for Afrodite, an adolescent Greek Gypsy girl, who senses that she will soon need 
to abandon school for an early marriage—repeating her parents’ story. Education, 
and specifically mathematics education, provides her with a promise of joining the 
desired ‘modern’ ways of imagining, organising and controlling her life. Simultane-
ously, this very desire soon becomes an unfulfilled promise, creating frustration, 
pain and feelings of failure. Schooling turns out to be an (almost) impossible path 
for Afrodite, who, despite being a successful learner, wonders what might be the 



5

real value of school for her. Schooling demands a cultural border crossing, and 
a constant compromise amongst conflicting ‘values’ related either to community 
or school formalities. Afrodite becomes ‘voiceless’, ‘hopeless’ or a ‘subaltern’ in 
Spivak’s (1992b) words as her struggle for recognition proves futile or un-ending.

Anita remembers being good at mathematics (geometry), but contrary to her 
family’s and companions’ belief in her capacities, chooses not to study mathematics 
since she feels that ‘science’ is not really suitable for her as a woman. Despite her 
choice not to engage in what was perceived as natural for her, she recognises the 
fact that the ‘new’ generation has the potential to reverse such stereotypes if, as she 
argues, access to both resources and expertise is safeguarded. However, Giorgos, a 
young male who belongs to this ‘new’ generation, seems to espouse that women’s 
pursuit of science is not out of pure interest or passion but of mere necessity to ac-
quire the skills required in modern society. Lack of passion and ‘pure interest’ show 
that women’s relation to technology is weak, subordinated and marginal. As such 
their pursuit of technology is taken as ‘different’ and becomes ‘other’.

Giorgos, like Anita, invests on hegemonic discourses which naturalise young 
women as non-passionate, non-dedicated participants in techno-scientific practices 
arguing that they ‘get involved […] out of necessity’. Taking into account the fact 
that the discourse of an intrinsic ‘passion for science’ is predominant when sci-
entific creativity and innovations are taken into consideration (Turkle 2008), one 
easily concludes, as Anita does, that ‘women are not really made for the worlds of 
mathematics and technology’. In contrast, the case of Afrodite shows that passion-
ate desire alone does not seem to safeguard a continuous participation to education 
(including mathematics education). Afrodite lives at the borders of two competing 
discourses; the one depicting school as ‘the beginning of a new life’ and the other 
emphasizing that ‘it is a shame for a girl to attend school’. Schooling represents 
the risky path towards a ‘new’, yet ‘uncertain’, life. In a similar vein, Anita rejects 
‘uncertainty’ and chooses a safer area for study and work.

The narratives offered by Anita, Giorgos and Afrodite are inscribed within dis-
courses that carry a ‘negative’ sense of female experience with technology, math-
ematics and education. Not only Giorgos, but also Anita and Afrodite seem to be 
captured within gendered discourses espousing a fixed view of women’s relation to 
technoscience. Their stories are not interpreted in a positive way, but instead per-
petuate the projection of stereotypic images. According to Foucault (1972, p. 49) 
discourses function constitutively towards producing ‘truths’ which ‘systematically 
form the object about which they speak’. This approach explains how hegemonic 
discourses serve to reproduce women as having distinct ways of knowing (Belenky 
et al. 1986) or that technoscience1 is mainly a masculine route towards realising 
the rational, modern ‘self’ and developing systemic societal change (Ellul 1964). 
Within this realm, school mathematics and technology are not seen a ‘female’ 

1 According to Wikipedia ‘Technoscience is a concept widely used in the interdisciplinary com-
munity of science and technology studies to designate the technological and social context of 
science. The notion indicates a common recognition that scientific knowledge is not only socially 
coded and historically situated but sustained and made durable by material (non-human) net-
works’ (http://en.wikipedia.org/wiki/Technoscience).

1 Disrupting ‘Development’ as the Quality/Equity Discourse
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choice since women deal with technomathematics in ‘different’ ways—ways that 
potentially can work towards ‘disrupting’ commonly held assumptions and expecta-
tions. Women’s relation to technoscience can be seen ‘disruptive’ as they embrace 
technology and mathematics without revealing a devoted passion. Instead, their 
engagement seems to be a continuous struggle towards fitting technoscientific ma-
terialities in the multiplicities of their everyday working, studying and living. Yet, 
women’s struggling to appropriate technoscientific knowledge is often read as prob-
lematic. The issue of ‘woman as a problem’ has been discussed extensively in rela-
tion to technology (Wajcman 2007), but also in relation to mathematics (Fennema 
and Leder 1990). And, its assumed ‘normality’ can be oppressive as it does not 
allow ‘other’ subjectivities to emerge and does not voice alternative positioning(s).

Following Michel Foucault and Judith Butler, the present chapter attempts to 
re-read hegemonic discourses of female relation to techno-mathematics. Foucault 
(1972, p. 151) observes insightfully how discourse ‘obeys that which it hides’ and 
becomes ‘the path from one contradiction to another’. He argues that ‘to analyse 
discourse is to hide and reveal contradictions; it is to show the play that they set 
up within it; it is to manifest how it can express them, embody them, or give them 
a temporary appearance’. Discourse as contradiction comes close to notions of 
‘disruption’ and ‘trouble’ as promoted by Butler (1990, 1997) arguing for the need 
to deconstruct what are often seen as ‘normal’ or ‘natural’ assumptions on agency, 
subjectivity and identification. Along these lines, the present chapter aims to move 
beyond a negative interpretation of women’s relation to technology and mathe-
matics as passive, indifferent or marginal. It argues that female partial and at times 
marginal positionings could problematise technological determinism (Ellul 1964) 
and bring forward an alternative reading concerning our understanding of techno-
scientific practices where the complex incompatibility of using technology and 
mathematics is not concealed but spoken out and negotiated. It is suggested, here, 
that an alternative reading might be closely related to disrupting assumed normali-
ties of human-technoscience relation(s) by means of disrupting ‘development’ as 
the quality/equity discourse in technology-mediated mathematics education.

Such an alternative approach to technoscience then becomes a dangerous ges-
ture to development discourse(s). Danger is encountered at several levels. First, 
opting out technology and science is ‘dangerous’ for the ‘modern’ individual 
as it blocks the development of the rational subject and perpetuates the ‘sav-
age’ and emotional self. Second, this very fact becomes dangerous as it holds 
up the development of modern systemic changes where ‘self’ and ‘society’ is 
interchangeably linked. Development here entails both a quality direction (i.e. 
towards becoming the rational subject) and an equity dimension (i.e. all subjects 
need to become rational or else techno-mathematically literate). However, nar-
ratives concerning women’s relation to school technoscience do not profess this 
very notion of development. Instead, they exemplify a ‘dangerous liaison’ as far 
as women instrumentally make use of their right to opt out, to resist, or to become 
marginal actors (see also Chronaki 2008). The vision of an equitable future within 
mathematics education is, also, critically dependent on the potential of reworking 
what it means to assume a sense of ‘I’—an agency that is subjectively negotiated. 
Specifically, women, instead of committing themselves to the ‘risky’ path of a 

A. Chronaki
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‘passionate’ experience with formal education and ‘new’ technologies they turn 
towards a ‘modest’ relationship carefully negotiating boundaries. Haraway (1997, 
p. 130), considers technoscience as the story of globalisation and argues for the 
significance of a ‘modest witness’ position as a space for feminist work—a space 
where technoscientific knowledge is regarded as situated ‘deep and wide through-
out the tissues of the planet, including the flesh of our personal bodies’.

This chapter attempts to provide a type of bird-eye view over a very complex 
area that, at present, pressurises teachers and students towards adopting ‘new’ me-
dia, ‘new’ roles and ‘new’ identities. This intensity for change is being discussed 
under the caveat of development by providing access for all (i.e. equity) via tech-
nology-mediated mathematics education curricula. However, what do we really 
mean by development? And how do these relative links among school technosci-
ence appropriation, development, quality and equity affect the daily lives of women 
and men and especially of women and men who belong to marginalised, oppressed 
and voiceless groups? Taking into account the above, the following sections at-
tempt to re-read hegemonic discourses on ‘development’ as ‘quality’ and ‘equity’ 
in mathematics education with an eye to disrupt assumed positioning(s)—or, in 
other words, to analyse how discourses can ‘hide and reveal contradiction’ (Fou-
cault 1972, p. 151).

 Development as Quality: Intensity for Change

Whilst equity, as Secada (1992, 1995) claims has been marginally explored in the 
research field of mathematics education, quality has been well emphasised. From 
the 1980s onwards, mathematics education research has greatly invested on promot-
ing innovative curricula design in order to promote quality teaching and learning. 
Main sources for theorizing quality have been certain psychological perspectives 
based primarily on either constructivist or socio-cultural approaches to learning. 
Curricula innovations included the cognitively guided instructions for mathematics, 
contexts for authentic learning, realistic mathematics education etc. (Schoenfeld 
1994; Greeno and The Middle School Mathematics Through Applications Project 
Group 1998; Treffers 1987).

Issues of quality were mainly discussed in relation to the micro-context of math-
ematics classrooms taking into account primarily didactic and pedagogical aspects. 
Emphasis on how children develop mathematical skills and competences has led 
towards focusing on cognitive and meta-cognitive strategies as they relate to social 
interactions (teacher intervention, group work, classroom activity). Despite com-
monalities, constructivist and socio-cultural perspectives could hardly agree on 
fundamental principles concerning learner agency and knowledge status. On the 
one hand, a constructivist perspective2 directs attention to the learner as an active 

2 The notion of ‘a constructivist perspective’ is used, here, in an excessive way, but one needs to 
keep in mind that more than one constructivist perspectives have been formed within the field of 
(mathematics) education, such as interactive, dialectic, radical, social etc. (Chronaki 1992, 1997).

1 Disrupting ‘Development’ as the Quality/Equity Discourse
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autonomous subject who potentially reflects on and negotiates ideas by means of 
experimenting with suitable materials. Learning and knowledge development, thus, 
depend mainly on explorative activity, reflection and active engagement with task 
parameters. A mainstream socio-cultural approach3, on the other hand, emphasises 
semiotic mediation, tool-use, and collective engagement with purposefully organ-
ised activity. The learner is conceived as a motivated subject who needs to actively 
interact with more knowledgeable others and to purposefully use tools that bridge 
the gap among past, present and future historical practices, forming zones of proxi-
mal development (Wertsch 1991).

Stressing the urgency for quality at the micro-level is not isolated from the 
macro-level reform agendas in mathematics education at national and international 
levels (TIMMS 2007). Certain curricula politics (i.e. prescriptions for content, skills 
and competences, assessment methods) act as ‘ideological state apparatus’ (Al-
thusser 1971) that regulate behaviour at the micro-level of human interactions. In 
that way, reform implementation mediates the macro-level societal structuring and 
creates micro-spaces (e.g. didactic innovations) where self and society develop to-
gether. As such, the stress for quality in mathematics education curricula cannot be 
considered neutral. Mainstream constructivist and socio-cultural perspectives work 
synergistically towards this end and provide a language for re-producing and legiti-
mizing discourses of ‘quality’. Such discourses materialise by means of curriculum 
reforms and innovations in schools and classrooms (i.e. mathematical content and 
competences such as active learning, collaborative work, technology-use, etc.) thus 
producing fixed identities of the ‘good’ learner and teacher. Walshaw (2001, p. 96) 
highlights that the learner is seen as constructing ‘…viable theories of the ways in 
which the world works’, the teacher as facilitating and empowering learners to ‘…
give voice to their subjugated knowledge’ and that learner’s personalised and lo-
calised knowledge ‘…generate not only visibility but also are said to offer agency in 
terms of identity and position from which they might act for change’. However, she 
critiques the view that subject agency can be easily fixed through suitable didactic 
interventions.

Within this realm, technology-mediated mathematics learning enjoys a promi-
nent position within recent curricula reforms in mathematics education. For ex-
ample, there is evidence that certain digital tools suitable for dynamic geometry, 
computer algebra, data handling, statistics, programming and modelling can be 
instrumentally utilised towards encouraging the development of specific math-
ematical skills and competences such as visualising, representing and manipulating  
symbolic entities such as mathematical ideas. At the same time, they foster  
certain ways of working such as collaboration, reflection, active experimentation, 
etc. (NCTM 2000; Hershkowitz et al. 2002; Ruthven et al. 2004). Technology-based 
mathematics education becomes a political arena for teachers, learners and curricu-
lum designers towards producing a particular collective identity change in the name 

3 In a similar vein, one needs to mention diversification across a variety of socio-cultural perspec-
tives ranging the emphasis from psychological to cultural, anthropological and critical approaches 
to learning and communicating (Kontopodis et al., in press).
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of the ‘new’ math teacher who safeguards ‘quality’ learning. Specifically, the ‘new’ 
maths teacher is required to be a flexible facilitator of knowledge construction, 
as opposed to knowledge transmitter in the traditional paradigm (Chronaki 2000). 
Stressing the transformative role of ‘new’ technology is an old issue that reflects 
broader socio-economic politics in the so-called ‘new’ information age (Castells 
1996/2000). The sense of ‘new’ becomes a reference to the most glamorous recent 
past and implies that ‘new’ equals ‘better’ and thus ‘new’ is associated with quality. 
The ‘new’ signifies ‘the cutting edge’, the avant-garde, the place for forward-think-
ing people to perform (and become) designers, producers and practitioners. Thus, 
discourses of ‘change’ tend to become avenues to ‘new’ and relate to long-lasting 
modernist views of social progress and development as smoothly delivered by tech-
nology (Lister et al. 2003).

Investment on such discourses emphasises the revolutionary impact of technol-
ogy towards producing profound transformations of maths teachers’ everyday life 
in terms of evolving techniques, skills, relations, feelings, communicative practices 
and organisational structures. The transformative impact of ‘new’ technologies has 
been mainly discussed as far as it concerns epistemological, pedagogic and didactic 
potential for change through the analysis of focused teaching experiments (Marrioti 
2002). Despite the benefits outlined in such exemplary cases, and the high invest-
ment on time and economic resources, widespread technology integration in mathe-
matics classrooms remains a challenge (Ruthven et al. 2004). In addition, a number 
of studies indicate how female teachers and students do not choose related fields to 
study and work and rarely report long-lasting transformative experiences (Wajcman 
2007). In a similar vein, Anita, Afrodite and the female engineers position them-
selves in discourses that inscribe them as ‘different’ when compared to men on the 
basis of lacking not only passion, but also the flair for active engagement and the 
competence for deliberative decision making. However, the discourse on ‘differ-
ence’ can easily slip into discourses of ‘gender gap’ and ‘female danger’. Although, 
Anita, Giorgos and Afrodite are different cases in terms of age, gender, race and 
school role (teacher, undergraduate student and secondary school student), they all 
seem to support the view that women’s liaison with mathematics and technology is 
not only uneasy, but it can be a marginalised or a ‘dangerous’ one. How else, could 
one explain Anita’s choice to withdraw from a successful future in mathematics 
since she senses that aspects of her everyday life might be in danger, and Afrodite’s 
conflicting experiences that lead her to consider quitting school? But also, how 
could one predict where young female engineering students might end up in their 
careers since they, according to Giorgos, lack a passion for technology and science?

In this realm, female teachers and students easily fall into the stereotypic image 
of resisting technology. An alternative reading is that some teachers and students do 
not resist technology itself but the stressful requirements for immediate ‘change’ 
towards a predefined quality agenda. They realise technology as a risky terrain and 
they set boundaries on technology use. Illich (1972) has argued that good and evil 
are not attributes of technology per se, but of technologies-in-use. For example, 
Anita realises how incompatible is for her to invest on mathematics or technol-
ogy as a career pursuit. Similarly, female students reject a passionate relation to 
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technology and concentrate, instead, on more pragmatic approach in specific locali-
ties. Whilst, males are believed to be passionately attracted by ‘new’ technology, as 
Giorgos, the young engineer states, their female counterparts, although competent, 
do not perform a passionate desire.

Instead of pursuing uncritically a path towards identity ‘change’, our data of 
women narratives urge us to consider the human-machine relation as situated in 
everyday practices. This view agrees with feminist perspectives on technoscience 
that alert for the importance to move away from a view of ‘change’ as develop-
ment towards a full masculine self-realisation. Specifically, Haraway critiques a 
number of Marxist and psychoanalytic epistemological positions on feminism and 
turns to explore the complex production of woman/difference/other in relation to 
technoscience. Striving for a move away from dichotomies, dualisms or binaries 
situated in discourses that indicate a ‘lack’ (e.g. lack of passion, interest, compe-
tence) and reproduce gendered technological essentialism or technophobia, Donna 
Haraway introduces the notion of ‘cyborg’4 as a metaphor for a hybrid entity that 
blurs the boundaries between organic and mechanic. The cyborg refers to the on-
tology of an enhanced command-control-communication-intelligence system (c3i) 
where human-machine organisms are integrated into a symbiosis that transforms 
both (Haraway 2004, 2006/2009).

The cyborg, short for cybernetic organism, is taken to be the image of an ‘aug-
mented human’ suitable for extra-terrestrial explorations, scientific experiments and 
science fiction narratives. But, Donna Haraway uses the term as a prime resource to 
imagine an alternative kind of material-semiotic world, an alternative perspective 
of identity politics, and in consequence an alternative optic of feminist technosci-
ence. The notion of cyborg denotes that dichotomies and dualisms such as nature/
culture, woman/man, body/mind can no longer be used to figure or create the other. 
She claims that; ‘[…] Instead, the cyborg is resolutely committed to partiality, irony, 
intimacy, and perversity. It is oppositional, utopian, and completely without inno-
cence. Cyborgs are not reverent; they do not re-member the cosmos. They are wary 
of holism, but needy of connection’ (cited in Schneider 2005, p. 64).

This particular ‘cyborg’ point of view allows us to re-consider female relation 
with technoscience by appreciating its intense partiality. In this sense, Anita’s and fe-
male engineers’ experience as non-passionate, partial, disloyal could be considered 
as a ‘cyborg’ position. They can be seen as ‘augmented’ human creatures as they 
appropriate, utilise and negotiate varied uses and productions of technology in their  

4 Cyborg, short for cybernetic organism, is a term coined by the research scientists Manfred Clynes 
and Nathan Kline in the ‘60s as they tried to imagine the kind of augmented man that would be 
necessary for extra-terrestrial exploration or space flight. It refers most particularly to an imagined 
and actual mix of machine and organism so as to constitute an integrated information circuit. […] 
The first cyborg, from Clynes and Kline’s lab was a white lab-rat with an osmotic pump implanted 
to allow the researchers to inject chemicals to control and observe aspects of the rat’s physiol-
ogy. […]. Donna Haraway has taken cyborg as a metaphor to draw together an array of critical 
questions about human-machine relations and varied embodied forms of technoscience as part of 
socialist feminism. Recently, the cyborg had emerged as a figure in popular culture and especially 
in science fiction (Clynes and Kline 1960; Haraway 1991).
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everyday lives. Through cyborg a more nuanced and complex angle of vision is of-
fered that sees the technoscientific as a field for the contestation of meaning and the 
possibility of remoulding and redirecting what looks repressive into something more 
subversive and even democratic. While fully aware of the fact that the image of the 
cyborg could be as much about global control and domination, or about pre-emptive 
strikes and imperialism masked as deterrence or defence, Haraway offers an alterna-
tive possibility; ‘[A] cyborg world might be about lived social and bodily realities 
in which people are not afraid of their joint kinship with animals and machines, 
not afraid of permanently partial identities and contradictory standpoints. The po-
litical struggle is to see from both perspectives at once because each reveals both 
dominations and possibilities unimaginable from the other vantage point’ (cited in 
Schneider 2005, p. 72). As such, the cyborg is not only an image or figure, an entity 
in reality or imagination, but it is also a standpoint, a way of thinking and seeing.

Calling the late twentieth-century understanding of the relationship between or-
ganism and machine a ‘border war’, Haraway (1997, 2006/2009) recommends in-
stead a pleasure to be found in bringing about the destabilisation of these boundaries 
and an accompanying heightened ‘responsibility in their construction’. This means 
that intensity for ‘change’ via discourses of ‘quality’ cannot be taken for granted as 
if it constitutes a ‘normal’, ‘neutral’ or ‘static’ path for development. Discourses of 
quality as identity change towards developing a ‘fixed’ list of goals promotes ‘fixed’ 
and ‘static’ identities and denies a ‘cyborg’ view on women’s experience with tech-
nology. Specifically, it conceals the fact that ‘development’ happens in multiple, 
complex and hybrid ways where boundaries between humans and machines are 
disintegrated and destabilised. In the following section, development as equity will 
be discussed as the urgency for all to change with/in school maths.

 Development as Equity: The Urgency for All to Change

In the field of mathematics education, gender inequity has been, mainly, explored 
in two interrelated dimensions using, at large, comparative analysis; first in relation 
to boys’ and girls’ achievements in specific mathematical curriculum content areas, 
and second, in relation to male versus female participation in areas of study and 
work that require mathematical knowledge and competences. As far as achievement 
in particular curricular areas of mathematics (geometry, algebra, problem solving) 
is concerned, the quantitative data gathered during the last decade inform us that 
male-female differences have started not only to disappear but even to reverse, since 
in some countries (e.g. Iceland and Cuba) we, recently, witness some female advan-
tage (Xin Ma 2008 based on a meta-analysis of regional and international studies 
on student assessment). A number of meta-analytic review studies concerning the 
relative interdependence of variables such as gender, class, achievement, attitudes, 
cognitive and meta-cognitive strategies seem to agree that the gender gap has gradu-
ally been eliminated (Hanna 2003; Xin Ma 2008). When the dimension of women’s 
career paths is considered, recent research outcomes point out that although there 
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is some considerable increase in the presence of females in areas of study, research 
and work, their participation in scientific fields still remains unsatisfactory (Jutting 
et al. 2006). For example, the American Mathematical Society (AMS) reports a 
slight increase in the representation of women in academic editorial boards. Spe-
cifically, they explain that between 1994 and 2003 women representation rate has 
increased from 9% in 1994 to 16% in 2003.

The situation is far more devastating in countries of the so-called developing 
world, where women still have limited access to work and education. Dunne and 
Sayed (2002), for example, explain that, in southern African countries only 5% 
of all female students enrol in mathematics, computing and engineering. Frantzi 
(2008) investigating women who enrol in mathematics related higher degrees in 
Greece observes that whilst before the Second World War women mathematicians 
were a rare phenomenon and mainly came from the middle or upper classes, dur-
ing the period 1940–1964, more women enrolled to study mathematics and they 
came mostly from a lower middle class background. Gender inequity, thus, is not an 
isolated phenomenon but rather greatly related to class, colonial, racial and cultural 
constraints experienced by the individual as s/he struggles for access and participa-
tion in related practices.

One might observe that although there is noticeable increase in female achieve-
ment and participation, the gap between males and females continues to create so-
cial inequity. Even though female students are as competent as male and enjoy 
practising technoscience, they continue not to choose the subject as a main field 
for study or work. The narrative of Afrodite, a young Gypsy Greek girl, as seen 
in the introductory vignette, indicates how both gender and race discourses pre-
vent not only her continuous participation in schooling practices thus making her 
a case at risk, but also constitute her ‘voiceless’. Spivak uses the term ‘subaltern’5 
to talk about how certain colonial and postcolonial discourses constitute not really 
the ‘voiceless subject’, but the subject who realises the impossibility of ‘voice’. In 
exemplary cases of female struggles in imperial India she problematises how the 
colonial world has always been defined by the West. According to Spivak (1999, 
1992a) civilisation, progress and even self-identity itself always eludes the subal-
tern. In other words, the West is defined by differentiating amongst the ‘present’, 
‘past’ and ‘future’ as well as by excluding the other. The colonial world has no such 
self-identity, at least as the Western viewer perceives it. The cry in Afrodite’s diary-
writing, perhaps, denotes exactly this awareness of the impossibility to speak and 
become heard about non-easily fixed, almost un-resolvable, issues.

Based on Spivak we realise how Afrodite becomes doubly the ‘other’ as a wom-
an and as a gypsy woman and how she realises her fragile and fractured self as 

5 Gramsci has originally coined the term ‘subaltern’ in order to address the economically dispos-
sessed, and today Ranajit Guha reappropriates Gramsci’s term in an effort to locate and re-estab-
lish a voice or collective locus of agency in postcolonial India. In her essay “Can the Subaltern 
Speak?”, Spivak acknowledges the importance of understanding the ‘subaltern’ standpoint but 
also criticises the efforts of certain subaltern studies emphasis towards creating a ‘collective voice’ 
through westernised mediating practices.
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she attempts to cross cultural borders amongst home and school. She struggles to 
live in-between two worlds that require her to continuously cope with conflicting 
choices and feels emotionally devastated as her diary-writing reveals (Dafermos 
2005, p. 257–259). Anzaldua (1987) argues that crossing ‘borders’ is not a simple 
but instead a process of learning to accept transformations and learning to tolerate 
contradictions and ambiguities—a ‘mestiza’ rhetoric in her words. Mendick (2005) 
refers to Anelia, a young Turkish Cypriot girl from a UK-based immigrant family, 
who also experiences the home/school divide. Anelia, as Afrodite, has a passion for 
(mathematics) education, but she also perceives that making the choice to study 
could be incompatible for her life because she holds that ‘mathematics’ is not suit-
able for a woman. Participation in formal educational practices means for Anelia, as 
well as for Afrodite, engaging in identity-work that creates multiple contradictions 
in her life and leads her towards limiting the study of science or considering quitting 
school (see the case of Afrodite). While both women cope well with formal edu-
cational activities—including mathematics and technology—they risk being char-
acterised as ‘savage’, primitive or other. Although this view is highly criticised by 
contemporary anthropological thinking for being an imposed ‘gaze’ at non-Western 
cultures (Appadurai 1996; Harding 1998, 2008), such differentiation serves to re-
inforce the epistemic chasm between savage and rational mind by perpetuating 
knowledge hierarchies. In addition, this chasm shows, as Spivak (1992b) argues, a 
concern for the processes whereby postcolonial studies rehearse neo-colonial im-
peratives of political domination, economic exploitation and cultural erasure—an 
issue referred to by Spivak as ‘epistemic violence’. It can be claimed that this is due 
to the fact that ‘development’ for Afrodite and Anelia is counted on an imperialist 
conception of the world and of technoscience. Spivak’s post-colonial critique ad-
dresses the western, male, privileged, academic, institutionalised discourses which 
classify the ‘other’ in the same measures used by colonial dominance that, ironi-
cally, seek to dismantle.

Most Gypsy girls do not perform as individual ‘entrepreneurs of self’, using Paul 
Du Gay’s words, as their decisions in life are depended on extended family and 
community values, needs or habits (Du Gay 1996). Living between two cultures, 
Afrodite has to confront conflicting discourses about either ‘attachment to com-
munity life’ or ‘pressure to lead a modern life’ (Chronaki 2009). For her, it is not 
an either/or situation but instead a desire to be both and this very fact places her in 
a painful situation. Afrodite’s dilemma whether to quit school or not is connected 
with pathologising her as incapable of making a sensible choice and as destined to 
remain subaltern. How could we, then, reconsider ‘equity’ in view of Afrodite? This 
means that gender equity cannot be simply viewed in terms of comparative studies 
of male’s and females’ skills and attitudes rooted in quantitative analysis or posi-
tivistic interpretations. Afrodite’s urgency to develop is also linked to her urgency 
to move towards a certain quality of modern ‘life’ inscribed through masculine and 
imperialist agendas of development. Her case, in particular, urges us to consider this 
‘move’ as an unfulfilled promise or as potentially unending.

A major consequence of hegemonic discourses of equity is the constitution of 
subjects as marginalised, oppressed or voiceless. In an almost pessimistic tone Spi-
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vak concludes that the ‘subaltern’ cannot speak in the context of cultural imperi-
alisms and moreover the ‘subaltern’ cannot be given a voice via a mediator. She 
specifically suggests that any attempt from the outside to grant subalterns a ‘collec-
tive voice’ is problematic as first, it assumes cultural solidarity among members of a 
heterogeneous group of people, and secondly it depends upon western intellectuals 
to ‘speak for’ their condition. Spivak argues that through such a process the sub-
alterns, in fact, re-inscribe their marginalised and subordinate positions. Afrodite 
seems to fall into this category. As a gypsy woman she is required to perform a ‘nor-
mal’ gendered positioning as constructed by her community. Taking into account 
that ‘normal’ is a fictional category one can claim that there is no normal way for 
any gender to act. Gayatri Chakravorty Spivak optimistically argues that although 
we cannot ‘give’ a voice, we can clear the space for the subaltern to speak. She sug-
gests that instead of urging for a ‘collective voice’ by means of the Western logos, 
it is preferable to focus on clearing the subalterns’ path so that their voice can be 
heard. The subaltern, be it a Gypsy adolescent girl or a Western woman who, though 
competent with computers and maths, chooses not to make them a priority in life, 
seems to live at the margins of hegemonic discourses of ‘development’. Clearing the 
path for them to be heard, in the context of this study, is closely related to troubling 
and disrupting—in Butler’s words—‘development’ within hegemonic discourses by 
revealing contradictions and taking seriously the contextual processes that consti-
tute marginalised and voiceless positioning(s). Growth, progress, development all 
seem to safeguard quality. And access to quality for all is assumed to be the measure 
for equity. Quality and equity, thus, become the two opposite sides of the same coin 
called ‘development’.

 Conclusionary Remarks

Technoscientific practices, and school technoscience in particular, are central to 
both self and society ‘development’. A recent anthropological study shows how 
‘namba tok’ (number talk or the use of statistics by colonial officials) is coupled 
with ‘kaantri’ (country) creation in the consciousness of the Nimakot people of cen-
tral New Guinea who see their lives changing from nomadic to settled inhabitancy 
(Wesch 2007). What we have come to call ‘modern’ society has emerged through 
production and appropriation of a variety of ‘technologies’ including arithmetic, ar-
chiving and spacing structural systems utilised to organise and control daily mind-
body practices. Dunne (2008), based on Foucault (1977/1980, 1991) discusses the 
political role of mathematics and technology as core values of modernity and ex-
plains how both are utilised to define and fulfil goals of ‘development’. This hap-
pens simultaneously at two levels; first, they are used to measure the achievement 
of certain predicted economic, social and educational outcomes, through a broad 
application of statistics, and secondly, by applying pressure, via local and national 
educational policies, mathematical and technological literacy is promoted. An im-
perialist (and sometimes a post-colonial) agenda of governmentality means that 
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women’s access to and participation in these subject areas are measured and evalu-
ated against that of men and western culture. In other words, the dominant discourse 
of development serves to legitimise ‘women’ as ‘others’ (i.e. women, as primitives, 
need to develop and progress).

From this point of view, technology-mediated mathematics education is not 
merely a tool for better understanding mathematical concepts, but can be seen 
as a tool for introducing learners to certain standards of ‘modern’ life—and for 
some (including women) this can be a risky, unsafe and uncertain terrain. He-
gemonic discourses, based mainly on constructivist and socio-cultural agendas, 
tend to overemphasise the ‘active’, ‘rational’, ‘autonomous’ learner who is able to 
instrumentally utilise any accessible technology and make timely choices and de-
cisions. However, such a view eschews the ideological underpinnings of an over-
simplified adherence to modernist and neoliberal ideologies. Walkerdine (1993) 
and Rose (1999), amongst others, explain that discourses related to an impetus 
to govern modern life are based on the virtue of self-reliance (autonomy, self-
regulation, self-efficacy, etc.) and reflect mainstream and conservative psychol-
ogy or sociology. Rose (1999), in particular, supports that the burden of ‘choice’ 
conceals the broader social context in which jobs for life have disappeared leaving 
the fiction of life-long learning instead. Simultaneously, inability to choose, to act 
or to make appropriate decisions signifies inability to perform as an ‘autonomous 
subject’ which then results into lack of development and leads to marginalisation. 
As explained above, self/society development requires both a quality and equity 
dimension. Within the confines of imperialist, colonial and patriarchal discourses, 
development is taken to be equivalent to the construction of a fixed ‘rationality’ as 
the ultimate goal for quality. Rational development is also taken to be at the heart 
of technoscientific practices including mathematics and technology-related litera-
cies. Therefore, quality in mathematics education curricula and practices is taken 
to be a cornerstone for safeguarding quality/equity and minimising exclusion and 
marginalisation.

However, women often seem to either resist or embrace partially and without 
passion certain technoscientific practices affecting their daily life or work. Such 
a standpoint can be stereotypically interpreted through the ‘woman as a problem’ 
optic—an interpretation rooted in hegemonic discourses of quality/equity. As previ-
ously seen, on the one hand, some mainstream constructivist and mainstream so-
cio-cultural perspectives strive to prescribe quality in mathematics education, and 
on the other hand, certain mainstream feminist perspectives focus on investigating 
gender inequity not only at the level of achievement, competences and attitudes 
but also at the level of access to and participation in mathematics and technology-
related fields. While constructivist and socio-cultural theorists emphasise quality 
curricula, feminists identify gender gaps. In simplified terms, it may seem that one’s 
work serves (to sustain) the work of the other. In other words, when a gender gap 
becomes identified, a quality curriculum will be there to fill the gap. But life is not 
that easy.

In the realm of the present chapter, it has been argued that hegemonic discours-
es of quality/equity as means for self/society development need to be approached 
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through alternative perspectives that enable subjects to move beyond a pressuris-
ing emphasis to a singular ‘perfectionist’ relation to technoscience. Hegemonic 
discourses tend to read women as ‘others’ by their being considered, perhaps unin-
tentionally, as the passionless and subordinate users of technoscience. By re-reading 
these stories we come to realise, that involvement in mathematics and technology 
in school practices is neither simply a matter of access to equitable sharing of re-
sources, knowledge and support nor an issue of a particularly passionate interest 
and positive attitude towards the subject. Women and men seem to live in complex 
localities that require them to simultaneously appropriate not one but a number of 
discourses that often become competing forces in both personal and school lives. 
The notion of ‘cyborg’ induces a renewed vision of quality, as far as the subject’s 
involvement in technoscience is concerned, emphasising partiality and hybridity. 
Women as ‘cyborgs’ can be fragile and fractured amalgams of a human-machine 
organism and can claim for themselves the right to ‘error’, to express ‘failure’, to 
demand ‘connectivity’ and to feel confident with ‘partiality’. According to Haraway 
(2006/2009), it is not the ‘machine’ that women reject but the insecurity that comes 
as a result of communication breakdown. In other words, it is the fact that they do 
not seem to have control over the fluid relation which develops between humans 
and machines that requires a ‘holistic’ instead of a ‘connectivist’ relation to technol-
ogy. The cyborg metaphor, thus, has the potential to become a way of thinking and 
re-working subjectivity as situated, hybrid and partial.

In addition, the notion of ‘subaltern’, as argued by Gayatri Chakravorty Spivak, 
offers an alternative optic on issues of difference or otherness as they affect mar-
ginalised, oppressed and voiceless subjectivities. She claims that by having limited 
access to cultural imperialism and by being constructed as ‘different’ or ‘other’, the 
subaltern can signify the ‘proletarian’ whose voice can not be heard as it is structur-
ally deleted from the capitalist bourgeois narrative. Furthermore, she objects to the 
view that since the subaltern cannot speak, an advocate is required to speak for her, 
arguing: ‘Who the hell wants to protect subalternity? Only extremely reactionary, 
dubious anthropologistic museumizers. No activist wants to keep the subaltern in 
the space of difference […] You don’t give the subaltern voice. You work for the 
bloody subaltern, you work against subalternity’ (Spivak 1992a, p. 46). The bur-
den created by the organisation of ‘collective’ or ‘mediated’ voices for subalterns 
constitutes, according to Spivak, a rehearsal of a political domination of ‘voice’ via 
neo-colonial exploitation that ultimately exacerbates ‘epistemic violence’. Instead, 
she voices the need to seriously consider clearing the way for the subaltern to speak.

As it has already been shown, clearing the way is a process of disrupting the 
hegemonic discourses of development that either implicitly or explicitly nurture sub-
alternity. While Haraway promotes a notion of the cyborg that opens up subjectivity 
to embrace situatedness, hybridity and partiality, Spivak enters the complexities of 
marginalised and voiceless subjectivity by encountering the subaltern’s voice. The 
impossible task of being heard signifies the impossibility of realising self as part of 
society or else the impossibility of belonging. Spivak does not hesitate to criticise 
the postcolonial practices that assume a ‘voice’ can be given via the mediation of an 
advocate and passionately argues that the subaltern do not need to be given a ‘voice’ 
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but instead we need to clear the way for them to walk and be heard. This important 
gesture means that the responsibility of their having a ‘voice’ is simultaneously our 
responsibility of listening to their voices—a deeply dialogical gesture. As a final 
word, I would like to argue for the need to consider involvement in school technosci-
ence as a risky gendered territory where subjects negotiate their positions by taking 
the boundaries and affordances of their localities into account. A situated notion of 
agency with/in technoscientific practices rejects the utopian and imperialist politics 
of ‘holism’, ‘advocacy’, ‘perfectionism’ and, instead, pursues ‘connectivism’ and 
‘partiality’. For this reason, a turn towards post-structural and postcolonial theorising 
of female experiences with school technoscience may prove most valuable.
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One cannot talk about equity these days without being politically correct. In fact, in 
the United States, “equity” has become an empty signifier manipulated in/through 
discourse (Dixon-Román, in press). For example, although many use “the achieve-
ment gap” as an important call for school accountability around needed resources 
and additional support for marginalized students, (e.g., Education Trust 2005), such 
discourse has done little more than replace “the culture of poverty” in the latest of 
deficit frameworks. That is, while equity issues are becoming more mainstream 
in the mathematics education community, theoretical framings continue to reflect 
equality rather than justice, static identities of teachers and students rather than 
multiple, fluid, or contradictory ones (Gutiérrez 2002, 2007; Martin 2009) and 
schooling rather than education. Whenever words like “quality,” “democracy,” and 
“equity” are used, we must first unpack what these terms mean and then examine 
who benefits from the definitions employed.

Let us consider the prevailing equity discourse in the United States: “the achieve-
ment gap.” The excessive focus that U.S. researchers place on the gap between 
the mathematics achievement of white, middle-class students and that of African 
American, Latin@1, American Indian, working-class students, and English learn-
ers and the need to close the gap (termed “gap gazing”) sheds light on issues of 
access and achievement from a dominant perspective (maintaining the status quo) 
with little concern for how students are constructed in the process, what additional 

1 We use the @ sign to indicate both an “a” and “o” ending (Latina and Latino). The presence of 
both an “a” and “o” ending decenters the patriarchal nature of the Spanish language where is it cus-
tomary for groups of males (Latinos) and females (Latinas) to be written in the form that denotes 
only males (Latinos). The term is written Latin@ with the “a” and “o” intertwined, as opposed to 
Latina/Latino, as a sign of solidarity with individuals who identify as lesbian, gay, bisexual, trans-
gender, questioning and queer (LGBTQ).

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
DOI 10.1007/978-90-481-9803-0_2, © Springer Science+Business Media B.V. 2011
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skills are needed to negotiate the discursive spaces of education, and/or how power 
relations play out in learning. This phenomenon exists beyond the United States as 
well, in the form of international comparative studies. Although all comparative 
studies are not problematic, they continue to privilege and normalize certain groups 
and practices. As such, international studies that seek to compare nations can echo 
this preoccupation with an achievement gap. While we recognize the essentialist 
underpinnings of such terms as “white middle-class students” or “American Indian 
students,” we use these terms as they circulate in discourses and are used to position 
individuals in education.

In this chapter, we begin by destabilizing the equity definition implicit in the 
achievement gap discourse by first outlining the dangerous effects of maintaining a 
gap focus and then by explaining, from a Foucauldian perspective, how the “gaze” 
operates. From there, we turn to research on comprehensive education to highlight 
the many ways in which people learn or are educated outside of schooling. Finally, 
we examine what impact shifting our goals from “closing the gap” to “meaning 
making in social interactions” might have for the endeavor of mathematics educa-
tion. Throughout this chapter, we argue that both relying upon discourses like the 
“achievement gap” and continuing to privilege schooling as the primary institution 
of education will ensure that students of color and other subordinate populations 
will continue to be left behind. We show how questioning the concepts of “eq-
uity” and “education” leads to equally important questions such as “What counts 
as mathematics?”—an often overlooked issue in debates about equity, access, and 
democracy. Considering education comprehensively in this way may offer an op-
portunity to better unite philosophers, sociologists, and cultural anthropologists of 
mathematics with those who educate broadly.

 Destabilizing the Achievement Gap Discourse

The Problem with Gap Gazing

In order to better understand the meanings operating with respect to the term “equi-
ty” as well as who benefits from such meanings, we take the perspective of subordi-
nated individuals in society (defined here as African American, Latin@, American 
Indian, working-class students, and English language learners). Let us consider the 
various ways in which the current focus on “the achievement gap” within main-
stream mathematics education in the United States is problematic. First, although 
mainly concerned with the well-being of marginalized students, researchers who 
focus on the achievement gap support practices that often are against the best inter-
ests of those students (Gutiérrez 2008). That is, while documenting the inequities 
that marginalized students experience daily in mathematics education could be seen 
as the first step toward addressing hegemony, most research stops there. Examining 
the gap from its many angles and perspectives (what Gutiérrez calls “gap gazing”) 
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has done little to change the will or commitment of a nation to engage its citizens in 
broader forms of mathematical literacy, in part because closing the achievement gap 
suggests nothing is wrong with the system. Although some would argue that gap 
gazing seems to relate only to research studies that document the gap and not those 
that attempt to reduce the gap, we use the terms “gap gazing” and “achievement 
gap perspective” interchangeably to denote the fact that both connote a discourse 
that fails to consider equity beyond the narrow definition of “access.” See Gutiérrez 
(2008) for further elaboration.

More specifically, because gap gazing draws upon one-time cross sections of 
data, it offers little more than a static picture of inequities with inadequate informa-
tion about how those inequities were created. In addition, achievement gap stud-
ies often fail to question the validity of measurement tools or the choice to focus 
on measurement. In fact, the best we can achieve under an achievement gap lens 
is to close the gap, to show that marginalized students can do as well as middle-
class whites. Most researchers and practitioners fail to question the underlying as-
similationist goal and the ways in which framing the problem as an achievement 
gap supports deficit thinking and negative narratives about marginalized students. 
That is, such thinking encourages researchers to focus on ways to make subordinate 
populations more like dominant ones. And yet, other researchers have made cogent 
arguments for framing the issue of equity around other kinds of gaps, including the 
opportunity gap (Flores 2007; Hilliard 2003), the education debt (Ladson-Billings 
2006); the gap between whites and Asians (Gutiérrez 2008; Martin 2009).

Gap gazing also accepts a static notion of student identity, presuming that stu-
dents can be reduced to a set of cultural markers, rather than recognizing they are 
constantly in flux, dependent upon the social structures and social relations in which 
they are engaged. By always relying upon a comparison group, the achievement 
gap discourse perpetuates the idea that subordinate populations cannot be studied 
for their own sake and/or that such populations have nothing to contribute to more 
general discussions or theories about education. Ignoring the largely overlapping 
achievement patterns of groups, the dividing practices (Foucault 1980) common in 
gap gazing research serve to dehumanize students.

Moreover, the achievement gap discourse provides researchers and practitioners 
with a “safe” proxy for talking about students of color without naming them or hav-
ing to discuss the institutions of racism, classism, or politics of language that are 
endemic in today’s society. And, by failing to interrogate these hegemonic institu-
tions, the achievement gap discourse perpetuates the myth that the problem (and 
therefore solution) is technical in nature. Finally, gap gazing relies upon narrow 
definitions of learning and equity, assuming both that today’s school mathematics 
curriculum is the one to which we should aspire and that access to an unfair system 
is a sufficient goal. Yet, marginalized populations have historically shunned the idea 
that white student achievement levels signal excellence. Instead, they have tended 
to hold broader standards for themselves—defining excellence with an eye toward 
not just doing well in school, but also maintaining cultural values and a critical atti-
tude in their young, often privileging ties to the community over individual success 
(Hilliard 2003; Kurzweil 2003; Valdés 1996).
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The Impact of the Gaze

Currently, the discourse in the United States around the achievement gap is so 
prominent and normalizing that it is almost unimaginable that students, teachers, 
and community members can escape its grip. In fact, we argue they do not. Subordi-
nate students and their local communities are assaulted daily with headlines of con-
tinued or growing achievement gaps, constructing them as inferior to middle-class 
whites and Asians. Much of the mathematics education community is complicit in 
this construction of subordinate populations. In fact, when Gutiérrez first published 
an article on gap gazing in July 2008, a search in Google Scholar with the words 
“achievement gap” + “mathematics” produced 8,000 hits; today that same search 
produces 137,000 hits, signaling that the research community’s absorption with this 
discourse is not waning. Beyond the research community, our society in general 
seems to have bought into this achievement gap pre-occupation. The same search in 
regular Google produces 404,000 hits.

The focus on the achievement gap by mainstream mathematics education allows 
for only certain “truths” to arise (Foucault 1980; Walshaw 2007). These “truths” 
are not universal or fixed. Rather, they are constructed by our choice of focus. For 
example, in the achievement gap story, at best (by closing gaps), we can show that 
students of color are capable of doing as well as middle-class whites; at worst (by 
failing to close gaps), we reify the notion that perhaps the intellectual capacity of 
students falls on a “natural” hierarchy that is coded by ethnicity/race. From a post-
structuralist perspective, it is the gaze and the repetition of that gaze in discourse 
that: (1) makes the achievement gap comprehensible, (2) normalizes, and (3) gives 
authority to a particular discourse about equity. Here, the discourse is one that fo-
cuses on standardized test scores and the kinds of students who are capable of doing 
well in mathematics. As a result, students of color continue to be framed in compari-
son to whites; this comparison then becomes normalized, as if it is a “natural” way 
of thinking about achievement, rather than focusing on the excellence of students of 
color or the many other ways subordinated students may make sense of their experi-
ences with mathematics.

By providing the categories by which teachers and students see themselves, the 
gaze further serves to regulate bodies in ways that shut down other possible dis-
courses and technologies within school. Even when students are not in school and/
or are grown adults, the achievement gap discourse continues to construct our no-
tions of who is good in mathematics and who is not (Martin 2007), as well as influ-
ence how those constructions relate to intelligence overall. The residue of compari-
sons and testing regimes lingers long into one’s life.

Teachers who may have thought of their work in much more complex ways may 
find themselves ignoring other signs of excellence (e.g., improved inter-group rela-
tions in students, greater student participation in advanced mathematics courses, 
positive dispositions toward mathematics, students having improved/broadened vi-
sions of their futures, the ability to see that mathematics is socially constructed). 
This kind of self-regulation occurs because schools shape, monitor, and discipline 
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the knowledge, modes of operating, and positionings of teachers (Walshaw 2007). 
So, even if an administrator is not explicitly asking teachers to act in particular 
ways, the mere threat of broader surveillance, of wanting to fit in with what is 
deemed acceptable or professional, is enough to affect the technologies (practices) 
seen to be valid. This is especially true, given that the National Council of Teachers 
of Mathematics, the professional society for mathematics education in the United 
States, embraces the discourse of gap-closing when conceiving of “equity” and in 
its annual conferences.

If we decide that doing mathematics equates to scoring well on “achievement 
tests,” then the issue is not just whether the measurement tools we develop have 
sufficient accuracy or whether the models can become better at predicting or ensur-
ing achievement in school. We now are in the realm of consequences for the kinds 
of individuals (e.g., students, teachers, parents) who are constructed, which is an 
artifact of the original definition of mathematics that was employed, something we 
return to later in this chapter.

Fortunately, individuals are not mere consumers of the discourses that operate 
in society. That is, just as gap gazing can close down the identities marginalized 
students are seeking to create/act, it also can serve as the means for opening up 
new identities. Subordinated students constantly (re)interpret, (re)use, and (re)in-
vent such discourses for their own purposes (Dixon-Román 2009). As such, what 
may have begun as consumption can turn into a form of production. Even so, this 
production does not come without costs. Re-signifying/subverting such discourses 
(Butler 1993) requires that students do additional cognitive and emotional work 
(McGee 2009; Stinson 2008).

What is hidden in our preoccupation with testing and achievement is the fact that 
(mathematics) education happens on so many more levels than schooling. More-
over, there is a false dichotomy between the sciences and the humanities (Davis 
1994). As educators, we must challenge the wisdom of using the achievement gap 
discourse as the means for addressing equity/democracy. Varenne (2008) reminds 
us that,

school achievement is but a small part of American education and we must convince policy 
makers (and I include everyone here from senators in Congress, to school teachers) that the 
main issue for American democracy is not getting everyone to achieve at grade level…it is 
our duty, as given by those who maintain our positions as experts, to challenge what policy 
makers actually enforce on each other. (pp. 364–365)

In this sense, the debate about what we want for our children/students/society with 
respect to mathematics is as important as the products that result from education. 
Thus, it is not just important, it is our “duty” to challenge the centering of math-
ematics knowledge in schooling and reveal the multiple levels of mathematics edu-
cation beyond schooling.

The kinds of research questions we ask influence the knowledge that is created 
as well as what we might be able to do with that knowledge. We see that maintain-
ing a focus on education as it occurs within schooling ends up (re)inscribing the 
inequitable conditions that produce “failing” students as if they are attributes of the 
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students themselves. Looking to life more generally, we see people learn everyday 
from many sources and for many purposes.

 Thinking About Education Comprehensively

In his address to the John Dewey Society, Cremin (2007/1975) states that,

The important fact is that family life does educate, religious life does educate, and work 
does educate; and, what is more, the education of all three realms is as intentional as the 
education of the school, though in different ways and in different measures. (p. 549)

He further goes on to set forth three assertions:

First, we have to think comprehensively about education; second, that we have to think 
relationally about education; and third, that we have to think publicly about education. 
(p. 1550)

Cremin’s insightful observations and analysis were a challenge to the theory of 
education within educational research, policy, and practice. That is, education had 
been (and continues to be) understood as a binary opposition between schooling and 
society, in which schooling was/is privileged as the site of education. Cremin points 
to this very contention in John Dewey’s Democracy and Education, but argues that 
Dewey falls victim to the very dualism that Dewey attempts to reconcile. It is via 
this understanding of education comprehensively, relationally, and publicly that Cr-
emin attempts to resolve the dualistic understanding of education and society by 
speaking to how one contaminates the other, how schools are related to other soci-
etal apparatuses, and how each of their relational focus is important in the equitable 
development of high human potential.

When we recognize the limitations of public schooling, other forms of learning 
in society become important, not just so they may (re)engage and validate a subor-
dinate population, but also because they have the potential to (re)engage education 
as something broader. Over the years, partly because of racism, sexism, classism, 
and politics of language, marginalized populations have not been able to rely upon 
public schooling to teach their young. They often rely upon schools to transmit 
dominant values and skills, but recognize the need to supplement those values and 
skills with other things that affirm the child. Through necessity, families and other 
institutions supporting subordinate populations have had to become more deliber-
ate in their teaching because their young have had to negotiate schooling as an 
institution in way(s) different from dominant populations. To be clear, we are not 
suggesting that dominant populations do not need to negotiate schooling or are not 
educated outside of school. But, we highlight the fact that by focusing our attention 
elsewhere (to the margins), we find potential solutions for making education overall 
better, not just for the subaltern.

For these reasons, and building upon Cremin, others (Gordon et al. 2005; 
Varenne et al. 2009) have begun to theorize, examine, and consider many of the 
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various forms of supplementary and comprehensive education. Supplementary edu-
cation refers to all of the learning and developmental experiences that occur outside 
of schooling; whereas, comprehensive education is concerned with the deliberate 
and relational educative experiences in all institutions of society, not just schooling. 
They suggest supplementary and comprehensive education might include librar-
ies, museums, childcare centers, health education and clinics, martial arts, hip hop, 
after school programs, athletics, parenting practice workshops, financial literacy 
programs, prenatal services, among many others. It is via each of these community 
institutions, spaces, and practices that we find the various intentional educational 
processes that Cremin asserts.

For our work, we rely upon Varenne’s distinction of thinking about education 
comprehensively, rather than thinking of some entity we might call comprehensive 
education that would replace schooling. Building upon the idea that the arrange-
ments of education are somewhat arbitrary (Garfinkel 2002), Varenne (2007, 2008, 
2009) puts forth the idea that we are all ignorant and that leads us to seek knowl-
edge. Individuals are constantly trying to figure out what is happening around them, 
as well as learning to be adaptive to their environments (Lee 2008). When people 
try to figure out who they are, they rely upon those around them. When people fool 
around (do not follow the rules), they are instructed in how to behave. This educa-
tion happens not just with respect to families, but occurs while one is standing in 
line at the post office, when one is given medicine, or when one is instructed by 
labels as to which product is best for us.

Considering a more comprehensive view of education allows us to move beyond 
distributive models of justice (the redistribution of resources in society) toward af-
firming multiple (and unsanctioned) ways of knowing and challenging the norms of 
decision-making processes. Both of these are non-material resources of power that 
are not addressed by distributive models of justice (Dixon-Román, in press; Young 
1990). We turn now to what this might mean for mathematics.

 Exploring Mathematics Education Comprehensively

The research in mathematics education has not been completely centered on school-
ing. In fact, programs of research in ethnomathematics, social justice mathemat-
ics, and out-of-school mathematics bring us a step in the direction of challenging 
school-centered mathematics knowledge (Ascher 2002; D’Ambrosio 2006; Fran-
kenstein and Powell 1994; Miranda 2008; Nasir 2000; Nasir et al. 2008; Nuñes 
et al. 1985; Saxe and Esmonde 2005). However, policy makers and educators are 
often left scratching their heads about what to make of the fact that students cannot 
transfer their knowledge of mathematics in out-of-school contexts to an ability to do 
mathematics in school. These studies do not tend to offer compelling arguments that 
doing mathematics as an endeavor should be challenged, as they tend to privilege 
school mathematics as a frame for identifying (i.e., judging) what happens outside 
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of school. Nor do they explicate the desired relationship between schooling and 
institutions outside of schooling, the relational piece that Cremin put forth.

At times, these studies seem to imply that schools simply need to do a better job 
of reflecting the real-world problems that people encounter in their lives. However, 
such a task would require fabricating false problems that are not really those of 
the particular individuals in a classroom. In fact, out-of-school studies do not sug-
gest that because we know African American males do mathematics while they are 
engaged in such “cultural practices” as playing basketball or dominoes, we should 
necessarily include domino playing or basketball as a means for hooking such stu-
dents into learning school mathematics or highlighting their intelligence. However, 
other than chronicling that people do mathematics in various effective ways outside 
of school and that these ways should be valued, the aims of out-of-school math-
ematics seem poorly articulated with educational policy in general or schooling as 
an institution.

More than just thinking about the forms of mathematical practices and wheth-
er they are valued—be they social justice-oriented, ethnomathematics, or out-of-
school—thinking about education comprehensively pushes us to think about the 
ways in which mathematics formats our worlds. Such thinking moves beyond a 
sole focus on the practices themselves toward a greater awareness of the role(s) 
that mathematics play in decision-making. Without paying greater attention to these 
current structuring roles, we are unlikely as a community to (re)interpret, (re)use, or 
(re)invent the roles we would like for mathematics to play in our future.

 Rethinking (the Roles of) Mathematics

Most researchers writing about equity in mathematics education fail to question what 
counts as mathematics and/or what should be its role in helping create a more just 
society. This kind of question is typically reserved for the philosopher, anthropolo-
gist, or sociologist. Yet, what counts as mathematics is important to the endeavor 
of education because the definition of mathematics is complicit in constructing dif-
ference (Gutiérrez 2010 in press; Wiliam 2003). In fact, the high status that society 
confers on mathematics may relate more to the fact it correlates with intelligence 
tests and is easy to create large differences in performance between individuals than 
the fact that there is something inherent in mathematics that makes it powerful. The 
continuation of this falsely earned status in schooling may be due to the fact that 
males tend to perform better on such tests (Wiliam 2003; Wiliam et al. 2002).

What would it look like in mathematics to consider education comprehensively? 
To answer this question, we need to grapple with the practices in which people are 
mathematizing their world and that happens everywhere, not just in schools. We 
must ask ourselves when are these practices defined as mathematical, when are they 
considered something else, and when do they blur the boundaries? In fact, regard-
less of where they occur, social practices can never really be defined in essentialist 
terms such as mathematics or non-mathematics; however, they can be seen as more 
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or less consistent with previous inscriptions of mathematics as (e.g., measurement) 
or something that departs from that. We turn, here, to the work of Ole Skovsmose, 
in particular his notion of “mathematics in action” and the “formatting power of 
mathematics” to help uncover the roles that mathematics plays in structuring reality.

Skovsmose and colleagues have put forth the argument that in society, being 
rational is correlated with being mathematical (Christensen et al. 2008; Skovsmose 
2004; Skovsmose and Yasukawa 2004). That is, mathematics is seen as the arbiter 
of truth.

When debating the quality of a mathematically based decision, only questions concerning 
rigour of the mathematical description and analysis appear to be open to serious discus-
sions. (Christensen et al. 2008, p. 78)

This view is supported because individuals generally assume that mathematics has 
the potential to adequately represent the essential characteristics of all things. If 
we have two different cell phone plans and we need to make a decision between 
them, we can model with statistics what are the likely outcomes for the average 
user to arrive at our answer, even knowing that no such “average” user exists. The 
idea is that mathematics embues a kind of rational order to things that allows one 
to choose without emotion or bias. Yet, we need only consider how difficult it is to 
“quantify” or otherwise capture in “mathematical” ways the cultural significance of 
things (e.g., the value of a deceased loved one’s picture, the significance of being 
able to speak one’s mother tongue freely, the impact of art/music on the psyche) to 
see how this line of thinking goes awry.

Considering a comprehensive view of education, we note that everyday deci-
sion-making is never purely mathematical. While some models become useful for 
making sense of our world, we must also recognize that at some level they are im-
precise, fabrications of our surroundings. We often make decisions partly by what 
the “mathematics” tells us, partly by what “other things” tell us. How do we justify 
our decisions to ourselves (and others) when they are inconsistent with the “data” 
we have before us? The fact that people choose to invest in “green” funds or buy 
“local” or “organic” suggests much more is being considered than maximizing re-
turns or some other straightforward (universal), “rational choice,” or cost-benefit 
analysis.

The valuable point that Skovsmose and colleagues make is not just that indi-
viduals and communities are enculturated into this view of mathematics (e.g., as 
inherently powerful), but that realities become substituted by false situations. This 
is what they call the “formatting power of mathematics.” They argue further that 
education becomes the process by which reality is falsified in order to dominate.

Following this logic, D’Ambrosio wonders whether we should educate the in-
digenous/marginalized or whether such individuals might be better off not being 
indoctrinated with such mathematical formatting of the world that is part of the 
culture of power. But, here is where D’Ambrosio slips into privileging schooling 
as the main institution of education. In fact, if we recognize that many institutions 
educate, then we can see how society in general (families, religions, museums, me-
dia, community centers), and not just “schooling,” contributes to this formatting 
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power of mathematics. And, yet, drawing from the Program ethnomathematics, we 
can also acknowledge that not all societies value quantity over quality (privilege the 
products of measurement).

Studies of adults learning to use mathematics (to learn what they did not learn in 
school, to get better jobs, to take part in political discussions) offer some interesting 
findings (e.g., FitzSimons 2002; FitzSimons and Godden 2000). These studies high-
light flexible learning (e.g., self-teaching) and the de-institutionalization of educa-
tion (e.g., workplace valued over the academy). Moreover, these studies illustrate 
how individuals deal with technologies of power that serve to construct them as 
either “doers” or “knowers” of mathematics. Drawing on studies of adult learners, 
we might ask, how do individuals negotiate these technologies of power? How do 
adults become aware of their role in producing and/or using mathematics? What 
are the implications of market-driven learning that deprofessionalizes teachers and 
places the responsibility for life-long learning on workers?

By thinking about education comprehensively and therefore rethinking the roles 
of mathematics in society, it moves us from tinkering with the current arrangements 
in school (e.g., developing better lists of how to improve achievement for particu-
lar populations, creating better models for measuring or predicting achievement, 
closing the gaps between haves and have nots) and moves us to trying to better 
understand the reliability of mathematics put into action. When does mathematics 
capture the salient aspects of one’s surroundings and when does it miss? When it 
misses, what new creative inventions of mathematics are put into play? What is the 
relationship between doing mathematics and doing other aspects of everyday life? 
What might it mean to embody ethical actions when using mathematics (Skovs-
mose 2004)? A broader dialogue is necessary if we are to coordinate the various 
institutions of education that operate in society.

Although the main purpose of thinking about education comprehensively is to 
de-center schooling as the primary source for education, it is not to completely 
dismiss the role of schooling in the broader enterprise of education. As such, we 
also consider what can schooling learn from a comprehensive look at education? 
What do people learn about the value and power of mathematics through school-
ing? Much attention has been placed on the achievement gap. Beginning at that 
level, instead of asking how we might close the gap, we might ask: through the 
discourse of the achievement gap, what do individuals learn about themselves and 
others (e.g., what people are capable of)? What do people learn about competition 
and/or inequalities? How does that relate to the formation of self and other? Mov-
ing beyond the gap gazing discourse, we might ask what are some of the roles that 
mathematics plays in structuring our realities? When do we “do” mathematics and 
for what purposes?

Besides becoming more aware of what counts as mathematics, schooling can 
learn to recognize the structure of the discipline. Traversing the belief of a univer-
sal mathematics and recognizing that individuals produce different mathematics 
in relation to others (over time) allows us to see that academic mathematics is but 
one form of ethnomathematics (Frankenstein and Powell 1994) that does not al-
ways support people to make sense of and function effectively in their worlds. If  
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mathematics has become a tool by the dominant to justify their position, often to 
look down upon those seen as less rational, how can students learn to be more aware 
of when they are (re)interpreting, (re)using, or (re)inventing mathematics? How 
might teaching mathematics for social justice deliberately connect with or contrib-
ute to this endeavor?

Schools can learn from people/institutions that operate outside of schooling 
(both in content and in form). That is, those who educate can be more deliberate 
about what supplements life (in recognizing how mathematical practices shift over 
time, deciding whether to speed up these shifts, try to stop them, etc.). In some 
ways, technology’s impact on mathematics is a good example. From time to time, 
heated debates arise within mathematics education about whether students should 
have access to technology (primarily calculators) before they have learned the “ba-
sic skills” that technology performs. The question of whether to use calculators/
computers in math class assumes schooling can somehow control what students 
“learn” about mathematics, as if they are not already using such technologies out-
side of mathematics class to make decisions or to educate themselves. Moreover, 
rather than stressing the importance of introducing students to “real-world prob-
lems” in mathematics classrooms as a means to “hook” (i.e., trick) students into do-
ing school mathematics, schools can learn more (e.g., from studies of out-of-school 
mathematics) about how individuals make judgments concerning when mathemati-
cal description is (or is not) adequate as well as what else needs to be considered.

It is not just that thinking about education comprehensively adds to the math-
ematics education literature by helping us focus on which practices to attend to 
(e.g., other cultures, other places besides school). It also moves us beyond the mere 
chronicling of practices to developing a policy agenda. That is, beyond understand-
ing the structuring roles of mathematics in our lives, we also care to influence (push 
back on) those roles. There are many decisions to be made. We might ask what are 
some of the ways we would like mathematics to relate to uncertainty, politics, and/
or technologies? Perhaps we want school leaders to educate about both the horrors 
(applications of destruction) and the beauty of mathematics? Rather than perpetuat-
ing an internal sense of power to mathematics, we might want citizens to develop 
the ability to discern for themselves which kinds of questions can be answered using 
mathematics and which cannot. By thinking critically about the benefits and draw-
backs to formatting realities with mathematics, we could be more deliberate in how 
and when we want to use/create mathematics in our everyday lives.

 Conclusion

A brief review of the problems in research using an achievement gap lens helps il-
lustrate that testing and assessment are the remains of “schooling” as a practice. In 
contrast, thinking about education comprehensively highlights important policy im-
plications. For example, demanding an obsolete disconnected mathematics and test-
ing students to do well in it will not prevent students from rejecting it as a practice. 
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Achievement gap-only ways of thinking about equity will only continue to privilege 
schooling as the primary institution of education, imprinting upon students the resi-
due of the hegemonic manners in which schooling has operated over the centuries, 
not liberate them from oppressed positions in society.

Our purpose in unpacking the gap gazing trend in the United States and in con-
sidering education more comprehensively is not to propose a fully developed policy 
agenda with respect to mathematics education. However, we have offered a number 
of questions along the way that may guide the development of a policy agenda. For 
example, what are the structuring roles played by mathematics in a technological 
and global society? More specifically, in what way(s) does mathematical formatting 
convince individuals they are making value-free decisions? How do those structur-
ing roles influence the available identities of individuals and the constructions of 
“truth” about the world in which we live? In what way(s) does surveillance (by oth-
ers, by self) play into the project of mathematics education? We believe many more 
questions still need to be asked, and in ways that better engage the broader public in 
decision-making. In fact, we have refrained from trying to answer these questions 
outright because we believe there is much more exploration and theory-building 
that needs to be done and because offering answers now may close down the kind 
of dialogue we see as important.

We need to be constantly considering the forms of mathematics and what they 
seek to deal with. As society presents new demands, new technologies, new pos-
sibilities, we must ask ourselves whether our current version of mathematics is ad-
equate for dealing with the ignorance that we have.

Discourses like the achievement gap freeze mathematics into a commodity that 
needs to be “sold” to students while they are in school. Yet, when we look at how 
individuals and communities make sense of their surroundings with/through/in 
mathematics, we begin to open up possibilities for rethinking what mathematics 
does along the way. It is in rethinking “what is education?” and “how might math-
ematics participate in the creation of a more just world?” that is at the very heart of 
the democratic project.
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 Introduction

Who would publicly deny that mathematics education should be concerned with 
“equity” and “quality”? Definitely, a concern for “quality” has been behind the 
constitution of mathematics education as a field of scholarly inquiry from its very 
beginning. In several accounts of the history of mathematics education and its re-
lated institutions, considerations about the “quality” of teachers’ instruction and of 
students’ learning have been at the core of the justifications for the development 
of the field. The constant call for the improvement of the “quality” of mathematics 
education characterizes a field of research that more often than not documents the 
shortcomings of “quality” in the mathematics being taught, in the teaching practices 
of teachers, and in the learning of students.

Nowadays the terms “equity” and “quality” appear side by side, and it seems 
“natural” to have them together. It also seems “natural” to know what is understood 
by the terms. In fact, notice that we have already used them without a clear signal-
ing of the meaning given to them. In this paper we react to the “naturalization” of 
the meaning of these terms and their relationship. Thus, it is our purpose to provide 
a critique of how equity, and its relation with quality, is addressed in current math-
ematics education research. For doing so, we adopt a socio-political perspective 
that, on the one hand, views mathematics education practices as a large network of 
social, economic, political and historical practices and discourses where mathemati-
cal rationalities are constituted (Valero 2010). On the other hand, we view research 
in mathematics education as a series of practices that contribute to the construc-
tion of naturalized discourses about what constitutes mathematical rationalities in 
the social world. Such a perspective allows us to engage in an examination of the 
types of discourses that mathematics education research has produced when tack-
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ling “equity” and “quality,” and the relationship between both. We see such critique 
as an important activity of mathematics education research. Without it, it becomes 
impossible to imagine different alternatives to the language that we use and to the 
world that such language creates.

In particular, we emphasize the fact that discussions of equity and quality are 
necessarily political since they allow us to address the values and ideologies that 
make part of educational practices, as well as of the whole set of practices and social 
organizations that extend beyond mathematics classrooms. However, it is our obser-
vation that the great majority of mathematics education research, by being primarily 
focused on pragmatic approaches to the improvement of classroom practice, lacks 
a theoretical comprehension of how “equity” and “quality” are related with broader 
social and political structures. Without such theoretical comprehension, Baldino 
and Cabral (2006) argue, we, as researchers, risk moving blindly because we do not 
“take certain distance and develop consistent research theoretical frameworks to 
appreciate our practices” (p. 31). In this chapter, we contribute to this comprehen-
sion by analyzing how social discourse and ideology permeate the way mathematics 
education research phrases and tackles “equity” and “quality”. In our analysis we 
draw on the work of Gert Biesta, and Slavoj Žižek. Biesta, a philosopher of educa-
tion, offers us tools to enter into a critique of mathematics education research in 
relation to the politics of education as a human activity. Žižek offers us tools that 
allow us to understand how ideology permeates today the field of mathematics edu-
cation research.

 The Framing of the Research Field

In our recent work, we have been paying attention to the historical constitution of 
mathematics education research as a field of study. Inspired in the work of Michel 
Foucault, we are interested in the effect of the fields of academic inquiry in the con-
struction of discourses about the social world that they intend to study. Research-
ers through their practice formulate languages and forms of doing and acting that 
constitute the world that they themselves are studying. When we adopt a critical 
strategy to examine the discursive constructions of mathematics education research, 
we do not intend to dismiss the achievements of the field in relation to how to 
diagnose and improve the practices of teaching and learning. We are interested in 
denaturalizing what seems to be taken for granted with the aim of opening a space 
for other possibilities of phrasing mathematics education. Such a strategy allows us 
to transgress established ways of seeing and understanding practices in a search for 
the impossibilities, disturbances and hidden potentials within the established order 
(see e.g., Biesta 2005; Stentoft and Valero 2010).

Recently, we have been developing a critique on the theories used in mathemat-
ics education research (Pais et al. 2010). We argued that there is a strong tendency 
to reduce the selection of theories to mainly theories of learning. This is due to the 
way in which the overarching aim of the research field is formulated. There seems 
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to be a consensus on the proposition that the main concern of mathematics educa-
tion research is to improve students’ performance in mathematics (Boero 2008). 
Niss (2007, p. 1293) is very clear in stating: “We do research on the teaching and 
learning of mathematics because there are far too many students of mathematics, 
from kindergarten to university, who get much less out of their mathematical educa-
tion than would be desirable for them and for society.” If this is the main concern 
of mathematics education research, it is not surprising that the field has been con-
structed as a space for researching in a systematic, scientific way “the problems of 
practice” (Silver and Herbst 2007, p. 45), defined as the predicaments of the teach-
ing and learning of mathematics. The work of mathematics education researchers is 
“to identify important teaching and learning problems, considerer different existing 
theories and try to understand the potential and limitations of the tools provided 
by these theories”. Cobb (2007) also suggests that mathematics education research 
should be understood as a “design science,” that is, “the collective mission which 
involves developing, testing, and revising conjectured designs for supporting envi-
sioned learning process” (p. 7). The ultimate goal of this science is to “support the 
improvement of students’ mathematical learning” (p. 8).

The trend to focus on issues of learning—and thereby of teaching—is not exclu-
sive to the field of mathematics education research, but has over the last two decades 
also proliferated in educational research in general. The language of education has 
largely been replaced by a technical language of learning. The contradictions on the 
role of schooling in society and the goals of education that fueled part of the educa-
tional debate during the last century seem to have been surpassed. We seem to have 
reached a consensus on the benefits of schooling. Therefore, a central concern now 
is to make it more effective. The problems of schooling and school subjects are not 
anymore political or ideological, but have become primarily technical or didactical. 
In most cases, solutions to educational problems are reduced to better methods and 
techniques to teach and learn, to improve the use of technology, to assess students’ 
performance, etc. Education has progressively been reduced to be a controllable, 
designable, engineerable and operational framework for the individual’s cognitive 
change. Such tendency is what Biesta calls the learnification of education (Biesta 
2005). Although the dominance of learning theories for researching mathematics 
education has allowed us to gain deeper understandings on the processes of teach-
ing and learning mathematics, we suggest that it has also left unattended important 
difficulties and dilemmas faced by the educational communities in their everyday 
practices. This reduction of education to learning disavows the political magnitude 
of education. Learning is conceived as a nominal activity, isolated from what Valero 
(2010) calls the network of socio-political practices that constitute mathematics ed-
ucation—that is, the entire social, political, economical and historical configuration 
where mathematics education practices are given meaning. We argue that in order 
to bring the many difficulties and dilemmas of educational communities seriously 
into the gaze of research, we need broader theoretical frameworks which allow us to 
understand mathematics education, and not only mathematical learning.

Education has given up its place in favor of specialized pedagogy and didac-
tics. In the case of mathematics education research, the discursive construction of 
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students as cognitive subjects and “schizomathematicslearners” (Valero 2004a) 
is a good example of the way mathematics education research reduces full po-
litical and historical human beings to “bare learners,” whose cognition can be 
scrutinized with the interest of devising appropriate and effective techniques for 
learning mathematics. All the complexity of the social and political life of the 
student is wiped out from the research focus. The student is reduced to a biologi-
cal entity, likely to be investigated in a clinical way. For example, some research-
ers find useful to draw an analogy between mathematics education research and 
medicine. Mathematics education research is formulated as a science of treat-
ment that, by understanding the symptoms that characterize students’ learning 
difficulties in mathematics, aims at designing and applying proper treatments, 
with the hope of curing what is a defect in students’ learning: “The evolving 
understanding of the logic of errors has helped support the design of better in-
structional treatments, in much the same way that the evolving understanding of 
the logic of diseases has helped the design of better medical treatments” (Silver 
and Herbst 2007, p. 63).

 The Framing of “Equity”

In recent literature, the concern for “equity” is addressed in different forms by 
different authors. It is actually interesting to notice that few authors clarify their 
understanding of the term. It is written in between the lines that the problem of 
equity has to do with the differential achievement in mathematics. The systematic 
underachievement and its consequences for certain groups of students is not ac-
ceptable, particularly at a time when the agenda of “mathematics for all” seems to 
have permeated policy documents all around the world. The understanding about 
what it means to address and achieve equity also diverge, and some authors prefer 
to use terms such as social justice (e.g., Gutstein 2003), democratic access (e.g., 
Skovsmose and Valero 2008), inclusion/exclusion (e.g., Knijnik 1993). It is also 
common to find the declaration that research on equity requires social and politi-
cal approaches that situate the problem in a broader context than the classroom or 
schools (Valero 2004b, 2007). For instance, Nasir and Cobb (2007) state that all 
the contributors to their book “view equity as situated and relational and as being 
informed both by local schooling practices and by practices and ideologies that 
transcend school” (p. 5). However, when reading the contributions in the book, we 
find that all the research reported is centered on improving the process of teaching 
and learning mathematics. Although politics is acknowledged as determinant in eq-
uity, and some authors explore the connections between mathematics education and 
politics (e.g., Gutiérrez 2007), the contributions lack a theoretical analysis on how 
these “ideologies than transcend school” influence what happens in schools, and its 
contribution—or not—to equity. As mentioned by Gutiérrez (2007), “little has been 
written in mathematics education that addresses how mathematics might play a role 
in broader politics” (p. 38).
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One of the most extensive reviews on the issue of equity in mathematics educa-
tion is the article by Bishop and Forgasz (2007). The authors provide an overview of 
the different research approaches on the issues of access and equity in mathematics 
education. Right from the beginning they call our attention to the artificiality pres-
ent in the construction of groups of people as being in disadvantage—girls, ethnic 
minorities, indigenous minorities, western “ex-colonial” groups, non-Judeo-Chris-
tian religious groups, rural learners, learners with physical and mental impairments, 
and children from lower class—and how such constructions can in themselves con-
vey discriminatory actions. This problem has been recently labeled by Gutiérrez 
(2008) as the gap-gazing fetish in mathematics education. Gutiérrez’ provocative 
formulation generated a debate with Sarah Lubienski. Roughly speaking, they dis-
cuss whether research focusing on the achievement-gap benefits or not the purpose 
of achieving equity. The position of Gutiérrez (2008) is that there are dangers in 
concentrating on the “achievement gap” because such research helps “offering little 
more than a static picture of inequities, supporting deficit thinking and negative nar-
ratives about students of color and working-class students, perpetuating the myth 
that the problem (and therefore solution) is a technical one, and promoting a narrow 
definition of learning and society” (p. 358). She argues that such research, which 
usually leans on quantitative methods, does no more than providing a description 
of the problem without presenting understandings that allow a change. She argues 
that less research focusing on the “gap” should be made, and more research should 
analyze qualitatively successful experiences among groups of people considered to 
be in disadvantage. On the other hand, Lubienski (2008) argues that more skilled 
and nuanced gap analyses are necessary: “analyses of gaps also inform mathemat-
ics education research and practice, illuminating which groups and curricular areas 
are most in need of intervention and additional study” (p. 351). Lubienski is con-
cerned with the question of whether there is a gap, to what follows studies analyzing 
when the gaps manifest, under what conditions they grow or shrink, and what con-
sequences underserved students ultimately suffer because of the gap. In contrast, 
Gutiérrez is concerned with the question of how to diminish the gap, to what follow 
studies oriented toward effective teaching and learning, making research more ac-
cessible to practitioners and more intervention by the researcher.

Some authors have been trying to list which practices can be carried out in order 
to achieve equity in mathematics education. For Schoenfeld (2002, quoted in Lan-
grall et al. 2008, p. 127), achieving equity requires four systematic conditions to be 
met: a high-quality curriculum, a stable, knowledgeable and professional teaching 
community, a high-quality assessment aligned with curricular goals, and stability 
and mechanisms for the evolution of curricula, assessment and professional devel-
opment. Alternatively, Lubienski (2002) claims that it is necessary to learn more 
about the complexities of successful implementation of meaningful instructional 
methods with students who differ in terms of social class, ethnicity and gender. 
For Goldin (2008), the most important is “to create teaching methods capable of 
developing mathematical power in the majority of students” (p. 178). Finally, Gates 
and Zevenbergen (2009) identify a common basis for how to deal with equity, sum-
marizing existing research: “What might we all agree on then as fundamentals of a 
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socially just mathematics education? Perhaps we can list: access to the curriculum; 
access to resources and good teachers; conditions to learn; and feeling valued.” 
(p. 165).

Although we can discuss the better ways to do research addressing equity and 
what needs to be done, there is a fundamental question that seems to be unad-
dressed: Why is there inequity? Why is there a gap at all? That is, why does school 
(mathematics) systematically exclude/include people in/from the network of social 
positionings? Why do schools offer low-quality curricula and do not have a stable 
group of teachers in schools serving underprivileged population? Why does school 
perform the selective role that inevitably creates inequity? As Bishop and Forgasz 
(2007) put it, “in every country in the world mathematics now holds a special posi-
tion, and those who excel at it or its applications also hold a significant positions in 
their societies” (p. 1149). Why does society need to have an institution that guar-
antees an accumulation of credit? These questions are rarely posed by research in 
mathematics education addressing equity. Research only recognizes it as a fact. 
Posing the questions above dangerously opens the field of mathematics education to 
politics, and it seems few researchers are ready to take a risk.

In the previous discussions, it is evident that the problem of equity is recognized 
as an economical and political problem. However, research in mathematics educa-
tion transforms it to be a problem pertaining to mathematics teaching and learning. 
This type of displacement reduces the aim of researching the problem of equity to 
a matter of developing the best “instructional methods” to allow mathematical suc-
cess to all students. The absence of a political conceptualization of the problem of 
equity is evident in much of the existing literature. Disavowing politics as part of 
the conceptualization of equity is one of the best ways of turning research innocu-
ous for social change.

 The Framing of “Quality”

A quality mathematics education research is constructed to be the one that allows 
students to improve their mathematical learning. Why is this important? The litera-
ture on mathematics education research is full of statements that justify the neces-
sity of mathematical learning (e.g., Niss 1996). In most of such statements, math-
ematics and its education are viewed as powerful knowledge and competence for 
people to become full citizens and competitive workers. Are these formulations 
enough to justify mathematics education and to define “quality”?

We look for support in the philosophy of education. Biesta (2009) analyzes the 
functions that education fulfills in society nowadays. The function of qualification 
has to do with the role of education to providing people with the knowledge, skills 
and understanding necessary to fulfill a productive function. The function of so-
cialization has to do with the role of education in enculturating people to become 
members of a particular society, by the insertion of the “newcomers” into existing 
social and cultural orders. An analysis of the justifications for mathematics teaching 
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and learning leads us to see that mathematics education builds fundamentally on 
the fulfillment of qualification and socialization functions. Consider the following 
assertion as an example:

Mathematics education in schools is thus seen to have a dual function: to prepare students 
to be mathematically functional as citizens of their society—arguably provided equitably 
for all—and to prepare some students to be the future professionals in careers in which 
mathematics is fundamental, with no one precluded dorm or denied access to participation 
along this path. (Bishop and Forgasz 2007, p. 1152)

On the one hand, mathematics teaching and learning is important because it allows 
the nurturing of the next generation of mathematicians and of those who will use 
mathematics in their work, therefore assuring the development of a working force 
equipped to compete successfully in the global economy of our high-tech soci-
ety. On the other hand, mathematics teaching and learning secures the insertion of 
people in a society where mathematics is seen as an indispensable tool to become 
a citizen. The goal of citizenship concerns a wide range of competences: providing 
mathematical skills for dealing with situations of everyday life, intellectual enrich-
ment, acknowledging mathematics as equally a part of humankind’s cultural and 
aesthetic heritage, or making accessible powerful tools to analyze critique and act 
upon the way mathematics is used in society. The way quality is understood both 
in mathematics education research and in school mathematics seems to be in reso-
nance. Since school mathematics is posited as indispensable to become both a pro-
ductive and competent worker and an active and participative citizen, the purpose 
of mathematics education research should be to improve students’ mathematical 
learning.

What is the problem with this view, then? We would like to argue that this way 
of conceiving quality conceals the ideology informing what it means to be a worker 
and a citizen in a capitalist society. At first glance, the aims for school mathematics 
mentioned above are worthy aims for any compulsory schooling system. Becom-
ing a successful worker and an informed and participative citizen seems to fulfill 
the desire of students, parents, politicians, teachers and others participants in the 
educational process. So why do we feel uneasy about these aims? On the one hand, 
the listed aims for school mathematics are formulated on the assumption that sub-
jects are conscious of themselves (Althusser 2000). The assumption disavows the 
political substrate that informs what it means to be a worker and a citizen in current 
societies. On the other hand, these aims conflict with the politics of accountability 
where quality is often defined as having the best ranking positions both in national 
and international examinations.

Allow us to explore these two aspects in more detail. Althusser (2000) argues 
that the ideology of capitalism is based on the idea that individuals are self-con-
scious subjects, responsible for their own acts. They can be persuaded, conscious-
ly, to obey rules that otherwise would be imposed by force. It is only under this 
condition that human beings become homo economicus. Marx (1989) showed that, 
contrary to the assumption that the subject is a coherent rational being, subjects 
are not conscious about the “nature” of the place they occupy in the structure ruled 
by the laws of capitalist society. Marx allows us to understand that behind the 
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ideology that asserts the equality of individuals in the free market lays a profound 
inequality.

One of the ideological modes dissected by Žižek (1994) conceives ideology as 
“a doctrine, a composite of ideas, beliefs, concepts, and so on, destined to convince 
us of its ‘truth,’ yet actually serving some unavowed particular power interests” 
(p. 10). The strategy to criticize this mode of ideology is to carry a symptomal read-
ing (Althusser 1994) that exhibits the discrepancies between the public discourse 
and the actual intention of it. The Standards of the National Council of Teachers of 
Mathematics of the United States (NCTM 2000) is a prolific document to engage 
in such a reading. The basic discrepancy of discourses in this document has to do 
with how behind the public discourse of forming students to become active and 
participative citizens in society, there is a concern in maintaining the economic and 
scientific dominance of the United States. The NCTM Standards can also be read 
as a case of what Žižek (2006) called staged democracy. The document expresses 
an official discourse with all the virtues and democratic goals that society stands 
for, but when put in practice the actions deriving and resulting from the formula-
tions will almost secure that the democratic goals continue to fail. In this case, the 
ideological critique will be concerned not with the understanding of why in prac-
tice those desirable aims continue to fail—as if it were a problem of “implementa-
tion”—but to understand how the discrepancy is already being created at the level 
of the official discourse by completely obliterating the real reasons why inequality 
and lack of democracy continue to exist. In the case of the NCTM standards, the 
interesting point is not to focus on why their implementation fails in the hands of 
“incompetent” authorities, administrators and teachers, and of “deficient” children. 
An ideological critique would see how the document bears in itself the impossibility 
of achieving its stated goals.

However, in order to become efficient, ideology must go under a process of 
“self-disguising,” so that we can be able to act as if our actions were deprived of all 
ideological content: “the very logic of legitimizing the relation of domination must 
remain concealed if it is to be effective” (Žižek 1994, p. 8). We must not perceive 
ourselves as being questioned by some big Other1 but as individual subjects who 
freely choose to believe and act according to utilitarian and/or hedonistic motiva-
tions. When the NCTM standards argue for the importance of educating students 
mathematically to become active participants in society, the document disregards 
any pathetic ideological phrases in supporting their argument. The argument is a 
pragmatic one—competent people in mathematics are needed as the future workers 
of our high-tech society—or a hedonistic one—people gain power through math-
ematics. However, we cannot miss here that the choices in the document are highly 
ideological: The formulations involve a series of assumptions about what it means 
to be an active citizen in an increasingly commoditized society, and how such type 
of people are necessary for the reproduction of existing social relations. A staged 

1 In this context, the Lacanian notion of big Other stands for all the State, Justice and Law that give 
symbolic meaning to our social life.
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discourse is needed so that school mathematics continues to perform other roles 
than those present in the official discourse.

Furthermore, how does one assess the quality of students’ mathematical learn-
ing? It seems to be an unachievable task to assess if students, at the end, become 
or not desirable workers and citizens. However, society cannot live in this state of 
uncertainty regarding the mathematical performance of students. Society craves for 
results, for evidence that shows if people are becoming desirable subjects. There-
fore, rigorous instruments should be created so that it is possible to objectively 
know if students are performing well in school mathematics. Indeed, such instru-
ments exist under the form of national tests and international comparative studies. 
In our days where accountability reigns, what counts as quality is the performance 
of students in high-stakes examinations and in international tests. Ultimately, are 
not the results from these examinations what define quality in mathematics educa-
tion? We are confronted with the inconsistency of a system that, on the one hand, 
defines quality as a matter of achieving the desirable “mathematical subject”—the 
mathematically competent, informed worker, and critical citizen. But on the other 
hand, what ultimately decides the quality of mathematics education is the results of 
the exam. Again, the question to be posed is why the type of society we live in needs 
a staged discourse concealing what everybody recognizes.

 The Disavowing of Politics in Mathematics Education

We explore now the disavowing of politics involved when addressing equity and 
quality in mathematics education. We argue that the political disavowal keeps re-
search at a “technical” level, which contributes to reaching just the opposite of 
the stated aims. Furthermore, we argue that this is precisely one of the strongest 
limitations for bringing equity and quality together. A quality mathematics educa-
tion is not one that attends mainly to the intrinsic characteristics of mathematics as 
the foundations for educational practices, neither one that proposes pragmatic and 
hedonistic justifications for why to teach mathematics to all students, but rather one 
type of education that recognizes the possibilities of the meeting between human 
beings and the school subject of mathematics within the social, political and histori-
cal frame in which such meeting is being constituted. This means that definitions of 
equity and quality in mathematics education that do not attend to how both notions 
as well as the practices of mathematics education are shaped in power relationships 
are partial definitions that can only place hysterical demands to practitioners.

We showed previously how researchers address the societal demand of math-
ematics for all and make it a research concern. They engage on this demand by 
assuming that through their studies on the teaching and learning of mathematics, on 
better curricular and instructional design, on better connections between researchers 
and practitioners, they are contributing to achieving equity in school mathematics. 
However, if equity, or rather, inequity, is an economic and political problem that 
surpasses school, then the demand of mathematics for all is impossible to satisfy 
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(cf. Žižek 1991). Why then do we keep doing research to address equity issues in 
mathematics education as if the problem could be solved within the realm of math-
ematics teaching and learning? Could it be that keeping us occupied doing innocu-
ous research inhibits us from looking at other issues?

As we know, dominant social systems demand for perpetual reforms as a means 
of integrating what could be new and potential emancipatory acts into well-estab-
lished social structures. In other words, dominant systems such as capitalism today 
are constantly changing something so that nothing really changes (Žižek 1991). The 
novelties research produces on how to promote equity by improving the teaching 
and learning of mathematics are part of these superficial transformations. Accord-
ing to Gutiérrez (2007), “[e]quity is threatened by the underlying belief that not all 
students can learn” (p. 3). Although in a first reading we agree with Gutiérrez, we 
see that other beliefs are at stake, namely the not underlined but publicly assumed 
belief that all students can learn. The interplay between these two discourses makes 
visible how ideology works today. The view that all students can learn—the of-
ficial view, present in curricula, political documents and research, attesting that 
mathematics is for all—conceals the commonly shared but not assumed belief that 
there will always be some who will fail. Following Žižek (2010), when we read an 
abstract “ideological” proclamation such as “mathematics for all,” we should be 
aware that people’s experiences are different—for teachers and students know and 
experience that in any mathematics class there will always be some—or many—
who fail. The official discourse functions not as some kind of utopian state to be 
achieved, a desired good to strive for, but rather as a pure mechanism to conceal the 
fact that mathematics is not for all. The obliteration of the “background noise”—the 
voices of those who will always fail—is the very core of utopia. The “background 
noise” conveys “the obscenity of barbarian violence which sustains the public law 
and order” (Žižek 2010, p. 10). In the case of mathematics education, the obscen-
ity of the barbarian violence that school exercises year after year when it throws to 
the garbage bin of society thousands of people, under the official discourse of an 
inclusionary and democratic school (mathematics education).

As far as society remains organized under capitalist tenets, there will always be 
exclusion because exclusion is not a malfunction of capitalism, but the very same 
condition that keeps it alive (Žižek 1989). In such organization, having (certain) 
students failing in mathematics is not an abnormality of mathematics education, it is 
the necessary condition for its very same existence. So, why do we need an official 
discourse affirming that mathematics is for all? It is because such discourse masks 
a crude fact: The capitalist lie that presupposes equity in schools as an extension 
of the equality in the market. In other words, the official discourse conceals the 
inconsistency of a system that, on the one hand, demands mathematics for all while, 
on the other hand, uses school mathematics as a privileged mechanism of selection 
and credit.

The denial in confronting the core of the problems of equity is the result of 
an ideological injunction that systematically leads us to repeat the same “abstract” 
mottos of discourse: School is a place for emancipation; mathematics is power-
ful knowledge and competence; mathematics is for all; etc. In order to critically  
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analyze such discourses, we should replace the abstract form of the problem with 
the concrete scenes of its actualization within a life-form: “In order to pass from ab-
stract propositions to people’s ‘real lives,’ one has to add to the abstract propositions 
the unfathomable density of a life world context—and ideology are not the abstract 
propositions in themselves, ideology is this very world density which ‘schematizes’ 
them, renders them ‘livable’” (Žižek 2010, p. 6). In other words, in order to under-
stand the real aims of school mathematics, or the real motives that students have to 
be in school, we must not repeat ideologically loaded discourses conveyed by the 
curriculum, the political statements, and the research. Rather, we need to look at 
schools selecting the future workers of the labor market by means of credit accumu-
lation. That is, what Gutiérrez calls the “underlying belief that not all students can 
learn” must be posited not as a threat to equity, but as the truth of a system in which 
equity is forever postponed. Following Žižek’s (1989), this implies asking research 
to pass from the notion of crisis—in this case, the fact that people fail is school 
mathematics creating exclusion—as an occasional contingent malfunctioning of the 
system, to the notion of crisis as the symptomatic point at which the truth of the sys-
tem becomes visible. Some will say that such an awareness of the problem of equity 
takes us to a deadlock. Indeed, by realizing that exclusion is something inherent to 
the school system in a capitalist society, we realize that ending exclusion implies 
finishing schooling as we know it. In the current myriad of world social structure, 
this does not seem possible. However, what dooms us to constant failure is precisely 
experiencing the change as impossible. We acknowledge that the problem of equity 
requires a fundamental societal change, which may be impossible. The question is 
whether it is impossible or it is ideologically posited as impossible.

Threshold

The key feature here is that to see the true nature of things, we need the glasses [glasses as 
a metaphor for critical ideological analysis]: it is not that we should put ideological glasses 
off to see directly reality as it is: we are ‘naturally’ in ideology, our natural, immediate, sight 
is ideological. (Žižek 2010, p. 6)

We would like to argue that mathematics education research needs such glasses. 
The “natural” way in which we relate to reality is ideological—in our practice we 
convey discourses that conceal more than what we know. Ultimately, the purpose of 
this chapter was to attempt an ideological critique in the way we address issues of 
equity and quality in mathematics education research. Apparently, there is no doubt 
that definitions of quality and the discourses for equity live side by side and are 
equally political. However, it is almost inexistent in mathematics education research 
studies that aim to understand in depth such problems that are identified as political 
in their nature. If mathematics education research desires to address them, it must 
open its gates to research that locates the complexity of mathematics education 
within the network of social and political practices that permeate all educational act. 
Without that we run the risk of falling in the trap of what we criticize. On the issue 
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of equity, our premise is that exclusion and inequity within mathematics education 
and education in general is an integrative part of current school education, and can-
not be conceptualized without understanding the relation between school education 
and the social mode of living that characterizes our current world. On the issue of 
quality, a serious challenge is also to politicize our understanding of what is taken to 
be the significance of valued forms mathematical thinking within capitalism.

Therefore, our intention with this text is not to give a solution to the problems of 
equity and quality, neither is it to propose an alternative way of doing research on 
these topics. Our purpose is much more modest. We wanted to raise the awareness 
on the fact that there are broader issues involved when discussing equity and qual-
ity in mathematics education, than doing research on better ways to teach and learn 
mathematics, to improve students’ mathematical performance so that they could 
become better workers and citizens. As mathematics education researchers actively 
engaged in the field, we find the need for developing a deeper understanding of our 
practices and the discourses we convey. The way we found to do this was to ex-
plicitly look at the inconsistency of discourses that make the apology of equity and 
quality without considering the meaning that these terms have in a society where 
capitalism has become the ontologized substrate for all social relations.
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The Oxford English dictionary1 defines quality as:

1 the degree of excellence of something as measured against other similar things. 2 general 
excellence. 3 a distinctive attribute or characteristic. 4 archaic high social standing.

Given this collection of meanings, it is easy to assume that policies promoting qual-
ity education are a good idea. However, like the terms standards and excellence, 
quality passes as a universal good which it is difficult to oppose. This can conceal 
how the quality being promoted within current policy regimes is a particular version 
carrying particular values. We can illustrate this using a motivating question for this 
volume: How are concerns for equity and quality contradictory and/or synergistic? 
For this question to make sense, quality education must be defined independently 
of equitable education, so that the relationship between the two can be examined. 
What are these contemporary understandings of quality and equity? And, what are 
their implications for teachers and learners of mathematics? We address these ques-
tions in this chapter by looking at how ‘quality’ and ‘equity’ are being constructed 
within current policy and practice in primary mathematics education in England.

Although the context for our exploration is England, quality and equity are part 
of what Ball (2008) calls ‘global policyspeak’ (including, for example: parental 
choice, privatisation, performance indicators, competition), which England has 
been at the forefront of developing and disseminating.

There is a discernible process of convergence, or what Levin (1998) calls a ‘policy epi-
demic’, in education. An unstable, uneven but apparently unstoppable flood of closely 
interrelated reform ideas is permeating and reorienting education systems in diverse social 
and political locations with very different histories. This convergence has given rise to 

1 http://www.askoxford.com/concise_oed/quality?view=uk
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what can be called a generic global policy ensemble that rests on a set of basic and common 
policy technologies. (Ball 2008, p. 39, original emphasis)

These global policy technologies can be broadly understood as neoliberal. Neo-
liberalism is characterised by ‘the progressive enlargement of the territory of the 
market’ (du Gay 1996, p. 56) as private enterprise and technical rationality come 
to define behaviours and relations in the public sector. Neoliberalism is affecting 
education in areas as diverse as Europe, the United States, South America and Aus-
tralia (Grek et al. 2009; Hultqvist and Dahlberg 2001); although predominant in the 
global North, it is increasingly imposed on the South through conditions of funding.

Neoliberal managerialist discourses of quality arise from the transformation of 
private sector management techniques into the public sector’s New Public Manage-
ment. This stressed quality, accountability and internal competition, and created a 
culture of performativity within English education:

Performativity is a culture or a system of ‘terror’. It is a regime of accountability that 
employs judgements, comparisons and displays as means of control, attrition and change. 
The performances of individual subjects or organisations serve as measures of productivity 
or output, or displays of ‘quality’, or ‘moments of promotion’ or inspections. These per-
formances stand for, encapsulate or represent the worth, quality or value of an individual 
or organisation within a field of judgement. Clearly, the issue of who controls the field of 
judgement and what is judged, what criteria of measurement are used or benchmarks or 
targets set, is crucial. (Ball 2008, p. 49)

Thus, quality is implicated in rationalist practices of performativity. Within this, 
teachers’ performances are vital not just to the success of their pupils and the schools 
‘for which they work, but also to the enterprise of their own lives’ (du Gay 1996, 
p. 60, original emphasis). In this way, quality/excellence/enterprise culture brings 
together institutional concerns for productivity (read: results) and contemporary 
modes of regulation and subjectivity. What does this mean for our understandings 
of equity? And what does it mean for the practices of mathematics education?

 Our Framework

We draw on two sources of data: recent English policy documents and interviews 
with student-teachers. In this section, we outline our methodological approach. We 
selected the policy documents partly systematically and partly eclectically, borrow-
ing from cultural studies approaches (see du Gay et al. 1997). We analysed in detail 
two recent, high-profile documents on mathematics education: the Williams and 
Ofsted Reports (Ofsted 2008; Williams 2008). We supplemented this with primary 
mathematics material produced by the National Strategies2 and two key government 
White Papers (DCSF 2009a; HM Government 2009). The White Papers enabled us 
to look at the broader English education policy context and consider the intersec-
tion of mathematics with quality and equity. We compared these policy documents 

2 http://www.nationalstrategies.org.uk/Home.aspx
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with the student-teacher interviews, exploring convergences and tensions. The in-
depth interviews were carried out with four prospective primary teachers in their 
final year of a three-year undergraduate programme of initial teacher education in 
Northern England. The qualitative interviews explored the student-teachers’ expe-
riences of teaching mathematics and their understandings of quality and equity. 
They were conducted by Anna in the participants’ final teaching practice schools, 
lasted between 28 and 40 minutes, and were audio-recorded and transcribed. These 
interviews are part of a longitudinal study following six student-teachers through 
their ‘training’. By bringing together these two different sources of data, we hope to 
explore both policy as discourses, the frameworks of ‘commonsense’ within which 
policy texts are set, and policy as texts, which constrain but do not control their 
implementation (Ball 2008).

Our analysis is poststructural in that we see quality, equity and other objects as 
existing through discourses or ‘fictions functioning in truth’ (Walkerdine 1990). 
These fictions are ‘true’ not because of their power to describe reality but be-
cause of their power to produce it; they are structures of knowledge which set 
limits on our imaginations and actions (Foucault 1972). For example, discourses 
of quality include ones that: attach it to elite cultural practices, such as classi-
cal music (and to elite groups); view it nostalgically as part of a lost golden age 
(see Smith, this volume) and see it pragmatically as part of management systems 
ensuring that products and services meet required standards. It is partly the blur-
ring of these discourses that enables quality do the work that it does. Similarly, 
there are a range of discourses of equity encompassing different dimensions of 
inequality (gender, ethnicity, disability, sexuality, etc.) and relating inequality, in 
various configurations, to opportunities, outcomes, individual actions and social 
structures. In this chapter, we argue that some versions of quality and equity ‘fit’ 
better within neoliberal regimes, while other notions are precluded, and that this 
has particular consequences for mathematics teaching. We begin with our policy 
analysis and then explore how the dominant policy discourses are navigated by 
the student-teachers.

 Policy Documents

Although policy documents reference and so authorise each other in an intertextual 
web, there are differences between (and even within) them. Partly these relate to 
their different conditions of production:

• The Williams Report was an ‘independent’ review commissioned by government 
and authored by an individual. It set out to make recommendations on educa-
tional best practice for the development of mathematical learning within primary 
schools and early years settings.

• The Ofsted Report presented evidence accumulated through school inspections 
of primary and secondary mathematics and was authored by an ‘independent’ 
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quango. Its aim was to analyse this evidence so as to build up a picture of ‘effec-
tive’ mathematics teaching.

• The National Strategies material was prepared by a private company to fulfil a 
government contract to raise standards, that is results, through teacher develop-
ment. It consists mainly of a series of short publications presenting educational 
‘problems’ and bullet-pointed strategies for addressing them.

• The White Papers enunciate official government policy positions. Both were 
lengthy documents detailing proposed changes in the structuring and organisa-
tion of education.

However, while it is important to note distinctions in authorship (and audience), 
our concern here is with what it is possible to say and not the intentions of those 
saying it.

From an initial reading of the documents, it is difficult to discern what the oft-
used word ‘quality’ means. It gets 74 mentions across the two mathematics reports 
and 145 across the two White Papers. However, how quality teaching is to be dis-
tinguished, if at all, from excellent or effective teaching is unclear. What is clear 
is that quality can be measured and comes along with progress (individual and 
national), understood as forward/upward movement. Neoliberal education policy 
in England ‘operates like a ratchet screwdriver with no reverse movement allowed’ 
(Coffield and Edward 2009, p. 371). The ongoing drive for quality encapsulates 
this, with the move from good to best and now excellent practice: ‘my priority is 
excellence, excellence, excellence: we have got to upgrade our skills’ (Gordon 
Brown, cited in Gillies 2008, p. 686). Thus, quality or excellence is explicitly 
linked to economic imperatives. The seemingly equitable phrase ‘every child’, 
which appears repeatedly across current UK government policies (for example, in 
the ‘Every Child Matters’ agenda, and the ‘Every Child a Reader’ and ‘Every Child 
Counts’ initiatives), is similar to the United States’ ‘No Child Left Behind’. The 
links to progress and forward movement are clear. Edelman (2004, p. 11) identifies 
how we are mobilised to support policies on behalf of the Child who represents 
our national future:

In its coercive universalization, however, the image of the Child, not to be confused with 
the lived experiences of any historical children, serves to regulate political discourse…by 
compelling such discourse to accede in advance to the reality of a collective future whose 
figurative status we are never permitted to acknowledge.

The relentlessness of this version of progress is evident when Ofsted say: ‘A sub-
stantial amount of teaching is no stronger than satisfactory and, in these lessons, 
pupils do not learn as quickly as they might’ (p. 19) and that ‘teachers did not show 
enough urgency’ (p. 19). The emphasis on speed indicates that Ofsted expect, even 
insist upon, measurable forward movement by every pupil in every lesson.

‘Levelling’ captures even more clearly the compulsion to progress. Levelling, 
like quality, blurs several meanings, including: making flat, knocking down, and 
placing on the same level. To understand it in this context, it is helpful to know 
something about the organisation of compulsory schooling in England. Since 1988 
this has been structured around four Key Stages (KS):
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KS1: ages 5–7
KS2: ages 7–11
KS3: ages 11–14
KS4: ages 14–16

KS1 and KS2 constitute primary schooling, and KS3 and KS4 secondary schooling. 
KS2 and KS4 end with compulsory national tests in mathematics and English the 
results of which are widely published in national and local newspapers, websites, 
etc. National expectations are set for each KS. Pupils are expected to reach level 2 
of the National Curriculum at KS1 and level 4 at KS2. Time-demarcated targets are 
set for the proportion of pupils attaining the expected levels. In addition, expecta-
tions are set around the quantity of progress (two levels) required across each KS. 
As indicated in the Ofsted report, this can be micromanaged to produce expected 
levels of ‘progress’ in every lesson.

The levelling discourse can be seen in two recent National Strategies mathe-
matics publications. The title Securing level 4 in Key Stage 2 mathematics (DCSF 
2009b) clearly ties quality to levelling. While Making good progress in mathemat-
ics (DCSF 2008) focuses on the ways that children do or do not ‘convert’ their KS1 
results into KS2 results. The meaning of conversion here is imported, like quality, 
from business. Wikipedia captures it well: ‘In marketing, a conversion occurs when 
a prospective customer takes the marketer’s intended action. If the prospect has 
visited a marketer’s web site, the conversion action might be making an online 
purchase’3. Thus, teachers are positioned as marketers and children as customers/
consumers within economistic discourses.

This framework of expected levels and conversions, construct a ‘normal’ devel-
oping child, which purports to be, but is not, universal. Any moves away from nor-
mal connote danger/risk, and compel intervention to reconstitute the child within 
the normal. A large part of the Williams Report, and one of only two costed recom-
mendations, is devoted to intervention programmes for learners who ‘fall behind’ 
in mathematics. ‘Numeracy recovery’, the recommended and now implemented 
intervention, carries, through its use of the word recovery, a sense of returning 
something to a state of normality (from physical or mental disorders), recovering 
something lost, going back to an originary state. Thus, the focus on the individual 
within the mathematics classroom is not about celebrating difference but is tied to 
normalisation.

We illustrate this by discussing the diagram in Fig. 4.1. This features in the Na-
tional Strategies’ Making good progress in Key Stage 2 mathematics and an online 
spreadsheet where, on the click of a mouse, you can customise the chart for any 
region in England. As Stronach (2001) observes, a common reaction to such tables 
is to look up the region that you currently (or previously) live/teach in and compare 
it to others, producing a performance league table. The spreadsheet format makes 
this invitingly easy; the culture of comparison and competition makes this pleasur-
able. The 100 icons, each representing 1% of children in the cohort, are arrayed in 

3 http://en.wikipedia.org/wiki/Conversion_(marketing), emphasis omitted.
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neat identical lines. Only the background colourings distinguish them. The normal 
is defined in comparison to the other as the eye is drawn away from the majority 
light blue towards the minority, abnormal failures, highlighted in pink, yellow, vio-
let and green: the pink and yellow who failed to convert by making the required two 
levels of progress, and the violet and green who failed so badly at KS1 that even 
conversion could not render them within the boundaries of the normal. These icons 
are pseudo-children with stylised blank bodies; they resemble automata, droids or 
another science fiction invention. Depicted as such, there is no diversity other than 

Fig. 4.1  National Expectations and below Pupil Progression Chart: Key Stage 2 Maths (2007)
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in their mathematics attainment: they are ungendered, unraced, unclassed and with-
out sexuality. What notions of equity are possible within this quality regime?

To address this question, we turn to New Opportunities (HM Government 2009), 
the first education White Paper to be published after the onset of the global eco-
nomic downturn. This links economic national competitiveness and social justice, 
‘excellence and equity’ (p. 45, 47, 53, our emphasis). However, the prime minister’s 
foreword marks out a ‘modern definition of social justice’ based on providing equal 
access to opportunities for all rather than ‘social protection’ (p. 1). When presented 
with these opportunities, it is the responsibility of individuals to aspire to and take 
them, and so fulfil their potential. Here we see the managerialist convergence noted 
earlier between productivity, contemporary modes of regulation and subjectivity: 
self-fulfilment is aligned with effectiveness. Individuals serv(ic)e the state through 
their lifelong learning which in turn becomes a means to their self-actualisation. 
However, this model of the self as acquisitive is not equally available to all, and, in 
particular, is classed (Skeggs 2004). Those who fail are held individually respon-
sible. They ‘appear to be unable—or worse, unwilling—to fit themselves into the 
meritocratic educational system which produces the achievement vital for the eco-
nomic success of the individual concerned and of the nation’ (Francis 2006, p. 193). 
Thus, the state’s failure is transformed into the failure of individual students, teach-
ers and workers (Archer et al. 2010).

Returning to the reports focused on mathematics, there is a general lack of atten-
tion to equity. The Williams Report’s main reference to social and economic factors is:

Social factors clearly play a role, and the United Kingdom remains one of the few advanced 
nations where it is socially acceptable—fashionable, even—to profess an inability to cope 
with mathematics. Even more seriously, there can be little doubt that economic factors and 
social deprivation contribute to learning difficulties in all subjects, including mathematics. 
Given that 15–20 per cent of adults do not have basic functional numeracy skills, many 
parents will be unable to support their child’s learning. (p. 44)

In this extract, social factors are first understood as a general culture of negativity 
towards mathematics and only second as related to economic inequalities. Further, 
Williams’ final chapter on home/school links is shorter than the others, contains 
more case studies and is the only one without any recommendations. Within this 
chapter, while class and ethnicity are mentioned (mostly through coded references, 
such as to ‘a deprived housing estate in East London’ and ‘hard to reach parents’, 
p. 72), Williams seems concerned to downplay the importance of social class. The 
report’s only direct mention is this sentence: ‘A 2003 study showed that regardless 
of class or income, the influence of the parent was the single most significant fac-
tor in a child’s life’ (p. 69). Here parenting is presented as independent of social 
class, despite research showing how class is reproduced through parenting (Walker-
dine and Lucey 1989). Although there are fleeting mentions of ‘inclusive teaching’ 
in both reports and, in Ofsted, of the patterns of participation in post-compulsory 
mathematics by gender, ethnicity and free school meals (a common measure of so-
cial class in the UK), the reports’ lack of attention to equity appears to be in marked 
contrast to the broader education policy documents. However, Williams and Ofsted 
include, respectively, 90 and 40 uses of the word/s opportunity/ies. Thus, they can 
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also be understood to speak the language of the ‘modern definition of social jus-
tice’, of state-facilitated meritocracy.

Crucial to our argument is that the construction of equity as opportunity cre-
ates tensions around ‘mathematical ability’. Both the Williams and Ofsted Reports 
discuss the advantages and ‘opportunity costs’ of practices of grouping by ability. 
But they make no recommendations and ignore the research evidence that: ability 
grouping is a means of rationing education in which certain class and ‘race’ groups 
are systematically excluded from access to particular knowledges and qualifications 
(Gillborn and Youdell 2000) and part of broader processes in which some people 
are given value and others are not (Reay and Wiliam 1999). Both reports attempt to 
avoid talk of ability as distinct from ability grouping. Ofsted uses the terms ‘high-
attaining’ and ‘low-attaining’; Williams also talks about ‘low-attainers’ (although 
contrasted with the ‘gifted and talented’). The expression ‘low-attaining’ allows 
pupils, parents and teachers to disassociate pupils’ performances from any underly-
ing, inner ability; they are simply not achieving to expected norms. Thus, we can 
see a move away from discourses of innate ability, as incompatible with desires for 
all to progress, and their replacement by levelling, alongside the maintenance of 
ability grouping in so far as this can be constructed as an efficient, and so quality, 
pedagogic practice.

To summarise, quality is conflated with measurable progress within neoliberal-
ism where national progress (economic growth and competitiveness) is matched 
with individual progress (personal growth and self-fulfilment). There are some ten-
sions around ‘progress’ in the policy texts, such as when Ofsted note ‘a surprising 
finding…that younger pupils, rather than the older and higher attaining, were often 
more willing to “have a go”’ (p. 37). However, the overall drive towards ever-higher 
performances by pupils and teachers in lessons and tests is clear. Within this, indi-
viduals are responsible for their performances and for playing their parts in ensuring 
national and individual progress. The government role is to ensure that opportuni-
ties are available to all. This is exemplified in shifting constructions of ability. In 
the next section, we look at how these discourses play out in the practices and talk 
of the student-teachers.

 Student-Teacher Interviews

Nicola, Kate, Sophie and Leah (the student-teachers) were in their final year of a 
three-year undergraduate primary education degree and had worked with Anna as 
both university students and research participants. Whilst there is not space here for 
a thorough historical analysis some contextual information is important, particu-
larly that the student-teachers ‘training’ took place during a time where government 
policy was prominent and ever-changing. In addition, student-teachers are exposed 
to many competing discourses and their identities are in flux.

Just as quality is difficult to discern from the policy documents, so it is from the 
student-teachers’ interviews. When asked specifically about quality teaching they 
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each had particular notions. For example, Nicola described it in terms of her main 
interview theme (teaching for understanding) while Kate also began by discussing 
her main theme: her current class of pupils. However, she quickly moved onto a 
more ‘acceptable’ description of quality teaching in ‘an ideal world’:

Kate: With my class…you have to tell them to do something, get them to put their pencils 
down, and explain the next bit. …I don’t know what it is with my class. If I was I’d like to 
be able to, in an ideal world…quick-fire, snappy, teach them something and allow them to 
put it into action.

Perhaps Kate is positioning herself as a quality teacher by describing quality math-
ematics teaching as ‘quick-fire, snappy’, drawing on policy discourses of relent-
less progress. However, associating mathematics with speed also draws on more 
familiar discourses. In this section, we explore how more ‘traditional’ hierarchical 
discourses of mathematical ability—as associated with confidence, independence 
and pace, and as fixed and natural (Mendick 2006)—articulate with the contempo-
rary neoliberal policy discourses discussed in the last section. We can see tensions 
between these neoliberal and traditional discourses in Sophie’s anxieties:

Sophie: But there’s such a broad range of abilities, I’ve just found it much more difficult 
teaching maths this year with them not getting the certain methods that we teach it in. So I 
don’t know whether that’s because they’ve been taught in different ways each time they’ve 
come up the school.

Sophie, like the other student-teachers, seems to want to regulate her pupils’ prog-
ress in line with the ideas of quality in the policy documents. She becomes frus-
trated when children fall behind where they should be and worries about providing 
appropriate challenges to the most ‘able’. However, her idea that each child has a 
singular and fixed mathematical ability creates problems. As with Kate, discourses 
of mathematical ability mean that she has difficulty enacting the prescribed and 
desired quality teaching.

Despite the move away from individual ability in the policy documents, discus-
sions of ability dominate the student-teacher talk and perhaps explain why none of 
them spoke of equity in terms of opportunity. In all of their classrooms, children 
were allocated to sit at either low, middle or high tables according to their levelled 
or age-ranked attainments. Ability comparisons were carried out throughout the in-
terviews supported by the use of ability tables. Here the freedom offered by working 
in small groups on tables is in tension with the defining and fixing of each table by 
ability. Pupils are positioned in the group and in the associated ability. For example:

Nicola: My lowest group, my Flames, are still on their two and three times tables. My high-
est group, my Gifted and Talented, can do up to their 15 times tables without a problem. 
And I’ve got a big sway but then I’ve only got four or five that can do it. The rest of them 
are stuck on fours and fives. So I’ve got about 80% of the class that really do need targeting 
for their multiplication.

Comparison is, of course, ‘highly visible as a tool of governing at all levels’ (Grek 
et al. 2009, p. 123) and is used throughout the quality assurance systems of the wid-
er education marketplace, in league tables, performance indicators, etc. However, 
the interaction of rational technologies of comparison with hierarchical discourses 
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of mathematical ability creates inequities in access to knowledge and allocation of 
value.

Inequities in access to knowledge are evident in Sophie’s discussion of her use 
of practical resources:

Sophie: My high ability, they could probably do it just by sitting looking at that; they can 
work it out. Their brains have got the steps going logically…but definitely for the less able. 
They definitely need [practical resources].

They are also evident in Nicola’s discussion of the ‘using and applying’ strand of the 
mathematics curriculum (that traverses the content strands and relates to thinking 
and reasoning skills):

Nicola: It’s like using and applying is, I find more important for them [higher attaining 
pupils]. Because the using and applying is how I can push them without putting them so far 
ahead that I am causing a problem for later on.

Thus, abstract rather than practical reasoning and the ‘higher-level’ skills of using 
and applying are only encouraged and expected from higher attaining pupils. This 
too is a familiar discourse about mathematical ability, that learners have their limits 
and need differentiated curricula (Houssart 2001). However, we can also read in 
Nicola’s talk a concern about the policy press for forward movement. Associating 
progress with acquisition of mathematical content, she has found an ‘acceptable’ 
way to push her pupils, but one that is not equitable as ‘quality’ learning is restricted 
to those judged able.

As well as restricting access to knowledge, ability was attached to value hierar-
chies:

Leah: These can only cope with about Year Three work at a push with a bit of support and 
they’re in Year Four. Then I’ve got my Year Four table…they’re up to Year Five. They’re 
higher level, they’re brilliant.

The ‘higher’, ‘brilliant’ group are contrasted with those who need ‘a push’ and ‘a 
bit of support’, drawing on the familiar trope of mathematical ability as indepen-
dence and inability as dependence. All the student-teachers agreed that ‘slow’ pupils 
require intervention in the form of extra time and support: ‘they need that time so 
that’s why they’re doing the intervention’ (Leah). Pupils are removed from the ‘nor-
mal’ classroom so that they can, as Nicola says, ‘do it at their pace…with children 
on their level’. This carries ideas that children belong with others of their type but, 
rather than the policy idea of ‘on their level’ as their current performance level, 
here it is also associated with personality. Thus, policy discourses construct level 
as changing and external to the self and student-teacher discourses construct it as 
fixed and internal to the self. This is evident in the way that the student-teachers 
largely understand intervention in terms of building pupils’ confidence and giving 
them attention:

Sophie: They need a bit of attention and it’s just a confidence issue.

Leah: [The intervention programme’s] just like reinforcing their maths skills because with 
that group and the taking of it is confidence…They’re not as good at picking it up as some 
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of the others in Year Five and Year Four tables. So they need just that little bit more support. 
But they are capable with their support, it’s just, it needs the support, definitely on a lower 
level…because it’s in a smaller group as well, they’re getting more attention then.

Thus, mathematical ability is discursively linked to personal qualities of indepen-
dence, speed, interest and confidence. Indeed generally, in student-teachers’ dis-
cussions of pupils’ identities, attainment levels and cognitive ability were over-
shadowed by more affective personality traits. This naturalises particular traits as 
indicators of ability, ones which are not equally available to all and thus the notion 
of equitable good quality teaching becomes problematic.

In particular, we would tentatively support other research showing an alignment 
between middle-class cultural capital, masculinity, whiteness and the ‘able’ person-
ality traits. For example:

Sophie: I don’t think [ability] really matters. It’s all personality, I do think it’s personality 
that has a big, big impact because…Luke will sit there and he’ll write sums, write sums, 
write sums, but because he doesn’t enjoy literacy as much…he isn’t as creative he just turns 
off from it and he doesn’t work. So I think it’s all to do with their personal thoughts about 
the subject…Because he’s very capable but he just has a negative view of his handwriting 
and his ability. So he doesn’t work as hard, but he could easily be in the top two [ability] 
tables. Whereas in maths…I don’t know whether it’s because he enjoys it more, he feels 
more capable.

Sophie attributes Luke’s achievement to personality, which she dissects into ‘per-
sonal thoughts about the subject’ and ‘a negative view of…his ability’. Luke is 
described, as someone who ‘could easily be on the top two tables’, consolidating 
dominant discourses of ability and suggesting how some, middle-class boys, are 
read as ‘able’ despite poor attainment (Walkerdine 1990). In a second example, at 
Nicola’s school pupils chose their own ability table names: Flames (lowest group), 
Comets (middle) and Spoons (highest). The lower attaining pupils chose the more 
obviously powerful names and the highest attaining group (mostly boys) chose an 
ironic name, suggesting they have nothing to prove. Perhaps, like Mac an Ghaill’s 
(1994) ‘Real Englishmen’ they were engaged in a middle-class masculine perfor-
mance, mocking, and so indicating their superiority to the system. In stark contrast 
the Comets were stuck:

Nicola: I think that my lowers are never going to enjoy maths…they’re never going to 
want to do maths. And I can see that now…by the time they’ve hit Year Three, Four, it’s 
just gone.

This discourse, that each mathematical ability group is fixed in behaviour and 
achievement, is very different from the mobile consumers constructed in the policy 
texts.

From these interviews, we suggest that the rational neoliberal discourses of qual-
ity and equity conflict with the traditional hierarchical discourses of mathematics 
and the caring emotional discourses of primary teaching. This conflict results in 
levelling and ability groupings leading not to progress for all but to the labelling 
and normalising of pupils and there being no place (apart from intervention) for 
those who do not fit. We argue that this is not an inadvertent side-effect of such 
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grouping practices: ‘an opportunity cost’ that can be eliminated through improved 
teacher training and development, as Williams would have it. Ability judgements 
are structurally embedded in our constructions of mathematics and are produced by 
and reproduce inequitable discourses in the wider society. However, this cannot be 
spoken within neoliberal discourses of equity as opportunity, with their emphasis 
on individual responsibility rather than social structures. Thus, rather than level-
ling simplistically ensuring that every child progresses within mathematics, it sup-
ports ability hierarchies, which translate into ‘progress’, but only for some. Thus, 
mathematics classrooms, and mathematics itself, fabricate and are fabricated by 
discourses that cannot be taken on board within neoliberalism. These discourses and 
the objects they bring into being are self-perpetuating and cyclic, as the assumed hi-
erarchical nature of mathematics and mathematical ability naturalises the processes 
through which some succeed and others are excluded (Mendick 2008).

 Conclusions

‘Quality’ operates as a ‘mobilising metaphor’ (Carlile, in press) to muster support 
for a raft of neoliberal policies that manage teaching and learning as if it were a 
commercial process. Children are transformed into attainment levels, the inputs and 
outputs of the educational production process. Teachers’ work becomes facilitating 
the efficient ‘conversion’ of the input attainment levels to higher output levels; chil-
dren’s work is to ensure that they, like good consumers, take up the educational op-
portunities available to them. We see the ongoing colonisation of learners, teachers 
and the learning process by business. Within this, inequity is constructed as a lack 
of opportunity to progress (naturalised as development) which can be addressed 
through interventions to recover the deviant child within the bounds of the normal. 
However, the classed, raced and gendered exclusions constituted through the nor-
malisation of the consuming, progressing self are left unaddressed. When equity is 
constructed as the opportunity to participate in the conjoined progress of the self 
and society, then broader structural inequalities cannot be addressed. This is strik-
ing in the talk of the student-teachers and their widespread rationing of education 
and allocation of value through mathematical ability judgements. Normalisation 
masquerades as intervention as opportunity is lost beneath the daily practices of the 
levelling and labelling of pupils. Although neoliberal politics claims otherwise, we 
have argued that you cannot make an economic argument for equity when it is un-
derstood in collectivist rather than individualist terms. For quality to fit with social 
justice as we understand it, it must be defined in something other than economic 
language.

While we hope this analysis is (at least a little) disturbing, it also, perhaps in-
evitably raises the question, so what? We feel that the value of analysing the dis-
cursive power relations in which we are caught up is that we can begin to open up 
possibilities for thinking, being and doing otherwise (Butler 1997). For example by 
intervening, we position pupils as dependent, slow and unconfident in relation to 
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mathematics, partly perpetuating a cycle that keeps them in their place, as ‘unable’. 
The alternative is not to withdraw support but to question the setting up of inde-
pendence, speed and confidence as goals and the positioning of support as some-
thing needed by those who are lower/lesser. This raises questions about whether 
we should be teaching mathematics in its current form and what the alternatives 
might be. This is particularly important given that mathematics is implicated in 
the neoliberal agenda of economic well-being, prosperity and competitiveness in 
a high skills global economy, for ‘by the use of mathematics as a language of “the 
market” so mathematics has become entwined and identified with market econom-
ics’ (Woodrow 2003, p. 2). Mathematics is tied to processes of measurement and to 
their normalising role.

Any attempt to understand policy inevitably has a shelf-life as it is subject to 
rapid change. It is possible that before this book is published we will have a change 
of government in the UK. However, the discursive patterns of quality and equity 
within neoliberalism have a longer history than the current government and will 
continue (in modified form) after they go. For we live in an era in which education 
is constructed as central to the knowledge economy and ‘performance data’ have 
become the measure of quality and the driver of policy globally. These discourses 
will also live on in the practices of the student-teachers, like those interviewed for 
this article, who learnt to teach within them.
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The discourses of quality and equity have become globalised concerns in the field 
of mathematics education as reflected in most policy and curriculum documents 
around the world. While few people would contest their importance to mathematics 
education theory and practice, their meanings often remain unexamined. A careful 
reading of their use in various contexts reveals alternative, if not divergent under-
standings behind them. This chapter1 is an attempt to contribute to a systematic 
theorising of the two agendas that taken separately potentially, even though not 
necessarily, might lead into conflicting actions and outcomes and may lead into 
lack of achievement of either. In the first part of the chapter, I undertake a critical 
reconstruction of some of the tensions reflected in the use of the two terms and 
their interactions. By “reconstruction” I do not mean abandoning or rejecting the 
understandings of the past. However, an interrogation of the two concepts allows 
us to examine the assumptions and limitations behind their different uses. As Chris-
tie (2005) argues, all concepts are socially constructed and hence are “contingent 
and contestable” and are to be “rendered permanently contested” (p. 241). In other 
words we need to be “working with and working against” (p. 240) the constructs to-
wards alternative understandings that are more likely to deal with contingent prob-
lems that any discourse may lead to. In the second part, I present a reconstruction of 
the two agendas grounded on the discourse of ethical responsibility that allows for 
a viable understanding of both agendas and constructs them as complementary, and 
is hence more likely to facilitate their achievement.

1 This chapter is based on my contribution to the Plenary Session 6 (Panel Debate on Equal Access 
to Mathematics Education) at the International Congress of Mathematics Education in Monterrey, 
Mexico in 2008.
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 Tensions Within the Discourses of Quality and Equity

To start with, here I understand quality as a question of values and judgements rather 
than an objective and decontextualised description of a phenomenon. As Dahlberg 
et al. (1999) point out, the dominant understanding of “‘the discourse of quality’ 
can be seen as part of a wider movement of quantification and objectivity intended 
to reduce or exclude the role of personal judgement, with its attendant problems of 
partiality, self interest and inconsistency” ( quote in the original, p. 87). The authors 
go on to trace the emergence of this discourse by placing it within the rise of the 
Enlightenment with its overzealous trust of quantification, comparing the dissimilar 
by reducing them to the same criteria. They add that in the age of uncertainty, it “of-
fers us confidence and reassurance by holding out the prospect that a certain score 
or just the very use of the word quality means that something is to be trusted, that it 
is really good…rather than being a symbol whose meaning can only be arrived by 
critical reflection and judgement” (pp. 92–93). Thus, the determination of quality 
involves setting standards of product or service delivery and criteria for the achieve-
ment of these standards. Of particular interest here is the argument the authors make 
that these criteria and standards are often taken to be based on rational, objective 
and universal grounds.

Although different policy and curriculum documents in mathematics education 
around the world have been constructed using the discourse of quality, the term is 
often assumed and not defined. Hence, it remains, and should remain, a contested 
construct. It seems to me that the discourse of quality in mathematics education is 
often based on one or both of two considerations:

1. Doing better mathematics and
2. Increasing students’ achievement in that mathematics

As Atweh and Brady (2009) argue, in the dominant mathematics education dis-
course, “better mathematics” often refers to abstraction and the rigour of the disci-
pline of mathematics (e.g. Juter 2006). This includes formalised symbolic language, 
axiomatic thinking, standard efficient algorithms and proofs. It may also include 
sophisticated modelling of mathematically based problems—usually from areas 
such as physical world, engineering and the economy, in which there is a unique or 
best-fit solution. This is often contrasted with practical mathematics that focuses on 
social world applications, routine problem solving—on personalised (often called 
student-invented) algorithms, solutions and non-standard presentations of math-
ematical arguments. In many Australian curricula, these two types of mathematics 
are contained in alternative streams that students select (or are assigned to) depend-
ing on their previous mathematics performance (often taken as a sign of ability) 
and post school aspirations. This construction of quality mathematics, in contrast 
to practical mathematics, is presented as a common sense solution for the need to 
provide a greater choice (a valuable endeavour in neo-liberal politics) for students 
and to cater for the needs of a larger number of students. Regardless of attempts by 
education systems and teachers to present the different streams as equally valuable, 
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many students refer to the practical mathematics subjects with the diminutive term 
“vegi-math2”.

This binary might be counterproductive by denying the majority of students (that 
is, those taking the so-called social or practical mathematics), the opportunity and 
the ability to develop their generalised abstractions of mathematical concepts and 
procedures and to develop their confidence as users of mathematics. Likewise, it 
denies the students undertaking the more academic mathematics subjects the op-
portunity to see the application of mathematics to solve problems in their immediate 
life. Arguably, in our times, students need both abstract knowledge and practical 
knowledge. Hence, if quality of school mathematics education is only understood 
from within the discipline of mathematics, it may lead into alienation of the major-
ity of the student population that fail to appreciate such abstraction, are not capable 
of achieving it, or fail to see its relevance to their lives.

An alternative understanding quality mathematics education is the focus on stu-
dents’ achievement, in particular based on comparing students’ performance with 
others or with pre-determined standards using frequent national testing. As Apple 
(2000) argues, neoconservative governments around the world have encouraged 
privatisation and devolution of decision making in education yet reinforced their 
control over curriculum and standards through testing regimes. This is the “scien-
tific management of education through legislation” approach to curriculum devel-
opment and reform as discussed by Neyland (2004). Commenting on the standards 
movement in the USA and on the attempts to implement the No Child Left Behind 
policy Mark (2008) raises the question whether such practices are able to achieve 
equity. He argues that high-stake testing may lead to an image of mathematics as 
something to be planted in minds of students irrespective of meaning and isolated 
from their everyday life and experiences. Further, such practices are in danger of 
reinforcing student alienation and dissatisfaction from their experiences in math-
ematics school learning.

I will return to the discussion of the different understandings of quality below. 
However, now I turn to deal with another important challenge to mathematics teach-
ing, namely that of equity. Whereas concerns about quality are about what type of 
mathematics is worthwhile and valuable and about how students can best develop 
this mathematics, concerns about equity are about who is excluded from the op-
portunity to participate and achieve in mathematics within our current practices and 
systems, and about how to alleviate their disadvantage (Burton 2003; Secada 1989). 
Atweh and Keitel (2007) note that concerns about participation and achievement in 
mathematics study by different social and cultural groups are no longer seen at the 
margins of mathematics education policy, research and practice. Issues relating to 
gender, multiculturalism, ethnomathematics and the effects of ethnicity, indigene-
ity, socio-economic and cultural backgrounds of students on their participation and 
performance in mathematics are regularly discussed in the literature.

2 That is, vegetarian mathematics—in contrast to the academic mathematics which is regarded as 
meaty (with apologies to the vegetarian readers!).
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In a previous article (Atweh 2007), I indicated how the concepts of equity, 
diversity and social justice are often dealt with in the literature as exchangeable 
constructs. At the risk of over-generalisation, perhaps there are some regional 
variations in their use—i.e. concepts of equity and diversity are widely used in 
the USA, while European literature makes more reference to social justice. In 
the USA, however, Secada (1989) discusses equity in terms of social justice. 
Similarly, the three terms are often used to discuss different forms of disadvan-
tage—i.e. equity and social justice are often used—but not exclusively—to look 
at lack of participation and achievement based on gender, Indigeniety and social 
class, while diversity is often used—but not exclusively—to look at variation 
due to ethnicity, language and cultural background, age, sexual orientation and 
disability.

In spite of the overlap in the aims of both agendas of equity and diversity, 
there is an important difference between them in that they aspire to potentially 
contradictory outcomes with regard to group status. Fraser (1997) points out that 
the diversity discourse might lead to essentialising the differences between the 
different groups and it may fail to take into consideration the changing construc-
tions of these labels and their contextual understanding in time and place. Simi-
larly, the diversity discourse fails to adequately take into consideration one of 
the biggest threats to social inequality and exclusion in mathematics education, 
namely socio-economic background and poverty that are difficult to construct 
as diversity issues in the same way as, for example, cultural differences. Equity 
projects aim at reducing group differences, e.g. in achievement and participation, 
and hence its ultimate aim is to abolish group differences. Diversity discourse, 
on the other hand aims at enhancing respect for group differences and status. 
This is the dilemma that Fraser (1997) refers for in discussing the multidimen-
sional model of social justice. There are two further limitations of the equity 
and diversity agendas. On one hand, remediation equity concerns might lead to 
a backlash of misrecognition (Fraser 1995) for the target group by constructing 
them as victims or as needy of special assistance, while diversity construction 
promotes group status. On the other hand, the diversity agenda might lead to of 
romanticising difference between groups by treating them as exotic, while the 
equity agenda highlights their exclusion and disadvantage. As Burton (2003) ar-
gues in her introduction to her book “Which Way Social Justice in Mathematics 
Education”, in mathematics education literature there seems to be a “shift from 
equity to a more inclusive perspective that embraces social justice” (p. xv). She 
goes on to say “the concept of social justice seems to me to include equity and 
not to need it as an addition. Apart from taking a highly legalistic stance, how 
could one consider something as inequitable as socially just?” (p. xvii). Using 
Fraser’s conceptualisation of social justice as having two irreducible dimensions, 
distributive and recognition, the social justice agenda incorporates both equi-
ty and diversity concerns, respectively. Fraser demonstrates that while neither 
agenda is reducible to the other, the two are not mutually exclusive (Fraser 1997; 
Fraser and Honneth 2003). In practice, most social justice action contains ele-
ments of both.
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 Relationship Between Equity and Quality

It is perhaps not difficult to point out to both extrinsic and intrinsic values that many 
industrialised societies might have to explain their attempts to achieve both quality 
and equity. In terms of quality, excellence is often valued for its own sake. Perhaps 
the world’s fascination with high performance in sports, and the huge amount of re-
sources devoted to it, illustrates the intrinsic values of quality performance. Closer 
to the topic here however, Stack (2006) discusses the media frenzy around the PISA 
results in Canada that are undoubtedly mirrored in many participating countries 
around the world. Regrettably, however, the serious questions about the possible 
invalidity of these tests to represent real performance of students (Fensham 2008) 
and the hidden inequity with societies that their results reveal (McGaw 2004) are 
not seen to be as newsworthy. Likewise, quality in mathematics educations is also 
extrinsically valued for the significant potential of mathematical knowledge to the 
society’s well-being and economic and technological development. Undoubtedly, 
it has that potential. However, these assumptions about the value of mathematics 
education for the student and society should not be accepted uncritically. First, the 
relationship of mathematics to general economic development is far more complex 
than is often assumed. For example, Woodrow (2003), citing the example of the 
development of the Asian economies and the high achievement by their students in 
international testing, argues that increases in mathematics education standards have 
occurred after their economic development, and arguably as a result of it, rather 
than the other way around. Further, Ortiz-Franco and Flores (2001) demonstrate 
that during the period between 1972 and 1992, the mathematics achievement of La-
tino students in the USA have increased in comparison with other students, although 
their socioeconomic status has decreased.

Similarly, concerns about equity in different societies reveal some intrinsic and 
extrinsic values. Equity in mathematics education can be constructed as a human 
rights issue for full participation in society by many traditionally excluded groups. 
Perhaps, the pioneering work of many women in mathematics education represent-
ed at different times at International Organisation of Women in Mathematics Edu-
cation have shown us how addressing exclusion combining research and political 
action can lead to changes of patterns of participation and achievement. Similarly, 
concerns about equity and social justice reflect extrinsic values that equitable par-
ticipation and achievement bring to any society—in particular, values such as social 
cohesion, and harmony, peace as well as economic benefits. The consistent message 
from educational economists is that if a society considers that achieving equity is 
costly, they should realise that the cost of an inequitable world is potentially far 
greater.

Here I argue that, although not necessarily mutually exclusive, the agendas 
of quality and equity may lead to undesired contradictory outcomes. As Gough 
(2006) points out, in many policies “equality (or equity) is understood to be a nec-
essary condition of quality” (p. 12). However, in practice, a focus on one without 
the other is problematic. In the same article, Gough refers to several South African 
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writers who argue that the quality agenda in that country is often used as a means 
to justify the continual exclusion of black students from further education. In other 
words, a concern about quality with no concern about equity may lead to “elitism”. 
In the same vein, a concern about equity with no consideration about quality runs 
the risk of sacrificing it. Luke (1999), referring to the work of Newman and his 
associates (1996), points out that “the worst enemy of equitable and socially just 
outcomes is the phenomenon that we could call ‘dumbing down’” (p. 11) the cur-
riculum. Hence, the focus on only one demand is not only misguided—by failing 
to deal with significant determinants of participation and achievement in math-
ematics—but also counterproductive—in leading to results contrary to what we 
are aiming to achieve.

This potential conflict between equity and quality is not only hypothetical. In 
practice, where resources are scares, as often is the case in education, in particular, 
in many less industrialised countries, this potential can become reality. At the Inter-
national Conference on Education organised by UNESCO in Geneva (International 
Bureau of Education, 2005), Mohammad Osman, the Bangladesh minister of edu-
cation is quoted as saying:

While access has increased, quality has suffered largely due to systems’ inability to provide 
the requisite number of well qualified and trained teachers and syllabi and curricula that is 
consistent with the need of a changing world. (p. 51)

In other words, under adverse conditions, the choice may come down to either con-
centrate on some basic education for a wider range of students, or spend more re-
sources to increase the education of the most likely to reach their high potential.

Is the identification of values as basis for quality and equity agendas sufficient 
to guide necessary action towards their achievement? There remain a few prob-
lems. Firstly, values are socially constructed and can vary from one culture to an-
other and from one time to another. Further, values are open to conflict with each 
other, and action towards one may lead to a sacrifice of the other. Values alone 
do not lend themselves to obvious criteria for their own evaluation and critique. 
Hence their ability to provide normative criteria for action is limited. Lastly, 
action towards achieving quality and equity in mathematics education based on 
values is becoming increasingly difficult in our age of uncertainty (Skovsmose 
2005). As Foucault (1984) says “people know what they do; frequently they 
know why they do what they do; but what they don’t know is what they do does” 
(p. 95). Skovsmose goes on to argue that in the age of uncertainty the only option 
we have to guide our action is a sense of responsibility of one to the other. As 
Critchley and Bernasconi (2002, p. 26) eloquently put it “the end of certainty can 
be the beginning of trust”. Equally correct, they could have said the beginning 
of responsibility.

This concept of responsibility brings us to the heart of the discourse of ethics. In 
the following section, I will articulate a particular understanding of responsibility 
based on ethics as elaborated by Levinas and argue that this understanding provides 
alternative constructions of quality and equity and contributes to the normative cri-
terion for action and reflection towards their achievement.
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 Ethical Responsibility

Atweh and Brady (2009) point out that the demand for responsibility, or more of-
ten in its related term accountability, is an ever-increasing concern in educational 
discourse, policy and practice in many countries around the world. In educational 
discourse, the term responsibility is used with a variety of meanings. Responsibil-
ity is often presented as a requirement or duty that restricts (as in, it is the teachers’ 
responsibility to cover the curriculum), as privilege that enables (as in, the teachers’ 
responsibility to maintain discipline in class), as a placement of blame (as in, who is 
responsible for the students’ lack of achievement?), or in its ethical or moral mean-
ing (as in, it is the teachers’ responsibly to tell the truth). In these uses, responsibil-
ity is understood as determined by social structures and roles, rules and regulations 
or codes of behaviour. Such rules and codes assume an individual agent who is 
independent and with a moral choice of following the rules or not. Further, they 
are based on a rationality that constructs the “good” as subservient to knowledge of 
the good and such knowledge is taken to be objective and universal (Cohen 2001).

The argument here is not that rules and codes are not necessary for the well 
functioning of society and the common good of its members. Rather, the concern is 
that this construction of responsibility mechanises the relationship between people 
and, hence, is in danger of eroding the humanity of the human (Cohen 2001). Simi-
larly, it reduces complex decisions to a choice between one rule and another, and 
hence hides deep ethical concerns. As an illustration of this danger, consider the 
processes for assuring ethical conduct of research as adopted in many countries. 
Reducing ethical concerns to filling in forms and ticking of boxes is in the danger 
of researchers avoiding facing deeper ethical questions as to who benefits from the 
research, whose concerns are researched and what is the role of the participants in 
the research process (Groundwater-Smith 2007).

Alternative constructions of responsibility and ethics acknowledge that ethical 
decisions are often messy and complex. Universal laws are often not helpful in 
dealing with case by case situations. This of course is not a sanction for an “any-
thing-goes” ethics. On contrary, as Dahlberg and Moss (2005) argue, this ethics is 
more demanding of the agent than simply following conventions. Ethical decisions 
are much more of a burden when seen as more than merely following of rules. 
This of course supposes that the agent is intrinsically an ethical being who acts for 
good and does not need rules and codes to act responsibly. Are people intrinsically 
ethical?

Can we turn to philosophy to assure us? Cohen (2005) explains this avoidance 
of ethical discussion in philosophy as a fear of moralising, preaching and ques-
tions of values by philosophical discourses mainly focused on ontology rather than 
meaning. In Western thinking, there is a movement away from essentialist thinking 
represented in the universality of ethical principles (Christie 2005) and their foun-
dation on rationality as established by philosophers such as Kant. Going back to the 
philosophical and ethical discourses of Socrates, who argued for the primacy of the 
knowledge of the good over the knowledge of the truth, Cohen raises the question 
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“Has the philosopher abdicated responsibilities” by only dealing with questions of 
knowledge rather than values (p. 39). However, this avoidance of ethical discourse 
is slowly dissolving. As Critchley (2002) indicates, it was only in the 1980s that 
the word ethics came back to intellectual discourse after the “antihumanism of the 
1970s” (p. 2). Further, the post-ontological philosophical writings of Levinas (1969, 
1997) have been influential in the re-introduction of ethics within philosophy by 
establishing ethics as the “first philosophy”.

For Levinas, ethics is before any philosophy and is the basis of all philosophical 
exchanges. It precedes ontology “which is a relation to otherness that is reducible to 
comprehension or understanding” (Critchley 2002, p. 11). This relation to the other 
that precedes understanding he calls “original relation”. Using a phenomenological 
approach, Levinas argues that to be human is to be in a relationship to the other, or 
more accurately, in a relation for the other. This relation is even prior to mutual obli-
gation or reciprocity. Roth (2009, p. 31) argues that this original ethical relationship 
discussed by Levinas consists of an “unlimited, measureless responsibility toward 
each other that is in continuous excess over any formalization of responsibility in 
the law and stated ethical principles”.

From this perspective, people are neither intrinsically good nor are they intrin-
sically bad. They are morally ambivalent (Neyland 2004). However, since being-
for-the-other precedes being-in-itself, the self is intrinsically ethical—in the sense 
that concerns about ethical responsibility towards the other precedes the knowledge 
about the self. As Neyland argues, it is an “incorrect assumption that the ethical self 
is caused by—is a product of—social legislation that redeems the pre-ethical self 
from a prior and unwanted disposition” (p. 56). On the contrary, there is a danger 
that legislation limits, if not erodes the ethical self. However, he goes on to argue 
that ethical encounter is not sufficient as a substitute for ethical codes, but needs to 
be supplemented by “shared ethical ideals, priorities and principles that are open to 
agonistic negotiation” (p. 57). These should complement rather than override ethi-
cal primacy of direct encounter.

So what do the agendas of quality and equity look like within this ethical respon-
sibility?

 Constructing Quality and Equity as Ethical Concerns

As discussed above, in mathematics education quality is often understood from 
within the field of mathematics and articulated in terms of rigour and in the form 
of standards and means of testing. Very rarely, it is based on a discussion of the 
aims of mathematics (Jurdak 1999). A discussion that is based on the wider role of 
mathematics in the lives of the students as well as society would lead an alternative 
understanding of quality that does not refer to a particular type of mathematics nor 
achievement in it, but whether or not the practice of mathematics education itself 
has achieved these aims and what type of mathematics education would promote 
their achievement.
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Undoubtedly, mathematics is useful for economic and technological develop-
ment of society (Kuku 1995). However, traditional forms of mathematics educa-
tion based on the development of abstract and objective content is not a guarantee 
against the misuse of such developments that might lead to inequality, insecurity 
and environmental degradation—arguably all encompassing threats to our global 
society. Similarly, mathematics is a useful subject for many jobs and careers. How-
ever, often it is used as a badge of eligibility of entry to those careers as much as it 
is used in those careers themselves—thus leading to exclusion and disadvantage. 
Mathematics education cannot abdicate its responsibility to deal with arising prob-
lems with the content it develops and remain ethical. Further, limiting the aims of 
mathematics education to social development, constructs the individual as subservi-
ent to social structures rather than an active agent in their society. Once again, ethi-
cal practice, as discussed above, is based on the responsibility to the other before, 
and as a basis of, responsibility towards the social.

Here, I recognise an encompassing aim of mathematics education as a contribu-
tion to the ability of students to meet the demands of their current and future lives—
i.e. as their development as responsible citizens. I acknowledge the problematising 
of the concept of responsible citizenship provided by Popkewitz (2004). In this 
context, responsible citizenship is not understood as playing a particular social role, 
obeying laws, following regulations or being pleasing to authority. Rather a re-
sponsible citizen is somebody who is both willing and able to take responsibility 
to expose social problems through mathematics and propose possible solutions for 
them. Puka (2005) illustrates how the distinction that some feminists make between 
responsibility and “response-ability” is a significant contribution to ethical think-
ing. Response-ability highlights the ability to respond to the demands of the other. 
This is similar to what Roth (2007) points out, that responsibility

etymologically derives from a conjunction of the particles re-, doing again, spondere, to 
pledge, and -ble, a suffix meaning ‘to be able to’. Responsibility therefore denotes the abil-
ity to pledge again, a form of re-engagement with the Other who, in his or her utterances, 
pledges the production of sense. Each one, on his or her own and together, is responsible for 
the praxis of sense, which we expose and are exposed to in transacting with others. (p. 5)

In other words, the aim of mathematics education is to develop a response-able 
citizen. Using Gutstein’s terms (2006), a citizen who is able to “read and write the 
world through mathematics”.

Undoubtedly, to achieve this role, care is to be given to develop the power of 
rigour in mathematical arguments, flexibility in problem solving and generalisation 
in mathematics. Hence, the contention here is not that the understanding of quality 
mathematics referred to above is wrong, but that it is limited. The meaning of qual-
ity in this case is what kind of mathematics is more likely to promote the response-
ability of the student. Quality in mathematics education is measured not as, or not 
only as, formal abstraction and generalisation, but by its capacity to transform as-
pects of the life of the students both as current and future citizens. In another context 
(Atweh 2009), I discussed some curriculum and pedagogical implication of what I 
and some colleagues have called Socially Response-able Mathematics Education. 
Perhaps intuitively it is not difficult to understand that the agendas of equity and 
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ethics are associated. In the previous sections I argued that social justice is a wider 
agenda than equity; hence we will discuss the relationship between social justice 
and ethics. I will follow with the discussion of ethics as postulated by Levinas and 
show why ethics needs justice and why justice needs ethics.

As discussed above, Levinas constructs the encounter with the other as the bas-
es of ethical behaviour. He posits the ethical self as prior to consciousness of the 
self, being and knowledge. The encounter with the other demands nonreciprocal 
and unlimited commitment to serve the needs of the other. However, the other 
is not singular. There are many others. How can this unlimited responsibility be 
shared with two or more others? Hence, by necessity, this primal ethical relation-
ship is restricted by the presence of the Third (Simmons 1999). How can ethics not 
lead into injustice in treating two or more others the same way? Levinas’ answer 
is that ethics needs justice to regulate it. This should not be taken as a defect in the 
construction of ethics as an infinite demand. Rather, it is a call for a construction 
of justice at the service of ethics. If ethical responsibility is to be good for the other 
without leading to injustice, it needs justice to regulate it in a society that has many 
others. Although, justice is not reducible to ethics, it is taken to be a subservient 
to ethics.

What does this construction contribute to the understanding of social justice? 
Atweh and Brady (2009) posit two reasons why the discourse about ethics supports, 
and lays the foundation for, concerns about social justice. First, social justice dis-
course is often constructed as concerns related to the participation of social groups 
in social activity and their enjoyment of their fair share of social benefits (Fraser 
1997). It has less to do with the outcomes achieved by a particular individual—un-
less the outcomes are due to their belonging to a social group. They are often silent 
on issues related to the interaction between two people—say of the same social 
group. Ethics, on the other hand, is concerned with a face-to-face encounter and 
interaction between people. This understanding of justice as subservient to ethics 
resolves the problem of dealing with the individual versus a group in social justice 
concerns. Undoubtedly, dealing with the demands of marginalised groups remains 
a crucial social justice issue. However, by understanding that justice is justified by 
ethics, an encounter with a particular member of that group is still subject to unlim-
ited ethical responsibility. In practice, this implies that dealing with individuals in 
isolation from their social group memberships, thus failing to see the effect of their 
background on their chances of social participation, is in danger of being unjust. In 
the same vein, stereotyping an individual only as member of a group, thus focus-
ing on their background and failing to see their possibilities, is in danger of being 
unethical.

Secondly, as argued above, the foundation of social justice on values that dif-
ferent social groups and countries have is not sufficient. This focus on ethics 
establishes social justice concerns as a moral obligation, rather than on charity, 
good will or convenient politics. In other words, adopting a social justice approach 
places knowledge as a servant of justice, while an ethical approach places justice 
at the service of the moral (Cohen 2001). Neyland (2004) quotes Cohen (1986) as 
saying:
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The demands of justice arise out of ethical situations and at the same time pose a danger 
for that situation. The danger of justice, injustice, is the forgetting of the human face. The 
human face “regulates”, it is the goodness of justice itself. (p. 9).

 Conclusions

The demand to re-examine issues of quality and equity in mathematics education 
arise not only from their increasing role in official and academic discourse and 
practice in the field. The perceived importance of mathematics and the implications 
of lack of achievement in it have the potential of increasing pressure and anxiety 
for students and teachers. Similarly, many countries around the world are investing 
huge resources for reforms in their mathematics education curricula and teaching. 
Often these reforms mirror reforms in more industrialised countries. Rather than ac-
cepting quality and equity as absolute and non-problematic constructs, this chapter 
presents alternative possible understandings of them. In particular, I examined the 
possibility of basing both constructs on the discourse of ethical responsibility as 
elaborated by Levinas.

By using ethics as a foundation for both constructs, not only is it possible to 
argue that the two agendas are not contradictory, but also that they are both neces-
sary for an ethical practice in mathematics education. Understanding the educa-
tive interaction as ultimately an ethical encounter highlights the responsibility (read 
response-ability) of the teachers to meet the demands of the responsibility (read 
response-ability) of the students to meet the demands of their current and future 
social lives. This understanding necessarily implies the call for “powerful” math-
ematics (read quality) for every student (read equity). Here, I understand the power 
of mathematics not as traditional rigour of formal mathematics but as its potential 
to contribute to active citizenship for reading and writing the world (Gutstein 2006). 
Furthermore, since ethics is based on questions of what is good to do—and what is 
good to be, such a discussion should form a normative guidance to practice. By nor-
mative role, I do not mean they are sufficient to inform practice in every classroom 
and with every student around the world. Rather, they establish criteria for decision 
making in educational planning and practice that allow us to act and reflect on our 
actions.
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 Introduction

Based on teachers’ accounts, we are going to discuss equity and quality with ref-
erence to mathematics education context. The particular context we are going to 
consider is set by the basic education system in Brazilian public schools. We in-
terviewed 11 teachers who work in different public schools in Brazilian cities and 
two prospective teachers, both university students (presented in Table 6.1). All in-
terviews were carried out by e-mail. In the following, we refer to teachers and pro-
spective teachers as teachers, the names are fictitious each chosen by themselves.

We asked the teachers, first, to describe episodes that could give an impression of 
the diversity of students they had been teaching. Second, we asked what ideas they 
associated with the notions of ‘equity’ and ‘quality’, and how they would combine 
these two notions with regard to mathematics education.

As shown in the Table 6.1, the majority of teachers were from São Paulo state, 
one of the richest states in Brazil. Furthermore, several of the teachers have a 
master’s degree in mathematics education; one is a PhD student in mathematics 
education, while others have been involved in research-based developmental pro-
grammes. As a consequence, the group we interviewed does not represent the popu-
lation of teachers in Brazilian public schools in any statistical sense of the word.

Based on the interviews, we do not try to formulate any statements about teach-
ers’ experiences and opinions in general. Instead, our intention is to present some 
episodes that could give an impression of what is taking place in public schools 
and at the same time give inspiration for addressing issues about equity and quality. 
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Thus, we try to identify some categories ‘dense with experiences’ by taking depar-
ture in the teachers’ presentation. We summarise the teachers’ descriptions, which 
have been provided to us in Portuguese. In most cases, we do not provide a word by 
word translation, however when we do this, we insert the translation in quotation 
marks.

After a brief overview of the Brazilian school system, Section ‘Episodes from 
the School’ presents some episodes experienced by the teachers. Section ‘Equity 
and Quality’ presents the teachers’ comments on equity and quality with a particu-
lar reference to mathematics. Section ‘Emerging Categories’ summarises emerging 
categories ‘dense with experiences’. Section ‘Ghettoes in the Classroom’ and Sec-
tion ‘Construction of Possibilities’ discuss two issues related to equity and quality 
drawing on the emerging categories, while Section ‘Final Considerations’ contains 
the final considerations.

 Episodes from the School

The majority (around 87%) of the Brazilian population from 6 to 18 years old study 
in public schools which are financed by the federal government, by the state, or by 
the city council where no fee has to be paid.

In general, a Brazilian public school is organised as is any such school in other 
countries. One difference could be that the students attend at the school for less time 
than in some other places. For example, the schools operate with two daily periods: 
morning from 7:00 to 12:00 and afternoon from 12:30 to 17:30. In some cases, there 
is also an evening period from 19:00 to 23:00. This means that one group of stu-
dents goes to the school in the morning, another group in the afternoon and a third 
group in the evening. In some cases, this also happens to the teachers in the sense 
that some of them have classes in different periods of the day.

The usual pattern of a mathematics lesson is the traditional one where the teacher 
makes a presentation of the content of the day’s lesson, some examples may also be 
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Name Age Brazilian State Years of experience 
as a teacher

Marina 45 São Paulo 16
Silvana 44 São Paulo 15
Rubens 35 Minas Gerais 15
Rebeca 39 São Paulo 14
Lucas 34 Goiás  8
Luis Manoel 27 Paraíba  6
Alessandra 31 São Paulo  5
Adriana 30 São Paulo  5
Denis 24 São Paulo  2
Gustavo 24 São Paulo  2
Rudá 26 Minas Gerais  1
Tanien 20 São Paulo Prospective teacher
Daniela Rosa 18 São Paulo Prospective teacher

Table 6.1  Interviewed 
teachers
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presented; then, the students try to solve exercises, and the solution will be checked. 
In other words, the normal pattern of the mathematics classroom in Brazil is similar 
to the normal pattern throughout the world. The school mathematics tradition has 
taken an almost universal format.

Diversity

It is early afternoon, and the school is about to start the afternoon session. Luis 
Manoel describes a scene when a school bus is arriving. The bus is provided by the 
city council, and it brings students from the rural areas. There is no sign on the bus 
indicating that it serves as a school bus. It stops in front of the main entrance and 
the students get out, making a lot of noise. Many of them just bring notebooks, oth-
ers bring a backpack which has been donated by the local school authority. Some 
bring their cell phones playing popular music. Some are singing, some are dancing 
along with the rhythms emanating from their phones. In general, the atmosphere is 
relaxed and playful, which continues after they have entered the gate and got to the 
school yard next to their classroom.

Silvana describes a few of her students, all about 12 years old. One girl has huge dif-
ficulties; she is not organised and cannot concentrate. She knows how to read the differ-
ent syllables, but when the syllables come together to form words, she finds it difficult. 
In mathematics, she does not know how to subtract, and when it comes to addition, she 
just makes some drawings on the paper because she has not mastered the algorithm. 
She does not disturb the class, she does not do anything, she remains apathetic.

A boy is completely alienated from what is taking place in the classroom. He 
smiles and stays absentminded. He has all the equipment he needs for going to 
school. He arrives spotless and organised, but he does not do anything. Another boy 
enjoys the confusion and is always disturbing his friends. Once, after he had been 
fighting with some other students, he was sent to the principal. When he returned 
he told his friends that he was going to ask his stepfather to take revenge. Another 
boy does not open his note book, and after Silvana has complained, he tells that he 
does not have any pencil, nor any pen, and so he cannot do anything. As Rebecca 
observes, there are also many students who are interested in engaging in the school 
activities: ‘We also have excellent students who enter the best universities, write 
poetry, are very good in Sport and get Olympic prizes in mathematics’.

As the students are different, so are their family backgrounds. Gustavo has 
taught in a poor neighbourhood. Here many students come from broken families. 
Some may live with their grandparents, some with one or the other of their parents. 
Gustavo also points out that there are several cases where girls get pregnant when 
they are only 13 or 14 years old. In order to reduce this problem, they are given 
information about contraception. But the problem remains far from solved. Several 
teachers tell about how drug trafficking is part of the business of the neighbourhood. 
One of Rebeca’s students was an addict and offered drugs to his classmate: ‘He 
would not be quiet in the classroom and was aggressive to everybody in the school. 
Once he was found with a knife, and the police were called. He was aggressive 

6 Ghettoes in the Classroom and the Construction of Possibilities



80

toward the police as well’. It also appears that the very school building is suffering 
in this neighbourhood. Graffiti seems to appear everywhere together with a general 
damage within the school.

There is a huge diversity among the students. Thus, whatever background a stu-
dent might come from, some are eager to learn and to pursue further education, 
while others disturb the class and are seen by the teachers as problematic. This 
notion of diversity is crucial in formulating the teachers’ experiences of extremes, 
which spreads in all possible directions.

Access to Digital Technology and Prestige

The number of students who have access to computers and the internet is increasing. 
As Rubens and Adriana emphasize, more and more students, who have no econom-
ic conditions to have a computer at home, get access to the internet in cybercafés 
where they pay per hour. The number of students with cell phones is also increasing, 
but in the majority of the cases, the cell phone has no access to the internet as this 
kind of service is too expensive.

Adriana tells that one morning in the middle of a lesson a student cried out in 
a loud voice: ‘Goooooooool’. The word gol is the Portuguese word for ‘goal’, and 
every time a goal is scored the Brazilian speaker cries ‘goooooooool’ for as long as 
his breath allows the word to last. Stretching the word gol is common among every 
enthusiastic football supporter, and Adriana’s student was obviously listening to a 
transmission of a football match during the lesson.

The new technology has clearly entered the classroom of public schools. But it 
is far from being every pupil who is familiar with the equipment. Once, Tanien was 
giving a lesson to students about 11 years old. He had brought the students to the 
computer room, where they would work with some activities using the software 
Cabri-Géomètre II. In order to get things started, it was necessary for Tanien to in-
stall a file from his pen-drive. A student was following what he was doing and asked:

• Teacher, is this a pen-drive?

Tanien answered:

• Well, it is a new form of disk, and its storing capacity is equivalent to about 1,000 
disks.

The student was astonished:

• Oh my God, could I use such a thing at my computer (the one he was using at the 
school)?

Tanien asked the student to click at the icon and open the activities. To Tanien this 
episode illustrates that one cannot assume that students would be familiar with what 
other people might take for granted.

In public schools new technology has entered the classroom. However, students 
are familiar with this technology in very different ways. Some demonstrate much 
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hands-on practice, while many, as Tanien observes, are far from familiar with such 
things. However, to everybody this familiarity appears to signify prestige.

Poverty and Hope

There are many slums and squatter settlements in Brazil, and students in public 
schools may also come from such neighbourhoods. Lucas points out that the situa-
tion of many of his students is dramatic. He has students who not even have condi-
tions for having a proper bath before going to school. They do not brush their teeth, 
their clothes are dirty, and they do not have basic things like paper and pencil. The 
deprived appearance of the students is a direct expression of poverty: families can 
be missing even the most basic things like hot water, shampoo and soap.

Lucas remembers a student, about 12 years old, who came to ask if Lucas would 
give a note book, as his parents could not afford to buy one. He was a positive and 
attentive student with reasonable marks. Lucas could clearly imagine that if the stu-
dents had better conditions, had possibility to eat properly, and had conditions for 
concentrating on studying, he might come to do much better. As Lucas emphasises: 
‘It is simply not fair that a 12 year old student needs to be preoccupied with how to 
get a note book’.

Alessandra tells that in her school the students’ union organises a campaign to 
collect second-hand clothes to donate to poor students’ families. The class which 
collects most clothes will receive free tickets for the cinema, and popcornas well.

Marina tells about a student of one of her colleagues, who completed some diffi-
cult mathematical activities. The teacher was very happy with what the student had 
done, and she told the student: ‘If you continue doing well like this, I will give you a 
present’. The student answered: ‘Oh, teacher, if you are going to give me a present, 
please give me a kilo of beef’. Marina also tells that it happens several times that 
some students did not feel well, as they had nothing to eat during the day.

Many students are in difficult situations, and they might also be with desperate 
hopes. In one case, a girl asked Marina if she would become her mother. Some days 
later, during parents meeting, the girl’s father told Marina that his wife had left 
home and that he now lived alone with three children. It could well be that the girl 
had anticipated that her parents’ divorce was on its way and tried to secure some 
kind of solution. In terms of marks the girl was one of the best students Marina had, 
and she tells that several of her students have come to her and asked if she would 
be ready to adopt them.

Stigmatisation

There are many different groups of students in the school, and there are many ways 
of demonstrating differences. First, with respect to obvious material things, like 
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clothes, shoes and equipment, not least electronic devices like a cell phone. But dif-
ferences are also marked through differences in languages and use of slang. There 
are differences in ways of behaviour, for instance with respect to going to parties, 
music and dances. These choices can also include an expression of priorities with 
respect to the competing gangs that dominates the neighbourhood.

There seem to be very complex dress codes in operation. The students from rich 
as well as from poor neighbourhoods do really have to ‘dress up’ in order to go to 
school. However, there are students who come to school in clothes which are in a 
very bad state, and due to their appearance, students may get into difficulties with 
their peers. Marina tells that, sometimes, when she organises classroom activities 
where students have to work in groups or in couples, problems could easily emerge. 
Nobody wants to work together with students in rags, and to solve the problem she 
worked together with the otherwise excluded pupils. Denis describes how he once 
was putting up a huge poster in the classroom and asked the students to move up to 
sit in front of it. A nicely dressed student did not want to sit next to another student. 
When Denis asked why, the student answered: ‘I’m afraid of getting lice from her 
hair. She is dirty and does not take a bath’. Poverty is reflected in appearance, which 
in turn becomes a cause for brutal forms of stigmatisation.

None of the teachers refers to racism, but racism exemplifies a most brutal form 
of stigmatisation, and one can imagine many contexts where this notion would be 
crucial in order to formulate teachers’ experiences and for being able to address 
issues about equity and quality. Here we restrict ourselves to point out the overall 
notion of stigmatisation.

Learning Condition

In many cases, students need to repeat a school year. Thus, Gustavo tells that he 
has experienced situations where 18 years old students are joining the same class as 
12–13 year-olds. In many cases, it might seem that students come to school not to 
learn but to be together with friends. However, one needs to be aware, as Gustavo 
also remarks, that for the majority of students ‘the school environment may be the 
only possibility they have for interacting with others’. For many students, working 
with the content is only one possible facet of going to school.

Daniela Rosa tells that many students from secondary school—students from 14 
to 18 years—need to work in order to support their family as well as themselves. 
Thus, she knows students who are studying in the morning while working during 
the afternoons and evenings. The consequence, naturally, is that it becomes difficult 
for them to pay enough attention to what is taking place during the lessons.

The teachers experience many differences in students’ capacities for learning. 
Marina tells that several times fast learners get annoyed with students who need too 
many repeated explanations. However, learning capacity is a complex phenomenon. 
It can be related directly to the students’ situation outside school. Once Adriana 
asked her class how many had done their homework—only very few hands were 
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(slowly) raised. There can be different reasons for this, and certainly the most direct 
reason can be that for many students it is not possible to find any space at home 
for doing their homework. On top of this, a ‘culture of studying’ can be missing at 
home. In many homes, any form of reading is a rare preoccupation. At a parents 
meeting, Adriana asked if any of the parents had seen their children doing home-
work. The parents got surprised by the question. One stated: ‘Uau, in fact I never 
see my children studying at home’.

Naturally, it is important not to make any generalisations, and the teachers em-
phasise several times that there are students with any kind of background that do ex-
cellent in school, just as slow learners may come from very different backgrounds. 
Marina tells that she had a student, whose father was in prison, while her mother 
worked as a prostitute in a nearby city. This girl lived with her aunt. She was excel-
lent in the school and excellent in mathematics in particular.

In the classroom, students may display different learning abilities. However, the 
term ‘ability’ is a strikingly misleading concept—most dangerous because it has 
come to assume an almost universal currency. It designates some phenomena as per-
sonal or as individual characteristics of the students, while these phenomena more 
realistically represent characteristics of the students’ learning conditions. ‘Ability’ 
is thus a social construct, not a psychological one. In order to address issues of 
both equity and quality in learning, it is crucial not to read conditional qualities as 
individual qualities because doing so means that one comes to read differences in 
performances as individual differences, and not as representing inequalities in the 
experienced learning conditions.

 Equity and Quality

After the teachers had presented episodes that could illustrate the diversity of their 
experiences, we asked them directly about their interpretation of equity and quality, 
and here we make a synopsis of their key positions.

Possibility

Adriana emphasises that she does not think of equity, as the governor of the São 
Paulo State has tried to realise it, namely in terms of the same curriculum for every-
body. In fact, as a consequence of this state policy there has been a huge effort in 
implementing a uniform curriculum. But as Adriana emphasises, equity also means 
respecting differences.

According to Luis Manoel, equity in education means to ensure ‘opportunities 
for obtaining knowledge’. Rudá also emphasises that equity does not simply mean 
equal opportunities in any direct measurable sense; it also means to ensure oppor-
tunities for everybody for getting a dignified life, and this might mean very many  
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different things depending on the situation. Adriana stresses that equity has to do 
with establishing possibilities for everybody, considering their very different condi-
tions for going to school, for learning and for realising their aspirations. In other 
words, equity in education has to be searched for in terms of a respect for differ-
ences. Also Rubens highlights that equity in education cannot be obtained through 
unification of the curriculum, but that equity has to do with the opportunities in life 
that the students are getting as a result of their engaging in schooling.

This brings us to an important observation: One can search for equity in educa-
tion in terms of the possibilities that becomes established for the students.

Interpreting equity in terms of opportunities can get the most direct form. One 
can think of opportunities in terms of access to further education, being vocational 
training, technical schools as well as universities. Naturally, opportunities could 
mean many more things, but access to further education is an important set of op-
portunities provided by the educational system. Furthermore, access to further edu-
cation can be directly addressed: one can simply register how many students from 
different schools get on to further education courses, and especially who might 
enter the best universities. Here the statistics reveal huge differences.

This observation brings us directly to political issues. Marina finds that if the 
government would invest adequately in public schools, they would in fact be able 
to compete with private schools, which in turn would mean that more quality in 
education would be ensured. This would also mean that working as a teacher at 
public schools would become more prestigious. According to Marina, some teach-
ers see the situation in the following way: ‘Oh, I’m teaching in a public school, 
where the students would never come to make a vestibular [The exam for enter-
ing at the university], so I do not need to do much, just teaching the most basic 
things’.

Participation

The Brazilian government has taken initiatives in a range of affirmative actions 
in order to provide more opportunities for black people and students from a poor 
background. However, a huge challenge is put in front of the teachers, and Rubens 
stresses that a principal step in order to counteract the strong processes of social ex-
clusion is to have well-educated teachers. This does not simply refer to the teachers’ 
knowledge of the particular disciplines. According to Rubens, to be a well-educated 
teacher also means to be ‘open to dialogue’, to be ‘open to different experiences’, 
and to be ‘open to the students’. In characterising quality in mathematics educa-
tion Rebeca emphasises the importance of reaching as many students as possible. 
This means that quality has much to do with students’ participation in the learning 
processes. She sees the involvement of students as crucial in case education should 
come to make a difference in their life. In a similar way, Denis states that quality in 
mathematics education means more than just learning mathematics. It is important 
as well that students come to work with relations around mathematics. This could 
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mean using mathematics for understanding daily life situations, social problems, 
political discussions, etc.

Several of the teachers highlight that it is necessary to address quality in educa-
tion, and also in mathematics education, with reference to the cultural diversities of 
the students. Thus, one should not try to search for equity in terms of ‘unification’, 
nor when this unification becomes expressed in terms of a ‘unified curriculum’. 
Qualities have to be searched for in terms of ‘sensitivity’ to differences; whatev-
er these differences take a cultural, political or economic format. Thus, Adriana 
emphasises that quality in mathematics education means to ensure conditions for 
students to understand society, to act in the world, to have access to the produced 
knowledge and to make connections to different domains of knowledge.

This understanding of quality brings the teacher into a new position, and Rubens 
states that it becomes important to reconsider the role of the mathematics teacher, 
and in particular not to maintain the teacher as the centre of the classroom. Instead, 
it becomes important for the teacher together with the students to work with proj-
ects where processes of exploration and collaboration become crucial. It becomes 
important to establish a new dynamics in the classroom interaction.

 Emerging Categories

Some categories, relevant for addressing equity and quality, did emerge from the 
teachers’ comments. A crucial one is diversity, which refers to the students, their 
background, their family situation, their attitude, their behaviour, their learning con-
ditions, etc. There is no homogeneity to be expected in an educational setting. The 
next two categories have to do with access to technology and prestige. They are 
closely connected, but are not identical. Access to computer and internet has as-
sumed a particularly important place in the life of young people. It becomes part of 
life style and of a youth culture that stretches across other cultural settings. Prestige 
has to do with many things, the way of dressing for instance, the position among 
friends, the way one acts, etc. It is not possible to discuss equity and quality in 
education without addressing poverty as well as hope which in turn might appear 
desperate. Brutal processes of social exclusion relate to forms of stigmatisation, and 
racism could make part of such processes. The notion of capacity plays an important 
role in much discussion of students’ achievement in school; however, we would em-
phasise instead the importance of learning condition, which refers to the complex-
ity of the students’ contexts. Two more categories that help to address equity and 
quality are the construction of possibilities and the notion of participation which are 
important for the quality in learning as well as for the construction of possibilities.

In short: we want to highlight the following nine notions as being of particular 
importance: diversity, access to technology, prestige, poverty, hope, stigmatisation, 
learning condition, possibility and participation. This is our suggestion for a cat-
egorical framework for addressing issues about equity and quality in (mathematics) 
education, which at the same time is sensitive to teachers’ experiences.
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In the following two sections, we address two challenges regarding equity and 
quality. The first concerns what we refer to as ghettoes in the classroom, which we 
see as obstructions for establishing equity as well as quality in education. The sec-
ond concerns the construction of possibilities, which we see as crucial for trying to 
establish equity as well as quality.

 Ghettoes in the Classroom

Processes are taking place in schools through which ghettoes in society become 
replicated in the classroom. We choose to talk about ghettoes in the classroom (and 
not just about ghettoes in the school) in order to emphasise that ghettoising reaches 
into the micro level of schooling. Based on the categories that emerged from the in-
terviews, we will condense some of the ways in which these ghettoes may emerge. 
(Certainly, it is relevant to investigate how these ghettoes are experienced by the 
students and by the students’ parents and families, but in this text we draw on the 
categories that emerged from the teachers’ experiences.)

Students can become ‘differentiated out’ according to appearance. Their shoes 
might be different, but there are hundreds of ways of noticing social manifestations 
of economic differences within a school context. Such differences might appear 
insignificant, but among students certain differences get a gigantic significance and 
make part of the most brutal form of differentiation. Thus, several of the teachers 
referred to the importance for the students to ‘dress up’ for going to school. Missing 
the ‘dress code’ means a stigmatisation. It is deeply problematic to appear poor. As 
a consequence, there are certain things that become prestigious: those which dem-
onstrate distance to poverty, as for instance, access to internet, ability in handling 
a computer, to speak in a cell phone, and in a clandestine way to follow a football 
match in the classroom. In the interviews, none of the teachers referred explicitly to 
racism. However, this form of differentiation cannot be ignored. Racism emerges 
when perceptible differentiations coagulate as explicit categories.

Some students can be attentive, others apathetic. Differences in learning condi-
tions might appear as differences in students’ abilities, but cannot be interpreted in 
this simple way. Some students might need to spend much of their time working 
in order to earn money, as pointed out by Daniela Rosa. As stressed by Lucas, it 
cannot be fair that a 12-year-old student needs to be preoccupied about how to get 
a note book. Such a preoccupation is certainly a learning obstacle; it has to do with 
poverty, but it has nothing to do with the student as a person.

The discourse of differentiation often gets an us-them format: ‘They’ come from 
a poor community; ‘they’ have to travel a lot to get to the school; ‘they’ look poor; 
‘they’ have a different behaviour. The differentiation becomes formed through dis-
cursive patterns of a us-them format. The us-them terminology brings about char-
acteristics of ‘them’. One could talk about ‘them’ as being badly behaved, as being 
difficult, as being not able to learn, etc. It is a labelling that assigns some charac-
teristics to the students. As the labelling becomes formulated in individual terms,  
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referring to some characteristics of the individual student, the labelling can be used 
as a ‘justification’ of a differentiation (we have put ‘justification’ in quotation marks 
as it might take all kind of artificial and false forms): There is something that sepa-
rates ‘them’ from ‘us’, and this something is a feature of ‘them’. It is not ‘us’ who 
characterise ‘them’, it is ‘them’ who brings about their own characteristics. Further-
more, the characteristics of ‘them’ are not attractive but refer to limitations, flaws, 
defects, and weaknesses. A labelling easily turns into stigmatisation, which occurs 
when a ‘justification’ is added on top of a differentiation.

Stigmatising is an important element in the formation of ghettoes in schools. A 
discourse is created which includes a profound labelling, which refers to character-
istics of the students themselves. The differentiation becomes engraved on a dis-
course of essence. Ghettoes in the classroom become created when differentiation 
turns into an us-them formulation, and labelling turns into a stigmatisation. Many 
students find themselves located in such ghettoes. Here, there is not much to hope 
for, not in any realistic way; only desperate hoping is available.

It might be difficult to describe the precise meaning of what equity and quality 
in education could mean, but they are not empty concepts. We find that ghettoes in 
the classroom represent a huge challenge for any education aspiring for equity and 
quality. In fact equity and quality in education are obstructed by all socio-economic 
process that makes part of the formation of ghettoes in society. Such ghettoes be-
come replicated in the classroom; however, there are very many additional process-
es that take place in the formation of classroom ghettoes. An education for equity 
and quality must try to act against all processes, social and educational, which make 
part of the formation of ghettoes in the classroom.

 Construction of Possibilities

Ghettoes in the classroom emerge through complex processes of differentiation, 
where lack of prestige, poverty and stigmatisation turns into general discourses, 
which in turn coagulate as ghetto-walls. Breaking down such walls constitutes part 
of the construction of possibilities for students. However, let us address things step 
by step.

Getting in contact is an important initial step in opening up a ghetto, and not get-
ting caught by the logic of differentiation. Getting in contact can be seen as an initial 
educational step of steering away from the us-them differentiation. The importance 
of getting in contact was emphasised many times during the interviews. Thus, in 
characterising quality in mathematics education, Rubens stated that it becomes im-
portant for teachers and students to explore and collaborate and to establish a new 
dynamic in the classroom. In particular, he emphasised the importance for teachers 
to be ‘open to dialogue’. In fact ‘open to dialogue’ is closely related to ‘getting in 
contact’, which can be identified as an important feature of a dialogue (see Alrø and 
Skovsmose 2002). In a similar way, Rebeca emphasised the importance of reaching 
out to as many students as possible.
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There is no easy way of getting in contact; nevertheless, it is fundamental to the 
students’ experience of meaning. Ghettoes in classrooms are surrounded by walls 
which obstruct exchanges of meaning. What is taught appears meaningless to the 
students, if the students’ priorities are not recognised as significant for the learn-
ing processes. Ghetto-walls appear to be meaning-proof. It is not easy to remove a 
ghetto-wall, not even to make hole in it.

The preoccupation in providing mathematics education with meaning is recog-
nised broadly, both in theory and in practice. We see meaningfulness as referring to 
relationships between what is taking place in school and the students’ aspirations 
and hopes. Meaningfulness for students has much to do with what they might come 
to see as their possibilities. For a ghettoised student, however, there is nothing to be 
hoped for through schooling. Here we could refer to a ‘ruined foreground’, which 
only make space for desperate hoping (for an introduction of the notion of fore-
ground see Skovsmose 1994, 2005a, b; Alrø et al. 2009). It is painful to hope for 
something which is unattainable. Students trapped within a classroom ghetto might 
experience ruined foregrounds which cause a huge obstruction in their experience 
and consequential construction of meaning.

One important element of the education for equity is to provide possibilities 
for the students. Construction of possibilities is important for everybody. In the 
interviews, several of the teachers referred to the notion of possibility. Luis Manoel 
pointed out that quality in education means to ensure opportunities for obtaining 
knowledge, while Adriana stated that equity has to do with ensuring possibilities for 
everybody. Our point is that the notions of equity and quality need to be discussed 
in terms of construction of possibilities. However, ghettoising obstructs the con-
struction of possibilities: Students become designated to return to the situation they 
come from: they need only to be ‘taught the basics’.

In the interviews, there was no indication of mathematics playing a particular 
role in processes of differentiation. It appears that processes of labelling, of stigma-
tising and eventually of establishing ghettoes in the classroom is of general nature 
and not related to any particular school subject. However, our point is different. 
Although mathematics may not play any particular role in establishing ghettoes 
in the classroom, mathematics may still provide possibilities for moving beyond 
such ghettoes. This has to do with the variety of roles of mathematics in the global 
networking.

Different forms of qualifications which, one way or another, can be related to 
mathematics becomes of demand at today’s labour market. One can think of those 
groups of peoples who are developing and implementing new forms of information 
processing and automatisation. In this case, a variety of qualifications are impor-
tant: for instance, an expertise with respect to programming, input-output analyses, 
construction of time-efficient work procedures, etc. One can also think of all these 
people who are going to operate with already implemented techniques, for instance, 
as bank assistants, as workers in a factory, as shop assistants, etc. The ability to 
handle certain technique-based procedures becomes a key demand. As consumer, 
one also needs to be able to operate with automatic processes, not only when one 
does internet shopping, but with any processing of one’s own money, not to forget 
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budget making. Thus, society rapidly develops a growing demand for qualifications 
related to a wide range of formal techniques including mathematics. Furthermore, 
it becomes important to reflect on what is done and what can be done through such 
techniques, and as for instance underlined by Denis, mathematics education might 
provide possibilities for such reflections.

Such general observations indicate many particular ways in which mathemat-
ics education could take part in constituting possibilities for students, not least for 
students who tend to be caught up by ghettoes in the classroom (see, for instance, 
Gutstein 2006; Greer et al. 2009; Penteado and Skovsmose 2009). As an illustration 
of such possibilities, we can refer to a statement made by Lupes, one of Gutstein’s 
students:

With every single thing about math that I learned came something else. Sometimes I learned 
more of other things instead of math. I learned to think of fairness, injustices and so forth 
everywhere I see numbers distorted in the world. Now my mind is opened to so many new 
things. I’m more independent and aware. I have learned to be strong in every way you can 
think of it. (Lupes, quoted from Gutstein 2003, p. 37)

 Final Considerations

One could think of social ghettoising as being the cause of educational ghettois-
ing. At least, it seems farfetched to assume that ghettoes in the classroom can be 
identified as the cause of ghettos in society. However, the situation is much more 
complex than these two cause-effect formulations indicate. One should not think 
of some one-way cause-effect relationship. Instead, one could think of educational 
and social phenomena as being connected and as interacting in extremely complex 
patterns. So, even though one should not assume to be able to solve social problems 
through educational initiatives, such initiatives could have impacts and make a dif-
ference for some students in some situations.

As a consequence, we find that it makes sense to formulate, as an educational 
aim, to pursue education for both equity and quality, in particular, with respect to 
groups of students who tend to be caught by processes of ghettoising. We find that 
a crucial element in such an education is to provide possibilities for the students.

We find that aiming for both equity and quality makes sense even though we 
see educational processes as dominated by social processes. However, domination 
means domination and not determination. A dominant system can still be undeter-
mined and include contingencies.

In order to explore possibilities that accompany contingencies, clusters of cate-
gories becomes important. If one wants to address equity and quality in (mathemat-
ics) education, we find that categories like diversity, access to technology, prestige, 
poverty, hope, stigmatisation, learning condition, possibility and participation be-
come important. Naturally, one can search for categories in different directions, and 
most common is to search for categories by exploring theoretical and, sometimes, 
philosophical frameworks. Here, we have searched for categories in a different  
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direction. We have tried to present categories, dense with experiences, by relating 
them directly to teachers’ expressions of their lived experiences.
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 Introduction

Quality pedagogical practices that are simultaneously socially just, are, by all ac-
counts, at the crossroads in mathematics education (Walshaw 2009). Recent analy-
ses of international test data have revealed patterns of social inequity that provide 
a sobering counterpoint to claims of an equitable and quality mathematical experi-
ence for all students. Such analyses show that for specific groups of students mathe-
matics presents as an impossible challenge (Anthony and Walshaw 2007). The phe-
nomenon is extremely complex and is not easily explained by conventional liberal 
democratic mechanisms. An equitable and quality mathematical experience will not 
be achievable for specific groups of students if the mechanisms that contribute to 
the types of mathematical identities offered them in the mathematics classroom are 
not explored. Such an exploration is the aim of this chapter.

In democratic societies, all students have right of access to knowledge. A key 
lever to this access is the classroom teacher. Research (e.g., Alton-Lee 2003; Hayes 
et al. 2005; Normore and Blanco 2008) has confirmed that it is the classroom teacher 
who has a significant influence over students’ learning. This is not to suggest that the 
teacher makes instructional decisions in isolation from structures and other people: 
the teacher’s classroom practice is always situated within a web of wider influences. 
In this expanded view, social and political factors that impact on teaching are hugely 
significant. Within the context of a larger sociopolitical environment, effective teach-
ers enhance students’ access to powerful mathematical ideas, irrespective of socio-
economic background, home language, and out-of-school affiliations. Such teaching 
is able to signal how persistent inequities in students’ mathematics education might be 
addressed. This is crucially important in light of trends of systemic underachievement 
that provide a sobering counterpoint to claims of equitable learning opportunities.
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Problems and difficulties associated with how to ensure that quality mathemat-
ics experiences are also equitable are nested within a much larger phenomenon 
of a changing student demographic (see Banks 2007). In the contemporary scene, 
to deal with issues associated with diversity, policy makers are tending to opt for 
the classic deficit response—blame schools, teachers and students, introduce new 
initiatives, and intensify teacher surveillance—without also understanding how the 
inequities themselves are produced (see Nasir and Cobb 2007). Government incur-
sions might heighten social awareness to the problems faced by teachers in schools, 
yet they cannot shore up the possibility of the production of a quality and equitable 
practice. Policy initiatives whose explanatory power lies in pathologising identities 
not immediately identifiable as “middle class and white” simply cannot get to the 
heart of the problem.

Nor is the quality/equity intersection helped very much by confusing equity with 
equality—important though equality is—as though unequal approaches, unequal 
access, and unequal opportunities would fully explain why many students do not 
succeed with mathematics and why many are disaffected and continually confront 
obstacles to engage with the subject. At a certain level within the contemporary 
debate about democratic provision, equality is privileged over any other advocacy, 
based on the understanding that equal outcomes, approaches and access, summed 
together, yield a comprehensive picture of equitable practice for students. This kind 
of approach has been seriously undermined by people like Foucault (e.g., 1972). 
However helpful the concept of equality might be in enhancing students’ engage-
ment with mathematical ideas, in trying to paint a picture of equitable arrangements 
in mathematics education, issues of structures, as well as interactions between con-
texts and people, cannot fail to intervene.

Cobb and Hodge (2007) have argued that issues relating to student diversity are 
among the most complex and challenging issues facing mathematics education to-
day. However, in New Zealand and in most other western countries, diversity is now 
part of the way of life. These changed and continually changing demographics will 
require mathematics teachers to cater for increasingly diverse groups of students. 
How can we advance our understanding of the quality/equity conflation in order to 
deal with these issues? In addressing that question, I ground my discussion in the 
understanding that the quality of pedagogy is a social justice issue of momentous 
importance. In seeking a model of pedagogy that is equitable for the contemporary 
social context, I raise thorny questions about the generalized discourse of equity 
within mathematics education. I plan to do this by rethinking equity itself in ways 
that demand attention to interrelationships and the intersubjective negotiations that 
ensue.

The book edited by Nasir and Cobb (2007) provides a background for that 
discussion not only because it adds another dimension to ideas about the subject’s 
fragmentation, but also because it represents a turn to theory that takes relation-
ships as fundamental to the social justice project. There are arguments in the 
book, and, specifically, the discussion about communities of practice within the 
chapter written by Cobb and Hodge, that are helpful in advancing our understand-
ing of equity. It is my contention that whilst the arguments put forward in their 
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chapter are useful for understanding the multiple layers of teaching experience in 
a context of classroom diversity, a quality and equitable experience in mathemat-
ics education is, however, not created solely from rational decision making and 
negotiations of self with social structures. I propose a first-steps approach to eq-
uity that resonates in some ways with the approach provided by Cobb and Hodge 
and moves it forward.

Thus, the chapter is an exploration into a range of theoretical issues about how 
students’ diverse sociopolitical realities impact on the types of mathematical iden-
tities and the level of mathematical proficiency offered them in the mathematics 
classroom. No matter how this endeavour differs from that of Cobb and Hodge, 
there is a consensus on the continuing political promise of the radical democratic 
project.

 Identity at the Core of Quality Mathematical Experiences

In a publication that synthesised the literature on effective pedagogy in mathemat-
ics (Anthony and Walshaw 2007), I, together with my co-writer, developed a pro-
fessional language to define a quality pedagogical practice. The intent was that 
the model of pedagogy developed from the teacher effectiveness literature would 
be used by teachers and educators for the purposes of talking about progressive, 
socially just pedagogic action. We were drawn to a view of pedagogy that magni-
fied more than what teachers know to support mathematical learning. We tended 
to look beyond narratives of improved test scores, simply because explanations 
tied to high-stakes assessment told us only one aspect of the story. We broadened 
the scope of the goals of mathematics education, as advanced by policy makers, 
and the business and industry communities. For us, enhancing the intellectual ca-
pacities required for future employment and citizenship in a technologically ori-
ented, knowledge-driven society, was not sufficiently far-reaching. We also wanted 
to encompass more than is typically required in day-to-day routines, namely, the 
skills, understandings, and numerical literacy needed for dealing confidently with 
everyday life.

If effective pedagogy is about understanding “what students know and need to 
learn and then challenging and supporting them to learn it well” (National Coun-
cil of Teachers of Mathematics [NCTM] 2000, p. 16), we believed that a quality 
pedagogy conceives of the learner as a producer of knowledge, and understands 
teachers as co-producers. An effective mathematics teacher recognises that any 
pedagogic action involves the imposition of a cultural arbitrary. It is through the 
core dimensions of pedagogy that effective pedagogic action is able to attend to 
power relations that unfold from that cultural basis. These core dimensions include 
the cognitive demands of teaching, as well as the structural, organisational, man-
agement, and domain-specific choices that teachers make. These are all part of the 
large matrix of practice that involves systemic and policy support for focusing on 
quality and for working with and valuing diversity. The choices that a teacher makes  
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include the negotiation of mathematics curriculum policy and carry over to deci-
sions about the human, material and technological infrastructural arrangements that 
allow students to achieve specific outcomes.

A “quality” or an “effective” pedagogical practice becomes intimately focused 
on enhancing student outcomes and achieves its purpose. That is to say, a pedagogi-
cal practice that is effective is linked to a range of student outcomes, and these in-
clude achievement outcomes, encompassing conceptual understanding, procedural 
fluency, strategic competence and adaptive reasoning (National Research Council 
2001). These outcomes characterise an apprentice user and maker of mathematics 
and are appropriated by the student through effective classrooms process. Added 
to those outcomes, is another set that underwrite a quality mathematical experi-
ence which are often tend to be overlooked. These are the social and cultural out-
comes relating to affect, behaviour, communication, and participation (Anthony and 
Walshaw 2007).

Quality mathematical experiences that enhance a range of student outcomes are 
premised on the understanding that knowledge is necessarily social. If opportunities 
to learn arise in the community that the teacher develops, then people, relationships 
and trusting classroom environments are critically important. In the synthesis of the 
literature, we found evidence that teachers who truly care about their students have 
high yet realistic expectations about enhancing students’ capacity to think, reason, 
communicate, and develop mathematical argumentation (Walshaw and Anthony 
2008). The tasks, activities, and tools they choose are aligned with these expecta-
tions and significantly influence the development of mathematical thinking, allow-
ing students to access important mathematical concepts and relationships, to in-
vestigate mathematical structure and to use techniques and notations appropriately. 
Teachers’ pedagogical language and action associated with fairness and consistency 
works to counter the effects of social or material disadvantage. In developing inclu-
sive partnerships, effective teachers ensure that the ideas put forward by students 
are received with respect and become commensurate with mathematical conven-
tion and curriculum goals. For them, a quality mathematical experience is more 
about transformative relationships than about transmitting and consuming knowl-
edge. Such relationships always involve reciprocity and a pedagogical attention that 
moves students towards independence.

Crucially, transformative relationships make particular identities, and not oth-
ers, available and realisable for students. Identity is, in a very real sense, at the 
core. It involves the ways in which students “think about themselves in relation to 
mathematics and the extent to which they have developed a commitment to, and 
have come to see value in, mathematics as it is realized in the classroom” (Cobb 
et al. 2009, p. 40–41). Thus, it is deeply implicated in the development of a quality 
pedagogical experience. Proposed in this way, effective pedagogy is able to reveal 
how the development of mathematical proficiency and aptitude over time is char-
acterised by an enhanced, integrated relationship between teachers’ intentions and 
actions, on the one hand, and learners’ disposition towards mathematics learning 
and development, on the other. Importantly, both parties bring to the teaching and 
learning encounter a history that is enmeshed with the experience of the social and 
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political world. But the scope of this history extends far beyond their interpersonal 
interactions: power and affective dimensions cannot fail to intervene.

 Identity at the Core of Equitable Mathematical Experiences

Transformative interactions between contexts and people are at the root of effective 
and equitable pedagogic action. In turn, it is the concept of identity that underlies 
transformative interactions, and hence, is crucial for explaining pedagogy. Impor-
tantly, the experience of identity is rendered meaningful by particular groups and 
particular classroom practices (Britzman 1998). In the mathematics classroom, this 
is precisely because mathematics knowledge is created in the spaces and activities 
that the classroom community shares within a web of economic, social and cultural 
differences. Hence, knowledge creation cannot be separated from the axes of so-
cial and material advantage or deprivation that operate to define students. Quality 
pedagogy takes into account the ways of knowing and thinking, language, and dis-
cursive registers made available within the physical, social, cultural, historical, and 
economic community of practice in which the teaching and learning is embedded.

These ideas are most keenly expressed by Cobb and Hodge (2007). For them, an 
individual learner’s socially just relationship with mathematics is essentially situ-
ated and relational. Equity, here, is defined not as a property of people, but as a 
relation between settings and the people within those settings. The proposal comes 
hard on the heels of a renewed respect for “the other” within mathematics educa-
tion (e.g., Ernest et al. 2009; Gutstein 2006; Sfard and Prusak 2005; Stinson 2006; 
Valero and Zevenbergen 2004). In questioning the criteria for interpreting equitable 
experience, Cobb and Hodge have re-evaluated the long-standing idea that student 
experience in mathematics classrooms is consistent across groups. Their heightened 
sense of awareness of the limits of past efforts to counter differential performance 
in mathematics has crystallised into the development of an interpretive framework, 
providing insight into the meaning of a quality and equitable experience in math-
ematics.

The thrust of the argument endorsed by Cobb and Hodge (2007) is that equity is 
not a property of people. Nor is it a static process. Instead, it is a “as an artefact of 
cultural settings and the relations between them” (Nasir and Cobb 2007, p. 6). In 
their view, equity amongst mathematics learners depends to some extent “on how 
students’ identities as learners are enabled as they participate in classroom math-
ematical practices (through social interaction and participation structures) vis-á-vis 
their identities as ‘doers’ of other practices” (p. 8). Practices at both the micro level 
of the classroom and the macro level of the institution of schooling—and the power 
plays within—all work to inform the development of an equitable practice within 
mathematics education. Put simply, equity here means protection from and resolu-
tion of those processes or structures that serve to undermine a student’s sense of self 
and others as legitimate mathematical learners within the context of the practices 
of the mathematics classroom and within other communities in which the student 
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participates. The student’s identity, then, is able to tell us about the nature of a qual-
ity mathematical experience.

Thus, in an effort to understand the local, systemic and typically flexible condi-
tions of identity construction, Cobb and Hodge offer a view of equity that fore-
grounds engagement within communities of practice. Three constructs are proposed 
to analyse students’ identities in mathematics classrooms consisting of normative 
identity, core identity, and personal identity. These three constructs operate to deal 
with the methodological difficulty in accounting for an individual’s differential en-
gagement—with respect to the individual’s role and position—between and within 
social groups, cultures and institutions. Normative identity is set within the highly 
localised context of the classroom. It refers to the identity of a student fully engaged 
within the practices—both mathematical and social—of the classroom. The activity 
normalised within the classroom involves not only rights and obligations, but also 
interaction and reciprocity, all of which are oriented towards enhancing students’ 
capacity to think, reason, communicate, reflect upon and critique what they do and 
say in class.

Core identity has a more expansive reach than the classroom. It is “concerned 
with students’ more enduring sense of who they are and who they want to become” 
(Cobb and Hodge 2007, p. 167). Core identity, as a construct, takes on board Gee’s 
realisation that an individual’s engagement within the communities with which she 
is associated tends to take a unique “trajectory,” and this is apparent even when life 
histories appear to be similar. Specifically, the core identity of a student is embodied 
with a double valence: on the one hand, the student is an agent; on the other hand, 
the student has a connotation of being subjected to. In other words, core identity has 
both the status of being acted upon by wider social and political structures, and si-
multaneously, the status of position of agency within those sociopolitical structures.

Personal identity brings us full circle back to the classroom. Its focus is on “who 
students are becoming in particular mathematics classrooms” (p. 168). The con-
struction of a personal identity is an ongoing process, ever-changing as the student 
works at reconciling her core identity with the normative activity as established 
within her mathematics classroom. The construct of personal identity is formulated 
in such a way as to reconcile participation and engagement within specific commu-
nities outside of the classroom, with the specific mathematics learner a student as-
pires to be within the classroom. Thus, the identity of a student comes into being in 
relation to the negotiations that she undertakes with other individuals and commu-
nities. Crucially, a change in a student’s personal identity within a particular class-
room context may also result in a change in their core identity—their long-term 
assessment of sense-of-self. That is to say, a change in personal identity operating 
within the mathematics classroom has a direct bearing on the kinds of mathematical 
identities that students might take up and the kinds of proficiencies to which they 
might aspire.

Understandings like these, developed from Vygotsky’s work (see, for example, 
Gee 1999, 2001; Lave 1988; Lave and Wenger 1991; Rogoff 1990; Roth 2004; 
Valsiner 1987; Wenger 1998; Wertsch 1991), propose that what students say and do 
within the discourses made available as a result of the social categories of gender, 
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race, and so on, has the effect of contributing to the development of their identity as 
apprentice mathematicians at a given time and place. In Gee’s (2004) understand-
ing, identities develop from knowledge which “is distributed across people and their 
tools and technologies, dispersed at various sites, and stored in links among people, 
their minds and bodies, and specific affinity groups” (p. 33). Similarly, for Cobb 
and Hodge, identities develop from “locally instantiated practices that are dynamic 
and improvisational in nature” as people engage in “joint activities that involve 
the directly negotiated use of artifacts” (p. 164), bearing in mind, also, the power 
structures that enable and constrain agency within such practices. These practices 
determine the spectrum of speech acts, and actions, within a classroom, that can be 
taken seriously at any given historical moment. It is these practices and activities 
that circumscribe the possibility of thought concerning what an equitable and qual-
ity mathematics experience might look like.

 Equity and Quality Under Erasure

Leading edge work like Cobb and Hodge’s (2007), with its emphasis on socially 
constituted identities, has allowed us to problematise the tendency to assume that 
“social structures and the ideologies they give rise to” (Nasir and Cobb 2007, p. 7) 
play out in the same way for all, irrespective of one’s history, interests, social cat-
egorical descriptions, affiliations, and circumstances. Their work is illuminating in 
the sense that a student’s mathematical identity is influenced by her membership 
within shifting social networks and her engagement with and negotiations amongst 
members of those communities. The suggestion is that mathematical identity is 
formed from a reconciliation of existence in the “borderlands of various communi-
ties” (Cobb and Hodge 2007, p. 162), not the least of which is the community of 
the classroom. Insightful though this work is, there are, however, no easy recon-
ciliations between borderlands. Findings from my research with others on connec-
tions between teaching and learning (e.g., Walshaw et al. 2009) have revealed that 
mathematical identities are formed in a very slippery space. Affective issues always 
intervene.

The procedure of Vygotskian-inspired work like that of Cobb and Hodge is to 
steer a middle course between supporting long-held epistemological and ontologi-
cal preoccupations surrounding a stable rational identity, and in participating in 
the wider epistemic shifts for theorising conflict and tension as they play out in 
the process of reconciliation. The conceptual tools proposed by Cobb and Hodge 
allow us to deal with the interplay between social practices and the processes of 
self-formation that are at work in mathematics schooling. However, the three 
constructs rest on the presumption that the effects of power, privilege, and disad-
vantage in identity construction have, to all intents and purposes, been countered. 
The approach, they point out, makes “the notion of identity as it relates to math-
ematics teaching and learning both tractable and relatively concrete” (Cobb et al. 
2009, p. 41). Thus, the stable self, presumed by Cobb and Hodge, leaves intact the 
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characterisations of identity, consciousness and agency put forward by traditional 
social science. As a consequence, these understandings provide a limited perspec-
tive of how mathematical identities are constituted within the realities of the class-
room and the wider sociopolitical context.

Theoretical and methodological issues to do with the concept of the stable self 
have been critiqued on a number of fronts within the discipline (e.g., Brown 2008; 
Cabral 2004; Hardy 2004; Fleener 2004; Valero and Zevenbergen 2004; Walshaw 
2001, 2004). As a counterpoint to the stable self, Stentoft and Valero (2009) have 
advanced the notion of fragile identities in action to draw attention to instability of 
identification processes embedded within discourse. They use this concept to focus 
on what is typically considered “noise” or “impossibilities” in classroom interac-
tions. I wondered if it might be possible to think about an equitable and quality 
experience in mathematics in a way that captures the fragility of identity and, at 
the same time, highlights the fact that “[m]ore often than not…identities are not a 
matter of deliberate rational choice” (Sfard and Prusak 2005, p. 18). Is it possible 
to account for emotions, both positive and negative and often in conflict within the 
tentative and shifting self, engaging within a range of communities, including the 
community of the mathematics classroom?

Rational processes take us only so far in the development. In the next section, 
I make a case for the strategic use of theory from a framework that focuses on the 
emotive and unconscious aspects of identity construction. Specifically, it offers in-
sights from Lacan’s (1977a, b) psychoanalytic horizon. Like the approaches offered 
by Bibby (2009) and by Appelbaum (2008), the interest is “toward the relationality 
of the teaching/learning encounter” (Appelbaum 2008, p. 52). Neither wholly fo-
cused on the teacher nor the student, but on the relation between both, the approach 
attempts to grasp the complexity of people and the cultures they create. It does 
that by drawing on a theory of the subject/identity that can analyse the fluidity and 
complexity of the self/community relation not merely through rational links. The 
methodological interest here is to explore identity through unfamiliar ways of think-
ing more deeply in order to reveal the significance of that theory for a pedagogy that 
is simultaneously effective and equitable.

 The Lacanian Response

Lacan is, by any criteria, a most significant theorist for understanding democratic 
provision in mathematics classrooms. Broadly speaking, his philosophy seeks to 
expose and make sense of the potential for fairness and equity in any social setting. 
Identity formation is at the heart of his thesis. He provides conceptual tools that al-
low us to deal with the complex interplay between social practices and the processes 
of self-formation that are at work in schooling. What is of primary importance for 
him is the transparency of the relation between the person and the social. In particu-
lar, he offers a definition of identity to explain how one’s sense of self is a product 
of discursive diffusion, and it is this concept that allows him to explore the dynamic 
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self/social relation. A psychoanalytic approach, like his, can be “one of the most 
helpful [to education] in its theories of learning, and in its curiosity toward what is 
not learned” (Britzman 1998, p. 68).

Identity, for Lacan (1977a, b), is not constituted by consciousness. Rather, con-
scious subjectivity is fraught and precarious. Unconscious processes will always in-
terfere with conscious intentionality and experience (Britzman 1998). Clearly then, 
the student is not a coherent rational self, her own source of meaning, knowledge, 
and action. The central issue here is that if the student’s consciousness is not the 
strategic organiser of her intentions or her experience of mathematics pedagogy, 
then it is not very helpful to differentiate the “cognitive” aspects from the “social” 
aspects of teaching and learning. The meanings of mathematics that the student pro-
duces are often beyond the reach of consciousness. They involve relationships and 
experiences that are not in any way straightforward, but are rather, “mediated by 
multiple historical and contemporary factors, including social, schooling and psy-
chodynamic relations” (McLeod and Yates 2006, p. 38). Desires, hopes and anxiet-
ies become highly influential.

Claiming that identity is never completely constituted, is to claim that identifi-
cation will never be reducible to it. Specifically, students’ category distinctions do 
not have the full measure of the identifications laid upon them. Categories such 
as “working class,” “elite,” “African American”, “Māori,” “high achiever,” “math-
ematically challenged,” are all fluid. If there are unrealisable aspects inherent in the 
discursive constitution of identity, it is important to consider those aspects. If the 
self is not the abstract universal with “human” attributes or rights, nor a fundamen-
tally passive, “marginalised,” or “excluded” human in need of advocacy, then, in 
the Lacanian assessment, ethical action as a theoretical construction is neither re-
sourced by strategic essentialism nor organised around the category of the “other.” 
For Lacan, ethical deliberation is always relative to a particular situation. What 
needs to be attended to is the set of relationships implicated, and specifically, the 
complex network of relations ethical action sustains.

Lacan develops a psychoanalytic approach for understanding the gap at the heart 
of identity and offers a treatment for examining the way in which pedagogical pro-
cesses are lived out by the individual student (Britzman 1998; Ellsworth 1997). He 
grounds his development in what he calls the Symbolic and the Imaginary registers. 
The Symbolic identification (constitutive identification) allows the student to as-
sume the place from where she is being observed, from where she looks at herself 
as likeable, and worthy of being liked (Žižek 1989). In particular, the student’s 
social and cultural determinants foreground a particular subjective position within 
the classroom and, as a consequence, the identity that she is led to endorse is often 
not chosen through rational deliberation. For all their power in guiding actions and 
thinking, symbolic identifications are merely the product of discursive dissemina-
tion—they are simply stories that exist in social spaces.

Lacan (1977a, b) would maintain that it is through the unconscious that the stu-
dent comes to understand these stories and the network of symbolic social relations 
that structures what she can and cannot do, say, or think. Through the unconscious, 
she can explain how she is positioned in a cultural network of the Big Other in 

7 Identity as the Cornerstone



100

which some relations are sanctioned and other relations are prohibited. If the Sym-
bolic represents the constitutive identification, the Imaginary represents the con-
stituted identification through which the subject identifies herself with the image 
that represents what she would like to be. Its focus is on images with which she 
chooses to identify. Arguably, the Imaginary and the Symbolic registers of identity 
are responsible for processing different sets of “data”—the Symbolic (words, laws, 
numbers and letters), and the Imaginary (visual-spatial images as well as illusions 
of self and world)—yet both function interdependently, working together to inform 
the subject’s experience of self-in-mathematics and sense of self-as-learner.

What needs to be emphasised here is that between the identifications the student 
has of herself, and “others” (specifically the teacher) have of the student, there will 
always be a divide. There is always a trace of mis-recognition that arises from the 
difference between how one party perceives itself and how the other party per-
ceives it. Teachers want to provide quality mathematical experiences. Indeed, they 
are bound by statutory obligation to enhance students’ outcomes. Students, for their 
part, have developed an understanding about what it means to be a learner in the 
classroom. Both teacher and student, independently, “dream up” characteristics that 
designate a mathematical identity for the ideal student. That is not to say that the 
student will necessarily perceive herself as fitting that designation. Indeed, between 
the understandings and taking into account the meanings presupposed by the teach-
er, lies a fundamental mismatch. Žižek (1989) puts it this way: The subject “put(s) 
his identity outside himself, so to speak, into the image of his double” (p. 104).

These kinds of speculations about teaching/learning sit uneasily with psychol-
ogy’s liberal-humanist discourse. Within the discourses of liberal humanism within 
education, particular identities are ascribed to students on the basis of social cat-
egories such as socioeconomic status, gender, and ethnicity. These identities, as 
Stentoft and Valero (2009) have noted, are used to predict achievement and student 
disposition to the extent that “it becomes almost impossible to think about these 
students outside of or beyond these categories” (p. 57).

Psychoanalytic work in mathematics education attempts to get around the prob-
lem of categorization. It does this by illuminating “the relationality of the teach-
ing/learning encounter” (Appelbaum 2008, p. 52). It is a relationship in which the 
boundaries between “inside/outside,” “mind/social” become blurred. In that re-
spect, the student’s construction of herself as a learner in the classroom is highly 
dependent on the teacher’s image of the student as a learner. In some teachers’ eyes, 
some students can “never be good enough.” Teaching and learning become sites of 
tension between differential positions of knowing: the meanings that a student pro-
duces of herself as a mathematics learner and those that the teacher produces of the 
student. It is a recursive and uneven process. It is also never completed.

In the Lacanian tradition, reconciling identities involves engaging, confronting, 
making decisions, and resolving conflicts between Symbolic and Imaginary im-
ages. That is to say that the meanings that a student produces of herself as, on the 
one hand, a proficient and positively disposed mathematics learner, or, on the other 
hand, as in some way deficient, together with the meanings that the teacher produc-
es of the student, are the result of political struggles involving personal, psychic and 
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emotional investments. The key point to be taken from an engagement with Lacan’s 
theorising, is that by minimising those tensions and by tracking the relationship, a 
productive approach to an open-ended socially just and quality mathematical expe-
rience might be articulated.

Minimising those tensions is an ethical obligation on the part of the teacher. It 
involves helping students to deconstruct the wider social discourses of power and 
the categorisations that position students. It also, as Britzman (1998) has argued, 
demands attention to knowing the self. It requires a hard look, with the students 
in mind, at the multiple exigencies demanded of pedagogical practice: planning, 
creation and organisation of classroom community, tasks and activities selection 
and use, management of classroom discourse, the cognitive structure and feedback 
provided to students, the kinds of questions asked, the depth of on-the-spot reflec-
tion and action, and the assessment measures employed. It demands an attention to 
how one’s own “otherness” is characterised by enacting all of these practices and 
how that otherness predisposes one towards habituated thought and a “blindness” 
towards others; how it circumscribes the capacity to think about, understand, and be 
ethically responsive to students in the classroom. A pedagogical project like this, un-
settling though it may be, is, however, a form of praxis dedicated to producing long-
term change with respect to teaching and learning mathematics. In the larger order 
of things, the project makes a valuable contribution not only to the political imagi-
nation of teachers and students, but also to the advancement of an ethical sociality.

 Conclusion

Recently, mathematics educators who have embraced social theories have worked 
diligently to map out what constitutes an equitable and quality mathematical expe-
rience. Cobb and Hodge (2007), for example, have moved beyond the traditional 
approaches and have done so by sketching out the importance of identity to improv-
ing teaching and learning of central mathematical ideas. Their approach does not 
simply overlay identity with social processes and practice, but directly connects 
it with such practices. Their conceptual tools provide clarity and definition, par-
ticularly to “mathematics educators whose primary concern is to contribute to the 
improvement of classroom processes of learning and teaching” (Cobb et al. 2009, 
p. 43). The tools offer a means to deal with the interplay between social practices 
and the processes of self-formation that are at work in the mathematics classroom. 
However, their approach rests on a presumption of a universal human subject. As 
a result, all ethical deliberation and action is reduced to questions of human rights 
and humanitarian actions.

The concept of identity at the heart of a quality and equitable mathematics ex-
perience is an extremely complex phenomenon that is not easily explained by con-
ventional democratic mechanisms. The notion of identity as offered by Cobb and 
Hodge, grounded in the “colloquial meaning of identifying, namely, to associate or 
affiliate oneself closely with a person or group” (Cobb et al. 2009, p. 40) cannot 
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provide a totally compelling perspective of the dynamics of identity within a self/
social relation “collectively shaped even if individually told” (Sfard and Prusak 
2005, p. 17), and, therefore, subject to change. The concept, as formulated by Cobb 
and Hodge, sustains the hold of psychological ways of thinking within mathematics 
education, failing to theorise adequately the complex ways that disadvantage and 
privilege work in shaping a quality mathematical experience.

Identity is, in Lacan’s estimation, generated by the structural discursive rules that 
govern thought, action and speech. For all the apparently “tractable and relatively 
concrete” (Cobb et al. 2009, p. 40) appearance of students in mathematics, they are 
all merely productions of practices through which they are subjected. Self-conscious 
identifications and self-identity are not simple, given, presumed essences that natu-
rally unfold but, rather, are produced in an ongoing process through a range of influ-
ences, practices, experiences and relations, some of which operate beyond conscious-
ness. They are constructed in an often contradictory space. Teachers who provide a 
quality and equitable experience embrace the contradiction that lies in that space. 
They recognise that people have different histories and different “presents.” Such 
teachers do more than respectfully understand difference; they preserve the difference 
of the student by suspending their own intentionality. What emerges is a creative ten-
sion that is central to the development of a positive identification with mathematics.

I would argue for a psychoanalytic approach to explaining a quality and equi-
table experience in mathematics, specifically because it is able to offer a conceptual 
apparatus for exploring intrapsychic processes that are at work in the constitution 
of identity, and hence in teaching and learning. Engagement with and resolving 
conflicts between the contents of the two registers of identification (Imaginary and 
Symbolic) is precisely what gets to the heart of teaching and learning. Committed 
to political mobilisation, the approach offers a way in which mathematics educa-
tion could develop genuinely inclusive democratic provision. In advocating for this 
approach, the overarching aim has been to stimulate reflection and discussion that 
will act as a catalyst for not merely changing how teachers view their world but to 
offer an interpretation that might change the texture of mathematics pedagogy itself. 
What mathematics pedagogy might become stands as the political, ethical, social, 
and philosophical problem for mathematics education today.
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 Introduction

The aim of this chapter is to address the issues of quality and equity in mathematics 
education across the various sectors of formal education by reviewing the literature 
on quality in education in the post-compulsory years and to design a framework that 
will inform decision-making in relation to these. The framework is intended to be 
flexible and to encourage policy makers, educators, and practitioners at all levels to 
consider whether their mathematics curriculum and teaching effectively meets the 
needs of all their learners in their particular contexts.

For the purposes of this chapter, I take the concept of equity as access to and suc-
cessful (as defined by the learner at least) participation in mathematics education set 
in the context of the economic, social, cultural, and political conditions of the time 
and place. This entails the recognition of, respect for, and valuing of the diversity 
of learners. Or, in D’Ambrosio’s (2009) words, respect for human cultural dignity. 
In terms of mathematics education, this means problematising the curriculum and 
pedagogy rather than the individual learners or particular identified subgroups of 
learners.

This chapter will critically review the literature on quality in post-compulsory 
education in both vocational and higher education sectors with a focus on equity. It 
will conclude with a proposed framework to enable mathematics educators, indi-
vidually or collectively, to evaluate their current situations within their larger con-
texts up to global levels, and then to move forward with strategies for resolving the 
tensions and contradictions as part of an ongoing process.
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 Quality in Post-Compulsory Education

The Vocational Education and Training Sector

The European Centre for the Development of Vocational Training [Cedefop] com-
missioned a study to develop indicators of quality on the level of VET systems in 
Europe (Seyfried 2007) with the intention of supporting a European strategy for 
improving quality in VET. It collected and analysed over 200 existing indicators.

In operational terms, indicators produce information which helps relevant VET actors to 
assess the extent to which their pre-defined objectives have been met, identify influential 
factors and take informed decisions …indicators often contribute to a common understand-
ing of relevant criteria for quality. …Since an indicator is not a value in itself, defining and 
selecting indicators presupposes clarification of the objectives to be attained in order to 
improve quality. (p. 9)

The policy priorities set by Member States, the European Commission, and the 
social partners were as follows:

• Better employability of the labour force
• Better match between training supply and demand
• Better access to vocational training, in particular for vulnerable groups on the 

labour market (p. 9)

These priorities were broken down into more concrete measurable objectives, which 
were then related to indicators which had to be related not only to the objectives but 
also to one another. In this study, vulnerable groups clearly defined at a European 
level included:

• Early school leavers (drop-outs)
• Young unemployed people (less than 25 years)
• Long-term unemployed people (more than one year)
• Older people (over 55 years of age)
• Handicapped people (according to national definitions) (p. 47)

Other groups included migrants from non-EU countries and ethnic minorities. The 
question arises: What contribution might a different quality and quantity of math-
ematics education have made in avoiding or alleviating the situations in which peo-
ple end up being labelled as “vulnerable”? In the following, I will discuss selected 
policy objectives for vocational education from a critical mathematics education 
perspective.

The study listed proposals for indicators for each objective of the three policy 
priorities. Context indicators applicable to all policy priorities included structural 
indicators of economic growth, employment, unemployment, and expenditure on 
VET per capita. These are clearly important factors influencing the education sys-
tem overall—especially at the post-compulsory level—but ones about which little 
can be done at the regional or local level, particularly with regard to mathematics 
education. On the other hand, the policy priority of employability had the objective 
of preparing learners with the following competences, among others:
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• Basic skills in literacy and numeracy meeting the requirements of the recognised 
demand

• Basic social skills meeting the requirements of the recognised demand
• ICT skills (p. 85)

The most interesting point here is that the conception of “basic skills in numeracy” 
is almost always taken for granted in documents such as these—as if there is a well 
understood and shared agreement about what this means in practice—when this is 
far from the actual case. The kinds of mathematical skills that workers of the fu-
ture will need to use and to develop on-the-job are a long way from simplistic lists 
of tasks found in primary or even early secondary schooling (FitzSimons 2008a). 
Mathematical skills and techniques are clearly of value in using certain work-relat-
ed technologies, such as spreadsheets and databases or graphics packages (Hoyles 
et al. 2002). There is also a need for a mathematics curriculum and pedagogy which 
links social and ICT skills with mathematics, especially but not only via the medium 
of communication technologies (FitzSimons, 2010) to support not only the learning 
of mathematics but also participation in the world of work and personal activities 
beyond formal education.

Considering the stated policy objective of completion of VET/avoidance of drop-
ping out (p. 85), one indicator suggested is the existence of an active policy. The 
subject of mathematics has been long recognised by adult and vocational teachers 
as a significant factor contributing to school or post-compulsory students deciding 
to drop out of a course or in preventing them from achieving completion. I believe 
that this objective needs to be made more prominent specifically in relation to math-
ematics education, proactively, at all levels. It is not enough to simply monitor at-
trition rates after mathematics education is no longer compulsory since this may be 
years after the point where students ceased to be engaged.

The policy objective concerning transition to employment considers as an in-
dicator, inter alia, the effectiveness of transition between formal and non-formal 
learning and the labour market (p. 86). Here, the distinction between different types 
of learning is made prominent, and this is particularly pertinent to mathematics 
education. It is commonly presumed that mathematics can really only be learned 
in formal education settings, whereas in fact its ideas and techniques can be devel-
oped through social interaction from birth, and at the workplace (paid or unpaid), in 
particular. In other words, both what mathematics is learned and how it is learned 
outside of institutional settings need to be valued. Recognition and valuing of the 
informal ways that mathematics can be learned and alternative culturally validated 
mathematical knowledges are essential to prepare current students at all levels for 
an unknown and unknowable future. They need to feel that what they bring to the 
learning situation through their own life experience is of value (see also Mellin-
Olsen 1987).

The policy objective of quality of employment (stability, income, desired work-
ing time) and finding employment in new sectors (p. 86) underlines the fact that 
mathematics education has a role to play in supporting learners to pursue and, ide-
ally, achieve their career goals. The text also includes a statement related to the ex-
istence of “active policies to train unemployed people from the old sector to enter a 
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new sector, e.g. ICT” (p. 86). The nexus between mathematics and technology was 
briefly discussed above (see also FitzSimons 2007, 2010). Also important is the fact 
that school leavers and graduates of today will almost certainly have to retrain in as 
yet undeveloped or unknown fields before they reach retirement age. Learning how 
to learn, especially in mathematics, is a critical skill which needs to be developed 
in the compulsory years of schooling together with the disposition to learn math-
ematics. As noted earlier, there are many adults, young and old, who would never 
willingly choose to study mathematics again. This generalised experience needs to 
be addressed in current and future schooling, starting from the early years where, in 
my experience, learning can often be joyful, and not letting out of sight this engage-
ment, cultural relevance, and ownership of the knowledges and skills until the end 
of compulsory education at least (FitzSimons 2008b, suggests possible activities of 
relevance to students’ personal cultures). As Ernest (2009) proposes, the mathemati-
cal content of curricula for the large majority of students not destined for advanced 
academic mathematics study may need to be revised.

Under another objective: responsiveness (reaction to knowledge about recog-
nised demand) (p. 87), one of the criteria is “Utilisation of acquired skills at the 
workplace, from the perspective both of the employer and the employee.” Note the 
reciprocity between employer and employee perspectives. The following objective 
of “broadening access [to] everyone who can benefit” (p. 88) sums up the necessity 
of physical, intellectual, social, and cultural inclusion in mathematics education. In 
other words, the diversity of learners in formal education should not be the prob-
lem, but rather a valuable and valued resource. In my own practice of vocational 
and tertiary teaching, this meant learning about what students bring to the class 
from their wide range of backgrounds as citizens and workers. My willingness to 
learn has been richly rewarded by the wealth of examples drawn from actual lived 
experience, and this has often been the source of seriously engaged discussion and 
debate among class members, either in support of or in contrast to the underpinning 
theory of the lesson concerned. The policy objectives conclude with: “opportunities 
for vulnerable groups,” for example, indicators of the “existence of special offers 
(outreach activities, guidance, orientation, motivation, courses, qualifications, com-
petences)” (p. 87) and “permeability” which pays attention to group-specific drop-
out rates through active policies to monitor and to reduce them. Although the range 
of outreach activities, guidance, orientation, and motivational activities are offered 
to some mathematics students in different places around the globe, which of these 
are made specifically available to the most vulnerable of students? (See Wedege and 
Skott 2006, for a school mathematics competition with a focus on inclusiveness, 
intended to challenge and to motivate all students.)

Quality Assurance (QA) in Higher Education

In this section, I attempt to clarify the often complex terminology associated with 
quality and then draw upon critiques of traditional context-free models of QA.  
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Stensaker (2008) offered a brief summary of the four main trends of QA in the 
Higher Education sector:

1. Power: QA processes support the development of a stronger institutional leader-
ship; it also triggers discussions and debates about institutional identity. Although 
individual academics may have lost power, QA offers a more legitimate role for 
students and other stakeholders.

2. Professionalisation: There has been an increase in bureaucracy but also in the 
possibilities of collegiality and co-operation. Formalisation of QA processes 
may also remove some of the mysteries surrounding them.

3. Public Relations: The outcomes of QA processes may be used as a marketing 
and branding tool; they also lead to a greater emphasis on teaching and learning 
outcomes.

4. Permeability: Ranking and performance indicators increase visibility and offer 
more informed decision-making processes.

Considering Stensaker’s (2008) first point, in terms of mathematics education 
across the non-university sectors, it seems that students have been largely if not 
totally excluded as stakeholders, except for others presuming to speak on their be-
half. When have students’ opinions on the mathematics education they receive been 
solicited, taken seriously, and acted upon (cf. Mellin-Olsen 1987)? Making quality 
criteria explicit, even open to debate, together with an expectation of collegial-
ity and co-operation should, in theory at least, help the cause of professionalisa-
tion if mathematics teachers feel that they are indeed part of the process and not 
helpless and unwilling participants (even scapegoats). The emphasis on mathemat-
ics teaching and learning outcomes needs careful treatment—to ensure avoidance 
of increasingly ubiquitous externally motivated and selective or culturally inap-
propriate state-mandated or international testing regimes (e.g., Civil and Quintos 
2009; Jablonka 2003). On the other hand, publicity of those mathematics programs 
judged by the local community to be socially and culturally valued and success-
ful in fulfilling student and community needs is to be welcomed. In particular, 
the local mathematics teaching community should be positively encouraged and 
acknowledged by the education institution and the larger community for collegial 
sharing and critique of efforts made on behalf of all stakeholders including, at the 
forefront, students.

Critique of QA in Higher Education According to Stensaker (2008) the dominant 
perspective of QA is a focus on implementation of pre-defined criteria; involve-
ment supports an external agenda and not the perceived problems of those working 
in institutions. There is a simplistic view of the problem definition and agreement 
on aims and objectives of policies to address the problem. There is a strong focus 
on design issues, with domination of technicalities; measuring outcomes conceived 
mostly as a methodological problem. This is in the face of growing evidence of 
shortcomings and misconceptions: Quality issues are multifaceted and there is little 
agreement on aims and objectives of policies. Change is not only conditioned by 
control but also by trust and dialogue.
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Stensaker (2008) proposes that an alternative perspective is to critically review 
assumptions. The context must be taken seriously; cause and effect are sometimes 
difficult to separate; there is a need to move beyond quantification. The benefits of 
qualitative approaches include a focus on creating meaning, and he recommends 
a narrative approach, although issues of power must still be addressed. He contin-
ues that there is “a need to consider non-traditional ways and means of achieving 
quality and to show a willingness to abandon standardised schemes for innovative 
practices…” (p. 9). He gave an example of recognition of high quality paramedic 
work where 90% of experienced practitioners could discriminate between an expert 
and novice trainees, while only 50% of students and 30% of their teachers could do 
so. Stensaker concludes that it is insufficient to evaluate quality by solely focusing 
on rules, systems, and procedures, thus possibly failing to address issues related to 
excellence, innovation, and renewal.

Houston (2007), in his critique of the adoption of Total Quality Management 
(TQM) in higher education, adopts a critical systems perspective which he argues 
“help to deal with the wholeness, interconnectedness and emergent properties of 
complex situations” (p. 4). This approach requires critical questioning of taken-
for-granted assumptions and prescriptive approaches to problem solving—TQM is 
often taken at face value as a “good” thing without consideration of its fitness for 
purpose within the particular problem context of higher education. Although origi-
nally designed with a focus on manufactured products and the productive process, 
even Deming (1993, quoted in Houston 2007, p. 5) notes that the choice of aim or 
purpose should be a matter for clarification of values, should never be defined in 
terms of activity or methods, and should relate to improvement in life for all con-
cerned. There have been different kinds of critique of TQM in higher education, 
including from pragmatic, prescriptive, and philosophical perspectives, and of its 
use in various political agendas. However, in relation to who decides what qual-
ity is and against which criteria, the concept of customer is problematic: student, 
government, and industry all have different boundaries to their value judgements in 
this sphere, with complex positionings and ambiguous relations to the concept of 
customer focus. There are

unresolved tensions between the dual purposes of control, and of quality improvement and 
learning, …and between the rhetoric and reality of quality…. Harvey (2002) has noted that 
audit processes pay little attention to educational processes, educational theory or student 
learning. (p. 10)

Houston (2007) notes that the National Institute of Standards and Technology 
(NIST1) had also queried the assumptions of applying a competitive business model 
to education, thus downplaying organisational uniqueness and emergent character-
istics and encouraging inappropriate comparisons—especially where fundamental 
values systems are so different. Externally developed frameworks, with assumed 
advantages and purposes, “should not be acceptable in universities with their fun-
damental roles of critical evaluation and higher learning” (p. 11). “The purpose of 

1 See http://www.baldrige.nist.gov/Education_Criteria.htm
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higher education, rather than conformity, should be to promote diversity: to extend 
each student towards realising their own individual potential” (p. 11). These pro-
cesses are contested and value-bound. Recognising that recent years have seen the 
creation of quasi-markets in higher education, Houston maintains that the “primary 
purpose is to contribute to society in specified ways, including contributing to the 
economy” (p. 12). A similar argument could be made for mathematics. Clearly, con-
cludes Houston, the language, concepts, and tools of TQM do not really match the 
substance of higher education. Nor indeed do they match a mathematics education 
which has equity as its priority.

A Systems Thinking Approach

From an Australian perspective, mathematics educator Galbraith (1999) recom-
mended adopting a systems thinking approach to QA within the university sector, 
with the goals of nurturing a valued but endangered species and attending to the 
good of the whole rather than opportunistic individual parts. He argued that uni-
versity management should move forward from a strict adherence to a corporate 
framework, with its dynamics that lead to a dissociation of causes from effects, to 
locate itself within an ecological world view. This is consistent with Buchanan’s 
(2006) approach towards a skill ecosystem, which considers workforce skills and 
knowledge in an industry or region as a complex whole. Houston (2007) devel-
ops Galbraith’s idea: “Authentic quality theory is essentially systemic; attending 
to values, purpose, and optimising performance relative to the aim of the system” 
(p. 13). He recommends exploring the development of locally appropriate systemic 
approaches to improving quality in and of higher education. Such a perspective 
would accommodate “the variability of students, adaptability and flexibility of pro-
cesses, the interactions of components and expectations about the final outcome: 
learning” (p. 14).

It is essential to keep in mind that universities, as with all education institu-
tions, are workplaces in themselves—it is much more common to consider them as 
places where other people (i.e., learners) are prepared for the workplace. Adopting 
a systems approach, the NIST (2009) offers a framework connecting and integrat-
ing seven categories of “Education Criteria for Performance Excellence” (p. 1) in 
a systems perspective (see p. iv for model). The categories are: (a) leadership; (b) 
strategic planning; (c) customer focus; (d) measurement, analysis, and knowledge, 
management; (e) workforce focus; (f) process management; and (g) results. From 
the perspective of this chapter, their customer focus and workforce focus in par-
ticular raise serious issues for consideration. These will be addressed further below.

A systems thinking approach to quality in the workplace has striking paral-
lels with intended outcomes of mathematics education. As noted in FitzSimons 
(2002), an Australian government report (NBEET/ESC 1996), adopted a human 
capital development perspective, spanning a lifetime and across multiple career 
paths. Along with team work, communication, and continuous learning at both the 
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organisational and the individual level, they observed that the competency of in-
formation literacy is:

a literacy that combines information collection and analysis and management skills and 
systems thinking and meta-cognition skills with the ability to use information technology 
to express and enhance those skills. In a society of information ‘glut’ the ability to detect 
‘signal’ from ‘noise’ will become increasingly valued. (p. 74)

There are clear implications for mathematics education in supporting the devel-
opment of these kinds of skills. Drawing on the work of Salner (1986, cited in 
NBEET/ESC 1996), systems thinking was described as context-oriented and con-
text-dependent, involving the following competencies:

• the ability to see parts/wholes in relationship to each other and to work dialecti-
cally with the relationship to clarify both similarities and differences. In effect, 
this means the ability to balance the processes of both analysis and synthesis;

• the ability to abstract complexity so that organising structures (visual, mathemat-
ical, conceptual) are revealed rather than imposed;

• the ability to balance flexibility and real world change against the conceptual 
need for stable system boundaries and parameters;

• command of multiple methods for problem solving as opposed to employing a 
limited range of algorithms to the widest variety of situations; and

• awareness that the map is not the territory, and the ability to act accordingly in 
the use of systems models. (pp. 75–76)

Once again, these competencies can be readily identified with the projects of the in-
stitution of mathematics. At all education levels, how might appropriate mathemat-
ics education be developed to support competencies such as these in all learners, not 
just the most “advanced,” along with a increasing sense of personal agency?

 Towards a Quality Framework

From the literature reviewed above, there are complex issues to be addressed. For 
many, it may require a shift from consideration of the micro and meso levels of 
the classroom, school, and region to the macro levels of national and global levels, 
encompassing factors well beyond mathematics education. A business approach 
to quality which demands compliance with externally set agendas is inappropri-
ate and unlikely to achieve significant improvement educationally. The European 
Union vocational education model was designed to assess the extent to which pre-
determined policy objectives agreed upon by member countries were met. Although 
the EU model raises issues of employment and access by vulnerable groups, both 
models come under the category of control. In this section I offer two frameworks 
for planning and/or evaluation. The first focuses on the macro level of setting the 
context for the education activity in terms of global or national conditions, then 
regional and, finally, local conditions. The second focuses on the meso and micro 
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levels of the individual institution and the mathematics classroom or other learn-
ing setting. (See FitzSimons 2002, Chaps. 4–6, for development of these levels of 
knowledge production, distribution, and recontextualisation in vocational education 
following the work of Basil Bernstein.)

Planning and Evaluation at the Macro Level

In order to set the context, Kettunen’s (2008) concept of a quality map as a tool 
to take into account the environmental context, including global, national, and re-
gional dimensions, provides a useful starting point. Information should be collect-
ed following Dill and Soo’s (2005) five principles of validity, comprehensiveness, 
relevance, comprehensibility, and functionality—bearing in mind the interests of 
the range of stakeholders internal and external to the institution. The information 
collected qualitatively and quantitatively could consider economic, environmental, 
social, cultural, and historic data, as these impinge upon the education system in 
general, and mathematics education, in particular. Specifically, following Ritsilä 
et al. (2008), information on the labour market and employment trends, socio-
ecological development (human and environmental well-being), regional devel-
opment, public social debate, and innovation (local, in the case of schools), com-
bined with EU vocational policy objectives of, inter alia, employability, quality 
of employment, and access and opportunities for groups identified as vulnerable 
(Seyfried 2007). Having set the context, Kettunen (2008) proposed linking this 
to a comprehensive strategic quality plan incorporating feedback and continuous 
improvement.

A critical systems approach to QA was recommended by Houston (2007) (and 
NIST 2009, among others) in order to “help to deal with the wholeness, intercon-
nectedness and emergent properties of complex situations” (p. 4). If nothing else, 
education is certainly a complex system, and mathematics education is a case in 
point. Houston reminds us that students, government, and industry all have different 
boundaries to their value judgements in this sphere, with complex positionings. Ac-
cordingly, any evaluation framework needs to take into account which stakeholder 
perspective(s) and whose values predominate. As far as equity in mathematics edu-
cation is concerned, Houston’s goal for universities of promoting diversity and ex-
tending each student “towards realising their own individual potential” (p. 11) holds 
true throughout the entire education system.

Houston (2007) underlines his belief that authentic quality activities should be 
essentially systemic, attend to values and purpose, and optimise performance “rela-
tive to the aim of the system” (p. 13). But what if the system’s espoused and enacted 
purposes are contrary to the values of equity held at the local level? Houston’s 
recommendation to explore the development of locally appropriate systemic ap-
proaches to improving quality in and of education is possible, even at the level 
of the individual teacher. From personal experience as a vocational mathematics 
teacher, it is always possible to find ways of enacting one’s strongly held personal 
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beliefs and values—ones supported by high quality peer-reviewed research—even 
under a rigid TQM system and surrounded by colleagues entrenched in the most 
traditional attitudes and beliefs about teaching and learning (and even transferring 
these to online courses!).

In terms of setting the context, it may be useful to prepare a broad framework ac-
cording to the criteria nominated as being of importance from an equity perspective, 
depending on the “baskets” of criteria selected. The ones indicated in Table 8.1 are 
merely examples, and other users would ascertain their own priorities.

Planning and Evaluation at the Meso and Micro Levels

This section focuses on the specific education institution and the particular learning 
setting which may encompass formal classroom instruction, online delivery, and in-
teractive technology-supported participation, workshop or other practical activities, 
or some combination of these.

Table 8.1  A proposed framework for establishing contexts at the macro level for evaluating 
mathematics education agendas with a focus on equity

National/global Regional Local

Socio-economic 
issues

– Labour market
– Access to education

• Global financial crisis
• Automation at all skill 

levels redefining work
• Availability of appropriate 

and affordable post-
compulsory education

• Downturns in 
manufacturing 
and primary 
industries

• Chronic youth 
unemployment

• Skills shortages 
in health and 
aged care

Socio-ecological 
issues

– Community health 
and well-being

• AIDS
• Mental health
• Obesity
• Malnourishment
• Smoking and disease

Environmental issues
– Global warming
– Soil and water 

conservation

• Extreme climate events
• Lack of appropriate soil 

and water for subsis-
tence and industrial uses

• Loss of biodiversity
Public social debate 

issues
– Drug and alcohol 

abuse
– Gambling

• Adolescent substance 
abuse

• Government-sanctioned 
gambling

• Rise of domestic and 
public violence

Innovation issues
– Partnerships with 

local industry
– New educational 

uses for IT

• Creative educational uses 
for mobile [cell] phones

• Evolving uses of internet

• Regional and local partnerships 
between education and industry, 
including apprenticeships, intern-
ships, professional practicums, taster 
days for school leavers, etc.
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Activity theory offers a foundation which stresses the importance of inter- and 
intra-personal communication in the development and transformation of culture, 
and social practice. It is discussed in depth by Engeström (1987), and from a 
technology perspective by Kuutti (1996) who synthesised the work of Leont’ev 
and Engeström to devise a two-dimensional framework for analysing the use of 
technology from an activity theoretical perspective. One dimension incorporates 
Leont’ev’s three hierarchical levels of unconscious operations, goal-directed ac-
tions, and collective activity with an overarching motive; the second dimension 
incorporates Engeström’s (1987) six components of the mediational triangle: sub-
ject, object, and mediating artefacts, all set in the socio-cultural context of rules, 
community, and division of labour—also elaborated in Engeström (2001). Mellin-
Olsen (1987) was among the earliest to have built on an activity theory foundation 
in relation to mathematics education. (For further information on activity theory at 
the post-compulsory level see my web page for Adult Numeracy and New Learn-
ing Technologies, http://www.education.monash.edu.au/research/projects/adult-
numeracy/, an Australian Research Council Post-Doctoral Fellowship Research 
Project [2003–2006].)

Adapting Engeström’s (2001) criteria (illustrated in Table 8.2) interrogates: (a) 
who are learning, (b) what do they learn, (c) why do they learn, and (d) how do 
they learn. These questions apply not only to students, but also—in relevant con-
texts—to teachers, managers, parents, employers, the larger community, and policy 
makers as stakeholders in the education domain. Engeström elaborated five prin-
ciples to summarise activity theory (the activity system as a unit of analysis, multi-
voicedness, historicity, contradictions, and expansive learning) and cross-tabulated 
these with the four questions above which he described as central to any theory of 
learning (see FitzSimons 2003, for elaboration from an adult mathematics educa-
tor’s perspective). In practice, working with this matrix with vocational education 
teachers and trainers, I have found it easier to use alternative heading descriptors 
of: (a) who are we really talking about, who is involved in this program? (b) what 
do learners bring to class, what else do they do in life? (c) what is known of the 
teaching and learning history of the program and its learners? (d) what are the ten-
sions and contradictions? and (e) what can be done to move forward? (Apologies 
to Yrjö Engeström!) Critically, in responding to these five prompts, educators at 
all levels should imagine that the study of mathematics is not compulsory for the 
students concerned or that the students have the hypothetical freedom to attend an 
alternative institution for their mathematics education, even to learn via the internet 
instead.

In Table 8.2, adapted from Engeström (2001), I offer an illustration of how the 
teaching-learning situation of an individual program for adults returning to study 
mathematics may be mapped for purposes of description and analysis. This is in or-
der to provide a starting point for evaluation of the current situation and to provide 
the basis for future planning.

This example, based on one class of learners, can be systematically developed 
to encompass increasingly complex layers; for example, all relevant mathematics 
classes: (a) in a school or institution at a given year level or program level, (b) at 
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a particular educational site or campus, (c) at a regional level, or (d) at a systemic 
level. Not only should the learners be the focus or unit of analysis, but also the 
mathematics teachers themselves as a community of practice. Just as the history 
of the development of the discipline of mathematics reflects its intimate connec-
tion with the social and natural world (FitzSimons 2002), so any evaluation could 
consider formal and informal linkages with other school subjects and the world be-
yond the institutional walls. It could involve stakeholders, such as the wider school 
community including non-teaching staff, volunteers, and parents, and the world of 
business and industry as but one important stakeholder (see, e.g., OECD Global 
Science Forum 2008). Keeping in mind the objectives of equity and participation, a 
democratic process would see teachers critically involved in an ongoing workshop 
process, drawing upon the input of important stakeholders, such as learners and the 
local community, business and industry.

If all students enrolled in mathematics or mathematics-containing subjects were 
treated with the same respect and dignity as adults returning to study mathematics in 
the post-compulsory sector, this may have a positive impact on equity. On the web-
site for my project into adult numeracy (discussed briefly above) there are around 
70 pages of research-based prompts questioning various aspects of mathematics 
education. In addition, from the 2009 to 2010 criteria for educational excellence 
(NIST 2009), there are questions which enable organisations to examine, among 
other things, how well they engage students, their workforce, and other stakeholders 
and to build an appropriate culture for doing so. Adapting this text specifically for 
mathematics education leads to the following pertinent questions:

1. “How do you engage students and stakeholders to serve their needs and build 
relationships?” (p. 13).

(a)  How do you identify and innovate mathematics programs and support ser-
vices to meet the requirements and exceed the expectations of your students 
and other stakeholders? How do you attract and retain new students, and 
provide opportunities for expanding relationships with existing students and 
stakeholders as appropriate?

(b)  How do these vary for different students and stakeholders?
(c)  How do you build an organisational culture that ensures a consistently 

positive student and stakeholder experience and contributes to greater 
engagement?

2. “How do you obtain and use information from your students and stakeholders?” 
(p. 15).

(a)  How do you listen to your students and stakeholders to obtain actionable 
information and feedback on your mathematics programs and support ser-
vices? How does this vary with different students and stakeholders at differ-
ent stages? How do you follow up on these?

(b)  How do you listen to former students, potential students, and relevant stake-
holders in relation to your mathematics programs and support services?

(c)  How do you manage student and stakeholder complaints in relation to these?

G. E. FitzSimons
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3. “How do you engage your workforce to achieve organizational and personal suc-
cess?” (p. 19).

(a)  How do you determine the key factors that affect your mathematics educa-
tion and relevant support staff? How are different factors affecting satisfac-
tion for different groups determined?

(b)  How do you foster an organisational culture that is characterised by open 
communication, high quality work, and an engaged staff? How do you 
ensure that you benefit from the diverse ideas, cultures, and thinking of your 
total mathematics education workforce (teachers and support staff)?

(c)  How do you recognise, reward, and create incentives for high quality prac-
tice and engagement by this staff?

(d)  How do you address the learning and development needs of your mathemat-
ics education workforce?

Having mapped the broader context and then the detail at the particular level of 
interest in mathematics education, the next logical step is to prepare a strategy plan. 
Often the proposals implicit in Engeström’s (2001) expansive learning, incorporat-
ing moves towards resolving identified tensions and contradictions, require serious 
discussion and dialogue in an atmosphere of mutual respect. In what Engeström 
describes as relatively long cycles of qualitative transformations, questioning and 
deviation from established norms can escalate into a deliberate collective change 
effort or “a collaborative journey through the zone of proximal development of the 
activity” (Engeström, p. 137).

Conclusion

In this chapter, I have drawn extensively on the quality literature in the post-com-
pulsory sector together with my own experience as a vocational mathematics prac-
titioner and adult learning and development lecturer to propose a framework for 
evaluating mathematics programs and support services across the education sectors 
from a quality and equity perspective. I have suggested an approach to establish 
broad-scale contextual information appropriate to the location and situation of the 
user and an approach to a more detailed analysis of the actual teaching-learning 
situation. In the case of post-compulsory education where student participation is 
often voluntary and teachers’ employment is increasingly dependent upon student 
satisfaction, students’ motives and goals are given high priority. Of course, there 
are many other stakeholders whose concerns need to be addressed and this requires 
sensitive value judgements by the relevant decision-makers, keeping in mind qual-
ity and equity considerations.

Van Kemenade et al. (2008) raise the question: Is the quality focus on:

1. Providing society with the graduates that have the knowledge and skills society 
needs?

8 Post-Compulsory Mathematics Education
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2. Exceeding the learning results that are asked for by the students and the world of 
work?

3. Transforming the students into citizens of the world?
4. Preparing the students to be leaders in their future society?

Ultimately, evaluating quality and equity is not about judging others and finding 
them wanting—as in the ‘deficit’ model of judging students, especially in the case 
of mathematics when used inappropriately as a sorting mechanism. It is about hu-
mility and respect, and listening to the voices of those most intimately concerned 
with the best interests of learners, such as committed teachers and parents, and 
working together to understand what is and how things might be different in ways 
that empower all learners.
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Through much of the late twentieth century, notions of equity and quality in school 
mathematics were closely tied to interpreting the common finding of socio-demo-
graphic group-based differences in mathematics achievement. The often-virulent 
nature/nurture debates were grounded in psychological theories of individual dif-
ference (Jensen 1972); whereas sociological theories of social and cultural capital 
sought to explain inequalities in how society distributes its desiderata (Bowles and 
Gintis 2002). Explanatory theories that invoked constructs, such as the “culture of 
poverty” (Lewis 1965; Office of Policy, Planning and Research 1965; see Wilson’s 
critique 2009) and even intervention studies, such as Subtracting Bias, Multiplying 
Options (Fennema et al. 1981) were grounded in one or another of these disciplines 
and thereby constrained by their discursive practices. Not surprisingly, work from 
the 1960s through 1980s is often criticized for “blaming the victim.”

It was within this context—where scholarship involving equity was dominated 
by psychological and sociological theories that constrained the possibilities for 
those who worked in the field—that alternative conceptions for equity were de-
veloped in the mid-to-late 1980s by first asking the question: “What is equity?” 
Responses ranged from notions of justice tied to Aristotle’s and legal notions of eq-
uity; through more critical neo-Marxist, feminist ideas, and multicultural critiques; 
and evolving socio-cultural perspectives on the nature of learning (for more on this 
work, read the edited collections by Fennema and Leder 1990; Secada 1989; Secada 
et al. 1995; Secada and Meyer 1989/1991). All sought to distance themselves from 
classical views of individual difference, equality/inequality, and socially enlight-
ened self-interest (a foundational cornerstone for what is now referred to as neo-
liberal thought). The work coming from the 1980s may strike current readers as 
slightly naïve. My friend and colleague Elizabeth Fennema repeatedly told me: if 
she were starting today, she would not start with the Fennema and Sherman studies 
(1977). And I would agree.

As I read the chapters that constitute the first section of this book, I am heartened 
by the breadth of perspectives that are taken, by the many voices that are speak-
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ing, and by directions in which they seem to be taking as they answer the question: 
“What is equity?” From these chapters, I take away three theses that—were I start-
ing today—would anchor my work:

1. Equity and quality are inherently political terms whose common political bed-
rock is obscured by their being taken for granted and by their being seen as 
normal.

2. Equity and quality have multi-vocal and nuanced meanings as found in everyday 
use and philosophically.

3. Scholarly inquiry about the nature of equity and of quality—either alone or 
linked—has taken a decidedly qualitative turn that is focused on textual decon-
struction and/or interviews with key informants.

Equity and quality are inherently political terms whose common political 
bedrock is obscured by being taken for granted. In this section of the book, 
Chronaki’s chapter argues that economic development is rife with imperialistic, 
patriarchal and colonialist discursive functions. She positions herself within femi-
nist and post-colonial discourses to critique views of school mathematics that would 
reduce its concerns to highly technical concerns for things such as learning, nar-
rowly construed.

Gutierrez and Dixon-Roman adopt what they call a social-political stance to 
mathematics education. Their goals are to destabilize schooling as the primary ve-
hicle of education; to reject group-based “equality” in achievement outcomes; and 
question the central importance that mathematics seems to have acquired within 
Western and industrialized society.

Pais and Valero argue that mathematics education must be understood within a 
capitalist setting—calls for quality and equity within those settings serve particular 
interests. According to their critique, current theorizing about equity and quality 
seems narrowly technical and would be strengthened, were educators to seriously 
debate the purposes of schooling.

Llewellyn and Mendick also make explicit the neo-liberal uses of the terms in 
current-day England. They help us understand that much current writing conflates 
economic with personal growth; or national competitiveness with personal self-
fulfillment.

It may seem obvious that equity and quality both share a common economic and 
political foundation in such a way as to link their fortunes inextricably to one an-
other. Though most critiques in this volume locate current uses of the terms equity 
and quality within neo-liberal political and capitalistic economic settings, I would 
hazard the guess that writers living in societies that adhere to alternate political and 
economic systems would make similar claims.

I would further hazard the guess that none of the authors would deny the empiri-
cal finding that—as Lucy Sells so famously noted in 1973—mathematics is a criti-
cal filter in later-life economic opportunity (see also Sells 1976). Indeed, one could 
argue that without Sell’s insight and rhetorical flourish, mathematics achievement 
differences would not have their present-day salience in the social policy arena such 
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that an icon from the U.S. Civil Rights era, Bob Moses (Moses and Cobb 2001) 
would declare that algebra is the new civil right. Instead, what I take from the above 
arguments is that the existence of empirical ties between mathematics achievement 
in school and later-life opportunity should not be used to trump discussion as to the 
positioning of equity and quality within present-day political and economic set-
tings. Rather, as we build back up from that positioning and ask ourselves why 
this is so, we are likely to encounter social, political, and economic interests and 
processes that shape how we frame our scholarship (in much the same way that 
psychology and sociology shaped the scholarship of the 1960s through 1980s) and 
that place limits on the empirical interventions that are considered reasonable or 
even possible. The intellectual foundations for such a program of scholarly inquiry 
are now firmly in place. The challenge is to embark on it.

Equity and quality have nuanced meanings in everyday use and philosophi-
cally. In a wide-reaching review of prior work, Atweh draws upon philosophical 
notions of ethics to deconstruct how quality and equity are portrayed within an 
Australian and the politically-dominant American settings. He argues that “better 
maths” are portrayed in terms of abstraction and rigor as dominant; that equity 
seems to be replaced by diversity; and that ethical responsibility has become absent 
from such formulations.

In an interesting inclusion of teachers’ voices, Skovmose and Penteado asked 
teachers how they think about terms like equity and quality. Their emergent cat-
egories include diversity, access to technology, prestige, poverty, hope, stigmatiza-
tion, learning conditions, possibility, and participation. They challenge educators, 
especially researchers whose interests involve the promotion of equity agendas to 
recognize teachers’ everyday work lives and to help them create possibilities for 
themselves and for their students.

Walshaw reminds us that students create identities as learners and as people; and 
that those identities go beyond cognitive outcomes to include social and cultural 
components that are related to affect, communication, behavior, and participation. 
Equitable practices, whatever their formulations, must attend to and develop these 
identities.

In her analysis of post-compulsory mathematics education, FitzSimmons makes 
the telling point that the needs of the many are sacrificed to imperatives for the 
few. Whereas Atweh notes that mathematics education follows from a society’s 
economic development, this article echoes Sells’ argument that personal economic 
opportunity depends upon competence in math where that competence supports 
participation in that economy. FitzSimmons further argues that post-compulsory 
mathematics should be tied to the everyday and work lives of people who are study-
ing it; she further notes that quality and its assessment are not context-free.

All four of these chapters make the point that in the everyday, we must attend to 
wide variations in people’s personal and professional lives, in their identities, and 
in the ethical provision of educational opportunity. For many students and their 
teachers, personal social, political, and economic imperatives drive their interests 
in mathematics education; those imperatives cannot be addressed through abstract 
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and formal mathematics. Across these articles, I see the charge being placed upon 
equity-educators to provide hope and opportunity to teachers and students across 
the spectrum; in a word, critique is not enough.

Scholarly inquiry about the nature of equity and of quality—either alone or 
linked—has taken a decidedly qualitative turn, focused on textual deconstruc-
tion and/or interviews with key informants. All of the authors of this section rely 
heavily on different kinds of qualitative research methods ranging from critical, 
to post-modern deconstruction and analyses of power relations, and onto analysis 
of discourse. Chronaki’s examples illustrate her points. Skovmose and Penteado 
looked across their cases to create their themes. Atweh relies on a broad reading of 
international studies and philosophical writing to contest and interrogate the terms 
equity and quality as particular historical artifacts. Gutierrez and Dixon-Roman’s 
social-political analysis and Pais and Valero’s contribution draws upon methods 
used by Foucault in his studies of how discourse is used in prisons and other, simi-
lar, settings.

Across these chapters, one sees the importance of very careful analysis that 
stresses deep understandings of the myriad meanings that can be attached to such 
seemingly simple terms as equity and quality. Such a micro-analytic stance to what 
one studies represents an important shift away from the over-broad formulations 
that seem to be part of the large-scale policy studies that so often rely on quan-
titative research methods. It remains an open question whether a rapprochement 
between localized, qualitative methods and more-general quantitative methods will 
be possible. However, these chapters should remind us that the details found in 
micro-analytic methods should inform the larger studies; they should not be swept 
over as too often happens within present-day research and policy.

Across the chapters that comprise the first section of this book, three big lessons 
seem to be that equity and quality derive from the same political and economic 
systems; have multiply voiced and nuanced meanings; and are studied through care-
ful close readings of texts, prior studies, and local circumstances. Other readers 
of this book, steeped in their own traditions and social contexts, are likely to find 
additional lessons as they read. However, were I to be starting my career at this 
particular historical moment, I would accept the above insights and ask the question 
with which I leave the reader: Now what?
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It is important to examine inequities in mathematics education at the global level be-
cause these inequities are likely to filter into the national system and eventually into 
the classroom. World mathematics education can be thought of as a complex nested 
hierarchical four-layer system: The classroom system, school system, national sys-
tem, and the global system (Fig. 10.1). Because each system is nested within the 
next higher one, the societal relationships of power of a higher system carry over to 
the lower systems and eventually to the student at classroom level. Using a hypo-
thetical example, I illustrate how the interactions of the factors and their attributes 
generate inequities in the international system, and how the inequities filter to the 
classroom. Consider the mathematics education communities in two countries, one 
being a developing country (low socioeconomic status) and the other a developed 
country (high socioeconomic status). It is likely that the quality of mathematics edu-
cation is better in a developed country than in a developing country and eventually 
this quality differential will result in better teaching and learning of mathematics. 
Moreover, it is likely that the mathematics education community in the develop-
ing country does not have as much access or ownership of internet or knowledge 
of English as in the developed country. This by itself might generate an inequity 
between the two countries in terms of ownership of two essential tools for generat-
ing and sharing mathematics education knowledge, thus generating a chain reaction 
which results in an inequitable participation of the two countries in mathematics 
education at the international level. Even if a mathematics educator in the develop-
ing country succeeds in submitting a proposal to an international conference, it may 
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not be accepted on the basis of inadequate ‘quality’ or questionable ‘relevance’ to 
the international community. If against all odds, a submission is accepted, its author 
will not likely have the financial resources to travel in order to participate in the 
conference. Obviously, the interaction of these factors may eventually lead to the  
exclusion of the developing country from participating in mathematics education at 
the international level.

Using TIMSS 2003 database, this chapter addresses the issues of equity in qual-
ity mathematics education at the global level. I define mathematics education at the 
global level to include the teaching and learning mathematics in different countries 
as well as production of mathematics education knowledge. In this chapter, I use 
the country’s TIMSS 2003 score as an indicator of the quality of mathematics edu-
cation in that country. Also, an indicator of equity in mathematics education in a 
certain country is defined in terms of the size of between-school variance in TIMSS 
2003 scores in that country. The first section of the chapter attempts to identify the 
potential inequity factors among countries. The second section explores the correla-
tion between the quality of a country’s mathematics education, as measured by the 
countries TIMSS national score, and its socioeconomic and educational factors. The 
third section addresses the relationship between equity and quality of mathematics 
education. The fourth section explores how the relationship between equity and 
quality is moderated by socioeconomic and educational levels. The fifth section 

Fig. 10.1  The nested hierarchical world system of mathematics education
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contrasts the optimal and separate modes of development in mathematics education. 
The chapter ends with concluding remarks.

 Potential Inequity Factors in Mathematics Education  
at the Global Level

One significant attribute of a country, which may be critical for education and for 
mathematics education, in particular, is the country’s socioeconomic status, which 
in turn affects mathematics learning in schools (see for example, Adler 2001; Zeven-
bergen 2001). Another attribute is the country’s human capital (defined as people’s 
innate abilities and talents plus their knowledge, skills, and experience that make 
them economically productive; World Bank, Development Education Program-
Glossary) and which depends significantly on the educational capital represented 
by the spread of basic education as measured by the adult literacy rate as well as 
the level of education in the country as measured by enrollment rates at the second-
ary and tertiary levels. The nature and structure of a country’s education system, 
being closely related to its political system and its history, is a third attribute which 
impacts mathematics education. Last, but not least, the country’s culture in its ideo-
logical, social, and technological components impact the quality of mathematics 
education (see for example, Bishop 1988; Cobb and Hodge 2002). The identity of 
the country’s mathematics education is not only shaped by these factors but also by 
their interaction. For example, a country in which socioeconomic divisions coincide 
with cultural divisions in society would be different from the one whose socioeco-
nomic and cultural divisions do not coincide.

Accounting for mathematics achievement differences among countries in terms 
of cultural differences is complex. Stevenson et al. (1986) pioneered studies which 
attempted to account for mathematics and reading achievement differences among 
American, Japanese, and Chinese children not only in terms of educational input 
but also in terms of cultural differences. The authors concluded that the cognitive 
abilities of the children in the three countries were similar, but large differences ex-
ist in the children’s life in school (for example, time spent on academic activities), 
the attitudes and beliefs of their mothers (the belief regarding the relative impor-
tance of the child’s ability or effort in success at school), and the involvement of 
parents and children in school work. The authors implied an association between 
the lag in mathematics achievement of American children in comparison to Japa-
nese and Chinese children, and the differences in cultural practices and beliefs in 
the three countries. The much debated ‘learning gap’ between the United States and 
other developed countries, as reflected in TIMSS studies, led to the question, much 
debated in the United States, whether educational policies and practices can over-
come cultural effects. Stigler and Hiebert (1999) addressed this question in their 
book The Teaching Gap arguing that while it is impossible to change the culture of 
the society as a whole, it is possible to change the classroom culture by making use 
of the best ideas from the world’s teachers.
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The between-country inequities in mathematics education at the global level re-
sult from complex interactions among the triad consisting of country, international 
mathematics education community, and distribution of roles among countries. Many 
of the inequities in mathematics education among countries may be accounted for in 
terms of the interaction between the country’s socioeconomic economic status and 
culture. The country’s socioeconomic status and culture are likely to impact the hu-
man capital in the country in terms of the spread and level of education in the coun-
try. In general, a country with higher socioeconomic level is likely to have more hu-
man capital, including mathematics education, than a low socioeconomic country. 
However, the interaction between a country’s socioeconomic status and its culture 
may result in low mathematics achievement in a relatively rich country. An example 
of this are some oil-rich countries which, though are relatively high in economic 
terms, fall low in international mathematics achievement studies probably because 
of historical and cultural reasons. Similarly, those countries have low participation 
in and contribution to the international mathematics education community in spite 
of the fact that in principle they can afford to avail funds for research and travel. 
As the English language has become the language of international conferences and 
journals, lack of competency in that language prevents mathematics education re-
searchers from participating in such conferences or publishing in such journals. In 
some countries, the teaching of English is viewed as a cultural issue (Jurdak 1989).

Language is a cultural factor that may affect mathematics achievement differen-
tially, at least in comparative international studies. The tests used in such studies are 
translated to the language of the country; however, because language is a cultural 
carrier even in mathematics education (Jurdak 1989), it is likely that much is lost, 
and much cultural load is carried in such translations. Another cultural factor which 
may have a differential impact on between-countries mathematics achievement is 
the over-inculcation of ideologies, such as religious ideologies. The effect of this 
ideological factor on mathematics education is two-fold: First, such ideologies are 
normally taught through rote learning methods which transfer to the teaching of 
mathematics, and second, the instructional time given to such valued ideologies be-
ing commensurate with its value to the society may take away from the instructional 
time allotted to mathematics in the curriculum (Jurdak 1989).

The policies and practices of the international mathematics education commu-
nity may exclude some countries from effective participation and contribution to 
that community (Jurdak 1994). The obstacles that face mathematics educators from 
developing countries when attempting to participate in international conferences 
are many and varied. Some of those obstacles relate to the policies and practices of 
the organizing bodies of these conferences, and some to the countries themselves. 
Normally, international conferences are organized in developed countries in cities 
that have the infrastructure and the specialized human resources to support such 
large conferences. For mathematics educators of developing countries, the cost of 
attending such conferences can be daunting, as there are neither resources nor tra-
ditions in their countries to support their participation (Atweh et al. 2003). How-
ever, there is increasing awareness on the part of some international mathematics 
education organizations of the need to alleviate some of the financial burden on  
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mathematics educators from developing countries to enable more of them to par-
ticipate in international conferences. There is also an effort to provide assistance in 
editing the English of their contributions.

Another policy which puts some mathematics educators at a disadvantage with 
regard to their participation in international conferences is the de facto adoption of 
English as the language of such conferences. Moreover, the call for these conferenc-
es is usually done through emailing lists which, in most cases, are based on previous 
participation. Furthermore, the policies that govern acceptance of contributions do 
not have enough flexibility to allow a wide range of diverse profiles in content and 
format, though such contributions may be perceived as meaningful in the contexts 
of the authors’ countries. However, there is increasing awareness on the part of in-
ternational mathematics education organizations for the need to provide assistance 
in editing the English of their contributions.

The same can be said about international journals of mathematics education. 
The publication policies of such journals are almost standardized along Western 
scientific journals and consequently exclude contributions that address local issues 
perceived by their authors as meaningful in both the local and the international con-
texts. Because of the stringent standards in refereed journals, the English language 
is more of a barrier in international mathematics education journals than it is in 
conferences.

 Country Indicators and Mathematics Achievement

The relationship between the quality of mathematics education in a country and 
its economic and educational indicators is explored through correlation analysis. 
The country’s mathematics achievement as measured by the country’s TIMSS 2003 
mathematics achievement score (hence referred to as quality index) was correlated 
with each of a set of economic indicators taken from the World Bank database and 
with each of a set of educational indicators taken from the UNESCO database.

The educational indicators were drawn from the UNESCO Institute for Statistics 
mostly for the year 2005 ( UNESCO Institute for Statistics (UIS), Data Center). The 
selected educational indicators are:

1. Net primary school enrollment (% of primary school-aged enrollment to the 
number of primary school-aged children; usually children 6–11)

2. Gross primary school enrollment (% of primary school enrollment to the number 
of primary school-aged children; usually children 6–11)

3. Net secondary school enrollment (% of secondary school-aged enrollment to the 
number of secondary school-aged children; usually children 12–17)

4. Gross secondary school enrollment (% of secondary school enrollment to the 
number of secondary school-aged children; usually children 12–17)

5. Gross tertiary school enrollment (% of tertiary enrollment to the number of young 
people in the five-year age group following the secondary school leaving age)
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 6. Children of primary school age who are out of school (%)
 7. School life expectancy ISCED 1–6 years
 8. Pupil teacher ratio (primary)
 9. Expenditure on education as % of GDP
10. Expenditure on education as % of total government expenditure
11. Primary completion rate (% of relevant group)

The economic indicators were taken from among the World Development Indica-
tors on the World Bank web site (World Bank, Key Development Data and Statis-
tics). These are:

1. Ratio of girls to boys in primary and secondary education
2. Adult literacy rate (% of people aged 15 years and above)
3. Gross National Index (GNI) defined as the value of all final goods and services 

produced in a country in one year (Gross Domestic Product; GDP) plus income 
that residents have received from abroad, minus income claimed by nonresidents 
(World Bank, Development Education Program-Glossary)

4. GNI per capita
5. GDP defined as the value of all final goods and services produced in a country in 

one year (World Bank, Development Education Program-Glossary)
6. GDP per capita
7. Poverty rate (% of population on less than $ 2 per day)
8. GDP growth rate (%)

A file for the 45 countries that had valid data in TIMSS 2003 was created and their 
respective economic and educational indicators for year 2005 were retrieved from 
the UNESCO and World Bank home pages. The indicators that had significant cor-
relations with the national mathematics score are listed in Table 10.1.

Three economic indicators had the highest impact on mathematics achievement. 
The GDP per capita and the GNI per capita correlated significantly and positively 
with the national mathematics achievement score. Poverty rate had a significant neg-
ative correlation with the national mathematics achievement score. The significant 
negative correlation between expenditure on education as a percent of government 

Table 10.1  Significant correlations of TIMSS 2003 national score with the World Bank economic 
indicators and the UNESCO educational indicators

Economic indicators Educational indicators
Positive correlation
GDP per capita
GNI per capita

+0.51
+0.43

Primary school net enrollment
Secondary school net enrollment
Tertiary enrollment
School life expectancy
Adult literacy

+0.37
+0.55
+0.61
+0.37
+0.63

Negative correlation
Poverty rate
Government expenditure on education

−0.52
−0.37

% out of school primary age children
Primary pupil teacher ratio

−0.37
−0.45
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expenditure and mathematics achievement indicates that the quality of mathematics 
co-varies with the government expenditure on education in opposite directions. One 
possible explanation/implication for this phenomenon is that the government expen-
diture on education normally goes to the improvement of the input of the educational 
system (schools, teachers, equipment), and these do not necessarily impact the qual-
ity of classroom mathematics learning. The between-country variance in mathemat-
ics achievement accounted for by each of these three indicators was as follows:

1. GDP per capita: 26%
2. GNI per capita: 19%
3. Poverty rate: 27%

Three educational indicators had the highest impact on mathematics achievement. 
Adult literacy rate was positively correlated with the national mathematics score 
and accounted for 40% of the between-country variance; tertiary enrollment rate 
was positively correlated with the national mathematics score and accounted for 
37% of the between-country variance; and, secondary school enrolment positive-
ly correlated with the national mathematics score and accounted for 30% of the 
between-country variance. These correlations indicate that student mathematics 
learning in a country, as measured by achievement, is significantly related to the 
educational capital of a country. Adult literacy reflects the spread of education in 
a country whereas tertiary education enrollment reflects the level of education in a 
country. Both the spread and level of education in a country are closely related to 
the level of student parental education which in turn impacts mathematics achieve-
ment as TIMSS 2003 data indicate (Jurdak 2009). This is in line with Bourdieu’s 
emphasis on the relationship between the home habitus, of which parental education 
is a factor, and meaningful classroom learning (Bourdieu et al. 1994).

When the economic and educational indicators were entered in a stepwise multiple 
regression model, using the national mathematics score as a dependent variable, ter-
tiary enrollment rate was the only indicator that entered into the equation, accounting 
for 56% of the between-country variance in national mathematics score. This indicates 
that the tertiary enrollment rate was the dominant indicator in the set of economic 
and educational indicators that were entered in the stepwise regression equation. This 
means that, in general, a high tertiary enrollment rate in a country is associated with a 
high TIMSS 2003 national score. However, we should not interpret this to mean that 
the country’s tertiary enrollment rate is the single predictor of the country’s mathemat-
ics achievement, but rather should be interpreted as a ‘composite proxy’ indicator for 
the significant educational and economic indicators previously identified.

 Relationship Between Equity and Quality at the Country Level

In this chapter, I define the mathematics education inequity index of a country as the 
percentage of between-school variance in the school mathematics score in the coun-
try to the total variance. The between-school variation is theoretically accounted for 
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by variation in the aptitudes and attitudes of students attending different schools, 
and/or the quality of education provided by the schools. The between-school vari-
ance indicates the extent of variation, and hence inequity among schools in math-
ematics achievement due to schools’ educational quality. The larger the between-
school variance in mathematics achievement in a country, the more is the inequity 
in educational provisions among schools in the country. The percentage of between-
school variation was calculated for each country by using the variance component 
model taking TIMSS 2003 student mathematics score as a dependent variable and 
the school as a random variable.

A representative sample of 18 countries was drawn from the 45 countries which 
participated in TIMSS 2003 because the inclusion of all countries would have re-
quired tedious work with possibly little added value to the conclusions. The sample 
of 18 countries, stratified by population size and the region to which the country be-
longs was selected. The 45 countries were assigned to one of the eight geographical 
regions according to the UNESCO classification. Also each of the 45 countries was 
classified into one of the three categories according to their population size (high, 
medium, low). From each geographical region, one country was selected randomly 
from each of the three population categories. If a region has less than three countries, 
then all the countries in that region were included. The inequity and quality indices 
and their ranks for each of the 18 countries in the sample are shown in Table 10.2.

Correlation analysis showed that there was no significant correlation between 
quality and inequity indices or their ranks. For example, the highest three scoring 
countries, namely, Singapore, Hungary, and the Netherlands have different inequity 
index ranks. The Netherlands has the highest inequity index, Singapore an aver-
age inequity index, and Hungary the lowest inequity index. On the other hand, the 

Table 10.2  Quality and equity indices with their ranks for the sample of 18 countries

Country Quality index Quality index rank Inequity index Inequity index rank

Singapore 605  1 0.41 10
Netherlands 536  2 0.76  1
Hungary 529  3 0.37 14
Russia 508  4 0.39 12
Australia 505  5 0.52  6
United States 504  6 0.43  9
Italy 484  7 0.31 15
Armenia 478  8 0.20 18
Romania 475  9 0.38 13
Lebanon 433 10 0.54  5
Indonesia 411 11 0.62  3
Iran 411 11 0.40 11
Egypt 406 13 0.45  8
Chile 387 14 0.62  3
Botswana 366 15 0.21 17
Saudi Arabia 332 16 0.23 16
Ghana 276 17 0.46  7
South Africa 264 18 0.71  2
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lowest three scoring countries, namely, Ghana, South Africa, and Saudi Arabia also 
differ in their inequity levels. South Africa had a very high inequity index, Ghana an 
average inequity index and Saudi Arabia a low inequity index. This does not mean 
that there is no relationship between the equity and quality indices of a country, but 
rather it implies that the relationship between equity and quality of mathematics 
education is too complex to be captured by a simple correlation and that this rela-
tionship is moderated by many factors. In the next section, I shall explore the way 
the socioeconomic status of a country moderates the relationship between equity 
and quality in mathematics education.

 How Does the Country’s Economic and Educational Status 
Moderate the Relationship Between Equity and Quality  
of Mathematics Education?

In this section, three levels for the country quality index of mathematics education 
are defined as follows:

1. High quality level: TIMSS 2003 country mathematics score is greater than 525
2. Average quality level: TIMSS 2003 country mathematics score is between 475 

and 525
3. Low quality level: TIMSS 2003 country mathematics score is less than 475

Three levels of the country inequity index are defined as follows:

1. High inequity level: Country inequity index is greater than 0.60
2. Average inequity level: Country inequity index is between 0.60 and 0.40
3. Low inequity level: Country inequity index is less than 0.40

The sample of 18 countries is mapped in a matrix whose two dimensions are quality 
index and inequity index (Table 10.3). Nine countries were classified as low quality 
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Table 10.3  Quality-inequity matrix
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level in mathematics education, six as average quality level, and three as high qual-
ity level. On the other hand, seven countries were classified as low inequity, seven 
as average inequity, and four as high inequity.

 Optimal and Separate Modes of Development  
in Mathematics Education

In the last half of the past century, the decline of colonization was a major reason 
for the emergence of the two-tiered system of mathematics education. During the 
age of colonization, the two-tier system did not exist because colonized countries, 
mostly developing countries, adopted the mathematics education of their colonial 
rulers. However, as colonization started to be dismantled, the developing countries 
had to invest most of its resources in providing public education to its increasing 
number of students. This was often done at the expense of the quality of education 
and educational research and development. Hence most of the developing countries 
did not have the chance to accumulate enough ‘credentials’ in mathematics educa-
tion to fully participate in the international mathematics education community.

This situation led to the formation of a two-tiered system of math education at 
the global level. The upper tier, referred to as the optimal mode of development, in-
cludes the developed countries that are integrated in the international mathematics 
education community. The lower tier, referred to as the separate mode of develop-
ment, consists of the marginalized countries which have yet to be integrated in the 
international activities of mathematics education.

A close examination of the quality-inequity matrix (Table 10.3) reveals that eight 
of the nine countries having average or high quality index and low or average ineq-
uity index generally fit the optimal mode of development in mathematics education 
model (the shaded area in Table 10.3). According to international comparative stud-
ies, these countries have high or average mathematics achievement performance, 
contribute significantly to international research in mathematics education, and 
assume leadership roles in international mathematics education organizations and 
conferences.

On the other hand, the nine countries having low quality index in mathemat-
ics education (third column of Table 10.3) fit in the separate mode of develop-
ment model. According to international comparative studies, these countries have 
low mathematics performance, have little contribution to international research in 
mathematics education, and normally have humble participation in international 
mathematics education conferences, such as the ICME’s. In other words, they are 
marginalized by the international mathematical education community and left to 
follow their own path in developing their mathematics education. Except for the 
Netherlands, the three countries that have high inequity index (the third row in 
Table 10.3) fit the separate development level.

It is to be noted that the quality of the mathematics education of a country is 
more critical to optimal development than equity of access to the former. Nine of the  
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18 countries did not fit the optimal mode of development in mathematics education 
because of low quality of their mathematics education rather than high inequity in-
dex. On the other hand, only one of the 18 countries (the Netherlands) did not fit the 
optimal development mode because of high inequity index rather than low quality 
index.

 Contrasting the Developmental Profiles of Optimal and Separate 
Modes of Development

How do the developmental profiles of separate and optimal modes of development 
contrast in terms of developmental indicators? In Table 10.4, the 18 countries in the 
sample are classified according to their developmental mode in mathematics educa-
tion (first column in the table), percentile rank of the country in terms of tertiary en-
rollment rate (column 3) and GNI per capita (column 4), and the region to which it be-
longs (column 5). A close examination of Table 10.4 supports the following assertions:

1. With the exception of Armenia, all the countries classified as fitting the optimal 
development mode, belong to three regions considered to be highly developed: 
North America, Western and Eastern Europe, East Asia and the Pacific. On the 
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Table 10.4  Percentile rank of tertiary enrollment rate and GNI per capita for each of the sample of 
countries classified by mode of development and region

Development  
mode

Country Tertiary 
enrollment 
rate

GNI per 
capita

Region

Optimal 
development

Armenia 
Australia 
Hungary 
Italy
Romania 
Russian  

Federation
Singapore 
United States 

20
80
70
70
60
80

–
100

20
90
70
90
40
40

80
100

Central Asia
East Asia and the Pacific
Central and Eastern Europe
North America and Western Europe
Central and Eastern Europe
Central and Eastern Europe

East Asia and the Pacific
North America and Western Europe

Separate 
development

Botswana
Chile 
Egypt 
Ghana 
Indonesia 
Iran, Islamic  

Rep. of 
Lebanon 
Netherlands
Saudi Arabia 
South Africa

10
60
40
10
20
20

60
70
20
10

50
50
10
10
10
10

50
100
70
50

Sub-Saharan Africa
Latin America and the Caribbean
Arab States
Sub-Saharan Africa
East Asia and the Pacific
South and West Asia

Arab States
North America and Western Europe
Arab States
Sub-Saharan Africa
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other hand, with the exception of Indonesia and the Netherlands, all the countries 
classified as following the separate development mode, belong to three regions 
considered to be developing: Arab states, Latin America, and Sub-Saharan 
Africa.

2. With regard to GNI per capita, six of the eight optimal development countries are 
in the upper 30% of the countries in the sample in terms of GNI per capita. For 
the ten of separate development countries, eight of them are in the lower 50% of 
the countries.

3. With regard to tertiary enrollment ratio, seven of the eight optimal development 
countries are in the upper 30% of the countries in the sample, whereas, six of the 
ten separate development countries are in the lowest 20%.

4. More or less, the classification of countries along the line of mode of develop-
ment in mathematics education approximates the well-known north-south divi-
sion in terms of geography, economy, and education.

In summary, a country classified as fitting in the separate mode of development of 
mathematics education is likely to be relatively poor, low in the spread and level 
of education among its population, and belongs to a socioeconomically developing 
region. On the other hand, a country classified as following the optimal mode of de-
velopment of mathematics education is likely to be relatively rich, high in the spread 
and level of education among its population, and is part of a developed region.

 Concluding Remarks

There seems to be a divide between developing and developed countries in math-
ematics education, and some of the significant factors that contribute to that divide 
seem to be out of the reach of mathematics educators and even national govern-
ments. Factors such as poverty or wealth of a country or the spread and level of 
education of its population cannot be changed immediately by national policies.

One can account for the inequity in mathematics at the global level among coun-
tries in terms of interaction between the following three factors and their attributes 
in the mathematics education system at the global level as follows:

1. Socioeconomic status, educational capital, and culture of the country
2. Policies that govern international organizations and conferences
3. English as the international language in mathematics education and access to 

international mathematics education literature

Obviously, the socioeconomic status of a country, its educational capital, and its 
culture are factors beyond the sphere of influence of local or international math-
ematics education communities whereas the other factors are not. The international 
mathematics education community has a responsibility to find ways and means to 
encourage and enable mathematics educators to be integrated in the international 
mathematics education community because such integration is likely to provide  
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exposure to research and development in mathematics education which hopefully 
may be translated into improved mathematics learning and teaching. The participa-
tion in and contribution to international mathematics education conferences and 
international mathematics education journals are critical for such integration. One 
measure in this regard would be to make the policies that govern international math-
ematics education international organizations more favorable to the participation of 
mathematics educators from developing countries. Another measure is to intensify 
and broaden efforts to avail resources to promising mathematics educators whose 
institutions or countries cannot support their travel and accommodation. Writing 
and presenting in English is a major barrier to the participation of many mathemat-
ics educators in international conferences. Mathematics educators who are quali-
fied to engage in international conferences, except for their proficiency in English, 
would have a better chance of being integrated in the international community if 
some form of mentoring volunteered by their colleagues who can provide their sup-
port in reviewing and editing manuscripts. Providing opportunities for presentations 
in international conferences in languages other than English by using increasingly 
more affordable technologies, such as simultaneous translation, would broaden ac-
cess to such conferences. All these measures would hopefully help enhance the in-
tegration of more mathematics educators in the international community and hence 
make the latter more inclusive.
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 Introduction and Literature Review

Certain specific circumstances make the U.S. context distinctive from that of other 
countries. Historically, often dramatic inequities in parental educational attainment, 
family income and wealth, and funding for public education have been exacerbated 
by legacies of slavery, racial segregation, and a “separate but equal” legal struc-
ture that institutionalized lower resources and consequently lower achievement 
for many non-majority students, together with lack of full linguistic and cultural 
integration and the No Child Left Behind (2001) national mandate to move to-
ward equal achievement for all major sociodemographic groups. Mathematics 
education in the United States also needs to be understood in the context of the 
lack of a national curriculum and a strong tradition of decentralized curriculum 
control. The county’s public school system contains over 14,500 school districts, 
with over 100,000 schools and about 50,000,000 students. Many districts and build-
ings are small and underfunded, although over $ 10,000 is spent per student (http://
www.schooldatadirect.org/app/location/q/stid = 1036196/llid = 162/stllid = 676/lo-
cid = 1036195/site = pes).

Concerns about equity in educational outcomes in the United States have taken on 
new urgency, amid persisting achievement gaps between white and African Ameri-
can students (Campbell et al. 2000; Lee 2002; Lubienski and Bowen 2000). Family 
socioeconomic status (SES; Secada 1992; Weis 1988) differences account for much 
of race-related achievement gaps, with teacher expectations, school structure, stu-
dent motivation, and student resistance (Ferguson 1998). Race-based differences in 
students’ beliefs and classroom experiences are related to mathematics achievement 
gaps, but such differences might be due to SES more than race (Strutchens et al. 

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
DOI 10.1007/978-90-481-9803-0_11, © Springer Science+Business Media B.V. 2011

Chapter 11
Effects of Student-Level and School-Level 
Characteristics on the Quality and Equity of 
Mathematics Achievement in the United States: 
Using Factor Analysis and Hierarchical Linear 
Models to Inform Education Policy

Mack C. Shelley and Wenyu Su

M. C. Shelley ()
Iowa State University, 1413 Snedecor Hall, Ames, IA 50011, USA
Tel. +515-294-8346
Fax: +515-294-4040
e-mail: mshelley@iastate.edu



146

2004). Although overall student performance varies only a few points by strand, 
significant and persisting variations exist across strands (Lubienski 2001).

Disparities in Implementation of Curriculum

Shelley and Lubienski (2005) concluded that implementation disparities may ex-
plain existing achievement gaps and inform future instruction reform efforts (New-
mann et al. 2001) and attempted to identify which reform-oriented instructional 
practices correlate with achievement for disadvantaged students. Two-level hier-
archical linear models (HLM) (Bryk and Raudenbush 1992; Lee and Bryk 1989; 
Newmann et al. 2001; Raudenbush and Bryk 2002) were used to estimate param-
eters for models with students (at level 1) nested within schools (level 2), to as-
sess the contribution of reform-based instructional practices to explaining variation 
in mathematics achievement controlling for race, ethnicity, SES, gender, language 
spoken at home, disability, and appropriateness of mathematics courses. Correct 
estimates for “plausible values” were produced, using the model-based multiple 
imputation strategy for data missing at random (e.g., Schafer 1997).

Social Structures

Shelley and Lubienski (2003) applied HLM to National Assessment of Educational 
Progress (NAEP) data from 1990, 1996, and 2000 to investigate the role of social 
structures in the relationship between mathematics instruction and student achieve-
ment. Level-1 results showed that higher SES, ethnicity (White and Asian/Pacific 
Islander), and male gender were associated with higher mean mathematics achieve-
ment scores. For level 2, at 4th-grade baseline, mean mathematics achievement was 
affected significantly negatively by school SES, and by school race both positively 
through the level-1 intercept and negatively through student gender. For the 4th-
grade-enhanced model, mean mathematics achievement was affected significantly 
negatively by school SES (through the level-1 intercept), and by school race both 
positively through the level-1 intercept and negatively through student gender. For 
8th grade, mean mathematics achievement was affected significantly negatively by 
school SES, negatively by a greater degree of ruralness, positively by school race, 
and positively by school race (through student race). For 12th grade, mean mathemat-
ics achievement was affected significantly negatively by school SES, negatively by 
a greater degree of ruralness, and positively by school race and through student SES.

Home and Parental Effects

Even when gaps appear to be rooted in SES differences, parent education, occupa-
tion, income, and educational resources in the home are important, as are teacher 
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expectations, school structure, student motivation, and student resistance (Ferguson 
1998).

Instructional Practices

Lubienski et al. (2004) showed that teacher-reported collaborative problem solv-
ing and teacher knowledge of the NCTM Standards were positive predictors of 
achievement at both grades 4 and 8. Interaction effects suggest that teachers need to 
monitor whether students—particularly those who are low-SES or African Ameri-
can—are benefiting from calculator and collaborative group work as intended.

Some studies have revealed that low-SES students do not interpret mathematics 
classroom discourse and open-ended, contextualized problems as middle-class edu-
cators intend (e.g., Cooper and Dunne 2000). In addition, Hickey et al. (2001) found 
that Standards-based instruction improved low- and high-SES students’ problem-
solving skills, but increased the SES-related gap in students’ performance on the 
concepts and estimation portion of the Iowa Test of Basic Skills. Still other studies 
have suggested that reform-minded practices are particularly beneficial for lower-
SES children and minority students (e.g., Schoenfeld 2002).

Although NAEP scores increased between 1990 and 2000 for white, Hispanic, 
and African American students, and for both low- and high-SES students (Braswell 
et al. 2001), race-related achievement gaps did not improve (Lubienski and Shelley 
2003). Both race- and SES-related differences affect students’ beliefs; these cor-
relations with race persisted even after controlling for SES, and suggest that White, 
middle-class students experience more of the fundamental shifts called for in the 
NCTM Standards.

Race-Related Effects

SES differences involving parent education, occupation, income, and education-
al resources in the home account for much of the race-related achievement gaps  
(Rothstein 2004).

 Data and Results

Data Source

The data analyzed in this paper came from the 2003 Program for International Stu-
dent Assessment (PISA), which contains information from more than 250,000 stu-
dents from 41 countries on student performance in four domains of assessment 
and responses to the student and school questionnaires. Mathematical literacy is 
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covered in terms of both mastery of the school curriculum and knowledge and skills 
needed in adult life (www.pisa.oecd.org).

We focus on quality and equity agendas in mathematics education in the United 
States. Accordingly, only U.S. data are employed in this analysis. The U.S. data 
included information on 5,465 students nested within 274 schools. In subsequent 
statistical analysis, variables specific to students will be referred to as level-1 mea-
sures and variables specific to schools will be referred to as level-2 measures.

Student-Level and School-Level Measures

The student-level variables and indices include:
PV1MATH—a measure of students’ mathematics achievement. Student pro-

ficiencies (or measures) are not observed; they are missing data that must be 
inferred from the observed item responses. PISA uses the imputation methodol-
ogy usually referred to as plausible values (PVs). PVs are random numbers drawn 
from the distribution of scores that reasonably could be assigned to each indi-
vidual—that is, the marginal posterior distribution. PISA provides five plausible 
values for the combined mathematics scale. The first plausible value is selected 
in this analysis.

GENDER, coded as 1 = female, 2 = male.
ESCS—a broader socioeconomic measure called the index of Economic, Social, 

and Cultural Status, which is derived from the highest occupational status of par-
ents, the highest educational level of parents, and an estimate related to household 
possessions. Positive scores indicate higher levels of SES.

INTMAT—an index of students’ interest in and enjoyment of mathematics. 
Higher scores indicate higher levels of interest in and enjoyment of mathematics.

INSTMOT—an index for instrumental motivation to learn mathematics. Higher 
scores indicate higher levels of instrumental motivation to learn mathematics.

MATHEFF—an index of mathematics self-efficacy. Higher scores indicate high-
er levels of self-efficacy.

ANXMAT—an index of mathematics anxiety. Higher scores indicate higher lev-
els of mathematics anxiety.

SCMAT—an index of mathematics self-concept. Higher scores indicate higher 
levels of self-concept in mathematics.

INTMAT and INSTMOT are indices of students’ motivations in mathematics; 
MATHEFF, ANXMAT, and SCMAT are indices of students’ self-related cognitions 
in mathematics.

WEIGHT—To make valid estimates and inferences, a composite final student 
survey weight was derived from school base weight, student base weight, and five 
adjustments.

The school-level variables and indices include:
SMRATIO—an index of student/mathematics teacher ratio, obtained by dividing 

the number of enrolled students by the total number of mathematics teachers.
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MACTIV—an index of mathematics activity at school, computed by simply 
counting the number of different types of activities occurring at school.

PCGIRLS—proportion of female students enrolled at school, computed by di-
viding the number of female students by the total of female and male students in 
each school.

SCMATEDU—an index of quality of schools’ educational resources, derived 
from school principal’s perceptions of what potentially hinders instruction. Larger 
scores indicate more positive evaluations of the quality of educational resources.

The next section explains how factor analysis methods are employed to derive two 
sets of constructs—motivations and self-related cognitions—related to student math-
ematics achievement. These constructs and other measures are used as independent 
variables in regression models to predict student achievement outcomes (PV1MATH).

We begin the analysis with an initial explanation of the meaning and usefulness 
of both exploratory and confirmatory factor analyses (EFA and CFA). Both methods 
are relevant to understanding patterns among these variables and are instrumental 
for the essential task of reducing the complexity of subsequent statistical models 
and facilitating the interpretation of results.

Factor Analysis Methods

EFA and CFA were employed to uncover and estimate the above factors for stu-
dents’ motivations and self-related cognitions in mathematics. In EFA, correlations 
between variables are used to generate a factor structure based on those relation-
ships. CFA (Brown 2006) permits testing hypotheses that relationships exist be-
tween observed variables and underlying latent variables. Both are based on the 
common factor model, postulating that each indicator in a set of observed measures 
is a linear function of one or more common factors and one unique factor. In matrix 
notation, a fundamental equation of the common factor model is

 (11.1)

where X is a (q × 1) vector of observed variables, F is a (s × 1) vector of common 
factors, L is a (q × s) matrix of factor loadings relating the observed x’s and la-
tent F’s, and  is a (q × 1) vector of the unique factors. It is assumed that the num-
ber of observed variables is greater than the number of factors. Both the obtained 
and latent variables in Eq. (11.1) are assumed to be measured as deviations from 
their means. Thus, the expected value of each vector is a vector containing zeros: 
E( X) = 0; E( F) = 0; and E( ) = 0.

Factor Analysis Results for Student Motivations

Eight items (Tables 11.5, 11.6) in the student questionnaire were used to measure 
students’ motivations in mathematics. The item categories were “strongly agree,” 

X = LF + ε,
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“agree,” “disagree,” and “strongly disagree.” Four of these items asked about stu-
dents’ interest in mathematics as a subject as well as their enjoyment of learning 
mathematics, and the other four items asked to what extent they are encouraged to 
learn by external rewards such as good job prospects. After observing the correla-
tions among the eight items measuring students’ motivations, first a simple CFA 
model was estimated without considering possible double-loadings and correlated 
errors. Then the model was respecified based on both the modification indices and 
the rationality of making a modification. Table 11.1 summarizes the fit statistics.

For this CFA model, the 2 value (271.445, df  = 18, p < 0.0001) indicates that 
the variances and covariances estimated by the model, �̂ , do not sufficiently repro-
duce the sample variances and covariances, S (i.e., the model does not fit the data 
well). However, 2 is inflated by sample size, and thus large sample solutions (here, 
n = 4,995) routinely reject the null hypothesis of model fit based on the 2 value even 
when the difference between S and �̂ is negligible. Therefore, it is rarely used as a 
sole index of model fit. RMSEA indicates the average amount of unexplained vari-
ance, or residual. The value of RMSEA obtained (0.0531) suggests adequate model 
fit (Browne and Cudeck 1993). GFI (0.9868), CFI (0.9909), NNI (0.9859), and NFI 
(0.9903) values also meet the criteria for acceptable model fit (Meyers et al. 2006).

Parameter estimates for this CFA model are significant ( p < 0.01). The first factor 
indicates students’ intrinsic motivation in mathematics, which are internally gener-
ated motives such as interest in mathematics. The second factor is the indicator of 
students’ instrumental motivation derived from external rewards for good perfor-
mance such as praise or future prospects (Fig. 11.1).

Factor Analysis Results for Student Self-Related Cognitions

Eighteen items (Tables 11.7–11.9) in the student questionnaire measured students’ 
self-related cognitions. Eight items asked to what extent students believe in their 

Covariance structure analysis: maximum likelihood estimation
Fit function 0.0544
Goodness of Fit Index (GFI) 0.9868
GFI Adjusted for Degrees of Freedom (AGFI) 0.9736
Root Mean Square Residual (RMR) 0.0145
Parsimonious GFI 0.6344
Chi-square 271.4445
Chi-square DF 18
Pr > Chi-square <0.0001
RMSEA estimate 0.0531
RMSEA 90% lower confidence limit 0.0476
RMSEA 90% upper confidence limit 0.0588
Bentler’s comparative fit index 0.9909
Bentler and Bonett’s non-normed index 0.9859
Bentler and Bonett’s NFI 0.9903
James et al. parsimonious NFI 0.6366
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own ability to handle learning situations in mathematics effectively and overcome 
difficulties. Item categories were “very confident,” “confident,” “not very confi-
dent,” and “not at all confident.” Six items asked to what extent they feel helpless 
and under emotional stress when dealing with mathematics; and the other four items 
asked about students’ belief in their own mathematical competence. Items catego-
ries were “strongly agree,” “agree,” “disagree,” and “strongly disagree.” The CFA 
model with the standardized coefficients is presented in Fig. 11.2. Table 11.2 sum-
marizes the fit statistics.

The 2 value (1,690.6526, df = 129, p < 0.0001) again is inflated by large sample 
size. RMSEA (0.0492) suggests good model fit. GFI (0.9625), NNI (0.9616), CFI 
(0.9676), and NFI (0.9651) indicate an acceptable model fit. It can be concluded 
that the CFA model might be acceptable.

Parameter estimates are significant ( p < 0.001). The first factor is the indicator 
of self-efficacy in mathematics, which reflects how well students think they can 

Fig. 11.1  CFA model for motivations
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Covariance structure analysis: maximum likelihood estimation
Fit function 0.3385
Goodness of Fit Index (GFI) 0.9625
GFI Adjusted for Degrees of Freedom (AGFI) 0.9503
Root Mean Square Residual (RMR) 0.0219
Parsimonious GFI 0.8115
Chi-square 1,690.6526
Chi-square DF 129
Pr > chi-square < 0.0001
RMSEA estimate 0.0492
RMSEA 90% lower confidence limit 0.0472
RMSEA 90% upper confidence limit 0.0513
Bentler’s comparative fit index 0.9676
Bentler and Bonett’s non-normed index 0.9616
Bentler and Bonett’s NFI 0.9651
James et al. parsimonious NFI 0.8137

Table 11.2  CFA fit statistics 
for self-related cognitions
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handle even difficult tasks. The second factor indicates mathematics anxiety, and 
the third factor reflects students’ self-concept, which indicates their belief in their 
own mathematical competence.

Developing Underlying Dimensions

The 2 value is not the sole index of fit, but the value of p < 0.0001 challenges the 
conclusions from the CFA models. Hence, EFA was employed to explore further 
the latent factors for motivations and self-related cognitions in mathematics, and to 
obtain factor scores for subsequent analysis.

EFA using maximum likelihood (ML) estimation was used to identify the un-
derlying dimensions for motivations and self-related cognitions, respectively. Two 
indices for motivations in mathematics—INTMAT for intrinsic motivation and IN-
STMOT for instrumental motivation—and three indices for self-related cognitions 
in mathematics were constructed: ANXMAT for mathematics anxiety, MATHEFF 
for mathematics self-efficacy, and SCMAT for self-concept. The factor scores for 
these five indices were obtained for subsequent analysis; the scale for each factor 
score is inverted, so that higher scores indicate higher levels on those indices. These 
indices derived from factor analysis, combined with other student-level and school-
level variables, then are used as predictors in hierarchical models to investigate their 
relationships with mathematics achievement.

Multi-Level Regression Analysis

Level-1 Model The general level-1 model with Q predictor variables is

 (11.2)

where Yj is an nj by 1 vector of outcomes, Xj is an nj by (Q + 1) matrix of predictor 
variables, βj is a (Q + 1) by 1 vector of unknown parameters, I is an nj by nj identity 
matrix, and rj is an nj by 1 vector of random errors assumed normally distributed 
with a mean vector 0 and a variance-covariance matrix in which all diagonal ele-
ments are equal to σ2 and all off-diagonal elements are 0.

Level-2 Model The level-2 model is

 (11.3)

where Wj is a (Q + 1) by F matrix of predictors,  is an F by 1 vector of fixed effects, 
uj is a (Q + 1) by 1 vector of level-2 errors or random effects, and T is an arbitrary 
(Q + 1) by (Q + 1) variance-covariance matrix.

Given that the data are not perfectly balanced, the unique, minimum-variance, 
unbiased estimator of  will be the generalized least squares (GLS) estimator

Yj = Xjβj + rj , rj ∼ N (0, σ 2I ),

βj = Wjγ + uj , uj ∼ N (0, T ),

M. C. Shelley and W. Su
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(11.4)

where

 (11.5)

 (11.6)

Under normality assumptions, (11.4) is also the maximum likelihood estimator for 
. SAS PROC MIXED was used to estimate multilevel models. No structure was 
imposed on the variance-covariance matrix for the level-2 residuals. This specifica-
tion is common in school effects analysis.

Model 1: Do Schools Differ in Students’ Average Mathematics Achievement?

A multilevel regression analysis reports residual variance at different levels: the 
between-school variance and the within-school variance that are not explained by 
the predictors included in the model. Unbiased estimates of the between-school 
variance and the within-school variances are provided by the following model 
(Model 1; Table 11.3).

where Yij is the performance score for the ith student from school j; αj represents the 
school means; the variance of u0j is the school variance; and the variance of ij is the 
within-school variance.

Both variance components are significantly different from zero, which suggests 
that schools differ in their students’ average mathematics achievement and that 

γ̂ =
(∑

W T
j �−1

j Wj

)−1 ∑
W T

j �−1
j β̂j ,

�j = Var(β̂j) = T + Vj = parameter dispersion + error dispersion,

Vj = σ 2
(

X T
j Xj

)−1
.

Yij = αj + εij ,

αj = γ00 + u0j ,

Table 11.3  Model 1

Covariance parameter estimates
Standar Z

Cov parm Subject Estimate Error Value Pr Z
Intercept SCHOOLid 2,167.74 226.54 9.57 <0.0001
Residual 6,540.67 134.74 48.54 <0.0001
Fit statistics
−2 Log Likelihood = 59,055.5
AIC = 59,061.5
AICC = 59,061.5
Solution for fixed effects

Standard
Effect Estimate Error DF t-Value Pr > |t|
Intercept 484.73 3.0865 273 157.05 <0.0001
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there is even more variation among students within schools. About 25% of the total 
variance explained is accounted for by the school, so we cannot ignore the sources 
of school variation. The estimated intercept of 484.73 tells us the average school-
level mathematics achievement score in this sample of schools, which is different 
from the average student-level achievement score.

Model 2: Results of Full Two-Level Analysis

INTMAT and INSTMOT have positive relationships with mathematics achieve-
ment, but are excluded from the modeling because of potentially serious multicol-
linearity. All other student-level variables are added to the level-1 model. We would 
like to see if school educational resources influence the effects of students’ self-
cognitions on mathematics achievement and whether the school-level percentage 
of female students might predict the relationship between gender and mathematics 
achievement at the student level. The full model is:

Full Model 

Yij = αj + β1j(GENDER)ij + β2j(ESCS)ij + β3j(ANXMAT )ij

+β4j(MATHEFF)ij + β5j(SCMAT )ij + rij

αj = γ00 + γ01(SCMATEDU )j + γ02(MACTIV )j

+γ03(SMRATIO)j + γ04(PCGIRLS)j + u0j

β1j = γ10 + γ11(PCGITRLS)j + u1j

β2j = γ20 + γ21(SCMATEDU )j + u2j

β3j = γ30

β4j = γ40 + γ41(SCMATEDU )j + u4j

β5j = γ50 + γ51(SCMATEDU )j + u5j

PCGIRLS, MACTIV, and SMRATIO are not significant in the model. Also, SC-
MATEDU does not predict the slopes for ESCS, MATHEFF, and SCMAT. A model 
selection procedure then was conducted to find a reasonable model that can help 
study the effects of those variables on mathematics achievement. The equation of 
the chosen model (Model 2) can be written as:

Level-1 Model 

Level-2 Model 

Yij = αj + β1(GENDER)ij + β2j(ESCS)ij

+ β3j(ANXMATT )ij + β4j(MATHEFF)ij + β5j(SCMAT )ij + rij

αj = γ00 + γ01(SCMATEDU )j + u0j

β1 = γ10

β2j = γ20 + u2j

β3j = γ30 + u3j

β4j = γ40 + u4j

β5j = γ50 + u5j

11 Effects of Student-Level and School-Level Characteristics
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Accounting for self-related cognitions and school educational resources 
(Table 11.4), gender no longer has a significant effect on mathematics achieve-
ment, while all the other fixed effects are significantly different from zero ( p < 0.05). 
Holding other variables constant, higher SES, self-efficacy, and self-concept lead to 
higher mathematics achievement. Self-efficiency has the strongest effect on math-
ematics achievement. Also, school-level mathematics achievement is higher with 
schools having better educational resources.

The between-school residual variance (943.55) tells us about the variability in in-
tercepts, and the within-school residual variance is 4,191.13. First, the intercepts are 
still different, in other words, schools do differ in average mathematics achievement 

Table 11.4  Model 2

Covariance parameter estimates
Standard Z

Cov parm Subject Estimate Error Value Pr Z
UN(1,1) SCHOOLid 943.55 111.73 8.44 <0.0001
UN(2,1) SCHOOLid −62.1931 52.4391 −1.19 0.2356
UN(2,2) SCHOOLid 87.2422 39.5269 2.21 0.0137
UN(3,1) SCHOOLid 44.0744 42.4458 1.04 0.2991
UN(3,2) SCHOOLid 15.4362 27.1472 0.57 0.5696
UN(3,3) SCHOOLid 72.9037 31.2104 2.34 0.0097
UN(4,1) SCHOOLid 231.68 49.2355 4.71 <0.0001
UN(4,2) SCHOOLid −50.2891 29.6954 −1.69 0.0904
UN(4,3) SCHOOLid −21.6282 23.7257 −0.91 0.3620
UN(4,4) SCHOOLid 87.5506 36.0732 2.43 0.0076
UN(5,1) SCHOOLid 49.8628 43.8162 1.14 0.2551
UN(5,2) SCHOOLid 3.4400 26.1171 0.13 0.8952
UN(5,3) SCHOOLid 66.7076 23.7572 2.81 0.0050
UN(5,4) SCHOOLid −2.6828 23.0863 −0.12 0.9075
UN(5,5) SCHOOLid 55.1667 31.8173 1.73 0.0415
Residual 4,191.13 93.7292 44.72 <0.0001

Fit statistics
−2 Log Likelihood = 56,886.1
AIC = 56,932.1
AICC = 56,932.3
BIC = 57,015.2
Solution for Fixed Effects
                                                                 Standard
Effect Estimate Error DF t-Value Pr > |t|
Intercept 477.35 3.7452 272 127.45 <0.0001
GENDER −0.7438 1.9510 4716 −0.38 0.7031
ESCS 20.3275 1.3744 4716 14.79 <0.0001
SCMATEDU 6.7792 1.8373 272 3.69 0.0003
ANXMAT −22.9517 1.2451 4716 −18.43 <0.0001
MATHEFF 36.9741 1.2870 4716 28.73 <0.0001
SCMAT 10.7759 1.2479 4716 8.64 <0.0001
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levels even after controlling for the effects of those level-1 and level-2 predictors, 
suggesting that there is additional variation in school mean achievement levels that 
is not explained by these variables. Second, the slopes for ESCS, MATHEFF, ANX-
MAT, and SCMAT are also different across schools. For example, the association 
between mathematics achievement and anxiety level varies across schools.

 Conclusions and Discussion

An essential aspect of multi-level modeling is to determine whether the second 
(school) level contributes anything of value that helps to understand what affects 
student mathematics achievement and thus how policies might be structured to en-
hance equity. In this case, we have substantial evidence to support the conclusion 
that schools matter, in addition to individual student characteristics. About 25% 
of the total variance is accounted for by the school, indicating that we should not 
ignore school-level variation.

SES segregation exists in the U.S. schools; some are attended by mainly high-
SES students, while other schools are attended by mainly students with low SES. 
Our results provide convincing evidence that SES segregation plays an important 
role in the lack of equity in students’ mathematics achievement. Ending, or at least 
drastically reducing, the inequity will not be possible until national- and state-level 
policy initiatives can result in reduced economic disparity. Doing so is a daunting 
task, particularly for a county in which SES inequity is heavily confounded with 
race, ethnicity, culture, and a political context in which “progressive” policy initia-
tives have a very low survival rate.

The gender difference in mathematics achievement is significant before account-
ing for self-related cognitions and school educational resources; but not after includ-
ing those variables in the model. The gender difference in mathematics achievement 
has been attributed to a number of variables, most notably differential course-taking 
patterns and exposure to mathematics, different learning styles, teacher behavior 
and learning environment, parental attitudes and expectations, and SES, as well as 
other background characteristics of students. The findings from this study indicate 
that the gender difference would become nonsignificant if more support were pro-
vided for female students.

At the student level, SES, motivations, and self-related cognitions have positive 
relationships with students’ mathematics achievement, while mathematics anxiety 
is negatively associated with mathematics achievement. From a policy perspective, 
these findings suggest some potential avenues for endeavoring to enhance equity 
in student achievement. The most obvious suggestion is to pursue redistributionist 
policies targeted to specific families and neighborhoods that transfer income and 
wealth toward elements of society that currently are underprivileged economically. 
That certainly is more easily said than done, and by itself probably would be insuf-
ficient to rectify generations worth of inequality. A second avenue is to enhance 
student motivations to learn mathematics, which, for example, could take the form 

11 Effects of Student-Level and School-Level Characteristics
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of peer mentoring or supplemental instruction, both of which have shown good 
results in science, technology, engineering, and mathematics (STEM) disciplines. 
Enhancing self-related cognitions is not a simple endeavor, but some progress to-
ward the goal of enhancing students’ self-competence with mathematics could be 
achieved by providing positive feedback through emphasizing role models of suc-
cessful students from similar backgrounds and by offering positive reward struc-
tures for improved performance perhaps along the lines of positive behavior sup-
ports designed to diminish negative school-related behaviors. Similarly, policies to 
alleviate mathematics anxiety would need to take the form of innovative curriculum 
approaches that match individual student learning styles with constructivist teach-
ing approaches designed to facilitate positive teacher-student interaction.

At the school level, better educational resources could improve average school 
mathematics achievement. Clearly, this would necessitate major policy innova-
tions redirecting resources toward districts and buildings with lower levels of fund-
ing, probably combined with the consolidation of smaller and/or underperforming 
schools/districts. However, our results also demonstrate that the percentage of fe-
male students, number of mathematics activities, and student/mathematics teacher 
ratio do not significantly influence average school mathematics achievement, sug-
gesting that policy initiatives designed to enhance equity would not produce sub-
stantial improvements if efforts were directed toward these targets.

The associations between mathematics achievement and ESCS, MATHEFF, and 
SCMAT also differ across schools. This suggests that policy initiatives designed to 
enhance equity of student mathematics achievement will need to be targeted differ-
ently to schools with varying levels of mean SES, mean student self-efficacy, and 
mean levels of mathematics self-concept. Thus, a “one size fits all” approach would 
not be likely to be as effective as one that is targeted to the specific circumstances 
defining each school’s specific combination of needs.

It is essential to adopt policy tools that disrupt the negative synergies that often 
exist between low-performing students and poorly trained teachers. Results from 
Mathematics and Science Partnerships projects (http://www.nsf.gov/news/longurl.
cfm?id=51) may provide guidance about desirable policy innovations such as sum-
mer teaching institutes, learning communities linking K-12 teachers with faculty at 
institutions of higher education, additional teacher certification or master’s degrees, 
higher education or business “externships,” mentoring or cognitive coaching, and 
training in the use of innovative instructional technology. Policies must be sensitive 
to the increasing ethnic and cultural diversity of mathematics teachers and of their 
students, and should be designed to encourage prospective teachers from diverse 
backgrounds to enter the STEM career pipeline and help them persist to degree 
completion as well as to facilitate the retention of new mathematics teachers early 
in their careers, when retention is problematic.

M. C. Shelley and W. Su
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Appendix

Tables for the Items from the PISA Student Questionnaire

11 Effects of Student-Level and School-Level Characteristics

Table 11.6  Items for measuring instrumental motivation to learn mathematics (INSTMOT)
Thinking about your views on mathematics: To what extent do you agree with the following 

statements?
ST30Q02 b) Making an effort in mathematics is worth it because it will help me in the work 

that I want to do later on
ST30Q05 e) Learning mathematics is worthwhile for me because it will improve my career 

<prospects, chances>
ST30Q07 g) Mathematics is an important subject for me because I need it for what I want to 

study later on
ST30Q08 h) I will learn many things in mathematics that will help me get a job

Note: Item categories were “strongly agree,” “agree,” “disagree,” and “strongly disagree.” Item 
categories were coded as 1 = strongly agree; 2 = agree; 3 = disagree; 4 = strongly disagree

Table 11.7  Items for measuring mathematics self-efficacy (MATHEFF)
How confident do you feel about having to do the following calculations?

ST31Q01 a) Using a <train timetable>, how long it would take to get from one place to another
ST31Q02 b) Calculating how much cheaper a TV would be after a 30% Discount
ST31Q03 c) Calculating how many square meters of tiles you need to cover a floor
ST31Q04 d) Understanding graphs presented in newspapers
ST31Q05 e) Solving an equation like 3x + 5 = 17
ST31Q06 f) Finding the actual distance between two places on a map with a 1:10,000 scale
ST31Q07 g) Solving an equation like 2(x + 3) = (x + 3)(x − 3)
ST31Q08 h) Calculating the petrol consumption rate of a car

Note: Item categories were “very confident,” “confident,” “not very confident,” and “not at all 
confident.” Item categories were coded as 1 = very confident; 2 = confident; 3 = not very confi-
dent; 4 = not at all confident

Table 11.5  Items for measuring interest in and enjoyment of mathematics (INTMAT)
Thinking about your views on mathematics: To what extent do you agree with the following 

statements?
ST30Q01 a) I enjoy reading about mathematics
ST30Q03 c) I look forward to my mathematics lessons
ST30Q04 d) I do mathematics because I enjoy it
ST30Q06 f) I am interested in the things I learn in mathematics

Note: Item categories were “strongly agree,” “agree,” “disagree,” and “strongly disagree.” Item 
categories were coded as 1 = strongly agree; 2 = agree; 3 = disagree; 4 = strongly disagree
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 Introduction

In this chapter, we use the term “equity in education” to refer to providing equal 
access and equal opportunities for education to all groups of learners and potential 
learners. In Malawi the groups of learners that are of concern regarding equity are 
female versus male learners and learners in rural versus urban areas. Concerns about 
equity between males and females are mainly about quantities in schools where the 
proportion of females reduces significantly as they go up the education system, and 
about performance in mathematics where females perform less than males at all 
levels. Concerns about equity between rural and urban students are mostly about 
access to resources where schools in rural areas have access to fewer resources than 
urban schools, have lower numbers of qualified teachers, and their performance 
in mathematics examinations is lower than urban schools. We argue that although 
there are prospects for providing equity and quality mathematics to learners from 
policies the government has put in place, and some associated initiatives in the 
form of funded projects, there is a lot that still needs to be done to address the in-
equities that exist. Furthermore, we highlight that the indicators of quality that the 
government has developed are all about resources which reflect a simplistic view 
of quality. We argue further that there is more to provision of quality mathematics 
than providing resources to schools. We draw upon findings from some studies in 
Malawi that support this argument.

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
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 Background

School System

Malawi school system has eight years of primary school and four years of secondary 
school. Transition from one class to the next in primary school is according to merit. 
Learners have to pass each class of primary school to progress to the next. The tests 
to determine progression of learners are school based. Transition from primary to 
secondary school requires passing a national examination called the Primary School 
Leaving Certificate (PSLC). Admittance to secondary school is granted to learners 
according to merit on the examination. This exercise is extremely competitive be-
cause there are fewer places in secondary school than the student numbers that pass 
the PSLC examinations. For example in 2007, a total of 161,567 learners sat the 
PSLC exam, 115,670 passed but only 39,596 were allocated places in government 
and government-aided secondary schools (Ministry of Education 2008).

Malawi has experienced huge expansion of its education system during the past 
15 years. At the primary level, the introduction of free primary education policy in 
1994 greatly increased the number of learners enrolled. According to the Ministry 
of Education Statistics, primary school enrolment rose by almost 50% from ap-
proximately 1.9 million in 1994 to 2.9 million in the 1995 academic year (Ministry 
of Education 2000). This increase was mainly in rural areas where many school 
age children in the past had failed to attend school because of lack of ability to 
pay school fees. The increase in enrolment was registered in all classes of primary 
school which meant that some who had previously dropped out of school had re-
turned. The most recent enrolment was about 3.6 million (Ministry of Education 
2008). Table 12.1 shows the exact enrolment numbers for selected years from 1994 
to 2008.

As Table 12.1 shows, secondary school sector has also expanded significantly. 
This has mainly been due to a 1998 Malawi government policy of secondary school 
expansion (Ministry of Education 2001). The policy provided for “distance educa-
tion centres” to be converted into secondary schools. “Distance education centres” 
were widely distributed across the country—especially in rural areas. The centres 
offered secondary school education to learners that passed the PSLC examinations 
but did not qualify for a place in conventional secondary schools. The centres of-
fered their education using distance mode with limited face-to-face interactions. 
The secondary school expansion policy converted each of these centres into what 
is called “community day secondary school”. These are second-class secondary  

Table 12.1  Enrolment in Malawi primary and secondary schools. (Source: Ministry of Education 
2008)

1994 1995 1999 2005 2006 2007 2008

Primary 1,895,423 2,860,819 2,896,280 3,200,646 3,280,714 3,306,926 3,600,771
Secondary 48,360 57,812 75,959 183,854 218,310 210,325 233,573
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schools with poorer infrastructure and resources than conventional secondary 
schools, and the students that are admitted are those that do not make it into the con-
ventional secondary schools. The secondary school expansion policy also encour-
aged the private sector to contribute to the provision of secondary school education. 
As a result of this policy, the secondary school enrolment rose from a total of ap-
proximately 58,000 in 1995 to 184,000 learners in 2005. The most recent enrolment 
is approximately 234,000 (Ministry of Education 2008). Although secondary school 
education is not free, it is heavily subsidised by the government. As is evident from 
the statistics, enrolment continues to increase at both primary and secondary school 
levels.

Mathematics Education

Mathematics as a subject of study is taught as a compulsory subject in both pri-
mary and secondary schools. Mathematics is also one of the two subjects (other 
being English) that are compulsory at national examinations. Although a pass in 
mathematics is not a requirement for candidates to pass the examinations, pass-
ing mathematics offers increased opportunities to candidates. For example, entry 
into primary teacher education colleges requires at least a pass in mathematics, 
and many job opportunities and training include mathematics as a requirement or 
added advantage. Similarly, entry into most of the university programmes requires 
learners to have obtained a good pass in mathematics at Malawi Schools Certificate 
of Education (O-level equivalent) examinations and also pass university entrance 
examinations, which include numerical skills. There is therefore huge pressure on 
learners to demonstrate competence in mathematics; and consequently on teachers 
to produce mathematically proficient learners. The fact that mathematics is compul-
sory to all learners in schools makes the demand for qualified mathematics teachers 
greater than other subjects.

 Equity Groups

Our sense of equity in education is that it refers to providing equal opportunities for 
education to all groups of learners and potential learners. For Malawi, equity con-
cerns can be raised on urban versus rural learners, and male versus female learners.

Male versus Female Learners

Tables 12.2, 12.3 and 12.4 show the enrolment figures distributed by gender for 
primary, secondary and some higher education institutions in Malawi. It is clear 
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from the tables that although the proportions of females is a little higher than males 
as learners enter primary school in Standard 1, the proportion of girls is reducing 
significantly as they go up the education system.

We note that for primary schools, while the reduction in numbers continuing 
from one year to another happens for both males and females, the reduction is great-
er for females than males at the last three years of primary education. This indicates 
that there are some factors that affect the education of girls much more than the 
education of boys (see Table 12.5). Some of these factors are external, that is they 
do not originate from the school system but from the wider social context. Such 
factors include early marriages, pregnancy and family responsibilities (Chimombo 
2005; Ministry of Education 2008). Internal factors that affect the proportion of 
girls in primary schools include school conditions that are not conducive for girls, 
for example, lack of toilet facilities, fear of sexual harassment from teachers and 
fear of unjust punishment in the school (Chimombo 2005; Moleni 2001).

Table 12.2  Enrolment in Malawi primary schools in 2008 by class and gender. (Source: Ministry 
of Education 2008)

Male Female Total

Standard 1 435,794 444,623 880,417
Standard 2 329,288 333,669 662,957
Standard 3 295,117 293,981 589,098
Standard 4 216,921 218,375 435,296
Standard 5 176,684 178,792 355,476
Standard 6 138,017 136,667 274,684
Standard 7 110,679 105,190 215,869
Standard 8 103,788 83,186 186,974
Total 1,806,288 1,794,483 3,600,771

Table 12.3  Enrolment in Malawi secondary schools in 2008 by class and gender. (Source: Min-
istry of Education 2008)

Male Female Total

Form 1 36,279 30,595 66,874
Form 2 38,457 32,712 71,169
Form 3 28,160 19,794 47,954
Form 4 28,878 18,698 47,576
Total 131,774 101,799 233,573

Table 12.4  Enrolment in some higher education institutions in Malawi in 2008 by gender. (Source: 
Ministry of Education 2008)

Male Female Total

University of Malawi 4,521 2,199 6,720
Mzuzu University 982 466 1,448
Technical colleges 934 434 1,368
Primary teacher education colleges 2,273 1,521 3,794
Total 8,710 4,620 13,330
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For secondary schools, we note from Table 12.3 that there were 5,684 more 
males than females that were offered places in Form 1 to start secondary education 
in 2008, and overall there were about 30,000 more males than females in secondary 
schools. We also note that for both junior and senior secondary the numbers are in-
creasing for males from Form 1 to Form 2 and also from Form 3 to Form 4 while the 
numbers are decreasing for females. A possible explanation for this phenomenon is 
that more males than females repeat the years after not succeeding in national ex-
aminations at the end of Form 2 and Form 4. Although dropping out of female learn-
ers from secondary schools contributes to the large difference in numbers, most of 
the difference is accounted for by offering more places to males than to females. 
This is due to an internal factor at policy level which particularly affects proportion 
of female learners in secondary and higher education. For example, almost all the 
national boarding secondary schools were designed to have a 1:2 ratio of accom-
modation places available for girls and boys. Similar designs catering for larger 
numbers of boys than girls were made for higher education such as the University 
of Malawi, Mzuzu University, Technical Colleges and Teacher Education Colleges. 
There have been plans from both government and nongovernmental organisations 
to address this inequality by design. However, to date the inequality in student gen-
der numbers still exists in almost all higher institutions because enrolment numbers 
are ultimately restricted by the available accommodation. This is one area where the 
government could have demonstrated commitment to gender equity beyond policy 
on paper by constructing additional hostels for females. Alternatively, they could 
convert some of the males’ hostels to females’ hostels which would not be as costly 
as constructing new hostels.

Gender disparity in favour of males in mathematics has persisted over a long 
time. Several studies have shown that in Malawi, the performance of females in 
mathematics is lower than that of males at all levels of Education (Condie et al. 
2008; Chamdimba 2003; Mbano 2001). One explanation for the disparity is that 
there is low participation of females in many mathematics classrooms. Chamdimba 
(2003) studied mathematics teaching at secondary school and concluded that there 
is low participation of females in mathematics classrooms. She also found that 
many of the mathematics teachers are male and that they often allow male learners 
to dominate in class activities. Chamdimba (2003) suggests the use of coopera-
tive learning as a way of encouraging and increasing the participation of females 
in mathematics classrooms. This dominance by male learners is not surprising es-
pecially in boarding schools where there are twice as many males than females. 
Nevertheless, as Chamdimba (2003) suggests, teachers can find ways of including 
female learners even when they are underrepresented in the classroom.
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Male Female

Standard 6 7.38 11.16
Standard 7 4.11 13.21
Standard 8 5.23 20.37
Total 5.57 14.91

Table 12.5  Dropout rate 
for Malawi senior primary 
school in 2008 by class and 
gender. (Source: Ministry of 
Education 2008)
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Urban Versus Rural School Learners

It is important to note that the majority of the Malawi population is rural; there-
fore, most of the schools are in rural areas. For example, there are a total of 5,461 
primary schools in the country of which 5,088 are in rural and 373 are in urban 
areas (Ministry of Education 2008). For secondary schools, most of the community 
day secondary schools are in rural areas while most of the conventional secondary 
schools are in urban areas. Therefore, it is fair to see community day secondary 
schools as rural and conventional secondary schools as urban. There are differ-
ences in performance at mathematics national examinations between these two 
types of schools. On average, urban secondary schools consistently perform better 
than rural schools. For example, Mwakapenda (2002) found that over a period of 
five years, urban schools learners obtained an average mark of 53% while rural 
schools learners obtained an average mark of 16% in Malawi Schools Certificate 
of Education mathematics examinations. This suggests, among other things, that 
the quality of teaching and learning mathematics in rural schools is poorer than in 
urban schools.

Many would appreciate the difficulty in achieving equity between urban schools 
and rural schools because urban areas have access to resources outside school such 
as national libraries which are not within easy reach of rural schools. However, for 
resources that are supplied by the education system, an attempt could be made to 
distribute these fairly equitably. Studies that have studied equity among schools in 
Malawi (e.g. Chimombo 2005; Moleni 2001; Kuthemba 2000) have revealed that 
resources are not distributed equitably, with urban schools getting more and better 
resources than rural schools. Table 12.6 shows distribution of human resource and 
material resources in primary and secondary schools.

These ratios show the inequity that exists, implying that urban school learners 
are on average given better opportunities to education than rural school learners. 
The average teacher-to-learner ratio is the same for the two types of secondary 
schools but the qualified teacher-to-learner ratio is much higher for the community 
day secondary schools. However, the average class size is smaller in community 
day than in conventional secondary school. This is likely due to dropouts which is 
higher in rural than urban areas.
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Table 12.6  Distribution of human and material resources in Malawi schools in 2008. (Source: 
Ministry of Education 2008)

Primary schools Secondary schools

Urban Rural Conventional Community day

Teacher:learner ratio 1:49 1:83 1:20 1:20
Qualified teacher:learner ratio 1:51 1:97 1:27 1:68
Textbook:learner ratio 1:3 1:7 NA NA
Classroom:learner ratio 1:101 1:114 1:52 1:44

NA indicates not available
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 Indicators of “Quality”

A state president’s committee on education quality in Malawi (Kuthemba 2000) 
described some indicators of quality in Malawi schools. These include: (i) aver-
age number of learners per teacher, (ii) average number of learners per textbook, 
(iii) average number of learners per classroom, (iv) average number of learners per 
chair, (v) average number of learners per desk and (vi) dropout and repetition rates. 
According to Kuthemba (2000), the larger the average number of learners per teach-
er and per textbook the poorer the quality of available education. The assumption is 
that teachers with large numbers of learners would not have much time, if any, for 
individual learners. Similarly, the larger the number of learners per textbook the less 
time individual learners have to access the book. Numbers of classrooms and class-
room furniture give an indication of the conditions of the schools the learners are 
in. Large numbers of learners per classroom show that there is not enough room to 
accommodate all learners such that some school may resort to the use of open space 
under trees as classrooms for learning. The large numbers of learners per chair and 
per desk show that some learners sit on the floor in school when learning. This is 
very common especially in primary schools. Dropout and repetition rates inform us 
of how effective the schooling system is to the learners and also how much wastage 
the system is experiencing. Wastage will be discussed in more detail later in the 
chapter. Table 12.7 shows the statistics for some of the indicators in primary schools 
in 1993 (before free primary education), in 1995 (soon after free primary education) 
and in 2008 (the most recent situation).

Perhaps the most important indicator is the teacher. Quality of teachers in terms 
of whether or not they are well trained and qualified is important because well-
trained teachers are likely to cope better with large classes, poor resources and other 
situations prevailing in Malawi schools. For this reason, we will pay particular at-
tention to the quality of teachers. Probably the biggest challenge faced by the Ma-
lawi Ministry of Education in terms of quality education is the provision of quali-
fied teachers. There is shortage of qualified teachers in both primary and secondary 
schools. Ministry of Education statistics show that less than 50% of all the teachers 
teaching in public secondary schools in Malawi are qualified (Ministry of Educa-
tion 2006). It was not possible to get the distribution of the percentage by subject 
but it is likely that the percentage of qualified mathematics teachers is lower than 
this average considering the low enrolment levels of student teachers majoring in 
mathematics at the various teacher education institutions.

One of the major factors that contribute to the shortage of teachers is low reten-
tion of qualified teachers by the Ministry of Education. For example, in 2008, a total 
of 1,261 teachers (402 for secondary and 859 for primary) left the education system 
(Ministry of Education 2008). This should be compared with the total number of 
teachers that are produced every year by teacher education institutions in Malawi. 
According to Ministry of Education (2008), all public secondary teacher educa-
tion institutions in the country graduate an average total of 391 teachers per year. 
This number is less than the total number of 402 teachers that left the Ministry of  
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Education in 2008, which is more or less the same number that leaves every year. It 
will not be possible for Malawi to overcome this challenge of shortage of teachers, 
and qualified teachers in particular, if more teachers are leaving than become avail-
able every year. This very low teacher retention rate also indicates a very high wast-
age in terms of teacher education expenditure by government. It was not possible 
to get teacher attrition numbers by subject, however, it is likely that mathematics 
teachers suffer the same or higher attrition rate as the average teacher. Since math-
ematics is taught to all learners, and has more time allocated in school timetable, 
schools suffer shortage of qualified mathematics teachers a lot more than they do 
for elective subjects. For the primary sector, all primary school teacher colleges in 
the country graduate about 1,596 teachers per year (Ministry of Education 2008). 
Comparing this with the 859 primary school teachers that left the education system 
in 2008, we see that it is more than half of the teachers produced each year. If this 
trend continues, it means that for every two years, a whole year’s output is lost 
hence whole year’s government’s expenditure for a cohort in all primary teacher 
education colleges is wasted.

Low salaries and poor conditions of service are some of the main reasons that 
teachers resign. There may not be much that the government of Malawi would af-
ford in the short-distance future, however, the very low retention rate of teachers 
should trigger plans of improving teachers’ conditions of service in the long term. 
We believe there is another way of reducing attrition especially for newly qualified 
teachers who have been educated by public funds. Teacher education is free in the 
government primary teacher training colleges in Malawi, and is heavily subsidised 
at government secondary teacher education institutions and at public universities. 
Teachers who get their training through these heavily subsidised or free education 
should be bonded to teach in the system for a specified number of years. Currently, 
there is no bond at all such that teachers who benefit from these institutions are free 
not to teach in the system or not teach at all. This is one of the areas where public 
funds are wasted. Introducing a bond might also limit interested potential teachers 
to being those that are indeed willing to serve in the system and so reduce the attri-
tion rate.

Table 12.7  Some indicators of “quality” in Malawi primary schools. (Sources: World Bank 
Discussion paper No. 350, Ministry of Education 2008)

Indicator 1993 1995 2008

Average number of learners per teacher 68 68 78
Average number of learners per qualified teacher 88 131 90
Average number of learners per textbook 3 7 5
Average number of learners per classroom 102 422 112
Average number of learners per chair 32 56 NA
Average number of learners per desk 18 31 NA
Total number of dropouts NA 260,086 161,532
Total number of repeaters 329,872 474,806 698,205

NA indicates not available
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The importance of well-trained and qualified teachers cannot be overempha-
sised. As mentioned before, qualified teachers are likely to be better equipped to 
teach within the constraints of Malawi schools. The qualified teachers go into teach-
ing fairly well aware of the challenges since they do their teaching practice in the 
same. Untrained teachers on the other hand, face these challenges while grappling 
with their own limitations in how to deal with them. While we appreciate the ne-
cessity of unqualified teachers where there are no qualified teachers, unqualified 
teachers should not be a long-term solution to teacher shortage. We would recom-
mend that Malawi invests in teacher education and find feasible ways of training the 
unqualified teachers. Malawi might not be able to provide well for all its learners in 
the school system, but should strive at providing qualified teachers. This we believe 
is a crucial step towards quality education.

We note that while Malawi was trying to achieve quantity in terms of numbers 
of learners enrolled in schools, quality was overlooked. Free primary education was 
introduced before any preparations were in place (Chimombo 2005), consequently, 
the system was overwhelmed by the huge expansion in enrolment. Politically, the 
large numbers of enrolment might look good but practically the schools are heav-
ily stretched and struggling to cope. It would have been more productive if the free 
primary education was planned some years ahead of time by increasing teacher edu-
cation output as well as planning and implementing strategies for teacher retention.

Another area where Malawi could do better is in the utilisation of the limited re-
sources that are available. As observed in Table 12.7, the school system has high num-
bers of dropouts and repeaters. With free primary education and heavily subsidised 
secondary education, the costs are wasted when learners drop out or repeat the year. 
Therefore, there is a lot of wastage of resources (Kuthemba 2000). Looking at the total 
number of 161,562 learners that dropped out of primary school in 2008, we note that 
it is equivalent to 2,071 average size classes or 259 single-stream primary schools. 
We can also look at the number of repeaters in a similar manner. The total number of 
698,205 repeaters translates to 8,952 classes and 1,119 single-stream primary schools. 
As was observed, there are many reasons for dropping out and the school system can-
not address them all, however, they can address the issues in the long term. Repetition 
is one factor that encourages dropout because some learners would rather leave school 
altogether than repeat the year. We believe that most of the repetition is unnecessary 
and that with carefully planned support to learners there would be no need for learners 
to repeat years in school. There is need for some sound policy on repetition; a policy 
that would significantly reduce repetition rates. Reducing repetition would reduce 
wastage and also reduce dropout rates and so further reduce wastage.

 Prospects of Change

Malawi has stated its commitment to mathematics, science and technology human ca-
pacity development. Her policy initiatives in this regard began with the vision 2020. 
Launched in 1997, the vision is to change Malawi’s economic base from reliance on 
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physical labour to a technologically driven economy (Malawi Government 1999) 
through the development of human capacity in mathematics, science and technology, 
by the year 2020. This vision is reflected in the National Science and Technology 
Policy Paper (Malawi Government 2001) which argues for expansion of University 
education “especially in the scientific, engineering and technological fields” (p. 22) 
and the expansion of postgraduate programmes. The Malawi Poverty Reduction and 
Strategy Paper, (Malawi Government 2002) and more recently, the Malawi Growth 
and Development Strategy Paper (Malawi Government 2006), which represent gov-
ernment’s blue print for poverty reduction, also echo the need for mathematics, sci-
ence and technology human capacity development. These commitments by the gov-
ernment offer prospects for providing quality mathematics to Malawi learners.

There are a number of prospects in the form of in-service teacher education ini-
tiative projects. We will give three examples here. The first is the Strengthening 
of Mathematics and Science in Secondary School Education (SMASSE) project, 
which started in 2001 and is funded by the Japanese Government through the Japan 
International Cooperation Agency (JICA). The project aims at improving the teach-
ing and learning of mathematics and science subjects by encouraging mathematics 
and science teachers to share their professional knowledge and skills, and to assist 
under-qualified teachers in schools. SMASSE started by mainly targeting under 
qualified mathematics and science teachers in one of the six education divisions 
in Malawi. Now the project plans to include all secondary schools in the country. 
Second example is an initiative funded by African Development Bank, and is called 
Secondary School Teacher Improvement Programme. The programme emphasises 
on the improvement of teachers’ content knowledge and particularly targets un-
qualified teachers teaching in community day secondary schools. The programme 
started in 2004 as in-service without academic qualification. It later developed into 
a Diploma in Education course through distance mode at Domasi College of Educa-
tion. The third example is a smaller project called the Hands-on-Activities for sec-
ondary mathematics and science. This is funded by USAID and is implemented by 
the University of Mzuzu in the northern part of Malawi. The purpose of this project 
is to improve the teaching of mathematics and science by developing and imple-
menting hands-own, interactive teaching methodologies that use readily available 
and inexpensive materials. The project involves assessing the needs of schools, 
developing hands-on activities appropriate for the schools and offering in-service 
training for teachers on the use of such activities in their classes. This project has 
worked with teachers in some parts of the northern region of Malawi.

 Critical Reflection of Prospects

Looking at the prospects for change, government’s commitment is in the form of 
policy and strategy papers, which do not seem to translate into observable actions 
of implementation. For example, in 2006 the government announced its intentions 
to establish a new university of science and technology in response to the National 
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Science and Technology Paper (Malawi Government 2001), but until now—almost 
five years on, there is no visible evidence to indicate serious plans of having this 
university. The policy and strategy papers indeed indicate commitment to math-
ematics and science education; nevertheless, they should have been followed by 
clearly observable actions which would have demonstrated the commitment. Such 
actions could include working with mathematics teacher education programmes, 
mathematics curriculum developers and mathematics teachers in schools to discuss 
the mathematics to be taught in schools that would suit the objectives of the policy 
papers, and also possible ways of teaching the mathematics in schools.

To a small extent, some observable actions were done for secondary schools 
through the in-service teacher education initiative projects presented in the previ-
ous section. It is appropriate that all the projects are implemented through teacher 
education institutions. However, there seem to be no coordination between the proj-
ects, each seems to run independently with no acknowledgement of the existence 
of the others. Coordination among these projects which all have a general aim of 
improving the teaching and learning of mathematics and science, would have made 
the projects richer and more likely have stronger products. Looking at the examples 
of projects which offer prospects for Malawi, one would notice that they are all for 
secondary school and not primary school mathematics, and that they are all funded 
by external bodies. This emphasis on secondary education and little attention to 
primary is problematic because improving teaching and learning of mathematics 
at secondary can only be effective for learners if their primary mathematics was 
learned well. The fact that all projects are funded by external bodies is also prob-
lematic if continuity is not guaranteed after the project funds expire. It is com-
mendable that teacher education institutions through government manage to secure 
funding for projects such as these; nevertheless, it is important to have plans for 
after the project phase. Apart from the SMASSE project where the government 
contributes to the in-service training of teachers as agreed with the Japanese gov-
ernment, we are not aware of any other commitment for the other projects. This is 
one area where the government could demonstrate its commitment by supporting 
the initiatives during and/or after the project funds expire. This support does not 
have to be in large amounts of funding but in ensuring that some use is made of the 
products of the project. For example, the teachers trained in the Hands-on-Activities 
for mathematics project, could be used to train other teachers within their districts 
at local in-service training.

The prospects, though problematic in many ways, illustrate the efforts and com-
mitment that Malawi as a nation is making towards the teaching of mathematics 
and towards education in general. However, Malawi still faces some huge chal-
lenges in its attempt to provide quality mathematics to all. The drastic increase in 
school enrolment has put tremendous pressure on the already meagre resources. 
These problems affect all subjects but are more acute for mathematics because it is 
attended by all learners.

According to the performance of learners at national examinations, there are 
some schools that seem to cope well in teaching mathematics despite the challenges 
Malawi faces. Research on such schools with the aim of learning from them how 
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they cope and manage to teach effectively would be useful in helping other schools. 
Nampota (2009) studied an exemplary secondary school that has high pass rates for 
physical science at Malawi Schools Certificate (O-level equivalent) examinations. 
Nampota found that effectiveness of teaching science at this school was not neces-
sarily due to availability of resources but the culture of the school. At this school, 
teachers worked closely together, for example, they could discuss lesson plans and 
they sometimes did team teaching. At the school, learners were encouraged to work 
in groups both in and outside the classroom. According to the learners, the groups 
were useful because there were always people to ask questions or discuss with apart 
from the teacher. Although Nampota did not study mathematics, this school also has 
high pass rates for mathematics and it is likely that their success in mathematics is 
also due to the same reasons. Another study, Chamdimba et al. (2008), conducted 
a base line survey of schools that have consistently performed well at national ex-
aminations and those that have not performed well. They found that the differences 
in the schools were not in resources or number of teachers as they had expected 
but rather in the administration and organisation of the schools. The main finding 
was that discipline is a major factor. The well-performing schools had good disci-
pline in both learners and teachers. Teachers arrived at school in time and remained 
in school throughout the working hours. The teachers prepared their lessons and 
had records of evaluations and learners’ progress. Learners were also disciplined 
in terms of attending classes and doing their school work. In comparison, the poor-
performing schools were not disciplined, teachers could come, teach their classes 
and go as they pleased during working hours, some could be absent without reason, 
as such there was very little interaction between the teachers. Learners were also 
not very disciplined in terms of attendance; there were a lot of absenteeism and 
skipping classes. Another interesting finding was the teachers’ perception of their 
learners. In the well-performing schools teachers generally perceived their learners 
as good and hard working while in the poor-performing schools teachers generally 
perceived their learners as not that good and not hardworking.

These findings are very important because the two sets of schools (well-per-
forming and poor-performing) had similar kinds of resources: teachers, textbooks, 
classrooms and furniture. The difference was in the administration of the schools. 
This is intriguing because heavy emphasis is placed on resources such that any lack 
of effective teaching and learning is blamed on resources. Looking at the indicators 
of quality that Malawi has developed, we notice that they are all about resources. 
While resources are indeed an important prerequisite in achieving quality in edu-
cation, it is not the only factor. Administration of the institutions, work ethics of 
teachers and attitudes of both teachers and learners towards education are also very 
important. Schools need good administration, good interaction between teachers, 
shared vision or understanding of effective and quality education, good attitudes 
towards education, among other things. Without these no amount of resources can 
result in effective teaching and learning. Therefore as Malawi continues to strive for 
quality education, and quality mathematics education, efforts should be made to ad-
dress these issues. There is a lot that can be done to achieve better quality of math-
ematics education within the constraints of resources that the Malawi schools face.
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 Conclusion

In this chapter, we have discussed equity and quality issues in mathematics educa-
tion in Malawi. Although most of the issues apply to education in general, we have 
highlighted specific issues in mathematics education. We have shown the inequity 
that exists in terms of opportunities for mathematics education where male learners 
and urban school learners have an advantage over female learners and rural school 
learners, respectively. This implies that females in rural schools are the most dis-
advantaged. Therefore, there is a need for sound policies and initiatives to address 
these inequities with special attention to females and rural schools. We have argued 
that Malawi can achieve better equity among its groups of learners by addressing 
the causes, most of which originate from earlier policies. We have also argued that 
the indicators of quality that the government developed assume that the more the 
resources the better the quality of education. However, this does not necessarily fol-
low as evident from research. Better quality mathematics education can be achieved 
by taking a more comprehensive view of quality and striving towards it. We have 
emphasised the importance of providing qualified teachers as a crucial step towards 
quality mathematics education. While we appreciate the limitations within which 
the Malawi education system operates, we are of the view that there is more Malawi 
can do within the limitations to provide more equity among its groups of learners 
and better quality mathematics education in schools.
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 Introduction

In 2008 two national policy reports addressing the improvement of mathematics 
education in the United States were released. Convened by a presidential execu-
tive order, the National Mathematics Advisory Panel (NMAP) released Founda-
tions for Success in March 2008. In June 2008, the National Council on Teacher 
Quality (NCTQ), a nonpartisan advocacy group, published No Common Denomi-
nator: The Preparation of Elementary Teachers in Mathematics by American Edu-
cation Schools (National Council on Teacher Quality 2008). Both reports frame 
their recommendations as responses to a continued crisis of low achievement and 
under-performance in mathematics of students in the United States. Both cite U.S. 
students’ weak standings in national and international comparisons, and both warn 
of dire consequences of inaction for the nation’s economic competitiveness, innova-
tion leadership, and quality of life. A year later, in June 2009, the Carnegie Corpo-
ration of New York and the Institute for Advanced Study (Carnegie-IAS) released 
The Opportunity Equation: Transforming Mathematics and Science Education for 
the Global Economy. Echoing the urgent call for change, this report positions math-
ematics and science education as central to all school reform initiatives. Together, 
these reports consider many components of mathematics education, including cur-
ricular content, standards and assessment, and instructional practices; all identify 
teacher quality as a critical lever for improving the mathematics learning of all 
students.

In this chapter, we examine these policy reports using an equity lens. It is our 
view that addressing the system-wide challenges in mathematics education requires 
understanding the problem of inequitable access to quality mathematics instruction; 
teaching for quality and teaching for equity are synergistic. We frame equity along 
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two dimensions: the kinds of mathematical knowledge to which students have ac-
cess and the opportunities for students to participate in classroom environments that 
support significant mathematics learning. In this analysis, we examine the extent 
to which each report explicitly addresses equity and also what the frameworks and 
recommendations imply for furthering an equity agenda. We offer our analysis as 
an examination of a single case of the relationship between the rhetoric of national 
policy and the challenge of achieving equity and access in an education system. 
Like every country, the United States possesses a number of particularistic features, 
including a highly decentralized school system with strong market influences and 
a political system grounded in democratic ideals. Nevertheless, the struggle to in-
crease educational access and opportunity within its schools is one shared by educa-
tors and policy makers in many national and regional school systems. We believe 
a close examination of recent U.S. policy documents from an equity perspective 
can be instructive, particularly on account of both the espoused commitment in the 
United States to equal opportunity and the influential role the United States has in 
the world.

Policy reports that examine and critique mathematics instruction are not neutral 
or apolitical; they articulate goals and visions from a particular stance. The reports 
analyzed here, for example, straddle two presidential administrations and evoke a 
continued federal/national interest in education. In the United States, this national 
emphasis sustains a growing shift from a traditionally local and decentralized edu-
cation system to one in which the federal government assumes roles such as moni-
tor and protector of the nation’s mathematical literacy (Lappan and Wanko 2003). 
How local stakeholders—states, districts, and teacher education programs—take 
up these recommendations will vary. Nevertheless, national reports do have status 
within ongoing discussions about mathematics education reform. Spillane (2008) 
observes:

National reports are one mechanism through which administrations attempt to lay out, reit-
erate, and press their agendas. Although not policy, individuals and agencies from Congress 
to the statehouse use reports, along with other policy texts, to inform and justify particu-
lar policy alternatives. …Whether or not the particular recommendations put forth in the 
national report are implemented, the report will contribute to the ongoing policy discourse 
by reifying them. (p. 638)

Assessing how these reports speak to equity concerns is critical, as it allows us to 
understand both the potential and the limitations of these visions for improving 
mathematics learning.

 Equity as an Analytical Lens

In order to examine the stance toward equity implicit in these policy documents, we 
developed an analytical lens that includes two dimensions: the kinds of mathemati-
cal knowledge to which students have access and the opportunities for students to 
participate in classroom environments that support significant mathematics learning.
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Equity as Access to High-Value Mathematical Knowledge

The kinds of mathematical knowledge to which students have access and the pur-
poses ascribed for learning mathematics are integral to any equity agenda. Histori-
cally mathematics competence has been applied as a filter for higher education and 
employment opportunities, creating an inequitable distribution not only of income 
but of skills and power (Moses and Cobb 2001). A central component of equitable 
mathematics instruction is access to mathematical knowledge that has social, aca-
demic, and economic currency.

For over two decades, educators and researchers have challenged existing con-
ceptions of mathematical knowledge as the ability to memorize and apply rules 
and procedures, noting both the lack of flexibility and connectedness in this way 
of knowing and asserting that it has limited value beyond that assigned to it by 
schools (National Research Council [NRC] 1989; National Council of Teachers of 
Mathematics [NCTM] 1989, 2000; Skemp 1978). Haberman (1991) used the term 
“pedagogy of poverty” to describe instructional approaches characterized by low 
expectations, tight teacher control, and focus on isolated skill development with 
limited opportunities for critical thinking. This pedagogy, he argued, which is the 
“coin of the realm” in urban schools, produces graduates who possess basic skills 
but are “nonthinking, underdeveloped, unemployable youngsters” (p. 294).

Haberman’s (1991) call for “good teaching” to replace the pedagogy of poverty 
bears a family resemblance to the curricular emphasis on conceptual understanding, 
reasoning, problem solving, and communication advocated by many mathematics 
educators (Hiebert et al. 1997; Carpenter and Lehrer 1999). This emphasis is central 
to both sets of curriculum standards published by NCTM (1989, 2000), which out-
lined mathematics knowledge both in terms of content domains—number and op-
erations, algebra, geometry, measurement, and data analysis and probability—and 
thinking processes such as problem solving, reasoning and proof, communication, 
and representation. Carpenter and Lehrer (1999) suggest that such conceptually con-
nected mathematics knowledge is generative: “When students acquire knowledge 
with understanding, they can apply that knowledge to learn new topics and solve 
new and unfamiliar problems” (p. 19). Others argue that mathematics knowledge 
that includes reasoning and problem solving prepares young people to participate in 
a democratic society and succeed in a technology-based, post-industrial economy 
(Boaler and Staples 2008).

Some scholars and educators are quick to warn of the potential dangers of 
placing sole emphasis on conceptual knowledge and process skills. Kilpatrick 
et al. (2001) apply the term mathematical proficiency to describe knowledge that 
integrates procedural and conceptual understanding. Mathematical proficiency 
comprises five intertwined strands: conceptual understanding, procedural flu-
ency, strategic competence (ability to represent and solve problems), adaptive 
reasoning (including reflection, explanation, and justification), and a productive 
disposition to viewing mathematics as useful. Equity in mathematics education, 
from this perspective, includes access to the mathematics skills, discourses, and 
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ways of thinking that are valued and rewarded in mainstream culture. Some argue 
further that mathematical proficiency is necessary for students to engage in criti-
cal analysis of social conditions and unjust power relations in their lives—what 
Gutstein (2006) calls “reading the world”—in order to begin to effect change (see 
also Gutierrez 2002).

Equity as Opportunities to Learn

In addition to providing students access to powerful and socially valued math-
ematics, achieving equity includes ensuring that students have the support they 
need to learn it. The research evidence is clear that the instructional environment 
and teachers’ practices are critical to creating opportunities for students to learn 
mathematics (Hiebert and Grouws 2007; Franke et al. 2007). The opportunities-
to-learn dimension is particularly important in our discussion of equity for two 
related reasons. First, teaching for mathematical proficiency, as discussed above, 
is considerably more challenging than teaching a set of rules and procedures 
(Ball 2001; Schoenfeld 1998). Students must learn to reason about, think with, 
and apply knowledge of procedures and relationships in a variety of situations. 
Stein et al. (1996) used the term high cognitive demand to refer to instructional 
tasks that call for and emphasize meaning and thinking. Their research on middle 
school mathematics classrooms revealed that teachers routinely allowed the cog-
nitive demand of tasks to drop. Teaching for high cognitive demand requires 
providing adequate support and scaffolding of students that assists them in un-
derstanding the task, making connections to their existing understanding, and 
accomplishing the task without reducing its overall complexity (Henningsen and 
Stein 1997).

The opportunities-to-learn dimension is also important when considering in-
structional practices appropriate for students who traditionally have been margin-
alized in education (and in other social institutions). The tendency for instruction-
al practices in classrooms populated by low-income and racial minority students 
to focus on low-level skills has been well documented (Anyon 1981; Dowling 
1998; Haberman 1991). Moreover, a number of studies have illustrated the ways 
that discourses valued in school tend to reflect ways of interacting and thinking 
common in the homes of children from dominant social and economic groups; 
these discourses are often foreign to children from homes on the margins of soci-
ety (Delpit 1988; Lerman 2000; Lubienski 2000; Zevenbergen 2000). As a result, 
teaching for equity in mathematics requires instructional practices that support 
students in gaining access to and developing the kinds of skills necessary for 
mathematical proficiency. Research on successful teachers in low-income settings 
highlights the importance of helping students build on their existing knowledge 
to develop new understandings and addressing gaps in their knowledge without 
reducing expectations for conceptually complex thinking and problem solving 
(Ladson-Billings 1997).
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 Overview of Reports and Methods

The three reports analyzed here are recent contributions to the ongoing discussion 
in the United States about improving mathematics instruction. We chose to examine 
these documents because of their focus and timeliness. Whereas other policy reports 
have attended to relevant topics such as standards and accountability, or teacher 
recruitment and retention, these three reports allot considerable attention to the na-
ture and quality of mathematics instruction. Each report speaks to an overlapping 
audience of educators, policy makers, and local, state, and federal school personnel.

Published within a year and a half of each other, the three reports are contem-
poraneous, and the more recent reports reference the earlier ones. All three reports 
frame the problem in similar ways: evidence from countless national and interna-
tional assessments suggest mediocre mathematics achievement and learning in the 
United States. The reports share concerns about how such weak and incomplete 
learning may impact the future of individual citizens and the country as a whole.

Commissioned by an executive order from the Office of the President of the 
United States and comprised of scholars, researchers, and education officials, the 
NMAP was charged with examining research on “proven-effective and evidence-
based mathematics instruction” and developing recommendations regarding in-
structional practices and programs, standards and assessments, curricular content, 
teacher recruitment and professional development, and research agendas (NMAP 
2008, p. 71). Released in March 2008, the NMAP report warns that weak student 
performance in mathematics threatens not only U.S. competitiveness in the global 
economy but also national security and quality of life. The report attributes this dire 
state to system-wide failure:

This Panel, diverse in experience, expertise, and philosophy, agrees broadly that the deliv-
ery system in mathematics education—the system that translates mathematical knowledge 
into value and ability for the next generation—is broken and must be fixed. This is not a 
conclusion about teachers or school administrators, or textbooks or universities or any other 
single element of the system. It is about how the many parts do not now work together to 
achieve a result worthy of this country’s values and ambitions. (p. 11)

The NMAP focused on the preparation of students for entry into and success in 
Algebra, framed in the report as “a demonstrable gateway to later achievement” 
(p. xiii). The NMAP report heralded a significant and unprecedented federal interest 
in influencing and shaping school mathematics education.

Three months after publication of the NMAP report, the NCTQ, a nonpartisan 
advocacy group, released No Common Denominator, a report focused on the math-
ematics preparation prospective teachers experience in education schools in the 
United States. In this report, a Mathematics Advisory Group of mathematicians 
and K-12 mathematics teachers analyze the program requirements and mathemat-
ics coursework in a sample of teacher preparation programs across the country. 
The NCTQ echoes concerns over students’ poor performance on international and 
national tests, and attributes this in part to weak content knowledge of elementary 
mathematics teachers: “…We are now on a treadmill in education. We fail to teach 
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mathematics well, and our weak students become the next generation of adults, 
some of whom become the teachers who produce the next crop of weak students” 
(p. 61). It advocates reforms to teacher preparation programs, emphasizing math-
ematics content coursework.

In June 2009, the Carnegie Corporation of New York and the Institute for Ad-
vanced Study (Carnegie-IAS) Commission on Mathematics and Science Education 
released The Opportunity Equation. Comprised of mathematicians and scientists, 
educators and researchers, and leaders of business and cultural organizations, the 
commission urges action to bridge the gap between the current system and the de-
mands of the future: “We believe that mathematics and science education as cur-
rently provided to most American students falls far short of meeting their future 
needs or the needs of society” (p. 7). An overarching recommendation is to “‘Do 
school differently’ in ways that emphasize the centrality of math and science to edu-
cational improvement and innovation” (p. 2). The report also emphasizes repeatedly 
the dual needs for excellence and equity in math and science education, noting that 
these are critical for innovation, economic growth, and democratic participation.

Data Analysis

Using document analysis, we first examined how each report addresses equity con-
cerns explicitly. We then considered implications of the report recommendations for 
the kinds of content students should learn and opportunities to learn. We coded each 
report in its entirety, but focused on sections describing curricular content, instruc-
tion, and teachers and teaching. Finally, we looked across the three reports with 
respect to the two dimensions of our framework, developing conjectures about the 
equity stance implicit in each and looking for patterns across the three.

 Analysis: Looking for Equity

In the following sections, we present our findings. We begin by describing how the 
reports attend to equity concerns explicitly. We then discuss the reports’ recommen-
dations for content and instruction through an equity lens, noting how each defines 
the nature of mathematics to be learned and addresses the opportunity-to-learn di-
mension of instruction.

Explicit Attention to Equity

The Carnegie-IAS report is the only one of the three that explicitly acknowledges eq-
uity as a goal of mathematics education reform. The report’s first sentence confronts 
the problem of inequitable access to effective, quality mathematics instruction:
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The United States must mobilize for excellence in mathematics and science education so 
that all students—not just a select few, or those fortunate enough to attend certain schools—
achieve much higher levels of math and science learning. (p. 1)

The report urges a transformation of mathematics and science education to “deliver it 
equitably and with excellence to all students” (p. 1). Framing mathematics and science 
knowledge as “fundamental to sound decision making” (p. 1) as well as to a range of 
fields, from technology and business to health and human services, The Opportunity 
Equation regards deep mathematics and science learning as integral to both individual 
attainment and national growth and innovation. The report suggests the following goal:

Knowledge and skills from science, technology, engineering, and mathematics—the so-
called STEM fields—are crucial to virtually every endeavor of individual and community 
life. All young Americans should be educated to be ‘STEM-capable,’ no matter where they 
live, what educational path they pursue, or in which field they choose to work. (p. 2)

The Carnegie-IAS attention to equity contrasts starkly with that of the other two 
reports. The NMAP proposes a qualified call for equity as access to an algebraic 
course pathway: “All school districts should ensure that all prepared students have 
access to an authentic algebra course—and should prepare more students than at 
present to enroll in such a course by Grade 8” (p. 23). The NMAP report primarily 
refers to inequity using language about achievement and learning gaps between 
groups of students (by race or socioeconomic status). The NMAP suggests that 
there are effective techniques to improve early childhood mathematics education, 
particularly for those students from low-income backgrounds, but cautions that re-
search on efficacy of such interventions is needed. Meanwhile, in its analysis of 
teacher preparation programs, the NCTQ report does not address issues of equity. 
Indeed, it appears that expanding access to quality mathematics instruction is not 
part of the report’s agenda. The report states, “The fact that a large and increasing 
number of teacher candidates applying for admission to teacher preparation pro-
grams are transferring from two-year institutions further underscores the need to 
establish a uniform and higher threshold for admission [to teacher preparation pro-
grams]” (p. 53), implying that excluding certain teacher candidates is preferable to 
developing opportunities to increase their mathematics knowledge and to broaden 
the pool of prospective teachers.

A Narrow Conceptualization of Mathematics

Notably, all three reports refer to “mathematical proficiency” (Kilpatrick et al. 2001) 
in their descriptions of the mathematics students need to learn. However, beyond 
this cursory acknowledgement, the NMAP and NCTQ reports emphasize procedur-
al fluency (with conceptual understanding framed as a facet of fluency) over other 
aspects of proficiency. The Carnegie-IAS report articulates a more comprehensive 
vision of mathematical proficiency, but its suggestions of how such a vision might 
be realized are vague. As such, the reports construe mathematics narrowly, with pri-
mary emphasis on procedural knowledge and the accumulation of facts and skills.
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Both the NMAP and NCTQ reports suggest a skills-oriented trajectory for learn-
ing mathematics. The reports characterize mathematical knowledge as sequential 
and cumulative, and then assert that this necessitates teaching mathematics through 
a fixed sequence. The NMAP claims

…the structure of mathematics itself…requires teaching a sequence of major topics (from 
whole numbers to fractions, from positive numbers to negative numbers, and from the 
arithmetic of rational numbers to algebra) and an increasingly complex progression from 
specific number computations to symbolic computations. The structural reasons for this 
sequence and its increasing complexity dictate what must be taught and learned before 
students take course work in Algebra. (p. 17)

Both reports organize lists of these foundational skills as “Essential Compo-
nents” (NCTQ) or “Critical Foundations” (NMAP). However, while the reports 
allude to conceptual understanding as important, neither report operationalizes 
the term. Descriptions of skill development do not mention what deep under-
standing entails.

Both the NMAP and NCTQ reports privilege instruction of mathematical pro-
cedures and suggest that procedural skills must be established in order for students 
to solve problems. This sequencing is a reversal of the stance advocated by some 
researchers of mathematics learning that sense-making is part of mathematics learn-
ing and problems are authentic places in which learners both apply prior knowledge 
and construct new understandings. The NMAP report advises:

By the term proficiency, the Panel means that students should understand key concepts, 
achieve automaticity as appropriate (e.g., with addition and related subtraction facts), 
develop flexible, accurate, and automatic execution of the standard algorithms, and use 
these competencies to solve problems. (p. 22)

In its discussion of what teachers need to know about mathematics, the NCTQ’s 
attention to problem solving is limited: “[Teachers] should learn that a large variety 
of word problems can be solved with either arithmetic or algebra and should under-
stand the relationship between the two approaches” (p. 55).

The Carnegie-IAS report articulates a different view of mathematical thinking:

What is too often missing today for students at all levels is a focus on acquiring the reason-
ing and procedural skills of mathematicians and scientists, as well as a clear understanding 
of math and science as distinct types of human endeavor. Learning math and science from 
textbooks is not enough: students must also learn by struggling with real-world problems, 
theorizing possible answers, and testing solutions. (p. 13)

The Carnegie-IAS report contends that mathematical knowledge involves not only 
procedural prowess but also “habits of mind and methods for discerning meaning 
that enable students to learn deeply and critically” (p. 7). In this vision of mathemat-
ics, grappling with real problems is part of the process of learning mathematics, not 
an outcome following skill acquisition. However, the Carnegie-IAS report does not 
develop fully what such a curriculum entails; in contrast with the lists and tables 
of essential, foundational skills in the NMAP and NCTQ reports, the Carnegie-IAS 
report provides no comparable suggestions. As a result, how stakeholders take up 
such recommendations is open to interpretation.
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We also examined each report’s emphasis on particular domains in mathematics. 
Both the NMAP and NCTQ share a preoccupation with algebra and its place in the 
education pipeline, preparing students for a college (calculus) trajectory. In contrast, 
the Carnegie-IAS report suggests the development of a rigorous high school math-
ematics course sequence that attends to statistics, data analysis, and discrete math-
ematics operations. It explicitly notes that such a pathway should be as rigorous as 
the preexisting calculus pathway, so as not to be confused with an ability-tracking 
program. This proposal broadens the scope of mathematics emphasized and has the 
potential to encompass student mathematical sense-making, but at present is not de-
veloped in the same depth as the traditional arithmetic/algebra/calculus trajectory.

Limited Attention to Role of Instruction in Opportunities to Learn

The instructional learning environment and teacher practices are critical to sup-
porting opportunities to learn mathematics for understanding. Teaching for math-
ematical proficiency requires attending to more than the mathematical content to 
be learned. Dimensions of instruction such as the selection and design of tasks for 
teaching particular concepts, the use of tools and representations, the management 
of classroom discourse, and the development of class norms that support reason-
ing and justification are essential to fostering learning environments in which all 
students may have access to significant mathematics (Kilpatrick et al. 2001; Boaler 
2002; Boaler and Staples 2008; Hiebert et al. 1997; Franke et al. 2007). Across all 
three reports, the limited attention to instructional practice in the recommendations 
to improve mathematics achievement is noteworthy.

A prevalent implicit perception is that of mathematics teaching as content deliv-
ery. The NCTQ report acknowledges that teacher practices such as using formative 
assessment to understand student (mis)conceptions are important, but does not sug-
gest how mathematical tasks or classroom discussions might support the develop-
ment of ideas. The NMAP report constrains its recommendations by focusing on 
extreme approaches of instruction—teacher-directed or student-centered. While it 
notes that research does not support the exclusive use of either approach, the NMAP 
makes few suggestions about what is important to instruction, like student investi-
gation and explanation, or how teachers set up tasks or foster class discussion. The 
NMAP report recommends “explicit systematic instruction” (p. 48) on a regular 
basis for students with learning disabilities. Such instruction would include teacher 
demonstration of specific strategies and opportunities for student practice. How to 
prevent this instruction from becoming routine and drill-oriented is unclear.

The Carnegie-IAS report diverges from the other reports in its description of the 
mathematical activity necessary for attaining excellence and equity. It recommends, 
for example, the use of instructional materials that are “rigorous, rich in content, 
motivating, and clearly connected with the demands of further education, work, and 
family and community life” (p. 51). This recommendation implies that instruction is 
more than content delivery, but is vague on what such practice entails.
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 Discussion

Our analysis reveals that even as these reports make some useful recommendations 
with respect to improving the quality of mathematics instruction, they overlook the 
implications of their proposals for issues of equity. In this section, we draw on our 
framework to consider the implications for equity of our two key findings—that the 
reports frame mathematics knowledge narrowly and privilege content knowledge 
over other aspects of teacher knowledge for practice.

Access to High-Value Mathematical Knowledge

To what extent do these reports emphasize a conception of mathematics knowl-
edge likely to increase access and equity? As indicated earlier, both the NMAP and 
the NCTQ reports place central emphasis on the procedural aspects of mathemat-
ics knowledge and argue for learning sequences that position problem solving and 
reasoning as advanced skills to be taken up only once basic procedural and factual 
knowledge is mastered. This segmented conception of mathematical learning ig-
nores research findings that demonstrate positive learning outcomes from instruction 
in which problem solving and strategy development are integrated with the teaching 
and learning of number sense and basic operations (Carpenter et al. 1989). Also, in 
prioritizing automaticity and procedural prowess, these reports overlook the signifi-
cance of maintaining cognitive complexity throughout instruction (Stein and Lane 
1996). Clearly, one intention of these two reports is to guard against instructional 
practices that disregard procedural fluency as a goal, and we concur that a mathemat-
ics education that does not include procedural fluency will not achieve equity.

At the same time, a conception of mathematics that focuses narrowly on pro-
cedural skills to be taught in a rigid sequence is equally perilous. In order for all 
students to gain access to higher mathematics, all students need early and consis-
tent opportunities to develop all strands of knowledge associated with mathematical 
proficiency (Kilpatrick et al. 2001). Procedural fluency alone is insufficient and, 
if taught in isolation, will continue to disadvantage those students already at the 
margins of society by restricting their opportunities to developing conceptual un-
derstanding, strategic competence, adaptive reasoning, and productive dispositions 
toward mathematics (the other four strands). Such an interpretation of mathemat-
ics risks leaving the most vulnerable students with limited mathematical skills. 
Through its attention to mathematics understanding as critical to developing logical 
and scientific ways of thinking and reasoning, the Carnegie-IAS report acknowl-
edges dimensions of mathematical knowing beyond procedural fluency. Unfortu-
nately, it does not provide any detail on what this kind of mathematics looks like.

Another risk of the narrow conceptions of mathematics promoted by these  
reports is the way students are positioned as consumers of the knowledge of  
others and are not encouraged to generate their own knowledge, draw their own 
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conclusions, or apply their knowledge in novel situations. In this sense, the concep-
tion of mathematics promoted in the NMAP and NCTQ reports leaves little room 
for the development of critical mathematics knowledge (Gutierrez 2002; Gutstein 
2006), a form of mathematics knowledge that positions students as users of math-
ematics and encourages them to apply their knowledge to uncover and challenge 
societal injustices.

Privileging Teacher Content Knowledge Before Other Forms  
of Knowledge

Designing instruction to teach toward developing mathematical proficiency is de-
manding, complex work. There is little doubt that deep subject matter knowledge is 
essential for teachers to be effective in this endeavor. The necessity of mathematics 
knowledge in teaching is a central theme of all three reports. The NMAP recom-
mends, “Teachers must know in detail the mathematical content they are respon-
sible for teaching and its connections to other important mathematics, both prior to 
and beyond the level they are assigned to teach” (p. 37). The NCTQ report concurs, 
“Future teachers do not need so much to learn more mathematics, as to reshape what 
they already know” (p. 25). The Carnegie-IAS report advocates that

We must also aim to build a teaching profession in which all teachers, in every discipline 
and from the elementary grades on up, are ‘STEM-capable,’ or sufficiently conversant with 
math and science content and relevance to infuse their classrooms with rigorous, motivat-
ing math and science learning. (p. 35)

We find, however, that the reports privilege teacher content knowledge over oth-
er forms of knowledge that are also necessary to teach mathematics effectively and 
engage different learners. The NCTQ report states, “Simply requiring more math-
ematics does not necessarily lead to better teaching” (p. 28), but does not elaborate 
on what other knowledge or skills are necessary. The Carnegie-IAS report outlines 
in slightly more detail what teachers must know and do:

Educators need expertise and support in using instructional techniques that address the 
learning needs of the diversity of American students at all grade levels. Schools must be 
designed to enable adults to assess students’ learning needs and strengths and develop 
customized approaches to instruction (what activity, at what intensity and over how long, 
toward what end) to bring all students to high levels. This is fundamentally a new kind 
of teaching and learning; it challenges teachers to possess and use a larger repertoire of 
instructional techniques, applied in alignment with the student’s needs and the demands of 
the course work. (pp. 51–52)

In emphasizing teachers’ knowledge of subject matter, however, these reports miss 
an opportunity to extend awareness and understanding of the complex nature of 
teaching and the multiple knowledge capacities teachers activate in practice.

More than two decades ago, Shulman (1986) conceptualized three catego-
ries of content knowledge necessary for teaching—subject matter knowledge,  
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pedagogical content knowledge, and curricular knowledge—and extended the 
knowledge base to encompass knowledge of students and pedagogy. Teachers 
cannot rely on content knowledge alone to organize classrooms in which students 
engage with mathematical tasks at levels of high cognitive demand, or to bridge 
students’ existing knowledge to new concepts, or to orchestrate classroom discus-
sions in which students question, explain, and justify mathematical ideas (Borko 
and Whitcomb 2008; Boaler and Staples 2008). These reports are either silent or 
extremely vague about how teachers might use extensive subject matter expertise to 
develop instructional practices and classroom environments that engage all students 
in the learning of deep mathematics.

 Conclusion

Are these recommendations likely to launch the reforms that are necessary to 
achieve goals of an equity agenda? Our answer is no. In different ways, these re-
ports have missed an opportunity to embrace a complex view of mathematics and 
mathematics teaching or to take seriously the relationship between equity and edu-
cational quality. In this way, and to the extent that their recommendations are taken 
up, we can only predict that they will work against the equity agenda.

References

Anyon, J. (1981). Social class and social knowledge. Curriculum Inquiry, 11(1), 3–42.
Ball, D. L. (2001). Teaching with respect to mathematics and students. In T. Wood, B. S. Nelson, 

& J. Warfield (Eds.), Beyond classical pedagogy: Teaching elementary school mathematics 
(pp. 11–22). Mahwah: Erlbaum.

Boaler, J. (2002). Learning from teaching: Exploring the relationship between reform curriculum 
and equity. Journal for Research in Mathematics Education, 33(4), 239–258.

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching ap-
proach: The case of railside school. Teachers College Record, 110(3), 608–645.

Borko, H., & Whitcomb, J. A. (2008). Teachers, teaching, and teacher education: Comments on 
the National Mathematics Advisory Panel’s report. Educational Researcher, 37(9), 565–572.

Carnegie Corporation of New York—Institute for Advanced Studies Commission on Mathemat-
ics and Science Education. (2009). The opportunity equation: Transforming mathematics and 
science education for citizenship and the global economy. New York: Carnegie Corporation 
of New York—Institute for Advanced Studies Commission on Mathematics and Science Edu-
cation. http://www.opportunityequation.org/TheOpportunityEquation.pdf. Accessed 16 June 
2009.

Carpenter, T. P., & Lehrer, R. (1999). Teaching and learning mathematics with understanding. In 
E. Fennema & T. A. Romberg (Eds.), Mathematics classrooms that promote understanding 
(pp. 19–32). Mahwah: Lawrence Erlbaum.

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C.-P., & Loef, M. (1989). Using knowledge 
of children’s mathematics thinking in classroom teaching: An experimental study. American 
Educational Research Journal, 26(4), 499–531.

E. Bose and J. Remillard



189

Delpit, L. (1988). The silenced dialogue: Power and pedagogy in educating other people’s chil-
dren. Harvard Educational Review, 58(3), 280–298.

Dowling, P. (1998). The sociology of mathematics education: Mathematical myths, pedagogical 
texts. London: Falmer.

Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. 
In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning 
(pp. 225–256). Greenwich: Information Age Publishing.

Gutierrez, R. (2002). Enabling the practice of mathematics teachers in context: Toward a new 
equity research agenda. Mathematical Thinking and Learning, 4(2 & 3), 145–187.

Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy of so-
cial justice. New York: Taylor & Francis.

Haberman, M. (1991). Pedagogy of poverty versus good teaching. Phi Delta Kappan, 73(4), 290–
294.

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-
based factors that support and inhibit high-level mathematical thinking and reasoning. Journal 
for Research in Mathematics Education, 28, 528–549.

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ 
learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and 
learning (pp. 371–404). Greenwich: Information Age Publishing.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., Olivier, A., & Hu-
man, P. (1997). Making sense: Teaching and learning math with understanding. Portsmouth: 
Heinemann.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn 
mathematics. Washington: National Academy Press.

Ladson-Billings, G. (1997). It doesn’t add up: African American students’ mathematics achieve-
ment. Journal for Research in Mathematics Education, 28(6), 697–708.

Lappan, G., & Wanko, J. J. (2003). The changing roles and priorities of the federal government 
in mathematics education in the United States. In G. M. Stanic & J. Kilpatrick (Eds.), A his-
tory of school mathematics (Vol. 2, pp. 897–930). Athens: National Council of Teachers of 
Mathematics.

Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.), Multiple 
perspectives on mathematics teaching and learning (pp. 19–44). Westport: Ablex.

Lubienski, S. T. (2000). Problem solving as a means toward mathematics for all: An exploratory 
look through a class lens. Journal for Research in Mathematics Education, 31(4): 454–482.

Moses, R. P., & Cobb, C. E. (2001). Radical equations: Mathematics literacy and civil rights. 
Boston: Beacon.

National Council on Teacher Quality. (2008, June). No common denominator: The preparation of 
elementary teachers in mathematics in America’s education schools. http://www.nctq.org/p/
publications/docs/nctq_ttmath_fullreport_20090603062928.pdf. Accessed 1 July 2008.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards. Res-
ton: National Council of Teachers of Mathematics.

National Council of Teachers of Mathematics. (2000). Principles and standards of school math-
ematics. Reston: National Council of Teachers of Mathematics.

National Mathematics Advisory Panel. (2008, March). Foundations for success: The final report of 
the National Mathematics Advisory Panel. Washington: U.S. Department of Education. http://
www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf. Accessed 1 May 2008.

National Research Council. (1989). Everybody counts: A report to the nation on the future of math-
ematics education. Washington: National Research Council.

Schoenfeld, A. (1998). Toward a theory of teaching-in-context. Issues in education, 4(1), 1–95.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Re-

searcher, 15(2), 4–14.
Skemp, R. R. (1978, November). Relational understanding and instrumental understanding. Arith-

metic Teacher, 3, 9–15.

13 Looking for Equity in Policy Recommendations for Instructional Quality



190

Spillane, J. P. (2008). Policy, politics, and the National Mathematics Advisory Panel Report: To-
pology, functions, and limits. Educational Researcher, 37(9), 638–644.

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to 
think and reason: An analysis of the relationship between teaching and learning in a reform 
mathematics project. Educational Research and Evaluation, 2(1), 50–80.

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical 
thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. Ameri-
can Educational Research Journal, 33(2), 455–488.

Zevenbergen, R. (2000). “Cracking the code” of mathematics classrooms: School success as a 
function of linguistic, social, and cultural background. In J. Boaler (Ed.), Multiple perspectives 
on mathematics teaching and learning (pp. 201–224). Westport: Ablex.

E. Bose and J. Remillard



191

Everything has been said before, but since nobody listens we 
have to keep going back and beginning all over again.

Andre Gide (1891)

 Introduction

In this chapter, I want to explore how issues of quality and equity are currently 
being quietly contested in a period of significant change in secondary school math-
ematics in England. The particular reforms I focus on are part of the Qualification 
and Curriculum Development Authority’s1 (QCDA) efforts to redesign the math-
ematics curriculum and assessment for 14–19-year-olds. More specifically, the UK 
government has remitted QCDA to develop coherent pathways for all learners of 
mathematics in the 14–19 age range. This policy trajectory analysis is primarily 
about the politics of mathematics education in England but also resonates with a 
range of international mathematics curriculum reforms. My hope is that this analy-
sis will open up a critical dialogue on current ‘reforms’ in mathematics education 
around the world and expose some of the principles and taken for granted assump-
tions framing those changes.

When I first proposed this chapter, one of the reviewers expressed the view that 
it had been done before. This raises an important question which I want to ex-
plore briefly at the outset. Am I, in the words of André Gide, simply ‘going back 
and beginning all over again’? The challenges of developing more equitable and 

1 QCDA is the national body responsible for developing the curriculum, improving and delivering 
assessments and reviewing and reforming qualifications.
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better quality mathematics education are as intractable as ever, and are not unique 
to England. Past critiques of political influences in curriculum design offer useful 
starting points (e.g. Ernest 1992, 1994) but it is self-evident that in and of itself such 
scholarly work has not disrupted the generally conservative trend of mathematics 
education over the last decades; hence the need for this volume. Moreover, the 
world is changing and in many places education is increasingly framed by neo-lib-
eral market discourses in which mathematics has a heightened importance in global 
competition. Such social and political changes demand a sustained critique which 
might require the development of new tools of analysis. Perhaps most challenging 
of all is the question of how mathematics education scholars can engage with the 
policy formation process to ensure more equitable/quality outcomes for all learners.

One of the difficulties in redesigning mathematics curricula is that amongst those 
involved in the policy debates, from civil servants to teachers’ representatives (e.g. 
teacher unions, subject associations, curriculum development agencies), there is 
little or no attempt to understand how different points and angles of view introduce 
tensions and contradictions in curricular aims, or of whether and how these ten-
sions should be resolved. In England, references to ‘the community’ of mathematics 
educators are often heard without any critique of the multiple perspectives held by 
various factions of such a community. Those in various positions represent differ-
ent ideologies, philosophies and social trajectories and use the words equity and 
quality without questioning whether or not they mean the same thing. For some 
(mathematics) educators, the idea that ‘all students are equal, but some are more 
equal than others’ (to borrow from Orwell) is subtly disguised beneath the surface 
of the current demand from government for greater ‘stretch and challenge’ for the 
‘most able’. And on the notion of quality, which is interlocked with varied views 
on the qualities of mathematics teaching and learning (Ernest 2004; Noyes 2007a), 
there is a notable space between the current ‘functional mathematics’ discourse in 
England, which is inspired by economic drivers, and the wonderful ‘secret garden 
of mathematics’ that Marcus du Sautoy (2009) wants all school children to discover. 
(N.B. This metaphor is problematic—the ‘garden’ would no longer be secret if ev-
eryone had discovered it and surely then the loss of mystique would render it far 
less romantic! See Lakoff and Nunez (2000), for a good critique of the ‘romance of 
mathematics’.)

Bourdieu explained that ‘the deepest logic of the social world can be grasped 
only if one plunges into the particularity of an empirical reality’ (1998, p. 2) so 
this is my plunging in to what is a rather complex set of political and educational 
processes and relationships. I am seeking to draw on Bourdieu’s notion of field to 
develop understanding of the positions and power-relations amongst the various 
individuals and stakeholder groups in the process of curriculum contestation. Such 
contestation is not as antagonistic as seen in the so-called US ‘math wars’ (Schoen-
feld 2004), as the quiet classificatory work of English schooling tends to render 
such political contestation invisible. Bourdieu’s field is a field of forces, rather akin 
to a magnetic or gravitational field, with varying directions and strength of force. 
The problem for any such analysis of the mathematics education field in England is 
its sheer scale and complexity. Moreover, much of the force exerted by individuals 
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and groups is not plain to see but is hidden in private conversations and meetings or 
is cumulative in effect through historical allegiances and differences. This explora-
tion of current developments in mathematics education for young people in their 
final two years of compulsory schooling (14–16-year-olds) in England can only 
really scratch the surface but I try to go into as much detail as is possible in this 
chapter. Having recently spent time trying to understand the US education system, 
I am increasingly aware of how little we understand one another’s national contexts 
and so this detail is not intended to deter readers but rather to help readers appreci-
ate the complexity of any national context. This also highlights the difficulty of 
communicating these issues to an international audience: context is all important 
and language is problematic.

Much of the ‘evidence’ for this study comes from my involvement in major stud-
ies of 14–19 mathematics education in England. One of these is as co-director of 
the Evaluating Mathematics Pathways project (www.nottingham.ac.uk/emp). This 
project brings a large multi-site team into contact with a wide range of stakeholders 
who are directly involved and/or keenly interested in 14–19 mathematics educa-
tion. Through this work, I have had privileged access to parts of the mathematics 
education field.

 The Context

The National Curriculum (NC) in England was introduced over 20 years ago through 
the Education Reform Act of 1988 and has since undergone a number of revisions 
(1991, 1994, 1999, 2007). Ernest (1992) discussed how various stakeholder groups 
contributed differentially to the establishment of that original NC. His categories 
(old humanists, industrial trainers, progressive educators and public educators) are 
still useful and not simply for England. They are not fixed and, indeed, the dis-
courses of these groups around the form and function of the curriculum shifts as the 
(education) world changes.

Young people follow the NC until they complete their compulsory schooling 
at age 16 (Year 11) with the General Certificate of Secondary Education (GCSE) 
qualifications. Obtaining five or more higher grades (A*-C) allows students access 
to a wide range of further educational opportunities. The majority of those achiev-
ing this level at GCSE proceed to the traditional academic track of Advanced level 
qualifications (General Certicificate of Education or GCE). The remainder by and 
large follow a wide range of vocational programmes. Advanced (A) level qualifica-
tions are the standard university-entrance qualifications and most students would 
study three or four subjects over the following two years, up to the age of 18 (Year 
13). A level Mathematics is a pre-requisite for most Science, Technology, Engineer-
ing and Mathematics (STEM) courses in higher education.

Mathematics education, as part of the broader STEM agenda is increasingly 
trumpeted as being critical for economic stability and productivity here in the 
UK (Roberts 2002; Sainsbury 2007), in Europe (Gago 2004) and in the rest of the 
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developed world (e.g. in the United States; National Academies 2007). The Roberts 
report on the UK’s ‘supply of people with science, technology, engineering and 
mathematics skills’ led to the announcement by the Chief Secretary to the Trea-
sury, in July 2002 of an inquiry into post-14 mathematics education in the United 
Kingdom. The resulting Smith Report (2004) Making Mathematics Count made a 
raft of recommendations which have resulted in considerable discussion and policy 
formation for 14–19 mathematics in England.

Most of the activity resulting from ‘Smith’ has been structural and a number of 
changes have occurred at GCSE level (GCSE, taken by 16-year-olds as the exit 
qualification from compulsory schooling). The recommendations grow out of a 
broad sense of ‘mathematics in crisis’, which is perhaps more of a panic about 
the supply of mathematically well-qualified STEM graduates and technicians. The 
report states that ‘it is clear that the overwhelming majority of respondents to the In-
quiry no longer regard current mathematics curricula, assessment and qualifications 
as fit for purpose’ (p. 6), but what purpose did the respondents have in mind? The 
majority public who do not use any of their school mathematics in any recognisable 
way and have many negative memories of their school mathematics experience 
were not contributors to the Inquiry report. So there appears to be a common, taken-
for-granted notion of this purpose in large part because certain stakeholder groups 
(e.g. industrialists and academics), with intersecting concerns about improved qual-
ity and quantity in supply, have a disproportionate say. The terms of reference are 
primarily concerned with creating a better qualified workforce capable of maintain-
ing the UK’s position in a changing and increasingly challenging global economic 
hierarchy.

There has been some criticism of the capitalist agenda for mathematics educa-
tion (Gutstein 2009; Noyes 2009b) but perhaps not enough is being done to ques-
tion the conservative trends which shape the day-to-day experiences of learners of 
mathematics in England. Critical mathematics educators have contributed to this 
debate but this does not seem to have much of an impact on mainstream mathemat-
ics education, in England at least. In Schoenfeld’s (2004) analysis of the ‘math 
wars’ in the United States, he urges for liberal and conservative antagonists to work 
towards a middle ground in which multiple purposes for mathematics education can 
fruitfully coexist. Similarly, Ernest (2004) has more recently rethought his views 
about the oppositional stance of various stakeholders to argue that the curriculum 
can accommodate all positions. I remain unconvinced by these arguments, appeal-
ing though they are, as such a middle ground seems to be an unstable place; the 
ridge between entrenched positions. Schoenfeld traces back the divisions in the 
United States over a century and similar roots to the English GCSE system can be 
found in the difference between the classical mathematics curricula of the grammar 
and public schools in England and the emerging practical mathematics for the new 
industrial classes in the nineteenth century (Rogers 1998). Schoenfeld’s plea for a 
resolution is made on the grounds that casualties result from any war. In contrast, in 
England there is no war but there are certainly casualties.

Mathematics education in England is now framed by a neo-liberal education cul-
ture in which markets, managerialism and performativity (Ball 2003, 2007, 2008) 
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are the tools employed by recent governments in their standards-raising agenda for 
schools and other public services. With such a taken-for-granted set of discourses in-
fluencing educational reform, there is a need for stakeholders to reconsider the pur-
poses for the mathematics curriculum (Gill 2004; Heymann 2003; Noyes 2007a, b). 
It is worth noting for international readers that standards in the United Kingdom 
are essentially performative, evidenced through increased test scores at ages 11, 14 
and 16. Our improved performance in the latest Trends in International Mathemat-
ics and Science Study (nces.ed.gov/timss) was heralded as a sign that standards in 
science and mathematics were improving. The headlines announced our place in 
the world’s top ten but tucked away in the press reports was the time-bomb that 
students were enjoying these subjects less and had on-going weaknesses in facility 
with number and algebra. The implications for quality here are significant and get 
us back to the question of not only the purpose of the mathematics curriculum but 
of schooling in general.

This mixture of neo-liberal educational policy and an economic drive for in-
creasing the supply of mathematically well-qualified young people has particular 
potency for 16-year-olds in England. The ‘terrors of performativity’ (Ball 2003) are 
most keenly experienced, for both teachers and learners, at the GCSE (aged 16). For 
some years so-called ‘league tables’ of school performance have been used to pro-
vide the parent/guardian/carer-customer with a means of comparing schools. The 
critical measure is the proportion of students in a school obtaining 5 or more A*-C 
grades at GCSE. Despite the refinement of these comparative tools to take account 
of progress made between 11 and 16 (Value Added), and then student background 
(Contextual Value Added), the raw measures continue to have a powerful effect on 
teacher behaviour. Since 2006, this ‘performance measure’ has included mathemat-
ics, i.e. 5 A*-C grades including English and mathematics. The pressure on teachers 
to maximise the number of C grades leads to an impoverished curriculum experi-
ence through teaching to the test, selective curriculum coverage and so on, as evi-
denced by the schools’ inspectorate’s recent report (Ofsted 2008). It is important to 
note that the factors having the largest impact on quality and equity in mathematics 
classrooms have originated from outside mathematics education. That said, these 
educational trends are not easily reversed as they are interlocked with the prevailing 
neo-liberal economic policy project of recent governments.

The grade C threshold, which is only attained by around half of students in math-
ematics, is considered an essential pre-condition for many future educational and 
career opportunities. It continues to be the most effective means of social stratifica-
tion that school assessments offer. The division at this ‘magical threshold’ (Bourdieu 
1998) favours students from higher socio-economic backgrounds and has mixed 
impact upon different ethnic groups. Students from the poorest fifth of homes are 
less than half as likely to achieve this grade C as those from the wealthiest quintile 
(Noyes 2009a). This situation is inequitable and has complex social causes which 
go beyond the scope of this chapter. In any discussion about how to increase attain-
ment, the nature of the curriculum and the value of the qualification (beyond its 
exchange value) often go unquestioned. However, during the last five years, since 
the Smith Report, a number of strategies have been developed to improve the qual-
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ity and appropriateness of mathematics qualifications for 16-year-olds, and so I now 
explore these in a little more depth.

 Recent Developments

Following one of the Smith Report recommendations (and also influenced by 
the parallel Tomlinson Report (DfES 2004) on 14–19 qualification reform), the 
QCDA has spent the last four years overseeing the Mathematics Pathways project. 
In response to these reports, the Government’s white paper 14–19 Education and 
Skills (DfES 2005) indicated the intention that all 16-year-olds should be able to 
demonstrate their ability to be functional with mathematics—whatever that means. 
Moreover, attaining a higher GCSE grade in mathematics (A*-C) would be predi-
cated upon passing functional mathematics at level 2.2 There is no space here to 
explore what ‘functional mathematics’ is (Roper et al. 2006) but suffice to say that 
it has been a challenging process to develop valid assessments of mathematical 
functionality. The QCDA has published functional skill standards (www.qca.org.
uk/qca_15565.aspx) which are helpful but still leave plenty of room for interpreta-
tion in practice.

The Smith report recommended that mathematics GCSE be reorganised into 
two-tiers, one for students who might be expected to get A*-D grades and the oth-
er for C-G grade students. This replaced the old three-tier system, within which 
the lowest attaining students could not attain a grade C which was considered a 
major disincentive. This does not, of course, alter the fact that around half of Eng-
lish young people do not get a grade C, so this new possibility is, for most, a mere 
mirage. A third aspect of the Pathways Project was to make GCSE mathematics 
a ‘double award’. Since many people consider mathematics to be more difficult 
than other GCSE qualifications it was conjectured, and stated as reality, that this 
would increase the status of the qualification by making it worth two GCSEs. 
Over the last three years, opinions about what proportion of the cohort should be 
doing a double-GCSE have varied, revealing some confusion about the purpose 
of this policy, from about 50% to ‘most or all’. This recommendation seems to 
have become entangled with that of stretching and motivating the top 10%. This 
point implies that the remaining 90% do not need motivating but it is evident that 
this is not the case (Nardi and Steward 2003). Our evaluation shows that in many 
schools only the top 50% of the students were entered for this pilot qualifica-
tion. This is one example—of which there are many—where qualifications get 
developed without the necessary time to think through the aims, and possible 
unintended consequences.

2  GCSE is a level 1/2 qualification with grades C and above equivalent to level 2.
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Two Models for Piloting

In 2005, Phase I of the Mathematics Pathways Project began when QCA contracted 
two teams to develop pathways models: the University of Leeds and King’s Col-
lege, London working with Edexcel (the latter being one of the three unitary award-
ing bodies (AB) in England).

The KCL/Edexcel model had a distinctive emphasis on mathematical modelling 
and the use of ICT, both within the course and in the assessment of the mathemat-
ics. Functional mathematics would be assessed by a computer-mediated test with 
portfolio assessment being proposed for trial at all levels. Their model was designed 
to engage students and build learner confidence through an emphasis on modelling 
and a belief that some big mathematical ideas are simply worthy of inclusion in the 
curriculum, whether of practical use or not.

The Leeds’ model aimed to develop ‘a curriculum and assessment structure 
which would encourage more students to study mathematics beyond compulsory 
schooling, engage and motivate students and provide students with a mathemati-
cally challenging experience within their capabilities’. Functional mathematics as-
sessment should consist of a competence and functionality element.

It seems that these two models reflect different visions of mathematics education 
(thinking back to Ernest’s categories) which is not necessarily a problem but needs 
consideration. The emphasis on mathematical proof and challenge sounds a little 
different from modelling and the use of relevant ICTs. Whether these distinctions 
are significant is unclear but suffice to say that the two groups seemed to represent 
different priorities, albeit with a fair degree of common ground.

Following the development of the Phase I models, QCDA contracted two Eng-
lish awarding bodies to develop various aspects of the Phase I models. The KCL/
Edexcel model was not fully implemented, due in part to the quite significant shift 
in pedagogy that would be required. In addition, the challenges of using ICTs 
proved problematic. Both piloting contractors designed and ran trial qualifications 
in 2006–2007. The aims for the second GCSE—additional mathematics—were not 
finalised in the two Phase I models and this lack of clarity has continued into the 
development of the pilot GCSEs. Initially, the two GCSEs are assessing the same 
programme of study although the second GCSE aims to have a greater emphasis 
on mathematical thinking and problem solving. This reflects changes in the new 
programme of study, within the 2007 NC, in which mathematical process skills 
(including mathematical thinking and problem solving) have a prominent position.

The pilots of these proposed GCSE qualifications were planned to run from Sep-
tember 2007 and would inform the final form of the qualification when implement-
ed in September 2010. The difficulties of working with such a tight developmental 
timetable have been further exacerbated by a number of major announcements. I 
have already referred to the two decisions about functional mathematics. As part of 
a suite of functional qualifications (English, mathematics and ICT), these seemed to 
have an increased status when the announcement was made that the qualifications 
would be ‘stand alone’ and act as a ‘hurdle’ to attaining GCSE mathematics. This 
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‘hurdle’ role would help to satisfy the critical employers who reported that GCSE 
mathematics did not equip their new employees with the necessary skills. How-
ever, this decision seemed to have a significant flaw; it left the government trapped 
between a rock and a hard place. If a significant number of students failed to get 
the functional mathematics qualification at the appropriate level, entries to further 
education courses would be hit and school performance would be seen to have 
dropped: all bad press. On the other hand, if the hurdle provided no real obstacle to 
attaining a grade C GCSE then why bother with it. So, in March 2009, following 
advice from Ofqual (the Office of the Qualifications and Examinations Regulator), 
the announcement was made that functional mathematics would not act as a hurdle. 
Immediately, the future of this qualification was thrown into some doubt as who 
would now take it. However, the Secretary of State hinted that ‘other incentives’ 
would help to ensure take up of the qualification. One of the disappointments in this 
process was that some (but certainly not all) of the development work on functional 
mathematics assessments was innovative and had the potential to be a powerful 
catalyst in influencing changes in mathematics teaching and learning.

The move to a two-tier GCSE has had an unintended impact on learners. For 
middle attainers trying to get a grade C, schools have experienced some difficulties 
in deciding the most appropriate tier of entry. The result appears to be a trend of 
entering a greater proportion of the cohort for the Foundation tier. Although they 
should still have access to the entire programme of study, there is the distinct pos-
sibility that a whole swathe of students will not encounter some of the more chal-
lenging aspects of mathematics assessed in the higher-tier GCSE. Combined with 
this is an increasing tendency, generated by the disciplinary power of league tables, 
to enter middle attaining students for GCSE early (e.g. at age 15) so that they can 
have more than one attempt at getting that all-important grade C. For many, GCSE 
mathematics is simply qualification currency and has little to do with mathematics 
per se. Few students who have achieved a grade C early will be motivated to retake 
in order to ‘improve their grade’. This means that students effectively underachieve 
and are far less likely to continue studying mathematics beyond GCSE. Even high 
attaining students who fail to get the highest grades may find themselves at a dis-
advantage when they apply to university, where oversubscribed places on popular 
courses are offered to candidates with A* and A only.

The third aspect of mathematics at GCSE is the double award. Early in the Path-
ways Project it became apparent that the regulations would not condone two awards 
arising from one programme of study. The piloted model of two GCSEs was be-
coming obsolete before one year of piloting had been completed. Meanwhile, the 
Advisory Committee on Mathematics Education (ACME, then chaired by Professor 
Adrian Smith), was working with QCDA and the Department for Children Schools 
and Families (DCSF) to reformulate an alternative vision for a linked pair of GC-
SEs. In December 2008, an announcement was made that from 2010 a linked pair 
of GCSEs would be piloted. These would together have to cover the programme of 
study and each would need to have additional content in order to meet regulatory 
requirements with regard to content overlap. We need to ask whose interest this 
proposal serves. ACME intends the linked-pair to be appropriate for all learners but 
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it seems highly unlikely that schools will enter students struggling to attain a grade 
C for two awards requiring the teaching of further content.

Most of this policy work occurs in and between the DCSF, QCDA, Ofqual and 
ACME. These are all powerful groups but the awarding bodies must not be ignored 
in this discussion. Exposed to the force of the examinations market, they dare not 
make radical changes and so an inherent conservatism acts as an impediment to 
change in assessments and therefore, most importantly upon pedagogy. The Smith 
Inquiry terms of reference included recommendations on pedagogy but due to the 
powerful influence upon teaching that slow-changing, high stakes assessments 
have, the rate of pedagogic change is systemically limited.

 Mapping the Field

In his work on the structure of the scientific field, Bourdieu (2004) describes the 
‘structural interlockings’ between individual scientists, labs, groups of labs, etc., 
and the same notion is helpful in my context. Here I am primarily concerned with 
the statutory curriculum but classroom experiences are linked, through a range of 
structural interlockings, to the decisions of policymakers. Any analysis is com-
plicated by the multidimensionality of such interlockings. For example, awarding 
bodies, regulated by Ofqual but operating under market principles in competition 
with one another, are ‘interlocked’ with public-service schools and a managerialist 
government in quite different ways from the subject associations or ACME. I have 
referred to these and a number of other important stakeholders above and here want 
to explore their relationships in the field of mathematics education, particularly 
policy formation. For mathematics education to become more equitable those social 
structures and forces which tend, intentionally or not, to reproduce social inequities 
must be understood and, where possible, challenged. The diagram (Fig. 14.1) is a 
simple map of the field that gives some indication of the competing positions and 
purposes for school mathematics and therefore how equity and quality get framed 
in policy discourse and documentation. The two dimensions of the page are limiting 
as this field is multidimensional and changes over time.

Perhaps it is easier to conceptualise 14–16 mathematics education as a land-
scape—an increasingly common metaphor in education. Elsewhere I used the meta-
phor of learning landscape to explore the impact of policy intervention in 11–14 
mathematics education in England (Noyes 2004). That analysis argued that geolo-
gy, climate, human intervention and time are all important dimensions for mapping 
the landscape. These are interdependent. Indeed, it might be argued that one of the 
key differences between geological change (e.g. structure of schooling and society), 
climate change (e.g. attitudes to learning, pedagogic trends) and human intervention 
(e.g. policy) is the typical timescale over which they act. Lemke (2000) explores 
such ‘scales of time’ in what he calls ‘ecosocial systems’, a metaphor not wholly 
dissimilar to that of the landscape. So, for example, in our mathematics education 
policy context in England, policy decisions can be made in days, implementation of 
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project proposals takes weeks, piloting of qualifications takes months, significant 
changes in the assessment takes years and deep shifts in classroom practice argu-
ably takes tens of years. This is just an example, of course, and we can imagine how 
these timescales might look different under different circumstances (e.g. the sudden 
impact of a new government).

Individuals with different values and aims for the curriculum can be found across 
this space, although there is a harmonisation of dispositions (Bourdieu 1984) to-
wards mathematics education in certain places. Where are Ernest’s progressive and 

Fig. 14.1  Positioning school mathematics education
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public educators here? Some can be found in schools but as I have tried to show 
there is a considerable tension between the performative culture of schools and 
what many would hold to be the values of public service. The same contrast is per-
haps not as great in the managerialism-politics or market-business space. On this 
diagram it is not possible—indeed, it would be ethically questionable—to name 
individuals. However, much of the influence is not through these structurally inter-
related groups but rather through particular powerful individuals. Anyone immersed 
in the murky waters of policy making, reforming and lobbying has a sense of who 
these individuals are and what their networks are but by their very nature the pro-
cesses by which they exert their influence are non-transparent.

The role of the awarding bodies is unique. They function within a market and 
are regulated by Ofqual but their influence upon classroom practice is consider-
able. The adage ‘what you test is what you get’ to describe the powerful influence 
of high stakes external testing highlights the ways in which conservative curricu-
lum influences hold sway. Combine this with the obsession with league tables and 
the UK government’s concern to meet its own targets for national examination 
performance at 16 and changes in assessment becomes high risk. In our system 
of three awarding bodies, each of which produces a large number of mathematics 
assessments every year, most assessment writers have been apprenticed into the 
house style and this too means there is little space for innovation. So the net result 
of this conservatism is that ineffective and/or inequitable classroom practices are 
hard to challenge.

 Final Comments

Any discussion of equity and quality needs to take account of the difficulties of 
language. For the different actors in this mathematics education field their unique 
habitus, historically developed within their particular social milieu, educational and 
life trajectory means that they interpret these terms in different ways. One of the 
significant problems is that the vast majority of those involved in policy forma-
tion in mathematics have enjoyed success in the subject and the privileges which 
come as a result. This tends therefore to ensure that the interests of those like this 
group—the future scientific, business, industrial, educational and political lead-
ers—are protected.

Even the notion of ‘mathematics’ should be opened up to scrutiny; Popkewitz 
(2004) has pointed out school mathematics is not the same as academic mathe-
matics. However, academic mathematicians are deeply involved in advising pol-
icymakers. In addition, there are the well-rehearsed arguments about the differ-
ences between the traditional and new/humanistic mathematics (Ernest 2009). It 
is evident in the developments over recent years that the traditionalists are still 
dominant. Interestingly, the more innovative, progressive functional mathematics 
qualification, and the Pathways model emphasising modelling and ICT have been 
less strongly supported by influential groups/individuals compared with the second 
GCSE. More mathematics for the highest attainers seems, at the present time, to 
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have a reasonable chance of happening. In contrast, disengaged middle and low 
attainers (Nardi and Steward 2003), who arguably would gain the most from better 
pedagogy inspired by innovative assessments (e.g. in functional mathematics), will 
probably see limited change in the coming years. The influence of two-tier GCSE 
and the all-important C grade in the performance tables appears to be having a more 
negative impact upon middle attainers.

Opening up this discussion about what mathematics education should be and 
what an equitable and quality mathematics education should look like is difficult 
given the structure of the field. It is, by and large, taken-for-granted that the tradi-
tional and economic views of mathematics education are the right ones. There is 
no ‘math war’ here in England as the progressive/humanist mathematics educators 
are barely in the fight, and where they are they experience considerable opposition. 
So, a curriculum model which is rooted in an elitist education system remains. The 
question of whether a single GCSE qualification can adequately meet the learn-
ing needs of the full range of learners is unresolved. It seems that the answer here 
depends upon what is considered to be the purposes of the curriculum. The new 
secondary curriculum has as its aims: successful learners, confident individuals and 
responsible citizens. Laudable though these aims are it would be easy to construct 
very different curricula (simply select a few national education systems: Japan, Fin-
land, United States) each of which purported to be striving towards meeting these 
aims.

If, instead of working backwards from the needs of future employers and higher 
education courses, we thought about what the generally well-educated 16-year-old 
should experience in their mathematics learning we might get a very different set of 
possible solutions to this question. This is not a new idea (Heymann 2003; Noyes 
2007b) but one that has little impact in mathematics classrooms in England, de-
spite the valiant efforts of some, because of the structuring of the generally con-
servative education field described above. So although the programme of study for 
14–16-year-olds seeks to define what a rich and worthwhile curriculum entitlement 
is for all learners, there remains a gap between the rhetoric and the reality. The in-
fluence of the educational assessment market is paramount here for any real change 
in curricular experience is catalysed by significant change in assessment. Unfortu-
nately, the combination of the market, high stakes performativity and managerial-
ism (through inspectorial and league table fabrications) creates strong resistance 
to assessment change. Evolution is more likely than revolution but any movement 
from a conservative position arouses suspicion and mobilises the right to resist pro-
gressive change. In arguing for a bottom-up curriculum, I am not saying that the 
needs of future employers are not important but rather that they are all so different 
it makes complete sense that any standard qualification will not satisfy any of their 
specific demands, beyond a good general education (Heymann 2003). However, to 
loosen the grip of a curriculum which essentially acts in a classificatory way to steer 
learners into particular educational and life trajectories challenges the reproductive 
function of education and arouses the privileged to defend their position. Any effec-
tive attempt to do this would probably lead to our own ‘war’—albeit conducted in 
a peculiarly English way.

A. Noyes
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Can the question of whose equity and quality be fully answered? Perhaps not, 
but I have aimed to expose some of the structures and processes which maintain 
school mathematics as a tool for the utilitarian interests of industry, higher educa-
tion and economic/political power. Although my analysis has centred on the case 
of mathematics curriculum reform in England, I am confident that similar field 
structures are found in other countries, albeit inflected peculiarly by the particular 
context.

Acknowledgements This chapter arises from the work funded by QCDA and is produced with 
their permission.
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 Introduction

Researchers often report on the dissonance between beliefs and actions with respect 
to the teaching and learning of mathematics (e.g. Forgasz and Leder 2008). While 
the means by which beliefs are, or can be, measured are frequently discussed in the 
literature (e.g. Leder and Forgasz 2002), how beliefs are developed is less often the 
focus of research papers. In the past, we have claimed that the power of the media to 
shape public opinion should not be underestimated (Forgasz et al. 2007; Leder and 
Forgasz 1997). Media reports of specific scholarly articles can often be selective in 
what is reported and can be misleading. An article by Hyde et al. (2008) published 
in the highly prestigious and influential journal, Science, serves as an instructive 
example. The authors claimed that “these very current data provide no evidence 
of a gender difference favoring males emerging in the high school years” (p. 494). 
This produced a stampede of frenzied and biased reporting in the popular press. 
In proclaiming that there were no gender differences in male and female math-
ematics achievement, the media reporters had not taken into consideration Hyde 
et al.’s cautious reminder that earlier research had indicated that it was particularly 
on high level, complex items that boys excelled over girls, and that “state assess-
ments designed to meet NCLB1 requirements fail to test complex problem-solving 
of the kind needed for success in STEM2 careers” (p. 295). That students in different 
schools and locations may not have experienced the same curriculum or quality of 
teaching was also overlooked.

1 No Child Left Behind.
2 Science, Technology, Engineering and Mathematics.
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In this chapter, we examine and compare scholarly research and media coverage 
of equity and quality issues with respect to mathematics learning. Our focus is on 
equity issues that the media are likely to cover including mathematics achievements 
by gender, ethnicity, and socio-economic background, as well as aspects of school 
practices such as ability grouping and single-sex classes that are associated with 
potential variations in the quality of mathematics education experienced by some 
students.

We have restricted the media coverage to a manageable but particularly perti-
nent period, November to December 2008, and have only examined two Australian 
newspapers, The Age (published in Melbourne, Victoria), and The Australian (a 
national publication). These two newspapers are among the top three broadsheets 
in Australia (TheNewspaperWorks 2009). We selected this time frame as, together 
with a range of articles on general educational issues, there were reports on Austra-
lian students’ performance in the Trends in International Mathematics and Science 
Study (TIMMS) 2007, Victorian grade 12 high stakes examination results, and the 
National Program for Literacy and Numeracy (NAPLAN) results for students in 
grades 3, 5, 7 and 9. Our reliance on articles from the two Australian newspapers is 
less limiting than might first appear since many articles are reproduced in multiple 
national and international press outlets because of the widespread syndication of 
reports and commentaries.

Within mathematics education, the terms equity and quality have been vari-
ously defined and interpreted. Following Bishop and Forgasz (2007), we argue that 
“without access to mathematics education there can be no equity” (p. 1146) and 
that equity can be considered an outcome “for judging or evaluating any educa-
tional variable, including access” (p. 1146). Inequities are thus represented by dif-
ferences in outcomes for identifiable groups within a given context or setting, and 
may be apparent as access, achievement, enrolment, and/or attitudinal differences. 
We also accept the duality of Atweh’s (2007) definition of quality in mathematics 
education to include the intellectual rigour of the mathematical content encoun-
tered, and the capacity of the mathematics to transform aspects of students’ lives 
as citizens now and in the future. Atweh’s perspective is consistent with Bishop 
and Forgasz (2007, p. 1152) who viewed mathematics education as serving two 
purposes:

to prepare students to be mathematically functional as citizens of their societies—argu-
ably provided equitably for all—and to prepare some students to be the future profes-
sionals in careers in which mathematics is fundamental, with no one precluded from or 
denied access to participation along this path. The notion of more than one purpose for 
mathematics education raises issues of what constitutes an equitable mathematics cur-
riculum and raises questions about the equity implications of systemic, school-based, 
or classroom-based practices in mathematics education such as tracking/streaming or 
single-sex settings.

In the remainder of the chapter we present, under different headings, summaries of 
the scholarly research on equity issues followed by popular print media portrayals 
of these issues.

H. J. Forgasz and G. C. Leder 
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 Scholarly Research on Equity and Quality  
in Mathematics Learning

As mooted above, the scholarly research examined with respect to equity and qual-
ity issues covers:

• mathematics achievement levels,
• ability grouping for mathematics learning, and
• single-sex groupings for mathematics learning.

Achievement (by Equity Variables)

The results of two large-scale mathematics testing regimes are discussed here. Stu-
dents’ achievements were examined to determine if inequities were evident, and 
comparisons with the results from previous years were also undertaken. Students’ 
achievements in the tests were made public in late 2008 and the findings were also 
reported in the press. The data sets arise from mathematics testing conducted in 
Australia: the high stakes results for mathematics subjects in the Victorian Cer-
tificate of Education (used for university selection), and the 2008 numeracy results 
from the NAPLAN testing of students across the nation in grades 3, 5, 7 and 9.

Victorian Certificate of Education (VCE) Mathematics Results

VCE results are made available on the website of the Victorian Curriculum and 
Assessment Authority (VCAA): http//www.vcaa.vic.edu.au. In 2008, four grade 12 
mathematics subjects were offered: Specialist Mathematics (the most challenging), 
Further Mathematics (the least challenging); and two parallel offered versions of the 
same subject, Mathematical Methods (graphics calculators mandated) and Math-
ematical Methods CAS (CAS calculators mandated). With respect to enrolments in 
the three subjects, males are greatly over-represented in Specialist Mathematics and 
in Mathematics Methods and the parallel version Mathematical Methods CAS, and 
slightly over-represented in Further Mathematics (Forgasz 2006).

Each VCE mathematics subject has three assessable components which are re-
ported separately on the VCAA website: a series of school-assessed tasks, and two 
examinations. For each subject the school-assessed component carries 34% of the 
final assessment; there is some variation in the weightings carried by each of the two 
examinations in the three mathematics subjects. The results of the three assessment 
tasks are provided in the same format for each subject. There are ten possible grades 
ranging from A+ to E as well as “UG” (ungraded) for each assessment task. The per-
centages of the cohort obtaining each grade for each assessment task are found on the 
website for each subject; the percentages within gender cohorts are also available.

15 Research and Media Portrayals
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The two courses, Mathematical Methods and Mathematical Methods CAS, have 
run in parallel since 2002. They have provided the opportunity to compare findings 
on the performances of males and females using two different technologies for the 
learning of mathematics. In the past, females have been found to be less confident 
than males about the use of technology for mathematics learning (e.g. Vale and 
Leder 2004). The enrolment numbers in the CAS version of the subject were very 
small in the early years, but have since grown considerably. Forgasz and Tan (2009) 
examined the patterns in performance in each of the three assessment tasks over 
the seven-year period (2002–2008) by gender. The findings can be summarised as 
follows:

• For each assessment task, the pattern was more stable for male and female 
achievements in Mathematical Methods than in Mathematical Methods CAS.

• For both subjects:

− a higher proportion of males than females received the grade A+ for each of 
the three assessment tasks, and

− for each assessment task, the gender gap (i.e. the difference in the percentage 
of male and female students achieving the grade) was greater for Mathemati-
cal Methods CAS than for Mathematical Methods.

• The gender gap favouring males was widest for the A+ grade in Mathematical 
Methods CAS for Examination 2, the assessment task for which the calculator 
must be used. Graphs, based on data published on the VCAA website, for the A+ 
results by gender for Examination 2 in each subject are shown in Fig. 15.1. It 
should be noted that the same scale was used for both graphs.

Close examination of the data in Fig. 15.1 reveals that from 2002 to 2008, there was 
an average gender gap of 3.0% for the A+ results on Examination 2 in Mathematical 
Methods. For Mathematical Methods CAS, the average gender gap was 7.5% over 
the seven-year period. A similar pattern, with a smaller difference in the gender gaps 
in the two subjects, was found for the school-assessment task and Examination 1. 
These data suggest that the mandated use of the sophisticated CAS calculator may 
be disadvantaging females.

The VCAA website does not publish results by any other student grouping fac-
tors. The results are, however, published in a different way in the daily newspapers. 
For each student in each of their VCE subjects, the VCAA calculates a single score 
called a “study score”. The study score is derived by first combining the results of 
the three assessment tasks in each subject in some complex, statistical fashion, and 
then standardising the scores to have a mean of around 30, a standard deviation of 
about seven, and a maximum possible score of 50. In the newspaper, the names 
of students and the schools they attend are published for each subject for those 
achieving scores of 50 down to 40. These data can be analysed to explore achieve-
ment patterns by a range of variables including: school type attended (Government/
Independent/Catholic); school setting (single-sex/coeducational); school location 
(metropolitan/non-metropolitan); gender; and ethnicity. School type attended has 
been used as an indicator of socio-economic status (SES).

H. J. Forgasz and G. C. Leder 
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Fig. 15.1  Mathematical methods and mathematical methods CAS 2002–2008: A+ results for 
examination 2 by gender
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Forgasz (2008) used school type in this way to examine the interaction of gender 
and socio-economic status among the highest performing students—those scoring 
46–50 (about 1% of the cohort in each subject) in the 2007 VCE results. “Low” SES 
was associated with attending a government school (67% of all schools in Victoria) 
where no fees are paid. Students attending Catholic schools (20% of all schools) 
where moderate fees are paid were considered to be “medium” SES. Those attend-
ing high fee-paying Independent schools (13% of all schools) were designated to be 
“high” SES. Findings indicated that the proportions of males receiving each of the 
study scores from 50 to 46 (ranging from 58% of those scoring 46 to 83% of those 
scoring 49) were higher than their 54% representation in the Mathematical Methods 
and Mathematical Methods CAS cohorts. With respect to SES, students from In-
dependent schools (high SES) were vastly over-represented among the top scorers 
(ranging from 30% of those scoring 48 to 59% of those scoring 47), and those from 
the government sector were grossly under-represented (ranging from 30% of those 
scoring 46 to 52% scoring 48). Students from the Catholic sector were fairly well 
represented at around 20% for scores of 46, 48, and 49 and under-represented for 
scores of 47 and 50. In other words, there were clear inequities in outcomes, with 
males and those from high SES backgrounds succeeding at the highest levels of 
achievement well beyond their representation in the cohort profile.

In summary, with respect to enrolments and achievement in the mathematics 
subjects offered in the VCE, inequities are apparent. Males are over-represented in 
enrolment numbers and are outperforming females in all the mathematics subjects 
offered. Females’ achievements appear to be further affected by the mandated use 
of the CAS calculator. Students’ SES, as gauged by school type attended, has again 
emerged as a variable of inequity with respect to the VCE (e.g. Teese et al. 1995).

Media Perspectives

Publication of the VCE results produced a plethora of reports and articles under 
headings ranging from the neutral: “Wait over for nearly 50,000 VCE students”3 to 
the more evocative headlines: “Private school students scoop scholarship pools”, 
“Mac Rob [a selective-entry girls high school] scores top marks seven years run-
ning” and “Boys outnumber girls at top VCE level”. These headlines succinctly 
reflect the three distinct yet overlapping themes that permeated the pool of VCE 
articles: “high-achieving” schools, high-achieving students, and differences in 
between-group performances—typically comparisons of the performance of males 
and females, of private and state (public) school students, and less frequently of 
students at metropolitan and rural schools.

Brief biographical sketches of high-achieving VCE students were included in 
various articles. Some merely focused on students attending private or single-sex 
schools. Others included cases deemed particularly noteworthy: a young refugee 
from Afghanistan who had arrived in Australia only five years before sitting for the 

3 See the reference list for a record of the print media articles on which we drew for this chapter.

H. J. Forgasz and G. C. Leder 



211

VCE examination yet came top of the high school he attended; a student who came 
top of her school in the north of rural Victoria; and a student from the Victorian Col-
lege of the Deaf whose VCE score was well above that of other students attending 
the same institution and of other deaf students who had completed their high school 
education in mainstream schools.

Students’ intended post-school destinations attracted considerable attention. “Al-
most all of the elite university scholarships offered to the state’s highest-ranking 
VCE students have been scooped by students from private schools.” While medi-
cine and law were reported as popular university destinations for the very high 
achievers, the Victorian Minister of Education advised students who “did not reach 
the standards they had set for themselves” to consider other university courses or 
educational opportunities such as Technical and Further Education institutions, ap-
prenticeships, and traineeships. The implication that certain courses and eventual 
career options were beyond the reach of many was further reinforced by articles 
centred around interviews with a broader range of students who discussed their 
course or work choices for the following year.

Considerable emphasis was given to girls’ on average higher pass rates than 
boys’ in the VCE examination overall, as well as in mathematics. Mostly, how-
ever, results were discussed in general terms rather than by individual subject. The 
consistent finding that boys outnumbered girls among the highest performers was 
also stressed in many articles, with the benefits for girls of learning in a single-sex 
environment espoused in some of these.

Equity issues were invoked subtly rather than directly in these newspaper articles 
about the VCE. There was, for example, no explicit discussion of the impact on a 
school’s performance of a discriminatory intake through scholarship holders or en-
try examinations, the SES of the parents, or the parental and peer group educational 
expectations of students at private or selective intake schools. Issues raised in the 
letters to the editor section were less equivocal and more direct. “The VCE results 
this year once again showed a vast disparity between public and private schools. No 
one would seriously contend that the children of middle- and upper-class families 
are smarter than their less fortunate counterparts. … The government should look 
to implement measures of equality throughout the education system.”Authorities, 
some writers argued vehemently, should reject using the VCE results as either a 
simplistic or an accurate method for ranking schools.

NAPLAN Results

Until 2007, Australian states ran their own literacy and numeracy testing pro-
grams. The first nation-wide testing was undertaken in 2008 for students in grades 
3, 5, 7 and 9. The official report of the results of the NAPLAN was published 
late in the same year (see NAPLAN 2008). The NAPLAN results at each grade 
level for numeracy (and literacy) were reported by a range of variables including: 
Australian state/territory; gender; Indigenous/non-Indigenous; LBOTE (language 
background other than English)/non-LBOTE; geographical location (metro/ 
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provincial/remote/very remote); parental educational background; and parental 
occupation. A summary of the 2008 NAPLAN numeracy results at each grade 
level is found in Table 15.1. These data show a strikingly similar pattern. At all 
grade levels:

• Males scored higher than females.
• Non-indigenous students scored higher than Indigenous (Aboriginal and Torres 

Strait Islander) students.
• Students with language backgrounds other than English scored higher than those 

whose language backgrounds were English.
• There was a direct relationship between high scores and geographical location: 

students living in state/territory capital cities (metro) scored highest; students 
living in very remote locations scored lowest.

• There was a direct relationship between high scores and parents’ educational 
levels: students whose parents had the highest educational levels scored higher; 
students with parents with the lowest educational levels scored lowest.

Table 15.1  NAPLAN 2008 results by grade level. (Source: Data extracted from NAPLAN 2008)

Grade 3 Grade 5 Grade 7 Grade 9

Overall mean 
score

396.9 475.9 545.0 582.2

State/territory 
(6 states; 2 
territories)

ACT: 411.5 to 
NT: 338.4

Vic: 489.7 to NT: 
411.4

ACT: 556.2 to 
NT: 488.1

ACT: 594.9 to 
NT: 532.6

Male/female M: 400.6 > F: 
393.1

M: 481.6 > F: 
469.9

M: 552.3 > F: 
537.3

M: 586.5 > F: 
577.6

Indigenous/non-
indigenous

Non-indig.: 
400.5 > indig.: 
327.6

Non-indig.: 
479.5 > indig.: 
408.0

Non-indig.: 
548.6 > indig.: 
476.2

Non-indig.: 
585.7 > indig.: 
515.1

LBOTE/
non-LBOTE

LBOTE: 
401.0 > non-
LBOTE: 
396.8

LBOTE: 
484.9 > non-
LBOTE: 
474.9

LBOTE: 
553.0 > non-
LBOTE: 
544.4

LBOTE: 
594.8 > non-
LBOTE: 
581.1

Geographical 
location (4 
categories)

Metro: 402.6 to 
very remote: 
306.2

Metro: 482.0 to 
very remote: 
386.3

Metro: 551.4 to 
very remote: 
451.1

Metro: 588.3 to 
very remote: 
493.2

Parental 
educational 
background 
(5 cat-
egories + not 
stated)

Bachelor degree 
+: 425.1 to 
below grade 
11: 360.8

Bachelor degree 
+: 508.7 to 
below grade 
11: 440.4

Bachelor degree 
+: 584.8 to 
below grade 
11: 510.6

Bachelor degree 
+: 623.3 to 
below grade 
11: 550.9

Parental occupa-
tion (5 cat-
egories + not 
stated)

Senior man-
agement/
professional: 
421.4 to 
unemployed: 
360.5

Senior man-
agement/
professional: 
503.0 to 
unemployed: 
440.9

Senior man-
agement/
professional: 
578.0 to 
unemployed: 
508.0

Senior man-
agement/
professional: 
616.0 to 
unemployed: 
549.5
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• There was a direct relationship between high scores and parents’ occupations: 
students whose parents were senior managers or professionals scored highest; 
students whose parents had been unemployed for the previous 12 weeks scored 
lowest.

At all grade levels except grade 5, students in the ACT (Australian Capital Terri-
tory), the small territory in which the Federal government is the major employer, 
scored highest; students in the NT (Northern Territory) where the highest proportion 
of Indigenous and very remotely located students are to be found, scored lowest. 
At grade 5, students from Victoria, the second most populous state, scored highest.

In summary, NAPLAN numeracy achievements were inequitable at all grade lev-
els tested with respect to gender, indigeneity, language background, geographical lo-
cation, parental educational levels, and parents’ occupations. With the exceptions of 
gender and language backgrounds, the other variables appear to be directly related 
to SES, a factor considered to be the most significant contributor to achievement 
differences (e.g. Teese et al. 1995) and therefore impacting on future life options.

Media Perspectives

The NAPLAN (2008) test data, and their breakdown by state, “sex, location, paren-
tal background and indigenous status”, were variously reported in the popular print 
media, with direct between-state comparisons of student performance considered of 
particular interest. With students throughout Australia sitting for the same test, the 
uneven performance of students at different schools in Australia could no longer 
be masked. The “tests gave parents and governments an unprecedented level of 
information and would enable better targeting of resources to schools and students 
in specific areas or years”. Furthermore, it was pointed out in multiple articles, the 
high proportion of indigenous students who failed to meet the numeracy (and lit-
eracy) benchmarks was now more obvious.

The lower performance of indigenous students, compared with the wider Aus-
tralian school population, attracted sustained media attention. The discovery that 
Aboriginal students living in metropolitan areas as a group performed almost as 
well as their non-indigenous peers received less media attention than the more 
startling finding that Aboriginal students living in remote communities had an ex-
tremely high failure rate of 70–80%, “A combination of low employment and poor 
social conditions” were explanations offered for the distressingly poor performance 
results. “Indigenous children are just as smart as other Australian children”, one 
highly regarded educator was quoted as saying, “their different pass rates are the 
result of different schooling”.

The link between parental occupation and student performance in the NAPLAN 
test, documented in some detail in Table 15.1 above, was also deemed worthy of 
wider dissemination: “Children whose parents worked in management and business 
had a less than 10% rate of failing NAPLAN tests compared with an average 22% 
failure rate for those children whose parents were unemployed.”
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Gender differences in performance also attracted attention. “The report shows 
that girls are doing a lot better than boys in reading and writing…. But when it 
comes to numeracy the boys are ahead—but only marginally and not in the lower 
grades.”

Thus the media reports faithfully, but in varying levels of detail, indicated which 
of the factors singled out in the more formal report seemed to affect student perfor-
mance. Indigenous students, those in remote areas, and those whose parents were 
unemployed were depicted as the most disadvantaged.

TIMSS 2007 Results

The mathematics performance of Australian grade 4 and grade 8 students, as mea-
sured in the 2007 TIMSS, were released at almost the same time as the NAPLAN 
results. Although space constraints do not allow a detailed description of this 
third data set, it is worth noting that there were remarkable similarities in the 
TIMSS and NAPLAN findings. Inequities were again apparent: girls, indigenous 
students, those from remote areas, those who do not speak English at home, and 
grade 8 students whose parents have not completed high school were the dis-
advantaged groups. There was one intriguing difference between the NAPLAN 
and TIMSS 2007 results. In NAPLAN those who spoke English at home out-
performed those who did not; in TIMSS 2007, the opposite was the case. Media 
reporting of the TIMSS 2007 findings overlapped with the coverage given to the 
NAPLAN results.

Equity, Quality and Segregated Learning

Segregation has been a common institutional response to the management of differences in 
education. The degree of segregation varies historically and cross-culturally for different 
social groups, and often occurs invisibly through broader patterns of residential segrega-
tion, selection procedures and parental choice. (Lynch and Baker 2005, pp. 145–146)

Because mathematics remains a gateway to a number of career options, there is con-
siderable interest in exploring which educational settings optimise equitable access 
to quality mathematics learning. Scholarly research findings on ability grouping 
and single-sex settings, with a focus on Australian findings, are discussed in the 
next sections.

Ability Grouping

The most common finding with respect to ability grouping for mathematics is that 
the high achievers benefit most, with low- and middle-level achievers losing out. 
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Ireson et al. (2002) found that students who succeeded at the British Key Stage 2 
(end of grade 6) tests “benefit more from setting [ability grouping] than lower at-
taining pupils” (p. 311), and noted that students incorrectly placed in ability groups 
were likely to remain in them. Those placed in lower groups were unlikely ever to 
attain higher examination grades. Boaler et al. (2000) claimed that ability grouping 
was likely to be “the single most important cause of the low levels of achievement 
in mathematics in the UK” (p. 646). Linchevski and Kutscher (1998) found that 
average and less able grade 9 students’ achievements in mixed ability settings in 
Israel were significantly higher than those of their peers in streamed classes. For 
the highest achievers, performance levels were about the same in both settings. In 
an Australian study on ability grouping in grades 9 and 10, Zevenbergen (2003) 
concluded that:

Most often when students are grouped by ability, the outcomes support the practice—that 
is, the higher streams perform very well, and the lower streams perform poorly. This can 
be used as evidence to show that the practice is justified and that the groupings are correct 
since the outcomes ‘prove’ the effectiveness of the original groupings. However, questions 
need to be posed as to whether pedagogy is matching the needs of the students or whether 
the outcomes are a reflection of the pedagogies being used. (p. 3)

Online surveys designed to gather data on the practices used to group students for 
mathematics learning in grades 7–10 were recently completed by teachers repre-
senting 44 secondary schools in Victoria, Australia (Forgasz and Tan, 2009). The 
types of grouping practices used and the teachers’ views of the practices were 
also sought. Ability grouping for mathematics was found to be widespread across 
Victoria, even at grade 7 (the first year of post-primary education). The extent of 
the practice was greater as grade level increased. Although teachers were largely 
aware of the various limitations of ability grouping, consistent with those previ-
ously reported in the literature, the majority of teachers supported ability grouping, 
believing that it enabled teachers to cater best for students of different achievement 
levels.

Media Perspectives

Ability grouping for mathematics learning attracted no explicit media interest dur-
ing the period monitored. In articles concerned with inequities in the large-scale 
testing results, the practice of ability grouping was not identified as a potential fac-
tor affecting the results of particular sub-groups of students. While no explicit link 
was made in any of the print media articles surveyed between ability grouping and 
the fact that a disproportionate number of the highest performing students came 
from selective-entry high schools and private schools, discerning readers might un-
doubtedly infer such an association.

Some writers used the TIMSS data as platforms to highlight the plight of those 
with strong mathematical potential, and argued that it was all too often assumed 
that unsatisfactory achievement was only of concern for students considered to be 
failing at school. In the words of one journalist, “Much less worried about, however, 
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is whether there are too many children who are not getting an excellent education.” 
From the beginning of kindergarten, it was argued, there were literacy and numera-
cy programs to assist students with learning difficulties but “extending the abilities 
of the mathematics whiz-kids” is rarely considered.

Single-Sex Settings

The extent of single-sex schooling varies around the world. Gender-segregated 
schooling is a religious or a cultural norm in some countries, while in others it is 
available as an alternative that parents can choose for their children.

Comparisons of the academic performance and school-related attitudes of stu-
dents attending single-sex and coeducational schools yield inconsistent findings. 
Gill (1988) claimed that in Australia (and the United Kingdom), “the distinction 
between single sex and coeducational schools is interwoven with the division be-
tween private and public schooling” (p. 3). This, in turn, is closely associated with 
differences in SES.

For some, single-sex education is considered anachronistic, reflecting earlier 
times when males and females had different educational needs that were related to 
their gendered future roles in society; coeducation was seen as a means to achieve 
gender equity. This equity argument has been challenged and various single-sex 
interventions implemented in different settings, for different lengths of time, for 
different age groups, and with different aims have been trialled to address gender 
inequities in enrolments and achievements in mathematics learning (see Leder et al. 
1996).

Based on an extensive review of the literature, Forgasz et al. (2007) provided a 
summary of the main findings on the relative benefits of single-sex and coeduca-
tional settings that are also pertinent to mathematics learning:

• Coeducational settings appear to be more beneficial to boys than to girls; the 
benefits of single-sex settings are more equivocal for boys than for girls.

• Benefits for girls in single-sex settings include: greater positive self-concept; 
less gender-stereotyping of some disciplines; and perceptions of a “comfortable” 
learning environment.

• Other factors (e.g. organisational support, parental support, curriculum content, 
teaching approaches, professional development, and socio-economic back-
grounds) were more significant than the gender mix of the learning setting and 
should be considered if the goals of enhancing girls’ and boys’ learning in single-
sex settings are to be achieved.

In Australia, researchers have examined single-sex interventions within regular 
coeducational secondary school settings (e.g. Forgasz and Leder 1995; Leder and 
Forgasz 1997; Rennie and Parker 1997), with mixed results. Forgasz and Leder 
(1995) concluded that although “beliefs were that females would benefit most from 
single-sex classes, there were signs that males derived equal, if not more, benefit 
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from the program than the females” (p. 44). Teachers reported to Parker and Rennie 
(1995) that

single-sex classes appeared to hold the most benefit for specific groups of girls who were 
experiencing a great deal of harassment from boys in mixed-sex classes, and the least ben-
efit for high-achieving girls and boys and for boys in some classes which were particularly 
difficult to discipline. (p. 8)

Based on a US study, Becker (2001) concluded that “simplistic solutions, such as 
single sex classes per se, do not appear to have been successful in themselves in 
achieving equity and there have been calls for new strategies to be explored… [and 
that] epistemology, pedagogy and parents’ perceptions remain important factors” 
(p. 323).

In summary, ability grouping and single-sex settings may have some benefits for 
some students. The research, however, does not provide clear-cut answers whether 
either can be supported in terms of improving equity of outcomes. It would appear 
that ability grouping can have more serious longer-term consequences since there 
are issues related to the quality of the mathematics education offered in the various 
groups formed. Single-sex settings for mathematics as interventions to dissuade 
girls from abandoning future mathematical studies have had some small measure of 
success. Unfortunately, the consequence is that there must be single-sex classes for 
boys and these, it seems, have many problems associated with them.

Media Perspectives

Articles with a focus on schools with high performing students unavoidably in-
cluded references to the benefits and disadvantages of schooling at single-sex and 
co-educational schools. According to one detailed article, supported by the editorial 
column in the same paper, “Many schools are having it both ways, enrolling boys 
and girls but separating them in class.” This option, that is single-sex classes within 
a coeducational setting, was strongly lauded and supported with uniformly positive 
anecdotal evidence from senior staff working at schools which had adopted this op-
tion for all or, more commonly, some of their classes.

In an unusually comprehensive newspaper article, Bachelard and Power (2008) 
provided a list of eight common beliefs about the advantages of single-sex educa-
tion and three putative research-based conclusions. Both sets are reproduced in full 
below.

Facts or Fiction?

Commonly held beliefs about the advantages of single-sex education:

• Girls and boys are “wired differently”, so need to be taught in different ways.
• Boys get more attention than girls in coeducational schools, and girls learn to 

defer with boys in class. This reinforces gender stereotypes.
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• Boys are prone to bullying and disruptive class behaviour, which makes them a 
bad influence on girls in coeducational environments.

• Girls in single-sex schools are more likely to study mathematics and science, 
subjects traditionally viewed as “masculine”.

• Teachers in single-sex schools have a greater ability to tailor classes and activi-
ties to suit the specific needs of their students.

• Girls develop more confidence and leadership abilities in single-sex schools.
• Students, particularly girls, develop closer and more meaningful relationships 

both with each other and their teachers in single-sex schools.
• The world is not a level playing field. Single-sex schools give girls a head start.

What the research shows:

• Boys and girls do learn differently, but single-sex education does not improve 
academic outcomes.

• The strongest influence on a child's educational outcome is quality teaching.
• Single-sex schools may produce high-achieving students, but this has more to do 

with the quality of their teachers and learning provisions.

This list offers a generally balanced and fair reflection of consistent research find-
ings relating to single-sex and co-educational schooling, and for mathematics learn-
ing in co-educational schools. There is no recognition, however, that socio-econom-
ic factors are implicated in the choices available to parents in selecting the learning 
setting for their children.

 Concluding Comments

For each section in this chapter, our overview of the findings from the scholarly 
literature has taken up more space than the summaries of the “media perspectives” 
on the same topic. This is consistent with, and an accurate reflection of, the more 
detailed and nuanced reporting characteristic of the former body of work. Emotive 
headlines and biased or incomplete reporting of research, coupled with a failure to 
discriminate between findings from rigorous studies and small, one-off intervention 
reports, have the potential to distort public perceptions of critical issues in math-
ematics education or education more generally. Core equity and quality issues are 
all too commonly overlooked in opportunistic and limited reports.

We contend that even when educational researchers have devised studies in-
corporating many of the inter-related factors that can influence equity and/or the 
quality of learning and educational outcomes, rigid space restrictions can lead 
to media commentators simplifying the problem and minimising or ignoring the 
complexity of the issues involved. Similarly, media reports on students’ perfor-
mance in mathematics testing regimes appear to rely heavily on the executive 
summaries that accompany the full reports of these data. Thus, the more de-
tailed and complex analyses undertaken of entire data sets are often omitted. For  
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example, while the performance of students in academically selective schools is 
certainly highlighted in the media, there is almost no discussion of the impact of 
“this creaming off the top” on the students who remain behind. Are such students 
disadvantaged because there are fewer high achievers to engage in stimulating 
mathematical discussions in class? Is equity compromised because their access to 
optimum quality discussions is limited? Or are they instead advantaged because 
they are less likely to be overshadowed and will be challenged to become active 
rather than passive participants; to contribute rather than listen? Who benefits, and 
who loses, when governments increase the number of selective secondary schools, 
as currently occurs in Victoria, the state in which we, the authors, live? Will such a 
measure lead to outcomes of “national significance”, one of the criteria typically 
used to rank competitively selected projects? Will increased segregation enhance 
(and for whom) or impede (and for whom) equity and quality of (mathematics) 
education? Will it promote the two purposes of high quality and equitable math-
ematics education to which we referred early in the chapter: “to prepare students 
to be mathematically functional as citizens…and to prepare some students to be 
the future professionals in careers in which mathematics is fundamental” (Bishop 
and Forgasz 2007, p. 1152)? To what extent can, and should, schools and other 
social entities be expected to counteract inequities in students’ home environ-
ment? Should the media shape or reflect public opinion on the answers to these 
questions?

It is not easy to strike a balance when reporting, accurately and in detail, com-
plex data that foreground equity and quality issues for different audiences. This is 
starkly illustrated when we consider the reporting of results from NAPLAN, the 
national testing program in numeracy and literacy discussed earlier in the chapter. 
In the summary reports and in the media, the results are presented at the national 
level and by state. Within these categories, the performance of various sub-groups 
is also presented. At the school level, however, individual school performance is set 
in the context of “like” schools (by socio-economic, enrolment size, etc.) and other 
measures. Individual student achievement data are also presented to parents in con-
text, that is, against national and school average data, as well as an indication of the 
range within which 60% of all Australian students at that grade level (MCEECDYA 
2009). Parents are more likely to focus on the performance of their offspring. What 
it means for their children’s education in the broader context is less likely to be 
meaningful. Educators and policy makers, however, are less likely to be interested 
at the individual level. The questions, then, are for whom, and how, are quality and 
equity issues identified and interpreted.

Invited “opinion” pieces and “expert” comments on these topics (as well as oth-
ers) are sometimes sought from those who hold strong views that are not necessarily 
supported by robust research-based evidence. These writers are typically trusted by 
the general public as being unbiased. In this way, the media deliberately, or inad-
vertently, deny their consumers knowledge of the complexities of the interaction 
between schooling and learning and this can result in re-inforcing some readers’ 
pre-conceived beliefs and stereotypes. But academics must also shoulder some of 
the blame if their work is not disseminated widely or appropriately:
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What wins the day is not the evidence, but the power of the anecdote, and often that comes 
through the media. (Academics) tend to write esoteric articles in literary journals that only 
about four people read and we’re not communicating as we should about what the evi-
dence-based research says. (Rowe quoted in Bachelard and Power 2008)

In this chapter, we have demonstrated the effects of the inevitable tension between 
the measured and detailed academic documentation of research findings and the me-
dia reporting of the same findings constrained by space and time pressures. Quality 
and equity concerns are discussed in both contexts. Often, however, the versions of 
the story found in the print media fail to convey accurately or completely the issues 
fuelling or combating equity and quality in mathematics learning and education 
more broadly. The readership of the print media far outweighs that of academic pub-
lications. Mathematics, it is now widely recognised, is not value free. The evidence 
we have presented here similarly suggests that bias, whether intentional, pragmatic, 
or opportunistic, is often mirrored in the reporting of the mathematics achievement 
outcomes. Who reads which accounts, what opinions and views are formed, and the 
power and influence wielded, may well determine who benefits and who is disad-
vantaged in their mathematical learning.
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 Introduction

Modelling approaches are propagated to enhance the quality of the outcomes of 
mathematics education by providing students with generic competencies and there-
by creating a flexible work-force. At the same time, mathematical modelling is seen 
as an approach that promotes inclusion of all students, as it allows them to study a 
problem at the level of mathematics that they are comfortable with. The history of 
the discourse of mathematical modelling as a solution for many quality and equity 
problems in mathematics education has yet to be written. A focus on applications 
and on the technological value of mathematics has been interpreted as a reaction to 
reforms in the context of “New Math” (e.g. Howson 1989). As is well known, these 
reforms were underpinned, if not initiated, by arguments that stressed the competi-
tive advantage of a nation with a mathematically skilled work-force. But this did not 
result in curricula that focus on applications and modelling, but rather in identifying 
an essence of academic mathematics, which was meant to become accessible to all 
students. Sfard (1998) observes a move towards the propagation of contextualised 
mathematics as engendered by the participatory metaphor of learning. The assump-
tion of the contextuality of all knowledge is (mis)interpreted in a way that leads to 
the contention that mathematical concepts can be meaningfully learned only within 
a “real-life” context. Jablonka (2009) sees the trend partly linked to a conceptu-
alisation of mathematics as a service-subject for science and engineering. Such a 
conceptualisation fuels labour-market driven arguments for a focus on applications 
and modelling, often hand in hand with a bemoaning of falling enrolment in sci-
ence and engineering programmes and a perceived “threat” of loosing competitive 
advantage.
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The following quotes can be seen as exemplary for the innovative potential at-
tributed to the inclusion of mathematical modelling activities:

In a technology-based age of information, educational leaders from different walks of 
life are emphasizing a number of key understandings and abilities for success beyond 
school. These include the ability to make sense of complex systems through constructing, 
describing, explaining, manipulating, and predicting such systems (such as sophisticated 
buying, leasing, and loan plans); to work on multi-phase and multi-component projects 
in which planning, monitoring, and communicating are critical for success; and to adapt 
rapidly to ever-evolving conceptual tools (or complex artifacts) and resources. (English 
2006, p. 303)

While technology can remove the computational complexity of mathematical problems, 
it does not remove the need for students to choose carefully the tools and resources to use 
and to transform problem data into forms that can be handled effectively by these tools. 
The results obtained must be interpreted, documented, and communicated in forms that 
clearly and effectively convey the products of problem solution. One approach to providing 
students with these competencies is through mathematical modelling (English and Watters 
2005; Lesh and Doerr 2003). (English 2006, pp. 303–304)

Mathematical modelling, as reflected in the above argument, is conceptualised as 
a set of generic competencies, the “key understandings and abilities”, which are 
trans-disciplinary. One concern about the development of these “key understand-
ings and abilities” in classrooms relates to the fact that the social base for their 
development is in many cases far from optimal. The ideas of collaborative team-
work, free forms of communication and critical thinking require a sort of an ideal 
democratic environment where negotiations of meaning are expected to take place. 
But as Appelbaum (2004) points to, classrooms can hardly be seen as ideal speech 
communities. Depending on their backgrounds and educational biographies, stu-
dents will not be equally able to communicate their ideas well and not all will be 
guaranteed an audience. Another concern about modelling in the classroom is relat-
ed to the question about the type of knowledge to which different groups of students 
might or might not gain access in a classroom practice that offers tasks for students 
without specifying the knowledge domains that form the basis for their solution. A 
further concern is related to the choice of the problems to be modelled, which can 
be representative of a range of practices, in which mathematics is applied. Model-
ling “reality” by means of mathematics implies both a particular construction of this 
reality as well as an epistemological claim about the mathematical model of that 
reality. So the introduction of mathematical modelling has the potential for both, 
socio-mathematical indoctrination on the one hand or demystification of the rela-
tion between mathematics and reality on the other.

The chapter addresses these concerns by scrutinising the rhetoric and practice of 
mathematical modelling in primary and secondary mathematics classrooms from a 
sociological perspective. By drawing on structurally different examples of model-
ling activities in mathematics classrooms, the chapter reconsiders issues of access, 
control and success. The first section of this chapter provides an outline of a view 
on mathematical modelling that is underpinned by theories of recontextualisation 
of other discourses by pedagogic discourse. The next section focuses on the prac-
tice of mathematical modelling in classrooms. The final section raises issues of  
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curriculum construction that focus on mathematical modelling. By means of ex-
amples of how modelling is enacted in classrooms, we show that students who lack 
the tacit knowledge required about school and classroom structure might not get 
access to valued forms of school mathematics knowledge through their engagement 
in modelling activities. Further, we argue that the conceptualisation of modelling as 
a set of generic competencies that could be provided by mathematics education only 
seemingly transcends the difficulties arising from cultural differences and economic 
inequalities. We consider the causality between participating in mathematical mod-
elling activities and the diverse educational potentials attributed to this experience 
as mythical. We argue, that in order to overcome the problems of discontinuity 
between everyday knowledge and school mathematics, modelling activities should 
make the confrontation of the different types of knowledge involved more explicit. 
This is to enhance the quality of modelling activities as well as to mitigate unequal 
attainment due to the implicitness of the criteria.

 Modelling as Recontextualisation

Mathematical modelling consists of a variety of activities that occur within distinct 
domains of practice in which mathematics is used. Any universal description of the 
process of mathematical modelling does not capture the varying methodological 
standards, criteria for validation and evaluation that are relevant in different prac-
tices. Jablonka (1996), for example, found that the examples that were propagated 
in the emerging discourse of mathematical modelling in school mathematics are ex-
tremely varied in terms of methods, models and problems. The methods range from 
simple algorithms to computer simulations, from ad-hoc constructions to models 
that are elements of scientific theories (such as physics or economics). The situ-
ations to be investigated comprise practical problems from the everyday domain 
as well as specific problems from a diversity of vocational practices and academic 
fields as well as from public administration. She also found a number of reports 
from classrooms, in which teachers and students together had tried to model some 
issue of relevance to them. Ten years later, a meta-analysis of papers published in 
the 14th ICMI study volume on “Modelling and Applications in Mathematics Edu-
cation” (Blum et al. 2007) reveals a similar picture. It is informative to look at the 
collection of contexts used in the examples from the research studies presented at 
that conference:

Examples from everyday life comprise: filling a swimming pool, light intensity needed for 
reading, cooling rates of coffee (of green tea or of corn soup), planning bus trips for senior 
citizens or students, distances given on road signs, shaking hands at birthday parties, buying 
dishes in restaurants, comparing discount percentages, life spans of batteries, taxi prices, 
dealing with supermarket bills, railway schedules, bank accounts, savings and loans. Some 
examples deal with a mathematical analysis of cultural artefacts, such as shapes of ice cream, 
of hats and umbrellas, of churches, modern bridges and airport buildings, of dress designs by 
Sonia Delaunay and the surface of a Porsche. It is easy to imagine that these contexts reflect 
or advocate a life-style, which is not that of the majority of the students’ families.
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Professional practices from which the examples are taken include: designing a 3-ques-
tion survey, reducing the noise of an aeroplane to a given limit, locating a water reservoir, 
seismic exploration of oil and gas, data analysis and dynamical systems models in biology, 
optimising traffic flow, designing a road to limit speeding, selling dishes in restaurants, 
measuring land, or optimising a relay race.

Two examples presented at the study conference deal with an analysis of fairness (in 
ranking of Commonwealth games performance and of students’ assessment) and one refers 
to statistics of supposedly rising crimes. These examples differ from the others in that they 
do not simulate an out-of-school mathematical practice in the classroom as authentic as 
possible, but aim at evaluating a practice in which mathematics is used by others. (Jablonka 
2007, p. 194)

Many of the examples of modelling activities propagated for or reported from class-
rooms can be seen as recontextualisations of other mathematical practices (e.g. of 
university mathematicians, of computer scientists, of engineers, biologists, econo-
mists, statisticians, of computer users, of skilled manual workers, of consumers), 
where recontextualisation is understood as the process of subordinating one prac-
tice under the (evaluation) principles of another (Dowling 2009). When modelling 
activities are simulated in the school classroom, the criteria for the performance of 
mathematical modelling change in accordance with the evaluation criteria transmit-
ted with the pedagogic discourse. By this, modelling in classrooms becomes a more 
uniform activity than in other practices.

 Different Versions of Modelling in the Classroom: 
Who Has Access to the Principles?

Given the diversity of agendas and examples, the unifying principle of the model-
ling discourse in mathematics education can be seen in the differences constructed 
in relation to school mathematics without applications or in the differences to other 
forms of insertions of non-mathematical practices (such as word problems). By 
pointing to these differences “mathematical modelling” is constructed as a reform 
movement. There are some characteristic knowledge claims reflected in what has 
been termed “the modelling cycle”: an ontological realism that acknowledges an 
independently existing reality that is the object of knowledge and the properties 
of which provide objective limits to how we can know it. However, these are seen 
as open to revision: a fallibility principle is acknowledged. This is a difference in 
comparison to school mathematics with a focus on both procedures and algorithms 
as well as on mathematical relationships and proof.

Julie (2002) describes a hypothesised activity system for school mathemati-
cal modelling: The classroom rules change towards acceptance of different non-
equivalent answers, unrestricted time, acceptance of the provisional status of the 
outcome, and presentation in user-defined format that does not emulate the text 
in use. The division of labour changes from individualistic to working in collab-
orative teams. In the work of some teachers, who attended a three-day camp on 
mathematical modelling, Julie also found indication that the texts, which could 
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have been used, were not seen as objects to be mastered, but as resources to assist 
the pursuance of the object. In a classroom, such a shift would indicate a shift in 
the authority relationship between teachers, texts and students. Underpinned by 
learning theories that stress the agency of the learners, school mathematical mod-
elling activities are also intended to encourage students to communicate their own 
ideas and to scrutinise the ideas of others, as for example suggested by English 
(2006):

The third significant aspect lies in the problems’ inherent requirement that children com-
municate and share their mathematical ideas and understandings. Modeling problems are 
especially valuable because they provide a rich and varied arena for developing children’s 
mathematical communication skills. (p. 319)

Julie (2002) also draws attention to the fact that the situation chosen as a starting 
point for modelling might be selected because of mathematical reasons or because 
of social reasons. In the first case, the context is arbitrary and the mathematical con-
cepts, procedures, etc. are those specified in the curriculum; in the latter, the context 
is given (or selected by the students) and the mathematics is arbitrary. But any 
mathematics curriculum ultimately prescribes a certain mathematical knowledge. 
It also specifies the contexts in which this knowledge has to be applied, but only 
implicitly (Dowling 1998), if it is not a critical mathematical literacy curriculum 
that explicitly specifies contexts of political and social relevance.

The changes in the instructional and regulative classroom rules are modifica-
tions of what knowledge is accessed in classrooms and of how this knowledge is 
made accessible. In an elaboration of Bernstein’s sociology of education (Bernstein 
1996), the underlying principles can be termed classification and framing:

I will now proceed to define two concepts, one for the translation of power, of power rela-
tions, and the other for the translation of control relations, which I hope will provide the 
means of understanding the process of symbolic control regulated by different modalities 
of pedagogic discourse.…

I shall start first with power. We have said that dominant power relations establish 
boundaries, that is, relationships between boundaries, relationships between categories. 
The concept to translate power at the level of the individual must deal with relationships 
between boundaries and the category representations of these boundaries. I am going to 
use the concept of classification to examine relations between categories, whether these 
categories are between agencies, between agents, between discourses, between practices. 
(Bernstein 1996, pp. 19–20; italics not added)

In the context of mathematics education and for the purpose of our analysis, classifi-
cation refers to categorising areas of knowledge within the mathematics curriculum. 
Strong internal classification means that clear boundaries between mathematical 
areas are maintained. Strong external classification indicates that few connections 
are made to other disciplines or everyday practice.

Framing draws on the nature of the control over the selection of the communica-
tion, its sequencing, its pacing, the evaluation criteria, and the hierarchical rules as 
the social base which makes access to knowledge possible (p. 27):

I am going to look at the form of control which regulates and legitimizes communication 
in pedagogic relations: the nature of the talk and the kinds of spaces constructed. I shall use 
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the concept of framing to analyse the different forms of legitimate communication realized 
in any pedagogic practice. (p. 26)

Different versions of mathematical modelling in the classroom imply variations 
of classification and framing. If the situation chosen to be modelled is selected 
because of mathematical reasons, the external classification might still be strong 
whereas the internal classification might become weaker as a mix of different 
mathematical topics and procedures is legitimate. The framing might weaken in 
relation to the sequencing of mathematical topics and the pace, but the criteria 
for what counts as a solution might still be held by the teacher. In some cases, the 
social base is selected by the students, for instance, when they decide about the 
use of texts and tools. If, in contrast, the situation chosen for a modelling activity 
is selected because of social reasons, then the classification might be rather weak. 
But this does not necessarily imply the weakening of the framing (cf. García and 
Ruiz-Higueras 2010, report of a modelling activity about silkworm transformation 
in a kindergarten class).

A version of school mathematical modelling that stresses that the external clas-
sification remains strong, is provided by Zbiek and Conner (2006):

The primary goal of including mathematical modeling activities in students’ mathemat-
ics experiences within our schools typically is to provide an alternative—and supposedly 
engaging—setting in which students learn mathematics without the primary goal of becom-
ing proficient modelers. We refer to the mathematics to be learned in these classrooms as 
‘curricular mathematics’ to emphasize that this mathematics is the mathematics valued in 
these schools and does not include mathematical modeling as an explicit area of study…we 
recognize that extensive student engagement in classroom modeling activities is essential in 
mathematics instruction only if modeling provides our students with significant opportuni-
ties to develop deeper and stronger understanding of curricular mathematics. (pp. 89–90)

Such a version is reflected in the approach of the Realistic Mathematics Education, 
where models are seen as vehicles to support “progressive mathematization” (Tref-
fers and Goffree 1985), as van den Heuvel-Panhuizen (2003) points to:

Within RME, models are seen as representations of problem situations, which necessarily 
reflect essential aspects of mathematical concepts and structures that are relevant for the 
problem situation, but that can have various manifestations. (p. 13)

A version of school mathematical modelling that stresses that the external classifi-
cation is weakened considerably constructs modelling as new (but vague) content. 
This version, which Perry and Dockett (2008) trace back to Lesh and Doerr (2003), 
is sometimes referred to as emergent modelling:

An alternative perspective on modelling has been developed by Lesh and Doerr (2003). 
Galbraith et al. (2006, p. 237) have described this perspective in the following way:

This second perspective [RME is the first one] does not view applications and model-
ling primarily as a means of achieving some other mathematical learning end, although 
at times this is valuable additional benefit. Rather this view is motivated by the desire to 
develop skills appropriate to obtaining a mathematically productive outcome for a problem 
with genuine real-world connections…

While the above approaches differ in the emphasis they afford modelling in terms of its 
contribution to student learning, they generally agree that modelling involves some total 
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process that encompasses formulation, solution, interpretation, and evaluation as essential 
components. (Perry and Dockett 2008, p. 92)

A description of modelling in the mathematics classroom in terms of classification 
and framing allows to analyse the potential of access to the forms of school math-
ematical knowledge that are more or less implicitly valued in the students’ perfor-
mance of the activities. In the following two examples of students’ participation are 
discussed. Both are taken from published reports of such activities.

 Equity Concerns About Modelling in the Classroom

Bernstein (1996) is claiming theoretically that variations of classification and fram-
ing relate to differential access to institutionalised knowledge. Empirical research in 
diverse fields, but not in the area of mathematical modelling, has generated evidence 
that access to the principles of classification and framing is not evenly distributed 
among social classes and communities (Brown 2000; Chouliaraki 1996; Cooper 
and Dunne 2000; Gellert and Jablonka 2009; Hasan 2001; Lubienski 2000; Morais 
and Miranda 1996; Moss 2000). For instance, Cooper and Dunne (2000) studied an 
extensive database from the Key Stage 2 (ten- to eleven-year-olds) national tests in 
England. They found that the misreading of the tasks, as being situated in a practice 
outside school mathematics, is linked to the social background of the students:

Our key finding is that, compared with service-class children, working- and intermediate-
class children perform less well on ‘realistic’ items in comparison with ‘esoteric’ items. We 
have attempted to control for a variety of other possible explanations of this apparent effect 
of item type in interaction with social class, including children’s ‘ability’, the wordiness 
of items, the difficulty level of items and, employing N[ational] C[urriculum] attainment 
targets, the mathematical topic being addressed. The effect of the interaction of social class 
with item type survives, though it is sometimes reduced. (p. 199)

When, in an experiment, Cooper and Dunne made the classification principle be-
hind the item construction transparent to working-class children, the rate of success 
increased substantially. However, the impact of the Key Stage 2 results on students’ 
potential careers is rather strong:

To illustrate this, we have developed a simulation of what would happen to children from 
different social class backgrounds if a selection process were to occur on the basis of three 
differently composed tests: one comprising items that behave like our ‘esoteric’ items, one 
of items that behave like our ‘realistic’ items, and one comprising an equal mixture of the 
two. This process might be realized as a selection examination for secondary school of for 
‘ability’ group placement within the first year of secondary school. …It can be seen that 
using our results as the basis for predicting outcomes, the proportion of working-class chil-
dren in this sample who would be selected by an ‘esoteric’ test is double that which would 
be selected by a ‘realistic’ test. (p. 94)

Instead of the 12.1% of working-class children who would have been selected on 
the basis of the “realistic” test, 24.2% would have passed the “esoteric” test (com-
pared to 33.3% and 30.0% of service-class children).
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An Example of Weakly Classified and Weakly Framed Modelling

The different versions of mathematical modelling may impact differentially on the 
legitimacy of participation in students’ collective modelling activities. English’s 
(2006) report of a group of four primary school children’s construction of a con-
sumer guide can be considered a type of a modelling activity where the task and 
the solving process are weakly classified and, in some dimensions, weakly framed. 
After the teacher had clarified the purpose and working of a consumer guide, each 
group of students was provided by four different packets of potato chips and in-
structions what to do: to write a consumer guide that helps people in choosing any 
snack chip, not just the four provided by the teacher. The students were asked to 
describe the nature or type of factors that they want to consider and to categorise, 
and to rate these factors.

The activity is weakly classified as there is no clear indication about priorities 
of mathematical knowledge and experience with consuming potato chips, respec-
tively. The internal classification is weak as well as no indication is given on the 
mathematical topics prevalent in categorising and rating factors. The framing is 
mixed as on the one hand, the teacher clearly initiates the activity, controls the so-
cial base and makes criteria for evaluation explicit: “Prepare a short report for your 
class members explaining why the system you developed for your consumer guide 
is a good one” (p. 309). By giving this criterion, the activity is clearly framed as 
pedagogic. On the other hand, the students seem relatively free to decide about the 
sequencing of their modelling activities, and the teacher is not controlling strictly 
the pace in which the activity develops.

The description of the students’ interactions reveals important differences in 
students’ participation. These differences develop coherently during the activity. 
Whereas a student named Kelly is repeatedly arguing on a personal and context-
bound level, Ahn, another student, seems to reject the limitations of personal expe-
rience and looks out for mathematical, that is disembedded, concepts to approach 
the modelling task:

1. Kelly, after the group has established a list of factors such as flavour, taste and 
crunchiness, “verified its appropriateness by drawing on her experience in a 
supermarket: ‘That’s because they had a chip tasting and they asked all those 
questions…. They were asking people to taste the chips and they asked ques-
tions like, would you be likely to ask your parents to buy this sort of chip?’ ” 
(p. 310) Ahn, in contrast, pushed forward the idea to categorise and rank the 
factors immediately.

2. When arguing on the representativeness of their consumer guide, Kelly com-
mented: “It’ll be a bit hard because this is what we like and other people like 
other flavors.” Ahn, in contrast, explained, “that the consumers ‘might not like 
what we like but we’re covering all aspects. So they can choose from what we 
give them so that isn’t really a factor.’ ” (p. 311)

3. Then the discussion “addressed categorizing cheese taste according to ‘above 
average cheesiness, below average cheesiness, just right cheesiness,’ to which 
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Ahn responded, ‘But we don’t know the average.’ Kelly also expressed concern 
about rating taste: ‘I know how you rate but I still don’t get it, why we rate, 
because they are all different factors so it’s like harder to rate stuff…so I just 
don’t get how you are supposed to rate them if they’re not the same. Like, you 
can’t add centimetres to meters.’ ” (p. 311)

Weak classification and mixed framing values might amount to everyday inser-
tions by some students while others focus on what they consider the appropri-
ate mathematical concepts and procedures to be applied. This is not to say that 
knowledge about potato chips is irrelevant for solving the task, quite the contrary. 
However, it seems to be difficult for some students to decide to what extent and 
for which purpose this knowledge is relevant: Is the activity accessing knowledge 
of potato chips, of consumer guides, or of the mathematical concepts and proce-
dures involved? This issue is pertinent in the contexts of assessment. “When chil-
dren communicate their ideas to their group during problem solution, they engage 
in formative assessment: They progressively assess and revise their current ways 
of thinking” (p. 320). However, as the activity is weakly classified it remains 
unclear towards which ends the formative assessment is directed. If the activity 
of setting up a consumer guide is embedded in a mathematics curriculum, then 
students such as Kelly who believe in the value of non-mathematical arguments 
do not profit from the kind of peer formative assessment that does not take the 
institutional context sufficiently into account. If the writing of consumer guides 
occurs within a project curriculum with weaker boundaries between the vertical 
discourse of mathematics and other disciplines or common sense knowledge, 
then the project itself and the students’ activities are ambivalent: they simulate 
an out-of-school mathematical practice in the classroom as authentic as possible 
(the teacher distributes brands of potato chips), but it remains widely implicit in 
which respect the students’ activities can count as mathematical. Students such 
as Ahn know, at least tacitly, that the mathematics involved needs to be made ex-
plicit (e.g. when he argues about average values), but others might entirely miss 
the mathematical points. In sociological terms, these others are educationally 
disadvantaged by the weak classification of the activity. The lack of reference 
to mathematics in the criteria given by the teacher (see above) aggravates this 
effect.

In weakly classified and framed modelling tasks, the recontextualisation princi-
ple is covert. As the openly announced criteria (“prepare a short report”, see above) 
do not refer to any knowledge domain, the students apparently exert control over 
the recontextualisation principle. They seem to be in a position to decide in which 
way the practice of selecting potato chips might be subordinated to school prac-
tice. However, as school knowledge is institutionalised knowledge, the control over 
the recontextualisation principle remains in the hands of the institution, that is, the 
teacher. Mathematical modelling that is weakly classified and framed minimises 
some students’ access to valued forms of school mathematics knowledge, because it 
masks the differential value of different kinds of arguments for legitimate participa-
tion in the mathematics classroom.
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An Example of Mixed Classification and Mixed Framing

In order to analyse age 11 to 13 students’ operations and arguments in mathemati-
cal modelling, Grigoras and Halverscheid (2008) construct a three-step task. It is 
said that a “salesman has to travel through eight cities of Germany” (p. 107). The 
students are, first, asked to identify the kind of information necessary to plan the 
salesman’s travel; and, second, to write a one-page letter to the salesman, which 
provides three suggestions of how to plan the travel. Then the salesman responds 
by indicating eight German cities he has to visit. He emphasises that he intends to 
finish the trip as fast as possible. The students are, third, asked by the travelling 
salesman to “explain me in a detailed manner, how you developed the trip sugges-
tion” (p. 107). The task was handed out to groups of students that have not yet been 
mathematically introduced to graphs.

Grigoras and Halverscheid (2008) observe that the groups of students struggle 
with the recontextualisation effected in the salesman tale: “It was often not clear 
whether the students are in the mathematical world or in the rest of the world” 
(p. 111). Although this way of characterising the mutual insulation of knowledge 
domains might be considered as theoretically blank, it nevertheless indicates that 
the recontextualisation of salesman travel manifest in the modelling task is strongly 
related to the values of classification and framing underlying the production of le-
gitimate answers to the problem at hand. This point might already be considered a 
shortcoming of the activity. When looking more closely at the data, we are faced 
with students’ differential understanding of the mathematical purpose of the activ-
ity. Although the task formulation is devoid of any mathematical concept or opera-
tion, there is a clear indication that some students know about the restricted value 
of everyday arguments in solving mathematics tasks while others argue within their 
repertoire of everyday knowledge.

S.2: Here, when we…look [to S.1] again here. Then we can come back. (pause) That is 
totally stupid, because one drives around…
…
S.2: Firstly, one has to establish a route, so that one saves energy!
…
S.2: What does he want in this town?
S.3: We do not need this! (p. 110)

The student S.2 is repeatedly using everyday arguments while the student S.3 re-
jects these as irrelevant for solving the task. As in the other example, we do not 
know about the students’ social backgrounds. But again we witness that access to 
the recontextualisation principle is not equally given. Indeed, from the task and the 
students’ discussion presented in the report, we cannot directly rate the value of 
classification. As this modelling activity was embedded in an ordinary transmissive 
geometry course, it is a good strategy for students to expect a strong external clas-
sification.

Grigoras and Halverscheid (2008) discuss why the students’ mathematical dis-
course is rather limited:
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If a question leaves the mathematics open, there is a tendency of students to answer the 
questions rather intuitively than based on classical mathematical reasoning. This is a pos-
sible answer why for some students it was not clear what the problem has to do with math-
ematics. (p. 111)

Apparently, a weak internal classification paralleled by low framing values with 
respect to the criteria for legitimate problem solutions, might lead to students’ in-
tuitive rather than mathematical reasoning. The weak internal classification is due 
to the absence of explicit mathematical concepts and operations in the modelling 
task as well as to the solitary character of the modelling task. The combination 
of strong external and weak internal classification operates in a mode that is par-
ticularly susceptible to educational disadvantage. Students that struggle with the 
recontextualisation principle are faced with the absence of textual indicators that 
allow identification of any relevant mathematical operation or concept. Whereas 
those students familiar with the classification of mathematics in school might find 
an interesting opportunity to spread and develop their mathematical creativity, those 
who lack the tacit knowledge required about school and classroom structure might 
be overwhelmed by the indefiniteness of the activity.

 Modelling as a Basis for Curriculum Construction: 
Concerns and Potential

In the section above, two different modes of school mathematical modelling in terms 
of the relationships between the knowledge domains involved have been described, 
and it has been shown how these might relate to differential access to mathematical 
knowledge. If modelling is not subordinated to the principles of school mathemat-
ics as specified in a curriculum, then the question arises to the principles of which 
discourse it relates. As mathematical modelling is not a uniform practice, but a set 
of interrelated activities in different domains (that is, it might itself be considered as 
a mediated discourse), there is no set of uniform criteria for performing mathemati-
cal modelling. Consequently, the discourse of school mathematical modelling, if 
it is not subordinated to accessing mathematical knowledge, leaves an open space 
for promoting different agendas, such as developing human capital by channel-
ling students into an engineering career pipeline, expressing and rethinking cultural 
identity, educating critical consumers or promoting social change.

The conceptualisation of modelling as a set of generic competencies that could 
be provided by mathematics education seemingly transcends the difficulties arising 
from cultural differences and economic inequalities because the activity of con-
structing mathematical models, through which these competencies are to be de-
veloped, is not seen as culture-bound and value-driven. Such a conception masks 
the fact that the construction of mathematical models depends on the perception of 
what the problem to be solved with the help of mathematics consists of and what 
counts as a solution. But depending on the subject position of the “modeller” in a 
practice, there are different models of the same problematic situation:
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For example, if the problem of a bank employee, who has to advise a client (aided by a 
software package), is the comparison of financing offers for a mortgage, for the manager 
of the bank this is a problem of profitability, and for the customer it is one of planning her 
personal finances. (Jablonka 2007, p. 193)

This is not to suggest that mathematical models should be scrutinised exclusively 
in terms of the values connected with the underlying interests. But the discourse of 
mathematical modelling as providing individuals with generic competencies that 
enable them to become adaptive to the conditions of technological development, to 
overcome the limitations of specialised knowledge, to gain competitive advantage 
on the labour market and become critical consumers and democratic citizens, is my-
thologising mathematical modelling because the causality between participating in 
mathematical modelling activities and the diverse educational potentials attributed 
to this experience is mythical. The myth embodies the claim of the ethical neutrality 
of mathematical modelling practices.

The popularity of modelling can be explained by the fact that it achieves a ficti-
tious marriage between two strands of critique of a strongly classified mathematics 
curriculum. Such critique is on the one hand an outcome of an attack on a neo-
conservative defence of canons of disciplinary specialised knowledge, which (at 
least historically) comes together with the reproduction of inequality of access to 
such specialised knowledge. On the other hand, the critique of strongly classified 
curricular knowledge comes from the side of those called “technical instrumental-
ists” by Moore and Young (2001) who advertise economic goals. Preparation for 
the “knowledge-based economy” is a major concern. Moore and Young observe 
that the scope of instrumentalism has extended from vocational training to general 
education under the guise of promoting the employability of all students. There is a 
danger that the myth of the neutrality of generic modelling skills discards the ten-
sion between neo-liberal ideology with a focus on human capital preparation and a 
conception of education for social change.

Instead of focussing on the question of how individuals through acquiring math-
ematical modelling techniques can best be prepared to adapt to the conditions of 
technological development and specialised knowledge, the question of how indi-
viduals can be prepared to reproduce these conditions as their own could form the 
starting point for curriculum development. The potential of activities in which mod-
elling takes place, when students and teachers engage in a modelling activity about 
an issue relevant to them or to their community has to be further illuminated by a 
sociological analysis of the institutional structures and organisational dynamics, in 
which mathematics education is embedded.

It has been argued by a range of scholars who concentrate on analysing mathe-
matisation and demathematisation as social processes that reflections on modelling 
can contribute to deconstructing the myth of the ethical neutrality of mathematical 
practices (cf. the review by Jablonka and Gellert 2007). The adequate forethought 
for curriculum construction then consists in the identification of modelling practices 
that differ in methodological standards and criteria for validation and evaluation.

When mathematical modelling is to mediate access to institutionalised mathe-
matical knowledge, then identifying out-of-school practices, which could profitably 
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be transformed by a mathematical recontextualisation remains a major task. For 
overcoming the problems of discontinuity between everyday knowledge and school 
mathematics that have been identified as a main source for unequal attainment, 
modelling activities should include a more explicit confrontation and transforma-
tion of the different types of knowledge involved.
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 Introduction

The students of German schools are influenced by multilingualism and various cul-
tural backgrounds due to continual immigration in the recent decades. Currently, al-
most one-third of the students in German schools have a migration background. The 
gap between the pupils’ high or low socioeconomic background seems to increase 
exceedingly as well. This circumstance would not be worth considering if each stu-
dent had equal prospects for a successful school career. However, this is not the case 
as is confirmed by various official reports (cf. Beauftragte der Bundesregierung für 
Migration, Flüchtlinge und Integration 2005, p. 30 and 2007, p. 12 ff).

Results of the international comparative OECD study PISA whose first tests 
were undertaken in 2000 clarify that the German school system does not render 
high-quality school achievements in its width by an early and intense selection but 
merely raises the unequal opportunities within the school system to a top interna-
tional level. This may be surprising since people in Germany generally assume that 
a strong selection results in a high quality of education. On closer examination, the 
results of PISA 2000 show a reverse image. Thus, eight out of 11 countries with 
the highest school equity among the OECD states who participated in the PISA 
study 2000 achieve a high quality in terms of their students’ performance in reading. 
Merely Spain seems to achieve comparatively high school equity for its pupils with 
a mean performance in reading literacy, which is statistically lower than the OECD 
average (cf. OECD 2005, p. 27 ff.).

Therefore, the key to successfully establishing school systems with an interna-
tionally compared high quality seems to be the systematic integration of multi-
farious pupils rather than early selection. A basic formula could therefore be: equal 
opportunities accomplish quality breadthways. So far, the constructive dealing with 
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lingual and cultural plurality of pupils who originate from so-called educationally 
disadvantaged families with low socioeconomic status only succeeds rudimentary 
within German schools. Therefore, the success of the entire educational system 
seems to be endangered (cf. OECD 2006, p. 30).

Great potentiality to change this situation is unanimously located—especially for 
pupils who live and learn with more than one language—in the German language 
proficiency. This appears to be plausible. But how do children have to be supported 
on their way to get there? The results of international comparative studies like PISA 
2003 as well as the international primary school study PIRLS (Bos et al. 2003) lead 
to the result that poor educational opportunities and school achievements—also 
those in mathematics—of pupils can predominantly be ascribed to causes that lie 
apart from school such as the socioeconomic background as well as language used 
in the homes. According to those results, there is a connection between the vernacu-
lar used in the parents’ homes and the linguistic and mathematic competences of the 
youths. Youths whose vernacular used in the parents’ homes is not coherent with the 
language used during lessons achieve lower competency scores in all domains of 
the PISA tests (cf. Deutsches PISA-Konsortium 2004, p. 259 f.).

On the basis of those results during the last few years various attempts have 
been made especially to diagnose the linguistic abilities of children before entering 
school and if necessary to improve them. For this reason, obligatory language tests 
for children have been established in the individual federal states. (cf. e.g. Ministry 
of Education North-Rhine Westphalia 2009; see also materials by the University of 
Dortmund1).

Criticism concerning those tests is manifold due to the following reasons:

• On the one hand, the diagnostic methods seem to be imperfect and little stan-
dardised. Different years are examined by means of highly different tests within 
the different Federal states of Germany. Also the choice of children seems to be 
heterogeneous. While in some Federal states of Germany all children are tested, 
there are some Federal states in which only children with a migration background 
are tested and others where children are tested who do not attend nurseries.

• On the other hand, it seems unclear how and where children with linguistically 
too low competences in comparison to their peer group can get the best support. 
According to the integration plan of the German government, in the future those 
children ought to be linguistically supported in their homes as well as in the 
nurseries even before entering school. German politicians seem to perceive the 
core of the solution to the problem in linguistic education in early childhood.

A connection between the pupils’ poor school achievements in German schools 
and factors from outside school such as language used in the parents’ homes and 
the parents’ socioeconomic status is highly plausible. Nevertheless, it cannot be 
assumed that the structure of school and lessons does not have any influence on 
these results. To make families and nurseries responsible for success in school as 

1 http://www.delfin4.fb12.uni-dortmund.de/. [Last access: 15.04.2010].

M. Schütte and G. Kaiser



239

well as educational opportunities in advance of school entry and thereby not taking 
the school itself in consideration seems disputable against this background. The 
question arises whether the school—the prevalent place of the education of young 
people—is able to make a significant contribution to support young people who 
are not provided with the necessary resources to successfully complete their school 
career by their homes in such a way that they have comparable prospects as their 
privileged classmates.

The aim of the present contribution is therefore to spot causes that are respon-
sible for students performing poorly who participate in classes with linguistic and 
cultural plurality and often originate from educationally disadvantaged families 
with low socioeconomic status. The reconstruction of phenomena concerning the 
linguistic shaping of teaching within a school subject such as mathematics, which 
is still considered to be unaffected by linguistic and cultural influences, might fa-
cilitate the transferability of these conclusions to other school subjects. Thus, the 
results of these analyses of mathematics teaching in primary school classes indicate 
implications for the studies of students within plural linguistic and cultural classes 
beyond mathematics and primary school education.

The international discussion in the field of mathematics education uses promi-
nently approaches that allocate language and communicative competence both a 
special significance for the learning of mathematic contents (cf. Pimm 1987; Stein-
bring 2006; Zevenbergen 2001). Within the German-speaking countries, Maier 
(2006, 2004 and 1986) was already concerned 20 years ago with research in the 
field of language and mathematics. In the following section, we want to reveal 
on the basis of our own empirical studies how mathematics teachers use language 
in their teaching to shape their lessons. In the underlying research of this contri-
bution, there were 15 different episodes in total which were analysed. The video 
recordings on this took place in three classes of the fourth grade in two Hamburg 
primary schools with an approximate 80% migration contingent amongst the pupils. 
The enquired classes were instructed by three different teachers. The episodes were 
systematically compared. Subsequently, an exemplary analysis of a short sequence 
from one of the 15 episodes will be depicted.2

 An Episode from the Lesson Sequence “Least  
Common Multiple”

In the following chapter, a short sequence of an episode of an everyday primary 
school mathematics lesson during the introduction of a new mathematical concept 
is described. This scene serves as an illustrative example. According to the approach 

2 This scene under consideration deals primarily with a shortened extract from the original epi-
sode, since for reasons of space limitations no analysis of the entire episode was possible. The 
detailed analysis of this episode can be found in Schütte (2009).
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of interactional analysis, first this sequence will be presented as a summarised anal-
ysis of the interaction followed by an analysis of the linguistic shaping of the lesson 
including a theoretical reflection.

Background and Transcript of the Lesson Episode

At the beginning of the scene “least common multiple” Ms. Teichmann along with 
25 female and male pupils, 17 of which have a migration background, are situated 
in the classroom. Ms. Teichmann is formally educated as grammar school teacher. 
In the preceding mathematics lessons, Ms. Teichmann immersed pupils during the 
lessons in the basic arithmetic operation of multiplication. In this lesson, the in-
troduction of a new mathematic concept should take place: the LCM—the Least 
Common Multiple3.

It is Wednesday morning shortly after the start of instruction. Ms. Teichmann 
asks initially what the abbreviation LCM stands for. Thereafter, she asks to calcu-
late multiples. Subsequently, the teacher draws two circles on the blackboard. She 
divides one of the circles into three segments and the other into four segments, with 
an addition symbol between them and an equals sign. She marks for each circle 
one of the segments in pink. While one pupil very quietly says, “1/3 plus 1/4”, Ms. 
Teichmann asks the pupils which equation is written on the blackboard. The pupils 
begin to guess and first give the answer “1 plus 1” or “2”, and then somewhat later 
label the segments with 1/3 and 1/4. The teacher notes this in the drawing on the 
blackboard, as shown in Fig. 17.1. Several pupils offer many creative solutions for 
their addition, such as for example “2/7”. The teacher adjusts the fractions from 1/3 
and 1/4 to 4/12 and 3/12 and then adds the fractions together to get 7/12. In closing, 
her generalisation of the procedure follows…4

3 It should be noted that fractions as well as the concept of the LCM are not subject matters of 
the fourth grade in primary schools in Hamburg and pupils are likely overextended by calculating 
fractions (cf. Hamburger Rahmenplan Mathematik für die Grundschule 2004).
4 The transcription conventions are provided in the appendix.
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Summarising Analysis of the Interaction

At the end of the episode, the teacher attempts to show the pupils a generalisation 
of the addition of fractions. She uses for this purpose the everyday example of the 
division of a pizza respectively cake and makes the division of them visual through 
gestures <246>. Hereby both levels of the illustration on the basis of relations to 
everyday life and the generalisation of the rules of fractional arithmetic melt togeth-
er. This is shown in the statement by Ms. Teichmann in <252–258>. The reference 
to “LCM” seems to have been completely lost, respectively left as implicit. Alone 
the, “…and for that reason one needs this…” in <252> from Ms. Teichmann gives 
us the idea that there is still a reference to the “LCM”, since one needs an “LCM” 
in order to find the least common denominator for the addition of the two fractions. 
Ms. Teichmann does not further explicate this connection. Also, the final generali-
sation by hand of the cake example <252–258> can barely be accounted for as a 
further clarification of the procedure, since Ms. Teichmann says that one may not 
simply add three and four together and means thereby apparently the denominators 
of one third and one fourth.

Table 17.1  Classroom discourse while introducing the concept of adding fractions
241 16:30 <L: Right/you may not- add a large piece of pizza
242 <L: [Points to the left circle]
242.1 >L: And a small one and a smaller -. one together
243 >T: [Points to the right circle]
244 T: That is not equal right/
244.1 <T: You must practically…
245 Chop them into such pieces that they are equal\
246 <T: [Makes a chopping motion with her hand]
247 >T: ..right/these pieces are equal\
248 >T: [Points to the left circle]
248.1 <T: [Points to the right circle]
248.2 <T: These pieces as well\
249 Only here it is less\right/here there are only three-
250 >T: And here there are four pieces.
250.1 >T: [Points to the left circle]
251 P: Ah now I understand it
252 16:57 T: And for that reason one need this\. if you at all want to (add) 

fractions-
253 So that you can add together such pieces of cake together\
254 Right/one cannot simply
255 Say three and four is seven and from above
256 We will take two and then I have two sevenths\
257 17:11 Two sevenths is something completely different
258 No that doesn’t work\

17 Equity and Language in Mathematics Education 
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Through the selected example, however, pupils did indeed have to add three 
and four in order to ascertain the solution of the task—though, on the level of the 
numerator. They added 3/12 and 4/12. Moreover, the addition of the numbers three 
and four are everyday tasks for primary pupils. Why one may no longer carry out 
this arithmetic remains unexplained. Since one cannot assume, that the pupils are 
competent to differentiate between numerators and denominators, one can classify 
the statement of the teacher as contradictory. Consequently, pupils in the end of this 
episode were merely able to solve an addition task, which they were already capable 
of solving before and whose correctness would now be put into question.

Methodology and Methodological Approach

The underlying research to this contribution is qualitatively oriented and grounded 
in interpretative classroom research. More exactly: in the domain of the interaction-
istic approaches of interpretative classroom research in the field of mathematics 
education (cf. Krummheuer et al. 1999). Video recordings of everyday5 mathemat-
ics primary school classes serve as empirical basis of this contribution. Through 
the analysis of the units of interaction in the videotaped instructional episodes, we 
oriented ourselves to a reconstructive-interpretative methodology and on a central 
element of the research style of Grounded Theory—the methodical approach of 
comparative analysis.6 In order to analyse the lingual shaping of primary mathemat-
ics teaching via the teacher, those video episodes were primarily analysed, where 
new mathematical terms are introduced. The linguistic form is of great importance 
within these stages because it is a matter of first-time construction of something 
subjectively new to the pupils. The focus on mathematics teaching is justified since 
it is a determined factor for the transition to Secondary school in the German school 
system and constitutes the central selection subject in the fourth grade next to the 
teaching of the mother tongue German.

The Analysis of the Linguistic Shaping

Here, subsequently follows the analysis of the linguistic shaping of the instruction 
on the basis of the selected instructional episode. We confine ourselves to two theo-
retically developed analytical levels that explicitly refer to linguistic approaches 
[especially Pimm (1987) with regard to the term of register developed by Halliday 
(1975)]. Alternatively, we primarily refer to sociological pedagogical and linguistic 

5 This means that the researchers did not wittingly undertake an interference during the lessons. 
The teachers of the research chose the mathematics used in class on their own as well as the materi-
als and their didactic procedures to organise the subject matter.
6 The extensive transcripts of the episodes as well as the analyses can be found in Schütte (2009).
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approaches like the ones developed by Bernstein (1977) and Gogolin (2006). These 
two perspectives represent the level of the mathematic-linguistic register and the 
formal language register respectively that are based on one another hierarchically 
and reflect the amount of the use of Bildungssprache, which might be translated as 
academic language7 (Gogolin 2006), by the teacher during the introduction of new 
mathematical concepts.

The Embedding of Mathematical Concepts in a  
Mathematics Register

The first level of analysis concerning the linguistic shaping of instruction while 
the teacher introduces new mathematical concepts can be developed by a refer-
ence to the approach of Pimm (1987). He compares teachers as a role model of a 
native speaker of mathematics (ibid, p. xiii) and other people, for whom mathemat-
ics appears to be incomprehensible, as per a foreign language, to which they are not 
empowered (ibid, p. 2). In this context, Pimm (1987) is speaking of a mathematics 
register (p. 74) and theoretical concept introduced by Halliday (1975).

Halliday understands a register as an assemblage of meanings that are intended 
for a particular function of language together with words and structures that are able 
to express these meanings. Halliday subsequently talks of the mathematics register 
only when a situation is concerned with meaning, that is related to the language of 
mathematics, and when the language must express something for a mathematical 
purpose. Mathematics register in this sense can be understood as not merely consist-
ing of terminology and the development of this register is also not merely a process 
to which new words can be added (cf. Halliday 1975, p. 65).

Pimm (1987, p. 76) sees the task of pupils, however, as to become proficient in a 
mathematics register and in this way to be able to act verbally like a native speaker of 
mathematics. The level of the linguistic shaping of instruction falls into what extent 
the newly learned mathematic concepts in the researched lesson were integrated into 
a mathematics register or if they were to be introduced and regarded as isolated units.

The Analysis of the Selected Episode

In the selected episode, the teacher appears to attempt to explain the mathematic 
concept LCM in connection with the addition of fractions. In the beginning of this 
episode, the teacher reverted to the concept of multiples in allowing pupils to calcu-
late them. According to the theoretical perspective of Pimm (1987), the attempt by 

7 The translation of Bildungssprache as academic language does not cover the full meaning of the 
expression because the term Bildung has a special meaning in European pedagogy.
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the teacher to reconstruct the concept of LCM only allows itself to be incorporated, 
not as an isolated conceptual unit, but through its connection with other mathematic 
concepts in a mathematics register. According to Pimm, it should be the goal to 
make pupils competent native speakers of mathematics. In the introduction by the 
teacher, however, at no point of time in the entire scene the mathematical concepts 
of denominator, numerator, fractions, fraction strokes, or multiples were verbally 
and content-wise clarified in the official classroom discourse. They remain implicit 
and are integrated without reflection in the already familiar calculation routines. 
Even the teacher herself rarely uses the concepts to be learned actively, such as is 
shown in the first analysis. She rather reverts back predominantly to the everyday 
language concepts. The illustration on the blackboard is the only aid for the pupils 
to develop the meanings of the new concepts. Merely the concept of multiples is 
offered differently to the pupils. They are given the possibility to actively negotiate 
the meaning of multiples by calculating them.

It seems questionable that pupils are able to develop the concepts without a ver-
bal contextual explanation of the concepts by the teacher. Pupils must develop the 
subject with this implicit procedural method from their everyday background or 
from what they already know from their lessons. They will thus be able to take no 
decisive steps in the direction of becoming a native speaker of mathematics.

The Embedding of the Mathematical Concepts in a Formal 
Language Register

The second level of analysis of the linguistic shaping of instruction unfolds from 
the reference of the theoretical explanations of Gogolin (2006) referring to the Ger-
man context as well as explanations of Bernstein (1977) and Zevenbergen (2001) 
in an international context. According to Gogolin (2006), pupils in German schools 
are bound to the normative standard that they are receptively and productively in 
command of the cultivated linguistic variations in class. This language of school—
described by Gogolin as Bildungssprache (ibid, p. 82 ff.)—translated by us as aca-
demic language—has more in common with the rules of written linguistic com-
munication, regarded on a structural level. It is in large parts inconsistent with the 
characteristics of the everyday verbal communication of many pupils.

Gogolin relates the concept of Academic language to a concept of Cognitive 
Academic Language Proficiency described by Cummins (2000, p. 57 ff.) that Cum-
mins develops in the context of second language acquisition with English being 
the secondary language. Cummins refers to children quickly acquiring abilities in 
their secondary language to cope with everyday situations but they require consid-
erably more time to gain competences in the Academic language of lessons which 
are necessary to be educationally successful. A crucial feature of the Academic 
language in class is its conception as a written form. Therefore, it features a high 
degree of information density as well as a disengagement of the situation. Hereby, 
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the Academic language differs significantly from common oral communication of 
pupils. Empirical research in the German-speaking countries that could character-
ise Academic language in lessons more precisely are not yet available. Gogolin 
and Roth (2007, p. 42) as well as Kaiser et al. (2009) only name sub-areas, which 
are relevant for the acquisition of Academic language, amongst others the passive, 
impersonal expressions, the subjunctive, nominalisations, compound words and 
attributes.

In their discussion concerning the language of instruction, Bernstein (1977) and 
Zevenbergen (2001) do not intend to differentiate between children with or without 
migration background but rather to distinguish between children from the working 
and middle class. According to Bernstein and Zevenbergen, the linguistic abilities 
of formal language that are required in schools set a line of demarcation in everyday 
language, that is more in accordance with the abilities of the middle class than with 
those of the working class. This formal language of instruction stands out through 
its precise grammatical structure and syntax as well as through its complex sentence 
structure. Through proficiency in this formal language, pupils—especially those 
from the middle class—develop a sensibility in regard to the structure of objects as 
well as the structure of language which helps them to solve problems in life and in 
school in a relevant and goal-oriented manner. Successfully receptive in being (a) 
part (of) and productive as in taking part (in) (Markowitz 1986, p. 9, translated by 
the authors), a linguistic discourse of instruction is something that is only possible 
for pupils, according to the above-mentioned theoretical approaches, when they 
have competence in the formal language or the Academic language of instruction. 
In this way, it is possible for them to understand abstract concepts independent of 
concrete context and to transfer them into written de-contextualised form.

In this level of the analysis of the linguistic shaping of primary mathematics in-
struction, there follows the question, to what extent, and how pupils are introduced 
during instruction to a formal Academic language that enables them to take part in 
the interaction during classes that implies to efficiently cope with language in order 
to satisfy the criteria of shapeliness and grammaticality of language.

The Analysis of Selected Episode

In her attempt to make a generalisation at the end of the sequence, the teacher says 
in <241–242> “Right/you may not add a small piece of pizza and a small one and 
smaller one together”. She also uses the comparative form of the adjective small, 
for this purpose, but does not go into the “Least Common Multiple” more explic-
itly. However, it is not self-explanatory that all pupils—most especially those who 
have grown up multilingual or originate from educationally disadvantaged environ-
ments—are familiar with the correct comparative forms of adjectives in the Ger-
man language. Pupils might not be able to differentiate between Small Common 
Multiple and Least Common Multiple at once. This interpretation is supported by 
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analysis of previous episodes, in which pupils used the incorrect comparative form 
when attempting to use the term Least Common Multiple (for details concerning the 
extensive analyses we refer to Schütte 2009).

Another correlation to this can be seen in the procedure at the beginning of the 
scene where the teacher allowed the pupils to calculate multiples. At no point in 
time did the teacher explain the connection between the terms multiple and Least 
Common Multiple. She did not refer to the meaningful components that form the 
mathematical concept of least common multiple. In this way, it is made difficult for 
students to be able to differ between multiples in common and the Least Common 
Multiple. It is not attempted on the part of the teacher to integrate the new concept 
into a related text. Hereby the question may be asked if and how the students should 
be empowered to understand such abstract concepts independent of concrete ex-
amples and to be able to transfer them into written form.

Summary of the Analysis of the Linguistic Shaping of Instruction

The comparison of the two hierarchical levels of the linguistic shaping of instruc-
tion which are related to each other resulted in the following structural character-
istics which were not all apparent in the documented lesson sequence. However, 
the selected sequence exemplifies central structural characteristics of the linguistic 
shaping of mathematics classes.

The implicitness of learning processes can be reconstructed as a common struc-
tural characteristic that underlies the linguistic shaping while the teacher introduces 
new mathematic concepts. The implicitness of learning content is reflected in the 
usage of different mathematical and formal linguistic registers. Concerning the 
mathematic register, it can be reconstructed that the meaning of concepts as well as 
content connections between the new mathematic concepts and the already known 
everyday language concepts are not made clear by the introduction. The meanings 
or connections are not explicitly taken up in the instructional discourse and find thus 
no consideration in the classroom discourse.

The formulated goal of Pimm (1987, p. xiii) that students should learn to speak 
mathematics like a native speaker, will be difficult for students to achieve, as the 
native speaker of mathematics—the teacher—does not exemplify this active speak-
ing herself or himself.

A similar picture becomes apparent in the way the teachers commit themselves 
to formal linguistic particularities of formal linguistic register. Also here there is an 
implicitness that rules the teachings. The teacher only refers back to the grammati-
cal structure implicitly, in which the mathematical concept is embedded, or to that, 
which characterises the meaning carrying elements. With which linguistic methods 
the complex and abstract mathematic concept, in the sense of the conceptual writing 
is expressed to a connected text is left, as regards content or implicitness, in the end 
of the attempted explanations, unconnected.

M. Schütte and G. Kaiser



247

Thereby, the few attempted explanations with regard to content or implicitly 
ending stay unconnected. There is only superficial response to the shapeliness of 
the pupils’ speech in the different episodes to that extent that the articulation and 
notation of the new mathematical concepts are explicitly taken up by the teacher. 
Superficially, this takes into account that a high ratio of pupils does not speak Ger-
man as their native language. A continuous embedding of the mathematic concept 
in Academic language is not noticeable but necessary to describe abstract concepts 
de-contextualised from a specialised to a general view.

Theoretical Reflection: Implicit Pedagogy as a Barrier for Equity

The implicit proceeding within teaching discourses, containing a formally unshaped 
mode of speaking may endanger the comprehensive development of new concepts 
on the side of the students and therefore hinders the understanding of mathematical 
concepts. What kind of problem can generally arise to pupils of so-called education-
ally disadvantaged families due to this kind of linguistic shaping of instruction?

The analysed teaching sequence is predominated by a language usage that sig-
nificantly depends on colloquial everyday language and in spite of introducing new 
mathematical terms and definitions does not achieve a formal linguistic status. Con-
sidering the linguistic shaping of teaching a multifarious body of pupils, it can be 
supposed that this usage of informal everyday language via the teacher during the 
introduction of new mathematical concepts benefits especially those pupils who 
originate from so-called educationally disadvantaged families with a low socioeco-
nomic status and/or migration background. These pupils are according to Bernstein 
(1977) competent to follow a teaching discourse that is characterised by the usage 
of everyday language since they are proficient in the German informal everyday 
language. In that way, the pupils from educationally disadvantaged families in the 
researched primary school teaching would be “met wherever they were” following 
a prevalent pedagogical device.

This conclusion contains discrepancies against the background of the new results 
of Bernstein (1996), Bourne (2003) and Gogolin (cf. 2006) as well as providing 
only a pretended aid to the pupils. In addition, it can be disproved by the reference 
to the depicted analytical results of the research at hand. The children who require 
a linguistic introduction to formal linguistic instructional language within class are 
not satisfied by this kind of linguistic shaping that resembles everyday discourse 
by the use of implicitness and informal everyday language. It can be assumed that 
the school institution is the only possible place for many of these children to learn 
a formal Academic language and their only guide is the teacher. Therefore, the 
instructors do not offer them adequate guide and the school does not provide an 
adequate place to learn formal Academic language that again is crucial to a success-
ful school career. This kind of linguistic shaping is inconsistent with the normative 
requirements of the German school system.
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Based on the works of Gogolin et al. (2003), it is possible to hypothesise that 
these competencies of formal speech become relevant during efficiency ratings 
such as testing and the comprehension as well as development of texts. The present 
classes do not seem to prepare all the students for the requests of the German school 
system. Competences in Academic language, that is textual competencies that are 
characterised by verbal linguistic text competences, may enable the students to 
comprehensively read through thematically and linguistically carefully composed 
and specialised texts as well as to process this information according to a task and 
subsequently develop oral and written texts. But these skills are not conveyed to 
students within this kind of education.

In this respect, the system of primary school fails to disclose an access to a suc-
cessful school career to its unprivileged participants. The pedagogical approach to 
meet the pupils—especially those who originate from educationally disadvantaged 
families—at their profession and to remain at this level may become a stumbling 
block for the linguistic as well as professional education in German schools. The 
opportunities to learn about new technical terminology seem to be limited to these 
pupils in opposition to their classmates who grow up in a monolingual German 
environment as well as educationally advantaged. Pupils from educationally advan-
taged families apparently possess the abilities to compensate the deficits that are lo-
cated in the linguistic accomplishment of instruction which affect the development 
of meaning of new technical terms and/or the composition and appliance of a formal 
Academic language due to the competences that they acquired at their homes.

However, the reconstructed procedures of the teachers during introducing new 
mathematical terms could not only be explained by mathematics teaching ap-
proaches and for this reason further pedagogical, sociological and linguistic ap-
proaches were consulted for the analyses. The use of these approaches allows clari-
fication of the procedure of the teacher during the linguistic shaping of instruction 
on the basis of a theoretical concept which is called Implicit Pedagogy (cf. Schütte 
2008, 2009). According to this implicit pedagogy, the teachers are predominately 
assigned to prepare a learning environment to their students and to observe the 
development of individual inherent abilities and “talents” of each child. This kind 
of teaching could be understood as a “pathologic form of open teaching concepts”. 
In these interactions, the teachers do not function as the advanced individuals who 
encourage the pupils to advance their development even if they partially choose 
frontal teaching with the whole class or rather “closed forms of interaction” as 
teaching methods.

The approach of Implicit Pedagogy is based on the main idea, that alone on 
the basis of the abilities the students bring along with into school they can unlock 
meanings of concepts or underlying contextual and linguistic contexts or it is as-
sumed that the structures are self-explanatory to the students. Neither the lessons, 
the qualifications of the teachers, nor their efforts will bring in the decisive influ-
ence on the possible educational success of students in school, but rather, and above 
all else, the abilities that the children have already brought with them into school 
decide on their educational success. Existing social relationships hereafter become 
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reproduced. Besides, distinctions between pupil’s performances can be unchange-
able classified and legitimised by socioeconomic and social differences.

 Prospects

According to international comparative studies, the decisive factor to successful-
ly complete an educational biography in German schools seems to be the pupils’ 
mother tongue or the language used in their everyday life. However, this contradicts 
the data of the complimentary study of PISA referring to students with migration 
background (cf. Ramm et al. 2005). In this study, 50% of the youths with a mi-
gration background classify themselves to be primarily German-speaking whereas 
only 13% state that they predominantly use their native language. In regard to these 
data, it is possible to state that the majority of youths with a migration background 
attending German schools use an informal everyday language in their social envi-
ronment. Admittedly, within the complimentary study of PISA 2003 students with a 
migration background neither reach the average level of competence of the youths 
without a migration background in mathematics nor in reading abilities despite of 
their proficiency of the German everyday language.

A special interest of research could accrue from the fact that according to the 
results of PISA 2003, youths with a migration background who pass their entire 
educational biography in German schools show worse competency values than 
those who immigrated at a later time. The thesis suggests itself that pupils who 
have already been educated in their countries of origin possess formal linguistic 
abilities that are in a different language to that of the German language and that 
they benefit from these abilities in the lessons held in German. Although pupils 
who pass their entire educational biography at German schools seem to possess 
proper colloquial German language competences but neither acquired abilities of 
a formal Academic language of their countries of origin nor in the German lan-
guage. In this respect, there is nothing to object to the trials of encouraging chil-
dren linguistically within their families or in day care centres. But these initiatives 
begin with colloquial competencies that are undoubtedly necessary conditions 
for a successful school career in German schools, but do not represent sufficient 
conditions. This results in the necessity of research and support. Therefore, it is 
essential to find out how to equate the everyday as well as academic linguistic 
competencies of students with a migration background or originating from edu-
cationally disadvantaged families with low socioeconomic status to their fellow 
students who grow up monolingual via systematic programs for language acquisi-
tion in the subject lessons.

The goal should be to create a concept of language acquisition that enables all 
pupils to participate actively in the educational discourse of lessons by teaching 
formal linguistic competences regardless of whether they live and learn in one or 
more languages.
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Table 17.2  Transcription Conventions
1 Line numbering
1.1 Additional, belated inserted line
[Annotation] Annotation, commented explanatory remark
[Action] Action that occurs between two temporally separated sections of 

the transcript
(Word) Not an undoubtedly understandable word or sentence
/ Lifting of the voice
- Voice in abeyance
\ Lowering of the voice
. .. … Speech pauses given in seconds
T Teacher
P Pupils
<T: The house is smaller\
<P: is smaller

Notation of the score: The speakers (in part) act simultaneously. 
This is indicated by the simultaneous proceedings standing 
directly among each other

>T: The shift of the direction of the arrow indicates a new and imme-
diately following block of score
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Early childhood education represents a powerful opportunity to address equity is-
sues in mathematics education in the United States. This is true in two distinct 
respects. First, there are persistent differences in mathematics achievement between 
the United States and many other developed nations (National Research Council 
1989, 1990; Schoenfeld 1992). Tellingly, these differences appear as early as pre-
school, where children from other developed and developing countries outperform 
their American counterparts on such beginning mathematics concepts as number 
words and early addition (e.g., Ginsburg et al. 1997; Starkey et al. 1999). Second, 
there is clear evidence of a national mathematics “achievement gap” among U.S. 
students of different demographic backgrounds, which appears as early as kinder-
garten (Entwisle and Alexander 1990; Griffin et al. 1994; Jordan et al. 1992). This 
gap disproportionately favors children from higher socio-economic status back-
grounds (Denton and McPhee 2009), indicating that children who lack economic 
means have an additional disadvantage in terms of readiness to learn primary-level 
mathematics. Because this gap persists and often widens throughout schooling (Na-
tional Research Council 2009), early childhood is the best time to eliminate it, cre-
ating subsequent equitable access to mathematical learning in elementary school.

Given that approximately 80% of U.S. preschool-age children are in some form 
of out-of-home care, there is ample opportunity to address mathematics through 
the early care and education system (Jacobson et al. 2007). While intervention that 
begins early has effects that extend into later years (Bowman et al. 2001; Clements 
et al. 2004), early intervention specifically focused on mathematics has positive 
effects on student learning that generalize beyond it (Fuson et al. 1997). The ef-
fectiveness of such intervention points out a dearth of quality teaching that, if rem-
edied, can provide more equitable preparation for elementary school among and for 
U.S. students.
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Unfortunately, mathematics education for preschool children has been neglected 
in the United States, and for many years. This is in contrast to early literacy, an 
educational topic that has received a wealth of attention over the past two decades. 
So successful have been the efforts of the early literacy community to explain it-
self that “Today…early childhood literacy is regarded as the single best investment 
for enabling children to develop skills that will likely benefit them for a lifetime,” 
(Dickinson and Neuman 2006, p. 1). This disparity of attention paid to early lit-
eracy versus early mathematics is seen in conference programs, and evidenced in 
the teaching practices of early childhood teachers. For example, at a recent meeting 
of the National Association for the Education of Young Children (NAEYC 2008), 
a conference focused almost entirely on preschool education, there were only 23 
presentations on mathematics, compared to 65 on literacy. Further, a recent study 
of early childhood classrooms in Chicago, Illinois, showed that 90% were likely to 
conduct literacy-related activities on any given day, while only 21% were observed 
to conduct mathematics activities (Chicago Program Evaluation Project 2008).

Neglect of early mathematics also occurs among researchers in mathematics 
education. At the 2008 Research Pre-session of the Annual Meeting of the National 
Council of Teachers of Mathematics (NCTM), only three of 106 presentations fo-
cused specifically on the mathematics education and learning of children before 
first grade. The Chicago Public Schools, the third largest public school system in 
the United States, provides math coaches to classroom teachers in grades Kinder-
garten to 12, but no such provision is made for pre-k teachers and the children they 
teach. Clearly, early mathematics education for three- to five-year-olds has not yet 
become part of U.S. mainstream education (Ginsburg et al. 2008), and while qual-
ity mathematics teaching is the focus of current reform efforts in elementary and 
secondary schools (see, e.g., Hill et al. 2005), there is little to no discussion of its 
relevance to early childhood education.

We argue that a re-definition of early mathematics as foundational mathematics 
may further both quality and equity agendas in the United States. As described in 
greater detail below, foundational mathematics is that mathematical thinking that can 
develop prior to primary school. It anticipates arithmetic and does not rely upon the 
use of secondary symbol systems, such as written numerals, but is clearly mathemati-
cal, and susceptible to teaching intervention. Specifically, we propose that the recon-
ceptualization of early mathematics as foundational mathematics: (1) distinguishes 
it from the mathematics that is more appropriate for elementary school, (2) names 
this mathematics, legitimizing it as content that can be both understood and taught, 
and (3) suggests its important role in preparing learners for more advanced thinking.

To advance this case, we begin by describing how in the United States both 
the early childhood and mathematics education communities have come to neglect 
early mathematics. We define foundational mathematics at length, endeavoring to 
make clear its centrality to equitable access to mathematical learning, and delineat-
ing how its common acceptance might address those misconceptions that have kept 
it from being taught. Finally, we report on a proven intervention designed to help 
early childhood teachers understand foundational mathematics, thereby improving 
the quality of their teaching.
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 Early Childhood Education: Why Does It Neglect 
Mathematics?

There are two related reasons why early education has managed to ignore the im-
portance of improving its teaching of mathematics for so long. First, there is a belief 
that young children are not ready to engage mathematical thinking before primary 
school, an idea often (misguidedly) supported through reference to “developmen-
tally appropriate practice,” the dominant paradigm for early care and education in 
the United States. Second, there is a distinct lack of both good mathematical knowl-
edge and mathematical confidence among early childhood teachers, who like all 
teachers, tend to teach best what they know best. While each of these causes has an 
unfortunate tendency to feed and fortify the other, each also has roots in different 
socio-historical events and understandings.

Developmentally Appropriate Practice

In the United States in the early 1980s, there was a convergence between middle-
class families who hoped preschool could give their children a “leg up” on academic 
achievement, and those concerned with promoting educational equity by improving 
the preparation of children from socio-economically disadvantaged families (Gol-
beck 2001). As a result of this convergence, more state and local governments in-
cluded preschool in the public schools (Spodek and Brown 1993), and emphasized 
early formal academic instruction, based on the idea that it was an enriching experi-
ence for young children (Gersten and Carnine 1984; Veras 1975). Direct instruction, 
drill, and worksheets focused on imparting basic skills tended to be part of this ef-
fort to enhance the education of young children, as the typical first grade curriculum 
was simply “pushed down.” This approach to preschool was met with something 
of a backlash within the decade. Elkind (1987), for example, argued that children’s 
predilection to learn by play and exploration was inappropriately squelched by a 
curricular focus on early academic achievement. Other child development experts 
joined the debate and echoed his sentiments (see, e.g., Kagan and Zigler 1987; Sigel 
1987), and in 1987, the NAEYC issued its Position Statement on Developmentally 
Appropriate Practices (DAP) (Bredekamp 1987).

Essentially, the Position Statement on DAP supported a developmentally uni-
versalist, child-centered approach to teaching. While it was not tied to any specific 
curricula, it advocated a set of principles NAEYC felt should govern the education 
of all young children. Specifically, it recommended that teaching be responsive to 
the needs and capabilities of individual children, emphasizing teacher observation 
and support over assessment and the introduction of skills. Though not without con-
troversy, the influence of DAP on early childhood practice in the United States and 
elsewhere has since been particularly pervasive and far-reaching (Bowman et al. 
2001).
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In part due to this almost-universal emphasis on child-led teaching at the pre-
school level, there are many early childhood teachers who firmly believe the study 
of mathematics before elementary school is developmentally inappropriate. Not 
unlike many of their elementary counterparts, preschool teachers often think that 
memorization of facts is the key element of mathematical learning (Sarama and 
DiBiase 2004). There is also evidence that the math-related knowledge and teach-
ing strategies of early childhood teachers, scant though they may be, are focused on 
modeling the use of procedures to solve problems and ensuring correct implemen-
tation of computational skills (Copley 2004, p. 403). While the larger mathematics 
education community has made a lot of headway in “redefining mathematics as a 
dynamic discipline full of opportunity for inquiry and discovery,” the early child-
hood community has not yet gotten the message (Feiler 2004, p. 399). Given their 
ideas, skill sets, and beliefs about mathematics, it is easy to see how early childhood 
teachers would think it developmentally inappropriate to teach it to preschoolers.

Lack of Content Knowledge and Confidence

Early childhood teachers’ sense that mathematics is not an appropriate topic for pre-
schoolers is further encouraged by their belief that it is not an appropriate topic for 
themselves (Ginsburg et al. 2006). Most early childhood teachers, unlike their peers 
at the elementary school level, have received no training in teaching mathematics, 
even if they have a bachelor’s degree in early childhood education (Copple 2004; 
Ginsburg et al. 2006). This educational lack is both compounded by and compounds 
a lack of confidence in their mathematical abilities among early childhood teachers, 
many of whom were counseled into teaching at the younger grades so they could 
“escape” mathematics (Andews 2009, personal communication). The joint position 
statement on preschool math by the NAEYC and the NCTM (NAEYC 2005) sup-
ports this view, noting that the general lack of knowledge and preparation contrib-
utes directly to poor math-related attitudes and a lack of confidence among many 
early childhood teachers.

While lack of confidence does not, in itself, prevent a teacher from teaching 
math, it appears to feed an unfortunate tendency to avoid math in the classroom. 
A recent contribution to preschool math teacher training goes so far as to devote a 
section to lack of confidence, noting “Math Anxiety—You Can Handle It” (Smith 
2001, p. 2), and when surveyed (Carpenter et al. 1988), both pre- and in-service 
teachers in early childhood classrooms expressed great reluctance to teach math-
ematics, making comments like “I don’t do math.” In the United States, we have 
unwittingly assembled a cadre of early childhood teachers who are less knowledge-
able and more fearful of mathematics, on average, than the general population. It is 
no wonder they are less likely to teach it than might be helpful.

It is also true that this lack of knowledge and confidence on the part of early 
childhood teachers has the added detriment of diluting the quality of mathemat-
ics that is taught. Research shows that when knowledge and confidence are weak, 
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teachers understandably tend to rely on text, and to present content as a collection 
of unchanging and not highly connected facts (Brophy 1991). Only a solid and nu-
anced understanding of content allows a teacher to anticipate how thinking about it 
develops, implement curricula effectively, and most importantly, flexibly capitalize 
on those moments in classroom life when a key concept can be clarified or reit-
erated (National Research Council 2009). Describing early childhood educators, 
Copley notes “to them, mathematics is a difficult subject to teach and one area that 
they often ignore except for counting and simple arithmetic” (2004, p. 402). There 
is good reason to assume that the lack of mathematics knowledge among preschool 
teachers has not only influenced the field to avoid and ignore mathematics as a top-
ic, but has ensured that most of the math teaching that occurs is mediocre, at best.

 Mathematics Education: Why Does It Neglect Early 
Childhood?

Over the last century, the dominant paradigm for analyzing elementary math con-
tent and advocating reform in its teaching in the western world has expressed it-
self as a dichotomy between math concepts, on the one hand, and math procedures 
on the other. In this orientation, conceptual mathematical knowledge is richly 
connected mathematical thinking that embodies information about relationships 
between things, such as the idea that any set of items can be counted, or that add-
ing and subtracting are inverse operations and therefore can “undo” one another. 
Procedural mathematical knowledge, on the other hand, is meant to include the 
forms, rules, and procedures that make it possible to complete mathematical tasks. 
Procedures are generally sequential lists of actions that produce desired outcomes, 
such as “perform operations within parentheses first” or “when multiplying by 10, 
move the decimal one place to the right.”

While mathematics education reformers spent much of the twentieth century 
debating whether to emphasize concepts over procedures or vice versa (see, e.g., 
Bruner 1960; Gagné 1977; McLellan and Dewey 1895; Thorndike 1922; Wheeler 
1939), in the early 1980s Resnick and Ford suggested that relationships between 
concepts and procedures might be a better place for educational focus. This sugges-
tion was buoyed by the work of Giyoo Hatano, who, in 1982, opined that the goal 
of education—whatever the subject matter—should be to foster adaptive expertise 
among students (Hatano 1982). As he defined it, adaptive expertise is “the ability 
to apply meaningfully learned procedures flexibly and creatively” (Hatano 2003, 
p. xi). In this construction, teachers should prepare students who can use their exist-
ing knowledge to create effective procedures that solve problems they have not en-
countered before. Hatano makes the point that conceptual knowledge gives “mean-
ing to each step of the skill and provide(s) criteria for selection among alternative 
possibilities for each step within the procedures” (1982, p. 15). Elementary math 
education reformers latched onto this notion of adaptive expertise as a worthwhile 
goal, and have advocated teaching methods meant to prevent a child from learning a 
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mathematical procedure with no connection to mathematical meaning, or concepts 
(see, e.g., Baroody and Coslick 1998; Baroody and Dowker 2003; Clements et al. 
2004).

This emphasis on avoiding disconnection rests on the proposition that the math-
ematics to be learned employs written symbols: namely, numerals and mathemati-
cal notation. Disconnection between procedures and concepts is only possible when 
mathematical procedures are not implicitly meaningful, as occurs when written 
notation is in use. Because of its focus on this problem, the concept-procedure lit-
erature includes an unspoken assumption (e.g., Hiebert 1986) that all the important 
mathematics occurs at the point when the thinker begins to use written symbols to 
describe and manipulate it. Any mathematical thinking that occurs prior to writing 
is generally not considered. Hiebert and Lefevre (1986) comment, “connections 
between conceptual and procedural knowledge still are in place as children enter 
school,” (p. 19), thereby dismissing the preschool period as a time for teaching 
interventions. Their assumption seems to be that the mathematical thinking that 
develops before school does so in a manner that is beyond intervention; differences 
in the educational experiences of the very young are not acknowledged by this ar-
gument as significant. This idea about preschool mathematics, combined with the 
math education literature’s characterization of good teaching as imparting new writ-
ten procedures in ways that are meaningfully connected to concepts, has distracted 
math educators from a serious consideration of the mathematics teaching that is 
possible prior to the use of written symbols by its students.

 Why Should We Call Early Mathematics Foundational?

While it is undoubtedly true that the use of numerals, notation, and arithmetic 
propels mathematical thinking into levels of complexity far beyond what humans 
would be capable of without them, it is also true that mathematical thought can and 
does occur prior to their use, and that it is highly abstract. In fact, the number sys-
tem, which many consider the earliest mathematics, rests on the understanding of 
relational abstractions, and does so prior to the use of any written notation (Dehaene 
1997; Wiese 2003).

Take the idea of “three.” To illustrate three, we must ask “What is the commonal-
ity among three dogs, three houses, and three pencils?” Their threeness is a quality 
of the sets, but not their members. Three, and all number names, are relational ab-
stractions, since they describe similarities between collections. To see the threeness 
of a single collection, one must see past the qualities of the things themselves, and 
see only quantity. While number is best defined in the relationships between things, 
it exists mainly in the organized thinking of human beings as an abstract idea (Wi-
ese 2003). This is true of shape as well—“square-ness” is a common characteristic 
of a cracker and a cocktail napkin, not dependent upon size, and existing only in 
the imagined two-dimensional world. It is defined by the relationships among its 
parts—sides and angles. So the two mathematical topics we tend to consider most 
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basic to the mathematical domain—number and shape—are both highly abstract 
and relatively complex. The concept-procedure literature, by focusing attention on 
keeping written procedures meaningful, has missed the important mathematics that 
develops as children see and verbally name quantitative ideas in the world. This 
thinking—that occurs well before kindergarten—is the raw material that must be 
elaborated upon in order to construct a meaningful understanding of numerals and 
notation. It is therefore foundational to the mathematical learning that ought to pro-
ceed in elementary school.

While the concept-procedure literature dismisses early childhood as an impor-
tant time for mathematics teaching, it also provides rich descriptions of the very 
mathematics we have termed “foundational” in its portrait of the predilections and 
abilities of toddlers (children between the ages of about 12 and 30 months). For ex-
ample, Sinclair and Sinclair describe a two-year-old placing a spoon in each teacup 
as constructing a working concept of one-to-one correspondence (1986). Similarly, 
when a toddler sorts a set of animal figurines into “families,” she is said to be ex-
ploring ideas of similarity, difference, and classification. In these depictions, foun-
dational mathematical knowledge is exhibited through action, and has not yet been 
separated from the world of concrete objects. Sinclair and Sinclair (1986) comment 
“the young child cannot do without actual experience when logico-mathematical 
knowledge is in its beginnings” (p. 63).

This literature misses the fact that three- to five-year-olds, unlike their younger 
counterparts, can be somewhat sophisticated discussants, and are generally inter-
ested in actively using language and their burgeoning pictoral representation skills 
to get their versions of reality “right” (see, e.g., Bodrova and Leong 1996; Lindfors 
1991; McLane and McNamee 1990; Paley 1988). Preschoolers are capable of and 
derive fairly complex benefits from talking about and otherwise elaborating upon 
their mathematical ideas about and actions taken upon objects. As mathematical ac-
tions and ideas are named, language acts to explicitly connect them to a larger world 
of social convention, while also separating them out as distinctly meaningful—a 
binding process that helps children sort and organize their thinking (Gentner and 
Loewenstein 2002). This elaboration of thought through the flexible use of lan-
guage—one of the very earliest and most powerful symbolic systems to develop—
has a profound impact on the development of mathematical thinking that occurs 
before elementary school, providing a base upon which symbolic numeracy and 
operations can later be built.

Clements (2004) notes differences between “the intuitive, implicit, conceptual 
foundation for later mathematics” and the subsequent elaboration that produces 
something more like conventional math knowledge (p. 11). He calls the process 
by which the toddler’s embedded and foundational ideas become the preschooler’s 
more elaborated and explicit ones “mathematization,” noting that without it, chil-
dren have “fewer chances…to connect their informal experiences to later school 
experiences in mathematics” (pp. 11–12). Sophian (1999) is specific about math-
ematization’s effects, noting that children’s very early conceptual knowledge is in-
consistent, in that it is “in evidence at one moment and yet may not be at the next” 
(p. 17). She goes on to suggest that assisting children to broaden the application of 
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their budding generalizations and make the knowledge they have begun to construct 
more explicit and transferable is an important preschool math teaching goal. It is 
the preschooler’s growing facility with language and other primary symbol systems 
that makes such mathematization possible; it is also this key developmental shift 
and the clearly mathematical thinking it fosters that the mathematics education lit-
erature has so far neglected.

Copley (2000) agrees that there is an important shift in mathematical thinking 
during this period, and adds to this idea, noting “Early childhood educators say 
that children learn by doing. The statement is true, but it represents only part of the 
picture. In reality a child learns by doing, talking, reflecting, discussing, observing, 
investigating, listening, and reasoning” (p. 29). By contending that the early con-
ceptual mathematical constructions of young children might benefit from social in-
teraction with experienced and knowledgeable others, this idea emphasizes the role 
of teaching. While it is true that children at this stage of development do not need 
teachers to “re-connect” procedures to the concepts they refer to (as is needed when 
arithmetic procedures are learned in elementary school math), preschoolers do need 
assistance establishing and consolidating initial connections between their budding 
ideas and more generalized concepts. This developmentally informed perspective 
on mathematical thinking in early childhood makes the relevance of children’s ex-
periences clear.

Robust findings about differences in the home language experiences of young 
children suggest the problem: children from homes with fewer economic resources 
learn fewer words, have fewer experiences with words in interaction with other 
persons, and acquire a vocabulary of words more slowly (see Hart and Risley 1995). 
Given the key role of language in the development of foundational mathematical 
thinking, it is unsurprising that socio-economic status and math achievements tend 
to rise and fall together at the preschool level (Denton and McPhee 2009). Children 
from lower-resourced family environments need enriched early education math-
ematics experiences if they are to catch up with their peers. Average teaching is 
clearly not enough to ensure they are equitably prepared for mathematics in elemen-
tary school.

Because there is generally no training in mathematics provided to early child-
hood teachers (Copley 2004), they tend to rely on their own understandings to teach 
math (Sarama and DiBiase 2004). Unfortunately, foundational mathematics is in-
visible to most adults. As a means of efficiency, adults have learned not to check that 
five pennies are still five pennies whether arranged in a circle or in a line. Similarly, 
early childhood teachers have experienced the fact that a single set of objects can 
be sorted in more than one way so many times, that have generally forgotten they 
once did not know it. Young children are just discovering these truths, and learning 
the formal mathematics of elementary school is dependent upon their becoming 
explicit and transferable. It is only when these foundational ideas are clear enough 
that preschoolers can talk about them (or at least listen with understanding) that 
they can begin to represent them with secondary symbol systems, such as numerals, 
and learn to act upon them in ever more sophisticated ways. Since early childhood 
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teachers generally miss the existence of foundational mathematical thinking among 
their students, they lack an explicit awareness of the concepts their teaching ought 
to help build.

 Improving Teachers’ Understandings of Foundational 
Mathematics

To help promote preschool teachers’ understanding of the content of foundational 
mathematics and how it develops in the thinking of young children, we launched 
the Early Mathematics Education Project in 2007. Designed primarily for preschool 
teachers, this program includes workshops, on-site coaching, and the use of video-
tape to promote reflective practice among teachers. Instructors are Erikson faculty, 
and coaches are experienced preschool teachers, who participate in content training 
alongside their teachers. Emphasis is placed on addressing both teacher confidence 
and teacher knowledge, and specially designed adult learning tasks help teachers 
“see” the foundational mathematics. Finally, teachers are explicitly instructed in the 
use of math-related language, a powerful tool for helping young children solidify 
and build upon their mathematical thinking in preparation for the use of written 
notation to come. Key elements of the program, which has a demonstrated impact 
on children’s mathematical learning, are described below.

Key Program Elements

Addressing confidence. Lack of math-related confidence among preschool teachers 
was explicitly considered in the design of the professional development. Since most 
early childhood teachers feel comfortable with stories as a part of their curriculum, 
children’s storybooks are used throughout. Each workshop’s activities—both the 
adult learning experiences and the recommended activities for children—are built 
out of rich children’s literature, and teachers are provided with storybooks to sup-
port their teaching. In addition, the professional development is ongoing, with five 
day-long meetings held once every other month throughout the school year. This 
design allows the assignment of preschool teaching tasks between sessions and the 
opportunity to discuss their implementation at the next meeting. As importantly, the 
extended time allows each cohort of teachers to become familiar with one another, 
creating a safe environment for the expression of frustration as well as accomplish-
ment. Coaching, too, is meant to encourage real changes in practice. Our coach-
ing process emphasizes teacher strengths, and is designed to help teachers learn 
to be reflective. By making clear the coach’s consultative—rather than supervi-
sory—role, this coaching process helps underconfident teachers use the coach as a  
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non-threatening source of support. Finally, teachers are explicitly engaged as part-
ners in research. Their insights as they implement activities in their classrooms are 
actively sought by our instructors, and they are encouraged to present their own 
work to their peers as a means of sharing expertise. In addition to generating new 
ideas and solidifying understanding, these assumptions of professionalism among 
the teachers boost their sense of their own competence and promote their active 
attempts to improve practice.

Big ideas. Recognizing that early childhood teachers lacked knowledge of founda-
tional mathematics and its development among young children, our team developed 
lists of Big Ideas within each of the content strands identified by the NCTM. Each 
Big Idea is meant to represent important conceptual material, central to the content 
area, that elaborates and solidifies the mathematical experiences and thinking of 
young children between the ages of three and five years. For example, a Big Idea 
in the content strand of measurement would be that “every object has many dif-
ferent attributes that can be measured, such as length or weight.” While three- and 
four-year-olds can experience this truth on their own, the program operates on the 
assumption that structured activities and teacher language that make it explicit have 
a “mathematizing” effect on young children’s thinking (see Table 18.1 for sample 
Big Ideas).

Adult learning tasks. To help teachers recognize and integrate both foundational 
mathematics and the Big Ideas, activities were constructed that would highlight 
them while being complex enough to engage adult learners. For example, when 
studying geometry, teachers are asked to describe a shape without using its name, 
forcing them to notice and name shape attributes, such as number of sides and size 
of angles. Similarly, in the study of algebraic thinking, teachers are challenged to 
name as many different sets of objects as they can find in the story “Goldilocks and 
the Three Bears.” These sets are further analyzed to discover size and sequence 
patterns among them. Subsequently, teachers are provided with a sample lesson 
for children in which a large set of concrete objects of three sizes, such as spoons, 
mittens, and toothbrushes, is sorted in two distinct ways: first by object type, and 
then by size, so that “each bear can have his or her own things.” In this way, adult 

Table 18.1  Sample big ideas by mathematics content strand

Content strand Big idea text

Algebra The same collection can be sorted in different ways
Number and operations A collection can be made larger by adding items to it, and made 

smaller by taking items from it
Measurement Many different attributes can be measured, even when measuring 

a single object
Geometry Two- and three-dimensional shapes can be used to represent and 

understand the world around us
Data analysis and 

probability
How data are gathered and organized depends upon the question 

they address

J. S. McCray and J.-Q. Chen



263

learning activities were designed to help teachers construct their own understanding 
of foundational mathematics, and then to suggest ways to emphasize and build upon 
it in the teaching of young children.

Math-related language. There is interesting evidence that mathematical learn-
ing during the preschool year is affected by language input from teachers. In each 
of three studies (Ehrlich 2007; Klibanoff et al. 2006; McCray 2008), researchers 
found a significant, positive relationship between the amount of math-related 
language by teachers and the growth of conventional mathematics knowledge 
among preschoolers in their classrooms from fall to spring. That is, the more 
preschool teachers talked about math in their classrooms, the greater the gains in 
math knowledge made by their students. Incorporating these findings, the work-
shops and coaching sessions emphasize both awareness and use of math-related 
verbalization. Teachers learn how to use “mathematizing” language to describe 
children’s daily activities during transition, snack, dramatic play, and outdoor 
time. Additional emphasis is placed on asking questions that encourage chil-
dren to describe their thinking using mathematical language. While the findings 
behind these language-related practices are correlational as opposed to causal, 
they strongly support the theory that what teachers say and what they invite 
children to say can help preschoolers solidify their undifferentiated mathemati-
cal thinking and link it to conventionally named concepts. For this reason, the 
professional development urges teachers to talk with children about foundational 
mathematics, pointing it out when it occurs and urging students to describe how 
they understand it.

Results of the Intervention

During the 2008–2009 school year, we conducted program evaluation in 28 pre-
school classrooms in a large urban public school system. The mathematics achieve-
ment scores of 236 children from socio-economically disadvantaged backgrounds 
were gathered once in the fall and once in the spring. The results demonstrated that 
compared to students whose teachers did not participate in our training program, 
students with program-participating teachers showed significantly greater growth 
on both the Child Math Assessment (CMA, Klein and Starkey 2006) and the Ap-
plied Problems Subtest (#10) of the Woodcock Johnson III (WJ-III, Woodcock et al. 
2001) over the course of the school year. Using Hierarchical Linear Modeling, we 
controlled for Time 1 scores, since children in our participating classrooms were 
significantly ahead of their non-participating counterparts in the fall. While aver-
age scores increased in both groups, analysis of WJ-III Age Estimate scores attri-
butes 2.74 additional months of growth in mathematics learning to the intervention 
(p < 008). Compared to students whose teachers did not participate in our program, 
children with program-participating teachers learned almost three months more  
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material in the same amount of classroom time. Teachers, too, report high levels 
of satisfaction with the training, and credit it with making positive changes in their 
mathematics teaching.

 Conclusion

In sum, recognition and understanding of foundational mathematics, its abstract 
nature, its role in preschool teaching, its susceptibility to intervention, and its rela-
tionship to elementary school mathematics directly addresses the misconceptions 
of both early childhood educators and researchers in mathematics education. First, 
it makes clear that there is mathematical thinking and learning that precedes the 
use of written symbols, that this thinking is based in experience with objects and 
space, and that it is well placed in a child-centered, developmentally appropriate 
curriculum. The tendency of some educators to “push-down” the subject matter 
intended for first grade is thereby pre-empted. Second, describing foundational 
mathematics helps define the specific kind of mathematical knowledge that pre-
school teachers need to be more effective supporters of children’s mathematical 
development. It makes clear that their need for more content knowledge cannot 
be addressed by requiring higher-level mathematics classes, and instead suggests 
a new type of mathematics class for teachers, focused on numerical and spatial 
abstraction that occurs prior to the use of written symbols. Finally, by emphasizing 
the role of a solid understanding of foundational mathematics as a necessary pre-
cursor to the development of school-based, conventional mathematics, this argu-
ment draws attention to the importance of preschool teaching for lifelong learning 
in math. Specifically, acknowledgment of foundational mathematics makes clear 
the role of language as a mechanism for identifying and solidifying its concepts, 
and highlights the need for adults to help young children find and use the words 
that will be central in the understanding of written numerals, notation, arithmetic, 
and algorithms to come.

If mathematics educators become more aware of both the distinct nature and 
centrality of foundational mathematics as a basis for preparation for elementary 
school, perhaps they will exhort and encourage early childhood educators to take 
their charge seriously as it relates to math, sharing their own findings and con-
cerns. If early childhood educators recognize that there is developmentally appro-
priate mathematics content for their students, and that exposure to this content can 
make or break the capability of some children to understand the mathematics of 
elementary school, they may be inspired to learn about it and teach it. The general 
public must also be educated, so that policymakers and funders will be impelled 
to support and expand these changes in our understanding. By establishing rec-
ognition of foundational mathematics, and helping the public in the United States 
to understand its relevance, early childhood and mathematics educators will have 
taken a vital first step in enhancing opportunities for truly equitable mathematics 
learning.
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 Introduction: How a Riddle Helped Me Become More 
Respectful of Students

My father liked to ask riddles. Two of them had significant consequences for my 
professional career. In the early 1970s, the University of California started a pro-
gram that funded graduate students in mathematics to teach in underprivileged 
schools using a guided discovery approach. This method had someone knowledge-
able about mathematics committed to asking youngsters leading questions about 
mathematical situations in order to help them discover, understand, and become 
proficient in mathematics. The basic principle is that when asked to explain a wrong 
answer, students will discover their mistakes and by working together as a group 
develop their understanding. See Henkin (1995) for a description. My department 
chair asked me to supervise this program and I agreed upon the condition that I 
could teach in it. Little did I know that doing so would change my professional life!

I had one day of professional development in the discovery approach before 
going into a fourth grade classroom. I planned a series of lessons adapted from a 
booklet by Walter (1970) that would lead the students to investigate spatial visual-
ization, symmetry, transformation geometry, and abstract algebra. I started by ask-
ing the students to close their eyes, to picture a box, and then to count the number of 
sides on their box. I still remember their excitement as they told me their different 
answers—three, four, five, six, eight, ten, and twelve. I asked the boy who said 
“ten” to explain his answer. I couldn’t understand what he was saying very well—or 
follow his logic. When I asked him to explain for the fourth time he became frus-
trated, so I asked some other students to explain their answers. All the time I was 
wondering, “How did he get ten?” A remark by another student made me think of 
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a riddle my father used to ask: “How many sides does an orange have?” People  
usually said, “None. It is round.” My father would laugh and say, “It has two, an 
inside an and outside.” So, I turned to the first boy and said, “Did you have a box 
without a top and you counted the insides and the outsides?” I will never forget the 
expression on his face—a blend of pleasure at being understood and incredulity that 
it had taken me so long to understand him. It turned out that all of the students had 
logical explanations for their answers! The variety of answers was a result of differ-
ent definitions, different assumptions, or (literally) different perspectives.

I left the classroom that day humbled. How easy it would have been for me 
to invalidate his thinking, to add one more defeat at learning to the many he had 
already experienced in school. Even more troubling was that although I was look-
ing for the one (or possibly two) correct answer(s), all of the students thinking had 
been excellent and mathematically valid. During the next few years, I encountered 
many young people with brilliant mathematical minds who were labeled as “slow 
learners.” Most of them were females or students of color. (The term “of color” is 
often used in the United States to describe people of non-European heritage, (Afri-
can, Asian, Indigenous, Latin American, Pacific Islands) collectively. In Europe, the 
word “Black” is used to describe these individuals collectively. In the United States, 
Black is used to refer to people of African heritage.) I was very troubled at what 
I found and decided to educate myself about teaching and learning. In addition to 
teaching mathematics at elementary schools, I read widely, went to workshops, and 
taught a course on mathematics for elementary teachers at the University.

At that point I decided to fully respect a young person’s thinking—to assume that 
their thinking is correct and that if their answer to a question or their way of thinking 
about a situation is different than mine or the society’s, it is most likely because of 
a difference in definitions or assumptions. There is, of course, the exception when 
the student, because of their distress or need for attention, decides to deliberately 
give a wrong answer, or because of fear makes a guess. But overall it has been a 
good working hypothesis. It leads to more interesting results than assuming that 
my thinking is the only correct way. To be honest, I still struggle with it in practice.

 What Does Respect Mean?

Sometimes people use respect to mean “admire” or “tolerate.” In the context of 
this chapter, however, I mean more than that. My working definition of respecting 
children’s thinking is: to take seriously, to interact with thoughtfully, to nurture, to 
engage, to honor [not humiliate, ridicule, or stifle]. My definition and my analysis 
in this chapter are (obviously) strongly influenced by my experience in the United 
States. The social and political history of the United States has resulted in a culture 
in the society and the schools that influences the relationships between students 
and teachers. You, the reader, have the opportunity to think about the meaning of 
respect and the struggle to respect young people’s thinking in the context of your 
educational system.
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Respect means more than telling young people that they are smart. It means 
more than encouragement and praise. It is different than good grades, gold stars, 
and certificates. Youngsters’ ability to think and to express their thinking is nur-
tured through dynamic and beneficial interaction with adults and other youngsters 
in a social situation. Young people know that their thinking is respected and valued 
when adults take time to listen to their thinking and to think with them—and when 
teachers provide time for them to explore and express their thinking. Most adults 
give lip service to the importance of thinking, but it takes more than lip service for 
young people to believe that their thinking is respected.

Adults help and support young people in many ways—providing love, guid-
ance, instruction, protection, being a role model. They also, however, can un-
dermine young people’s self-confidence through ridicule and humiliation, by re-
garding them as less important or inferior to adults, and by not considering their 
input when making decisions. Young people commonly hear phrases such as 
“don’t be so childish,” “go to your room,” “don’t talk to your parents like that,” 
and “you are not old enough to do that.” They are criticized, yelled at, insulted, 
and intimidated in ways that adults are not. In school, young people are expected 
to listen to adults, but rarely are young people’s concerns or thinking taken seri-
ously. For the most part they are told what to study, when, and for how long. A 
teacher can yell at a student with impunity, but if a student yells at a teacher, he 
or she may be punished. In short, their lives are filled with repeated incidents of 
lack of respect.

Young people without exception always deserve complete respect. They have 
this right because they are human beings. It is independent of their racial or cultural 
background, their economic class, their gender, or their abilities. They would de-
serve complete respect even if there were no societal benefits. There are, however, 
benefits to society. If people are respected as thinkers when they are young, they 
will think well as adults. Therefore, as a group, human beings will be more effective 
in meeting the many challenges we face. Anyone concerned about young people’s 
well-being, their learning, or the future of humanity would do well to reflect on 
what it means to respect young people’s thinking and how we can improve our 
capacity in this area.

 The Relationship of Respect to Equity and Quality  
in Mathematics Education

Discussing quality and equity in mathematics education is meaningless unless there 
is a commitment to respect students’ thinking. What could quality in mathematics 
education mean if students do not end up being able to think mathematically? Why 
would we even seek equity in mathematics education if our goal were not to enable 
all children to think for themselves in mathematics? Finally, do you think it likely 
for students to learn how to think mathematically if their thinking is not respected 
in school?
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Nevertheless, the struggle to respect children’s thinking—in mathematics and 
in general often does not get articulated clearly. The reasons for this are complex. 
Most adults were not encouraged to think mathematically when young. They had 
to memorize algorithms, rules, and answers. They were told there were one answer 
and one right way to solve a problem. Their teachers focused on the mathematical 
content rather than the process of thinking mathematically. Schools valued memo-
rizing information in order to get the correct answer. And finally there was the pres-
sure to do well on standardized tests.

It will help you understand the issues I address in this chapter if you take a 
few minutes to think about times when your thinking was respected or not re-
spected in school. Even better, pair up with another person and take turns talking 
and listening to each other about your memories (See Weissglass (1990) for more 
information about the role of listening and being listened to in improving educa-
tion.). We all have stories about our thinking being nurtured and not nurtured. My 
story is that at home when I challenged my parents’ views (especially on race and 
class) I was usually told, “this is just a phase you’re going through” or “you will 
understand when you grow older.” In elementary school I do not remember ever 
being asked to solve a problem that required original thinking. My father provided 
me some opportunities to think mathematically, because some of these riddles he 
asked were mathematical in nature. One was a word problem: “A bottle and a cork 
cost $ 1.10. The bottle cost a dollar more than the cork. How much did the cork 
cost?” Most people (including adults) had trouble with this riddle. I heard it often, 
so I had the opportunity to think about it a lot. As a result, when I got to high school 
I was good at solving word problems and was able to succeed in algebra. I was 
good enough in the other parts of school mathematics—memorizing algorithms 
and later definitions and proofs and then mastering traditional methods for solv-
ing problems—that I was able to get a doctorate in mathematics. Looking back 
on those years I do not remember many attempts to encourage creative thinking. 
Mostly I was asked to understand the mathematics that others had created and to 
apply it in fairly routine ways to solve problems that had already been solved. I 
did enjoy the creative thinking involved in the research for my dissertation and 
thought that I would spend my life in the proverbial “ivory tower”—teaching 
mathematics and proving theorems.

My experiences teaching in elementary schools (described above in part), how-
ever, led me to attempt to improve mathematics education. I ended up working, 
with educators in a variety of professional development settings. See Weissglass 
(1990, 1994a, b, 1996, 1997, 2000), Weissglass and Mumme (1991), and Peterson 
and Barnes (1996) to learn more about this work (Peterson and Barnes describe the 
Improving Mathematics Education in Diverse Classrooms project anonymously.) 
I began to understand that the quality of mathematics education, achieving equity 
in mathematics education, and respect for young people’s thinking are all inter-
related. This interrelationship is complex because personal and institutional values 
and practices often work at an unconscious level to the disadvantages of certain 
groups in this society.
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As I mentioned above, for example, I encountered many students of color and 
females, who were labeled as slow learners but were able to think deeply and cre-
atively about mathematical situations. In addition, I met educators who had low 
expectations for certain groups of students and made prejudiced remarks—both 
blatant and subtle—about them or their families. The teachers in my professional 
development institutes reported that they had rarely been allowed or encouraged to 
think mathematically, to solve problems, or “to play” with mathematics in school. 
They did not have a deep understanding of even elementary mathematics. For ex-
ample, they could use the algorithm for adding fractions, but they could not explain 
why it worked. As a result, before they attended the professional development insti-
tutes they did not have the capability or the will to change their pedagogy in order 
to encourage their students’ mathematical thinking. They taught the way they were 
taught—through drill and practice. All students are hurt and deterred by this form 
of instruction, but students who are targets of race, class, and gender prejudice are 
deterred more than white middle-class students who have developed the ability to 
function in the culture of school. The teachers I worked with began to change their 
teaching. But when they attempted to bring about change in their schools and dis-
tricts, I heard stories about the racial, class, and gender bias that they encountered 
(See Oakes (1996) for similar stories). I became convinced that racism, classism, 
and sexism were the key obstacles to reform in mathematics education.

 The Struggle in Society

An individual’s struggle to gain understanding, to think more clearly, and to act 
in more human ways often reflects a wider struggle in society. The gains of each 
individual assist the progress in the society and progress in society assists each indi-
vidual. For example, the societal movements in the past century for ending racism, 
sexism, and the oppression of gays and lesbians, have influenced and have been 
influenced by changes of behavior, attitudes, and understanding at the individual 
level. Similarly, the struggle to respect young people’s thinking is not just an in-
dividual struggle. It is also a historical struggle, which in the United States dates 
back at least to the beginning of public education. I will only mention a few of the 
highlights.

The foremost advocate, in the nineteenth century, for public education was Hor-
ace Mann who was a Congressman, U.S. Senator, and Secretary to the Massachu-
setts Board of Education. In a report to the Board he wrote:

the effective labor must be performed by the learner himself […] Knowledge is not annexed 
to the mind like a foreign substance but the mind assimilates it by its own vital powers […] 
every scholar in a school must think with his own mind. (Winship 1896)

Some of his contemporaries agreed with him. For example, the American essayist, 
philosopher, poet, Emerson (2009) wrote “The secret of education is respecting the 
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pupil.” Many, however, disagreed—among them the Boston Masters [the equiva-
lent of the Boston School Board]. Their position was “[…] implicit obedience to 
rightful authority must be inculcated and enforced upon children, as the very germ 
of all good order in future society” (Association of Masters 1971, p. 121).

Early in the twentieth century John Dewey wrote about the relationship between 
respecting children’s thinking and the goals of a democratic society:

If we train our children to take orders, to do things simply because they are told to, and 
fail to give them confidence to act and think for themselves we are putting an almost insur-
mountable obstacle in the way of overcoming the present defects of our [social] system and 
of establishing the truth of democratic ideas. (Dewey and Dewey 1915, p. 304)

Dewey knew that respecting children’s thinking is challenging:

Perhaps the most difficult thing to get is intellectual sympathy and intellectual insight that 
will enable one to provide the conditions for another person’s thinking and yet allow that 
other person to do his thinking in his own way and not according to some scheme which we 
have prepared in advance […] At present we often think that a child has no right to solve 
a problem or do a sum at all unless he goes through a certain form. (Dewey 1913/1979)

It is no accident that Dewey uses an example from mathematics education where a 
lack of respect for young people’s thinking is so common. In part this is a result of 
a limited view of the nature of mathematics—namely that it consists of mastering a 
set of rules, procedures, and facts, rather than being able to analyze, think logically, 
and use mathematical concepts and tools in thinking about and solving problems 
that appear in new contexts. The disagreement between those who hold this view 
and those with a different view led to public and intense controversies in the latter 
part of the twentieth century. Some people were surprised that mathematics teach-
ing could be the subject of such intense political struggles. It is not surprising, how-
ever, once you realize that the reform effort in mathematics education is part of a 
larger struggle to liberate human minds and any societal struggle to liberate human 
beings from prejudices, rigidities, and oppression is met with resistance.

Looking back on past struggles, such as the struggle to establish democratic 
forms of government, to end slavery, to gain equal rights for women, or to end 
segregation, it is easy to criticize the thinking of the people who resisted progress 
toward a society in which each human being is respected and given equal rights. 
For example, although prejudice toward people of African heritage has not disap-
peared, a much smaller percentage of people believe in their genetic inferiority than 
did 100 years ago. Most contemporary educators are quite sure that they would 
not have gone along with the fallacious beliefs of the eugenics movement. And yet 
eminent scientists held these beliefs. Edward East, a Harvard professor of genetics, 
for example, wrote: “Gene packets of African origin are not valuable supplements 
to the gene packets of European origin; it is the white germ plasm that counts.” 
(East 1929, p. 199) and his views were echoed by academics at some of our most 
prestigious institutions (Tucker 1994).

Present time controversies, however, are more confusing as we can see as we 
look at the controversy over mathematics education that erupted in the 1990s. It was 
especially heated in California.
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 The “Math Wars” in California

In the 1970s and 1980s, increasing numbers of educators, influenced by the princi-
ples of constructivism and social constructivism (Ernest 1991) began to think about 
changing pedagogy in mathematics classroom. In 1975, the California Department 
of Education adopted a Mathematics Framework for California Public Schools. It 
stated:

Mathematics becomes a vibrant, vital subject when points of view are argued, and for this 
reason interaction among pupils should be encouraged […] A significant feature of math-
ematics learning environment is the spirit of free and open investigation […] Pupils and 
their teachers must be able to explore those facets which have particular meaning for them 
[…] Well equipped and organized classrooms allow people to accept the responsibility for 
their own learning and progress.

The learning climate in the classroom should provide and atmosphere of open commu-
nication between the pupil and teacher. The teacher should encourage questions and accept 
problems from the pupils. The mathematics’ instructional materials should be relevant to 
the pupil’s interests and needs and should provide for pupil experimentation.

The establishment of a classroom climate, under the direction of a teacher, should be 
pupil oriented, self-directed, and not threatening […] The classroom climate should encour-
age pupils to solve problems in a variety of different ways and accept solutions in many 
different forms. All pupils should express creative thinking, even when it differs from the 
pattern anticipated by the teacher or when it produces a different conclusion or result. (Cali-
fornia State Department of Education 1982, p. 3)

These principles, which are important for establishing a pedagogy that respects 
young people, became central tenets of what was called the mathematics reform 
movement. Gradually, mathematics educators developed an infrastructure to sup-
port the reform movement. In 1983 the state established the California Mathemat-
ics Project at campuses of the California State University and the University of 
California to develop teacher leadership to carry out the reforms. Leadership also 
developed in other states, often supported by federal funding. The 1985 California 
Mathematics Framework elaborated a vision for a student-centered mathematics 
education and laid the groundwork for the Standards of the National Council of 
Teachers of Mathematics (NCTM 1989). California produced replacement cur-
ricular units to conform to the 1985 Framework and put publishers on notice that 
new texts would have to change. The National Science Foundation funded three 
systemic initiatives (the state, urban and rural initiatives). As the infrastructure de-
veloped and the reform movement became more effective, considerable opposition 
developed, and attracted considerable public attention. For example, late in 1997, 
headlines on the first page of the Los Angeles Times read, “State Board May Return 
Math Classes to the Basics” (1997, November 30) and, “State Endorses Back to 
Basics Math Standards” (1997, December 2). During this period Edward Hirsch, a 
professor of English at the University of Virginia, clearly stated the basic principle 
of those opposing the mathematics reform effort in an invited speech to the Califor-
nia Board of Education in April 1997: “[…]varied and repeated practice leading to 
rapid recall and automaticity in mathematics is a necessary prerequisite to higher-
order problem-solving skills in both mathematics and the sciences.” (Hirsch 1997) 
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Comparing this statement with Dewey’s gets at the crux of the problem. Some edu-
cators believe that drill and practice and memorization are prerequisites for thinking 
in mathematics and science. Others, including myself, believe that basic skills can 
be learned in the process of thinking about interesting problems that engage young 
peoples’ minds and that doing so will increase the likelihood that these skills can 
be used intelligently. More about the “math wars” can be read in Schoenfeld (2004) 
and Jackson (1997a, b).

This is more than a theoretical debate. As mentioned above, it has long-term 
consequences for our society. There is a more immediate effect, however, on young 
people’s lives. Students in large numbers are disengaged and alienated from U.S. 
schools and drop out. Engaging Schools: Fostering High School Students’ Motiva-
tion to Learn documented this problem:

Some studies have found that forty to sixty percent of high school students are chroni-
cally disengaged; they’re inattentive, exert little effort, do not complete tasks, and claim 
to be bored. This figure does not include those who have already dropped out. (National 
Research Council and Institute of Medicine 2004)

Although student disengagement and alienation is a symptom of larger problems 
in the society—racism, classism, disrespect of children’s native languages, fear of 
immigrants, all contribute, I conjecture that a major contribution to student disen-
gagement is the lack of respect for their thinking that students endure in school. 
What policy makers do not understand is that the focus on memorization, practicing 
standard algorithms, test preparation, and testing is disrespectful of young people 
and is a major cause of disengagement.

 Why Does the Struggle Exist? Why Has There Been 
Progress?

In a perfect world everyone would agree on what it means to respect children’s think-
ing and it would be natural for everyone to do so. But we don’t live in a perfect world. 
Misconceptions, biased attitudes, and incorrect beliefs about young people exist and 
may be even harder to correct than those about other groups in our society. After 
all, every adult has been a young person and there is a tendency for adults to think 
they are experts about young people. Adults who have attained some prominence or 
power in this society will be especially likely to not understand or to deny that there 
is a connection between societal problems (poverty, pollution, global warming, and 
student alienation, for example) and young people’s thinking not being respected.

Although no one is to be blamed for this situation, each educator is responsible 
for changing it. There are no evil people conspiring to repress young people’s think-
ing. Educators’ passivity, however, in challenging the practices, beliefs, and poli-
cies within educational institutions, allow disrespectful practices to continue. The 
causes of this regrettable situation are complex. Among them are:

1. A widely held (and false) assumption that young people won’t learn without pres-
sure, rewards, and punishment. This contradicts many teachers’ experiences as 
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well as the research. As stated in Engaging Schools, “A large body of primarily 
experimental studies demonstrates that emphasis on rewards and other extrinsic 
reasons for engaging in an activity can undermine intrinsic interest in the activ-
ity.” (National Research Council and Institute of Medicine 2004) This is not a 
new discovery. Aristotle wrote, “All men by nature desire to know.”

2. Adults being fearful of the challenges presented by the thinking of young people. 
To quote John Dewey again, “Anyone who has begun to think, places some 
portion of the world in jeopardy.” (www.quoteworld.org/quotes/3614) These 
fears push adults to belittle or humiliate young people when the latter challenge 
the thinking of their elders. Growing up I personally heard such condescending 
remarks as, “when you get older you will understand” or “this is just a phase 
you’re going through” or “you are so innocent. You don’t know anything.” 
Adults unconsciously pass on the mistreatment that they experienced when they 
were young.

3. Confusion about young people’s abilities and intelligence. Adults mistake lack 
of information, skills, and capabilities for lack of intelligence. This confusion 
causes adults to require performance rather than to nurture young people’s inher-
ent intelligence.

4. Pressure from society to preserve the status quo in the society. Our schools’ mis-
sion gets narrowed to prepare people for filling roles and jobs in the society.

5. The working conditions of teachers. They are often put in almost unworkable sit-
uations, with large numbers of students to think about and inadequate resources. 
They experience heavy pressure to perform on standardized tests. They are often 
given curriculum that is boring to their students and told to meet developmen-
tally inappropriate standards. In comparison to other professionals, they receive 
little support (either intellectual or emotional) for their work.

It is hopeful that in spite of the obstacles and challenges there has been progress. 
Because educators care about young people and love learning, they do many 
good things for young people. Almost everyone will tell about an educator whose 
thoughtfulness, caring, passion for a particular subject, and/or individual support, 
made a big difference in their lives.

We can however do better. We can increase our efforts to make sure that indi-
viduals and institutions make a difference in the lives of students. We will have to 
work especially hard to ensure that students of color and working-class students 
receive thoughtful and caring experiences and exposure to teacher’s passion for 
mathematics since they receive fewer of these experiences in mathematics and sci-
ence (Oakes 2004).

 Toward a Strategy for Respecting Young People’s Thinking

In this chapter, I have attempted to describe the importance of emphasizing re-
spect for young people’s thinking as part of any effort to achieve equity in math-
ematics education. Educators can ensure that their efforts for equity and quality 

19 Respecting Young People’s Thinking



278

systemically and thoughtfully include a commitment to respect all young peoples’ 
thinking and that we not measure equity or quality by results on standardized tests. 
This is not the place to describe, nor am I capable of describing, a complete strat-
egy for transforming schools so that they can achieve this goal. I will, however, 
propose and elaborate briefly on seven principles that could form the foundation 
of a strategy.

1. Completely respect young people as emotional, as well as intellectual, human 
beings.

 A person’s emotional state has a significant impact on her or his ability to 
think and to learn. Someone who is sad, fearful, or angry will not be able to 
think or learn as well as when their brain is not occupied with those emotions. 
One way to think about this is as follows: Each human (with the exception 
of those having physiological damages to their forebrain) is born with a tre-
mendous amount of intelligence—the ability to process information coming 
in from the environment and respond in unique creative ways. The distresses 
humans experience growing up interfere with this intelligence. Certain physi-
ological processes (crying, shaking, perspiring, laughing, tantruming, yawn-
ing, talking) either at the time of the hurt or later on, help humans recover 
from the distress experiences and reduce or remove the effect on our intel-
ligence. The most eloquent expression of the connection between intelligence 
and emotional release is in the poem written by the Persian Sufi poet Rumi 
[1207–73],

 The cloud weeps, and then the garden sprouts.
 The baby cries, and the mother’s milk flows.
 The nurse of creation has said, let them cry a lot.
 This rain-weeping and sun-burning twine together to make us grow.
 Keep your intelligence white-hot and your grief glistening, so your life will stay 

fresh.
 Cry easily like a little child.
 I suspect that some readers will have difficulty believing that healing from how 

you have been hurt by releasing your emotions actually increases your intelli-
gence. That insight, although understood by some people, has been quite absent 
from the academic profession. So I suggest that you take some time again to pair 
up with a friend and talk about how emotional release [crying, trembling, “tan-
truming”, for example] was treated when you were growing up? Doing so might 
help you better understand your attitudes about the idea that emotional release 
helps you think better.

2. Promote young people’s creative endeavors and incorporate play into learn-
ing activities.

 The importance of play in developing intelligence has long been recognized. 
Plato, for example, wrote in The Republic:

There should be no element of slavery in learning. Enforced exercise does no harm to the 
body, but enforced learning will not stay in the mind. So avoid compulsion and let your 
children’s lesson take the form of play. (Plato 1941)
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 And the French philosopher Montaigne wrote, “It should be noted that children 
at play are not playing about; the game should be seen as their most serious 
minded activity.” More recently, the psychologists John Piaget and Valerie Pola-
kow Suransky have emphasized the importance of play. The former wrote “Play 
is a particularly powerful form of activity that fosters the social life and construc-
tive activity of the child” (Puckett and Diffily 2004, p. 257) and the latter “Play 
is the mode through which the child realizes herself. It is through play that the 
child restructures, invents, makes history and transforms her given reality…the 
child becomes herself through play.” (Suransky 1982)

The increasing emphasis in U.S. schools on improving test scores while disre-
spectful of students thinking in its own right has also had the effect of decreasing 
the opportunities for students to pursue creative endeavors and play. Fully devel-
oping young people’s thinking requires that the curriculum include multiple and 
readily accessible opportunities and encouragement to engage in a variety of 
artistic endeavors. Emphasizing language and mathematics to the exclusion of 
other disciplines does a grave disservice to our brains, which are capable of 
thinking in many different areas.

3. Encourage communication and cooperation.
 Mathematics is a way of looking at and making sense of the world. It is a beauti-

ful, creative, and useful human endeavor that is both a way of thinking and a way 
of knowing. The goal of mathematics instruction is to help students develop and 
deepen their understanding of mathematics as well as their ability to commu-
nicate their ideas to others. The process of communication helps students con-
struct as well as express mathematical meanings. Young people communicate 
their thoughts and understandings in many ways, verbally, physically, through 
manipulating objects, and using pictures and symbols. Weissglass et al. (1990) 
identify five reasons for promoting child-directed communication about math-
ematics: a. It clarifies children’s thinking, b. It empowers children as learners. c. 
It reduces anxiety and alienation. d. It establishes some common understandings. 
e. It assists the teacher in thinking about the child as learner.

Both communication and thinking are assisted by collaborative learning envi-
ronments. The Professional Standards for Teaching Mathematics (NCTM 1991, 
p. 58) states it well:

Students’ learning of mathematics is enhanced in a learning environment that is built as a 
community of people collaborating to make sense of mathematical ideas. It is a key func-
tion of the teacher to develop and nurture students abilities to learn with and from others—
to clarify definitions and terms to one another, consider one another’s ideas and solutions, 
and argue together about the validity of alternative approaches and answers….

4. Engage and support learners in pursuing their own interests (distinguishing 
between respect and permissiveness) and connect curriculum to students’ 
culture whenever possible.

 Human beings are inherently curious and it is disrespectful of students’ thinking 
to not let them pursue their own interests. There may be a tension between what 
society deems important for everyone to know and a student’s interest, but there 
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is time for both. At the present time, however, schools for the most part dictate 
how students spend their time. I am not advocating permissiveness. It is possible 
to respond to student’s interest, to respect their thinking, and still weave in the 
skills and understanding that are important for students to function in a society.

5. Strengthen all student’s first language, while supporting all students fluency 
in a second language.

 Strengthening a student’s first language is a crucial part of respecting their 
thinking. When thinking becomes verbal the words are in the language that 
the young person has been hearing. Not respecting that language is disrespect-
ful of the individual’s thinking and interferes with her/his learning. When I 
first started teaching an undergraduate mathematics course for prospective 
elementary teachers using a small group laboratory approach, I noticed that 
the native English speakers were dominating the Latinos/as in the groups. I 
decided to give the students the choice of being in groups with people whose 
native language was the same as theirs. One day, I was observing a group 
as they were discussing a problem that was related to number concepts. At 
one point there was some confusion about a definition in my handout. The 
students immediately changed from English to Spanish. After some very ani-
mated discussion, they switched back to English. I was surprised and then 
understood that their early understanding of number concepts was acquired in 
Spanish and in order to clarify things they naturally switched to their native 
language.

As early as 1983 (Dawe 1983) there was research indicating that first lan-
guage competence is an important factor in young people’s ability to reason in 
mathematics when English was not their first language. Many state and school 
district policies, however, have ignored this research. Similarly, they have mostly 
ignored the research about achievement in reading, where the recent research is 
quite clear:

This consistent finding [positive effects of bilingual education on students’ reading achieve-
ment] might surprise some readers. But the NLP [National Literacy Panel] was the latest of 
five meta-analyses that reached the same conclusion: learning to read in the home language 
promotes reading achievement in the second language. Readers should understand how 
unusual it is to have five meta-analyses on the same issue conducted by five independent 
researchers or groups of researchers with diverse perspectives. […]. No other area in educa-
tional research with which I am familiar can claim five independent meta-analyses based on 
experimental studies—much less five that converge on the same basic finding. (Goldenberg 
2008, p. 15)

6. Avoid promoting pretense.
 For many students school becomes an institution to “get through” rather than a 

rewarding adventure in learning. In addition, young people sometimes feel that 
success in school is a condition for love, affection, or recognition. As a result, 
students end up pretending about what they know or don’t know. They often try 
not to avoid or hide their mistakes, rather than accepting mistakes as a part of 
the learning process. Teachers frequently go along with this pretense. Because 
criticism, comparison, and ridicule are so common, students also pretend about 
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what they feel. Making school safe places for students to talk about the reality of 
their lives, to admit what they do not know, and to make mistakes will assist in 
developing more powerful thinkers.

7. Increase understanding of the nature of oppression.
 I define oppression as the systematic mistreatment of certain groups of people 

by societal institutions or by people who have been conditioned by the society 
to act, consciously or unconsciously, in harmful ways toward the targets of the 
mistreatment, with the mistreatment generally accepted by the society.

 Some of the forms of oppression that affect mathematical learning are rac-
ism, classism, sexism, and the oppression of people with physical disabilities. 
Oppression can be subtle or blatant, conscious or unconscious, personalized 
or institutionalized. It affects people in complex ways, many of which we are 
unaware of. Oppression is hurtful to everyone, those who are targets, those who 
perpetrate, and those who are bystanders. When a young person first sees oppres-
sion they are confused and often afraid. There is a tendency to internalize the 
oppression, to believe the negative messages you get about yourself and your 
group. Understanding how oppression works and its effects will enable educa-
tors to have more attention and to think better about people who are members of 
groups that are underrepresented in mathematics. Increasing our understanding 
and our effectiveness will take time. It will not happen linearly, by decision, or 
by argument. As Gross (2006) points out “the nature of prejudice is to make 
unwarranted totalizing claims, whereas understanding advances through eluci-
dation of careful distinctions.” Ending oppression requires constant and repeated 
efforts that include both telling our stories and listening to the stories of people 
with different life experiences than our own, healing emotionally from the dis-
tress experiences of growing up in an oppressive society, and deciding over and 
over again to persist and stay hopeful. We need to accept being uncomfortable 
in this journey and to not look for “neat” or “easy” answers or explanations. 
Furthermore to achieve equity and respect for young people’s thinking, we must 
allow students to show their struggles.

 Conclusion

There is a lot of pressure on educators from elected representatives and policy-
makers to increase student achievement. The evidence they seek is increased test 
scores. Most tests, however, especially standardized tests, will not provide reliable 
evidence of students’ ability to think. Educators who value students’ thinking have 
the challenge of educating politicians and policymakers. In the meantime, it is im-
portant to remember that schools and society do not require conformity. They only 
require the appearance of conformity. Teachers get to make choices about what hap-
pens in their classroom. I hope you will choose to have your classroom nurture and 
respect young people’s thinking.
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Further Mathematics A-level is a small but prestigious secondary school qualifica-
tion in England and Wales that acts as gateway and ‘gold-standard’ for advanced 
mathematics. Despite repeated changes in teaching and assessment practices it re-
mains at the centre of overlapping discourses about rigorous mathematics and qual-
ity, widening participation and equity. My research follows Hart (2003) in using a 
particular context to examine how conceptions of quality and equity in mathemat-
ics education have interacted over time, and I link these to Western, liberal under-
standings of the self as individual project and narrative. The design brings together 
two approaches: one analysing how further mathematics is constructed through the 
public documents and practices of mathematics education; the other analysing stu-
dents’ talk about choosing and studying further mathematics. I take ‘aspiring’ and 
‘belonging’ as processes by which students live out the discursive concepts of qual-
ity and equity as practices of the self. This chapter addresses the questions: how are 
students’ accounts of studying further mathematics structured discursively by its 
sociohistorical positioning, and how is this positioning in turn effected through the 
accounts of students? What ways of knowing allow/disallow students to identify 
themselves both as aspiring and belonging?

 Why Does Further Mathematics Matter?

A-levels are the traditional academic qualifications in the English and Welsh 
school system, studied by 40% of 16–18-year-olds as preparation for university. 
A-level students specialise in only three or four subjects over two years. Math-
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ematics is the only subject area with two qualifications that can be studied along-
side each other: ‘mathematics’ and ‘further mathematics’ A-levels. Taking both is 
necessary for entrance to some university courses, and about 1 in 7 mathematics 
students do this. Further mathematics matters because the ways in which teach-
ers and students talk about studying further mathematics construct our under-
standings of quality in mathematics education, and we use those constructions to 
position ourselves within its practices. The same applies to equity. Students do 
not have equal access to studying further mathematics: they are constrained by 
‘individual’ factors such as prior attainment, and ‘social’ factors such as school 
resources. When teachers and policy commentators speak their concerns about 
these structural inequalities, they create and draw upon particular constructions 
of equity.

Recent UK policy texts (Matthews and Pepper 2007; Porkess 2006) have linked 
further mathematics to alarm about declining participation in mathematics. Their 
primary concern is to encourage the majority of 16-year-olds to continue math-
ematics, and rightly so. However, this is accompanied by celebration of ‘our very 
brightest young people’ studying mathematics and science A-level subjects who ‘by 
doing so are ensuring that Britain has a bright future’ (Wright 2009). This hitches 
concerns for social justice both to advanced mathematics and to a neoliberal eco-
nomic concern for the mutual benefits and national competitiveness that are as-
sumed when individuals gain a technological edge. By neoliberalism, I mean a way 
of understanding society and politics that constructs the process of governing as 
guiding and regulating free individuals in a quest for mutual—although not neces-
sarily equal—economic success (Rose 1999). These policy texts define the equity 
issues of A-level mathematics according to the dominant ‘system of reason’ that 
has underpinned the policy-making of successive UK governments since the 1980s, 
thereby constructing a problem that seems valid and deserving of attention (Popke-
witz 2002). They also construct solutions in those given ways. A national govern-
ment initiative, the Further Mathematics Network (FMNetwork) was established 
from 2005 to 2009 to promote further mathematics and provide teaching to students 
whose schools lacked resources and staff. I have taken this program as the focus of 
my research because it gives previously excluded students the opportunity/respon-
sibility to make different choices. Their accounts contribute to an understanding of 
how new teaching practices work alongside traditional representations, producing 
potentially different conceptions of what it means to them to aspire and belong to 
further mathematics.

My theoretical base is a poststructuralist perspective. Power circulates within lo-
cal practices: it is at the levels of schools, teachers and individuals that knowledge 
is constructed and reconstructed about who can study further mathematics and how 
(Foucault 1991). Martin (2006) suggests that the best way to understand equity is 
to ask how students live and explain their day-to-day experiences of mathematics in 
relation to school, community and sociohistorical contexts, and how this interacts 
with the senses of the self that are have meaning for them. I find this compatible 
with a poststructuralist methodology, analysing in detail ‘what is given to us as uni-
versal, necessary, obligatory’ (Foucault 1991, p. 45) about mathematics education, 
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and how this knowledge is legitimated over what is presented as ‘singular, contin-
gent, and the product of arbitrary constraints’.

The chapter continues with an analysis of the historical literature on further 
mathematics, showing how it constructs quality as extremes of measurement and 
comparison with the past, and inequity as deficits in schools. I then take promotion-
al and regulatory texts of the new FMNetwork and examine how they sustain those 
old truths alongside constructions of quality as conformity and breadth-plus-depth, 
and equity as systematised access. In the third section, I draw on interviews with 
one student to identify how representations of further mathematics intersect with 
liberal ‘practices of the self’ to enable and disable student choices.

 Historical Constructions of Further Mathematics

Forty years ago some 45,000 students passed mathematics A-level, and a third of 
these also took the equivalent of further mathematics and so became eligible for 
mathematically demanding university courses (Hoyles et al. 2001). Schools were 
free to choose among several syllabuses, but these all had a similar structure with two 
A-levels called ‘pure’ and ‘applied’ mathematics. This division in terms of content 
represented an implicit educational hierarchy. Pure mathematics was seen as funda-
mental in its own right and as necessary preparation for science and engineering de-
grees; applied mathematics was the ‘optional extra’ giving practice in the pure tech-
niques. This familiar classed abstract/concrete binary (Mendick 2006) configured 
practical applications as deviations from the higher education route and preferred 
the abstract, middle-class qualification to assess everyone. In his historical study of 
further mathematics, Newbould (1981) found that many students achieved relatively 
low grades in pure/applied mathematics, but that these were invisible casualties with, 
for example, no records of how many students dropped out of the courses.

Through the 1980s, the United Kingdom saw a gradual evolution of A-level sylla-
buses under private exam boards. Increasingly configured as businesses, the boards 
diversified and competed to attract schools and students: the market and choice were 
entering educational discourse. New A-level syllabuses introduced the current divi-
sion into mathematics and further mathematics. ‘Mathematics’ combined the lower 
levels of the old pure and applied content. ‘Further mathematics’ contained topics 
that are relatively isolated from the core mathematics content (e.g. complex num-
bers), or develop it (e.g. differential equations), or are applied in different contexts 
(e.g. mechanics/statistics). This format proved popular, in part because students 
tended to get at least one good grade, and the old pure/applied format disappeared 
in 1997 when exam boards were regulated by government. During this time national 
policies had encouraged more 16-year-olds to stay in a broadly academic program, 
normalising the A-level/university trajectory as an indicator of educational success. 
Simultaneously the primacy of pure mathematics was cast as unwelcome specialisa-
tion, and applied mathematics was re-valued as relevant and necessary to national 
economic success. So it was not surprising that schools and students increasingly 
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chose to enter students for the single mathematics A-level, whose syllabus covered 
both pure and applied content and gave a better grade (Kitchen 1999). The whole 
period saw a steady decline in numbers taking further mathematics, falling to only 
5,000 candidates in 1999, a tenth of those taking mathematics A-level.

How does this historical genesis position further mathematics with regard to 
quality? First, the title and the very existence of further mathematics suggest that the 
content of A-level is now structured hierarchically. The syllabus split has designated 
particular mathematics topics—and the experiences of learning them—as ‘further’, 
creating a measure by which they are deemed more difficult, less accessible and 
therefore higher quality than others. Whether measuring content or mathematical 
thinking, further mathematics is awarded a symbolic role in emphasising difference 
(Hoyles et al. 2001). It constructs quality as a property of extremes, standing out 
from the norm in some measure of mathematics. Thus the first meaning for qual-
ity constructed as ‘given’ within further mathematics is that quality in education is 
measurable and there is a way of ranking mathematical study. It is worth recalling 
that mathematics and further mathematics A-levels are taught concurrently to the 
same students so this ranking cannot be solely determined by prior requisite knowl-
edge: ‘further’ is not simply ‘later’ but ‘better’.

Second, quality is constructed alongside further mathematics as embedded in 
tradition and the past. Modern society is alert to managing change and positions in-
dividual subjects as responsible for negotiating risks; thus stability becomes person-
ally desirable (Bauman 2001). Further mathematics certainly offers an ongoing link 
with the education of thirty years ago, although feeling familiar reassurance alone is 
not recognising quality. Quality also requires observation and evaluation. Bauman 
argues that when the world around us changes, the normative response of modern 
individuals is to make sense of what is happening to us, to rationalise and compare 
old and new practices; I take this change-inspired evaluation as legitimating qual-
ity. Because the history of further mathematics positions it as relatively stable in a 
fast-changing educational environment, it evokes narratives of sense-making that 
heighten its visibility and position it as a context for evaluation. I call this a ‘gold-
standard’ construction of quality: the gold-standard only has meaning because we 
no longer pay in gold. However, by evoking the rationale of calculating back, it 
continually reinvents itself. So in further mathematics we have stories of a past 
golden age in which students were well prepared in science subjects and competed 
to enter mathematics degrees. These stories have currency today, even as we accept 
that practices have changed.

However, further mathematics would be of little interest if it were not for the 
accompanying story of those who resisted the change: several thousand candidates 
continued to study it, from a minority of schools in England, Wales and abroad, 
and the elite universities continued to request it. In a culture of choice, why did it 
matter that some schools and students continued to choose further mathematics? I 
have suggested above that further mathematics features in neoliberal discourses as a 
problem that needs addressing both as a search for quality, for ‘bright futures’, and 
through the ways it was publically configured as inequitable. I now examine these 
constructions of equity in more detail.
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The ‘rules’ of the A-level curriculum are that subjects should be roughly equal 
in teaching time and value, for example, they share a common ‘points scale’ for 
university entrance. This background parity positions A-level grades as a mean-
ingful discriminator of any individual’s ‘reality of mathematics’ achievement’ 
(Matthews and Pepper 2007, p. 10). But alongside this official knowledge, teach-
ers and the media disclose a hidden, ‘expert’ knowledge that certain subjects and 
subject combinations have greater exchange value for university entrance, and 
these include further mathematics even with a lower grade. We know that students 
from White middle-class backgrounds tend to seek more expert advice about their 
choices and choose these high-status combinations (Ball et al. 2000) Information 
about further mathematics is thus differentiated by class and ethnicity. Moreover, 
student choice is constrained by what their schools can offer. Since the 1980s the 
smaller, state-funded, non-selective schools have been affected by shortages of 
qualified mathematics teachers, financial pressures on teaching small classes and 
measures to compare schools by A-level grades (Smith 2004). Students in state 
comprehensive schools are three times less likely to study further mathematics as 
those in independent or selective schools, and 1.5 times less likely than students 
in 16–18 colleges which tend to be larger and city-based (Vidal Rodeiro 2007). 
These differences in school provision challenged liberal notions of equity in all 
three aspects identified by Hart (2003): students did not have equal opportunity, 
treatment or outcomes in their mathematics education. Further mathematics was 
a context in which these differences in individual experiences were made visible 
as structural differences between schools, not explainable as individual choices, 
and as such it posed a problem to policy makers. For example, the government’s 
advisory body has distanced itself from its own qualification: until there is ‘uni-
versal and equal access to Further Mathematics’, it is not ‘appropriate for higher 
education tutors to use [it] as a legitimate discriminator’ (Matthews and Pepper 
2007, p. 14).

The role of further mathematics in quality and equity is part of a narrative that 
society tells itself about itself: we understand the decline of class and class distinc-
tions as central to modernity (Atkinson 2007). In this narrative quality and equity 
are linked, but they function as opposites. Society needs more workers able to use 
mathematics, so mathematics applications were included in the single A-level and 
the ‘higher’ pure topics were left out. Students from all schools should have equal 
access to university mathematics courses so universities had to modify their curric-
ulum. This framing is not simply a zero-sum game but one that is oriented in time. 
Quality is constructed as the rules of the past; equity as including more students 
in the future. The opposition seems natural because other factors are taken as un-
changeable: the comparability of A-levels, the amount of teaching an undergraduate 
should have, and mathematics itself. These are not debated but rather crystallised in 
the practices of teaching and examining that make up school.

In the next section, I turn to the recent FMNetwork and consider the narratives 
used in its organisation, promotion and evaluation. I do not aim to criticise these 
choices but to understand more about how they sustain positionings of equity and 
quality, and how these relate to traditional conceptions.
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 Changing Further Mathematics

The FMNetwork was commissioned and funded in England from 2005 to 2009. 
A national hub provided branded materials in the form of a website, promotional 
texts and teaching resources. Regional teaching centres recruited locally for fur-
ther mathematics, employed tutors to visit schools and collected performance data. 
Schools effectively subcontracted further mathematics teaching for a group of their 
students. The centre agreed to teach on a concentrated schedule, typically only a 
weekly two-hour session after school. The school and centre negotiated money, 
timing, duties, access to resources—all means of circulating power at a microlevel. 
Such deployment of a market model in publicly funded institutions in order to serve 
particular agendas of quality and equity is typical of applied neoliberalism.

Bringing Quality Up to Date

The constructions of quality discussed above were rooted in the past or in math-
ematics content that appears timeless, but the FMNetwork supports a new construc-
tion that is rooted in present-day technologies. It does so by emphasising that fur-
ther mathematics is an A-level just like any other, following the rules and practices 
of the now-regulated examination system. For example, it encourages students to 
choose further mathematics by stressing the techniques that integrate the two A-lev-
els (such as exchanging modules to get higher final grades). Thus one way that the 
FMNetwork constructs quality is as a property of rigorously conforming to an im-
proving school system. This quality-as-conformity promises equity in the form of 
universal access to further mathematics, and the improved life-chances that follow. 
For example, the FMNetwork tells universities that ‘the new QCA rule changes […] 
will make it far easier for ordinary schools to offer Further Mathematics’(Stripp 
2004, p. 15) positioning ‘ordinary’ schools as the appropriate focus of universities. 
However, conformity downplays individual and school agency and positions the 
structure of A-levels as powerful in itself: the main actors here are ‘rule changes’. 
Stripp adds that schools can ‘increase the supply’ of mathematics students, but 
‘it’s up to the universities to ensure this happens by creating the demand’(p. 16). 
Changing the rules and demands for further mathematics is taken to be enough to 
change what schools will offer and students choose. This claim suggests the neo-
liberal framing of modern society as a complex ‘swarm’ of individual trajectories, 
all choosing according to economic forces but choosing alike (Bauman 2001). The 
FMNetwork positions itself with universities and policy makers who understand 
how power works within the swarm and can use that knowledge for change.

I have now traced three constructions of quality. A sociohistorical perspective on 
further mathematics sees quality as historical continuity and standing-out-by-mea-
surement. Those constructions were reconciled by representing further mathemat-
ics as a gold-standard. Because these views of quality were located in the past; the 
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inequities associated with them could be understood as outdated white middle-class 
privileges. The third, recent, construction was quality as conformity; this time en-
acted as progress in a presently improving education system and looking to the fu-
ture for equity. Clearly, these co-existing constructions introduce potential tensions: 
is quality judged in the past or present; does it concern conforming or standing out; 
are inequities over or still being ironed out? I have identified one more construction 
in the FMNetwork texts that functions to resolve these potential conflicts: quality 
as achieving breadth-plus-depth. The duality in this metaphor manages tensions 
through flexibility and ambiguity: further mathematics is valuable because it is 
broad or deep or both as required. This new metaphor was enabled by a specific 
rule-change that changed the discursive tools available. In 2000 the first half of an 
A-level course was given its own name—AS-level—allowing separate identities 
for each year of further mathematics.

How does this breadth-plus-depth construction work? First, the FMNetwork fol-
lows many government texts (e.g. Smith 2004) in associating the AS course with 
breadth. Breadth provides a metaphor for widening access and inclusion, and also 
becomes a marker for quality when education is seen as aiming to provide univer-
sal, flexible skills suitable for an unpredictable working life (Rose 1999). When 
Porkess describes AS students encountering ‘exciting new ideas, like complex num-
bers, as the building blocks at the start of Further Mathematics’ (2006, p. 13) he uses 
‘building blocks’ to evoke utility, flexibility and progress—all seen as important for 
future careers. ‘Building blocks’ evokes children and manual work, including them 
in further mathematics. I find it an unexpectedly practical metaphor for complex 
numbers. Compare it, for example, with a further mathematics student’s description 
of them as uncomfortably abstract: something that doesn’t even exist. Just, it makes 
me feel sick, the thought of it. I suggest that the difference illustrates the imperative 
for the FMNetwork to construct the AS syllabus as accessible.

The second half of the metaphor follows from the historical re-organisation of 
syllabuses that associated further mathematics with ‘higher-level’ topics. The FM-
Network texts use this association as a given, and rephrase it in terms of depth:

The new AS will be more a ‘broadening’ than a ‘deepening’ option. This means that AS-
Level Further Mathematics is no longer an ‘elite’ qualification, suitable only for A-level 
Mathematics high-fliers. (Stripp 2004, p. 15)

Here breadth is written up as a modern contender to depth, but there is still ample 
reassurance that ‘high-fliers’ should be taking further mathematics. Depth is sepa-
rated from particular mathematical content, and rather defined as being what the 
‘elite’ study, and so inherently bound up with exclusion. It is still firmly attached to 
quality through the continuation of familiar standards: ‘The stretch and challenge 
for the elite is still provided by going on to the full A-level in Further Mathematics 
[…] which is just as demanding as ever.’ (Stripp 2007, p. 35).

In summary, the FMNetwork justifies itself as an agent for change by arguing 
for a new construction of quality as broader relevance and participation. However, 
since breadth departs from the traditional exclusions, the change is only enabled 
by a successful defence against itself, that is, by simultaneously arguing for depth. 
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Breadth and depth are thus held together as two forms of quality existing on either 
side of the AS-level but pulling in opposite directions, one including and one ex-
cluding. What holds them together is students’ responsibility for choosing: inclu-
sion is systematised by universal access to AS-level, exclusion can thus be left to 
individuals.

What Is Equity for the FMNetwork?

In my discussion above, I have started to show how constructing quality in cer-
tain ways might entail corresponding constructions of equity. I now use two re-
cent evaluatory texts to exemplify how these constructions of quality and equity 
function together. One reports the independent evaluation (Searle 2008) commis-
sioned by the FMNetwork to justify government funding; the other (Vidal Ro-
deiro 2007) reports an assessment agency’s research into A-level participation. 
These texts necessarily draw on, and contribute to, the policy discourses of further 
mathematics.

Examination data show that the FMNetwork program coincided with a revival 
in further mathematics: from 2004 to 2008 the number of candidates taking the 
‘one-year’ AS-level course more than tripled and the number taking the two-year A-
level course nearly doubled. Searle’s (2008) evaluation highlights that over three-
quarters of this growth was in state schools and concludes that access according to 
school sector was becoming more equal. It thus prioritises the historical perspective 
that class-based differences in provision between schools were the primary problem 
of inequity. This increase strengthens the network’s claim to achieving quality-as-
conformity alongside equity as systematised access.

Searle then examines equity in more detail by relating school region to socio-
economic status. More affluent areas of England accounted for much of the growth 
in the two-year A-level, but the ‘one-year’ AS-level grew very significantly in de-
prived areas. Presenting this data makes a weaker claim for progress in ironing 
out differences according to class, but it does strengthen the suggestion that the 
FMNetwork AS-level is broad in its appeal to previously excluded students. Hence 
the FMNetwork is positioned as partially successful in its aim to achieve quality 
constructed as breadth-plus-depth. However, I see tensions between this construc-
tion and equity as universal opportunity, which are unstated: how can we account 
for the social differences in who engages with the ‘deeper’ material and who stops 
at AS-level. What individual and social factors might be at play? My research in-
cludes students who after one year of study choose to stop mathematics—which 
can be construed as an exercise of individual agency—but also some who are being 
taught only the AS-level content over 2 years, a structural constraint. A discussion 
of equity would be further informed by analysis that linked individuals’ outcomes 
to course opportunity. The fact that this type of data is not within the remit of the 
official data-collection illustrates how neoliberalism averts its gaze from issues of 
how individual and social factors interact (Atkinson 2007).
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As well as socioeconomic status and school type, the other factor reported in 
detail in Searle’s evaluation is gender, perhaps owing to its ease of classification 
and the longstanding concerns over girls’ participation in mathematics. The pro-
portion of further mathematics students who are female, between 30 and 40%, has 
not changed in the period. This is left without comment: it is not clear whether any 
change was desired or feared. Other individual background factors are not reported. 
We know that students who are Black African, Chinese, Indian, Pakistani and from 
a mixed background choose mathematics/science subjects proportionally more than 
White students (Vidal Rodeiro 2007), but not how they have engaged with further 
mathematics over time. Nor can we find out whether students from different socio-
economic backgrounds, but in the same school, choose differently organised lessons 
and obtain different outcomes. Through the choices made in these texts, no doubt 
for necessary reasons, equity is constructed as the absence of those differences that 
relate to institutions, and what affects individual choice is left out of the enquiry.

In summary, the FMNetwork makes use of an educational technology—the de-
coupling of AS from A-level—to sustain roles for both breadth and depth, and find 
a compromise where each has a different function but each conforms to institutional 
requirements. Quality as depth is described in terms of the past and an elite, and 
thus linked to quality as gold-standard. There is a new understanding of quality as 
breadth with everyone doing more mathematics, and this links to quality as con-
formity. Equity is constructed as the opportunity for an individual to start further 
mathematics no matter what type of school, how teaching is organised, or what was 
previously learnt. The first year promotes this goal of universality and recruits for 
the full course, but it also legitimates selection in the second year. This selection is 
no longer understood as a means by which schools necessarily reproduce privilege 
because, for the purposes of further mathematics, schools are positioned as operat-
ing with an agency that is informed by economic truths. Change is guaranteed by 
calling on practices aligned with neoliberalism and individuals have the responsibil-
ity for choosing further mathematics for themselves. In the next section, I turn to 
individuals’ accounts so as to consider an example of how quality and equity enter 
one student’s account of choosing whether or not to continue with mathematics.

 Practices of the Self

From 2006 to 2009 I have conducted research in three sites offering mathemat-
ics A-level in school and further mathematics with the FMNetwork. I followed 24 
students over 18 months, collecting data from interviews, lesson observations and 
email questionnaires. My analytic focus was what Foucault (1990) calls ‘practices 
of the self’: the knowledges and processes that inscribe what it means to be a suc-
cessful individual within a particular history or culture. Practices of the self estab-
lish the norms and means by which people explain themselves, govern themselves, 
and engage with others. I have explored the intermingling of discourses of further 
mathematics and discourses of the self by analysing textual data in the form of 
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observation field-notes, interview transcripts and e-mail exchanges. I chose one 
student, Mario, to discuss here because he often appeared uncomfortable with see-
ing himself as a further mathematics student. It is his quote that provides the title 
of this chapter.

In our conversations Mario positioned himself variously as successful and as 
struggling, as a natural and as an outsider, and tried out different ways of justify-
ing his decisions to continue. I interpret the ways in which he argues whether do-
ing further mathematics is ‘doing any good’ as examples of how he participates in 
constructing quality. Mario also describes what ‘actually’ threatens his engagement; 
I see these as examples of ways-of-knowing through which individual agencies 
contribute to social patterns.

Mario lives in the centre of a relatively deprived English industrial city. The 
school he went to until age 16 was replaced by a business-sponsored school that 
offers further mathematics to all its mathematics students. Mario is white and his 
family show characteristics of both middle-class and working-class cultures (Ball 
et al. 2000): Mario’s father is a graduate engineer but he lives with his mother and 
receives some government income support. Mario’s passion is rock guitar.

In his first interview Mario describes his initial subject choices as based around 
maths—the ‘four core Maths subjects’. He presents evidence he has gathered to 
support this claim for the centrality of mathematics: all university courses want high 
grades, and mathematics ‘comes into everything’. These claims are based on its 
power as a widely accepted currency and a knowledge that will be relevant even—
and especially—when he attempts a more idiosyncratic career linking science and 
music.

Choosing further mathematics is also a way of demonstrating success in unex-
pected ways:

First of all when I said about Further Maths my mum was… ‘This is…. No, you can’t do 
it.’ And I was okay at Maths at GCSE but never like that star, that everyone else was like 
getting full marks all the time. And when I said Further Maths she was quite shocked and 
didn’t think I could do that. And that made me want to do it even more.

Mario ascribes his mother’s doubts to his grades in national examinations at age 
16 which were good, but not the best. I suggested above that further mathematics 
invokes quality as a gold-standard. Mario draws on this representation to challenge 
the defining power of grades: for him, choosing further mathematics is a way of 
aspiring to stand out as being different but just as good or better. Mario sets the 
stakes high by making his comparison with ‘full marks all the time’. The sociohis-
torical context that positioned further mathematics as rarified because it was limited 
to certain schools has been reinterpreted as a practice of individual choice so that 
further mathematics aligns the chooser with extreme personal qualities of ability 
and dedication.

So far I have commented on those aspects of Mario’s choice that position fur-
ther maths outside the narrow focus of school, but Mario also uses arguments that 
further mathematics conforms with schooling. His work-experience mentor has en-
couraged an academic route to his dream; he could take a physics degree first and 
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then work in acoustics. Mario also cites universities telling him further mathemat-
ics is the right preparation for physics, and his further mathematics teacher’s view 
that it gives you a head-start at university. These reasons, and their authoritative 
institutional sources, emphasise the progressive nature of school mathematics and 
position further mathematics as ‘further’ along that path. Together, his justifications 
suggest that his aspirations match the FMNetwork’s breadth-plus-depth construc-
tion of quality. He aspires to study further maths because it is broad enough to pro-
vide both academic certification and application in a ‘real-life’ setting, and because 
it is deep enough that he can get ‘ahead’, making sure that he is included in the niche 
he has picked out as desirable.

In these examples Mario uses constructions of quality in further mathematics to 
maintain overlap between the talented outsider status that comes with his dream and 
the reassuring possibilities of exam success. When Mario’s AS grades were lower 
than he wanted, he was once again threatened by measurement. Other students in 
the class excused their low grades and nearly all stopped further mathematics; but 
Mario and Randall continued. At the end of their second year I asked why they had 
chosen differently. During the discussion (lines 576–649), Mario deals with con-
flicting understandings of what studying further mathematics means to them and 
about them:

577 We were a lot more clever than them.
594 I think a lot of people say it’s the hardest A level.
596 And everyone knows it as well. Which makes us feel cool…
602 It’s just it’s…. I didn’t mean it makes us feel cool, it makes us look stupid.
622 And it doesn’t make you…. People makes…think it makes you a genius.
624 We should be really clever, but something about it, maybe a bit of common sense, like 
we just…sometimes we just, like maybe the time of the day, or what mood you are in, but 
sometimes we feel really stupid.

Mario is conscious of positioning himself as clever, cool and different but, impor-
tantly, not alone in ‘belonging’ to further mathematics. The feelings are described 
as the result of their common choices and so personal to both of them. Mario starts 
here by comparing himself with others; his belonging is based on their exclusion 
from ‘the hardest A-level’. He ends up worried by how ‘it’ positions him compared 
to the ‘genius’ model he has just helped to build. This illustrates again how exclu-
sion is inherent in these constructions of quality. Mario not only has to defend his 
sense of belonging against structural threats such as AS grades but also against how 
he explains his self-practices to himself. If he does not ‘feel’ clever, how can he 
belong? In line 624 he calls up an explanation which constructs two oppositions: 
either his self-doubts are momentary irrational lapses from cleverness, or cleverness 
is not related to common sense and practical experience. This answers one threat 
to continuing, but introduces a second threat—how he sees himself as practical 
and ‘hands-on’. This recalls the historical classed constructions of advanced math-
ematics as removed from work applications. Mario formulates this in terms of his 
personal qualities when he wonders:

whether I’m patient enough to actually go through all the Physics and stuff, and be good, 
really good at it at the end, or go straight into it and build up experience in it.
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Again Mario links education with having to be ‘really good’, and contrasts having 
to ‘go through’ it with actively ‘building’ authentic, direct experience. Staying in 
post-compulsory education, and studying more abstract disciplines are the types of 
choices that produce structural class inequalities (Atkinson 2007). Here Mario is 
constructing them as choices based on truly understanding himself. Randall, too, 
positions mathematics as inauthentic, and Mario as excluding himself from their 
dream:

Randall: I’m going to be there. But Mario’s gonna be like working out all these equations.
Mario: And I’m gonna be paid ten times more than you.
Randall: And I’m gonna be the happier one. It’s not all about money Mario.
Mario: No. I’m gonna be happy.

Mario is on the defensive. He uses mathematics to make a claim for economic suc-
cess but Randall excludes him not just from practical experience but from happi-
ness. From a neoliberal perspective, the key practices of the self are concerned with 
gaining the self-knowledge to pursue personal happiness (Rose 1999). Mario’s case 
is an example of how the constructions of quality and equity in further mathematics 
can reappear as ways of understanding oneself as included and excluded not simply 
from mathematics but from one’s self.

 Conclusion

In this chapter, I have used the context of further mathematics A-level to analyse 
how its sociohistorical role provided understandings of equity and quality as privi-
leged access to a ‘gold-standard’ mathematics education; how an influential reform 
program created new agendas of universal opportunity and had to reconcile them 
with existing understandings of quality in order to recruit support; and how an 
individual explains his experiences and choices in ways which translate these is-
sues of quality and equity as saying something about his own self and his choices. 
Throughout, I have tried to show how the opportunities for choosing built into the 
education system in England and Wales position schools and government as power-
ful in guiding rational economic choices but individual students as responsible for 
making them.

The FMNetwork has tried to preserve quality while addressing inequity by 
removing barriers to starting further mathematics. However, the ways in which 
quality is constructed mean that some students must be excluded, or rather must 
choose to exclude themselves. School factors do exclude students: for example, 
reduced teaching time affects AS grades so that students opt out. Students also 
experience questions about belonging that spring from the same discursive repre-
sentations that made them join. In further mathematics, the associations of quality 
with measured success and abstract learning is difficult to sustain against the risks 
associated with competition, and also against a desire for present happiness and 
authentic experience.
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It is easy to focus on ways in which students may find themselves threatened 
in belonging to further mathematics, but there are also ways in which they can 
resist. Mario described his final push for success as deciding to change how he 
thinks about himself and his goals, giving up some of his independence and using 
FMNetwork connections to find a tutor. In the process of including himself, he 
strips further mathematics of the quality of separateness that once attracted him: ‘it 
should just be called different modules’. Quality as depth is a powerful construc-
tion, but aspiring to include ourselves is accompanied by consciousness of how 
to exclude ourselves. Although my policy analysis suggests that the FMNetwork 
required a dual breadth-and-depth construction in order to defend itself against the 
past, individual students may show how ‘further mathematics’ can be rethought as 
an inclusive ‘more mathematics’.
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This section gathers 11 chapters with contributions from Australia, Germany, Leb-
anon, Malawi, Sweden, the United Kingdom and the United States of America. 
The chapters address issues concerning quality and equity as well as their rela-
tionships, and highlight particular dimensions of what I would call the social and 
political constitution of the discourses of equity and quality in mathematics edu-
cation. As a whole, the chapters offer a mapping of the multiple influences that 
in a diversity of sites of practice shape the ways of talking, viewing and enact-
ing both quality and equity. The chapters illustrate with empirical material, analy-
sis and discussions, the way in which the discourses of equity and quality move 
in constant construction and recontextualization from broad societal trends to 
the constitution of subjectivities, passing through policy, the media, pedagogy 
and reaching the learners. I will comment on the chapters knitting a network of 
discursive relationships between the issues raised by the authors. My inten-
tion is to articulate my reading of how these chapters map the discursive com-
plexity of equity and quality in mathematics education in society nowadays.

It is clear that the issues of equity and quality are not phenomena that can be 
placed at a level of individual choice. Jurdak argues that it is necessary to concep-
tualize equity and quality as a global system of nested subsystems of mathematics 
education. From a macro-global scale to a micro-local scale in classrooms, in(ex-
clusion to the access of diverse populations to mathematics and to the goods of 
society is being produced and reproduced. Using international statistical data he 
shows that even if there seem to be some factors that can be strongly related to ineq-
uity in mathematics education at a global level—socioeconomic status, educational 
capital and culture of countries, policies that govern international organizations of 
mathematics education, and access to English as the language of the international 
research field—the divide between developed and developing countries in terms of 
achieving better results in mathematics cannot be accounted for in any way by in-
ternal factors of the organization of mathematics teaching and learning. Rather, they 
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are related to factors that go beyond the reach of mathematics educators or even na-
tional countries. Differences may be connected with particular global economic and 
political orders that install stratification in society. Shelley and Su provide results 
that resonate with Jurdak’s arguments. Using mainly PISA 2003 data, Shelley and 
Su developed a statistical analysis of the factors that, at a student level and a school 
level, affect student achievement in the USA. Their analysis provides evidence that 
schools educational resources matter and that achievement cannot only be explained 
in terms of individual student characteristics. They point to the fact that the systemic 
and endemic disparity among school districts in the USA is certainly connected to 
the inequity in students’ achievement. Of course, such a systemic inequity calls for 
serious interventions in policy to reduce economic disparity.

Policy is an important discursive level when looking at the constitution of ideas 
and practices of equity and quality in mathematics education. Shelley and Su call 
for guidance in policy that decidedly has the intention of addressing the achieve-
ment gap in the USA. They show the necessity of paying attention to the role that 
policy makers in national and local governments, as well as interest organizations 
formulating visions for the future of mathematics education, play in shaping the 
possibilities of change towards balanced practices in the field. Although researchers 
have argued the necessity of studying policy and its impact in mathematics educa-
tion, the amount of studies addressing policy are still scarce when compared to 
the amount of studies in other subfields of mathematics education. Here, however, 
there are three chapters that explicitly address policy. Kazima and Mussa present 
the case of the Malawi educational system and the deep divide in children’s pos-
sibilities to access to quality mathematics education, according to their gender, their 
age and their rural or urban place of living. Malawi has been involved in a process 
of expansion in the coverage of its educational system in the last 15 years. The is-
sue of the quality of education when certain degree of coverage is reached becomes 
a concern. Particular measures directed towards the improvement of mathematics 
education have been taken. However, serious differences related to gender and the 
urban/rural gap are still very evident. The authors point to the fact that providing 
material resources as mechanisms for addressing quality and equity are not suffi-
cient to generate better possibilities for all students. A broadened concept of quality 
that touches substantially on teachers’ qualifications is needed. More often than 
not, the operational definitions of both quality and equity that policy makers adopt, 
often connected with the political rationality of accountability that dominates in this 
time, lead to restricted views of what equity and quality may be, particularly when 
it comes to the core conceptions of the components of mathematics education.

This is one of the points that Bose and Remillard raise in their analysis of recent 
key policy reports for the improvement of mathematics education in the USA. An 
analysis of the reports reveals the view of the mathematical knowledge that they 
support, as well as the opportunities for students to engage in significant math-
ematical learning that they promote. The results of the analysis show that, first of 
all, policy reports criticizing the state of affairs in education and proposing solu-
tions are not neutral nor apolitical. On the contrary, they take particular political 
stances not only towards society and the role of mathematical competence in it, 
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but also about what counts as mathematical competence in educational settings. 
Second, the reports privilege a view of quality and equity in mathematics with a 
restricted focus on mathematical contents. Such view contradicts a more nuanced 
and complex view of mathematics connected to research in mathematics educa-
tion. The authors argue that policy with such a narrow focus has no chances of 
addressing significantly the already poor practices that lead to poor achievement 
for many students in the USA. The interesting question here, of course, is which 
are the kinds of interests that those policy reports and their recommendations are 
defending. This is precisely the question that Noyes addresses for the case of the 
mathematics reform for the 14–16-year-old students in England. Changes in the 
curriculum and assessment have been part of political and economic discourses 
framed by neo-liberal agendas where markers, managerialism and performativity 
are the tools that governments use to regulate and install educational change. The 
result of this approach generates a situation where traditional views of quality and 
equity restricted to “more higher mathematical contents” to as many as possible 
are uncritically reproduced and strengthened in society. An interesting mechanism 
for the reproduction seems to be set in operation: while in principle discourses that 
claim the need of more mathematically competent people as a condition for social 
development attract the attention of all stake holders due to their apparent appeal to 
inclusion of all students, curricular change and assessment practices maintain a tra-
dition that effects exclusion. The similarities between the cases of the policy in the 
USA and in the UK really leave open the question: “whose” quality and “whose” 
equity is policy promoting?

In the age of information, the role of mass media and communication cannot 
be ignored as important players in the discursive constitution of equity and quality 
agendas in mathematics education. One chapter addresses directly and explicitly 
how media, in particular newspapers, construct partial pictures of key predicaments 
in equity and quality reported in scholarly literature. Forgasz and Leder engage in 
an examination of how prominent Australian newspapers cover news that attract the 
public attention regarding practices of significance for equity and quality, namely 
students’ achievement levels, ability groupings and single-sex groupings. The authors 
evidence the particular representations that the media create, compared to evidence 
provided in research reports on the same issues. Media portrayals of these topics are 
often partial and simplified views of the complexity of the problems studied and re-
ported in research. Probably the type of work of journalists—time and space con-
strained, as well as in need of a common-sense language to report to the general 
public—shapes the creation of public discourses about the issues and contributes to 
the reproduction of readers’ uninformed conceptions and stereotypes. With such a 
way of operating, the media may be having a strong impact on how opinions are 
being formed and, thereby, on who comes to benefit or who becomes disadvantaged 
in educational practices. Some other chapters in the section address related issues. 
Particularly the chapter by Weissglass exemplifies how the media played an im-
portant role in the “Maths Wars” in California and how that helped contributing to 
the creation of stereotypes of mathematical competence, in particular of disadvan-
taged youth. Smith also refers to how the communication strategies of a program 
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aiming at attracting more students to A-level mathematics in the UK creates particular 
views not only of the program, but also and specially about what it takes to be math-
ematically successful at that level. All these chapters show that the meanings for what 
counts as mathematical competence, as well as what is considered to be equity and 
quality are also constructed in the public discursive space opened by the media.

The discussion of what counts as mathematics in relation to equity and quality 
has been present in many of the chapters already mentioned. Particularly Bose and 
Remillard’s paper addressed this issue in relation to policy reports. The chapter by 
Jablonka and Gellert takes a particular stance on the issue and its relation to peda-
gogy. They examine the particular case of mathematical modeling as both a view of 
mathematics and an associated pedagogy that has considered to be an alternative for 
generating quality and equity simultaneously. Taking a Bernsteinian perspective to 
read the pedagogical discourses taking place in classrooms where modeling is pro-
posed as an alternative form for mathematics education, they evidence defenders of 
modeling may be creating a myth that can potentially disadvantage many students. 
The analysis shows clearly that there are fundamental problems with the promises 
of modeling in teaching and learning. Students lacking tacit knowledge about what 
is being modeled are at risk, since processes of recontextualization are central to 
the modeling exercise. The very same lack of acknowledgment on the side of math-
ematics educators on the contextual nature of modeling competences may lead to 
an empty type of mathematical activity that does not offer better understanding for 
students. For these reasons, the authors argue for the need of looking critically at the 
false promises of pedagogical approaches in mathematics. Pedagogical traditions 
contribute to disadvantage some types of students. No pedagogy is neutral; it can-
not be expected to be beneficial to all students. Pedagogy makes a particular stance, 
implicitly or implicitly, towards whom reaches quality and inclusion. Jablonka and 
Gellert showed this for modeling. Schütte and Kaiser also exemplify the previous 
general observation with their study of mathematics education practices in German 
classrooms for students with an immigrant background. Mastery of the German 
language is a determinant factor for success in schooling. Immigrant students, of-
ten disadvantaged also on the grounds of their ethnicity and socioeconomic status, 
could keep on being disadvantaged if teaching and learning practices do not devel-
op both their mathematical register as well as their competence in more academic 
registers in German.

The processes of individualization that have characterized Modern society have 
impacted understandings of equity and quality in mathematics education. The focus 
on the learner—who she is, what she lacks, how she can be helped—is yet another 
dimension of the social and political constitution of the discourses of quality and 
equity. Some chapters address the issue of how the construction of subjectivities is 
a complex process that touches deeply individuals, in this case, the mathematics 
learners. McCray and Chen are concerned with small children in preschool age 
and their mathematical thinking. They argue that attention needs to be paid to early 
mathematical experiences as a new way to address equity. Focusing on the USA, 
they examine the potential benefit in addressing imbalances already visible at the 
beginning of primary school with a more focused attention to early foundational 
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mathematics. The latter refers to a view of early mathematical thinking as a form 
of knowledge and thinking that all children develop in their participation in the 
world. Directed attention in preschool to central foundational mathematical ideas—
e.g., the same collection of objects can be sorted in different ways—may provide 
children with a more solid thinking and language for their experiences. A good start 
may be the beginning of a more positive engagement with mathematics. Taking 
students seriously is part of McCray and Chen’s concern. So it is for Weissglass, 
whose chapter presents an argument for the importance of taking students seriously 
and to respect them as learners, thinkers and human beings. Respect is at the cen-
ter of generating pedagogical approaches that can contribute to the construction 
of strong identities of students as mathematical learners. Weissglass discusses the 
idea that the lack of respect for the youth is not only a personal matter of some 
teachers. Rather, it is a social phenomenon where youth is positioned by adults as 
incompetent, deficient thinkers. Such a positioning has a tremendous impact on the 
self-confidence of many youngsters, particularly of those who are also positioned 
as inferior on the grounds of their gender or ethnicity. In the context of the USA, 
Weissglass proposes seven principles for a mathematics education that builds re-
spect for the learners; the principle reminds us, adult teachers, that most of the time 
students’ incompetence is induced, not genetically determined. Such recognition 
is important in any consideration of quality and equity in mathematics education.

All learners are building their sense of self in schools, which are, as Jurdak pro-
posed, nested systems of practice where quality and equity are being given mean-
ing. Smith shows the discursive constitution of policies, intervention programs and 
learners’ subjectivities. Notions of equity and quality are being formulated and em-
bodied by people and practices in each one of these levels. All levels are discur-
sively connected. Studying the case of A-level mathematics—the same focus of 
Noyes in his paper—Smith shows brilliantly how school policies argue for the need 
of opening more spaces for more students to achieve better mathematics. The mean-
ing of “better” and higher-quality mathematics in this case resonates with what 
has already been discussed in the chapters of Bose and Remillard and Noyes. The 
particular effort of an intervention program to generate access to more students 
into A-level mathematics generates a discourse of mathematics with breadth and 
depth, where inclusion and exclusion live side by side and is experienced differen-
tially by students with different backgrounds. Individual students participating in 
the intervention become aware of this double construction. They tell stories about 
themselves, and formulate narratives where they make these contradictions as part 
of themselves and their own personal choices. In this way, the whole discursive 
construction builds the mechanism of individualizing what are systemic inequali-
ties. Particular ideas about equity and quality in mathematics are reified in students’ 
subjectivities.

I have tried to show the network of social and political constitution of the dis-
courses of equity and quality in mathematics education. Such network, as illustrated 
by the chapters in this section, is multilayered and multileveled. The chapters ad-
dress discursive constructions at a macro-global level, at a level of policy, at the 
level of the media, at the level of pedagogies and at the level of the constitution 
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of subjectivities. After reading the chapters, one idea keeps on revolving in my 
thoughts. Even if the discourses of equity and quality are being constructed in this 
broad network of social practice, are being reified in it in ways that go beyond the 
control of any individual, its mechanisms posits all its burden on individuals. Why? 
Whose interest is such functioning serving? Are we as mathematics educators fully 
aware of the effects of such processes? What can they mean for our well-intentioned 
actions? I hope that, more than providing definite answers, these chapters help the 
reader generating sharper questions about the multiple possible meanings of quality 
and equity in mathematics education.

P. Valero
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 Introduction

This chapter explores issues concerning a group of students who we argue have 
‘special rights’ in mathematics education because historically they have not had ac-
cess to high-quality mathematics programs and instruction. These are students who 
are visually or hearing impaired, or who suffer from have Down syndrome or other 
intellectual or physical impairments. Also included are students who underperform 
in mathematics due to their exclusion from quality mathematics learning and teach-
ing environments necessary for them to thrive mathematically. The arguments pre-
sented throughout this chapter are underpinned by a belief that underperformance 
for the students in focus is too often due to issues associated with both equity and 
quality. First, many students in this group have been directly excluded from op-
portunities and educational pathways in learning mathematics because mathematics 
was deemed an inappropriate field of study for them (e.g., Faragher et al. 2008; 
Feigenbaum 2000). Second, other students may attend a school where mathematics 
is taught, but do not receive the quality of instruction or experience that enables 
them to thrive (Gervasoni and Sullivan 2007; Lindenskov and Weng 2008). These 
students are indirectly excluded from mathematics education.

Throughout the chapter, we draw upon experience and contributions from the 
International Congress of Mathematics Education (ICME) 10 (ICME 2004) and 
ICME 11 (ICME 2008), as well as examples from colleagues around the world. We 
identify features of programs and approaches that improve quality and equity and 
generally advocate on behalf of students with special rights.

During ICME 10 it was notable that international dialogue was possible to criti-
cally discuss and describe contradictions and synergy between issues of equity or 

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
DOI 10.1007/978-90-481-9803-0_22, © Springer Science+Business Media B.V. 2011

Chapter 22
Students with ‘Special Rights’ for Mathematics 
Education

Ann Gervasoni and Lena Lindenskov

A. Gervasoni ()
Faculty of Education, Australian Catholic University,  
1200 Mair Street, 3350 Ballarat, VIC, Australia
Tel.: +613-5336-5300
Fax: +613-5336-5305
e-mail: ann.gervasoni@acu.edu.au



308

‘mathematics for all’ and issues of quality or ‘mathematics for high-level mathemati-
cal activity’. Further, at ICME 11 it was noted that many mathematics programs and 
learning activities for students with ‘special needs’ attempt to teach mathematics us-
ing a conventional approach, but at a slower pace and with a more tunnelled view of 
a limited range of mathematics. In these cases, instructional innovations were based 
on deficit models of learners and focused mainly on designing tools to aid commu-
nication between the teacher and student that enabled students to access classroom 
mathematics programs and teaching. Sometimes the mathematics curricula offered 
in these cases is relevant more for the past, than for the present and the future. For 
instance, in 2002 it was shown that 55% of special educators in Maryland USA 
( n = 35), had not heard of the NCTM Standards (NCTM 1989, 1991, 1995, 2000), 
although the first version was published in 1989 (Maccini and Gagnon 2002). We 
argue that mathematics education research and mathematics learning programs for 
students with special rights must begin with two equally important foci: (1) placing 
students at the centre with the stated aims to build on their knowledge, motivation, 
and communication abilities and (2) a focus on quality mathematics curricula and 
instruction in response to global challenges. Further, we argue that mathematics 
programs and innovations need to focus on students’ and communities’ abilities and 
strengths in order to build educational capacity so that students with special rights 
may thrive mathematically. This calls for a new era of cooperation between math-
ematics teachers, special education teachers, specialists from other support services 
and community members.

 Special Rights in Mathematics Education

A challenge exists for the global community to decide who has special rights 
in mathematics education. Indeed, the absence of a universally accepted defini-
tion is striking. Perhaps at this point in history, drawing attention to this issue 
is more important than reaching a definitive conclusion. We argue that students 
with special rights for mathematics education have many and varied charac-
teristics, but that not reaching their mathematical potential is the over-arching 
characteristic. In this regard, our discussion focuses on two groups. First is the 
group of students ‘who have long-term physical, mental, intellectual or sensory 
impairments which in interaction with various barriers may hinder their full and 
effective participation in society on an equal basis with others’ (United Nations 
2006). For example, these students may be visually or hearing impaired, or have 
Down syndrome. The less visible second group are students who underperform 
in mathematics due to their explicit or implicit exclusion from the type of math-
ematics learning and teaching environment required to maximise their potential 
and enable them to thrive mathematically (e.g., Gervasoni and Sullivan 2007; 
Lindenskov and Weng 2008). Too often, both groups experience educational ex-
clusion, and as such have special rights to equitable access to quality mathemat-
ics education.

A. Gervasoni and L. Lindenskov
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Access to Quality Mathematics Education

When students ‘fail to thrive’ at school, they often lose confidence in their ability, 
lose confidence in the school environment as a place to which they belong, develop 
poor attitudes to learning and to school, and disengage from learning opportunities 
(Ginsburg 1997). This situation is exactly what school communities seek to avoid, 
and infringes on a student’s right for access to quality mathematics education.

Traditionally, school programs are based on the premise that a class is homoge-
neous and that each child will gain value from the same type of experience (Gins-
burg 1997). This is not the case, and schools and teachers are becoming more aware 
of the importance of responding to the diversity of individuals in classrooms. This 
is essential for maximising students’ rights to equity and quality. However, Ochil-
tree and Moore (2001) argue that schools are not equipped to address student dif-
ferences, which are regarded by some educators as deficiencies. Such views have 
long-term negative consequences for students.

The phenomenon of learning school mathematics needs to be interpreted in the 
context of the ecology of the school. Ginsburg (1997) argues that many students 
in the USA are educationally at risk because they are at the mercy of (a) a culture 
that devalues mathematics, (b) inhospitable schools, (c) teachers who teach badly, 
and (d) textbooks that make little sense. We argue that this situation may apply 
in many countries, and overall suggests that many students lack access to quality 
mathematics education. Further, students are at greater risk if they have a physical 
or intellectual disability and this is aggregated significantly if they are from a poor 
or underprivileged minority. This is a negative view, but highlights the exclusion to 
quality mathematics education experienced by many students globally.

Possible reasons to explain failure to thrive in the school environment include:

• Disparity between students’ early environment (including factors such as cul-
ture, language, attitudes to education, nurturing, and family harmony)

• The school environment (including socio-cultural norms such as organisational 
structures, communication, expectations and attitudes of teacher, and school ex-
pectations of behaviour)

• Ill health (including physical disabilities)
• Intellectual disabilities and learning disabilities
• Mismatches between a child’s approach to learning and the teaching style a child 

encounters
• Personal experiences such as the death of a grandparent, civil unrest, and poverty

Disparity between formal mathematics curriculum content and students’ informal 
mathematical knowledge may also impede mathematics learning in formal school-
ing contexts (Doig et al. 2003). For example, students’ informal mathematical 
knowledge is sometimes culturally specific, and may not be obvious to the teacher. 
Also, some students may not have the chance (or language) to demonstrate their in-
formal knowledge in the context of a formal mathematics program. Thus, a key role 
of the teacher of mathematics is creating a bridge for students as they negotiate the 
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transition from their home environment to the more formal world of the school and 
the learning of school mathematics. Creating this bridge is essential for the students 
with special rights to enhance the potential of a quality mathematics education.

Recognising Mathematical Potential

A key issue for the global community and for teachers of mathematics is to recog-
nise all students’ potential and ensure that all students access opportunities to 
achieve this potential. This concern is highlighted in the United Nations Convention 
on the Rights of Persons with Disabilities (United Nations 2006). We argue that it 
is important to include mathematical potential when considering students’ potential 
overall. For example, historically, students with Down syndrome and many other 
intellectual disabilities were expected to have little mathematics learning potential. 
This has been proven to be untrue. Indeed, Faragher et al. (2008) found that students 
with Down syndrome had significant mathematical knowledge, but noted that stan-
dard assessment procedures often failed to demonstrate this. This reported study 
used a task-based semi-structured assessment interview that was administered by a 
teacher experienced with both mathematics and students with Down syndrome, and 
the study’s results were successful in demonstrating that the students had significant 
mathematical knowledge. The real issue was having a suitable assessment instru-
ment and process for accessing their knowledge. Similarly, students who were blind 
or deaf were once thought to have little mathematics learning potential. The key to 
changing these beliefs has been, on one hand, individuals who have learnt math-
ematics successfully despite expectations to the contrary, and on the other hand, 
parents and teachers who believed that it was possible for students to learn, when 
provided with the appropriate opportunities.

There are many theories for explaining disability and how adherents of each the-
ory might view individuals and their participation in education (Evans 2008). Some 
illustrative examples follow. The first theory is the medical model of disability that 
dates back to the eighteenth century but is still prevalent today. This theory consid-
ers disabilities as medical conditions to be treated, often in medical institutions, and 
students with disabilities as invalids. The focus is on what a person cannot do and 
people with disabilities are expected to accept and adjust to their conditions, with 
doctors and other medical professionals responsible for determining how the indi-
vidual will live his or her life, rather than individuals with disabilities themselves 
(Evans 2008). Access to education is of little concern in this model. An alternate 
theory is the social construction model that is based on the idea that society creates 
disability by considering some forms of being and doing as normal and correct 
and others as dysfunctional and abnormal. In this model, the basis of disability 
is a biased and excluding environment rather than an impaired individual (Evans 
2008). Thus, in an education context, students with disabilities have access to edu-
cation, and it is the environment that needs to be changed rather than the individual. 
Proponents of this model work to ensure that school environments are barrier-free 
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and welcoming to all, and this perspective has led to the development of Universal 
Design principles (United Nations 2006), both in architecture and instruction (Ev-
ans 2008). The social justice theory takes both the individual and the environment 
into consideration. This model emphasises the role played by privilege and oppres-
sion in determining the experiences of individuals with disabilities, and aims to 
reinterpret normality so that physical, mental, and sensory differences are viewed 
as normal, and respect for the human dignity and self-authorship of all students is 
paramount (Evans 2008). Proponents of this model advocate for all students to have 
equal access to a quality education at their local school that is based on Universal 
Design principles, with all students being welcomed, and viewed as responsible for 
their own decisions, and worthy of respect and consideration.

It is the social justice theory for explaining disability that underpins the per-
spectives considered in this chapter, and that highlights the importance of access 
to quality mathematics programs and instruction for all. However, a significant 
issue in creating educational environments in which all students may thrive is that 
classroom teachers may require additional knowledge, skills, time, and resources 
to provide optimal opportunities for students with special rights to learn mathemat-
ics and reach their potential. This situation needs to be addressed, and research 
and development undertaken to provide guidance for teachers and the community 
about how to provide all students with access to quality mathematics programs and 
instruction.

 Quality Mathematics Education for Students with  
Special Rights

In many countries such as Australia, Brazil, Canada, Denmark, Japan, Singapore, 
and the United States, there are examples of school environments that focus on 
assisting students who have special rights in mathematics education. This section 
examines the role of assessment in guiding quality instruction and the features of 
programs that (1) give promising results and (2) develop and maintain students’ 
creativity and optimistic attitudes towards learning mathematics.

Assessment

Doig et al. (2003) argue that once students who underperform in mathematics are 
identified, there should be an intensive teaching phase during which interpretation 
and diagnoses are the basis for appropriate action, or else the identification is of 
little benefit (p. 15). In contrast, a study by Milton (2000) found that although most 
Australian schools assessed students’ mathematics knowledge, a survey of 377 
teachers in primary schools indicated that only 14% of them had programs to sup-
port students who were underperforming. The challenge remains for communities 
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and nations to respond by providing appropriate experiences and effective instruc-
tion to enhance the mathematics learning of all students.

An essential preliminary step to designing quality mathematics programs and 
instruction is the teacher knowing each student’s current knowledge and skills, as 
well as understanding the likely developmental trajectory of mathematics learning 
(Bobis and Gould 1999; Clarke et al. 2002; Cobb and McClain 1999). We argue that 
also important is the teacher knowing students’ current interests and motivations. In 
Australia, task-based one-on-one assessment interviews are widely used by class-
room teachers, with responses related to student mathematics growth points along 
learning trajectories (Clarke et al. 2002; Gervasoni 2004; Bobis et al. 2005), How-
ever, in order to effectively assess students, teachers may also need to know how 
to successfully motivate or communicate with each student, access and use tools to 
enhance communication, and understand diverse developmental trajectories. For 
example, an unexplored question until recently was whether students with Down 
syndrome have the same developmental pathway, but take longer, than most chil-
dren, or have a different learning trajectory (Faragher et al. 2008). To further inform 
teaching, there is an obvious need for further mathematics education research into 
the learning pathways of students with special rights.

Quality Instruction

It is possible to draw from previous studies the promising features of instruction that 
enable students with special rights to thrive mathematically. A common theme in 
the literature is the need for instruction and experiences to closely match students’ 
individual learning needs (Ginsburg 1997; Greaves 2000; Wright et al. 2000; Rivera 
1997) due to the great diversity of knowledge and backgrounds among and within 
student subgroups (Shonkoff and Phillips 2000). This highlights the importance of 
teachers having access to quality assessment instruments and procedures.

Carnine (1997) identified several components of effective instructional design 
for students with mathematics learning difficulties. These include accommodat-
ing differences in prior knowledge, providing scaffolded transition to independent 
learning, emphasising the ‘big’, or central mathematical ideas, and using an instruc-
tional design that emphasises retention of knowledge.

Another feature of effective instruction for students who do not thrive math-
ematically is providing rich, challenging programs that promote ‘hard thinking’ 
(Means et al. 1991; Resnick et al. 1991; Thornton et al. 1997; Wright et al. 2000). 
This strategy was one of four themes emerging from mathematics studies involving 
students with learning difficulties identified by Thornton et al. (1997) and relevant 
for planning effective high-quality mathematics instruction. Other themes were: (a) 
providing a broad and balanced mathematics curriculum; (b) accommodating the 
diverse ways in which students learn; and (c) encouraging students to discuss and 
justify their problem-solving strategies and solutions. These themes are echoed by 
others (Clarke 2001; Gervasoni 2004; Griffin and Case 1997; Madden et al. 1999; 
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Peterson et al. 1991; Resnick et al. 1991; Wright et al. 2000). In summarising re-
search in this area, Gervasoni (2004) found that the following instructional practices 
are important for enhancing mathematics learning for students who underperform 
in mathematics education:

• Targeting instruction within each student’s zone of proximal development based 
on current assessment of students’ mathematical understandings and the prob-
able course of the child’s learning. This assumes that the teacher has the adequate 
tools and skills to communicate with the student;

• Making adjustments to planned activities on the basis of student responses;
• Within the zone of proximal development and in an area with which the child 

is learning, presenting rich, challenging problems that promote ‘hard thinking’; 
providing hints to assist the problem solving process, ranging from general meta-
cognitive hints to those specific to the mathematical demands of the task; contin-
ually presenting problems to the student of a similar nature, providing as much 
help as necessary, until the student is able to solve the problems independently;

• Explicitly focusing on ‘big’, or central mathematical concepts;
• Encouraging students to discuss and justify their problem-solving strategies and 

solutions;
• Emphasising the retention of knowledge;
• Using peer-mediated instruction with teachers providing guidance, prompts and 

feedback;
• Encouraging parents to provide encouragement based on knowledge of students’ 

current progress.

Considering these approaches is important when providing quality mathematics 
programs for students with special rights. These approaches now form a framework 
for examining the effectiveness of the mathematics programs explored in this sec-
tion.

Communication Tools

Educational settings for children who are visually or hearing impaired vary around 
the world. In some countries, these children attend special schools (e.g., Slovakia; 
Kohanova 2008), and in others they attend local schools. Some countries have spe-
cialist services available in all schools to assist with access to quality programs, 
whilst in other countries only the classroom teacher is available to assist students to 
learn. In some countries (e.g., Slovakia), the only opportunity secondary students 
have for learning mathematics is in a local school with no access to specialist sup-
port. In such cases, most teachers learn to teach children by trial and error (Koha-
nova 2008).

Mathematics teaching and learning rely typically on visual and written images 
presented in textbooks, and on verbal explanations that usually include pointing and 
gesturing. Such visual cues are not available to students who are visually impaired. 
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Thus, these students lack access to these image/gesture-reliant explanations. An-
other issue relates to communication tools that enable students who are blind to re-
cord their thinking and problem-solving attempts. Whilst Braille and tactile pictures 
provide some access to mathematics, this becomes less successful as the complexity 
of mathematics topics and mathematics notation increases in both primary and sec-
ondary school. Further, classroom teachers do not generally understand Braille no-
tation or the principles of Universal Instructional Design. Moreover, many complex 
mathematical expressions and geometrical constructions are difficult to explain, 
review and modify orally, and are more easily expressed and modified in notated 
form. While students may be able to use keyboards and computer software to notate 
their work, this is usually restricted to a linear form, which is not typical of complex 
mathematics expressions.

There are a number of computer software programs that assist students who are 
visually impaired to notate expressions. Most of these are written in English, which 
highlights another access issue for non-English speakers, and the necessity of de-
veloping versions in different languages. For example, a Slovak language version 
of LAMBDA (Linear Access to Mathematics for Braille Device and Audio-synthe-
sis) has been developed and piloted (Kohanova 2008), but it is not yet established 
whether this will prove an effective tool for learning and teaching mathematics in 
schools and universities.

A key issue for students with special rights to mathematics education is that 
communication tools seem to focus on assisting students who are visually impaired 
to communicate in ways that others will understand, rather than focusing on the stu-
dents and the talents they bring to mathematics learning situations. Emphasis seems 
to be on expecting students to adapt to typical learning environments, rather than 
quality learning environments being created for students based on their strengths. 
We propose that the latter is a fruitful area for future research and development.

Building and Using Whole of Community Capacity

Designing quality mathematics programs and instruction for children with special 
rights is highly complex and benefits from a whole of community approach that 
enables teachers to draw upon a range of expertise. Dalvang (2008) reports that, in 
Norway, when difficulties in learning cannot be handled adequately by the school 
or the parents, then Norway has a support system for special needs education. This 
system legally enforces the special rights of students for mathematics education. 
By law, parents have the right to have a report of the situation for their child inves-
tigated through psychological and medical examination, and an educational plan 
developed.

When the results are available the school normally organises an interdisciplin-
ary meeting with the school psychologist, the special teacher, the school nurse, the 
class teacher, and parents. The student’s situation is presented and decisions are 
made for the future. The participants provide differing information and experiences, 
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which they share for the benefit of the student. However, Dalvang (2008) warns that 
these meetings sometimes focus on a student’s deficits, rather than building on their 
strengths and the resources all can bring to assist the student to learn. To overcome 
this tendency, Dalvang presents a promising model to provide structure for the con-
versation and planning of a high-quality program. This Compass Model (Dalvang 
2008) is presented in Fig. 22.1. Through moving the dial to different positions, with 
the student always in the centre, participants are able to use what they know about 
the child to guide the planning of quality instruction.

Overall, Dalvang concludes that the student’s resources and limitations, the sub-
ject matter (content) and the organisation of learning environments jointly play an 
important role in offering understanding of difficulties, and in formulating a pro-
gram of action. We believe that this is a promising approach for increasing access 
to high-quality mathematics education for students with special rights. However, 
many countries and regions are far from having the capacity to so implement this 
approach at present.

Fig. 22.1  Dalvang’s compass model
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This model may be used for designing programs for students with special rights, 
including both the first and the second group. The next two paragraphs focus on 
early in schooling programs that aim to support children with impairments to thrive 
mathematically and reduce the number of students overall who underperform in 
mathematics.

Early in Schooling Mathematics Success Programs in Australia

There are several Australian early in schooling programs designed to assist six-year-old 
children who are not thriving mathematically in the context of the regular classroom. 
Examples include Extending Mathematical Understanding (Gervasoni 2004) and 
Maths Recovery (Wright et al. 2000) both, of which, are aligned closely to the features 
of quality assessment and instruction outlined earlier. An illustrative example follows.

The Extending Mathematical Understanding (EMU) program (Gervasoni 2004) 
is an early in schooling approach to identifying and assisting students who it ap-
pears are not achieving their potential in learning mathematics. The program, suc-
cessful in increasing students’ mathematical knowledge and confidence, is imple-
mented by teachers who undertake a specialist teacher course designed to help them 
increase student access to quality instruction and curricula. The program comprises 
daily 30-minute sessions for up to 20 weeks, with specially trained teachers work-
ing with three students at a time. The program focuses on children in Grade 1 for 
early identification and intensive support aimed at accelerating mathematics learn-
ing (Gervasoni 2000), and on providing ongoing specialised assistance for under-
performing students in Grades 2–6. The EMU program is not remedial in nature, but 
is built upon constructivist learning principles with students engaged in experiences 
requiring ‘hard thinking’. The students are required to reflect upon their activity 
and articulate what they had learnt and how they had learnt. In addition, students 
complete home tasks that promote interaction with parents and caregivers.

The EMU Program focuses on whole number learning and provides varying 
learning experiences to those possible within the regular classroom setting. In par-
ticular, the specialist teachers are skilled in providing intensive instruction and feed-
back directed to the particular learning needs of each student. They are instructed 
to constantly focus children’s attention on key mathematical ideas, assist children 
to develop language that facilitates communication about mathematics, and provide 
manipulatives to support students’ mathematical thinking at critical moments in 
their learning. Overall, students develop the confidence and knowledge necessary to 
learn mathematics successfully in the regular classroom setting.

Early in Schooling Mathematics Success Programs in Denmark

Traditionally in Denmark, students who do not thrive in mathematics have not had 
access to early in schooling mathematics success programs. This changed in 2009 
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with the piloting of a small number of programs. One program is the Early Math-
ematics Frederiksberg Intervention for individual students in Grade 2 classes at the 
eight public primary/lower secondary schools at Frederiksberg. Frederiksberg is a 
municipality with 95,000 inhabitants on 8.7 km2 in the Copenhagen area. The in-
tervention approach aligns with other intervention programs that recommend early 
intervention in order to avoid negative self-concepts and attitudes to mathematics 
evolving (e.g., Gervasoni 2004; Wright et al. 2000; Dowker 2004). The curricu-
lum focuses on whole numbers and calculations, and on geometry and part–whole 
concepts. The students for the program are identified by their class teacher who 
observes indications that the students are not achieving their potential in learning 
mathematics, and are then further ‘diagnosed’ and instructed one by one by one of 
the special trained intervention teachers, who are instructed to adapt instruction to 
the individual student’s learning styles and specific motivation.

The intervention approach is based on a new construct proposed in order to 
stimulate reflection among Danish mathematics teachers, parents, and students. 
The construct is named ‘mathematics-holes’ because of association with a meta-
phor of mathematics as a landscape with mountains and valleys and of teaching 
as guiding students as they build experiences in the mathematics-landscape. When 
mathematics is seen as a landscape it means that whenever students stop learning 
and feel stuck it is as if they ‘fall into a hole’. There are several ways for a teacher 
to cope with a student’s ‘fall’. First, a teacher can invite the student to move to 
another type of landscape, maybe far away from the hole in which the student was 
stuck; this means that even when students fail to thrive in one area of mathematics 
there are still many other mathematics landscapes to experience and learn. Sec-
ond, teachers can help students ‘fill up’ the hole from beneath with mathematical 
building stones; or third, teachers can ‘lay out boards over the hole’ in order to let 
the student experience new and smart mathematical approaches (Lindenskov and 
Weng 2009). This is an optimistic way to approach programs for students with 
special rights.

 Equitable Access to Quality Curriculum

At the ICME 10 in Copenhagen in 2004, Discussion Group 3 explored two delicate 
questions: Mathematics for whom and why? and The balance ‘mathematics for all’ 
and ‘for high-level mathematics’? (Lindenskov and Villavicencio 2008). This inter-
national discussion provided an international perspective on the nature of quality 
mathematics curricula for students with special rights. There were many similarities 
in the hopes and aims for mathematical education put forward by more than 100 
participants. All agreed that everybody should receive mathematics education, and 
two arguments supported this view: (1) that learning mathematics develops neces-
sary and relevant thinking tools for work, everyday life, and citizenship; and (2) that 
engaging in mathematics provides possibilities for enjoyment, creativity, and for 
personal development. A commitment to equity requires that students with special 
rights have access to mathematics for both these purposes.
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The ICME 10 Discussion Group 3 concluded that a global and common em-
phasis should be put on three fundamental goals for mathematics instruction for all 
students:

1. Cultivating mathematical ability and curiosity of students, and not isolated skills 
and knowledge;

2. Providing students with experiences that put emphasis on mathematical prob-
lem solving and thinking abilities, meaning that reasoning and communication 
deserve priority status;

3. Providing students with experiences that give a broad perspective to the math-
ematics content structure and the relations among the various disciplines and 
core ideas, starting from a young age.

These intentionally broad and humanistic goals for mathematics education for all 
bring to the fore two fundamental problems. One is how to ensure mathematics for 
all? The other is how to interpret the goals on a local basis, taking into consideration 
the enormous diversity of communities and their resources across world? The dis-
cussion group placed emphasis on students with special needs, i.e. who are visually 
or intellectually impaired, as citizens who should be given much more attention by 
all of us (OECD 2004). This emphasis intensifies the question of the balance or di-
chotomy between ‘mathematics for all’ and ‘for high-level mathematics’. However, 
it is argued that while everybody needs mathematical literacy, ‘mathematics educa-
tion for all’ should and could ensure, at the same time, the development of capabili-
ties and high levels of performance for some learners by teaching with challeng-
ing situations accommodated to different students. This emphasises the importance 
of providing high-quality mathematics programs for students with special rights. 
The authors acknowledge that developing such opportunities puts heavy demands 
on teachers and governments, and raises a renewed global focus on the quality of 
teacher education.

Still the problem remains of how to locate the fundamental broad and humanistic 
goals (1–3) and quality instructional practices around the diversified world. One 
focus must be on all students achieving the mathematical literacy, as, for instance, 
described by OECD: ‘An individual’s capacity to identify and understand the role 
that mathematics plays in the world, to make well-founded mathematical judgments 
and to engage in mathematics, in ways that meet the needs of that individual’s cur-
rent and future life as a constructive, concerned and reflective citizen’ (http://www.
pisa.oecd.org/pisa/math.htm, July 2004).

Considering the world as a global village, where every system and every person 
depends more and more on other systems and persons, we agree that this OECD 
definition is valid for a world accelerating towards globalisation; and given that 
this global village would be unique in its diversity, the mathematical literacy must 
be the same for all. One argument for this is found in Durgunoglu and Öney (2000) 
who described the experience of women participating in adult education in Istanbul, 
Turkey. They noted that these women, like millions of adult literacy program par-
ticipants all over the world need basic mathematics skills to participate effectively 
in society.
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In actual fact, globally we are very far from this view of mathematics literacy as 
something that is the same for all. As a first step it might be appropriate for mem-
bers of the mathematics education community to refer to a more local mathematics 
literacy that can be national or regional, according to the environment for which a 
person’s mathematics capabilities permit him/her to respond to the needs of his/
her current and future life as a constructive, responsible, and reflective citizen in 
his/her country or region. Evidently, such necessities vary from one community to 
another, and from one epoch to another, because, for example, the social-economic 
and cultural reality of a European city requires quite different mathematical literacy 
to those who inhabit the Peruvian mountains; and the requirements of today’s cor-
responding populations are very different to those of fifty years ago and, indeed, 
in fifty years hence. From this point of view, mathematics literacy is relative; it 
depends on the demands of the persons’ social, economic, and cultural reality in a 
given environment and time, with an eye to the future. From a viewpoint of seeing 
mathematics education as a means to enhance intercultural understanding (Linden-
skov 2003), however, mathematical literacy in a broader sense could be realised by 
providing students from, say, European cities with knowledge of the mathematics 
culture of, say, Peruvian peers living in rural areas and vice versa.

 Advocating for Research and Development for Students 
with Special Rights

Although there is much willingness across the world for students with special rights 
to have equitable access to quality mathematics education, there is also an urgent 
need to provide guidance as to how this might occur. Further, providing the resources  
for access to quality education for all is an economic challenge for many nations.

Overall, we recommend that the international mathematics education community 
continue to advocate for all students to have equitable access to quality mathematics 
education, and for the community to have high though realistic expectations of all 
students’ potential to learn mathematics, given access to high-quality mathemat-
ics education. We also entreat mathematics educators to undertake a program of 
research and development focussed on providing equitable access to quality math-
ematics education for students with special rights. This includes the development 
of advice concerning:

• Whole community approaches that build capacity for providing access and qual-
ity, so that all work together for the benefit of students;

• High-quality teacher education that includes a focus on teaching students with 
special rights;

• Assessment instruments and approaches that enable teachers to identify students’ 
current mathematical knowledge in relation to learning trajectories, and custom-
ise instruction accordingly;
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• Quality curricula that include a focus on both mathematics literacy and opportu-
nities for high-level mathematics;

• Quality intervention programs that build confidence and knowledge;
• Quality instructional practices and learning materials;
• Communication tools and approaches that enable students to fully access qual-

ity mathematics education. These tools at best will honour and build upon stu-
dents’ communication abilities and strengths, as opposed to compensating for 
perceived communication deficits.

In summary, there is a great need for further research about what constitutes quality 
mathematics education for students with special rights. This can be achieved.

 Conclusion

This chapter proposed that some students have special rights to mathematics educa-
tion due to the fact that they have been excluded from accessing quality mathemat-
ics programs and learning environments. Whilst acknowledging that some nations 
struggle to achieve universal primary education for all, let alone universal access 
to quality mathematics education, we argue that a commitment to equitable access 
to quality mathematics education for all is an important goal and a special right 
for those who have been excluded. We therefore entreat the international math-
ematics community to advocate on behalf of students with special rights to ensure 
that all have access to quality mathematics education, and to undertake necessary 
research and development programs to enable the community to better understand 
the learning potential of students with special rights, and to better understand what 
constitutes quality mathematics education and how this may be accessed by all. For 
many reasons, some students ‘fail to thrive’ when learning school mathematics. The 
onus is on us all to respond by providing students with special rights with the type 
of mathematical opportunities they need to learn confidently and successfully…to 
thrive.
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 Females have gained ground in mathematics in some countries in recent years. 
In the United States, for example, high school females compare favorably with 
males in course grades and amount of mathematics coursework completed (Na-
tional Center for Education Statistics 2007). However, nonspecific rallying cries 
of the popular press—and, at times, the mathematics education community—that 
females are now on par with males in mathematics are troublesome in that they 
threaten continued, needed support for females in mathematics. Many scholars 
have found initial or widening gender differences in achievement and, especially, 
less favorable dispositions in females appearing by at least the middle grades 
(Andreescu et al. 2008; Blue and Gann 2008; Ginsburg et al. 2005; Halpern et al. 
2007a; Lawhead et al. 2005; Ma and Cartwright 2003; Penner and Paret 2008; 
Stevens et al. 2007). Andreescu et al. (2008) state, “It is during the middle school 
years, an age when children begin to feel pressure to conform to peer and societal 
expectations, that they start to lose interest and fall behind in most, but not all 
countries” (p. 1257).

In this chapter, I provide evidence that many areas of concern and inequity 
remain for females in mathematics, warranting continued and concerted support 
from the field of education. Although most data are drawn from U.S. sources, re-
search from a variety of other countries is included to help illuminate this world-
wide issue. After sharing brief background information about the current (mis)
perceptions of gender equality in mathematics, I compare male and female math-
ematics achievement, course completion, career paths, and mathematics-related 
dispositions, discuss the role teachers, parents, and society play in relation to 
females in mathematics, and suggest strategies for a quality mathematics educa-
tion for females.
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 Perceptions of Gender Equality in Mathematics

Recent research findings in the United States indicating that girls now perform 
as well as boys on standardized tests in mathematics have garnered much atten-
tion. Based on their analysis of state achievement data from ten states, Hyde et al. 
(2008) conclude: “The general population no longer shows a gender difference in 
math skills” (p. 495). The study spawned popular press articles that announced such 
headlines as “In Math, Girls and Boys Are Equal” (Seattle Times News Services 
2008). These claims have generated much talk of gender equality in mathematics 
and even female advantage. In her equity address at the 2008 National Council 
of Teachers of Mathematics (NCTM) annual meeting, Carol Malloy commented: 
“Our girls are now doing as well, if not better, than boys in our schools [in math-
ematics]” (Malloy 2008). In a recent newsletter piece, several members of the U.S. 
organization Women and Mathematics Education expressed a similar sentiment, 
one claiming that girls now “do as well or better than boys in middle school math” 
(Carr 2007, p. 5). Las Vegas CityLife reporter Jason Whited said he had “talked to 
some researchers who say that parity between girls and boys almost exists in math, 
so it’s time to focus on boys[’] deficiencies [presumably in reading and writing]” 
(March 3, 2008 email). Likewise, reporter Troy Reinhardt of the Northern Nevada 
magazine Family Pulse, emailed me (March 21, 2008) that one academic informant 
had told him: “Data prove girls are ahead of boys in almost every department and 
indicator.” These examples demonstrate perspectives I have experienced in increas-
ing number from individuals both within and outside of the mathematics education 
community at local through national levels.

It is encouraging that females have made some important strides in mathematics 
in relation to males in such areas as high school mathematics grades and course-
work. Nevertheless, the mantra of “sameness” that has stemmed from these gains 
poses potential harm to females’ continued progress in mathematics by threatening 
policy, research, and education efforts to support girls’ continued needs. Concerns 
persist for females in relation to mathematics performance (e.g., standardized test 
scores), participation (e.g., career choices), and dispositions (e.g., attitudes and be-
liefs). A more comprehensive and refined picture is in order to examine group ten-
dencies related to females in mathematics.

 Mathematics Achievement

Despite Hyde et al.’s (2008) conclusion of gender equality in standardized test data, 
females consistently score below males on the mathematics-based sections of impor-
tant standardized national and international tests, namely, the ACT, SAT (SAT Rea-
soning Test), GRE (Graduate Record Exam), NAEP (National Assessment of Educa-
tional Progress), TIMSS (Trends in International Mathematics and Science Study), 
and PISA (Programme for International Student Assessment) (Educational Testing 
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Service 2007; Institute of Education Sciences 2004, 2009; Liu et al. 2008; McGraw 
et al. 2006; National Center for Education Statistics 2009; Organisation for Economic 
Co-operation and Development 2007). For example, boys attained 33 points higher 
than girls on the mathematics portion of the SAT (533 versus 500 of 800 possible 
points), a gap that has remained fairly stable for some time (Institute of Education 
Sciences 2009), and they significantly outperformed girls in 35 of 57 countries on the 
PISA (Organisation for Economic Co-operation and Development 2007). Some of 
these tests (specifically, the ACT, SAT, and GRE) are considered high-stakes assess-
ments because they can affect decisions about college admissions, including entrance 
into top-tier universities, as well as scholarships or other awards (Dwyer 2007; Liu 
et al. 2008; Schmidt 2008). According to Liu et al. (2008), even small differences 
can have large practical effects, for example, on girls’ dispositions (discussed later).

In terms of specific mathematics topics, one prominent achievement area where 
males outperform females is geometry and visuospatial skills (Halpern et al. 2007a; 
Liu et al. 2008; McGraw et al. 2006; Newcombe 2007). Halpern et al. (2007a) state:

Linkage of mathematical and visuospatial skill has important consequences, because high 
levels of both of these skills are required for careers in fields, such as physics and engineer-
ing, in which women are typically underrepresented…. These two variables appear to be 
more strongly linked in females than males, suggesting that females may be particularly 
hampered in mathematical domains if they have reduced visuospatial skill. (p. 9)

Thus, individual mathematics topics must be considered in addition to global 
achievement levels in examining gender differences in mathematics performance.

Gender gaps favoring males are particularly pronounced at the highest achieve-
ment levels, including not only standardized test scores but also participation and 
performance in national/international mathematics competitions and identification 
among the profoundly mathematically gifted (Andreescu et al. 2008; Halpern et al. 
2007b; McGraw et al. 2006; Preckel et al. 2008). For example, only 123 of 1782 
participants (6.9%) in 27 top-ranked countries who participated in the precollegiate 
International Mathematical Olympiad from 1998 to 2008 were female (Andreescu 
et al. 2008). Figures range from 0% female in Iran, Japan, and Poland to 24% in 
Serbia/Montenegro, the next highest percent being 15% in Slovakia. Females reach 
double-digit percents in only 7 of the 27 countries. Andreescu et al. (2008) conclude 
that there is an “extreme scarcity of females who excel at the highest level in math-
ematics” (p. 1256). Although not all score differences are statistically significant, 
they predominantly favor males. Moreover, in some cases this “excellence gap” is 
growing. The proportion of males who scored at the advanced level of NAEP in 
both grades 4 and 8, for instance, increased more than that of females from 1996 to 
2007, widening the existing gender gap (Plucker et al. 2010).

U.S. females perform well in high school mathematics coursework (Na-
tional Center for Education Statistics 2007). Both male and female students had 
higher combined mathematics and science grade point averages (GPAs) in 2005 
than in 1990, but the gap that consistently favored females increased from 0.12 to 
0.20 points during that time period. (Females’ GPAs increased from 2.42 to 2.76 
and males’ GPAs from 2.30 to 2.56 on a scale of 4.0.) However, an important  
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consideration is the contention that grades can mask true achievement, given that 
grades may be inflated or diminished by credit given for effort (e.g., homework com-
pletion, class attendance) and good behavior. Indeed, research shows a strong positive 
correlation between effortful/dutiful behavior, such as class attendance, amount of 
study time, and homework completion, and course grades (e.g., Broucek and Bass 
2008; Sarawit 2005). Although these behaviors may yield increased learning, class 
attendance in and of itself sometimes earns credit that is figured into course grades. 
Girls have been shown to be more self-disciplined and more motivated to succeed; 
they thus exert greater and qualitatively different effort by attending class, paying 
attention, studying, and completing homework more frequently than boys (e.g.,  
Duckworth and Seligman 2006; Institute of Education Sciences 2007; Kenney-
Benson et al. 2006; Siebert et al. 2006). Girls’ higher grades, then, may to some degree 
reflect appropriate student behavior rather than pure mathematics achievement.

 Course Completion and Career Paths

High school coursework completed appears to associate with future career paths 
(Ayalon 2003; Ma and Johnson 2008). Overall, U.S. females do well in this arena. 
In 2005 they earned 0.2 more mathematics and science credits (24 hours of class-
room instruction) than males compared with 0.1 fewer credits in 1990, despite the 
fact that this figure has risen steadily for both sexes (National Center for Education 
Statistics 2007). Girls and boys take similar course sequences through precalculus 
(e.g., Bozick and Ingels 2008). However, boys take more calculus, AP (advanced 
placement) calculus, and computer science coursework and more AP calculus and 
computer science exams than females (College Board 2008; Halpern et al. 2007a; 
Institute of Education Sciences 2009). This is a crucial distinction. Ma and Johnson 
(2008) point out that grade 12 girls who complete high school calculus are 3.16 
times more likely to major in science as girls who do not. (There is no comparable 
effect for boys.) They explain: “Apparently, completing the most difficult, most 
advanced, and most rigorous course in school mathematics can promote females 
to think boldly about prestigious careers…. Calculus is a powerful career filter that 
critically screens females for prestigious occupations” (p. 75).

Even where mathematics achievement compares favorably by gender, such as 
high school grades attained and amount of coursework completed, as noted earlier, 
females’ participation in many areas of mathematics, such as mathematics clubs/
contests, college majors, and careers, remains low in relation to males (Boaler and 
Sengupta-Irving 2006; Grevholm 2007; Mendick 2006). Mendick (2006) notes: “In 
stark contrast to these shifting patterns of results [narrowing gender gaps in math-
ematics exam scores and grades in England], the choice to study maths once it 
becomes optional remains highly gendered” (p. 7). Grevholm (2007) describes the 
situation in Sweden similarly. Likewise, Boaler and Sengupta-Irving (2006) express 
concern about the lack of continuity between girls’ earlier mathematics performance 
and their later mathematics-oriented choices:
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Girls are opting out of mathematics despite their advanced performance in secondary 
school. The low participation of girls and women at high levels of mathematics and related 
fields is an important issue, and one that probably begins in school…and becomes more 
accentuated as levels increase. (p. 210)

Hyde et al.’s (2008) report of gender equality in mathematics stated that 48% of fe-
males earn bachelor’s degrees in mathematics. This figure, which was several years 
old at the time of publication, has since declined (see below). Moreover, the authors 
failed to compare that percent to the proportion of females who earn bachelor’s de-
grees across all majors. They also neglected to discuss trends across advancing de-
grees. Table 23.1 shows degrees earned by females in the United States in 2006–07. 
The proportions of women who earned mathematics and statistics degrees fall well 
below that of females earning those same degrees across all majors. A chi-square 
test shows that bachelor’s degrees earned in mathematics and statistics by gender, 
for example, differ significantly from expected outcomes based on overall degree 
figures for all majors, 2(1, N = 14,954) = 1079.17, p < 001. (No other analyses were 
performed.) The data also tend to reflect even lower proportions of females at high-
er degree levels for mathematics and statistics.

In 2008, Computer and Mathematical Science occupations ranked third in mean 
annual wages ($74,500) out of the U.S. Bureau of Labor Statistics’ (2009a) 22 ma-
jor occupational groups. Women comprise only 25% of these workers (U.S. Bureau 
of Labor Statistics 2009b), indicating that even women who do get mathematics 
and computer science degrees are translating this preparation into directly related 
careers in much lower proportions than males. In terms of higher education posi-
tions, just 23% of U.S. mathematical scientists with doctorates who are employed in 
universities and four-year colleges are women, and only 36% of these are tenured, 
compared with a 62% tenure rate for their male peers (National Science Foundation 
2009). Moreover, men outnumber women as both students and faculty at the most 
competitive, prestigious institutions (Dwyer 2007).

 Mathematics-Related Dispositions

A vitally important area to consider for understanding the status of females in math-
ematics as a foundation for providing them with a quality mathematics education 
is that of dispositions. Females display more negative affect toward mathematics 

Table 23.1  Percent of degrees conferred to females in the United States, 2006–2007. (Source: 
Institute of Education Sciences (2009))

Associate’s 
degree (%)

Bachelor’s 
degree (%)

Master’s degree 
(%)

Doctor’s degree 
(%)

Major
All majors 62.2 57.4 60.6 50.1
Mathematics and 

statistics
33.7 44.1 41.5 29.8
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than males, including poor attitudes in general, anxiety, weak self-concept and self-
confidence, lower interest and motivation, less enjoyment and pride, and greater 
hopelessness and shame (Frenzel et al. 2007; Ginsburg et al. 2005; Halpern et al. 
2007a; Ma and Cartwright 2003; McGraw et al. 2006; Preckel et al. 2008). They 
judge their competence and performance more harshly than males (Chatard et al. 
2007; Frenzel et al. 2007; Halpern et al. 2007a; Lloyd et al. 2005), are less likely to 
attribute high achievement to ability (Dickhäuser and Meyer 2006; Georgiou et al. 
2007), and see less value in mathematics (Frenzel et al. 2007). Females tend to 
perceive mathematics ability as natural rather than developed, a potentially harmful 
belief (Dweck 2007) that needs to be countered by teaching girls that mathematics 
ability can be improved (Halpern et al. 2007a).

Dispositions have been found to associate with mathematics performance and 
participation (Antunes and Fontaine 2007; Crombie et al. 2005; Meelissen and Luy-
ten 2008; Watt et al. 2006). Therefore, some researchers contend that improving 
girls’ attitudes and beliefs will improve their performance and participation in math-
ematics (Halpern et al. 2007a; Ma and Johnson 2008). Ma and Johnson (2008) say: 
“Fostering a positive attitude toward mathematics could hold the key to retaining 
both females and males in advanced mathematics coursework and eventually at-
tract them to the STEM [science, technology, engineering, and mathematics] fields” 
(p. 77). However, even if girls feel efficacious toward mathematics, they need to 
believe that mathematics-related careers are both appropriate for and available to 
them; this and their interest level are important factors in decisions to pursue such 
occupations (Stevens et al. 2007).

Achievement may in turn influence mathematics dispositions, resulting in a bi-
directional relationship (Georgiou et al. 2007; Ma and Johnson 2008). For example, 
boys’ higher mathematics scores may negatively influence girls’ dispositions, mak-
ing girls less likely to enter mathematics careers, whereas greater success might 
cause girls to engage in mathematics to a greater degree (Liu et al. 2008). However, 
high test scores and grades are not in themselves enough to benefit women (Antunes 
and Fontaine 2007; Stromquist 2007). Antunes and Fontaine (2007) explain:

Good marks [grades] are not enough to sustain girls’ maths self concept at the same level as 
that of boys. Girls have to deal with less favourable stereotypes than boys and need to deal 
with teachers’ practices, which do not support their self-concept. (p. 86)

Thus, relationships among gender, dispositions, and mathematics are important and 
complex.

 Role of Teachers, Parents, and Society

Evidence suggests that females receive less STEM support from salient individuals 
both in and out of school. In school, both teachers and peers have a strong impact 
on girls’ experiences in the mathematics classroom. Teachers have a heavy respon-
sibility for the way teaching and learning experiences play out. Fredua-Kwarteng 
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(2005) asserts: “Mathematics teachers are the primary architects of the culture in 
mathematics classrooms” (p. 8) and thus, teacher leadership is required “to address 
gender disparity in mathematics learning outcomes” (p. 15). Unfortunately, teach-
ers’ attitudes are one area of concern. In general, teachers hold lower expectations 
for girls’ performance, give girls less encouragement and sometimes even discour-
age them, interact more with boys, and ask boys higher-level questions (Asimeng-
Boahene 2006; Fredua-Kwarteng 2005; Jones and Dindia 2004). They tend not 
to accept different ways of learning, which is detrimental to females (Lim 2004). 
As early as the first and second grades, female teachers’ own mathematics anxiety 
negatively influences female students’ attitudes and achievement, a serious concern 
given that most elementary teachers in the United States are female (Beilock et al. 
2010). At the doctoral level, women in mathematics have described limited or nega-
tive relationships with the predominantly male faculty, feelings of invisibility, a 
lack of mentoring, advising, and other guidance, feelings of awkwardness and not 
fitting into this male-dominated field, and a general lack of moral support and en-
couragement (Herzig 2004). Young adolescent girls, too, have portrayed themselves 
as invisible or side characters in male-centered classrooms, and they experience 
harassment from male peers, more passive roles in small-group activities, and use 
of gender-biased instructional materials (Asimeng-Boahene 2006; Lim 2004).

Parents are significantly less likely to give activity-related STEM materials to 
daughters and to encourage daughters to participate in out-of-school STEM activi-
ties compared with sons (Jacobs and Bleeker 2004; Simpkins et al. 2005). This is 
important because STEM-related parent expectations, behaviors, and involvement 
have been shown to influence student performance, participation, and attitudes (Ja-
cobs and Bleeker 2004; Simpkins et al. 2005; Yan and Lin 2005). Mentoring is 
another prominent area for females in the academic arena. A MentorNet (2008) 
study of 2,500 higher education STEM students showed that although females are 
significantly more likely than males to report the importance of mentoring for suc-
cessful degree completion, they are more likely than males to indicate lack of sup-
port in all three factor categories: role modeling, academic/career, and, especially, 
psychosocial.

Society in general continues to fuel mathematics distaste irrespective of gender, 
but it targets females more than males. Female-unfriendly STEM messages abound 
through oral tradition and media transmission and seem to go unnoticed or at least 
unchallenged by many laypersons and professionals. A quick Web search for the 
unthinkable message “I’m too pretty to do math” finds many vendors marketing 
the logo to females on commercial merchandise, such as t-shirts and magnets. In 
the popular American film Mean Girls (Messick et al. 2004), actor Lindsay Lohan’s 
character is told more than once that it would be “social suicide” for her to join 
Mathletes, a mathematics competition team. In class, she pretends not to understand 
mathematics in order to impress a particular boy. (The later undercurrent that this 
is inappropriate is overshadowed by the fact that this “normal” social scene reflects 
dominant youth culture.) Steinke’s (2005) research findings on film portrayal of 
women in science-oriented careers indicate some improvement over past images 
but that harmful stereotypes persist. Morge’s (2008) recent research showed that 
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college students considered the popular media to influence their beliefs about math-
ematics and that the media presented successful males more often than females. 
Thus, female-unfavorable societal images in mathematics-oriented disciplines con-
tinue to pervade U.S. culture.

Most experts argue convincingly that gender differences in mathematics are 
predominantly, if not wholly, culturally driven (e.g., Boaler and Sengupta-Irving 
2006). The fact that females show different achievement, as well as course and 
career choices, within and across cultures and even across community types sup-
ports this contention (cf. Andreescu et al. 2008; Guiso et al. 2008; Halpern et al. 
2007a; Li 2007; Marks 2008). Based on their study of gender differences in PISA 
test performance across countries, Guiso et al. (2008) conclude: “Girls’ underper-
formance in math relative to boys is eliminated in more gender-equal cultures” 
(p. 1165). Another fact supporting culturally driven difference is females’ ability to 
respond favorably to intervention measures rather than being “biologically captive” 
to perform at a predetermined level (e.g., Wiest 2010). Similarly, Stromquist (2007) 
points out: “The fact that girls’ progress in mathematics has been improving over 
time…suggests that math ability is not innate but susceptible to social influences 
and instruction” (p. 37). Further, differences do not appear to exist from birth but 
rather to manifest themselves at a pivotal time in social development, again support-
ing sociocultural rather than biological influences. A great deal of recent research 
also emphasizes gender stereotypes (e.g., “stereotype threat”) as another key det-
rimental social factor working against females in mathematics (e.g., Chatard et al. 
2007; Steele et al. 2007). Thus, many contextual factors, including families, peers, 
cultural norms, teaching environments, and educational policy, craft a culture that 
provides a different experience for males and females in mathematics, one that has 
more negative consequences for females (e.g., Boaler and Sengupta-Irving 2006; 
Geist and King 2008; Halpern et al. 2007b; Marks 2008).

 Quality Mathematics Education for Females

Understanding the current status of females in mathematics and related influ-
ential factors, as presented in this chapter, is an important backdrop to seeking 
quality and equity in mathematics education for girls and women. As noted ear-
lier, evidence points to the middle grades as an important crossroad not only for 
developing appropriate knowledge, skills, and dispositions, but also for consid-
ering future course and career paths. It seems reasonable to argue that the seeds 
of gender differences in mathematics are sown earlier than when they first ap-
pear, making the precursor period an important intervention zone. Thus, efforts 
at supporting and encouraging girls in mathematics would be worthwhile in the 
elementary grades.

Data provided in this chapter point to a number of recommendations for improv-
ing mathematics education for females. I offer the following suggestions as select-
ed strategies for elevating the status of females in mathematics. These approaches 
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apply variably to school personnel (e.g., educators, counselors, and administrators), 
policy and test makers, parents, researchers, and other education stakeholders.

• Provide, encourage, and support rigorous, high-quality curricular and supple-
mentary experiences. In particular, foster girls’ geometry and visuospatial skills 
and encourage girls to take calculus. Develop or suggest additional experienc-
es with clubs, contests, and out-of-school-time programs (e.g., summer, after-
school, weekend, online). Provide and encourage use of mathematics-oriented 
materials and activities and model their use.

• Hold high expectations for all students’ performance, participation, and disposi-
tions. Structure equitable learning that requires comparable school experiences 
and classroom participation for all students.

• Foster positive dispositions toward mathematics (through discussion, modeling, 
etc.). This includes such areas as interest in the subject matter, awareness of the 
utilitarian value of mathematics in occupational and everyday life, and the pro-
ductive role of effort with confidence in personal abilities to improve mathemat-
ics knowledge and skills.

• Improve testing and use of test scores. Develop quality assessments that em-
phasize important mathematics knowledge, skills, and reasoning. Teach students 
test-taking skills, and use tests as only one of varied measures for describing and 
making decisions about student performance. Consider factoring dutiful/effort-
ful behavior modestly, if at all, into performance measures.

• Provide networking and mentoring opportunities involving female peers and 
adult role models. Posters, online environments, guest speakers, peer tutors, and 
other such mechanisms can provide positive modeling and support for females 
in mathematics.

• Provide information on mathematics-oriented careers and preparation for those 
careers, as well as encouragement to consider these career options. Further, 
promote gender equity in mathematics-related occupations, such as hiring, pro-
motion, and retention practices that are favorable to both sexes.

• Promote societal change that results in more positive portrayals of mathematics 
and females in mathematics. This includes providing feedback to media sources 
and critically analyzing the media with young people.

• Use a nuanced approach to researching and analyzing gender differences in 
mathematics. Consider, for example, various types of performance, participa-
tion, and dispositions, as well as girls’ potentially different experiences based on 
race/ethnicity, social class, and other identities.

 Closing Comments

The need for sustaining focused attention to females in mathematics is evident. 
Policymakers, researchers, educators, parents, and others must continue to address 
this need. Although some studies indicate no gender differences in mathematics 
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(e.g., Georgiou et al. 2007; Hyde et al. 2008), substantial data reveal disconcerting 
conditions for females in relation to males in most countries of the world. Even 
when small, these differences typically favor males, and the cumulative effect of 
the concerns detailed in this chapter, left unchecked, is potentially disastrous for 
women’s personal lives and society at large. The U.S. House of Representatives 
formalized this national concern in June 2008 by passing a resolution that calls for 
recognizing, supporting, and increasing the number of women in the STEM fields 
(GovTrack.us 2008). At the personal level, mathematics preparation and participa-
tion can relate to life quality, including financial security. Factors involved in this 
relationship are women’s low participation in the higher-paying positions afforded 
by mathematics-related careers and the fact that U.S. women earn 80% of the me-
dian weekly earnings of males for full-time work in general (U.S. Bureau of Labor 
Statistics 2009b), have a 5.2-year greater life expectancy than males (National Cen-
ter for Health Statistics 2009), and are disproportionately represented among the 
impoverished (U.S. Department of Health and Human Services 2008).

The conversation about females in mathematics must extend beyond global 
achievement levels. It must encompass other and subtler areas of performance (e.g., 
specific mathematics topics), as well as participation (e.g., mathematics courses, 
degrees, and careers), dispositions, and quality of experience. For example, females 
who attain mathematics outcomes similar to males but suffer detrimental effects to 
their dispositions should remain on the radar screen for concerned researchers and 
educators. Semantic distinctions are important in claims that females “do as well” 
as males in mathematics. This language must be clarified as to whether it refers to 
test scores, school grades, dispositions, quality of experience, career choices, or 
other important indicators of the female condition in mathematics.

This call for continued attention to gender differences is not a look at difference 
for its own sake or an implication that females have an intellectual shortcoming 
in mathematics. Rather, it is to encourage a realistic stance that acknowledges the 
differences described in this chapter and that girls can succeed in mathematics on 
their own merit; however, social and cultural factors mediate females’ performance, 
participation, and dispositions. Females require continued encouragement and sup-
port from professionals and the community at large in the area of mathematics. This 
support includes the types of suggestions made above for providing females with a 
quality mathematics education. It might also include educating females themselves 
about gender stereotyping in relation to mathematics (Steele et al. 2007). In addition 
to finding ways to support females within the existing climate, environmental fac-
tors that work against females’ mathematics success should come under continual 
scrutiny—and pressure, where warranted—to function in more positive and produc-
tive ways.

To improve the status of females in mathematics, educators, parents, and oth-
ers should employ the types of strategies suggested in this chapter. Gender issues 
in mathematics should be actively addressed in pre-service and in-service teacher 
education, and they must remain on the mathematics education research agenda. 
Boaler and Sengupta-Irving (2006) note: “It is curious and troubling to note that 
few researchers study or consider gender and mathematics as an academic field 
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in the twenty-first century” (p. 207). They call for continued research to address 
lingering inequities. They suggest a focus on contextual factors while acknowl-
edging girls’ strengths and cognitive preferences. Attention to affect (e.g., attitudes 
and beliefs) should also be of concern to researchers and practitioners in efforts to 
make progress in the area of females and mathematics (cf. Frenzel et al. 2007). Liu 
et al. (2008) contend: “Gender gaps need to be studied before they can be closed. 
Especially, so far as there is no solid evidence that gender differences have been 
eliminated, nor can we justify that the existing difference [in mathematics] is indeed 
negligible” (p. 20). (See also Lubienski 2008.) Future research should focus on 
environmental influences (e.g., social, cultural, scholastic) without implication that 
differences relate to actual gender differences in mathematics ability (e.g., Boaler 
2007). Such studies will require sophisticated analyses to “do justice” to examining 
the complex phenomena involved in gender issues in mathematics (Boaler and Sen-
gupta-Irving 2006; Lubienski 2008), such as examining how other social identities 
(e.g., race/ethnicity and social class) intersect with gender. One research area made 
evident by the data presented in this chapter is that of investigating why girls’ gains 
in performance, coursework taken, and early career intentions have not translated 
into a higher proportion of women in STEM fields. Clearly, the attrition rate needs 
nuanced explanation. High-quality research is vitally important to provide aware-
ness and information that can help policymakers, education personnel, families, and 
society at large support girls on a positive trajectory in mathematics that can one 
day lead to gender parity.
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 Introduction

Discussions about quality and equity in schools often focus on the disadvantaged. 
This focus is understandable, given the depths of inequities in schools in many 
countries and the tangible price students have to pay if they do not get an adequate 
education. The case of Sweden offers a somewhat unusual twist on the debate about 
quality and equity, given that the social welfare system has created a fairly even 
economic playing field. In a society that prides itself on a certain brand of egali-
tarianism, the quality and equity question is focused less on whether children are 
being left behind and more on whether all children are given opportunities to meet 
their potential.

Note that the teaching of mathematics in Sweden is not completely equitable and 
unproblematic. There are large refugee and immigrant populations, which raise ques-
tions about second-language instruction, and introduce a variety of social and cultural 
factors that influence how mathematics is taught and learned. In addition, Swedish 
students, like students everywhere, differ in their abilities and capacities, their inter-
ests, and predispositions. Some suffer from learning difficulties, such as dyscalculia, 
and some will go on to do serious research in mathematics and science-related fields 
(Blomhøj and Valero 2006; Engström 1999; Magne 2001, 2006; Sjöberg 2006).

There is not a lack of diversity in Sweden, but there are difficulties in giving all 
students a quality education. The problem, we argue here, lies more with the dif-
ficulty of providing quality education than providing some education for all. The 
state of mathematics teaching in this country reflects a history in which the forces 
of democracy and egalitarianism have come to be interpreted as a certain kind of 
leveling rather than a nurturing of individual talents. In this chapter, we trace the 
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evolution of this view through the history of Swedish education from the mid-1700s 
to today, seeing how the tension between providing education for all and develop-
ing talents of some create what we see as a sort of false dilemma that, in the case of 
Sweden, has largely hampered real educational reform.

 The Swedish Situation Today

We begin with the present. What does a typical Swedish mathematics classroom 
look like, and what are the barriers towards a more equitable and quality education 
for all students?

Mathematics is a compulsory subject in both primary and secondary Swedish 
schools. Teaching is framed both by school law and by a national curriculum and 
subject syllabus describing the educational goals. These goals are twofold: to pre-
pare the students for their roles as citizens and to qualify students for further studies. 
Below we discuss how these goals frame and influence the teaching practice and, 
hence, the students’ learning opportunities.

Whole-Class Instruction and Independent Studies

In many classrooms around the world, a mathematics lesson typically starts with the 
teacher instructing the class for a shorter or longer period of time followed by indi-
vidual work (Skolverket 2003, 2008, p. 65). This teaching practice is still common 
in Sweden (Bentley 2003, p. 10–11). However, in later decades there has been an 
increasing emphasis on teaching approaches aimed at encouraging the students to 
take responsibility for their own learning (Bergqvist and Säljö 2008) and today one 
model of teaching dominates the mathematics classroom in our country:

The model is characterized by whole-class instruction which sometimes but not always 
occurs, by independent work in textbooks followed by diagnoses or tests. The teacher walks 
about in the classroom helping students individually. Planned cooperation among students 
is relatively rare, collective discussions between teacher and students on mathematics prob-
lems and possible solutions to them or laboratory work on mathematics also occur rarely. 
This is a teaching practice which includes few opportunities for variation in content as well 
as in ways of learning. (Skolverket 2003, our translation)

According to the TIMSS (Trends in International Mathematics and Science Stud-
ies) studies in 2003 and 2007, this model is more dominant in Sweden than in other 
comparable countries (Skolverket 2003, p. 71; 2005, p. 15; 2008, p. 65). Thus, it 
is more common than not for Swedish students to work mostly on their own and at 
their own pace. This means that the students’ learning opportunities are restricted to 
the tasks given in the textbook, which are fairly limited in scope.

Since the model also tends to give the teacher limited time to guide and aid each 
of the approximately 30 students in the classroom, all textbooks have a “facit,” or 
answer guide for every task in the back of the book. Students often sit and work 
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with one hand in the “facit,” checking often to see if they are on the right track. 
You would rarely see what you would, for instance, in many U.S. classrooms—
students called up to the front of the class to work on a problem or students being 
singled out for being especially talented. It would also be unlikely to find trophies 
or medals from mathematics competitions, even though Sweden does participate in 
the Mathematics Olympiad and holds national competitions such as the Kangaroo 
competition (“Kängurutävlingen”) and other national and international initiatives1.

The Swedish mathematics curriculum is fairly narrow, with arithmetic domi-
nating the elementary and middle school curricula, and with most tasks even at 
high school and early university level, solvable with rote algorithms rather than 
real problem solving (Lithner 2000). The simplicity of the tasks has several conse-
quences. One is that they are not really amenable to group work or class discussion. 
Students might discuss the answer to a particular task, but since no real problem 
solving is involved, the discussions do not delve deeply into mathematical reason-
ing. Further, the tasks do not challenge students to structure their mathematical 
memory, since they are seldom or never asked to draw conclusions from their find-
ings, or to provide proofs or other arguments for their solutions to a task.

It has been pointed out in many studies that the dominant way of teaching in 
Sweden may be detrimental to students who are less familiar with the norms set up 
for the Swedish school, such as students with varying ethnical and cultural back-
grounds (e.g. Bergqvist and Säljö 2008; Sjöberg 2006). It may also be detrimental 
to students who are intellectually mature above their age level. Since the textbooks 
rarely challenge these students, they tend to get bored and some develop behavioral 
or social problems of various kinds (Mönks et al. 2000, p. 854).

Current Educational Reforms

While considerable resources are spent on students who have difficulties in Swedish 
schools, there is little attention, to the point where the topic is almost taboo, about 
the students who are particularly talented. Despite the fact that we have seen major 
changes in the educational system during the last centuries, it has been virtually 
impossible to raise any interest in or even understanding of the situation for students 
who perform above what is expected at their age level (Edfeldt and Wistedt 2009).

However, this situation is just now starting to change. In 2003, the Swedish so-
cial democratic government allocated two million crowns to two Swedish universi-
ties to develop pedagogy for mathematically and musically gifted students (Prop. 
2002/03:1, 15). A year later, and for the first time, the Swedish National Research 
Council funded a research project on Gifted Education in Mathematics (Wistedt 
2008).2 Today the government is allocating money toward developing special 
programs at the upper secondary school in mathematics and science as well as in 

1 See National Center for Mathematics Education at www.ncm.gu.se.
2 See www.giftedmath.se.
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the humanities and social sciences at ten selected Swedish schools, and more are to 
come (Regeringskansliet [The Swedish Government] 2008).

These changes are taking place in a climate where nurturing academic talent is 
seen as elitist. It is yet to be seen if government interventions can change a culture 
that on the whole (with a few exceptions such as sports and music) does not en-
courage excellence, and in particular seems to almost discourage certain types of 
academic excellence (Edfeldt and Wistedt 2009). Below we examine where this 
climate comes from by providing a historical background for how Swedish math-
ematics education has developed into what it is today.

 A Short History of Swedish Education

As we turn to the past, we will focus on a tension between egalitarianism, which 
aims at promoting a certain kind of fairness, and excellence, which aims at bringing 
out the natural talents of all students. We want to contrast excellence with elitism, 
the latter of which has been viewed in Sweden as the natural enemy of egalitarian-
ism, and the reason we suspect why talent development has been viewed here with 
scepticism.

Sweden has a long-standing democratic tradition, and the question of nurtur-
ing talents has been debated for centuries. Jan Amos Comenius (1592–1670), a 
Czech scientist and educator still celebrated and cited in European countries (see, 
e.g., Piaget 1993), held that talent is not socially distributed. In other words, varia-
tion in abilities among citizens in a particular society does not necessarily coincide 
with variation in socioeconomic background (Sjöstrand 1970, p. 247). However, 
the question was, and still is, if it would be of benefit to society to nurture talent 
wherever it is found (ibid, 1970, p. 254). Another persistent question is how to find 
that talent.

In 1737, Gustaf Ruder presented a model for how to identify the most able stu-
dents regardless of social standing (Kaiserfeld 2008, pp. 4–5). In his book Ruder 
argued for a successive and continuous choice of the most talented among all stu-
dents, an issue linked to the political discussion of the day about the necessity for a 
democratic society to realize a continuous change in social positions. Ruder envi-
sioned an upward stream of intelligence workers and a downward stream of labor-
ers (“ståndscirkulationen”) assuring that people from all social classes would have 
a chance to be part of the upward stream.

Over the course of the 1800s, as Sweden moved from being an agricultural na-
tion to an industrial one, the question of social mobility was confounded with the 
difficulty of large-scale education. Multiple models were used for making education 
more accessible. One was the Bell–Lancaster Method, which used some students as 
teacher-helpers to help other students, a way to educate more students while keep-
ing costs low (Sjöstrand 1970, p. 84). Another model, with German roots, was the 
Parallel School System, which was used from 1842 until the 1960s, providing “a 
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set-up which reflected a clearly stratified society: on the one side, an elementary 
school for the common people, which on the secondary level ran more or less paral-
lel with a highly selective school system, a school recruiting mainly from the upper 
and middle class” (Husén 1965, p. 181).

However, neither of these models directly addressed the problem of providing 
quality education to socially and economically underserved populations. This prob-
lem persisted, and in the 1950s was conceptualized as a problem for society at large. 
The term “ability reserve” (“begåvningsreserven”) began to be used to refer to chil-
dren from low-income families who were tested and found to have an untapped 
capacity for higher educational studies (Husén and Härnqvist 2000).

While the ability reserve has decreased dramatically, there are still some traces 
of it today. In the academic year 2006/07, 45% of those who were born in the begin-
ning of the 1980s entered higher education (Högskoleverket 2008a). Among those 
who were born in families with parents holding a doctoral degree, 86% studied at 
the university, but only 22% of those came from families with no academic tra-
ditions (Högskoleverket 2008b). But, on the whole, Swedish education has done 
fairly well in terms of access to education. In the 1940s only 3–5% of the student 
population took their secondary-education degree and about 20,000 students in all 
were enrolled at the university level. Today almost all students study at the second-
ary level and about half of them, that is, about 85,000 yearly, commence their stud-
ies at the university level (Husén 2002; Högskoleverket 2008c).

In the 1960s, the Parallel School System was phased out in place of an integrated 
school system. Although Sweden had been one of the first countries in Europe to 
provide detracked education (Tomasson 1965), tracking prevailed in the form of 
special and general courses in English and Mathematics. Following a broad educa-
tional reform in 1994, tracking was removed (Sund 2006), although textbooks with 
material differentiated for different learning levels are still used in many mathemat-
ics classrooms.

Discussion

Throughout the history of Swedish education, there has been a tension between 
the socializing task, i.e., the purpose of school to bridge differences in knowledge 
and social standing, and the qualifying task, i.e., to give every student the chance 
to make the best of his or her abilities (Isling 1974). The solution to the second 
task, prescribed in current compulsory-school curricula, essentially translates into 
students working independently in workbooks. Individualization in the integrated 
Swedish classroom becomes a matter of pace, not quality, within a fairly narrow 
curriculum.

Seen in the light of history, the current trend in Sweden to allow, or even ad-
vocate, the nurturing of academic talent, can be conceived from two different  
perspectives. The opposition view is that talent development is elitist. This view 
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is consistent with the Parallel School System model that indeed did single out 
elite members of society for a specialized education. The view we promote here 
is that developing talent is simply what a democratic society should do to ensure 
that all of its citizens develop to the full of their potential. This view is in line with 
Ruder’s model of continuous change, with or without the image of the upward and 
downward streams, and thus has some precedent in the historical development of 
Swedish education.

The contrast between seeing talent development as elitist versus democratic has 
particular saliency in Sweden where there is a strong tendency to fit in, a view 
which has helped shape the culture of Swedish compulsory school (Rubinstein 
Reich and Tallberg-Broman 2000). There are a number of cultural myths that drive 
a view that equity means equality, which in practice gets translated into a kind of 
social leveling.

 Back to the Current Situation

In terms of Swedish history and political life, the current trends in education are 
rather exciting and promising for the idea of helping all students meet their poten-
tial. As noted above, the current Swedish government is putting resources into talent 
development, both in terms of research and opportunities.

However, in the midst of this change, we see traces of history that could threaten 
to make the changes harder to implement. One example is the language that the 
popular media uses to describe the educational reforms. The proposed program 
of providing a challenging curriculum, which is currently being piloted at a few 
schools around the country, is called “spetsutbildning,” which literally means some-
thing like “peak performance education” to indicate that the education is supposed 
to help students reach their full capacity. In the newspapers, the schools piloting 
such a program are referred to as “elite high schools” (“elitgymnasier”), reflecting 
a suspicion that the new reforms, like the Parallel School System, would be socially 
stratified. The main argument against these schools has been that they would only 
target a small population, an argument that resonates with a deep sense of unfairness 
that goes against certain egalitarian ideals.

The idea of framing the debate in terms of “all students meeting their potential” 
might help resolve this conflict. By thinking of mathematics education as a limited 
resource that only few can benefit from, one is creating a false sort of choice. It 
seems that education of all students must be sacrificed for the benefit of the few 
(that is, the talented). However, if one frames the debate in terms of potential, there 
is no dilemma. All students can be exposed to good mathematics, from early on, and 
those who show promise and/or interest can be encouraged to pursue it. The details 
of how to put this view into practice are not trivial, but this view, as such, does not 
seem in any way to be at odds with either the democratic or egalitarian ideals of 
Swedish society.
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 Taking Stock and Looking Ahead

In order to reform Swedish education, one must look beyond the rhetoric of the 
debate to the underlying assumptions, which are deeply embedded in culture and 
which, as such, can be hard to identify from within the debate itself. The first as-
sumption we have tried to counter here is that egalitarianism is at odds with excel-
lence. Equity does not mean equality, and even if egalitarianism should be inter-
preted as some sort of moderation, that by itself is not an obstacle to academic or 
intellectual ideals. As with Aristotle’s idea of the golden mean (Aristotle 350 B.C.), 
moderation can be a gateway for a higher good.

The second assumption we want to counter is that even in Sweden, which has tra-
ditionally been rather homogenous, we are not all alike. The discussion about equity 
and quality in Swedish mathematics education has benefited a great deal from the 
large immigrant and refugee populations alluded to earlier who help us see the role 
culture plays on beliefs about intellectual achievement. For example, many students 
from fairly poor economic backgrounds, such as refugees from Arab or Asian coun-
tries, have very strong social and familial support for studying mathematics and other 
academic subjects. The solution to the problem of talent selection might not lie in the 
kind of streams that Ruder suggested, but rather a modern version of the same idea 
based on bringing out talents of all children regardless of national or cultural origin.

The third assumption we want to question is about where the problem of nurtur-
ing talent lies. History tells us that most of the efforts made to optimize learning 
conditions for talented students in our country, at least thus far, have been orga-
nizational. We believe that for real change to take place, one must move past this 
organization and look closely at what is actually happening or not happening in the 
classroom (see e.g. Siegel 2004; Lampert 1990). The brief look into a typical Swed-
ish classroom above—dominated by the “facit,” routine tasks, and an emphasis of 
individualized studies—tells us that the activities generally offered to students are 
not mathematically challenging. To improve the quality of mathematics education 
for all students, we need to think carefully and openly about how their mathematical 
experience could be improved.

To this end, we propose a few developmental goals for improving mathematics 
education on the local level, and providing support for this change on the societal 
level. We have chosen goals that we think are realistic to achieve, and which could 
reach across class, culture, and economic barriers:

1. A richer set of educational materials.
2. Teachers trained as much to work with talented students as students with average 

or less developed abilities.
3. Summer camps or other social outlets for talented students, run by working 

mathematicians who can give a flavor of what mathematics is like.
4. A culture that supports mathematics as a human discipline, which could include 

good mathematics problems in national newspapers, public discussions about 
good teaching practices, economic support for teachers and educational reform-
ers who want to improve the quality of teaching mathematics.
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When you walk into a Swedish mathematics classroom in the future, you should see 
questioning, discovery, rigor, and creativity. You should see teachers with knowledge 
sharing that knowledge with students who want to learn. What you should not see is 
any student sitting bored because they finished their workbook early and do not have 
anything good to do. What you should not hear are stories of students who have be-
come turned off to mathematics without ever seeing what mathematics is really about.

 Summing It Up

Swedish classrooms currently lack sufficient stimulation for many students. The 
discussion around the proposed “spetsutbilding,” which attempts to compensate 
for this lack of stimulation, taps deep worries that quality education is essentially 
privileged. At the core of both of these problems is a perceived conflict, with a long 
history, between providing what is fair and providing what is good. This conflict has 
hampered Sweden in its quest to provide quality education for all, and could very 
well hamper other countries with similar histories.

Our intent here is not to take sides in a long-standing debate between egalitarian 
access and talent development, but rather to argue that this choice is a false one. 
Instead of framing the goal of reform as “mathematics for all” which might unfortu-
nately get implemented as “mediocre mathematics for all,” we would like to frame 
the goal as “helping all children meet their potential.” In a country with a fairly 
open access to education and a strong commitment to not let any child fall behind, 
we find that many children do fall behind, in another way, by not taking seriously 
the quality aspect of their mathematics education. To us, a child who has not been 
sufficiently challenged has not been educated, and a country that does not educate 
its children does not fulfill the promise of a free and democratic society.
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 Introduction

Our first purpose in writing this chapter is to argue the need for mathematically 
gifted children to receive particular attention in order to develop their talents as 
a matter of equity, and second, to provide a perspective that comes from a very 
particular country that keeps very strong cultural traditions and has a very special 
political context. We do not intend to enter a discussion about identification proce-
dures, although these procedures have generated a heated debate about their fair-
ness, the under-representation of certain minorities, and the lack of identifying more 
girls who are gifted in mathematics. We point out, however, that the conception of 
giftedness has been evolving from a fixed trait to a multi-faceted and changeable 
characteristic that takes into consideration several aspects of an individual and his 
or her relationship with the subject matter in question. For example, according to 
Eriksson (2006, p. 5) excellence has a lot to do with culture, values, and norms:

As educators of the world’s most brilliant children, we have a responsibility to preserve and 
celebrate the abilities of these endangered cultures. Not only is the loss of this potential one 
that is individual to these gifted children, but also a loss for the world at large.

Equity issues related to the education of mathematically gifted students have been 
touched upon in a few studies in the literature so far, viewing the problem from dif-
ferent lenses. Borland (2003, p. 117) expresses the following concerns as to what 
really goes on in gifted education:

I think that two things are indisputably true. The first is that professionals in the field of 
gifted education, no less than any other group of educators, are opposed to racial and other 
forms of inequity and are committed to fairness in access to education. Indeed, most would 
argue that educational equity is what brought them to the field in the first place. The second 
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is that, despite the best of intentions, gifted education, as historically and currently prac-
ticed, mirrors, and perhaps perpetuates, vicious inequities in our society.

On the other hand, Sriraman and Steinthorsdottir (2007, p. 94) look at the situation 
posing the following questions:

1.  Is there a way in which one can resolve talent development, particularly in mathemat-
ics education so that that ( sic.) the curriculum and/or instruction is equitable to all the 
students in the classroom?

2.  Can excellence and equity coexist or does attending to one compromise the other, i.e., 
excellence at the sacrifice of equity; equity at the sacrifice of excellence?

The way these questions are stated implies that it is difficult to consider the educa-
tion of the gifted and talented as an equity issue inherently; and there are many edu-
cators and researchers who feel the same about this issue (see for example Sapon-
Shevin 2003). In particular, if we look at the research literature concerning equity 
in mathematics education, we realize that a great majority of these studies focus on 
students with disadvantaged backgrounds and learning difficulties. For example, 
books on this subject hardly contain any studies that focus on gifted children (Seca-
da et al. 1995; Burton 2003).

Sriraman and Steinthorsdottir (2007) study the problem taking into account dif-
ferent traditions in the eastern and western societies, offering an interesting inter-
pretation of the equity issue in the United States. They maintain that the tension 
between equity and excellence is a symptom of political problems that polarize 
the society. They suggest that in order to reconcile the elitist Hamiltonian tradition 
that emphasizes the cognitive traits owned by people and the Jacksonian tradition 
according to which everybody is equal, a third alternative, namely the Jeffersonian 
tradition that stresses equality in terms of how people make use of educational op-
portunities that are available to them, could be considered. The following quote 
from them shows how they understand ‘equality’ and offer a solution in terms of 
this understanding. “The challenge facing society today (in the United States and 
elsewhere) is to first create this equality in educational opportunity. This is a neces-
sary first step in resolving the tension between equity and excellence” (ibid, p. 99).

Sriraman (2007, p. 1) further argues that “[t]he stifling of creativity in schools 
is often collectively rationalized under the guise of doing what is supposedly good 
for the majority of the students.” He adds that this is done by invoking the often 
misused term ‘equity’, or by “appealing to curricular plans and school achievement 
goals etc.” (p. 1). In the same lines, Benbow and Stanley (1996, p. 252) argue that 
in the United States as a result of several factors including extreme egalitarianism 
and “pitting of equity against excellence rather than promoting both equity and 
excellence in schools,” the brightest students are being deprived of opportunities to 
develop their intellectual potential. Consistent with their belief that all children have 
the right to develop to their full potential, they maintain that “[e]quity should be 
viewed as equal access to an appropriate1 education” (p. 257), which means access 

1 Italics in the original text.
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to both challenging and obtainable education depending on the academic readiness 
of each individual.

The term ‘equity’ indeed is used in many different ways. In the literature, although 
‘equality of resources’ and ‘equality of opportunity’ are mentioned (Fennema 1990; 
Winstanley 2006), ‘equity’ in general is understood or accepted in terms of ‘equal 
outcomes’. For example, when discussing about research on equity in mathematics 
education, Lerman and Marcou (2008, p. 352) state that “[r]esearching what might 
lead to more equitable outcomes, across diverse social groups, especially since dis-
advantaged groups consistently achieve less than children from more advantaged 
backgrounds in many countries, has become quite common in recent years”. Al-
though the concern raised with this statement is of utmost importance, we think that 
it is equally important to emphasize other aspects of equity, such as development of 
human potential, especially from the point of view of developing countries. In the 
first case, concern is on equating the outcomes achieved by different groups, which 
implies inverting more on disadvantaged groups as they need more attention to be 
able to improve their attainment of established educational goals. The focus is on re-
ducing the gap, which in turn implies, if we look at the issue from a different angle, 
less attention for the more able children. In the second case, attention is turned to 
a different social aspect. In order to provide more well being to all members of the 
society in which we live, human resources are to be developed to their maximum 
potential. This requires special attention to gifted children, since their contributions 
can make the difference.

There is no need for these two objectives to clash, since lack of importance given 
to either will produce unease in the society and in individuals affected negatively 
by related policies. However, we point out that the second approach has not been 
emphasized enough in educational policy and research.

The debate about the attention to gifted students is pointed out by Warwick and 
Matthews (2009, p. 266) as a conundrum: “gifted programming leads to social in-
equity, but we incur other social inequities when we do nothing to support gifted 
development, to say nothing about the loss to society of abilities that are left un-
der-challenged and undeveloped.” These authors suggest establishing two types of 
goals related to gifted education: one in which the aim is to develop the talents and 
to serve the learning needs of the gifted, and the second where what is learned from 
the experiences and practices from the former objective is used to foster “high-
level ability more broadly across the population” (p. 266). This means raising the 
percentage and diversity of highly able individuals in the society intentionally, by 
means of programs specifically geared toward these goals. REAL (Realising Equal-
ity and Achievement for Learners) is one such project that takes place in the United 
Kingdom and concentrates on the needs of Black/Minority/Ethnic and English as a 
second-language students (Warwick and Matthews 2009). The authors report that 
through this network schools and teachers are provided with additional resources 
toward achieving equality and excellence.

Borland (2003) argues for forgetting about identifying and labeling children as 
gifted, discontinuing with the pull-out programs, hence dispensing with the con-
cept of ‘giftedness’. He proposes instead, focusing on curriculum development for  
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differentiated instruction, where all children would benefit from a challenging edu-
cation at their own level:

For example, our expectations for students’ learning in, say, mathematics would be deter-
mined by what they now know and what instruction they demonstrably need in that subject, 
not on whether their ages mark them for the third-grade curriculum, the fourth-grade cur-
riculum, or whatever. (ibid, p. 119)

We see the problem of equity related to the education of mathematically gifted 
students at two levels. At an individual level, unidentified talents and lost potential, 
and at societal level, lost human resources, which becomes especially important for 
a developing country. In this chapter, we try to address these issues, especially the 
second one, in the context of Mexico.

Initially, in what follows, we will address the problems some mathematically 
gifted students face. Second, we will present the Mexican context and discuss some 
societal concerns from the viewpoint of a developing country. Finally, we will give 
examples from our work on designing mathematical situations.

 Some Concerns About the Education of Mathematically 
Gifted Students

The foreword to the UNESCO report on Gifted Children in IberoAmerica (Macha-
do 2004, p. 9) starts by stating:

Every person has a right to receive an education that develops his/her capacities to the 
maximum and that allows him/her to construct his/her life project. Implementing this right 
implies guaranteeing the principle of the equality of opportunities, that is providing to each 
one of them the help and resources that they require, in function of their individual charac-
teristics and needs.

This statement implies that in making curriculum decisions not only the average 
population would be targeted, but also the groups on both extremes with special 
needs have to be taken into account.

We pointed out earlier that in general the education of the gifted and talented is 
not considered as an equity issue. There might be several reasons for this. Perhaps 
these individuals are thought of as possessing special qualities that give them a 
head start in the society so they are not considered a priority. Perhaps it is gener-
ally thought that gifted children will succeed no matter what kind of education they 
receive. However, boredom and loss of interest in academic subjects is a major 
concern, since lack of challenge leads to useless repetition of tasks.

(Gifted) children have special needs in the educational system; for many their needs 
are not met; and many suffer underachievement, boredom, frustration, and psychologi-
cal distress as a result …. The common belief that the gifted do not need special help 
because they will succeed anyway is contradicted by many studies of underachievement 
and demotivation among gifted children. (p. xiii) (Collins 2001, cited in Diezmann et al. 
2004, p. 8).
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Reis (2009) points out another ramification of this lack of challenge: some gifted 
children never learn to work towards attaining a goal, since they get used to getting 
good grades with a minimal effort. And there are those cases where a gifted child 
may end up in serious problems, such as gang involvement or drugs.

Another concern raised by Diezmann et al. (2004, p. 15) is the “negative com-
munity attitudes towards the gifted,” pointing out that the reasons for this “may be 
associated with the perception of them as a ‘marked’ group or ‘deviant’ population, 
because the general population finds mathematics difficult and holds negative at-
titudes towards it (Damarin 2000b)”.

Teacher education is another important issue. There are several myths about gift-
ed students and without knowledge about the characteristics of these individuals, 
teachers can be quite unsupportive of their needs (Diezmann and Watters 2002; Sak 
2004). Although underachievement is a subject about which teachers are sensitive, 
in general, this issue is not associated with gifted students. This might be due to 
the fact that academic expectations are not geared towards individual potential and 
interest, rather they are established as common goals to be achieved by all students.

There is also the issue that there might be areas related to mathematics in which 
individuals might be gifted, but because of the way the mathematics and math-
ematical activity is defined and valued in the society, they may go unidentified and 
discriminated. Spatial ability seems to be one such area. When studying this issue, 
Mann (2005) points out that even though individuals such as Einstein, Edison, and 
da Vinci probably had difficulties at school, they found avenues to bring about their 
gifts, otherwise the society would not have experienced the consequences of their 
talents.

The learning processes of students differ from one another and acknowledging 
this fact does not mean giving more importance to one group than others: “It is not 
a matter of giving gifted students more attention or better resources, only of meeting 
all students’ unique learning needs” (Stepanek 1999, p. 2).

 Societal Concerns

When discussing the equity and diversity agendas in research, Atweh (2007) notes: 
“[e]quity projects aim at reducing group differences, e.g., in achievement and hence 
its ultimate aim is to abolish group differences. Diversity discourse, on the other 
hand aims at enhancing group differences and status.” In our view, it is more pro-
ductive to view the equity issue in terms of optimal development of human potential 
instead of concentrating on group differences. As a step toward achieving this goal 
within the mathematical development of gifted students, our project focuses on de-
signing and applying challenging mathematical situations that would help improv-
ing the participants’ thinking skills and knowledge.

Attention to gifted children in Mexico has not been systematic and many  
programs geared toward this population lack a research base and theoretical  
foundations (Valadez and Betancourt 2004). In 2006, the Mexican Ministry of 
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Public Education (SEP 2006) prepared an intervention proposal for attention to gift-
ed students at the elementary school level so that this population receives an educa-
tion according to their specific needs. This proposal promoted an approach that was 
based on the principle of integration. According to the proposal itself:

[it] is based on the equity principle that is mentioned in the 2001–2006 National Education 
Plan, which means not offering the same to all students but offering them what they need, in 
a differentiated manner and in equilibrium so that each one of them reaches the educational 
level that corresponds to their learning potential. In this sense, and just like in the case of 
students who are in situations of different kinds of vulnerability, for the gifted boys and 
girls equity means giving them something different because they need it. (SEP 2006, p. 22)

Of course, this is a complex issue that calls for approaches that take into account 
different facets of the problem. This report gives special importance to equity con-
cerns, recognizing the injustice that occurred in this society “where a large popula-
tion of boys and girls stayed at the margin of educational services” (ibid, p. 37–38). 
In this same group, both the population with some disability and the gifted popula-
tion are mentioned. We make a parenthesis here to mention that one step toward 
achieving these objectives might be stimulating gifted students through challeng-
ing mathematical situations and motivating them to express their ideas and discuss 
them with their peers and instructors. We will give some examples of our approach 
of this kind of activity in the next section of this chapter.

Although the above-mentioned proposal was prepared with the participation of 
several experts and took into account a wide array of research into the area, it was 
not widely distributed, and it is not very well known among school teachers. Fur-
thermore, the initial enthusiasm that made possible this proposal did not have a 
follow-up in terms of teacher training or institutional support, which implies for the 
students to end up not receiving the attention that they need and deserve.

On the other hand, for us it is not surprising that the government show interest in 
the education of students with special talents. Especially from the point of view of 
a developing country, these students, especially the ones who are talented in math-
ematics form an important resource for the future of the country. If not attended, 
this resource may be lost, or if developed by itself and without special attention, 
there might be more risk that these individuals migrate elsewhere, such as to more 
developed countries where they can more easily satisfy their intellectual needs and 
attain specific goals.

However, it may not be so easy to achieve the desired goals in terms of providing 
all children with what they need educationally. We give an example from Mexico 
with the purpose of bringing to the attention how special circumstances (political 
or otherwise) can affect how the issue is dealt with. In Mexico, a few years ago the 
government of the Distrito Federal (which we will refer to as the capital govern-
ment) started a program for talented children (niñ@s2 talento). In order to under-
stand the context in which it developed, we need to understand the political ten-
sions between the Federal government and the capital government. We interviewed 

2 In some circles in Mexico, recently the character @ has replaced the letters ‘o’ and ‘a’ in writing, 
as in ‘niños’ (boys) and ‘niñas’ (girls), to produce gender-neutral words.
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Ricardo Cantoral, director of the ‘talented children’ program, according to whom 
the capital government had this initiative, because at the federal level not much was 
being done. Cantoral sees the talented children program as an opportunity “that tries 
to bring to the population a right”:

RC: The possibility of total enjoyment of capacities, interests, science, culture, and sports 
is also within those rights. In this way the conceptualization of the gifted children program 
happens in this government, in this city that has the most advanced research centers, that 
has a policy clearly contrasting with the social policy of the Federal government.

Cantoral goes on to say that the capital government brought together experts from 
several educational institutions to discuss about what could be done for the children, 
“as part of a social policy and at the same time to give an incentive to scientific 
development in the population”. However, since the schools depend on the Federal 
and not on the city government, whatever was going to be done, had to happen out-
side of schools. Because of this, and although the general intention was to attend all 
children, there had to be a selection due to restricted resources, using some kind of 
criterion, which the experts agreed to be talent. Even though conceptions of gifted-
ness and talent are not the focus of this chapter, we provide Cantoral’s interesting 
notion regarding talent, since it helps to understand the principles that guide this 
program:

RC: Here there was a big debate about if it was talent or some other attribute. This issue 
of talent produced a very interesting debate and the conclusion of the group of specialists 
was that “talent is something that is distributed democratically,” that is, you won’t find 
only some people with talent, but you will find that everybody has it, just that they did not 
have the opportunity to develop it. […] However, the name ‘talented children’ was thought 
of as a distinguishing name that could stimulate the children to be a part of, and not as a 
conception from inside.

When we asked him if Mexican children talented in mathematics have the neces-
sary means and tools to develop their abilities, we obtained the following response:

RC: I really think not….When you present mathematical activities, you observe quickly 
more abilities in some than in others. In this case, it is difficult because if somebody is 
very good in some sports you can help him/her by means of a high performance school and 
he/she can keep working on the development of his/her talent. Similarly, if it is in music 
or arts you can send them to Ollin Yoliztli, but if it is in mathematics, actually there is no 
good place for mathematics, physics or chemistry. You don’t find a place where especially 
this talent can be developed. So there is a lot to be done, and I think that this project is the 
beginning of something very important.

The effect of this program has to be seen in the long run. It is important to study this 
kind of initiatives from within and from an outsider’s perspective in order to maxi-
mize the benefits for the children involved and also in order to avoid the mistakes 
that have been made elsewhere regarding equity issues concerning minorities and 
females. Mexico is a land of many languages and cultural traditions, and it requires 
great sensitivity and knowledge to deal with the equity issues.

We would like to emphasize that we are not necessarily suggesting ability group-
ing or other means of segregating different groups as a means to address the needs 
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of mathematically gifted students (nor we are condemning such measures, if used 
appropriately). Some approaches that have been used and that produced several 
research reports, such as the SMPY (Study of Mathematically Precocious Youth, 
see Benbow and Stanley 1996), advocate ability grouping and acceleration for the 
highly gifted, whereas others argue for educational treatments based on integra-
tion (Smith 2006). We are aware that in different contexts there might be need for 
different kinds of interventions for the purpose of attending and serving the gifted 
and talented in mathematics. As we mentioned before, in Mexico, there has been 
neither a tradition of research-based attention nor systematic identification of gifted 
individuals. There is need for research as well as brainstorming in order to come up 
with the optimal solutions given the limitations and characteristics of each popula-
tion. This might help from the beginning, as mentioned above, to avoid to a certain 
extent, mistakes and unwanted situations, such as under-representation of girls and 
minorities or children with different socio-economic backgrounds.

 Our Approach

Zollman (2007) reminds us that the highly gifted students make up about 0.1% of 
the whole student population, adding: “The mathematically highly and extremely 
gifted are but a few in number. ‘Losing’ one is significant” (p. 145). So what can 
be done in order not to lose them? In our opinion, one part of the answer might be 
related to special task design and the educational use given to these tasks. This ap-
proach is in line with what we understand as quality: “Quality of schooling includes 
not only time-on-task, but time well spent” (Sirotnik 1983, p. 26, quoted in Benbow 
and Stanley 1996, p. 258).

Stepanek (1999, p. 9) states that “[b]rain research provides a physical explana-
tion for students’ failure to learn. When tasks are not sufficiently challenging, the 
brain does not release enough of the chemicals needed for learning: dopamine, nor-
adrenalin, serotonin, and other neurochemicals (Schultz et al. 1997, cited in Tom-
linson and Kalbfleich 1998)”. On the issue of task design for gifted students Watters 
and Diezmann (2000, p. 14) suggest that “challenging mathematical tasks for gifted 
students should be authentic tasks that provide opportunities for them to emulate 
the practices of mathematicians, though at a less sophisticated level”. This point 
of view is also in line with the ‘equality of challenge’ raised by Winstanley (2006). 
This notion refers to providing enough challenge to everybody depending on their 
needs and potential.

In our opinion, one approach that can be used without the involvement of ex-
cessive financial resources, and that would benefit the majority of students, is the 
design of tasks that can be enriched and presented at different levels of mathemati-
cal maturation. This way all the students in one class can work on the same task 
without distraction caused by the boredom of some individuals who finish their 
job earlier and have nothing else to do, or who find the task easy and uninteresting. 
This approach requires a collection of mathematical activities with the following 
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characteristics: In the first case, the problem can start by posing questions that most 
of the class should be able to answer with some effort but without too much dif-
ficulty, and the level of difficulty can continue increasing by moving towards gen-
eralization and abstraction. In the second case, the same problem can have different 
versions that can be used considering the mathematical readiness of the students. 
However, this approach puts considerable demand on the teachers. In our group, we 
are working on the design of such problems in order to have a resource that consists 
of activities that contain extensions at different mathematical levels, analysis of 
these situations in terms of expected conceptual outcomes and possible student dif-
ficulties, and suggestions about their application.

The following activity is an example of the first type mentioned above. It al-
lows a general application by means of the central problem posed, and through 
peripheral activities a challenge to those who need and enjoy it. Before we pres-
ent the problem, we mention the characteristics that we try to incorporate into the 
design:

• The situation is presented via open questions. The aim is to provide a space 
for reflection to students so that they can express their knowledge, come up with 
conjectures, and choose procedures to solve the problem.

• It is flexible and adaptable. It can be used at different school levels; the ma-
jority of the population for which it is designed can provide an answer (at least 
partially) to one or several parts of the activity.

• Motivates the students and it is contextualized. Apart from being an intellec-
tual challenge, the activity is related to the previous knowledge and backgrounds 
of the students.

• It is extendible. It can be extended in different directions, including generaliza-
tion, according to the learning objectives.

• It organizes knowledge. In order to solve the problem, students would incorpo-
rate different kinds of mathematical knowledge that they have constructed or are 
in the process of constructing and consolidating.

• Helps generate ideas. Starting with the presented activity, other problems can 
be constructed to generalize the mathematical situation and its solution.

The central activity that we present below appears in Rocha et al. (2007) and has 
been extended through several peripheral activities in order to provide different 
kinds of challenge.

 Internet Cafés

Central Activity

In downtown, there are three places where Internet service with the same quality is offered. 
The following information shows their rates and promotions:

25 Equity and Gifted Children



360

In order for the promotion to be valid, each place gives a card to the client in which they 
register the number of hours consumed in different sessions.

•  Describe situations in which it would be better to use the service offered by El Chat; 
describe situations in which it would be better to use the service offered by Intercafé; 
and finally, describe situations in which it would be better to use the service offered by 
Intermente (Rocha et al. 2007, p. 216).

To these questions we can add the following:

• If you will use Internet service continuously, which one of the three options 
would you choose?

This activity is accessible to all students; some may prefer to use random trial and 
error, others might use the same approach concentrating on the patterns, and still 
other students may use a functional approach. Further challenge is provided by use 
of situations derived from the central activity; the aim is to encourage modeling the 
situations presented verbally, by means of mathematical models.

Peripheral Activity 1: Find a relationship that expresses the total cost in terms of 
the number of hours spent at “El Chat.”

Peripheral Activity 2: For the other two Internet places, find a relationship that 
expresses the total cost in terms of free hours obtained after having spent n hours 
using their services.

This activity requires modeling the situation through a function and the limiting 
processes enter into the discussion as the students try to find out what happens with 
continuous use of different services. When necessary, students can be provided 
with help through further questions, such as the following, to help organize their 
thinking:

For Intercafé fill in the following table, adding as many lines as you need:

Additional questions can be used in order to open up further discussion and to help 
with the reasoning process: After a large number of hours are spent, which option 

Place Hourly price Promotion
El Chat $11.00 Does not have a promotion

Intercafé $12.00    For every 10 hours they give you one hour free
Intermente $13.00 For every 6 hours they give you one hour free

Hours spent Hours free Total cost
1,024
1,547
1,713
2,220

n
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tends to a less unitary cost? From how many hours on is this unitary cost less than 
the other two options?

Peripheral Activity 3: Among the consumers a rumor started that the promotion 
that Intermente offers is not really good and that one ends up paying more than the 
other two options. For this reason the number of people going to this place went 
down and the owner decided to establish a new promotion in which the cost would 
be less than the other two options with a unitary cost not very far from $11. What 
hourly rate should this place offer and for how many hours spent should it offer a 
free hour?

In this problem, students are given the opportunity to construct a new offer based 
on the information provided in the statement and justify their claims. The functions 
that they have used previously to model the original situation can be of help in analyz-
ing the new situation and their answers can be used as the starting point of a debate.

Peripheral Activity 4: Draw a graph for the following function and discuss its 
asymptotic behavior:

f (x) =
7x + 3

7(x + 1) + 3

This question motivates visualization and calls for a discussion in terms of relation-
ships with the previous activity.

This type of activities can be used to cover content objectives (in this case, rela-
tions, functions, and proportionality, for example) as well as to provide opportuni-
ties to develop the conceptual understanding of students. At the same time, they can 
be extended to include more advanced topics (such as limits in this case) and deeper 
mathematical relationships that can be used with those students who need a greater 
intellectual challenge.

With mathematically gifted students we also make use of mathematical topics 
that do not form part of their curriculum usually. For example, following Dubinsky’s 
idea of applying situations involving mathematical infinity and paradoxes to gifted 
children (see Arnon et al. 2008; Dubinsky et al. 2005), we included the tennis ball 
problem and the problem of Hilbert’s hotel in the collection of mathematical activi-
ties that we use with this population. We pursue two aims here: on the one hand, we 
want to understand how young gifted students think about topics that are difficult 
even for mathematicians, and on the other hand, we hope to provide stimulus for 
these children to advance their mathematical abilities and talents. The acceptance of 
actual infinity goes against our natural intuition, and we hope to provide guidance 
for students to move toward more advanced levels of knowledge construction.

 Concluding Comments

Societal problems of a technological and scientific nature can best be understood 
and resolved by people who know the structure of that society at a profound level. 
Importing solutions from elsewhere without considerations of the culture and char-
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acteristics of the population involved might lead to tensions and failure of efforts. 
Developing the potential of mathematically gifted students optimally and raising 
their awareness about their environment and conditions can give rise to a significant 
national resource which can in the long run promote well being and trust at a soci-
etal level, since these individuals can play a crucial role in the society. This way we 
can assure that the problems of the society can find solutions within the constraints 
and particularities of the culture involved without exaggerated necessity to import 
solutions of different sorts that are not sensitive to local needs. We furthermore 
argue that not attending this population and their needs and not developing their po-
tential talents in mathematics, can give rise to more inequities between international 
communities. In a way, we see this as a means to attempt to close the knowledge 
and economic gap between developed and developing countries, and hence the life-
styles of those nations.

However, as already mentioned, there also should be special attention paid to 
inequities within the national context. Mexico is a land of many languages and cul-
tural practices, and especially the gender issue is a sensitive one, since in some of 
these practices, girls and women do not receive adequate treatment so as to realize 
their potentials.

Providing the social and intellectual context to all students so that they can at-
tain their maximum potential can benefit everybody. We have to remember that 
family, school, and society provide all determining elements for the manifestation 
and developing (or not) of mathematical talent. If we can aim at obtaining both 
individual intellectual satisfaction and social responsibility, we think that we can 
move towards more equitable conditions. Of course, saying that is easy. We have 
to think deeply about what is involved in preparing such conditions, design appro-
priate programs, act accordingly, and learn from our mistakes. As Atweh (2007) 
states:

Arguably, solving the problems of inequitable achievement and available resources in 
less-industrialized countries are beyond the capabilities of single academics or even the 
profession as a whole working in isolation. However, such a call presents a challenge for 
academics who believe that concerns about social justice do not know any boundaries.
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 Introduction

Education shall be directed to the full development of the human personality and to the 
strengthening of respect for human rights and fundamental freedoms.

Universal Declaration of Human Rights 26:2 (United Nations 1948)

Indigenous people have been described as the most educationally disadvantaged 
group of people within Australia (Council of Australian Governments (COAG) 
2009). As a group they do not participate equally with non-Indigenous Australians at 
all levels of education (Ministerial Council for Education, Early Childhood Devel-
opment and Youth Affairs (MCEETYA 2006)) with their educational outcomes “sub-
stantially lower” than non-Indigenous students (MCEETYA 2008). For example,

While most Indigenous students in metropolitan and regional areas meet the minimum 
reading standards, the proportion achieving at least the minimum standard of literacy and 
numeracy skills decreases as the level of remoteness increases.

Australians who do not complete year 12 are less likely to have the same opportunities 
as those who do. In 2006, year 12 completions for Indigenous Australians were 45.3 %, 
compared to 86.3 % for non-Indigenous Australians. (COAG 2009, p. 20)

Results from the Program for International Student Assessment—PISA (2000–2006) 
indicated that “[Australian] Indigenous students performed at a substantially and 
statistically lower level of reading, mathematical and scientific literacy compared 
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to their non-Indigenous peers” (De Bortoli and Thomson 2009, p. 51). These results 
are of significant concern for Indigenous communities and their leaders (e.g., Cape 
York Partnerships 2009; NSW Aboriginal Education Consultative Group Inc./NSW 
Department of Education and Training 2004) and mathematics educators (Groot-
enboer et al. 2009; Perry and Howard 2008; Perso 2005; Warren et al. 2008). They 
also concern the Australian government.

Meeting the needs of young Indigenous Australians and promoting high expectations for 
their educational performance requires strategic investment. Australian schooling needs 
to engage Indigenous students, their families and communities, in all aspects of school-
ing, increase Indigenous participation in the education workforce at all levels; and support 
coordinated community services for students and their families that can increase productive 
participation in schooling. (MCEETYA 2008, p. 15)

Enhanced educational quality and equity for Indigenous students can only occur 
through purposeful curriculum change, quality teaching, increased student par-
ticipation and the engagement of the Indigenous community. Attempts have been 
made to engage Indigenous students in schooling and to develop strategic ways 
of co-ordinating school, students, families and community services to enhance 
the educational outcomes, quality and equity afforded to Indigenous students. 
However, there is some evidence to suggest that “initiatives to improve the educa-
tion of Indigenous students through educational policy have had little effect” (De 
Bortoli and Thomson 2009, p. 52). Quality mathematics curricula that encour-
age equity, access and engagement with purposeful mathematics learning whilst 
recognising, maintaining and strengthening the Indigenous students’ cultural 
identity are required (Department of Education, Training and Youth Affairs 2000; 
Steering Committee for the Review of Government Service Provision (SCRGSP) 
2009).

This chapter introduces the voice of an eminent Aboriginal educator to reprise 
the significant program criteria that are imperative in acknowledging and appreci-
ating the place of social justice in Indigenous students’ learning of mathematics. 
These criteria have been introduced in previous work by the authors (Matthews 
et al. 2003). Examples of mathematics education programs with which the authors 
have been involved and that have made substantial differences to the learning of 
Indigenous students are then measured against these criteria. The chapter argues 
the importance of the community processes, people relationships and leadership in 
the enhancement of quality, equity and social capital within communities with high 
proportions of Indigenous people.

 Building Mathematics Curriculum Through Partnership

In 2008, the Australian government introduced a program titled Closing the Gap on 
Indigenous Disadvantage as a focus for the strategic distribution of Federal gov-
ernment funding addressing quality and equity issues for Indigenous families and  
communities (Department of Families, Housing, Community Services and Indig-
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enous Affairs 2008). Key in this suite of initiatives were the commitments to “halve 
the gap in reading, writing and numeracy achievements for Indigenous children 
within a decade” and to “halve the gap for Indigenous students in year 12 attain-
ment or equivalent attainment rates by 2020” (Department of Education, Employ-
ment and Workplace Relations 2009). Closing the gap in mathematics quality and 
equity for Indigenous students can be achieved through building enduring rela-
tionships and partnerships amongst Indigenous people, non-Indigenous people and 
their communities. These relationships and partnerships should be characterised 
by a sincere and authentic environment of trust and respect (Goos 2004; Howard 
et al. 2006; Perry and Howard 2008). Such partnerships can result in the school 
becoming a welcoming place for the students and community members, leading 
to improved student well-being, learning and achievement (Epstein 2001; Goos 
2004). The development of such partnerships is a key strategy for many Closing the 
Gap initiatives including Make it Count where the requirements for project schools 
include the following:

Specifically, schools will need to commit to developmental work on three fronts:

• Creating a culture and set of practices within the school that genuinely value, actively 
promote and consistently enable community engagement that supports the learning of 
mathematics within the school, with an emphasis on the parents of Aboriginal and Tor-
res Strait Islander students and their communities;

• Curriculum development to ensure that the classroom practices and the activities, as-
sessment and other components of what the students engage with in order to learn math-
ematics respect and build on the mathematical culture, knowledge and skills of Aborigi-
nal and Torres Strait Islander students and communities; and

• Professional learning for staff (leaders, teachers and other educators) that builds the nec-
essary cultural competence, respectful and productive strategies for engaging with com-
munity and knowledge and skills in mathematics and mathematics pedagogies. (Cooke 
and Howard 2009, pp. 10–11)

This chapter explores how such objectives might be met in a socially just manner.

 Mathematics Education and Indigenous Students—Program 
Criteria and Reflections from an Aboriginal Educator

The authors of this chapter have previously introduced a set of program crite-
ria against which the success of mathematics education programs for Aboriginal 
and Torres Strait Islander students in schools might be measured (Matthews et al. 
2003). These criteria have been derived from an appreciation of the contexts of 
Indigenous education (Department of Education, Employment and Workplace 
Relations 2008; NSW Aboriginal Education Consultative Group Inc./NSW De-
partment of Education and Training 2004; SCRGSP 2009), national mathematics 
project reports (Department of Education, Science and Training (DEST) 2007), 
analysis of interviews with Indigenous people (Howard 2001), national profes-
sional development initiatives (Australian Principals Associations Professional 
Development Council 2003) and evidence that meaningful engagement between 
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Indigenous people and the mathematics education community will enhance the 
mathematical learning outcomes of Indigenous students (Howard and Perry 2006; 
Perry and Howard 2008). These criteria form the central organisers for this chap-
ter. For convenience, each is described separately and comment is made on them 
by an eminent Australian Aboriginal educator. However, it is only through appro-
priate combinations of these criteria that intervention programs can work towards 
improvements in Indigenous students’ mathematical learning. It should be noted 
that the order of presentation of these criteria is not linked to any perception of 
their relative importance.

Sharon Cooke is a Weilwan woman from Brewarrina in north-west New South 
Wales, Australia. She is an experienced educator in NSW schools and currently 
holds the position of Aboriginal Education Consultant in a rural Catholic education 
system. In this section of the chapter, Sharon’s thoughts on critical issues in the lives 
and learning of Indigenous students and how these may impact on their mathemat-
ics learning are linked to explanations of the program criteria. Unless otherwise 
indicated, all quotes in this section are from Sharon.

Enhanced Mathematical Learning

The number of Indigenous students in Australian schools is increasing and the gap 
between the educational outcomes of Indigenous and non-Indigenous students, 
as measured by mainstream assessment regimes, is increasing as well (De Bor-
toli and Thomson 2009; DEST 2007). Enhanced mathematical learning is the key 
aim of many programs that strive to “close the gap” in Indigenous students’ learn-
ing. Productive engagement and collaboration amongst governments, Indigenous 
communities, schools and educational systems can only but enhance the mathe-
matical learning outcomes for Indigenous students. The Australian government has 
indicated that it will use the National Assessment Plan—Literacy and Numeracy 
(NAPLAN) (MCEEDYA 2009) instrument to measure changes to “the gap.” Hence, 
any mathematics intervention program for Indigenous students needs to show im-
provements in NAPLAN scores. This may be problematic given that NAPLAN 
generally reflects the mainstream “school” aspects of mathematics learning most 
often devoid of any reference to context or culture.

There have been many attempts to develop mathematics programs specifically 
designed to enhance Indigenous students’ mathematics learning (Board of Studies 
NSW 2007; NSW Department of Education and Training n.d.; Perry and Howard 
2003). A national attempt—Make It Count—has just begun (Australian Association 
of Mathematics Teachers 2009). A key aspect of each of these programs has been 
to investigate curricula and pedagogies that will help Indigenous students see a 
purpose and meaning in the mathematics they are learning. The need for such ap-
proaches is reiterated in the following comments:
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Many of our Aboriginal students either ‘rush’ through their work so they can just get it 
done and forget about it (or have some time on the computer playing maths games!!) or 
they dilly dally and go so slow trying to ‘wait out’ the maths lesson or they just refuse to 
try altogether.

The ‘play’ and ‘fun’ has gone out of it for Aboriginal kids. Gee…It’s a serious subject 
for them even in Kindergarten. The reality is that even if a page in the book is filled in that 
doesn’t mean they know what they have done.

The ‘play’ has gone out of teaching and certainly out of maths. It is a scary subject that 
we all fear by about Year 3 and have given up.

The crowded curriculum is being blamed for teachers not having time to teach other 
than from stencils and text books because it takes too much time to set up a hands-on class-
room for maths. Until maths is taught in other ways and not just from run-off stencils and 
text books our students will never move forward mathematically.

Social Justice

Social justice is about treating all people with dignity and respect. It is about a 
community recognising and acknowledging injustices and the development of both 
appropriate and collaborative actions and processes to address these injustices for 
individuals or groups so that there is a degree of equality in the overall outcomes. 
Clearly, Australian Indigenous people have suffered many injustices over many 
years (Rudd 2008). When considering this construct, it is important to ensure that 
the very intervention that is designed to enhance mathematical learning outcomes 
does not introduce other social injustices such as widening the gap that it is hoped 
to close (Cooke and Howard 2009). For example, many Indigenous families experi-
ence significant levels of poverty (SCRGSP 2009). Misunderstandings around the 
impact of poverty and cultural difference on students’ learning can lead to social 
justice breaches.

Many Aboriginal families are dysfunctional because of poverty related issues not because 
they are black. Many Aboriginal people are poor in soul and poor in spirit because they 
are poor economically…they live in poor towns…there is a historical background of being 
poor in Australia.

How is ‘poverty’ addressed in teacher education programs and the development of 
appropriate curriculum and teaching strategies? How do the teachers cope with being told 
all the time about the differences between Aboriginal and non-Aboriginal kids?

A human rights approach to education “necessitates a commitment to recognis-
ing and respecting the human rights of children whilst they are in school—in-
cluding respect for their identity, agency and integrity” (UNESCO 2006, p. 2). 
Valuing the individual Indigenous student’s abilities and history as well as the 
role language, culture, experiences, expectations and physical factors play in In-
digenous student learning will enhance the opportunities for learning mathemat-
ics (Matthews et al. 2003).

26 Mathematics Education for Australian Aboriginal Students



370

Empowerment

Empowerment is about Indigenous people gaining the necessary mathematical knowl-
edge and skills to participate in the achievement of authentic educational outcomes. 
The purposeful engagement between Indigenous people and teachers will strength-
en the mathematics learning outcomes for Indigenous students. This is an ongoing 
process involving mutual respect, critical reflection, caring and group participation 
where people without an appropriate share of local resources gain a greater control 
of their own lives (Fridal 1999). In order to achieve well in modern mathematics, 
students need to develop their problem-solving strategies and their willingness to take 
some risks in their learning. Many Indigenous children find this quite challenging.

Aboriginal students need to feel ‘safe’ to ‘have a go’. It needs to be clear to them that it 
doesn’t matter if you ‘get it wrong’ what matters is having a go.

Many Aboriginal and poor white students come to school with an independence that 
the school system does not value. They are soon taught not to think independently. They 
are taught to conform to the school and classroom rules and soon begin waiting for the 
information to come to them via the teacher rather than to explore, investigate or navigate 
the world mathematically.

Engagement

Engagement in mathematics learning is about being able to interact purposefully 
with the learning discourse. It is about Indigenous students being treated with re-
spect and acknowledged as capable learners. Munns and Martin (2005) define stu-
dent engagement on two levels. For the purposes of this chapter, the second of these 
levels, “big ‘E’ engagement,” is of particular relevance.

[B]ig ‘E’ engagement (‘E’ngagement), [is] a wider relationship with school and education. 
‘E’ngagement is a sense among students that “school is for me”. This means that students 
have a sense that school is a place that works for them and education is a resource that they 
can successfully deploy in the present and the future. (Munns and Martin 2005, p. 3)

Schools have to be a place of belonging for Indigenous students as much as they are 
for any other student (Howard 2001). Pedagogies that build strong teacher-pupil re-
lationships, reduce competition, enhance verbal communication, limit direct ques-
tioning and emphasise practical experience and group co-operation benefit Indig-
enous students (Frigo 1999). When such pedagogies are absent, Indigenous students 
often will distance themselves from learning.

If an Aboriginal kid is in a boring or mis-managed room they just ‘wait it out’ and ‘dodge’ 
the learning. It is not that they misbehave. They just avoid the learning in a quiet way and 
it is not until assessment time when the learning decline is noticed.

Many teachers have disenfranchised themselves of teaching our Aboriginal kids by feel-
ing they cannot ‘manage the behaviour’ so they cannot teach them. I see in so many cases 
where the Aboriginal kids just leave the classroom or the Principal is called to ‘manage’ bad 
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behaviour so the classroom teacher doesn’t ‘own’ the kids. In the case of kids not engaging 
because of BORING or UNEXCITING/UNEVENTFUL teaching, particularly in maths, 
the students is opting to misbehave so they can leave the room either by choice or by invita-
tion. Another way to dodge maths!! Very clever!

Reconciliation

Reconciliation is about “walking in someone else’s shoes.” It is about taking the 
time to listen and to care. It is about working together, collaborating to bring about 
enhanced educational outcomes. It is about sharing and understanding the diversity 
of culture. It is about appreciating people and their values, language and learning 
styles. It is about recognising and appreciating difference. For Indigenous students, 
mathematics learning and teaching is about highlighting strengths in the diversity 
of their knowledge and their ways of knowing and celebrating what they can do. 
Enduring, trustful relationships can open up the possibility of genuine reconcilia-
tion between the Indigenous students and their teachers.

Trust!! This is such an important word. If the classroom teacher has not established this 
with the Aboriginal students then it is a hard road for the teacher.

However, many teachers assigned to rural and remote schools are just beginning 
their careers and while they might wish to engage in reconciliatory teaching, they 
do not necessarily have the skills to do this.

Schools have young, white, inexperienced teachers who have no understanding or concept 
of what it means to be poor, let alone Aboriginal. These teachers are struggling to find ways 
to build relationships with our students because they have nothing in common. There seems 
to be very little common ground between teachers and Aboriginal students. Many primary 
teachers are often young white females from middle class backgrounds who, in reality, do 
not have a level of empathy…they don’t understand the poorness of the students let alone 
the culture of the people.

Connectedness

Connectedness is an individual sense of belonging, a feeling of being accepted and 
knowing that you are valued for who you are. It is about honesty, integrity, being a 
critical friend in what you bring to any given situation as an important person within 
the Australian society. Indigenous people relate to their family, place, community 
and spiritual world. These help determine their beliefs and sense of belonging and, 
thus, help build aspirations and high expectations of themselves within the educa-
tional context.

Knowing who you are’ and having a positive sense of cultural identity is central to Aborigi-
nal and Torres Strait Islander children’s social, emotional, intellectual, physical and spiri-
tual wellbeing. (Queensland Department of Education, Training and the Arts 2008, p. 2).
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Many Indigenous Australians live away from their traditional country (SCRGSP 
2009). This can have ramifications for students’ learning.

My heart and working experiences are telling me that maybe it is more the poorness of 
our Aboriginal families that is ‘blocking’ any engagement in the school environment. Yes 
‘cultural poorness’, as well as ‘life-soul-prospects poorness’. I am challenging myself in 
thinking that to drive our teaching of Aboriginal students with a “pure” sense of cultural 
ways is not the way as many Aboriginal students I work with do not have any real under-
standing of what it means to be Aboriginal. Yes, they know they are but they don’t truly 
know what that means.

The majority of Australian Indigenous students live and learn in the two worlds of 
“white” and “black” with external factors affecting their lives and directing their 
progress. Identity is the basis upon which Indigenous students grow, develop and 
relate to those about them, including their teachers. Cultural identity is personal 
and evolves as individuals grow in the knowledge of their cultural backgrounds 
and as they respond to varying places and circumstances. A significant challenge in 
educating Indigenous students is for educational systems and teachers to recognise, 
respect, value and accept the students’ identity (Howard 2001).

Our students are struggling with what it means to be “Aboriginal”. They know they are but 
many do not know what that means!!! Many of our students just believe they are ‘poor’. 
They feel poor in knowledge as well as poor in what society has to offer them. They do 
not see themselves as ever achieving and not necessarily because they are Aboriginal but 
because they live in isolated areas that they see no way out of or they live in poor large 
urban areas where they are just as isolated from the ‘norms’ of society.

Relevance

Relevance is about bringing Indigenous students’ environments into the mathemat-
ics classroom; providing Indigenous students with the necessary mathematical 
skills to enable them to look beyond their horizons; and recognising Indigenous 
students’ country in culturally appropriate ways in mathematics curriculum, teach-
ing and learning.

Engagement of Aboriginal students in the classroom for mathematics is a huge issue 
because currently there is no real life meaning to them in the way mathematics is being 
taught. They don’t see the way maths fits into their everyday life.

The mathematics knowledge and skills that Indigenous students bring to school, 
even from a very early age, are often not recognised by teachers. Often, there is 
a reservoir of numerical knowledge and number relationships in Indigenous com-
munities that is passed on through a myriad of card, number and chance games. The 
teaching and playing of such games is a latent example of family engagement with 
numeracy and mathematics.

Many of our Aboriginal students come to school in Kinder knowledgeable and skilled with 
numbers. They have sat in and played ‘bingo’, ‘Euchre’, ‘rummy’, ‘poker’, ‘patience’, 
etc for most of their young years with their mums, nans, aunts etc and understand the  
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relationship between numbers and the connection to money. They can shop and recognise 
the change from their purchase as young as 5. Why is it when they commence school in 
Kinder (many of our Aboriginal students do not attend pre-school) these already learnt 
skills are not valued and built upon?

When one is striving to develop in Indigenous children the belief that school is for 
them, it would seem at least counter-productive not to recognise and celebrate the 
mathematics with which they are already familiar.

 Mathematics Programs for Indigenous Students

These program criteria are now used to examine two programs designed to enhance 
Indigenous students’ mathematics learning.

Mathematics in Indigenous Contexts (MIC)

The aim of MIC was to have school(s) and community work together to develop math-
ematics curricula that enhanced the knowledge and capacity of the Aboriginal students, 
community and school(s). MIC was based upon the principle that the mutually beneficial 
engagement of people and cultures is essential in building a community’s capacity for edu-
cating Aboriginal students. (Perry and Howard 2008, p. 4)

MIC focuses on the development of culturally and contextually appropriate math-
ematics teaching units for Indigenous students from Kindergarten to Year 8, to bring 
about connectedness and relevance within the curriculum. To achieve the math-
ematical learning outcomes, targeted schools and teachers were supported by expe-
rienced teachers and university mentors. Key features of MIC included:

• Analysis of existing numeracy data to identify where Indigenous students expe-
rienced difficulty

• Contextual curriculum design
• Community and parent engagement
• Culturally inclusive curricula and pedagogy in schools to allow Indigenous stu-

dents to demonstrate their mathematics learning
• Culturally appropriate assessment challenges that are contextual and rich in design 

and provide opportunities for students to demonstrate real mathematical learning

MIC was implemented in two NSW government primary and two secondary schools 
(rural and urban) during 2002–2006 (Howard et al. 2006). The project recognised 
that family engagement in Indigenous children’s learning in general, and mathemat-
ics learning in particular, is of critical importance in that it “provides students with 
significant positive social capital…heightens parental aspirations for their child’s 
future as well as providing a focus for their expectations on the education system 
to provide the quality of education necessary to assist Indigenous students achieve 
these aspirations” (Board of Studies NSW 2002, p. 4). The program emphasised 
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social justice and empowerment criteria through its active involvement of Indig-
enous educators, families and community members. The focus was twofold—the 
professional development of teachers highlighting enhanced mathematical learn-
ing and the development and implementation of connected and relevant contextual 
mathematics units through the establishment of learning networks.

A central theme of the MIC project was to look at processes for practical and pur-
poseful engagement among schools, teachers and parents of Indigenous students in 
the development, implementation and evaluation of mathematics curriculum. These 
improved relationships were seen as having the potential to play a significant role 
in reconciliation by challenging both the negative view about schooling often held 
by Indigenous students and the views held by schools about Indigenous students’ 
capacity, and willingness to learn and engage in mathematics.

As a result of MIC, Indigenous students found mathematics teaching and learn-
ing more relevant and their confidence in mathematics greatly improved. Indig-
enous students were supported by parents and community members at school and 
at home and the students themselves were able to contribute to the development of 
the mathematics learning activities. Indigenous parents and communities developed 
collaborative partnership with teachers to plan appropriate curriculum. Indigenous 
parents had opportunities to work in classrooms with students and teachers, increas-
ing their confidence about school mathematics and how children learn. The teachers 
undertook successful collaborative and cooperative planning with colleagues and 
the Aboriginal Education Assistants in their schools. They established partnerships 
with parents and community to develop contextually appropriate mathematics units 
of work. These teachers increased their understanding of the local community and 
raised their expectations of the Indigenous students in their class. Indigenous par-
ents and community expressed the view that they had waited a long time to be 
invited to become real partners in their children’s education and such empowerment 
and engagement needed to continue (Howard et al. 2006).

Wii Gaay (Clever Child)

From 2002 to 2009, the Catholic Schools Office, Armidale-New South Wales has 
implemented the Wii Gaay mathematics program. The program highlights social 
justice for the gifted Indigenous student and engagement across school, family and 
community. Identified children enter the program at the age of eight or nine years 
and participate in a four-year program involving biannual residential schools with 
Indigenous people (Aboriginal Education Assistants) who are positive academic 
role models for the students. On-line mentorships linking adult Indigenous role 
models, peer mentors and project co-ordinators feature strongly in the project. The 
interplay of such groups strengthens the reconciliation process between peoples. 
Wii Gaay also focuses on educating teachers about the issues contributing to Indig-
enous academic underachievement, implementing strategies in a long-term manner 
that will promote academic achievement.
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The residential schools are “theme based” resulting in mathematics connectedness 
and relevance to the students and the venues. The teaching/learning activities focus on 
integrating mathematics teaching strategies with technology such as digital cameras 
and computers, and the creative arts. All activities are designed to challenge the Indig-
enous students to bring about enhanced mathematical learning. The students continu-
ally receive feedback and scaffolding to ensure that they experience ongoing success—
increasing their self-efficacy towards learning tasks. A key purpose of the residential 
schools is to challenge these Indigenous students to work and think mathematically as 
they use critical reflection in identifying the mathematical strategies they use in mov-
ing towards solutions to a number of problem-based questions and activities.

The students’ mathematical competencies are assessed orally and with manipula-
tives. This “testing” is unobtrusive and undertaken in a non-threatening way. Data 
are presented to the student, classroom teacher and parents. All Wii Gaay partici-
pants maintain weekly contact through email. There is an online mentoring program 
during Term 3 each year and school visits are made by the project coordinators 
and Aboriginal Education Consultant, ensuring regular opportunities to meet and 
discuss educational progress with the parents, principals, classroom teachers and 
Aboriginal Education Assistants. It is at these meetings that a DVD of the residen-
tial schools is used for teacher professional development and program feedback to 
parents and communities.

Sharon Cooke summarised Wii Gaay in the following way:

Wii Gaay empowers Aboriginal communities by encouraging/inviting parents/carers/
guardians of the students involved in the program to attend residential schools (camps) 
and to be involved in school based development around the program. We constantly seek 
parent, Aboriginal Educator and community advice/feedback on the program. Reconcilia-
tion is being addressed by inviting teachers from classrooms who have Wii Gaay students 
to come and see what happens at our residential schools and how teaching and learning 
happens without the constraints of a classroom environment. They walk in the shoes of our 
students who are potentially high achievers but need to be ‘taught’ in others way and with 
little to no chalk and talk. Self determination will come when these students achieve what 
they are meant to achieve. They will be the leaders of our future.

Unfortunately, the Indigenous students’ success within the residential program 
is not generally transferred to their mainstream classrooms. There remain many 
teacher professional development challenges around the modification of teaching 
practices and teacher attitudes towards raising their expectations for Indigenous 
students’ mathematical success;

 Conclusion

Across Australia over the past 30 years, there have been many mathematics in-
tervention programs developed and implemented with the aim of enhancing the 
mathematical learning outcomes of Indigenous students. While there is some evi-
dence that such enhancement has occurred, the frustrating reality is that it has not 
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occurred at a rate greater than the corresponding rate for non-Indigenous students. 
If anything, the gap between the achievements of Indigenous and non-Indigenous 
students on standardised testing in mathematics has widened over these years (De 
Bortoli and Thomson 2009). With the Closing the Gap strategy, the Australian gov-
ernment is determined to halve this gap by 2018.

This chapter has demonstrated the need for mathematics intervention programs 
to address a number of criteria related to the social, cultural and community con-
texts of the Indigenous learners and their families, as well as the particular math-
ematical characteristics of the material to be learned. Such programs need to ad-
dress the “lack of congruity between the student’s home environment or culture and 
the school’s culture” (Boethel 2003, p. 14) and recognise that such differences can 
place the student at a disadvantage. Sharon Cooke’s words provide many examples 
of how this can happen. While programs would expect the Indigenous students and 
their families to work towards improving the level of congruity, they should also 
expect that there will be movement by the school as well. The criteria discussed in 
this chapter provide important guidance for these endeavours.

Mathematics in Indigenous Contexts and Wii Gaay have provided exemplars 
for the ways in which the criteria can be used to design, implement and evaluate 
programs of mathematics learning for Indigenous students. These programs, like 
so much in Australian education, were based in one region or one state. The new 
national program Make It Count (2009–2012) has the opportunity to apply these 
criteria to develop school-family-community partnerships across Australia that will 
not only make a difference to Indigenous students’ mathematical outcomes but will 
do so in a way that is sustainable through impact on strengthening people’s be-
liefs in their own worth and their own identity. Make it Count is the next phase, a 
“chronological” attempt to include the criteria discussed in this chapter in a national 
mathematics project that can impact significantly upon mathematics teaching and 
learning for Indigenous students. As a nation, Australia is running out of time. We 
cannot countenance yet another school-centred program. Make It Count must assist 
schools and communities to work together to enhance the mathematical develop-
ment of the Indigenous students in those communities.
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In this chapter, we identify qualities of respectful positioning and their connections 
to quality and equity in mathematics. We consider these qualities in the context 
of the “Show me Your Math” (SMYM) event, which has run since 2006 and has 
become increasingly popular amongst Aboriginal communities in Atlantic Canada. 
Mi’kmaw and Maliseet students are invited to do ethnomathematical investigations 
to show others the mathematics in the practices of their communities. We draw upon 
Harré and van Langenhove’s (1999) positioning theory to describe the shifting sto-
rylines that are contributing to equity and quality within participating mathematics 
classrooms. Our sense of quality, equitable mathematical experiences focuses on 
wholeness.

Using examples of students’ ethnomathematics and our reflections on the nature 
of the positioning, we will demonstrate ways of seeing quality mathematics learning 
and relate these qualities to concerns for equity. We characterize quality learning in 
terms of wholeness. Thus, our sense of the word “quality” is underpinned by equity. 
Quality and equity are inseparable.

Wholeness resists fragmentation, thus quality mathematics experiences require 
cultural synthesis bringing together cultures and values from mathematics and the 
community, personal holism including the child’s experiential, conceptual, and 
spiritual development, and intergenerational interaction. Our interest in wholeness 
is another way of talking about equity. We will analyze student work in terms of 
values developed for mathematics and local community values.

The chapter is structured around stories of student participation to demonstrate 
students making sense of mathematics in relationship to their places in their com-
munity. Though the stories exemplify aspects of wholeness, we identify ways in 
which we would hope for more wholeness. Before this, we draw on Aboriginal 
scholarship relating to the context in Canada to give an account of local Aboriginal 
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views regarding quality education, which we synthesized to develop a multi-dimen-
sional approach to wholeness. We follow this with an overview of the positioning 
theory that was instrumental in the development of the SMYM event, and an ac-
count of the positioning in the event’s development. These sections set up the stories 
of student participation and our analysis of these stories in terms of the qualities we 
outline. In our reflection, we consider how the SMYM event might be relevant to 
other contexts.

 Quality Mathematics Education in Context

Our conception of quality education has arisen mostly from our conversations 
within the communities and is underpinned by concerns for equity. Nevertheless, 
we outline our sense of what quality means by drawing mostly on publications 
that reflect this sense. The relevant publications include scholarship relating to Ab-
original education, especially in Canada, and also professional literature relating to 
mathematics teaching.

The participant Mi’kmaw schools have a stated goal of developing community-
appropriate educational standards that include a focus on language and culture yet, 
by law, they are required to offer comparable curriculum to the public schools. 
Recent efforts in school improvement initiatives require the participant schools to 
write provincial assessments in mathematics and literacy. For these and other rea-
sons, no school would openly choose to move away from mainstream mathematics 
nor would they say that such achievement in mathematics is unimportant. However, 
the tension between the often-competing goals of community relevance and per-
formance for external standards presents challenges for mathematics education in 
Mi’kmaw communities. The provincially developed curriculum is underpinned by 
the National Council of Teachers of Mathematics’ (NCTM) Principles and Stan-
dards of School Mathematics document (NCTM 2000). Although the NCTM (2009) 
has stated, “a mathematics curriculum should focus on mathematics content and 
processes that are important and worth the time and attention of students” (p. 1) 
this assertion appears to be focused on a mainstream view of mathematics. We ask 
what mathematics content and processes are worth the time and attention of young 
Mi’kmaw and Maliseet students and, furthermore, we ask who decides. Are the 
same content and processes most relevant to children in all contexts?

A dominant theme in the literature is that Aboriginal education should seek “to 
heal and transcend the effects of colonization” (Cajete 2000, p. 181). Hampton 
(1995) argued that Aboriginal education cannot ignore the reality of colonization 
but rather must address the issue directly. Aboriginal education needs to move to-
ward decolonization which can be seen as a process of “deconstruction and re-
construction” (Battiste 2004) that “engages with imperialism and colonialism at 
multiple levels” (Smith 1999, p. 20). This demands the critical examination of the 
hegemonic structures of mainstream education that continue to perpetuate the val-
ues of colonialism (Battiste 2004).
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Cappon (2008) argued that Aboriginal education holds the view that learning 
is holistic, lifelong, experiential, rooted in Aboriginal languages and cultures, and 
spiritually oriented. He claimed that it is a communal activity with all community 
members playing a role and that it integrates both western and Aboriginal knowl-
edge. Orr et al. (2002) have shown how this notion of bridging Aboriginal knowl-
edge with mainstream curriculum has been worked at effectively by Mi’kmaw 
teachers in one of the participant communities. These teachers provided a quality 
education through the incorporation of cultural practical knowledge along with In-
digenous pedagogical, relational, and political consciousness.

Bringing together these articulations of values within Aboriginal communities, 
we note how they all relate to wholeness in some way. To facilitate analysis, we will 
use three views of wholeness that we developed through analysis of the data and 
synthesis of the literature, though we acknowledge that there are not clear bound-
aries between these three ways of looking. The three views of wholeness relate to 
cultures, to the person, and to generations.

Firstly, we heard and read a common thread pointing to the importance of con-
necting mathematical values and community values. When Mi’kmaw and Maliseet 
children do mathematics they work at the intersection of at least two strong dis-
courses—the mathematics discipline and community tradition. A quality mathemat-
ics experience must involve cultural synthesis, honoring values and practices from 
both discourses. Such synthesis addresses the call for decolonization (transcending 
colonization) not by ignoring or refuting the accomplishments of the colonizing 
cultures but by adjudicating them in terms of community values.

Secondly, we noted a common interest in the need to integrate all aspects of the 
child’s personhood. It is a human violation to separate them as different and inde-
pendent aspects, but referring to their distinctness helps recognize their integration. 
The personal holism that is a necessary part of quality mathematics experience 
is demonstrated well in a variety of North American Aboriginal medicine wheels, 
which embody the connections of the different aspects of the person. We will focus 
attention on the experiential, conceptual, and spiritual development of children, all 
of which are necessary.

Thirdly, a quality mathematics education experience requires connections among 
the generations. Intergenerational interaction connects elders, children, and others. 
We emphasize the word “inter-action,” which emphasizes the necessity that each 
generation takes action and responsibility in relationships in educational settings.

Our focus on wholeness is in line with current scholarship on equity in math-
ematics education. Gutiérrez (2007) argued that the conception of equity should in-
clude four dimensions: access, achievement, identity, and power. Because research 
related to equity in mathematics has tended to focus on access and achievement, 
these aspects are placed on the dominant axis in her model with identity and power 
comprising the equally important critical axis.

Gutiérrez argued for wholeness with her recognition that many students have 
been marginalized by mathematics because they are asked to deny their identity in 
order to participate in the dominant view of mathematics. She pointed to the work 
of ethnomathematicians and scholars who promote culturally relevant mathematics 
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as a source of identity within mathematics education. These streams of scholarship 
involve what we call cultural synthesis because they connect mathematics’ disci-
plinary values with contextual values from students’ cultures.

The window/mirror metaphor Gutiérrez used for describing identity connects to 
holistic identity: “students need to have opportunities to see themselves in the cur-
riculum (mirror) as well as have a view onto a broader world (window)” (p. 3). Her 
take on identity is closely related to power. The importance of power becomes very 
clear with a focus on positioning. The power dimension involves not only question-
ing who has power in the classroom in terms of who participates, who talks, and so 
on, but also as it pertains to using mathematics to question power relationships in 
the world and seeing mathematics as a human endeavor.

We recognize that our focus on wholeness attends more to the critical axis than 
the dominant axis of her model, but reiterate that leaders in the communities in 
which we have been having conversations have been unequivocal about the need for 
promoting mathematics achievement to bring expertise into the communities while 
valuing wholeness. The students need access to the mathematics that is recognized 
and valued outside the communities. Access and achievement are valued, but not 
above community values. Nevertheless, quality mathematics achievement and par-
ticipation is a condition of equity.

 Positioning Students as Participants in Community 
Interaction

Positioning theory was instrumental in the development of our research choices. 
This theoretical perspective on positioning follows from an edited book by Rom 
Harré and Luk van Langenhove (1999) and from Wagner and Herbel-Eisenmann`s 
(2009) elaboration of the theory in the context of mathematics education. In gener-
al, “positioning” is taken to refer to the way people use action and speech to arrange 
social structures. Words and associated actions evoke images of known storylines 
and positions within those stories. When one person invokes a storyline, others in 
the interaction may be complicit in this positioning or resistant to it.

Davies and Harré (1999) explained how positioning theory draws attention to 
“immanent” practices, as opposed to “transcendent” discourse structures (e.g. a stu-
dent’s relationship to the transcendent discipline of mathematics), which Wagner 
and Herbel-Eisenmann (2009) showed to be a common scholarly focus in math-
ematics education. With positioning theory’s attention to immanent relationships, 
aspects of human interaction become more noticeable because the larger discourses 
are ignored, even characterized by Davies and Harré as myths. Wagner and Herbel-
Eisenmann, however, maintained the promotion of attention to immanent practice 
without relegating discourses as inconsequential because people take discourses 
as being real in their own right and powerful in immanent interactions. In this 
way, so-called mythological disciplines, such as mathematics, are, for example, as 
real as race, which is said to be a myth (a human construct with no real basis) 
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but which has substantive manifestations in human relationships. Certain people 
(e.g. teachers) are positioned as mediums or representatives of transcendent influ-
ences such as “mathematics.” Wagner and Herbel-Eisenmann’s conclusion is in line 
with our view of cultural synthesis, as they argue against stripping mathematics of 
its power (demythologizing it) in favor of inviting new mathematical narratives 
that recognize mathematics in places that it has often been ignored or marginalized 
(remythologizing mathematics).

We began our research in Mi’kmaw communities by interviewing Aboriginal 
elders to identify some of their everyday practices (both traditional and current) 
that could be deemed mathematical. This typical approach to ethnomathematics 
research (c.f. Powell and Frankenstein 1997) relies on Bishop’s (1988) articulation 
of activities that are potentially mathematical (practices that involve counting, mea-
suring, locating, designing, playing, or explaining) and on the assumption that any 
mathematics is an artifact of a particular culture.

Although we were excited to hear the stories the elders were sharing with us, in 
reflection on this research we saw ourselves as mediators, interfering with the in-
tended process of connecting students to the mathematics in their communities. We 
were careful to orient our conversations with participants around mutual respect, yet 
we still found connections with colonialist storylines as we observed that some par-
ticipants were trying to be helpful by telling us what we wanted to know. While we 
appreciated this spirit of cooperation because it seemed generative for our planned 
research, it was also a little disturbing to have participants ask us if they were tell-
ing us what we wanted to hear. On reflection we recognized two concerns. First, we 
did not want to be seen as the ultimate audience but we often felt positioned in that 
way (and we were complicit in this positioning as well). Second, we worried about 
authenticity because participants were subjecting themselves to our agenda and we 
talked less about their agenda(s).

The interpersonal relationships appeared to be similar to the diagram in Fig. 27.1. 
The community experts were responding to our request for them to give us informa-
tion to pass on to teachers who in turn would pass it on to the children. The children 
would then do something called “work” for the teachers.

Attending to positioning opened up new opportunities. We realized that the 
conversations would be more authentic if the children themselves talked with 
elders and others to find mathematics in traditional and modern community prac-
tices. We needed to remove ourselves from the position of mediums. Also, reflect-
ing on Morgan’s (1998) research that underscores the importance of audience in 
students’ mathematical writing, we realized that positioning the children as the 
ultimate audience in the ethnomathematics conversation affords them no opportu-
nities to address an audience other than their teacher, and certainly no imperative 

Fig. 27.1  Interpersonal positioning in the initial ethnomathematical work
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to engage in real problems/issues faced by their community. New storylines were 
necessary.

As a result, we initiated a new series of conversations structured to prompt com-
munity members to talk and listen to each other about everyday mathematics in 
traditional and modern community settings. From our dissatisfaction emerged the 
SMYM event that changed the interpersonal positioning in substantive ways.

We approached some schools with the idea for an SMYM contest in which stu-
dents would be invited to do projects exploring the mathematics in their everyday 
lives. We planned to have students submit their work to a web site that would be 
hosted by the Atlantic Canada First Nation Help Desk, an existing infrastructure 
that supports communication amongst communities via the internet. Such “con-
tests” are commonly used in this region to promote community-based education 
and to develop cultural resources for teachers and students. While this plan was well 
received, the teachers in our initial meeting wanted more than a web site. They sug-
gested schools host local mathematics fairs and send selected students to a regional 
fair where they could share their work with others.

To substantiate the break from the school tradition of students doing work for 
teachers as audience, we also suggested that instructions for the contest be given in 
a video. The teachers in the workshop contributed to the structuring of the video, 
but we produced it. It featured Aboriginal people, including an elder, a middle-aged 
teacher, and children, all asking the viewer (the student) to “show their math.” We 
felt that the form of this video helped students see the community as their audience 
instead of their teachers. In response to this prompt, school children interviewed el-
ders, experts in crafts, and others to explore mathematics done in their communities 
in historic and modern times. They published their work on the internet site and also 
presented their work to the region’s communities in a math fair.

The interpersonal relationships structured with the SMYM event are more 
complex than the relationships in our initial work. Figure 27.2 represents an 
attempt to diagram the relationships. The teachers (and some other community 
representatives, including elders) were and continue to be in conversation with 
us. They initiate student investigations that involve students in conversation with 
experts in the community. The students report back to the community, to their 
teachers, and to us at mathematics fairs and also to the outside world because 
their work is put on the web site (http://schools.fnhelp.com/math/showmeyour-
math/index.htm).

Fig. 27.2  Interpersonal positioning with the “Show me Your Math” event
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We elaborate elsewhere (see Wagner and Lunney Borden, in press) on these 
shifting positioning structures and associated storylines, and on the power of po-
sitioning theory for interrogating relational practice. This chapter has a different 
focus. We draw upon examples of student work in the SMYM event as examples 
of quality equitable mathematics education. With students positioned as researchers 
and disseminators of mathematical knowledge, this project has done what Wagner 
and Herbel-Eisenmann (2009) called for in their theoretical article on positioning: 
the SMYM project has given students an opportunity to “identif[y] with storylines 
that are not traditionally a part of mathematics classroom discourse” (p. 13). These 
new storylines brought about qualitatively different relationships for students with 
other community members and with mathematics as a field of study.

 Examining Student Work

We now turn our attention to the work produced by students for the SMYM event 
to illustrate the different views of wholeness that we see as central to quality math-
ematics education. We ask to what extent students demonstrated that their experi-
ence involved cultural synthesis, personal holism, and intergenerational interaction. 
No one example exemplifies our vision for wholeness perfectly, but each example 
shows aspects of good relationships and helps point the way to an ideal.

Authorities on Efficient Shapes

A unit in Mathematical Modeling—Book 1 (Barry et al. 2000), the current Grade-10 
text in Nova Scotia, prompts engagement in a series of investigations and exercises 
that would have students examine the geometry of packaging. The unit includes a 
lesson on “the economy rate”—the ratio of the volume to the surface area of a shape. 
Through investigations, students discover that a cylinder with its height equal to its 
diameter is the most economical cylindrical container for a given volume. In 2009, 
a group of Grade-10 students from one of the participant schools brought this text-
book knowledge to the community practice of basket making.

They invited two community elders to come to class and teach them how to 
make baskets. They were surprised to discover these elders already knew about 
efficient containers: the elders could identify the baskets that needed the least mate-
rial for their capacities. A student remarked, “They already knew which [basket] 
was the most economical. They didn’t have to do all the math that we did. We had 
to do the math to find out which ones it was.” We were not present to see “all the 
math” the students did, but it is clear that they were using formulas to explore a 
geometry problem and that the presence of the elders prompted them to explain and 
justify their work more than they would have with only their teacher as an audience. 
Explaining to a teacher is less natural because the teacher is assumed to already 
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know and understand. Thus, there is evidence of multiple processes promoted by 
the NCTM (2000): problem solving, communication, connections, and reasoning.

The cultural synthesis is particularly strong in this example, as traditional com-
munity knowledge is explicitly set alongside textbook knowledge. This synthesis 
was especially powerful because students were aware of the juxtaposition and cen-
tral to arranging it. The textbook was repositioned in that its typical position of 
dominance in classroom authority structuring was challenged by revelations that 
there were more local authorities. This challenge of textbook authority could be 
seen as an attempt to demythologize the powerful discipline of mathematics, but it 
also could be seen as a remythologizing. Is mathematics diminished when academic 
authorities are brought alongside local, cultural authorities? No, the sources of au-
thority corroborate each other: both would garner more respect from the students, 
whose sense of authority also increased as they arranged and interpreted the con-
nection.

The intergenerational aspects of this cultural synthesis are also evident. The 
complicated mathematics of the students’ textbook is remythologized as common 
sense often used by the elders. No textbook author was needed to tell these elders, 
or the many generations of basket makers they learned from, which container was 
the most economical. In the student’s observation of this elder knowledge, we see 
that students see this knowledge as part of their own cultural traditions, a piece of 
their identity as Mi’kmaw people.

The shift in positioning contributes to the development of personal holism be-
cause it relates to the students’ identity. Furthermore, the hands-on experience of 
building the baskets, added to the usual task of observing/measuring capacities, 
provided students with a more concrete experience of the concept in the textbook, 
helping to build conceptual understanding: their bodies were involved in the devel-
opment of their understanding.

We also note that aspects of wholeness were not evident to us in this example. 
Regarding personal holism, we note the absence of spiritual development. We won-
der how this aspect could have been addressed in the classroom experience. Was 
there a space provided for elders to share stories associated with basket making such 
as those that provide insight into the proper way to select the tree, gather the wood, 
make the strips, and so on? We were not present in the classroom during this inter-
action and we did not explicitly ask questions about spirituality at the math fair so 
we are unaware of the degree to which this aspect of personal holism was reached. 
Nevertheless, the intergenerational conversation about basket making opened the 
possibility for future interaction that may include more spiritual dimensions.

Drum Making

In a project from the 2007 math fair, a Grade-4 class brought community knowledge 
to the forefront in mathematics class as they made hand drums and prepared a Pow-
erPoint™ presentation to submit for the website documenting their experience. This 

D. Wagner and L. L. Borden 



387

project differs from the example described above because it started with a commu-
nity practice rather than from school-based mathematics practices.

The presentation opens with a photograph of three wooden frames sitting on 
the table and saying, “We started our drums with a 12 sided pine frame. The wood 
burned turtle you see is a starting point for threading our drums.” On the next slide 
there is a frame placed on a deer hide with the text: “When making a drum we need 
to focus on balance and centering. In Mathematics we focus on Symmetry.” The 
next few slides show pictures of a community member teaching the students how 
to make the drums. One photograph shows her demonstrating to the children how 
to measure the sinew using arm lengths, and another shows four children stand-
ing at the front of the classroom, each about a meter apart, holding parts of the 
outstretched sinew. Next, a slide draws attention to mathematical connections with 
these statements: “We learned the importance of measurement in preparing our ma-
terials” and “We measured the diameter and compared our new shape to a circle.” 
A series of photographs showing the children making their drums explain, “As we 
thread the sinew through we first go across the diameter of the drum frame starting 
at the sign of the turtle” and “It is important that we bring everything to the centre 
to maintain the balance of our drums.” The concluding text, accompanied by an 
image of the entire class proudly showing their drums, proclaimed, “We learned 
many things when making our drums. The most important is to maintain balance 
and centre in our lives.” Throughout the slide show, the Mi’kmaq Honor song plays 
in the background.

There are significant storylines in this example that differ from typical classroom 
mathematics storylines. Again, there is intergenerational interaction as the children 
learned from a community member known for her expertise in drum making as well 
as her significant traditional spiritual knowledge, which is a shift from the usual 
storyline of learning from the teacher. We note that there could be a greater connec-
tion made between the community knowledge and the school mathematics as it is 
unclear how explicitly the connections were made. Nevertheless, there is a degree 
of cultural synthesis with the recognition that the drum-making values align with 
mathematical obsessions, namely symmetry, and working from a point of origin. 
The drum making seems to be the dominant aspect of learning with the mathemat-
ics added in. We wonder to what extent the students recognized the importance of 
the mathematical connections. We can imagine them seeing the connection as a glib 
assertion. This shift to privileging the community knowledge to eclipse mathemat-
ics may be completely appropriate in this instance because the typical classroom 
experience is just the opposite, but leaves open questions about the depth of the 
cultural synthesis.

Personal holism is evident in the ways that the children were positioned as active 
agents using their hands (and eyes), discovering both mathematical and cultural 
knowledge in a way that is rooted in spiritual traditions, consistent with Cappon’s 
(2008) vision of Aboriginal learning. They were learning from doing, which devel-
ops their experiential knowledge, yet we wonder what mathematics they learned. 
There was ample opportunity for strong connections with mathematics in the stu-
dents’ curriculum (symmetry) and beyond (the significance of an arbitrary origin) 
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but in our conversation with students, they told us mostly about the physical and 
spiritual aspects of the drum making. Perhaps this is to be expected of children at 
this age.

We chose this example because it exemplified the spiritual development of the 
child, which is an aspect we have seen lacking in many other projects. Relating to 
Doolittle’s (2006) concerns, the students are not being led away from the culture, 
rather they are being led toward important cultural and spiritual lessons that honor 
the drum making and this experience “pulls in” mathematics. The more usual direc-
tion of cultural synthesis seems to be a focus on some mathematics followed by a 
look at community practices that might be pulled into the mathematics. Doolittle 
called this pushing the mathematics into the culture. The spirituality is especially 
evident in the students’ concluding statement that the most important thing they 
learned was a lesson about living a balanced and centered life. This was reaffirmed 
at the math fair where one of the students was excited to tell us about what his class 
had done (the student is “T,” the interviewer is Lunney Borden, “LLB”):

T:  This one that I made, it has twelve sides so that’s a dodecahedron, right. 
While I was making it we took time because usually people take like twelve 
days but we took an hour and a half. ( He turns the drum over to show the 
back). So we used um, I think it was red deer or red moose, I don’t know 
actually but right here it tells you how to make it. ( He leans forward to 
point out the sheet of instructions posted in front of their drum display.) We 
put a sponge in the drumsticks. We took our time with these. ( He pauses 
for a bit hitting the drum a couple times with his drum stick, then turns the 
drum over again revealing the back). The turtle represents the day. The 
twelve sides is like twelve in the head so that’s like an Indian drum so if 
you hit at the turtle ( He turns the drum over and hits the drum at the turtle 
[12:00] position) that’s um, you’re going to the spirit world. If you hit over 
here you’re praying for the boys ( He moves the drumstick counterclockwise 
to the west position) down here ( south position) you are praying for the 
girls and over here ( the east position) is for the ones that are coming.

LLB:  Cool, so did you ever think that was math? Building a drum?
T:  Yeah, I think it was because we asked a lot of questions, we learned about 

it and we ended up learning and um…she’s going to come back and teach 
us a little bit of singing.

For this boy, the cultural and spiritual components eclipsed the mathematics learning.

 Reflection

As demonstrated in the projects described above, intergenerational interaction in 
the form of learning from community members was often present in the SMYM 
projects and this interaction seemed to contribute to the promotion of cultural syn-
thesis and personal holism. This storyline is consistent with traditional educational 
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practices in pre-contact society and continues in many aspects of informal learning 
to date.

Joanne, a principal in one of the schools, described to us an experience of work-
ing with her six-year-old daughter on her SMYM project. She explained how in 
helping her daughter think about a project idea, she remembered a game her mother 
and aunts had played when she was a child. The game, kunte’jl (little stones) is quite 
simple but involves counting and coordination. Play involves flipping one’s hand 
and catching the stones in the palm, on the back of the hand, and continuing back 
and forth. Joanne explained that her daughter was intrigued by the game and im-
mediately began playing it with her sister. Though Joanne is an educator who values 
academic knowledge and achievement, the most significant aspect of this experi-
ence for her seemed to be the opportunity to tell the story to her daughter. Joanne 
told us that she had almost forgotten about this game that she had played with her 
mother. The SMYM project prompted three generations of Mi’kmaw women to 
share a family story. This kind of sharing is highly valued in the Mi’kmaw commu-
nities, especially because, as Joanne noted, if her daughter hadn’t asked her about 
the game, it could well have been forgotten and forever lost to the community. 
Knowledge remains alive as it is engaged in intergenerational experiences.

We claim that the kind of learning we describe here, in which students connect 
hands-on experiences, mathematical abstraction, and community cultural traditions 
through intergenerational interactions, exemplifies quality and equity in mathemat-
ics education. In addition to drawing on community ideas of quality, we see these 
projects as connecting to NCTM standards and principles, in particular, those relat-
ing to communication, connections, and equity. Students make connections between 
mathematics and their own community contexts and in turn communicate this learn-
ing using the language of mathematics and the language of their community in some 
instances. The accounts we have given do not demonstrate the effect of wholeness 
on student achievement but they do show an engagement that embraces cultural 
identity. We are confident that such engagement translates into qualities that ex-
press themselves in achievement and educational choices that improve measures of 
participation. With mathematical experiences that demonstrate wholeness, students’ 
mathematical reasoning is not positioned as belonging outside of the community. 
Instead, it is positioned as a part of (or at least connected to) community knowledge 
and practice. Thus, we believe that such an approach promotes equity by addressing 
the critical questions of identity and power while also supporting increased access 
and achievement. The qualities of achievement and participation are a condition of 
equity, and are meaningless (perhaps destructive) without wholeness and its impli-
cations for identity and power.

Ole Skovsmose commented from the floor in a plenary discussion at the Sym-
posium on the Occasion of the 100th Anniversary of ICMI in Rome in 2008 that 
he would like to see research from Aboriginal or developing world contexts not 
advertise these contexts in their titles because identifying these contexts suggests 
that the children in the majority cultures of developed countries are the only nor-
mal children. Research from majority cultures is not typically identified by its con-
text: there is no article title like “American students’ conceptions of their identity 
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in mathematics” or “European boys and their mathematical positioning.” Our title 
does not locate the research described here in its context, because we want to argue 
that quality education demands wholeness in any ethnic or socio-economic context.

In our reflections, we are compelled to ask how our experience in an Aborigi-
nal context might speak to other contexts. Is it reasonable to aim for wholeness 
elsewhere? And, how might our experiences with the SMYM event guide others 
interested in aiming for wholeness in other contexts? Disengagement from math-
ematics is not an issue that is exclusive to Aboriginal communities; on the contrary, 
we see that it is a pervasive concern for many communities. Recalling the NCTM’s 
(2009) claim that mathematics “must be taught and learned in an equitable manner 
in a setting that ensures that problem solving, reasoning, connections, communica-
tion, and conceptual understanding are all developed simultaneously along with 
procedural fluency” (p. 2), we note how the SMYM event fulfils many aspects of 
this demand.

We acknowledge that in any mathematics classroom, multiple and perhaps com-
peting discourses may be at play. We see the ethnomathematical approach used in 
the SMYM event as providing a path for any student to investigate the intersec-
tion of competing discourses from their own cultural view and to examine the role 
of school-based mathematics through a critical lens. We have demonstrated above 
that this approach can enable cultural authorities to corroborate mathematical au-
thorities, promoting greater cultural synthesis. The kinds of interactions and the 
wholeness they embrace can come from Aboriginal students working with baskets, 
drums, and games, but they can just as well come from Anglo-Canadians working 
with their grandmas’ dishes (as suggested by Doolittle in his 2006 plenary address 
to the Canadian Mathematics Education Study Group). Cultural synthesis, bringing 
mathematical and local knowledge together with intergenerational experiences that 
value the whole person, can be valuable in any context. In such an environment 
quality mathematics is inseparable from equitable experience.
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From 1991 to 2001, the enrollment of English language learners (students whose first 
language is not English, but who are learning English because it is the language of 
instruction) in U. S. public schools increased by 95%. During the same time period, 
the general student population increased by only 12% (Padolsky 2002). The rapidly 
growing number of English language learners (ELLs) in public schools creates a 
critical mass, that cannot be ignored, of students who are learning English and at the 
same time they are learning mathematical content. One of the most serious issues 
related to this increasing population of ELLs is the wide achievement gap in reading 
and mathematics existing between these students and those whose first language is 
English (National Assessment of Educational Progress (NAEP) 2005). The achieve-
ment gap in mathematics concerns educators since success in mathematics has been 
linked to science, technology, engineering, or mathematics (STEM) professions that 
provide increased lifetime earning power, suggesting that mathematics is the gate-
keeper to higher paying professions (Lubienski 2007). However, those whose first 
language is not English are under-represented in these fields. For example, income 
comparisons among ethnic groups show that 65% of Latinos with limited English 
proficiency, 50% of English proficient Latinos, 44% of African Americans, and 29% 
of Caucasians made less than $30,000/year in 2002–2003 (Fry 2003; National Cen-
ter for Education Statistics (NCES) 2003). In 2003, NAEP also reported that 36% of 
all fourth graders scored at or above the proficiency level in mathematics while only 
11% of ELLs reached at or above proficiency level (NCES 2003).

These statistics indicate that achievement in mathematics is an issue of equity as 
ELLs are not performing at the same level as those whose first language is English 
and therefore are ill prepared to enter science, technology, engineering, or mathemat-
ics (STEM) careers. By equity, we mean “high expectations and strong support for all 
students” (National Council of Teachers of Mathematics (NCTM) 2000). NCTM also 

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
DOI 10.1007/978-90-481-9803-0_28, © Springer Science+Business Media B.V. 2011

Chapter 28
The Effects of Poverty and Language on 
Mathematics Achievement for English  
Language Learners

Clara Lee Brown, Jo Ann Cady and Cheryl A. Lubinski

C. L. Brown ()
The University of Tennessee, 217 Jane & David Bailey Education Complex, 
Knoxville, TN, USA
Tel.: +1-865-974-4146
Fax: +1-865-974-6302
e-mail: cbrown26@utk.edu



394

suggests that “All students, regardless of their personal characteristics, backgrounds, 
or physical challenges, must have opportunities to study—and support to learn—
mathematics. Equity does not mean that every student should receive identical instruc-
tion; instead, it demands that reasonable and appropriate accommodations be made 
as needed to promote access and attainment for all students” (NCTM 2000). When 
mathematics teachers work to increase the mathematics achievement of ELLs, this 
increased achievement becomes “a powerful ladder of mobility” (Lubienski 2007).

A question, then, arises: What can mathematics teachers do differently to in-
crease ELLs’ mathematics achievement? The answer can be quite simple, focus on 
what students know and can do and build upon this knowledge (Chenoweth 2009). 
When teachers focus on student learning and build structures that support students, 
they abandon their traditional approaches of direct instruction and skill-oriented 
practices, and create a quality mathematics education classroom. If the answer is 
so simple, then why do ELLs continually lag behind their fully English proficient 
(FEP) peers? In finding answers to this question, we first need to examine the exist-
ing system for teacher beliefs that impede ELLs’ achievement in mathematics and 
find ways to address those beliefs so that ELLs have opportunities to learn and suc-
ceed in mathematics. Apple’s (1995) words below reiterate why we must learn to 
understand the issues that create unnecessary barriers for many students.

For without a recognition of the socially situated character of all educational policy and 
practice, without a recognition of the winners and losers in this society, without more 
structural understanding of how and why schools participate in creating these winners and 
losers, I believe we are doomed to reproduce an endless cycle of high hopes, rhetorical 
reforms, and broken promises. (p. 331–332)

In this chapter, we will argue that English proficiency, which is commonly thought 
to be the cause of ELLs’ low achievement in mathematics, may not be the primary 
culprit of such phenomenon. On the contrary, poverty seems to be a stronger pre-
dictor for low mathematics achievement and may play a larger role in ELLs’ math-
ematics performance than their below grade level English proficiency. We suggest 
that poverty is closely intertwined with discourse, which in turn, affects academic 
communication between teachers and students of different socioeconomic strata. 
Before discussing how we can best assist ELLs to achieve at their maximum po-
tential in mathematics, we will address the beliefs held by decision-making stake-
holders, mainly classroom teachers that hinder the success of ELLs (Nieto 2010; 
Weissglass 1997). These beliefs are then challenged by current research regarding 
effective schools for ELLs and poverty students. Below we delineate beliefs within 
mathematics education that create inequity for ELLs.

 System Factors That Impede ELLs Mathematics 
Achievement

We suggest that the prevailing dominant view of mathematics education for ELLs 
espouses a deficit view, where the victim is blamed for inadequate achievement. For 
example, many teachers insist ELLs would eventually perform better when they are 
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more fluent in English because they could better understand instructions. However, 
while investigating mathematics achievement differences between ELLs and fully 
English proficient students (FEPs) on a literacy-based performance assessment 
(LBPA), Brown (2005) found that the impact of socio-economic status (SES) was 
larger on FEPs than on ELLs. While high-SES FEPs outperformed high-SES ELLs, 
there was no significant difference between low-SES FEPs and low-SES ELLs. 
Most interestingly, however, the study revealed that high-SES ELLs outperformed 
low-SES FEPs. Non-school factors, such as the presence of a print-rich environ-
ment, are associated with higher cognitive academic language proficiency for both 
ELLs and FEPs. Therefore, high-SES ELLs would not do as well as high-SES FEPs 
because of less developed academic English, yet, the advantages of their high SES 
allowed high-SES ELLs to outperform low-SES FEPs, which might suggest that 
FEPs from low-SES backgrounds lack academic language proficiency. The low-
SES FEPs’ only “advantage” then was superior conversational English, of little 
use for performing academic tasks. Thus, poverty may be a stronger factor in de-
termining mathematics achievement. Or at least, poverty and language are closely 
intertwined in determining students’ success in mathematics. While not as profound 
as Brown’s study, the NCES reports in an Issue Brief (2008) that “among students 
living in poverty, English Language Learners scored 3 points lower, on average, 
than English Proficient students whose second language was English, but not mea-
surably different than students whose primary home language was English.” What 
is evident is that English proficiency cannot be the major reason why ELLs’ math-
ematics achievement is lagging behind that of FEPs. The National Literacy Panel 
reports similar findings in reading. Their executive summary states that oral fluency 
and proficiency in the first language can be used to facilitate literacy development 
in English, suggesting that tapping into the first language can confer advantages to 
ELLs.

Contrary to deficit views, it can be said that English proficiency itself does not 
guarantee academic success nor does exposure to a second language, by itself, help 
ELLs be academically successful (Brown 2005; Kieffer 2008). In fact, the nega-
tive effects of concentrated poverty may be less severe for ELLs than for native 
speakers of English. One of the possible explanations would be that ELLs are more 
resilient to the effects of poverty because of their ELL status. Studies have shown 
that bilingual children are more cognitively flexible and display cognitive advan-
tages over monolingual children (Peal and Lambert 1962). Peal and Lambert report, 
from a study that explored the relationship between bilingualism and intelligence, 
that bilinguals scored higher than monolinguals on both verbal and non-verbal in-
telligence and concluded that bilingualism is more advantageous in that bilinguals 
are “more adept at concept formation and abstract thinking than the monolinguals” 
(Peal and Lambert, p. 14).

High-SES students have other advantages associated with their status, such as 
more books available at home and parents with higher levels of education (Krashen 
and Brown 2005). As a result, parents, guardians, and family members are more 
likely involved in assisting with homework, and dinnertime conversations may be 
more stimulating and educational in terms of cognitive development, whether the 
conversations take place in English or in another language. The disposable incomes 
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associated with high SES might also suggest that family members take their chil-
dren to local libraries or museums for educational enrichment that are not neces-
sarily readily available at school. Regardless of culture or the country of origin, it 
seems that ELLs from high-SES levels consistently outperform low-SES FEPs and 
“opportunities provided to students at home, such as access to reading materials, 
were the most common characteristics that discriminated schools whose students 
achieved at a high level from those scoring at a low level on the TIMSS mathemat-
ics and science assessment” (Kitchen et al. 2007, p. 7).

A deficit view is also apparent when teachers believe that ELLs’ poor math-
ematics achievement is directly caused by their ELL status. Low expectations and 
negative perceptions of their students based upon race, class, and/or language cause 
teachers to behave differently toward their students (Anyon 1980; Finn 1999; Seca-
da 1992). As a result, ELLs are often taught less mathematics through traditional 
approaches of direct instruction and skill-oriented practice (Campbell and Langrall 
1993; Hunt and Pritchard 1993), further marginalizing these students. Such meth-
ods of instruction not only ignore the needs of ELLs or low-SES students, but also 
deprive them of cognitive stimulation and reinforce negative self-images (Silver 
et al. 1995). Since the mathematical success of students from high-poverty schools 
is directly related to the expectations held by their teachers (Kitchen et al. 2007), we 
must urge teachers to hold high expectations for ELLs (Kitchen et al. 2007). When 
teachers have high expectations for their students, they are more likely to offer chal-
lenging mathematics content along with high-quality mathematics instruction, thus, 
promoting equity for every student.

We agree with Boaler (1997a, b, c) when she suggests that differences between 
traditional and reform classrooms are issues of equity, since students in traditional 
classrooms are rarely expected to explain their thinking and thus, lack an ability to 
explain what they understand conceptually or in real-world terms. Students also fail 
to retain the information presented in traditional instructional approaches over a 
long period of time. These instructional practices alienate talented students as well 
as ELLs and low-SES students, therefore, depriving them of opportunities to accel-
erate so that they can continue a pursuit of mathematics (Boaler and Greeno 2000). 
Furthermore, we know from the TIMMS study, that most mathematics teachers use 
these traditional practices, especially when working with low-SES and ELL stu-
dents. It is an unfortunate reality in the United States that second-language learners 
and poverty are closely associated (DeVillar 2000).

An alternate vision that would empower ELLs and students living in poverty 
would be to allow the non-traditional ways that ELLs communicate. Moschkovich 
(2002) calls it “situated learning”, where teachers value ELLs’ sociocultural back-
ground and focus attention on how students actually construct knowledge, negoti-
ate meaning, and participate in mathematical communication in order to maximize 
their mathematical learning. In a situated mathematics classroom, ELLs can use 
gestures to communicate. They can draw to show how they solved problems. They 
can facilitate their communication by using concrete objects that ELLs are more 
familiar with in their community. They can use their own funds of knowledge based 
on everyday experiences to explain mathematical concepts. Most importantly, they 
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can use their first language to communicate mathematically (Ovando et al. 2003; 
Ramirez 1992). This situated perspective broadens the traditional notion that pre-
scribes the ways that mathematical concepts are communicated. The situated per-
spective acknowledges what ELLs bring to mathematical learning by valuing ELLs’ 
sociocultural backgrounds and knowledge and recognizes them as rich resources 
that assist them in the learning of mathematics (Ganesh and Middleton 2006). That 
is, within a situated learning environment, language differences existing for ELLs 
become an asset, not a handicap.

This situated perspective becomes critical when we look at the recommenda-
tions of the NCTM standards documents and publications (1989, 1991, 1995, 2000, 
and 2007) which suggest a vision of the mathematics classroom where students are 
engaged in real-world problem-solving activities. These activities expect students 
to create mathematical models and communicate their thinking orally and in writ-
ing, while making and testing hypotheses. This view stands in sharp contrast to 
traditional mathematics classrooms that posit the teacher as the sole demonstrator 
of algorithms and presenter of rules and definitions for students to memorize and 
regurgitate. The reform view suggests that teachers incorporate mathematical ex-
amples from bilingual communities when solving problems in order to enhance the 
learning of mathematics.

However, the classrooms envisioned by NCTM can inadvertently promote ineq-
uity in the classroom where a certain group of students is alienated because its vision 
favors one discourse pattern over others. Here, we draw on the work of Bernstein 
(1975), who points out the distinctive discourse patterns among people of different 
socio-economic backgrounds. He discovered that syntactical complexity and lexi-
cal diversity varies among people’s discourse depending on their occupation. For 
instance, people with white-collar, managerial positions use more elaborate speech 
since their work-related community values diverse opinions among workers, thus, 
it is necessary for them to engage in communication based on negotiation and col-
laboration. The elaborated speech style is characterized by a variety of vocabulary 
and complex and longer sentences with modifiers and subordinate clauses. People 
who employ such an elaborated speech code do not assume the interlocutors have 
background knowledge on the topic and provide more information to make the con-
text accessible to those with varying backgrounds.

On the contrary, working-class people usually hold jobs in manufacturing where 
they are required to take orders from their superiors and follow orders without ques-
tioning. The communication is unilateral in nature in that negotiation is not allowed 
and collaboration is not necessary (Finn 1999). Working-class people thus do not 
need to engage in communication where elaborated discourse style is a necessity. 
Language expressions used among working-class people are characterized by less 
variety in vocabulary and simpler syntactic structures. People who employ this lan-
guage style also tend to assume that their audience would understand without much 
elaboration on the topic being discussed.

The discourse style dictated by work affects the way family members communi-
cate at home (Bernstein 1975). For example, middle-class parents (white collar) en-
courage their children to think divergently, ask them to provide different opinions, 
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and demand their children use language that elaborates and clarifies meaning when 
helping their children with their schoolwork. Middle-class parents also ask their 
children to express what they do or do not understand when guiding them in solv-
ing problems; but, working-class parents focus more on the context of the problem 
and do not engage in discussion regarding the process involved in problem solving 
(Ganesh and Middleton 2006). Working-class parents also expect their children to 
follow their orders and demands without negotiation or discussion, just as they are 
expected to do at work (Finn 1999).

In explaining disparity in mathematics achievement, discussing the discourse 
style at work or home is important because examining discourse patterns unique 
to social class reveals how they actually affect school learning and mathematics 
achievement in particular. The discourse style valued in academic settings espoused 
by NCTM standards documents encourages elaborated speech using questioning, 
hypothesizing, and argumentation. Students who experience this discourse style at 
home have greater advantages in school. By the same token, students from low-SES 
groups are placed at a great disadvantage because their dominant mode of communi-
cation at home is not compatible with the one valued in the mathematics classroom. 
Discussion-oriented mathematics, where justification and questioning are required, 
benefits higher-SES students while frustrating students from the working class (Lu-
bienski 2002, 2007). Anyon’s (1980) seminal work clearly illustrates how discourse 
style shaped by SES backgrounds influences the classroom discourse. She observed 
that mathematics teachers teaching in exclusively working-class communities 
taught their students to follow procedures without engaging students in discussion. 
The differences in communication styles between high-SES and low-SES students 
were apparent when students described a drawing of squiggly lines and a male’s 
facial expressions. Students from middle-class and low-SES backgrounds describe 
the drawing with remarkably different language in terms of syntactical complexity 
and lexical diversity (Heider 1968, cited in Cazden 1968, p. 607).

High-SES student’s description: It’s a figure which is even on both of its sides and 
has an opening at the top and it’s curved at the bottom or he has his left eyebrow 
raised more than any of the other faces.

Low-SES student’s description: It looks like two snakes are fighting at each other 
or he looks surprised.

The description of the middle-class student is distinguished by a long compound 
sentence with subordinate clauses and a variety of vocabulary. More importantly, 
the student provided extremely elaborative descriptions in a decontextualized man-
ner in which the student did not assume the audience shared the same context. On 
the other hand, a student from low-SES backgrounds wrote a simpler sentence with-
out elaborating on what he or she meant by “two snakes are fighting at each other.” 
It indicates that this student made assumptions that the audience would understand 
what he or she is describing in absence of added details. The differences between 
these two sentences are striking in terms of explicitness of language or lack thereof.

We, thus, contend that poverty, academic discourse, and mathematical achieve-
ment are closely intertwined, even more so than we would want to acknowledge, 
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and cannot be easily separated. The point of our discussion is, however, not that 
teachers in mathematics should change their discourse patterns. In fact, teachers 
must help students of low-SES backgrounds acquire academic discourse. Unfor-
tunately, in real-life, the opposite seems to be true. Anyon’s (1980) working-class 
schools unequivocally showed that teachers deliberately did not engage their stu-
dents in rich academic discourse and limited their learning experiences to me-
chanical, procedural aspects of mathematics believing that their students would 
not be able to handle academic discourse. Inequity results when teachers do not 
offer challenging curriculum or engage students from working-class backgrounds 
in discussions because they believe these students are not cognitively able. Math-
ematics educators must challenge these teachers’ beliefs and provide information 
regarding supporting low-SES students in acquiring academic discourse, since 
the current discourse in mathematics classrooms favors students of high SES. 
Unfortunately, more than half of ELLs are concentrated in city schools that serve 
high-poverty families (Crawford 2000) and live in low-SES households where the 
discourse patterns of classrooms may not be the dominant mode of communica-
tion (DeVillar 2000).

Additionally, findings from research indicate that examining one’s beliefs 
needs to be the first step to insuring quality and equity in mathematics education 
(Nieto 2010; Weissglass 1997); that discussions and proficiency in the language 
spoken at home facilitates conceptual understanding for ELLs (Ovando et al. 
2003; Ramirez 1992); and that it is important to discuss the issues of identical 
education versus equitable education. In 1974, the Lau versus Nichols Supreme 
Court ruling manifests that the school district must take affirmative steps to rem-
edy the learning situations caused by ELLs’ low English proficiency by making 
instruction comprehensible to them. This ruling clearly specifies that ELLs sitting 
in the same classroom, taught by the same teacher, using the same textbook, may 
be identical education, but it is not considered equitable education. Research find-
ings have provided us with information about ELLs that suggest theories about 
possible solutions to improve ELLs’ mathematics achievement. How can these 
theories play out in practice?

 Closing the Gap Between Theory and Practice

Much like Michelangelo saw the finished sculpture inside the slab of marble and knew his 
work was to find it, teachers must believe students have mathematical understandings that 
need to be uncovered and their work as teachers is to find the means by which to do this.

Almost 20 years ago, Secada and Carey (1990) recognized that ELLs benefit from 
Cognitively Guided Instruction (CGI). We suggest that CGI is one viable approach 
to teaching mathematics to ELLs and thus CGI can help close the gap between theo-
rists, who propose solutions based on research, and practitioners, who are teach-
ers and administrators responsible for the decisions in the classroom regarding the 
teaching and learning of mathematics.

28 Effects of Poverty and Language for ELLS
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The National Research Council in their book Adding It Up describes CGI as a 
successful research-based program that:

…focuses on helping teachers construct explicit models of the development of children’s 
mathematical thinking in well-defined content domains…teachers develop their own 
instructional materials and practices from watching and listening to their students solve 
problems. (National Research Council 2001, p. 400)

The premise underlying CGI is that if teachers learn how their students come to 
understand mathematical ideas they can provide better instruction for the students 
in their classes. This premise connects to Chenoworth’s (2009) belief that teach-
ers need to determine what students need to know and assess what their students 
already know and are able to do. The teachers’ role is to determine how to move 
students from where they are to where they need to be, analyze what students have 
learned, and decide whether further instruction is necessary. Teachers throughout 
the United States have attended CGI workshops and implemented CGI in their 
classrooms for topics involving whole numbers, algebra, geometry, and measure-
ment. Even though the focus of CGI has been at the K-5 level, CGI has implications 
for higher education (See Otto et al. 1999; Lubinski and Otto 2004, b).

Research conducted on CGI teachers has consistently shown that they involve 
their students in more problem solving; accept a wider variety of problem-solving 
strategies from their students; expect children to participate actively in problem 
solving and to share their thinking with one another and the teacher; and base in-
structional decisions on the understanding of the students in their classes (Fennema 
et al. 1996). CGI has been implemented in various locations with a large number 
of minority and low-income students as well as in Hispanic communities (Secada 
and Carey 1990). Research has also consistently shown that students in CGI classes 
score better on both problem solving and computation tests than do children in 
control classes (Carpenter et al. 1989). Since CGI is not a curriculum that can be 
adapted, it is difficult to quantify the number of classroom teachers that ascribe to 
its philosophy of assessing and building upon students’ mathematical understand-
ings. Of particular importance to this chapter is that CGI professional development 
sessions prepare teachers to attend to individual children’s thinking (Cady et al. 
2006) and, thus, to adapt their teaching to the diversity of children in their classes, 
i.e. to focus on individual differences as envisioned by NCTM’s definition of equity.

CGI has all of the components identified by Kitchen et al. (2007) that contribute 
to optimal mathematics learning in schools that serve the poor: high expectations 
of students; relevant mathematics, support for teacher-teacher, teacher-student, and 
student-student relationships. CGI personalizes and individualizes education, two 
important components in the literature on ELLs. How can these components be 
realized in the mathematics classroom? The following examples are representative 
of our work in actual classrooms in which CGI teachers:

1. Routinely encourage students to develop their own sense-making. Pichi is a 
kindergartener who does not communicate in complete sentences nor does he 
respond to word problems such as, if you have three marbles and I give you two 
more, how many marbles will you have? Providing multi-color glass counters 
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and asking Pichi to pretend they are marbles also does not get a response. Point-
ing to herself, the teacher said, “I have three blues (pointing to the glass counters 
in her hand). You (pointing to Pichi) give me two more. How many blues do I 
have now?” Having Pichi focus on a specific object that he can identify (blue 
glass counters) and think about a story in which he and the teacher are actors led 
to a successful outcome. Stories about joining and separating “blues” were part 
of daily problem solving for Pichi for the following two weeks at which time he 
could successfully solve problems involving multi-colored glass counters and 
eventually think of the counters as representing other objects. In upper grades 
sense-making can be the focus as students with various language strengths are 
grouped together to discuss a common strategy they’ve successfully used.

2. Provide the necessary mathematics vocabulary that connects to students’ expla-
nations of their own thinking processes to develop students’ mathematical lan-
guage through negotiation and discussion. This is evident in teachers’ classrooms 
that incorporate word walls as a reference. Students’ explanations (written in the 
students’ language by the students) illustrate an understanding of a mathematical 
term followed by that term (written by the teacher).

3. Introduce symbols after students’ thinking has been communicated, usually ver-
bally, but also with pictures, gestures, and/or symbols. That is, teachers put sym-
bols to students’ thinking, rather than teach the mathematics through symbols. 
Fifth-grade teacher Ms. Kanya used a word problem to get Jaidee to think about 
division. She said, “There are 247 pencils. You want to put them in boxes with 
12 pencils in a box. Exactly, how many boxes do you need?” Jaidee said he was 
stuck. Ms. Kanya asked him to try to draw a picture and he did. He began to draw 
rectangles and he put 12 marks in each rectangle. Ms. Kanya stopped him and 
noted that she saw him use numerals in his picture last week. Could he do that 
now? Jaidee put the numeral 12 in the rest of the rectangles he was drawing. As 
he worked she asked, “What do you know about ten 12’s?” He said, “That would 
be 120!” She asked, “How could you use that information to solve the problem?” 
Then he wrote:

Ms. Kanya’s objective was to ask Jaidee about what he knew (12 pencils in 1 
box) to help him build on that knowledge to develop his current knowledge (refer 
to Chenoweth 2009). She asked him what the numerals represented and he knew 
that the 12 tells the number of pencils in a box and the 10 tells the number of 
boxes. Ms. Kanya assessed through further questioning that Jaidee understands 
that 10 × 12 = 12 × 10. He knows that he would have 20 full boxes and 7 left 
over for the 21st box. So, his answer is 21 boxes are needed. During classroom 
discussions, Ms. Kanya introduced the terms quotient, dividend, and divisor and 
encouraged the students to use these terms when explaining their thinking. These 
discussions connect to Anyon’s idea of rich academic discourse. Representations 

12 × 10 = 120
� 240

12 × 10 = 120
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such as 10 × 12 + 10 × 12 + 7 = 20 × 12 + 7 = 247 ÷ 12 emerge from and connect 
to students’ thinking. Ms. Kanya’s questioning techniques are communicated to 
her students’ parents who are encouraged to question their children about their 
school work using such probes as: Tell me what happens in this story. Why did 
you add these numbers? Why did you start with 10 (or whatever number it is)? 
(See Jacobs and Ambrose 2008 for additional ideas.)

In several K-6 classrooms we visited, teachers were encouraged to ask their stu-
dents to “Tell the story” after a word problem had been presented orally. Teachers 
were asked to not repeat the problem but have students practice “telling the story.” 
Teachers commented that the results of this pedagogical task (many of their students 
could not do this sufficiently) surprised them and taught them to make sure under-
standing the problem is the first step toward a problem solution.

Finally, CGI connects to Moschkovich’s perspective (2003, 2007) of what is 
necessary for optimal achievement in a mathematics classroom that serves ELLs. 
Mathematical communication is an integral part of CGI classrooms. CGI is based 
on the premise that students construct knowledge; meaning is negotiated among 
students and teacher; and all students participate in mathematical communication 
using whatever tools they need. CGI can help close an unnecessary gap between 
theory and practice.

 Conclusions

Mathematics education research provides evidence of characteristics of quality 
mathematics instruction. Instructional approaches, such as CGI, have shown to be 
highly effective for language minorities; yet an unnecessary mathematics achieve-
ment gap between ELLs and FEPs still remains. As a result, inequity in the math-
ematics classroom still exists. We believe that dealing with the issues of inequity 
for ELLs should begin with examining perceptions and beliefs held by the teachers 
since they are ultimately responsible for classroom instruction. Teachers make in-
structional decisions based on personal beliefs and values such as the teachers in 
Anyon’s study who believed that a certain group of students who live in low-income 
housing areas could only handle skill-based mathematics; therefore, skills are what 
teachers planned for their students to practice. Mathematics educators must work 
to challenge unsupported beliefs and work with teachers in classroom-imbedded 
professional development, such as CGI, to provide an alternate vision of mathemat-
ics instruction for ELLs and those living in poverty. We think that when teachers 
believe that ELLs can learn while acquiring English language proficiency, and that 
ELLs and those living in poverty can handle cognitively challenging curriculum 
when given the necessary support, they will change their classroom instruction to 
provide a quality mathematics program where each student is challenged and work-
ing at his/her potential. This is necessary for equity to be achieved.
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Creating frank and honest dialogue among teachers regarding the influence of 
their beliefs upon their instruction and their students’ mathematical understanding 
can be highly challenging; yet, it has to happen so that teachers can identify and ex-
amine one’s subconscious beliefs and pre-conceived notions toward ELLs, and real-
ize how these beliefs influence their instructional decisions. When an atmosphere of 
trust exists among colleagues, honest reflections about their students’ mathematical 
understanding in relation to their teaching practice can lead to discussions regarding 
the socially situated character of all educational policy and practice. These discus-
sions will help us answer the question previously posed by Apple (1995) “who is 
the winner and who is the loser?” For without reflection of how and why schools 
participate in creating winners and losers, we will be unable to find solutions to the 
problems identified in this chapter.

We also think that mathematics teachers need to recognize the value of ELLs’ 
language diversity in mathematical learning and allow ELLs to use the language 
that leads to optimal understanding. Acquiring academic language, the language 
of mathematics, and English can be burdensome for ELLs. Allowing ELLs to 
use the language spoken at home can relieve some of the burden and aid ELLs in 
the learning of mathematics. When mathematics teachers have several students 
who speak the same language, creating opportunities for these students to use 
this language as part of classroom dialogue supports the optimal learning of 
mathematics.

Finally, we firmly think that each student is unique and deserves the support nec-
essary for him/her to succeed. Schools must remedy the situation for ELLs so that 
they have access to challenging curriculum and effective instructional practices. 
Equity requires acknowledging the difference of ELLs, enabling languages other 
than English to be a resource, and above all maintaining high expectations of what 
these learners are able to achieve.
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Over the past decade or so, discussion about meeting the needs of marginalized 
cultural groups has increased (Darling-Hammond and Bransford 2005; Gándara 
and Contreras 2009). Many countries have expressed concern over the poor math-
ematics performance of students who are less proficient or not proficient at all in 
the official language of schools. These students often represent a political minority 
population in their country, and thus, improving their performance involves atten-
tion to issues of equity. Associated with this is a concern that educators in these 
contexts may not be appropriately or adequately prepared to instruct students who 
are learning in a second language. For example, in the United States, over 40% of 
the teachers have language minority students (LMS)1 in their classrooms, but only 
12.5% of the teachers have had more than eight hours of training to prepare them 
to teach LMS (NCTM 2004). Thus, there are critical questions about how to sup-
port teachers and what specialized pedagogical content knowledge they may need 
(Banks et al. 2005). At the same time, countries around the world are concerned 
about improving the quality of mathematics performance overall. Improving the 
quality of performance, on the one hand, can be demonstrated in standardized test 
results, but in addition, “the integrated and balanced development of all five strands 
of mathematical proficiency (conceptual understanding, procedural fluency, strate-
gic competence, adaptive reasoning, and productive disposition) should guide the 
teaching and learning of school mathematics” (NRC 2001, p. 11).

1 We have chosen to use interchangeably the terms “language minority student” (LMS), Latinas/
os, and “bilingual learner.” LMS notes Latinas/os’ political status and “bilingual” forefronts their 
language roots and experiences.
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For one reason or another, these concerns—equity and quality in mathemat-
ics teaching and learning—are often dealt with as if they are antithetical. But 
are they? Do they need to be? Do language minority students require a different 
or easier mathematics curriculum because they are bilingual learners and may 
have limited proficiency in the official language of schools, which imply lower 
content standards? Is it possible for bilingual learners to meet quality standards 
of mathematics performance through a curriculum that takes into account and 
builds on their home language while facilitating their development of school-
based language?

Our chapter begins to address these questions by examining a curriculum, 
Finding Out/Descubrimiento (FO/D) (De Avila et al. 1987) that was designed 
in the late 1970s by Bilingual Education scholars for the explicit purpose of 
meeting the educational needs of Latina/o bilingual learners  (De Avila, per-
sonal communication December 1, 2008; Navarrete 1983). While FO/D was 
not intended solely to be a mathematics curriculum, students, in fact, gained 
significantly in mathematics (Cohen et al. 1997)—and thus, it met goals of 
both equity and mathematical learning. We were drawn to this curriculum be-
cause of its success with Latinas/os in mathematics, and wanted to understand 
what made it effective with this population. Furthermore, research on Latinas/
os and other language minority students in mathematics have considered issues 
of instructional practices that affect students’ learning (e.g., Chval and Khisty 
2009; Hufferd-Ackles et al. 2004; Khisty 1995; Khisty and Willey 2008) and 
issues of language use (Adler 2001; Moschkovich 1999; Setati 2005); how-
ever, there has been little discussion of curriculum materials and their role 
in Latinas/os’ mathematical development (Chval 2010). Although fidelity to a 
curriculum cannot always be guaranteed, curriculum, nevertheless, embeds a 
particular direction and can be a starting point for new thinking about effective 
instruction (Brown et al. 2009) for Latinas/os and other bilingual learners in 
mathematics.

Our purpose in this chapter is not to promote FO/D but to examine it for what 
mathematics educators can learn about the organization of instruction that both ad-
dresses equity and the improved learning of bilingual learners. By uncovering the 
characteristics that make FO/D effective, we have developed a framework that we 
believe can be used to guide mathematics curriculum development and implementa-
tion to better meet the needs of bilingual learners, and to offer insights into effective 
practices that can assist teachers. While the focus of our discussion is on Latinas/os 
in the United States, this framework and these insights might equally assist educa-
tors in other contexts.

We begin by providing background to FO/D, including its theoretical basis. 
We follow this by describing our process for identifying what we consider are its 
key characteristics. We then describe these characteristics and a framework that 
derives from them. We close our discussion with implications of this framework 
for curriculum development and implementation and for equitable mathematics 
instruction.
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 Background

Finding Out/Descubrimiento as a Curriculum

As noted earlier, FO/D was developed in the late 1970s. Lena Licón Khisty, an 
author of this chapter, became familiar with the curriculum at that time and has fol-
lowed it over the years since then. FO/D was intended to serve students in grades 
first through fifth as a supplement that could be used once or twice a week or as 
often as a teacher desired. The materials were originally designed to target the 
simultaneous development of language and academic content among children of 
migrant workers in California (De Avila et al. 1987). Unfortunately, it received 
little attention as a resource for mathematics instruction even for multilingual 
contexts. Nevertheless, where it was used with bilingual learners, it was found 
that students made statistically significant gains in mathematics in all subscales 
(Cohen et al. 1997). Given the popular perception that Latinos/as need repeated 
practice with basic computation skills, this outcome is especially intriguing given 
that the mathematics content is embedded in rich, problem-solving, science-based 
activities, unlike more traditional curriculum materials with explicit presentation 
of mathematics skills and concepts. Nowhere in FO/D will one find computation 
practice as in traditional mathematics programs, yet students improved in compu-
tation (Cohen et al. 1997). Arguably, this is the result of repeated contextualized 
situations in which students need to utilize computation in order to accomplish the 
objective at hand. As De Avila (personal communication, December 1, 2008), one 
of the developers of FO/D, put it, “we confuse the means with the ends,” referring 
to educators’ tendency to focus on students’ ability to perform algorithms correctly 
as the primary objective.

Because Bilingual Education scholars developed FO/D, many of its character-
istics are based on and driven by teaching and learning principles known to make 
a difference in achievement among bilingual learners (Garcia 1991). FO/D is or-
ganized around thematic science-based concepts such as sound and measurement, 
concepts that lend themselves to students’ curiosity, engagement, and background 
experiences. Each activity integrates literacy, science, and mathematics such that 
activities students read and write for meaning and problem solving. Also, FO/D 
comes with substantial suggestions for the teacher on how to establish and facilitate 
collaborative group work among students. Moreover FO/D’s primary focus is to ad-
vance bilingual learners’ critical thinking skills through experiments in science that 
involve using mathematics and literacy as tools for performing and discussing the 
experiments (De Avila et al. 1981). In fact, FO/D is characterized by a substantial 
high-level cognitive demand of students, non-routine problem solving, conceptual 
development, and thinking and reasoning in sustained and thoughtful ways (Cohen 
et al. 1997; Hernandez 1991)—all goals of current mathematics reform efforts in 
the United States.

29 Towards Principles for Bilingual Learners
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The activities are designed so that Latinas/os will have access to content areas 
and not be held back because they do not know English (the official school lan-
guage) or do not have specific content skills. To this end, a unique and key char-
acteristic of FO/D is its use of bilingual activity cards (see examples in the next 
section). Each activity is presented on duplicate cards—one in Spanish and the 
other in English. Students are free to use the cards as they wish to make meaning 
of the task: using either the Spanish or English card or both simultaneously. This 
characteristic is particularly important in that it gives equal status to students’ 
home language and English, and reaffirms the home language as a resource for 
learning, thus satisfying a dimension of equity (Valencia 2002). Interestingly, 
Neves (1997) found that FO/D’s intrinsic capacity to promote “talk” (which we 
describe further in a later section) in either language among students working 
collaboratively translated into gains in English proficiency: students “with the 
largest gain scores in English had the higher rates of talk in Spanish…[and] the 
lowest rates of talk in English” (p. 188). This is a somewhat counter-intuitive 
finding but one supported by current literature on bilingual education (e.g., Cum-
mins 2000; Diaz 1983; Genesee et al. 2006). Lastly, the activity cards are in the 
form of a colorful cartoon that depicts the series of steps to be taken by collabo-
rating groups of students. We also discuss this characteristic in more detail in a 
later section.

The Theoretical Basis for FO/D

As we worked to understand FO/D, it became clear that it is also rooted in a socio-
cultural activity perspective of learning (Vygotsky 1978; Engeström 1999), one that 
would capitalize on students’ four levels of resources: the object itself, pictures, lan-
guage, and peers (De Avila, personal communication, December 1, 2008). Since so-
ciocultural activity theory plays a significant role in understanding second language 
development (see, for example, Lantolf and Thorne 2006; Razfar et al. in press) and 
similarly a growing role in understanding mathematics development (see, e.g., Ler-
man 2001), it is relevant to briefly consider how this theory is reflected in the curric-
ulum that meets the goals for both language and mathematics content development. 
Some key aspects of sociocultural activity found in FO/D include the following: 
activity, interactional spaces, and mediation through multimodal semiotic tools, in-
cluding language. First, human development is fundamentally social in nature but 
also rooted in concrete communicative activity (Vygotsky 1978; Engeström 1999) 
or participation in practice. In activity are the conditions of social interactions and 
cooperation. Meaning resides in the activity, its actions, and the language attached 
to them. “It is through activity that new forms of reality are created, including the 
transformation of self” (Lantolf and Thorne 2006, p. 215). The activity, tools, and 
social interactions, then, are the mediational resources for development. De Avila 
(personal communication, December 1, 2008), noted: “when kids are arranged as 
they are [in a traditional arrangement of rows of desks], we eliminate these resourc-
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es.” However, when these resources are made available and students are social-
ized to use them, they are positioned to solve problems collaboratively and make 
meaning of the content—two crucial tenets of learning and development.2 Second, 
development is mediated through interactions with others and thus, interactional 
spaces are a key component of activity. In FO/D, these spaces are carefully con-
structed to socialize students into norms of rights, roles, and responsibilities to help 
one another complete a goal-directed task. Students collaborate in a community 
of practice (Wenger 1998) and become responsible for their own and each other’s 
learning. Third, thinking and development also are mediated by the use of tools (in 
FO/D: concrete objects, pictures, and oral and written communication). Changes in 
the routine of how tools are used are signs of development (Sfard 2008). This idea 
is consistent with current thinking in reform mathematics approaches that deem-
phasize learning procedures without connections and emphasizes problem solving 
(NCTM 1989, 2000).

 Examination of FO/D

In this section, we present what we believe to be the key characteristics of FO/D. 
Again, FO/D provides us with the opportunity to consider key characteristics of a 
curriculum that has evidence of supporting the simultaneous development of math-
ematical concepts, language for bilingual learners, and academic progress. Our ex-
amination of FO/D followed a two-step process. First, we compared it to current 
research in Bilingual Education in order to distill the characteristics that make it 
relevant to Latina/o students. Here Willey and Khisty have extensive experience 
with this literature based on teaching university courses in both Bilingual Education 
and courses that integrate this area with mathematics education; one of the authors 
has extensive experience in mathematics curriculum development, and altogether, 
we could compare and contrast curricula and teaching practices from both areas. 
Second, in order to refine our identification and description of characteristics so that 
they would be meaningful in a broader context than FO/D, we randomly selected 
one elementary school and one middle school Standards-based curriculum3 whose 
characteristics we could contrast with those we identified in FO/D. However, only 
identifying key characteristics can be misleading.

For example, the rationale for the visual images in FO/D is significantly different 
than in other curricula. We interpret the visual images in FO/D as minimizing the 

2 As explained in FO/D teacher resource materials (De Avila et al. 1987) and teacher trainings 
(Lotan, personal communication, December 2, 2009), a fundamental design principle of FO/D 
was to challenge traditional classroom organizational structures of sitting and working in isolation. 
It is worth noting that the traditional pattern still dominates the classrooms of poor and minority 
students (see Oakes 1990).
3 We use the term Standards-based curriculum to refer to curricula that are aligned with the Na-
tional Council of Teachers of Mathematics Standards from 1989 and 2000 (NCTM 1989, 2000).
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influence of any language proficiency factors and as a deliberate means of engag-
ing students in making meaning in the context of the activity. The visual cues of the 
activity cards open up possibilities for interaction and dialogue as students negotiate 
and build consensus on both what the card means and what they should do to com-
plete the activity (see Fig. 29.1). On the other hand, we interpret the visual image in 
a Standards-based curriculum as more of a reference for technical definitions of key 
words in the activity (see Fig. 29.2 as an example). In light of these differences, we 
focused not only on the characteristics but also their purposes.

The FO/D student activity card pictured in Fig. 29.1 illustrates how we believe 
these cards serve an additional function of supporting student discussion. The im-
ages invite discussion because there are sufficient visual cues to allow students 
to interpret what they are going to do (find and compare the circumference and 
diameter of objects); to figure out how they are going to do it (the method used in 
the illustration is to wrap a string around a round object, then to stretch the string 
out to compare it to a ruler in order to measure the length of the string and, there-
fore, the circumference); and to interpret or define various aspects of the activity 
(e.g., the meaning of circumference, how to use the tools, the process of recording 
measurements, and the expectation that more than one object will be measured)—
all processes of critical thinking. Student meaning making is, therefore, not reliant 
on the teacher’s facilitation. In a Standards-based curriculum, on the other hand, 
student discussions often revolve around teacher or textual prompts or instructions. 
This places the burden on bilingual learners’ comprehension of oral or written com-
munications, most likely in a second language, which may not be their academic 
strength (Khisty 1997).

 A Framework for Equity and Quality in Mathematics

By making these types of comparisons, we began to develop a list of guiding ques-
tions for understanding how engaging students in FO/D activities contributed to 
significant improvements in student achievement scores related to mathematics 
content and language skills. How do students know what to do, how to approach 
problem situations, and how to engage in doing mathematics? What roles do stu-
dents and teachers have in the problem-solving process? What purpose do mathe-
matical activities have and in what way are activities structured to promote engage-
ment in meaningful mathematical activity? How is literacy defined and developed 
during mathematical problem solving?

Attending to key questions like these allowed us to construct feature descriptions 
for a framework that would have meaning across curricula. The framework begins 
by setting forth an overarching ideology that emerges from FO/D, one that respects 
students and the resources they bring to the classroom and to learning. Learning is 
seen as occurring in interactional spaces. The teacher and the curriculum materials 
are not positioned as the authorities who hold the mathematical knowledge; instead 

K. Pitvorec et al.



413

Fig. 29.1  Student activity cards from FO/D in Spanish and English
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it is the learning community members (teacher and students) working together to 
make meaning who generate mathematical knowledge. The curriculum materials, 
the problem context, and the mathematics needed to solve problems are all defined 
as tools for mediating student learning. This ideology is manifest in three broad 
categories of features—features related to learning communities, features related to 
the curriculum materials, and features related to language and communication. We 

Fig. 29.3  Pyramid of suc-
cess for Language Minority 
Students (LMS)
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argue that these three categories together with the overarching ideology form the 
foundation of support for bilingual learners’ mathematics learning (see Fig. 29.3). 
In the following sections, we discuss these three categories.

Learning Communities

As mentioned earlier, the learning community holds the key to the generation of 
mathematical knowledge. According to the United States National Research Coun-
cil report (NRC 2001), there are four features of classrooms that support the teach-
ing and learning of mathematics for understanding: ideas and methods are valued; 
students have autonomy in choosing and sharing their methods of solving problems; 
an appreciation of the value of mistakes as sites of learning; and the recognition that 
the authority for whether something is both correct and sensible lies in the logic and 
structure of the subject rather than the status of the teacher or the person making 
the argument.

A curriculum that supports the learning of bilingual learners is designed to pro-
mote student agency, students’ interdependence, and students’ independence from 
reliance on the teacher and the curriculum materials as the only source for instruc-
tions, ways to think about a problem, and ways to work. Activities represented pic-
torially provide students with access to activity instructions via visual descriptions 
of the activities (see Fig. 29.1). Students rely on each other—the community—and 
serve as resources for each other in the problem-solving process. In essence, they 
take responsibility for their learning. The curriculum positions the learning com-
munity as central; students are thereby positioned genuinely as knowledge genera-
tors rather than knowledge recipients. This approach to learning is no small matter 
for nondominant or Latina/o students and cannot be taken for granted. It opens the 
way for students to use all of their resources for learning (Moll 1999). It provides 
for greater participation of students who too often are marginalized because of one 
presumed “deficit” or another (Gándara and Contreras 2009). It also supports stu-
dents in redefining themselves (and teachers in redefining students) as capable of 
knowing. In essence, the “community” structure is a critical feature of instruction 
for Latina/o students since too often, this student population is subject to negative 
and/or deficit beliefs and actions that ultimately subjugate them (Valencia 2002). 
Ensuring equity and schooling processes that do not fail students, means challeng-
ing these factors.

The teacher’s role in this learning community includes facilitating the prepara-
tion of the mathematical situations and promoting student engagement in the situa-
tions. The teacher refrains from doing the intellectual work for students. Although 
the teacher supports students during the problem-solving process, the teacher does 
not give students preset solution strategies or approaches, nor does he/she provide 
answers to the problems. The teacher’s participation in these small groups tends to 
be in the form of supporting student ideas, inserting thoughtful questions that fa-
cilitate students’ work of meaning making, probing students to make their thinking 
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visible to others in the groups, making connections between their informal strate-
gies and thinking, and more formal ones from the content, and highlighting their 
strengths and successes so that all students realize the importance of their contribu-
tions in completing the mathematical activities (Cohen 1994). Generally, students 
work together in small groups to define the problems and to establish how they 
will approach and solve the problems. Together, they make mathematical meaning 
through their engagement in the situation. The interactional spaces created among 
students are qualitatively different than students just “talking about their mathemat-
ical ideas.” The structure of the activity situations requires students to engage in 
authentic mathematical talk.

Curriculum Materials

A second category of features is related to the design of the curriculum materials 
(i.e., the tasks and task-related writing students do). Each task or problem situation 
presents a context in which mathematical meaning making can occur. We use the 
following example from FO/D to illustrate some features from this category (see 
Fig. 29.4). In the example, students begin to explore ratio and proportion in the con-
text of systematically diluting juice with water. Students record their observations as 
the concentration of juice is decreased—that is, the ratio of juice to water is changed 
in each step. Since they change the ratio by adding specified numbers of teaspoons 
of water, their observations can include everyday and mathematical language fo-
cused on ratios and proportion. Mathematics functions as a problem-solving tool 
in the investigation. Rather than teaching students the strategies for solving ratio 
problems and then having students practice those strategies, the activity creates a 
problem situation for which students need to discuss and figure out, first, what it is 
they are going to do (dilute the juice with water in steps and observe); second, how 
they are going to do it (measure juice and water into a glass and smell and taste it 
at each step); and third, the mathematical relationships and connections in what 
they are doing (the effect of diluting the juice on the smell and taste of the resulting 
liquid, that, as there is more water, the smell and flavor become weaker). As they 
discuss the problem situation, they are able to draw on their own experiences and 
knowledge related to such a situation, and able to explore and use the language 
of proportion and ratio in an authentic mathematical situation. Students engage in 
multi-modal learning that involves all their senses and modes of communication.

Language and communication

The third category of features is related to language and communication. One defi-
nition of academic literacy is that a person has the ability to read, write, speak, 
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Fig. 29.4  An FO/D science activity in Spanish and English

29 Towards Principles for Bilingual Learners

                  



418

listen, and think effectively within a particular context, and furthermore, “[b]eing 
literate enables people to access power through the ability to become informed, to 
inform others, and to make informed decisions” (Meltzer 2001, p. 1). In the context 
of a mathematics curriculum, literacy is a functional component of doing the math-
ematics. Literacy involves reading, writing, listening, and discussion skills. As indi-
cated by findings from research on FO/D, English literacy for bilingual learners can 
develop together with competency in mathematics when the curriculum provides a 
conducive combination of features (Cohen et al. 1997).

Several key structural features of a curriculum related to language and com-
munication contribute to the simultaneous development of literacy in students’ first 
and second languages (i.e., biliteracy), and mathematical proficiencies. First, both 
languages should have equal status. As much as possible, materials, explanations, 
vocabulary, and conversation about the mathematical problem solving are available 
in both Spanish and English. As students explore the problem situations, they are 
encouraged to use the language (Spanish, English, and/or a hybrid of both) with 
which they can best express their meanings and ideas. Dialogue among students 
is critical for thinking but also for developing proficiency in both languages in a 
reciprocal relationship (Neves 1997).

Second, in addition to discussions in both languages, students have opportuni-
ties to read and write in both languages. In both cases, the level of literacy is more 
complex and extended. Students interpret the problem situation, using each other 
and the curriculum materials as resources, and then have opportunities to process 
their experiences through recording their individual ideas, explanations, questions, 
observations, and arguments. Instead of limiting students to just filling in blanks 
on a page, student pages should provide spaces for students to communicate “what 
I think happened,” or “what I observed,” or “why I think it works,” consequen-
tially tapping into reservoirs of skills that are classified as higher order thinking 
skills (Vygotsky 1978). When engaging in such literacy activities, students gain 
extensive experience using their biliteracy skills and have opportunities to refine 
them. Furthermore, the approach to language development (i.e., active, dialogic, 
and complex) described in this framework conforms to current work on a functional 
approach to second language development (Mohan and Slater 2005) and leads to 
simultaneous development of both language and content knowledge (Cohen et al. 
1997; Lotan 2007).

Lastly, a curriculum should support the development of what Hufferd-Ackles 
et al. (2004) describe as a high-level Math Talk Community—students are the 
source of mathematical ideas; students take responsibility for their learning; stu-
dents are questioners; and students explain and articulate their ideas. In addition, as 
part of students’ negotiations around the mathematical meaning embedded in prob-
lem-solving situations, they also have to respectfully challenge each other, build 
arguments for and justify their thinking, and build on each other’s ideas. All of these 
promote authentic talk about mathematical content and thus provide a context in 
which bilingual learners further develop biliteracy skills.
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 Implications and Conclusions

We began our discussion questioning whether it was possible to have quality mathe-
matics instruction and outcomes given student populations, such as Latinas/os, who 
have a history of underachievement in mathematics, and thus, are too often deemed 
in need of remediation and basic skills, and who are not proficient in or still learning 
the official language of school. We also questioned if bilingual learners needed a 
different sort of mathematics curriculum, and if it was possible for these students to 
meet standard notions of quality mathematics. We set out to answer these questions 
by examining a curriculum that was specifically designed to reverse patterns of 
underachievement and to challenge assumptions that Latinas/os cannot do “quality 
school work.” We found that indeed there is evidence that such a curriculum can 
achieve these goals. At the same time, we found that Latinas/os or bilingual learners 
do need a different sort of mathematics curriculum, but not one that is easier. They 
need one that is designed with certain features, features based on creating different 
kinds of learning spaces, features based on capitalizing on students’ resources—in 
fact, defining Latinas/os’ individual traits as learning resources—and features based 
on a principled approach to curriculum and instruction that includes principles from 
research that has focused on bilingual learners.

Our description of what we believe to be the most salient features of FO/D, leads 
us to various conclusions about curriculum development, curriculum evaluation, 
instructional practice, and professional development. First, it is not enough to insure 
that Latinas/os and other bilingual learners simply will have access to quality math-
ematics programs. Our framework suggests that curriculum development must con-
sider the needs of bilingual learners from the beginning in the design of a curricu-
lum. In the case of the two reform curricula with which we compared FO/D, access 
for bilingual learners, narrowly construed as access to vocabulary and instructions, 
was added on after the development of the original materials.4 Second, more atten-
tion must be given to being explicit about the ideology in which a curriculum is em-
bedded. The ideology for nondominant students should clearly respect and support 
the agency of students and see students and their home language as resources for 
developing mathematical proficiency; this ideology must influence the way math-
ematical activities are designed, organized, and presented. Third, when learning is 
seen as occurring in interactional spaces, as described in the framework, activities 
must be designed to support the existence and use of those spaces. Language ought 
to not be conceived of as an entity that needs to be taught one technical word at 
a time, but rather as a natural tool that is continually being refined from students’ 
everyday words to a specialized style of language related to the mathematics disci-
pline (Gee 1996; Lantolf and Thorne 2006). Fourth, where the curriculum materials, 
the problem context, and the mathematics needed to solve problems are all viewed 
as tools for mediating student learning, mathematical activities must be constructed 

4 Note that one author of this chapter was part of the author team of a Standards-based curriculum 
and so is familiar with how the curriculum addresses the needs of bilingual students.
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to provide students with opportunities to make use of these tools. These opportu-
nities should not be prescriptive but should invite exploration by students with a 
follow-up that requires an explanation and comparison of student ideas about the 
problem. While some current mathematics curricula may strive to do this, in their 
implementation the effort sometimes falls short (Brown et al. 2009) and instead re-
sults in eliminating critical resources for language minority students. Clearly from 
the foregoing, new directions are needed in teacher development—directions that 
focus on helping teachers skillfully implement student-centered, community-based, 
dialogic, non-biased, multilingual mathematics instruction.

What FO/D has demonstrated is that none of the features of a curriculum that 
we have described can be an afterthought. They must be part of the fabric and 
structure of the curriculum and corresponding instruction from the beginning. In-
stead of only focusing on content first, we advocate a curriculum development 
process that reflects current sociopolitical and cognitive research on bilingual 
learners and that demonstrates a shift toward mathematics equity in the form of 
student-centeredness and community-centeredness as described in How People 
Learn (Bransford et al. 2000). The features that we derived from FO/D and identi-
fied and described in the framework provide us with a starting point for transform-
ing existing mathematics lessons so that implementation of those lessons provides 
both quality and equity for Latinas/os and all bilingual learners and their dominant 
classmates together.
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 The Intersection of Equity and Quality

Concerns about equity in mathematics education continue to be relevant in light of 
the persistent achievement, attainment and persistence gaps between African Amer-
icans and their White counterparts. It is well documented that minority students are 
underachieving with respect to their majority peers (Anderson 1990; Oakes 1990; 
Powell 1990), fail to pursue mathematics-related disciplines (Oakes 1990), and are 
underrepresented in mathematics-related fields. Stinson’s (2004) strong documen-
tation of the ways in which mathematics has historically and currently served as a 
gatekeeper to “economic access, full citizenship, and higher education” (p. 11) pro-
vides support for the view that the achievement of equity, often seen as closing the 
achievement and persistence gaps, is a moral imperative. Moses and Cobb (2002) 
argue that knowledge of algebra is the next civil rights issue and that the knowledge 
gap in mathematics could turn students of color into the “designated serfs of the 
information age” (Moses and Cobb 2002, p. 11). These inequities exist in spite of 
the fact that there has been a growing interest in issues of equity in mathematics 
education over the past 25 years (Apple 1992, 1995; Hart 2003; Secada et al. 1995). 
The concept of equity itself has been the subject of much discussion in the literature. 
This discussion of how the concept is to be defined is more than an academic one 
because how we define equity has implications for how we attempt to achieve it and 
how we could know when we have.

Conceptions of equity in education have traditionally focused on equity of op-
portunity, equity of treatment, and equity of outcomes. In the context of mathemat-
ics education, traditional definitions would suggest that equity of opportunity be 
achieved through enhanced opportunities for minority students to access mathe-
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matics courses in numbers comparable to White students, and not be tracked into 
fewer or lower level mathematics courses. Equity of treatment would suggest that 
all students be exposed to learning experiences and student–teacher interactions that 
would optimize their learning. Most reform efforts aimed at addressing inequities 
are based on these views of equity. We would argue that the inadequacy of both of 
these conceptions of equity might be resulting in the ineffectiveness of the solu-
tions implemented to address inequities in mathematics education. Fennema (1990) 
suggests that equity conceived of as equity of outcomes “offers the most promise 
for achieving justice” (p. 5). This conception of equity suggests that at the end of 
schooling, there would be no racial, ethnic, or gender differences in achievement 
levels, persistence in mathematics courses, or representation in the math-related 
pipelines; in short, equity of outcomes would be evidenced by a closing of the gaps.

National calls for access, diversity, and equity in mathematics education and 
mathematics-related careers have resulted in various initiatives designed to increase 
the numbers of minorities in mathematics and mathematics education (AAAS 1989, 
1993; Anderson 1990; Committee for Economic Development 2003; National Acad-
emies of Sciences 2005; Johnson 1984; NCTM 2000; Oakes 1990). Many of these 
initiatives seem to suggest that providing African American students with increased 
opportunities to study mathematics and providing them with fair treatment in math-
ematics learning experiences is sufficient to achieve equity in mathematics education. 
Mathematics for All, an ideal embedded in the 2000 Standards document, and pro-
grams such as summer bridge programs and mentorship programs that allocate vari-
ous financial, institutional, and human resources to minority-serving institutions, are 
examples of such initiatives. Despite these calls for equity and these initiatives aimed 
at addressing racial disparities in mathematics, the gaps still exist. African American 
students are not proportionally represented in courses that position them to gain ac-
cess to those fields nor are they achieving at the level of Whites, and there is little 
evidence to suggest that the gaps will close in the near future. What is more, when 
these programmatic solutions fail to achieve the desired equity, there is a tendency to 
blame the students, the teachers, the curriculum, or the school districts.

We posit that the failure of these initiatives, even after more than 25 years of eq-
uity discussions, is due to the inadequacy of the conceptions of equity that underlie 
them. All of these programs and policies are based on the first two of the three con-
ceptions of equity described earlier, equity of opportunity and equity of treatment. 
We concur with Fennema that conceptions of equity, as determined by equity of 
outcome hold the greatest promise to address the inequalities. We argue that there 
are two major problems with the notions of equity as equity of access and equity 
of treatment. Typically attempts to address equity of access focus on increasing the 
availability of mathematics courses and programs, thus removing the overt barri-
ers to access. A deeper analysis of the reasons why African Americans fail to avail 
themselves of these provisions would reveal hidden social, cultural, and economic 
barriers that continue to deny them access even in the face of increased provisions. 
This idea that if we increase the representation of African Americans in mathemat-
ics courses, and if, in the service of equity of treatment, we ensure that they receive 
comparable allocations of resources, are treated fairly by their teachers, and have 
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equally challenging curricula, we will remove inequities takes a static view of these 
inequalities. This notion fails to recognize the social structures that continually re-
produce the inequities. The second problem with these notions of equity is that such 
views remove the imperative to address inequity by preparing disadvantaged minor-
ity students to disrupt the social structures, and challenge the rhetoric that produces 
the inequities in the first place.

A promising line of scholarship has expanded the notion of equity and views 
it from a social justice perspective. Scholars who espouse social justice perspec-
tives suggest that attempts to remove inequities in mathematics education must ad-
dress the systemic social inequities that are at the heart of inequitable outcomes 
in mathematics (D’Ambrosio 1990; Martin 2003; Stinson 2004). These concep-
tions of equity view the goal of equity initiatives as obtaining socially just out-
comes in mathematics (Kreinburg 1989). They require that mathematics learning 
and opportunity be situated inside the social and structural realities of marginalized 
students. Much of the social justice discussion of equity encourages educators to 
question traditional conceptions about the nature of mathematics and examine the 
ways in which mathematics privileges some groups while marginalizing others. In 
questioning the social constructions of mathematics, scholars who adopt a social 
justice approach to mathematics education advocate that the teaching and learn-
ing of mathematics be used to help marginalized groups improve the conditions of 
their lives and foster agendas that liberate them from systemic oppression (Mar-
tin 2003; Guistien 2002). The works of social justice scholars are situated within 
many different literatures including ethnomathematics (D’Ambrosio 1997), critical 
mathematics education (Skovsmose 1994; Skovsmose and Valero 2001), culturally 
relevant pedagogy (Ladson-Billings 1995, 1997; Tate 1995), feminist pedagogy 
(Solar 1995), social just pedagogy (Burton 1996; Guistien 2002), and sociocultural 
frameworks in mathematics education (Moody 2001). Although this social justice 
scholarship is built from various theoretical foundations, the common focus of this 
work is to develop pedagogies for creating justice in mathematics education and 
society (Hart 2003).

Among such scholars, calls by Martin (2003) and Stinson (2004) for empower-
ment as a goal for mathematics education are particularly compelling. Specifically, 
Martin urges mathematics educators to “situate equity concerns within a broad-
er conceptual framework that extends beyond classrooms and curricula” (Martin 
2003, p. 11). This must be done, Martin argues, to empower students to address is-
sues of unequal power relations between dominant and marginalized groups and to 
position students to address the systemic inequities that are at the root of inequities 
of access, treatment, and outcomes in mathematics. Stinson (2004) argues that eq-
uity cannot be achieved unless marginalized students are taught “to use mathemat-
ics knowledge in libratory ways to change and improve the conditions of their lives 
outside of school” (p. 14).

We suggest that this social justice perspective is ultimately an expansion of the 
third concept of equity, equity of outcome. Hence, our agreement with Fennema’s 
views that equity, as equity of outcome is the most promising conception of equity. 
Our position is, however, based on an expanded view of the idea of educational 
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outcomes, a view that takes educational outcomes beyond the walls of classrooms 
and schools to the wider society. Thus, social justice must itself be seen as an educa-
tional outcome. A social justice outcome must encompass at least three things. First, 
student achievement outcomes in mathematics must be equitable across all groups. 
Second, education in mathematics must seek to develop sensitivity to the ways in 
which mathematics has been used to exclude some from social and economic ben-
efits. Third, it should foster a commitment to a reversal of this exclusion.

The social justice perspective not only provides a more encompassing notion of 
equity but urges on us a reconceptualization of the notion of quality in mathematics 
education. This perspective forces us to move beyond traditional quality indicators 
such as teacher qualifications, achievement scores, availability of resources, and 
achievement levels to a view of quality as determined by the extent to which math-
ematics education results in social justice. The notion of empowerment provides a 
powerful intersection between equity as equity of outcomes, and quality in math-
ematics education. It suggests that a quality mathematics education is one which 
moves us in the direction of social justice. It is an education that uses mathematics 
to empower all children, but especially marginalized groups, to discern, interrogate, 
expose, and ameliorate the conditions that result in unequal opportunities and power 
inequalities. From this empowerment/social justice perspective, a quality mathe-
matics education is one which prepares its recipients to use mathematics and math-
ematical reasoning to dismantle the walls that exclude some from its benefits. It is 
this outcome that is the determinant of quality in mathematics education. Achieving 
this outcome might involve radical shifts in what mathematics is taught, to whom it 
is taught, how mathematics is viewed, and what outcomes are valued and assessed. 
Historically Black colleges and universities (HBCUs) have historically been spaces 
where this view of equity as social justice has been practiced.

So far in this chapter, we have advanced a position that argues for a new concep-
tion of quality and equity. Arguing from a social justice perspective, we suggest 
that the achievement of social justice must itself be the outcome of mathematics 
education, if equity of access, treatment, and participation are to be achieved. Be-
cause the sources of these inequities lie in entrenched social and economic struc-
tures and cultural values, mathematics education must intentionally adopt the goal 
of empowerment of students so that they are equipped to recognize and challenge 
the structures that debar them from full participation in mathematics. The extent to 
which education in mathematics does this is the ultimate criterion of quality. This 
is not to suggest that conceptions of equity as access or equity as treatment are er-
roneous. Indeed, equity of outcomes cannot be achieved in the absence to equity of 
access and treatment. The point is that these aspects of equity do not go far enough 
and that attempts to address these forms of inequity are not likely to succeed in clos-
ing the gaps between majority and minority students. Our view is that the way to 
achieve equity of access and treatment is by a focus on social justice as an outcome 
of mathematics education.

Our position is both conceptually and empirically based. In what follows, we 
draw on our experiences as faculty working in an HBCU setting, as well as on the 
experiences of the students we teach. The experiences of students were captured 
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through empirical work documenting the successes and failures of our program. We 
use this work to illuminate the ways in which quality and equity are experienced by 
diverse students in our program.

 HBCUs as Spaces for Equity as Social Justice

HBCUs were established during American segregation with the expressed mission 
of providing collegiate education to African Americans (Sissok and Shiau 2005; 
Willie et al. 2006). These institutions are “united in a mission to meet the educa-
tional and emotional needs of Black students” (Roebuck and Murty 1993). Thus, 
they have a history of educating socially marginalized students who may not oth-
erwise have access to higher education (Hale 2006). Their mission clearly reflects 
a commitment to social justice with the goal of empowering African Americans to 
better their own lives and the lives of others (Hale 2006). In particular, HBCUs have 
been consistent in their efforts to change the landscape of mathematics education by 
changing who is learning mathematics and where mathematics is being taught. For 
example, the 105 HBCUs nationwide represent slightly more than 1.5% of the U.S. 
colleges and universities, yet they enroll over 11% of African American undergradu-
ates and confer nearly 22% of all Bachelor’s degrees granted to African Americans. 
Of the 6,105 Science, Technology, Engineering, and Mathematics (STEM) degrees 
awarded by HBCUs in 2001–2002, 87% were awarded to Black students. Of all 
degrees in STEM awarded to African American students in that year, 33% were 
awarded by HBCUs (Kim et al. 2008). This is some evidence that HBCUs confer a 
significant proportion of the mathematics degrees awarded to African Americans.

HBCU graduates are more likely to attend graduate school than their counter-
parts from White institutions (Baskerville et al. 2008). They are more likely to plan 
on entering graduate programs in the sciences and engineering (Wenglisky 1997). 
Of these, a significant number go on to earn doctoral degrees (Soloronzo 1995). 
Hence, HBCUs have been and continue to be vital to the achievement of equity in 
mathematics education by producing a cadre of mathematicians and mathematics 
educators who are both highly competent and sensitive to the needs of their com-
munity.

HBCUs are also changing the environment in which mathematics is taught. They 
are known for providing socially and culturally supportive environments, particu-
larly for students in mathematics-related majors where negative stereotyping often 
serves to diminish their success (Fleming 1984; Harper et al. 2004; Parcella and 
Terenzini 2005; Perna 2009). Further, scholars suggest that an understanding of eq-
uity and social justice permeates the teaching and learning at HBCUs (Perna 2009; 
Parcella and Terenzini 2005), resulting in what Stinson refers to as epistemological 
empowerment, “individuals’ growth of confidence in not only using mathematics, 
but also the personal sense of power over the creation and validation of knowledge” 
(Stinson 2004, p. 13). The mentoring that students receive at HBCUs is significant 
and has a positive impact on their success and persistence (Perna 2009). These 
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institutions advance the cause of social justice by increasing the numbers of African 
Americans who persist in mathematics and by empowering students and communi-
ties in mathematics.

HBCU values are evidenced in their mission and goals. Typically, they seek to 
produce “highly competent Black students who have no ambivalence about who 
they are and how they should use their skills and talents to maximize their own and 
their community’s interests” (LeMelle 2002, p. 192). The criteria by which HB-
CUs judge their worth goes beyond student performance on traditional assessments 
and graduation rates. HBCUs evaluate the quality and impact of their programs by 
the extent to which their graduates are “giving back” and “changing the game” in 
mathematics and science. Although individual HBCUs may have differing empha-
ses, fundamentally embedded in the mission of HBCUs is an inherent concern for 
equitable outcomes for the students they serve. It is this expanded view of quality 
that currently shapes the way Morgan State University (MSU) assesses its doctoral 
program in mathematics education.

 The Doctor of Education (EdD) in Mathematics Education 
at MSU

MSU is the designated urban university for the state of Maryland. The Univer-
sity has a student population of approximately 7,000 students enrolled in 40 un-
dergraduate, 26 masters and 13 doctoral programs. The university has been rapidly 
transforming itself from being primarily a teaching university to a research-focused 
institution. In 2005, it was awarded the Carnegie Foundation’s Doctoral Research 
University classification.

Although HBCUs have a strong history of educating African Americans in math-
ematics at the undergraduate level, they are relative newcomers in the arena of 
doctoral education, and even more so in the fields of mathematics and mathemat-
ics education. Further, there are only few African Americans who attain degrees 
in mathematics-related disciplines, including mathematics education. At MSU, our 
stated goal is to educate African American mathematics education scholars who 
possess the kind of sensitivity and skills needed to educate minority students and  
who will have far-reaching positive effects on their students’ persistence in math-
ematics and on scholarship in mathematics education.

The EdD in mathematics education program at MSU was started in 1997 with an 
initial cohort of three students. At present there are 22 students pursuing the degree, 
of whom over 90% are African Americans. In what follows, we attempt to illustrate 
what quality indicators, from a social justice perspective, look like in the context of 
Morgan’s EdD program in mathematics education, one of the only two mathematics 
education doctoral programs offered by an HBCU. Through the voices of students in 
this program, we attempt to illustrate how this HBCU is achieving quality by advanc-
ing a social justice agenda. Interview data (initially collected for a larger study) from 
eight of the students were analyzed to look for evidence of social justice outcomes. 
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We suggested earlier that social justice as an outcome means addressing inequities in 
student achievement in mathematics, sensitizing students so that they are able to rec-
ognize inequities in the outcomes of mathematics education, and fostering in them 
a commitment to reversing the unequal social structures that make mathematics the 
exclusionary endeavor that it is. Morgan’s doctoral program in mathematics educa-
tion addresses all three of these elements of this social justice agenda.

 Enhancing Achievement Outcomes

The literature on social aspects of mathematics education makes it evident that in the 
United States, mathematics is the most segregated area of the curriculum. A trend 
of underrepresentation of Blacks begins in the upper levels of the high school and 
becomes more marked at the undergraduate and graduate levels (Anderson 1990; 
Oakes 1990). It is clear that if this underrepresentation is the case in mathematics, it 
is even more the case with mathematics education. The demographic data described 
above for Morgan State, where over 90% of the mathematics education doctoral 
students are African American is in stark contrast to this. This is significant not 
only because it represents a change in the racial and ethnic profile of who is pursu-
ing mathematics-related fields, but because these teachers are drawn from schools 
that have predominantly African American student populations. Nationally, it is the 
case that African American high-school teachers teach in predominantly African 
American schools. Thus, by enhancing the mathematical pedagogical skills of these 
teachers we are positioning them to enhance mathematics achievement in their own 
students. This represents a change in the racial and ethnic profile of who is doing 
mathematics. In addition, the very presence of a doctoral program in mathematics 
education at an HBCU is for these students a counterpoint to the implicit and ex-
plicit messages that they have received about who can and cannot do mathematics 
or pursue advanced degrees. One African American female student recounts how 
these negative messages made her reluctant to enter a doctoral program.

I was very hesitant because it was doctoral work. My educational experiences from the 
beginning since middle school, elementary, people would always say, administrators and 
some teachers… “You are not going to amount to anything; you are not going to do any-
thing in life…” (Tonya)

It is plausible that the stereotyping of Blacks with respect to their ability to succeed 
in mathematics is at least a part of the reason for the inequities in access, treatment, 
and outcomes in mathematics education and that unless these are refuted they will 
continue to dampen the aspirations of African American students with respect to 
mathematics. Another student spoke of the fact that she never envisioned herself 
doing doctoral work until she learned of the program at Morgan.

In many ways the students who come to do doctoral study at MSU are nontra-
ditional students. The average age of those interviewed was 36 and all were mid-
career professionals. Most were pursuing the degree on a part-time basis. The pro-
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gram was structured to facilitate the needs of part-time students. By doing this we 
are changing who does mathematics education. The accommodation to the needs of 
such students is more than a matter of scheduling classes for working professionals, 
it involves deviations in the content of our courses and our research work, from the 
typical structure of doctoral programs, such that there is a deliberate intent to lever-
age the experiences, interests, and passion which the students bring to their doctoral 
work. Our goal is to equip these teachers to enhance the mathematics achievement 
of their own students.

 Increasing Sensitivity to the Exclusionary Nature of 
Mathematics Education

As faculty in this doctoral program, we are very conscious that our social justice 
agenda must be as evident in how we teach as it is in whom we admit to the program. 
We are clear that it is our teaching, advising, and mentoring that have the potential to 
transform mathematics from an instrument for exclusion and selection, to one of in-
clusion, and to remove the demarcation between those who have access to the power 
that derives from mathematics and those who do not (Skovsmose and Valero 2001). 
We are very aware that what is at stake is not just the success and inclusion of the 
students in our program, but the possibility of extending our social justice agenda to 
the students and teachers whom they teach, and in the case of those in administrative 
positions, the policies that they influence. Teaching from this perspective implies a 
recognition of the nontraditional circumstances of our students. It requires that we 
respect the interests, experiences, and passions that they bring to the program, and 
that we provide nurturing and mentoring that is both professional and personal.

Many of the students who seek a doctoral degree in mathematics education at 
MSU do so because they are already sensitive to the issues of inequity in mathemat-
ics education, and they perceive that the doctoral experience at an HBCU would 
equip them to address the problems of inequity in mathematics education which 
they confront on a daily basis. When asked why they chose an HBCU, their replies 
suggested a passion for making a difference in the lives of marginalized students. 
Tonya’s response captured her social justice concern, “I thought if I can go through 
this program…I would be in a position to make decisions. I can be the mouth piece 
for these students and that was the focus of my goal.”

She further expressed the idea that another school “would not have the focus that 
was relevant to the urban problems I wanted to address.” Another student, David, 
said that when making a decision about where to do his doctoral study, he explored 
other schools but “did not feel a connection to the passion of the program.”

Our program seeks to heighten the students’ sensitivity to the issues of inequity 
in mathematics education and deepen their understanding of the nature and sources 
of these inequities by engaging them in such issues in all of our courses. Our ur-
ban focus is evident in all of the experiences we provide for students, and they are 
encouraged to question the taken-for-granted assumptions about the causes of the 
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persistent underachievement of African American students in mathematics. Courses 
in the foundations of education such as Contemporary Issues in Urban Education lend 
themselves easily to such emphases, but our concern for developing sensitivity in our 
students means that we seek to embed these ideas even in those courses that address 
the more technical aspects of mathematics education such as curriculum develop-
ment and mathematics pedagogy. Thus, issues to do with equity and how it might be 
achieved run like a unifying thread throughout our students’ coursework experiences.

Finally, our approach to students’ research agenda affords us another opportunity to 
enhance their sensitivity to issues of inequity in mathematics education. Their research 
agendas, grounded in the urban settings in which most of them work, often reflect their 
concerns for social justice. Marcus spoke about how his experiences in the doctoral 
program afforded him the opportunity to pursue research with a social justice agenda.

I already knew too that I wanted to do research at schools that I have attended… I knew that 
I was going to do research in the communities in which I had lived. I just didn’t know how 
I was going to take the angle that would allow me to address the issue of racism and race.

He went on to explain how his course work introduced him to the theoretical per-
spectives that he would eventually use to frame his work. This is some evidence that 
our students begin to serve as social justice agents even before they have completed 
the program.

Some of the dissertations that our students are currently working on reflect their 
social justice concerns:

A Critical Ethnography of Black Middle School Students’ Mathematics Education 
and Lived Realities,

A Phenomenological Study of Mathematics Meaning; A Possible Factor Affecting 
the Mathematics Achievement of African-American Male high School Students.

Urban Middle School Teacher Beliefs about Their African-American Students and 
the Influence of these on their Instructional Practice.

Working with students on their dissertations provides opportunities for the kind of 
personal and professional mentoring that we think is critical to a social justice out-
come. Marcus spoke about the mentoring he received:

My mentors encouraged me to keep going and supported me with preparing conference 
papers. This mentor had an off campus office where me, Jackie and Dr. Williams would 
work well into the night on conference papers and other work…. I needed a lot of support 
around this [writing conference papers], my writing was all over the place. Dr. Williams 
supported me with this while he was working on his own work…close access to this profes-
sor helped me get through.

 Developing Commitment to Social Justice

We encourage our students to adopt attitudes, dispositions, and instructional prac-
tices that will dismantle the barriers that African American students face in math-
ematics. Hence, we insure that the structure of our doctoral program provides ongo-
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ing opportunities for them to change their practice to reflect a social justice math-
ematics agenda. This is achieved in various ways.

In keeping with the structure of most EdD programs, our program espouses both 
the theoretical and the practical emphases. In all of our courses, we encourage our 
students to apply what they have learned in our classes to their own practice, thus 
establishing a reciprocal relationship between their emerging knowledge and un-
derstanding and their practice. Their practice not only drives their research agendas, 
it provides the grist for their theorizing in their course work. Consequently, the in-
sights gained in class are immediately applicable to their practice. Tonya explains, 
“the coursework we are working on, the research that we are doing, I am always 
able to go to work and apply….”

Finally, we offer courses that merge the theoretical and the practical. All of our 
students are required to take a practicum course in which they design, implement, 
and evaluate an action research-based intervention. In this course, students must 
reflect on what they have learned about teaching mathematics, particularly with a 
social justice orientation, and create an intervention that will impact their students’ 
learning outcomes. Although the scope of these projects varies, one of the main 
goals of the practicum is to demonstrate how theoretical ideas about how to improve 
African American students’, performance, persistence, and attitudes in mathematics 
translate into practical interventions. Our action research course gives students an-
other opportunity to apply theoretical discussions to practical interventions. Hence, 
it is our goal that our students’ sensitivity to social justice moves beyond the bound-
aries of the university classrooms and impacts the ways in which mathematics is 
taught and learned by the African American students they serve.

 Conclusion

We have argued in this chapter that an explicit focus on social justice as an out-
come of mathematics education is the only way to achieve equity in mathematics 
education. This represents an expanded view of the “equity as equity of outcomes” 
notion, from merely closing the outcome gaps in achievement and participation to 
one which seeks to address and ameliorate the causes of the inequities. We have 
attempted to broaden the notion of outcomes of mathematics education to one that 
is based on a social justice perspective. We argue that efforts to reverse inequities 
in mathematics must address the systemic social inequities that produce inequitable 
mathematics outcomes. The extent to which a mathematics education program does 
that is the true indicator of quality. It implies that a quality mathematics education is 
one that not only results in equitable outcomes with respect to mathematics achieve-
ment, but also equips students to discern the ways in which mathematics might be 
used in the creation of a socially just society, one in which all people have access to 
the power that knowledge of mathematics affords.

In the chapter, we explored some of the ways in which a doctoral program in 
mathematics education enacts a social justice agenda through its approach to teach-
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ing, advising and mentoring. Students in the program are predominantly African 
American and in many ways are nontraditional students, and their very presence as 
the majority component in a mathematics-related field attests to the social justice 
agenda of the program and the institution. What evidence do we have that the pro-
gram is successful in achieving its equity-as-social-justice agenda? This is a long-
term goal and one that is not easily assessed or objectively measured, but we judge 
our success by the extent to which our students evidence a commitment to social 
justice in their personal and professional lives. We have some anecdotal evidence 
of this in the active social justice research agendas of some of our graduates, and in 
the placements they seek after graduation. Of particular significance is the fact that 
many of our graduates choose to maintain their placements in urban schools where 
they are able to bring the insights and competencies they have gained to bear on the 
complex issues of unequal outcomes that affect minority students in urban settings.

Our reflection on our work towards the achievement of a social justice agenda 
through mathematics education, has brought us to the understanding that our suc-
cess depends at least as much on who we are as agents of social justice ourselves as 
on what we do. Attempts to describe a social justice curriculum in terms of content 
and practices and program designs never capture the essence of a social justice 
agenda, and almost trivialize the process. When faculty and teachers personally 
commit to a social justice agenda it becomes the ethos of their institutions and class-
rooms and profoundly influences their ways of being with students. In the doctoral 
program we have described, it is the faculty’s commitment to equity that manifests 
itself in the nurturing and mentoring and modeling that we do. It might be the case 
that a commitment to social justice must be caught rather than taught.
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 Framing Quality

My goal in this chapter is to engage in a race-critical analysis of the concept of qual-
ity as it has been invoked in recent discourse associated with mathematics education 
reforms in the United States. A race-critical analysis draws from sociology (e.g., 
Bonilla-Silva 1997, 2001, 2003; Moore 2008; Omi and Winant 1994) and calls not 
only for an examination of how race and racism structure the very nature of the 
mathematics education enterprise but also for an examination of how mathematics 
education research, policy, and reform contribute to the dynamics of race and rac-
ism in the larger society. The goal of such an analysis is not to focus on individuals 
within the domain but rather on the configurations of power and practice, includ-
ing discursive practices, which necessarily link mathematics education to racialized 
structures, process, and agendas in the rest of society (Martin 2006, 2009a, 2010).

I focus on quality because of the ways it has been linked to almost every aspect 
of these reforms—highly qualified teachers, high-quality curriculum, high-quality 
assessments—and because of the ways that mathematics education has subse-
quently been linked to maintaining the quality of life for the U.S. citizens and 
helping to maintain U.S. international standing. Mathematics for All and the Final 
Report of the National Mathematics Advisory Panel (U.S. Department of Educa-
tion 2008) will serve as points of reference throughout. In my view, the underlying 
focus on quality in both is neither haphazard nor without political motivation and 
racial intent.

As pointed out by Apple (1992), Popkewitz (1980), and Tate (2004), words like 
quality are often associated with larger slogan systems like back-to-basics, scien-
tifically based research, standards-based education, global education, and multi-
cultural education, usually for the purpose of evoking a desired set of emotional 
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responses and policy-related outcomes. Popkewitz (1980), in particular, noted the 
following about these key words and slogans:

The importance of these phrases is that they are emotive…. The slogans potentially estab-
lish a mood or a form with which people can feel comfortable and affiliate with particular 
pedagogical practices…. The potency of a slogan is that it can create the illusion that an 
institution is responding to its constituency, whereas the needs and interests actually served 
are other than those publicly expressed. The slogan may suggest reform while actually 
conserving existing practices. (pp. 304–305).

With respect to “conserving existing practices,” I claim that in recent years of U.S. 
mathematics education reform, quality has been infused into the discussions not 
only for the sake of accountability and improving outcomes such as test scores but 
also to preserve the interests of the larger white population, including economic 
and educational advantage, even while making claims about equity and diversity 
(Martin 2008, 2010).

My discussion in this chapter is not meant to imply that quality is a signifier 
for whiteness or that whiteness is a signifier for quality (Staiger 2004). Nor is my 
discussion meant to imply that other social groups are not interested in quality or 
that there is no overlap between white interests and the interests of non-dominant 
groups. However, I do claim, and history bears this out, that quality within the con-
text of dominant white interests does not always align with quality as conceptual-
ized by those who are in marginalized social positions (Bell 1980); nor do positive 
benefits previously experienced by whites translate into benefits for non-whites.

My race-critical analysis is buttressed by a critical discourse analysis of reform 
rhetoric and text. These analyses help to expose the subtleties of the new racism 
(Ansell 1997; Bonilla-Silva 2003; Giroux 2006) as it is produced and fostered 
through powerful channels like research and policy. As noted by van Dijk (2000):

Especially because of their often subtle and symbolic nature, many forms of the new racism 
are discursive: they are expressed, enacted and confirmed by text and talk, such as…poli-
cies, laws,…political propaganda,…scholarly articles…. Discourse may thus be studied as 
the crucial interface between the social and cognitive dimensions of racism. (pp. 34–36)

Race-critical and critical discursive analyses raise several important questions: Why 
is there a heavy emphasis on quality as a dominant theme in the discourse of re-
form? Why is it that a word search of the Final Report of the National Mathematics 
Advisory Panel produced 98 instances of the word quality yet zero instances of 
the word equity in its recommendations for educating, presumably all, children in 
U.S. schools? What constitutes quality? Who decides? In what kinds of ideologi-
cal and material spaces do these conceptualizations and interests unfold? How do 
dominance-serving conceptualizations of quality conflict with notions of quality 
and equity called for by non-dominant groups? Full responses to these questions 
are beyond the scope of a single chapter but it is important to raise them in order 
to make discussions of mathematics education reform more honest and to reveal 
its deeper political roots, aims, and goals (e.g., Gutstein 2008, 2009; Martin 2008).

In the latter part of this chapter, I give particular attention to Black learners in the 
United States relative to these quality-focused discussions. I argue that the struc-
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tural practices, norms, and ideologies, including racism that have long arbitrated 
quality, standards, and resources in favor of white learners cannot simultaneously 
serve the diverse needs of Black learners.

 Quality in Service to Nationalism—Nationalism in Service 
to Racism

The racial dynamics referenced in the opening paragraph of this chapter include 
the racism inherent in nationalist and security-focused political agendas of previous 
Republican administrations. In forming the National Mathematics Advisory Panel, 
for example, former President George W. Bush was able to extend these agendas into 
mathematics education. This is a serious claim but one that can be best understood in 
the context of (a) the administration’s prevailing racial politics and (b) the expected 
role that these reforms will play in helping to shield the United States from perceived 
threats to U.S. national security and preserve the quality of life for its citizens, on 
the other. Consider the first few sentences of the Final Report’s Executive Summary:

The eminence, safety, and well-being of nations have been entwined for centuries with the 
ability of their people to deal with sophisticated quantitative ideas…. Much of the com-
mentary on mathematics and science in the United States focuses on national economic 
competitiveness and the economic well-being of citizens and enterprises. There is reason 
enough for concern about these matters, but it is yet more fundamental to recognize that 
the safety of the nation and the quality of life—not just the prosperity of the nation—are at 
issue. (p. xi; italics added)

To further stress the role that mathematics education should play in this nationalist 
and security-focused agenda, the Final Report goes on to state:

During most of the 20th century, the United States possessed peerless mathematical prow-
ess—not just as measured by the depth and number of the mathematical specialists who 
practiced here but also by the scale and quality of its engineering, science, and financial 
leadership, and even by the extent of mathematical education in its broad population. But 
without substantial and sustained changes to its educational system, the United States will 
relinquish its leadership in the 21st century. This report is about actions that must be taken 
to strengthen the American people in this central area of learning. Success matters to the 
nation at large…. Ignoring threats to the nation’s ability to advance in the science, technol-
ogy, engineering, and mathematics (STEM) fields will put our economic viability and our 
basis for security at risk. (pp. 1–2, italics added)

Gutstein (2009), in a searing analysis of former President Bush’s American Com-
petitiveness Initiative (ACI) (Domestic Policy Council 2006), to which the forma-
tion of the National Mathematics Advisory Panel is linked, noted similar quality-
focused and economic-threat language in other documents, such as Rising Above 
the Gathering Storm (National Academies 2006). In that document, it is stated:

Without high-quality, knowledge-intensive jobs and the innovative enterprises that lead to 
discovery and new technology, our economy will suffer and our people will face a lower 
standard of living. (p. 1, italics added)
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Two key questions can be asked about the excerpts presented above. First, what 
threats to national security and quality of life in the United States is the report refer-
ring? Second, how is the identification of these threats related to “the organizing 
principles that generate, shape, and sustain white supremacy designed to exclude 
other human beings by virtue of their race, language, culture, and ethnicity so that 
they can be exploited” (Macedo and Gounari 2006, p. 3)? It is important to note 
that while the statements above make mention of economic and security threats, 
the United States, in reality, has been, and remains, the most dominant economic 
and military superpower in the world, and history bears witness to the fact that 
it has gone to great lengths to maintain that standing. So, what is the subtext of 
these fears? Considering the political origins of the National Math Panel, I believe 
these quality-focused and security concerns can be linked to ongoing post-9/11 anti-
Muslim sentiments, the intensification of a new racism within the U.S. borders that 
is often more sophisticated and implicit than earlier versions, and the globalization 
of U.S. racism and white privilege beyond its borders (Abbas 2004; Macedo and 
Gounari 2006; Mosse 1995; Winant 2004). This new racism can be associated with 
New Right politics that was a hallmark of the Bush administration. Giroux (2006) 
noted the following analysis by Ansell (1997):

The new racism actively disavows racist intent and is cleansed of extremist intolerance…. 
It is a form of racism that utilizes themes related to culture and nation as a replacement for 
the now discredited biological referents of the old racism. It is concerned les with notions of 
racial superiority in the narrow sense than with the alleged “threat” people of color pose—
either because of their mere presence or because of their demand for “special privileges”—
to economic, socioeconomic, political, and cultural vitality of the dominant (white) society. 
It is, in short, a new form of racism that operates with the category of “race.” It is a new 
form of exclusionary politics that operates indirectly and in stealth via rhetorical inclusion 
of people of color and the sanitized nature of its racist appeal. (pp. 21–22)

Macedo and Gounari’s (2006) cogent analysis of the racialized nature of the “threat” 
is particularly helpful in the race-critical analysis presented in this chapter:

The dichotomy [between “us” and “them”] has been astutely used by the Bush administra-
tion to conduct its war on terror and expand its imperial ambitions unimpeded by a domes-
tic opposition. By constructing a terrorist enemy that encompassed all Muslims (a “group” 
that amounts roughly to 1.2 billion people worldwide and comprises numerous countries, 
societies, traditions, languages and lived experiences), the Bush administration, aided by a 
compliant media, exacerbated the racism present in U.S. society so that all Muslims became 
suspected terrorists. And it legitimized racist treatment of Muslims, as when “Muslim-look-
ing” individuals are deplaned by major airlines because white folks fear of flying in their 
company. However, the same racial profiling was never applied to white males resembling 
Timothy McVeigh after the terrorist bombing of the federal building in Oklahoma City, 
where more than one hundred fifty people died, including women and children. (p. 5)

The us-versus-them sentiment is also present in the economic and quality-focused 
arguments of mathematics education reform, where it is suggested that threats from 
abroad (them) are encroaching on U.S. (us, our people, American) international 
standing and quality of life. The push for quality is therefore a pushback against 
this threat. Moreover, the push for quality represents a commitment to maintaining 
and exploiting racial conflict via anti-terror nationalist arguments. In my view, this 
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nationalist fervor has spilled over into efforts calling for Mathematics for All, given 
that such efforts often link the aims and goals of mathematics education to work-
force, international competitiveness, and security concerns (e.g., RAND Mathemat-
ics Study Panel 2003; U.S. Department of Education 1997).

 Does All Really Mean All?

Gutstein (2009) makes a compelling case for questioning the benefits to all that are 
promised in reform initiatives. In his critical analysis, he stated:

…history shows that when U.S. productivity increases, the wealthiest benefit, not the 
majority …the impression is clear that this national situation affects all U.S. people. When 
the documents frame the problems as, for example, losing control of global markets, they 
imply a negative impact on the people as a whole rather than the potential decline of U.S. 
corporate profits. (pp. 138–154)

A word search of the Final Report of the National Mathematics Advisory Panel, 
clarifies for whom the quality-of-life referenced in the report applies. The search 
produced 21 instances of the word American (with repetition of some sentences), 11 
instances of the word citizen (with repetition of some sentences),  two non-repeated 
references to the word minority, and only one mention of the word resident. Such 
references, according to van Dijk (2000), contribute to the discursive construction 
of the Other that is needed in nationalist and racist ideologies. This implicit dis-
tinction between citizens and non-citizen, American and non-American, despite the 
rhetoric about “all our people” is more clearly understood in the context of anti-
immigrant policies and sentiments flowing from former President Bush’s Republi-
can Administration. This includes, as an example, the passing of the Secure Fence 
Act of 2006 (Pub.L. 109–367), which:

…allows for over 700 miles (1,100 km) of double-reinforced fence to be built along the 
border with Mexico, across cities and deserts alike, in the U.S. states of California, Arizona, 
New Mexico, and Texas in areas that have experienced illegal drug trafficking and illegal 
immigration. It authorizes the installation of more lighting, vehicle barriers, and border 
checkpoints, while putting in place more advanced equipment like sensors, cameras, satel-
lites and unmanned aerial vehicles in an attempt to watch and control illegal immigration 
into the United States. (retrieved on December 1, 2009 from http://en.wikipedia.org/wiki/
Secure_Fence_Act_of_2006)

In his official statement to the press following passage of the bill, former President 
Bush stated the following:

This bill will help protect the American people. This bill will make our borders more 
secure…. We must face the reality that millions of illegal immigrants are already here. They 
should not be given an automatic path to citizenship; that is amnesty. I oppose amnesty. 
(retrieved on December 1, 2009 from http://georgewbush-whitehouse.archives.gov/news/
releases/2006/10/20061026.html)

In my view, the underlying rhetoric of both the Final Report of the National Math-
ematics Advisory Panel and Mathematics for All have been constructed to appeal to 
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both white liberal and conservative consciousness. The appeal in the Final Report 
is to nationalism and nativism. In Mathematics for All, there is an underlying appeal 
to white middle- and upper-class liberalism to convince whites that others must 
now share in the opportunities that they have long enjoyed; that is “their needs—for 
more and better jobs, access to education and health care…can be linked to those of 
the minority poor if the ‘wedge issue’ of race can be blunted” (Winant 2004, p. 60).

However, as noted by Schoenfeld and Pearson (2009), the appeal to white con-
sciousness is sometimes met by resistance, revealing the racial dynamics at play in 
public and political negotiations of excellence (i.e., quality) and access (equity):

Simply put, the anti-reform forces in reading and mathematics grew strong at a time of the 
resurgence of the right wing in California politics. San Diego politician Pete Wilson had 
ridden “wedge politics” (appeals to the fears of the White middle-class voting majority 
regarding the rising populations and rights of minorities) to become mayor of San Diego. 
Wilson was a strong supporter of Proposition 187, a 1994 ballot initiative designed to deny 
illegal immigrants social services, healthcare, and public education. (The proposition won 
at the ballot box, with non-Latino Whites being the largest voting block in favor; it was 
later declared unconstitutional.) In 1996, California voters passed Proposition 209, which 
abolished affirmative action programs in public institutions (Office of Legislative Analy-
sis, State of California 1996). In 1998, voters passed Proposition 227, which “requires all 
public school instruction be conducted in English” (California Voter’s Guide 1998) and 
severely curtailed bilingual education. The Standards represented a clear tilt toward the 
“democratic access” view of education. Advocates of reform believed in “mathematics for 
all”—in particular that it was possible to achieve excellence and equity, without sacrificing 
one for the other. There are many who believe that the goals of equity and excellence [i.e., 
quality] are in tension, and that making mathematics accessible to many more students 
necessarily entails “dumbing down” the mathematics. If one believes this, then two conse-
quences of the democratization of mathematics as proposed by reform are (a) a weakening 
of the mathematical preparation of our best students, and a concomitant weakening of the 
nation’s base of mathematically and scientifically prepared elite and (b) a different demo-
graphic mix of those who are considered to be prepared for entry into elite institutions and 
professions. (p. 573)

So, while such efforts have equity-oriented veneers and are based on an underlying 
appeal to quality, it would appear that there are other ideologies at play that are not 
based exclusively on moral and humanistic concern for those who are marginalized 
in mathematics (Martin 2003). In my view, it is inconceivable that the real goal 
of Mathematics for All is to reconstruct the opportunity structure associated with 
mathematics education in such a way that we move from an arrangement that has 
long served white males and the wealthy and defined quality on their terms to an 
arrangement where Blacks, Latinos, and Native Americans sit atop the hierarchy of 
material benefits and power. As the statement from Schoenfeld and Pearson (2009) 
demonstrates, such a rearrangement is likely to be met with resistance (Berry and 
Bonilla-Silva 2008; Brantlinger 2003; Lipman 2004). Some compromise, for the 
sake of public appearance, is likely to emerge. Very rarely, if ever, has it material-
ized that Black, Latino, and Native Americans have collectively enjoyed access to 
the best learning opportunities, best teachers, best curriculum, most funding, and 
greatest levels of social and economic reward. In the context of these limitations, 
Mathematics for All, and all other mathematics education reforms, must be ana-
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lyzed for their implicit racial content, racial signification, and hidden agendas de-
spite their rhetoric about equity and quality (Martin 2003).

 White Institutional Space and Mathematics Education 
Reform

The quality-focused rhetoric of Mathematics for All and the Final Report of the 
National Mathematics Advisory Panel can be further understood via the charac-
terizations of mainstream mathematics education reform and policy contexts as in-
stantiations of white institutional space (Feagin 1996; Moore 2008). I distinguish 
mainstream mathematics education research and policy as that which has relied 
on traditional theories and models of teaching and learning (e.g., information pro-
cessing, constructivism, situated cognition) and research approaches (race-neutral 
analyses, race-comparative analyses) developed primarily by white researchers and 
policy makers to normalize the mathematical behavior of white children (Martin 
2009a, 2009b, 2009c, 2009d). The term white institutional space comes from the 
work of sociologists Feagin (1996) and Moore, who, in her book Reproducing Rac-
ism: White Space, Elite Law Schools, and Racial Inequality (2008), examined the 
white space of law schools and how the ideologies, discourses, and practices in 
these schools serve to privilege white perspectives, white ideological frames, white 
power, and white dominance all the while purporting to represent law as neutral and 
objective.

Based on her analysis, Moore (2008) claimed that the historical development 
of law schools as white institutional space is characterized by four foundational 
elements: (1) exclusion of people of color from elite law schools and positions of 
power in legal institutions which results in the accumulation of white economic and 
political power, (2) the development of a white frame that organizes the logic of 
these institutions and normalizes white racial superiority, (3) the historical construc-
tion of a curricular model based on the thinking of white elites, and (4) the assertion 
of law as a neutral and impartial body of doctrine unconnected to power relations.

What is highlighted by the characterization of mainstream mathematics educa-
tion reform and policy contexts as instantiations of white institutional space is that 
the enterprise of mathematics education is not immune to the structural and institu-
tional racism that characterizes many other areas of U.S. society. In my view, it is no 
different than other racialized spaces and should be subjected to the same antiracist 
scrutiny (Martin 2008, 2009a, 2009d, 2010).

Although they vary in ideological and epistemological orientation, white schol-
ars and policy makers continue to be overwhelmingly represented in elite posi-
tions of power in mathematics education, able to determine the tone, direction, and 
impact of reforms, and able to define standards for quality, even in the contexts of 
changing population and school demographics. However, with a few notable excep-
tions (e.g., Silver et al. 1995; Treisman 1985), the gestalt of their ideologies, poli-
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cies, and practices have produced only marginal gains for non-white children, even 
as the political context of education has resulted in calls for greater accountability.

Moreover, the relative exclusion of those African American, Latino, and Native 
American scholars and policy makers who are likely to call into question these 
power dynamics is readily apparent in contexts ranging from handbook chapters 
to national panels and discussion groups. As noted in Martin (2008), no African 
American mathematics education researchers were on the National Mathematics 
Advisory Panel. To what degree might those in power, and who have the ability to 
exclude, offer quality-oriented rationalizations as an excuse?

Within white spaces, it is also true that the needs of non-dominant groups are 
often conceptualized and framed in ways that are contingent on and tied to the well-
being and status of the larger white society. Secada (1989) has called this enlight-
ened self-interest. Race-critical theorists refer to this as interest convergence, which 
suggests that “gains for blacks [and other minority groups] coincide with white self 
interest and materialize at times when elite groups need a breakthrough for African 
Americans [and other minority groups], usually for the sake of world appearances 
or the imperatives of international competition” (Delgado 2002, p. 371).

In his seminal article, Brown versus Board of Education and the Interest-Conver-
gence Dilemma (1980), critical legal scholar Derrick Bell demonstrated how white 
elites in positions of power manipulated discourse, policy, and outcomes on school 
desegregation litigation for political, rather than moral, reasons. Delgado (2002) 
poignantly summarized Bell’s argument about why the Supreme Court ruled the 
way that it did in that landmark court case:

To explain the rise and fall of black fortunes, according to Bell, one must attend to such 
matters as the labor market, the need to placate working class whites, wartime needs for 
solidarity and bodies to serve in industry or on the front, and the exigencies of Cold war 
competition. Taking as his principle example, Brown v. Board of Education, Bell posited 
that this remarkable decision came about when it did due to Cold War politics. Bell invited 
his readers to consider how the NAACP Legal Defense Fund had been litigating school 
funding and desegregation cases for decades throughout the South, generally losing or win-
ning, at most narrow victories. Then, in 1954, the skies opened—the Court declared, for the 
first time in a school desegregation case, that separate was no longer equal. Why then? Bell 
pointed out that the country had just celebrated the end of a bloody world war against Ger-
many and Japan, during which many black men and women had served gallantly. Having 
risked their lives for the cause of freedom, they were unlikely to return meekly to the former 
regime of menial jobs and segregated facilities. For the first time in decades, the prospect 
of serious racial unrest loomed…. The balance of interests shifted; elite whites now saw a 
powerful reason to advance blacks’ cause. For Bell, the Brown decision came about when it 
did, not because of altruism or advancing notions of social morality. Rather, elite whites on 
the Supreme Court, in the State Department, and in other circles of power simply perceived 
that America’s self-interest lay in publicly supporting blacks so as to gain an edge in the 
Cold War with Russia. (p. 372)

Interest convergence helps to explain the duplicitous nature of rhetoric and policy 
efforts championed by mainstream mathematics education researchers and policy 
makers, efforts that are promoted as being driven by quality and being beneficial 
to non-dominant groups while simultaneously functioning to preserve powerful 
white interests. Consider the statements below from Everybody Counts (National 
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Research Council 1989) and the Final Report of the National Mathematics Advisory 
Panel (U.S. Department of Education 2008), respectively.

Currently, 8 percent of the labor force consists of scientists or engineers; the overwhelming 
majority are White males. By the end of the century, only 15 percent of net new entrants 
to the labor force will be White males. Changing demographics have raised the stakes for 
all Americans. Never before have we been forced to provide true equality in opportunity to 
learn. (National Research Council 1989, p. 19, italics added)

“[O]ver the past 40 years, there has been a significant decrease in the proportion of doctor-
ates earned by U.S. citizens and permanent residents in STEM fields. In 1966, they earned 
83.5% of all STEM doctorates awarded, but in 2004, they earned just 59.8%” (Babco 
2006). This strategy may not work in the future, however, because the supply of immigrant 
and temporary nonimmigrant STEM professionals may become more uncertain for reasons 
addressed above. It is therefore in the national interest to increase the number of domestic 
students studying and receiving degrees in STEM areas. (U.S. Department of Education 
2008, p. 2, italics added)

What is particularly interesting about this reform-oriented discourse is how the 
needs of African American, Latino, Native American, and poor children have often 
been subsumed under what is good for all in lieu of focusing on what may be ap-
propriate and specifically needed for particular groups. Note that the concern in the 
first excerpt presented above is with the decline in the number of white males, not 
with the increasing number of minorities. Also, the assumption across these discur-
sive contexts seems to be that mere access to highly qualified teachers, high-quality 
teaching, high-quality curriculum materials, and high-quality assessments long en-
joyed by whites will insure that all children have the opportunity to achieve up to 
their potential and that inequities in participation, achievement, and persistence will 
be eliminated. I would claim that a generic focus on all or the nation contains the 
following contingencies: (1) if it is good for whites, then it will be good for other 
groups and (2) before it can be considered good for everyone, it must be considered 
good for whites.

 Quality, Good Intentions, and the Needs of Black Children

To provide schooling for everyone’s children that reflects liberal, middle-class values and 
aspirations is to ensure the maintenance of the status quo, to ensure that power, the culture of 
power, remains in the hands of those who already have it…. Several black teachers have said 
to me recently that as much as they’d like to believe otherwise, they cannot help but con-
clude that many of the “progressive” educational strategies imposed by liberals upon black 
and poor children could only be based on a desire to ensure that the liberals’ children get sole 
access to the dwindling pool of American jobs. Some have added that the liberal educators 
believe themselves to be operating with good intentions, but that these good intentions are 
only conscious delusions about their unconscious true motives. (Delpit 1995, pp. 28–29)

As an African American scholar in a field numerically dominated by white scholars 
and as someone who is committed to meaningful mathematics education for Black 
children in the United States, I remain ever mindful of the quote by Lisa Delpit 
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presented above. Delpit’s (1995) critique of 1980s literacy education reform was 
directed at the proliferation, and misapplication, of process-oriented approaches to 
writing by liberal white scholars and teachers. Delpit claimed that limited atten-
tion to skills development, in favor of the these process approaches, often hindered 
Black children from gaining access to the linguistic codes of power necessary for 
negotiating success in the larger society. White middle-class children, she argued, 
were already familiar with these codes and reform-oriented school practices that 
were being promoted only served to further empower these children.

Inherent in Delpit’s critique is the issue of whether those in power to decide what 
children should learn, how they should learn, for what purposes they should learn, 
and how they should be assessed, can truly make their decisions based on what is 
best for those who are outside the culture of power or whether there are vested in-
terests in preserving existing social relations and hierarchies. Delpit’s quote also ac-
knowledges that white scholars, policy makers, and practitioners continue to serve 
as the principal architects of education for other people’s children.

Because of the well-documented oppression, subjugation, and stigmatization 
faced by Black children, and, to date, the inability of reforms to significantly alter 
negative outcomes, I can only share Delpit’s and other Black scholars’ “pragmatic 
infusion of suspicion” (Alston 1995) about the good intentions of these architects 
and their reforms. I find Delpit’s critique particularly relevant as I consider recent 
mathematics education reform relative to the needs of Black children. I find it nec-
essary to ask where the needs of Black children really fit within these converging 
interests of quality-focused reform, national security, and workforce preparation? 
Surely, the needs of Black children as Black children must figure prominently in 
these concerns, given their historical underrepresentation in mathematics and their 
disproportionate and continuing struggles against difficult social realities. Wouldn’t 
these realities also represent a compelling convergence of interests?

Although much of my argument in this chapter has focused on a critical analy-
sis of quality, I have described elsewhere (Martin 2007b) how other key words 
like achievement, have simultaneously been used to socially construct Black chil-
dren as deficient in service to dominant racial ideologies that render Black culture, 
families, and communities as pathological. A term like achievement, when used 
in conjunction with a race-comparative research paradigm in mathematics educa-
tion facilitates ranking hierarchies which suggest that Black learners should become 
more like learners who are identified as White and Asian if they are to become high 
academic achievers (Martin 2007a, 2009a, 2009b, 2009d). This race-comparative 
approach is one that usually begins with Black inferiority and the normalization 
of white behavior, implicitly associating the latter with quality (Staiger 2004), and 
having the outcomes of white children serve as the benchmark of progress for all 
others. For example, the Final Report of the National Mathematics Advisory Panel 
(U.S. Department of Education 2008) cites the following statement:

The achievement gap between students of differing ethnic and socioeconomic groups can 
be significantly reduced or even eliminated if low-income and minority students increase 
their success in high school mathematics and science courses. (Evan et al. 2006, p. 11).
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This statement is merely a variant of the colloquial solution to “closing” the so-
called racial achievement gap, which is typically framed as raising Black, Latino, 
Native American, and poor students to the level of white students (see Martin 2007b, 
2009a, 2009b, 2009c, 2009d for more extensive critiques of racial achievement gap 
rhetoric). Little attention is given to the structural and institutional forces that help 
to create and maintain such gaps. Moreover, what would happen if low-income and 
minority students not only matched, but also outperformed, white students on high-
status assessments and the so-called racial achievement gap was one that placed 
white students in a subordinate position. Would the discourse shift to defining qual-
ity on terms dictated by the performance of minority students? Would the discourse 
reflect beliefs about cultural deficits and intellectual inferiority of white students? 
Evidence from a study of Black students in England suggested that if such a reversal 
occurred, those in power to set standards and define quality would resort to such 
drastic strategies as changing the test (Gilborn 2008).

A few years ago, I was a participant on a panel that included a discussion of 
mathematics achievement data for Black and white students in one region of the 
United States. One of the panelists pointed out that several years prior, white stu-
dents had achieved levels that were considered acceptable and that put them on the 
path toward college and meaningful employment. A few years later, when Black 
students had achieved those very same levels, and after white students had reaped 
the benefits of those standards, these levels were no longer deemed acceptable in 
the environment of accountability. Upward shifts in both white and Black student 
achievement, it appeared, had mostly benefited white students.

Of course, these comments are not meant to suggest that Black learners should 
not strive for higher levels of academic achievement or full and meaningful par-
ticipation in the larger opportunity structure. However, alternative framings of the 
goals for mathematics education are needed that do not require one to accept def-
icit-oriented characterizations of Black children in relation to the performance of 
white students or do not reduce Black children’s efforts to servicing those in power 
(Martin 2009a, 2009b, 2009c, 2009d; Martin and McGee, 2009; Perry, Steele, and 
Hilliard 2003). Martin and McGee (2009) and Martin (2009b, d) have stressed lib-
eratory framings that focus on mathematical, epistemological, and social empow-
erment (Ernest 2002), but in ways that positively affirms Black children’s racial, 
mathematical, and academic identities.

 Conclusion

In recent years of U.S. mathematics education reform, quality has been linked to 
almost every aspect of these reforms—highly qualified teachers, high-quality cur-
riculum, and high-quality assessments. These reforms have, in turn, been linked to 
maintaining the quality of life for the U.S. citizens and helping to maintain U.S. in-
ternational standing. I have argued in this chapter that this focus on quality is neither 
haphazard nor without political motivation and intent.
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I claim that quality has been infused into reform not only for the sake of account-
ability and improving outcomes such as test scores but also to preserve the interests 
of the larger white population. Definitions of quality, for example, are not race-
neutral and the linking of quality-focused mathematics education reforms to liberal 
and neoconservative political agendas demonstrates a convergence of interests that 
renders real equity concerns as secondary considerations, at best.
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The chapters in this section have been grouped together because they deal with 
quality and equity issues and challenges faced by specific social groups. The ten 
chapters represent a collage of voices from different countries (Mexico, Australia, 
Denmark, Sweden, Canada, and United States), which highlight concerns about 
identifiable social groups in relation to access to quality mathematics education. 
These groups range from children with special rights (visually or hearing impaired, 
Down syndrome); English language learners (where English is not their home lan-
guage); learners living in poverty; aboriginal learners (in Canada and Australia); 
female learners and African American learners; and gifted learners. The stories 
highlight the ways in which these groups continue to be denied access to and full 
participation in quality mathematics education. The chapters call teacher educators 
and researchers to action towards foregrounding issues of quality and equity for 
these groups in terms of influencing policy, changing one’s practice and researching 
further so as to improve our understanding of the issues and to find ways to move 
forward. Collectively, the chapters provide lessons on how we may proceed in the 
form of suggested avenues for further research, ideas for curriculum design, inter-
vention programs and forms of instruction.

Most importantly, the chapters point to a need to examine equity and quality in 
terms of ‘outcomes’ for these groups rather than merely focusing on issues of ac-
cess. Improving mathematical participation in the full range of mathematical offer-
ings (including mathematical careers, post graduate studies, advanced mathematics 
courses) is emphasised. The chapters also collectively point to the need to dispel the 
myth that ‘same education’ for all results in equity. They illuminate the way in which 
a one size fits all as an approach, as often reflected in slogans such as ‘education for 
all’, tends to only provide quality education for dominant groups. Specific groups 
require that curriculum and programs acknowledge their needs, the resources they 
bring (e.g. bilingualism) and, perhaps more of a challenge, they require new concep-
tualisations of ‘quality’ reconsidered from the perspective of marginalised groups.
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Reading this section, one is encouraged by the creative and innovative forms of 
action suggested by authors and inspired to research further in order to make in-
roads into the challenge of achieving greater equitable participation in mathematics 
education by the marginalised groups.

 Exploring the Chapters

The chapter by Gervasoni and Lindeskov draws attention to the need for equitable 
access to quality mathematics education for children with special rights (e.g. visu-
ally and hearing impaired, Down syndrome). While traditionally these groups have 
been identified as those with ‘special needs’, the authors in this chapter talk about 
them as those with ‘special rights’. They highlight the way in which such learners, 
in Australia and beyond, are excluded from opportunities and learning pathways in 
mathematics and call on the international community of mathematics educators to 
advocate for these rights in their countries and for further research into the learning 
potential of such students provided with opportunities that cater for their needs. 
Wiest considers the issue on gender and mathematics and cautions us not to simply 
accept the many gains that have occurred by females in mathematics during the 
past few decades. She provides evidence in the United States of continued areas 
of concern including course completion, mathematics-related dispositions, career 
paths and advanced studies in mathematics. Her chapter concludes with recommen-
dations for addressing these concerns. For example, providing networking and men-
toring opportunities involving female peers and role models; holding high expecta-
tions of female learners and fostering positive dispositions towards mathematics, 
and promoting societal changes that result in more positive portrayals of females in 
mathematics.

Wistedt and Sundström illuminate within the Swedish context, where equity is-
sues are to some extent taken for granted due to the fairly even economic demo-
graphics, another form of inequity—namely that bright and exceptionally talented 
students are not provided quality mathematics education that enables them to reach 
their full potential. Similarly, Oktaç, Fuentes and Rodriguez point to the way in 
which equity agendas have overlooked gifted children in general and mathemati-
cally gifted children in particular. In addition to the equity issue from an individual 
point of view (dissatisfaction and unmet needs), they address the issue from the 
point of view of loss of a societal resource of talent in Mexico (and relate this to 
other developing countries). This, they argue, results in dependence on importing 
necessary mathematical top-level talent from other countries thus widening the in-
equities between international communities. Both chapters thus challenge the rheto-
ric of debate related to gifted children but go on to provide suggestions for provid-
ing quality education for these exceptionally talented learners. So, for example, 
Wistedt and Sundström call for a richer set of educational materials; appropriately 
trained teachers able to work with talented learners; summer camps for such learn-
ers and a societal culture that supports mathematics as a human discipline. Oktaç, 
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Fuentes and Rodriguez call for a specific kind of activity design which involves a 
central problem posed and several peripheral activities for extending those talented 
learners. They provide an example of such an activity and stress that activities need 
to be: presented via open questions; flexible and adaptable; motivating and con-
textualised; extendable, and should help to both organise learner knowledge and 
generate further ideas.

The chapter by Cooke, Howard, Lowe and Perry highlights the importance of 
relating community connectedness, relevance and belonging to understandings of 
quality and equity for Australian Aboriginal and Torres Strait Islanders learners. 
They argue that while there has been some progress in the enhancement of mathe-
matical outcomes for these learners the gap between Indigenous and non-Indigenous 
students has continued to widen. They call for an increase in intervention programs 
focused on addressing various criteria related to social, cultural and community con-
texts. They emphasise that these programs must address the incongruity between 
student’s home and school environments and in order to do this programs must focus 
on the following criteria: enhanced mathematical learning, social justice, empower-
ment, engagement, reconciliation, connectedness and relevance. Similarly, Borden 
and Wagner point to the need to characterise quality learning for Canadian Aborigi-
nal learners in terms of local values which they synthesise in terms of three aspects 
of wholeness, namely, cultural synthesis, personal holism and intergenerational in-
teraction. In so doing, they argue that equity is promoted by addressing issues of 
identity and power (through deliberate repositioning of learners in more respectful 
relationships) while supporting increased mathematical access and achievement.

Brown, Cady and Lubinski illuminate the effects of poverty and language on 
mathematics learning in the U.S. context and examine the way in which discourse 
diversities are intertwined and cannot be easily separated in relation to mathemati-
cal achievement. Their chapter shows that English-speaking students living in pov-
erty might be more severely impacted than English language learners. They suggest 
Cognitively Guided Instruction (CGI) as an appropriate approach to working with 
both English Language Learners and learners living in poverty. Similarly, Pitvorec, 
Willey and Khisty explore appropriate frameworks for working with what they term 
bilingual learners in the United States. They argue that it is possible to address both 
issues of quality and equity through the use of a particular curriculum framework 
which considers the needs of bilingual learners from the beginning, supporting the 
agency of non-dominant students and seeing their home languages as a resource. 
Both chapters point to the need for broader conceptualisations of language access 
from its often narrow construction as access to vocabulary and instructions to a 
recasting of learners’ home languages as a resource for learning. Thus language 
is reconceptualised as a ‘natural tool’ that is continually being refined by learners 
rather than an entity which learners need to be taught. In this way increased agency 
is given to learners.

Ellington and Prime emphasise the need to bring a social justice perspective to 
the issue of quality and equity in mathematics education. They argue that the con-
tinued inequities in mathematical achievement of African American learners and 
their white counterparts point to inadequate and inappropriate conceptualisations of 
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quality and equity. They emphasise that a social justice perspective on equity must 
be aligned with the notion of equity of outcomes (and not simply equity of access 
and treatment). The authors illuminate this through the voices of doctoral students 
in mathematics education at a Historically Black University. The chapter by Martin 
similarly points to the inadequacy of current notions of quality and equity and argue 
that mathematics education research, policy and reform can inadvertently contrib-
ute to racism when notions of quality and equity are explored within the context of 
white dominant interests. They examine the way in which such conceptualisations 
of quality are not aligned with quality for those in marginalised positions. Both 
these chapters point to a need for awareness that definitions of quality and equity 
are not race neutral and need deep and thorough interrogation.

The ten chapters in this section collectively point to the need for action by math-
ematics educators in terms of exploring issues of quality and equity in relation to 
specific groups. While there are no smooth roads to follow that will guarantee prog-
ress on these issues for marginalised groups, the chapters offer a set of landmarks 
of required attention and action and in addition provide a range of pointers useful 
in planning our journey ahead. They call us to proactively embrace the journey 
ahead with our eyes wide open to the various potholes which can be hidden by the 
smoothness of rhetoric such as ‘quality mathematics education for all’. Without 
deep examination of the rhetoric surrounding issues of quality and equity in relation 
to specific groups, our journey is likely to be severely impeded.

M. Graven



Part IV
No Highway and No Destination?



457

 Introduction

The European Society for Research in Mathematics 
Education (ERME)

In May 1997, a group of 16 scholars from different European countries met in Os-
nabrück, Germany, for three days to discuss the formation of a European society 
in mathematics education. In true European spirit, we decided that we wanted a 
society which would bring together researchers from across Europe, particularly in-
cluding colleagues from Eastern Europe, fostering communication, cooperation and 
collaboration. We wanted a conference that would explicitly provide such oppor-
tunity. We wanted especially to encourage and contribute to the education of young 
researchers, recognising that they are the future of our discipline. Thus ERME was 
born and began to take shape.

We decided on a two-yearly conference, or congress as it later became known, 
and the name CERME emerged—Congress of the European Society for Research 
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in Mathematics Education. Considerable time was spent talking about the nature of 
the conference. How were we going to achieve the communicative, cooperative and 
collaborative spirit we envisaged? After some discussion, it was agreed that the con-
ference should be more than just a platform for presenting and listening to papers. 
Many other conferences provided such opportunity. CERME should allow groups 
in a particular scientific area really to work together on their area of research, with 
sufficient time to get to know each other, to share and discuss their research and to 
engage in deep scholarly debate.

At the first CERME congresses were held the early meetings of a committee that 
was to grow in later years into the ERME Board. The committee held open forum 
to seek views and formulate policy for ERME. Two principles, developed at the Os-
nabrück meeting, held clear importance, the first to encourage colleagues in East-
ern Europe to become part of the society and second to support young researchers 
( young in research terms—not necessarily in age) throughout Europe. The ERME 
Board has worked hard over succeeding years to further these aims.1

During these years, evaluations and other testimonials suggested that we had 
initiated something exciting, significant and of important consequence for the fu-
ture. Participants came from these events speaking of inspirational experiences. It 
seemed clear that the events generated something that we came to call the CERME 
Spirit. Based fundamentally on the three Cs, communication, cooperation and col-
laboration, the CERME Spirit was about the inspiration that derives from a serious 
scholarly tackling of ideas and concepts in key areas and of mathematics education 
research with colleagues from multiple nations, facilitated by the group design of 
the events.

The group design was not without its critics. Some felt constrained by the re-
quirement to spend a conference, largely, in just one group. However, the group 
work would be seriously disrupted if participants were to hop from group to group, 
not engaging seriously with the work in any one. Some suggested that perhaps plan-
ning could allow participants to take part in two groups, so that engagement in 
both could be serious. Such ideas have been considered by the ERME Board and 
Programme Committees but so far we have remained faithful to the initial concep-
tion. Many participants have said in evaluation of the events that the opportunity 
to spend serious time in one group allowed them to really get to know researchers 
from other countries, and that this contributed significantly to the depth of thinking 
that was possible.

There are two important issues with which we have been grappling in CERME 
and YERME ( Young-researchers in ERME) over the years: the quality of scien-
tific work in a group related to papers accepted for the conference and published 
in the proceedings and the inclusion of all people who wish to attend. ERME aims 
for a high scientific quality of work, reflected in the reviewing and acceptance of 
papers. Attendance for most delegates requires that they present a paper, but not 

1 It was decided to establish ERME legally with charitable foundation in the UK, and this is now 
finalised with a formal Constitution and Bye-laws. With a solid legal foundation, ERME is now 
seeking to develop a strong financial footing.
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all papers meet high criteria on quality. To participate, people need to be able to 
communicate and engage with the scientific discourse; the language of events is 
English as the only workable common language. However, it is recognised that 
many participants are disadvantaged by having to work in English. Language is 
also a factor in writing papers as well as in communicating at the conference. We 
need to address what exactly we mean by “scientific quality” and what is entailed 
by “inclusion”. We recognise that both terms are deeply embedded sociohistori-
cally in the mathematics education research community with its journals and con-
ferences, and its written and unwritten rules of engagement. ERME, as a still 
young society, is consciously developing norms and seeking to influence research 
communication.

At this time in the life of ERME, we have collected data from participants’ per-
spectives on their experience and their associated expectations. In this chapter, we 
present findings from our analysis of these data and offer a tentative prospective for 
the ongoing work of ERME.

 Locating Concepts and Concerns Within a Wider Frame

In dealing with issues of inclusion and quality within CERME conferences, ERME 
embarks on an equity agenda within a broader frame of social justice (Burton 2005). 
This section will address the question of what such an agenda implies for a Eu-
ropean Society and Conference. Atweh and Keitel (2007) suggest that social jus-
tice necessitates working for theorising its meanings, working both with and on 
the concept. We are working with the concept in every conference and through our 
analysis recognising issues. To work on the concept, to start to address what inclu-
sion and quality mean in terms of ERME and CERME, this chapter also begins to 
construct associated theory. This section introduces the issues, Section 3 presents 
findings from data analysis and the final section offers a tentative theoretical frame 
and agenda for the future.

A European Society and Conference

As has been explained above ERME is European: although it does not exclude 
non-Europeans, it seeks primarily to bring together mathematics educators from 
all the nations in Europe. This implies an agenda of including all such mathematics 
educators, and we address what this means in the European context. We, European 
mathematics educators, work within the European Union and countries closely as-
sociated with that union. So, part of the inclusive agenda is about uniting, bringing 
together, sharing our scholarship, developing common understandings, respecting 
diversity. The three Cs, communication, cooperation and collaboration, leading to 
the CERME Spirit, capture elements of the agenda
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Communication is about talking to each other in ways that enable sharing and 
understanding of ideas and traditions that go beyond the superficial. Cooperation 
implies working together, going beyond communication to see how different per-
spectives and practices can illuminate issues and concerns and open up new pos-
sibilities for addressing national agendas. Collaboration means working together to 
create new agendas with initiatives that cross national boundaries and build cross-
national, European identities. Atweh, Clarkson, and Nebres (2003, p. 224) quote 
Hargreaves (1994, p. 45) who writes “one of the emergent and most promising 
meta-paradigms of the post-modern age is that of collaboration as an articulating 
and integrating principle of action, planning, culture, development, organisation 
and research” (emphasis in original). Atweh et al. comment as follows:

The limited resources in some countries imply that they are more likely to copy or import 
ideas from the more developed regions and countries rather than to critically and empiri-
cally reflect on their appropriateness to their local context. (p. 224)

and

Collaboration should be constructed to empower individual countries to be self-reliant 
rather than to increase their dependency on ideas from more developed nations. (p. 225)

In mathematics education research and practice particularly, we have seen ideas 
from certain countries permeating the research agendas of others—for example, 
with respect to the U.S. reform movement in schools and the associated Nation-
al Council of Teachers of Mathematics (NCTM) standards (NCTM 1989); and in 
respect of outcomes of international comparisons such as Trends in International 
Mathematics and Science Study (TIMSS), where countries around the world have 
looked to countries of South East Asia to learn how to achieve arithmetic success 
(Jaworski and Philips 1999). A challenge for ERME/CERME is to provide a forum 
for collaboration in which “an articulating and integrating principle” (Hargreaves, 
cited in Atweh et al. 2003, p. 224) can be achieved with open, respectful and non-
hegemonic partnership between participants.

There are various issues associated with such an aim. In Western Europe, we 
have a number of (relatively) rich nations whose mathematics educators have had 
the privilege of travelling to international meetings and conferences over several 
decades. Their diverse traditions are well known (if not well understood) by all. 
A variety of conferences have provided opportunities for participants to hear the 
theories and approaches of others and to think about implications for their own re-
search and practice. Despite such communication, we see little evidence of collabo-
ration between national traditions on any substantial substantive scale. In Eastern 
Europe, the picture is different. Only relatively recently have borders been open for 
communication. Economic resources tend to be much less available for travel and 
participation beyond national boundaries. Mathematics Education research itself 
has barely started to exist within some Eastern European countries. It is, of course, 
inappropriate to generalise.

The relation of mathematics education to mathematics is one factor which var-
ies considerably across Europe. In some countries (for example, the United King-
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dom and Portugal) mathematics education research has been largely the province 
of mathematics teacher educators working at primary and secondary levels, often in 
university departments of education (not mathematics), although there are notable 
exceptions. In some countries (for example, Italy and France), many mathematics 
education researchers are themselves mathematicians, teaching mathematics at uni-
versity level. Nevertheless, research in mathematics education has a very different 
character from research in mathematics. Indeed, mathematics education is a differ-
ent discipline from mathematics, which is not always understood by mathemati-
cians. This has led to conflict between mathematicians and mathematics educators 
in some countries. In countries where mathematics education as a discipline is not 
well developed, there can be confusion as to what research in mathematics educa-
tion means at all. For example, one CERME 6 participant wrote on the evaluation 
questionnaire: “The conference was very theoretical—I am not used to this in my 
country (used to Pure Maths).” ERME is currently pursuing links with the European 
Mathematical Society (EMS) in order to develop a relationship with mathemati-
cians in Europe.

Why Did We Need Another Conference?

It is a legitimate question. We can name several other international conferences 
which European Mathematics Educators can and do attend and to which all Euro-
peans are welcome, such as ICME, PME and CIEAEM. ICME, the International 
Congress of Mathematics Education, is the four yearly congress of ICMI, the In-
ternational Commission for Mathematics Instruction with a membership from 72 
countries. ICME attracts thousands of delegates from a variety of constituencies 
in mathematics education (including teachers, educators and researchers). It is not 
primarily a research conference. It imposes a solidarity tax on delegates to subsi-
dise attendance from less affluent countries (Atweh et al. 2003, p. 192). PME, the 
annual conference of the International Group for the Psychology of Mathematics 
Education is a research conference. It welcomes research reports from any math-
ematics education researcher in any country and the main substance of the confer-
ence is presentation of research reports. Submitted papers are rigorously reviewed 
and accepted or rejected. Rejection often means that the authors do not attend the 
conference since conference funding depends on paper acceptance and publication. 
CIEAEM, the International Commission for the Study and Improvement of Mathe-
matics Teaching, is multilingual; it focuses on teaching mathematics and welcomes 
teachers and others (Atweh et al. 2003, p. 191). It is not a research conference. At-
weh et al. (2003, p. 191) quote the Manifesto 2000 of CIEAEM as suggesting that 
a challenge for the whole international mathematics education community is “how 
can communities with different political, cultural and social conditions make ways 
to learn from each other more productively?” This challenge is overt in ERME.

So, how is CERME different from these other conferences? CERME is first of 
all a research conference in mathematics education, which distinguishes it from 
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ICME and CIEAEM. It differs from PME in its structure around working groups. 
The idea is to get away from oral presentations towards work which fosters the 
three Cs in mathematics education research between group participants. Commu-
nication and cooperation have been visible in most CERMEs so far, and we are 
now starting to see collaborative initiatives across national boundaries (e.g., Pre-
diger et al. 2008).

Equity Agendas in ERME

In considering equity, it seems important to emphasise the difference between eq-
uity and equality in educational practice. Zevenbergen (2001) has expressed this as 
follows:

Equity refers to the unequal treatment of students (or people more generally) in order to 
produce more equal outcomes. In contrast equality means the equal treatment of students 
with the potential of unequal outcomes. (p. 14)

In consideration of social justice in classrooms, Cotton (2001) writes, “the concept 
of social justice represents a shift in thinking away from equality…[since equal-
ity]…does not easily accept and value difference” (p. 28). So, for an equitable ap-
proach towards organising a conference, we need attention to those factors which 
do or could disadvantage some (potential) participants, and moreover, a policy to-
wards encouraging certain groups of people for whom participation is problematic.

Atweh (2007) reports from a discussion group at ICME 10 (2004, Denmark) 
on the topic of international cooperation. The topic group organisers identified 
certain barriers to international contacts which included financial, language and 
voice. The first two of these have been part of ERME consideration from the begin-
ning. Recognising the likely financial disparity between the two groups mentioned 
above and other participants, ERME has, to date, invested most of its funds (gained 
from members’ fees and profit on conferences) into financing summer schools 
for young researchers2 and supporting participants to CERME, particularly from 
Eastern Europe. The available funds have necessarily limited what is possible. At-
tempts to build up a “support fund” from voluntary contributions have had only 
very minor success. So, it may be that a “solidarity tax” on ICME lines is called 
for. Regarding language, while English is the language of the conference—a policy 
decision agreed at an early stage, which might of course be challenged—group 
leaders are encouraged to find ways of using other languages in working groups to 
facilitate full participation. So far practice has been ad hoc with differing reports 
on success or otherwise. It is an area for further consideration and possibly policy 
reconsideration.

2 These are YERME events, known as the YESS 1,2,3,4 & 5 ( YERME summer schools), taking 
place in alternate years to the CERME conferences.
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The issue of “voice” is related to language but goes beyond language to issues 
of culture, power and domination. Atweh (2007) reports from the discussion paper 
in the group at CERME 10.

Voice: collaboration between educators with varying backgrounds, interests and resources 
may lead to domination of the voice of the more able and marginalisation of the less power-
ful. (Atweh et al. 2008, p. 445)

Although language can be a dominating factor, domination extends potentially be-
yond language per se. Atweh, quoting the leaders of the discussion group, empha-
sises another factor that relates strongly to the issue of voice. It concerns “mission-
ary attitudes” of some participants in relation to preferred terminologies and their 
hegemony over ideas, recognising that the result can lead to “a patronising relation-
ship which does not respect and value the diversity of the parties involved”. They 
suggest, “Instead, an attitude of humility and openness to learn from each other 
should be the basis of international co-operations” (Atweh, et al. 2008, p. 446). The 
group structure at CERME is designed to enable participants to go beyond the pre-
sentation of papers to discuss ideas and issues and really work cooperatively on the 
substance of the topic. However, the focus of a group depends on both the papers 
received and the directions decided by group leaders. It is possible that domina-
tion of ideas by certain areas of scholarship in particular parts of Europe could be 
implicit in group work and remain unchallenged because the dominant voices are 
those promoting the particular ideas. Gates and Jorgensen (Zevenbergen) refer to 
Bourdieu’s concept of habitus to express this as

Thus the field…in which the participants engage recognises and conveys power to those 
whose habitus is represented and privileged in the field. (p. 164)

We look now to the practical realisation of ERME and CERME aims and the issues 
they raise according to such equity agendas.

 Views of Participants Regarding the CERME Activity

Data and Their Analysis

In the registration pack for each participant in CERME 6 in Lyon, France, a short 
statement explained that members of the ERME Board would be gathering infor-
mation with regard to quality and inclusion in CERME conferences. It explained 
briefly the main aims of ERME and CERME and introduced issues relating to qual-
ity and inclusion. Its purpose was both to raise awareness and to promote responses. 
At the end of the conference, two questionnaires were administered to participants: 
the first to all participants for evaluation of the congress, with a specific question 
addressing quality and inclusion as follows:

Balance of scientific quality and inclusion in your group: please give us here your views on 
balancing quality and inclusion (see statement in registration pack).
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The number of questionnaires returned was 210 out of a participation of about 450, 
thus just less than half. The second questionnaire was to group leaders, asking for 
written reflections on their experiences in organising a group at the conference, 
focusing specifically on issues of quality and inclusion. Out of a total of more than 
45 group leaders, 13 responded from 9 out of 15 groups. Their responses addressed 
the review process, selection of papers, help given to (less experienced) authors 
to improve papers, language difficulties and inclusion of papers in the conference 
proceedings. In addition, five interviews were conducted with CERME 6 partici-
pants (including two PhD students and three researchers with university positions) 
on their experiences at CERME and particularly their experience of the review 
process.

Analysis has involved reading carefully the written comments and listening to 
the interviews; categorising them in relation to emerging factors. To achieve cat-
egorisation, questionnaires were organised according to working group and each 
written comment was assigned to a category that sought in some way to describe 
its content. Some touched on several issues and were assigned to more than one 
category. Particular comments are fed back to group leaders, although here we do 
not refer to specific groups.

A few participants did not notice the statement in the registration pack and in 
their questionnaire asked—“WHAT statement?” It could have made a difference 
to responses whether or not the respondent had read this statement. Some of the 
responses have a neutral or analytical tone, but most of them are either overtly 
positive or negatively critical. Many comments were of a telegraphic nature—par-
ticipants may have offered a quick evaluative comment without deeper thought or 
analysis. The data sets themselves are limited by those who chose to respond: the 
findings come from returns from only about half the ERME population at one con-
ference. Within these returns, some participants chose to make no comment on the 
key question on quality and inclusion. Some responses are ambiguous and their al-
location to a category is done on the judgement of the researchers. Those doing the 
analysis are committed ERME members, active in ERME since its inception. While 
this allows an insider view of issues and concerns, it might also lead to an overly 
insider picture of what is offered.

We have organised our presentation of issues thematically, drawing on all the data 
sources where they offer contributory evidence. Where a quotation is unattributed, 
this means it is taken from a participant questionnaire; otherwise its origin is stated.

Themes and Issues

Before a conference, the Programme Committee decides what groups to include 
and invites group leaders. Group leaders initiate a call for papers and organise a 
review process; they decide on accepted papers and plan a programme of work for 
their group. Papers accepted for the conference are published on the internet and 
members of a group asked to read them in advance. Guidelines suggest that oral 
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presentation will occupy only a minimum of group work, perhaps allowing authors 
of a paper no more than five minutes to present their key ideas/issues. After the con-
ference, selected papers are published in the conference proceedings. Further work 
on a paper may be required before it can be accepted for publication. Some papers 
are accepted only for the conference, but not for publication.

From the perspectives of participants, the areas of CERME operation promot-
ing most comments are the groups in which most conference participation takes 
place, and the review process through which papers are selected for work at the 
conference and publication in the proceedings. In the following subsections, we 
take up issues in these areas relating to inclusion for all, scientific quality and the 
three Cs.

The Review Process and Acceptance of Papers

CERME guidelines suggest open reviewing in which authors and reviewers are 
known to each other and communication can take place between authors and re-
viewers. They suggest two levels of acceptance: (1) for presentation at the confer-
ence and (2) for inclusion in the proceedings. Further work may be asked for at 
either or both of these levels. The two-level process has evolved through several 
conferences in an aim to include as many people as possible at the conference and 
also to ensure a high quality of published papers after a conference. In theory, this 
is to achieve a quality–inclusion balance.

There were positive comments about the value of the review process and its 
contribution in enabling participants to improve their papers and, additionally, in 
providing experience of reviewing.

Researchers also want to have their work published—perhaps inclusion can help them to 
achieve this.

I think that it is a good idea to do the review process, first of all, because it makes more 
connections among the members of the working group. So I am obliged to read the work of 
my colleagues with more thorough, more interest, more accuracy. And it makes, I think it is 
good experience for someone who has not done a review before. (Interviewee)

In some cases the nature of reviews was criticised as being too short, as containing 
dubious judgements, or as lacking critically helpful comments and questions.

The review I got back for my paper was very very short. It only said…. Goal was men-
tioned, OK. Methodology was mentioned, OK. For the Proceedings [the review was] also 
very short. So I had to adjust nothing. I don’t think it was that good. No difference at all for 
level 1 and level 2. (Interviewee)

There were two reviews. One of them had a very helpful suggestion which was about 
“explain a bit more about the tasks”. It was a small but very helpful suggestion. But I don’t 
think it had anything—I wished it would have more questions. I think…. The other was 
very unethical. One was completely uncritical, the other had some comments about small 
details. But no big questions—there was nothing in depth to demonstrate any real deep 
engagement with the paper. Neither one. (Interviewee)
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Although not stated, we suspect that these were not named reviews, so no further 
communication was possible.

In some cases, inclusion was interpreted as meaning that papers were accepted 
without critical consideration, leading to variable quality, “Too much inclusion—
not enough selection.” Some authors would have preferred a more critical or “rigor-
ous” review of their paper:

Inclusion is more than having a paper accepted—need to feel it is valued—needs a more 
rigorous review process.

Balance between being inclusive or high standards—I think that the process of achieving 
that balance is exactly right—the participants reviewing the paper of the other participants. 
But perhaps there could be a bit more support for the reviews, to be more critical. With 
some helpful suggestions, I think quality would improve. (Interviewee)

I think some form of giving people permission to be critical and some sort of encouragement. 
Some of the papers in our subgroup are of questionable scientific quality. (Interviewee)

So, interpretations of inclusion that lead to uncritical acceptance of papers are inap-
propriate. The quality of papers is important for all participants. The issue here is 
how to help authors strengthen weak papers so that they are of sufficient quality and 
so that authors develop their own critical strength.

There were positive comments about the two level review process, some sug-
gesting that only group leaders should do the final review;

Review process before conference should be for presentation in conference. For publication 
Chairs should decide what papers to include.

However, the option of having a paper accepted for presentation but not for the 
proceedings was seen to prevent some people from attending the conference, there-
fore running contrary to aims for inclusion. One group leader wrote that papers not 
accepted for the proceedings were withdrawn since “people cannot get financial 
support if a paper is not accepted for the proceedings”. The importance of having a 
paper published was emphasised.

The research community at large does not know what happens between these four 
walls. But the research community may look at the Proceedings. The maths education 
world is stressful. [In the proceedings] you know, your paper is permanent. To preserve 
academic reputation the papers should have a careful publication in the proceedings. 
(Interviewee)

Some group leaders commented that papers outside the field of the group or of low 
quality were rejected, or recommended for resubmission as posters. Leaders spoke 
of trying hard to be inclusive of papers—to include as many as possible (often with 
no mention of quality). One said that they included papers with “severe weaknesses 
as long as there was an interesting idea”. One leader wrote: “Being all-inclusive and 
academically qualitative are a priori incompatible.”

Several leaders spoke of giving help to the less experienced and of being “more 
severe” to authors from well-represented countries. Some spoke of their organisa-
tion of the review process, making decisions as a team. One group leader (A) said 
the following about her reading of reviews.
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As I am reading through the reviews of papers as part of our “second editing” stage, I want 
to share an observation about the different styles of reviews…. I notice that some reviewers 
use the sections on the form to summarize the content of the paper, but make little evaluative 
comment. This is useful for the group organizers when they see the reviews and are making 
decisions about the overall structure of the sessions—but it is of little value to the authors. 
In contrast, other reviews consist of evaluative comments, but may not give any indication 
of the content of the paper…. This may be of more use to the authors, but is less helpful for 
the group organizer who wants to know something about the paper. (Group leader)

Another (B) spoke of her experience of using the process as part of the leadership 
team for the group.

[The group coordinator] carefully divided all papers in four (the leader and the three co-
leaders). Each of us had to review four to five papers together with two other participants 
of the group. At the end of the review process, each of us made a summary review for each 
of the papers that we were responsible for, studying first the other two reviews for each 
paper. In the case that contradictions appeared in the reviews, we invited the other leaders 
to study the article and express their opinion. If the majority of us agreed to a certain deci-
sion, then the group leader adopted that decision. Then we sent only the summary review 
to the corresponding author. Following the three Cs we tried to include most of the papers 
in the presentation of the papers. We only rejected a paper which did not meet the scientific 
guidelines for writing a research paper. (Group leader)

The comments overall suggest aspects of the review process that are not achieving 
the aims expressed in CERME guidelines. The two quoted above from group lead-
ers (A) and (B) suggest details of the review process that seem to need more atten-
tion. For example, group leader (B)’s comment mentions that “summary reviews” 
were sent to an author, seems to go against the suggested open process allowing 
communication between author and reviewer. The nature of a review, despite guid-
ance on the review form, does not always satisfy both the needs indicated by group 
leader (A). How to bring the whole review process closer to CERME aims and the 
written guidelines seems to need further consideration.

Group Activity and Participation

Although a conference includes keynote presentations and other plenary events, the 
major part of any delegate’s participation is as a member of their selected group. 
It is likely that they have a paper accepted by the group, or a poster. This will have 
been published on the internet along with others for the group and participants are 
asked to read these papers before the conference. They can also read papers for 
other groups if they wish. Group leaders can plan activity on the assumption that 
participants have read the group papers.

Group Size and the Number of Papers

CERME 6 had about 450 participants and 15 groups; group size varied from 8 to 
about 70 participants, with slightly fewer accepted papers. Papers may be up to ten 
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pages in length, so if a group has more than 20 papers the reading task is consider-
able. One group leader wrote of having 54 papers and 15 posters, another of 55 
papers. One solution would be to increase the number of groups, but this places 
pressure on facilities and resources. A group can be split into smaller groups for at 
least part of their work but may not have the availability of a separate room for each 
subgroup. These factors raise a variety of issues for group work and participation. 
Respondents commented that the size of a group affects what is possible, “partici-
pation of all was not easy”, that it was hard to read all the papers, and a result was 
“poor (not in depth) scientific discussion with no clear questions” and “more small 
group work needed”. Despite these practical problems some respondents reported 
that inclusion was “at a high level”.

One of the interviewees indicated that the problem went beyond the possibility 
to read all the papers to the diversity of content and depth of focus.

I think there are some working groups that are too big. They have too many articles. Not 
because it is a problem reading them. But to keep track of so many articles that are not 
always so homogeneous. It is interesting to have a broad variety of topics but if it is too 
much it may be difficult to keep things together. So, I would prefer something smaller and 
discuss more thoroughly. (Interviewee)

Group work is constructed around the papers received and objectives for inclusion 
suggest that most of these papers will be accepted for presentation. Group leaders 
therefore have a considerable task in constructing a unifying programme of work. 
There seems to be a need to give time to each paper, and with 35 papers, even five 
minutes per paper is very significant. One comment pointed out that “5-min presen-
tations need a quick change of focus between them”, indicating issues of transition 
when many papers are included. Transitions between papers need to make clear 
links to themes within the work of the group. If participants are unable to keep track 
of ideas, this might suggest that the programme is not achieving its aims. Charting a 
scientific path through such diversity is a problem for group leaders and not every-
one will agree with choices made.

Organisational Factors

Each group had three or four designated leaders, each one from a different coun-
try. One leader was designated as Group Coordinator with the main responsibility 
for the group. Group coordinators were invited by the PC, and other leaders were 
decided by the PC in discussion with the coordinator. Comments from participants 
were overwhelmingly positive about the work and organisation of group leaders, 
for example, “First class organization from which authors could learn.” Most recog-
nised the importance of the work of group leaders and its demanding nature.

However, some comments criticised organisation as “erratic”, suggested that 
group leaders “need to control people who dominate discussion (such as English 
speakers)”, showed “unfair handling of time and papers” and put “too much focus 
on individual papers rather than big ideas”. Some comments suggested that advance 
communication of the methodology of the group would have been helpful, espe-
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cially for participants who had not sent a paper, and who had therefore not received 
prior details of group work. Such comments all suggested feelings of exclusion at 
some level, although there is an element of not being able to please everyone.

Group Work—Views on Inclusion and Scientific Quality

In the evaluation questionnaires, comments revealed differing perceptions of the 
terms and concepts of quality and inclusion. In some cases, the words were used 
with little further qualification (e.g., “everyone included”, “inclusion good”, “very 
inclusive”, “inclusion not sufficiently addressed”, “over-inclusive”), as if the con-
cept is well understood and the associated judgement unproblematic. Further re-
marks provided insight into what was understood. For example, “discussion friend-
ly and inclusive”, “encouraging and critical”. Comments included “good help with 
English” and “too inclusive—poor English accepted” (the last two comments from 
the same working group). We therefore recognise a difficulty of interpretation in our 
analyses. Although seemingly positive comments on inclusion greatly outnumbered 
the seemingly negative ones, without further illumination on the nature of judge-
ment, it is hard to generalise.

The question had asked about “balance” so many comments made a comparison. 
Although the majority of comments suggested a good balance, “everyone includ-
ed—quality high”, “excellent in both [Q & I]—newer researchers felt confident—
supported by small group discussion”, some (also) suggested that inclusion led to a 
reduction in quality:

Inclusion good, but therefore scientific quality was very variable.

Inclusion implies a generally poorer quality of paper.

Scientific standards should not be reduced to expand possibility of access.

Such comments reveal not only perceptions of an inverse relationship between 
quality and inclusion but also the differing values of participants. Some comments 
qualified the nature of a good balance.

Discussion on each paper enabled inclusivity and movement of papers towards higher qual-
ity through richness of critique.

Certain comments referred to inclusion of participants in group activity and dia-
logue and also to the ways in which accepted papers were addressed in a group. 
One interpretation of many of these is that inclusion relates to participant interac-
tion in the social setting of the group and quality relates to the nature of papers, the 
rigour applied to paper acceptance and the ways in which papers were addressed 
in the group.

Some high quality papers, some very poor papers—better to raise quality even at the 
expense of inclusion.

Too strong on quality. One young researcher had paper rejected—it would have helped him 
to have it discussed.
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The quality of discussion within a group was the focus of many comments, some 
suggesting a high quality (“lively” and “sophisticated”), with “experienced re-
searchers moving talk into deeper reflections”, and “Supportive and friendly, with 
penetrating remarks in response to papers”. Others suggested that scientific discus-
sion was poor with “not enough depth” and “Not all key ideas of papers discussed”. 
In one group, the level of discussion was judged to be high, so that “newcomers 
could not keep up with the standard of the group”.

Some comments referred to how oral presentations of papers were conducted in 
a group. A significant number suggested that, despite recommendations, there was 
a substantial degree of oral presentation. For example, “too much paper presenta-
tion—more time should be given to small group discussion” and “work was almost 
entirely presentations”, with “too much repetition of what is already known”, and 
“not enough time for discussion”. This contrasted with other comments: “no paper 
presentations”, “active taking part”, and “at least 50% discussion maintained”. We 
note that the comment “not enough time for discussion” could have meant that pa-
per presentation did not allow time for discussion, or it could have referred to the 
number of papers that were included in that group (or both).

We are aware that language difficulties are more easily overcome in a prepared 
presentation and that some participants prefer to take that opportunity to feel free 
and confident to talk. This observation highlights the importance of managing dis-
cussion with genuine opportunity for those who have difficulty with English. Sur-
prisingly, there were not many written comments about language. The few com-
ments expressed, not included elsewhere, were as follows:

Language difficulties and differences in theoretical approach made it difficult to take part 
in discussion.

Despite being a supportive group, those struggling with English don’t have good 
participation.

Non-English speakers had difficulty to join in and voice ideas.

English speakers talked too much.

A difficulty may be that those experiencing difficulty with English are also not able 
to express their views on an evaluation form.

Perhaps the strongest message coming across in this section is the diversity in 
perceptions of group work. Even within a single group, in some cases comments 
seemed largely in agreement while in others there were (widely) differing views. 
It therefore seems important to see group activity through these alternative visions 
when preparing the programme of work.

Issues Raised By Group Leaders

It seems appropriate in this last subsection to give the final voice to group leaders. 
One very positive comment reported as follows:
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We had four productive days in a friendly atmosphere. Sure some discussions may have 
become a bit heated, but that is only natural and they were constructive still. As for lan-
guage, sure there were some participants who had English difficulties, but then other par-
ticipants would help to translate and it all worked out fine. (Group Leader)

Another commented specifically on the two-stage review process and the decision 
as to whether a paper would be published in the proceedings:

According to CERME guidelines, the accept/reject decision should have been communi-
cated before the conference, both with regard to discussion at the conference and with 
regard to the post-conference proceedings. In fact, following our WG call for papers, we 
did not communicate the decisions about the publication in the proceedings before the 
conference. We preferred to discuss the accepted papers in our WG and later to fix the 
decision with another review process, taking into account all the remarks and comments. 
This provided opportunity to improve the papers (in particular papers needing help) fol-
lowing the path of “quality and inclusion”. I received no complaint about this line from the 
participants. (Group Leader)

And finally:

The work in many of the WGs has been a series of paper presentations. The Board needs to 
be clear that this is not an acceptable format. In addition, it might be necessary to provide 
a list of acceptable formats that the group coordinators could indicate the one they use or 
present their alternative format for organizing the sessions. In our group we had 3 differ-
ent formats that are not traditional paper presentations. I would be happy to share these if 
needed. A proper plan for organizing the sessions might be a requirement for a Chair to be 
selected. (Group Leader)

The last two comments reflect the thoughtful hard work of group leaders. They also 
point to a possible tension between leaving group leaders with freedom to construct 
their work according to their own expertise and professional judgement and requir-
ing that they conform to some pre-given format designed to promote ERME aims 
and values.

 Discussion of Emergent Issues and a Tentative Framework 
for Further Consideration

Synthesis of Key Issues and Concerns Arising  
from or Supported By the Data

ERME starts from a position of seeking equity, particularly with regard to inclu-
sion of young researchers and delegates from less affluent countries or countries 
with different traditions in mathematics education. Evidence shows that seeking 
for equity is both resource and policy based: shown in financial support and or-
ganisational structures. The issues that arise relate largely to the interpretation, or 
operationalisation, of the organisational structures. The following list highlights 
the key points:
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• Inclusion in recognised as overt in the group activity at CERME—largely this 
seems to be an affective perception of inclusion. Some participants see an inverse 
relationship between inclusion and quality of accepted papers and scientific de-
bate.

• Quality, that is scientific quality, relates to the quality of accepted papers and the 
quality of scientific work within a group.

• Language is a key factor relating to both inclusion and quality, and perceptions 
differ with regard to ways of interacting in practice.

• The review process is key to issues of quality in accepted papers. It is interpreted 
differently from group to group so that outcomes lack consistency.

• The mode of group operation is also variable. Despite recommendations, consid-
erable group time is taken up by oral presentation of papers.

• Group leaders are widely praised and their work recognised and valued. It is dif-
ficult for them to rationalise ERME’s aims for inclusion and quality.

• Key issues in conference organisation are the number of people in a group and 
the number of accepted papers to be read and considered. High numbers of both 
lead to a significant burden on participants in preparation for group work, a sig-
nificant factor in allocation of group time and a serious challenge to a high qual-
ity of discussion and debate.

It is perhaps unsurprising that equity objectives are hard to realise, that participants 
will perceive their realisation in differing ways and that outcomes will raise is-
sues for operationalisation. While raising issues, criticising outcomes and offering 
a critical perspective on experiences of inclusion and quality, there is overwhelm-
ing praise for the group leaders and their efforts to achieve effective group work. 
CERME is dependent on its group leaders and a critical review needs to take serious 
account of the contradictory forces they experience in doing their work. The com-
ments received from the group leaders who responded reflect a deep awareness of 
issues and a sincere concern to address equity.

It is clear too, regarding policy in ERME, that the policy makers (ERME Board 
and CERME PCs) have established both an overall vision and important working 
practices. These are seen both in terms of funding to provide support and guidelines 
for operational practice. Of course, a policy is indispensable although not a guar-
antee. The two practical concerns that stand out as being of significant influence 
on inclusion and quality are the review process and the size of groups. The review 
process is set out in the guidelines which have been modified and refined over the 
years. However, it is the review process in practice that matters, and this needs 
attention at a policy level. The number and topics of groups is decided by each 
CERME PC. The number of 15 groups has emerged in consideration of a range 
of topics to fit with interests of participants and also the practical consideration of 
availability of conference rooms. The PC has no control over the number of papers 
submitted to a group, but they can learn to some extent from experience at previous 
conferences—some groups regularly receive a large number of papers. The pos-
sibilities for group leaders are severely constrained if they have many participants, 
too few rooms and inflexible accommodation. It is clear that such factors are of 
broad general importance.
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Getting Beyond the Organisational Factors

The essence of the tensions between inclusion and quality goes deeper than just 
the organisational issues, although these issues are significant in practice. Differ-
ences in experience and culture, mediated through language, have to be recognised 
and addressed. The expert and the novice, the western participant and the eastern 
participant have to be able to work together in non-reductionist ways. Atweh et al. 
(2003), writing about the outcomes of international comparative studies, suggest 
“Outcomes of such studies are also perceived as necessarily reductionist, as results 
cannot do justice to the very complex factors involved” (p. 12, our emphasis). To be 
non-reductionist, the balance between inclusion and quality within a group needs 
to take on a scientific nature that goes beyond (perceptions of) the scientific quality 
of the substance of the topic of the group. A theoretical perspective on this balance 
needs to take account of “the complex factors involved”, and these go beyond or-
ganisational constraints.

Experienced CERME participants are aware of the expectation of inclusion 
within a group, and newcomers are drawn quickly into an inclusive way of being 
in an affective mode. There are almost no comments that suggest that group work 
was not friendly and welcoming, that participants were not (overtly) encouraged to 
take part and join in the discussions. Such welcoming encouragement might be seen 
as a first step towards being drawn in to a scientific depth of ideas. Participating 
scientifically can be related to what one knows and one’s confidence in that knowl-
edge. However, we recall here some of our discussion in section “Equity Agendas 
in ERME” above: that “the field…in which the participants engage recognizes and 
conveys power to those whose habitus is represented and privileged in the field”. 
(Gates and Jorgensen 2009 p. 164); that “collaboration between educators with 
varying backgrounds, interests and resources may lead to domination of the voice of 
the more able and marginalization of the less powerful” (Atweh, et al. 2008, p. 445); 
and that an attitude of humility and openness to learn from each other should be the 
basis of international co-operations (Atweh et al. 2008, p. 446).

It seems to us that those experienced in CERME, in their interpretation of inclu-
sion, are aware of possibilities of privilege, domination and marginalisation and 
are seeking alternatives. We see, demonstrated in group work and the comments 
of participants, manifestations of an “attitude of humility and openness”. Group 
leaders and participants try hard to engage everyone and to avoid domination. The 
difficult challenges are those of interpretation and balance. When participants speak 
of inclusion being at the expense of scientific quality, they suggest that the balance 
does not achieve a sufficient depth of ideas or allow deeper scientific considerations 
to be debated. However, there is no reason why a young researcher cannot enter into 
the deeper ideas and issues, or why researchers from widely different standpoints 
in mathematics education cannot seek the roots of their difference and debate them. 
The great challenge is how to achieve this.

Probably, most recognise that the first step involves communication, and here 
issues of language dominate. While it is hard to search for the key ideas and to ex-
press them, it is even harder if you are trying to do it in an unfamiliar language, or 
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if you are trying to slow yourself down in recognition of your hearers’ language dif-
ficulties. A consequence is that the “key ideas” get diluted in the language exchange 
or that those with power over language run away with words and leave others with 
little sense of what they are talking about. Either way, the ideas remain superficial 
at the cooperative level. So individuals may have deep ideas but these ideas do not 
get expressed in the “cooperative frame”. We seek here to capture what it means 
to cooperate, and suggest that it is about breaking through the complex barriers 
not only of differing perspectives but also of the cultural and language differences 
which underpin them.

It is here perhaps that some consideration of the contribution of the papers is 
relevant. The papers, presented in written form in advance, offer key ideas accord-
ing to their authors. The review process has both made a selection of papers that 
are relevant to the group and judged them to be of an acceptable scientific quality. 
Readers, in advance of group work, can take their time to understand the papers 
and gain access to the key ideas. They can expand their own visions and formulate 
questions and alternative perspectives in preparation for the group work. This read-
ing is demanding, not only in tackling an overwhelming number of papers, but in 
getting to and distilling in some way the key ideas of the papers. The burden falls 
on the group leaders to identify and synthesise these ideas in order to construct a 
programme of work. It is here that oral presentations can be counterproductive. A 
natural tendency is for the authors to try to tell the whole story of their research, 
rather than to get to the roots of what are the important ideas for the group. Indeed, 
it is very difficult for each individual author to perceive how their own key ideas, 
related as they are to many factors of culture, methodology and scientific frame, can 
fit with the wider interests and concerns of the group.

So, we come to the demands on group leaders. While appreciating the demanding 
task of reviewing and selecting papers, and composing a programme, it is neverthe-
less relatively easy to construct a programme in which each paper is addressed one 
at a time with some level of presentation and some discussion. It may be that links 
are made in transition between one paper and the next, or that papers are grouped 
according to some commonalities in their substance, theoretical, methodological 
or context related. Much harder is to formulate a set of “key ideas” and organise 
the group around these key ideas as themes for discussion and debate. Members of 
one CERME group spoke of being asked to prepare one overhead transparency on 
each of the set of themes in their group. Thus, the themes had been prepared by the 
group leaders in advance and communicated to participants, and participants had 
been asked to prepare inputs according to the themes. Work in the group centred on 
the themes, with all members making an input, but with no oral presentation of the 
actual papers. Without any judgement on the quality of the themes, it seems that this 
model offers a sincere possibility for cooperative engagement. There may of course 
be many other models that seek to reach the key ideas and provide opportunity to 
engage with them.

ERME recognises and tries to get away from the traditional form of research 
conference which involves a succession of oral presentations of accepted papers, 
and tries to progress the field in terms of scientific cooperation, moving towards 
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collaborative possibilities. To collaborate we need to break down the barriers and 
get to the essence of our substance before we can move forwards. One group at 
CERME has started to achieve this, evidenced by a cross-nationally authored paper, 
based on group work, published in a scientific journal (Prediger et al. 2008). ERME 
needs to learn from such experience and use it to promote models of group work and 
debate their nature and success.

A Tentative Theoretical Synthesis

So, finally, we seek a balance between inclusion and quality as expressed through-
out this chapter. A distinction may be drawn between more affective and more 
scientific characteristics of inclusion, although these are intricately linked in their 
influence on the outcomes of discussion and debate in a group. Without inclusion 
of an affective character, work towards scientific inclusion cannot begin. Scientific 
quality can be seen in terms of the scientific contribution of accepted papers and the 
scientific nature of discussion and debate. The essence of scientific quality is about 
reaching for the key ideas of substance in the scientific area of the group and having 
the possibility of deep engagement with these ideas.

The following conceptualisation is offered as a tentative beginning to charac-
terise inclusion and quality and to relate the characterisation to the specific aims of 
ERME in terms of communication, cooperation and collaboration.

The two axes represent inclusion and quality. Inclusion is characterised in affective 
and scientific terms. The distinction is somewhat simplistic, but this is a starting 
point. Quality is characterised through “key ideas” and their development. The key 
ideas need to be there for scientific quality to exist at all; they need to be engaged 
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with for scientific quality to start to be overt in the group. Thus, we might see there 
being progress right to left and up to down in the figure (again, perhaps somewhat 
simplistic), and hence from top left to bottom right in the figure.

The meanings of boxes A, B, C and D are thus, briefly, as follows:

A:  Starting to communicate: participants have read the papers; they are together 
with friendliness and sincere desire to work inclusively together. There are 
key ideas as recognised through the review process in the accepted papers. 
Activity and discussion begin to encourage communication related to the 
ideas where the objective is to know each other’s ideas and relate them to each 
other.

B:  Developing cooperation in engaging with debate: Group organisation enables 
a focus on the key ideas. Friendly and considerate interaction, with attention to 
language enables participants to start to engage with the ideas. The emphasis 
is on including everyone, possibly at the expense of really probing scientific 
work.

C:  Developing cooperation in recognising ideas: Group leaders create activity to 
encourage a focus on getting participants engaged with the key ideas which 
are recognised. The emphasis is on reaching a quality of interaction relating to 
scientific ideas rather than on enabling critical inquiry into the essences of the 
ideas.

D:  Enabling collaboration: Here we see deep engagement of a scientific quality 
with deep probing of ideas and corresponding critical debate. From here, col-
laboration can begin.

It seems clear that for D to be possible, both B and C have to be achieved. This 
means dealing with all the organisational challenges recognised above, which is a 
far from trivial matter.

However, it could be that a theoretical perspective of this sort, of what is in-
volved in achieving inclusion and quality in group work in CERME, can act as a 
basis for thinking about dealing with the challenges and conceptualising in practical 
terms what we are aiming for in CERME.
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 Introduction

Within the field of mathematics education, much has been written about the teach-
ing of mathematics and social justice (e.g., Burton 2003; Gutstein 2006; Gutstein 
and Peterson 2005; Skovsmose and Valero 2002). Themes within this research have 
included gender, for example, concerns about the ways in which mathematics edu-
cation has privileged boys (Brandell and Staberg 2008; Mendick 2005); class, for 
example, how teachers in schools located in low socio-economic areas have deficit 
views of students (Zevenbergen 2003); and race/ethnicity, for example, how Indig-
enous students are marginalised by a Eurocentric mathematics curriculum (Howard 
and Perry 2007). There is also a body of literature that foregrounds the ways in 
which social justice can be taught through mathematics (Gutstein 2006). The focus 
in this chapter is on pedagogy, and in particular “productive pedagogies” (Hayes 
et al. 2006; Lingard et al. 2001), and mathematics education. We argue that the 
quality of the pedagogy experienced by students in mathematics classrooms is a 
social justice issue.

We contend in this chapter that high-quality pedagogies that maximise student 
achievements must be distributed in socially just ways; that is, those students who 
are traditionally failed by the schooling process need to experience challenges and 
equally as, if not, more so, intellectually demanding classrooms as students who 
have traditionally been good at navigating the expectations of schooling. However, 
we would suggest that socially just mathematics classrooms also need to engage 
with a politics of difference that take into account the ways in which some stu-
dents have been marginalised and excluded from the benefits of schooling. To this 
end, we draw upon research we have conducted in classrooms using the produc-
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tive pedagogies framework (Mills et al. 2009). This framework works to provide a 
high-quality education for all students, and especially students from disadvantaged 
backgrounds (Hayes et al. 2006; Lingard et al. 2001). The framework consists of 
four dimensions—intellectual quality, connectedness, supportiveness and valuing 
and working with difference. As with other research, we contend that for students to 
demonstrate high-level intellectual outcomes they must be provided with a learning 
environment that stimulates intellectual activity (Boaler 2002; Darling-Hammond 
1997; Goos 2004; Hayes et al. 2006; Lingard et al. 2003; Newmann and Associates 
1996; Sizer 1996). We further recognise that such learning is encouraged, especially 
for students who have disengaged or are in danger of disengaging from school, 
when the material covered connects with the students’ various worlds (Ashman and 
Conway 1997; Newmann and Associates 1996; Darling-Hammond 1997). There is 
also ample evidence to suggest that the supportiveness of a classroom is critical for 
the achievement of high-level outcomes for students, and again especially for those 
who have traditionally been failed by the education system (Bourdieu and Passeron 
1977; Cope and Kalantzis 1995; Darling-Hammond 1997). In a time and world that 
is characterised by diversity, complexity, rapid change and conflict we also suggest 
that achieving positive social outcomes and values requires that students learn to 
work with and value difference (Keddie and Mills 2007). We would also claim that 
those students who often feel disconnected from schooling due to a failure to have 
their “differences” valued within the classroom will benefit academically from such 
a valuing.

The research on which this chapter is based, the Queensland Longitudinal Study 
of Teaching and Learning (QLSTL), involved observations of approximately 400 
lessons in 18 schools over a period of 18 months. These included primary and sec-
ondary schools in rural, regional and urban locations. Classes observed were in the 
subject areas of mathematics, English, science and social science in Years 4, 6, 8 
and 9 (ages 9 to 14 years old). Interviews lasting approximately 45 minutes were 
conducted with teachers and students from each classroom. Samples of assessment 
tasks and student work from these classes were also collected. The QLSTL research 
indicated that in both primary and secondary schools, mathematics is the least intel-
lectually demanding subject in the way it is taught. Likewise, mathematics class-
rooms in our study also demonstrated the least connections to the world beyond the 
classroom and students’ backgrounds and identities, and the lowest commitment 
to valuing and working with difference. This chapter focuses on the teaching of 
mathematics in two of the QLSTL schools: a small low socio-economic inner-city 
primary school, Magnolia State School and a remote Indigenous community school, 
Azalea P-101. These schools have been chosen as we are concerned here with the 
quality of pedagogy provided to students who do not traditionally do well in math-
ematics, for example, students from low socio-economic and/or Indigenous back-
grounds. We regard the provision of high-quality pedagogies to students from such 
backgrounds as a matter of social justice.

1 P-10 schools serve students from Preschool to year 10.
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Magnolia State School2 was a case study school in both the QLSTL and an ear-
lier study, the Queensland School Reform Longitudinal Study (QSRLS) (Lingard 
et al. 2001) conducted between 1998 and 2000. Data from both studies are used 
in this chapter. The school is a small primary school that in the late nineties was 
in danger of being closed due to falling numbers. However, the school introduced 
a number of innovative programs based around philosophy, multi-age classrooms, 
environmental education and problem-based mathematics that have all worked to 
make this one of the Queensland state department of education’s success stories. 
The school has grown from approximately 50 students in the mid 1990s to approxi-
mately 200 students. Our concern here is with the mathematics reforms, however, 
other reforms at the school, in particular philosophy, supported the mathematics 
education work being undertaken there.

Azalea P-10 school is an Indigenous community school located approximately 
60 kilometres from a large regional centre. It is a recognised centre of excellence in 
Indigenous education. The community developed out of a forced settlement of Ab-
original people from different language groups in the surrounding areas in the late 
1800s. Most of the children speak a version of Aboriginal English with many words 
and expressions being very different from standard English (e.g., Bama—person, 
Bina—ear, Bina gari—deaf, Budda—brother, Popeye—grandfather, Tidda—sis-
ter). The school has approximately 450 students who all identify as Indigenous. In 
all areas of literacy and numeracy the majority of students on Years 3, 5, 7 and 9 
tests are below the national minimum standards. The school focus is on improving 
the literacy and numeracy results of students while retaining a strong focus on the 
Indigenous culture of the local area.

The mathematics reforms that occurred in the two schools demonstrate the im-
portance of intellectually challenging and engaging classrooms for students who 
have traditionally not performed well in the subject. Both of these schools have 
rejected deficit models of students and have set high expectations for students’ 
achievement. However, these high expectations have been accompanied by peda-
gogical practices designed to support students in their learning. We suggest that this 
approach of stretching students intellectually within a framework that supports and 
scaffolds learning is central to a socially just mathematics pedagogy.

 Magnolia State School

The mathematics reforms at Magnolia were largely driven by the principal. When 
she arrived at the school in the mid 1990s she met with staff to find out what 
they were passionate about and then used these passions to introduce reforms. In 
describing that time she indicated that she had nothing to lose in the sense that 
the school, if it maintained its traditions, would be closed. Her focus on what the 
teachers were passionate about also meant that it was not just she who had an 

2 Pseudonyms are used for schools and participants.
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investment in the success of the reforms. Her passions were philosophy and math-
ematics. She stated:

So there was no sense of me coming in as any sort of expert in any way, except perhaps 
maths because I’d just finished a Masters in maths. So obviously I had some expertise there 
that they may or may not have had, they may have had it, that’s fine. But I felt confident in 
that area and they had competence in other areas. So it was very much a, it was an exciting 
time ’cos it was I just felt like, as I said, we couldn’t make things any worse, and I thought 
if we do something that’s a bit outrageous like philosophy, what’s the worst that will hap-
pen? They’ll give us the sack.

Philosophy has become a key feature of the school and attracts many visitors, local, 
national and international, to observe its philosophy program in action. However, 
mathematics has also been central to this school’s development. In late 2007, Lorna 
was asked if the school still had a focus on “open ended problem solving”, to which 
she replied:

We still do that type of maths. I’ve still got maths problems outside of my office there. And 
we still do open ended problem solving. I expect every teacher to do that at least once a 
week. We can’t do it instead of sport any more, which is what we used to (laughs). We do 
sport now…But the maths, yes we still do do that. We still have open ended problem solv-
ing where the teacher may or may not know the answer, where the kids talk things through. 
So that’s part of how we operate here.

One of the teachers, Lisa, we observed teaching mathematics with a Year 3/4 class 
described her week’s mathematics program and how it related to the school’s prob-
lem-solving approach:

My program for the week will have one session, we will have problem solving or inves-
tigative maths, another session where we might do explicit teaching, where I’m at the 
blackboard or near the easel, there’s, maths rotations where children work in groups and 
we rotate. So there’ll be an area, there’ll be a maths rotation where I’m doing work in 
with a small group, so as opposed to working with the whole class…What I was trying 
to achieve today was we have been working on 2D and 3D shapes, all of last week, and 
this fits in with the literacy that we’ll be doing around this year, grocery packaging. So it 
was to give them to, last week the children have been looking at 2D and 3D shapes and 
analysing the properties of 2D and 3D shapes, things like—how many edges, how many 
corners, how many right angles, which 2D shapes make up a 3D shape, stuff like that. And 
that fits in also with the grocery packaging because the end result of the whole unit will 
be the children designing or making or drawing a diagram of their own cereal box and 
making the box and then designing the box. So the whole thing I think just fits in together, 
it’s all integrated.

Lisa described the open-ended problem-solving approach as “investigative maths”. 
She indicated that: “I enjoy doing investigative maths.” However, she did go on to 
say:

I think that for me, also explicit teaching plays a very important part, because I just need 
to be sure that I’m getting, that the children are getting a solid foundation and I’m able to 
observe the result.

This explicitness can be critical for students who have not traditionally done well 
at school. She also saw that importance of making the work connected to students’ 
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worlds. For instance, she stressed the importance of the school’s efforts to ensure 
that they had a connected curriculum operating across all classes:

I think that’s my biggest challenge here at Magnolia and this is such a real, you know, a 
real life or connected to real life school, you know, whatever we do, we try and make sure 
everything is relevant, it is real like as much as we can make it, and I think that’s the biggest 
issue, my biggest concern would be that these students become disengaged because they 
can’t see the relevance of these studies, and that as educators, I think we need to make sure 
that in this changing world, you know, we need to really flexible where we need to have 
positive attitudes about themselves they not going to be, we do not need to prepare them for 
one career for life, we need to be flexible, so for all those things to happen I think we need 
to make sure that whatever we teach, we need to make it to real life.

Within Lisa’s description of her program, there were many elements of the produc-
tive pedagogies model evident. The investigative maths was grounded in intellec-
tual inquiry where students were actively involved in knowledge production. Lisa 
also saw it as important to make the curriculum connected and to integrate the math-
ematics across the curriculum to make it more relevant. She also sought to ensure 
that the classroom supported students’ learning by at times employing very explicit 
teaching, especially with those who were struggling.

The open-ended problem-solving approach used in mathematics is consistent 
with other central aspects of the school. For instance, Lorna was able to indicate 
how the mathematics approach tied in with the school’s approach to philosophy:

James, when he was in Grade 5 said philosophy is a good example of how you should 
behave in the playground with your friends. I mean, the rules are we listen to each other, we 
think about what each other, what the other person says, we build on each other’s ideas, and 
the most empowering thing of all is no single right answer…I had a child in Grade 7 last 
year who was very, very learning disabled. He’s gone to a special unit and we do lots of oral 
maths, and he would never get involved in those oral maths sessions, and I remember the 
day he put his hand up and he said “I just want to build on Chris’s answer”. And I thought, 
now this (philosophy) has given this child a way into this discussion. Chris has already said 
it so it can’t be too stupid, you know, and it’s just a very empowering tool. So I’ve had a lot 
of—I get a real buzz out of that kind of thing. It’s the inclusiveness of the process and they 
don’t laugh at each other’s comments.

In another interview she stated:

You know, I like it when in maths they say, “Well I’d like to disagree with that answer”, 
because, you know, and I’m thinking this is philosophy.

The focus in the school is, however, not solely upon academic work. Broader con-
cerns about the well-being of the students were very much in evidence at the school. 
This was indicated by Lorna when she spoke of the need to work with them on their 
social skills:

So making the children understand that we also care about what happens outside, and I keep 
saying to them you come to school to learn to read and write and do your maths, but you 
also come to school to learn to get along with each other, and you know, and I think that 
we have a responsibility to teach them those skills too. I don’t think that it’s okay to think 
that they’ll automatically get those in time and that they’ll learn them by osmosis. So we 
do actually teach those skills.
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This concern was also demonstrated in relation to other skills and qualities. For 
instance, Lorna commented:

So it’s all those skills like independent learning and knowing yourself well and know what 
you’re good at and not good at, and you know, being sure that you’re an okay person, you 
know, there’s so many things in there, but you do see it spilling over.

Within this school there is a very tight community that demonstrates many of the 
characteristics of what has been referred to as a teacher professional learning com-
munity (Louis et al. 1996). Within such a community there are levels of trust and 
reflection which facilitates teachers supporting each other in their practice. For in-
stance, the principal stated:

A really nice thing happened last week which in the big picture is a huge step and a really 
lovely step. Ruth came to me and said our maths is, we feel like we’re not having any 
excitement. Have you got anything that you could give me that we would all love? And I 
said just the thing, I gave her something and she went away and came back and said it was 
fantastic.

A key aspect of this school was to also provide support to students by rejecting 
competition. In the early days of the school’s reforms they had even banned com-
petitive sport (although that had reappeared in recent years). She suggested that this 
non-competitive environment worked well for students who had been scarred by the 
competitiveness of other school environments. She provided the following anecdote 
as an example of this:

There was that little guy last year in grade 7. The year bef…, two years before that, Grade 
5, he came at the beginning of Grade 5 from a big, competitive school and he had had a 
really rough time up to then, and he came here and he settled in well here and—it must 
have been, it must have been Year 5 because he did his Year 5 test and he did the Uni-
versity of New South Wales maths test, and they all came back around about September/
October on the same day, and I remember sitting next to him on the floor and handing 
out all this and things that they’d done. He’d got a high distinction on maths from the 
University of New South Wales and he got right up the very end of the graph for his Year 
5 test. And I watched him as I just gave them out and he just went pink because he just 
went, it was Adrian…and I said “Are you OK?” And he said “What?” And I said “Didn’t 
you know you were that good at maths?” He said, “No, I had no idea”. And so, because all 
that other stuff had gone and he was able to just relax into his work, he started to achieve 
at levels that he’d never achieved before, you know, because of all that other stuff that I 
call bullshit had gone.

The enthusiasm that the principal and many of the teachers at the school had for 
mathematics was also reflected in comments made by students. During the site visit 
to this school numerous focus group interviews were held with students. In contrast 
to many of the other schools that we had visited all the students we interviewed 
talked about how they loved mathematics. Indeed, when asked what advice they 
would give to people wanting to become teachers, one Year 4 student suggested: 
“Do maths with them (the class)”. Another Year 4 student when asked what she 
liked about school replied: “I like maths because it’s fun and I enjoy learning about 
it”. Such responses were not uncommon at this school. Interestingly, in conversa-
tions with the Year 6s they indicate that “fun” doesn’t equate with something being 
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easy. For many of the students at this school being presented with an intellectual 
challenge was enjoyable. As one Year 6 student indicated:

S3:   Just before we were doing maths, and it was a bit of a challenge, and I really enjoyed 
it because it was very challenging and yeah.

I:    What about it was challenging?
S3:   There’s this sum, it was really hard and we got to use our brains. It was really difficult.

The Magnolia case study raises some important issues for the teaching of math-
ematics and social justice. There is a clear commitment to providing intellectually 
challenging mathematics classrooms for students at this school through the open-
ended maths problems or investigative maths. This commitment is to all students. 
However, there is a recognition that the ability to do well at mathematics is not 
innate or that certain students are predisposed to mathematics. As such there is 
a very real commitment to make mathematics fun and enjoyable, and to make 
students see connections between mathematics and the “real world”. However, 
absent from mathematics programs within this school, as in many other schools, 
is an obvious commitment to valuing difference, although such a valuing was 
present in other curriculum areas within the school. A similar absence was evident 
at Azalea P-10.

 Azalea P-10

Azalea is a P-10 school that is spread across three different campuses within a 
relatively small Indigenous community centre. The school is run by one princi-
pal whose office is located at the primary school campus. Interviews with and 
observations of teachers in the high school were conducted, however the focus 
in this chapter is on the primary school mathematics curriculum. Azalea faces 
many challenges. Indigenous students in Australia have traditionally not done 
well at school (Lokan et al. 2001). This is the case for many students at Azalea. 
Within this school there have been attempts to remedy this situation with selec-
tive streaming, sometimes referred to as tracking. They refer to their ability group 
settings as “journeys”. The principal saw the move to ability groupings as a sig-
nificant reform. She stated:

Our ability group classes has made a really big difference when we moved to staging which 
was now four years ago, our home group classes are a whole mix of ability groups, atten-
dance, behaviour. We looked at a whole range and tried to balance those as equally as we 
can so we haven’t got classes loaded with high non-attenders or major behaviour issues or 
things like that, but that acknowledging the literacy and numeracy needs of kids they do 
what we do call Journey. They do fifty minutes each day in their ability group. So rather 
than using our learning support teacher in an intervention way the learning support teacher 
becomes, in our case, a fifth teacher in that team and takes the lowest of the Journey groups. 
So we reduce the class sizes and also have them then focused on a narrower ability range 
for, and we’ve focused on reading and the number strand of the maths syllabus for the 
numeracy because we see that as foundational to the rest of the maths learning that they do.
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Whilst we recognise that it is sometimes difficult to address all of the needs of 
students in one classroom, especially in large classes with many students who are 
disengaged from schooling, we were concerned that those in the “lowest” journey 
group would not be intellectually challenged. This is a major social justice issue if 
students who have been marginalised from the curriculum, especially Indigenous 
students, are not receiving the same intellectual challenge as students elsewhere. 
Azalea, like Magnolia, also, according to the principal, foregrounded an inquiry 
approach to mathematics. She stated for instance:

What the teachers do, we try and embed within our units an investigative approach so the 
units of work about what are inquiry questions and what are they trying to sort of, we’re 
looking, solving some sort of module or problem. Assessments, as I said, we try and have 
an investigative approach to the units of work that they do. Same with the maths, we very 
much, the maths policy is under review it’s in draft currently and the staff who’ve been 
involved in that have done some professional development and worked around, again the 
inquiry approach to mathematics.

As with Magnolia, there was also an attempt to integrate mathematics with other 
areas of the curriculum. For instance, the principal stated:

We were also part of a Language of Maths Project, a DEST3 funded project, a few years 
ago where the focus was on literacies within the curriculum. We chose to look at the lit-
eracies particularly within maths and the teaching in English with their maths given our 
backgrounds so they’re in a cluster project with (other Indigenous schools). The focus was 
a middle years focus but we actually looked at the whole school spectrum and looked at the 
significance of language within maths teaching as well, and a big part of that was looking 
at assessment planning.

In order to improve the quality of mathematics teaching across the school, one 
teacher has been designated as a mathematics specialist who works with both the 
secondary and primary school. This teacher, Luke, as in many such schools, is a 
new teacher and at the time of the interview had only been teaching for a year. 
He indicates that some of the problems he faces stem from students’ lack of basic 
knowledge. For instance, he states that, despite having the “two top maths classes” 
there are students in the class who “don’t know their times tables”. However, rather 
than engaging in rote learning, Luke is still committed to the investigative math-
ematics approach and claims that these skills can be taught through making the 
curriculum relevant to students. As he commented:

I’m aiming to just do things that are more relevant to the kids you know the whole new 
world thing and trying to engage technologies that are more in their future rather than the 
chalk and talk and “do this”. Do the more active stuff.

One of the Year 4/5 teachers, Clark, described the investigative process in his class.

Yeah I really like tasks and investigations. I quite enjoy doing those sorts of things; 
they’re a little bit open-ended with the kids. For maths in our home group we usually have 
investigation maths which is proving a little hard at the moment because we haven’t got 
to the stage we can do considerable investigation on time, which is a bit unfortunate. Last 

3 DEST was the Australian government’s former Department of Education, Science and Training.
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term we did an investigation about planning a trip around Australia which was, as long 
as they started in Azalea, they could choose their own map around Australia and dictate 
which way they, and that’s one of the samples you’ll get is their sample of work. So “I 
travelled south-west of Brisbane” and so forth so they could map around. Investigations 
like that we sort of, you know it takes on a semi-realistic version of what they’re doing 
and things like creating things like travel brochures. One of the things that I’ve sort of 
learnt is the more mainstream we run our classrooms in Azalea and I would argue in 
like from my experience within (other) Indigenous communities the better results you’re 
gonna have, as long as you respect their culture and the language differences and those 
sorts of things. Some other things I try and do is make what we do in here as realistic to 
what you would do in another school and just provide, like provide opportunities to do 
normal things. School has a set of normal activities, a set of normal units that you would 
teach and things you would do.

Clark raises some interesting points here that are currently being debated in the 
literature on Indigenous education. For instance, he suggests that unless Indig-
enous students experience the same sorts of classrooms as mainstream students, 
their results will not improve. This principle has been advocated by significant 
elders in Indigenous communities who have claimed that Indigenous students need 
to receive the same cultural capital as non-Indigenous students and should not be 
provided with a watered down curriculum that assumes that they cannot achieve. 
However, Clark also raises the importance of respecting Indigenous cultures. 
Whilst this is clearly positive, this respect has to go beyond a token recognition to 
one where Indigenous cultures are explicitly valued (see McCarthy 2002, for an 
example of a school mathematics project that was based on the needs and interests 
of Indigenous students, required the contribution of local Indigenous elders, dem-
onstrated respect for Indigenous knowledge and extended students’ mathematical 
knowledge).

Luke, the mathematics specialist is, however, critical of some of the ways in 
which this approach has been adopted in the school. Luke is concerned with some 
of the ways the other mathematics teachers work with their students, especially in 
relation to supporting them to achieve. When discussing issues of assessment, he 
made the following observation:

There’s been some things said in staff rooms where you look at people and go “that’s prob-
ably not what I actually do” and I’m supposedly the head of maths here so yes, sort of, like 
for an example, one of the other maths teachers gave their students this idea of travelling 
from here to Townsville or Mt Isa I can’t remember and they had to do a whole lot of things 
along the way and then there was this, there was no construction, there was no supporting 
of that or no processes to how to do that so and that was assessment so I get wondering 
well, “what do you hope to achieve by this if you say, how can you possibly get a model 
answer if you haven’t modelled the answer without some sort of constructiveness or on 
some approach to building”.

Luke’s comments about the supportiveness of the classrooms are important here. 
As the productive pedagogies approach has demonstrated, ensuring that students 
who are struggling with academic expectations, what constitutes high-quality 
work and how to achieve it have to be made explicit to students. This supportive-
ness has to also entail working to build students’ confidence to take risks with 
their learning. As with some of the teachers at Magnolia, Luke recognises that 

34 Productive Pedagogies in the Mathematics Classroom



488

there is an issue of confidence in mathematics for many of the students. He stated 
for instance:

So I’m trying to build that trust and get them to understand that they are capable of achiev-
ing or trusting in the numbers that they come up with and the processes they come up.

On a similar theme, he also notes how they often freeze within exam conditions and 
do not trust in their own abilities. For instance, he stated:

Last term I taught kids, the, it was maths percentages, maths and financial literacy, and 
all the rest of it, we got up to, I taught the kids here the compound interest formula. They 
were able to do it. I didn’t collect enough evidence during the term, I know those kids do 
it, I saw them do it a hundred times, I gave them an exam and none of them did it. After 
the exam I said, “what was interest formula, I want you to tell me?” So I’ve just gone, 
“you knew it, you knew it now you’re talking about it you just said it” but it comes back 
to that trust issue and the fact that I’ve put this hell of a blue-grey cover on it and you 
know with rubric marking criteria and that whole thing and it just made it look stressful 
to them. And that I think, and the fact you know it was exam conditions and that, now 
that’s not I guess an entirely bad way of drawing knowledge but it’s not the best, given 
that particular experience.

In order to support these students and to help them build confidence in their own 
abilities, knowledges and skills he works hard to make the curriculum interesting 
for the students. In discussing some of the challenges he faces in the classroom, 
Luke made the following comment:

…probably the hardest thing to create, in my opinion anyway, is trying to create that, the 
value of education in the students ’cause they just don’t seem to really, well the students 
don’t by and large don’t put a great value on what they can really get from here. You almost 
have to trick them into learning, you know play a bit of a game…They’re a particularly 
hard class if I tried, I’ve tried doing several other things but if I’m trying to get them to 
do anything that’s too big or conceptual, bang they’re gone. And it’s like you’re walking 
on a razor edge, the whole class is teetering on exploding at any moment, so it has its 
challenges.

Whilst there is some evidence of deficit thinking about students in this excerpt, 
Luke clearly does face difficulties in making the students recognise the value of 
what is happening in the classroom. However, he does also seem to be engaging the 
students. In a discussion with a group of Year 6 students about what interested them 
at school, he was singled out as an excellent teacher. For example, it was noted that:

S1:  Tuesdays are fun ’cause we got Mr Luke from the high school.
S2:  Mr Luke.
I:  And what did he teach you?
S1:  He teach us maths and like faster harder stuff than we usually do.

Furthermore, he is clearly a very committed teacher and when students are not 
achieving he does not attribute this all to the students, their natural abilities, or 
their backgrounds. When asked how accountable he felt for the success of different 
groups of students in his classroom, he replied:

I think I’m entirely accountable…I know we all have bad lessons, I’ve had my shockers 
and I’ve walked away sometimes, as long as I’ve had a go, I’m okay on myself, but when 
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there’s times I’ll just chuck my arms in the air and say ‘word searches or game of knowl-
edge’ or something like. You do feel you’ve let your students down, but then on the other 
hand sometimes they deserve a break too, so it’s, you’ve got to, I do feel accountable but 
there’s times when “OK guys just do this and chill out. You’ve done well”, or, “it’s just 
going to be too much of a fight today we’re not going to get there so let’s just pull back for 
a bit and let’s just have a bit of timeout and we’ll attack this again tomorrow.”

The work on mathematics education in Azalea points to some important con-
siderations for socially just pedagogies in Indigenous communities in Australia. 
The school is committed to ensuring that students are challenged intellectually 
in the classrooms through an investigative mathematics approach. Within this 
approach, as with the approach at Magnolia, students are presented with prob-
lems that do not have only one solution. They are thus required to engage in 
processes of knowledge construction. Such intellectual quality work can only 
occur, however, if students can see meaning in it, if it is engaging (“fun” as the 
students suggest) or connects to the real world. Teachers at the school appeared 
to be committed to make their mathematics classes relevant to the students. 
While the issue of supportiveness was raised this was not evident in all classes in 
relation to making criteria explicit or encouraging risk taking. However, Luke, 
the mathematics specialist, was seeking to make this a key component of the 
mathematics curriculum at Azalea. Throughout the classes there appeared to be 
little of the mathematics lessons that engaged with local knowledges or fore-
grounded Indigenous cultures. This was perhaps a feature of the mathematics 
specialist’s attempt to broaden students’ outlook on the world. For instance, 
Luke sees education as providing an opportunity for students to see beyond the 
local community:

…probably the biggest challenge facing this school is trying to instil that importance and 
to show them what’s over the range and beyond and across the ocean. You know the rest of 
the world is shrinking with, this community just sort of standing on its own and saying, “Oh 
no we don’t need anyone else because we’ve got it all here”.

An issue that confronts many remote Indigenous communities is the extent to which 
there is a need or desire to engage with the broader Australian society and the role 
that schools have in encouraging that engagement whilst valuing the knowledge and 
practices of the local communities.

 Conclusion

In this chapter, we have foregrounded the work occurring in two primary schools 
around mathematics education. These are two very different schools. One is located 
in an inner city area of an Australian State capital. The other is located in a remote 
Indigenous community. However, they share a number of similarities. Both schools 
have a student population that has not always readily engaged with the academic 
curriculum. The demographics of Magnolia are changing and making this a little 
less the case, although the principal indicates that they still have a large number 
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of students who come from very challenging backgrounds. Both schools have a 
stated commitment to providing an intellectually challenging mathematics curricu-
lum to their students. Magnolia does this through its open-ended problem-solving 
approach, sometime referred to at the school as investigative maths; and Azalea 
through its own investigative mathematics approach. Teachers at both schools em-
phasised the importance of making the mathematics curriculum relevant and of be-
ing explicit in the teaching of particular concepts for students who were struggling. 
However, at both schools there was little evidence of a concern with difference in 
the mathematics classrooms. This need not be the case (McCarthy 2002; Skovs-
mose and Valero 2002).

We would note, however, that educational research has been very good at de-
termining when social justice is not present in the classroom. In presenting these 
case studies, we have sought to address the much more difficult task of demonstrat-
ing its presence in the classroom, albeit in limited ways. We have taken two sites 
which have gone some way to integrating a concern with social justice into their 
mathematics classrooms. However, what is apparent from these sites is that it is 
much easier to tackle issues of distribution, ensuring that students from low SES 
and Indigenous backgrounds receive as good an education as they would in more 
privileged locations, than it is recognition, valuing and recognising diversity in the 
classroom. This is perhaps not unsurprising given the intense theoretical debates 
that have occurred on the topic of social justice, distribution and recognition (e.g., 
see Fraser and Honneth 2003). Thus, we would suggest, that whilst there are schools 
and classrooms that are seeking to challenge the reproductive effects of schooling, 
there is, even in schools concerned with social justice, still a major need to consider 
issues of difference in the classroom.

In presenting these two case studies of mathematics teaching and reform we are 
not seeking to idealise or criticise either or both of these schools. We wanted to 
present the challenges of real mathematics reforms in real and difficult locations. 
In so doing, we wanted to emphasise the importance of pedagogies for delivering 
a socially just mathematics curriculum. Magnolia has gone a long way towards 
achieving this. Students from a range of backgrounds are demonstrating high aca-
demic outcomes on a variety of measures and tests. Azalea’s achievements are less 
obvious. However, the entrenched and dominant effects of colonisation and the fail-
ures of education in the past to address the needs of Indigenous communities will 
not be solved overnight. What Azalea is doing is important in that there are very real 
efforts to engage the students in mathematics without limiting their opportunities 
to acquire sophisticated mathematics concepts. We would suggest that one of the 
major lessons to come from these case studies is that the delivery of socially just 
pedagogies in mathematics classrooms will always be an unfinished project and that 
schools, such as Magnolia and Azalea, will need to be continually reassessing the 
extent to which they are providing their students with socially just pedagogies in all 
curriculum areas.
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 Introduction

This chapter tells the story of how Mathematical Literacy (ML), as a new subject 
introduced in South African schools in 2006, opened access to mathematical learn-
ing and enabled the mathematical “metamorphosis” of learners in one school. The 
aim of the chapter is to share the way in which this curriculum intervention has the 
potential for enabling increased access and quality mathematics education particu-
larly for learners with weak mathematical histories.

The chapter is based on data gathered from two case study classrooms of the 
first cohort of ML learners in one independent Johannesburg school. The chapter 
is jointly authored by Esme Buytenhuys, a teacher of one of these classrooms, and 
Mellony Graven, who at the time of the research1 was the co-coordinator of the 
Mathematical Literacy Research and Development thrust of the Marang Centre, 
Wits University. Esme writes the story of the metamorphosis of the learners in her 
school based on her experience of working with these learners, reading their journal 
entries and most importantly reading their “mathematical stories” written on the last 
day of their 12 years of schooling. Mellony provides the contextual background to 
the story and some reflective analysis of the story which draws on Sfard and Pru-

1 Esme and Mellony met at a Mathematical Literacy workshop organized as part of Mellony’s 
work in the Mathematical Literacy Research and Development thrust. At a follow-up ML support 
group meeting Mellony was drawn to a range of ideas that Esme brought and requested that she 
and a colleague, Hamsa Venkatakrishnan, visit with her in her classroom to learn about the teach-
ing of the subject. This was the beginning of their relationship which included interviews and visits 
over the three-year period.
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sak’s (2005) narrative definition of identity. Thereafter, we engage with the relation-
ship between the story and the curricula features that supported the more positive 
evolution of learner mathematical identities.

Our story begins from the point of departure that learners can constantly reau-
thor their mathematical stories and their lives. It focuses on ways in which learner 
choices to take ML instead of Mathematics in grades 10–12 freed them from ongo-
ing stories of mathematical failure and enabled increased (and new forms of) math-
ematical participation, sense making, confidence and enjoyment.

 Mathematical Literacy in South Africa

Mathematical Literacy (also commonly referred to as Maths Lit and abbreviated 
ML) was introduced in schools in the Further Education and Training (FET) post 
compulsory phase (grades 10–12, learners mainly aged 15–18) in South Africa 
in January 2006. The subject is structured as an alternative option to Mathemat-
ics, and all learners entering the FET phase since January 2006 are required 
to take one or other of these two options. ML is defined as a subject driven by 
life-related applications of mathematics that must develop learners’ ability and 
confidence to think numerically and spatially in order to interpret and critically 
analyze everyday situations and to solve problems (DoE 2003). The rhetoric also 
foregrounds issues of quality in relation to enabling a learner to become “a self 
managing person, a contributing worker and a participating citizen in a develop-
ing democracy” (p 10). The emphasis in curriculum documents on developing 
mathematical competence and confidence, and ways of being and acting in the 
world, highlights the aim of developing positive mathematical learner identities. 
Evidence from schools suggests that in practice, learners with weak mathemati-
cal histories, competence and confidence are mostly guided towards taking this 
new subject.

The rhetoric of the rationale for ML foregrounds issues of access. The introduc-
tion of the subject addresses the concern that in the past approximately 50% of all 
Grade 10–12 learners did not take Mathematics and there was widespread concern 
for the high levels of innumeracy and poor performance on international studies. 
Mathematical participation was furthermore skewed along racial lines (see also 
Reddy 2006). Thus political will (rather than an initiative led by teachers or educa-
tors) led to the introduction of ML with the intention that all learners in the FET 
band would study mathematics in some form.

Initial design of the curriculum was by a group of department officials appointed 
by the Department of Education. The names of the members of this group are not 
publicly known but there was no consultation with the various mathematics educa-
tion structures that exist in the country. The initial instruction was that it should 
be an easy mathematics without clear ideas of what this meant (According to A. 
Brombacher (personal communication, January 2010)). Shortly after the curriculum 
was designed, a ministerial committee was elected to review both the Mathematics 
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and ML curricula and consultant Aarnout Brombacher (an ex Mathematics teacher 
and ex president of the national Mathematics Teachers Association AMESA) was 
brought in to head this review. Following this review, Brombacher developed the 
Subject Assessment guidelines (DoE 2008) and a Teacher Guide (DoE 2006) for 
ML. It is in these documents that the curriculum rhetoric begins to veer off from the 
possibility of being interpreted as a watered down mathematics curriculum. “Math-
ematical literacy is a different kind of mathematics, not a different lower level of 
mathematics” (Brombacher 2005).

Thus curriculum rhetoric which emphasized ML as a way of being and acting in 
the world became foregrounded in subsequent documents. The subject definition 
“driven by life-related applications of mathematics” (DoE 2003, p. 9) was thus 
taken to mean learning must be anchored in the real world and mathematics and 
context must be brought together in a dialectical relationship. Thus the Teachers’ 
Guide notes:

the challenge for you as the teacher is to use situations or contexts to reveal the underlying 
mathematics while simultaneously using the mathematics to make sense of the situations or 
contexts, and in so doing develop in your students the habits or attributes of a mathemati-
cally literate person. (DoE 2006, p. 4)

The purpose of ML is stated in terms of what learners are to become and to be and 
within this rhetoric an underlying socio-cultural framework is evident. For example, 
“Mathematical Literacy should enable the learner to become a self managing per-
son, a contributing worker and a participating citizen in a developing democracy…” 
(DoE 2003, p. 10) and “to handle with confidence…enable them to deal effectively 
with mathematically related requirements in disciplines such as the social and life 
sciences” (DoE 2003, p. 11).

In contrast, while there is some mention of relatedness to the real world in 
the Mathematics curriculum, this curriculum states “Mathematics is a discipline 
in its own right and pursues the establishment of knowledge without necessarily 
requiring applications to real life” (p. 9). The Mathematics curriculum is a more 
knowledge-driven curriculum with clear disciplinary boundaries and a focus on 
vertical mathematical progression necessary for further studies. Thus the curricu-
lum states: “If a learner does not perceive Mathematics to be necessary for the 
career path or study direction chosen, the learner will be required to take Math-
ematical Literacy” (p. 11). Key differences between two curricula are summarized 
in Table 35.1:

Table 35.1  Key differences between ML and Mathematics
Anchored in the real world Anchored in the discipline of Mathematics
Focus of rhetoric: ways of being and act-

ing confidently in the world
Focus of rhetoric: knowing and understanding

Learner histories: weak competence and 
low participation

Learner histories: some strength, competence and 
participation within the disciplinary boundaries

Trajectory—into the world (citizenship) 
and social and life sciences studies

Trajectory—into further mathematically oriented 
studies
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Thus ML tends to be driven by real life scenarios—and teachers are encouraged 
to keep these current and relevant to the interests and needs (including future needs) 
of their learners. For example, investigating electricity consumption and the effects 
of leaving appliances in standby mode have been suggested by Brombacher as a 
useful ML scenario. Electricity consumption is currently a “big issue” in South Af-
rica as there is not enough of it, and households and businesses across the country 
are experiencing power outages and intermittent “load shedding.” Other examples 
of scenarios given in the teacher guide (DoE 2006) include: calculating telephone 
costs; comparing between cell phone and land line costs depending on the needs 
of individuals; investigating pyramid schemes, loyalty programs, banking charges, 
etc. Teachers are encouraged to source data for such activities from current tele-
phone directories, cell phone brochures, newspaper adverts and articles.

Despite such activities one of the greatest issues for learners in choosing to take 
ML relates to the perceived low status of the subject. Thus while the curriculum 
document states that ML should be taken “if a learner does not perceive Mathemat-
ics to be necessary for the career path or study direction chosen” (DoE 2003, p. 11), 
the more commonly told story is that it is for those who cannot do mathematics. 
Such stories (or “stereotypes” as referred to by learners) are problematic and get 
in the way of the subject achieving its full potential. However, as our story will 
show, positive learner experiences in relation to this subject allows learners to 
challenge these stories and create new stories about its value and their mathemati-
cal competence.

There are a range of concerns relating to the introduction and implementation 
of the ML curriculum. These relate to, for example, contradictory messages within 
curriculum documents (Christiansen 2007), the status of the subject (Sidiropoulos 
2008), the validity of its assessment and the value of its currency (Jansen 2009a, b) 
and teacher shortages (Reddy 2006). These concerns are real and large-scale na-
tional research is required in order to reflect on the extent to which ML has met its 
stated aims and purposes across the country.

Our contribution in this chapter does not aim to address the above issues but 
rather to highlight, from the case study of one cohort of ML learners in one school 
(followed from Grade 10 to 12), the potential of this subject to transform learners, 
who defined themselves as mathematical failures and nonparticipators, into math-
ematical negotiators, participators and sense makers both in and beyond the class-
room. In presenting this case the chapter focuses on the way in which ML enabled 
access to forms of mathematical participation and sense making not previously ex-
perienced by these learners in their schooling. The chapter also addresses the issue 
of “quality” of mathematical learning in ML from the perspective of the learners. In 
particular, learners’ anecdotes of their mathematical learning crossing the boundary 
of the classroom into their everyday lives challenges the validity of perceptions of 
the lower quality and status of the subject. While we sometimes use the words of the 
learners to illuminate our story like Sfard and Prusak (2005: 20) we “urge the reader 
to remember that what follows is a story about stories.”

Before telling Esme’s story, we briefly introduce to you Sfard and Prusak’s op-
erational definition of identity and its connection to stories.
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 Defining Identity

The term “identity” is not fully useful in relation to Esme’s story unless it is given a 
clear operational definition. Sfard and Prusak (2005) point out that while “identity” 
is a term that is widely used in educational literature it is seldom clearly defined. 
To provide “identity” with an operational definition Sfard and Prusak (2005, p. 16) 
define identities as “collections of stories about persons or, more specifically, as 
those narratives about individuals that are reifying, endorsable, and significant.”

Reification comes with verbs such as “have” (e.g., “I have strong mathematical 
ability”) and I would add with declarations of one’s being such as “I am” (e.g., “I am 
mathematically stupid”). Stories are considered endorsable if the identity builder 
can answer to them being a faithful reflection of a state of affairs (e.g., “I say I’m 
mathematically stupid because I constantly fail my tests”). While stories are sig-
nificant if a change in the story is likely to affect the storyteller’s feelings about the 
identified person—e.g., a change in the story that “Math Lit learners are mathemati-
cal failures” to “Math Lit learners have a preference for learning life-related math-
ematics” is likely to lead to a change in feeling by the storyteller about learners.

Thus, within their definition identities are human made, collectively shaped by 
authors and recipients. They explicitly highlight that their definition presents iden-
tities as the discursive counterparts of lived experiences whereas others such as 
Wenger (1998, p. 151) see such words as only a part of “the full, lived experience of 
engagement in practice”. Sfard and Prusak thus stress “No, no mistake here: We did 
not say that identities were finding their expression in stories—we said they were 
stories” (p. 14).

We will return to this notion of identity when reflecting on Esme’s story.

Esme’s Story of the Mathematical Transformation of Learners in Her 
School Reading the journals and stories of my learners and reflecting on our 
three-year journey together made me realize just how enriched I have been 
by this exercise of committing my findings to paper. Teaching ML is indeed 
a very rewarding experience and yet at the same time an incredibly difficult 
one. My learners and I started out not knowing exactly where we were going 
and how we were going to get there—but with time we trusted and invested 
in each other and embarked on the journey together.

For me, looking back, I now see this journey as a complete metamorphosis.

The Caterpillar Stage I clearly remember those first few months with my 
six Grade 10 Maths Lit learners. They started out slinking into my class-
room looking for a place to hide—to go unnoticed for 45 minutes. There was 
a tangible, invisible barrier between the learners and me—created by them. 
Reflecting on this, in discussion with Mellony, Hamsa and others, helped me 
to make sense of this. I began to understand the nature of the learner who 
appears in the Maths Lit class at the outset of Grade 10. These are precious 
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young people who have been mathematically abused and for most as early as 
in Primary School.

In all the student stories about their mathematical experiences there were 
repeated emotive words and phrases such as: “failure,” “struggle,” “stress,” 
“nervous,” “hated maths,” “worry,” “extremely difficult,” “no confidence,” 
and “hopeless.”

For example, learners wrote:

During high school I hated Mathematics because it never made sense to me.

From since I can remember I have struggled with Maths. I would always try my best 
but never see results

Many learners wrote of their feelings of hopelessness and how they eventu-
ally gave up.

It’s no fun knowing that there is no hope in the world that you can pass the tests.

In Grade 8 and 9 I was told to go to extra Maths before school, but by this time I had 
lost interest and was tired of trying my best and never seeing results.

Many learners also connected their negative mathematical experiences to 
their broader self image. For example one learner wrote: “I used to hate any-
thing and everything that had to do with Maths. My struggle with Maths also 
negatively impacted my self-confidence, and left me feeling like I was stupid 
and useless.”

These learners were too scared to partake in discussions. Getting an answer 
or opinion from anyone was like drawing teeth. One of my vivid memories 
of one girl’s perceived hopelessness is when she put up her hand to answer 
a question and then quickly put it down again. When I encouraged her she 
replied “no don’t worry, my answer is probably wrong anyway.”

The first part of the journey was to get the learners to start changing 
their perception about themselves. Only by reading their journals I real-
ized just how difficult it must have been for them. Over the three-year 
period, my class grew from six to fifteen learners. Most of my class stated 
that they felt like failures because of their mathematical experiences. Not 
only did they see themselves as failures, they also had the snide comments 
from the Mathematics learners to deal with. Quite a few of them said that 
they were embarrassed doing Maths Lit because of the negative opinions 
and comments of other learners. My initial group, as well as those who 
changed in drips and drabs, didn’t really have a choice in doing Maths Lit 
in the sense that it was clear that if they continued with Mathematics they 
would fail.

Interestingly, learners who only joined ML in Grade 11 seemed to show a 
greater intensity of emotion in relation to their struggles with Mathematics. 
Many of the girls shared how much crying and stress went into trying to cope 
with Mathematics. “Maths for me was a daily struggle I got stressed and cried 
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a lot because of my inability to grasp the concepts.” One of the boys even 
stated “before Maths Lit my life was a mess.… It’s like there was a large gap-
ing hole that I just couldn’t fill.” The intensity of the emotions in their stories 
possibly relates to their extended experience of learning mathematics in the 
FET band.

Another aspect of emotion that the Maths Lit learners had to deal with 
was the teasing they received in terms of the lower status of the subject as 
well as their own feelings that they were taking the subject because they were 
“stupid.” In some cases students who changed much later to Maths Lit were 
the teasers of the initial group of learners who took Maths Lit from the start 
of Grade 10. For example one learner wrote: “I always mocked the children 
that decided to drop to Maths Lit, but that’s only because I didn’t really under-
stand what it was all about.”

It took about six months to get my initial group of learners to accept that 
I was on their side and that as a team we could achieve a new and positive 
maths experience. I positioned myself as a colearner—as indeed I was. This 
curriculum and many of the scenarios we explored were new to me as well. I 
insisted that nothing they said was stupid and all avenues of thinking would 
be explored. There was space in the curriculum for increased discussion and 
allowing for diversions in these discussions. I insisted that they should not 
look to me for answers—I did not have them. The only way to learn was 
going to be through engagement. At last they began to gain confidence and 
were willing to risk participation in discussions. My initial group was quite 
pleased with themselves when they saw that they were achieving better results 
than their peers who changed to Maths Lit at a later stage during Grade 10. 
In their own minds they had the poorest mathematical abilities. Then they 
began to succeed—for the first time the amount of effort expended was pro-
portional to the results they achieved. Their successes were noted enviably by 
the Mathematics learners.

The Pupa Stage This is the stage when the learners begin to savor the good 
experiences and build on them. Knowing that success can be repeated the fear 
of failure diminishes. Classroom discipline becomes so much easier because 
they feel good about themselves and are not hiding behind a behavioral prob-
lem to cover up for their inadequacies. The learners tend to become actively 
involved in the task at hand and they thrive on the manner in which they 
engage with the subject. One learner had this to say about Maths Lit, “unlike 
Maths where you stress and cry over a sum, Maths Lit allows you to go out 
and see things in action being made; we are put in situations where we must 
work together in a fun and new way so that we may discover for ourselves the 
solutions to everyday problems.”

Success leads to a greater desire to be challenged and the learners begin to 
believe that they are able to tackle anything. Their self-esteem in relation to 
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Maths starts changing—they begin to redefine themselves as learners who are 
willing to give it a try and as learners who can figure it out.

Getting weaker learners to do their Maths homework has always been an 
uphill struggle for me. I was under the impression that learners who didn’t do 
homework didn’t care or were lazy. I realize now how wrong my perception 
had always been. A few learners “journalled” about homework and one of 
them helped me gain new insight regarding this matter: “Since I was young 
I refused to do Maths homework, not because I didn’t want to but because I 
simply did not understand the work that needed to be done.”

In addition, learners linked this ability to make sense and “figure it out” to 
increased independence. A learner explained: “Its (ML) in English…Its easier 
to catch up because you can go home and you can read it…Whereas Maths, 
you need someone to actually like intensely explain it.” Homework is not 
much of an issue in the Maths Lit classroom anymore. The learners actually 
feel proud of being on top of the situation.

The Butterfly Stage This is the stage when I look at the learners and observe 
them with pure delight. They are beautiful and whole; and ready to spread 
their wings. What do I observe?

I see individuals reflecting on answers and the calculations. They check 
that the answers make sense. They reassess and rework the problem until the 
answer is sensible and realistic. The Maths Lit learners become inter-depen-
dent: they discuss answers that don’t make sense; debate issues mathemati-
cally in order to establish meaning for themselves then collectively decide 
on the most appropriate answer. They are able to make sense of numbers—a 
skill they thought they didn’t have prior to Maths Lit. They have reached a 
stage where they are able to confidently enter into debate with me. There have 
been times when their methods have been better than mine. These learners 
have evolved into mathematical negotiators who no longer shy away from 
“maths.” In addition, the learners’ positive experiences spilled over into the 
exam situation (and their marks were gradually improving) as one learner 
expressed herself: “Maths Lit has boosted my confidence and now I know 
I can do well in my exams without the stress of not understanding.” Others 
echoed similar sentiments, “I no longer dread the Maths period, I do really 
well in exams and I’m always excited to write them.”

While many learners at the start were concerned that taking Maths Lit 
would limit their access to further studies, now some realized that by get-
ting a good symbol for Maths Lit (as opposed to a very low symbol for 
Mathematics) increased their points quota required for accessing universi-
ties. One learner draws this conclusion, “My marks have improved greatly. 
The average on my report, for Maths Lit, has changed my final symbol which 
has helped me in applying to university.” Another learner writes, “I plan to 
study Business Management next year and Mathematics is not a requirement, 
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having heard this, my choice to take Maths Lit was easy as it takes the stress 
off me.”

In the final National Senior Certificate Mathematics exit exam, all of the 34 
Grade 12 learners passed and 13 of them passed at the highest level (achiev-
ing “Level 7—outstanding,” i.e., 80–100%) while 16 achieved at the second 
highest level “Level 6—meritorious,” i.e., 70–80%). The metamorphosis is 
captured by a learner who shares her experience:

At first, I have to admit, I felt like an idiot; people see it (Maths Lit) as a really easy 
and pathetic subject, when in reality it is not. It is actually a very interesting and use-
ful subject that teaches you to apply mathematical concepts in your everyday life. 
We learn maths that you will actually use one day. My decision to change was one 
of the best decisions I have ever made and I don’t regret it one bit…It has made me 
a happier person.

Similarly, Greg’s story of transformation is one that will always live with 
me. I journeyed with him during his difficult and sometimes painful experi-
ences during the years he was in my class. He came to me in Grade 8 with a 
mathematical history that spoke of failure. No amount of extra maths or revi-
sion helped improve the matter. He joined me again in Grade 10 even more 
despondent. In his journal he reflected:

Maths was the most terrible part of my school career. I always used to dread coming 
to my Maths classes because I never used to know what I was doing.… I always 
used to get the worst marks in the class. I didn’t want to choose Maths Lit because 
I thought it would be embarrassing but throughout the years I have realized that 
choosing Maths Lit was definitely the best thing I have ever done in my school 
career. I loved going to Maths Lit because I know that I’ll be using the maths that we 
learn in and out of my life.

By the end of Grade 10 he achieved 51%. Greg was beginning to remold 
his relationship with Mathematics. As time passed, Greg became more 
confident and self-assured often adding value to the class discussions. 
He was proud of his achievements and was even able to refute the taunts 
from “Core” Maths learners. He wrote: “Everyone is going to have to buy 
a house; and calculate electricity and telephone bills—I know I can. I can 
calculate how to build a house right to the last brick! Can normal Maths kids 
do that? How’s about nooooooo (no).” While Greg’s reference to “normal” 
Maths is somewhat problematic in how it positions Math Lit, his increasing 
confidence remains clear. Greg attained 61% in his Matric finals and still 
basks in this success.

I am extremely privileged to have embarked on this pioneering journey—I 
too have been transformed. ML most certainly has more than just the poten-
tial to transform learners: it has healed many dysfunctional young adults. It 
has set them free and given them wings to fly. I think this is a sentiment that 
is growing. On a Matric Graffiti Wall at another private school, I noticed a 
learner had written: “Math Literacy 4 future world leaders.”
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 Reflecting on the Story

The story highlights the way in which the teaching of ML as a subject in these 
classrooms, provided learners with the opportunity for developing new identities in 
relation to mathematics.

Our chosen definition of identity gives increased agency to the learner and the 
teacher as it opens the space for the reauthoring of learner identities. It is this agency 
and space for reauthoring that is particularly appealing for reflecting on Esme’s 
story. It highlights the important role that significant narrators, (e.g., teachers such 
as Esme), can play in deliberately challenging existing negative stories of learners 
and the importance of reflecting on their own intentional or unintentional authoring 
of learner identities.

Thus within this definition of identity, as discursive counterparts of one’s lived 
experiences rather than some intangible (and stable) entity, reauthoring of identities 
is not only possible but we argue is necessary for enabling and giving momentum 
to learning. We believe this is especially important in cases where identities have 
been negatively constructed as stories which are stumbling blocks to learning. Thus 
Esme notes that the first part of the journey was to get the learners to start changing 
their perception about themselves.

Freedman and Combs (1996) argue that the metaphor of stories helps one to see 
how stories circulate in society and how these realities are socially constructed, 
constituted through language and organized and maintained through narrative:

When life narratives carry hurtful meanings or seem to offer only unpleasant choices, they 
can be changed by highlighting different previously un-storied events, thereby construct-
ing new narratives. Or when dominant cultures carry stories that are oppressive, people 
can resist their dictates and find support in subcultures that are living different stories. 
(p. 32–33).

The final sentence highlights the opportunity for groups of people in supportive 
communities or “communities of practice” (Wenger 1998) to enable “living dif-
ferent stories.” Supportive communities, such as those formed in the ML classes 
in this school should open up these alternatives especially when existing stories 
“carry hurtful meanings,” undermine mathematical identities or impede learn-
ing. As we see in Esme’s story these alternatives were opened up and members 
of these communities became the new “significant narrators” that told stories of 
mathematical competence and rejected the stories of other students that they were 
mathematically stupid. Learners began to argue back to Mathematics students 
that ML was different mathematics rather than inferior mathematics and began 
to challenge the appropriateness of its lower status. For example Greg wrote: “I 
can calculate how to build a house to the last brick! Can normal Maths kids do 
that? How’s about Noooo (no).” Thus, we see that through the development of 
the ML classroom as a supportive community, learners such as Greg are able to 
reject the significance of oppressive, negative stories and give more significance 
to the stories emerging within the community and told by their teachers about their 
mathematical learning.
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Sfard and Prusak (2005) continue to identify two sub categories of stories: cur-
rent2 identities (told in the present tense and formulated as actual assertions) and 
designated identities (narratives expected to be the case—now or in the future). 
Learning is then conceptualized as closing the gap between current and designated 
identities. In Esme’s story we see that the gap between current identities at the be-
ginning of Grade 10 and the designated identity that learners should become math-
ematically competent problem solvers is large and learners choose not to partici-
pate. Designated identities of becoming “competent mathematical problem solvers” 
are skeptically considered by learners as euphemisms for “mathematical dummies” 
needing an extra three years to learn basic mathematics.

With a concrete focus on developing learner confidence, constantly encour-
aging participation and telling new stories about learners’ mathematical thinking 
(e.g., “That is not a stupid idea—in fact it is helpful in solving this problem, tell us 
more.”), current identities begin to shift. Learner talk changes from “I can’t” to “I 
can or at least I’ll try,” and the gap between current identities and designated identi-
ties begins to sit in productive tension and stimulate mathematical learning.

Esme’s story tells of her deliberate and explicit rejection of negative stories and 
her focus on encouraging participation in the caterpillar stage. This provides the 
momentum and space for her learners to reauthor their mathematical identities. In-
deed, the supportive classroom community created by Esme and her focus on de-
veloping mathematical confidence in learners was important. There were, however, 
several features of the subject ML per se which enabled this story to unfold in a 
way that was different from Esme’s experience of teaching “Mathematics” in earlier 
years. These curricula features are discussed below.

 What Curricula Features Support “Living Different 
(Mathematical) Stories?”

The learning process resulting from the implementation of a curriculum is clearly 
complex with a multitude of factors impacting on the nature of learning. How-
ever, there are various features of the ML curriculum that Esme and learners in 
this school highlighted as opening the space for prioritizing participation, negotia-
tion, sense making and “preparing learners for life.” Table 35.2 identifies several 
features of the subject that support the emergence of new mathematical teaching 
and learning stories. While each feature is tabulated separately, they are, of course, 
complexly interconnected.

2 Sfard and Prusak do not use the term current in their 2005 paper but instead refer to actual iden-
tity. This term can be misleading. In a personal e-mail correspondence with Sfard in November 
2008 she wrote “I decided to replace the term ‘actual identity’ with ‘current identity’. It is just that 
for some readers, the term ‘actual identity’ sounded as a declaration.” In order to avoid this inter-
pretation for readers of this chapter I too have avoided using this term and have therefore replaced 
it with the preferred term suggested by Sfard.
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Table 35.2  Curricula features that open up new spaces

Curricula feature Space for new teaching and learning stories

Progression is located in the com-
plexity of contexts with less 
mathematical “content” covered. 
From one grade to the next 
mathematical contents are often 
repeated with the recommenda-
tion that they are explored “in 
more complex contexts.”

Less vertical progression enables slower pacing and 
increased discussion. Learner centeredness is noted 
and contrasted to mathematical teaching where the 
pace is set according to stronger learners in order to 
“get through the curriculum.”

Esme: “I am the facilitator and not the teacher, emphasis 
on understanding concepts rather than being driven 
by completing the syllabus…More relaxed slower 
pace…Structure is more informal, cooperative 
learning.”

A focus on contextualization and the 
use of scenarios. 

Exploring various real life contexts and scenarios 
necessitates discussion and participation in order 
to make sense of situations, and furthermore 
brings a personalization of learning, as multiple 
perspectives are part of the sense making process. 
Collaborative ways of working are productive of 
learning (contrasted by learners to group work in 
Mathematics requiring copying a student “in-the-
know”). Contextualization (as well as the “new-
ness” of the subject) also positions the teacher as a 
colearner and facilitator of discussion rather than 
the authoritative source of knowledge—opening the 
space for a more distributed locus of authority in 
the classroom community.

Esme: “We’re on a journey together.”
A focus on ways of being and acting 

in the world (supported by an 
underlying socio-cultural learn-
ing theory).

This encourages teachers to focus more holistically on 
learners and their learning—participation, forms of 
participation and personalization of learning are of 
primary importance.

Esme: “(Interaction with learners) is stunning—they 
are real live people and not just a vessel to fill with 
maths.”

Explicit stipulation that ML is not 
for learners who intend to pursue 
“mathematically related” studies 
leads to commonality in learners’ 
trajectories into life and/or non-
mathematically related studies. 

The explicit departure from preparing learners for fur-
ther mathematically related studies opens the space 
for teachers to focus on mathematical engagement 
necessary for preparing learners for life.

Esme: “You know there are a whole lot of things: blood 
alcohol levels, that is where they are at, teenage 
pregnancies…it’s so important to their lives.”

ML is a new subject defined as 
different to Mathematics. It is 
explicitly stated that it is not 
a watered down version of 
Mathematics.

The “newness” of ML distances teachers from their 
own apprenticeship experiences of mathematics 
teaching in their own schooling. This frees them to 
explore new ways of being in the classroom. The 
initial absence of external assessment precedents 
removed the tendency to “teach toward the exam” 
and supports the focus on learning rather than 
assessment.

Esme: “(The curriculum is) wonderful, allows creativity 
and freedom to explore, invent, discover for yourself 
what works, how it works.”
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As seen in the Table 35.2, various curriculum features work in tandem with 
teachers’ interpretations of the curriculum to enable the development of a support-
ive community where learners can live and tell a different (mathematical) story and 
find support in the “subculture” of ML learners. Our story has highlighted learners’ 
opportunities for developing new identities in relation to mathematics and the de-
velopment of some level of competence and success with mathematical participa-
tion both inside and outside the mathematical classroom. But what of the quality of 
the mathematical learning?

Throughout learner interviews a personalization of learning was evident. Learn-
ers’ noted that they could both bring their “life” experiences and their opinions to 
the learning process and extend their classroom experiences into their life. Thus, 
the boundary between the ML classroom and the world outside was increasingly 
experienced as permeable with increasing coherence between one’s ways of partici-
pating and negotiating, being and acting in the world and in the classroom.

Several learners gave examples of how they used the mathematics learnt in class 
outside of the classroom. For example, one learner spoke of how for the first time he 
discussed with his father (an architect) the plans of a project he was working on, an-
other explained how she helped her mother (an interior decorator) draw up the plans 
for redecorating her brother’s bedroom, and so on. This, in addition to the strong 
performance of the majority of learners in this school (85% achieved “outstanding” 
or “meritorious” results), points to the quality of mathematical learning.

So why did learners experience this in ML and not previously in Mathematics? 
Overwhelmingly, learners’ reasons centre around the nature of participation and 
engagement afforded in these ML classrooms. Learner comments primarily linked 
the reasons for this to their changing participation in the classroom in relation to two 
factors: “real” collaboration and “real” problem solving.

The “realness” of the collaboration and problem solving related to the similar-
ity to real life—opinions and multiple methods are both valued and productive 
of both mathematical and contextual learning and the nature of the scenarios are 
messy. ML requires active participation, engagement and negotiation. The free-
dom to engage with the “messiness” of scenarios and negotiate the way forward 
without searching for “the right way” opened a learning space that was previously 
closed in mathematics classrooms. Learners also noted that the nature of engage-
ment with teachers was different and that there was greater independence from 
the teacher as a result of having their opinions count and influence the direction 
of the lesson: “I think I understand it more because you like discussing with her…
You are not just sitting and just listening to the teacher babble on you actually 
taking part.”

As Esme said, in the butterfly stage, learners became mathematical negotiators. 
Wenger (1998, p. 210) writes that negotiability can be described with phrases such 
as: “opening access to information, listening to other perspectives, explaining the 
reason why,…inviting contributions,…opening decision processes, argumentation, 
sharing responsibilities…” Indeed, visits to Esme’s classroom revealed that these 
were strong features of her classroom.
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 Discussion and Conclusions

The story we have told illuminates a mathematical metamorphosis with respect to 
identity. From the writings of all of the 2008 Grade 12 ML learners in this school, 
it is clear that for each her/his mathematical story changed substantially as a result 
of participation in ML. Thus following our use of a narrative definition of iden-
tity we have illustrated the subject’s potential to support the development of more 
positive mathematical identities. Learners in this story changed from mathematical 
outsiders, strugglers and nonperformers to active mathematical participators in their 
ML classrooms and in the world outside the classroom. We have also highlighted 
aspects of South Africa’s ML curriculum which opened the space for such meta-
morphoses to occur.

This said the introduction of ML is not without some serious problems and chal-
lenges. While there are many other teachers and learners who tell similar stories, 
including in inner city state schools (see Venkat and Graven (2008) and Graven 
(2009)), there are also those who find it difficult to teach (and learn). Furthermore, 
now that the first national Grade 12 exit examinations were written in November 
2008, the validity of the assessment of the subject (and with it the quality of the 
subject) is being called into question (see Jansen 2009a). Differences in perceived 
validity result in some universities accepting a good result in ML for business- and 
commerce-related studies while others do not. Entrance criteria are constantly re-
viewed in relation to stories that circulate about the quality and validity of ML and 
to debates about access to Mathematics. Racial inequalities in terms of access to 
scientifically related studies are perpetuated when many state schools only offer ML 
and not Mathematics to Grade 10–12 learners.

In a recent doctoral study, Sidiropoulos (2008) found that ML teachers she sur-
veyed identified several problematic themes in relation to the implementation of 
the subject:

1. A threat to the status and identity of mathematics teachers required to teach ML. 
(Teachers view teaching ML as “inferior” to Mathematics and a demotion from 
mathematics teaching.)

2. A lack of leadership in ML, as Heads of Department, mostly, do not teach the 
subject.

3. Thin and disconnected levels of understanding the teaching of “mathematics in 
context.”

4. Many teachers believe the curriculum is too difficult for the learners doing the 
subject.

The fourth theme emerged from her survey with public school educators. Since 
ML is a compulsory alternative to Mathematics, some learners enter Grade 10 ML 
having not managed the mathematical knowledge and skills required in the earliest 
grades of schooling. This problem is exacerbated in poorer public schools where 
teacher-learner ratios are higher and access to resources is limited. In contrast, Sidi-
ropoulos’ study found private school teachers did not hold this view and instead 
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these teachers made reference to the value that ML added in terms of its benefit for 
learners’ everyday lives.

This difference in Sidiropoulos’ (2008) finding between public and private 
school teachers is particularly worrying in the context of a post apartheid South 
Africa where the introduction of ML aims to increase mathematical access for all 
learners. As Reddy (2006) so aptly points out in her paper on the state of mathemat-
ics and science education—schools are not equal—and the success of new curricu-
lum innovations will therefore differ across schools.

Problems with the implementation of ML must be engaged with and large-scale 
national research is necessary to contextualize and make sense of these difficulties 
and to find solutions to them. Our fear is that success stories of the potential of ML 
to meet its aims might be overshadowed by stories of difficulties relating to imple-
mentation. Such difficulties are clearly problematic but one should not simply reject 
the value of this curriculum as a result of these difficulties. Instead, these difficulties 
should be solved so that the stories of these learners can become the dominant sto-
ries of learners across the diversity of schools and contexts in South Africa.

As Reddy (2006) points out, creative interventions often lack the detailed imple-
mentation plan and can then be abandoned when they do not produce the expected 
results. She warns: “We should not move from one intervention to the next and 
become ‘serial innovators’” (p. 412). We hope that our story contributes to raising 
awareness of the potential of this subject to increase mathematical access to quality 
learning for those with previously negative mathematical histories.
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 The Conflict Between Quality and Equity

“Quality and Equity for all” in Mathematics education: Why do quality and equity 
seem to be in conflict with each other? Are they really contradicting goals? Is it 
impossible to reconcile them? In this chapter we try to examine from where this 
conflict might emanate. We also suggest a way to moderate this conflict.

In our view this conflict stems from two almost diametrically opposed percep-
tions of how “quality mathematics” should be cultivated in school. On the one hand, 
there are those who believe that the quality of mathematics that can be learned 
depends mainly on the students’ mathematical ability. This necessarily leads to 
same-ability learning groups—a tracking environment where both didactics and 
mathematics “suit” the students’ abilities. In the eyes of these educators, quality is 
cultivated most promisingly in tracked settings. Their solution is that more math-
ematically competent students learn advanced mathematics in a faster paced higher 
track, and less mathematically competent students learn at a slower pace in the 
lower track. These educators argue that struggling students are better supported in 
lower tracks where they can get individualized instruction rather than in hetero-
geneous classes (Loveless 1998). They also justify tracking by the “nature” of the 
subject. Mathematics is perceived as “graded,” “linear,” “structured,” “serial” and 
“cumulative”—making it difficult to work with groups of students with different 
levels of knowledge and ability (Ruthven 1987). On the other hand, there are those 
who believe that quality mathematics, to a great extent, depends on the group of 
students with whom the student learns. They argue that the nature and quality of 
students-teacher and students-students interactions are fundamentally different in 
low-track and high-track settings (Gamoran 1993). The role and quality of discus-
sions is strongly emphasized in theoretical approaches that describe learning as an 
individual process nourished by interpersonal interaction (Bransford et al. 2000; 
Carver and Scheier 1982; Voigt 1994; Wood and Yackel 1990). For these writers, 
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the study group is not a mere administrative division, but a crucial component of the 
learning environment. Moreover, they argue that low-ability settings lead to low-
quality teaching. Low-quality teaching is characterized by: teachers’ low expecta-
tions; a low-status, non-academic curriculum; valuable class time spent on manag-
ing students’ behavior; and most of the class time devoted to paper work, drill, and 
practice. They suggest that two hypothetically identical students may end up with 
different mathematical knowledge if they are allocated to two study groups with 
significantly different participants and styles of interaction. Following their line 
of thought, tracking would be an obvious case of creating unequal learning groups 
within the same school, while learning mathematics in a heterogeneous class would 
be the preferred method for cultivating equity. In their eyes, equity is cultivated 
most promisingly in heterogeneous classes. Thus, the conflict between quality and 
equity finds its expression in the controversy: tracking or heterogeneous classes?

Consequently, the mathematics educating community is split and the controver-
sy is intense; one side pushing for tracking, the other for heterogeneity.

Analysis of past research reveals a similar split—there is conflicting evidence 
of the effects of tracking versus heterogeneous settings on students’ achievements.

The most prevalent finding of tracking studies is that ability grouping does have 
an effect on achievement. It has been shown that ability-grouping results in an in-
crease in the gap between high- and low-ability students beyond that expected on 
the basis of initial differences between them, thus contributing to the regeneration 
of an inequitable society (Ball 1984; Boaler 1997a, b, c; Linchevski and Kutscher 
1998; Alexander et al. 1978; Gamoran and Berends 1987; Gamoran and Mare 1989; 
Kerckhoff 1986; Oakes 1982; Slavin 1990; Sorenson and Hallinan 1986; White 
et al. 1996). However, studies on performance of high-achieving students studying 
in heterogeneous groups have shown conflicting results. Some studies have shown 
that high achievers might be harmed by heterogeneous grouping and that their per-
formance is enhanced by tracking (Brewer et al. 1995; Epstein and MacIver 1992; 
Kulik 1992). Other studies have revealed no significant differences in the perfor-
mance of high achievers when they are grouped in heterogeneous classes (Figlio 
and Page 2002; Mosteller et al. 1996; Slavin 1990).

These inconsistent findings led the research community and mathematics edu-
cators to interpretations based mainly on their concealed educational beliefs and 
accumulated practice. They tend to claim that the conflicting results may be due 
to the fact that it is usually impossible to disentangle the effects of tracking itself 
from the effects of differentiated curricula and other factors associated with track-
ing (Kerckhoff 1986; Lucas 1999; Slavin and Braddock 1993). Those among them 
who support tracking argue that it is the quality of teaching in the low tracks that 
is at fault. They maintain that the reason for students’ poor achievements is the 
poor quality of teaching in the lower tracks. Their claim is that it is not the idea 
of tracking that has failed but rather its application; that with an improved level of 
instruction specially adapted for students in the lower tracks, these students would 
profit from learning specifically in these tracks, while the stronger students would 
be able to learn without having to compromise their level of learning due to the fact 
that there were less mathematically competent students in their class (Gamoran and 

L. Linchevski et al.



511

Weinstein 1998; Hallinan 1994; Loveless 1998). According to this interpretation 
of tracking studies, the negative effects of tracking result from unsuitable teaching 
approaches in the low-track classes, not from grouping itself.

Those who support learning in heterogeneous groups maintain that it is no coin-
cidence that there are almost no high-quality low-tracked classes. They argue that 
the way the learning materials are designed and presented is only one small factor 
in an individual’s learning process. The composition of the group, the interpersonal 
interactions, the level of teacher expectations, the level of discussions determined 
by the student peers and the class culture have as much of an impact on the level 
of learning and student development as the learning materials. Thus, allocation in 
itself, of weak students in a weak group results in an impoverished learning envi-
ronment where students are exposed to low teacher expectations, low levels of dis-
cussions and poor ideas—all this resulting inevitably in low achievements. More-
over, they point out that there are hardly any documented examples of schools in 
which students in low-track classes received high-quality instruction (Alexander 
et al. 1978; Ansalone 2005; Gamoran and Berends 1987; Gamoran and Mare 1989; 
Huang 2009; Heubert and Hauser 1999; Kerckhoff 1986; Lamb and Fullarton 2002; 
Oakes 1982; Slavin 1990; Sorenson and Hallinan 1986; White et al. 1996).

The discouraging results of tracking studies on the one hand, and evidence of the 
promising potential of cooperative learning on the other have prompted attempts of 
the tracking system opponents to cope with student diversity within the heteroge-
neous classroom (Boaler 2008; Crain and Mahard 1983; Crain et al. 1982; Davidson 
and Kroll 1991; Goldring and Eddi 1989; Linchevski and Kutscher 1998; Wortman 
and Bryant 1985; Willie 1990). There seem to be three main strategies used for deal-
ing with heterogeneity within the mathematics class.

The first type of intervention is where the mixed-ability class is divided within 
the class into homogeneous groups. Thus, although the class is formally heteroge-
neous, the students’ learning environment remains homogeneous (Mills and Durden 
1992; Slavin 1990). The rationale for this type of class organization draws from 
the school of thought that believes that students of different ability-levels should 
be taught differently (Feldhusen and Moon 1992). However, the fact that students 
of different abilities are in the same classroom, and not in separate rooms, allows 
for some mobility between the groups and solves problems related to socio-psy-
chological ones such as students’ self-esteem and stigma. Many researchers con-
sider this form of class organization, “always homogeneous settings,” as traditional 
tracking—no different from the situation where students of different levels learn in 
separate rooms. This learning environment, they claim, does not encourage interac-
tion between students assigned to the different ability levels; consequently students 
do not benefit much from the class heterogeneity (Mills and Durden 1992; Slavin 
1990).

The second type of intervention is where the students always learn in heteroge-
neous groups. This school of thought believes that all students are capable of work-
ing cooperatively all of the time in heterogeneous settings by being provided with 
activities that are accessible to all—either because of the nature of the activity, or 
because of the nature of the group interaction (Boaler 2002; Silver et al. 1995). This 
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type of setting, “always heterogeneous settings,” does not take into account that 
situations might arise where working together on “accessible to all” activities would 
not be as beneficial to the students and might even in the case of mathematically 
competent students, lead to mediocrity, and in the case of weaker students to lack of 
motivation or to a situation where their special needs have not been met (Linchevski 
and Kutscher 1998).

The third type of intervention is where the students always learn in heteroge-
neous groups, however, the low-achieving students get extra support by being 
placed in “out-of-class” mathematics workshops according to teacher recommen-
dations (Burris et al. 2006).

The TAP Rationale

Integrating results from research led us to the following, compelling question:
Is it possible, on the basis of the above reported, ostensibly contradicting results, 

and on the basis of researchers and educators analyses of these results, to design a 
teaching model in a heterogeneous class that could contend on the one hand, with 
the weaknesses portrayed when learning in the tracking system, and on the other 
with the weaknesses of learning in a heterogeneous class?

Our basic premise was that the learning group is a central component in the 
student’s development. Therefore, this has to be a central element when organizing 
learning. Our assumption was that allocation, in itself, of a student to a lower track 
violates equity, and that the learning group is an essential cultural and educational 
resource, no less than high-quality learning materials and appropriate teacher train-
ing. Consequently, we ruled out a teaching practice where students would learn in 
ability groups—whether in the same classroom or in separate locations—throughout 
the whole year. At the same time, in light of research, and according to what every 
teacher and educator who works in the field knows, there are undoubtedly differ-
ences both in mathematical abilities and in learning pace among different students. 
There are certainly students who want and are capable of learning mathematics at a 
higher level than the others. Disregarding the abilities and needs of this mathemati-
cally competent group of students would also be violating equity. Consequently, an 
additional basic premise was that the differential mathematical needs of the students 
with different abilities would have to be met. These two basic premises led us to 
the conclusion that learning has to take place in a heterogeneous class, but at the 
same time, the teaching practice would have to contend with two contradictory 
goals: “acknowledging diversity”—acknowledging the fact that there are differ-
ences between students, and, concurrently, “disregarding diversity”—or designing a 
learning environment that perceives all students as being able to be members of the 
same learning community. The implication of this statement will soon be clarified.

Our research-based TAP (Together-and-APart) approach was developed in order 
to accomplish these goals. We first describe the major assumptions and guidelines 
of TAP. We describe how this approach genuinely supports equity not only through 
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appropriate learning environments, but also by providing learning interventions that 
enable students to remain a fruitful, mathematics learning community.

 TAP’s Main Guidelines

As stated above, in our view the above-introduced requirements can be realized 
only if the learning environment is designed to concurrently “acknowledge diver-
sity” and to “disregard diversity.” In TAP, by acknowledging diversity, we mean 
that we recognize diversity in students’ “entry” points and allow and encourage all 
students to fulfill their mathematical needs, abilities and preferences (APart). Thus, 
acknowledging diversity should lead to the construction of a learning environment 
that accommodates differences in the ways learners think about, construct and dis-
play mathematical knowledge and understanding.

However, the requirements introduced above also imply that at certain carefully 
defined points in the learning process, TAP “disregards” diversity. In these cases 
although TAP acknowledges differences in entry points, it will do everything in its 
power to ensure acquisition of certain essential mathematical knowledge—in effect 
reducing diversity in students’ exit points. Disregarding diversity means that there is 
a body of Indispensable Mathematical Knowledge (IMK) that should be owned by 
all students notwithstanding the acceptance of diversity in other parts of their math-
ematical knowledge. IMK is that part of genuine school-mathematics that enables 
the heterogeneous mathematical community to be engaged in fruitful interaction to 
the satisfaction of all its members, culminating in open doors to higher education. 
Thus, disregarding diversity should lead to the design of a learning environment 
that guarantees students’ acquisition of IMK.

Acknowledging diversity while disregarding it, two ostensibly contradictory 
goals, in our perception of equity, are achieved in our teaching model by alternat-
ing between two basic types of learning groups: heterogeneous groups and homo-
geneous groups. Hence, in the TAP project, although the students learn together 
throughout the year, each student is simultaneously a member of two types of 
groups: (1) a heterogeneous group (both small heterogeneous groups and the whole 
heterogeneous class) and (2) a homogeneous group. The composition of these 
groups is changed from time to time according to specific needs of the students 
in the different learning situations. In each learning situation, the teachers choose 
the appropriate class organization according to the different types of interactions 
they wish to foster. These changes in the student’s learning environment lead to 
situations where a student who is a “leader” in one setting might be the “follow-
er” in another. It improves the student’s ability to become an “active listener” and 
naturally encourages opportunities for direct, indirect and multivocal interactions 
(Cobb 1994). The various heterogeneous groups are generally engaged in the same 
activities (Together), while the homogeneous groups are generally engaged in dif-
ferent activities (APart). The heterogeneous groups provide a shared rich learning 
environment. The learning plan is designed to optimize opportunities for heteroge-
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neous interaction. The heterogeneous groups, whether of the whole class or smaller 
groups, are provided with meaningful instructional activities suitable for coopera-
tive learning in heterogeneous settings (Together). The small homogeneous groups 
are provided with differential instructional activities according to the students’ prior 
achievements and inclinations (APart). The various heterogeneous groups are gen-
erally engaged in the same activities (Together), while the homogeneous groups are 
generally engaged in different activities (APart). In the homogeneous groups the 
students’ differential needs are addressed: Some students are provided, for example, 
with additional opportunities for revisiting IMK, for orientation (preparation) to a 
subsequent topic, for enrichment, for experiencing mathematical interaction and 
more (for more details see Linchevski and Kutscher 1998). Homogeneous groups 
are set up only if the differential needs of the students cannot satisfactorily be ad-
dressed in the heterogeneous setting. Evaluation is designed and its results analyzed 
to provide the teacher with the necessary information for structuring the various set-
tings described above, and for planning appropriate interventions for these settings. 
Evaluation is designed to accommodate, evaluate and reward equally the diverse 
thinking processes and mathematical knowledge that different students display, as 
well as to enable the follow-up of IMK.

The TAP project first and foremost makes use of the learning plan recommended 
by the syllabus, but introduces a number of changes. For instance, one of the chang-
es might be in the order of the topics, where the teaching of a certain topic may be 
postponed in order to allow the class to study in a heterogeneous setting at this time. 
For example, in one school Ms. Krispin did not teach the topic “modeling verbal 
expressions algebraically” at the point where it was supposed to be taught. She felt 
that in her class this topic required differential learning in homogeneous groups 
and she preferred to keep the class studying in a heterogeneous setting for the time 
being. Therefore, she chose at this time to teach a topic more suitable for heteroge-
neous groups and postponed the above-mentioned topic to a later date.

Sometimes the change in the order of the topics is made by postponing a certain 
topic in order to allow the class to study in homogeneous settings. For example, 
in another school, Mr. Rosilio had planned to introduce the topic “collecting like 
terms” in a heterogeneous setting. He decided, however, to postpone this and first to 
provide orientation for a certain group of weaker students to this topic so that they 
would benefit more from the activities presented later in the heterogeneous whole-
class setting. Thus, at this point, Mr. Rosilio organized the class into homogeneous 
groups: He worked with this weaker group on orientation activities. Meanwhile, 
the other students were involved in differential topics: some groups studied a new, 
advanced topic independently while others were involved in challenging activities 
based on the previous topic. Thus, this core material, “collecting like terms,” at this 
time was in favor of the differential topic.

Alternating core and differential topics in this way makes it possible to provide 
enrichment and orientation and to close knowledge gaps in response to the students’ 
needs. The proportion between core materials and differential topics is about 70% 
to 30%. Core materials are studied mainly in heterogeneous settings and differential 
topics in homogeneous settings.
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Whatever choices are made, one element stays unchanged: the teaching plan is 
designed to allow the establishment of a classroom culture where heterogeneity is 
the norm. This implies that it is necessary to use didactics and activities that allow 
all students to learn in a heterogeneous setting. Learning continues in this setting for 
as long as the teacher sees that all students are benefiting. As soon as TAP teachers 
see that some students are starting to be left behind they consider the possibility of 
differential learning for a while in homogeneous groups. This is done in order to 
address the difficulties so that heterogeneous groups are able to be successfully and 
meaningfully implemented again.

 Achieving TAP’s Goals

In previous research (Linchevski 1995; Linchevski and Kutscher 1998; 2002a, 
2002b) we reported on three studies that investigated the effects of teaching math-
ematics in mixed-ability settings both on students’ achievements and on teachers’ 
attitudes, within the framework of the TAP project. The reported results clearly 
showed that quality and equity were achieved in the TAP classrooms: all levels of 
students were able to grow mathematically as attested to by their achievements—
the most mathematically competent students’ performance was as high as would 
have been had they been tracked, and all the less competent students’ performance 
was better than would have been, had they been tracked.

In the first two studies, we examined the effect of teaching in mixed-ability 
mathematics settings on students’ achievements. In Study 1, we investigated wheth-
er the increasing gap in mathematics performance found in grouping students by 
ability can be eliminated in mixed-ability classes. In Study 2, we compared the 
effects of mixed-ability and same-ability grouping on mathematics performance 
of students classified as high ability, intermediate ability, and low ability. In Study 
3, we examined the effects of teaching in mixed-ability classes on teachers’ atti-
tudes. The methodologies used in the studies were chosen in accordance with the re-
search question and study (Cahan and Linchevski 1996; Cook and Campbell 1979; 
Linchevski and Kutscher 1998).

In Study 4, we examined the progress of a traditional teacher whose lessons 
were teacher-centered in a tracked environment where whole class teaching was 
the norm. This teacher taught in a typical school in a disadvantaged area in South 
Africa. Initially, he had no need nor wish to participate in a project propagating 
learning in mixed-ability classes, this despite low achievement for the majority of 
the students.

This study used a case study design to follow this teacher for two and a half years 
(Linchevski et al. 1999, 2000). Results were contradictory: On the one hand, this 
teacher’s practice changed dramatically. He applied TAP’s principles and his classes 
showed similar achievements to those reported above. For example, in an interview 
the teacher reported: “…looking at the results of last year versus the results that 
they obtained thus far…out of a class of 48 only five people have not improved on 
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their mark of last year.” On the other hand, his beliefs lagged behind—it was clear 
to him that mixed-ability group-work benefited the “strong” learners: “I find that 
when they [the “strong”] communicate in the [mixed-ability] group they also learn 
some other skill—of speaking mathematics, which is of great help for them”. And at 
the same time “I need proof that the strong learners would benefit from working in 
mixed-ability groups.” If previously he was concerned that he “might be neglecting 
the strong pupils” when they learned independently in the homogeneous groups, he 
now believed that “within the group there is over enough intelligence to actually 
run through the activities.” But he still had “a difficulty of the letting of one group 
go ahead.” In this case, we see a teacher, notwithstanding his successful record of 
implementation and evidence of success, still clinging to some of his old beliefs. 
This teacher’s behavior seems to be following a process where practice begins to 
affect belief (Guskey 1986) which, in turn, affects practice. The process of effect 
of practice on his beliefs appears to be a cyclical process (Rogers 2007), where 
changes in his belief are a slow, gradual process that are “incremental rather than 
monumental” (Ambrose 2004, p. 91).

The main motivation for developing the TAP project was the difficulty we had 
in accepting the current situation where widespread practice implemented in math-
ematics classes promotes inequity. Research shows that tracking is one of the main 
perpetrators of inequity, whereas learning in heterogeneous classes shows promise 
in cultivating quality and equity in mathematics education. What do we mean by 
equity in mathematics education? Equity, for us, means that all students have the 
right to be afforded a high-quality mathematics education, curriculum-wise, in an 
environment that cultivates rich mathematical discussions to the satisfaction of all. 
This necessarily means learning in a heterogeneous classroom.

But we were faced with a dilemma: Could we disregard research that shows 
there are topics in mathematics with which low-achievers struggle, and that at times 
they need different didactical methods and more time in order to successfully cope 
with these topics? Is it right, even ethical, to create a curriculum that sometimes 
caters to less mathematically competent students at the expense of more mathemati-
cally competent students, or the converse? If our answer to these questions is “no,” 
then we need to implement tracking.

Hence, it would seem that to promote real equity, we would need to create a 
learning environment where heterogeneity and tracking co-exist. Using principles 
derived from theoretical approaches and research, we designed the TAP teaching 
model to include teaching materials and class organization that respond to the dif-
ferent needs of the population while keeping the class as one learning unit. This is 
done by alternating between two types of groups, heterogeneous groups and homo-
geneous groups, thus enabling the co-existence of heterogeneity and tracking.

There are other models that have implemented mathematics learning in hetero-
geneous classes. Some of these approaches also offer extra support for the weaker 
students in homogeneous settings. This support, however, is given out of the hetero-
geneous classroom at set times.

As opposed to these models, TAP provides a unique, dynamic solution for re-
sponding to all students’ differential needs within the classroom setting. The variety 
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of settings and the dynamicity of combinations of these settings, at precisely the 
right time and for the necessary duration, allow us to provide a genuine response 
not only to the weaker students’ needs but also to the stronger students’, so that they 
can all develop mathematically at a pace they feel comfortable with, be offered op-
portunities to engage with quality mathematics, and thus be fruitful members of a 
rich, diverse, challenging mathematical community in which quality and equity is 
achieved.
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When discussing equity in education, there is often a focus on providing students 
with equal access so that the average student in one community has the same re-
sources and affordances as the average student in another community. Rarely does 
the discussion extend to the needs of the high-achieving student. In the United 
States, the National Council for Teachers of Mathematics (NCTM) writes that eq-
uity, “demands that reasonable and appropriate accommodations be made and ap-
propriately challenging content be included to promote access and attainment for 
all students” (NCTM 2000). The emphasis on all students, italicized in the original 
document, highlights the belief that equity is not simply an issue for students who 
are performing below standards, but rather an issue for all students at all levels 
of performance. As such, an important part of achieving equity concerns students 
who have the potential to succeed in higher level mathematics classes (whom we 
will term “high-achieving students”) but lack access to these classes or access to a 
highly qualified teacher.

The aim of this chapter is to document a two-year project designed to address the 
equity disparity faced by a group of high-achieving, underrepresented high school 
students in the southern United States. Utilizing distance learning technology, two 
high school teachers at two different schools were able to collaborate and bring 
Advanced Placement (AP) Calculus BC to high-achieving students who previously 
had no access to such a course. The authors of this chapter—the two teachers who 
designed and implemented the program—present this case study to the mathematics 
education community as an example of how practitioners in the field are working 
toward achieving equity at the level of advanced mathematics. Though some back-
ground information is necessary for a complete understanding of the context and 
implementation of this program, the bulk of the chapter will be devoted to creation 
of quality mathematics instruction, outcomes, and a critique of the benefits and 
limitations of the collaboration.
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 The Advanced Placement (AP) Program and Equity Issues

For high-achieving high school students in the United States, access to advanced 
mathematics content is often synonymous with courses such as those provided 
through the College Board’s AP program. Originally, piloted in 1955 in 27 schools, 
the AP program was designed to allow motivated students to maximize their learn-
ing potential and to avoid content repetition between high school and university 
courses (The College Board 2009). As of 2007, nearly 1.5 million students at 17,000 
schools were involved in the AP program in courses ranging from calculus to art 
(The College Board 2009). Currently, there are two AP calculus courses, designated 
AP Calculus AB and AP Calculus BC, which are year-long high school courses. The 
AP Calculus AB curriculum includes single-variable differentiation and integration 
and is roughly equivalent to a half-year university course in single-variable calculus 
(Gollub et al. 2003). The AP Calculus BC curriculum consists of all topics in AP 
Calculus AB plus additional topics such as parametric integration and differentia-
tion and Taylor Series, and it is roughly equivalent to a one-year university course 
or two half-year university courses in single-variable calculus (Gollub et al. 2003).

AP examinations are administered by the College Board yearly during a two-
week period in early May, which is close to the end of the academic year in the 
United States. Annually over 200,000 high school students take the AP Calculus AB 
examination, and over 60,000 take the AP Calculus BC examination (The College 
Board 2007, 2008). Examination scores range from 1 to 5, where scores of 1 and 
2 are considered as failing and scores of 3 to 5 are considered as passing. Students 
who take the AP Calculus BC examination are given an AB subscore, also graded 
from 1 to 5, reflecting the elements of the examination that are also AB Calculus 
topics. In this way, students who choose to take the more challenging BC course are 
not penalized, and though students may fail the BC examination, they might still 
receive a passing score consistent with taking the AB examination.

Understanding the AP system and the scoring of examinations is relevant to this 
chapter for several reasons. First and most important is understanding the level and 
rigor of AP Calculus BC, which is the course taught in this case study. AP Calculus 
BC roughly follows the curriculum and pacing of a freshman level collegiate course. 
For a school to offer any AP course, the teacher must have completed special training, 
and the course must be certified as AP-worthy through a syllabus audit conducted by 
the College Board. It is also important to note the expansive and formalized nature of 
the AP system. High schools across the United States are often judged by how many 
AP courses they offer and what percentage of students passes the examinations. In 
addition, colleges and universities increasingly take into consideration the number of 
AP courses and examinations taken, as well as the scores on these examinations, for 
admission decisions (Gollub et al. 2003). Students who have not taken these courses 
are at a severe disadvantage when compared with peers of equal academic quality 
who have taken AP courses. In some ways one might liken the AP program to the 
International Baccalaureate program, though the AP program is US-specific.

In addition, relevant is the nature of racial diversity in enrollment in AP math-
ematics courses, which remains a matter of concern despite a marked increase in par-
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ticipation by underrepresented groups in such courses. According to data compiled 
internally by the College Board, of the 62,614 students across the United States who 
took the AP Calculus BC examination in 2007, only 1,404 (or approximately 2.2%) 
self-identified as African-American (The College Board 2007). Adjusting for unequal 
population sizes and using enrollment data from the State Department of Education, 
during the 2006–2007 school year in Georgia (the state in which the following case 
study took place), for every African-American student taking the AP Calculus BC 
examination, 13 Caucasian students took the examination (Georgia Department of 
Education 2007). In addition, the national pass rate for African-American students 
was 54.99% with an average score of 2.71, which is below the passing mark of 3. The 
overall national pass rate for the examination was 79.84% with a 3.70 average score, 
and the pass rate for Caucasian students was 81.11% with a 3.74 average score. The 
difference in scores and pass rates for African-American students from the national 
average is significant at the 0.01 level.

 The AP Problem at Jefferson High School

Jefferson High School (pseudonym) is a public high school of approximately 2,100 
students located in a metropolitan center in the southern United States. The student 
population is between 98% and 99% African-American, and 42% of the students re-
ceive free or reduced-cost lunch (a measure often used in the United States to assess 
the socio-economic status of the student population). Jefferson High School is also 
home to one of the district’s two math/science magnet schools. Students from across 
the district who are particularly interested in science or mathematics can apply and 
take a special placement examination, and successful applicants are grouped to-
gether in a “school within a school” for classes that are considered to be superior in 
quality to the ones offered at their home schools. In order to attend the magnet pro-
gram, many of these students commute over an hour each way every class day. In 
the 2006–2007 school year, which was the first year of this two-year program, over 
200 of the students at Jefferson High School were enrolled in the magnet program.

Despite the fact that Jefferson is a mathematics magnet school, AP Calculus BC 
had not been offered to students in seven years and, in the years when it was offered, 
no students had ever passed the examination. In the year before this case study takes 
place, 26 students were enrolled in AP Calculus AB. When these 26 students took 
the AP Calculus AB examination in the spring of 2006, only six (23%) passed. The 
average student score was 1.77.

Jefferson High School was not able to offer AP Calculus BC for several reasons. 
First, no teachers at Jefferson had the College Board credentials necessary to teach the 
course—only 70% of the mathematics faculty had a high school mathematics teach-
ing license. Even had a qualified and certified teacher been available, school policy 
mandated that at least 11 students enroll in a class for it to be offered, and the number 
of interested students was consistently too low. In addition, students felt that their pre-
vious mathematics classes did not adequately prepare them for such a rigorous course.
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 A Solution to Jefferson High School’s AP Problem

Doug Edwards, the coordinator of Jefferson’s math/science magnet program, was 
a former engineer who left his lucrative job in order to help traditionally underrep-
resented students receive the education necessary to pursue careers in science and 
technology. Part of his strategy for success was to form a partnership with a local 
university; and students from the university would often visit Jefferson as tutors 
and as role models for the high school students. Through this partnership Edwards 
learned that the university was to launch a special mathematics course in conjunc-
tion with several high schools across the district. Many students in the district were 
taking AP Calculus AB or BC during their penultimate year in high school, and 
there were no mathematics classes available for their final year. Using cameras, 
televisions, and microphones, the university planned to broadcast one section of the 
appropriate follow-up class to these high schools. The university and the school dis-
trict shared the costs, and Jefferson High School, as a math/science magnet school, 
was selected as one of the locations. Ironically, no students at Jefferson were eli-
gible to take the university class, so the equipment was installed in a storage room 
and covered with boxes.

Perhaps the most interesting feature of this particular program was that it was 
interactive. With cameras, televisions, and microphones installed both at the univer-
sity and at the high schools, students could ask the college professor questions in 
real time, and the professor could also answer the questions immediately. Distance 
was not a factor.

Though the equipment was designed to be used with the university as the hub, 
Edwards reasoned that it would be possible to effect the same sort of program be-
tween high schools as well. Just as the university was providing high-level mathe-
matics content to schools that lacked it, it would also be possible for one high school 
to provide AP Calculus BC to another school that lacked it. Edwards contacted the 
director of mathematics education for the district with his idea, which was quickly 
accepted. All that remained was to find a school that was willing to share its AP 
Calculus BC teacher in a collaborative partnership with Jefferson.

 Forming a Connection with Washington High School

Washington High School (pseudonym) is a public high school of approximately 
2,000 students located in the same school district as Jefferson High School. In 2007, 
the student population at Washington was 61% Caucasian, 16% African-American, 
and 13% Asian. Only 3% of the students receive free or reduced-cost lunch. Though 
Washington is not a math/science magnet school, both AP Calculus AB and BC 
courses are consistently available and are taken predominantly by students in their 
penultimate year of high school. All such students who took AP Calculus BC en-
rolled in the university-sponsored distance learning mathematics class the follow-
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ing year. In the year before the case study takes place, 100% of both the AP Calculus 
AB and BC students passed the AP examinations. The AP Calculus BC course was 
taught by Ben Hedrick, and the average student score for the 18 students who took 
the examination that year was 4.67. Hedrick was suggested as a possible teacher 
by the Washington High School administration, and after a brief meeting with the 
Jefferson High School students, parents, and teachers, Hedrick agreed to design and 
teach the distance learning class, which would consist of 20 Washington students 
and three Jefferson students.

Since both teachers lacked familiarity with the distance learning equipment, the 
AP Calculus BC class was structured similarly to the university class taught using 
the same equipment. Through this system, Hedrick, while in his own classroom 
with the Washington students in attendance, would speak into the microphone while 
writing notes on an opaque projector. These notes were displayed on television 
monitors at both Washington and Jefferson high schools. With an in-class teacher 
and notes resembling those written on a blackboard, the Washington High School 
students thus had more or less a typical classroom experience. Students at Jefferson 
High School, however, saw the teacher through a second television monitor, and ex-
planations and directions were carried through the distance learning equipment and 
transmitted through speakers. Similarly, a second television monitor at Washington 
High School enabled Hedrick to see the Jefferson students and interact with them in 
real-time. The high school students at both schools were also provided with touch-
microphones that, when depressed, would allow student voices to be transmitted to 
the other school. Using these microphones the Jefferson students could interrupt the 
teacher to ask a question, just as they would in a typical classroom if they so chose.

Creating Quality and Equity in the Classroom: One Class 
in Two Locations

Parents, students, teachers, and even administrators initially had concerns regarding 
how this distance learning program would affect students. Washington parents and 
students were perhaps the most concerned; they had an established and effective 
course, and it was unclear at first how this collaboration would benefit them. The 
Washington parents also worried that sharing the class with the Jefferson students 
would divert time and attention away from their own children. Jefferson students 
and parents faced their own valid concerns. Washington students clearly had the 
advantage of an in-class teacher who could be approached before school, during 
lunch, and after school for help, whereas Jefferson students lacked this access. Fur-
thermore, there was a concern that the physical distance would result in emotional 
distance, placing the Jefferson students at a lower value level.

Both teachers realized that the success of the program depended on student col-
laboration. Emphasized from the first day of class was the idea that this program 
involved only one class, though in two locations. Washington and Jefferson students 
had equal right to ask and answer questions, and Jefferson students had equal right 

37 Research from Practice: Using Technology to Provide Advanced Mathematics



526

to ask for help during class or after school. To make this possible, special after-
school help sessions were scheduled, and Hedrick would reconnect the equipment 
in order to answer questions and work through problems with Jefferson students. 
Washington students would also attend these sessions, and after some practice, stu-
dents at both schools were able to work together using the distance learning equip-
ment to solve challenging problems.

Physical presence was still a barrier, and Hedrick requested and was granted 
administrative permission to visit Jefferson once per semester. From there Hedrick 
was able to teach in exactly the same manner as at Washington, the difference being 
that Washington students were now viewing class through a television monitor. This 
simple change had profound effects. The most pronounced was that Washington 
students were able to understand what class was like daily for the students at Jef-
ferson, which had the unexpected result of increasing respect for and empathy with 
the Jefferson students. Both groups were highly talented and motivated, and seeing 
how hard the Jefferson students had to work to gain access to this class made the 
Washington students realize that they were working with peers. This experience 
humanized the program and helped the students see each other as fellow learners in 
the same class. The in-person visits to Jefferson also allowed Hedrick to offer ad-
ditional assistance to the Jefferson students, who through administrative permission 
were allowed to miss other classes in order to take full advantage of the visits. These 
visits also reaffirmed that the Jefferson students were valued and important mem-
bers of the class. In addition, the Jefferson students were able to visit Washington 
twice during the school year, putting the entire class together in one room, though it 
was impossible to arrange for the Washington students to visit Jefferson.

Maintaining quality of the course over the distance proved to be another chal-
lenge, though Edwards and Hedrick took steps to make sure that standards remained 
high. Frequent formative assessments were necessary to insure that Jefferson stu-
dents in particular were learning and understanding the rapidly presented materials. 
Brief 5–10-minute quizzes were created for each and every section of material cov-
ered, which resulted in quizzes being administered on average more than twice per 
week. Quizzes had to be created several days in advance and sent as email attach-
ments to Edwards, who would have them printed and ready for distribution through 
the help of an administrative assistant. Grading quizzes was a more challenging 
issue. Once taken, the administrative assistant would fax the quizzes to Washington, 
where they would be graded and faxed back, often the same day. In this manner 
students at both schools had a strong and immediate sense for what they did and did 
not understand. The process for giving and grading tests was identical.

 Results of the Collaboration

In May of 2007, the first group of distance learning students took the AP Calculus 
BC examination. The Jefferson High School students traveled to the Washington 
High School area the night before the examination and stayed with Washington 
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students and their families. The following day, all 23 took the AP examination to-
gether as one unified class. The 20 Washington students passed the AP Calculus BC 
examination with an average score of 4.90, and the three Jefferson students passed 
the examination with an average score of 4.00. As a result, both schools heralded the 
program as a success. The scores for Washington were higher than the previous year 
(average score of 4.67), immediately negating the concern amongst Washington 
parents that the program might have lowered the instructional quality for their chil-
dren. Jefferson had its first students pass the examination in school history, and as 
a result, two students were able to participate in the university-sponsored distance 
learning mathematics course the following year. The third Jefferson student gradu-
ated and later attended the same university.

In the second year of the collaboration, 13 Washington students took and passed 
the AP Calculus BC examination with an average score of 4.92. Two of the three 
Jefferson students passed the examination with an average score for all three stu-
dents of 3.67. The one student who failed the examination, however, had an AB 
subscore of 3, meaning that the student still passed an AP Calculus examination.

These results are summarized in Table 37.1.
All six of the Jefferson students from both years of the distance learning collabo-

ration subsequently chose to pursue a college education following graduation. Two 
accepted placements at Harvard University and Cornell University, and one turned 
down an acceptance at Harvard to attend a historically Black college. The remain-
ing three all accepted placements at the university that founded the distance learning 
program, and they received substantial scholarships. The Washington students also 
all chose to pursue a college education and are currently in colleges and universities 
across the United States.

 Analysis of the Collaboration: Benefits and Affordances

The primary intent of the distance learning collaboration was to provide access to qual-
ity mathematics (specifically AP Calculus BC) to students at both Jefferson and Wash-
ington High Schools. Based on the quantitative outcomes, the program was judged to 
be highly successful. Jefferson students passed the rigorous AP Calculus BC examina-
tion at a high rate, and their AP examination scores were strong enough to give them 
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Table 37.1  Testing results for 2007 and 2008 for Washington and Jefferson students

Testing results for Washington and Jefferson High School students for the 2007 
and 2008 Advanced Placement (AP) Calculus BC examinations

2007 2008
5 4 3 Avg 5 4 3 2 Avg

Washington 18 2 0 4.90 12 1 0 0 4.92
Jefferson 1 1 1 4.00 1 1 0 1 3.67
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university credit. In addition, students who were not in their final year of high school 
were subsequently able to enroll in the university-sponsored distance mathematics 
course that originally inspired the collaboration. Washington students showed a con-
tinuous improvement in scores, and the pass rate remained consistent at 100%.

Both students and teachers cited high expectations as one of the primary factors 
in the success of this program. When interviewed at the end of the school year, the 
Jefferson students agreed that this distance learning class was the most challenging 
class they had ever taken at high school due to the intellectual demands placed upon 
them both by the nature of the material and the expectations of the teachers. The Jef-
ferson students also agreed that the challenge of the program made them feel special 
and that the constant support and encouragement provided by the teachers and their 
classmates at both locations enhanced the motivation necessary for success.

It is important to note that these student feelings and concerns were shared by 
the students at Washington as well. In the end-of-year informal student evaluation 
of the course and distance learning collaboration, most Washington students also 
cited AP Calculus BC as the most challenging course they had ever taken at the 
high school level, and many later took college courses, both mathematical and non-
mathematical, that they felt were easier.1 Expectations for students on both sides 
of the collaboration were high, and Washington and Jefferson students were treated 
and graded in precisely the same manner.

Within the classrooms, collaboration took place with strong participation from 
students at both schools. Though in general students collaborated with their physi-
cally present partners, discussion and problem solving utilizing input from students 
on both sides was not uncommon. For example, students were often invited to come 
to the front of the room and use the opaque projector to solve problems or show 
solutions. Students who did so also appeared on a television monitor at the other 
school, which put the focus on distance peers and their mathematical thoughts and 
work. Just as in a traditional classroom with a student at the blackboard, other stu-
dents could chime in and offer thoughts and advice and thus work together to solve 
problems, even from two distant locations. The teachers actively encouraged such 
collaboration, emphasizing that both groups should be working together. Jefferson 
students cited this sense of equality as a major factor in their motivation to succeed.

Students at Washington were also aware of the challenges of the course and 
were encouraged to form study groups in order to master challenging concepts. 
This practice, which was in place in the AP Calculus BC class at Washington before 
the distance learning collaboration began, led to high levels of engagement with 
the course material and with fellow students. This practice may have been at least 
in part responsible for the collaboration formed between students not only at their 
own school but between schools as well. Within the first month, students at both 
schools had formed localized study groups to do homework and to prepare for tests. 
One of the Jefferson students, realizing the value of such groups and the potential 
to learn from the distance classmates as well, requested the email addresses of the 

1 This information comes from many students who remain in contact with the teacher after gradu-
ation from Washington.
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Washington students to form an online study group where questions could be posted 
and ideas shared. Only two of the 20 Washington students chose not to participate. 
Soon ideas were flowing from both sides, and though the teachers had access to the 
online forum, solutions and ideas were posted by students only.

Dialogue between the students was not limited to calculus work, though such 
topics constituted the majority of discussion. Soon students were also sharing typi-
cal non-school-related interests. In this manner, even though the students predomi-
nantly saw each other only through television monitors, friendships formed through 
both mathematical and non-mathematical shared interests. Several Washington 
students in particular were impressed with the Jefferson students’ work ethic and 
willingness to challenge themselves, which in turn inspired them (the Washington 
students) to work harder and to actively support their distance classmates. Though 
the Jefferson students were initially less participatory, by the second month students 
on both sides engaged freely in discussion.

The social and academic effects of the program continue even after the class has 
ended. The Jefferson students remain friends with the Washington students, and 
many stay in contact even after going away to college. For example, a Jefferson 
student and a Washington student chose to attend the same university and to be lab 
partners in a freshmen chemistry class. Similarly, two students continue as friends 
at Harvard University.

 Analysis of the Collaboration: Problems and Concerns

Although there were many positive outcomes as a result of this collaboration, many 
unresolved problems and equity issues still existed by the end of the second year 
of the program. These problems ranged from basic teaching and logistical issues to 
broader and deeper questions regarding the nature of mathematical equity.

Perhaps one of the most glaring issues was ironically that of access. Although 
this program provided access to some students who otherwise would not have had 
such an opportunity, many talented students were (and are) still denied access due 
to issues resulting from prior mathematics courses. Students who participated in the 
distance learning collaboration cited lack of mathematical preparedness as a major 
concern. These fears proved to be well founded, and remediation was necessary to 
provide precursor knowledge in order to access basic calculus concepts. During the 
second year of the program, interest from Jefferson students led to an initial enroll-
ment of six students; three students, however, were eventually forced to withdraw 
from the class due to knowledge gaps. Lack of access to quality mathematics earlier 
in their mathematical careers prevented students from taking advantage of oppor-
tunities even when they were offered. As a result, the effectiveness of the distance 
learning collaboration was limited to a handful of highly talented students who were 
able to seek outside help or devote time to learning on their own.

The nature of the program itself did nothing to improve mathematics education 
at earlier levels—the goals were course-specific. Ideally, the distance learning col-
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laboration would have been only a temporary fix as Jefferson strove to create its 
own strong and self-sustaining program. After two years, however, no such changes 
had been made despite the efforts of Edwards to do so. Though the distance learning 
collaboration addressed the needs of a small group of students, it did not address the 
larger needs of the school or the student body as a whole. In addition, while the dis-
tance learning collaboration did address the needs of the students in the short-term, 
a long-term strategy is necessary to either make such a program sustainable or to 
bring the school to a level such that higher level mathematics classes can be offered 
internally. In order to enact sustained systemic change, remediation or improved 
quality at earlier access points would have been essential.

Outside of purely mathematical issues, Hedrick also raised concerns for the im-
plications of a predominantly Caucasian school with a Caucasian teacher establish-
ing a program to aid a predominantly African-American school, though in this case 
no direct problems arose. Still, in future collaborations it would be wise for those 
involved to consider the power implications of such an arrangement (Delpit 1995).

Though technology made such a program possible, technology also hindered 
the program for a variety of reasons. For example, several times during the course 
of the year, the district would experience internet blackouts, which prevented the 
broadcasting of the class to Jefferson students. Washington students, however, were 
still able to participate in the class as usual and lost no learning time. Perhaps the 
most prevalent problem, however, was scheduling. High school schedules often 
changed for special events or for testing, and a change in schedule at either school 
made simultaneous classes difficult and sometimes impossible. Since the class was 
taught from Washington, Jefferson students would lose out when such rescheduling 
could not accommodate their schedule.

Though all of these challenges and problems are of importance, the most deci-
sive obstacle to the effectiveness of this program was sustainability. The program 
was created through the personal initiative of Edwards and Hedrick, with basic 
administrative support from both schools. Both teachers volunteered hours of their 
time every week to make the program work, and trips between schools were fund-
ed by the teachers themselves. No financial compensation was received by either 
teacher during the two years of the program. When Hedrick left Washington High 
School at the end of 2008 to pursue graduate studies, the program ended. No other 
Washington teacher was willing to volunteer the time and effort necessary to con-
tinue to program, and no teachers at other district schools were interested. Adminis-
trative changes at both schools at this time also made the possibility of continuation 
doubtful, and Edwards left Jefferson High School in October of 2009 in search of 
the chance to enact his visionary ideas.

 Conclusion

Equity and achievement gaps in mathematics education such as those between 
Washington and Jefferson High Schools are well documented, though there is 
still debate as to whether more analysis of this gap is necessary and what role 
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it plays in current research. Some researchers, such as Sarah Lubienski, feel 
that analyses of such disparities are an essential part of efforts to promote eq-
uity (2008). Rochelle Gutiérrez, on the other hand, writes, “I suggest a research 
agenda that focuses on advancement, on excellence, and on gains within margin-
alized communities. By excellence, I mean high performance on standardized 
tests and broader notions of mathematical literacy” (Gutiérrez 2008, p. 362). Re-
searchers have demonstrated that minority students are less likely to participate 
in advanced mathematics courses even when they are offered by their schools 
(Atanda 1999; Horn et al. 2000; Ma and Willms 1999). AP testing data also 
confirms what researchers have consistently found: minority students who are 
enrolled in higher level mathematics courses are less likely to succeed on na-
tional examinations than their White or Asian counterparts (Gollub et al. 2003). 
Participation and success in advanced mathematics courses are also predicated 
on three conditions: (1) the school offers such classes; (2) the school provides 
access to these courses; and (3) students are prepared for such courses (Gollub 
et al. 2003, p. 48).

The distance learning collaboration between Washington and Jefferson High 
Schools is one example of a program that directly and successfully addressed eq-
uity issues in American mathematics classes and focuses on Gutiérrez’s agenda of 
excellence. Given that the collaboration was implemented with the primary purpose 
of granting access to students rather than producing informed research, rigorous 
examination of this program from a research perspective is challenging. The pre-
vious framework and discussion of benefits and problems have been provided so 
that researchers can study the potential of such a technological collaboration in 
more depth and produce effective and meaningful research into its effects on math-
ematical equity. Given the success of the project during its first two years in provid-
ing challenging content and access, as recommended by the National Council for 
Teachers of Mathematics (NCTM 2000), the authors believe that additional study 
by trained researchers is warranted. Although only one specific group of those in 
need of equity—high-achieving students—was targeted by this project, much re-
mains to be learned regarding how such a program could potentially affect a broader 
student audience.

This chapter is the result of teacher research. Having implemented and com-
pleted two years of this effective distance learning collaboration, the teachers have 
stepped back to conduct intentional, systemic inquiry regarding not only what con-
ditions and affordances of the program were either successful or problematic, but 
also to determine which are necessary, replicable, or fixable (Cochran-Smith and 
Lytle 1993). In such a manner we hope to “evoke images of the possible…not only 
documenting that it can be done, but also laying out at least one detailed example 
of how it was organized, developed, and pursued” (Shulman 1983, p. 495). With 
the rapid advances in technology, the ability to create such a collaboration becomes 
continually easier and less expensive. Access to high-level mathematics and to 
highly qualified teachers through technology directly addresses one aspect of the 
equity disparity in the United States and also potentially leads to similar benefits to 
teachers and students across the globe.
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 Background

School teachers can often identify families that provide appropriate support at 
home for the school’s mathematics programs. More families would participate ef-
fectively if they knew what to do. José Franco (2009) calls the disparity between 
the academic performance of White English-speaking students and that of immi-
grant minorities the “opportunity gap.” This chapter discusses how a high-quality 
mathematics program can be achieved by including practices that involve parents. 
With the combined effects of appropriate rigor in the classroom and strong family 
support at home, a multi-age group of English learners moved to the privileged side 
of the achievement gap. The “Project Classroom” in which this took place provides 
a case study illustrating how quality and equity in mathematics can be achieved in 
a disadvantaged context.

Improving student achievement must be a whole school aim. However, attempts 
to achieve this in the secondary schools often come too late. As Han (2008) asserts, 
the early years are the most important in determining a person’s academic outcomes. 
Quality and equity in the mathematics education of primary grades depend on ef-
forts both at school and at home. Schools whose expectations for immigrant students 
are both high and appropriate can expect to see enhanced academic achievement. A 
high-quality program places faith in the conviction that an early successful experi-
ence in mathematics leads to continued confidence, interest, and achievement, a 
“productive disposition,” as Kilpatrick et al. (2001, p. 195) refer to it.

In the United States, Canada, and England, immigrant students tend to lag be-
hind English speakers in mathematics (Huang 2000). English learners frequently 
become high school dropouts (Echevarria and Short 2006). Guo and Mohan (2008) 
report that English learners who immigrate to Canada in high school are unlikely to 
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graduate because of the time it takes to learn enough language to complete the aca-
demic program. This is made worse by the often low teacher expectations that ac-
company marginalized immigrant and minority children (Han 2008). It is common-
ly believed that Latino parents do not appropriately help their children with their 
schooling (Ortiz and Ordóñez 2005). Moll notes that schooling for Latino children 
typically means remediation (Jiménez et al. 1999). With respect to the achievement 
of children from Spanish-speaking homes in the United States, “there is little dis-
agreement that a crisis exists” (Goldenberg 1996, p. 353). Spanish-speaking student 
achievement is typically much lower than that of Asian and White English-speak-
ing students, and scarcity of opportunity creates that gap. Low expectations pre-
vent teachers from presenting cognitively demanding lessons to minority students 
(Ladky and Peterson 2008). Constantino (1994) reports that both English-only and 
ESL teachers have low expectations for English learners. Some researchers ques-
tion whether the education system is really interested in the immigrant children’s 
academic needs (Huang 2000). These notions match Holloway’s (2004) finding 
that in the United States, minority students have a less demanding curriculum than 
White English-speaking students. He correctly asserts that teachers need to expect 
the same level of performance from all students.

The role of parents should take the central position in efforts to level the play-
ing field. Successful work by parents provides more than academic achievement; it 
keeps families together, allowing parents to retain the control they took for granted 
in their homelands. To achieve the goal of equity the education community will 
have to emphasize a central role for parents. Even parents with little formal educa-
tion have much to offer in the early years. Using their talents at the beginning of 
children’s schooling will set up their children for subsequent academic success.

To provide a quality mathematics program and stimulate equity by encourag-
ing daily family participation in a classroom in which the parents feel complete-
ly at ease, beginning and intermediate-level English learners can learn together. 
Parents will more willingly participate academically at home and in the school’s 
classrooms. Because of their poverty, poor parents have been viewed as weak part-
ners in the education of children (Guerra and Valverde 2007). Some educators trace 
student failure to a home life that does not provide adequate support for education 
(Robinson-Zanartu and Majel-Dixon 1996). Moll notes that parents tend to trust the 
schools to do their best for students (Jiménez 1999). For several reasons, parents 
with little or no formal education rely on schools to do the teaching (Peterson and 
Heywood 2007). One of these reasons is that parents who speak little or no English 
tend to feel inadequate to participate in school life (Sherris 2008). Just as middle-
class parents use their power and social status to advocate for the best possible 
placement and programs for their children (Gordon and Nocon 2008), the parents of 
immigrant English learners want the best possible outcomes for their children. They 
know their own participation would help. According to Moll and Rodríguez-Brown 
(Jiménez 1999), comfort is a key feature of effective participation. The parents who 
do frequent the classroom are parents who feel comfortable in the school building 
(Finders and Lewis 1994). Sadly, many teachers are not prepared well enough to 
involve parents in the schools (Ortiz and Ordóñez-Jasis 2005).
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The quality of the math lesson depends on the quality of the teacher who delivers 
it. Teachers of English learners must know how to make math accessible to these 
students. Teacher quality becomes a key issue in providing equity and improvement 
in the education of immigrant children. Many teachers lack information about sec-
ond language acquisition (Jiménez et al. 1999), and about how to teach immigrant 
children (Huang 2000). All teachers need better preparation to effectively teach 
English learners (Constantino 1994).

Non-communication between schools and immigrant parents can occur because 
staff might consider it demeaning to give immigrant parents information that the 
mainstream society takes for granted. For example, a teacher might consider it con-
descending to tell parents that their children must attend school. Everyone knows 
that children must attend school. However, a parent who never attended school 
might not have this basic knowledge. Teachers might scoff at telling parents some-
thing so basic. Current practices overlook soliciting, even demanding, partnership 
with parents at an early age.

Teachers in diverse settings recognize that the practice of equality—giving the 
same book to each student and teaching the same lesson in the same way—fails 
to achieve equitable outcomes. Similarly, approaching parents of English learners 
in the identical ways in which schools approach mainstream families has failed 
the marginalized parents. Large meetings and document distribution do not pro-
vide the information these families need. Equity in the classroom means giving 
students what they need to become proficient in the academic program. Equity in 
working with parents means recognizing that there may be more diversity among a 
classroom’s parent population than there is among the students. The students have 
shared experiences during six hours of every weekday; parents come from a great 
variety of backgrounds with few common experiences with mainstream society. To 
increase the achievement of English learners, schools must reach out to their parents 
in ways that communicate the important skills that they need to develop to be able 
to contribute to their children’s education.

 High-Quality Mathematics Instruction for English Learners

In the name of inclusion, some schools abandon and isolate underachieving minor-
ity students on the wrong side of the gap. They separate them from each other and 
place them in cooperative groups with proficient English-speakers. There is a lack 
of evidence supporting the placement of language-minority students in the main-
stream classroom (de Jong 2004). Nevertheless, the separation of young children 
from classmates with whom they can communicate continues as teachers spread 
English learners throughout the classroom and throughout the school. They believe 
that these children are going to learn more English if they cannot speak their prima-
ry language in the classroom. Thus silenced, these students cannot negotiate mean-
ing in the content areas. While the mainstream students are learning, the minority 
English learners are marginalized and isolated from classroom interaction.
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Entry age is a major factor in school success. Those who enter early enough 
can achieve equal footing with the monolingual speakers of English. Even in the 
primary grades, English learners lack the English language skills of their English-
only classmates (Echevarria and Short 2006). When students lack fluency in the 
language of instruction, extreme measures might help them overcome deficiencies 
(Kishiyama et al. 2009). Schools tend to assume that economically unstable immi-
grant families cannot provide the advantages that privileged children enjoy. How-
ever, these families can provide a rich home life that leads to academic success at 
school. The schools should provide information to assist families in providing that 
kind of a home support.

Responsive schools typically attempt to reach out to families by drawing them to 
the schools. They make friendly gestures and schedule celebratory, cordial meetings 
which have the trappings of typical family meetings. Such a meeting might include 
a greeting and interpretation into the families’ languages. Or a school system might 
provide these meetings in the home languages of the students. Just as chalk-and-talk 
is an inefficient approach for teaching language learners, the typical parent night 
meeting is only a gesture (Robinson-Zanartu and Majel-Dixon 1996). There will 
be lectures and pamphlets on how to help students at home. This is what profes-
sionals expect when we attend such meetings. It emanates from our thinking that 
what is good for us is good for everyone. As a procedure, it wastes parents’ time 
and intimidates the most fragile families in our communities. Sending documents 
in translation can, in fact, diminish communication between the home and school 
(Waterman and Harry 2008).

When parents participate in students’ homework assignments, there are sever-
al benefits. Hoover-Dempsey (2001) documents some significant benefits, which 
include self discipline and responsibility, persistence, and improved behavior at 
school. Homework should review what the student knows how to do and can do 
(Waterman and Harry 2008). Schools tend to send homework that might not be 
reviewed, accompanied by little or no explanation of how to do it (Finders and 
Lewis 1994). Without a system of homework to reinforce the English learner’s con-
cepts, a school cannot provide equity for the learner. Immigrant parents place a high 
value on homework and expect a lot of it (Waterman and Harry 2008). Completing 
homework is, in fact, one way to enhance the connection between the home and 
the school (Ladky and Peterson 2008). At a family meeting prior to school opening 
for the year, parents learn about homework. Students need mathematics homework 
to practice number facts, to learn responsibility, and to maintain family cohesive-
ness. Avoiding early emphasis on procedural fluency in mathematics could lead to 
students being unable to capably manipulate numbers in sophisticated mathematics 
problems. Kumon Math encourages self-discipline and self-confidence with num-
ber fact worksheets. Singapore Math prepares students for sophisticated problem 
solving by developing number sense through repetitive practice on unstimulating 
workbook pages. When preparing mathematics homework for English learners, 
teachers must remember that any page with a word on it can become a word prob-
lem at home. Teachers may send home mathematics fact worksheets. Even oppo-
nents of this type of homework will not view the assignment as harmful when they 
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take into account the fact that families can sit together and complete the pages. 
Parents can maintain their stature in the family.

Some specific practices improve the quality of mathematics instruction for Eng-
lish learners. Secada (1998) includes these ideas: use problem solving, and include 
discussions about solutions; encourage mental math; and keep expectations high. 
Oveido (2005) recommends minimizing wordiness. Students can sometimes do the 
calculations if the wordiness does not get in the way. Perform a clear comprehen-
sion check to separate the language from the mathematics. Develop mathematics 
problems with meaning for the student or the class, something that is more relevant 
than what is found in textbooks, something that connects to students’ lives. Both 
Secada and Oveido caution against using “key words.” Teaching E-learners that in 
all means to add leads to confusion. This question provides an example:

Mary has 5 marbles in all. Mary gives 2 marbles to Tom.
How many marbles does Mary have now?

If beginning English learners have been taught that in all always means add, they 
might calculate an answer of 7.

The use of cognates facilitates comprehension if words in the target language 
approximate the students’ home languages in appearance, pronunciation, and/or 
meaning. In the ideal mathematics classroom, there is direct teaching of how to 
reach mathematical solutions. Some components include not only illustrated, one-
step situations, but also complex, multi-step problems that take more than one class 
to solve, and problems on sample tests available from high-stakes assessment web-
sites. Each lesson needs a language as well as a content objective (Echevarria and 
Short 2006). Linking content and language instruction has proven to be one of the 
most effective ways to accelerate the academic achievement of English learners. 
In mathematics, this includes heavy use of manipulatives to present, explain, and 
visualize concepts. Working in groups to solve problems also promotes math com-
petence (Chamot 1995). Sherris (2008) recommends starting with a review of the 
standard, a focus on the concept and skills to be employed, and assessments to 
decide where to begin each math lesson.

Eric. J. Cooper offers twelve possible reasons for the achievement gap, based 
on reviews of the literature (Cooper 2004). Two of these refer to families. The first 
suggests that child-rearing practices might differ. The second cites lack of parental 
involvement. Researchers still have to look at outcomes when a school makes the 
effort to provide the missing information to undereducated parents so that their par-
enting may compete with that of privileged families.

 Results from the “Classroom Project”

Commencing in September of 2003, the Project Classroom was the only all-Eng-
lish learner classroom in one elementary school district in Oregon, USA. Spanish-
speaking students were placed together in a multi-age classroom serving between 

38 Parents and Teachers Collaborate



538

26 and 32 students between the ages of seven and ten. All children in the school 
whose home language was Spanish were invited to participate, and every family 
wanted to participate. Fortunately, there was space for the children of all interested 
families. The teacher was a Spanish speaker with certifications in ESOL (English 
for Speakers of Other Languages) and classroom teaching. In compliance with U.S. 
Civil Rights legislation, a Specially Designed Alternative Instruction plan described 
an alternate approach to classroom structure. The structure differed from other class-
rooms in the school in two ways. First, all students were Spanish-speaking English 
learners. Second, parents were expected and welcomed to enter the classroom at any 
time during the school day, and without prior notice.

At after-school meetings and during classroom visits, families shared informa-
tion about themselves. The teacher recorded data about the families after meetings, 
when students volunteered information, and upon commentary from members of 
the immigrant community. Such data showed that the average time the parents had 
spent in their own formal education was less than two years. All families were clas-
sified as poor according to federal guidelines. All adult members of the families 
were hourly wage earners, mainly in the service sector. More than half of the older 
siblings had dropped out of school, joined gangs, and/or started families of their 
own. All had found menial jobs like those of their parents.

Immigrant parents often make assumptions about what they themselves can do to 
assist their children in school work and what their children could accomplish. In this 
project, they described it as refreshing and elevating to realize that they had so much 
information to share with their children. They enjoyed playing mathematics games, 
and noted that the fights over which TV program to watch disappeared. Their chil-
dren were asking for mathematics games at home that families had learned together 
at family meetings. The parents felt valuable.

Meetings that do not provide time for parents to talk with teachers about their 
own children are not useful (Guo and Mohan 2008). It is possible to establish qual-
ity mathematics experiences for students both at school and at home. Family meet-
ings focused on what the parents could do with their young children. Each time 
the Project Classroom families gathered for family meetings, math activities were 
presented and practiced.

For example, because combinations to ten form a basis for beginning mathemat-
ics mastery (Tang 2001), families were encouraged to work together on these every 
day. Activities included gluing pebbles or beans to popsicle sticks or tongue depres-
sors in units adding to ten. Creating conversations about mathematics can begin 
as early as families begin to play math together. Merely as an example, families 
outlined children’s hands and counted fingers. They identified how many fingers 
are on each hand. They combine the sum of the fingers on one hand with the sum 
of the fingers on the other. On road trips, they hunted for combinations to ten on 
passing license plates. Many more ideas are available in publications such as Fam-
ily Math (Stenmark et al. 1986). Families practiced two or three activities at each 
family meeting.

The effective family meeting did not offer childcare. The entire family was ex-
pected to attend (Ortiz and Ordóñez 2005). The lead teacher demonstrated a skill. 
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Then families practiced that skill. Because the most fragile families might not be 
literate, reading was not demanded. Families talked about books by looking at the 
pictures. They practiced making up mathematics problems based on the illustra-
tions. The teacher leading the meeting would say:

• Look at the cover. Students, tell your parents what you see on the cover. What 
can you count on the cover? Parents, tell your students they are making impor-
tant observations.

• How many pages does this book have? Tell your parents how you know.
• Students, tell your parents what you see on the first page. What is there one of? 

Two?

The parents would then provide rich discussions with their children. With students 
in the early years, this is easy to provide, but parents must learn to provide it. With 
practice and support, these activities will prepare children to appreciate mathemat-
ics. Parents lacked information about how to develop and guide such activities. 
They, together with their children, benefited from practice. The school must provide 
such practice. This is a partial list of family activities that schools could assist fami-
lies to offer at home:

• Look at picture books and invent math stories to match the pictures. With prac-
tice parents learn to make math problems out of almost any illustration.

• Count objects and people where more than one appear on a page.
• Recount incidents and memories from parents’ early childhood emphasizing 

how much they liked to learn about math (even if that was not the case).
• Explain shopping decisions and provide an introduction to economics. “We’re 

buying this lettuce because it costs less.” “We’re buying red lettuce because it 
has more vitamins.”

In addition, some guidelines for providing young people with an environment con-
ducive to home study may include:

• Insist on an appropriate bedtime.
• Locate the best spot in the home for homework completion.
• Specify a daily time for homework.
• Place the TV away from the child’s sleeping area.
• Arrange for children to get exercise outdoors.
• Assign age appropriate chores.

Frequent meetings brought the parents’ attention to current classroom topics and 
how the home environment can support them. There is evidence from the literature 
that regular meetings would support parents’ efforts (Ladky and Peterson 2008). 
In order to encourage parent attendance at meetings, families were contacted per-
sonally or by phone. This has proven to be the most effective way to approach the 
parents of English learners (Chamot 1995).

The Project was designed in the belief that families should keep the heritage 
language alive in the home. Some parents thought that mastery of the majority lan-
guage signified intelligence. Children who achieve apparent mastery quickly earn 
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accolades from the monolingual teaching community. Young children who acquire 
social language quickly and pronounce it perfectly acquire the esteem of their teach-
ers and the community. Immigrant families acknowledge this. Everything works 
to favor rapid acquisition of the mainstream language, at any cost (Wong Fillmore 
1991; Jiménez et al. 1999; Peterson and Heywood 2007).

To seek the best academic outcomes for their children, some families attempt 
to speak the majority language at home. As students acquire the local language by 
using it at home they abandon their primary language. Teachers praise the velocity 
with which students master the new language. People assume that speaking English 
is one piece of evidence that a child is intelligent (Peterson and Heywood 2007; 
Jiménez et al. 1999). This praise encourages parents to continue neglecting the lan-
guage of the home. Soon children can no longer communicate effectively with their 
grandparents, nor have they mastered the majority language.

Immigrant parents want language mastery for their children. Students who are 
learning English are sometimes talked about as students with a language problem. 
Math is a good area to introduce language learning, but it is to be expected that a 
child will take several years to master the intricacies of the language and be able to 
participate as well as a native speaker. The school must describe the trajectory of 
the quick but shallow language learner. Lily Wong Fillmore (1991) and colleagues 
researched the danger that families face when their children learn the language of 
the mainstream while losing the home language.

Parents need to be warned of the consequences of not insisting that their children speak to 
them in the language of the home. Teachers should be aware of the harm they can do when 
they tell parents that they should encourage their children to speak English at home, and that 
they themselves should try to use English when they talk to their children. (pp. 345–346)

At each family meeting, parents heard about the importance of maintaining the 
home language throughout the children’s schooling. No one spoke the home lan-
guage as well as the parents did, and they were the best source of Spanish their 
children had. Parents mentioned relatives whose children could no longer commu-
nicate with family members who did not speak English. They grew accustomed to 
the struggle they faced to keep the children speaking and developing their Spanish.

High-stakes testing is typically thought to work against English Learners. Ac-
cording to Boaler (2008, p. 89), “the tests used in America are particularly harmful 
for children of low income and for English language learners (ELL students).” The 
Project Class, however, was in a district that uses annual high-stakes assessment to 
measure achievement. Project Class English learners excelled on the math assess-
ment.

Prior to establishing the Project Class, math scores for Hispanic students at the 
school lagged more than 20% points behind the scores of White English-speaking 
students and Hispanic students throughout the State. After just one year as a Project 
Class, during the 2003–2004 academic year, results from the annual mathemat-
ics State assessment for students identified as “Hispanic” show that grade three 
students at the Project Classroom school outperformed Hispanic students at other 
District and State schools by 30%; grade five, 20%. The 2004–2005 results were, 
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respectively, 5% and 13%. In 2005–2006, the State added grade four to the pub-
lished results. “Hispanic” students registered higher percentages in all three grades, 
ranging between 5% and 18% higher, and paralleling the performance of their Eng-
lish-only classmates classified as “White” (Oregon Department of Education 2008).

This story of success, however, had an unexpected and unfortunate ending. Near 
the conclusion of the 2005–2006 academic year, a couple of school staff members 
filed a complaint against the school Principal for approving the establishment of the 
Project Classroom, claiming discrimination. The District had three options: negoti-
ate with the complainants, invite an investigation, or close down the classroom. 
The District chose the third option. English learners were distributed among all 
classrooms. Formulae dictated that each classroom would now have approximately 
the same number of Spanish-speaking students. Parents no longer entered their chil-
dren’s classrooms. Their students’ new teachers scheduled parent helpers for whom 
they left written instructions in English. They also scheduled parent visits; parents 
were no longer able to walk in unannounced.

During the next three school years “Hispanic” math achievement at the Project 
Classroom school lagged behind both the District and the State by between 2% 
and 20%.

Parents, now disenfranchised, were no longer able to close the gap.

Acknowledgments I wish to acknowledge the tireless, relentless efforts of the 22 families and 32 
students who for three years lived the dream of equity.
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 Introduction

Critical mathematics (CM) has attracted considerable interest among mathematics 
educators (Atweh 2004; Gutiérrez 2002). For example, the CM text, Rethinking 
Mathematics (Gutstein and Peterson 2005) has sold 11,000 copies to date (Tro-
kan 2009). The approaches “teaching mathematics for social justice” and “radical 
mathematics” are similar enough that I include them as “CM.” In the U. S. context, 
progressive CM educators use Freire’s (1971) critical literacy ideas to design their 
mathematics teaching (Frankenstein 1983; Gutstein 2003, 2006). European CM 
educators similarly incorporate critical and progressive approaches, although they 
draw more from Frankfurt school theorists than from Freire (Skovsmose 1994). In 
this chapter, I discuss the U.S. context of Freirean-inspired CM movement.

Similar to mainstream reformers (e.g., the National Council of Teachers of Math-
ematics 2000), CM reformers critique traditional mathematics instruction found in 
most American schools (Frankenstein 1983; Gutiérrez 2002). CM educators main-
tain that, as part of mass schooling under capitalism, mathematics education aligns 
with the values and interests of the powerful. CM advocate Gutstein (2006) asserts 
that traditional mathematics instruction and, to a lesser extent, standards-based re-
form instruction results in “domestication of consciousness” (p. 6) and “mathemat-
ics ‘mis-education’ of low-income students and students of color” (p. 12–13). To 
counter these adverse effects, he advocates CM which would have such students 
“reading and writing the world with mathematics” (book title) and would move 
them from school-learned conformity and passivity toward informed resistance and 
political agency. Such CM advocates as Gutstein (2003) and Gutiérrez (2002) see 
CM as a path to mathematics excellence in culturally diverse classrooms, to greater 
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equality in mathematics learning and, ultimately, in fewer achievement-related in-
equitable outcomes in American society. Gutstein (2003, 2006) reports that CM 
fosters minority student engagement in school mathematics, though his evidence 
comes from work in a selective setting with students who were institutionally em-
powered and academically engaged.

CM scholarship remains largely theoretical to date. The small empirical base 
largely consists of self-reports by teacher-researchers who are committed to devel-
oping and promoting CM (Bohl 2000; Frankenstein 1995; Gutstein 2003, 2006; 
Kitchen and Lear 2000). Further, because CM research has focused on elementary 
and middle grades mathematics or arithmetic at the college level, there is a scarcity 
of research on the nature and effectiveness of CM reform at more advanced levels. 
In this chapter, I address that lack by featuring results from my self-study of a 
CM geometry course that I taught at an inner-city high school. Through examining 
student responses to CM, I focus on the gap between its ideals and realities. As an 
initial enthusiast for CM ideals, I found that trying to implement CM in a second-
ary classroom to pose deeper problems than those documented the extant literature. 
In addressing my findings, I respond to the question that is central to this book, 
namely: what can we learn from specific research studies or programs relevant to 
quality and equity agendas in mathematics education?

 Study Context

This study took place in a remedial night school program at a “high needs” high 
school in Chicago. The semester-long night course ran for two hours an evening, 
four evenings a week, for nine weeks. The 28 students enrolled in the course needed 
geometry credit to make up for past failure and to graduate from high school. Stu-
dents were between 17–19 years of age and were of Puerto-Rican, Mexican-, and 
African-American heritage. Most were from low-income families, several lived on 
their own, and a few worked full-time day jobs. While night school was a conve-
nient alternative for some, about a dozen were banned from attending day school 
as a result of various offences, including gang involvement, teen pregnancy, drug 
dealing, and disrespect for school authority. Several of these students were upset 
about not being able to attend day school.

Students reported that the night school program lacked an academic focus. In a 
pre-interview, one claimed, “we don’t really have to do anything in night school, 
but just be here, and don’t talk, and just keep quiet.” School security was tight 
and ever present. In interviews, most students indicated that in the past they only 
had experienced traditional mathematics instruction. In sum, night school students 
fit the profile drawn by CM theorists of having been mis-educated in mainstream 
schooling, including in their mathematics education.

Consistent with conducting practitioner research, I was the teacher, curriculum 
designer, and researcher of my CM class. Although I had taught for five years in dif-
ferent high-needs Chicago high schools and had taken a graduate course on critical 
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pedagogy, I had never taught CM before conducting this study. I had regularly used 
standards-based reform techniques and these formed the basis of the night course 
curriculum.

Because of the dearth of CM instructional materials available at the secondary 
level, a key component of my study involved curriculum development. While I ex-
pected some difficulty in designing CM lessons, they proved to be far more elusive 
and labor intensive than I had anticipated. Despite spending well over 200 hours 
working on CM materials before and during the night course, at best, the developed 
products covered only 11 hours of class time out of the semester-long course. I 
struggled to create politically relevant tasks that included the sophisticated use of 
required secondary geometry content (e.g., angle sums in polygons, Pythagorean 
Theorem). In addition to my CM activities, I included two projects developed by 
Gutstein (see Gutstein and Peterson 2005). In the end, CM activities comprised 
about 15% of the course curriculum and reform-oriented activities, and assessments 
made up the other 85%.

My night course study took place during December and January when Chicago 
is particularly cold, dark, and bleak. A two-week holiday break separated the nine-
week course into two halves. While there were continuities, there also were differ-
ences between these two time periods (see Table 39.1).

39 Critical Mathematics in a Secondary Setting

Weeks 1–5 My primary instructional goal was to acclimatize students to the reform math-
ematics foundation upon which CM would build. There was considerable initial 
resistance by students to reform techniques (lack of teacher telling, non-routine 
tasks, collaborative work). With time, most students were willing to engage with 
important aspects of reform instruction while some continued to complain publicly 
about them. In the first four weeks, I included one CM activity of an hour or less 
duration per eight-hour week. In Week 1, students were to write responses to a 
cartoon critical of traditional schooling. In Weeks 2–4, students were to analyze 
data related to correlations between student race and opportunities for recess; family 
income and student test scores; and rates of handgun violence in the U.S. Only the 
race and recess activity ignited a “student-driven” whole class discussion, while the 
other activities dissipated discursive engagement. While generally writing short but 
thoughtful individual responses to these activities, several complained that CM was 
“goofy” and “not what we’re here for.”

Weeks 6–9 Although never ideal, students engaged in reform activities with less resistance. 
My relations with them improved considerably with many students coming before 
or after class to talk with me about concerns in their lives. This period featured 
longer CM projects, with each taking a few hours to complete. In Week 6, students 
engaged in the Mercator Map Project (Gutstein & Peterson, 2005). While they did 
the mathematics, many avoided taking a stand in either writing or whole class dis-
cussions on whether the bias (i.e., Eurocentric projection) in the Mercator Map was 
purposeful. They were evasive despite my requiring the articulation of a political 
position. In Week 7, students did the three-hour CM project that is discussed in this 
chapter. In Week 8, students completed a two-hour CM project called “South Cen-
tral” that dealt with the distribution of community resources (see Brantlinger, 2005). 
While each lesson resulted in stretches of sustained student engagement, they also 
featured periods of substantial resistance to CM activities and class discussions of 
critical themes.

Table 39.1 Overview of CM activities in night course
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Discourse Analysis of CM Activities

The total study included a discourse analysis, a curriculum analysis, and a self-analy-
sis of my thinking as a CM instructor. The results reported in this chapter come from 
the discourse analysis of data transcribed from videotapes recorded during the first 
four hours of the second and seventh weeks of the nine-week night course. These 
two instructional periods were comparable in that each included one CM activity and 
three reform activities. As part of the discourse analysis, the eight-lesson transcripts 
were divided into topically related sets (TRS) or discourse segments that cohere 
around a topic or theme (see Mehan 1979). To examine discourse structures and who 
initiated new TRSs (i.e., themes), individual turns within TRSs were recorded as Ini-
tiations, Responses, and Evaluations (IREs) (see Mehan 1979, Pruyn 1999). In addi-
tion to highlighting structural features of discourse, separating discourse into TRS’s 
and IRE’s allowed for an examination of student subjectification and objectification 
(Pruyn 1999). Subjectification includes following student-centered goals, teach-
ers encouraging students to think for themselves, and students engaging in student 
rather than teacher-initiated discussions. Objectification happens when discourse is 
teacher-centered (lecturing, ignoring student ideas, conveying that students are not 
capable of reasoning on their own). Student utterances and communicative behavior 
(putting their heads down, initiating a topic) were coded as exhibiting engagement, 
resistance, or conformity. Students’ mathematical contributions were coded as in-
dicating elaborate student engagement when they measured more than two lines 
of text on a transcript page. This thematic breakdown was useful in capturing the 
evolution of instructional patterns and student participation over the semester-long 
course. In addition, I used Gee’s (2005) constructs of Discourse models (cultural 
models) and social languages to track students’ articulated beliefs about society and 
mathematics and their use of code-switching from school to home language.

While the discourse analysis included data from both critical and reform activi-
ties, in this report I illustrate students’ discursive engagement in CM by using an 
excerpt from one CM lesson. It should be noted that, while unique in many regards, 
this particular excerpt captures many of the same discursive features and teaching 
dilemmas of all CM activities.

 Inequalities and Area

In the seventh week of the course, I introduced Inequalities and Area (I&A), a three-
hour CM project inspired by Williams and Joseph (1993). The mathematical goal 
of I&A was for students to apply their understanding of area to compute the Gini 
coefficient of an income distribution graph (see Fig. 39.1). (The greater area of the 
region enclosed by the two curves, the greater measured income inequality.) A criti-
cal goal was to deepen students’ understanding of economic inequality. I launched 
the project by having students respond in writing to two prompts:

A. Brantlinger



547

1. Do you think the U. S. economic system is fair to its citizens? Why or why not?
2. Has the distribution of income in the United States become fairer since the Civil 

Rights Movement? What do you think? What would your family members who 
work say?

While it could be better phrased, the first writing prompt ignited several impromptu 
small group discussions. Apparently, because they did not want to be incorrect, 
many students hesitated to write responses to the second prompt. Following a short 
whole-class discussion of these prompts, I divided the 25 students present that day 
into five income bracket quintiles: the first quintile represented the poorest 20% of 
U.S. wage earners in 2001, the next represented the second lowest 20% of wage 
earners, and so on to the wealthiest quintile. I gave each group the portion of small 
candy bars that corresponded to their quintile group’s yearly earnings. The poorest 
group got 4 bars compared to the wealthiest group’s 49. We ended the first hour 
with a whole-class discussion about issues of fairness raised by this distribution. 
To be clear, while the second and third hours of I&A had a comparatively strong 
mathematical component, activity in the first hour (featured in Fig. 39.2) had criti-
cal rather than mathematical focus.

Although both critical and reform activities were transcribed and analyzed, due 
to limited space, the discussion that follows focuses solely on CM data (for more 
detail, see Brantlinger 2007). Using an excerpt from the I&A activity (see Fig. 39.2), 
I illustrate students’ reactions to CM.

Based on transcript analysis of transcribed CM lessons, including this excerpt, I 
conclude that: (1) participation in CM was less stable and predictable than in reform 
mathematics, (2) CM activities appeared to trigger certain kinds of student-centered 
discussions that were not apparent in reform activities, (3) students used vernacular 
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Fig. 39.2  Critical whole-class discussion during I&A project
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street language to a much greater extent in critical than in reform activities, (4) 
student responses indicated that CM activities challenged but did not fully counter 
dominant narratives about social inequality, and (5) a tension between critical and 
mathematical content surfaced in CM activities with sociopolitical themes present-
ing a distraction to underlying mathematical goals.

The finding that student participation in CM activities was less stable and pre-
dictable than in reform activities was illustrated over the seven CM activities and 
projects that comprised 11 class periods. Three night class CM activities and proj-
ects ignited student engagement in whole-class conversations, whereas four actu-
ally decreased or dissipated participation. (In the remainder of this chapter, I refer 
to the former type as “engaging” CM activities.) In engaging CM activities certain 
students clamored to be heard in ways they had not in reform discussions. In the 
case of the four that interfered with sustained participation, planned whole-class 
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discussions of CM collapsed. In these cases, I struggled as a teacher in ways I never 
had during my years of mathematics teaching. To be clear, I&A was an engaging 
CM activity and Fig. 39.2 provides an example of student-driven discourse that oc-
curred during the I&A project.

The second finding was that engaging CM activities were structurally and effec-
tively different from whole-class discussions that took place during reform mathe-
matics activities. Such CM activities as I&A were more student-driven and entailed 
more elaborate student contributions than reform activities. While the discourse at 
the beginning of the excerpt was directed through me (the teacher), it is apparent 
that Lucee and Stephie drove the conversation. Students mostly were responding 
to each other’s ideas. Analyses indicated that, in general, class discussions about 
critical themes (e.g., social inequality, racism) in engaging CM sessions were struc-
turally more open and flexible than discussions of mathematics in reform activities 
(see Brantlinger 2007). Despite my daily attempts to provide accessible reformist 
mathematics tasks, my students generally did not engage in the types of whole-class 
discussions about mathematics that reformers imagine (see NCTM 2000, p. 3). Fur-
thermore, while it is not apparent in the Fig. 39.2 transcript, a generally different 
group of students were discursively engaged in CM activities than were engaged in 
reform activities. It might be said that CM activities woke up some students (Lucee, 
Kampton) who usually did the minimum required to pass the class.

Third, while this excerpt only illustrates a limited effect of code switching, stu-
dents fluctuated between vernacular (street) and scholastic social languages (Gee 
2005) to a much greater extent while engaged in CM than in reform activities. Dur-
ing the initial opinion-eliciting and candy distribution activities, students used such 
vernacular phrases as “fittin to” and taunted each other in Spanish (e.g., “Cállate la 
boca, Cabrón”). The excerpt above occurred toward the end of the I&A lesson at a 
point when Lucee and Stephie were directing their talk through me. It was then that 
they switched back to a more formal scholastic register. That said, a few vernacular 
outbursts continued (e.g., lines 41 and 68). Student use of vernacular language re-
vealed that they perceived CM discussions as being different and less formal than 
reform mathematics. It also signaled their ownership of some critical discussions.

Fourth, while CM activities I taught with challenged students’ beliefs, they did 
not fully counter hegemonic narratives about social inequality and economic oppor-
tunity (see also Frankenstein 1995). Despite taking part in a CM activity that illus-
trated substantial economic disparities, a number of students continued to articulate 
meritocratic beliefs about hard work, the benefits of educational attainment, and a 
definition of fairness that referred to people getting what they deserve. Countering 
the few students who claimed that some people face considerable life obstacles 
and that wealthy people inherit advantage, the majority posited that “you just gotta 
push yourself forward and you’ll do it” or that poor people’s “way of life” keeps 
them down. In other words, they displayed the dominant deficit view of economic 
disparities. The I&A conversation was not unique in this regard; in a different CM 
writing assignment, some students described their classmates or classmates’ fami-
lies as personally responsible for the social inequalities they experienced.

Fifth, a tension between the critical sociopolitical and mathematical content sur-
faced in implementing CM activities. As Fig. 39.2 illustrates, engaging discussions 
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provoked by CM projects often lacked a mathematical focus. In CM lessons taught 
early in the night course, the sociopolitical contexts and goals presented a distrac-
tion to underlying mathematical ideas and goals (see Powell and Brantlinger 2008). 
In the CM projects featured in I&A, while the critical and the mathematical did not 
distract each other, they were tangentially related and did not build on each other 
in particularly meaningful ways. The critical discussion of social inequality had 
little to do with the mathematical computation of income inequality. In contrast, the 
political message of I&A essentially was lost in the second and third hours when 
students computed the Gini coefficient.

 Discussion

The results presented in this chapter point to the promise and problems of CM at 
the secondary level. While some CM lessons engaged students in a manner that 
reform mathematics never did, other CM lessons fell apart in terms of engag-
ing students in a meaningful manner. On the positive side, engaging CM lessons 
seemed to strengthen relationships among students and between students and me. 
Additionally, given the importance of student participation, CM provided the op-
portunity for some students who rarely spoke up about mathematics in reform 
activities to contribute to whole-class discussion. However, there was little carry-
over of this critical engagement to reform lessons, or even from one CM lesson 
to the next.

I also found that, while some CM lessons gave students an opportunity to discuss 
issues of interest to them, social rather than mathematics ideas dominated classroom 
discourse (see Fig. 39.2). Indeed, an issue that is important for CM educators to bet-
ter understand is how sociopolitical themes relate to scientific or technical learning. 
Certainly, social contexts have to be taken seriously if critical pedagogy is going to 
be effective. However, unless social contexts have a mathematical basis or naturally 
lend themselves to mathematical analysis, they will not facilitate mathematics learn-
ing. A related issue that CM educators need to better understand is how the problem 
solving techniques of secondary mathematics, techniques that were not invented for 
social application, can be meaningfully applied to actual political problems.

The disconnect between the social and the mathematical was recurring problem 
that I faced. As an inexperienced critical pedagogue, I certainly share responsibility for 
failing to better synthesize the critical and the mathematical. However, Gutstein (2006) 
also cites a “tension” between the critical and the mathematical in his CM teaching and 
discusses needing to “leave mathematics to the side” to pursue critical goals (pp. 108–
109). At the same time, he claims that there is a “dialectical relationship” between the 
critical and the mathematical in CM and that the two can “facilitate one another, under 
certain conditions” (pp. 108–109). He is optimistic enough about this that he advocates 
reconceptualizing school mathematics as a “critical literacy” (p. 6).

While I initially embraced it, I have become skeptical of Gutstein’s critical lit-
eracy agenda. I am particularly concerned that, similar to vocational mathematics, 
CM primarily will be used with minority and impoverished students and limit their 
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access to a highly valued academic discipline and its credentials. To be clear, while 
my students did receive credit for the geometry course, it is likely that they would 
have learned more college preparatory material had I included fewer CM activities. 
My students correctly voiced the view that my CM instruction lacked an academic 
focus. Just as the younger students in Skovsmose’s (1994) CM study, many of my 
secondary students opined that CM was not really school mathematics. A few out-
spoken students were insistent that, instead of teaching CM, I should focus on the 
mathematics they needed to know for college.

As the I&A excerpt (Fig. 39.2) makes clear, many of my students expressed 
hegemonic beliefs about social inequality being due to personal distinctions rath-
er than structural bias in social institutions. Critical scholars (e.g., Gramsci 1971) 
would predict this to be the case. It might be that students’ meritocratic images of 
opportunity and social mobility can be attributed to youthful hopefulness and their 
being steeped in the American dream, which they chose to acknowledge over the re-
ality of their daily observations that revealed few economic promises for them. My 
study illustrated that students’ hegemonic thinking was deep and resistant to change. 
Admittedly, the critical social emphasis in my CM lessons was limited to less than 
20% of the curriculum of a nine-week course. Such a short-term intervention could 
not be expected to counteract the long-term dominance of status quo messages in 
school, in the media, and in society. For a critical curriculum to effectively counter 
status quo ideas, it needs to be introduced more prominently and persistently.

To effectively counter dominant messages, CM instructors likely will have to adopt 
more teacher-centered approaches than current CM theory admits. CM advocates im-
ply that they can avoid teacher telling in part because “doing the mathematics” leads 
to critical insight (see Frankenstein 1989, p. 3; Gutstein 2003, 44–45). I shared this 
belief and followed Gutstein (2006, p. 106) who positions himself as a facilitator 
rather than a teacher who “tells.” However, my facilitation stance and student-cen-
tered activities were not directive enough to get students to adopt and fully appreciate 
critical perspectives. In the absence of an authoritative critical presence, my students 
advanced dominant perspectives more often than critical ones. On the other hand, I 
realize that had I lectured to students about critical perspectives, my goal of enabling 
student-driven conversations may not have been realized (see Pruyn 1999). Further, 
while I attempted to design CM activities that required meaningful mathematical ap-
plications, such applications seemed tangential to the social arguments at stake.

It is important to recognize the degree of student resistance that I faced in teaching 
CM. At times, student resistance—both active and passive—overwhelmed planned 
CM activities. In such situations, I felt I could react in one of two unsatisfactory 
ways by: (1) calling on students for a short-answer responses to critical prompts 
and creating a teacher-centered discourse, or (2) abandoning the whole-class critical 
discussions I had planned and instead requiring students write individual responses 
to critical prompts. Either case would require me to explicitly enact my institu-
tional teacher authority. The irony of this observation is that critical pedagogy is 
theorized as a means to disrupt rather than reaffirm traditional power structures and 
institutional authority. Shor (1996) describes experiencing similar problems with 
resistance and authority in his attempt to implement critical pedagogy.
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Student internalization of dominant perspectives and resistance to CM forced me 
to question assumptions CM educators make, and I had made, about urban youth of 
color, their desires, and their academic needs. Current CM scholarship implies that 
CM is a natural and “culturally relevant” fit for urban youth of color (Gutstein 2003; 
Gutiérrez 2002; Tate 1995; Turner 2003). When I began my study, I was drawn to 
theories that the distinctive needs of lower income urban youth of color meant they 
would benefit from a substantially different curriculum than that traditionally pro-
vided privileged white youth. Consistent with the larger educational reform litera-
ture, CM theory paints a portrait of disengaged youth in urban schools and contrasts 
them with an unnamed “normal” group (i.e., middle-class white suburban youth). 
Theorized as the anthropological other, urban youth are then assumed to need a 
markedly distinctive—even oppositional—curriculum. CM advocates (Gutiérrez 
2002; Gutstein 2006) and others (e.g., Secada and Berman 1999) claim that the de-
contextualized or apolitically contextualized problems of mainstream mathematics 
favor privileged white youth. Based on this, CM advocates argue for appropriately 
contextualized mathematics curriculum that will foster mathematical engagement 
and social understanding among urban youth of color.

I initially assumed that, as impoverished youth of color in a remedial secondary 
program, my students would naturally be drawn to the CM approach. However, 
I had to work hard to get students to engage with CM. I often had to invoke my 
institutional authority to do so by, for example, making it clear to students that 
participation in CM activities would factor in their grades. However, CM often 
failed despite such invocations of authority and my attempts to provide “realistic” 
CM tasks. Rather than being a straightforward cultural match, some of my students 
described CM activities as “goofy,” “not what we’re here for” and a better fit for 
social studies than mathematics.

Rather than a uniform reaction, my study revealed considerable variability in mi-
nority student reactions to CM. This likely was due to several factors. In interviews, 
students reported that CM’s explicit political focus was unique and absent in other 
courses. These older students’ response to CM revealed complex and conflicting 
expectations for secondary mathematics. Some students planned to go to college 
while others did not. A number of students told me in private that they did not want 
to discuss politics in front of classmates while others seemed to relish the oppor-
tunity. Again, it is important to admit that the range of student reaction to my CM 
instruction may have been due to my inexperience with CM curriculum design and 
teaching. It is also possible that the compressed timeline of the night school course 
made instruction and relationship building with students somewhat more difficult 
than it would have been in day school.

In sum, while my initial goal was to take critical contexts, themes, and goals 
seriously, once in the classroom, I felt constrained by the required geometry curricu-
lum and student expectation that I prepare them for college. Given the substantial 
external and internal pressures for teachers to teach the required mathematics cur-
riculum, I suspect that many mathematics teachers, who might otherwise support 
critical pedagogy, will be uncomfortable “[leaving] the mathematics to the side” 
(Gutstein 2006, 108–109) as I became in my study.
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Education is the mechanism many countries around the world use to forge a na-
tional identity, to generate a viable workforce, and to create an informed citizenry. 
The question, “What is the purpose of schooling?,” almost invariably leads to re-
sponses involving support for democratic ideals, or civic and global responsibility, 
or fairness and justice, or building moral character, or developing the whole person, 
or gaining knowledge useful for real life and for economic opportunity. Schools 
ideally help us to develop multiple forms of literacy—for personal growth, com-
munity livelihood, the workforce, and responsible, critical citizenship. Mathematics 
has an important role to play in helping students to understand and even change 
the world they live in, yet all too often, schools treat mathematics as a discipline 
to be learned in isolation from other subjects and from students’ lives and interests 
outside of school. Students exit mathematics classrooms often wondering, “What is 
the point?” Parents communicate to their children the cultural acceptability of strug-
gling with and not understanding mathematics, pointing out without concern that 
they never “got it” either. Students routinely complete their school mathematical 
careers never realizing the significance of mathematics in understanding important 
social, political, and economic issues facing our communities and our world. This 
is a form of societal negligence that many educators, and others, recognize must 
change.

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
DOI 10.1007/978-90-481-9803-0_40, © Springer Science+Business Media B.V. 2011
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All mathematics educators will likely agree with the importance of mathematics 
classrooms providing quality mathematical learning opportunities that challenge 
students to develop deep mathematical understandings and effective problem solv-
ing abilities. Most will further agree with the need to support equitable learning 
opportunities that set high standards and offer strong support to all students, not 
just the elite few. But as common as these notions of quality and equity are in 
mathematics education, both descriptions tend to compartmentalize and overlook 
certain aspects of what is important in education on the whole. To pursue agendas of 
quality and equity in mathematics education will require rethinking both traditional 
and reform-based disciplinary representations of “common sense.” Specifically, 
mathematics education must revisit education’s roots, working to balance empha-
ses on mathematics content, pedagogy, and purpose. This chapter describes current 
research efforts and challenges in our Mathematics Education in the Public Interest 
(MEPI) project, initiated at Radford University in Virginia and focused in math-
ematics teacher education. We contextualize our efforts in broader research-based 
frameworks for improving mathematics education in pursuit of quality and equity 
agendas, while also communicating our own understandings of quality and equity.

 Alternatives to Traditional and Reform Emphases  
in Mathematics Education

For many years, researchers have suggested various forms of classroom or knowl-
edge management and instruction to be stratified across social classes (e.g., Anyon 
1980; Bowles and Gintis 1976; Knapp and Woolverton 2003; Moses and Cobb 
2001; Oakes et al. 2004; Secada 1992; Tate 1997). Content and pedagogies weak 
in cultural relevance for students or stemming from Eurocentric perspectives may 
contribute to race and class divisions in access to knowledge (e.g., Atweh et al. 
2001; Ladson-Billings 1995; Lubienski 2002; Rodriguez and Kitchen 2005; Tate 
1995). Mathematics, “often regarded as the most abstract subject removed from 
responsibilities of cultural or social awareness” (Boaler and Staples 2005, p. 32), 
has been associated with such stratification.

Regarding student learning, research has been largely supportive of reform prac-
tices of the kind supported in the United States by the NCTM (1989, 2000). In a 
comparative study of two schools in England, Boaler (1998) suggested that students 
who receive project-based instruction learn more and different mathematics than 
students receiving traditional skills-based instruction. In the United States, rela-
tively consistent evidence also exists that students using reform curricula perform 
equally well on tests of mathematical skills and procedures in comparison with stu-
dents using traditional curricula and perform better on tests involving mathematical 
concepts and problem solving (Schoenfeld 2002; Senk and Thompson 2003).

Equity and social justice agendas in mathematics education have been becoming 
increasingly central in recent years. Recommendations for how to achieve equity 
goals almost always include requirements for setting high expectations and provid-
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ing strong support for all students (e.g., Moses and Cobb 2001; National Council 
of Teachers of Mathematics [NCTM] 2000). But despite many strengths, reform 
documents such as the NCTM Standards (1989, 2000) still do not go far enough. 
Lubienski’s (2002) criticism of Standards-based reforms focuses largely on multi-
cultural considerations of discourse and the NCTM’s general oversight of such con-
siderations. Others have focused more on the absence in the Standards of a critique 
of societal inequities (e.g., Apple 1992; Gutstein 2003, 2006).

A small but growing number of researchers and projects have provided alterna-
tives to traditional and reform approaches and emphases in mathematics education. 
Numerous progressive, multicultural, and social justice educators have suggested 
educators must adjust practices and curriculum to increase mathematical partici-
pation and success of diversifying student populations. Consortiums such as the 
Center for the Mathematics Education of Latinos/as (CEMELA) and MetroMath 
provide theoretical and practical guidance to achieve these results, as do texts such 
as Rethinking Mathematics (Gutstein and Peterson 2005), Relearning Mathematics 
(Frankenstein 1989), and Maththatmatters (Stocker 2006). Further, projects such 
as Dartmouth’s Mathematics Across the Curriculum project and Indiana Univer-
sity’s Mathematics Throughout the Curriculum project have suggested a need for 
greater interdisciplinarity and a strengthened mathematical infrastructure in the 
undergraduate curriculum. Quantitative literacy projects such as Quantitative Rea-
soning in the Contemporary World at the University of Arkansas have strong po-
tential to help students make connections between quantitative information and 
their lives and interests outside of school. These projects help students to under-
stand the relevance and interconnectedness of mathematics with other subjects and 
with the real world.

 Mathematics Teacher Education and the MEPI Project

According to the 2005 National Center for Education Statistics (NCES) report, 
The Condition of Education, as total school enrollment in the United States has in-
creased, the percentage of public school students considered part of a racial or eth-
nic minority group has also increased, while the percentage of White public school 
students has decreased. Further, although school enrollments have become increas-
ingly diverse, incoming teachers remain predominantly non-Hispanic White, mid-
dle-class, monolingual females having limited experience with students of back-
grounds different from their own (Green and Weaver 1992; Hollins and Guzman 
2005; Zumwalt and Craig 2005). The increasing diversity of schools and widening 
cultural gap between teachers and students, paired with the historical and continu-
ing reproduction of educational inequities by socio-economic group, race/ethnicity, 
gender, and language proficiency, raises serious and immediate concerns.

Disparities and unequal access to mathematics course taking, achievement, and 
career fields remain a serious problem for American schools and society (Oakes 
et al. 2004; Secada 1992), and one that must be remedied. Secada summarized:
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Along a broad range of indicators, from initial achievement in mathematics and course 
taking to postsecondary degrees and later careers in mathematics-related fields, disparities 
can be found between Whites and Asian Americans on the one hand and African Ameri-
cans, Hispanics, and American Indians on the other; between males and females; among 
groups based on their English language proficiency; and among groups based on social 
class. (p. 623)

The problem we face is not one to be addressed using deficit models involving fix-
ing people.

To close gaps in general—whether they are associated with gender, race/ethnic-
ity, or social class—will require not only educating students with “mathematics” 
knowledge, for example, but also rewriting learning objectives to necessarily in-
clude feminist perspectives, culturally relevant content, and social justice emphases 
that help students understand and challenge dominant power relations. Mathematics 
teacher education has a critical role to play in preparing teachers to put at center 
stage goals to support equity in mathematics teacher education and to diversify stu-
dent interest and participation in mathematics. These goals must also resonate with 
broader public interest goals to improve educational and social conditions both in 
the United States and abroad.

While internationally there is considerable interest among mathematics educa-
tors in social justice, the literature on mathematics teacher education for social jus-
tice is nearly non-existent (Gates and Jorgensen 2009). Among the limited existing 
literature is research such as DeFreitas and Zolkower’s (2009), which described 
how social semiotics tasks may enhance teachers’ preparation to teach for diversity 
as well as their disposition toward mathematics and beliefs about the relationship 
between mathematics and social justice. Boylan (2009) emphasized the connec-
tion between emotionality and mathematics teaching for social justice, suggest-
ing the need to create space for dialogue about emotional aspects of mathematics 
teaching and about sometimes oppressive and alienating mathematics classroom 
practices. However, practically speaking, almost no attention has been given thus 
far to preparing preservice teachers to teach mathematics for social justice. This is 
problematic.

In May 2008, the NSF-funded “Connecting Mathematical Funds of Knowledge 
Conference” held in Tucson, Arizona, helped teacher educators consider what it 
means to support preservice teachers to connect children’s mathematical thinking 
with children’s and community’ funds of knowledge in the context of elementary 
mathematics methods courses. Such emphases, while still very uncommon, are be-
ginning to take root in a small number of mathematics methods courses across the 
country. However, mathematics content courses engaging preservice teachers in 
learning mathematics in support of equity and social justice emphases, with an eye 
toward the relevance of mathematics in local and global communities, have been 
nearly non-existent.

Drawing from theoretical and practical ideas for social justice in mathematics 
education, our MEPI project strives to improve the quality and relevance of math-
ematics education for all learners. MEPI has goals to support equity and social 
justice, to diversify student interest and participation in mathematics, and to broad-
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en and enrich the ways mathematics is viewed as a discipline. Gutstein (2006) 
proposed an exploratory orientation toward building mathematics curriculum with 
integrated components of community knowledge, critical knowledge, and classical 
knowledge. The twelve characteristics of the Connected, Equitable Mathematics 
Classroom proposed by Goodell and Parker (2001) also support similar emphases 
in the rethinking of mathematics. MEPI’s foundation rests on an assertion that 
mathematics curriculum and instruction can be improved by maintaining overlap-
ping objectives that: (1) incorporate NCTM Standards-based (2000) reform prac-
tices, (2) are more culturally relevant and responsive (e.g., Ladson-Billings 1995), 
(3) make use of individuals’ and groups’ funds of knowledge (e.g., Civil 2007; 
Moll and Gonzales 2004), (4) engage learners more fully, more meaningfully, and 
more responsibly with their communities (e.g., Hart et al. 2007), and (5) explicitly 
aim to achieve social justice locally and globally (e.g., Frankenstein 1989; Guts-
tein 2006).

 Math for Social Analysis

Current MEPI research investigates preservice elementary and middle school teach-
ers’ experiences and learning in a new, required junior-level mathematics course 
designed for teachers and centered on equity and social justice principles, Math for 
Social Analysis. Math for Social Analysis helps students deepen and increase the 
flexibility of their understanding of mathematics content. The mathematical learn-
ing environment is similar to the recommendations proposed by the NCTM (2000), 
for example, emphasizing classroom discourse and having students make and de-
fend mathematical arguments. However, in Math for Social Analysis, mathematical 
units are placed in interdisciplinary and social contexts encouraging critical analysis 
and connections to students’ lives outside of school. Students study and mathema-
tize issues such as mountaintop removal in Appalachia, gender bias in magazines, 
the distribution of wealth, and endangered species.

Math for Social Analysis focuses foremost on mathematics, but dualistically 
aims: (1) to have the learning of interdisciplinary applications or social issues to 
strengthen and reinforce mathematical understandings and (2) to have the math-
ematical activities and projects to reinforce and strengthen understandings of the 
interdisciplinary applications or social issues. Interdisciplinary content and choice 
of social issues varies depending on current events, preservice teacher interest, and 
text selection. Interdisciplinary content always includes many diverse relationships 
to science, social studies, and language arts. Course content includes discussions of 
political, social, and economic challenges and implications associated with under-
standing and even changing the world, using mathematics. Table 40.1 describes the 
outcomes in Math for Social Analysis.

In Math for Social Analysis, preservice teachers choose between a service learn-
ing option and a group MEPI research/teaching project option.
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MEPI Research/Teaching Project Option

For the group MEPI research/teaching project, groups of two to four preservice teach-
ers each choose a social issue on a local, national, or global level. The group studies 
the issue, writing a research paper to answer the research question of their interest. 
Next, groups create a mathematics unit plan of two or three related mathematics lesson 
plans, including the relevant NCTM Standards and state standards of learning. They 
then teach their classmates the issue, including the pertinent mathematics. Teaching 
the social issue across disciplines is encouraged, and the use of multiple solution meth-
ods to enhance the understanding of the mathematics is expected. We further expect 
preservice teachers to use inquiry-based and hands-on lessons, focusing on helping 
learners develop a deep understanding of elementary and middle school concepts.

For example, one group of preservice teachers created and presented to their 
peers in Math for Social Analysis a mathematics unit plan written for fourth-graders 
and focused on water conservation and access to clean water. Their unit plan in-
volved thinking critically about the amount of clean water available in countries 
across the world and emphasized water conservation. The unit plan began with a 
presentation of international facts, including number and percent of people who 
lack access to clean water, times and distances some people have to spend in walk-
ing to collect water, and number of deaths associated with unclean water and poor 
sanitation. The group showed a publicly available online video addressing clean 
water access issues in Nicaragua.

The mathematics unit plan, aligned with state and NCTM standards, included an 
activity to estimate individuals’ own personal water consumption, given informa-
tion such as how much water is used for each minute of showering, washing clothes, 
brushing teeth, and flushing the toilet. A table of data was presented, displaying the 
water use (gallons/person/day) in each of 13 different countries worldwide. Pre-
service teachers then computed the average weekly and annual water usage and 
compared and graphed average per capita water consumption in numerous coun-
tries. They discussed difficulties people face in countries having less access to clean 
water and calculated ways to reduce water usage. To supplement the mathematics 

Table 40.1  Outcomes in Math for Social Analysis
Outcomes for All Preservice Teachers in Math for Social Analysis

•  Develop deep and flexible mathematics understandings, largely through interdisciplinary 
problem solving applications and critical examinations of social issues

• Learn to use manipulatives and technology in mathematics, using inquiry-based approaches

–  Manipulatives include: base 10 blocks, fraction circles, pattern blocks, geoboards, algebra 
blocks

– Technology includes: virtual manipulatives, calculators, geometer’s sketch pad

• Learn about and critique the NCTM and state standards
• Learn to connect mathematics to children’s literature
• Complete a semester project (described below)
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activities in the unit plan, the group provided information about illnesses and dis-
eases associated with access to clean water and sanitation.

Service Learning Project Option

For the service learning project option, preservice teachers complete mathemat-
ics-related service learning with a local non-profit organization supporting low-to-
moderate-income families through economic and educational programs. Preservice 
teachers attend a service learning orientation and several training sessions provided 
by the organization, addressing discipline and conflict resolution, and cultural and 
economic diversity. Preservice teachers work collaboratively with the organiza-
tion’s staff three hours a day, one day a week, in afterschool programs for elemen-
tary and middle school children. The preservice teachers must prepare and present 
five mathematical activities, designed specifically to meet the interests and needs 
of the children assigned to them. One activity must include literature, two must ad-
dress an age appropriate social issue, and the remaining two are open. After each 
activity, the preservice teacher writes a reflection on their experience planning and 
implementing their activity. In addition, they have responsibilities in mentoring, tu-
toring across disciplines, mediation, and discipline. They assist during recess, snack 
time and they ride the bus as a chaperone, where they learn about the children’s 
communities. At the end of the semester, each preservice teacher gives a presenta-
tion of their service learning mathematics activities and experiences to peers in 
Math for Social Analysis. Panel discussions with the class offer an open forum for 
questions and answers from their classmates.

 MEPI Research Results

My attitude about mathematics for a long time has been dread and confusion…I feel that 
by teaching math in this new method, people may better understand math because they will 
be able to learn by relating it to real life…This may also better people’s attitudes toward 
math by showing them its importance and relevance to their future. By using this method 
of teaching math, we have the opportunity to greatly change the way the world sees math 
for the better. (Mary 12/11/08)

The teaching of mathematics with a social justice perspective is challenging. Many 
researchers and educators have tried to merge mathematics and social justice in an 
effort to connect mathematics to students’ lives outside of the classroom only to be 
confronted with the tension that develops from the shifting focus between the social 
issues and the mathematics. For example, Civil (2007) communicated the tensions 
arising from trying to incorporate a funds-of-knowledge approach in the mathemat-
ics classroom while still maintaining mathematical rigor. She described a building 
project designed for a second grade class where the children would be asked, “How 
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do you build a house?” (p. 108), and explained the difficulties of focusing on chil-
dren’s funds of knowledge while ensuring the mathematics content did not become 
superficial.

Gutstein, when teaching seventh graders, found that he focused more on students 
learning to read and write the world and less on learning the mathematics. He fur-
ther described “a dialectical relationship between developing mathematical power 
and teaching students to use mathematics to study, and potentially change, structur-
al inequality,” (p. 108) and indicated how the two processes can both facilitate and 
produce tensions for learning. Gutstein highlighted the challenge that “To learn rich 
mathematics students, at some point, have to leave the situation in which the math-
ematics is embedded and focus on the mathematical ideas themselves” (p. 108). 
He contended this issue will not be resolved until a social justice curriculum that is 
connected, cohesive, and comprehensive is developed.

Facing similar tensions as Civil and Gutstein, as we create our own curriculum 
for the Math for Social Analysis course, we routinely struggle to strike an appropri-
ate balance of mathematical sophistication and complexity of the social issues. We 
aim to address social issues of local or global relevance while still ensuring the 
mathematics does not become weak or artificial to the task. Specifically, we aim 
to generate, and to have our preservice teachers generate, questions for which the 
answer is truly valuable and not simply an abstract mathematical exercise. Typically, 
we create and pose several sample questions about the social issue and involving 
mathematics, and we ask preservice teachers to do their own research to generate 
additional mathematics-related questions for the class to consider. We discuss and 
also collaborate to answer a selected group of these questions. Further, we regularly 
look at the multiple different problem-solving approaches the preservice teachers 
use in responding to those questions, and we consider what additional ways may 
be possible such as using manipulatives, drawings, or other tools. Again, though, 
maintaining mathematical rigor with social issues always poses challenges, and our 
interpretations of our own levels of success with fostering this balance as instructors 
varies substantially from activity to activity and course section to course section. 
This is a particularly serious concern because we must ensure preservice teachers 
complete our course with the mathematics knowledge needed to teach mathematics. 
The notion of rigorous mathematics as typically experienced in mathematics courses 
does not include the necessity of understanding the mathematical concepts so that 
they can be conveyed concretely, pictorially, and abstractly in more than one way.

We have documented some of the issues and struggles preservice teachers face 
as they learn MEPI ideas in Math for Social Analysis. For example, when preser-
vice teachers created MEPI lesson plans for their projects, they struggled to balance 
emphases on mathematics, reform-based pedagogy, and social issues (Spielman and 
Mistele 2010). Some preservice teachers’ projects applied various mathematical 
concepts but failed to teach any of the mathematics being used; others had inter-
esting projects but used primarily traditional and/or non-challenging mathematics. 
Some preservice teachers focused on the mathematics but gave only cursory at-
tention to the meaningful aspects of the social issues; others created lessons with 
disconnect, or artificial connections, between social issues and the mathematics.
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Despite these many challenges, on the whole, we have been very pleased with 
preservice teachers’ feedback from Math for Social Analysis, especially feedback 
from those who described previous struggles with or dislike for mathematics. Pre-
service teachers universally label this course as their first extended experience with 
learning mathematics in connection with multiple meaningful real-world applica-
tions and social issues. Many of our preservice teachers enter Math for Social Anal-
ysis describing high levels of mathematics anxiety, and many have suggested that 
integrating social issues into the mathematics classroom has reduced mathematics 
anxiety (Mistele and Spielman 2009), which generated positive attitudes towards 
mathematics and teaching mathematics. In Mistele and Spielman (2009), we com-
municated how Math for Social Analysis proved beneficial in reducing mathemat-
ics anxiety among our preservice teachers by increasing the utility of mathemat-
ics, redirecting attention away from anxiety, and building confidence to teach. Our 
research raised new challenges to deficit models based on our observations that 
mathematics anxiety is situated within the dynamics of the classroom, rather than 
being located within the individual. Some pre service teachers found their attention 
was redirected away from their mathematics anxiety and negative attitudes as they 
became immersed in social issues. In focusing on the social issues, they were at 
times surprised when they realized they were learning mathematics since they were 
feeling no anxiety.

One strength of the course thus far has been that preservice teachers develop 
greater understanding of how to integrate social issues and mathematics, and most 
describe their interest in incorporating social issues into their mathematics class-
rooms in the future. For example, one preservice teacher, Allie explained:

When I become a teacher I will be able to look back on this course and remember how 
easy it is to teach about a social issue and also about a math lesson. Teaching a social issue 
will engage the student to be interested in the math lesson…. My students will not only 
be excellent math whizzes but they will also know what is going on with the world. I will 
encourage them to use the newspaper, book, Internet, and current issues in their learning 
experience. I hope to also show other teachers at my future elementary school the different 
ways they can help and teach their students. I now hope that all teachers will use current 
issues to teach the children.

Rebecca similarly indicated:

When I signed up for this class, I had no idea what to expect. I thought it was going to 
be another pointless class, but instead it is one of the very few classes that I have taken 
that has really made a difference in me as a future teacher. I am walking away with a 
whole new approach to teaching mathematics…. By teaching mathematics using social 
issues, you aren’t only informing students on important problems, but you are getting them 
interested and curious to know about that issue and the math behind it. When involving 
social issues in mathematics, there are number of different manipulatives that you can use 
to really help students understand. My [own] knowledge of manipulatives has grown a 
tremendous amount…. Not only has my ability and understanding to teach mathematics 
changed drastically, but my own overall attitudes have also changed…I am now excited 
about math.

Based on MEPI research, we have also previously reported on survey results that 
provided evidence that preservice teachers’ views about mathematics and about 
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mathematics teaching changed over the semester (Spielman 2009). They came to 
see mathematics as increasingly useful for understanding and engaging with impor-
tant issues and increasingly connected to home and community experiences. Fur-
ther, based on qualitative data analysis, we concluded that interwoven mechanisms 
supporting preservice teachers’ engagement with and reframing of mathematics 
included: (1) Learning the relevance of mathematics to something they care about; 
(2) Developing interest in mathematical applications and in supporting their future 
students’ interest and learning in mathematics; and (3) Shifting their perspectives on 
mathematics by changing prior assumptions and instructional goals. As preservice 
teachers increasingly saw mathematics as relevant and important in social issues, 
they developed new teaching goals to help students integrate math with other sub-
jects and the world outside of school. Finally, they developed a new sense of agency 
to create mathematical learning opportunities that students will find interesting and 
relevant.

 Discussion

The research of the MEPI project and other related projects yield complex results 
with both positive and negative outcomes as well as numerous inherent struggles. 
However, on the whole, the theoretical arguments and practical results achieved 
thus far by educators working to support equity and social justice agendas are quite 
remarkable and lend support to the notion that traditional and reform-based plat-
forms are inadequate.

When we write a thesis or a paper, we learn that the first thing to do is to latch it on to the 
discipline at some point. This may be by showing how it is a problem within an existing 
theoretical and conceptual framework. The boundaries of inquiry are thus set within the 
framework of what is already established. (Smith 1974)

In 1974, sociologist Dorothy Smith questioned the taken-for-granted assumptions 
of traditional sociological thought—its methods, conceptual schemes, and theories. 
Smith began a longstanding effort to develop a sociology for women/people that 
takes issue with the disjunction that at times exists between women’s lived experi-
ences in the world and the theoretical schemes available to think about it. Smith 
argued that supplementing traditional male notions of sociology with components 
relevant to women’s worlds, such as by addressing omitted and overlooked con-
versations, only serves to produce women’s sociology as an addendum while still 
maintaining existing sociological thought and procedures and also extending their 
authority.

The common notion of appending real-world problems to the end of mathemat-
ics textbook chapters fails to feature those problems as prominent and guiding. 
Likewise, an insertion of social, economic, and political issues as add-ons to the 
mathematics curriculum—or as end of chapter exercises—will not be adequate for 
transforming projections and interpretations of mathematics as a discipline. The 
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“statistics and figures” content approach that takes mathematics as usual and ap-
pends social justice concepts will not be enough (Nolan 2009, p. 207). The MEPI 
project makes an attempt at featuring social, economic, and political issues that 
need confronting, and generating appropriate mathematics for addressing those is-
sues, so that the mathematics and the issues ideally emerge hand-in-hand.

Spielman (2008) proposed that similar to Smith’s development of a feminist 
sociology, we can argue that appending components of social justice (or other) 
theoretical or pedagogical viewpoints to certain accepted mathematics disciplin-
ary constructions and assumptions might further sanction and privilege main-
stream thought. To secure a transformative and sustainable impact on mathematics 
equity, rather than appending “radical” concepts to the mainstream, we need to 
rethink our very understanding of the discipline. We can rethink common sense 
in mathematics education and in mathematics teacher education, when we revisit 
education’s purpose and put principles such as “freedom, justice and measures of 
happiness for all” (Goodlad 2004) at the forefront. The goal should not be simply 
to make mathematics more applied or interdisciplinary in nature, or to emphasize 
its relevance in the real world. This is important, but oversimplifies the kind of 
change that is needed. One goal should be to offer students the opportunity to 
experience this fundamental purpose of education as they encounter and struggle 
to make sense of the social issues they study. This is a goal we try to support this 
through our teaching in Math for Social Analysis, where the mathematics that pre-
service teachers use helps to define and clarify aspects of the issues and of their 
own thinking.

Neither traditional mathematics classrooms nor reform-based recommendations 
give serious, explicit attention to the fundamental purposes of schooling. We rec-
ognize that the twentieth first century is replete in information that is displayed in 
charts, graphs, and numbers. The skills needed today to address this new form of in-
formation are a direct result of the technology that has burst into our society over the 
last few decades. People require a new set of skills to understand, reason, and make 
sense of their world outside of school, work, their personal lives, and their lives as 
citizens. The NCTM Standards (2000) promotes this notion, with its emphasis on 
reasoning and sense-making as students engage in mathematical communication. 
However, the Standards fail to incorporate these notions to address and critique 
important societal issues that enrich the democratic process. Orrill (2001) believes, 
“if individuals lack the ability to think numerically they cannot participate fully in 
civic life, thereby bringing into question the very basis of government of, by, and for 
the people” (p. xvi). When we reconstruct mathematics by starting from education’s 
broader objectives and purposes to produce an educated citizenship, the need for a 
more balanced focus on the mathematics, pedagogy, and purpose becomes increas-
ingly clear. Too many generations of students have completed mathematical studies 
wondering, “What is the point?” This should end.

Democratic access to powerful mathematical ideas for social justice requires that students 
have comprehension of global conditions that are driving the global society and how math-
ematical and technical knowledge can be tools used to develop a more just world. (Malloy 
2008, p. 29)
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Usiskin (2001) contends that the math curriculum has not caught up to the realities 
of modern life due to the recent technology advances, and we agree. As we teach 
and conduct research in Math for Social Analysis, we continue to stand out as un-
common or even radical in our field, yet we believe these objectives do inherently 
represent “common sense” practices in mathematics education, while simultane-
ously offering a challenge to balance the rigor of the mathematics with the impor-
tant social issues.

With regard to a “quality” agenda, the choice educators often make between 
mathematical rigor and utilitarianism is a false choice. What good is one without the 
other? A quality agenda should imply students know and understand the mathemat-
ics and can also meaningfully interpret and apply the mathematics to relevant issues 
affecting their lives. With regard to an “equity” agenda, in order to bring a more 
diverse body of students into mathematics and to produce a more critical, engaged 
citizenry, we need to raise our expectations for mathematics educators. We have 
an obligation to help students learn mathematics while keeping broader social and 
civic agendas in mind. We are hopeful that the work of the MEPI project, including 
the Math for Social Analysis course, can facilitate the joining of mathematics and 
social issues in ways that address the broader objectives for education and also sup-
port preservice teachers to interweave these emphases in their own future teaching.
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Equity and quality are contested terms that permeate and influence what the edu-
cational enterprise is about. As one could expect, the terms acquire different di-
mensions and expressions depending on the context in which they are used. In the 
particular setting that concerns us, post-secondary mathematics education at an 
elite university in a Midwestern state in the United States, we associate equity with 
access, with making sure that students from non-traditional backgrounds (e.g., 
rural, urban, first-generation, non-white) have the same opportunity as students 
from more traditional backgrounds to progress forward in their academic degrees; 
in particular, we are concerned with equalizing their opportunity to access to sci-
ence, technology, engineering, and mathematics (STEM) majors. Quality for us 
corresponds to giving students, in particular those of non-traditional backgrounds, 
the opportunity to experience the process of generating mathematical knowledge 
instead of absorbing material that has little or no connection to how that knowl-
edge was generated or no insight about why it is important. High-quality math-
ematics experiences give students the opportunity to live through the same hurdles 
and challenges that practicing mathematicians experience when they are solving 
problems.

The program that we describe in the chapter, the Douglass Houghton Scholars 
Program (DHSP), demonstrates these two dimensions of equity and quality, access 
to STEM majors from non-traditional students, and a mathematical experience that 
is akin to the work of mathematics professionals.
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DOI 10.1007/978-90-481-9803-0_41, © Springer Science+Business Media B.V. 2011

Chapter 41
Equity and Quality in a Mathematics Program 
for Under-Represented Students at an Elite 
Public University

Vilma Mesa and Robert Megginson

V. Mesa ()
School of Education, University of Michigan, 3111 SEB, 610 East University,  
Ann Arbor MI 48109-1259, USA
Tel.: +1-734-6470628
Fax: +1-734-9361060
e-mail: vmesa@umich.edu



570

 Background

In November 2006, the voters of the State of Michigan chose to ban the use of 
affirmative action policies, specifically, the use of gender or race preferences, in 
university admissions. The Michigan vote meant that public funds could not be 
used to support programs that were targeted to women or specific racial groups. The 
passing of the proposal raised concerns that programs that have been designed to 
create an environment that is welcoming to a racially and culturally diverse commu-
nity of students, faculty, and staff would cease. Framed under the diversity agenda 
spearheaded by the University of Michigan’s (U-M) president (Coleman 2006) and 
responding to calls for a more diverse national work force that is trained to do 
STEM work (Committee on Science Engineering and Public Policy 2007; National 
Science Foundation Advisory Committee to the Directorate for Education and Hu-
man Resources 1996) the DHSP, started in August 2005, with a year-long study of 
historical data regarding students’ enrollment patterns in mathematics courses in 
their first year at the university.

This initial study revealed that students who enrolled in two mathematics cours-
es in their first year were more likely to continue in a STEM degree than students 
who did not and that when compared to white students who had similar academic 
characteristics upon entrance to the university, ethnic minority students had lower 
enrollments in a second mathematics course in their first year. Moreover, among 
the students whose grade point average (GPA) was one standard deviation below 
the mean, the proportion of ethnic minority students was larger than that of students 
whose GPA was one standard deviation above the mean. In this same group, mi-
nority students were enrolling in STEM degrees at dismal numbers: From 2003 to 
2005, of the 67 students who took Calculus I and Calculus II in the first year and 
were majoring in a STEM program, only four were ethnic minorities. During Fall 
2005 active recruitment for the program started, and in Fall 2006 the program was 
launched with 29 students.

Modeled after the Emerging Scholars Program (Asera 2001; Treisman 1992), 
the DHSP encourages students to excel in calculus by offering them opportunities 
to work on challenging mathematics problems in a year-long workshop that is taken 
concurrently with Calculus I and Calculus II. As part of the program, and besides 
attending the workshop, students go to STEM lectures, listen to STEM scientists 
explain the type of mathematics that is required for their work or talk about career 
options, and participate in social events (dinners, theater, or movie outings). The 
content is difficult and the demands (both cognitive and social) on the students and 
the instructor are quite high. Students receive only course credit for participating; 
there is no targeted scholarship support for being in the program or other incentives. 
Since 2006, we have been collecting data on students’ performance in the work-
shop and information on program implementation that document its successes and 
challenges. We have now a consistent pattern of results that support claims about 
the success of the program. However, determining whether the program can be 
sustained in the long term is a question that depends on at least three inter-related 
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factors: maintaining the quality of instruction delivered in the workshops, providing 
consistent administrative support, and securing funding.

The remainder of the chapter is organized into three sections. We begin by brief-
ly describing U-M and how the program was implemented here. Then, we present 
results of the on-going evaluation study using current data available from three 
cohorts of students to substantiate claims about successes and difficulties in imple-
menting the program. We conclude with a discussion of the need to attend to the 
connection between instructional, administrative, and economic support to ensure 
the continuation of programs like this one at highly selective, elite universities.

 The University of Michigan, the Introductory Calculus 
Program, and DHSP

The University of Michigan is the state’s oldest university, founded in 1817, 
20 years before the Territory of Michigan became a state. It is a public research 
university with ‘very high’ research activity according to the Carnegie classification 
(see http://www.carnegiefoundation.org/classifications/) and one of the eight public 
“Ivies,” that is, a public university that provides an educational experience compa-
rable to that of private Ivy League schools. The university, with over 25,000 under-
graduate and 15,000 graduate students in 600 academic programs, has been con-
sistently ranked among the 20 best universities worldwide (U.S. News and World 
Reports 2008). Each year about 6,000 new undergraduate students are enrolled out 
of almost 30,000 applicants, of which almost 40% are admitted. Among the admit-
ted students about half have a high school GPA above 3.6 (out of 4.0) and American 
College Testing (ACT) scores above 28 points (out of a maximum of 36). For a 
public university, the fees are high, but according to Pamela Fowler, the Executive 
Director of the Office of Financial Aid, the university is “committed to meeting the 
demonstrated financial need of undergraduate students who are Michigan residents” 
(Fowler 2009). This statement means that the University makes every effort to en-
sure that all its Michigan admitted students could afford their studies. By all these 
measures, the university is considered a highly selective, elite university.

The Introductory Mathematics Program at U-M seeks to develop students’ un-
derstanding of basic notions of calculus, and reinforces the need to coordinate ver-
bal, symbolic, graphical, and numerical representations in solving real-world ap-
plication problems. It consists of three courses, Math 105, Math 115, and Math 116, 
corresponding to precalculus (functions, graphs, limits), Calculus I (derivatives and 
basic integration) and Calculus II (advanced integration and vector calculus). De-
pending on an initial placement test, students can place into or out of the sequence. 
It is taught in small sections of about 32 students who meet three times a week for 
about 70 minutes. It uses the textbooks developed by the Harvard Consortium and 
an instructional approach that fosters in-class group work and the development of 
mathematical communication. Over 3,000 students enroll in the program every year 
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and since its implementation in the early 1990s, the Introductory Mathematics Pro-
gram has maintained high passing rates (over 80%).

The analyses of two years of data prior to the implementation of the DHSP deter-
mined the profile for students who would most benefit from the DHSP once they had 
earned admission to the university, and for whom the program would be structured 
(although invitations would actually be issued in strict compliance with Michigan’s 
recently passed anti-affirmative action law): students underrepresented in STEM 
fields with an ACT math sub-score of at least 27 points and who had placed into 
Calculus I. Underrepresented students were defined as students coming from rural 
and urban schools in Michigan, with a family income in the lower 25th percentile of 
the entering class, or being from an ethnic minority (in Michigan this corresponds to 
African American, Latino/a, and Native American students). The program targeted 
students who also manifested some interest in majoring in a STEM field. The work-
shop portion of the program was offered as a 4-credit, year-long course to be taken 
concurrently with each calculus course in the first two semesters that met twice a 
week for two hours each day. The plan was to recruit 36–40 students distributed in 
two sections of about 20 students each.

During each workshop class session, students receive a worksheet with 5 to 10 
problems that might be related to the content that is being used in the calculus 

Fig. 41.1  Problems used in the workshop. A Fall 2006. B Fall 2007
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class. The instructor assigns students randomly to groups of three or four students; 
students work on their own with the goal of completing as many problems as they 
can in the given period. While students work, the instructor observes and asks ques-
tions; the instructor’s goal is to make sure students can figure out the problems on 
their own. Students can share with other groups or write solutions on the board for 
others to see. During the planning year, the bulk of problems for DHSP were devel-
oped and refined for our students, because banks of problems for similar programs 
around the country did not fit the expectations of the Introductory Mathematics 
Program. In Fig. 41.1, we present examples of problems used in two different se-
mesters.

A key aspect of the workshop is the quality of the teacher-student interaction. 
One analysis demonstrated that the instructor asked the students open-ended ques-
tions only and refrained from giving definite answers; instead he asked students to 
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ask other students or check with their notes. The questions did contain important 
hints, but there were usually two or three alternatives that students should consider 
when they sought help from him (Mesa et al. 2007). A second analysis used ap-
praisal theory (Martin and White 2005) to demonstrate the skillful way in which the 
instructor used linguistic resources to open up the dialog and the opportunities for 
students to engage in mathematical conversations (Mesa and Chang 2010).

Three main goals were established that would be used to determine the success 
of the DHSP: (1) to increase the number of students taking two mathematics courses 
in their first year; (2) to ensure that students earn A or B in the calculus courses 
they take; and (3) to increase the number of students who choose a science major. 
Secondary goals of success included increased learning of calculus concepts and 
improved attitudes toward mathematics. Findings from the three-year long evalua-
tion study are discussed next.

Findings from the Evaluation Study

An ongoing evaluation study collects data on students (characteristics, math 
achievement, attitudes, and calculus learning), class implementation (observations, 
interviews with the instructors and with students), and program operation (inter-
views with key personnel). Similar data from comparable control samples has been 
collected to serve as contrast to establish the impact of the program. We start pro-
viding data that demonstrate the impact of the program, then we describe the nature 
of the classroom interaction during the workshop with its impact on the overall 
workshop’s quality, and then we present administrative aspects that play a role in 
the operation and overall success of the initiative.

 Documenting Impact on Students

Across three years, 87 students have started the DHSP; a parallel sample of 87 
students some of whom were eligible to participate in the program was selected as 
control sample. Tables 41.1 and 41.2 summarize characteristics of the students who 
have participated in the study. The groups are comparable except for their Math 
ACT score, therefore we used this variable as a covariate in the statistical analyses.

Table 41.1  Frequency of students who are female, minority, and express an initial interest in 
STEM major by group

DHSP (n = 87) Control (n = 87)

Female 48 44
Minority 32 29
Initial interest in STEM major 29 19

V. Mesa and R. Megginson
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Table 41.3 summarizes findings for the three main goals set for the program, 
namely, number of math courses taken in the first year besides the DHSP core 
courses, percent of students who earned A or B in their math courses in the first 
year, and number of students who choose a STEM major.

Thus, students in the DHSP take more math courses, earn higher grades, and 
choose a STEM major more frequently than a comparable sample of students who 
are not in the DHSP. In addition, these figures are higher than historical data. In the 
academic year of 2004–2005, 39% of students earned A or B in the fall course, and 
28% earned A or B in the winter course. In 2003–2004, the figures were 51% and 
45%, respectively. The results are more compelling with minority students: 21 out 
of 86 students in the DHSP earned A or B in the fall course (24%) compared to 15 
out of 81 students in the control group (19%) and 13 out of 62 students in the DHSP 
earned A or B in the winter course (21%) compared to 2 out of 26 in the control 
group (8%). Moreover, in spite of manifesting similar intentions of majoring in a 
STEM field, more minority students in the DHSP manifest interest in a STEM ma-
jor than minority students in the control sample at the end of the year: 16 out of 67 
DHSP students (24%) versus 5 out of 65 control students (8%). All these differences 
are statistically significant as well.

In addition, DHSP students’ scores on a course-independent test of calculus 
knowledge—the Calculus Concept Inventory (Epstein 2005)—administered three 
times in a year (September, December, and April) show a significant gain from 
September to December for both groups, but a decline for the Control group from 
December to April, suggesting that students in the DHSP retained knowledge better 
than students in the control sample (see Table 41.4). These results were consistent 

Table 41.3  Frequency and percentage of students taking two math courses, earning high grades, 
and choosing a STEM major by group

DHSP Control Significance test

Na # (%) N # (%)

Took two math courses in 
first year

87 43 (49%) 87 19 (22%) χ2(1) = 14.2, 
p < 0.001

Earned A or B in fall 
course

86 61 (71%) 81 43 (53%) χ2(1) = 5.65, 
p < 0.05

Earned A or B in winter 
course

62 38 (61%) 26 8 (31%) χ2(1) = 6.84, 
p < 0.01

Chose a STEM major 67 39 (58%) 65 24 (18%) χ2(2) = 16.4, 
p < 0.001

a N represents the number of students with available information. The percentages are calculated 
using this number.
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DHSP (n = 87) Control (n = 87)

Math ACT 28.1 (2.04) 27.4 (1.97)
Math placement score 18.7 (3.23) 18.23 (3.47)

Table 41.2  Mean and standard deviation of pre-college characteristics by group
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even for control students who took two math courses in their first year (Mesa et al. 
2007; Mesa and Megginson 2006, 2007, 2008).

In summary, the program accomplishes the goals for which it was designed; 
students are taking two math courses in their first year, earning good grades, and 
choosing STEM majors in larger proportions than historical data and than compa-
rable samples of students at the university.

These results, we believe, are related to the type of instruction that occurs dur-
ing the workshop, which emphasizes students’ mathematical problem solving with 
very challenging problems. Before describing in detail how instruction is conducted 
in the workshop, it is worth mentioning that the Introductory Calculus Program 
instructors are trained to maintain a problem-solving environment in their classes 
as well. However, two main differences exist between the two settings: First, in-
structors teaching calculus need to cover all the material outlined in the course syl-
labus because the exams are the same for all students. Second, they need to ensure 
students’ competence with that material and assess them throughout the semester. 
The DHSP has no specified content to cover, no timeline, and no grades are as-
signed. Thus, compared to calculus instructors, the DHSP instructors have greater 
freedom in designing the activities and no time constraints for solving any of them. 
As grades are not assigned either, another source of anxiety is eliminated; in this 
way, the workshop becomes an opportunity for students to experience authentic 
mathematics problem-solving sessions, in which failed solutions are more informa-
tive than correct ones and where understanding how mathematics works is central. 
This is the core of the high-quality mathematical experience that we strive for all 
DHSP students to have.

 Instruction Matters

The observation of workshop classes revealed consistency in the way in which the 
students and instructors interacted, with the exception of one semester. In any given 
session, students work on the worksheet, as they feel comfortable, selecting which 
problems to work on, and noting when their group finished a problem. The instruc-
tor’s main role is to listen and ask questions and to invite students to write answers 
on the board. Students can voluntarily write their solutions and are free to share ideas 
with and ask for suggestions from other groups. As a rule, the instructor never gives 
answers or solutions to the problems and refrains from stating that something is wrong 
or right. Instructor’s questions are geared toward obtaining more information from the 
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Table 41.4  Mean and standard deviation of calculus knowledge and attitudes by test and group

September test December test April test
N Mean (SD) N Mean (SD) N Mean (SD)

DHSP 87 8.29 (3.39) 77 12.60 (3.49) 54 12.94 (4.08)
Control 57 8.00 (3.55) 33 12.06 (3.91) 29  8.83 (2.59)



577

students about their thinking on the problems, helping them to state conjectures, or 
pursuing alternative ways to look at the problem. Consider the following illustrative 
excerpt from one session in the first year, near the end of October, in which students 
were using “u substitution” when solving the first problem in Fig. 41.1a:

[Instructor sits by the group and listens for about a minute]
I: What is u substitution and why?
S: I don’t know.
I: Well describe the situation where you’ve used u substitution before.
S:  Well apparently normally uses it for intervals (inaudible) Chain rule effect. So is that 

to record?
S: Well it’s just a different form. It’s not really…
S: We haven’t ever used…
S:  “Chain rule 3.4,” I know but I used it for the chain rule because we had like x + 4 for 

example to the eighth power (inaudible) then you bring down the 8 so the 8u7 and u’s 
equal to the stuff on the inside so then the derivative of the inside is 1 so then the answer 
would be 8x + 57. So if you just simplify it a little bit more without any of the (inaudible).

I:  So in this case u substitution is like a record keeping, you know, a record keeping 
device?

S: Yeah.
I: It simplifies so you can see what the outside function is?
S: Yeah.
I: Right. So then the question is, is it useful here?
S:  I don’t know ‘cause you’re…. The book doesn’t even mention it at all, the difficult 

part, that’s calc two.
S: Our book doesn’t have any.
S: No, this is all stuff from the AP calc last year.
S: Oh.
S:  Because if you had a problem that’s like super fast or complicated, u substitution helps 

out a lot.
S: You have to do it on the board.
I: Would you like to give a command performance?
S: Yeah.
S: Demonstrate…
S: I didn’t do b and c, I did 1a.
S: Who cares? Just get on up there!
S: I think we all did b and c once we do those equations.
I: I’ll hold you to that. [I moves to another group]

Notice that the instructor starts by getting the students to describe to him their un-
derstanding of u substitution and helps them “name” the rationale for why they are 
using it (“a record keeping device”). The instructor asks them whether the choice is 
“useful” and even though the students avoid answering, the instructor does not press 
them to give him a response. Instead, he invites them to write their work on the 
board. This style of instruction was consistent throughout the first year and praised 
by students as “empowering,” as it allowed them to “find answers on [their] own.”

The importance of this instructional style became evident during the first semes-
ter of the second year, in which there was a radical departure, a consequence of a 
change in instructors and of a lack of adequate understanding of the meaning and 
implementation of this way of teaching. During Fall of the second year, the instruc-
tor’s interaction with the students both in small groups and in the discussions with 
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the whole group, was characterized by rapid exchanges in which he asked questions 
that required one or two words from the students, overall using a funneling strategy 
(Steinbring 1989) that sought to align students’ solutions with his own. Consider an 
excerpt from a session toward the end of October in which students were working 
on minimizing the length of a route connecting three non-collinear cities, A, B, and 
C (see Fig. 41.1b), which were connected with lines a, b, and c; the students and 
the instructor used the lower case letters to refer to the corresponding angles in the 
triangle connecting the cities:

I: Ok, what was c in the picture?
S: The red [line] one from A to B.
I: c. Ok. So what did you do?
S: We had to multiply what we got for that by 2.
I: So what’d you get for c?
S: Like 2 √ 10x…
I: Tell me how you did it?
S: Ok. Law of cosine (inaudible).
I: Ok, what’s a? (pause 5 seconds) Tell me which segment I should label a?
S: (inaudible)
I: A to B? Ok. And what’s b?
S: x. (pause-4 seconds)
I: Ok. So c2? (pause-3 seconds)
S: I don’t know, I don’t know the law of cosines, our group (inaudible).
I: So a2 + b2…
S: + ab. No, +2
S: +4
S: −2ab.
I: Cosine of? This angle here right, cosine of angle b. I’m sorry, is that right?
S: No.
I:  No. What should it be? (pause-4 seconds) Angle? (pause-4 seconds) What should it be 

Helena [a pseudonym as all other names in the paper]?
S: What?
I: What angle should it be? Cosine of what?
S: Cosine of d.
I: No. Anne? What angle should I put there? Cosine of?
S: b/2
I: It’s this angle right here, right? Which happens to be?
S: 45.
I: 45°. Ok, Anne?
S: Yeah.

As seen in this exchange, which was typical of other lessons in this term, the in-
structor’s questions were geared toward getting information from students about 
what they did, and his answers were about whether their actions were correct or not. 
There were no instances in which the students were praised for exploring different 
avenues and very few instances in which the students gave long sentences when 
they spoke. Instructor and students’ interviews revealed a high level of frustration 
with the workshop sessions, which translated in the highest attrition level recorded 
(50%) in the three years. The instructor’s need for control was running counter the 
creation of an environment in which DHSP students could experience authentic 
mathematical problem solving; thus, we engaged in a series of conversations with 

V. Mesa and R. Megginson



579

the instructor geared to illustrate ways in which students can explore solutions on 
their own. This was an important element addressing both equity (as most of these 
students had not had access to this type of instruction) and quality (as we wanted 
students to live through the experience of creating mathematical knowledge, rather 
than remember something or providing answers to the instructor).

Using transcripts from the previous year and from his own teaching, the instruc-
tor received specific guidance about shifting his focus from precision and elegance 
of the solution to the process of discovery, emphasizing that it was students’ respon-
sibility to find an answer, even though the answer was not the most mathematically 
elegant. A series of three conversations with the instructor, in which the instructor 
read transcripts of two of his lessons, read transcripts of other DHSP lessons, and 
worked out an action plan, helped him realize that he, systematically, did not allow 
students to finish their responses and that his questions sought a precision that was 
probably not necessary so early in the process. An outcome of these sessions was 
an immediate change in the atmosphere of the workshop. Students felt at ease and 
happy that they stayed, with one student saying: “Last semester I dreaded to come 
to this class. This semester, it is the only class I look forward to come.” In spite of 
the low retention from the first to the second semester, the end results were in line 
with the findings from the first year. In the third year, the retention from the first to 
the second semester was almost 90%. Here is an excerpt in the workshop led by the 
same instructor in February of the third year, in which students were working on a 
problem that had appeared on an exam a few semesters earlier (find the volume of 
a table leg that is manufactured using the rotation of the function f( x) = 4 + sin( x) 
between x = 4 and x = 16π):

I: All right, Alex, what have you got?
S:  I’m reading this first problem, I don’t know, I don’t understand where does this rotate 

about.
I:  Good question, that’s a good question because it doesn’t actually say it, does it? What 

do you think?
S: Well I mean…
I: And that’s the way it was on the exam, by the way. So? (pause 5 seconds)
S: (inaudible) Spinning of itself, so it’s (inaudible).
I:  So let’s ask Alice. Hey, Alice, Alex wants to know how to decide where the thing is 

rotating about. What’s the axis of rotation?
S:  Ok, well we had it as the x-axis and then we put it as itself and now we have it back to 

the x-axis.
S: (inaudible)
S: Well I mean yeah, that’s reading part b.
S: That only makes sense.
I:  Well so somewhere here it’s the original of that picture which shows it a little better. 

And so how did you guys decide it wasn’t 4?
S: Well from part b?
I: From part b?
S:  Yeah, because it says its average rate is 1 where the average rate, to be 4 it would have 

to be rotated about the x-axis (inaudible).
I:  Well the other thing I heard you guys saying was, I heard Mary saying well if we rotate 

it about 4 then sometimes it would be infinitely thin, right?
S: Right.

41 Under-Represented Students at an Elite Public University



580

I:  And it would just fall apart, which… that’s a good point, right. And I think if the pic-
ture were a little better you could tell that it wasn’t actually infinitely thin. (inaudible)

S:   (many at once)
I: Ok.

The instructor refrains from giving a direct answer to a student question, instead 
seeking another student from a different group to explain; he also suggests mak-
ing a better picture to illustrate what is going on. The classroom environment was 
also more relaxed and, it was clear both from students’ behaviors and from end-of-
semester focus groups, that students enjoyed being in class and they gained confi-
dence in their abilities through it:

Male Student: Yeah particularly after the last semester, I mean [my confidence is] still been 
going up, (…) because, (…) it teaches you how to solve problems in general and I don’t 
know about anybody else, but I was always like sort of intimidated by word problems. But 
now, between taking physics and DHSP, it’s pretty much like I’m very used to that. I’m 
surprised that all I have to do is solve the equation, like it’s in the norm to just solve a really 
complicated word problem, so I’m more confident, which means I’m also more successful.

Female Student: [I think] another thing that adds to your confidence is that this is such a 
more comfortable environment, so you feel more confidence to ask questions that you don’t 
necessarily feel comfortable in your other math 116 classes. So that adds to your confidence 
because you can ask the questions because you’re in a more comfortable environment, but 
then after you ask the question, then you learn how to do the problem on your own.

Thus, the quality of instruction was fundamental for ensuring that the program could 
fulfill the expected goals. Working in difficult problems and a student-centered in-
structional style ensures that students will have ownership of the solutions.

 Keeping the Program Running

Having positive results is important, especially when they are as dramatic as the 
ones reported here. At the same time, ensuring that there are students who enroll and 
providing for the needs of the program are key aspects that cannot be overlooked.

Recruitment for the program has been a very intensive and time-consuming pro-
cess. Once students are admitted, a committee including the director of recruit-
ment at the college level, the instructor, and the coordinator of the Introductory 
Mathematics Program, selects all students who qualify to participate in the DHSP. 
These students receive a brochure in the mail describing the program and encour-
aging them to apply. The committee reviews the applications in order to determine 
eligibility: students must place in Calculus I and have an interest in majoring in a 
STEM discipline. When these students visit the campus during orientation, they are 
encouraged to enroll in the workshop. Students indicate that instructor involvement 
in this process is fundamental: they learn firsthand what the workshop is about and 
make their first—and in some cases only—connection with a faculty member. It is 
necessary to contact about 200 students in order to create a cohort of 60 students. 
Scheduling conflicts and not placing into Calculus I (either because their placement 
score is too low or too high) are the main reasons why students do not enroll in the 
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workshop. Recruiting is conducted from October (when descriptions of the pro-
gram are mailed to target high-schools) until the first week of classes in September. 
During the summer months (May to August), recruitment requires about two hours 
every day from the instructor and advisors to monitor which students have been 
admitted and explain to them the benefits of participating in the program.

Compared to other undergraduate classes that are taught in the department, the 
program is onerous. Although the size of the sections is in line with departmen-
tal standards, it is a faculty member, not a graduate student, who is in charge of 
the teaching; there are special sessions throughout the year in which students eat 
together or attend special performances related to STEM (e.g., Complicite’s “Dis-
appearing Number”), and there are administrative costs involved in assigning a 
faculty member for doing the advising over the summer. The program has been 
funded by an external grant from a private foundation and has received support 
from the College of Literature, Science, and the Arts, but it is expected that the 
Math Department will take control and ownership of the program. It is unclear 
that the department would be able to support the program, given its cost and the 
relatively “small” number of students who are being targeted. To ensure support, 
the department faces dilemmas in supporting the DHSP (and other small programs, 
e.g., Honors): it serves a specialized and small population, maintenance is onerous, 
it needs external funding, and collective agreement about mission alignment needs 
to be established.

Articulating Elements for a Successful Program

Three elements of the program—high-quality and challenging instruction, recruit-
ment, and economic sustainability—are fundamental to its success. These elements 
are part of the overall structure of an Emergent Scholars Program (Asera 2001), and 
they are depicted in Fig. 41.2. As noted before, during the semester, in which the 
class implementation departed from the expected practice, an unproductive class 
environment resulted in high student attrition. This would correspond to a break in 
the triangle in the “Workshop Setting” box in Fig. 41.2.

The administrative commitment for recruiting and supporting the day-to-day op-
eration of the program has ensured a smooth implementation during the first three 
years. This corresponds to the connections within the “Administrative Support” box 
in Fig. 41.2. The program has a strong advocate, who has secured funds and mobi-
lized resources to start up the program. This corresponds to the connections within 
the “Campus Negotiations” box. As the figure suggests, it would be impossible to 
run a successful program when one of the connections is missing: without targeting 
the right students or without students, there would be no workshop; without high-
quality instruction the attrition would be very high; and without funding, it would 
be impossible to support the instructor. Operational costs are high and, because in 
three years a relatively small number of students have been reached, doubts emerge 
about the “real impact” of the program. The onerous recruiting process leads to the 
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belief that at this elite university there might not be a population for the program, 
which is contrary to the evidence given by the data.

For us, the question of “what data are convincing enough” is fundamental. When 
resources are scarce, the decisions that a large research institution makes to sup-
port programs are based on impact on large numbers of students—the impact on 
equitable access needs to be visible. Testimonials from individual students whose 
lives have been transformed are abundant but not easily quantifiable for making a 
case for the positive balance between the benefits of the program against its costs: 
the workshop classes are more diverse than any of their other classes, and beyond 
gaining confidence in their ability to do mathematics, students make friendships 
that have lasted beyond that single year together. Maintaining high quality hinges 
on providing adequate support to sustain the program at all these levels.

Programs that address inequity in access to STEM majors by providing high-
quality mathematics instruction are at risk in large elite institutions under a view 
in which what matters is the ‘measurable’ economic, short-term return of the ‘in-
vestment’ over the academic and personal gains. Students’ lives are transformed in 
crucial ways when they experience challenging mathematics, or when they choose 
a STEM major; instructors’ understanding of what it means to maintain challeng-
ing work with students who are not necessarily considered “good for math” is also 
transforming and can potentially impact other courses they teach. Quantifying the 
impact that a steady but continuous increment in the number of students that gradu-
ate from STEM majors or documenting the way in which instructors transform 
their teaching is difficult and takes time. It requires commitment, methodological 
tools, and a shift in perspective from valuing the short-term over the long-term im-
pact of these initiatives.We believe that the Douglass Houghton Scholars Program 
has demonstrated convincingly that it has the potential for generating change in 
the access and retention of under-represented students in STEM fields and look 
forward to continue documenting its success so it can serve as a model for other 
post-secondary institutions.
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In Mexico, different exclusion mechanisms implemented in primary schools are 
obstacles to providing equity and quality education for the majority of children 
and turn differences into disadvantages, use a standardized pace for learning and 
attributing academic failure to children. These three factors adversely impact on 
children’s school performance, particularly among those from families with low 
income. In order to deal with this issue, the Program to Address Low Academic 
Performance (PABRE, its acronym in Spanish) was created. A description of the 
program is the topic of this chapter.

PABRE was set up in 1990 on one of the campuses of the National Autonomous 
University of Mexico (UNAM) located in a marginalized area of Mexico City. It 
aimed to investigate:

1. The understanding of the arithmetical knowledge of children attending one of 
the first three grades of primary school, particularly those deemed by their teach-
ers to be low achievers.

2. The building up of arithmetical knowledge and skills in order that those children 
can overcome an inequitable situation for learning in their classroom.

Three interwoven components structure the program: Teaching, Service for the 
Community, and a Research Agenda. These components constitute the means to 
provide an environment for a learning community in which university students of 
psychology learn to help children from the early school years to surmount hindranc-
es they face with arithmetical situations and to develop their numerical thinking, 
guided by the head of PABRE. Since 2000, activities for parents have been incorpo-
rated in PABRE in order to help them with different issues regarding psychological 
assistance and to further support their children at home.
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 The Social Setting of Primary School in Mexico

In Latin American societies, and Mexico is no exception, there is an unequal distri-
bution of goods and services that dramatically affects large sectors of the popula-
tion. Inhabitants of rural communities and marginalized areas of cities live in pov-
erty due to the precarious nature of their financial income. These people have less 
access to health, housing and educational services which, when available at all, are 
usually deficient in terms of facilities, equipment and quality. An economic policy 
that favors a concentration of wealth in very few hands together with a policy to cut 
public expenditure in social programs accomplishes nothing more than deepening 
the inequities that already exist (Ortega 2003; Sen and Kliksberg 2008).

Espíndola and León (2002) state that in the educational systems of Latin Ameri-
can countries phenomena such as repeating school years, holding children back a 
year and low levels of basic knowledge are common, and such phenomena have a 
greater impact on the poorer sectors of the population. As such, the functioning of 
Mexico’s public schools is impacted by the very asymmetries of society. Access to 
education, permanence in different educational levels and completion of studies is 
provided differentially among the various strata of society (Blanco 2009).

While making an analysis of different educational indicators in Mexico, the ex-
istence of phenomena that represent barriers to achieving equity came to light. The 
likelihood of attending school is lower among people from low-income families and 
communities. A child’s socio-economic origin is a determining factor in learning 
achievement (INEE 2008).

Although it is true that universal access to primary school has been a goal re-
cently achieved in Mexico, it is no less true that many students drop out of school 
because of their families’ economical difficulties. In rural areas, children join their 
parents in agricultural activities, even when such parents are forced to migrate to 
other states in the country to get employment in those regions. In the cities one sees 
that children go out to the streets to sell products, becoming a vulnerable popula-
tion. Or there are situations in which entire families are compelled to move in order 
to find employment in another location in the hope of improving their financial 
circumstances.

This is the situation in which many children fail to complete their studies in the 
period determined for compulsory education (from 4 to 15 years of age). Some are 
able to complete those studies later in their lives, while others simply drop out of 
school never to return, and this leads to functional illiteracy.

 Primary School and Low Academic Performance

Basic education in Mexico includes preschool, primary and secondary school. Pri-
mary school consists of six grades. It is designed for children aged 6 to 12, and it is 
organized around school subjects.
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Low grades, failing to achieve the target for a school year, repeating school 
grades and dropping out of school altogether are events in school life that are not 
unusual among the children classified as students with low academic performance. 
In Mexican public primary schools, it is quite common to find children who obtain 
unsatisfactory grades throughout the school year. Those grades, along with other 
actions of exclusion, lead the child to fail the year and the subsequent need to repeat 
it or, what is even worse, to drop out of school altogether.

Low academic performance in primary school has multiple facets. It is important 
to stress that in spite of the improvement in the terminal efficiency attained over the 
past few years, in Mexico (Martínez 2008, pp. 14–15), many children attending the 
first three grades of school face situations that lead them to be “low performance 
students”. These children are not exposed to failing and repeating the school year 
due to an extra-official provision that forbids the school administration failing stu-
dents in those grades.

If the main objectives of those grades consist of attaining adequate reading, writ-
ing and elementary mathematics skills, then one must ask about the teaching of 
these subjects when a school year is failed. It is true that the low academic perfor-
mance of some children may be due to situations existing outside of school or to 
individual conditions, but there is also a consensus in stating that the problem, to a 
great extent, lies in the quality of the education provided.

School as an institution is characterized by three features that influence student 
performance in a relevant way: uniformity of the pace for learning, the recogni-
tion given to the differences with which children enter school and the processes by 
which school failures are attributed.

From its earliest existence, the form of a school’s organization was taken from 
the manufacture and production sector of society in which the role of uniformity is 
fundamental. In education, uniformity can be seen in school curricula, the design of 
classrooms and in the way textbooks are written. Teachers expect the pace of learn-
ing of their students to be uniform, but this is seldom the case. Yet school organiza-
tion, focusing on the period of time stipulated for awarding grades, discriminates 
against children whose pace of learning does not meet school requirements.

Uniformity is an aspect that clearly highlights the manner in which schools treat 
differences. Ignoring them, more often than not leads to the failure of students 
who, for various reasons, are not performing as the school requires. One could also 
state that not only are the differences with which students arrive at school ignored, 
but that those differences are turned into disadvantages. So students who behave 
differently and who do not meet the school’s expectations are labeled in different 
ways, such as disadvantaged, slow learners, students with learning difficulties and 
the like.

What is even more worrying is the fact that through a process of attribution of 
blame, those very students are paradoxically made responsible for the condition 
with which they are labeled. Many teachers attribute their students’ low perfor-
mance to personal traits before accepting that the situation can be provoked by 
aspects related to the teacher’s behavior and ways of teaching or to conditions pre-
vailing in the classroom. Underlying this type of attribution of blame is a line of 
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logic in which it is the child and child alone who is responsible for his/her academic 
performance.

Various authors have referred to the role played by these traits in school failure. 
Briceño (2000) points out, as mentioned before, that the origin of the organization 
of modern school systems was based on the production systems used in manufactur-
ing and factory production lines. This is associated with a uniform pace for learning, 
which turns schools into factories of inequalities and of school failure given that 
they exclude students who learn at a slower pace.

Escudero et al. (2009) relate educational exclusion to the school order and to the 
discourses that make it up: “It operates by submitting students to certain labeling 
and classification operations, as well as to a system of attributions and responsibili-
ties, according to which failure is basically due to subjects being <unable> to be 
successful” (p. 52). They emphasize the importance of looking at the processes by 
which students’ differences are referred to, valued and treated, because they often 
become unfair inequalities. Perrenoud (1990) also states that school transforms cul-
tural differences into school inequalities that, through academic evaluations, gener-
ate explicit hierarchies of excellence, which determine academic failure or success.

Terigi (2009) classifies academic failure as a psycho-educational problem. She 
issues a severe criticism of the individual pathological model of school failure and 
points out that: “in the field of educational practices, the individual pathological 
model continues to be in effect as the usual interpretation of vast professional sec-
tors faced with academic difficulties” (p. 35). She warns against the use of psycho-
educational knowledge as an instrument employed to blame students for failure.

 The Psychologists’ Role in Low Mathematics Achievement

How can an educational psychologist contribute to the reduction of the problem of 
low mathematics performance in primary school? In order to respond to the ques-
tion, several issues related to the relationship between psychology and mathematics 
teaching, the roles played by psychologists in education and the processes by which 
future educational psychologists are trained must be considered.

Kilpatrick (1992) states that psychology has influenced the research carried out 
in mathematics education. Studies dealing with thought processes and the manner in 
which mathematics topics are taught and learned are some of the interests in com-
mon on both research agendas.

One of the reasons why psychologists participate in the teaching of mathemat-
ics is based on a demand originated within the field of educational psychology to 
draw closer ties between the latter and various academic disciplines. Pintrich (1994) 
refers to that stated by Shulman (1990) on the subject; he...

suggested that all too often in the past, educational psychology has not paid sufficient atten-
tion to the content and structure of the disciplines that we usually study in school environ-
ments and that we have imposed psychological learning models on the contents of those 
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areas…the disciplines must be the basis for comprehending the thought of a domain, and 
the psychological models must adapt to the subject of study and not to the contrary (p. 144).

Similar terms are used by Mayer (2001) when pointing to the development of sub-
ject psychologies as an accomplishment of educational psychology; the very inten-
tion of subject psychologies is “the learning and the instruction within specific aca-
demic subjects such as reading, writing, mathematics, science and history” (p. 84).

The proposals made by Resnick and Ford (1990) also fall within that point of 
view: “The extent to which psychologists are able to successfully describe what 
people do when they do mathematics tasks, and how they learn to think mathemati-
cally, is the extent to which the psychology of mathematics will be useful for learn-
ing” (p. 18).

In recent years, a tendency has been observed that shows greater participation 
of educational psychologists in school actions and decision making; this is the case 
in Mexican primary public schools. Right through the levels of the school system, 
psychologists are able to develop prevention, diagnosis, planning, intervention and 
research activities. One of the roles of the educational psychologist consists in de-
signing programs for children at risk of school failure.

Despite the important relationship between psychology and the teaching of 
mathematics, and in spite of the increasingly important role given to educational 
psychologists regarding low academic performance, in psychology training pro-
grams, there is insufficient information to support actions and a lack of ability to 
intervene in various aspects of low performance in arithmetic.

If indeed it is deemed advisable for educational psychologists to distance them-
selves from a pathological vision of low academic performance, from a widespread 
practice that consists of applying psychological tests that frequently lead to a diag-
nosis of the children in which they are labeled as slow learners, mentally retarded 
or psychologically immature, then their study programs must change. They need 
to include information regarding the different processes for building mathematics 
knowledge and effective ways of furthering it. It is important to create learning 
environments in which psychology students have the opportunity to identify and 
evaluate the performance of children considered low achievers in mathematics so 
as to propose alternatives that enable them to improve their performance and be 
successful at school (see Buenrostro and Figueras 1999).

The Program to Address Low Academic Performance

PABRE is carried out as part of the educational area curricular activities of the 
Faculty of Higher Studies Zaragoza (FEZ Zaragoza, its acronym in Spanish) of 
UNAM. It is a component of a course in the psychology study program.

During the fourth and fifth semesters of the study program, the students review 
different topics of educational psychology. One of the activities assigned to them, 
known as Service for the Community, consists of a set of actions similar to those 
that they would undertake in their professional practices. Students face real-life 
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situations that must be analyzed and solved with the advice of their university teach-
ers. The problem of interest, described in this chapter is low mathematics perfor-
mance in the first three grades of primary school.

PABRE is organized along three components that comprise basic lines of action 
to attain the following objectives:

• Teaching:
 Provide students with theoretical and practical knowledge that enables them to 

give psycho-educational attention to children who have been reported by their 
teachers as having difficulties articulating language, mastering reading and writ-
ing and arithmetic.

• Service for the Community:
 Offer quality psycho-educational support to children from the first three grades 

of primary school identified as students of low academic performance whose 
families have low income. The main challenge is to offer these children opportu-
nities to achieve an academic performance that distances them from school year 
failure, repetition or dropping out.

• Research Agenda:
 Contribute with theoretical and practical proposals that lead to further knowl-

edge of the phenomenon of low academic performance and to search for alterna-
tives to solve this educational problem.

According to PABRE’s guidelines, the psychology students see the children twice 
weekly in working sessions after school. In order to give children the support need-
ed, the students:

• Develop psycho-educational evaluation instruments and apply them to the chil-
dren who have difficulties in acquiring language, both written language and 
mathematics.

• Design and apply intervention strategies aimed at solving the difficulties.
• Write psycho-educational evaluation and intervention reports.

 Arithmetic in the Early Grades of Primary School

Within the framework of PABRE’s teaching and service activities, several quali-
tative researches and intervention studies have been undertaken (see for example 
Buenrosto 2003) to progressively build up the project known as “Arithmetic in the 
early school grades oriented to understand children’s numerical thinking and to 
foster its development.”

When primary teachers made an application for the admission of a child into 
the PABRE, several actions aimed at strengthening children’s arithmetical knowl-
edge and at improving their academic performance began to be explored. These 
actions involved the psychology students, the teacher-researcher, the children and 
their mothers, all working together within an environment that can be characterized 
as a learning community. The actions carried out are organized into and along three 
lines of action.
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Line of Action 1: Strengthening Children’s Knowledge  
of Arithmetic

In this line of action, emphasis is placed on two core aspects: promoting the chil-
dren’s arithmetical knowledge and contributing to the improvement of their aca-
demic performance. Although these aspects are related, they also have different nu-
ances that need to be kept in mind. With respect to the first, the activities carried out 
with the children are taken from the mathematics education research literature that 
deals with instruction of arithmetic and the ways of fostering arithmetical knowl-
edge. Regarding the second, the program focuses on the mathematics content that 
the children must learn in order to achieve a favorable academic performance. At 
times both aspects go hand in hand, while at others the school practices emphasize 
content that are not necessarily recommended in the literature.

The task of promoting the building up of arithmetical knowledge is structured 
around four topics: numeration systems, addition and subtraction, multiplication 
and sharing, and the numerical processes of quantification (subitizing, counting and 
estimating), comparison and the part-part whole relationship.

With respect to numeration systems, it is important that the children master 
both oral and written systems. In terms of the oral system, the program fosters 
an adequate enunciation of the oral numerical sequence, both from the beginning 
and from a particular segment. Skip counting is also stressed, especially, 2s, 3s, 
5s, 10s, 100s and 1,000s. Regarding the written numeration system, the program 
focuses on the comprehension of place value together with different forms of writ-
ten representation of numbers, and on reading and writing of numbers with up to 
four digits.

In Addition and Subtraction, the children are faced with different types of prob-
lems: Change, Combination and Comparison. The program uses a variety of solu-
tion strategies to solve the problems, as well as conventional and non-conventional 
algorithms.

Likewise, for Multiplication and Sharing, the program considers different types 
of problems and solution strategies together with the corresponding algorithms. 
Special attention is placed upon mastery of multiplication facts.

The usage of quantification mechanisms is encouraged, particularly “counting 
on,” considered an important element in the generation of more elaborate arithmeti-
cal knowledge. The program stresses “counting forward” and “counting of groups”, 
as well as establishing comparisons among numbers and the part-part-whole rela-
tionships that exist among them.

Within the work with children, these guiding principles are followed:

• Children’s strategies used to solve arithmetical situations, be they considered 
correct or incorrect, constitute a clue to how the child conceives both the situa-
tion and the way to solve it. Hence children’s actions represent an opportunity to 
appreciate their arithmetical knowledge and skills.

• In order to plan activities, use is made of children’s informal knowledge as a 
starting point to favor strategies that are both more economical and of greater 
conceptual complexity.
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• A variety of didactical activities in view of the fact that the children have differ-
ent learning styles are included in the program. One child may adapt to and feel 
more comfortable with certain activities than with others; thus flexibility to work 
with hands-on materials, work sheets and/or educational software is offered to 
the child.

• The instruction principles expressed by Merrill (2002), when he states that learn-
ing is encouraged when students observe a demonstration, apply the new knowl-
edge, activate their previous knowledge, integrate the newly acquired knowledge 
into their daily experiences and are involved in a task-focused activity are taken 
into account.

• The use of talk and several actions that foster the building up of children’s arith-
metical knowledge are used in the program. Through questions, indications and 
various actions, the teacher and psychology students encourage the children to 
reflect upon the situations put to them and to seek out more complex and varied 
responses.

The working sessions with the children are organized in three phases: planning, 
execution and analysis, considered as a cycle that is repeated. The information ob-
tained from the analysis of the children’s actions during the session serves as a basis 
for the planning and execution phases of the next session, and so on.

One of the objectives of the program is to contribute to improving children’s 
mathematics performance. This can only be accomplished indirectly since no direct 
intervention in the classroom setting is undertaken; however, a connection is estab-
lished with the school through the official mathematics textbooks and the children’s 
notebooks.

There are two widely used practices in Mexican primary school classrooms. One 
is the work done with the textbook; this is a requirement of the education authorities 
and, for many teachers, it is very important that the exercises contained in the book 
be solved. The other is the work done with the notebooks, either to reinforce the 
contents of the textbooks or to include a new content area that the teacher considers 
important. Analyzing samples of such documents makes it possible to gain an ap-
preciation of the academic demands that must be met by the child in school in order 
for him/her to be considered of an acceptable academic performance level by his/
her teacher. In addition, it provides elements needed to design similar activities to 
those included in the children’s textbooks and notebooks, and to help them to meet 
the school requirements.

A sample of a specific theme taught to the children is included to illustrate the 
work done along this line of action.

Addition and Subtraction are a major concern of teachers of the first grades of 
primary school. Teaching them has traditionally been characterized by emphasizing 
calculation procedures, on the assumption that once a child has learned to do basic 
addition and subtraction operations, she/he will be able to solve problems where 
those operations are needed. For some decades now, researchers have shown that 
prior to beginning school many children are able to solve some problems using 
informal strategies, objects and/or fingers.
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In recent years, the importance of providing different types of addition and sub-
traction problems from the very beginning has been highlighted. This change of 
viewpoint in teaching has made it possible for children to learn on the basis of their 
previous knowledge, to make sense of the actions they carry out and to master their 
solution strategies to solve different types of problems. Proposing to teach Addition 
and Subtraction by problem solving implies taking two important aspects into con-
sideration: the type of problem and the strategies used by the children to solve them.

Story problems (Van de Walle 2004) or whole number situations (Fuson 1992) 
of four categories: Change Add To, Change Take From, Compare and Combine are 
posed to the children. The following actions are developed in the problem proposal:

Going from simple to complex situations The semantic structure of the problems 
differ, consequently, some problems are easier to understand than others. We begin 
with “Change with Unknown Result” and “Combine All Unknown” problems and 
go all the way through to “Comparison” problems.

Using transparent wording The manner in which the problems are worded can 
either facilitate the solution or make it difficult. As a result problems have been 
worded in independent sentences and in a temporal sequence (for the Change prob-
lems), which favors children’s comprehension of the problem.

Using diagrams in the problem representation The use of diagrams that rep-
resent data relationships is a tool that favors problem understanding and solution. 
When a problem is posed, a diagram is also presented.

Helping to read the problem Frequently, the children accepted in PABRE are not 
yet able to read or have a hard time reading the problem. In these cases, either the 
entire problem or parts of the problem are read to the children. For each sentence 
read, questions are posed so as to ensure understanding of the word problem.

Depicting problems in different ways Different means are used to pose the prob-
lems, for example, using cards that contain both the word problem and a diagram, 
and situations that occur in everyday life such as purchasing things in a market, 
movie rental store the bookstore, etc. Work with problems included in the children’s 
school textbooks is also included.

Line of Action 2: Understanding of the Children’s Arithmetical 
Knowledge

The activities undertaken in this line of action are designed to enable the psychol-
ogy students to:

• Understand the processes by which children build up arithmetical knowledge.
• Identify the changes that are produced in the building up processes.
• Design, choose and carry out didactical activities to promote children’s compe-

tent use of the arithmetical knowledge.
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There are three activities: attendance at seminars, intervention with the children and 
writing work reports.

Attendance at Seminars

By attending seminars, the university students get relevant information related to 
arithmetic teaching and learning. Moreover, the students are given tools to identify 
different strategies and behaviors deployed by the children when different arith-
metical situations are put to them.

The information contained in the seminars is divided into three themes. (1) a 
review of the knowledge features of the four arithmetic topics mentioned previ-
ously; (2) informal and formal strategies to solve arithmetical problems, as well as 
difficulties children face; and (3) the ways of identifying and promoting arithmeti-
cal knowledge.

Within the second theme, the students are given general guidelines to conduct 
their evaluation, intervention and writing a report of the activities carried out. In 
order to accomplish this, the students review an evaluation instrument that is ap-
plied to the children so as to find out what arithmetical knowledge they possess. The 
students also review several “teacher guides” to orientate their interventions with 
the children and to report on the changes in the strategies employed by the children.

The third theme refers to the analysis of the arithmetic content of the official 
textbooks of the first three grades of primary school and the identification of the 
teaching tendencies underlying the children’s notebooks.

Intervention with the Children

For the university students, working with the children is perfect for understanding 
how they build up their knowledge and how to foster that process. For achieving 
this, individual working sessions with two students and one child are structured. One 
of the students conducts the session while the second student records the child’s ac-
tions. At the next session the roles are reversed. Although there are different ways of 
recording the data, video recording has been used lately. The videotapes produced 
become the property of PABRE and can be used subsequently by the university 
students. In addition to the individual sessions, the program also includes group 
sessions, where the university students are able to see the advantages of the coop-
erative learning that takes place when several children undertake a common task.

Writing Work Reports

The students write work reports from the very beginning of their work with the 
children to the end of those interventions. The reports are documents designed to 
achieve the following purposes:
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• To provide relevant written evidence concerning different aspects of the inter-
vention processes and particularly of the changes in the children’s arithmetical 
performance.

• To serve as the basis for choosing the didactical objectives and activities that are 
to be undertaken in subsequent working sessions.

• To get information of how students perceive the children’s performance, and the 
way in which they conducted the intervention.

The reports also constitute documents to support the training of students of the next 
generation of the study program.

In some of the previous didactical experiences, students found it difficult to de-
scribe, using words only, the strategies employed by the children. In the majority 
of the cases, the written information lacked clarity. Consequently, two alternative 
forms of describing strategies were adopted.

The work of Mayer et al. (1996) was taken into consideration. They used an 
instruction technique known as “multimedia summary” consisting of a sequence of 
illustrations accompanied by a brief text to promote student comprehension of sci-
entific explanations. Labinowicz’s (1985) ways to describe the actions of children 
when faced with different mathematics situations has also been used. Children’s 
actions are shown in a series of drawings, each of which is accompanied by a brief 
description of the action. In overall terms, the following elements are included:

• Description—in written language—of the didactical situation put to the child.
• Graphic and textual description of the child’s action.
• Remarks concerning the action.

The second alternative uses short video clips in order to compare the actions of the 
children before and after the interventions. The video clips are accompanied by an 
assessment carried out by the student that refers to the type of action and the stu-
dent’s placement of that action within an appropriate context.

The university students record the entire intervention process, and they put it 
together in an electronic portfolio. That electronic portfolio includes the topics 
worked with the child. For each child, the portfolio includes the objectives, the ma-
terials used, the didactical activities undertaken and, most particularly, the changes 
in the arithmetical knowledge as a result of the intervention, attempting to make a 
clear contrast between any given child’s initial actions and his/her post-intervention 
achievements.

An example of the manner in which the theme of Addition and Subtraction is 
dealt with by the psychology students is included to illustrate the work done along 
this line of action.

It is useful to recall that one of the concerns of the teacher-researcher, responsible 
for this program is to distance future educational psychologists from a pathological 
conception of mathematics difficulties, as well as from the generally accepted idea 
that children are themselves responsible for low performance in school. The best 
way to change that conception is by placing psychology students in contact with the 
knowledge derived from research that deals with arithmetic teaching and learning. 
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This aim has led to an exploration with the students of teaching situations that en-
courage a different conception of children’s arithmetical performance, as well as the 
design of educational interventions that promote children’s arithmetical thinking. 
An effort made in this direction is the incorporation of “Communication and Infor-
mation Technologies” together with an orientation known as “learning by making 
multimedia products” (Simkin et al. 2002).

The manner in which the aforementioned components are introduced into the 
study of Addition and Subtraction is described in the following paragraphs.

It is important to know the structure of the additive word problems and the strate-
gies used by the children to solve those problems. These topics are reviewed during 
the seminars, as are the following activities:

Presenting problems on cards Pairs of students are asked to prepare three exam-
ples for each of the eleven types of additive problems, along with their correspond-
ing diagrams. The problems are then reviewed during the seminars, verifying that 
they are of the type specified and whether the wording is comprehensible for the 
children.

Preparation of electronic presentations A presentation that includes at least one 
slide for each of the 11 problems is prepared by the university students. Together 
with a text, they are required to include an illustration that facilitates understand-
ing of the problem. In addition to reviewing the aspects mentioned in the previous 
point, an analysis is made of the image’s relevance in order to determine whether it 
is essential to solving the problem or is simply decorative in nature.

Application of educational software Software was designed to display the differ-
ent types of problems and the most common strategies used by the children to solve 
the problems. The strategies are shown using video clips of children executing those 
strategies; the video clips contain data gathered in PABRE itself.

Analysis of textbooks Since mathematics textbooks play an important role in 
teaching, a review is made of the problems included in those texts. Types of prob-
lems, form of presentation and the sequence in which they appear are analyzed.

Once the students have worked with the children, they are asked to make a vid-
eotape of the strategies used by the children to solve the problems. The videos are 
included in an electronic portfolio with which the students can present the changes 
in the children’s strategies and the type of problems that the children are able to 
solve as a result of the intervention. The videos and the electronic portfolios are col-
lectively analyzed and are used to train subsequent groups of psychology students.

Line of Action 3: Connecting with the Children’s Families

The children come to the FES Zaragoza facilities on the UNAM campus accom-
panied by their mothers and, at times, by their brothers and sisters. This group, 
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together with the university students and the teacher-researcher, forms a learning 
community. This is a group of people who have common objectives in mind and 
whose actions will benefit the members of the group.

The support provided to the mothers is structured on the basis of the following 
five components:

Consultations Two types of consulting are provided. The first deals with a specific 
subject matter, booklets with information and working materials used by the moth-
ers at home are prepared. One or more talks are given to the mothers to inform them 
of the importance of the subject matter. The materials are placed at their disposal 
and activities are practiced so as to further the support for developing children’s 
knowledge. Follow-up is given to the actions undertaken by the mother at home, 
providing assistance regarding difficulties she may have faced. The second type of 
consulting is based on the specific needs of each child. As a result of the working 
sessions, the university students make recommendations to the mothers or suggest 
that certain activities be done at home.

Consultations of mathematics content In the Mexican primary school system, 
the textbooks and notebooks are relevant. Consequently, they are reviewed and the 
way in which mothers can help their children solve the arithmetical situations con-
tained in those materials is explained to them.

Inclusion of the siblings in the activities The children’s siblings also benefit from 
the program. While the children are in the working sessions, their siblings can use 
board games and books that are available for their use. They are allowed to join the 
working sessions if they want to. This can be useful since, when the siblings are 
older, they can help their younger brother or sister at home.

Talks on subjects of family interest In the school setting and in the children’s 
houses, certain problems arise, and it is important to have information concerning 
those problems. At the beginning of a year, children’s mothers are asked on which 
topics they would like to have more information in order to improve their relation-
ships with their children and families. Based on that information, talks are prepared 
on the topics chosen. Talks have been given regarding bullying at school, sexual 
abuse, and family relations, to mention just a few.

Personal marital or family consulting services When the difficulties require indi-
vidual psychological treatment, the mothers are offered marital or family therapy. 
Some of the problems that are regularly dealt with include a parent leaving home, 
alcoholism, sexual abuse, and domestic violence.

The fact that the children and their families attend PABRE generates opportuni-
ties for the university students to delve into the problems of their discipline per se 
and to face situations in which they must put their professional skills to the test.

This conjunction of interests and needs characterizes the learning community 
which, with respect to low academic performance, creates emotional and knowl-
edge-based ties among its participants.
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 Final Remarks

The program described herein is constantly being adapted since its creation in 1990. 
Those modifications respond to assessments sustained on reflection regarding dif-
ferent aspects of two components of PABRE—Teaching and the Service for the 
Community—and the results of the studies undertaken each year (see for example, 
Buenrostro 2001, 2003).

The factors that adversely impact on children’s performance in school, for ex-
ample, turning difference into disadvantage, uniformity in the pace for learning 
and attribution of failure to children, are recognized and used for the design of the 
teaching of the educational component of the psychology study program at FES 
Zaragoza of UNAM.

Since 1990, around 300 university students have participated in PABRE’s activi-
ties. The head of this program expects that those who graduated from the study pro-
gram and now work in education institutions will make efforts to achieve equity in 
the classroom settings in primary schools. It is also expected that the psychologists 
would work together with teachers of the first three grades to improve children’s 
mathematical education.

Due to the complexity of the evolution of children’s arithmetical knowledge, 
together with the factors involved in assigning a grade in school, a quantitative 
measure has not been adopted as a criterion for evaluating PABRE. Emphasis has 
been placed on the changes in the arithmetical knowledge of each of the children—
around 400 in 20 years—changes that are well documented in the reports written by 
the students and in Buenrostro (2001, 2003).

PABRE has a social recognition in the surroundings of FES Zaragoza’s; how-
ever, more links between PABRE and the Mexican educational system must be 
established, in particular, connections with teacher training institutions should be 
made in order to search for equitable conditions for children to learn mathematics 
in public primary schools.

Acknowledgments Every child who participated in PABRE’s activities had the desire to learn 
and made efforts for improving her/his academic performance. The children helped the rest of the 
members of the learning community to understand children’s numerical thinking, its development 
and how to help other children in similar circumstances. We will like to express our acknowledg-
ment to all of them.

During the 20 years of PABRE, different types of support were given to the people responsible 
for the development of the program. Grants have been received from UNAM (PAPIME—number 
of reference: PE301606) and the National Council of Science and Technology (Conacyt—number 
of reference: G37301-S; 2002–2005).

References

Blanco, E. (2009). La desigualdad de resultados educativos. Aportes a la teoría desde la investig-
ación sobre eficacia escolar. Revista Mexicana de Investigación Educativa, 14(43), 1019–1049.

Á. Buenrostro and O. Figueras



599

Briceño, C. (2000). Escolaridad, calidad y equidad: Convivencia frustrada. Encuentro de Direc-
tivos y Altos Funcionarios de los Ministerios de Educación de los países Iberoamericanos. 
Antigua, Guatemala, 14 al 17 de marzo de 2000.

Buenrostro, A. (2001). Un modelo de enseñanza dirigido a la formación de psicólogos educativos 
a través del apoyo a niños con bajo rendimiento escolar en aritmética. M. Phil. Thesis. México: 
Universidad de las Américas.

Buenrostro, A. (2003). Aritmética y bajo rendimiento escolar. Diseño e implementación de dos 
modelos de enseñanza. Ph.D. Thesis. México: Cinvestav.

Buenrostro, A., & Figueras, O. (1999). The formation of educational psychologists through a program 
for helping children with a low school performance in arithmetic. In F. Hitt & M. Santos (Eds.), 
Proceedings of the twenty first annual meeting of the North American chapter of the international 
group for the psychology of mathematics education (Vol. 2, pp. 692–697). Mexico: Cinvestav.

Escudero, J., González, M., & Martínez, B. (2009). El fracaso escolar como exclusión educativa: 
Comprensión, políticas y prácticas. Revista Iberoamericana de Educación, 50, 41–64.

Espíndola, E., & León, A. (2002). La deserción escolar en América Latina: un tema prioritario para 
la agenda regional. Revista Iberoamericana de Educación, 30, 39–62.

Fuson, K. C. (1992). Research on learning and teaching addition and subtraction of whole num-
bers. In G. Leinhardt, R. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics 
teaching ( pp. 53–187). New Jersey: Lawrence Erlbaum.

INEE. (2008). Panorama educativo de México 2008. Indicadores del Sistema Educativo Nacional. 
Distrito Federal, México: Instituto Nacional para la Evaluación de la Educación.

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Hand-
book of research on mathematics teaching and learning (pp. 3–38). New York: Macmillan.

Labinowicz, E. (1985). Learning from children. New beginnings for teaching numerical thinking. 
Menlo Park: Addison-Wesley.

Martínez, F. (2008). ¿Avanza o retrocede la calidad educativa? Tendencias y perspectivas de la 
educación básica en México. Informe 2008. INEE.

Mayer, R. E. (2001). What good is educational psychology? The case of cognition and instruction. 
Educational Psychologist, 36, 83–88.

Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: mean-
ingful learning from visual and verbal summaries of science textbook lessons. Journal of Edu-
cational Psychology, 88(1), 64–73.

Merrill, D. (2002). First principles of instruction. Educational Technology Research and Develop-
ment, 50(3), 43–59.

Ortega, F. (2003). La equidad en educación básica. Revista Latinoamericana de Estudios Educa-
tivos, XXXIII(2), 119–134.

Perrenoud, Ph. (1990). La construcción del éxito y del fracaso escolar. Madrid: Morata.
Pintrich, P. R. (1994). Continuities and discontinuities: Future directions for research in educa-

tional psychology. Educational Psychologist, 29(3), 137–148.
Resnick, L. B., & Ford, W. W. (1990). La enseñanza de las matemáticas y sus fundamentos psi-

cológicos. Barcelona: Paidós.
Sen, A., & Kliksberg, B. (2008). Primero la gente: Una mirada desde la ética del desarrollo. 

Barcelona: Deusto.
Shulman, L. (1990). Reconnecting foundations to the substance of teacher education. Teacher’s 

College Record, 91, 300–310.
Simkins, M., Cole, K., Tavalin, F., & Means, B. (2002). Increasing student learning through mul-

timedia projects. Virginia: ASCD.
Terigi, F. (2009). El fracaso escolar desde la perspectiva psicoeducativa: Hacia una reconceptual-

ización situacional. Revista Iberoamericana de Educación, 50, 23–39.
Van de Walle, J. (2004) Elementary and middle school mathematics. Teaching developmentally. 

Boston, MA: Allyn and Bacon.

42 Children’s Numerical Thinking and How to Foster and Understand Its Development



601

The chapters in this section deal with lessons learnt by academic researchers and/
or school practitioners from attempts to manage equity and quality within various 
educational contexts (early childhood, primary, secondary, university and the math-
ematics education profession itself) and with a variety of marginalised populations 
(African-American, Latino students, low socioeconomic backgrounds, Indigenous 
students and researchers from non-English-speaking countries). They represent sto-
ries from different regions and countries (Australia, Europe, Israel, Mexico, South 
Africa and the United States). Arguably, they represent different criteria for evalu-
ating quality and equity. Undoubtedly, such a variety makes generalisations from 
their learnings somehow problematic. There are, however, some overall themes that 
are worth identifying and some general challenges which require further action and 
reflection in our practice.

 Many Ways to Promote Equity and Quality

Collectively, the chapters in this section point to the fact that action towards the ob-
jectives to raise the levels of both equity and quality in mathematics education is not 
only essential (as the many other chapters in this book argue) but that it is also pos-
sible. Experiences in the mathematics education literature about attempts to achieve 
either equity or quality in mathematics education are rich and varied. What these 
particular stories reported here have in common is that they acknowledge the need 
for attempts to achieve both objectives together in the different contexts in which 
we work. Perhaps there are a few observations that I can make about conditions for 
productive action in the area. Every program of work reported here has stemmed 

B. Atweh et al. (eds.), Mapping Equity and Quality in Mathematics Education, 
DOI 10.1007/978-90-481-9803-0_43, © Springer Science+Business Media B.V. 2011

Chapter 43
No Highway and No Destination?

Editor’s Reaction to Part IV

Bill Atweh

B. Atweh ()
Science and Mathematics Education Centre, Curtin University,  
PO Box U1987, Perth WA 6845, Australia
Tel.: +618-9266-7073
Fax: +618-9266-2503
e-mail: b.atweh@curtin.edu.au



602

from individuals or groups who have identified a segment of the population who 
might be excluded from full participation and achievement in mathematics educa-
tion. Facing this challenge, these authors here shared a (non-naïve) belief and hope 
that action towards improving participation and achievement in the school subject 
and the discipline itself is possible, and they shared a determination to be involved 
in the process of change.

Reading this collection, one cannot but be inspired by the variety of possible 
types of action and creative solutions that are possible in dealing with the challenge 
to increase equity and quality in mathematics education. For example, the chapter 
by Nelson discusses the importance of linking with parents of excluded non-English 
learners in the primary school in looking at the problem of exclusion in mathematics 
education in the context of a more holistic social problem of exclusion in general 
society. As that chapter reminds us, parents are not the source of the problem of 
disadvantage, an opinion which is often implied by reports that blame the family 
background as a reason for lack of performance, but rather they are an effective 
source of power to deal with educational problems. The chapter by Hendrick and 
Edwards reports on the collaboration between two teachers from distant schools 
who offer one advance mathematics subject through the Internet—thus allowing a 
school with limited resources and low numbers of students who want to pursue such 
studies the ability to offer their students such a choice. Unfortunately, this creative 
use of technology is often neglected in the literature in mathematics education. The 
chapter by Jacobson and Mistele develops mathematics activities designed for the 
increasing students’ awareness of social issues thus allowing the discussion of so-
cial justice issues in mathematics teaching and at the same time making mathemat-
ics more meaningful for the students.

The chapter by Buenrostro and Figueras reports on a project that involved 
university psychology students who undertook a project with low socioeconomic 
school children at the lower grades to study and improve their development of arith-
metical skills. This benefited both the university students themselves and the school 
children with whom they worked. Brantlinger used critical mathematics activities 
with his secondary Latino and African American school students in order to make 
mathematics more meaningful and accessible. Graven and Buytenhuys report on 
how a subject on mathematics literacy can transform students from passive non-
participants into active negotiators and sense makers of mathematics. The chapter 
by Linchevski, Kutscher and Olivier describes a program of teaching that oscillates 
between students working together on some common mathematical tasks at times 
during the lesson, and working separately on more advanced tasks at other times, 
thus attempting to avoid the problems noted in the literature about streaming of 
students too early. Mesa and Megginson tackle the problem of access to an elite 
university by students from disadvantaged backgrounds at a time when the State 
was undergoing a backlash against affirmative action programs. Mills and Goos 
reported on two schools with a large number of students from Indigenous and low 
socioeconomic backgrounds. They illustrate how disadvantaged schools are often 
studied for their difficulties and deficit. This chapter points out to the very positive 
ways in which the schools have attempted to promote equality and quality with their 
students.
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The chapter by Jaworski, Pone and Mariotti deals with an important, yet very in-
frequently researched, problem of exclusion at one of the key international activities 
in mathematics education, namely, international conferences. For many mathemat-
ics educators, participating in international conferences is an essential component 
of their own professional development as well being a venue for the establishment 
of collaborations and joint research projects. More importantly, exchanges at con-
ferences are highly influential with regard to learning with and from each other. 
However, participation in international conferences raises important questions as to 
who is participating and whose views are given prominence. The chapter discuses 
how at least one conference attempted to be self critical about its own attempts to 
promote quality of research exchanges without neglecting its equity commitments.

 No Highways

Action to promote equity and quality in mathematics education is not only neces-
sary and possible, but it is not without its difficulties. Most authors in this section 
were very candid in documenting both the gains achieved and the problems encoun-
tered along the way in their endeavours. Questions of equity and quality education 
do not depend on what happens in the educational settings alone—social conditions 
and history play crucial roles. Basil Bernstein (1971) was correct in his observation 
that schools do not compensate for society. However, there is some good news. 
Research evidence points out that of all the school factors that effected students’ 
achievement, the teacher was the most important. Hence good teaching “can make 
a difference, but not all the difference” (Hayes et al. 2006 p. 178). Collectively, the 
chapters point out to serious challenges in schools’ attempts to reach quality and 
equity in mathematics education.

Martin and Goos illustrate inspiring stories about principals and teachers who 
are dedicated to improving the status of their students. However, they point out that 
in some contexts, in particular, Indigenous education, the historical conditions of 
neglect and oppression cannot be overcome overnight. Such contexts require special 
concentrated attention and long-term dedication that require significant resources. 
They conclude that the agenda of equity will always be an unfinished business of 
schools and education communities. A similar theme is discussed by Hendrick and 
Edwards who illustrate how successful equity and quality action based on initiatives 
from a handful of teachers may need significant resources to achieve its aim. Short-
term programs can not compensate for long-term disadvantage.

Action to achieve equity and quality often takes the form of special programs 
that are at times isolated from the general day-to-day running of the teaching of 
mathematics. This creates some difficulties in achieving higher equity and quality. 
Bratlinger discusses how even the use of critical mathematics posed problems for 
the teacher—in this case not a very experienced one—in integrating such activi-
ties in the teaching of the whole subject. Jacobson and Mistele point to the need 
to maintain a balance between a discussion of social issues and the highlighting 
of teaching mathematics in classes that use such approaches. Further, Bratlinger 
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mentioned some resistance by some students who have perceived these activities 
as a possible distraction from the main curriculum. His experience points to the 
urgent need for professional development of teachers as a crucial component of 
such program implementation. Although not articulated directly in their chapter, the 
model proposed by Linchevski, Kutscher and Olivier demands significant profes-
sional development of teachers to achieve its aims. Similar concern was expressed 
by Graven and Buytenhuys who expressed concern that programs that may have 
great design still leave their implementation open to possibilities of failure because 
of a lack of teacher expertise.

Nelson points to a great political challenge for equity and quality programs. The 
chapter reminds us that the rhetoric of equity is not uniformly understood across 
the profession. More importantly, it is often interpreted in ways that lead to con-
tradictory decisions. Even though the program reported in the chapter was seen to 
be highly successful by the teacher and parents of targeted Latino students, it was 
stopped in the school in the name of discrimination towards other students from dif-
ferent backgrounds. Similarly, the chapter by Jaworski, Pone and Mariotti points to 
the ongoing debate in mathematics education at international conferences about the 
role of the paper presentation review process to maintain and promote the quality 
agenda without losing sight of the equity implications. Both chapters point to the 
necessary dialogue on the meaning of both the aims of equity and quality and for 
looking for creative solutions towards their promotion.

 No Destination

Finally, I note that in the above reflection on the chapters, I advisably avoided the 
use of the term “achieving equity and quality”. From engaging with the stories re-
ported in this section, I became more aware that equity and quality are not states or 
types of mathematics education to be aspired to and attained. In other words, there 
is no nirvana where mathematics education is said to be equitable and of the highest 
quality. Perhaps it is more useful to think of them as challenges to aspire to rather 
than be accomplished once and for all. Of course, there is a danger that this might 
lead into stances that argue “no matter what we do, we will not achieve total equity 
hence there is no need to be too worried about it.” This observation is not a call for 
defeatism and compliancy—but rather it is a challenge for continual vigilance and 
dedication to improve the status of the discipline in society and in promoting its 
power to improve society and the lives of all its members.
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