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PREFACE

In recent years, there has been an explosive growth of literature in clinical trials. As
indicated in the first edition, the purpose of this book is to provide a comprehensive and
unified presentation of the principles and methodologies in designs and analyses utilized for
various clinical trials and to give a well-balanced summary of current regulatory
requirements and recently developed statistical methods in this area. Since the first edition
was published in 1998, it has been well received by clinical scientists/researchers and is
now widely used as a reference source and a graduate textbook in clinical research and
development. It is our continuing goal to provide a complete, comprehensive, and updated
reference and textbook in the area of clinical research.

The second edition can be distinguished from the first in three ways. First, we have
revised and/or updated sections to reflect good clinical practice in regulatory review/
approval process and recent developments in design and analysis in clinical research. For
example, the second edition provides an update of the status of clinical trials and
regulations, especially ICH (International Conference on Harmonization) guidelines for
clinical trials since 1998. Second, the second edition is expanded to 15 chapters.
Additional new topics and three new chapters are added to provide a total account of the
most recent development in clinical trials. To name just a few, the second edition includes
new topics such as clinical significance and reproducibility and generalizability (Chapter
2); goals of clinical trials and target population (Chapter 4); clustered randomized design,
group sequential design, placebo-challenging design, and blinded reader design (Chapter
5); superiority trials, active control and equivalence/noninferiority trials, dose-response
trials, bridging studies, and vaccine clinical trials (Chapter 7); sample size determination
on equivalence and noninferiority trials and comparing variabilities (Chapter 11); and use
of genomic information for evaluation of efficacy (Chapter 12). The three new chapters
include “Designs for Cancer Clinical Trials” (Chapter 6), “Preparation and Implementation
of a Clinical Protocol” (Chapter 14), and “Clinical Data Management” (Chapter 15).

ix
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Finally, the second edition includes more than 280 new references from clinical-related
literature. We believe that this revised and expanded second edition will benefit clinical
scientists/researchers from the medical-pharmaceutical industry, regulatory agencies, and
academia by serving as an extremely useful reference source in clinical research.

From John Wiley and Sons, I would like to thank Steve Quigley for providing us the
opportunity to work on this edition, and Susanne Steitz for her outstanding efforts in
preparing this edition. The first author would like to thank support from colleagues from
StarPlus, Inc. and Millennium Pharmaceuticals, Inc. during the preparation of this edition.
The second author wishes to express his gratitude to his wife, Dr. Wei-Chu Chie, and their
daughter Angela for their support, patience, and understanding during the preparation of
this edition.

Finally, the views expressed are those of the authors and not necessarily those of
Millennium Pharmaceuticals, Inc., and National Cheng-Kung University and National
Health Research Institutes, Taiwan. We are solely responsible for the contents and errors of
this edition. Any comments and suggestions will be very much appreciated.

SHEIN-CHUNG CHOW

JEN-PEI LIU

Cambridge, Massachusetts
Tainan, Taiwan
September, 2003

x PREFACE
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PREFACE TO THE FIRST EDITION

Clinical trials are scientific investigations that examine and evaluate safety and efficacy of
drug therapies in human subjects. Biostatistics has been recognized and extensively
employed as an indispensable tool for planning, conduct, and interpretation of clinical
trials. In clinical research and development, the bio-statistician plays an important role that
contributes toward the success of the trial. An open and effective communication among
clinician, biostatistician, and other related clinical scientists will result in a successful
clinical trial. The mutual communication, however, is a two-way street: not only (1) the
biostatistician must effectively deliver statistical concepts and methodologies to his/her
colleagues but also (2) the clinician must communicate thoroughly clinical and scientific
principles embedded in clinical research to the biostatistician. The biostatistician can then
formulate these clinical and scientific principles into valid statistical hypotheses, models,
and methodologies for data analyses. The integrity, quality, and success of a clinical trial
depend on the interaction, mutual respect, and understanding among the clinician, the
biostatistician, and other clinical scientists.

There are many books on clinical trials already on the market. These books, however,
emphasize either statistical or clinical aspects. None of these books provides a balanced
view of statistical concepts and clinical issues. Therefore the purpose of this book is not
only to fill the gap between clinical and statistical disciplines but also to provide a
comprehensive and unified presentation of clinical and scientific issues, statistical
concepts, and methodologies. Moreover this book focuses on the interactions among
clinicians, biostatisticians, and other clinical scientists that often occur during the various
phases of clinical research and development. This book is intended to give a well-balanced
overview of current and emerging clinical issues and newly developed statistical
methodologies. Although this book is written from a viewpoint of pharmaceutical research
and development, the principles and concepts presented in this book can be applied to
nonbiopharmaceutical settings.

xi
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It is our goal to provide a concise and comprehensive reference book for physicians,
clinical researchers, pharmaceutical scientists, clinical or medical research associates,
clinical programmers or data coordinators, and biostatisticians in the areas of clinical
research and development, regulatory agencies, and academe. Hence this book is written
for readers with minimal mathematical and statistical backgrounds. Although it is not
required, an introductory statistics course that covers the concepts of probability, sampling
distribution, estimation, and hypothesis testing would be helpful. This book can also serve
as a textbook for graduate courses in the areas of clinical and pharmaceutical research and
development. Readers are encouraged to pay attention to clinical issues and their statistical
interpretations as illustrated through real examples from various phases of clinical research
and development.

The issues covered in this book may occur during the various phases of clinical trials in
pharmaceutical research and development, and their corresponding statistical interpreta-
tions, concepts, designs, and analyses. All the important clinical issues are addressed in
terms of the concepts and methodologies of the design and analysis of clinical trials. For
this reason this book is composed of clinical concepts and methodologies. Each chapter
with different topics is self-contained.

Chapter 1 provides an overview of clinical development for pharmaceutical entities, the
process of drug research and development in pharmaceutical industry, and regulatory
processes and requirements. The aim and structure of the book is also discussed in this
chapter. The concepts of design and analysis of clinical trials are covered from Chapters 2
through 6. Basic statistical concepts such as uncertainty, bias, variability, confounding,
interaction, and statistical versus clinical significance are introduced in Chapter 2. Funda-
mental considerations for the selection of a suitable design in achieving certain objectives
of a particular trial under various circumstances are provided in Chapter 3. Chapter 4
illustrates the concepts and different methods of randomization and blinding that are
indispensable to the success and integrity of a clinical trial. Chapter 5 introduces different
types of statistical designs for clinical trials such as parallel, crossover, titration, and
enrichment designs and discusses their relative advantages and drawbacks. Various types
of clinical trials, which include multicenter, active control, combination, and equivalence
trials, are the subject of Chapter 6.

Methodologies and the issues for clinical data analysis are addressed in Chapters 7
through 12. Since clinical endpoints can generally be classified into three types,
continuous, categorical, and censored data, various statistical methods for analyses of
these three types of clinical data and their advantages and limitations are provided in
Chapters 7, 8, and 9, respectively. In addition, group sequential procedures for interim
analysis are given in Chapter 9. Different procedures for sample size determination are
provided in Chapter 10 for data under different designs. Statistical issues in analyzing
efficacy data are discussed in Chapter 11. These issues include baseline comparisons,
intention-to-treat analyses versus evaluable or per-protocol analyses, adjustment of
covariates, multiplicity issues, and data monitoring. Chapter 12 focuses on the issues of
analysis of safety data, including the extent of exposure, coding, and analysis of adverse.
events, and analysis of laboratory data.

For each chapter, whenever possible, real examples from clinical trials are included to
demonstrate the clinical and statistical concepts, interpretations, and their relationships and
interactions. Comparisons of the relative merits and disadvantages of statistical methodo-
logy for addressing different clinical issues in various therapeutic areas are discussed in
appropriate chapters. In addition, if applicable, topics for future development are provided.

xii PREFACE TO THE FIRST EDITION
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All computations in this book were performed using SAS. Other statistical packages such
as SPSS, BMDP, or MINTAB may also be applied.

At John Wiley, we would like to thank Acquisition Editor Steve Quigley for providing
us with the opportunity to work on this book and for his outstanding effort in preparing this
book for publication. We are greatly indebted to the Bristol-Myers Squibb Company and
Covance, Inc. for their support, in particular, to S. A. Henry, L. Meinert, and H. Koffer. We
are grateful for A. P. Pong, C. C. Hsieh, and G. Y. Han for their assistance in preparing the
many charts, figures, graphs, and tables in this book. We are grateful to Y. C. Chi, F. Ki,
and C. S. Lin for many helpful discussions and for reviewing the manuscript. We also wish
to thank A. P. Pong, M. L. Lee, and E. Nordbrock for their constant support and
encouragement. The first author also wishes to express his appreciation to his wife, Yueh-Ji,
and their daughters, Emily and Lilly, for their patience and understanding during the
preparation of this book. 

Finally, we are fully responsible for any errors remaining in the book. The views
expressed are those of the authors and are not necessarily those of Covance, Inc. and the
National Cheng-Kung University.

SHEIN-CHUNG CHOW

JEN-PEI LIU

Princeton, New Jersey
Tainan, Taiwan
October 1997
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1

1
INTRODUCTION

1.1 WHAT ARE CLINICAL TRIALS?

Clinical trials are clinical investigations. They have evolved with different meanings by
different individuals and organizations at different times. For example, Meinert (1986)
indicates that a clinical trial is a research activity that involves administration of a test
treatment to some experimental unit in order to evaluate the treatment. Meinert (1986) also
defines a clinical trial as a planned experiment designed to assess the efficacy of a treat-
ment in humans by comparing the outcomes in a group of patients treated with the test
treatment with those observed in a comparable group of patients receiving a control treat-
ment, where patients in both groups are enrolled, treated, and followed over the same time
period. This definition indicates that a clinical trial is used to evaluate the effectiveness of
a treatment. Piantadosi (1997) simply defined a clinical trial as an experimental testing
medical treatment on human subject. On the other hand, Spilker (1991) considers clinical
trials as a subset of clinical studies that evaluate investigational medicines in phases I, II,
and III, the clinical studies being the class of all scientific approaches to evaluate medical
disease preventions, diagnostic techniques, and treatments. This definition is somewhat
narrow in the sense that it restricts to the clinical investigation conducted by pharmaceuti-
cal companies during various stages of clinical development of pharmaceutical entities
which are intended for marketing approval. The Code of Federal Regulations (CFR)
defines a clinical trial as the clinical investigation of a drug that is administered or dis-
pensed to, or used involving one or more human subjects (21 CFR 312.3). Three important
key words in these definitions of clinical trials are experimental unit, treatment, and evalu-
ation of the treatment.

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition 
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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Experimental Unit

An experimental unit is usually referred to as a subject from a targeted population under
study. Therefore the experimental unit is usually used to specify the intended study popu-
lation to which the results of the study are inferenced. For example, the intended popula-
tion could be patients with certain diseases at certain stages or healthy human subjects. In 
practice, although a majority of clinical trials are usually conducted in patients to evaluate
certain test treatments, it is not uncommon that some clinical trials may involve healthy
human subjects. For example, at very early phase trials of clinical development, initial
investigation of a new pharmaceutical entity may only involve a small number of healthy
subjects, say fewer than 30. Large primary prevention trials are often conducted with
healthy human subjects with size in tens of thousand subjects. See, for example, Physi-
cian’s Health Study (PHSRG, 1988), Helsinki Health Study (Frick et al., 1987), and
Women Health Trial (Self et al., 1988).

Treatment

In clinical trials a treatment can be a placebo or any combinations of a new pharmaceutical
identity (e.g., a compound or drug), a new diet, a surgical procedure, a diagnostic test, a
medial device, a health education program, or no treatment. For example, in the Physi-
cian’s Health Study, one treatment arm is a combination of low-dose aspirin and beta
carotene. Other examples include lumpectomy, radiotherapy, and chemotherapy as a com-
bination of surgical procedure and drug therapy for breast cancer; magnetic resonance
imaging (MRI) with a contrast imaging agent as a combination of diagnostic test and a
drug for enhancement of diagnostic enhancement; or a class III antiarrhythmic agent and
an implanted cardioverter defibrillator as a combination of a drug and a medical device for
treatment of patients with ventricular arrhythmia. As a result, a treatment is any interven-
tion to be evaluated in human subjects regardless that it is a new intervention to be tested
or serves as a referenced control group for comparison.

Evaluation

In his definition of clinical trials, Meinert (1986) emphasizes the evaluation of efficacy of
a test treatment. It, however, should be noted that the assessment of safety of an interven-
tion such as adverse experiences, elevation of certain laboratory parameters, or change in
findings of physical examination after administration of the treatment is at least as impor-
tant as that of efficacy. Recently, in addition to the traditional evaluation of effectiveness
and safety of a test treatment, clinical trials are also designed to assess quality of life, phar-
macogenomics, and pharmacoeconomics such as cost-minimization, cost-effectiveness,
and cost-benefit analyses to human subjects associated with the treatment under study. It is
therefore recommended that clinical trials should not only evaluate the effectiveness and
safety of the treatment but also assess quality of life, impact of genetic factors, pharma-
coeconomics, and outcomes research associated with the treatment.

Throughout this book we will define a clinical trial as a clinical investigation in which treat-
ments are administered, dispensed, or used involving one or more human subjects for evalua-
tion of the treatment. By this definition, the experimental units are human subjects either with
a pre-existing disease under study or healthy. Unless otherwise specified, clinical trials in this
book are referred to as all clinical investigations in human subjects that may be conducted by

2 INTRODUCTION
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pharmaceutical companies, clinical research organizations such as the U.S. National Institutes
of Health (NIH), university hospitals, or any other medical research centers.

1.2 HISTORY OF CLINICAL TRIALS

We humans since our early days on earth have been seeking or trying to identify some inter-
ventions, whether they be a procedure or a drug, to remedy ailments that inflict ourselves
and our loved ones. In this century the explosion of modern and advanced science and tech-
nology has led to many successful discoveries of promising treatments such as new medi-
cines. Over the years there has been a tremendous need for clinical investigations of these
newly discovered and promising medicines. In parallel, different laws have been enacted and
regulations imposed at different times to ensure that the discovered treatments are effective
and safe. The purpose for imposing regulations on the evaluation and approval of treatments
is to minimize potential risks that they may have for human subjects, especially for those
treatments whose efficacy and safety are unknown or are still under investigation.

In 1906, the United States Congress passed the Pure Food and Drug Act. The purpose
of this act is to prevent misbranding and adulteration of food and drugs. However, the
scope of this act is rather limited. No preclearance of drugs is required. Moreover the act
does not give the government any authority to inspect food and drugs. Since the act does
not regulate the claims made for a product, the Sherley Amendment to the act was passed
in 1912 to prohibit labeling medicines with false and fraudulent claims. In 1931, the U.S.
Food and Drug Administration (FDA) was formed. The provisions of the FDA are intended
to ensure that (1) food is safe and wholesome, (2) drugs, biological products, and medical
devices are safe and effective, (3) cosmetics are unadulterated, (4) the use of radiological
products does not result in unnecessary exposure to radiation, and (5) all of these products
are honestly and informatively labeled (Fairweather, 1994).

The concept of testing marketed drugs in human subjects did not become a public issue
until the Elixir Sulfanilamide disaster occurred in the late 1930s. The disaster was a safety
concern of a liquid formulation of a sulfa drug that caused more than 100 deaths. This
drug had never been tested in humans before its marketing. This safety concern led to the
pass of the Federal Food, Drug and Cosmetic Act (FD&C Act) in 1938. The FD&C Act
extended its coverage to cosmetics and therapeutic devices. More important, the FD&C
Act requires the pharmaceutical companies to submit full reports of investigations regard-
ing the safety of new drugs. In 1962, a significant Kefauver-Harris Drug Amendment to
the FD&C Act was passed. The Kefauver-Harris Amendment not only strengthened the
safety requirements for new drugs but also established an efficacy requirement for new
drugs for the first time. In 1984, the Congress passed the Price Competition and Patent
Term Restoration Act to provide for increased patent protection to compensate for patent
life lost during the approval process. Based on this act, the FDA was also authorized to
approve generic drugs only based on bioavailability and bioequivalence trials on healthy
male subjects. It should be noted that the FDA also has the authority for designation of
prescription drugs or over-the counter drugs. In the United States, on average, it will take
a pharmaceutical company about 10 to 12 years for development of a promising pharma-
ceutical entity with an average cost between $350 millions to $450 millions US. Drug
development is a lengthy and costly process. This lengthy process is necessary to ensure
the safety and efficacy of the drug product under investigation. On average, it may take
more than two years for regulatory authorities such as the FDA to complete the review of

HISTORY OF CLINICAL TRIALS 3
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the new drug applications submitted by the sponsors. This lengthy review process might
be due to limited resources available at the regulatory agency. As indicated by the U.S.
FDA, they will be able to improve the review process of new drug applications if
additional resources are available. As a result, in 1992, the U.S. Congress passed the
Prescription Drug User Fee Act (PDUFA), which authorizes the FDA to utilize the 
so-called user fee financed by the pharmaceutical industry to provide additional resources
for the FDA’s programs for development of drug and biologic products. From 1992 to
1997, this program has enabled the FDA to reduce the average time required for review of
a new drug application from 30 months to 15 months. In 1997, the U.S. Congress also
passed the Food and Drug Administration Modernization Act (FDAMA) to enhance the
FDA’s missions and its operations for the increasing technological, trade, and public
health complexities in the 21st Century by reforming the regulation of food, drugs,
devices, biologic products, and cosmetics.

The concept of randomization in clinical trials was not adapted until the early 1920s
(Fisher and Mackenzie, 1923). Amerson et al. (1931) first considered randomization of
patients to treatments in clinical trials to reduce potential bias and consequently to increase
statistical power for detection of a clinically important difference. At the same time a Com-
mittee on Clinical Trials was formed by the Medical Research Council of the Great Britain
(Medical Research Council, 1931) to promulgate good clinical practice by developing
guidelines governing the conduct of clinical studies from which data will be used to support
application for marketing approval. In 1937, the NIH awarded its first research grant in
clinical trial. At the same time the U.S. National Cancer Institute (NCI) was also formed to
enhance clinical research in the area of cancer. In 1944, the first publication of results from a
multicenter trial appeared in Lancet (Patulin Clinical Trials Committee, 1944). Table 1.2.1
provides a chronic accounts of historical events for both clinical trials and the associated
regulations for treatments intended for marketing approval. Table 1.2.1 reveals that the
advance of clinical trials goes hand in hand with the development of regulations.

Oklin (1995) indicated that there are at least 8,000 randomized controlled clinical trials
conducted each year whose size can include as many as 100,000 subjects. As more clinical
trials are conducted worldwide each year, new service organization and/or companies have
emerged to provide information and resources for the conduct of clinical trials. Table 1.2.2
provides a summary of resources available for clinical trials from a web-based clinical trial
listing service called CenterWatch.® These trials are usually sponsored by the pharmaceutical
industry, government agencies, clinical research institutions, or more recently a third party
such as health maintenance organizations (HMO) or insurance companies. In recent years
clinical trials conducted by the pharmaceutical industry for marketing approval have become
more extensive. However, the sizes of clinical trials funded by other organizations are even
larger. The trials conducted by the pharmaceutical industry are mainly for the purpose of reg-
istration for marketing approval. Therefore, they follow a rigorously clinical development
plan which is usually carried out in phases (e.g., phases I, II, and III trials, which will be dis-
cussed later in this chapter) that progress from very tightly controlled dosing of a small num-
ber of normal subjects to less tightly controlled studies involving large number of patients.

According to USA Today (Feb. 3, 1993), the average time that a pharmaceutical com-
pany spends getting a drug to market is 12 years and 8 months. Of this figure, six years and
8 months are spent in clinical trials to obtain the required information for market registra-
tion. The FDA review takes 2 years and 6 months. As a result of PDUFA, the review time
at the U.S. FDA has been reduced considerably. Table 1.2.3 provides a summary of median
review time at the Center for Drug Review and Research (CDER) at the U.S. FDA in 2001.
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For example, for the 10 drugs receiving priority status, the median review time is only
6 months. The median overall approval time is 14 months. However, it is not surprising
that new molecular entities requires about more than 7 months to review. This lengthy clin-
ical development process is necessary to assure the efficacy and safety of the drug product.
As a result, this lengthy development period sometimes does not allow the access of prom-
ising drugs or therapies to subjects with serious or life-threatening illnesses. Kessler and
Feiden (1995) point out that the FDA may permit promising drugs or therapies currently
under investigation to be available to patients with serious or life-threatening diseases
under the so-called treatment IND in 1987. The Parallel Track Regulations in 1992 allow
promising therapies for serious or life-threatening diseases to become available with 
considerably fewer data than required for approval. In the same year, the FDA published the
regulations for the Accelerated Approval based only on surrogate endpoints to accelerate the
approval process for promising drugs or therapies indicated for life-threatening diseases.

The size of trials conducted by the pharmaceutical industry can be as small as a dozen
subjects for the phase I trial in human, or it can be as large as a few thousands for support
of approval of ticlopidine for stroke prevention (Temple, 1993). The design of the trial can
be very simple as the single-arm trial with no control group, or it can be very complicated
as a 12-group factorial design for the evaluation of the dose responses of combination
drugs. Temple (1993) points out that information accumulated from previous experience in
the database of preapproval New Drug Application (NDA) or Product License Application
(PLA) can range from a few hundred subjects (e.g., contrast imaging agents) to four or five
thousand subjects (antidepressants or antihypertensives, antibiotics, etc.).

When the safety profile and mechanism of action for the efficacy of a new drug or ther-
apy are well established, probably after its approval, a simple but large confirmatory trial is
usually conducted to validate the safety and effectiveness of the new drug or therapy. This

6 INTRODUCTION

Table 1.2.2 Summary of Resources for Clinical Trials

Description Resources

Number of Clinical Trials 41,000
Clinical Investigators 25,000
Academic Clinical Research Center 600
Pharmaceutical, Biotechnology, and Medical Device Companies 275
Contract Research Organization (CRO) 250
Companies Provides Services to Clinical Trials 130
Financial and Investment Professionals for Clinical Trials 100

Source: CenterWatch® Clinical Trials Listing Service (http://www.centerwatch.com).

Table 1.2.3 Summary of Median Review Time at CDER of the U.S. FDA in 2001

Number of Approved Drugs Median Review Time in Months

66 14
NME (24) 19
Priority status (10) 6
Standard status (56) 12

Source: FDA talk paper on January 25, 2002 at www.fda.gov.

NME � New Molecular Entities.
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kind of trial is large in the sense that there are relaxed the entrance criteria to enroll a large
number of subjects (e.g., tens of thousands) with various characteristics and care settings.
The purpose of this kind of trial is to increase the exposure of a new drug or therapy to
more subjects with the indicated diseases. For example, the first Global Utilization of
Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries Trial
(GUSTO I, 1993) enrolled over 41,000 subjects in 1,081 hospitals from 15 countries while
in the Physician’s Health Study funded by the NIH over 22,000 physicians were random-
ized to one of four arms in the trial. In addition, these trials usually follow subjects for
a much longer period of time than most trials for marketing approval. For example,
Helsinki Heart Study followed a cohort over 4,000 middle-aged men with dyslipidemia for
five years (Frick et al., 1987). The recent Prostate Cancer Prevention Trial (PCPT) plans
to follow 18,000 healthy men over age 55 for 7 years (Feigl et al., 1995). Such trials are
simple in the sense that only few important data are collected from each subject. Because
the sizes of these trials are considerably large, they can detect a relatively small yet impor-
tant and valuable treatment effects that previous smaller studies failed to detect. Some-
times, public funded clinical trials can also be used as a basis for approval of certain
indications. An example is the combined therapy of leuprolide with flutamide for patients
with disseminated, previously untreated D2 stage prostate cancer. Approval of flutamide
was based on a study funded by NCI.

On the other hand, health care providers such as HMO or insurance companies will be
more interested in providing funding for rigorous clinical trials to evaluate not only efficacy
and safety of therapies but also quality of life, pharmacoeconomics, and outcomes. The pur-
pose of this kind of clinical trial is to study the cost associated with the health care provided.
The concept is to minimize the cost with the optimal therapeutic effect under the same qual-
ity of health care. Temple (1993) points out that from the results of the study of Systolic
Hypertension in the Elderly (SHEP), a potential savings of six billion dollars per year can be
provided by the treatment regimen of chlorthalidone with a beta blocker backup such a atenol
as compared to the combined treatment of an angiotensin converting enzyme (ACE) inhibitor
with a calcium channel blocker backup. Temple (1993) also indicates that a multicooperative
group study supported by health care providers is already under way to evaluate the effects of
bone marrow transplant with aggressive chemotherapy for breast cancer.

1.3 REGULATORY PROCESS AND REQUIREMENTS

Chow and Liu (1995a) indicated that the development of a pharmaceutical entity is a lengthy
process involving drug discovery, laboratory development, animal studies, clinical trials,
and regulatory registration. The drug development can be classified into nonclinical, pre-
clinical, and clinical development phases. As indicated by the USA Today (Feb. 3, 1993),
approximately 75% of drug development is devoted to clinical development and regulatory
registration. In this section we will focus on regulatory process and requirements for clini-
cal development of a pharmaceutical entity.

For marketing approval of pharmaceutical entities, the regulatory process and require-
ments may vary from country (or region) to country (or region). For example, the European
Community (EC), Japan, and the United States have similar but different requirements as
to the conduct of clinical trials and the submission, review, and approval of clinical results
for pharmaceutical entities. In this section, for simplicity, we will focus on the regulatory
process and requirements for the conduct, submission, review, and approval of clinical

REGULATORY PROCESS AND REQUIREMENTS 7
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trials currently adopted in the United States. As was indicated earlier, the FDA was formed
in 1931 to enforce the FD&C Act for marketing approval of drugs, biological products, and
medical devices. With very few exceptions, since the enactment of the FD&C Act, treat-
ment interventions such as drugs, biological products, and medical devices either currently
on the market or still under investigation are the results of a joint effort between the phar-
maceutical industry and the FDA. To introduce regulatory process and requirements for
marketing approval of drugs, biological products, and medical devices, it is helpful to be
familiar with the functional structure of the FDA.

The Food and Drug Administration

The FDA is a subcabinet organization within the Department of Health and Human Ser-
vices (HHS) which is one of the major cabinets in the United States government. The FDA
is headed by a commissioner with several deputy or associate commissioners to assist him
or her in various issues such as regulatory affairs, management and operations, health
affairs, science, legislative affairs, public affairs, planning and evaluation, and consumer
affairs. Under the office of commissioner, there are currently six different centers of vari-
ous functions for evaluation of food, drugs, and cosmetics. They are Center for Drug Eval-
uation and Research (CDER), Center for Biologics Evaluation and Research (CBER),
Center for Devices and Radiological Health (CDRH), National Center for Toxicological
Research (NCTR), Center for Veterinary Medicine (CVM), and Center for Food Safety
and Applied Nutrition (CFSAN).

Recently, in the interest of shortening the review process, the sponsors are required to
provide the so-called user’s fee for review of submission of applications to the FDA. In
October 1995 CDER was reorganized to reflect the challenge of improving efficiency and
shortening the review and approval process as demanded by the United States Congress and
the pharmaceutical industry. Figure 1.3.1 provides the current structure of CDER at the
FDA, which is composed of 10 major offices. These offices include Office of Management,
Office of Training and Communications, Office of Compliance, Office of Information Tech-
nology, Office of Regulatory Policy, Office of Executive Program, Office of Medical Policy,
Office of New Drugs, Office of Pharmaceutical Science, and Office of Pharmacoepidemiol-
ogy and Statistical Science. The Office of New Drugs is responsible for drug evaluation,
which consists of six offices, including Offices of Drug Evaluation I-V and Office of Pedi-
atric Drug Development and Program Initiatives. On the other hand, Office of Pharmaceuti-
cal Science consists of four offices, including Office of New Drug Chemistry, Office of
Generic Drugs, Office of Clinical Pharmacology and Biopharmaceutics, and Office of Test-
ing and Research. Furthermore, CDER recently establishes the Office of Pharmacoepidemi-
ology and Statistical Science in recognition of the importance of epidemiology and statistics
in drug evaluation. Office of Pharmacoepidemiology and Statistical Science includes Office
of Drug Safety and Office of Biostatistics. Note that each of these offices consists of several
divisions. Figures 1.3.2, 1.3.3, and 1.3.4 provide respective organizations of Offices of New
Drugs, Pharmaceutical Science and Pharmacoepidemiology and Statistical Science. Note
that CBER has a similar functional structure though it has fewer offices than CDER.

FDA Regulations for Clinical Trials

For evaluation and marketing approval of drugs, biological products, and medial devices, the
sponsors are required to submit substantial evidence of effectiveness and safety accumulated

8 INTRODUCTION
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from adequate and well-controlled clinical trials to CDER, CBER, or CDRH of the FDA,
respectively. The current regulations for conducting clinical trials and the submission,
review and approval of clinical results for pharmaceutical entities in the United States can
be found in CFR (e.g., see 21 CFR Parts 50, 56, 312, and 314). These regulations are devel-
oped based on the FD&C Act passed in 1938. Table 1.3.1 summarizes the most relevant
regulations with respect to clinical trials. These regulations cover not only pharmaceutical
entities such as drugs, biological products, and medical devices under investigation but
also the welfare of participating subjects and the labeling and advertising of pharmaceuti-
cal products. It can be seen from Table 1.3.1 that pharmaceutical entities can be roughly
divided into three categories based on the FD&C Act and hence the CFR. These categories
include drug products, biological products, and medical devices. For the first category,
a drug is as defined in the FD&C Act (21 U.S.C. 321) as an article that is (1) recognized in
the U.S. Pharmacopeia, official Homeopathic Pharmacopeia of the United States, or offi-
cial National Formulary, or a supplement to any of them; (2) intended for use in the diag-
nosis, cure, mitigation, treatment, or prevention of disease in humans or other animals,

REGULATORY PROCESS AND REQUIREMENTS 11
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or (3) intended to affect the structure or function of the body of humans or other animals.
For the second category, a biological product is defined in the 1944 Biologics Act (46
U.S.C. 262) as a virus, therapeutic serum, toxin, antitoxin, bacterial or viral vaccine, blood,
blood component or derivative, allergenic product, or analogous product, applicable to the
prevention, treatment, or cure of disease or injuries in humans. Finally, a medical device is
defined as an instrument, apparatus, implement, machine contrivance, implant, in vitro
reagent, or other similar or related article, including any component, part, or accessory
that—similar to a drug—is (1) recognized in the official National Formulary or the U.S.
Pharmacopeia or any supplement in them; (2) intended for use in the diagnosis in humans
or other animals; or (3) intended to affect the structure or function of the body of humans
or other animals.
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The CDER of the FDA has jurisdiction over administration of regulation and approval
of pharmaceutical products classified as drug. These regulations include Investigational
New Drug Application (IND) and New Drug Application (NDA) for new drugs, orphan
drugs, and over-the-counter (OTC) human drugs and Abbreviated New Drug Application
(ANDA) for generic drugs. On the other hand, the CBER is responsible for enforcing the
regulations of biological products through processes such an Establishment License
Application (ELA) or Product License Application (PLA). Administration of the regula-
tions for medical devices belongs to the jurisdiction of the CDRH through Investigational
Device Exemptions (IDE) and Premarket Approval of Medical Devices (PMA) and other
means.

A treatment for a single illness might consist of a combination of drugs, biological
products, and/or medical devices. If a treatment consists of a number of drugs, then it is
called a combined therapy. For example, leuprolide and flutamide are for treatment of dis-
seminated, previously untreated D2 stage prostate cancer. However, if a treatment consists
of a combination of drugs, biologics, and/or devices such as drug with device, biologic
with device, drug with biologic, drug with biologic in conjunction with device, then it is
defined as a combined product. For a combined product consisting of different pharma-
ceutical entities, FDA requires that each of entities should be reviewed separately by
appropriate centers at the FDA. In order to avoid confusion of jurisdiction over a combina-
tion product and to improve efficiency of approval process, the principle of primary mode of
action of a combination product was established in the Safe Medical Devices Act (SMDA) in
1990 (21 U.S.C. 353). In 1992, based on this principle, three intercenter agreements were
signed between CDER and CBER, between CDER and CDRH, and between CBER and

REGULATORY PROCESS AND REQUIREMENTS 13

Table 1.3.1 U.S. Codes of Federal Regulation (CFR) for Clinical Trials Used to
Approve Pharmaceutical Entities

CFR Number Regulations

21 CFR 50 Protection of human subjects
21 CFR 56 Institutional review boards (IRB)
21 CFR 312 Investigational new drug application (IND)

Subpart E Treatment IND
21 CFR 314 New drug application (NDA)

Subpart C Abbreviated applications
Subpart H Accelerated approval

21 CFR 601 Establishment license and product license applications 
(ELA and PLA)

Subpart E Accelerated approval
21 CFR 316 Orphan drugs
21 CFR 320 Bioavailability and bioequivalence requirements
21 CFR 330 Over-the-counter (OTC) human drugs
21 CFR 812 Investigational device exemptions (IDE)
21 CFR 814 Premarket approval of medical devices (PMA)
21 CFR 60 Patent term restoration
21 CFR 201 Labeling
21 CFR 202 Prescription drug advertising
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CDRH to establish the ground rules for assignment of a combined product and intercenter
consultation (Margolies, 1994).

Phases of Clinical Development

In a set of new regulations promulgated in 1987 and known as the IND Rewrite, the phases
of clinical investigation adopted by the FDA since the late 1970s is generally divided into
three phases (21 CFR 312.21). These phases of clinical investigation are usually conducted
sequentially but may overlap.

Phase I clinical investigation provides an initial introduction of an investigational new
drug to humans. The primary objectives of phase I clinical investigation are twofold. First,
it is to determine the metabolism and pharmacologic activities of the drug in humans, the
side effects associated with increasing doses, and early evidence on effectiveness. In addi-
tion it is to obtain sufficient information about the drug’s pharmacokinetics and pharmaco-
logical effects to permit the design of well-controlled and scientifically valid phase II
clinical studies. Thus phase I clinical investigation includes studies of drug metabolism,
bioavailability, dose ranging, and multiple doses. Phase I clinical investigation usually
involves 20 to 80 normal volunteer subjects or patients. In general, protocols for phase I
studies are less detailed and more flexible than for subsequent phases, but they must pro-
vide an outline of the investigation and also specify in detail those elements that are criti-
cal to safety. For phase I investigation, FDA’s review will focus on the assessment of
safety. Therefore extensive safety information such as detailed laboratory evaluations are
usually collected at very intensive schedules.

Phase II studies are the first controlled clinical studies of the drug, and they involve no
more than several hundred patients. The primary objectives of phase II studies are not only
to initially evaluate the effectiveness of a drug based on clinical endpoints for a particular
indication or indications in patients with the disease or condition under study but also to
determine the dosing ranges and doses for phase III studies and the common short-term
side effects and risks associated with the drug. Although the clinical investigation usually
involves no more than several hundred patients, expanded phase II clinical studies may
involve up to several thousand patients. Note that some pharmaceutical companies further
differentiate this phase into phases IIA and IIB. Clinical studies designed to evaluate dos-
ing are referred to as phase IIA studies, and studies designed to determine the effectiveness
of the drug are called phase IIB.

Phase III studies are expanded controlled and uncontrolled trials. The primary objec-
tives of phase III studies are not only to gather the additional information about effective-
ness and safety needed to evaluate the overall benefit-risk relationship of the drug but also
to provide an adequate basis for physician labeling. Phase III studies, which can involve
from several hundred to several thousand patients, are performed after preliminary evi-
dence regarding the effectiveness of the drug has been demonstrated. Note that studies per-
formed after submission before approval are generally referred to as phase IIIB studies.

In drug development, phase I studies refer to an early stage of clinical pharmacology,
and phase II and III studies correspond to a later stage of clinical development. For differ-
ent phases of clinical studies, the investigational processes are regulated differently, for
example, the FDA review of submissions in phase I ensures that subjects are not exposed
to unreasonable risks, while the review of submissions in phases II and III also ensures that
the scientific design of the study is likely to produce data capable of meeting statutory
standards for marketing approval.

14 INTRODUCTION
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Phase IV trials generally refer to studies performed after a drug is approved for market-
ing. The purpose for conducting phase IV studies is to elucidate further the incidence of
adverse reactions and determine the effect of a drug on morbidity of mortality. In addition
a phase IV trial is also conducted to study a patient population not previously studied such
as children. In practice, phase IV studies are usually considered useful market-oriented
comparison studies against competitor products.

Note that there is considerable variation within the pharmaceutical industry in categoriz-
ing clinical studies into phases. For example, in addition to phases I through IV described
above, some pharmaceutical companies consider clinical studies conducted for new indica-
tions and/or new formulations (or dosage forms) as phase V studies.

1.4 INVESTIGATIONAL NEW DRUG APPLICATION

As indicated in the previous section, different regulations exist for different products, such
as IND and NDA for drug products, ELA and PLA for biological products, IDE and PMA
for medical devices. However, the spirit and principles for the conduct, submission, review,
and approval of clinical trials are the same. Therefore, for the purpose of illustration, we
will only give a detailed discussion on IND and NDA for drug products.

Before a drug can be studied in humans, its sponsor must submit an IND to the FDA.
Unless notified otherwise, the sponsor may begin to investigate the drug 30 days after the
FDA has received the application. The IND requirements extend throughout the period
during which a drug is under study. As mentioned in Sections 312.1 and 312.3 of 21 CFR,
an IND is synonymous with Notice of Claimed Investigational Exemption for a New Drug.
Therefore an IND is, legally speaking, an exemption to the law that prevents the shipment
of a new drug for interstate commerce. Consequently the drug companies that file an IND
have flexibility of conducting clinical investigations of products across the United States.
However, it should be noted that different states might have different laws that may require
the sponsors to file separate IND to the state governments. As indicated by Kessler (1989),
there are two types of INDs, commercial and noncommercial. A commercial IND permits
the sponsor to gather the data on the clinical safety and effectiveness needed for an NDA.
If the drug is approved by the FDA, the sponsor is allowed to market the drug for specific
uses. A noncommercial IND allows the sponsor to use the drug in research or early clinical
investigation to obtain advanced scientific knowledge of the drug. Note that the FDA itself
does not investigate new drugs or conduct clinical trials. Pharmaceutical manufacturers,
physicians, and other research organizations such as NIH may sponsor INDs. If a commer-
cial IND proves successful, the sponsor ordinarily submits an NDA. During this period the
sponsor and the FDA usually negotiate over the adequacy of the clinical data and the word-
ing proposed for the label accompanying the drug, which sets out description, clinical
pharmacology, indications and usage, contraindications, warnings, precautions, adverse
reactions, and dosage and administration.

By the time an IND is filed, the sponsor should have enough information about the chem-
istry, manufacturing, and controls of the drug substance and drug product to ensure the iden-
tity, strength, quality, and purity of the investigational drug covered by the IND. In addition the
sponsor should provide adequate information about pharmacological studies for absorption,
distribution, metabolism, and excretion (ADME) and acute, subacute, and chronic toxicologi-
cal studies and reproductive tests in various animal species to support that the investigational
drug is reasonably safe to be evaluated in clinical trials of various durations in humans.

INVESTIGATIONAL NEW DRUG APPLICATION 15
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A very important component of an IND is the general investigational plan, which is in
fact an abbreviated version of the clinical development plan for the particular pharmaceu-
tical entity covered by the IND. However, the investigational plan should identify the
phases of clinical investigation to be conducted that depend on the previous human experi-
ence with the investigational drug. Usually if a new investigational drug is developed in the
United States, it is very likely that at the time of filing the IND no clinical trial on human has
ever been conducted. Consequently the investigational plan might consist of all clinical tri-
als planned for each stage of phases I, II, and III during the entire development period. On
the other hand, some investigational pharmaceutical entities may be developed outside the
United States. In this case sufficient human experiences may have already been accumu-
lated. For example, for an investigational drug, suppose that the clinical development plan
outside the United States has already completed phase II stage. Then the initial safety and
pharmacological ADME information can be obtained from phase I clinical trials. In addi-
tion phase II dose response (ranging) studies may provide adequate dose information for
the doses to be employed in the planned phase III studies. Consequently the investigational
plan may only include the plan for phase III trials and some trials for specific subject pop-
ulation such as renal or hepatic impaired subjects. However, all information and results
from phases I and II studies should be adequately documented in the section of previous
human experience with the investigational drug in the IND. A general investigational plan
may consist of more than one protocol depending on the stage of the clinical investiga-
tional plan to be conducted.

An IND plays an important role in the clinical development of a pharmaceutical entity.
An IND should include all information about the drug product available to the company up
to the time point of filing. Table 1.4.1 lists the contents of an IND provided in Section 312.23
(a) (6) of 21 CFR that a sponsor must follow and submit. A cover sheet usually refers to the
form of FDA-1571. The form reinforces the sponsor’s commitment to conduct the investiga-
tion in accordance with applicable regulatory requirements. A table of contents should also
be included to indicate the information attached in the IND submission. The investigational
plan should clearly state the rationale for the study of the drug, the indication(s) to be stud-
ied, the approach for the evaluation of the drug, the kinds of clinical trials to be conducted,
the estimated number of patients, and any risks of particular severity or seriousness antici-
pated. For completeness, an investigator’s brochure should also be provided. As mentioned
earlier, the central focus of the initial IND submission should be on the general investiga-
tional plan and protocols for specific human studies. Therefore a copy of protocol(s) which
includes study objectives, investigators, criteria for inclusion and exclusion, study design,
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Table 1.4.1 Documents to Accompany an IND Submission

A cover sheet
A table of contents
The investigational plan
The investigator’s brochure
Protocol
Chemistry, manufacturing, and controls information
Pharmacology and toxicology information
Previous human experiences with the investigational drug
Additional information
Relevant information
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dosing schedule, endpoint measurements, and clinical procedure should be submitted along
with the investigational plan and other information such as chemistry, manufacturing, and
controls, pharmacology and toxicology, previous human experiences with the investiga-
tional drug, and any additional information relevant to the investigational drug. Note that the
FDA requires that all sponsors should submit an original and two copies of all submissions
to the IND file, including the original submission and all amendments and reports.

Clinical Trial Protocol

To ensure the success of an IND, a well-designed protocol is essential when conducting
a clinical trial. A protocol is a plan that details how a clinical trial is to be carried out and
how the data are to be collected and analyzed. It is an extremely critical and the most
important document, since it ensures the quality and integrity of the clinical investigation
in terms of its planning, execution, and conduct of the trial as well as the analysis of the
data. Section 312.23 of 21 CFR provides minimum requirements for the protocol of a clin-
ical trial. In addition the Guideline for the Format and Content of the Clinical and Statisti-
cal Sections of an Application was issued by CDER of the FDA in October 1988.
Appendix C of this guideline describes key elements for a well-designed protocol. All of
these requirements and elements are centered around experimental units, treatments, and
evaluations of the treatments as discussed previously in Section 1.1.

Table 1.4.2 gives an example for format and contents of a well-controlled protocol for a
majority of clinical trials. A well-designed protocol should always have a protocol cover
sheet to provide a synopsis of the protocol. A proposed protocol cover sheet can be found
in Appendix C of the FDA guideline. The objective of the study should be clearly stated at
the beginning of any protocols. The study objectives are concise and precise statements of
prespecified hypotheses based on clinical responses for evaluation of the drug product
under study. The objectives usually consist of the primary objective, secondary objectives,
and sometimes the subgroup analyses. In addition these objectives should be such that can
be translated into statistical hypotheses. The subject inclusion and exclusion criteria should
also be stated unambiguously in the protocol to define the targeted population to which the
study results are inferred. The experimental design then employed should be able to
address the study objectives with certain statistical inference. A valid experimental design
should include any initial baseline or run-in periods, the treatments to be compared, the
study configuration such as parallel, crossover, or forced titration, and duration of the treat-
ment. It is extremely important to provide a description of the control groups with the
rationale as to why the particular control groups are chosen for comparison.

The methods of blinding used in the study to minimize any potential known biases
should be described in detail in the protocol. Likewise the protocol should provide the
methods of assignments for subjects to the treatment groups. The methods of assignment
are usually different randomization procedures to prevent any systematic selection bias
and to ensure comparability of the treatment groups with respect to pertinent variables.
Only the randomization of subjects can provide the foundation of a valid statistical infer-
ence. A well-designed protocol should describe the efficacy and safety variables to be
recorded, the time that they will be evaluated, and the methods to measure them. In addi-
tion the methods for measuring the efficacy endpoints such as symptom scores for benign
prostatic hyperplasis or some safety endpoints such as some important laboratory assay
should be validated and results of validation need to be adequately documented in the pro-
tocol. The FDA guideline also calls for designation of primary efficacy endpoints. From
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Table 1.4.2 Format and Contents of a Protocol

1. Protocol cover sheet
2. Background
3. Objectives

Primary
Secondary

4. Study plan
Study design
Subject inclusion criteria
Subject exclusion criteria
Treatment plan

5. Study drugs
Dose and route
Method of dispensing
Method and time of administration
Description of controls
Methods of randomization and blinding
Package and labeling
Duration of treatment
Concomitant medications
Concomitant procedures

5. Measurements and observations
Efficacy endpoints
Safety endpoints
Validity of measurements
Time and events schedules
Screening, baseline, treatment periods,

and post-treatment follow-up
6. Statistical methods

Database management procedures
Methods to minimize bias
Sample size determination
Statistical general considerations

Randomization and blinding
Dropouts, premature termination,

and missing data
Baseline, statistical parameters,

and covariates
Multicenter studies
Multiple testing
Subgroup analysis
Interim analysis

Statistical analysis of demography and
baseline characteristics

Statistical analysis of efficacy data
Statistical analysis of safety data

7. Adverse events
Serious adverse events
Adverse events attributions
Adverse event intensity
Adverse event reporting
Laboratory test abnormalities
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the primary objective based on the primary efficacy endpoint, the statistical hypothesis for
sample size determination can be formulated and stated in the protocol. The treatment
effects assumed in both null and alternative hypotheses with respect to the experimental
design employed in the protocol and the variability assumed for sample size determination
should be described in full detail in the protocol as should the procedures for accurate, con-
sistent, and reliable data. The statistical method section of any protocols should address
general statistical issues often encountered in the study. These issues include randomiza-
tion and blinding, handling of dropouts, premature termination of subjects, and missing
data, defining the baseline and calculation of statistical parameters such as percent change
from baseline and use of covariates such as age or gender in the analysis, the issues of mul-
ticenter studies, and multiple comparisons and subgroup analysis.

If interim analyses or administrative looks are expected, the protocol needs to describe
any planned interim analyses or administrative looks of the data and the composition, func-
tion, and responsibilities of a possible outside data-monitoring committee. The description
of interim analyses consists of monitoring procedures, the variables to be analyzed, the fre-
quency of the interim analyses, adjustment of nominal level of significance, and decision
rules for termination of the study. In addition the statistical methods for analyses of
demography and baseline characteristics together with the various efficacy and safety end-
points should be described fully in the protocol. The protocol must define adverse events,
serious adverse events, and attributions and intensity of adverse events and describe how

INVESTIGATIONAL NEW DRUG APPLICATION 19

Table 1.4.2 (Continued)

8. Warning and precautions
9. Subject withdrawal and discontinuation

Subject withdrawal
End of treatment
End of study

10. Protocol changes and protocol deviations
Protocol changes
Protocol deviation
Study termination

11. Institutional review and consent requirements
Institutional review board (IRB)
Informed consent

12. Obligations of investigators and 
administrative aspects
Study drug accountability
Case report forms
Laboratory and other reports
Study monitoring
Study registry
Record retention
Form FDA 1572
Signatures of investigators
Confidentiality
Publication of results

13. Flow chart of studies activities
14. References
15. Appendixes
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the adverse events are reported. Other ethical and administration issues should also be
addressed in the protocol. They are warnings and precautions, subject withdrawal and dis-
continuation, protocol changes and deviations, institutional review board and consent
form, obligation of investigators, case report form, and others.

It should be noted that once an IND is in effect, the sponsor is required to submit a pro-
tocol amendment if there are any changes in protocol that significantly affect the subjects’
safety. Under 21 CFR 312.30(b) several examples of changes requiring an amendment are
given. These examples include (1) any increase in drug dosage, duration, and number of
subjects, (2) any significant change in the study design, (3) the addition of a new test or
procedure that is intended for monitoring side effects or an adverse event. In addition the
FDA also requires an amendment be submitted if the sponsor intends to conduct a study
that is not covered by the protocol. As stated in 21 CFR 312.30(a) the sponsor may begin
such study provided that a new protocol is submitted to the FDA for review and is
approved by the institutional review board. Furthermore, when a new investigator is added
to the study, the sponsor must submit a protocol amendment and notify FDA of the new
investigator within 30 days of the investigator being added. Note that modifications of the
design for phase I studies that do not affect critical safety assessment are required to be
reported to FDA only in the annual report.

Institutional Review Board

Since 1971 the FDA has required that all proposed clinical studies be reviewed both by the
FDA and an institutional review board (IRB). The responsibility of an IRB is not only to
evaluate the ethical acceptability of the proposed clinical research but also to examine the
scientific validity of the study to the extent needed to be confident that the study does not
expose its subjects to unreasonable risk (Petricciani, 1981). This IRB is formally desig-
nated by a public or private institution in which research is conducted to review, approve,
and monitor research involving human subjects. Each participating clinical investigator is
required to submit all protocols to an IRB. An IRB must formally grant approval before an
investigation may proceed, which is in contrast to the 30-day notification that the sponsors
must give the FDA. To ensure that the investigators are included in the review process, the
FDA requires that the clinical investigators communicate with the IRB. The IRB must
monitor activities within their institutions.

The composition and function of an IRB are subject to FDA requirements. Section 56.107
in Part 56 of 21 CFR states that each IRB should have at least five members with varying
backgrounds to promote a complete review of research activities commonly conducted by
the institution. In order to avoid conflict of interest and to provide an unbiased and objective
evaluation of scientific merits, ethical conduct of clinical trials, and protection of human
subjects, the CFR enforces a very strict requirement for the composition of members of an
IRB. The research institution should make every effort to ensure that no IRB is entirely
composed of one gender. In addition no IRB may consist entirely of members of one pro-
fession. In particular, each IRB should include at least one member whose primary con-
cerns are in the scientific area and at least one member whose primary concerns are in
nonscientific areas. On the other hand, each IRB should include at least one member who
is not affiliated with the institution and who is not part of the immediate family of a person
who is affiliated with the institution. Furthermore no IRB should have a member partici-
pate in the IRB’s initial or continuous review of any project in which the member has a
conflicting interest, except to provide information requested by the IRB.

20 INTRODUCTION
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Safety Report

The sponsor of an IND is required to notify FDA and all participating investigators in a writ-
ten IND safety report of any adverse experience associated with use of the drug. Adverse
experiences need to be reported include serious and unexpected adverse experiences. A seri-
ous adverse experience is defined as any experience that is fatal, life-threatening, requiring
inpatient hospitalization, prolongation of existing hospitalization, resulting in persistent or
significant disability/incapacity, or congenital anomaly/birth defect. An unexpected adverse
experience is referred to as any adverse experience that is not identified in nature, severity,
or frequency in the current investigator brochure or the general investigational plan or else-
where in the current application, as amended.

The FDA requires that any serious and unexpected adverse experience associated with
use of the drug in the clinical studies conducted under the IND be reported in writing to the
agency and all participating investigators within 10 working days. The sponsor is required
to fill out the FDA-1639 form to report an adverse experience. Fatal or immediately life-
threatening experience require a telephone report to the agency within three working days
after receipt of the information. A follow-up of the investigation of all safety information is
also expected.

Treatment IND

During the clinical investigation of the drug under an IND, it may be necessary and ethical
to make the drug available to those patients who are not in the clinical trials. Since 1987
the FDA permits an investigational drug to be used under a treatment protocol or treatment
IND if the drug is intended to treat a serious or immediately life-threatening disease, espe-
cially when there is no comparable or satisfactory alternative drug or other therapy avail-
able to treat that stage of the disease in the intended patient population. FDA, however,
may deny a request for treatment use of an investigational drug under a treatment protocol
or treatment IND if the sponsor fails to show that the drug may be effective for its intended
use in its intended patient population or that the drug may expose the patients to an unrea-
sonable and significant additional risk of illness or injury.

Withdraw and Termination of an IND

At any time a sponsor may withdraw an effective IND without prejudice. However, if an
IND is withdrawn, FDA must be notified and all clinical investigations conducted under
the IND shall be ended. If an IND is withdrawn because of a safety reason, the sponsor has
to promptly inform FDA, all investigators, and all reviewing IRBs with the reasons for
such withdrawal.

If there are any deficiencies in the IND or in the conduct of an investigation under an
IND, the FDA may terminate an IND. If an IND is terminated, the sponsor must end all
clinical investigations conducted under the IND and recall or dispose all unused supplies
of the drug. Some examples of deficiencies in an IND are discussed under 21 CFR 312.44.
For example, FDA may propose to terminate IND if it finds that human subjects would be
exposed to an unreasonable and significant risk of illness or injury. In such a case the FDA
will notify the sponsor in writing and invite correction or explanation within a period of 
30 days. A terminated IND is subject to reinstatement based on additional submissions that
eliminate such risk. In this case a regulatory hearing on the question of whether the IND
should be reinstated will be held.

INVESTIGATIONAL NEW DRUG APPLICATION 21
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Communication with the FDA

FDA encourages open communication regarding any scientific or medical question that
may be raised during the clinical investigation. Basically it is suggested that such commu-
nication be arranged at the end of the phase II study and prior to a marketing application.
The purpose of an end-of-phase II meeting is to review the safety of the drug proceeding to
phase III. This meeting is helpful not only in that it evaluates the phase III plan and proto-
cols but also in that it identifies any additional information necessary to support a market-
ing application for the uses under investigation. Note that a similar meeting may be held at
the end of phase I in order to review results of tolerance/safety studies and the adequacy of
the remaining development program. At the end of phase I, a meeting would be requested
by a sponsor when the drug or biologic product is being developed for a life-threatening
disease and the sponsor wishes to file under the expedited registration regulations. The
purpose of pre-NDA meetings is not only to uncover any major unresolved problems but
also to identify those studies that are needed for establishment of drug effectiveness. In
addition the communication enables the sponsor to acquaint FDA reviewers with the gen-
eral information to be submitted in the marketing application. More important, the com-
munication provides the opportunity to discuss (1) appropriate methods for statistical
analysis of the data and (2) the best approach to the presentation and formatting of the data.

1.5 NEW DRUG APPLICATION

For approval of a new drug, the FDA requires at least two adequate well-controlled clinical
studies be conducted in humans to demonstrate substantial evidence of the effectiveness
and safety of the drug. The substantial evidence as required in the Kefaurer-Harris amend-
ments to the FD&C Act in 1962 is defined as the evidence consisting of adequate and well-
controlled investigations, including clinical investigations, by experts qualified by scientific
training and experience to evaluate the effectiveness of the drug involved, on the basis of
which it could fairly and responsibly be concluded by such experts that the drug will have
the effect it purports to is represented to have under the conditions of use prescribed, rec-
ommended, or suggested in the labeling or proposed labeling thereof. Based on this
amendment, the FDA requests that reports of adequate and well-controlled investigations
provide the primary basis for determining whether there is substantial evidence to support
the claims of new drugs and antibiotics. Section 314.126 of 21 CFR provides the definition
of an adequate and well-controlled study, which is summarized in Table 1.5.1. It can be
seen from Table 1.5.1 that an adequate and well-controlled study is judged by eight criteria
specified in the CFR. These criteria are objectives, method of analysis, design of studies,
selection of subjects, assignment of subjects, participants of studies, assessment of
responses, and effect. First, each study should have a very clear statement of objectives for
clinical investigation such that they can be reformulated into statistical hypotheses and
estimation procedures. In addition proposed methods of analyses should be described in
the protocol and actual statistical methods used for analyses of data should be described in
detail in the report. Second, each clinical study should employ a design that allows a valid
comparison with a control for an unbiased assessment of drug effect. Therefore selection
of a suitable control is one of keys to integrity and quality of an adequate and well-
controlled study. The CFR recognizes the following controls: placebo concurrent control,
dose-comparison concurrent control, no treatment control, active concurrent control, and
historical control. Next, the subjects in the study should have the disease or condition
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under study. Furthermore subjects should be randomly assigned to different groups in the
study to minimize potential bias and ensure comparability of the groups with respect to
pertinent variables such as age, gender, race, and other important prognostic factors. All
statistical inferences are based on such randomization and possibly stratification to achieve
these goals. However, bias will still occur if no adequate measures are taken on the part of
subjects, investigator, and analysts of the study. Therefore blinding is extremely crucial to
eliminate the potential bias from this source. Usually an adequate and well-controlled
study is at least double blinded whereby investigators and subjects are blinded to the treat-
ments during the study. However, currently a triple-blind study in which the sponsor (i.e.,
clinical monitor) of the study is also blinded to the treatment is not uncommon. Another
critical criterion is the validity and reliability of assessment of responses. For example, the
methods for measurement of responses such as symptom scores for benign prostate hyper-
plasia should be validated before their usage in the study (Barry et al., 1992). Finally,
appropriate statistical methods should be used for assessment of comparability among
treatment groups with respect to pertinent variables mentioned above and for unbiased
evaluation of drug effects.

Section 314.50 of 21 CFR specifies the format and content of an NDA, which is sum-
marized in Table 1.5.2. The FDA requests that the applicant should submit a complete
archival copy of the new drug application form (A) to (F) with a cover letter. In addition,
the sponsor needs to submit a review copy for each of the six technical sections with the
cover letter, application form (356H) of (A), index of (B), and summary of (C) as given in
Table 1.5.2 to each of six reviewing disciplines. The reviewing disciplines include chem-
istry reviewers for the chemistry, manufacturing, and controls; pharmacology reviewers 
for nonclinical pharmacology and toxicology; medical reviewers for clinical data section;
and statisticians for statistical technical section. The outline of review copies for clinical
reviewing divisions include (1) cover letter, (2) application form (356H), (3) index, (4) sum-
mary, and (5) clinical section. The outline of review copies for statistical reviewing divi-
sion consists of (1) cover letter, (2) application form (356H), (3) index, (4) summary, and
(5) statistical section.

Table 1.5.3 provides a summary of the format and content of a registration dossier for
the European Economic Community (EEC). A comparison of Table 1.5.2 and Table 1.5.3
reveals that the information required by the FDA and ECC for marketing approval of a drug
is essentially the same. However, no statistical technical section is required in the ECC
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Table 1.5.1 Characteristics of an Adequate and Well-Controlled Study

Criteria Characteristics

Objectives Clear statement of investigation’s purpose
Methods of analysis Summary of proposed or actual methods of analysis
Design Valid comparison with a control to provide a quantitative 

assessment of drug effect
Selection of subjects Adequate assurance of the disease or conditions under study
Assignment of subjects Minimization of bias and assurance of comparability of groups
Participants of studies Minimization of bias on the part of subjects, observers, and 

analysts
Assessment of responses Well-defined and reliable
Assessment of the effect Requirements of appropriate statistical methods
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Table 1.5.2 A Summary of Contents and Format of a New
Drug Application (NDA)

Cover letter
A. Application form (365H)
B. Index
C. Summary
D. Technical sections

1. Chemistry, manufacturing, and controls
2. Nonclinical pharmacology and toxicology
3. Human pharmacology and bioavailability
4. Microbiology (for anti-infective drugs)
5. Clinical data
6. Statistical

E. Samples and labeling
F. Case report forms and tabulations

1. Case report tabulations
2. Case report forms
3. Additional data

Note: Based on Section 314.50 of Part 21 of Codes of Federal Regulation 
(4-1-94 edition).

registration. In October 1988, to assist an applicant in presenting the clinical and statistical
data required as part of an NDA submission, the CDER of the FDA issued the Guideline
for the Format and Content of the Clinical and Statistical Sections of an Application under
21 CFR 314.50, which is summarized in Table 1.5.4. The guideline indicates the prefer-
ence of having one integrated clinical and statistical report rather than two separate reports.
A complete submission should include clinical section [21 CFR 314.50(d)(5)], statistical
section [21 CFR 314.50(d)(6)], and case report forms and tabulations [21 CFR 314.50(f)].
The same guideline also provides the content and format of the fully integrated clinical 
and statistical report of a controlled clinical study in an NDA. A summary of it is given in
Table 1.5.5. Based on the content and format of the fully integrated and statistical report of
a controlled study required by the FDA, the Structure and Content of Clinical Study
Reports was also issued by the European Community in May 1993. A summary is given in
Table 1.5.6. In addition the European Community also published a guideline entitled Bio-
statistical Methodology in Clinical Trials in Applications for Marketing Authorizations for
Medicinal Products in March 1993.

Expanded Access

A standard clinical development program of phases I, II, and III clinical trials and tradi-
tional approval of a new pharmaceutical entity through IND and NDA processes by the
FDA will generally take between 8 to 12 years with an average cost around $500 million.
Kessler and Feiden (1995) indicated that on average, the FDA receives around 100 origi-
nal NDAs each year. For each NDA submission, FDA requires substantial evidence of
efficacy and safety be provided with fully matured and complete data generated from at
least two adequate and well-controlled studies before it can be considered for approval.
This requirement is necessary for drugs with marginal clinical advantages and for
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Table 1.5.3 Format and Contents of a Registration Dossier for the 
European Economic Community (EEC)

Flyleaf
Annex I: General information

Annex II: Information and documents on physicochemical,
biological, or microbiological tests

Annex II.A: Complete qualitative and quantitative composition
Annex II.B: Method of preparation
Annex II.C: Controls of starting materials
Annex II.D: Control tests on intermediate products (if necessary)
Annex II.E: Control tests for the finished product
Annex II.F: Stability tests
Annex II.G: Conclusions

Annex III: Toxicological and pharmacological tests
Annex III.A: Acute toxicity
Annex III.B: Toxicity with repeated administration
Annex III.C: Fetal toxicity
Annex III.D: Fertility studies
Annex III.E: Carcinogenicity and mutagenicity
Annex III.F: Pharmacodynamics
Annex III.G: Pharmacokinetics

Annex IV: Clinical trials
Annex IV.A: Human pharmacology
Annex IV.B: Clinical data
Annex IV.C: Side effects and interactions

Annex V: Special particulars
Annex V.A: Dosage forms
Annex V.B: Samples
Annex V.C: Manufacturing authorization
Annex V.D: Marketing authorization

Table 1.5.4 Summary of the Clinical and Statistical
Section of an NDA

A. List of investigators; list of INDs and NDAs
B. Background/overview of clinical investigations
C. Clinical pharmacology
D. Control clinical studies
E. Uncontrolled clinical studies
F. Other studies and information
G. Integrated summary of effectiveness data
H. Integrated summary of safety data
I. Drug abuse and overdosage
J. Integrated summary of benefits and risks of the drug

Source: Based on Guideline for the Format and Content of the
Clinical and Statistical Sections of an Application (July, 1988,
Center for Drug Evaluation and Research, FDA).
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treatment of conditions or diseases that are not life-threatening. However, if the diseases
are life-threatening or severely debilitating, then the traditional clinical development and
approval process might not be soon enough for the subjects whose life may be saved by
the promising drugs. According to Section 312.81 in 21 CFR, life-threatening diseases
are defined as (1) the diseases or conditions where the likelihood of death is high unless
the course of the disease is interrupted and (2) diseases or conditions with potentially fatal
outcomes, where the endpoint of clinical trial analysis is survival. On the other hand,

26 INTRODUCTION

Table 1.5.5 Summary of Format and Contents of a Fully Integrated
Clinical and Statistical Report for a Controlled Study in an NDA

A. Introduction
B. Fully integrated clinical and statistical report of a controlled clinical study

1. Title page
2. Table of contents for the study
3. Identity of the test materials, lot numbers, etc.
4. Introduction
5. Study objectives
6. Investigational plan
7. Statistical methods planned in the protocol
8. Disposition of patients entered
9. Effectiveness results

10. Safety results
11. Summary and conclusion
12. References
13. Appendices

Source: Based on Guideline for the Format and Content of the Clinical and Statistical
Sections of an Application (July, 1988, Center for Drug Evaluation and Research, FDA).

Table 1.5.6 Summary of Format and Contents of Clinical Study
Reports for the European Economic Community (EEC)

1. Title page
2. Table of contents for the study
3. Synopsis
4. Investigators
5. Introduction
6. Study objectives
7. Investigational plan
8. Study subjects
9. Effectiveness evaluation

10. Safety evaluation
11. Discussion
12. Overall conclusions
13. Summary tables, figures, and graphs cited in text
14. Reference list
15. Appendices

Source: Based on Structure and Content of Clinical Study Reports Joint EFPIA/CPMP
Document—May 13, 1993.
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severely debilitating diseases are those that cause major irreversible morbidity. Since
1987 regulations have been established for early access to promising experimental drugs
and for accelerated approval of drugs for treatment of life-threatening or severely debili-
tating diseases.

Expanded access is devised through treatment IND (Section 312.34 of 21 CFR) and
parallel track regulations. For a serious or immediately life-threatening disease with no
satisfactory therapy available, as mentioned before, a treatment IND allows promising
new drugs to be widely distributed even when data and experience are not sufficient
enough for a full marketing approval. On the other hand, for example, for the patients
infected with human immunodeficiency virus (HIV) who are not qualified for clinical tri-
als and have no other alternative treatment, parallel track regulations issued in 1992 pro-
vide a means for these patients to obtain experimental therapy very early in the
development stage through their private physicians. In 1992 the FDA also established the
regulations for accelerated approval of the drug for serious or life-threatening diseases
based on a surrogate clinical endpoint other than survival or irreversible morbidity (Sub-
part H of Section 314 in 21 CFR). A new concept for approval called Telescoping Trials
has also emerged (Kessler and Feiden, 1995). Under this concept, phase III clinical trials
might be totally eliminated. For example, the FDA might consider approval of a drug for a
serious disease which, during phase II clinical trials, demonstrates a positive impact on
survival or irreversible morbidity. The time table for drug evaluation and approval is illus-
trated in Figure 1.5.1 which is adopted from Kessler and Feiden (1995). A successful
example of expanded access and accelerated approval provided by these regulations is the
review and approval of dideoxyinosine (ddI) of Bristol-Myers Squibb Company for
patients with HIV. An expanded access to ddI was initiated in September 1989. The new
drug application based on the data of phase I clinical trials with no control group was filed
in April 1991. The FDA granted conditional approval of the drug in October 1991 based
on a clinical surrogate end point called a CD4� lymphocyte count. With the data from
phases II and III clinical trials submitted in April 1992, the approval of ddI was broadened
in September 1992. The history of ddI case is illustrated in Figure 1.5.2 (also adopted
from Kessler and Feiden, 1995). Another example for fast-track development and acceler-
ated approval is the case of fludarabine phosphate (fludara) for treatment of refractory
chronic lymphocytic leukemia (CLL) (Tessman, Gipson, and Levins, 1994). Fludara is the
first new drug approved for this common form of adult leukemia in the United States over
50 years. The NDA, filed in November 1989 and approved in April 1991, was in fact based
on retrospective analyses of phase II clinical trials conducted by NCI through cooperative
groups including Southwest Oncology Group (SWOG) and M.D. Anderson Cancer Center
in Houston, Texas. In addition an early excess to the drug was provided in 1989 through
NCI’s Group C protocol, which is equivalent to NCI’s version of treatment IND. The last
example is the approval of Gleevec (omatinib mesylate) for oral treatment for patients
with chronic myeloid leukemia (CML) by the U.S. FDA in 2001. Gleevec is a specific
inhibitor of tyrosine kinase enzymes that plays an important role in CML. Under acceler-
ated approval regulation and orphan drug status, the U.S. FDA reviewed and approved the
marketing application in less than 3 months. This approval for three phases of CML was
based on separate single-arm studies using surrogate endpoints such as major cytogenetic
response. One of these studies was recently published (Kantarjian et al., 2002). However,
the then-U.S. FDA acting commissioner, B. A. Schwetz, D.V.M., Ph.D., indicated that fur-
ther studies are needed to evaluate whether Gleevec provides an actual clinical benefit,
such as improved survival.
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Abbreviated New Drug Application

An abbreviated NDA (ANDA) is usually reserved for drug products (e.g., generics) that
duplicate products previously approved under a full NDA. For an ANDA, reports of non-
clinical laboratory studies and clinical investigations except for those pertaining to in vivo
bioavailability of the drug product are not required. The information may be omitted when
the FDA has determined that the information already available to it is adequate to establish
that a particular dosage form of a drug meets the statutory standards for safety and effec-
tiveness. The duplicate products are usually referred to as products with the same active
ingredient(s), route of administration, dosage form, strength, or condition of use that may
be made by different manufacturers.

As mentioned earlier, under the Drug Price Competition and Patient Term Restoration
Act passed in 1984, the FDA may approve generic drug products if the generic drug com-
panies can provide evidence that the rates and extents of absorption of their drug products
do not show a significant difference from those of the innovator drug products when
administered at the same molar dose of the therapeutic moiety under similar experimental
conditions (21 CFR 320). The Drug Price Competition and Patent Term Restoration Act
states FDA’s authority for all generic drug approvals through an ANDA submission for
bioequivalence review. An ANDA submission should include product information, phar-
macokinetic data and analysis, statistical analysis, analytical methodology and validation,
and clinical data. In the ANDA submission the FDA requires the sponsor to provide nec-
essary information regarding the drug product such as formulation, potency, expiration
dating period (or shelf life), and dissolution data. For example, the dissolution profile of
the generic drug product should be comparable with that of the innovator drug product for
drug release. Before the conduct of a bioavailability and bioequivalence study, the FDA
also requires the sponsor to provide validation data for the analytical method used in the
study. The analytic method should be validated according to standards specified in the
U.S. Pharmacopeia and National Formulary (USP/NF, 2002). For example, the analytical
method needs to be validated in terms of its accuracy, precision, selectivity, limit of detec-
tion, limit of quantitation, range, linearity, and ruggedness (Chow and Liu, 1995a). For
pharmacokinetic data, descriptive statistics should be given by the sampling time point and
for each pharmacokinetic responses. To ensure the validity of bioequivalence assessment,

NEW DRUG APPLICATION 29

Figure 1.5.2 Case history of dideoxyinosine (ddI) shows how efforts to streamline the regulatory
process have paid off. In September 1989 the drug was made available to many AIDS patients on an
expanded-access basis. The FDA approved the drug for sale after reviewing preliminary results from
ongoing studies and then expanded the approval once final results came in. (Source: Kessler and
Faiden, 1995.)
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the Division of Bioequivalence, Office of Generic Drugs of CDER at the FDA issued a
Guidances on Bioavailability and Bioequivalence Studies for Orally Administrated Drug
Products—General Consideration in March, 2003 and Statistical Approaches to Estab-
lishing Bioequivalence in January 2001, respectively. The guidance sets forth regulations
for valid statistical analysis for bioequivalence assessment. Note that detailed information
regarding statistical design and analysis of bioavailability and bioequivalence studies can
be found in Chow and Liu (2000). In addition any relevant clinical findings, adverse reac-
tions and deviation from the protocol need to be included in the ANDA submission.

Supplemental New Drug Application

A supplemental NDA (SNDA) is referred to as documentation submitted to FDA on a drug
substance or product that is already the subject of an approved NDA. Supplements may be
submitted for a variety of reasons such as labeling changes, a new or expanded clinical
indication, or a new dosage form. For example, for labeling changes, the sponsor may want
to add a new specification or test method or changes in the methods, facility, or controls to
provide increased assurance that the drug will have the characteristics of identity, strength,
quality, and purity that it purports to possess. For drug substance and/or drug product, the
sponsor may want to relax the limits for a specification, establish a new regulatory analyt-
ical method, or delete a specification or regulatory analytical method. In addition the spon-
sor may want to extend the expiration date of the drug product based on data obtained
under a new or revised stability testing protocol that has not been approved in the applica-
tion or to establish a new procedure for reprocessing a batch of the drug product that fails to
meet specification. It, however, should be noted that in an SNDA, the sponsor is required to
fully describe the change in each condition established in an approved application beyond
the variation already provided for in the application.

Advisory Committee

The FDA has established advisory committees each consisting of clinical, pharmacological,
and statistical experts and one consumer advocate (not employed by the FDA) in designated
drug classes and subspecialities. The responsibilities of the committees are to review data
presented in NDA’s and to advise FDA as to whether there exists substantial evidence of
safety and effectiveness based on adequate and well-controlled clinical studies. In addition
the committee may also be asked at times to review certain INDs, protocols, or important
issues relating to marketed drugs and biologics. The advisory committees not only supple-
ment the FDA’s expertise but also allow an independent peer review during the regulatory
process. Note that the FDA usually prepares a set of questions for the advisory committee to
address at the meeting. The following is a list of some typical questions:

1. Are there two or more adequate and well-controlled trials?

2. Have the patient populations been well enough characterized?

3. Has the dose-response relationship been sufficiently characterized?

4. Do you recommend the use of the drug for the indication sought by the sponsor for
the intended patient population?

The FDA usually will follow the recommendations made by the Advisory Committee for
marketing approval, though they do not have to legally.

30 INTRODUCTION
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1.6 CLINICAL DEVELOPMENT AND PRACTICE

Clinical research and development in pharmaceutical environment is to scientifically eval-
uate the benefits and risks of promising pharmaceutical entities at a minimal cost and
within a very short timeframe. To ensure the success of the development of the pharma-
ceutical entity, a clinical development plan is necessary.

Clinical Development Plan

A clinical development plan (CDP) is a description of clinical studies that will be carried
out in order to assess the safety and effectiveness of the drug. A clinical development plan
typically includes a development rationale, listing of trial characteristics, timeline, cost,
and resource requirements. A good and flexible clinical development plan hence is
extremely crucial and important to the success and unbiased assessment of a potential
pharmaceutical entity. Although a typical CDP is based primarily on the validity of med-
ical and scientific considerations, other factors that involve issues such as biostatistics, reg-
ulatory, marketing, and management are equally important. For a successful CDP, we first
need to define a product profile for the promising pharmaceutical entity before any clinical
development. Table 1.6.1 lists essential components of a product profile. These compo-
nents set the goals and objectives for the clinical development program of a pharmaceuti-
cal entity. A clinical development program is referred to as the set of different clinical trial
plans at different stages with milestones for assessment and decision making to evaluate
the goals and objectives stated in the product profile. For example, if the drug product
under development is for an indication intended for a particular population, the relative
merits and disadvantages of the product as compared to other products either on the mar-
ket or still under development should objectively be assessed. In order to evaluate the rela-
tive merits, minimum requirements and termination criteria on the effectiveness and safety
of the product are usually set. These requirements and criteria are evaluated through statis-
tical analysis of data collected from a series of clinical trials. The deadlines for milestones
and decision making should also be scheduled in CDP according to the time when certain
clinical trials to evaluate the requirements and criteria are completed and the data are ade-
quately analyzed. Since a huge investment is usually necessarily committed to develop
a new pharmaceutical entity, information based on efficacy and safety alone may not be
enough to evaluate a potential product. It is therefore recommended that cost-effectiveness
and quality of life be evaluated, especially for the me-too products in a saturated market. In
this case requirements and criteria for cost-effectiveness and quality of life need to be
included at milestones and/or decision-making points. As indicated earlier, although many
factors such as statistics, marketing, regulatory, and management need to be considered in
a CDP, the scientific validity of clinical investigations is the key to the success of a clinical
development program.

In the pharmaceutical industry clinical development of a pharmaceutical entity starts
with seeking alternatives or new drug therapies for an existing health problem (e.g., hyper-
tension) or a newly identified health problem (e.g., AIDS). The health problem of interest
may be related to virus, cardiovascular, cancer diseases, or other diseases. Once the health
problem is selected or identified, whether it is worth developing an alternative or a new
pharmaceutical entity for this particular disease is a critical development decision point. A
clear decision point can increase the success of the project and consequently reduce the risk
and cost. Suppose that it is decided to proceed with the development of a pharmaceutical
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entity (e.g., enzymes or receptors), a number of chemical modifications and ADME tests in
animals may be necessary before it can be tested on humans. ADME studies are used to
determine how a drug is taken up by the body, where it goes in the body, the chemical
changes it undergoes in the body, and how it is eliminated from the body. ADME studies
describe the pharmacokinetics and bioavailability of a drug. If the drug shows promising
effectiveness and safety in animals, the sponsor normally will make a decision to go for an
IND. As indicated in Section 1.4, an IND is a synthesis process that includes formulation,
analytical method development and validation, stability, animal toxicity, pharmacokinetic/
pharmacology, previous human experience, and clinical development. The sponsor will then
prepare a registration document that combines all the relevant data to allow the FDA to
review and decide whether to approve marketing of the new drug. As discussed in Section
1.5, an NDA submission should include chemistry, pharmacology, toxicology, metabolism,
manufacturing, quality controls, and clinical data along with the proposed labeling.

Good Clinical Practices

Good clinical practices (GCP) is usually referred to as a set of standards for clinical studies
to achieve and maintain high-quality clinical research in a sensible and responsible manner.
The FDA, the Committee for Proprietary Medicinal Products (CPMP) for the European
Community, the Ministry of Health and Welfare of Japan, and other countries worldwide

32 INTRODUCTION

Table 1.6.1 Components of a Pharmaceutical 
Product Profile

Target population
Innovation potentials

Therapeutic concepts
Innovative elements
Technological advances
Patent status

Route of administrations
Doses
Formulations
Regimens

Duration of dosing
Status of market
Current competitors

On market
Under development
Advantages
Disadvantages

Minimum requirements
Efficacy
Safety

Termination criteria
Efficacy
Safety

Time frames
Milestones

c01.qxd  27.10.03  12:41  Page 32



have each issued guidelines on good clinical practices. For example, the FDA promulgated
a number of regulations and guidelines governing the conduct of clinical studies from which
data will be used to support applications for marketing approval of drug products. The FDA
regulations refer to those regulations specified in 21 CFR Parts 50, 56, 312, and 314, while
the FDA guidelines are guidelines issued for different drug products such as Guidelines for
the Clinical Evaluation of Anti-Anginal Drugs and Guidelines for the Clinical Evaluation of
Bronchodilator Drugs. On the other hand, the European Community established the princi-
ples for their own GCP standard in all four phases of clinical investigation of medicinal
products in July 1990. Basically these guidelines define the responsibilities of sponsors,
monitors, and investigators in the initiation, conduct, documentation, and verification of
clinical studies to establish the credibility of data and to protect the rights and integrity of
study participants.

In essence GCP concerns patient protection and the quality of data used to prove the
efficacy and safety of a drug product. GCP ensures that all data, information, and docu-
ments relating to a clinical study can be confirmed as being properly generated, recorded,
and reported through the institution by independent audits. Therefore the basic GCP con-
cerns are not only the protection of study subjects through informed consent and consulta-
tion by ethics committees such as IRB but also the responsibilities of the sponsors and
monitors to establish written procedures for study monitoring and conduct and to ensure
that such procedures are followed. In addition GCP emphasizes the responsibilities of
investigator to conduct the study according to the protocol and joint responsibilities for
data reporting, recording, analysis, and archiving as well as prompt reporting of serious
adverse events. Moreover GCP calls for the most appropriate design for a valid statistical
evaluation of the hypotheses of the clinical trials. The chosen design must suit the purpose
with the best possible fit. Incorporating the concerns of GCP in the protocol will ensure
a protocol of high standard, which in turn will help generate high-quality data.

Study conduct according to GCP standards requires regular visits to investigating cen-
ter to monitor study progress. The activities of the sponsor’s monitors that will affect the
investigator and support staff should be stated in the protocol. Not only this is courteous, it
prevents misunderstanding, facilities cooperation, and aids the speedy acquisition of com-
pleted case report form. The activities include frequency of monitoring visits, activities
while on site (e.g., auditing CRFs), and departments to be visited (e.g., pharmacy). The
practical effects of adopting GCP are that the investigator is audited by the sponsor’s mon-
itors (to confirm data on CRFs are a true transcript of original records), by a sponsor
administratively separate from the clinical function and in some countries, by the national
regulatory agency. The sponsor’s monitors are audited by a compliance staff and by
national regulatory agencies to confirm the accuracy of data recorded and the implementa-
tion of all written procedures such as standard operating procedure (SOP) and protocol.

Most of pharmaceutical companies and research institutions have a protocol review
committee (PRC) to evaluate the quality and integrity of the protocol and hence to approve
or disapprove the protocol. Some companies also ask the principal study medical monitor
and statistician to submit a case report form (CRF) and a statistical analysis plan with
mock tables and listing for presentation of the results to PRC at the same time when the
protocol is submitted for review.

Lisook (1992) has assembled a GCP packet to assist the sponsors in the planning, execu-
tion, data analysis, and submission of results to the FDA. A summary of this GCP packet is
given in Table 1.6.2. Most of these regulations have been discussed in the previous sections
of this chapter. To improve the conduct and oversight of clinical research and to ensure the
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protection of subjects participating in the FDA-regulated clinical research, the U.S. FDA
established the Office of Good Clinical Practice (OGCP) within the Office of the Commis-
sioned and its Office of Science Coordination and Communication in 2001. This new office
has distinct roles from the Office of Human Research Protections (OHRP) of the Depart-
ment of Health and Human Services (DHHS). These distinct roles include (1) coordination
of the FDA’s policies, (2) provision of leadership and direction through the administration
of the FDA’s Human Subject Protection/Good Clinical Practice Steering Committee, (3)
coordination of the FDA’s Bioresearch Monitoring program, (4) contribution to the interna-
tional Good Clinical Practice harmonization activities, (5) planning and conducting training
and outreach programs, and (6) serving as a liaison with OHRP and other federal agencies
and other stakeholders committed to the protection of human research participants.

In the past, as demonstrated in Tables 1.5.2 and 1.5.3, Tables 1.5.5 and 1.5.6, health reg-
ulatory authorities in different countries have different requirements for approval of com-
mercial use of the drug products. As a result, considerable resource had been spent by the
pharmaceutical industry in the preparation of different documents for applications of 
the same pharmaceutical product to meet different regulatory requirements requested by
different countries or regions. However, because of globalization of the pharmaceutical
industry, arbitrary differences in regulations, increase of health care costs, need for reduc-
tion of time for patients to access new drugs, and of experimental use of humans and
animals without compromising safety, the necessity to standardize these similar yet differ-
ent regulatory requirements has been recognized by both regulatory authorities and pharma-
ceutical industry. Hence, The International Conference on Harmonization (ICH) of Technical
Requirements for the Registration of Pharmaceuticals for Human Use was organized to pro-
vide an opportunity for important initiatives to be developed by regulatory authorities as
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Table 1.6.2 References to Keep at Hand for Good Clinical Practice

1. Information on FDA regulations
2. Center for Drug Evaluation and Research publications
3. Clinical Investigations (excerpt from the Federal Register, 9-27-1977)
4. Protection of Human Subjects, Informed Consent Forms
5. New Drug, Antibiotic, and Biologic Drug Product Regulations; Final Rule 

(excerpt from the Federal Register, 3-19-1987)
6. Investigational New Drug, Antibiotic, and Biologic Drug Product Regulations; 

Treatment Use and Sale; Final Rule (excerpt from the Federal Register, 5-22-1987)
7. Guideline for the Monitoring of Clinical Investigations
8. Investigational New Drug, Antibiotic, and Biologic Drug Product Regulations; Procedure 

Intended to Treat Life-Threatening and Severely Debilitating Illness; Interim Rule 
(excerpt from the Federal Register, 10-22-1988)

9. FDA IRB (Institution Review Board) Information Sheets
10. FDA Clinical Investigator Sheet
11. Reprint of Alan B. Lisook, M.D. FDA audits of clinical studies: Policy and procedure,

Journal of Clinical Pharmacology, 30 (April 1990) 296–302.
12. Federal Policy for the Protection of Human Subjects; Notices and Rules 

(excerpt from the Federal Register, 6-18-1991)
13. FDA Compliance Program Guidance Manual-Clinical Investigators (10-1-1997)
14. FDA Compliance Program Guidance Manual-Sponsors, Contract Research 

Organization and Monitors (2-21-2001)
15. FDA Compliance Program Guidance Manuals-Institutional Review Board (10-1-1994)
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well as industry association for the promotion of international harmonization of regulatory
requirements.

Currently, ICH, however, is only concerned with tripartite harmonization of technical
requirements for the registration of pharmaceutical products among three regions: The
European Union, Japan, and the United States. Basically, the organization of the ICH con-
sists of two representatives, one from a regulatory authority and one from the pharmaceu-
tical industry, from each of the three regions. As a result, the organization of the ICH
consists of six parties of these three regions which include the European Commission of
the European Union, the European Federation of Pharmaceutical Industries’Associations
(EFPIA), the Japanese Ministry of Health, Labor and Welfare (MHLW), the Japanese
Pharmaceutical Manufacturers Association (JPMA), the Centers for Drug Evaluation and
Research and Biologics Evaluation and Research of the US FDA, and the Pharmaceutical
Research and Manufacturers of America (PhRMA). The ICH steering committee was
established in April, 1990 to (1) determine policies and procedures, (2) to select topics,
(3) to monitor progress, and (4) to oversee preparation of biannual conferences. Each of
the six parties has two seats on the ICH steering committee. The ICH steering committee
also includes observers from the World Health Organization, the Canadian Health Protec-
tion Branch, and the European Free Trade Area which have one seat each on the commit-
tee. In addition, two seats of the ICH Steering Committee are given to the International
Federation of Pharmaceutical Manufacturers Association (IFPMA), which represents the
research-based pharmaceutical industry from 56 countries outside ICH regions. IFPMA
also runs the ICH Secretariat at Geneva, Switzerland which coordinates the preparation of
documentation.

In order to harmonize technical procedures the ICH has issued a number of guidelines
and draft guidelines. After the ICH steering committee selected the topics, the ICH guide-
lines initiated by a concept paper and went through a 5-step review process given in 
Table 1.6.3. The number of ICH guidelines and draft guidelines at various stages of review
process is given in Table 1.6.4. Table 1.6.5 provides a list of currently available ICH guide-
lines or draft guidelines pertaining to clinical trials while Table 1.6.6 gives the table of con-
tents for the ICH draft guideline on general considerations for clinical trials. In addition, the
table of contents of the ICH guidelines for good clinical practices: consolidated guidelines,
for structure and content of clinical study reports, and for statistical principles for clinical
trials are given, respectively in Tables 1.6.7, 1.6.8, and 1.6.9. From these tables, it can be
seen that these guidelines are not only for harmonization of design, conduct, analysis, and
report for a single clinical trial but also for consensus in protecting and maintaining the sci-
entific integrity of the entire clinical development plan of a pharmaceutical entity. Along
this line, Chow (1997, 2003) introduced the concept of good statistics practice (GSP) in
drug development and regulatory approval process as the foundation of ICH GCP. The con-
cepts and principles stated in the ICH clinical guidelines will be introduced, addressed, and
discussed in the subsequent chapters of this book.

1.7 AIMS AND STRUCTURE OF THE BOOK

As indicated earlier, clinical trials are scientific investigations that examine and evaluate
drug therapies in human subjects. Biostatistics has been recognized and extensively
employed as an indispensable tool for planning, conduct, and interpretation of clinical trials.
In clinical research and development the biostatistician plays an important role that
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Table 1.6.3 Review Steps for the ICH Guidelines

Step 1

1. Harmonized topic identified
2. Expert working group (EWG) formed
3. Each party has a topic leader and a deputy
4. Rapporteur for EWR selected
5. Other parties represented on EWG as appropriate
6. Produce a guideline, policy statement, “points to consider”
7. Agreement on scientific issues
8. Sign-off and submit to the ICH steering committee

Step 2

1. Review of ICH document by steering committee
2. Sign-off by all six parties
3. Formal consultation in accord with regional requirements

Step 3

1. Regulatory rapporteur appointed
2. Collection and review of comments across all three regions
3. Step 2 draft revised
4. Sign-off by EWR regulatory members

Step 4

1. Forward to steering committee
2. Review and sign-off by three regulatory members of ICH
3. Recommend for adoption to regulatory bodies

Step 5

1. Recommendations are adopted by regulatory agencies
2. Incorporation into domestic regulations and guidelines

Table 1.6.4 Summary of the Number of ICH Guidelines
or Draft Guidelines

Step 1 Step 2 Step 3 Step 4 Step 5

Efficacy 0 0 0 0 15
Safety 0 0 1 0 13
Quality 0 0 6 0 17
Multidiscipline 0 0 1 0 4

contributes toward the success of clinical trials. Well-prepared and open communication
among clinicians, biostatisticians, and other related clinical research scientists will result in
a successful clinical trial. Communication, however, is a two-way street: Not only (1) must
the biostatistician effectively deliver statistical concepts and methodologies to his or her
clinical colleagues but also (2) the clinicians must communicate thoroughly clinical and sci-
entific principles embedded in clinical research to the biostatisticians. The biostatisticians
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Table 1.6.5 The ICH Clinical Guidelines or Draft Guidelines

1. E1A: The Extent of Population Exposure to Assess Clinical Safety for Drugs Intended for
Long-term treatment of Non-Life-Threatening Conditions

2. E2A: Clinical Safety Data Management: Definitions and Standards for Expedited Reporting
3. E2B: Data Elements for Transmission of Individual Case Safety Reports
4. E2B(M): Data Elements for Transmission of Individual Case Safety Reports
5. M2:E2B(M): Electronic Transmission of Individual Case Safety Reports Message Specification
6. E2C: Clinical Safety Data Management: Periodic Safety Update Reports for Marketed Drugs
7. E3: Structure and Content of Clinical Studies
8. E4: Dose-Response Information to Support Drug Registration
9. E5: Ethnic Factors in the Acceptability of Foreign Clinical Data

10. E6: Good Clinical Practice: Consolidated Guideline
11. E7: Studies in Support of Special Populations: Geriatrics
12. E8: General Considerations for Clinical Trials
13. E9: Statistical Principles for Clinical Trials
14. E10: Choice of Control Group in Clinical Trials
15. E11: Clinical Investigation of Medicinal Products in the Pediatric Population
16. M4: Common Technical Document for the registration of Pharmaceuticals for Human Use

Main Document (Organization)
Efficacy
Safety
Safety Appendices
Quality

17. Principles for Clinical Evaluation of New Antihypotensive Drugs
18. Draft Guidelines M2: Electronic Technical Document Specification (eTD)

Table 1.6.6 The Table of Contents for the Guideline on General
Considerations for Clinical Trials

1. Objectives of this document
2. General principles

2.1 Protection of clinical trial subjects
2.2 Scientific approach in design and analysis

3. Development methodology
3.1 Considerations for development

3.1.1 Nonclinical studies
3.1.2 Quality of investigational medicinal products
3.1.3 Phases of clinical development
3.1.4 Special considerations

3.2 Considerations for individual clinical trials
3.2.1 Objectives
3.2.2 Design
3.2.3 Conduct
3.2.4 Analysis
3.2.5 Reporting
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Table 1.6.7 Table of Contents for the ICH Guideline on Good Clinical Practice:
Consolidated Guideline

Introduction
1. Glossary
2. The Principles of ICH GCP
3. The Institutional Review Board/Independent Ethnic Committee (IRB/IEC)

3.1 Responsibilities
3.2 Composition, functions, and operations
3.3 Procedures
3.4 Records

4. Investigators
4.1 Investigator’s qualifications and agreements
4.2 Adequate resources
4.3 Medical care of trial subjects
4.4 Communication with IRB/IEC
4.5 Compliance with protocol
4.6 Investigational products
4.7 Randomization procedures and unblinding
4.8 Informed consent of trial subjects
4.9 Records and reports

4.10 Progress reports
4.11 Safety reporting
4.12 Premature termination or suspension of a trial
4.13 Final report(s) by investigator/institution

5. Sponsor
5.1 Quality assurance and quality control
5.2 Contract research organization
5.3 Medical expertise
5.4 Trial design
5.5 Trial management, data handling, recordingkeeping, and independent data monitoring 

committee
5.6 Investigator selection
5.7 Allocation of duties and functions
5.8 Compensation to subjects and investigators
5.9 Financing

5.10 Notification/submission to regulatory authority(ies)
5.11 Confirmation of review of IRE/IEC
5.12 Information on investigational product(s)
5.13 Manufacturing, packaging, labeling, coding investigation product(s)
5.14 Supplying and handling, investigational product(s)
5.15 Record access
5.16 Safety information
5.17 Adverse drug reaction reporting
5.18 Monitoring
5.19 Audit
5.20 Noncompliance
5.21 Premature termination or suspension of a trial
5.22 Clinical trial/study reports
5.23 Multicenter trials

6. Clinical Trial Protocol and Protocol Amendment(s)
6.1 General information
6.2 Background information
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Table 1.6.8 Table of Contents for the ICH Guideline on
Structure and Contents of Clinical Study Reports

Introduction to the guideline
1. Title page
2. Synopsis
3. Table of contents for the individual clinical study report
4. List of abbreviations and definition of terms
5. Ethics
6. Investigators and study administrative structure
7. Introduction
8. Study objectives
9. Investigational plan

10. Study patients
11. Efficacy evaluation
12. Safety evaluation
13. Discussion and overall conclusions
14. Tables, figures, graphs referred to but not included in the text
15. Reference list
16. Appendices

Table 1.6.7 (Continued)

6. Clinical Trial Protocol and Protocol Amendment(s) (Continued)
6.3 Trial objectives and purpose
6.4 Trial design
6.5 Selection and withdrawal of subjects
6.6 Treatment of subjects
6.7 Assessment of efficacy
6.8 Assessment of safety
6.9 Statistics

6.10 Direct assess to source data/documents
6.11 Quality control and quality assurance
6.12 Ethics
6.13 Data handling and recordkeeping
6.14 Financing and insurance
6.15 Publication
6.16 Supplements

7. Investigator’s Brochure
7.1 Introduction
7.2 General considerations
7.3 Contents of the investigator’s brochure
7.4 Appendix 1
7.5 Appendix 2

8. Essential documents for the conduct of a clinical trial
8.1 Introduction
8.2 Before the clinical phase of the trial commences
8.3 During the clinical conduct of the trial
8.4 After completion or termination of the trial
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can then formulate these clinical and scientific principles into valid statistical hypotheses
under an appropriate statistical model. Overall, the integrity, quality, and success of a clin-
ical trial depends on the interaction, mutual respect, and understanding between the clini-
cians and the biostatisticians.

The aim of this book is not only to fill the gap between clinical and statistical disciplines
but also to provide a comprehensive and unified presentation of clinical and scientific issues,
statistical concepts, and methodology. Moreover the book will focus on the interactions
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Table 1.6.9 Table of Contents for the ICH Guideline on Statistical
Principles for Clinical Trials

I. Introduction
1.1 Background and purpose
1.2 Scope and purpose

II. Considerations for Overall Clinical Development
2.1 Trial content
2.2 Scope of trials
2.3 Trial techniques to avoid bias

III. Trial Design Considerations
3.1 Design configuration
3.2 Multicenter trials
3.3 Type of comparison
3.4 Group sequential designs
3.5 Sample size
3.6 Data capture and processing

IV. Trial Conduct Considerations
4.1 Trial monitoring and interim analysis
4.2 Changes in inclusion and exclusion criteria
4.3 Accrual rates
4.4 Sample size adjustment
4.5 Interim analysis and early stopping
4.6 Role of independent data monitoring committee (IDMC)

V. Data Analysis Considerations
5.1 Prespecification of the analysis
5.2 Analysis sets
5.3 Missing values and outliers
5.4 Data transformation
5.5 Estimation, confidence interval, and hypothesis testing
5.6 Adjustment of significance and confidence levels
5.7 Subgroups, interaction, and covariates
5.8 Integrity of data and computer software validity

VI. Evaluation of Safety and Tolerability
6.1 Scope of evaluation
6.2 Choice of variables and data collection
6.3 Set of subjects to be evaluated and presentation of data
6.4 Statistical evaluation
6.5 Integrated summary

VII. Reporting
7.1 Evaluation and reporting
7.2 Summarizing the clinical database

Annex I Glossary
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between clinicians and biostatisticians that often occur during various phases of clinical
research and development. This book is also intended to give a well-balanced summarization
of current and emerging clinical issues and recently developed corresponding statistical
methodologies. Although this book is written from the viewpoint of pharmaceutical research
and development, the principles and concepts presented in this book can also be applied to a
nonbiopharmaceutical setting.

It is our goal to provide a comprehensive reference book for physicians, clinical
researchers, pharmaceutical scientists, clinical or medical research associates, clinical pro-
grammers or data coordinators, and biostatisticians or statisticians in the areas of clinical
research and development, regulatory agencies, and academe.

The scope of this book covers clinical issues, which may occur during various phases of
clinical trials in pharmaceutical research and development, their corresponding statistical
interpretations, concepts, designs and analyses, which are adopted to address these impor-
tant clinical issues. Basically, this book is devoted to the concepts and methodologies of
design and analysis of clinical trials. As a result, this book can be divided into two parts:
concepts and methodologies. Each part consists of several chapters with different topics.
Each part and each chapter are self-contained. But, at the same time, parts and chapters are
arranged in a sensible manner such that there is a smooth transition between parts and from
chapter to chapter within each part.

Chapter 1 provides an overview of clinical development for pharmaceutical entities,
drug research and development process in the pharmaceutical industry, regulatory review,
and approval processes and requirements. Also included in this chapter are the aim and
structure of the book. Chapters 2 to 7 cover the concepts of design and analysis of clinical
trials. Chapter 2 introduces basic statistical concepts such as uncertainty, bias, variability,
confounding, interaction, clinical significance and equivalence, and reproducibility and
generalizability. Chapter 3 provides some fundamental considerations for choosing a valid
and suitable design for achieving study objectives of clinical trials under various circum-
stances. Chapter 4 illustrates the concepts and different methods of randomization and
blinding, which are critically indispensable for the success and integrity of clinical trials.
Chapter 5 introduces different types of statistical designs for clinical trials. These study
designs include parallel group, crossover, titration, enrichment, clustered, group-sequential,
placebo-challenging, and blinder-reader designs. Also included in this chapter is the dis-
cussion of the relative merits and disadvantages of these study designs. Specific designs
for cancer clinical trials are introduced in Chapter 6. These designs include standard esca-
lation, accelerated titration, and continual reassessment method (CRM) in determination
of maximum tolerable dose (MTD) for phase I cancer trials. In addition, Simon’s optimal
two-stage design and randomized phase II designs are also discussed. Various types of
clinical trials, including multicenter, superiority, dose-response, active control, equiva-
lence and noninferiority, drug-to-drug interaction, combination, and bridging trials, are
discussed in Chapter 7.

Chapters 8 through 13 cover methodologies and various issues that are commonly
encountered in the analysis of clinical data. As clinical endpoints can generally be classified
into three types: continuous, categorical, and censored data, different statistical methods
for analysis of these three types of clinical data are necessary. Chapters 8, 9, and 10 discuss
the advantages and limitations of statistical methods for analysis of continuous, categori-
cal, and censored data, respectively. In addition, group sequential procedures for interim
analysis are also given in Chapter 10. Chapter 11 provides different procedures for sample
size calculation for various types of data under different study designs. Chapter 12
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discusses statistical issues in analyzing efficacy data. These issues include baseline com-
parison, intention-to-treat analysis versus evaluable or per-protocol analysis, adjustment of
covariates, multiplicity, the use of genomic information for assessment of efficacy, and
data monitoring. Chapter 13 focuses on the issues for analysis of safety data, which
include the extent of exposure, coding and analysis of adverse events, the analysis of labo-
ratory data, and the use of genomic information for evaluation of drug safety.

Issues of study protocols and clinical data management are provided in Chapters 14 and
15, respectively. Chapter 14 focuses on the development of a clinical protocol. This chap-
ter discusses the structure and components of an adequate and well-controlled clinical trial
protocol, issues that are commonly encountered in protocol development, commonly seen
deviations in the conduct of a clinical trial, clinical monitoring, regulatory audit and
inspection, and assessment of the quality and integrity of clinical trials. Chapter 15 sum-
marizes basic standard operating procedures for good clinical data management practice.
These standard operating procedures cover the development of case report forms (CRF),
database development and validation, data entry, validation and correction, database final-
ization and lock, CRF flow and tracking, and the assessment of clinical data quality.

For each chapter, whenever possible, real examples from clinical trials are included to
demonstrate the clinical and statistical concepts, interpretations, and their relationships and
interactions. Comparisons regarding the relative merits and disadvantages of the statistical
methodology for addressing different clinical issues in various therapeutic areas are dis-
cussed wherever deemed appropriate. In addition, if applicable, topics for future research
development are provided.

42 INTRODUCTION
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2
BASIC STATISTICAL CONCEPTS

2.1 INTRODUCTION

As was indicated in the preceding chapter, in general, the FDA requires that two adequate
well-controlled clinical trials be conducted to demonstrate the effectiveness and safety of a
drug product. The success of an adequate well-controlled clinical trial depends on a well-
designed protocol. A well-designed protocol describes how the clinical trial is to be carried
out, which ensures the quality of clinical data collected from the trial. Based on the high-
quality clinical data, appropriate statistical methods can then be applied to provide a valid
and unbiased assessment of the efficacy and safety of the drug product. Spilker (1991) indi-
cated that the greater the attention paid to the planning phase of a clinical trial, the greater the
likelihood that the clinical trial will be conducted as desired. In this chapter, we will describe
several basic statistical concepts and issues that have a great impact on the success of a clini-
cal trial during its planning, design, execution, analysis, and reporting phases. These basic
statistical concepts include uncertainty and probability, bias and variability, confounding and
interaction, and descriptive and inferential statistics using hypotheses testing and p-values,
for example.

In the medical community, there are many unknowns remaining in the clinical research
of certain diseases such as AIDS. These unknowns or uncertainties are often scientific
questions of particular interest to clinical scientists. Once a scientific question regarding
the uncertainty of interest is clearly stated, clinical trials are necessarily conducted to pro-
vide scientific or clinical evidence to statistically address the uncertainty. Under some
underlying probability distribution assumption, a statistical inference can then be derived
based on clinical data collected from a representative sample of the targeted patient popu-
lation. To provide a valid statistical assessment of the uncertainty with a desired accuracy
and reliability, statistical and/or estimation procedures should possess the properties of
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unbiasedness and least variability whenever possible. In practice, well-planned statistical
designs can generally serve to avoid unnecessary bias and minimize the potential variabil-
ity that can occur during the conduct of the clinical trials. In some clinical trials, design
factors such as race and gender may have an impact on the statistical inference of clinical
evaluation of the study medication. In this case, it is suggested that possible confounding
and/or interaction effects be carefully identified and separated from the treatment effect in
order to have a valid and unbiased assessment of the clinical evaluation of the study med-
ication. After the completion of a clinical trial, the collected clinical data can either be
summarized descriptively to provide a quick overview of clinical results or be analyzed to
provide statistical inference on clinical endpoints of interest. Descriptive statistics usually
provide useful information regarding a potential treatment effect. This information can be
confirmed by a valid statistical inference with a certain assurance that can be obtained
through an appropriate statistical analysis such as hypotheses testing and p-values.

These basic statistical concepts play an important role in the success of clinical trials.
They are helpful not only at the very early stage of a study’s concept statement development
but also at the stage of protocol development. In addition to these basic statistical concepts,
there are many statistical/medical issues that can affect the success of a clinical trial. For
example, clinical scientists may be interested in establishing clinical efficacy using a one-
sided test procedure rather that a two-sided test procedure based on prior experience of the
study medication. It should be noted that different test procedures require different sample
sizes and address different kinds of uncertainty regarding the study medication. In addition,
clinical scientists always focus on clinical difference rather than statistical difference. It
should be noted that the statistical test is meant to detect a statistical difference with a
desired power. The discrepancy between a clinical difference and a statistical difference has
an impact on the establishment of clinical equivalence between treatments. As a result, these
issues are also critical in the success of clinical trials which often involve considerations
from different perspectives such as political, medical, marketing, regulatory, and statistical.

2.2 UNCERTAINTY AND PROBABILITY

For a medication under investigation, there are usually many questions regarding the proper-
ties of the medication that are of particular interest to clinical scientists. For example, the
clinical scientists are interested to know whether the study medication works for the intended
indication and patient population. In addition, the clinical scientists may be interested in
knowing whether the study medication can be used as a substitute for other medications cur-
rently available on the market. To address these questions (or uncertainties) regarding the
study medication, clinical trials are necessarily conducted to provide scientific/clinical evi-
dence for a fair scientific/clinical evaluation/justification. In order to address the uncertainty
regarding the study medication for the targeted patient population, a representative sample is
typically drawn for clinical evaluation according to a well-designed protocol. Based on clin-
ical results from the study, statistical inference on the uncertainty can then be made under
some underlying probability distribution assumption. As a result, the concept of uncertainty
and probability plays an important role for clinical evaluation of a study medication.

Uncertainty

Bailar (1992) indicated that uncertainties of interest to clinical scientists include uncer-
tainty from confounders, uncertainty regarding scientific or medical assumptions (or

44 BASIC STATISTICAL CONCEPTS

c02.qxd  27.10.03  12:47  Page 44



hypotheses), and uncertainty about the generalization of the results from animals to
humans. These uncertainties are to be verified through clinical trials. A recent example of
uncertainty on medical assumptions is the cardiac arrhythmia suppression trial (CAST,
1989). Two antiarrhythmic agents, namely, encainide and flecainide were approved for
the indication of ventricular arrhythmia by the FDA based on indisputable evidence on
the suppression of objective endpoint premature ventricular beats (PVB) per hours as
documented by ambulatory 24-hour Holter monitor. This is because the occurrence of
premature ventricular depolarization is considered a risk factor in the survivor of myocar-
dial infarction. The approval of encainide and flecainide in treating patients who survived
myocardial infarction is based on the fundamental assumption that the suppression of
PVB will reduce the chance of subsequent sudden death. This crucial assumption of treat-
ing patients with asymptomatic or symptomatic ventricular arrhythmia after myocardial
infarction was never challenged until the CAST trial initiated by the U.S. National Heart,
Lung, and Blood Institute. After an average of 10 months of follow-up, an interim analy-
sis conducted by the investigators of the CAST discovered that the relative risk of deaths
from arrhythmia and nonfatal cardiac arrest of the patients receiving encainide or 
flecainide (33 of 725) as compared to the placebo (9 of 725) is 3.5. In other words, the
chance of death or suffering cardiac arrest for patients who took either encainide or 
flecainide were three times as high as those who took placebo. The study was terminated
shortly after this finding. As a result, the investigators recommended that neither
encainide nor flecainide be used to treat patients with asymptomatic or mildly sympto-
matic ventricular arrhythmia after myocardial infarction. The saga of CAST demonstrates
that the assumption of the suppression of PVB as a surrogate clinical endpoint for sur-
vival of this patient population is inadequate. In clinical trials, we usually make scientific
or medical assumptions that are based on previous animal or human experiences. It is
suggested that these critical assumptions be precisely stated in the protocol for clinical
test, evaluation, and interpretation.

Uncertainty regarding confounders and scientific or medical assumptions can not usu-
ally be quantified until the confounders are controlled or assumptions are properly investi-
gated. Note that the concept of confounders will be introduced later in this chapter. In
practice, the uncertainty caused by known variations can be statistically quantified. For
example, in the GUSTO I (the Global Use of Strategies to Open Occluded Coronary Arter-
ies, 1993) study it was suggested that for the patients with evolving myocardial infarction,
on the average, the intravenous administration of t-PA (accelerated) over a period of one
and a half hour produced a 14.5% reduction in 30-day mortality as compared with the
streptokinase therapy. An interesting question is, How likely is it that the same mortality
reduction will be observed in patients with similar characteristics as the 41,021 patients
enrolled in the GUSTO I study? It depends on underlying source of variations. The accel-
erated t-PA provided a 21% mortality reduction for patients who are younger than 75 years
old, while only a 9% reduction in the patients older than 75. This illustrates the uncertainty
due to biological variation. Thus, due to the various sources of variation, before the admin-
istration of the accelerated t-PA, cardiologists can only expect that on the average, a 93.7%
myocardial infarction will be saved. The 30-day survival of a patient can be realized by the
accelerated t-PA only after until it is administrated and the patient is observed over a period
of 30 days. Even though the relationship between the accelerated t-PA and 30-day mortal-
ity was deterministic due to the variation from different causes, clinicians have to think
probabilistically in the application of any clinical data, such as the results of the GUSTO I
study.
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Probability

The purpose of clinical trials is not only to investigate or verify some scientific or medical
hypotheses of certain interventions in a group of patients but also to be able to apply the
results to the targeted patient population with similar characteristics. This process is called
(statistical) inference. It is the process by which clinicians can draw conclusions based on
the results observed from the targeted patient population. Suppose that a clinical trial is
planned to study the effectiveness of a newly developed cholesterol-lowering agent in
patients with hypercholesterolemia as defined by nonfasting plasma total cholesterol level
being greater than 250 mg/dL. Furthermore, assume that this new agent is extremely prom-
ising as shown by previous small studies and that the elevation of the cholesterol level is 
a critical factor for reduction of the incidence of coronary heart disease. For this reason, the
government is willing to provide unlimited resources so that every patient with hypercho-
lesterolemia in the country has the opportunity to be treated with this promising agent. One
of the primary clinical responses is the mean reduction in total cholesterol level after six
months of treatment from the baseline. In this hypothetical trial, the targeted patient popu-
lation is patients with hypercholesterolemia. The mean reduction of total cholesterol level
after six months of treatment is a characteristic regarding the targeted patient population
that we are interested in this study. If we measure mean reduction in total cholesterol level
for each patient, the mean reductions in total cholesterol level from baseline would form a
population distribution. Statistically, a distribution can be characterized by its location,
spread and skewness. The location of a distribution is also referred to as the central ten-
dency of the distribution. The most commonly used measures for the central tendency are
arithmetic mean, median, and mode. The arithmetic mean is defined as the sum of the
reductions divided by the number of patients in the patient population. The most frequently
occurring reductions are called the mode, while the median is the middle value of the
reductions among all patients. In other words, half of the patients have their reductions
above the median and the other half have theirs below it. Spread is the variation or disper-
sion among the patients. The commonly used measures for variation are range, variance,
and standard deviation (SD). The range is simply the difference between the largest and
smallest reductions in the patient population. The variance, however, is the sum of the
squares of the deviations from the mean divided by the number of the patients. The most
commonly employed measure for dispersion is the standard deviation, which is defined as
the positive square root of the variance. These measures for description of the population
distribution are called parameters. Statistically, we can impose some probability laws to
describe the population distribution. The most important and frequently used probability
law is probably the bell-shaped normal distribution which serves an adequate and satisfac-
tory model for description of many responses in clinical research such as height, weight,
total cholesterol level, blood pressure, and many others. For this hypothetical study, sup-
pose that mean and standard deviation of the reduction in total cholesterol level from base-
line are 50 and 10 mg/dL, respectively. Then about 68% patients are expected to have
reductions between 40 and 60 mg/dL. The chance that a reduction exceeds 70 mg/dL is
only about 2.5%. Under the normal probability law, the uncertainty of reduction in total
cholesterol level can be completely quantified because the scope of this trial is the entire
population of patients with hypercholesterolemia. In reality, however, the government will
have a limited budget / resource. We therefore could not conduct such intensive study.
Alternatively, we randomly select a representative sample from the patient population. For
this sample, similar descriptive measures for central tendency and variation are computed.
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They are called statistics. These statistics are estimates for the corresponding parameters
of the patient population. Since it is almost impossible to conduct a clinical trial on the
entire patient population and the parameters are always unknown, statistics, in turn, can be
used to approximate its corresponding population parameters. This process of making a
definitive conclusion about the patient population based on the results of randomly
selected samples is referred to as statistical inference. Statistical inference provides an
approximation to the parameters of the patient population with certain assurance. It there-
fore involves uncertainty too. The closeness of the approximation to the unknown popula-
tion parameters by the sample statistics can also be quantified by the probability laws in
statistics. These probability laws are called the sampling distribution of sample statistics.
The sampling distributions are the basis of statistical inference. To provide a better under-
standing, we continue the above example concerning the study of reduction in total choles-
terol level in patients with hypercholesterolemia. Suppose we randomly select a sample of
100 patients from the patient population and calculate the mean reduction after six months
of treatment. In practice, we can select another sample of 100 patients from the same
patient population with replacement and compute its mean reduction. We can repeat this
sampling process indefinitely and compute mean reduction for each sample drawn from
the same population. The sampling distribution for the sample mean reductions in total
cholesterol level for the sample size of 100 patients can then be determined as the fre-
quency distribution of these mean reductions. It can be verified that the mean of the sam-
pling distribution of the sample mean reductions in total cholesterol level is equal to its
unknown population parameter. This desirable statistical property is called unbiasedness.
In practice, we only draw one sample from the patient population, and hence we only have
one sample mean cholesterol reduction. It is then of interest to know how we would judge
the closeness of the sample mean cholesterol reduction to its corresponding population pa-
rameter. This can be determined by the precision of the sample mean cholesterol reduction.
With the sample size of 100, therefore, the variance of the sample mean is simply equal to
the population variance divided by 100. The square root of the variance of the sample mean
is called the standard error (SE) of the sample mean. The approximation of the population
mean by the sample mean can be quantified by its standard error. The smaller the standard
error is, the closer to the unknown population mean it is. When the sample size is suffi-
ciently large, the sampling distribution will behave like a normal distribution regardless of
its corresponding population distribution. This important property is called the Central
Limit Theorem. As a result we can quantify the standard error of the sample mean in con-
junction with the central limit theorem in terms of probability, that is, the closeness of the
approximation of the sample mean to the population mean in the total cholesterol reduc-
tion provided that the sample size is at least of moderate size.

2.3 BIAS AND VARIABILITY

As was indicated earlier, the FDA requires that the results from clinical trials be accurate
and reliable in order to provide a valid and unbiased assessment of true efficacy and safety
of the study medication. The accuracy and reliability are usually referred to as the closeness
and the degree of the closeness of the clinical results to the true value regarding the targeted
patient population. The accuracy and reliability can be assessed by the bias and variability
of the primary clinical endpoint used for clinical assessment of the study medication. In
what follows, we will provide more insight regarding bias and variability separately.
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Bias

Since the accuracy of the clinical results is referred to as closeness to the true value, we
measure any deviation from the true value. The deviation from the true value is considered
as a bias. In clinical trials, clinical scientists would make any attempt to avoid bias in order
to ensure that the collected clinical results are accurate. It, however, should be noted that
most biases are probably caused by human errors. Webster’s II New Riverside University
Dictionary (1984) defines bias as an inclination or preference, namely one that interferes
with impartial judgment. Along this line, Minert (1986) considers bias as a preconceived
personal preference or inclination that influences the way in which a measurement, analysis,
assessment, or procedure is performed or reported. Spilker (1991), on the other hand, views
bias as a systematic error that enters a clinical trial and distorts the data obtained, as opposed
to a random error that might enter a clinical trial. Yet another definition, by Sackett (1979),
describes bias as any process at any stage of inference that tends to produce results or con-
clusions that differ systematically from the truth. ICH E9 guideline, entitled Statistical Prin-
ciples for Clinical Trials, defines bias as the systematic tendency of any factors associated
with the design, conduct, analysis, and evaluation of the results of clinical trials to make the
estimate of a treatment effect deviate from its true value. Thus, the bias could occur at any
stage of a clinical trial, and it mainly comes from the four sources of design, conduct, analy-
sis, and evaluation of results. Bias caused by the deviation in conduct is referred to as oper-
ational bias. Bias introduced from the other sources is referred to as statistical bias. As a
summary of these different definitions, we define bias as a systematic error that deviates
data from the truth caused by the partial judgment or personal preference that can occur at
any stage of a clinical trial.

Clinical trials are usually planned, designed, executed, analyzed, and reported by a team
that consists of clinical scientists from different disciplines to evaluate the effects of the
treatments in a targeted population of human subjects. When there are such nonnegligible
differences in human background, education, training, and opinions, it is extremely difficult
to remain totally impartial to every aspect at all stages of a clinical trial. Bias inevitably
occurs. Where bias occurs, the true effects of the treatment cannot be accurately estimated
from the collected data. Since it is almost impossible for a clinical trial to be free of any
biases, it is crucial to identify any potential bias that may occur at every stage of a clinical
trial. Once the potential bias are identified, one can then implement some procedures such
as blinding or randomization to minimize or eliminate the bias.

Sackett (1979) partitions a clinical trial (or research) into seven stages at which bias can
occur. These seven stages are (1) in reading up on the field, (2) in specifying and selecting
the study sample, (3) in executing the experimental maneuver, (4) in measuring exposures
and outcomes, (5) in analyzing the data, (6) in interpreting the analysis result, and (7) in
publishing the results. Sackett also provides a detailed catalog of biases for each stage of a
case-control trial (see Table 2.3.1). Although the purpose of this catalog is to demonstrate
that more biases can occur in case-control studies than in randomized control trials, it still
can be applied to the different phases of clinical trials. In addition to the 57 types of bias
listed by Sackett (1979), Spilker (1991) describes the six types of biases summarized in
Table 2.3.2. Here we will classify all the possible biases into three groups: bias due to selec-
tion, observation, and statistical procedures.

Selection bias is probably the most common source of bias that can occur in clinical 
trials. For example, at the planning stage of a clinical trial, selection bias can occur if clin-
ical scientists review only a partial existing literature on current treatments for a certain
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Table 2.3.1 Catalog of Biases

1. In Reading the Literature

1.1 Bias of rhetoric. Any of several techniques used to convince the reader without appealing to
reasons.

1.2 All’s well literature bias. Scientific or professional societies may publish reports or editori-
als that omit or play down controversies or disparate results.

1.3 One-sided reference bias. Authors may restrict their references to only those works that sup-
port their position; a literature review with a single starting point risks confinement to a sin-
gle side of the issue.

1.4 Positive results bias. Authors are more likely to submit, and editors accept, positive than
null results.

1.5 Hot stuff bias. When a topic is hot, neither investigators or editors may be able to resist the
temptation to publish additional results, no matter how preliminary or shaky.

2. In Specifying and Selecting the Study Sample

2.1 Popularity bias. The admission of patients to some practices, institutions, or procedures (sur-
gery, autopsy) is influenced by the interest stirred by the presenting and its certain causes.

2.2 Centripetal bias. Reputations of certain clinicians and institutions cause individuals with
certain disorders or exposures to gravitate toward them.

2.3 Referral filter bias. As a group of ill persons referred from primary to secondary to tertiary
care, the number of rare causes, multiple diagnoses, and hopeless cases may increase.

2.4 Diagnostic access bias. Individuals differ in their geographic, temporal, and economic
access to the diagnostic procedures which label them as having a given disease.

2.5 Diagnostic suspicion bias. Knowledge of the subject’s prior exposure to a putative cause
(ethnicity, taking a certain drug, having a second disorder, being exposed in an epidemic)
may influence both the intensity and the outcome of the diagnostic procedure.

2.6 Unmasking (detection signal) bias. An innocent exposure may become suspect if, rather than
causing a disease, it causes a sign or symptom that precipitates a search for the disease, such
as the current controversy over postmenopausal estrogens and cancer of the endometrium.

2.7 Mimicry bias. An innocent exposure may become suspect if, rather than causing a disease, it
causes a (benign) disorder that resembles the disease.

2.8 Previous opinion bias. The tactics and results of a previous diagnostic process on a patient,
if known, may affect the tactics and results of a subsequent diagnostic process on the same
patient, such as multiple referrals among hypertensive patients.

2.9 Wrong sample size bias. Samples that are too small can prove noting; samples that are too
large can prove anything.

2.10 Admission rate (Berkson) bias. If hospitalization rates differ for different exposure/disease
groups, the relation between exposure and disease will become distorted in hospital-based
studies.

2.11 Prevalence-incidence (Neyman) bias. A late look at those exposed (or affected) early will
miss fatal and other short episodes, plus mild or “silent” cases and cases where evidence of
exposure disappears with disease onset.

2.12 Diagnostic vogue bias. The same illness may receive different diagnostic labels at different
points in space or time.

2.13 Diagnostic purity bias. “Pure” diagnostic groups that exclude comorbidity may become
nonrepresentative.

2.14 Procedure selection bias. Certain clinical procedures may be preferentially offered to those
who are poor risk, such as selection of patients for “medical” versus “surgical” therapy.

2.15 Missing clinical data bias. Clinical data may be missing if they are normal, negative, never
measured, or measured but never recorded.
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Table 2.3.1 (Continued)

2.16 Noncontemporaneous control bias. Secular changes in definitions, exposures, diagnoses,
diseases, and treatments may render noncontemporaneous controls noncomparable.

2.17 Starting time bias. Failure to identify a common starting time for exposure or illness may
lead to systematic misclassification.

2.18 Unacceptable disease bias. Socially unacceptable disorders (V.D., suicide, insanity) tend to
be under-reported.

2.19 Migrator bias. Migrants may differ systematically from those who stay home.
2.20 Membership bias. Membership in a group (the employed, joggers, etc.) may imply a degree

of health that differs systematically from the general population, such as more exercise and
recurrent myocardial infarction.

2.21 Nonrespondent bias. Nonrespondents (or “latecomers”) from a specified sample may exhibit
exposures or outcomes that differ from those of early respondents such as in cigarette smoking.

2.22 Volunteer bias. Volunteers in a study sample may exhibit exposures or outcomes (they 
tend to be healthier) that differ from those of nonvolunteers or latecomers, such as in the
screening selection.

3. In Executing the Experiment Maneuver (or Exposure)

3.1 Contamination bias. In an experiment when members of the control group inadvertently
receive the experiment maneuver, the difference in outcomes between experimental and 
control patients may be systematically reduced.

3.2 Withdrawal bias. Patients who are withdrawn from an experiment may be differ systematically
from those who remain, such as in a neurosurgical trial of surgical versus medical therapy of
cerebrovascular disease, patients who died during surgery were withdrawn as “unavailable for
follow-up” and excluded from early analyses.

3.3 Compliance bias. In requiring patient adherence to therapy, issues of efficacy become 
confounded with those of compliance.

3.5 Bogus control bias. When patients allocated to an experimental maneuver die or sicken
before or during its administration and are omitted or reallocated to the control group, the
experimental maneuver will appear spuriously superior.

4. In Measuring Exposure and Outcomes

4.1 Insensitive exposures and outcomes. when outcome measures are incapable of detecting 
clinically significant changes or difference, type II errors occur.

4.2 Underlying causing bias (rumination bias). Patients may ruminate about possible causes for
their illness and exhibit different recall or prior exposure than controls.

4.3 End-digit preference bias. In converting analog to digital data, observers may record some
terminal digits with an unusual frequency.

4.4 Apprehension bias. Certain measures (pulse, blood pressure) may alter systematically from
their usual levels when the subject is apprehensive.

4.5 Unacceptability bias. Measurements that hurt, embarrass, or invade privacy may be 
systematically refused or evaded.

4.6 Obsequiousness bias. Subjects may systematically alter questionnaire responses in the 
direction they perceive desired by the investigator.

4.7 Expectation bias. Observers may systematically err in measuring and recording 
observations so that they concur with prior expectations.

4.8 Substitution game. The substitution of a risk factor that has not been established as causal
for its associated outcome.

4.9 Family information bias. The flow of family information about exposure and illness is 
stimulated by, and directed to, a newly arising case.
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4.10 Exposure suspicion bias. A knowledge of the subject’s disease status may influence both the
intensity and outcome of a search for exposure to the putative cause.

4.11 Recall bias. Questions about specific exposures may be asked several times of cases but
only once of controls.

4.12 Attention bias. Study subjects may systematically alter their behavior when they know they
are being observed.

4.13 Instrument bias. Defects in the calibration or maintenance of measurement instruments may
lead to systematic deviations from true value.

5. In Analyzing Data

5.1 Post hoc significant bias. When decision levels or “tails” for α and β are selected after the
data have been examined, conclusions may be biased.

5.2 Data dredging bias (looking for the pony). When data are reviewed for all possible associa-
tions without prior hypothesis, the results are suitable for hypothesis-forming activities only.

5.3 Scale degradation bias. The degradation and collapsing of measurement scales tend to
obscure differences between groups under comparison.

5.4 Tidying-up bias. The exclusion of outliers or other untidy results cannot be justified on sta-
tistical grounds and may lead to bias.

5.5 Reported peek bias. Repeated peeks at accumulating data in a randomized trial are not inde-
pendent and may lead to inappropriate termination.

6. In Interpreting the Analysis

6.1 Mistaken identity bias. In compliance trials, strategies directed toward improving the patients
compliance may, instead or in addition, cause the treating clinician to prescribe more vigor-
ously such that the effect on achievement of the treatment goal may be misinterpreted.

6.2 Cognitive dissonance bias. The belief in a given mechanism may increase rather than
decrease in the face of contradictory evidence.

6.3 Magnitude bias. In interpreting a finding, the selection of a scale of measurement may
markedly affect the interpretation; for example, 1,000,000 may be also be 0.0003% of the
national budget.

6.4 Significance bias. The confusion of statistical significance with biological or clinical or
health care significance can lead to fruitless and useless conclusion.

6.5 Correlation bias. Equating correlation with causation leads to errors of both kinds.
6.6 Underexhaustion bias. The failure to exhaust the hypothesis space may lead to authoritarian

rather than authoritative interpretation.

Source: Sackett (1979).
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disease. A review that does not provide a full spectrum of all possible positive and negative
results of certain treatments in all possible demographic subpopulations will in turn bias
the thinking of the clinical scientists who are planning the study. As a result, a serious
selection bias will be introduced in the selection of patients and the corresponding treat-
ment assignment.

As indicated in the previous chapter, one of the most critical questions often asked at the
FDA advisory committee meeting is whether the patient population has been sufficiently
characterized. It should be recognized that the patients in a clinical trial are only a sample
with certain characterizations of demography and disease status defined by the inclusion
and exclusion criteria of the protocol. The real question is whether the patients are a true
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representative sample of the targeted patient population. Ideally the patients in a clinical
trial should be a representative sample randomly selected from the targeted patient popula-
tion to which the results of the trial can be inferenced. However, in practice, most of clini-
cal trials enrolled patients sequentially as long as they meet the inclusion and exclusion
criteria. This practice is quite different from that of survey sampling or political poll for
which samples can easily be selected at random using a telephone book or voter’s registra-
tion list. For clinical trials it is almost impossible to achieve the ideal goal of random selec-
tion of representative sample from the targeted population. If the size of the study is quite
large, for example, the GUSTO I trial (1993), valid inference and bias may not be issues
for major efficacy and safety evaluation in a trial size of 41,000 patients. On the other hand,
most clinical trials conducted by the pharmaceutical industry for registration are of small
to moderate size. Bias will occur if care is not exercised in the selection of random samples
from the targeted population. This bias is particularly crucial for a clinical development
program because it will accumulate from phase I to phase III when adequate and well-
controlled studies must produce substantial evidence for the approval of the drug.

In many clinical trials the enrollment is slow due to a seasoning of the disease or the geo-
graphical location. In such cases, the sponsors will open more study sites or enroll more
patients at existing sites, whenever possible, in order to reach the required number of evalu-
able patients. For example, let us consider a phase II dose-ranging trial on basal cell carci-
noma (a common skin cancer) conducted by a major pharmaceutical company. This study
consisted of a placebo group and three treatment groups of low, medium, and high doses.
The study called for a total of 200 patients with 50 patients per dose group. This study was
a multicenter study with four study sites in the United States. Three sites were located in the
south: San Diego, California, Phoenix, Arizona, and Houston, Texas, which are known to
have high prevalence and incidence of skin cancers. The other site was Minneapolis, Min-
nesota. It turned out that the three sites in the south had no problem of enrollment but that
the site at Minneapolis only enrolled a total of three patients. In order to finish the study on
time, a decision was made not to open new sites but to enroll as many patients as possible at
the three other sites. In order to meet the required sample size of 200 patients, this study
ended up with one site of only three patients and three sites with 65 to 70 patients. As a
result the validity of statistical inference based on the results from the study is doubtful due
to the possible bias caused by the fact that one site in the north only enrolled three patients

Table 2.3.2 Other Types of Bias

1. Selection bias. Physicians may recruit patients for clinical trials in ways that abuse the data.
2. Information bias. The information patients provide to physicians (or others) is heavily tainted

by their own beliefs and values.
3. Observer bias. The objectivity of physicians or others who measure the magnitude of patient

responses varies greatly, even in tests with objective endpoints.
4. Interviewer bias. Interviewer bias is a well-known and obvious source of bias in clinical trials,

particularly when interviews are used in measuring endpoints that determine the clinical trial’s
outcome.

5. Use of nonvalidated instruments. The use of nonvalidated instruments is widespread in clinical
trials.

6. Active control basis. Biased higher cure rates for a new antifungal medicine compared with an
active medicine rather than compared with a placebo.

Source: Spilker (1991).
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and the other three sites in the south enrolled most patients which may not constitute a rep-
resentative sample of the targeted patient population.

Variability

As mentioned earlier, the reliability is referred to as the degree of the closeness (or preci-
sion) of the clinical results to the true value regarding the targeted patient population. The
reliability of a clinical trial is an assessment of the precision of the clinical trial which mea-
sures the degree of the closeness of the clinical results to the true value. Therefore the reli-
ability of a clinical trial reflects the ability to repeat or reproduce similar clinical outcomes
in the targeted patient population to which the clinical trial is inferred. The higher preci-
sion a clinical trial has, the more likely the results will be reproducible. The precision of a
clinical trial can be characterized by the variability of an estimated treatment effect based
on some clinical endpoints used for clinical evaluation of the trial. In practice, sample size
and the variability of the primary clinical endpoint play an important role in determining
the precision and reproducibility of the clinical trial. The larger the sample size of the clin-
ical trial is, the higher the precision and the more reliable the result will be. In clinical tri-
als, however, the sample size is usually not large, and it cannot be increased indefinitely
due to limited budget, resources, and often difficulty in patients recruitment. Indeed, the
cost of achieving a desired precision can be extremely prohibitive. As an alternative, we
can carefully define patient inclusion and exclusion criteria to reduce the variability of 
primary clinical endpoints and consequently reduce the cost. It is therefore critical that
detailed procedures be implemented in the protocol to ensure that all the participating
investigators keep to a clinical evaluation that is as homogeneous (less variable) as possi-
ble. To draw a reliable statistical inference on the efficacy and safety of the study medica-
tion, it is equally imperative to identify all sources of variations that may occur during the
conduct of the trial. After these known sources of variation are identified, an appropriate
statistical methodology based on the study design can be used to separate the known vari-
abilities from any naturally inherent variability (or random error) for clinical evaluation of
the study medication.

Note that for a clinical response consisting of several components, the variation of the
clinical response may involve some known and unknown sources of variations. For exam-
ple, a clinical response may include some continuous measurements such as systolic and
diastolic blood pressures (mmHg) or direct bilirubin (mg/dL), ordinal categorical data
such as NIH stroke scale (NIHSS) for quantification of neurologic deficit in the patients
with acute ischemic stroke, or some binary data such as the cure of a patient infected with
a certain bacteria by some antibiotic. All these clinical responses may be viewed as a sum
of several components. One of the components may constitute the true unknown variation,
and the others may consist of known sources of variations. These variations cause the vari-
ation of the clinical response.

Colton (1974) classifies sources of variation of quantitative clinical responses into three
types: true biological and temporal variation and variability due to the measurement error.
True biological variation is caused by the difference between subjects. In other words, fac-
tors such as age, gender, race, genotype, education status, smoking habit, sexual orientation,
study center, and underlying disease characteristics at the baseline possibly can cause varia-
tion among subjects. True biological variation explains the differences among individuals.
This source of variation is classified as a source of variation for the intersubject variability.
The second type of the variation is the variability of clinical responses from the same 
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subject measured at different time points at which the status of the subject may change and
vary. A well-known phenomenon of this type of variation is the circadian rhythms. For
example, the systolic and diastolic blood pressures measured every 30 minutes by a 24-hour
ambulatory device, premature ventricular contraction (PVC) as recorded on a 24-hour
Holter monitor, or iron level measured every 8 hours over a 7-day period by either ICP or
colorimetric methods all demonstrate the circadian rhythms of these clinical measurements.
As a result, if the clinical responses exhibit temporal variation such as circadian rhythms, it
is very important to eliminate this type of variation from comparison between treatments.
Since the temporal variation reflects the fluctuation of clinical responses within the same
subject, it is also known as a source of the intrasubject variability. Note that since the status
for the cause of the temporal variation may be different treatments received by the same
subject at different time points, this information may be used at the planning stage of clini-
cal trials. Dose titration studies and crossover designs are typical examples utilizing tempo-
ral variation for comparison of treatments. As compared to parallel designs that involve both
intersubject and intrasubject variabilities, dose titration studies and crossover designs utiliz-
ing intrasubject variabilities will provide better precision.

For assessment of efficacy and safety of study medication, a question of particular inter-
est to clinical scientists is, Can similar clinical results be observed if the trial is to be
repeatedly carried out under the same conditions? This concerns the variation of a clinical
response due to the so-called measurement error. Measurement error is probably the most
important variation that is difficult to detect and/or control. Measurement error induces the
variation among the repeated measurements for the same clinical endpoint obtained from
the same subject under the same environment. The possible causes of measurement error
include observers such as clinicians or study nurses and laboratory errors caused by an
instrument, the technician, or others. If a clinical endpoint produces an unacceptable mea-
surement error, then the results cannot be reproduced under the same conditions. In this
case the data have very little value in the clinical evaluation because they do not provide
reliably the intended measurement. Since the variation due to measurement error is the
variation of replication from the same subject, it can also be classified as a source of intra-
subject variability.

Both true biological and temporal variations can be controlled by appropriate statistical
designs, blocking, or stratification. Their impact on the precision of the estimates for treat-
ment effects may be eliminated through adequate statistical analyses. In practice, the variation
of a primary clinical endpoint due to measurement error is often used for the determination of
sample size. Although variation due to measurement error cannot be eliminated completely, it
can, however, be reduced tremendously by specifying standard procedures for measuring
clinical endpoints in the protocol. Training can then take place, at the investigators’ initiatives
of the appropriate personnel who will be involved in the trial. Increasingly the training of cli-
nicians, study nurses, and laboratory technicians is becoming important, since the data are
gathered by sophisticated machinery, computers, or questionnaires. The clinical personnel
must not only understand the rationale and newly developed technology but also be able to
perform consistently throughout the study according to the procedures specified in the proto-
col. For example, the bone mineral density (BMD in g/cm3) of the spine is one of the primary
and objective clinical responses for clinical evaluation of osteoporosis by certain interven-
tions. A densitometer, which is a dual-energy X-ray absorptiometer, and its accompanying
computer algorithm are used to determine bone mineral density. To ensure the reproducibility
and consistency of BMD measurements, technicians are trained on the densitometer using 
an anthropomorphic spine phantom with a User’s Manual provided by the manufacturer. In
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addition the spine phantom be used daily for calibration to lessen the drift effect of the instru-
ment. The regular quality control evaluation should be maintained by the manufacturer.
Another source of variation for BMD measurements is the position of the patients. In order to
reduce this variation, the positioning of the patient at the various visits should be as close as
possible to that at his/her baseline visit. Since the measurement error associated with BMD
determination is mainly with the performance of technician, it is preferable that one techni-
cian carry out the measurements through the entire study.

Another example for possible reduction of measurement error by training is the NIH
Stroke Scale (NIHSS) which was developed by the U.S. National Institute of Neurologic
Disorder and Stroke (NINDS) from the original scale devised at the University of Cincin-
nati. Technically, it is a rating scale for quantifying a neurological deficit by a total of 
42 points in 11 categories such as given in Table 2.3.3. In practice, it is a rating scale based
on the subjective judgment of qualified neurologists and emergency physicians. This scale
has recently been used in several clinical trials as the primary outcome measure for
efficacy assessment in various thrombolytic agents in patients with acute ischemic stroke
(The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group,
1995). In these multicenter clinical trials, in order to maintain double-binding, different
clinicians were asked to perform the baseline and subsequent NIHSS. Standardization of
the procedure for rating NIHSS in the protocol by the clinicians within the same center as
well as by investigators at different centers is considered crucial in order to reduce mea-
surement error and produce reliable, consistent, and reproducible results. As a result, video
training was selected to train and certify investigators who perform NIHSS so that the
measurement error in those clinical trials could be reduced.

In summary, to have an accurate and reliable assessment of the true efficacy and safety
of a study medication, it is important to avoid bias and to minimize the variability of the
primary clinical endpoint whenever possible. Figure 2.3.1 shows the impact of bias and
variability in tackling the truth. As can be seen from the figure, the ideal situation is to have
an unbiased estimate with no variability. If the estimate has a nonnegligible bias, the truth
is compromised even for the smallest variability. If the estimate is biased with a lot of vari-
ability, the assessment for the treatment effect must be discarded.

2.4 CONFOUNDING AND INTERACTION

In clinical trials, confounding and interaction effects are the most common distortions in
the evaluation of medication. Confounding effects are contributed by various factors such
as race and gender that cannot be separated by the design under study; an interaction effect
between factors is a joint effect with one or more contributing factors (Chow and Liu,
1995a). Confounding and interaction are important considerations in clinical trials. For
example, when confounding effects are observed, we cannot assess the treatment effect
because it is contaminated by other effects. On the other hand, when interactions among
factors are observed, the treatment must be carefully evaluated for those effects.

Confounding

In clinical trials, there are many sources of variation that have an impact on the primary
clinical endpoints for evaluation relating to a certain new regimen or intervention. If 
some of these variations are not identified and properly controlled, they can become

CONFOUNDING AND INTERACTION 55

c02.qxd  27.10.03  12:47  Page 55



56 BASIC STATISTICAL CONCEPTS

Table 2.3.3 Summary of the National Institutes of Health Stroke Scale

Item Name Response

1A Level of consciousness 0 � Alert
2 � Not alert, obtunded
3 � Unresponsive

1B Questions 0 � Answers both correctly
1 � Answers one correctly
2 � Answers neither correctly

1C Commands 0 � Performs both tasks correctly
1 � Performs one task correctly
2 � Performs neither correctly

2 Gaze 0 � Normal
1 � Partial gaze palsy
2 � Total gaze palsy

3 Visual fields 0 � No visual loss
1 � Partial hemianopsia
2 � Complete hemianopsia
3 � Bilateral hemianopsia

4 Facial palsy 0 � Normal
1 � Minor paralysis
2 � Partial paralysis
3 � Complete paralysis

5 Motor arm 0 � No drift
a. Left 1 � Drift before 10 seconds
b. Right 2 � Fall before 10 seconds

3 � No effort against gravity
4 � No movement

6 Motor leg 0 � No drift
a. Left 1 � Drift before 5 seconds
b. Right 2 � Fall before 5 seconds

3 � No effort against gravity
4 � No movement

7 Ataxia 0 � Absent
1 � One limb
2 � Two limbs

8 Sensory 0 � Normal
1 � Mild loss
2 � Severe loss

9 Language 0 � Normal
1 � Mild aphasia
2 � Severe aphasia
3 � Mute or global aphasia

10 Dysarthria 0 � Normal
1 � Mild
2 � Severe

11 Extinction/inattention 0 � Normal
1 � Mild
2 � Severe

Source: Lyden et al. (1994).
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mixed in with the treatment effect that the trial is designed to demonstrate. Then the 
treatment effect is said to be confounded by effects due to these variations. To provide a
better understanding, consider the following example. Suppose that last winter Dr. Smith
noticed that the temperature in the emergency room was relatively low and caused some
discomfort among medical personnel and patients. Dr. Smith suspected that the heating
system might not be functioning properly and called on the hospital to improve it. As 
a result, the temperature of the emergency room is at a comfortable level this winter. How-
ever, this winter is not as cold as last winter. Therefore, it is not clear whether the
improvement in the emergency room temperature was due to the improvement in the heat-
ing system or the effect of a warmer winter. In fact, the effect due to the improvement of
the heating system and that due to a warmer winter are confounded and cannot be sepa-
rated from each other. In clinical trials, there are many subtle, unrecognizable, and seem-
ingly innocent confounding factors that can cause ruinous results of clinical trials. Moses
(1992) gives the example of the devastating result in the confounder being the personal
choice of a patient. The example concerns a polio-vaccine trial that was conducted on two
million children worldwide to investigate the effect of Salk poliomyelitis vaccine. This
trial reported that the incidence rate of polio was lower in the children whose parents
refused injection than whose who received placebo after their parent gave permission
(Meier, 1989). After an exhaustive examination of the data, it was found that susceptibil-
ity to poliomyelitis was related to the differences between the families who gave the per-
mission and those who did not.

Sometimes, confounding factors are inherent in the design of the studies. For example,
dose titration studies in escalating levels are often used to investigate the dose-response
relationship of the antihypertensive agents during phase II stage of clinical development.
For a typical dose titration study, after a washout period during which previous medication
stops and the placebo is prescribed, N subjects start at the lowest dose for a prespecified
time interval. At the end of the interval, each patient is evaluated as a responder to the treat-
ment or a non-responder according to some criteria prespecified in the protocol. In a titra-
tion study, a subject will continue to receive the next higher dose if he or she fails, at the
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Figure 2.3.1 Accuracy and precision for assessment of treatment effect. (a) Unbiased and least
variability, (b) unbiased and large variability, (c) biased and least variability, and (d ) biased and large
variability.
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current level, to meet some objective physiological criteria such as reduction of diastolic
blood pressure by a prespecified amount and has not experienced any unacceptable adverse
experience. Figure 2.4.1 provides a graphical presentation of a typical titration study (Shih,
Gould, and Hwang, 1989). Dose titration studies are quite popular among clinicians
because they mimic real clinical practice in the care of patients. The major problem with
this typical design for a dose titration study is that the dose-response relationship is often
confounded with time course and the unavoidable carryover effects from the previous dose
levels which cannot be estimated and eliminated. One can always argue that the relation-
ship found in a dose titration study is not due to the dose but to the time. Statistical meth-
ods for binary data from dose titration studies have been suggested under some rather
strong assumptions (e.g., see Chuang, 1987; Shih, Gould, and Hwang, 1989). Due to the
fact that the dose level is confounded with time, estimation of the dose-response relation-
ship based on continuous data has not yet been resolved. Another type of design that can
induce confounding problems when it is conducted inappropriately is the crossover design.
For a standard 2 � 2 crossover design, each subject is randomly assigned to one of the two
sequences. In sequence 1, subjects receive the reference (or control) treatment at the first
dosing period and the test treatment at the second dosing period after a washout period of
sufficient length. The order of treatments is reversed for the subjects in sequence 2. The
issues in analysis of the data from a 2 � 2 crossover design is twofold. First, unbiased esti-
mates of treatment effect cannot be obtained from the data of both periods in the presence
of a nonzero carryover effect. The second problem is that the carryover effect is con-
founded with sequence effect and treatment-by-period interaction. In absence of a signifi-
cant sequence effect, however, the treatment effect can be estimated unbiasedly from the
data of both periods. In practice, it is not clear whether an observed statistically significant
sequence effect (or carryover effect) is a true sequence effect (or carryover effect). As 
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Figure 2.4.1 Graphical display of a titration trial. di, the ith dose level; si, the number of subjects
who responded at the ith dose; wi, the number of subjects who withdrew at the ith dose; and m, the
number of subjects who completed the study without a response. (Source: Shih, Gould, and Hwang,
1989.)
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a result this remains a major drawback of the standard 2 � 2 crossover design, since the 
primary interest is to estimate a treatment effect that is still an issue in the presence of a
significant nuisance parameter. The sequence and carryover effects, however, are not con-
founded to each other in higher-order crossover designs that compare two treatments and
can provide unbiased estimation of treatment effect in the presence of a significant carry-
over effect (Chow and Liu, 1992, 2000).

Bailar (1992) provided another example of subtle and unrecognizable confounding 
factors. In the same issue of New England Journal of Medicine, Wilson et al. (1985) and
Stampfer et al. (1985) both reported the results on the incidence of cardiovascular diseases
in postmenopausal women who had been taking hormones compared to those who had 
not. Their conclusions, however, were quite different. One reported that the incidence 
rate of cardiovascular disease among the women taking hormones was twice that in the
control group, while the other reported a totally opposite conclusion in which the inci-
dence of the experimental group was only half that of women who were not taking hor-
mones. Although these trials were not randomized studies, both studies were well planned
and conducted. Both studies had carefully considered the differences in known risk factors
between the two groups in each study. As a result, the puzzling difference in the two
studies may be due to some subtle confounding factors such as the dose of hormones,
study populations, research methods, and other related causes. This example indicates that
it is imperative to identify and take into account all confounding factors for the two ade-
quate, well-controlled studies that are required for demonstration of effectiveness and
safety of the study medication.

In clinical trials, it is not uncommon for some subjects not to follow instructions in 
taking the prescribed dose at the scheduled time as specified in the protocol. If the treat-
ment effect is related to (or confounded with) patients’ compliance, any estimates of the
treatment effect are biased unless there is a placebo group in which the differences in treat-
ment effects between subjects with good compliance and poor compliance can be esti-
mated. As a result, interpretation and extrapolation of the findings are inappropriate. In
practice, it is very difficult to identify compliers and noncompliers and to quantify the rela-
tionship between treatment and compliance. On the other hand, subject withdrawals 
or dropouts from clinical trials are the ultimate examples of noncompliance. There are sev-
eral possible reasons for dropouts. For example, a subject with severe disease did not
improve and hence dropped out from the study. The estimate of treatment effect will be
biased in favor of a false positive efficacy, if the subjects with mild disease remain and
improve. On the other hand, subjects will withdraw from a study if their conditions
improve, and those who did not improve will remain until the scheduled termination of a
study. The estimation of efficacy will then be biased and hence indicate a false negative
efficacy. Noncompliance and subject dropouts are only two of the many confounding fac-
tors that can occur in many aspects of clinical trials. If there is an unequal proportion of the
subjects who withdraw from the study or comply to the dosing regimen among different
treatment groups, it is very important to perform an analysis on these two groups of sub-
jects to determine whether confounded factors exist and the direction of possible bias. In
addition every effort must be made to continue subsequent evaluation of withdrawals in
primary clinical endpoints such as survival or any serious adverse events. For analyses of
data with noncompliance or withdrawals, it is suggested that an intention-to-treat analysis
be performed. An intention-to-treat analysis includes all available data based on all ran-
domized subjects with the degree of compliance or reasons for withdrawal as possible
covariates.
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Interaction

The objective of a statistical interaction investigation is to conclude whether the joint 
contribution of two or more factors is the same as the sum of the contributions from each
factor when considered alone. The factors may be different drugs, different doses of two
drugs, or some stratification variables such as severity of underlying disease, gender, or
other important covariates. To illustrate the concept of statistical interaction, we consider
the Second International Study of Infarct Survival (ISIS-2, 1988). This study employed 
a 2 � 2 factorial design (two factor with two levels at each factor) to study the effect of
streptokinase and aspirin in the reduction of vascular mortality in patients with suspected
acute myocardial infarction. The two factors are one-hour intravenous infusion of 1.5 MU
of streptokinase and one month of 150 mg per day enteric-coated aspirin. The two levels
for each factor are either active treatment and their respective placebo infusion or tablets. 
A total of 17,187 patients were enrolled in this study. The numbers of the patients random-
ized to each arm is illustrated in Table 2.4.1. The key efficacy endpoint is the cumulative
vascular mortality within 35 days after randomization. Table 2.4.2 provides the cumulative
vascular mortality for each of the four arms as well as those for streptokinase and aspirin
alone. From Table 2.4.2 the mortality of streptokinase group is about 9.2%, with the corre-
sponding placebo mortality being 12.0%. The improvement in mortality rate attributed 
to streptokinase is 2.8% (12.0% � 9.2%). This is referred to as the main effect of strep-
tokinase. Similarly the main effect of aspirin tablets can also be estimated from Table 2.4.2
as 2.4% (11.8% � 9.4%). The left two panels of Figure 2.4.2 give the cumulative vas-
cular moralities of main effects for both streptokinase and placebo. The right panel of 
Figure 2.4.2 provides mortality for combination of streptokinase and aspirin against that 
of both placebos. From either Table 2.4.2 or figure 2.4.2, the joint contribution of both
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Table 2.4.1 Treatment of ISIS-2 with Number of
Patients Randomized

IV Infusion of Streptokinase

Aspirin Active Placebo Total

Active 4292 4295 8,587
Placebo 4300 4300 8,600
Total 8592 8595 17,187

Source: ISIS-2 (1988).

Table 2.4.2 Cumulative Vascular Mortality in Days
0–35 of ISIS-2

IV Infusion of Streptokinase

Aspirin Active Placebo Total

Active 8.0% 10.7% 9.4%
Placebo 10.4% 13.2% 11.8%
Total 9.2% 12.0%

Source: ISIS-2 (1988).
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streptokinase and aspirin in improvement in mortality is 5.2% (13.2% � 8.0%) which is
exactly equal to the contribution in mortality by streptokinase (2.8%) plus that by aspirin
(2.4%). This is a typical example that no interaction exists between streptokinase and
aspirin because the reduction in mortality by joint administration of both streptokinase and
aspirin can be expected as the sum of reduction in mortality attributed to each antithrom-
bolytic agent when administrated alone. In other words, the difference between the two
levels in one factor does not depend on the level of the other factor. For example, the diff-
erence in vascular mortality between streptokinase and placebo for the patients taking
aspirin tablets is 2.7% (10.7% � 8.0%). A similar difference of 2.8% is observed between
streptokinase (10.4%) and placebo (13.2%) for the patients taking placebo tablets. There-
fore the reduction in mortality attributed to streptokinase is homogeneous for the two 
levels of aspirin tablets. As a result, there is no interaction between streptokinase infusion
and aspirin tablets. This phenomenon is also observed in Figure 2.4.3.

The ISIS-2 trial provides an example of an investigation of interaction between two
treatments. However, in the clinical trial it is common to check interaction between treat-
ment and other important prognostic and stratification factors. For example, almost all ade-
quate well-controlled studies for the establishment of effectiveness and safety for approval
of pharmaceutical agents are multicenter studies. For multicenter trials, the FDA requires
that the treatment-by-center interaction be examined to evaluate whether the treatment
effect is consistent across all centers.

One of the objectives of the National Institute of Neurological Disorders and Stroke 
rt-PA Stroke Study is to investigate whether the improvement of neurological deficit upon
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Figure 2.4.3 Cumulative vascular mortality in days 0–35 by treatment groups. (Source: ISIS-2, 1988.)
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administration of intravenous recombinant t-PA over the placebo group is consistent over
the time to receiving treatment after the onset of stroke as stratified from 0 to 90 minutes
and from 90 to 180 minutes. The results based on NIHSS are reproduced is Table 2.4.3. It
can be seen that the difference in NIHSS between t-PA and placebo (i.e., treatment effect)
is homogeneous between the two time intervals. Consequently, no interaction exists
between the treatment and time to treatment.

When the difference among levels of one factor is not the same at different levels of
other factors, then it is said that interaction exist between these two factors. In general,
interactions can be classified as quantitative or qualitative (Gail and Simon, 1985). A quan-
titative interaction is the one for which the magnitude of the treatment effect is not the
same across the levels of other factors but the direction of the treatment remains the same
for all levels of other factors. A qualitative interaction is the interaction in which the direc-
tion of the treatment effect changes in some levels of other factors. To provide a better
understanding, we consider the following hypothetical example of the treatment of an irre-
versible inhibitor of steroid aromatase in the patients with benign prostatic hyperplasia.
Suppose that one of the objectives of the trial is to investigate whether improvement 
of peak urinary flow rate (mL/sec) of the treatment over placebo is the same for patients
with an American Urinary Association (AUA) symptom score between 8 and 19 inclu-
sively and those with AUA score greater than 19. There are two factors, each with two lev-
els. One can display the four treatment-by-symptom means in a figure for visual inspection
of possible interaction. The vertical axis is the mean change from baseline in peak urinary
flow rate (mL/sec). The two levels of treatment can be represented on the horizontal axis.
The mean peak urinary flow rate of all levels of AUA symptom score (other factor) then
can be plotted at each level of treatment on the horizontal axis, and the means of the same
levels of AUA symptom score are connected over the two levels of treatment. Panel A of
Figure 2.4.4 exhibits a pattern of no interaction in which the two lines are parallel and 
the distance between the two lines is the same at all levels of treatment. Panels B and C
demonstrate a possible quantitative interaction between the treatment and AUA symptom
score because the two lines do not cross and treatment effect does not change its direc-
tion, though the distance between the lines is not the same. Both panels B and C indicate
that the treatment is more effective than placebo for increasing peak flow rate. Panel B
shows that treatment induces a better improvement in peak urinary flow rate in patients
with an AUA symptom score greater than 19 than those between 8 and 19, while the oppo-
site observation is seen in panel C. In panel D a positive difference in peak urinary flow
rate between treatment and placebo is observed in patients with an AUA symptom score
greater than 19, while the difference is negative in patients with an AUA symptom score

CONFOUNDING AND INTERACTION 63

Table 2.4.3 Mean NIHSS Score of the National Institute of
Neurological Disorders and Stroke rt-PA Stroke Study Group

Time to Treatment 
after Stroke Onset t-PA Placebo

0–90 minutes N � 157 9(2�17) N � 145 12(6�18)
0–180 minutes N � 155 8(3�19) N � 167 13(7�19)

Source: National Institute of Neurological Disorders and Stroke rt-PA
Stroke Study Group (1995).

Note: Number in the parentheses are ranges.
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between 8 and 19. Panel D shows a possible qualitative interaction between treatment and
symptom score. Since the two lines cross each other in panel D, a qualitative interaction of
this kind is also called a crossover interaction.

Interaction can be used to investigate whether the effectiveness of treatment is homoge-
neous across groups of patients with different characteristics. It therefore is important in
the interpretation and inference of the trial results. Gail and Simon (1985) provided an
graphical illustration of different interactions for two subgroups of patients, which is repro-
duced in Figure 2.4.5. The true differences in efficacy between two treatments in subgroups
1 and 2 are δ1 and δ2. The 45° line is the line where δ1 � δ2. It therefore represents the line
of no interaction. In the unshaded areas (the first and third quadrants) δ1 and δ2 are either
both positive or both negative. Any point in the unshaded area except for those on the 45°
line represents a quantitative interaction. The two shaded areas (the second and fourth
quadrants) consist of points for qualitative (or crossover) interaction.
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Figure 2.4.4 Graphical presentation of two-factor interaction.
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2.5 DESCRIPTIVE AND INFERENTIAL STATISTICS

Dietrich and Kearns (1986) divided statistics into two broad areas, namely descriptive and
inferential statistics. Descriptive statistics is the science of summarizing or describing data,
while inferential statistics is the science of interpreting data in order to make estimates,
hypotheses testing, predictions, or decisions from the samples to the targeted population.

In clinical trials, data are usually collected through case report forms which are
designed to capture clinical information from the studies. The information on the case
report forms is then entered into the database. The raw database is always messy, though it
does contain valuable clinical information from the study. In practice, it is often of interest
to summarize the raw database by a graphical presentation (e.g., a data plot) or by descrip-
tive (or summary) statistics. Descriptive statistics are simple sample statistics such as
means and standard deviations (or standard errors) of clinical variables or endpoints. Note
that the standard deviation describes the variability of a distribution, either a population
distribution or a sample distribution, whereas the standard error is the variability of a sam-
ple statistic (e.g., sample mean or sample variance). Descriptive statistics are often used to
describe the targeted population before and after the study. For example, at baseline,
descriptive statistics are often employed to describe the comparability between treatment
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Figure 2.4.5 Interaction of two subgroups. (Source: Gail and Simon, 1985.)
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groups. After the completion of the study, descriptive statistics are useful tools to reveal
possible clinical differences (or effects) or trends of study drugs. As an example, Table
2.5.1 provides a partial listing of individual patient demographics and baseline characteris-
tics from a study comparing the effects of captopril and enalapril on quality of life in the
older hypertensive patients (Testa et al., 1993). As can be seen from Table 2.5.1, although
as a whole, the patient listing gives a detailed description of the characteristics for individ-
ual patients, it does not provide much summary information regarding the study popula-
tion. In addition descriptive statistics for demographic and baseline information describe
not only the characteristics of the study population but also the comparability between
treatment groups (see Table 2.5.2). In addition, for descriptive purposes, Table 2.5.3 groups
patients into low, medium, and high categories according to the ranking of their scores on
the baseline quality of life scale. It can be seen that there is a potential difference in treat-
ment effect among the three groups with regard to the change from baseline on the quality
of life. These differences were confirmed to be statistically significant by valid statistical
tests. Therefore a preliminary investigation of descriptive statistics of primary clinical end-
points may reveal a potential drug effect.

When we observe some potential differences (effects) or trends, it is necessary to further
confirm with certain assurance that the differences (effects) or trends indeed exist and are
not due to chance alone. For this purpose it is necessary to provide inferential statistics for
the observed differences (effects) or trends. Inferential statistics such as confidence inter-
vals and hypotheses testing are often performed to provide statistical inference on the pos-
sible differences (effects) or trends that can be detected based on descriptive statistics. For
the rest of this section, we will focus on confidence intervals (or interval estimates).
Hypotheses testing will be discussed in more detail in the following section.

Clinical endpoints are often used to asses the efficacy and safety of drug products. For
example, diastolic blood pressure is one of the primary clinical endpoints for the study of
ACE inhibitor agents in the treatment of hypertensive patients. The purpose of the diastolic
blood pressure for hypertensive patients is to compare their average diastolic blood pres-
sure with the norm for ordinary health subjects. However, the average diastolic blood pres-
sure for the hypertensive patients is unknown. We will need to estimate the average
diastolic blood pressure based on the observed diastolic pressures obtained from the hyper-
tensive patients. The observed diastolic blood pressures and the average of these diastolic
blood pressures are the sample and sample mean of the study. The sample mean is an esti-
mate of the unknown population average diastolic blood pressure. Point estimates may not
be of practical use. For example, suppose that the sample mean is 98 mmHg. It is then
important to know whether the population average for the hypertensive patients could rea-
sonably be 90 mmHg given that the sample average turned out to be 98 mmHg. This kind
of information depends on the knowledge of the standard error, not merely of the point
estimate itself.

The observed diastolic blood pressures are usually scattered around the sample mean.
Based on these observed diastolic blood pressures, the standard error of the sample mean
of the observed diastolic blood pressures can be obtained. If the distribution of the diastolic
blood pressure appears to be a bell shaped and the sample size is of moderate size, then
there is about 95% chance that the unknown average diastolic blood pressure of the tar-
geted population will fall within the area between approximate two (i.e., 1.96) standard
errors below and above the sample mean. The lower and upper limits of the area constitute
an interval estimate for the unknown population average diastolic blood pressure. An inter-
val estimate is usually referred to as a confidence interval with a desired confidence level,
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such as 95%. Unlike a point estimate, a confidence interval provides a whole interval as an
estimate for a population parameter instead of just a single value. A 95% confidence inter-
val is a random interval that is calculated according to a certain procedure that would pro-
duce a different interval for each sample upon repeated sampling from the population, and
95% of these intervals would contain the unknown fixed population parameter. A 95%
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Table 2.5.2 Demographic, Clinical, and Quality of Life Variables at the Baseline

Captopril Enalapril 
Variable (N �192) (N � 187)

Demographic
Age (yr) 64.2 � 5.5 64.6 � 6.4
Education (%)

No high school 9 7
Some high school 36 30
Some college 49 58
Postgraduate degree 6 5

Income (%)
�$15,000 15 12
$15,000–40,999 41 47
$41,000–80,000 33 35
�$80,000 11 6

Percent married 87 88
Occupational status (%)

Employed full-time 40 36
Employed part-time 14 15
Retired 43 49
Unemployed 3 1

Race (%)
White 84 82
Black 14 18
Other 3 1

Clinical
Weight (lb) 197.8 � 36.4 198.7 � 37.9
Body-mass index 28.8 � 4.7 28.6 � 5.0
Blood pressure (mmHg)

Systolic 155.0 � 14.8 154.6 � 15.8
Diastolic 97.3 � 5.8 97.3 � 5.9

Previous antihypertensive therapy (%) 89 87
Quality-of-life scales

Psychological well-being 462 � 78 452 � 80
Psychological distress 526 � 64 521 � 59
General perceived health 493 � 77 495 � 67
Well-being at work or in daily routine 485 � 61 480 � 62
Sexual-symptom distress 518 � 144 503 � 162

Distress and stress indexes
Side effects and symptoms distress 24 � 40 25 � 35
Life events 30 � 40 28 � 40
Stress 274 � 144 296 � 142

Source: Testa et al. (1993).
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confidence interval is not an interval that will contain 95% of the sample averages that
would be obtained on repeating the sampling procedure, nor is a particular 95% confidence
interval in which the population average will fall 95% of the times. It should be noted that
the population average is an unknown constant and does not vary while a confidence inter-
val is random. It is either in the confidence interval or not.

A classical confidence interval for the population average of a clinical variable is sym-
metric about the observed sample mean of the observed responses of the clinical variable.
This classical confidence interval is sometimes called the shortest confidence interval
because its width is the shortest among all of the confidence intervals of the same con-
fidence level by other statistical procedures. In some situations, it may be of interest to
obtain a symmetric confidence with respect to a fixed number. For example, in bioequiva-
lence trials it is of interest to obtain a confidence interval for the difference in a pharmaco-
kinetic parameter such as area under the blood or plasma concentration time curve (AUC)
between the test and reference drug product. If the 90% confidence interval falls within
�20% of the average of the reference product, then we conclude that the test product is
bioequivalent to the reference product (e.g., Chow and Liu, 2000). Since the limits are
�20%, which is symmetric about 0%, Westlake (1976) proposed the idea to consider a
symmetric confidence interval with respect to 0 rather than the shortest confidence interval
symmetric about the observed difference in the sample means. Note that as indicated in
Chow and Liu (2000), the most common criticisms of Westlake’s symmetric confidence
interval are that it has shifted away from the direction in which the sample difference was
observed and that the tail probabilities associated with Westlake’s symmetric confidence
interval are not symmetric. As a result Westlake’s symmetric confidence interval moves
from a two-sided to a one-sided approach as the true difference and the random error
increase.

The confidence level is the degree of certainty that the interval actually contains the
unknown population parameter value. It provides the degree of assurance or confidence
that the statement regarding the population parameter is correct. The more certainty we
want, the wider the interval will have to be. A very wide interval estimate may not be of
practical use because it fails to identify the population parameter closely. In practice, it is
more usual to use 90%, 95%, or 99% as confidence levels. Table 2.5.4 summarizes the
multiple of standard errors that are needed for confidence levels of 68, 95, and 99. There-
fore we will have 68%, 95%, and more than 99% confidence that the population parameter
will fall within one, two, and three standard errors of the observed value, respectively.
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Table 2.5.4 Confidence Levels with Various Standard
Errors

Standard Errors Confidence Level

0.5 0.3830
0.675 0.5000
1.0 0.6826
1.5 0.8664
1.96 0.9500
2.0 0.9544
2.5 0.9876
3.0 0.9974
4.0 1.0000
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When we claim that a drug product is effective and safe with 95% assurance, it is
expected that we will observe consistent significant results 95% of times if the clinical trial
were repeatedly carried out with the same protocol. However, current FDA regulation only
requires two adequate well-controlled clinical trials be conducted to provide substantial
evidence for efficacy and safety. It is therefore of interest to estimate the probability 
that the drug is effective and safe based on clinical results obtained from the two adequate
well-controlled trials.

2.6 HYPOTHESES TESTING AND p-VALUES

In clinical trials a hypothesis is a postulation, assumption, or statement that is made about
the population regarding the efficacy, safety, or other pharmacoeconomics outcomes (e.g.,
quality of life) of a drug product under study. This statement or hypothesis is usually a sci-
entific question that needs to be investigated. A clinical trial is often designed to address
the question by translating it into specific study objective(s). Once the study objective(s)
has been carefully selected and defined, a random sample can be drawn through an appro-
priate study design to evaluate the hypothesis about the drug product. For example, a 
scientific question regarding a drug product, say drug A, of interest could be either (1) Is
the mortality reduced by drug A? or (2) Is drug A superior to drug B in treating hyperten-
sion? The hypothesis to be questioned is usually referred to as the null hypothesis, denoted
by H0. The hypothesis that the investigator wishes to establish is called the alternative
hypothesis, denoted by Ha. In practice, we attempt to gain support for the alternative
hypothesis by producing evidence to show that the null hypothesis is false. For the ques-
tions regarding drug A described above, the null hypotheses are that (1) there is no differ-
ence between drug A and the placebo in the reduction of mortality and (2) there is no
difference between drug A and drug B in treating hypertension, respectively. The alterna-
tive hypotheses are that (1) drug A reduces the mortality and (2) drug A is superior to drug
B in treating hypertension, respectively. These scientific questions or hypotheses to be
tested can then be translated into specific study objectives as to compare (1) the efficacy of
drug A with no therapy in the prevention of reinfarction of (2) the efficacy of drug A with
that of drug B in reducing blood pressure in elderly patients, respectively.

Chow and Liu (2000) recommended the following steps be taken to perform a hypothe-
sis testing:

1. Choose the null hypothesis that is to be questioned.

2. Choose an alternative hypothesis that is of particular interest to the investigators.

3. Select a test statistic, and define the rejection region (or a rule) for decision making
about when to reject the null hypothesis and when not to reject it.

4. Draw a random sample by conducting a clinical trial.

5. Calculate the test statistic and its corresponding p-value.

6. Make conclusion according to the predetermined rule specified in step 3.

When performing a hypotheses testing, basically two kinds of errors occur. If the null
hypothesis is rejected when it is true, then a type I error has occurred. For example, a type I
error has occurred if we claim that drug A reduces the mortality when in fact there is no 
difference between drug A and the placebo in the reduction of mortality. The probability of
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committing type I error is known as the level of significance. It is usually denoted by α. In
practice, α represents the consumer’s risk which is often chosen to be 5%. On the other
hand, if the null hypothesis is not rejected when it is false, then a type II error has been
made. For example, we have made a type II error if we claim that there is no difference
between drug A and the placebo in the reduction of mortality when in fact drug A does
reduce the mortality. The probability of committing type II error, denoted by β, is some-
times referred to as the producer’s risk. In practice, 1 � β is known as the power of the test,
which represents the probability of correctly rejecting the null hypothesis when it is false.

Table 2.6.1 summarizes the relationship between type I and type II errors when testing
hypotheses. Furthermore a graph based on the null hypothesis of no difference is presented
in Figure 2.6.1 to illustrate the relationship between α and β (or power) for various β’s
under H0 for various alternatives at α � 5% and 10%. It can be seen that α decreases as β
increases or α increases as β decreases. The only way of decreasing both α and β is to
increase the sample size. In clinical trials a typical approach is to first choose a significant
level α and then select a sample size to achieve a desired test power. In other words, a sam-
ple size is chosen to reduce type II error such that β is within an acceptable range at a 
prespecified significant level of α. From Table 2.6.1 and Figure 2.6.1 it can be seen that α
and β depend on the selected null and alternative hypotheses. As indicated earlier, the
hypothesis to be questioned is usually chosen as the null hypothesis. The alternative
hypothesis is usually of particular interest to the investigators. In practice, the choice of the
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Table 2.6.1 Relationship Between Type I and Type II
Errors

If H0 is

True False

When
Fail to reject No error Type II error
Reject Type I error No error

Figure 2.6.1 Relationship between probabilities of type I and type II errors.
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null hypothesis and the alternative hypothesis has an impact on the parameter to be tested.
Chow and Liu (2000) indicate that the null hypothesis may be selected based on the impor-
tance of the type I error. In either case, however, it should be noted that we will never be
able to prove that H0 is true even though the data fail to reject it.

p-Values

In medical literature p-values are often used to summarize results of clinical trials in a
probabilistic way. For example, in a study of 10 patients with congestive heart failure,
Davis et al. (1979) report that at single daily doses of captopril of 25 to 150 mg, the cardiac
index rose from 1.75 � 0.18 to 2.77 � 0.39 (mean � SD) liters per minute per square meter
(p � 0.001). Powderly et al. (1995) confirmed that fluconazole was effective in preventing
esophageal candidiasis (adjusted relative hazard, 5.8; 95% confidence interval 1.7 to 20.0;
p � 0.004) in patients with advance human immunodeficiency virus (HIV) infection. In a
multicenter trial Coniff et al. (1995) indicate that all active treatments (acarbose, tolbu-
tamide, and acarbose plus tolbutamide) were superior (p � 0.05) to placebo in reducing
postprandial hyperglycemia and HbA1C levels in noninsulin-dependent diabetes mellitus
(NIDDM) patients. In a study evaluating the rate of bacteriologic failure of amoxicillin-
clavulanate in the treatment of acute otitis media, Patel et al. (1995) reveal that the bacteri-
ologic failure was higher in nonwhite boys (p � 0.026) and in subjects with a history of
three or more previous episodes of acute otitis media (p � 0.008). These statements indi-
cated that a difference at least as great as the observed would occur in less than 1 in 100 tri-
als if a 1% level of significance were chosen or in less than 1 in 20 trials if a 5% level of
significance were selected provided that the null hypothesis of no difference between treat-
ments is true and the assumed statistical model is correct.

In practice, the smaller the p-value shows, the stronger the result is. However, the mean-
ing of a p-value may not be well understood. The p-value is a measure of the chance that
the difference at least as great as the observed difference would occur if the null hypothesis
is true. Therefore, if the p-value is small, then the null hypothesis is unlikely to be true by
chance, and the observed difference is unlikely to occur due to chance alone. The p-value
is usually derived from a statistical test that depends on the size and direction of the effect
(a null hypothesis and an alternative hypothesis). To show this, consider testing the follow-
ing hypotheses at the 5% level of significance:

H0: There is no difference;

vs. Ha: There is a difference. (2.6.1)

The statistical test for the above hypotheses is usually referred to as a two-sided test. If
the null hypothesis (i.e., H0) of no difference is rejected at the 5% level of significance,
then we conclude there is a significant difference between the drug product and the
placebo. In this case we may further evaluate whether the trial size is enough to effectively
detect a clinically important difference (i.e., a difference that will lead the investigators to
believe the drug is of clinical benefit and hence of effectiveness) when such difference
exists. Typically, the FDA requires at least 80% power for detecting such difference. In
other words, the FDA requires there be at least 80% chance of correctly detecting such
difference when the difference indeed exists.

Figure 2.6.2 displays the sampling distribution of a two-sided test under the null hypothe-
sis in (2.6.1). It can be seen from Figure 2.6.2 that a two-sided test has equal chance to show
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that the drug is either effective in one side or ineffective in the other side. In Figure 2.6.2,
C and �C are critical values. The area under the probability curve between �C and C
constitutes the so-called acceptance region for the null hypothesis. In other words, any
observed difference in means in this region is a piece of supportive information of the null
hypothesis. The area under the probability curve below �C and beyond C is known as the
rejection region. An observed difference in means in this region is a doubt of the null hypoth-
esis. Based on this concept, we can statistically evaluate whether the null hypothesis is a true
statement. Let µD and µP be the population means of the primary efficacy variable of the drug
product and the placebo, respectively. Under the null hypothesis of no difference (i.e.,
µD � µP), a statistical test, say T can be derived. Suppose that t, the observed difference in
means of the drug product and the placebo, is a realization of T. Under the null hypothesis we
can expect that the majority of t will fall around the center, µD � µP � 0. There is a 2.5%
chance that we would see t will fall in each tail. That is, there is a 2.5% chance that t will be
either below the critical value �C or beyond the critical value C. If t falls below �C, then the
drug is worse than the placebo. On the other hand, if t falls beyond C, then the drug is supe-
rior to the placebo. In both cases we would suspect the validity of the statement under the null
hypothesis. Therefore we would reject the null hypothesis of no difference if

t � C or t � �C.

Furthermore we may want to evaluate how strong the evidence is. In this case, we calculate the
area under the probability curve beyond the point t. This area is known as the observed p-value.
Therefore the p-value is the probability that a result at least as extreme as that observed would
occur by chance if the null hypothesis is true. It can be seen from Figure 2.6.2 that

p � value � 0.05 if and only if t ��C or t � C.

A smaller p-value indicates that t is further away from the center (i.e., µD � µP � 0) and 
consequently provides stronger evidence that supports the alternative hypothesis of 
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Figure 2.6.2 Sampling distribution of two-sided test.
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a difference. In practice, we can construct a confidence interval for µD � µP � 0. If the 
constructed confidence interval does not contain 0, then we reject the null hypothesis of no
difference at the 5% level of significance. It should be noted that the above evaluations for
the null hypothesis reach the same conclusion regarding the rejection of the null hypothe-
sis. However, a typical approach is to present the observed p-value. If the observed p-value
is less than the level of significance, then the investigators would reject the null hypothesis
in favor of the alternative hypothesis.

Although p-values measure the strength of evidence by indicating the probability that a
result at least as extreme as that observed would occur due to random variation alone under
the null hypothesis, they do not reflect sample size and the direction of treatment effect.
Ware et al. (1992) indicate that p-values are a way of reporting the results of statistical
analyses. It may be misleading to equate p-values with decisions. Therefore, in addition to
p-values, they recommend that the investigators also report summary statistics, confidence
intervals, and the power of the tests used. Furthermore, the effects of selection or multi-
plicity should also be reported.

Note that when a p-value is between 0.05 and 0.01, the result is usually called statisti-
cally significant; when it is less than 0.01, the result is often called highly statistically 
significant.

One-Sided versus Two-Sided Hypotheses

For marketing approval of a drug product, current FDA regulations require that substantial
evidence of effectiveness and safety of the drug product be provided. Substantial evidence
can be obtained through the conduct of two adequate well-controlled clinical trials. The
evidence is considered substantial if the results from the two adequate well-controlled
studies are consistent in the positive direction. In other words, both trials show that the
drug product is significantly different from the placebo in the positive direction. If the pri-
mary objective of a clinical trial is to establish that the test drug under investigation is
superior to an active control agent, it is referred to as a superiority trial (ICH E9, 1998).
However, the hypotheses given in (2.6.1) do not specify the direction once the null hypoth-
esis is rejected. As an alternative, the following hypotheses are proposed:

H0: There is no difference;

vs. Ha: The drug is better than placebo. (2.6.2)

The statistical test for the above hypotheses is known as one-sided test. If the null hypoth-
esis of no difference is rejected at the 5% level of significance, then we conclude that the
drug product is better than the placebo and hence is effective. Figure 2.6.3 gives the rejec-
tion region of a one-sided test. To further compare a one-sided and a two-sided test, let’s
consider the level of proof required for marketing approval of a drug product at the 5%
level of significance. For a given clinical trial, if a two-sided test is employed, the level of
proof required is one out of 40. In other words, at the 5% level of significance, there is
2.5% chance (or one out of 40) that we may reject the null hypothesis of no difference in
the positive direction and conclude the drug is effective at one side. On the other hand, if a
one-sided test is used, the level of proof required is one out of 20. It turns out that the one-
sided test allows more ineffective drugs to be approved because of chance as compared to
the two-sided test. As indicated earlier, to demonstrate the effectiveness and safety of 
a drug product, FDA requires two adequate well-controlled clinical trials be conducted.
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Then the level of proof required should be squared regardless of which test is used. Table
2.6.2 summarizes the levels of proof required for the marketing approval of a drug product.
As Table 2.6.2 indicates, the levels of proof required for one-sided and two-sided tests are
one out of 400 and one out of 1600, respectively. Fisher (1991) argues that the level of
proof of one out of 400 is a strong proof and is sufficient to be considered as substantial
evidence for marketing approval, so the one-sided test is appropriate. However, there is no
universal agreement among the regulatory agency (e.g., FDA), academia, and the pharma-
ceutical industry as to whether a one-sided test or a two-sided test should be used. The con-
cern raised is based on the following two reasons:

1. Investigators would not run a trial if they thought the drug would be worse than the
placebo. They would study the drug only if they believe that it might be of benefit.

2. When testing at the 0.05 significance level with 80% power, the sample size required
is increased by 27% for the two-sided test as opposed to the one-sided test. As a
result there is a substantial impact on cost when a one-sided test is used.

It should be noted that although investigators may believe that a drug is better than 
the placebo, it is never impossible that such belief might be unexpected (Fleiss, 1987).
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Figure 2.6.3 Sampling distribution of one-sided test.

Table 2.6.2 Level of Proof Required for Clinical
Investigation

Type of Tests

Number of Trials One-Sided Two-Sided

One trial 1/20 1/40
Two trials 1/400 1/1600
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Ellenberg (1990) indicates that the use of a one-sided test is usually a signal that the trial
has too small a sample size and that the investigators are attempting to squeeze out a 
significant result by a statistical maneuver. These observations certainly argue against the
use of one-sided test for the evaluation of effectiveness in clinical trials. Cochran and 
Cox (1957) suggest that a one-sided test is used when it is known that the drug must be at
least as good as the placebo, while a two-sided test is used when it is not known which
treatment is better.

As indicated by Dubey (1991), the FDA tends to oppose the use of a one-sided test.
However, this position has been challenged by several drug sponsors on the Drug Efficacy
Study Implementation (DESI) drugs at the administrative hearings. As an example, Dubey
(1991) points out that several views that favor the use of one-sided test were discussed in an
administrative hearing. Some drug sponsors argued that the one-sided test is appropriate in
the following situations: (1) where there is truly only concern with outcomes in one tail and
(2) where it is completely inconceivable that the results can go in the opposite direction. In
this hearing the sponsors inferred that the prophylactic value of the combination drug is
greater than that posted by the null hypothesis of equal incidence, and therefore the risk of
finding an effect when none in fact exists is located only in the upper tail. As a result a one-
sided test is called for. However, the FDA feels that a two-sided test should be applied to
account for not only the possibility that the combination drugs are better than the single
agent alone at preventing candidiasis but also the possibility that they are worse at doing so.

Dubey’s opinion is that one-sided tests may be justified in some situations such as toxi-
city studies, safety evaluation, analysis of occurrences of adverse drug reactions data, risk
evaluation, and laboratory research data. Fisher (1991) argues that one-sided tests are
appropriate for drugs that are tested against placebos at the 0.05 level of significance for
two well-controlled trials. If, on the other hand, only one clinical trial rather than two is
conducted, a one-sided test should be applied at the 0.025 level of significance. However,
Fisher agrees that two-sided tests are more appropriate for active control trials.

It is critical to specify hypotheses to be tested in the protocol. A one-sided test or two-
sided test can then be justified based on the hypotheses. It should be noted that the FDA is
against a post hoc decision to create significance or near significance on any parameters
when significance did not previously exist. This critical switch cannot be adequately
explained and hence is considered an invalid practice by the FDA. More discussion regard-
ing the use of one-sided test versus two-sided test from the perspectives of the pharmaceu-
tical industry, academe, an FDA Advisory Committee member, and the FDA can be found
in Peace (1991), Koch (1991), Fisher (1991), and Dubey (1991), respectively.

2.7 CLINICAL SIGNIFICANCE AND CLINICAL EQUIVALENCE

As indicated in the hypotheses of (2.6.1), the objective of most clinical trials is to detect the
existence of predefined clinical difference using a statistical testing procedure such as
unpaired two-sample t-test. If this predefined difference is clinically meaningful, then it is of
clinical significance. If the null hypothesis in (2.6.1) is rejected at the α level of signifi-
cance, then we conclude that a statistically significant difference exists between treatments.
In other words, an observed difference that is unlikely to occur by chance alone is consid-
ered a statistically significant difference. However, a statistically significant difference
depends on the sample size of the trial. A trial with a small sample size usually provides 
little information regarding the efficacy and safety of the test drug under investigation. On

CLINICAL SIGNIFICANCE AND CLINICAL EQUIVALENCE 77

c02.qxd  27.10.03  12:47  Page 77



the other hand, a trial with a large sample size provides substantial evidence of the efficacy
of the safety of the test drug product. An observed statistically significant difference, which
is of little or no clinical meaning and interpretation, will not be able to address the scien-
tific/clinical questions that a clinical trial was intended to answer in the first place.

The magnitude of a clinically significant difference varies. In practice, no precise defi-
nition exists for the clinically significant difference, which depends on the disease, indica-
tion, therapeutic area, class of drugs, and primary efficacy and safety endpoints. For
example, for antidepressant agents (e.g., Serzone), a change from a baseline of 8 in the
Hamilton depression (Ham-D) scale or a 50% reduction from baseline in the Hamilton
depression (Ham-D) scale with a baseline score over 20 may be considered of clinical
importance. For antimicrobial agents (e.g., Cefil), a 15% reduction in bacteriologic eradi-
cation rate could be considered a significant improvement. Similarly, we could also con-
sider a reduction of 10 mm Hg in sitting diastolic blood pressure as clinically significant
for ACE inhibitor agents in treating hypertensive patients.

The examples of clinical significance on antidepressant or antihypertensive agents are
those of individual clinical significance, which can be applied to evaluation of the treat-
ment for individual patients in usual clinical practice. Because individual clinical signifi-
cance only reflects the clinical change after the therapy, it cannot be employed to compare
the clinical change of a therapy to that of no therapy or of a different therapy. Temple
(1982) pointed out that in evaluation of one of phase II clinical trials for an ACE inhibitor,
although the ACE inhibitor at 150 mg t.i.d. can produce a mean reduction from baseline in
diastolic blood pressure of 16 mm Hg, the corresponding mean reduction from baseline for
the placebo is also 9 mm Hg . It is easy to see that a sizable proportion of the patients in the
placebo group reached the level of individual clinical significance of 10 mm Hg . There-
fore, this example illustrates a fact that individual clinical significance alone cannot be
used to establish the effectiveness of a new treatment.

For assessment of efficacy/safety of a new treatment modality, it is, within the same trial,
compared with either a placebo or another treatment, usually the standard therapy. If the
concurrent competitor in the same study is placebo, the effectiveness of the new modality
can then be established, based on some primary endpoints, by providing the evidence of an
average difference between the new modality and placebo that is larger than some prespeci-
fied difference of clinical importance to investigators or to the medical/scientific commu-
nity. This observed average difference is said to be of the comparative clinical significance.
The ability of a placebo-controlled clinical trial to provide such observed difference of both
comparative clinical significance and statistical significance is referred to as assay sensitiv-
ity. A similar definition of assay sensitivity is also given in the ICH E10 guidance entitled,
Choice of Control Group in Clinical Trials (ICH, 1999).

On the other hand, when the concurrent competitor in the trial is the standard treatment
or other active treatment, then efficacy of the new treatment can be established by showing
that the test treatment is as good as or at least no worse than standard treatment. However,
under this situation, the proof of efficacy for the new treatment is based on a crucial
assumption that the standard treatment or active competitor has established its own efficacy
by demonstrating a difference of comparative clinical significance with respect to placebo
in adequate placebo-controlled studies. This assumption is referred to as the sensitivity-to-
drug-effects (ICH E10, 1999).

Table 2.7.1 presents the results first reported in Leber (1989), which was again used by
Temple (1983) and Temple and Ellenberg (2000) to illustrate the issues and difficulties in
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evaluating and interpreting the active controlled trials. All six trials compare nomifensine
(a test antidepressant) to imipramine (a standard tricyclic antidepressant) concurrently
with placebo. The common baseline means and 4-week adjusted group means based on the
Hamilton depression scale are given in Table 2.7.1. Except for trial V311(2), based on the
Hamilton depression scale, both nomifensine and imipramine showed more than 50%
mean reduction. However, magnitudes of average reduction on the Hamilton depression
scale at 4 weeks for the placebo are almost the same as the other two active treatments for
all five trials. Therefore, these five trials do not have assay sensitivity. It should be noted
that trial V311(2) is the smallest trial, with a total sample size only of 22 patients. How-
ever, it was the only trial in Table 2.7.1 that demonstrates that both nomifensine and
imipramine are better than placebo in the sense of both comparative clinical significance
and statistical significance.

Basically, there are four different outcomes for significant differences in a clinical trial.
The result may show that (1) the difference is both statistically and clinically significant, (2)
there is a statistically significant difference yet the difference is not clinically significant, (3)
the difference is of clinical significance yet not statistically significant, and (4) the difference
is neither statistically significant nor clinically significant. If the difference is both clinically
and statistically significant or if it is neither clinically nor statistically significant, then there
is no confusion. The conclusion can be drawn based on the results from the clinical data.
However, in many cases a statistically significant difference does not agree with the clini-
cally significant difference. For example, a statistical test may reveal that there is a statisti-
cally significant difference. However, if the difference is too small (it may be due to a
unusually small variability or a relatively large sample size) to be of any clinical impor-
tance, then it is not clinically significant. In this case a small p-value may be instrumental in
concluding the effectiveness of the treatment. On the other hand, the result may indicate that
there is a clinically significant difference but the sample size is too small (or variability is
too large) to claim a statistically significant difference. In this case the evidence of effective-
ness is not substantial due to a large p-value. This inconsistency has created confusion/
arguments among clinicians and biostatisticians in assessment of the efficacy and safety of
clinical trials.

As indicated earlier, for the assessment of efficacy and safety of a drug product, a typical
approach is to first demonstrate that there is a statistically significant difference between the
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Table 2.7.1 Summary of Means of Hamilton Depression Scales of Six Trials Comparing
Nomifensine, Imipramine, and Placebo

Common Baseline Four-week Adjusted Mean (Number of Subjects)

Study Mean Nomifensine Imipramine Placebo

R301 23.9 13.4(33) 12.8(33) 14.8(36)
G305 26.0 13.0(39) 13.4(30) 13.9(36)
C311(1) 28.1 19.4(11) 20.3(11) 18.9(13)
V311(2) 29.6 7.3(7) 9.5(8) 23.5(7)
F313 37.6 21.9(7) 21.9(8) 22.0(8)
K317 26.1 11.2(37) 10.8(32) 10.5(36)

Source: Temple and Ellenberg (2000).
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drug products in terms of some clinical endpoints by testing hypotheses (2.6.1) repeated
below:

H0: There is no difference;

vs. Ha: There is a difference.

Equivalently

H0: µD � µP

vs. Ha: µD � µP,

where µD and µP are the means of the primary clinical endpoint for the drug product and the
placebo, respectively. If we reject the null hypothesis of no difference at the α level of sig-
nificance, then there is a statistically significant difference between the drug product and the
placebo in terms of the primary clinical endpoint. We then further evaluate whether there is
sufficient power to correctly detect a clinically significant difference. If it does, then we can
conclude that the drug product is effective and safe. Note that the above hypotheses are
known as point hypotheses. In practice, it is recognized that no two treatments will have
exactly the same mean responses. Therefore, if the mean responses of the two treatments
differ by les than a meaningful limit (i.e., a clinically important difference), the two treat-
ments can be considered clinically equivalent. Based on this idea, Schuirmann (1987) first
introduces the use of interval hypotheses for assessing bioequivalence. The interval
hypotheses for clinical equivalence can be formulated as

H0: The two drugs are not equivalent;

vs. Ha: The two drugs are equivalent. (2.7.1)

Or put differently,

H0: µA � µB 	 L or µA � µB 
 U;

vs. Ha: L � µA � µB � U,

where µA and µB are the means of the primary clinical endpoint for drugs A and B, respec-
tively, and L and U are some clinically meaningful limits. The concept and interval hypothe-
ses (2.7.1) is to show equivalence by rejecting the null hypothesis of inequivalence. The
above hypotheses can be decomposed into two sets of one-sided hypotheses

H01: Drug A is superior to drug B (i.e., µA � µB 
 U);

vs. Ha1: Drug A is not superior to drug B;

and

H02: Drug A is inferior to drug B (i.e., µA � µB 	 L);

vs. Ha2: Drug A is not inferior to drug B

The first set of hypotheses is to verify that drug A is not superior to drug B, while the sec-
ond set of hypotheses is to verify that drug A is not worse than drug B. A relatively large or
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small observed difference may refer to the concern of the comparability between the two
drug products. Therefore the rejection of H01 and H02 will lead to the conclusion of clinical
equivalence. This is equivalent to rejecting H0 in (2.7.1). In practice, if L is chosen to be
�U, then we can conclude clinical equivalent if

�µA � µB� � ∆,

where ∆ � U � �L is the clinically significant difference. For example, for the assessment
of bioequivalence between a generic drug product and an innovator drug product (or refer-
ence drug product), the bioequivalence limit ∆ is often chosen to be 20% of the bioavail-
ability of the reference product. In other words, in terms of the ratio of means µA/µB, the
limits become L � 80% and U � 120%. When log-transformed data are analyzed, the FDA
suggests using L � 80% and U � 125%. More detail on the assessment of bioequivalence
between drug products can be found in Chow and Liu (2000).

When two drugs are shown to be clinically equivalent, they are comparable to each other.
Consequently they can be used as substitutes for each other. It should be noted that there is
difference between the assessment of a possible difference and equivalence. Hypotheses
(2.6.1) are set for assessment of a possible difference between treatments, while hypotheses
(2.7.1) are for the assessment of equivalence. The demonstration of equality does not neces-
sarily imply equivalence. This is because the selected sample size for testing equality may
not be sufficient for assessing the equivalence. Besides, when we fail to reject the null
hypothesis of equality, it does not imply that the two treatments are equivalent, even if there
is sufficient power for the detection of a clinically significant difference.

Note that the current FDA regulations do not allow the sponsors to establish clinical
equivalence/noninferiority based on clinical trials designed for the detection of existence
of treatment differences. On the other hand, the ICH E9 guideline also stressed that it is
inappropriate to conclude equivalence/noninferiority based on observing a statistically
nonsignificant test result for null hypothesis (2.6.1) that there is no difference between the
investigational drug and the active competitor. Clinical equivalence/noninferiority between
two drug products must be established based on the interval hypothesis, as described in
(2.7.1). Confidence approach in general is used to establish the clinical equivalence/
noninferiority. If the entire confidence interval for the average difference between the
investigator product and active competitor is within some prespecified equivalence limit,
clinical equivalence is inferred. Clinical noninferiority is concluded if an upper one-sided
confidence limit is smaller than the prespecific limit. From the above discussion, the sam-
ple size determination for equivalence/noninferiority trials should specify the value of 
∆, which is the largest difference between the investigational product and the active com-
petitor that can be judged as clinically acceptable. In addition, the power for concluding
equivalence/noninferiority using a prespecified value of ∆ should be given. For testing
interval hypothesis, several statistical procedures have been proposed. See, for example,
Blackwelder (1982), Wellek (1993), Jennison and Turnball (1993), and Liu (1995a).
Equivalence/noninferiority trials without inclusion of a placebo group are not internally
valid and rely on external validation of the assumed sensitivity-to-drug effects. Further-
more, selection of equivalence limits is also a very controversial issue and recently sparks
heated arguments between the sponsors and the regulatory agencies. See Jones et al.
(1996), Rohmel (1998), Ebbut and Firth (1998), Fisher et al. (2001), Fleming (2000),
Siegel (2000), Temple and Ellenberg (2000), and Ellenberg and Temple (2000). More
details are given in Chapter 7.
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2.8 REPRODUCIBILITY AND GENERALIZABILITY

As indicated in the previous chapter, for marketing approval of a new drug product, the U.S.
FDA requires that substantial evidence of the effectiveness and safety of the drug product be
provided through the conduct of at least two adequate and well-controlled clinical trials.
The purpose of requiring at least two pivotal clinical trials is not only to assure the repro-
ducibility, but also to provide valuable information regarding generalizability. Chow and
Shao (2002) define reproducibility as to (1) whether the clinical results in the same target
patient population are reproducible from one location (e.g., study site) to another within the
same region (e.g., the United States of America, European Union, or Asian Pacific region)
or (2) whether the clinical results are reproducible from one region to another region in the
same target patient population. Generalizability is referred to as (1) whether the clinical
results can be generalized from the target patient population (e.g., adult) to another similar
but slightly different patient population (e.g., elderly) within the same region or (2) whether
the clinical results can be generalized from the target patient population (e.g., white) in one
region to a similar but slightly different patient population (e.g., Asian) in another region. In
what follows, we will provide the concept of reproducibility and generalizability for pro-
viding substantial evidence in clinical research and development.

Reproducibility

In clinical research, two questions are commonly asked. First, what is the chance that we
will observe a negative result in a future clinical study under the same study protocol given
that positive results have been observed in the two pivotal trials? In practice, two positive
results observed from the two pivotal trials, which have fulfilled the regulatory requirement
for providing substantial evidence, may not guarantee that the clinical results are repro-
ducible in a future clinical trial with the same study protocol with a high probability. This
is very likely, especially when the positive results observed from the two pivotal trials are
marginal (i.e., their p-values are close to but less than the level of significance). Second, it
is often of interest to determine whether a large clinical trial that produced positive clinical
results can be used to replace two pivotal trials for providing substantial evidence for reg-
ulatory approval. Although the U.S. FDA requires at least two pivotal trials be conducted
for providing substantial evidence regarding the effectiveness and safety of the drug prod-
uct under investigation for regulatory review, under the circumstances, the FDA Modern-
ization Act (FDAMA) of 1997 includes a provision (Section 115 of FDAMA) to allow data
from one adequate and well-controlled clinical trial investigation and confirmatory evi-
dence to establish effectiveness for risk/benefit assessment of drug and biological candi-
dates for approval. To address the above two questions, Shao and Chow (2002) suggested
evaluating the probability of observing a positive result in a future clinical study with the
same study protocol, given that a positive clinical result has been observed.

Let H0 and Ha be the null hypothesis and the alternative hypothesis of (2.6.1). Thus, the
null hypothesis is that there is no difference in mean response between a test drug and 
a control (e.g., placebo). Suppose that the null hypothesis is rejected if and only if �T � � C,
where C is a positive known constant and T is a test statistic, which is usually related to 
a two-sided alternative hypothesis. In statistical theory, the probability of observing a sig-
nificant clinical result when Ha is indeed true is referred to as the power of the test proce-
dure. If the statistical model under Ha is a parametric model, then the power can be
evaluated at θ, where θ is an unknown parameter or vector of parameters. Suppose now
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that one clinical trial has been conducted and the result is significant. Then, what is the
probability that the second trial will produce a significant result, i.e., the significant result
from the first trial is reproducible? Statistically, if the two trials are independent, the prob-
ability of observing a significant result in the second trial when Ha is true is the same as
that of the first trial regardless of whether the result from the first trial is significant. How-
ever, it is suggested that information from the first clinical trial should be used in the eval-
uation of the probability of observing a significant result in the second trial. This leads to
the concept of reproducibility probability (Shao and Chow, 2002).

In general, the reproducibility probability is a person’s subjective probability of observ-
ing a significant clinical result from a future trial, when he/she observes significant results
from one or several previous trials. Goodman (1992) considered the reproducibility proba-
bility as the power of the trial (evaluated at θ) by simply replacing θ with its estimate based
on the data from previous trials. In other words, the reproducibility probability can be
defined as an estimated power of the future trial using the data from previous studies. Shao
and Chow (2002) studied how to evaluate the reproducibility probability using this
approach under several study designs for comparing means with both equal and unequal
variances. When the reproducibility probability is used to provide substantial evidence of
the effectiveness of a drug product, the estimated power approach may produce an opti-
mistic result. Alternatively, Shao and Chow (2002) suggested that the reproducibility prob-
ability be defined as a lower confidence bound of the power of the second trial. In addition,
they also suggested a more sensible definition of reproducibility probability using the
Bayesian approach. Under the Bayesian approach, the unknown parameter θ is a random
vector with a prior distribution, say, π(θ), which is assumed known. Thus, the repro-
ducibility probability can be defined as the conditional probability of �T � � C in the future
trial, given the data set.

In practice, the reproducibility probability is useful when the clinical trials are con-
ducted sequentially. It provides important information for regulatory agencies in determin-
ing whether it is necessary to require the second clinical trial when the result from the 
first clinical trial is strongly significant. To illustrate the concept of reproducibility proba-
bility, reproducibility probabilities for various values of �T(x)� with n � 30 are given in
Table 2.8.1. Table 2.8.1 suggests that it is not necessary to conduct the second trial if 
the observed p-value of the first trial is less than or equal to 0.001 because the repro-
ducibility probability is about 0.91. On the other hand, even when the observed p-value is
less than the 5% level of significance, say, the observed p-value is less than or equal to
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Table 2.8.1 Reproducibility Probability PP̂

Known σ2 Unknown σ2 (n � 30)

�T(x)� p-value P̂ p-value P̂

1.96 0.050 0.500 0.060 0.473
2.05 0.040 0.536 0.050 0.508
2.17 0.030 0.583 0.039 0.554
2.33 0.020 0.644 0.027 0.614
2.58 0.010 0.732 0.015 0.702
2.81 0.005 0.802 0.009 0.774
3.30 0.001 0.910 0.003 0.890

Source: Chow and Shao (2002).
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0.01, a second trial is recommended because the reproducibility probability may not reach
the level of confidence for the regulatory agency to support the substantial evidence of
effectiveness of the drug product under investigation. When the second trial is necessary,
the reproducibility probability can be used for sample size adjustment of the second trial.
More details regarding sample size calculation based on reproducibility can be found in
Shao and Chow (2002) and Chow et al. (2003) and are discussed in Section 7.9.

Generalizability

As discussed above, the concept of reproducibility is to evaluate whether clinical results
observed from the same targeted patient population are reproducible from study site to
study site within the same region or from region to region. In clinical development, after
the drug product has been shown to be effective and safe with respect to the targeted
patient population, it is often of interest to determine how likely the clinical results can be
reproducible to a different but similar patient population with the same disease. We will
refer to the reproducibility of clinical results in a different but similar patient population as
the generalizability of the clinical results. For example, if the approved drug product is
intended for the adult patient population, it is often of interest to study the effect of the
drug product on a different but similar patient population, such as the elderly or pediatric
patient population with the same disease. In addition, it is also of interest to determine
whether the clinical results can be generalized to patient populations with ethnic differ-
ences. Similarly, Shao and Chow (2002) proposed to consider the so-called generalizabil-
ity probability, which is the reproducibility probability with the population of a future trial
slightly deviated from the targeted patient population of previous trials, to determine
whether the clinical results can be generalized from the targeted patient population to a 
different but similar patient population with the same disease.

In practice, the response of a patient to a drug product under investigation is expected to
vary from patient to patient, especially from patients from the target patient population to
patients from a different but similar patient population. The responses of patients from a
different but similar patient population could be different from those from the target patient
population. As an example, consider a clinical trial, which was conducted to compare the
efficacy and safety of a test drug with an active control agent for treatment of schizophre-
nia patients and patients with schizoaffective disorder. The primary study endpoint is the
positive and negative symptom score (PANSS). The treatment duration of the clinical trial
was 1 year with a 6-month follow-up. Table 2.8.2 provides summary statistics of PANSS
by race. As it can be seen from Table 2.8.2, the means and standard deviations of PANSS
are different across different races. Oriental patients tend to have higher PANSS with less
variability as compared to those in white patients. Black patients seem to have lower
PANSS with less variability at both baseline and endpoint. Thus, it is of interest to deter-
mine that the observed clinical results can be generalized to a different but similar patient
population such as black or Oriental.

Chow (2001) indicated that the responses of patients from a different but similar patient
population could be described by the changes in mean and variance of the responses of
patients from the target patient population. Consider a parallel-group clinical trial compar-
ing two treatments with population means µ1 and µ2 and an equal variance σ 2. Suppose
that in the future trial, the population mean difference is changed to µ1 � µ2 � ε and the
population variance is changed to C 2σ 2, where C � 0. The signal-to-noise ratio for the 
population difference in the previous trial is �µ1 � µ2�/σ, whereas the signal-to-noise ratio
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for the population difference in the future trial is

�
µ1 �

C
µ
σ
2 � ε
���

∆(µ1

σ
� µ2)
�

where

∆ ��
1� ε /(

C
µ1 � µ2)
�

is a measure of change in the signal-to-noise ratio for the population difference. Note that
the above can be expressed by �∆� multiplying the effect size of the first trial. As a result,
Chow et al., (2002) refer to ∆ as sensitivity index, which is useful when assessing similarity
in bridging studies. For most practical problems, �ε� � �µ1 � µ2� and thus ∆ � 0. Table 2.8.2
gives an example on the effects of changes of ε and C and ∆.

If the power for the previous trial is p(θ), then the power for the future trial is p(∆θ).
Suppose that ∆ is known. As discussed earlier, the generalizability probability is given by
P̂∆, which can be obtained by simply replacing T(x) with ∆T(x). Under the Baysian
approach, the generalizability probability can be obtained by replacing p(δ/u) with p(∆δ/u).
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Table 2.8.3 Effects of Changes in Mean and Standard
Deviation (ε and C) on ∆

�ε /(µ1 � µ2)� C Range of ∆

�5% 0.8 1.188–1.313
0.9 1.056–1.167
1.0 0.950–1.050
1.1 0.864–0.955
1.2 0.731–0.808
1.3 0.731–0.808
1.4 0.679–0.750
1.5 0.633–0.700


5% but �10% 0.8 1.125–1.375
0.9 1.000–1.222
1.0 0.900–1.100
1.1 0.818–1.000
1.2 0.750–0.917
1.3 0.692–0.846
1.4 0.643–0.786
1.5 0.600–0.733


10% but �20% 0.8 1.000–1.500
0.9 0.889–1.333
1.0 0.800–1.200
1.1 0.727–1.091
1.2 0.667–1.000
1.3 0.615–0.923
1.4 0.571–0.857
1.5 0.533–0.800

Source: Shao and Chow (2002).

c02.qxd  27.10.03  12:47  Page 86



In practice, the generalizability probability is useful when assessing similarity between
clinical trials conducted in different regions (e.g., Europe and the United States of America
or the United States of America and Asian Pacific region). It provides important informa-
tion for local regulatory health authorities in determining whether it is necessary to require
a bridging clinical study based on the analysis of the sensitivity index for assessment of
possible difference in ethnic factors (Chow et al., 2002). When a bridging study is deemed
necessary, the assessment of generalizability probability based on the sensitivity index can
be used for sample size adjustment of the bridging clinical study. More details are provided
in Section 7.7 (see also Chow et al., 2003b). 
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3
BASIC DESIGN CONSIDERATIONS

3.1 INTRODUCTION

In the clinical development of a drug product, clinical trials are often conducted to address
scientific and/or medical questions regarding the drug product in treatment of a specific
patient population with certain diseases. At the planning stage of a clinical trial, it is there-
fore important to define “What is the question?” Defining “What is the question?” helps
determine the study objective(s) and consequently helps set up appropriate hypotheses for
scientific evaluation. The next question is “How to answer the question?” It is important
that the intended clinical trial provide an unbiased and valid scientific evaluation of the
question. Temple (1982) indicates that two kinds of difficulties are often encountered when
the clinical scientists attempt to identify/answer pertinent scientific questions by conduct-
ing well-controlled clinical trials. The first difficulty is that individual studies may be
designed without careful attention to the questions they really are capable of answering.
Consequently the trial is either a useless trial that answers no question at all or it is a trial
that answers some other question (but not the one intended) or only part of the intended
question. Second, the total package of studies may be designed without a thoughtful con-
sideration of all the questions that are pertinent. There are practical limitations on the num-
ber of studies that can reasonably be expected; nevertheless, it seems possible that more of
the pertinent questions can be answered without any increase in the total number of
patients exposed in clinical trials.

To best answer scientific and/or medical questions through clinical trials, the FDA sug-
gests that an overall study plan and design be briefly but clearly described in the protocol of
the intended clinical trial. A thoughtful and well-organized protocol includes study objec-
tive(s), study design, patient selection criteria, dosing schedules, statistical methods, and

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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GOALS OF CLINICAL TRIALS 89

other medical related details. As a result, “How to choose an appropriate study design?” and
“How to analyze the collected clinical data using valid statistical methods?” have become
two important aspects of a clinical trial plan. These two aspects are closely related to each
other since statistical methods for data analysis depend on the design employed. Generally
speaking, meaningful conclusions can only be drawn based on data collected from a valid
scientific design using appropriate statistical methods. Therefore, the selection of an appro-
priate study design is important in order to provide an unbiased and scientific evaluation of
the scientific and/or medical questions regarding the study drug. Before a study design is
chosen, some basic design considerations such as goals of clinical trials, patient selection,
randomization and blinding, the selection of control(s), and some statistical issues must be
considered to justify the use of statistical analyses. In this chapter our efforts will be
directed to the objectives of clinical trials and the selection of patients for clinical trials, the
selection of control(s), statistical considerations, and some other related issues. Randomiza-
tion and blinding will be discussed in detail in the next chapter. Several commonly
employed designs in clinical trials are reviewed in Chapter 5.

In the next section, the goals of clinical research and the manners to specify the objec-
tives of a clinical trial are addressed. Issues in defining the target patient population and
selecting patients for a clinical trial are discussed in Section 3.3. In Section 3.4, we discuss
the selection of control(s) in clinical trials. Some statistical considerations regarding clini-
cal evaluation of efficacy and safety, sample size estimation, interim analysis and data
monitoring, and statistical and clinical inference are given in Section 3.5. Section 3.6 con-
tains some specific issues related to designing a clinical trial such as single site versus
multi-sites, treatment duration, patient compliance, and missing value and dropout. A brief
concluding discussion is given in the last section.

3.2 GOALS OF CLINICAL TRIALS

The ultimate goal of clinical research is to obtain an unbiased inference with possibly best
precision in order to scientifically address the clinical questions regarding the study drug
under investigation with respect to a target patient population. As indicated by Lachin
(2000), the meaning of an unbiased trial is two-fold. First, the estimated treatment effect
between the investigational drug and a control is unbiased. Second, the statistical testing
procedure for detecting a treatment effect is also unbiased in the sense that the false-
positive rate (i.e., type I error rate) for concluding the existence of a treatment effect is con-
trolled at a prespecified nominal level of significance. On the other hand, the best precision
of an inference implies that the variability of the estimated treatment effect based on the
data obtained from a clinical trial is the smallest. Consequently, it has the highest likeli-
hood to reproduce its results in the same target patient population and to generalize its
results to a different patient population. All of the methodologies introduced and illustrated
in this book are to minimize bias (or increase accuracy) and to maximize precision (reli-
ability) associated with a clinical trial.

In clinical research, however, how to develop/formulate a feasible and yet scientifically
valid set of important clinical/medical questions to be addressed by the intended clinical trial
is probably one of the most difficulties commonly encountered for achieving the goals of
minimizing bias and variability. Once the clinical/medical questions have been clearly stated,
necessary resources such as the number of subjects, study duration, study endpoints for eval-
uation of the study drug, facility/equipment, and clinical personnel can be determined in
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order to provide an accurate and reliable statistical/clinical inference for addressing these
questions. The most commonly seen mistake in the conduct of clinical trials is that the inves-
tigator(s) often attempts to answer all possible questions with respect to a certain therapeutic
area in a single trial regardless the size of the trial. As a result, the objectives of the study may
be too ambitious and/or too unspecific to be answered by the limited clinical data observed
from the trial at the end of the trial. In addition, the study may require too much resource
and/or too long to complete, which might be beyond the capacity of the sponsor and/or fund-
ing agencies of the trial. Hence, we define the objective of a clinical trial as a statement
regarding a set of clinical/medical questions that are clear, concise, precise, scientifically
valid, and quantitative that can be easily translated into hypotheses.

For illustration purposes, in what follows, three examples regarding the objectives of
clinical trials that are commonly seen in clinical/medical literature are provided. The first
two examples are for drug evaluation, and the third example is related to a smoking pre-
vention trial.

Example 3.2.1

The objective of this study is to evaluate the efficacy and safety of the test drug under
investigation with a placebo in the treatment of postmenopausal women with osteoporosis.

Example 3.2.2

The objective of the trial is to compare the efficacy and safety of the test drug under inves-
tigation and an active control agent given on demand with a placebo in males with erectile
dysfunction.

Example 3.2.3

The objective of this smoking prevention trial is to address the scientific question: To what
extent can the school-based tobacco usage prevention intervention deter tobacco usage, by
both genders, throughout and beyond high school?

Note that the objectives given in the above examples do not provide the study endpoints
for evaluation of the efficacy and safety of the test drug under investigation. Example 3.2.2
is a three-arm active control trial with a placebo group. With respect to efficacy, it should
have at least two objectives: (1) confirmation of assay validity by demonstrating a superior
efficacy of the active competitor over the placebo, and (2) providing evidence on the supe-
riority or equivalence/noninferiority of the test drug under investigation with the active
competitor. If there are multiple objectives for a clinical trial, one should prioritize these
objectives as the primary objective(s) and secondary objectives. Example 3.2.1 can be
rewritten in a more specific manner, as demonstrated in the following example.

Example 3.2.4

Primary Objectives

1. This trial is a randomized, double-blind, placebo-controlled trial conducted in x centers
to evaluate the efficacy based on bone mineral density (BMD) of the test drug under
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investigation at dose y, frequency z, compared to a placebo, in the treatment of post-
menopausal women with osteoporosis.

2. This trial is a randomized, double-blind, placebo-controlled trial conducted in x centers
to evaluate the safety of the test drug under investigation at dose y, frequency z, com-
pared to a placebo, in the treatment of postmenopausal women with osteoporosis.

Secondary Objectives

1. To evaluate the effectiveness of the test drug under investigation on the incidence of
vertebral fractures.

2. To evaluate the effectiveness of the test drug under investigation on biochemical mark-
ers of bone turnover.

As illustrated in Example 3.2.4, the efficacy of the test drug is evaluated by the primary
efficacy endpoint of BMD and two secondary efficacy endpoints of the incidence of verte-
bral fractures and biochemical marker for assessment of bone loss. However, the direction
of hypothesis that the investigator would like to verify or confirm in the trial is not
addressed in the example. In addition, safety parameters are not specified in the objectives
either. Example 3.2.5 provides the objectives for evaluation of an investigational drug in
treatment of patients with chronic obstructive pulmonary disease (COPD).

Example 3.2.5

Primary Objectives

This trial is a randomized, double-blind, placebo-controlled trial conducted in x centers to
assess the efficacy of the test drug under investigation at dose y, frequency z for a 52-week
treatment of patients with COPD in terms of

1. The reduction in the risk of exacerbation of COPD for patients receiving the investiga-
tional drug as compared to the placebo.

2. A superior pulmonary function as assessed by the forced expiratory volume in one sec-
ond (FEV1) for patients receiving the investigational drug as compared to the placebo.

Secondary Objectives

The secondary objectives are to assess the safety and tolerability of the investigational drug
at dose y, frequency z versus placebo by the evaluation of the incidence rates of adverse
events and laboratory parameters over a 52-week treatment of patients with COPD.

The primary objectives in Example 3.2.5 clearly state that the purpose of the trial is to
show a superior efficacy of the investigational drug over the placebo. Furthermore, a supe-
rior efficacy for the investigational drug is established if the superiority in both the risk of
the exacerbation of COPD and the pulmonary function can be proven. Therefore, the supe-
riority of the investigational drug is based on both primary study endpoints. In addition, sec-
ondary objectives also state that safety and tolerability will be evaluated based on adverse
events and laboratory parameters.
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Example 3.2.6

Primary Objectives

This is a randomized, parallel-group trial to demonstrate that the one-year survival of the
patients with pretreated advanced (Stage IIIB/IV) non-small-cell lung cancer (NSCLC)
receiving the oral investigational drug is not inferior to those receiving intravenous (IV)
docetaxel.

Secondary Objectives

Secondary objectives of the trial are to evaluate overall survival, time to progression,
response rate, time to response, improvement in quality of life, and qualitative and quanti-
tative toxicities.

Example 3.2.6 provides a typical example of the objectives of a noninferiority trial. 
In a noninferiority trial, the purpose of the trial is to show that the efficacy of the investi-
gational drug is no worse than (or at least as effective as) the active competitor. In addi-
tion to the efficacy, it is often of interest to show that the test drug has a better safety
profile in a noninferiority trial. Therefore, it is suggested that the objective of showing 
a superior safety should be clearly stated as one of the primary objectives. In practice, it is
then preferred that both objectives regarding the efficacy and safety must be achieved by
providing substantial evidence for regulatory review. In general, the study endpoints for
addressing the primary and secondary objectives are different but may be correlated. In
this case, sometimes, composite endpoints are used to evaluate the efficacy of the test
drug under investigation. For the primary and secondary objectives, these composite end-
points may consist of different combinations of the occurrence of different events. 
In some cases, a clinical trial may be intended to explore the efficacy and safety of the test
drug in certain predefined subgroups. These objectives can be stated as tertiary objectives.

Example 3.2.7

Primary Objectives

This is a randomized, parallel-group study for determining whether the efficacy of the test
drug is not inferior to that of the active competitor for the prevention of all stroke (fatal and
nonfatal) and systemic embolic events in patients with arterial fibrillation (AF).

Secondary Objectives

Secondary objectives include the following:

1. To compare the efficacy of the test drug to that of the active competitor in terms of the
composite endpoint of the prevention of death, nonfatal stroke, nonfatal systemic
embolic events, and nonfatal myocardial infarction in patients with arterial fibrillation
(AF).

2. To compare the safety of the test drug to that of the active competitor with major 
and major bleeding events and treatment discontinuation as the primary safety end-
points.
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Tertiary Objectives

The following tertiary objectives are of interest:

1. To compare the efficacy of the test drug to that of the active competitor for the preven-
tion of all strokes with a poor outcome (defined as a Modified Rankin score of 
3 or more at three-months post-stroke or a Barthel score less than 60 at three-months
post-stroke).

2. To compare the efficacy of the test drug to that of the active competitor for the preven-
tion of all strokes and systemic embolic events in patients of 75 years of age or above
with AF and to compare this with patients below the age of 75 years.

The efficacy endpoints in Example 3.2.7 are the occurrence of prespecified events. For the
primary objectives, these events include all strokes and systemic embolic events while the
secondary efficacy endpoints consist of death, nonfatal stroke, nonfatal systemic embolic
events, and nonfatal myocardial infarction. As a result, the primary and secondary efficacy
endpoints contain some overlapping events such as nonfatal strokes. The first tertiary objec-
tive is to evaluate the performance of the test drug on the prespecified subgroup based on the
primary efficacy endpoint for the patients with a poor outcome. On the other hand, the sec-
ond tertiary objective is to detect a possible interaction between the age (equal to 75 years or
older vs. younger than 75 year) and treatment based on the primary efficacy endpoint.

3.3 TARGET POPULATION AND PATIENT SELECTION

As was indicated earlier, one of the primary objectives of a clinical trial is to provide an
accurate and reliable clinical evaluation of a study drug for a target patient population with
certain diseases. In practice, statistical and clinical inference are usually drawn based on a
representative sample (a group of patients to be enrolled in the trial) selected from the 
target patient population of the clinical trial. A representative sample provides the clinician
with the ability to generalize the findings of the study. Therefore, selecting patients for 
a clinical trial plays an important role to best answer the scientific and/or medical questions
of interest regarding the study drug. Basically selecting patients for a clinical trial involves
two steps. First, we need to define the target patient population. Patients are then selected
from the target patient population for the clinical trial. For a given disease, the target
patient population is often rather heterogeneous with respect to patient characteristics and
the severity of the disease. The heterogeneity of the target patient population can certainly
decrease the accuracy, reliability, and the generalization of the findings of the study. In
clinical trials, the target patient population usually involves various sources of expected
and unexpected biases and variabilities. For example, bias and variability due to differ-
ences in patient demographic characteristics such as age, sex, height, weight, and func-
tional status are expected. Bias and variability caused by changes in disease status and
concomitant therapies are unexpected. These sources of biases and variabilities will not
only decrease the accuracy and reliability of the observed clinical results but also limit the
clinician’s ability to generalize the findings of the study. For good clinical practice, it is
therefore desirable to define the target patient population in such a way that it is a homo-
geneous as possible with respect to these patient characteristics in order to reduce bias and
to minimize variability. For this purpose, Section 314.166 of CFR also requires that the
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method for selection of patients in clinical trials provide adequate assurance that the
selected patients have the disease and condition being studied.

For patient selection, Weintraub and Calimlim (1994) classify patients into two cate-
gories. These two categories are inpatients for short-term hospital studies and outpatients for
chronic conditions. Different concerns/considerations may be raised depending on which
type of patients are intended for the clinical trials. In this section, we will focus on a general
concept for selecting patients for a clinical trial which includes the development of eligibility
criteria, selection process, and ethical considerations.

Eligibility Criteria

In clinical trials a set of eligibility criteria is usually developed to define the target patient
population from which qualified (or eligible) patients can be recruited to enroll the studies.
Typically a set of eligibility criteria consists of a set of inclusion criteria and a set of exclu-
sion criteria. The set of inclusion criteria is used to roughly outline the target patient popu-
lation, while the set of exclusion criteria is used to fine-tune the target patient population
by removing the expected sources of variabilities. To be eligible for the intended study,
patients must meet all the inclusion criteria. Patients meeting any of the exclusion criteria
will be excluded from the study. Eligibility criteria should be developed based on patient
characteristics, diagnostic criteria, treatment duration, and the severity of the disease.

Before a set of well-defined eligibility criteria can be developed, it is necessary to have a
clear understanding of the study medicine and the indication it is intended for. For example,
some medicines are intended for specific patient population (e.g., female, children, or elderly)
with a certain disease. The inclusion criteria usually describe the target patient population
based on the diagnosed symptoms or history of the intended disease. Patients who have his-
tory of hypersensitivity to the study medicine, treatment-resistance, disease changes, and/or
concurrent diseases requiring treatments are usually excluded from the study. Different eligi-
bility criteria will result in different study patient populations. These differences decrease the
ability to apply the study results to any other patient population. In what follows, we provide
three examples for the development of eligibility criteria for clinical trials from three major
therapeutic areas: anti-infectives, cardiovascular, and central nervous system.

For the first example, consider a clinical trial comparing the clinical and microbiologic
efficacy and safety of an antibiotic agent in the treatment of febrile episodes in neutropenic
cancer patients. As indicated in the Guidelines for the Use of Antimicrobial Agents in Neu-
tropenic Patients with Unexplained Fever (IDSA, 1990), anti-infective drugs have become
a standard of medical practice whenever a neutropenic patient becomes febrile. For exam-
ple, ceftazidime which is a marketed third-generation cephalosporin is indicated for the
treatment of febrile episodes in neutropenic cancer patients caused by Streptococcus spp.,
Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Proteus mirabilis (PDR,
1992). With the more prompt and routine initiation of anti-infective therapy, the microbio-
logic confirmation of infection has declined such that as many as 50% to 70% of the febrile
neutropenic episodes do not have a defined microbial etiology. These patients are catego-
rized as having unexplained fever in which the infection may have been masked by the
early introduction of antimicrobial therapy. Since unexplained fever constitutes the major-
ity of febrile neutropenic events, the evaluation of empiric therapy has become more diffi-
cult. Consequently, the question raised is how therapy can be adequately assessed when
fever is the only evaluable parameter (IHS, 1990). For this reason, the primary clinical 
endpoint being evaluated in this study is fever. It is suggested an oral temperature greater
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than 38.5°C once or greater than 38°C on two or more occasions during a 12-hour period
be considered as an inclusion criterion for the study. Note that it may be a concern that the
weak antistrephylococcal activity of ceftazidime in patients whose infections are fre-
quently caused by gram-positive bacteria. As a result many practitioners have routinely
added vancomycin to ceftazidime as initial coverage for the febrile neutropenic patient.
Therefore, no other antibacterial agents except intravenous vancomycin will be adminis-
tered during the study. Patients who require other systemic antibacterial drugs concomi-
tantly are then excluded from the study. Other considerations regarding the inclusion and
exclusion criteria are summarized in Table 3.3.1. For example, patients who have history
of hypersensitivity to a cephalosporin or penicillin are excluded from the study.

The second example concerns the evaluation of the efficacy of an oral agent for the treat-
ment of patients with noninsulin-dependent diabetes mellitus (NIDDM). As indicated by
Cooppan (1994), NIDDM is the most common form of diabetes seen in clinical practice. The
prevalence in the United States is about 6.6% and rises to 18% in the elderly. The incidence
is about 500,000 new patients every year. NIDDM often have hypertension and hyperlipi-
demia. In early stages, patients are hyperinsulinemic. Most patients are overweight and have
upper body or truncal obesity. The onset of NIDDM is usually above 40 years of age. The
disease has a strong genetic basis. It is more frequently seen in native Americans, Mexican
Americans, and blacks. The pathophysiology of the disease is due to changes in insulin pro-
duction and secretion, insulin resistance in liver, muscle, and adipose tissue. A high glucose
level could further reduce pancreatic insulin secretion. The treatment for NIDDM patients
normally includes (1) diet alone, (2) diet plus oral hypoglycemic drug, and (3) weight con-
trol. Note that a mild to moderate weight loss (e.g., 5 to 10 kg) has been shown to improve
diabetic control and a moderate calorie restriction (e.g., 250 to 500 calories less than average
daily intake) is then recommended for weight control. Based on the above considerations,
Table 3.3.2 provides a sample eligibility criteria for the NIDDM study. As can be seen,
patients aged 40 years or older—who have a previously established diagnosis of NIDDM and
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Table 3.3.1 Eligibility Criteria for Anti-Infectives Agents

A. Inclusion Criteria

1. Hospitalized patients aged 18 years or older.
2. An oral temperature greater than 38.5°C once or greater than 38°C on two or more occasions

during a 12-hour period.
3. Fewer than 500 absolute neutrophils (polymorphonuclear and segmented) per mm3, or patients

presenting with between 500 and 1000 absolute neutrophils per mm3, whose counts are antici-
pated to fall below 500 per mm3 within 48 hours because of antecedent therapy.

B. Exclusion Criteria

1. History of hypersensitivity to a cephalosporin or penicillin.
2. Pregnant or breast-feeding.
3. Requiring other systemic antibacterial drugs concomitantly except for intravenous vancomycin.
4. Creatinine clearance �15 mL/min or requiring hemodialysis or peritoneal dialysis.
5. History of positive antibody test for HIV.
6. A severe underlying disease such as meningitis, osteomyelitis, or endocarditis.
7. Patients undergoing bone marrow transplantation or stem cell harvesting and infusion.
8. Any other condition that in the opinion of the investigator(s) would make the patient unsuitable

for enrollment.
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are currently controlled on diet alone or were previously managed on an oral sulfonylurea
with a fasting plasma glucose greater than 126 mg/dL but without symptomatic diabetes—
meet the inclusion criteria for entry. However, exclusion criteria exclude patients who are
known to have a history of hypersensitivity of biguanides and significant cardiovascular dis-
eases from the study. Significant cardiovascular diseases may include acute myocardial
infarction, unstable angina, congestive heart failure, and arrhythmia.

For the third example, consider a clinical trial comparing the effects of an antidepressant
compound to sertralin (Zoloft) on sexual function in patients with previously demonstrated
sexual dysfunction with sertraline during treatment for major depression. Segraves (1988,
1992) indicated that patients treated with many psychotropic medications including antide-
pressants have sexual adverse effects. However, the mechanism by which antidepressants
produce sexual dysfunction have not been clearly established. Symptoms of sexual dys-
function may include one or more of the followings: delayed or absent ejaculatory response,
partial or total anorgasmia, inadequate lubrication or swelling. The incidence rate for sexual
dysfunction for sertraline-treated male patients is 15.5% compared to 2.2% of placebo-
treated male patients (Zoloft, 1992). It is believed that both potentiation of peripheral ner-
vous system adrenergic/nonadrenergic activity and increasing brain serotonin (5-HT) level
by blocking the neuronal 5-HT reuptake process may induce sexual dysfunction. In order to
be eligible for this study, patients must be experiencing sexual dysfunction while being
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Table 3.3.2 Eligibility Criteria for a NIDDM Study

A. Inclusion Criteria

1. Males or females aged �40 years old.
2. Females who are not postmenopausal; they must be nonlactating, incapable of becoming preg-

nant or of childbearing potential, practicing an effective method of contraception, or have a
negative serum pregnancy test documented at screening.

3. Currently suboptimally controlled on diet alone or previously managed on an oral sulfonylurea
with an fasting plasma glucose �126 mg/dL but without symptomatic diabetes.

4. Detectable fasting serum insulin and c-peptide at screening.
5. Normal renal function as defined by serum creatinine of �1.5 mg/dL for men and �1.4 mg/dL

for women, and �1 proteinuria on routine urinalysis.
6. Acceptable liver function as defined by SGOT/AST � 62 U/L and SGPT/ALT � 58 U/L for

females and �90 U/L for males.

B. Exclusion Criteria

1. Markedly symptomatic diabetes, marked polyuria and weight loss �10%.
2. History of hypersensitivity to biguanides.
3. Prior insulin therapy except for acute illness or surgery.
4. Significant cardiovascular disease.
5. Significant renal disease or renal functional impairment as evidenced by a serum creatinine

�1.5 mg/dL for males and �1.4 mg/dL for females.
6. Significant hepatic disease as evidenced by abnormal liver function as defined as by

SGOT/AST � 62 U/L and SGPT/ALT � 58 U/L for females and � 90 U/L for males.
7. Active infectious process such as gangrene and pneumonia.
8. Pulmonary insufficiency.
9. Metabolic acidosis and acute/chronic diabetic ketoacidosis.

10. Any patient for any other condition which, in the investigator’s opinion, would make the
patient unsuitable for the study or would interfere with the evaluation of the study medication.
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treated with sertraline at a daily dose of 100 mg during their current depressive episode. In
addition sertraline must have been prescribed for the patient with diagnosis of major depres-
sion according to the Diagnostic and Statistical Manual, Fourth Edition (DSM-IV), based
on documented patient history. Other considerations for excluding patients from the study
including sexual dysfunction due to any organic condition, treatment-resistant depression,
or some significant and/or uncontrolled medical conditions. Table 3.3.3 gives a sample list
of eligibility criteria for the study. Note that significant and/or uncontrolled conditions may
include symptomatic paroxysmal, chronic cardiac arrhythmias, history of stroke, transient
ischemic attacks, or history of a positive test for the HIV antibody or antigen.

Patient Selection Process

As discussed above, a set of well-developed eligibility criteria for patient selection can not
only best describe the target patient population but also provide a homogeneous sample.
The criteria help in reducing bias and variability and consequently increase statistical power
of the study. Therefore, in practice, it may be desirable to impose more inclusion and exclu-
sion criteria to further eliminate bias and variability. However, it should be noted that the
more criteria that are imposed, the smaller the target patient population will be. Although 
a smaller patient population may be more homogeneous, it may result in difficulties in
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Table 3.3.3 Eligibility Criteria for Central Nervous System Agents

A. Inclusion Criteria

1. Males or females 18 to 65 years of age. Female patients of childbearing potential must be 
nonlactating, have a confirmed negative serum pregnancy test prior to enrollment, and be
employing an acceptable method of birth control.

2. Patients who are experiencing sexual dysfunction in response to sertraline at a daily dose of
100 mg during their current depressive episode.

3. Treatment with sertraline must have been diagnosed of major depression.

B. Exclusion Criteria

1. Patient having a diagnosis of treatment-resistant depression.
2. History of sexual dysfunction due to any organic condition.
3. Patients who cannot discontinue their current psychotropic medications and/or are likely to

require treatment with any prohibited concomitant therapy.
4. History of hypersensitivity to trazodone, etoperidone, or sertraline.
5. Patients receiving any concomitant medication that can produce sexual dysfunction.
6. Patients who have met DSM-IV-R criteria for any significant psychoactive substance use 

disorder within the 12 months prior to screening.
7. Patients who exhibit a significant risk of committing suicide or have a score �3 or item 3 

“suicide” of the HAM-D scale.
8. Patients who have a significant and/or uncontrolled medical condition.
9. Patients with any clinically significant deviation from normal in the physical or electrocardio-

graphic examinations or medically significant values outside the normal range in clinical 
laboratory tests.

10. Patients with a positive urine drug screen.
11. Patients with implanted prosthetic devices.
12. Patients who have any other medical condition(s) that can confound the interpretation of the

safety and the efficacy data.
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patient recruitment and limitations in the generalization of the findings of the study. There-
fore, it is suggested that the considerations not be too restrict to decrease patient enrollment
and lose the generality of the target patient population.

In clinical trials, however, the number of patients is usually called for by the study pro-
tocol to ensure that the clinical trials can provide valid clinical evaluation of the study med-
icines with the desired accuracy and precision. It is important then in patient selection to
achieve enough patients for the proposed trials. In practice, a single study site may not be
feasible for an intended clinical trial due to its limited capacity and resources. Besides,
there may not be sufficient patients with the disease available in the area within the sched-
uled time period of the study. To recruit enough number of patients and to complete the
study within the time frame, as an alternative, a multicenter trial is usually considered. If 
a multicenter trial is to be conducted, the following two questions should be considered:

1. How many study sites should be used?

2. How to select these study sites?

As a rule of thumb, the number of sites should not be greater than the number of patients
within each selected study site. This is because statistical comparison between treatments
is usually made based on patients (i.e., experimental units) within study sites. It is there-
fore not desirable to have too many study sites, though it may speed up the enrollment and
consequently shorten the completion time of the study. The selection of study sites depends
primarily on the following criteria:

1. Individual investigator’s qualification and experience for disease.

2. Feasibility of the investigator’s site for conducting the proposed trial.

3. Dedication, education, training, and experience of the personnel at the investigator’s
site.

4. Availability of certain equipments (e.g., magnetic resonance imaging [MRI] or den-
sitometer).

5. Geographic location.

Considerations 1 to 4 ensure that the proposed study will be appropriately carried out in
such a way that the differences among investigators is minimized. The geographic location
guarantees that the patients enrolled into the study constitute a representative sample from
the target patient population. Another important consideration for selection of investigators
or study sites is probably their ability to enroll patients and to complete the study within the
planned time frame.

For a selected study center, the selection process for patients involves the following
concerns:

1. Initial guess of how many patients will meet the eligibility criteria.

2. Screening based on diagnostic criteria.

3. Patient’s disease changes.

4. Concurrent diseases/medications.

5. Psychological factors.

6. Informed consent.
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At the selected study site, the investigator is often concerned with whether he or she can
enroll enough patients for the proposed trial. The investigator usually provides an estimate
of how many patients will meet the eligibility criteria based on how many patients he or
she has seen at the study site. In practice, such an estimate often overestimates the actual
number of patients who will participate the study. Bloomfield (1969) recommends that
investigator check the availability and suitability of the patient population at hand through
their records or perhaps a formal pilot study.

As indicated by Weintraub and Calimlim (1994), a majority of patients may be excluded
at the screening stage of patient selection process due to some administrative reason and the
rigor of the diagnostic criteria. Weintraub and Calimlim (1994) point out that administrative
reasons such as nonavailability during screening can be as high as 40% in a study intended
to evaluate the efficacy of three analgesic treatments and a placebo administered in single
doses in double-blind fashion for postoperative pain. Furthermore, in this case 86% were
eliminated due to the rigor of diagnostic criteria such as insufficient severity of pain after the
operation. Thus, the diagnostic strictures imposed by the clinical trial can decrease the num-
ber of available patients even further. It should be noted that small changes in the criteria
can make vast differences in patient availability without materially influencing the clinical
outcome and its extrapolatability.

It is also recommended that the patient selection process be able to address the issue of
specific disease requirements such as disease of a particular severity or duration. For exam-
ple, a moderate disease status may be preferred because (1) it is realized that patients must
be sick enough to get better and (2) patients may be too severe to study. At screening, many
patients may be excluded from the study due to disease changes and concurrent diseases
requiring concomitant medications. This is true especially for very sick patients who fre-
quently have disease changes and/or concurrent diseases. If we exclude patients who have
disease changes and/or concurrent diseases, the patient population under study will become
much smaller. Consequently, we may not be able to recruit enough patients for the study. In
addition, seasonal factor for some diseases must be taken into account.

Weintraub and Calimlim (1994) point out that ideal participants for clinical trials are
patients who will carry through the clinical trials and actively interact with the investiga-
tors rather than be passive experimental subjects. It is suggested that psychological factors
(e.g., fear of toxicity) be carefully analyzed to enable a patient to make a reasonable judg-
ment about participation in a clinical trial.

At screening prior to the entry of the study, signed and dated written informed consent
must be obtained by the investigator from the patient after full disclosure of the potential
risks and their nature. Consent must be obtained before a prospective study candidate par-
ticipates in any study-related procedure, including any change in current therapy required
for entry into the study. The fact is that such consent obtained must be recorded in the case
report form. In practice, it is not uncommon to allow the investigator to exclude any patient
for any condition which, in his/her opinion, would make the patient unsuitable for the study
or would interfere with the evaluation of the study medication. For example, the investiga-
tor may decide to exclude the patient whose white blood cell count is less than 3500/mm3

or neutrophil count is less than 1500/mm3 from the study of an antidepressant agent
comparing with sertraline on sexual function in patients with previously demonstrated sex-
ual dysfunction with sertraline during treatment for major depression as described above.
Note that many times the abnormalities that are observed in laboratory tests are 
due to illnesses unrelated to the disease under study or to other necessary therapeutic
interventions.
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Ethical Considerations

For many severely destructive diseases such as AIDS, Alzheimer’s disease, and cancer, it is
unethical to include placebo concurrent control in a clinical trial where an effective alterna-
tive remedy is available. It, however, should be noted that the effectiveness and safety of a
test agent can only be established by inclusion of a placebo concurrent control. Ethical con-
siderations will definitely affect the patient selection process. In such cases, it is suggested
that different numbers of patients be allocated to the treatment arm and the placebo arm in
order to reduce the percentage of patients being assigned to the placebo arm. For example,
we may consider a two-to-one ratio for a study. In other words, two-thirds of the patients
who participate in the study will receive the active treatment and only one-third will receive
the placebo. In some comparative clinical trials, if patients are too sick, a certain amount of
standard therapy must be permitted for ethic reasons. The use of active control will be dis-
cussed further in the next section. Note that it is suggested that placebos be used for trivial,
nondangerous, or self-limiting disorders provided that consent is obtained from the patient.

In recent years, ethical considerations for the use of females, children, and the elderly
have attracted much attention. For example, in its 1993 revised guidelines for clinical tri-
als, the FDA suggests to include in clinical trials women of childbearing potential who are
usually excluded in early drug studies of non-life-threatening disease. Since neonates,
infants, and children respond to certain medicines differently than adults, trials of medi-
cines to be used in this age group are always necessary. Therefore, special consideration
must be given to the conduct of trials in children. For this purpose, the CPMP (Committee
for Proprietary Medicinal Products) of the EC has adopted guidelines on clinical investiga-
tion in children. For the geriatric population, it is also important to evaluate any medicine
likely to be used in that age group due to the reasons that there is an increasing incidence
of adverse events in the elderly and that there are altered pharmacokinetic profiles of some
medicines and impaired homeostasis in the elderly.

Note that in the pharmaceutical industry a copy of the final Institution Review Board
(IRB) approved informed consent form must be provided to the sponsor before drug sup-
plies will be shipped or enrollment in the study can begin.

3.4 SELECTION OF CONTROLS

In clinical trials, bias and variability can occur in many ways depending on the experimen-
tal conditions. These bias and variability will have an impact on the accuracy and reliability
of statistical and clinical inference of the trials. Uncontrolled (or noncomparative) studies
are rarely of value in clinical research, since definitive efficacy data are unobtainable and
data on adverse events can be difficult to interpret. For example, an increase in the incidence
of hepatitis during an uncontrolled study may be attributed to the medicine under investiga-
tion. Therefore, the FDA requires that adequate well-controlled clinical trials be conducted
to provide an unbiased and valid evaluation of the effectiveness and safety of study medi-
cines. The purpose of a well-controlled study is not only to eliminate bias but also to mini-
mize the variability, and consequently to improve the accuracy and reliability of the
statistical and clinical inference of the study.

In early 1970s, it was not uncommon for clinical scientists to conduct an uncontrolled
clinical trial for scientific evaluation of a therapeutic intervention. Table 3.4.1 summarizes
a comparison of positive findings between uncontrolled and controlled clinical trials in
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selected therapeutic areas. As can be seen from Table 3.4.1, the positive findings of uncon-
trolled trials were obviously exaggerated. The reason for the overexaggerated positive 
findings observed in uncontrolled trials, as indicated in the ICH E10 guideline, is that the
trials without a control group cannot really allow discrimination of patient outcomes (such
as changes in symptoms, signs, or other morbidity) caused the test drug from the outcomes
caused by other confounding factors such as the natural progression of the diseases, observed
or patient expectations, or other treatment (ICH E10, 1999). In other words, uncontrolled
studies fail to provide an unbiased and reliable clinical/statistical inference regarding what
would have happened to patients if they had not received the test drug. Since estimates of
the treatment effects are usually extremely biased in the positive direction, the FDA
requires that adequate well-controlled studies use a design that permits a valid comparison
with a control to provide a quantitative assessment of drug effect (Section 314.126 in Part
21 of CFR). A well-controlled trial is referred to as a trial that is conducted under the
experimental conditions such that patient characteristics between treatment groups are
homogeneous. One can classify control groups based on two critical attributes: (1) the
method of determining who will be in the control group, and (2) the type of treatment
received by the patients. The primary methods for assignment of the patients to the control
group are either by randomization of the same target patient population or by selection of
a control patient population separate from the target patient population treated in the trial.
Consequently, the ICH E10 guideline defines a concurrent control group as one chosen
from the same population as the test group and treated in a defined way as part of the same
trial that studies the test drug (ICH E10, 1999). The test and control groups should be 
similar with respect to all demographic and baseline characteristics and all on-treatment
evaluations and variables in the course of the trial that could influence outcomes or clini-
cal endpoints expect for the study treatment. As a result, the difference in outcomes or 
clinical endpoints observed between the treatment groups at the conclusion of the study is
solely due to the different treatments that patients receive rather than other confounding
factors as described above. On the other hand, if a control group is chosen separated from
the target patient population treated in the same trial, it is referred to as external or histor-
ical control. There are in general four types of treatment that a patient can receive in the
control group: (1) placebo, (2) no treatment, (3) different dose or regimen of the test drug,
and (4) different active treatments. According to Section 314.126 in Part 21 of CFR and the
ICH E10 guideline, control group includes placebo concurrent control, dose-response con-
current control, active (positive) concurrent control, no-treatment concurrent control, and
external control (historical control), which are described below.
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Table 3.4.1 Comparison of the Results Between Uncontrolled and
Controlled Trials

Percent of Positive Findings

Therapeutic Areas Uncontrolled Controlled

Psychiatric (Foulds, 1958) 83% 25%
Antidepressant (Wechsler et al., 1965) 57% 29%
Antidepressant (Smith et al., 1969) 58% 33%
Respiratory distress syndrome (Sinclair, 1966) 89% 50%
Rheumatoid arthritis (O’Brien, 1968) 62% 25%

Source: Summarized and tabulated from Spilker (1991).
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Placebo Concurrent Control

In the past almost two centuries, there has been many heated debates over the use of an
inactive placebo group as a reference for evaluation of a test therapy in treatment of
patients under aliment or medication conditions. For example, see Brody (1981, 1982),
Lundh (1987), Levine (1987), Stanley (1988), and Sanford (1994), Rothman and Michels
(1994), Temple and Ellenburg (2000), Ellenburg and Temple (2000), Reynold (2000), and
Simon (2000). Brody (1982) defines a placebo as a form of medical therapy, or an inter-
vention designed to simulate medical therapy. A placebo is believed to be without speci-
ficity for the condition being treated. A placebo is used either for it symbolic effect or to
eliminate observer bias in a controlled experiment. Brody (1982) also indicated that a
placebo effect is the change in the patient’s condition that is attributable to the symbolic
import of the healing intervention rather than to the intervention’s specific pharmacologic
or physiologic effects. In clinical trials, it is not uncommon to observe the placebo effect.
Brody (1982) points out that the placebo effect can be as important as many treatments.
Sackett (1989) also indicated that the placebo effect is the most probable cause for symp-
tomatic relief following internal mammary artery ligation experienced by many angia
patients. In addition, the influence of the placebo effect is not restricted only to subjective
psychological or psychiatric measurements. Placebo also alters objective clinical end-
points such as cholesterol level (Coronary Drug Project Research Group, 1980), laboratory
values, and measures of physiologic change (Wolf, 1950), for even the pattern of placebo
response resembles the pharmacologic response of the active treatment (Lasagna et al.,
1958). For a better understanding of the placebo effect, consider a clinical trial with a 
4-week single-blind placebo run-in phase and a 24-week double-blind randomized phase
for evaluation of a new agent in three doses with a placebo in treatment of the patients 
with benign prostatic hyperplasia. The primary clinical endpoints are the proportions of 
the patients with an at least 3-point improvement of total symptom score or an increase 
of maximum urinary flow rate greater than 3 mL/s at the end of 24 weeks of the double-
blind phase (Boyarsky et al., 1977) which is given in Table 3.4.2. The placebo response
rate based on subjective total symptom score is not statistically significantly different 
from the rates of three doses. Although the placebo effect for the more objective maximum
urinary flow rate is less than that based on the symptom score, it is still about 23% and is
not statistically significantly different from those of the three doses. The causes of the
placebo effect have been speculated for a long time; the effect is now believed to be due 
to a combination of interactions among patients, physicians, and experimental conditions
surrounding the clinical trials (Brody, 1981, 1982; Lundh, 1987; Sanford, 1994). In most
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Table 3.4.2 Response Rates by Total Symptom Score and
Maximum Urinary Flow Rate (mL/s) at the End of 24 Weeks 
of the Double-Blind Phase

Percent of Patients with Improvement of

Maximum Urinary 
Dose Symptom Score � 3 Flow Rate � 3 mL/s

Placebo 41/92(45%) 21/92(23%)
10 mg 36/89(40%) 25/88(28%)
30 mg 38/85(45%) 17/82(21%)
60 mg 36/85(42%) 20/80(25%)
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cases, a response or an outcome obtained from a patient receiving an active treatment is 
a function of four major components, which include (1) the true pharmacological activity
of the active ingredient(s), (2) the symptomatic relief provided by the placebo, (3) the nat-
ural reversible healing process provided by the body or natural disease progression, and 
(4) any other known or unknown confounding factors that may have an impact on the
response or outcome. The effect contributed by the last three components cannot be unbi-
asedly estimated unless there is a placebo group in the trials. Therefore the inclusion of 
a placebo concurrent control in clinical trials is necessary to provide unequivocally and
unbiasedly an assessment of the effectiveness and safety of the therapeutic intervention
under study.

As indicated earlier, it is unethical to use placebo concurrent controls where symptoms
are severe or hazardous and where there exists an alternative therapy with established
effectiveness and safety. In practice, it is also unethical to expose patients with severe dis-
eases to study medicines under investigation that may have unknown yet potentially seri-
ous even deadly adverse events. The saga of Cardiac Arrhythmia Suppression Trial (Echt
et al., 1991) provides a vivid but sad example. If a placebo concurrent group had not been
included, neither the excessive risk of death for flecainide and encainide could have been
demonstrated nor the assumption of the use of surrogate endpoint ventricular premature
contraction (VPC) for mortality could have been proved wrong. Kessler and Feiden (1995)
also indicate that the AIDS activists now made an extraordinary plea to the top FDA offi-
cials not to approve drugs to treat the disease caused by the human immunodeficiency
virus (HIV) too quickly. The reason is that they and their physicians must study in detail
the approved antiviral AIDS drugs and examine the efficacy and safety of experimental
therapy before they can make an optimal use of these treatments, since many of new exper-
imental drugs were tested without a placebo concurrent group. Spilker (1991) lists the con-
ditions for the ethical use of a placebo concurrent groups in clinical trials. These conditions
are summarized in Table 3.4.3. As a result placebo concurrent control should not be
selected as the internally controlled group for evaluation of a new treatment if there exists
a treatment whose efficacy has already been established for the intended diseases. It is not
ethical to use placebo for the care of severe or life-threatening diseases. In all other cases,
however, placebo concurrent control should be employed as the standard concurrent con-
trol, whenever operationally feasible, for evaluation of the effectiveness and safety of a
new therapeutic intervention.
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Table 3.4.3 Conditions for the Ethical Inclusion of a Placebo Concurrent Control

1. No standard treatment exists.
2. Standard treatment is ineffective or unproved to be effective.
3. Standard treatment is appropriate for the particular clinical trials.
4. The placebo has been reported to be relatively effective in treating the disease or condition.
5. The disease is mild and lack of treatment is not considered to be medically important.
6. The placebo is given as an add-on treatment to an already existing regimen that is not sufficient

to treat patients.
7. Allowing concomitant medicine is one measure of efficacy in these clinical trials.
8. The disease process is characterized by frequent spontaneous exacerbations and remission 

(e.g., peptic ulcer).
9. “Escape clauses” or points are designed into the protocol.

Source: Spilker (1991).
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Examples 3.4.1 and 3.4.2 provide two real examples concerning clinical trials with
placebo concurrent control.

Example 3.4.1 Chelation Therapy for Ischemic Heart Disease

Chelation therapy using EDTA is a widely used alternative therapy for ischemic heart dis-
ease. In 1993, Grier and Meyers estimated that more than 500,000 people in the United
States are treated with EDTA therapy each year. Knudtson et al. (2002) also projected one
million U.S. residents will adopt chelation therapy with an annual expenditure of approxi-
mately $400 million U.S. Unfortunately, its efficacy is never fully established. Knudtson 
et al. and the Program to Assess Alternative Treatment Strategies to Achieve Cardiac
Health (PATCH) Investigators (2002) conducted a double-blind, randomized, placebo-
controlled trial to determine whether the most commonly used EDTA protocols have a
favorable impact on exercise ischemia threshold and quality-of-life measures in patients
with stable ischemic heart disease. Random intervention included infusion with either
weight-adjusted (40 mg/kg) EDTA chelation therapy or placebo for 3 hours per treatment,
twice weekly for 15 weeks and once per month for an additional three months. In addition,
patients in both groups also took oral multivitamin therapy.

Example 3.4.2 Evaluation of St John’s Wort in Major Depression

St John’s wort (Hypericum perforatum) is a small flowering weed, and it has been used for
a variety of nervous conditions for more than 2000 years. Linde et al. (1996) conducted 
a meta-analysis of 23 randomized trials of St John’s wort extract in 1,757 patients with
depressive disorders and concluded that St John’s wort was significantly superior to
placebo and is an effective agent comparably with standard antidepressant drugs. However,
Linde et al. (1996) also indicated that most of the trials used in the meta-analysis have had
serious methodological flaws and fail to provide any meaningful interpretation. Therefore,
Shelton et al. (2001) conducted a randomized, double-blind, placebo-controlled clinical
trial to compare the efficacy and safety of a standardized extract of St John’s wort with a
placebo in outpatients with major depression. Two hundred adult outpatients diagnosed as
having major depression and having a baseline Hamilton Rating Scale for Depression
(HAM-D) score of at least 20 were randomized to receive either St John’s wort extract
(900 mg per day for 4 weeks, increased to 1,200 mg per day in the absence of an adequate
response thereafter) or a placebo for 8 weeks.

The results of these two studies provide no evidence to support a better efficacy over
placebo in treatment of patients with ischemic heart disease or major depression, respec-
tively. These two examples illustrate that the efficacy and safety of alternative treatments or
therapies must be evaluated rigorously using a concurrent placebo control. One of the key
elements for the success of a clinical trial using a concurrent placebo control is whether 
a placebo treatment can be made for matching the active treatment in all aspects such as
size, color, coating, texture, taste, or ordor. For the chelation therapy for ischemic heart dis-
ease, the active treatment is the 500-mL infusion of 5% textrose containing weight adjusted
(40 mg/kg) disodium EDTA, with a maximum total dose for each treatment of 3 g, 750 mg
of magnesium sulfate, 5 g of ascorbic acid, 5 g of sodium bicarbonate, and 80 mg of Lido-
caine. In the placebo infusion, the ETDA was replaced by 20 mL of 0.9% sodium chloride.
The resulting infusion solutions were indistinguishable by color and labeling. In addition,
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the infusion solution was administrated over 3 hours to minimize the possible unblinding
effect of infusion-related adverse events.

Another consideration is whether it is ethical to use a concurrent placebo control in the
trials for major depression, which is a serious and potentially life-threatening condition.
Therefore, Shelton et al. (2001) considered extensive safeguards. For example, subjects
were excluded if they posed a significant risk of suicide at any time during the study. Sub-
jects with a score greater than 2 (i.e., thoughts of death or wishes self dead, but no suicidal
ideation or plan) on the item of suicide on the HAM-D were excluded. Subjects with any
clinically significant deterioration in their condition from baseline were also excluded. In
addition, subjects, who withdrew from the study before the scheduled completion, were
immediately offered a standard care as an alternative therapy.

Dose-Response Concurrent Control

As discussed in Chapter 1, the primary objectives for phase II studies are (1) to establish the
efficacy, (2) to characterize its dose-response relationship, and (3) to identify the minimum
effective and maximum tolerable doses of the therapeutic agent under development. The
dose proportionality studies for the assessment of the assumption of linear pharmacokinetics
of the test drug usually include at least three doses. Therefore a clinical trial with dose-
response concurrent control includes at least two doses of the same test agent. Since the
dose-response studies are usually conducted in the phase II stage where the efficacy of the
test agent has not yet definitely been established, it is imperative to include a placebo con-
current control to provide an estimate of the absolute efficacy for each dose in addition to the
dose-response relationship. The exclusion of placebo concurrent control in a dose-response
study could be disastrous and costly. For example, in a major pharmaceutical company, a
randomized, double-blind phase II study was conducted to establish the dose-response rela-
tionship for a new contrast enhancement agent in conjunction with MRI in diagnosis of
malignant liver tumors in patients with known focal liver lesions. Despite suggestions of
changes by the project statistician because of (1) the exclusion of a placebo concurrent con-
trol, (2) the use of an invalidated scale for diagnostic confidence, and (3) visual evaluation of
the pre- and postcontrast films as the primary endpoint, the trial was conducted as planned
without any of the modifications. Table 3.4.4 provides the proportion of the patients with
good or excellent improvement for diagnostic confidence or visual evaluation. As can be
seen from Table 3.4.4, there was no dose-response at all. It should be noted that without a
placebo concurrent control, it is impossible to assess whether a response rate between 60 to
65% observed in this trial really demonstrates the true efficacy of the test agent because there
were no trials with a placebo concurrent control ever conducted.

Examples 3.4.3 and 3.4.4 provide two real examples concerning clinical trials using
dose-response concurrent control.
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Table 3.4.4 Percent of Patients with Good or Excellent Improvement 
in Diagnostic Confidence and Visual Evaluation

Percent of Patients with Good or Excellent Improvement

Dose Diagnostic Confidence Visual Evaluation

12.5 µmol 45/77 (58%) 51/79 (65%)
25.0 µmol 47/78 (60%) 52/82 (63%)
50.0 µmol 45/76 (59%) 50/78 (64%)
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Example 3.4.3 Treatment of Erectile Dysfunction

Erectile dysfunction is estimated to affect up to 30 million men in the United States. Effec-
tive oral therapy for treatment of the males with erectile dysfunction has been sought for 
a long time. Sildenafil is considered a promising agent for erectile dysfunction. However, it
is recognized that sildenafil is a potent inhibitor of cyclic guanosine monophosphate in the
corpus cavernosum. It increases the penile response to sexual stimulation. Goldstein et al.
(1998) conducted a randomized, double-blind study to investigate the dose response of the
efficacy and safety of an oral sildenafil in men with erectile dysfunction of organic, psy-
chogenic, or mixed causes. In this fixed-dose study, 532 men were randomly assigned to
receive 100, 50, and 25 mg of sildenafil or a placebo, approximately one hour before planned
sexual activity but not more than once daily, for 24 weeks. This dose-response study used
three doses of the active treatment in the multiples of 25 mg (i.e., 1, 2, and 4) and a placebo
concurrent control. Hence, the doses are equally spaced in logarithmic scale (based 2).

Example 3.4.4 Dose-Response of Smallpox Vaccine

The World Health Assembly (WHA) declared that the world is free of smallpox (vaccinia
virus) in 1982, and the United States ended its general use of the smallpox vaccine in 1972.
As a result, less than half of the world’s population has been exposed either to smallpox or
to the vaccine. Consequently, several governments or world health authorities have warned
that smallpox is a potential biological weapon with a serious threat, which can cause a cat-
astrophic effect in an unimmunized population. On the other hand, the last lot of vaccinia
vaccine was manufactured in the United States in 1982. Frey et al. (2002) conducted a ran-
domized, double-blind trial using three dilutions of vaccinia virus vaccine in previous
unimmunized adults to assess the clinical success rates, humoral response, and virus-
specific activity of cytotoxic T cells and interferon-γ-producing T cells. Three doses of the
vaccinia virus vaccine include undiluted vaccine (107.8 plaque-forming units [pfu] per mil-
liliter), 1 : 10 dilution (106.5 pfu per milliliter), and 1 : 100 dilution (105.0 pfu per milliliter).
These doses are also equally spaced in logarithmic scale (based 10).

Active (Positive) Concurrent Control

During the development of a new test agent, it may be of interest to establish a superior effi-
cacy than the standard agent or to show therapeutic equivalence in efficacy to the standard
therapy but with a better safety profile. For these purposes clinical trials are usually con-
ducted with active agents concurrently. In many cases active treatments are employed for eth-
ical reasons. If the trials are designed to serve as adequate well-controlled trials for providing
substantial evidence of efficacy and safety for drug approval, the active treatment concurrent
control must unequivocally demonstrate its superior efficacy in pivotal trials with a placebo
concurrent control. Otherwise the trials must include a placebo concurrent placebo in addi-
tion to the active treatment concurrent control. In some cases clinical trials are conducted to
establish therapeutic equivalence to a standard therapy because of no systematic absorption
of a different route of administration such as the metered dose inhaler (MDI) for asthma and
retin-A for acne, or because of inadequacy of pharmacokinetic measures for chemicals such
as sucralfate for acute duodenal ulcer (Liu and Chow, 1993; Liu, 1995a). However, as indi-
cated by Temple (1982) and Huque and Dubey (1990), equivalence between two active
agents demonstrated in an active control trial can imply that both agents are efficacious or
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both are inefficacious. Therefore it is important to always include a placebo concurrent con-
trol in the active control trials unless a superior efficacy has been established and accepted by
the regulatory authority. For additional references of controversial issues regarding equiva-
lence/noninferiority trials, see Ware and Antman (1997) and Djulbegovic and Clarke (2001).
Note that active control trials will be discussed further in Chapter 7.

The following examples (Examples 3.4.5 and 3.4.6) provide two real examples con-
cerning clinical trials using active concurrent control.

Example 3.4.5 Continuous Infusion Versus Double-Bolus Administration of AMI

Accelerated infusion of ateplase (tissue plasminogen activator) over a period of 90 minutes
produced the lowest mortality rates in GUSTO I trial (1993). On the other hand, double-
bolus administration of ateplase in two bolus doses given 30 minutes apart further shortens
the duration of administration. The Continuous Infusion versus Double-bolus Administra-
tion of Ateplase (COBALT) investigators (1997) conducted a randomized trial to test the
hypothesis that double-bolus ateplase is at least as effective as accelerated infusion. The test
treatment for the COBALT was the administration of a bolus of 50 mg of ateplase over a
period of 1 to 3 minutes followed 30 minutes later by a second bolus of 50 mg (or 40 mg for
patients with a body weight less than 60 kg). The active concurrent control was an intra-
venous bolus of 15 mg followed by an infusion of 0.75 mg per kilogram of body weight over
a 30-minute period, not to exceed 50 mg, and then by an infusion of 0.5 mg per kilogram, up
to a total of 35 mg, for 60 minutes. This trial is a typical example of an noninferiority trial to
test the hypothesis that the efficacy of a shorter and easier administration of double-bolus of
alteplase is no worse than that of the standard administration of accelerated infusion.

Example 3.4.6 Maintenance Antiretroviral Therapies in HIV Infected Subjects

Three-drug antiretroviral therapy with zidovudine, lamivudine, and indinavir can suppress
the level of human immunodeficiency virus (HIV) RNA in plasma below the threshold of
detection for two years or more. Havlir et al. and AIDS Clinical Trial Group Study 343
team (1998) conducted a trial to investigate whether a less-intensive maintenance regimen
could sustain viral suppression after an initial response to combination therapy. This study
consisted of two phases. The induction phase was a period of 24 weeks in which the HIV-
infected subjects with CD4 cell counts greater than 200 per cubic millimeter received
open-label treatment with indinavir 800 mg, t.i.d., lamivudine, 150 mg, b.i.d., and zidovu-
dine, 300 mg, t.i.d. For the second part of the study, subjects who had less than 200 copies
of HIV RNA per milliliter of plasma after 16, 20, and 24 weeks of induction therapy were
randomly assigned to receive one of three treatments in a double-blind fashion. The treat-
ments included the original three-drug therapy, indinavir monotherapy, and two-drug com-
bination of zidovudine and lamivudine. For this study, the test treatments were indinavir
monotherapy and two-drug combination of zidovudine and lamivudine, while the standard
three-drug therapy served as the active concurrent control.

No Treatment Concurrent Control

For certain diseases, under the assumptions that (1) the objective measurements for effec-
tiveness are available and can be obtained in a very short period of time and (2) the placebo
effect is negligible, the test agent can be compared concurrently with no treatment. In these
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cases the FDA requires that patients be randomized to receive either the test agent or the no
treatment concurrent control (Section 314.122 in Part 21 of CFR). In practice, however, it
is recommended that no treatment concurrent controls should be avoided if possible during
clinical development of phases I–III trials of new agents due to the reasons that it is not
good clinical practice and that it fails to simulate the psychological effect of the placebo on
efficacy.

Examples 3.4.7 and 3.4.8 provide two real examples of clinical trials using no-treatment
concurrent control.

Example 3.4.7 Treatment of Primary Pulmonary Hypertension

Primary pulmonary hypertension is a serious and progressive disease for which few treat-
ments have been shown in a prospective, randomized trial to improve survival. The Pri-
mary Pulmonary Hypertensive Study Group (Barst et al., 1996) conducted a prospective,
randomized, multicenter open-label trial to compare the effects of continuous IV infusion
of epoprostenol plus conventional therapy with those of conventional therapy alone in 
81 patients with severe primary pulmonary hypertension (New York Heart Association
functional class III or IV). For this study, the test treatment is epoprostenol plus conven-
tional therapy while the control treatment is no-treatment concurrent control plus conven-
tional therapy.

Example 3.4.8 The First Controlled Clinical Trial

As reported by Boylston (2002), in 1767, the leading cause of death among children in the
city of London, the United Kingdom, was smallpox. The infection was epidemic and killed
one in four children born in the city. At that time, Dr. William Watson was the physician for
the Foundling Hospital. Because of the smallpox epidemic, the governor of the hospital
ordered that all children who were not already immune to smallpox be inoculated. How-
ever, there were two fundamental questions of inoculation: What was the best source of the
inoculum? Did mercury (a populated component of pretreatment therapy at that time) pro-
vide any clinical benefit? Dr. Watson designed a group of three trials to explore both ques-
tions. He recognized that he needed to study a large number of children of similar age in
both genders. On October 12, 1767, Dr. Watson conducted his first trial. Thirty-one chil-
dren were divided into three groups. The source of inoculum was the early lesion from 
a patient with naturally acquired smallpox. The first group of 10 children (5 of each gen-
der) received a mixture of mercury and jalap (a laxative) before and after the puncture, the
second group of 10 children (5 of each gender) received senna and syrup of roses (a mild
laxative) on three occasions, and the last group of 11 boys received no treatment for pre-
treatment regimen. He also tried to keep all other known confounding factors as similar as
possible for all children in the trials. For example, all children had the same diet, wore sim-
ilar clothes, played in the same field, slept in the same dormitory, and were inoculated at
the same time and place with the same material. Therefore, the only difference was the
treatment children received. Dr. Watson was the first clinician who introduced a no-
treatment concurrent control in a clinical trial. The second trial had a similar pretreatment
regimen also with a no-treatment concurrent control with the mature lesions from inocu-
lated patients as the source of inoculum. The last trial did not have pretreatment regimen.
All 20 children were inoculated using late lesion from inoculated patients as the source of
inoculum. More details regarding the trials can be found in Boylston (2002).

108 BASIC DESIGN CONSIDERATIONS

c03.qxd  27.10.03  12:48  Page 108



Historical Control

In clinical research sometimes it is of interest to compare the results of the test treatment
with those of other active treatments or the historical experience of a disease or condition
that is adequately documented. Basically, historical data are obtained in two ways. One is
from the same group of patients who received no treatment, the same treatment, or differ-
ent treatments at different times. The other is from different patients who received no treat-
ment, the same treatment, or different treatments at different times. In either case the data
of historical control are not obtained concurrently. Therefore, the experimental conditions
of the trials are not obtained concurrently for both the test and control groups. Hence, Sec-
tion 314.122 of Part 21 of CFR indicates that the historical control are reserved for the spe-
cial diseases with high and predictable mortality such as certain malignant cancers or for
the agents in which the effect of the drug is self-evident such as general anesthetics.

In summary, for clinical development of phases I–III trials of a new test agent, the prin-
ciple of good clinical practice for regulatory approval is to dictate the placebo concurrent
control as the fundamental referenced control for unbiased evaluation of effectiveness and
safety unless unequivocal evidence proves that it is unnecessary.

3.5 STATISTICAL CONSIDERATIONS

At the planning stage some statistical considerations regarding the manner in which the data
will be tabulated and analyzed at the end of the study should be carefully considered. These
considerations include the primary and secondary response variables, the criteria for effi-
cacy and safety assessment, sample size estimation, possible interim analysis and data mon-
itoring, and statistical and clinical inference. We will now describe these considerations.

Efficacy and Safety Assessment

For a clinical trial, it is recognized that it is impossible to address all questions with one
trial. Therefore, it is important to identify the primary and secondary response variables that
will be used to address the scientific and/or medical questions of interest. The response
variables (or clinical endpoints) are usually chosen at the outset, since they are needed to
fulfill the study objectives. Once the response variables are chosen, the possible outcomes
of treatment are defined, and those showing efficacy and safety are clearly indicated. In
practice, it is suggested that the selected clinical endpoints be validated (reliable and repro-
ducible), widely available, understandable, and accepted. For example, in an antibiotic trial
the outcome might be defined as cure, cure with relapse, or treatment failure, and the
response variables may be pyrexia, dysuria, and frequency of urination. The criteria for the
evaluation of a cure could be that all signs or symptoms of urinary tract infection are
resolved during the study period. For another example, in an antihypertensive trial the out-
come of treatment might be defined as normalization, partial response, or failure, and the
response variable would be change in blood pressure. The criteria for normalization and
partial response could be that diastolic pressure is less that 90 mmHg and that diastolic
blood pressure is reduced by more than 10% from baseline, respectively.

For efficacy assessment, once the primary efficacy variable is identified, the criteria for
the evaluability of the patients should be precisely defined. For example, we may conduct
an analysis based on all patients with any effectiveness observation or with a certain mini-
mum number of observations. In some cases clinical scientists may be interested in 
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analyzing patients who complete the trial (or completer analysis) or all patients with an
observation during a particular time window. To provide a fair assessment of efficacy,
sometimes it may be of interest to analyze only patients with a specified degree of compli-
ance, such as patients who took 80% to 120% of the doses during the course of the trial. 
It should be noted that the evaluability criteria should be clearly defined in the study proto-
col. As indicated in the FDA guidelines, although a reduced subset of the patients is usu-
ally preferred for the data analysis, it is recommended that an additional intent-to-treat
analysis using all randomized patients be performed.

For safety evaluation the FDA requires that all patients entered into treatment who
received at least one dose of the treatment must be included in the safety analysis. Safety
evaluation is usually performed based on clinical and laboratory tests. To provide an effec-
tive evaluation, it is suggested that the following should be provided:

1. Parameters to be measured.

2. Timing and frequency.

3. Normal values for laboratory parameters.

4. Definition of test abnormalities.

The primary safety variable is the incidence of adverse event, which is defined as any ill-
ness, sign, or symptom that has appeared or worsened during the course of the clinical study
regardless of causal relationship to the medicine under study. The FDA suggests that basic
display of adverse event rates be used to compare rates in treatment and control groups. In
addition, if the study size permits, the more common adverse events that seem to be drug
related should be examined for their relationship to dosage and to mg/kg dose, to dose regi-
men, to duration of treatment, to total dose, to demographic characteristics, or to other base-
line features if data are available. However, the FDA also points out that it is not intended
that every adverse be subjected to rigorous statistical evaluation.

Sample Size Estimation

For assessment of the effectiveness and safety of a study drug, a typical approach is first to
show that the study drug is statistically significant from a placebo control. If there is a statisti-
cally significant difference, we then demonstrate that the trial has a high probability of cor-
rectly detecting a clinically meaningful difference. The probability of correctly detecting a
clinically meaningful difference is known as the (statistical) power of the trial. In clinical tri-
als, for a given significance level, we can increase the statistical power by increasing the sam-
ple size. In practice, a pre-study power analysis for sample size estimation is usually
performed to ensure that the intended trials have a desired power (e.g., 80%) for addressing the
scientific/medical questions of interest. In clinical trials, we can classify sample size estima-
tion as either sample size determination or sample size justification. The purpose of a sample
size determination is to find an appropriate sample size based on the information (the desired
power, variability and clinically meaningful differences, etc.) provided by clinical scientists. If
the sample size has been chosen based on medical/marketing considerations, then it is neces-
sary to provide a sample size justification for the chosen sample size such as “What difference
can be detected with the desired power for the chosen sample size?” It should be noted that a
larger sample size will allow us to detect a smaller difference if the difference indeed exists.
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For sample size determination, Table 3.5.1 provides some examples of required sample
sizes for achieving desired power to detect some clinically meaningful differences under
the assumption of various standard deviations. The estimated sample sizes were obtained
based on a two-sided test for two independent samples with the 5% level of significance.
For example, a total of 32 patients is needed to have a 80% power for detection of one stan-
dard deviation difference. Additional 12 patients are required to increase the power from
80% to 90%. As can be seen from Table 3.5.1, the sample size increases as the standard
deviation increases. In addition a larger sample size is required to detect a smaller differ-
ence. On the other hand, Table 3.5.2 gives statistical justifications for differences that can
be detected for some chosen sample sizes. For example, the selected sample size of 100
will have a 80% power for detection of an approximately half standard deviation differ-
ence. Note that the difference that can be detected based on the selected sample size may
not be of clinically meaningful difference.

It should be noted that the sample size determination/ justification should be carried out
based on appropriate statistics under the selected design. Different study designs and test-
ing hypotheses may result in different sample size requirements for achieving a desired
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Table 3.5.1 Sample Size Determination

Sample Sizea

Standard Clinical Difference 
Power Deviation (%) 10% 15%

80% 10 32 14
20 126 56
30 284 126

90% 10 44 20
20 170 76
30 380 170

aSample sizes were obtained based on a two-sided test for two independent
samples at the α � 5% level of significance.

Table 3.5.2 Sample Size Justification

Detected Differencea

Standard Power
Sample Size Deviation (%) 80% 90%

100 10 5.6 6.5
20 11.2 13.0
30 16.8 19.5

200 10 4.0 4.6
20 8.0 9.2
30 12.0 13.8

aThe numbers were obtained based on a two-sided test for two indepen-
dent samples at the α � 5% level of significance.
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power. Therefore it is recommended that the following be considered when performing 
a pre-study power analysis for sample size estimation:

1. What design is to be used?

2. What hypotheses are to be tested?

3. What statistic is to be performed?

If the selected design is a parallel design and/or a two-sided test is used, it may require
more patients to reach the desired power. Under a selected design, sample size require-
ments are different for testing point hypotheses and interval hypotheses. As discussed in
the previous chapter, an interval hypotheses is intended for establishment of clinical equiv-
alence. The FDA indicates that for a positive control study intended to show that a new
therapy is at least as effective as the standard therapy, the sample size determination should
specify a clinically meaningful difference indicating that the new therapy is clinically
equivalent if the difference is smaller than such a difference. The power to detect a treat-
ment difference should be given.

Interim Analysis and Data Monitoring

Interim analysis and data monitoring is a process of examining and/or analyzing data accu-
mulating in a clinical trial, either formally or informally, during the conduct of the clinical
trial. The nature and intent of data monitoring and interim analysis in the pharmaceutical
industry are often misunderstood. As indicated by the Biostatistics and Medical Ad Hoc
Committee (BMAHC) on Interim Analysis of the Pharmaceutical Manufacturing Associa-
tion (PMA), the following three issues should be addressed when planning an interim
analysis (PMA, 1989):

• Protection of the overall type I error rate in formal confirmatory clinical trials designed
to establish efficacy.

• Safeguarding of the blinding of a study.

• Use of interim analyses for administrative or planning purposes to generate hypothe-
ses for future studies or to assess safety.

For the protection of the overall type I error, there are many methods available in the lit-
erature. For example, see Pocock (1977), O’Brien and Fleming (1979), Peto et al. (1976),
Slud and Wei (1982), Lan and DeMets (1983), Lan and Wittes (1988), and Jennison and
Turnball (2000). The protection of the overall type I error can usually be achieved through
a carefully planned study protocol. The safeguarding of the blind is a critical issue that has
a great impact on the credibility of the study. Therefore it is suggested that the sponsors to
develop formal procedures to ensure that the dissemination of the results of interim analy-
ses is controlled in such a way as to minimize the potential bias. The third issue considers
an interim analysis as a study management tool for addressing some important questions
during the conduct of the study. Such analyses, which are known as administrative look,
are usually performed on an unblinded basis and without adjustment of p-values.

Interim analysis and/or data monitoring provides an administrative tool for terminating a
trial during which is observed either a superior efficacy or an excessive safety risk in the treat-
ments presented to patients. Currently all clinical trials sponsored by NIH are required to 
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perform interim analyses. If no interim analyses is intended, the reasons why an interim
analysis is not necessary for the study are to be clearly stated in the study protocol. Since the
late 1980s pharmaceutical companies have begun to recognize the need of interim analyses
and consequently have started to perform interim analyses and administrative data monitor-
ing for their sponsored trials in an expeditious manner. Since blinding plays an important role
in protecting the integrity of clinical trials, the BMAHC was formed to examine the impact of
interim analysis on blindness (PMA, 1989, 1993). In their position paper (PMA, 1993), the
BMAHC emphasized that blinding (masking) is an important issue, since the interim analy-
sis requires that the study be unblinded. Knowledge of early trends or lack thereof can bias
the remainder of the study and result in changes in the patient recruitment. Knowledge of
treatment assigned to individual patients can also introduce bias and serious dropouts on the
validity of results. The committee suggested that an SOP be developed to describe

• Who will have access to the randomization codes?

• How the blinding will be broken?

• Who will have access to the interim results?

• Whether ongoing patients will be included in the analysis?

Williams et al. (1993) point out that major pharmaceutical companies such as Merck
have developed their own internal SOPs for triple-blind policy for all phase III and IV
studies and most of phase II trials. Moreover, they state that interim evaluation should be
performed by a party that is not involved in the actual conduct of the study. The results of
the interim analysis should not be provided in any form to those individuals involved in the
conduct of the trial in order to avoid any temptation to alter the study design and to intro-
duce any potential bias. They suggest that the following procedures be imposed to ensure
the blindness when performing an interim analysis.

• Merge of randomization codes with patient identification numbers for the use of
interim analysis must be performed by a low-level statistician who is not directly
involved in the study.

• Identity of treatments received by individuals must not be known.

• Only the minimum information required to meet the objectives of the interim analysis
can be presented and only to the few individuals who are responsible for decision
making on the drug’s development.

• Detailed procedures for the implementation of interim analysis such as unblinded-
ness, decision making, and the frequency of interim analyses must be fully docu-
mented and available for external review.

Since interim analyses require not only that the randomization codes be unblinded dur-
ing the clinical trials but also that the results be disseminated to either the external or inter-
nal data-monitoring board, blindness is in fact compromised to some extent and a bias will
always be introduced. The FDA has expressed some concerns regarding the issue of only
an internal data-monitoring board. O’Neill (1993) indicates that: FDA is primarily con-
cerned that a study can be biased by monitoring practices and procedures, and since the
monitoring group has a vested interest in the product being evaluated, the study might be
compromised to the extent that it will not support the scientific regulatory standards for
drug approval.
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Therefore, in addition to the procedures recommended by Merck, we also suggest the
following:

• The external data-monitoring board should include clinical and statistical experts
from academic institutions in the therapeutic areas under investigation.

• The interim analysis should be performed by the statistical members of the data-
monitoring board, using the database merged by the low-level statistician, who is not
involved with the trial, from the randomization codes and patient identification numbers
with pre-specified efficacy and safety endpoints for the interim analysis in the protocol.

• The external data-monitoring board should have the authority to make decisions
regarding when, how, what, and to whom (including those in the top management who
make the decision on the drug’s development) the results of the interim analysis should
be available.

Note that the FDA guideline declares that all interim analyses, formal or informal, by
any study participant, sponsor staff member, or data-monitoring group must be described
in full even if the treatment groups are not identified. The need for statistical adjustment
because of such analyses should be addressed. More details regarding interim analysis will
be given later in this book.

Statistical and Clinical Inference

Statistical and clinical inferences are usually drawn based on clinical data collected from
controlled randomized trails. Statistical and clinical inferences are derived from statistical
tests under the assumption that the selected sample (i.e., a group of patients) is a random
sample from the targeted patient population. A random sample is referred to a representa-
tive sample. However, in most clinical trials patients are not selected from the target popu-
lation in a random fashion. In practice, for a clinical trial we usually select study sites (or
centers) first. Patients are then recruited at each selected study site to form a sample for the
intended clinical trial. Thus no formal sampling theory can be applied to derive a valid sta-
tistical inference regarding the target patient population. Consequently the clinician cannot
draw a valid statistical inference to clinical practice.

It should be noted that statistical inference is only a part of induction process for the
conclusions obtained from clinical trials, and it should not preclude the possibility of 
a meaningful clinical inference. If the inclusion and exclusion criteria are precisely stated
in the study protocol before the trial is conducted, then the demographic characteristics at
baseline of the patients can be used to describe the patient population from which the sam-
ple of the patients in the trial is drawn. As a result the population model described earlier
can be invoked to provide a basis for a clinical inference about the patient population. This
concept of clinical inference as a form of induction from sample to population is based on
external validity. For example, suppose that the inclusion criteria of a single-center clinical
trial allow only enrolling patients within a very narrow age range. Also suppose that there
is another study with the same sample size that is a multicenter trial for investigation of the
same drug. However, the second study has a much wider age range. The second study is
more appropriate to make clinical inference externally simply because it is a multicenter
trial with a wider age range than the first. Figure 3.5.1 provides a diagram of statistical and
clinical inference with respect to the relationship among randomization for selection and
assignment of patients and internal and external validity.
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Rubins (1994) indicated that any single trial is unlikely to have a major impact on 
a physician’s medical practice. Clinical inference is rarely based on the results of a single
clinical trial. In order to investigate the effectiveness and safety of a therapeutic agent or a
class of therapeutic agents, a series of clinical trials with the same design and concurrent
control is usually conducted over patients with similar but different characteristics. Note
that these clinical trials may be conducted by different investigators at different study cen-
ters in different countries. Petitti (1994) points out that the technique of the meta-analysis
may provide the most conclusive evidence of clinical inference of the therapeutic agents
for medical practice because of its external validity. For example, Yusuf et al. (1985) con-
ducted a meta-analysis based on 64 randomized beta-blocker trials to conclude, once for
all, the benefit of long-term use of the beta-blocker after myocardial infarction in reduction
of mortality. Yusuf et al. (1985) report that there exists no important difference in benefit
among different beta-blockers. On the other hand, in the CAST trial, the results indicated
that patients who received class IC antiarrhythmic agents (e.g., flecainide or encainide)
after myocardial infarction had three times as high as mortality rate than those patients
who received the placebo. Since the CAST trial is a single but relatively large trial, the
finding was confirmed through a meta-analysis combining 10 clinical trials performed by
Hines et al. (1989) in order to prove the harmful effect of the use of class IC arrhythmic
agents after myocardial infarction.

In most clinical trial, women with childbearing potential are excluded from the studies.
This exclusion limits the generalization of the findings to the larger population. In 1993 the
FDA revised its 1977 guidelines to include women of childbearing potential who were pre-
viously excluded in early drug studies of non-life-threatening diseases. This revised guide-
line, however, does not apply to bioequivalence trials which are required by the FDA for
approval of generic drug products. As indicated by Henderson (1993), bioequivalence tri-
als are mostly conducted in normal male volunteers aged between 18 and 50 years old
whose weights are within 10% of their ideal body weight. As a result of this exclusion of
female, patients, and elderly from the studies, bioequivalence trials have very limited
external validity. However, under the fundamental bioequivalence assumption, clinical
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inference based on rather limited bioequivalence studies is still acceptable to the FDA. The
fundamental bioequivalence assumption states that if two drug products are bioequivalent,
then they will reach the same therapeutic effects or they are therapeutically equivalent. The
legal basis of this fundamental bioequivalence assumption is from the Drug Price Compe-
tition and Patent Term Restoration Act passed by the United States Congress in 1984. The
FDA allows a generic drug to be used as a substitute of a brand-name drug if the generic
drug product is shown to be bioequivalent to the brand-name drug. When a brand-name
drug is off patent, it is expected there might be a number of generic copies for the brand-
name drug approved by the FDA. Although each generic copy of the brand-name drug can
be used as a substitute for the brand-name drug, the FDA does not indicate that these
generic copies of the same brand-name drug can be used interchangeably. It is therefore
important to investigate the overall bioequivalence and inconsistencies among all generic
copies of the same brand-name. For this purpose, Chow and Liu (1997) proposed the con-
cept of meta-analysis for postapproval bioequivalence review.

3.6 OTHER ISSUES

In addition to the basic design considerations described above, some specific considera-
tions in planning a design for a clinical trial are given below.

Single Site versus Multi-sites

In most clinical trials, multistudy sites (multicenter) are considered. This is often due to a
limitation in the capacity of a single site. Besides, multistudy sites can increase patient
enrollment and consequently shorten the duration of the study. Although a multicenter
study has its advantages, it also suffers from some difficulties. For example, if the enroll-
ment is too slow, the sponsor may wish to (1) terminate the inefficient study sites, (2)
increase enrollments for the most aggressive sites, or (3) open new sites during the course
of the trial. Each action may introduce potential biases to the study. In addition, the spon-
sor may ship unused portions of the study drugs from the terminated sites to the newly
opened sites. This can increase the chance of mixing up the randomization schedules and
consequently decrease the reliability of the study. For a multicenter study, the FDA
requires that the treatment-by-center interaction be carefully investigated. No overall con-
clusion can be made across study sites if treatment-by-study-site interaction is present. In
practice, it is desirable to have fewer study sites than the number of patients within each
site. This is because the comparison is usually made between patients within sites. More
centers may increase the chance of observing the treatment-by-study-site interaction. In
addition different centers may have different standards for clinical evaluation and labora-
tory tests. It is therefore suggested that a central laboratory be employed whenever possi-
ble to provide appropriate and consistent measures.

Treatment Duration

In clinical trials it is desirable to collect clinical data, perform data analysis, and draw sta-
tistical inferences on the scientific questions that these clinical trials intend to address in 
a timely fashion. The duration of a clinical trial depends on the half-life of the study drug,
the disease status, and the intended indication. For example, a 10- to 14-day treatment is
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usually required for antibiotic agents in order to reach the optimal therapeutic effect. For
chronic diseases a longer treatment is necessary to observe significant improvements. If the
intended indication is for bone loss, then the duration can be even longer. A typical clinical
trial usually consists of three phases: a placebo run-in phase, an active treatment period, and
a follow-up or maintenance phase. A placebo run-in phase is usually considered in order to
remove effects of previous therapy or to stabilize patients’ conditions prior to randomiza-
tion. An active treatment period is to determine whether the study drug achieves the desired
efficacy, and a follow-up or maintenance phase is to monitor the safety of the study drug.

Treatment duration is an important consideration in designing clinical trials. It has an
impact on the evaluation of the study drug. An inadequate duration of treatment may not
provide an unbiased and valid assessment of the true response rate of the study drug. It
may also result in a high dropout rate due to the lack of efficacy. For example, the response
rates at different time points may be different for antibiotic agents. It is therefore suggested
that an adequate duration of treatment be considered in clinical trials to provide an unbi-
ased and valid assessment of the study drug.

Patient Compliance

It has long been realized that patients may not follow instructions for the use of medica-
tion. As indicated by Cramer et al. (1989), overdosing, underdosing, and erratic dosing
commonly occur in all patient populations regardless of the severity of illness. Patient
compliance has an impact on the evaluability of patients for clinical evaluation of efficacy
and safety of the study medicine. Stewart and Cluff (1972) indicate that the extent of
patient default is between 20% and 80%. A typical approach to monitoring patient compli-
ance is pill counting. Cramer et al. (1989) suggest using a medication event monitor system
(MEMS) to study patients’ pill-taking habits. They found that even for a once daily dose
schedule, there is only 87% compliance. For the four times daily regimen, the compliance
rate drops sharply to 39%. They estimated that the overall compliance rate is around 76%.
In practice, to ensure that patients are eligible for clinical evaluation, a set of criteria is usu-
ally imposed on patient compliance. For example, patients are considered evaluable if they
are within 80% and 120% of compliance.

Wang, Hsuan, and Chow (1996) classify the concept of compliance into compliance
and adherence. A patient is said to have a poor compliance if he or she fails to take the drug
at the prescribed dose. A poor adherence is referred to as failure to take the drug at the
scheduled times. Poor compliance may result in treatment failure and possible adverse
reactions. It has been observed that 5% of patients have a drug-induced disease on admis-
sion to the hospital (e.g., see Seidl et al., 1996; Hurwitz, 1969). Seidl et al. (1966) also
indicate that adverse drug reactions are the seventh most common cause for admission to
hospital. Elaboration of other medical consequences of noncompliance can be found in
Glanz et al. (1984) and Cramer et al. (1989).

Missing Value and Dropout

Another issue that is worthy of attention is possible dropouts or missing values. Dropouts
can be related to the duration, the nature of the disease, and the effectiveness and toxicity
of the study drug. It may be misleading to ignore the patients who dropped out prior to the
maturity of the study. For example, if more dropouts occur in one treatment group, a bias
may have been introduced to the trial. In practice, more patients are usually enrolled to
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account for possible dropouts so that the study will have sufficient evaluable patients to
achieve the desired power. When there are a large number of dropouts, it is suggested that
the causes of the dropouts be carefully evaluated. It can be a great concern if dropouts are
related to the ineffectiveness and side effects of the study drug.

As was mentioned earlier, a clinical trial is more likely to be a multicenter trial. Matts
and Lachin (1988) indicate that an adequate statistical analysis is a stratified analysis with
study center as a stratum. If study center is not considered a stratum and omitted in the
analysis, then such an unstratified analysis will likely produce a conservative test. In many
clinical trials unplanned post hoc subgroup analyses based on some covariates (patient char-
acteristics) are required to answer some important clinical questions, even though a strati-
fied randomization with respect to the covariates is not performed. If the covariates used for
the classification of subgroups are statistically independent of the random assignment of
patients to the treatments, then the stratified analysis based on the covariates will be a valid
statistical test. A typical approach is to perform an analysis of covariance (ANCOVA),
which can include the following as covariates: (1) demographic factors such as age, gender,
and race, (2) geographical region such as study center, and (3) some baseline characteristics
such as disease severity at entry (Snedecor and Cochran, 1980). In clinical trials, it is almost
impossible to collect data from all patients in order to cover all of the information regarding
patient characteristics of interest. It is therefore not uncommon to have missing data in some
combinations of covariates in clinical trials. One way to handle this problem of missing data
is to perform the analyses only on the set of patients with the complete data. This approach
is in fact a post hoc stratified analysis based on a covariate that indicates whether a patient
has complete data or not. If the missing mechanism is independent of the random assign-
ment of patients to the treatment, then the resulting analyses based only on the subset of the
patients with complete data will be statistically valid. Rubin (1976) and Little and Rubin
(1987) refer to the assumption of independence between the missing mechanism and treat-
ment assignment as missing at random. However, this assumption cannot be verified or
tested. Although the analyses might be valid, they are inefficient because they are based on
the subset of the patients with complete data.

3.7 DISCUSSION

In practice, it should be realized that clinical trials are conduced in humans and are done by
humans. Therefore, some issues need to be seriously considered when planning a clinical
trial. These issues include safety, compliance, and human error/bias. For example, is it safe
or ethical to conduct placebo-controlled antibiotic studies? Patient compliance depends on
the corporation of the patient. It depends on the duration of the study, the duration of vis-
its, the frequency of visits, and perhaps the timing of visits. Human error/bias can be con-
trolled through placebo control, blinding, lead-in, and education. Note that controlled
studies are usually referred to as those in which the test treatment is compared with a con-
trol. For demonstration of the effectiveness and safety of a test treatment, uncontrolled
studies are rarely of value in clinical research, since definitive efficacy data are unobtain-
able and data on adverse events may be difficult to interpret. As a result, to answer the
question, in addition to the definition of patient population and the selection of clinical
endpoints, controlled studies are the best way to factor out human error/bias.

Besides the basic design issues described above, clinical data quality assurance is also
an important consideration when planning a clinical trial. The success of a clinical trial
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depends on the quality of the collected clinical data. The quality of clinical data depends
on the case report forms used to capture the information. Inefficient case report forms can
be disastrous to a study. Therefore effectively designed case report forms are necessary to
ensure the quality of clinical data and consequently to ensure the success of the study. It is
recommended that a biostatistician be involved in the design and review of the case report
forms to ensure that these forms capture all of the relevant information for data analysis.
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4
RANDOMIZATION AND BLINDING

4.1 INTRODUCTION

In Chapter 2 we introduced some sources of bias and variation that can occur during the
conduct of clinical trials. The control of bias and variability is extremely important to
ensure the integrity of clinical trials. In comparative clinical trials, randomization is usu-
ally used to control conscious or unconscious bias in the allocation of patients to treatment
groups. The purpose of randomization is not only to generate comparable groups of
patients who have similar characteristics but also to enable valid statistical tests for clinical
evaluation of the study medicine.

The concept of randomization was first introduced in clinical research in the early
1930s for a study of sanocrysin in the treatment of patients with pulmonary tuberculosis
(Amberson et al., 1931). However, the principle of randomization was not implemented in
clinical trials until mid-1940s by the British Medical Research Council under the influence
of Sir Austin Bradford Hill (1948). Since then there have been tremendous debates over the
use of randomization in clinical research (e.g., see Feinstein, 1977, 1989). The primary
concern is that it is not ethical for the patient not to know which treatment he or she
receives, especially when one of the treatments is a placebo. However, it was not realized
that before a clinical trial is conducted, no one can be 100% sure that the active treatment
is indeed effective and safe for the indicated disease compared to the placebo. For many
drug products it is not uncommon that the active treatment has inferior efficacy and safety
than the placebo. One typical example would be the CAST study discussed in previous
chapters. For another example, if randomization is not employed for comparing a surgical
procedure with chemotherapy in treatment of patients with a certain cancer, then the so-
called operable patients with good prognoses will more likely be assigned to surgery, while
the chemotherapy will be given, as is usual, to the inoperable patients with poor prognoses.
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The surgical treatment would have yielded the positive results even though the surgery was
not performed at all.

The use of randomization can avoid subjective assignment of treatments to patients who
participate in clinical trials. Its advantage can be best illustrated by clinical studies con-
cerning the treatment of gastric freezing for patients with peptic ulcer conducted in the
1960s (Miao, 1977; Sackett, 1989). In these studies, the treatment of gastric freezing was
applied to tens of thousands of patients with peptic ulcer in a nonrandom fashion. These
studies showed that the gastric freezing might be a promising therapy for the disease. How-
ever, it only took one randomized trial with 160 patients, half to the real or sham freezing,
to conclusively demonstrate that the treatment of gastric freezing is in fact ineffective for
the treatment of peptic ulcer. Therefore, Section 314.166 of the CFR requires that the
method for patient treatment assignment should be described in some detail in the study
protocol and report. It is recommended that for a concurrent controlled study, treatment
assignment of patients be done by randomization. It should be noted that randomization in
clinical trials consists of (1) random selection of a representative sample from a targeted
patient population and (2) random assignment of patients in order to study the medicines.

To remove the potential bias that might occur when there are inequalities between treat-
ment groups (e.g., demographic details or prognostic variables) allocated to different treat-
ment groups, the use of randomization with blocking and/or stratification, if necessary, is
helpful. Lachin (1988a, 1988b) provides a comprehensive summary of the various random-
ization models. The concept behind these randomization models allows useful randomiza-
tion methods to be employed such as the complete randomization, the permuted-block
randomization, and the adaptive randomization. Randomization plays an important role for
the generalization of the observed clinical trials. Therefore it is recommended that a set of
standard operating procedures (SOP) for the implementation of randomization be devel-
oped when conducting clinical trials. In many clinical trials bias often occurs due to precon-
ceived ideas or perceptions acquired during the study by (1) the investigator and supporting
staff who might influence reporting response to therapy or adverse events and (2) the patient
who might influence compliance, cooperation, or provision of information.

In clinical trials, in addition to randomization, the technique of blinding is usually
employed to avoid the risk of personal bias in comparing treatments. Basically there are
several different types of blinding commonly used in clinical trials. These blindings
include open label (or unblinding), single blinding, double blinding, and triple blinding.
An open label study indicates that both the patient and the investigator know to which
treatment group the patient is assigned, while a single blinding is referred to as that when
the investigator knows but the patient does not. For a double blinding, neither the investi-
gator nor the patient knows to which treatment group the patient is assigned. A triple blind-
ing is an extension of the double blinding in which those monitoring outcome are unaware
of treatment assignment. In practice, randomization and blinding are important to the suc-
cess of clinical trials. Randomization and blinding can not only help to avoid bias but also
to control variability, and consequently to achieve the desired accuracy and reliability of
clinical trials.

The remainder of this chapter is organized as follows. In the next section, we introduce
various randomization models. Section 4.3 covers the different randomization methods. In
Section 4.4 we provide a commonly employed approach for the implementation of ran-
domization in the pharmaceutical industry. The issue regarding the generalization of con-
trolled randomized trials is discussed in Section 4.5. The concept for the use of blinding in
clinical trials is addressed in Section 4.6. A brief discussion is given in Section 4.7.
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122 RANDOMIZATION AND BLINDING

4.2 RANDOMIZATION MODELS

As was indicated in the preceding chapter, randomization ensures that patients selected
from the target patient population constitute a representative sample of the target patient
population. Therefore, statistical inference can be drawn based on some probability distri-
bution assumption of the target patient population. The probability distribution assumption
depends on the method of randomization under a randomization (population) model. As 
a result a study without randomization will result in the violation of the probability distri-
bution assumption, and consequently no accurate and reliable statistical inference on the
study medicine can be drawn.

Lachin (1988a) provides a comprehensive summary of the randomization basis for sta-
tistical tests under various models. His observations are discussed below.

Population Model

Cochran (1977) points out that the validity of statistical inference by which clinicians can
draw conclusions for the patient population is based on the selection of a representative
sample drawn from the patient population by some random procedure. This concept is
called the population model (Lehmann, 1975; Lachin, 1988a). Suppose that for a certain
disease, a clinical trial is planned to investigate the efficacy and safety of a newly developed
therapeutic agent compared to an inert placebo. Under the population model we can draw
two samples independently with equal chance at random from the (infinitely large) patient
population. One sample consists of nT patients, and the other sample consists of nP patients.
We denote these two samples by sample T and sample P, respectively. The nT patients in
sample T will receive the newly developed agent, while the inert placebo is given to the nP

patients in sample P. If the patient population is homogeneous with respect to the inclusion
and exclusion criteria specified in the protocol, we do not expect that the responses of clini-
cal endpoints for a particular patient will have anything to do with those of other patients. In
other words, they are statistically independent of one another. For a homogeneous popula-
tion, a common (population) distribution can be used to describe the characteristics of the
clinical responses. That is, they are assumed to have identical distribution. Hence the clini-
cal responses of the nI patients (I � T, P) are said to have an independent and identical dis-
tribution (i.i.d). Therefore, optimal statistical inference can be precisely obtained. For
example, with respect to hypotheses (2.6.1) regarding the detection of the difference
between the new agent and the placebo, the common two-sample t-test is the optimal testing
procedure (Armitage and Berry, 1987).

As mentioned above, randomization in clinical trials involves random selection of the
patients from the population and random assignment of patients to the treatments. Under
the assumption of a homogeneous population, the clinical responses of all patients in the
trial, regardless of sample T or sample P, are independent and have the same distribution.
Lachin (1988a) points out that the significance level (i.e., the probability of type I error)
and the power (i.e., the probability of correctly rejecting a false null hypothesis) will not be
affected by random assignment of patients to the treatments as long as the patients in the
trial represent a random sample from the homogeneous population. Furthermore suppose
that we split a random sample into two subsamples; the statistical inferential procedures
are still valid even if the one-half of the patients are assigned to the test drug and the other
half to the placebo.
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Invoked Population Model

In clinical trials, we usually select investigators first and then select patients at each
selected investigator’s site. At each selected study site, the investigator will usually enroll
qualified patients sequentially. A qualified patient is referred to as a patient who meets the
inclusion and exclusion criteria and has signed the informed consent form. As a result,
neither the selection of investigators (or study centers) nor the recruitment of patient is
random. However, patients who enter a trial are assigned to treatment groups at random. In
practice, the collected clinical data are usually analyzed as if they were obtained under the
assumption that the sample is randomly selected from a homogeneous patient population.
Lachin (1988a) refers to this process as the invoked population model because the popula-
tion model is invoked as the basis for statistical analysis as if a formal sampling procedure
were actually performed. In current practice, the invoked population model is commonly
employed for data analysis for most clinical trials. It, however, should be noted that the
invoked population model is based on the assumption that it is inherently untestable.

Note that one of the underlying assumptions for both the population model and the
invoked population model is that the patient population is homogeneous. This assumption,
however, is not valid in most clinical trials. In practice, we can employ the technique of
stratified sampling to select samples according to some prespecified covariates to describe
the differences in patient characteristics. The idea of stratification is to have homogeneous
subpopulations with respect to the prespecified covariates (or patient characteristics). In
many clinical trials, it is almost impossible to use a few covariates to describe the differ-
ences among heterogeneous subpopulations due to the complexity of patient characteris-
tics and disease conditions. In addition, patients who are enrolled at different times may
not have similar relevant demographic and baseline characteristics. In other words, the
patient population is time-heterogeneous population in which the patient’s characteristics
are a function of the time when they enter the trial. The impact of the heterogeneity due to
the recruitment time on the results of a clinical trial is well documented in the literature.
For example, Byar et al. (1976) indicate that in a study conducted by the Veterans Admin-
istration Cooperative Urological Research Group in 1967, the survival rate of the patients
who entered earlier in the study was worse than of those who enrolled later in the study.
Therefore it is not uncommon for patient characteristics to change over time even if the
population is homogeneous at one time point. The above discussion indicates that the
assumption of the population model or the invoked population model may not be valid.

Randomization Model

As discussed above, for current practice, although the study site selection and patient
selection are not random, the assignment of treatments to patients is usually performed
based on some random mechanism. Thus, treatment comparisons can be made based on
the so-called randomization or permutation tests introduced in the mid-1930s (Fisher,
1935). To illustrate the concept of permutation tests, we consider the following hypotheti-
cal data set concerning endpoint changes from baselines in peak urinary flow rate (mL/s)
after three months of treatment for patients with benign prostate hyperplasia:

Test drug : 2.6, 0.97, 1.68;

Placebo : 1.2, �0.43.
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An interesting question is how to determine whether there is a significant difference in
endpoint change from baseline in peak urinary flow rate between the test drug and the
placebo based on the above hypothetical data. Under the null hypothesis of no difference
described in (2.6.1), all possible permutations according to the endpoint changes from
baselines in peak urinary flow rate are equally likely (from the smallest to the largest based
in the ranking). If all possible pairs of ranks for the two patients receiving placebo are all
equally likely, then the sum of the ranks for the two patients in the placebo group are also
equiprobable. The possible ranks and sum of the ranks for the two patients receiving
placebo are given in Table 4.2.1. Since the chance is equal for all possible permutations of
the ranks for the two patients in the placebo group, the probability distribution for the sum
of the ranks can be obtained as given in Table 4.2.2. Since the ranks of the observed end-
point change from baseline in peak urinary flow rate for the two patients in the placebo
group are 3 (for 1.2) and 1 (for �0.73), respectively, the rank sum for the placebo group
is 4. As can be seen from Table 4.2.2, the p-value (i.e., the probability that the observed
rank sum is due to chance or the sum of the ranks from placebo group can be at least as
extreme as the observed 4) is 0.2 for a one-sided test and 0.4 for a two-sided test. Note that
the possible values and the distribution of the rank sums will be the same no matter what
actual observed endpoint change from baseline in peak urinary flow rate for the two
patients in the placebo group are as long as the two patients are assigned to the placebo

Table 4.2.1 All Possible Ranks for the Two Patients in
the Placebo Group Based on Conditional Permutation

Possible Ranks Sum of Ranks

1, 2 3
1, 3 4
1, 4 5
1, 5 6
2, 3 5
2, 4 6
2, 5 7
3, 4 7
3, 5 8
4, 5 9

Table 4.2.2 Probability Distribution of the Sum 
of Ranks Based on Conditional Permutation

Sum of Ranks Probability

3 0.1
4 0.1
5 0.2
6 0.2
7 0.2
8 0.1
9 0.1
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group at random. The above test is known as the Wilcoxon rank sum test (Wilcoxon,
1945). The Wilcoxon rank sum test is one of the conditional permutation tests in which
permutation is performed to the confinement of random assignment of two out of five
patients with prostate hyperplasia to the placebo group. As a result, there are a total of 
10 possible permutations of ranks for the placebo group. If we can randomly assign any
five enrolled patients from 0 to 5 to receive placebo treatment, then there will be a total of
32 subsets as given in Table 4.2.3. The permutation tests over all possible subsets are called
the unconditional permutation tests. The p-values for the unconditional permutation tests
can be similarly computed.

The above discussion indicates that the calculation of the p-value for the Wilcoxon rank
sum test does not assume any probability distribution for the endpoint change from baseline
in peak urinary flow rate from baseline. As a matter of fact, any statistical test based on the
permutation principle is assumption free. In addition, as indicated by Lachin (1988a), the
family of the linear rank tests is the most general family of permutation tests (Lehmann,
1975; Randles and Wolfe, 1979). For example, the well-known Pearson chi-square statistic
for comparison of two proportions is equal to N/(N�1) times the chi-square statistic derived
by permutation, where N is the total number of patients (Koch and Edwards, 1988). Other
tests for continuous or quantitative clinical endpoints include the Wilcoxon rank sum test
for two independent samples and Kruskal-Wallis test for multiple independent samples. 
For censored data the logrank test (Miller, 1981) and Peto-Peto-Prentice-Wilcoxon test
(Kalbfleisch and Prentice, 1980) are useful. These tests are widely applied statistical proce-
dures in clinical trials. Note that since the statistical procedures based on the concept of
permutation require the enumeration of all possible permutations, it is feasible only for
small samples. As the sample size increases, however, the sampling distribution of test sta-
tistics derived under permutation will approach to some known continuous distribution such
as a normal distribution. In addition, as shown by Lachin (1988b), the probability distribu-
tions for the family of linear rank statistics for large samples are equivalent to those of the
tests obtained under the assumption of the population model. As a result, if patients are
randomly assigned to the treatments, statistical tests for evaluation of treatments should 
be based on permutation tests because the exact p-value can be easily calculated for small
samples. For large samples, the data can be analyzed by the permutation methods derived
under the population model as if the patients were randomly selected from a homogeneous
population.

Table 4.2.3 All Possible Unconditional Permutation
for Five Subjects

Number of Subjects

Placebo Test Possible Permutation

0 5 1
1 4 5
2 3 10
3 2 10
4 1 5
5 0 1

Total 32 � 25
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Stratification

In most clinical trials, the ultimate goal is not only to provide statistical inference on the
effectiveness and safety of a test drug, compared to a control or placebo based on clinical
data collected from the trials, but also to apply the results to the targeted patient popula-
tion. In practice, there are many covariates such as age, gender, race, geographical loca-
tions, underlying disease severity, and others that may have an impact on the statistical
inference drawn. The accuracy and reliability of the estimation of primary clinical end-
points for evaluation of the treatment effect can be affected by the heterogeneity caused by
these covariates. To overcome and control such heterogeneity, a stratified randomization is
found helpful. The use of stratification in clinical trials is motivated originally by the con-
cept of blocking in agricultural experiments in the mid-1930s (Fisher, 1935). The idea is
quite simple and straightforward. If a covariate is known to be the cause of heterogeneity,
then the patients are stratified or blocked into several homogeneous groups (or strata) with
respect to the covariate. Randomization of patients to the treatment is then performed inde-
pendently within the strata. This type of randomization with strata is called stratified ran-
domization. For example, the National Institute of Neurological Disorders and Stroke
rt-PA stroke study group (1995) suspected that the time from the onset of stroke to the
beginning of treatment of rt-PA may have a significant impact on neurologic improvement
as assessed by the National Institute of Health Stroke Scale (NIHSS). As a result the study
considered two strata of patients based on the time (in minutes) from the onset to the start
of the treatment, namely 0 to 90 minutes and 91 to 180 minutes. For multicenter trials,
stratified randomization with respect to geographical location is necessary because differ-
ences in study centers usually account for the major source of variation for many primary
clinical endpoints. The idea of stratification is to keep the variability of patients within
strata as small as possible and the between-strata variability as large as possible so that the
inference for the treatment effect possesses the optimal precision. Another reason for the
use of stratification in clinical trials is to prevent imbalance with respect to important
covariates. For example, with an unstratified randomization, more males may be enrolled
into the test drug group, while the placebo group may enroll more females. Hence the dis-
tribution of treatments with respect to gender is not balanced. Despite the advantages of
stratified randomization, it should be noted that the stratification will eventually become
more complicated and difficult to implement due to administrative complexity, increasing
time and expense, and other logistic issues.

The extreme case of stratification is the technique of matching which is often employed
in the case-control studies. For example, for a clinical trial comparing a test drug with a
placebo, patients are to be matched in pairs with respect to some predetermined covariates
such as demographic, baseline characteristics, and severity of disease. Within each pair,
one patient is assigned to receive the test drug and the other patient receives the placebo.
Assignment of the matched patients to treatments might not be random. Wooding (1994)
points out that matching is often used as a substitution for randomization by investigators
who mistrust and do not like the concept of randomization. In case-control trials, although
there may be a large number of covariates, they may or may not have an impact on clinical
outcomes. In practice, it is almost impossible to consider all possible covariates in a
clinical trial. However, if an important covariate is missed during the process of matching,
the cause of bias cannot be identified, and consequently it cannot be assessed if it truly
exists. Another problem of matching in case-control trials is that the number of patients
increases rapidly as the number of covariates to be considered for matching becomes large.
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Accordingly, the task of finding matching pairs becomes formidable (e.g., see Wooding,
1994). The primary purpose of matching is to eliminate variations of clinical endpoints
caused by the differences among patients due to biological variations, as discussed in
Chapter 2. As a result the method of matching attempts to consider the individual patient as
a stratum and to randomize the sequence of treatment of the test drug and placebo within
each stratum. Since each patient receives both treatments, the variation between patients is
eliminated from the comparison between the test drug and the placebo. This type of design
is called a crossover design, and it will be discussed in detail in the next chapter.

In summary, as indicated by Lachin (1988a), the chance of covariate imbalance decreases
as the sample size increases. The covariate imbalance has little impact on large samples. In
addition the difference in statistical power between unstratified and stratified randomization
is negligible (McHugh and Matts, 1983). Furthermore a post hoc stratified analysis can
always be employed to adjust bias caused by the imbalance of baseline covariates. To control
covariate imbalance, Peto et al. (1976) indicate that if, during analysis, initial diagnosis (i.e.,
covariate) is allowed for (i.e., stratified analysis) as the different treatments are being com-
pared, there is hardly ever need for stratification at entry in large trials. Therefore it is recom-
mended that stratified randomization for a clinical trial be performed only with respect to
those covariates that are absolutely necessary for the integrity of the study. In addition, ICH
E9 guidance on Statistical Principles for Clinical Trials also suggests that although stratified
randomization by important prognostic variables may be valuable to keep balanced alloca-
tion within strata and has greater potential benefit in small trials, the use of more than two or
three stratified variables is rarely necessary and is logistically troublesome (ICH E9, 1998).

4.3 RANDOMIZATION METHODS

In the early 1970s, before the concept of randomization was widely accepted as an effec-
tive tool to prevent the subjective selection bias in the assignment of patients to the treat-
ments, some systematic methods for assignment of patients to treatments under study were
commonly used. These systematic methods are summarized in Table 4.3.1. As can be seen
from Table 4.3.1, all of these methods are deterministic. The assignment of patients to
treatments can be predicted without error. Since the investigators or patients may be aware
of which treatment the patients receive, subjective bias can consciously or unconsciously
occur in both the assignment of patients to treatments and the evaluation of clinical out-
comes for the treatment under investigation. To prevent such bias, in this section several
useful randomization methods are introduced.

Although controlled randomized trials are viewed as the state-of-the-art technology for
clinical evaluation of therapeutic interventions, some investigators still try to beat the ran-
domization by guessing the treatments to which the patients are assigned (Karlowski et al.,
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Table 4.3.1 Unacceptable Methods of Assignment of Patients to Treatment

1. Assignment of patients to treatment according to the order of enrollment 
(every other patient is assigned to one group)

2. Assignment of patients to treatment according to patient’s initial
3. Assignment of patients of treatment according to patient’s birthday
4. Assignment of patients according to the dates of enrollment
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1975; Byington et al., 1985; Deyo et al., 1990). Hence, subjective judgment for evaluation
of patients’ clinical outcomes always introduces potential selection bias by investigators
who are aware of the treatment assignment of patients. A simple model suggested by
Blackwell and Hodges (1957) and Lachin (1988a) can be adapted to assess this potential
selection bias due to a wrong guess of treatment assignments by investigators. The
Blackwell-Hodges diagram for selection bias is given in Table 4.3.2. This diagram is con-
structed under the assumption that each patient has an equal chance (50%) of being
assigned to either the test drug or the placebo. Therefore, if there are a total of n patients
enrolled into the study, the expected sample size for both the test drug and the placebo is
equal to n/2. Then, the total potential selection bias for evaluation of the treatment effect
introduced by the investigator is represented as the (expected) difference between the
observed sample means according to the treatment assignments guessed by the investiga-
tor. This expected difference can then be shown as the product of the investigator’s bias in
favor of the test drug times the expected bias factor which is the difference between the
expected number of correct guesses and the number expected by chance. The expected bias
factor is equal to one-half times the number of correct guesses minus the number of
misses. Suppose that the study is double blinded and that the investigators have no other
way to predict the treatment assignments but to use laboratory evaluations or some partic-
ular adverse events caused by the test drug. Then, the probability of correctly guessing the
treatment assignments is 50% for each treatment. Consequently, under this situation, the
expected number of correct guesses will be the same as the number expected by chance,
which is n/2. Hence the expected bias factor is zero. Therefore, even though the investiga-
tor might have positive bias in evaluation of patients whom he or she believe are receiving
the test drug, the potential selection bias will vanish in the evaluation of the treatment
effect due to the fact that the expected bias factor is zero.

Note that in addition to selection bias, an accidental bias can also occur when compar-
ing treatments in the presence of covariate imbalances. Efron (1971) considers the effects
of various randomization methods on bias for estimation of the treatment effect in a regres-
sion model assuming that important covariates are not accounted for. Gail et al. (1984) and
Lachin (1988a) reported that these randomization methods will generally produce consis-
tent estimates of the treatment effect in linear models. However, in some nonlinear models
estimates of the treatment effect are biased no matter how large the sample size is (i.e.,
asymptotically biased) under these randomization methods. Note that for linear models,
these randomization methods are equivalent in the sense that they produce estimates of
treatment effect that are free of accidental bias. However, for small or finite samples, the

Table 4.3.2 Blackwell-Hodges Diagram for Selection Bias

Random Assignment 
of Equal Probability

Investigator’s Guess Test Drug Placebo

Test drug a n/2 � b
Placebo n/2 � a b

n/2 n/2

Source: Blackwell and Hodges (1957).
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variance of the bias varies from randomization method to randomization method. As a
result the chance of accidental bias and magnitude of accidental bias vary with respect to
randomization methods.

In general, randomization methods can be classified into three types according to the
restriction of the randomization and the change in probability for randomization with
respect to the previous treatment assignments. These types of randomization methods are
the complete randomization, the permuted-block randomization, and the adaptive random-
ization. Randomization can be performed either by random selection or by random alloca-
tion for methods of complete and permuted-block randomization. Basically the adaptive
randomization consists of treatment and covariate and response adaptive randomizations.
In what follows we will describe these randomization methods and compare their relative
merits and limitations whenever possible.

The randomization list of a clinical trial documents the random assignment of treat-
ments to subjects. As presented in Tables 4.3.3 to 4.3.4, it is a sequential list of treatments
or treatment sequences in a crossover trial, or corresponding codes by subject numbers. As

Table 4.3.3 Example of Complete Randomization for Four Centers 

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

A. Hope, MD J. Smith, MD

Subject Treatment Subject Treatment 
Number Assignment Number Assignment

1403001 Active drug 1401001 Placebo
1403002 Active drug 1401002 Active drug
1403003 Placebo 1401003 Active drug
1403004 Active drug 1401004 Active drug
1403005 Placebo 1401005 Placebo
1403006 Active drug 1401006 Placebo
1403007 Active drug 1401007 Active drug
1403008 Placebo 1401008 Active drug
1403009 Active drug 1401009 Placebo
1403010 Placebo 1401010 Placebo
1403011 Placebo 1401011 Placebo
1403012 Placebo 1401012 Active drug
1403013 Active drug 1401013 Placebo
1403014 Placebo 1401014 Active drug
1403015 Placebo 1401015 Placebo
1403016 Active drug 1401016 Active drug
1403017 Placebo 1401017 Active drug
1403018 Placebo 1401018 Placebo
1403019 Active drug 1401019 Active drug
1403020 Placebo 1401020 Active drug
1403021 Active drug 1401021 Placebo
1403022 Active drug 1401022 Active drug
1403023 Placebo 1401023 Active drug
1403024 Active drug 1401024 Active drug
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different trials might have different study designs, different objectives, or different prog-
nostic factors to consider, different procedures for generating randomization codes might
be necessary. In addition, the randomization codes should be reproducible. Once the trial
starts, subjects who meet the inclusion and exclusion criteria should receive their corre-
sponding random treatment assignment according to the randomization codes sequentially.
In other words, the next subject to be randomized into a clinical trial should always receive
the treatment to the next free number in the appropriate randomization list. However, too
much detailed information of randomization will facilitate predictability and should not be
included in the protocol. Furthermore, the randomization list should be filed securely in 
a manner that blindness is adequately maintained throughout the study.

Complete Randomization

Simple randomization is referred to as the procedure in which no restrictions are enforced on
the nature of randomization sequence except for the number of patients required for achieving
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Table 4.3.3 Example of Complete Randomization for Four Centers (Continued)

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

M. Dole, MD C. Price, MD

Subject Treatment Subject Treatment 
Number Assignment Number Assignment

1402001 Placebo 1404001 Placebo
1402002 Active drug 1404002 Active drug
1402003 Placebo 1404003 Active drug
1402004 Placebo 1404004 Placebo
1402005 Active drug 1404005 Active drug
1402006 Active drug 1404006 Placebo
1402007 Active drug 1404007 Placebo
1402008 Active drug 1404008 Active drug
1402009 Active drug 1404009 Placebo
1402010 Active drug 1404010 Active drug
1402011 Active drug 1404011 Active drug
1402012 Placebo 1404012 Active drug
1402013 Placebo 1404013 Placebo
1402014 Placebo 1404014 Placebo
1402015 Active drug 1404015 Placebo
1402016 Active drug 1404016 Placebo
1402017 Placebo 1404017 Active drug
1402018 Active drug 1404018 Placebo
1402019 Active drug 1404019 Placebo
1402020 Active drug 1404020 Active drug
1402021 Placebo 1404021 Active drug
1402022 Placebo 1404022 Placebo
1402023 Active drug 1404023 Placebo
1402024 Placebo 1404024 Placebo
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the desired statistical power and the ratio of patient allocation between treatments. For a clini-
cal trial with N patients comparing a test drug and a placebo, the method of simple random-
ization is called a completely binomial design (Blackwell and Hodges, 1957) or a simply
complete randomization (Lachin, 1988b) if it has the following properties:

1. The chance that a patient receives either the test drug or the placebo is 50%.

2. Randomization of assignments is performed independently for each of the N patients.

The randomization codes based on the method of complete randomization can be generated
either by the table of random numbers (Pocock, 1983) or by some statistical computing soft-
ware such as SAS® (Statistical Analysis System, 1995). However, it should be realized that
a computer cannot generate true random numbers but pseudorandom numbers because only
a fixed number of different long series of almost unpredictable permuted numbers are gen-
erated. Therefore, Lehmann (1975) recommends that a run test be performed to verify the
randomness of the generated randomization codes. In practice, however, randomization

Table 4.3.4 Example of Complete Randomization for Four Centers

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, three parallel groups

A. Hope, MD J. Smith, MD

Subject Treatment Subject Treatment 
Number Assignment Number Assignment

1403001 Placebo 1401001 Placebo
1403002 100 mg 1401002 200 mg
1403003 100 mg 1401003 100 mg
1403004 Placebo 1401004 100 mg
1403005 200 mg 1401005 100 mg
1403006 200 mg 1401006 Placebo
1403007 100 mg 1401007 200 mg
1403008 200 mg 1401008 Placebo
1403009 100 mg 1401009 200 mg
1403010 100 mg 1401010 200 mg
1403011 100 mg 1401011 Placebo
1403012 200 mg 1401012 Placebo
1403013 Placebo 1401013 200 mg
1403014 100 mg 1401014 Placebo
1403015 Placebo 1401015 200 mg
1403016 200 mg 1401016 200 mg
1403017 Placebo 1401017 200 mg
1403018 100 mg 1401018 100 mg
1403019 200 mg 1401019 200 mg
1403020 100 mg 1401020 Placebo
1403021 Placebo 1401021 100 mg
1403022 Placebo 1401022 200 mg
1403023 Placebo 1401023 100 mg
1403024 Placebo 1401024 100 mg
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codes are preferably generated by a computer due to its speed and convenience in the main-
tenance of generated randomization codes. For example, the SAS® function RANBIN can
be used to generate randomization codes for clinical trials with two treatment groups. For
another example, suppose that a clinical trial is planned in four study centers to investigate
the effectiveness and safety of a test drug as compared to an inert placebo. Ninety-six
patients are intended for the study. Suppose that it is desirable to allocate patients equally in
each treatment group by study center. We will consider the randomization codes given in
Table 4.3.3 as generated based on complete randomization by study center. Suppose that
there are three treatment groups (e.g., placebo, 100 mg, and 200 mg of the test drug), and the
randomization codes can be similarly generated (see Table 4.3.4). Note that the SAS pro-
grams used for generation of the randomization codes given in Tables 4.3.3 and 4.3.4 are
provided in Appendices B.1 and B.2, respectively.

In clinical trials, in the interest of balance, the assignment of an equal number of
patients in treatment groups is usually considered. In practice, however, it is possible that a
trial will end up with an unequal number of patients in each treatment group. Table 4.3.5
provides a distribution of the number of patients by treatment and study center for the 

Table 4.3.4 Example of Complete Randomization for Four Centers (Continued)

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, three parallel groups

M. Dole, MD C. Price, MD

Subject Treatment Subject Treatment 
Number Assignment Number Assignment

1402001 Placebo 1404001 100 mg
1402002 100 mg 1404002 200 mg
1402003 100 mg 1404003 Placebo
1402004 Placebo 1404004 Placebo
1402005 100 mg 1404005 200 mg
1402006 100 mg 1404006 200 mg
1402007 200 mg 1404007 200 mg
1402008 100 mg 1404008 100 mg
1402009 100 mg 1404009 Placebo
1402010 200 mg 1404010 200 mg
1402011 Placebo 1404011 100 mg
1402012 100 mg 1404012 Placebo
1402013 200 mg 1404013 200 mg
1402014 Placebo 1404014 Placebo
1402015 200 mg 1404015 Placebo
1402016 Placebo 1404016 100 mg
1402017 Placebo 1404017 200 mg
1402018 Placebo 1404018 200 mg
1402019 100 mg 1404019 100 mg
1402020 Placebo 1404020 Placebo
1402021 100 mg 1404021 100 mg
1402022 200 mg 1404022 200 mg
1402023 200 mg 1404023 200 mg
1402024 Placebo 1404024 200 mg
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randomization codes given in Tables 4.3.3 and 4.3.4. It can be seen that although the prob-
ability for random assignments is 1/2 for two treatments and 1/3 for three groups, the final
sample sizes based on complete randomization are not equal for the treatment groups. 
In general, the treatment imbalance within each study center is more severe than that for
the overall clinical trial. Lachin (1988b) provides an approximate formula for calculation
of the chance of treatment imbalance for complete randomization. Based on his formula,
Figure 4.3.1 plots the chance of treatment imbalance as a function of sample size for diff-
erent fractions of the total sample size for the larger treatment group. It can be seen from
Figure 4.3.1 that the minimum sample sizes required for a probability of less than 5% for
the treatment imbalance are 386, 96, 44, and 24 when the fractions of the total sample size
for the larger treatment (imbalance proportion) are 0.55, 0.60, 0.65, and 0.70, respectively.
On the other hand, Figure 4.3.2 gives a graphical presentation of the fractions of the total
sample size for a larger group such that would occur with the probabilities 0.005, 0.01,
and 0.05 as a function of sample sizes. Figure 4.3.2 clearly shows that the fraction of 
the total sample size for the large group with a fixed probability of treatment imbalance is
a decreasing function of sample size. Both Figures 4.3.1 and 4.3.2 demonstrate that a
severe treatment imbalance based on complete randomization is unlikely when the sample
size is large. For the usual statistical tests for quantitative clinical measures that can ade-
quately be described by the normal probability model, the smallest variance for the esti-
mate of the treatment effect can be obtained when an equal number of patients are enrolled
in each treatment group. Consequently, the maximum statistical power for detection of the
treatment difference is achieved. In order to examine the impact on the power caused by
treatment imbalance due to the complete randomization, Figure 4.3.3 provides a graph of
the power for detection of a fixed treatment difference as a function of the fraction of a
fixed total sample size for the larger treatment group. As can be seen from Figure 4.3.3,
when the fraction of the larger group is at most 0.7, the power of the test for detection of
treatment effect is hardly affected at all. In summary, although complete randomization

Table 4.3.5 Sample Size by Treatment and Center for Random Codes in 
Tables 4.3.3 and 4.3.4

Study Center Active Drug Placebo Total

Table 4.3.3

J. Smith, M.D. 14 10 24
M. Dole, M.D. 14 10 24
A. Hope, M.D. 12 12 24
C. Price, M.D. 10 14 24

Total 50 46 96

Study Center 100 mg 200 mg Placebo Total

Table 4.3.4

J. Smith, M.D. 7 10 7 24
M. Dole, M.D. 9 6 9 24
A. Hope, M.D. 9 6 9 24
C. Price, M.D. 6 11 7 24

Total 31 33 32 96
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will present a high chance of treatment imbalance, the chance of severe treatment imbal-
ance is unlikely and moderate treatment imbalance has little impact on statistical power if
the sample size of the trial exceeds 200. In practice, complete randomization is easy to
implement. However, there is a high probability that it will produce unequal sample sizes
among treatment groups when the total sample size is moderate (e.g., fewer than a few
hundreds).

Another type of simple randomization that provides equal allocation of sample size is
the random allocation. Random allocation is the simplest form of restricted randomization.

Figure 4.3.1 Chance of treatment imbalance for complete randomization as a function of sample
size. Sample fraction: 0.55, 0.60, 0.65, and 0.70. (Source: Lachin, 1988b.)

Figure 4.3.2 Sample fractions for complete randomization with chance of imbalance as a function
of sample size. Chance of imbalance: 0.005, 0.01, and 0.05. (Source: Lachin, 1988b.)
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The method of random allocation randomly selects the N/2 out of a total of N patients
without replacement and assigns these N/2 patients to receive the test drug and the other
half to receive the placebo. Since there are a total of N!/[(N/2)!]2 possible ways for the
selection of N/2 patients, it is equivalent to generating a random permutation of numbers
from 1 to N and assigning the first half to the test drug. Hence, the SAS® procedure PLAN
can be used to generate randomization codes for the method of random allocation. Table
4.3.6 provides a list of the randomization codes for a test drug and a placebo; the codes are
generated based on a method of random allocation by the study center. It can be verified
that for each of the four centers exactly 12 patients are assigned to each treatment group.
Thus a total of 48 patients are assigned to either the test drug group or the placebo group.
An SAS program for the method of random allocation for simple randomization is also
provided in Appendix B.3. Although the marginal probability for assigning a patient to
each of the two treatment groups is 1/2 for the method of random allocation, the condi-
tional probability for assignment of a patient given that the assignment of the previous
patient is not equal to 1/2 for the method of random allocation. This is because the random
allocation is based on simple sampling without replacement.

Note that in a unblinded study, there is no potential selection bias for complete random-
ization, since the expected bias factor is always zero. As indicated in Lachin (1988b), the
expected bias factor under the method of random allocation is an increasing function 
of sample size. As a result the selection bias for the method of random allocation can be
very substantial as the sample size increases. Therefore it is extremely important to keep
the study double blinded if the method of random allocation is employed. With respect to
accidental bias caused by omitting some important covariates in estimating the treatment
effect, both methods of complete randomization and random allocation are insensitive to
covariate imbalance and hence are free of accidental bias when sample size is large, say
over 100. For small samples the accidental bias may potentially exist for both methods.
However, the accidental bias generated by the method of random allocation is larger than

Figure 4.3.3 Power curves as a function of the sample fractions. Power is for a two-sided test at 
the 5% significance level. Power is 0.95, 0.90, 0.85, and 0.80 when the sample fraction is 0.5.
(Source: Lachin, 1988a.)
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Table 4.3.6 Example of Random Allocation for Four Centers

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

A. Hope, MD J. Smith, MD

Subject Random Treatment Subject Random Treatment
Number Permutation Assignment Number Permutation Assignment

1403001 15 Placebo 1401001 19 Placebo
1403002 12 Active drug 1401002 9 Active drug
1403003 19 Placebo 1401003 22 Placebo
1403004 1 Active drug 1401004 17 Placebo
1403005 23 Placebo 1401005 16 Placebo
1403006 11 Active drug 1401006 5 Active drug
1403007 2 Active drug 1401007 8 Active drug
1403008 20 Placebo 1401008 21 Placebo
1403009 3 Active drug 1401009 13 Placebo
1403010 22 Placebo 1401010 12 Active drug
1403011 10 Active drug 1401011 24 Placebo
1403012 16 Placebo 1401012 6 Active drug
1403013 4 Active drug 1401013 4 Active drug
1403014 6 Active drug 1401014 14 Placebo
1403015 7 Active drug 1401015 1 Active drug
1403016 13 Placebo 1401016 15 Placebo
1403017 24 Placebo 1401017 10 Active drug
1403018 9 Active drug 1401018 3 Active drug
1403019 17 Placebo 1401019 7 Active drug
1403020 21 Placebo 1401020 23 Placebo
1403021 18 Placebo 1401021 2 Active drug
1403022 8 Active drug 1401022 20 Placebo
1403023 5 Active drug 1401023 18 Placebo
1403024 14 Placebo 1401024 11 Active drug

that of complete randomization. As a matter of fact the accidental bias under complete ran-
domization is the smallest among all randomization methods discussed in this section.

Permuted-Block Randomization

One of the major disadvantages of simple randomization is that treatment imbalance can
occur periodically. For example, in Table 4.3.3, the randomization codes for investigator
M. Dole, M.D., were generated under complete randomization with a run of seven consec-
utive patients (from subject 1402005 to subject 1402011) assigned to receive the test drug.
Two observations should be noted. First, the number of patients in the treatment groups is
not balanced, as was previously shown in Table 4.3.5. This may be in part explained by the
fact that the randomization is performed within each center and the number of patients to
be enrolled at each center is usually fewer than 50. Second, most clinical trials recruit
patients sequentially. If the demographic factors or baseline characteristics change over
time, then it is quite possible to have a serious covariate imbalance between treatment
groups within each study center and for the entire study as well. This covariate imbalance
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Table 4.3.6 Example of Random Allocation for Four Centers (Continued)

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

M. Dole, MD C. Price, MD

Subject Random Treatment Subject Random Treatment
Number Permutation Assignment Number Permutation Assignment

1402001 23 Placebo 1404001 4 Active drug
1402002 21 Placebo 1404002 17 Placebo
1402003 13 Placebo 1404003 15 Placebo
1402004 17 Placebo 1404004 20 Placebo
1402005 7 Active drug 1404005 5 Active drug
1402006 10 Active drug 1404006 3 Active drug
1402007 18 Placebo 1404007 14 Placebo
1402008 20 Placebo 1404008 10 Active drug
1402009 1 Active drug 1404009 11 Active drug
1402010 14 Placebo 1404010 19 Placebo
1402011 19 Placebo 1404011 21 Placebo
1402012 3 Active drug 1404012 2 Active drug
1402013 22 Placebo 1404013 22 Placebo
1402014 9 Active drug 1404014 23 Placebo
1402015 24 Placebo 1404015 16 Placebo
1402016 5 Active drug 1404016 7 Active drug
1402017 16 Placebo 1404017 9 Active drug
1402018 8 Active drug 1404018 8 Active drug
1402019 4 Active drug 1404019 1 Active drug
1402020 15 Placebo 1404020 24 Placebo
1402021 11 Active drug 1404021 18 Placebo
1402022 6 Active drug 1404022 6 Active drug
1402023 2 Active drug 1404023 12 Active drug
1402024 12 Active drug 1404024 13 Placebo

can be potentially disastrous. For example, suppose that a clinical trial is conducted in two
study centers to evaluate the effectiveness and safety of a test drug as compared to a
placebo. A complete randomization is used for the generation of randomization codes.
Suppose that the randomization codes for one of the two centers contain a long run of con-
secutive patients who are assigned to the test drug group. Also suppose that one of the
important baseline covariates is not balanced between the two treatments within the center.
In this case it is extremely difficult to explain a possible difference in treatment effect
between the two centers because the center effect is confounded with the effect due to this
covariate. One resolution to this major disadvantage of simple randomization is periodi-
cally to enforce a balance in the number of patients assigned to each treatment. In other
words, we first divide the whole series of patients who are to enroll in the trial into several
blocks with equal or unequal lengths. We then randomize the patients within each block.
This method of randomization is known as the permuted-block randomization, and it is
probably the most frequently employed method for the assignment of patients to treat-
ments in clinical trials.
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To illustrate permulated-block randomization, consider the following example. Suppose
that a clinical trial is to be conducted at four centers with 24 patients in each center in order
to investigate the effectiveness and safety of a test drug compared to an inert placebo. Also
suppose that the permuted-block randomization with a block size of 4 patients is to be
employed to prevent treatment and possible covariate imbalances. Two methods can be used
to randomly assign patients to treatments. The first method is simply to adopt the method
of random allocation within each block by generating a random permutation of numbers 
1–4 and assigning the first two to the test drug. This method can be easily implemented
using the SAS® procedure PLAN. Table 4.3.7 provides a listing of randomization codes
generated by the permuted-block randomization with random allocation within each block.

Since there are two treatments with a block size of 4, we have the following six possible
permutations for random assignment of patients to treatments:

1: TTPP

2: PPTT

Table 4.3.7 Example of Permutated-Block Randomization with Random Allocation for Four
Centers and a Block Size of Four

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

A. Hope, MD J. Smith, MD

Subject Random Treatment Subject Random Treatment
Number Permutation Assignment Number Permutation Assignment

1403001 3 Placebo 1401001 1 Active drug
1403002 4 Placebo 1401002 3 Placebo
1403003 1 Active drug 1401003 2 Active drug
1403004 2 Active drug 1401004 4 Placebo
1403005 2 Active drug 1401005 4 Placebo
1403006 4 Placebo 1401006 1 Active drug
1403007 1 Active drug 1401007 2 Active drug
1403008 3 Placebo 1401008 3 Placebo
1403009 2 Active drug 1401009 1 Active drug
1403010 4 Placebo 1401010 4 Placebo
1403011 3 Placebo 1401011 2 Active drug
1403012 1 Active drug 1401012 3 Placebo
1403013 1 Active drug 1401013 4 Placebo
1403014 3 Placebo 1401014 1 Active drug
1403015 2 Active drug 1401015 2 Active drug
1403016 4 Placebo 1401016 3 Placebo
1403017 1 Active drug 1401017 1 Active drug
1403018 3 Placebo 1401018 4 Placebo
1403019 2 Active drug 1401019 2 Active drug
1403020 4 Placebo 1401020 3 Placebo
1403021 3 Placebo 1401021 2 Active drug
1403022 2 Active drug 1401022 4 Placebo
1403023 1 Active drug 1401023 3 Placebo
1403024 4 Placebo 1401024 1 Active drug
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3: TPTP

4: TPPT

5: PTPT

6: PTTP

where T and P represent the test drug and the placebo, respectively. Thus there are a total
of 6 blocks with 4 patients in each center. The randomization codes can then be generated
by producing a random permutation of numbers from 1 to 6, where the numbers corre-
spond to six possible permutations for random assignments of patients as described above.
This method is called permuted-block randomization with random selection, and it can
also be easily implemented by the SAS® procedure PLAN. Table 4.3.8 provides a listing of
randomization codes generated by the permuted-block randomization with random selec-
tion. SAS programs for both methods of permuted-block randomization are also provided
in Appendix B.3 and Appendix B.4, respectively. It can be verified that the randomization

Table 4.3.7 Example of Permutated-Block Randomization with Random Allocation 
for Four Centers and a Block Size of Four (Continued )

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

M. Dole, MD C. Price, MD

Subject Random Treatment Subject Random Treatment
Number Permutation Assignment Number Permutation Assignment

1402001 1 Active drug 1404001 2 Active drug
1402002 3 Placebo 1404002 3 Placebo
1402003 4 Placebo 1404003 1 Active drug
1402004 2 Active drug 1404004 4 Placebo
1402005 4 Placebo 1404005 2 Active drug
1402006 1 Active drug 1404006 4 Placebo
1402007 2 Active drug 1404007 3 Placebo
1402008 3 Placebo 1404008 1 Active drug
1402009 1 Active drug 1404009 4 Placebo
1402010 3 Placebo 1404010 3 Placebo
1402011 2 Active drug 1404011 1 Active drug
1402012 4 Placebo 1404012 2 Active drug
1402013 1 Active drug 1404013 1 Active drug
1402014 4 Placebo 1404014 4 Placebo
1402015 3 Placebo 1404015 3 Placebo
1402016 2 Active drug 1404016 2 Active drug
1402017 3 Placebo 1404017 1 Active drug
1402018 4 Placebo 1404018 3 Placebo
1402019 1 Active drug 1404019 4 Placebo
1402020 2 Active drug 1404020 2 Active drug
1402021 2 Active drug 1404021 2 Active drug
1402022 1 Active drug 1404022 4 Placebo
1402023 4 Placebo 1404023 1 Active drug
1402024 3 Placebo 1404024 3 Placebo
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codes given in Tables 4.3.7 and 4.3.8 provide treatment balance not only within each study
center but also for the entire study.

In addition to the assurance of treatment balance, the permuted-block randomization can
account for a possible time-heterogeneous population by forcing a periodic balance. This
desirable property of forced periodic balance, however, becomes a disadvantage when the
block size is not blinded. In the case where the block size is not blinded, the probability of cor-
rectly guessing the treatment increases at the end of each successive block. Matts and Lachin
(1988) point out that if the treatment is unblinded, then such forced periodic balance provides
investigators an opportunity not only to correctly guess the assignment of patients but also to
alter the composition of the treatment groups. As a result, an increasing chance of correctly
guessing treatment assignment and alteration of treatment composition can certainly increase
the chance of introducing bias to the evaluation of the treatment effect. In addition, as block
size increases, the potential selection bias decreases. Although the use of random block size
can reduce the selection bias, it cannot completely eliminate the bias. The only way to elimi-
nate the selection bias is to enforce a double-blinded procedure during the entire course of

Table 4.3.8 Example of Permutated-Block Randomization by Random Selection 
of Blocks for Four Centers and a Block Size of Four

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

A. Hope, MD M. Dole, MD

Subject Treatment Subject Treatment
Number Assignment Number Assignment

1403001 Placebo 1402001 Active drug
1403002 Placebo 1402002 Placebo
1403003 Active drug 1402003 Placebo
1403004 Active drug 1402004 Active drug
1403005 Active drug 1402005 Active drug
1403006 Active drug 1402006 Active drug
1403007 Placebo 1402007 Placebo
1403008 Placebo 1402008 Placebo
1403009 Active drug 1402009 Placebo
1403010 Placebo 1402010 Active drug
1403011 Active drug 1402011 Active drug
1403012 Placebo 1402012 Placebo
1403013 Placebo 1402013 Active drug
1403014 Active drug 1402014 Placebo
1403015 Active drug 1402015 Active drug
1403016 Placebo 1402016 Placebo
1403017 Placebo 1402017 Placebo
1403018 Active drug 1402018 Placebo
1403019 Placebo 1402019 Active drug
1403020 Active drug 1402020 Active drug
1403021 Active drug 1402021 Placebo
1403022 Placebo 1402022 Active drug
1403023 Placebo 1402023 Placebo
1403024 Active drug 1402024 Active drug
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study for which both investigators and patients are blinded to block size and treatment assign-
ments. For the method of permuted-block randomization, the variance of the accidental bias,
which does not depend on the number of blocks, decreases as block size increases. Although
the accidental bias associated with the permuted-block randomization is negligible for large
samples, it is more serious as compared to those by simple randomization for small samples.

In summary, ICH E9 guideline suggests that blocking size should be short enough to
limit possible imbalance but should be long enough to avoid predictability toward the end
of the sequence in a block. Investigator and relevant staff should generally be blinded to the
blocking size. In a multicenter trial, it is advisable to have a separate randomization code
for each center. In other words, one should apply stratified randomization using center as a
stratum or allocate several whole blocks to each center.

It should be noted that permuted-block randomization is also a stratified randomization.
Therefore a stratified analysis should be performed with block as a stratum to properly
control the overall type I error rate and hence to provide the optimal power for detection of

Table 4.3.8 Example of Permutated-Block Randomization by Random Selection 
of Blocks for Four Centers and a Block Size of Four (Continued )

Random codes for drug XXX, protocol XXX-014
Double-blind, randomized, placebo-control, two parallel groups

J. Smith, MD C. Price, MD

Subject Treatment Subject Treatment
Number Assignment Number Assignment

1401001 Active drug 1404001 Placebo
1401002 Placebo 1404002 Active drug
1401003 Active drug 1404003 Active drug
1401004 Placebo 1404004 Placebo
1401005 Placebo 1404005 Placebo
1401006 Active drug 1404006 Placebo
1401007 Placebo 1404007 Active drug
1401008 Active drug 1404008 Active drug
1401009 Placebo 1404009 Active drug
1401010 Placebo 1404010 Active drug
1401011 Active drug 1404011 Placebo
1401012 Active drug 1404012 Placebo
1401013 Active drug 1404013 Active drug
1401014 Active drug 1404014 Placebo
1401015 Placebo 1404015 Placebo
1401016 Placebo 1404016 Active drug
1401017 Active drug 1404017 Placebo
1401018 Placebo 1404018 Active drug
1401019 Placebo 1404019 Placebo
1401020 Active drug 1404020 Active drug
1401021 Placebo 1404021 Active drug
1401022 Active drug 1404022 Placebo
1401023 Active drug 1404023 Active drug
1401024 Placebo 1404024 Placebo
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a possible treatment effect. In practice, the block effect is usually ignored when performing
data analysis. Matts and Lachin (1988) show that the test statistic ignoring the block is
equal to 1 minus the intrablock correlation coefficient times the test statistic that takes the
block into account. Since the patients within the same block are usually more homoge-
neous than those between blocks, the intrablock correlation coefficient is often positive. As
a result the tests that ignore the block will produce more conservative results. However,
since most clinical trials are multicenter studies with a moderate block size, it is not clear
from their discussion whether a saturated model that factors treatment, center, and block
and their corresponding two-factor and three-factor interactions should be included in the
analysis of variance. In addition, as given in Tables 4.3.7 and 4.3.8, there are a total of 24
strata (center-by-block combinations) with 4 patients in each stratum. It is not clear
whether the Mantel-Haenszel test and linear rank statistics based on the permutation model
are adequate for a complete combination of all levels of all strata with a very small number
of patients in each stratum. In addition, when the block size is large, there is a high possi-
bility that a moderate number of patients will fall in the last block where the randomization
codes are not entirely used up. If the trial is also stratified according to some covariates
such as study center, the number of patients in such incomplete block can become sizable.
Therefore a stratified analysis can be quite complicated due to these incomplete blocks
from all strata and possible presence of an intrablock correlation coefficient.

Adaptive Randomization

As discussed above, the method of complete randomization includes a constant marginal
probability for the independent assignment of patients to treatments. However, to some
extent it can cause an imbalance in the patient allocation to treatment. On the other hand,
the methods of random allocation and permuted-block randomization are useful in forcing
a balanced allocation of patients to treatments within either a fixed total sample size or a
prespecified block size. These methods of restricted randomization can also maintain a
constant marginal probability for the assignment of patients to treatments. In practice, in
addition to enforcing a balanced allocation among treatments to some degree, it is also of
interest to adjust the probability of assignment of patients to treatments during the study.
This type of randomization is called adaptive randomization because the probability of the
treatment to which a current patient being assigned is adjusted based on the assignment of
previous patients. Unlike the other randomization methods described above, the random-
ization codes based on the method of adaptive randomization cannot be prepared before
the study begins. This is because that the randomization process is performed at the time a
patient is enrolled in the study, whereas adaptive randomization requires information on
previously randomized patients. In clinical trials the method of adaptive randomization is
often applied with respect to treatment, covariates, or clinical response. Therefore the adap-
tive randomization is also known as treatment adaptive randomization, covariate adaptive
randomization, or response adaptive randomization. We will now briefly introduce these
three applications of adaptive randomization.

Treatment Adaptive Randomization

The treatment adaptive randomization adjusts for the assigning probability of the current
patient with respect to the number of patients who have been randomized to each treatment
group. Efron (1971) first introduced the idea of biased coin randomization as a method for
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adjustment of assigning probability. Consider the same example discussed above. The
assigning probability for the first patient is clearly 1/2. After k patients are enrolled, kT and
kP patients are randomized to the test drug group and the placebo group, respectively. The
idea is that if more patients were randomized to the test drug group, then the next patient
will be assigned to the placebo group with a probability greater than 1/2. Similarly, if the
current number of patients randomized to the test drug group is fewer than that of the
placebo group, then the next patient will be assigned to the test drug group with a proba-
bility greater than 1/2. If a treatment balance is achieved, then the next patient is assigned
to either the test drug group or the placebo group with a probability of 1/2. As an example,
Pocock (1984) suggests the use of p � 3/4, 2/3, 3/5, and 5/9, for the chance of less than
5%, for differences in the number of patients between treatment groups being 4, 6, 10, and
16, respectively.

Although the bias coin randomization attempts to achieve a treatment balance by
adjusting the assigning probability with respect to the difference in the number of patients
who were previously assigned, it may not be satisfactory because a constant assigning
probability was used during the entire course of the study. As an alternative, Wei (1977,
1978) consider the so-called urn randomization, which is an extension of the biased coin
randomization. For the urn randomization, the probability of the assignment of the current
patient is a function of the current treatment imbalance (Wei and Lachin, 1988). To illus-
trate the method of urn randomization, consider a urn that contains exactly A white balls
and A black balls. For the assignment of a patient, draw a ball at random from the urn and
replace it into the urn. If the drawn ball is a white one, then the patient is assigned to the
test drug group. Otherwise, the patient is assigned to the placebo group. Therefore, the
assigning probability for the first patient is 1/2. The procedure is to add B white (black)
balls to the urn if the drawn ball is a black (white) one. This randomization process is
repeated whenever a new patient is enrolled. From the above description, it can be seen
that the assigning probability of the urn randomization is determined by A and B. There-
fore a urn randomization is usually denoted by UR(A, B). If at each drawing no additional
ball is returned to the urn, then the urn randomization is simply a complete randomization
and because with replacement, an equal assigning probability of 1/2 is employed for the
random selection. If we do not put any ball initially in the urn but use the assigning proba-
bility of 1/2 for the first patient, then the subsequent probability of assigning a patient to
the test drug after k patients have been enrolled is equal to the proportion of patients who
were randomly assigned to the placebo group. This proportion is independent of the num-
ber of B balls scheduled to return to the urn.

The urn randomization can achieve a certain degree of a desired balance at the early stage
of the study. This is usually accomplished by choosing appropriate numbers of A and B. As
pointed out by Lachin, Matts, and Wei (1988), if the ratio of A to B is large, then the urn ran-
domization is very similar to the complete randomization. If the investigator desires to have
the treatment balance at the early stage of the study and wishes to maintain a certain degree
of balance at the end of the study, then we can choose a large ratio of B to A. This nice prop-
erty is especially attractive for the post hoc stratified analysis and sequential trial because the
size of the post hoc–defined strata and the number of patients at the early termination are usu-
ally not known at the planning stage of the trial.

As the sample size increases, the urn randomization approaches complete randomiza-
tion. As a result, the expected bias factor will be very close to zero. Consequently the selec-
tion bias according to the Blackwell-Hodges model will be negligible. For finite samples
the selection bias of the urn randomization is smaller than those methods of restricted
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randomization, though it can be very close to that of the permuted-block randomization for
a sample size fewer than 10. As compared to other methods of randomization, the acciden-
tal bias caused by omitting important covariates for estimation of the treatment effect
becomes negligible as the sample size increases. However, for small trials an accidental
bias may still exist and cannot be ignored. As a result, Lachin, Matts, and Wei (1988) rec-
ommend that the urn randomization not be employed for the trial with either the total size
or the size of the smallest stratum being fewer than 10. The urn randomization with A � 0
and B � 1 has nice properties of adequate control for treatment balance. In addition it is
less vulnerable to both selection and accidental bias than other methods of restricted ran-
domization. Furthermore, it is easy to implement on a computer because the assigning
probability depends only on the current state of treatment allocation.

Although the urn randomization is simple, it requires a much more complicated analy-
sis compared to other methods of randomization. This is because the urn randomization
does not have an equal assigning probability for each patient. To conduct an exact permu-
tation test based on the urn randomization, the probability of each assignment is needed in
order to compute the p-value. For the large sample size, Wei and Lachin (1988) derive the
explicit permutation tests for the logrank and the Peto-Peto-Prentice-Wilcoxon statistics
for the censored data. For the urn randomization, statistics of different strata are indepen-
dent for the prospectively stratified randomization. However, they are correlated for the
poststratified subgroup analyses. Wei and Lachin (1988) give an explicit expression for the
conduct of a combined test over strata.

Covariate Adaptive Randomization In certain diseases some of the prognostic factors are
known to affect clinical outcomes of the treatment. Therefore, it is desired to achieve a
covariate balance with respect to these prognostic factors. For this purpose, we may consider
to employ the covariate adaptive randomization which is also known as the minimization
method (e.g., see Taves, 1974; Pocock, 1984; Spilker, 1991). For an illustration of this
method, consider the following hypothetical trial in which a test drug is evaluated with an
inert placebo in patients with benign prostatic hyperplasia. Suppose that for patients aged
over 64 years old, peak urinary flow rate less than 9 mL/s and an AUA-7 symptom score
being at least 20 will have an impact on the clinical evaluation of the test drug. The
distribution of these three covariates after 106 patients and 107 patients were enrolled into 
the placebo and the test drug, respectively, as shown in Table 4.3.9. Suppose that the age of
the next patient for randomization is 68 years old with a peak urinary flow rate of 7.4 mL/sec
and an AUA-7 symptom score of 21 points. Then one can modify the frequencies of patients
with respect to the categories of covariates that this patient falls into. From Table 4.3.9 the
numbers of patients who satisfy the criteria (1) age older than 64 years old, (2) peak urinary
flow rate less than 9 mL/s, and (3) an AUA-7 symptom score at least 20 for the placebo group
are 49, 45, and 29, respectively, while the numbers for the test drug group are 51, 44, and 30,
respectively. Therefore, the respective sums for the test drug group and the placebo group are
123 and 125. Since the placebo group has a smaller sum, the procedure is to assign the next
patient to the placebo group. Because the minimization method described above is non-
random, the covariate adaptive randomization can also use a probability greater than 1/2 to
assign the next patient to the treatment group with a smaller sum. Pocock (1984) indicates
that assigning a probability of 3/4 or 2/3 may be appropriate. The covariate adaptive ran-
domization requires a constant update of the current status of the covariates. Hence it requires
an intensive administrative effort to implement such a procedure even though the computer
can alleviate the burden to some extent. As a result, the covariate adaptive randomization

c04.qxd  27.10.03  12:54  Page 144



RANDOMIZATION METHODS 145

may present a high risk of breaking blindness by either the investigators or the personnel
responsible for updating the covariate imbalance status. Note that the covariate imbalance
can always be adjusted by a post hoc subgroup analysis when the trial size is moderate. In
practice, the covariate adaptive randomization is not recommended for trials with sample
sizes greater than 100. More details on the covariate randomization can be found in Pocock
and Simon (1975), White and Freedman (1978), and Miller et al. (1980).

Response Adaptive Randomization Another adaptive randomization is to adjust for 
the assigning probability according to the success or failure of the treatments to which
previous patients were assigned. This idea was first proposed by Zelen (1969) and sub-
sequently known as the play-the-winner (PW) rule. For the first patient enrolled in the study,
an assigning probability of 1/2 is employed to either treatment. Suppose that the white ball
represents the test drug (T) and the black ball represents the placebo (P). If the current
patient receives treatment T and the response is a success or if the current patient receives 
P and the response is a failure, then put a white ball in the urn. If the current patient receives
T and the response is a failure or if the current patient receives P and the response is a
success, then put a black ball in the urn. When the next patient is enrolled into the trial, we
randomly draw a ball without replacement from the urn. If there is no ball in the urn, then an
assigning probability of 1/2 is employed to either treatment. Wei and Durham (1978)
indicate that the responses of patients might not be observed before the arrival of the next
patient. The urn therefore might have a very high possibility of being empty during the
entire course of the trial. It turns out that the assigning probability of patients is approx-
imately 1/2 under the play-the-winner rule which is quite similar to the method of random
allocation. If the response is unavailable in a short period of time before the next patient is
enrolled, Zelen (1969) suggests that one can continue to assign the same treatment if the
response of the current patient is a success but switch to the other treatment if a failure is
observed. This rule is called the modified play-the-winner (MPW) rule. Note that the MPW
rule is a deterministic rather than stochastic process.

To overcome the drawback of a deterministic process, Wei and Durham (1978) suggest
an alternative method known as the randomized play-the-winner (RPW) rule. At the begin-
ning of the trial, an equal number (m) of white and black balls are placed in an urn, where
the white balls represent the test drug and black balls represent the placebo. When a patient

Table 4.3.9 Frequency Distribution of Age, Peak Urinary
Flow Rate, and AUA-7 Symptom Score

Covariate Placebo Test Drug

N 106 107
Age (years)

�64 57 56
�65 49 51

Peak flow rate (mL/s)
�9 45 44
�9 61 63

AUA-7 symptom score
�7 25 26
8–19 52 51
�20 29 30
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is enrolled into the trial, a ball is drawn at random from the urn with replacement. If the
randomly selected ball is a white one, the patient is assigned to the test drug group, and
otherwise, to the placebo group. If the previous patient was assigned to the test drug group
and the response is a success, then additional B white balls and A black balls are put into
the urn, where B � A � 0. If the response of the previous patient receiving the test drug is
a failure, then additional A white balls and B black balls are put into the urn. Similarly, if
the previous patient was assigned to the placebo group and the response is a success, then
additional A white balls and B black balls are put into the urn. If the response of the previ-
ous patient receiving the placebo is a failure, then additional B white balls and A black
balls are put into the urn. If the urn is empty, then a probability of 1/2 is used. It should be
noted that exactly additional A plus B balls are put into the urn whenever a response is
available for the assignment of the next patient. The RPW does not require the availability
of the response of the previous patients. The RPW, which is random, provides a higher
probability to treat the next patient, with the better treatment based on the current result of
the trial. When A � B, RPW is the same as the method of complete randomization. Wei
and Durham (1978) show that when the ratio of B to A becomes large, the probability of
assigning patients to the test drug is approximately equal to the ratio of the failure rate of
the placebo to the sum of failure rates for both treatments. Therefore, if the ratio of B to A
is large, then the RPW tends to assign more patients to the better treatment. In addition,
Wei et al. (1990) indicate that RPW is less vulnerable to the experimental bias than other
adaptive randomizations.

Since the assigning probability of the current patient to treatments adjusts for the past
history of the outcomes of the previously randomized patients, the statistical analysis
based on RPW is much more complicated than those based on other methods of random-
ization. Wei (1978) describes the permutation distribution of a test for the binary response
under RPW. In addition, Wei et al. (1990) study the exact conditional, exact unconditional,
and approximate confidence intervals for the treatment difference in binary responses. The
results indicate that the exact unconditional procedure performs much better than the con-
ditional procedure. In addition the large sample unconditional confidence intervals derived
from the likelihood statistic are not very sensitive to the adaptive randomization and per-
form quite satisfactory for trials with moderate sample size. The confidence intervals based
on the maximum likelihood estimates behave very poorly under RPW. Therefore, Wei et al.
(1990) suggest that the features of response adaptive randomization be taken into account
in the analysis. On the other hand, Tamura et al. (1994) perform a Bayesian analysis for a
trial concerning patients with depressive disorder using RPW.

Recently several clinical trials were conducted using the play-the-winner rule. For exam-
ple, a clinical trial was conducted at the University of Michigan to investigate the effective-
ness and safety of extracorporeal membrane oxygenation (ECMO) in treating newborn
babies with persistent pulmonary hypertension (PPH) with the conventional mechanical
ventilation (CMV) as the concurrent control (Cornell et al., 1986). Past experience has
shown that infants with PPH has a 80% death rate in the absence of ECMO which is an arti-
ficial heart-lung machine recycling the blood through a membrane exposed to the oxygen
with a high concentration. On the other hand, ECMO is a surgical procedure with potential
life-threatening complications to the infants. Since the response (either death or recovery)
can be observed within a few days, the response of the previously treated infants is available
before the entry of the next newborn. Consequently, a RPW with m � 1, A � 0, and B � 1
was employed for the first infant. The result turned out to be the ECMO treatment, and the
baby recovered. Then, a white ball representing the ECMO treatment was put in the urn. For
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the next infant, although the probability of assigning infants to the ECMO treatment is 2/3
and to the CMV treatment is 1/3, the resulting treatment for the second infant is the CMV
treatment with an unfortunate outcome of death. Therefore a black ball representing the
CMV treatment was put back into the urn. This procedure was employed. The result turned
out that the ECMO treatment was randomly assigned to the next eight consecutive infants
all of whom survived. The trial was terminated at this point. Note that two more infants
were also assigned to the ECMO treatment without invoking the ECMO treatment, but both
of them survived too. Boston’s Children Hospital Medical Center and Brigham and
Women’s Hospital conducted a similar adaptive trial to compare the ECMO treatment with
the CMV treatment in infants with PPH (Ware, 1989). The study involved two phases. For
the first phase, a permuted-block randomization with a block size of 4 was used to generate
randomization codes for the trial. It was calculated at the planning stage that if 4 deaths
were observed in one of the two groups, this phase would be terminated, and the study
would proceed to the second phase in which all subsequent infants would be assigned to
receive the other treatment. It was also predetermined that the second phase would be ter-
minated if 4 deaths or 28 survivors were observed from the infants of both phases who were
enrolled into the other treatment. For the first phases of the trial with a permuted-block ran-
domization, 10 infants were assigned to the CMV treatment and 9 to the ECMO treatment.
Four infants who were randomly assigned to the CMV treatment died, and all 9 infants
receiving the ECMO treatment during the first phase survived. As a result all subsequent
infants were assigned without randomization to receive the ECMO treatment. The trial was
terminated at the 20th infant who enrolled into the second phase and did not survive.

For another example, Tamura et al. (1994) report that a clinical trial utilizing the RPW
rule was conducted to assess the efficacy and safety of fluoxetine as compared with a
placebo in patients with depressive disorder. The study was stratified according to rapid
eye movement latency (REML) which is defined as the time between sleep onset and the
first rapid eye movement. If REML of patients is shorter than or equal to 65 minutes, then
he or she is stratified into the shortened REML; otherwise, he or she is stratified to the nor-
mal REML group. A patient is classified as a responder if the percent reduction at the final
eight-week visit from baseline on the first 17 items of the Hamilton Depression scale
(HAM-D-17) is at least 50%. Since a period of eight weeks is required to observe the pri-
mary endpoint and the patient accrual was rather rapid, this time delay could not allow the
investigator to employ the RPW with the primary endpoint. As a result a surrogate end-
point of the percent reduction of at least 50% in HAM-D-17 in two consecutive visits after
at least three weeks of therapy was used for the response adaptive randomization. Within
each stratum the first six patients were assigned using the method of permuted-block ran-
domization. Starting with the seventh patient, the RPW was initiated within each stratum
with m � 1, A � 0, B � 1. A total of 89 patients were randomized, and yet the surrogate
endpoint was only observed in 61 of the 89 randomized patients and 83 patients were
included in the analysis based on the primary endpoint. Tamura et al. (1994) indicate that
their experience with RPW for this trial has been generally positive despite increasing
communication between the sponsor and investigators.

As indicated earlier, statistical inference depends on the statistical test used, which in
turn depends on the randomization employed. It is therefore important to derive an appro-
priate statistical test according to the randomization employed. For example, the ECMO
study conducted at the University of Michigan created a controversy over the statistical
analysis used for comparing the two treatments. Recall that the 11 infants assigned to the
ECMO treatment survived, and only one baby, the one assigned to the CMV treatment,
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died. Although the ECMO trial at the University of Michigan only involved 12 infants, the
results of this study have raised many serious questions regarding complicated statistical
and ethical issues. First, how does one compare two treatments with such a severe treat-
ment imbalance (i.e., 11-ECMO versus 1-CMV)? A sample of one patient contributes very
little information toward the comparison between treatments. Second, there exists no
appropriate statistical test under the RPW model. Alternatively, Cornell, et al. (1986) con-
sidered the method of ranking and selection to demonstrate that the ECMO treatment is
superior to the CMV treatment. However, his method does not provide p-values and confi-
dence intervals. Wei (1988) developed a permutation test under the RPW rule. However,
Begg (1990) pointed out that Wei’s permutation test is inappropriate and obtained some 
p-values (ranging from 0.038 to 0.62) based on different analyses (also see the discussion
by Wei, 1990; Pocock, 1990; Cox, 1990). For the ECMO study conducted by Harvard
Medical School, there was employed a two-stage design. At the first stage, a probability of
1/2 was used to assign infants until there was statistically significant evidence that one
treatment showed a superior efficacy; then all remaining infants were assigned to the supe-
rior treatment (Ware, 1989). This example demonstrates that appropriate statistical proce-
dure must be derived for the method of randomization to be employed in clinical trials.

For the response adaptive randomization, despite its advantage in ethical terms, it is not
widely accepted in clinical trials (Simon, 1991; Rosenberger and Lachin, 1993; Rosen-
berger, 1999). This is probably due to the availability of appropriate statistical tests under
various methods of response adaptive randomization. Rosenburger and Lachin (1993),
however, provide a list of general conditions under which a response adaptive randomiza-
tion can be implemented successfully given the existing methodology. These conditions
are summarized below:

1. There is a single outcome or hypothesis of interest.

2. Outcomes are ascertainable in a short period of time.

3. The study has important public health consequences, but the diseases are not life-
threatening.

4. The study has an adequate sample size and the composition of the sample is not
likely to change over time.

5. The participants in the study have the resources to logistically implement the ran-
domization procedure.

These general conditions may limit the application of the response adaptive randomization
to clinical trials. First, a disease is a medical condition that is very complicated and usually
cannot be adequately described by a single clinical outcome. Hence a clinical trial may
have more than one objective based on more than one clinical outcome. Consequently the
first condition seems to be very difficult to be satisfied by most clinical trials. Second,
under the RPW model, despite recent developed analysis procedures for binary data (Wei,
1988), multinomial and continuous data for large samples (Rosenberger, 1993, 1999),
analyses for the secondary clinical endpoints, censored data and subgroup analyses for the
adjustment of covariates have not yet been fully developed. Finally clinical trials usually
require multiple visits for an evaluation of the treatment’s progress. However, statistical
method for the analysis of repeated measurements has not been proposed for the RPW
rule. As a result Rosenberger and Lachin (1993) and Rosenberger (1999) conclude that the
future use of the response adaptive randomization is uncertain.
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4.4 IMPLEMENTATION OF RANDOMIZATION

In the pharmaceutical industry, for good clinical practice a set of standard operating proce-
dures (SOP) for generation, implementation, and administration of randomization is usually
established to ensure the integrity of clinical trials. In this section we will introduce an
implementation procedure for the method of nonadaptive randomizations which is adopted
by most of pharmaceutical companies for clinical research and development. In the phar-
maceutical industry the department of Biostatistics and Data Management (or Biometrics)
is usually responsible for the activities of statistics, programming, and clinical data manage-
ment. Within the department, a drug-specific (or project-specific) team (or unit) is usually
formed to oversee the development of statistics, programming, and data management during
the process. This team usually consists of biostatisticians, programmers, and data coordina-
tors. Note that unlike a clinical research associate or monitor, this team does not involve
itself with the day-to-day activities of clinical projects. However, this team is responsible for
the selection of randomization methods, case report forms design and review, clinical data
management, statistical analysis, and report writing. Because generation of randomization
codes is the key to the success of the intended trials, a group within the department of Bio-
statistics and Data Management, not involved with clinical trials, is designated to be respon-
sible for generation and management of randomization codes. Since there are many different
methods for generating randomization codes as discussed above, the group is responsible
for the implementation of a system that incorporates the various methods of randomization
by developing computer programs. Since the system, which may contain a number of com-
puter programs, is not designed for commercial but for internal use, it is recommended that
the methods of randomization employed and the corresponding computer programs be ade-
quately documented. Also it is desirable for a user-friendly User’s Reference Manual to be
developed. The User’s Reference Manual should contain detailed instructions for the use of
the system, references to the pseudonumber generator, methods of randomization, programs
for listings of the pseudonumber generator and for the production of a listing of the ran-
domization codes. In addition a prospective validation of the design programs should be
performed according to a validation protocol before the implementation of the system. Note
that the FDA requires that the results of the validation test be documented and that the sys-
tem be validated periodically.

Generation, Labeling, and Packaging

During the development of the clinical protocol, the project clinician and biostatistician
usually discuss the selection of an appropriate method of randomization and some related
logistic issues for the implementation of randomization according to study objectives, pri-
mary endpoints, stratified covariates (if any), and sample size of the trial. The randomiza-
tion method employed for the study should be described in detail in the study protocol
without disclosure of the block size, if the permuted-block randomization is used. The
study protocol and the investigators’s brochure should also describe in detail a standard
procedure for treatment assignment and drug dispensing. In general, patients should not
receive any medication unless they have met all eligibility criteria and have signed the
informed consent forms as defined in the study protocol. A formal request for randomiza-
tion codes cannot be sent to the project statistician unless the study protocol has obtained
an approval from an internal protocol review committee. The project statistician can then
check whether the request is adequate with respect to the study protocol and design. The
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randomization codes will be generated according to the selected method of randomization
by the randomization group if no concerns are raised by the project statistician. The group
is not only responsible for the generation of randomization codes but also for performing
quality assurance (QA) procedures of the generated randomization codes. The QA proce-
dures are to (1) check every generated randomization codes, (2) document the program
logs for generation of the randomization codes, and (3) maintain information for the gen-
eration of the randomization codes including the seed and the first and last random num-
bers generated from the seed. If the randomization codes meet the requirements of the QA
procedures, then a list of randomization codes is sent to the drug packaging department or
some contracted laboratory for packaging the study drugs. If the trial is a triple-blind study,
the project statistician and clinician or other project team members should be informed
only of the generation of the randomization codes by a cover memo. If, however, the trial
is a double-blind study, then the project statistician and clinician might get a copy of ran-
domization codes upon request. The information of the randomization codes will then be
locked in the database until the time at which an interim analysis or final analysis is 
performed. For a triple-blind study the clinical data coordinator and clinical research asso-
ciate identify the patients through a sequentially assigned patient (subject) number to
maintain the blindness. A patient or subject number usually contains three parts, which
include the project number, the study center number, and a sequentially assigned patient
number within the individual study center. Let us take, for example, a number 01401015
(i.e., 014-01-015) used to identify a patient in a clinical trial. The first three digits 014 are
an identifier of the study drug XXX, the next two digits 01 represent the first study site, and
the last three digits 015 indicate that the patient is the 15th patient to enroll in the study.
The project team will also generate a set of dummy randomization codes for the project
statistician to perform necessary programming for patient listings or case report tabula-
tions as required by the FDA to shorten the statistical analysis after the study is completed
and the database is locked.

When the drug packaging department receives the randomization codes, the study drugs
are packed according to the method and instruction as stated in the protocol. The most
secure method for maintaining blindness is to use identical blister packs or drug kits with
identically appearing contents. Usually the drug kits have a three-part double-blind tear-off
label affixed to the cover of the kit. This label has the protocol number and the preprinted
patient number. Patients’ initials and the time and date the drug dispensed will be recorded
on each label. The time and date are important for establishing an audit trail of treatment
assignment. The double-blinded tear-off portion, which will be attached to the appropriate
page in the case repart form, contains the actual treatment group information to which the
patient is assigned. These sealed labels will not be opened unless it is required in a medical
emergency when knowledge of the respective treatment may influence medical care. At the
conclusion of the study, the investigators should return all used and unused study drugs to
the sponsor. Usually there is a broilerplate paragraph included in the study protocol for
drug accountability. Figures 4.4.1 and 4.4.2 provide flow charts of the randomization pro-
cedure discussed above.

Random Assignment

In the pharmaceutical industry, the randomization procedure is not limited to the genera-
tion of randomization codes for treatment assignments. It can also be applied to laboratory
evaluations. For example, routine hematology, blood chemistry, urinalysis, or some other
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special compounds such a serum hormone levels of the patients from a clinical trial are
usually assayed at a centralized contracted laboratory. However, the assay of active ingre-
dients of the study drugs are often performed by the method developed by the laboratory.
Since samples from a clinical trial may be enormous due to multiple visits, assays may be
required to perform at different times of a day over a period of several days due to the
capacity of the laboratory. As a result, a proper design for the drug assay is necessary to
eliminate variability due to analyst, time, and day. In addition the assay should be per-
formed in a blinded fashion to avoid possible bias caused by the knowledge of the study
drugs. Therefore randomization codes may also be generated by the same randomization
group according to the design and method of randomization as deemed appropriate by the
project statistician. The randomization codes for treatment assignments and drug assays
are to be stored in the central file and cannot be released until the database is locked. The
generation and implementation of randomization codes for drug assays can be logistically
complicated when assays for different active ingredients or their metabolites are required
to perform individually with subdivisions of the blood samples.

In some cases, randomization is also used for poststudy evaluation. For example, for the
evaluation of contrast agents in the enhancement of images obtained with magnetic
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Figure 4.4.1 Randomization codes at the planning stage.
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resonance imaging (MRI), two sets of films with and without contrast agent are usually
obtained. The set of films without the contrast agent is obtained before that with the con-
trast agent. In general, this type of trial is conducted in an open-label fashion without a
concurrent control because it is almost impossible to maintain the blindness during the
trial. As a result the FDA requests that the sponsors perform a blinded reader study after
the trial is completed. A separate protocol for the blinded reader study is also prepared
after all films are obtained from the clinical trial. The blinded reader studies are considered
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as adequate well-controlled studies for approval. The package insert is usually derived
from the blinded reader studies rather than the actual clinical trials. For blinded reader
studies, several qualified readers, who are not engaged the clinical part of the trial and are
not associated with any investigators of the trial, are asked in a random but blinded fashion
to evaluate the films. For this purpose, randomization codes for a blinded reader study can
also be generated according to the design and randomization method specified in the pro-
tocol under the supervision of the project team.

Note that the randomization procedure described above is probably the most frequently
employed procedure for conducting clinical trials in the pharmaceutical industry with sam-
ple sizes smaller than a few thousands. For most clinical trials sponsored by the NIH or
other cooperative groups, the sample size can be quite large. For example, the ISIS-2
(1988) study randomized 17,187 patients with suspected acute myocardial infarction to
four treatment groups and 22,071 male physicians were enrolled to receive one of the four
treatments in the U.S. Physician’s Health Study (1989). An even larger study is the
GUSTO (1993) study which enrolled a total of 41,021 patients with evolving myocardial
infarction. As a result, it may not be feasible to adopt the randomization procedure
described above. As an alternative, a centralized randomization center may be established
for random assignment of treatments either by mail or by telephone. If the time between
the screening and request for random assignment is long, say a month, then the mailing
system may be possible. For example, see the study conducted by the Coronary Drug Pro-
ject Research Group (1973) which is described in detail in Meinert (1986). It should be
noted that it is not an easy task to handle treatment assignments of more than tens of thou-
sands of patients, especially when the time from the onset of symptom to the treatment is
also considered as a crucial factor such as rt-PA for acute ischemic stroke (National Insti-
tute of Neurological Disorder and Stroke rt-PA Stroke Study Group, 1995). Hence a cen-
tral administrated telephone-based assignment system such as Interactive Voice Response
System (IVRS, Chen, 2003), should be employed. For example, ISIS-2 (1988) used a 24-
hour telephone service, based in Gent and Brussels for Belgium, Berlin for Germany,
Valencia for Spain, Bellinzona for Austria and Switzerland, Lyon for France, and Oxford
for England and all other countries. The information of patient identifiers such as age, sys-
tolic blood pressure, hours from onset of the episode of pain that led to admission, aspirin
use during the week before, and the planned treatment in hospital must be completed
before a patient is randomized to receive treatments. In addition the method of minimiza-
tion randomization was also adopted at Oxford for balancing the prognostic factors
recorded at entry. However, on January 24, 1986, a programming error was discovered that
led more patients randomized at Oxford to being allocated to the placebo infusion and
placebo tablets over a period of two months (see Chapter 2 for more information on the
treatments of ISIS-2). This programming error was corrected and the exact balance restored
in August 1986. Similarly the GUSTO trial used a 24-hour a day, seven-day-per-week 
randomization center to verify patient eligibility, informed consent, and to assign treat-
ments to more than forty thousand patients. Note that randomization can be performed
through a computer networking system such as internet, or web-based networking system.
A computerized standard form of eligibility information and informed consent must be
sent with the request to the randomization center. Then a validated computer program at
the randomization center can immediately enter the data of eligibility for a patient interac-
tively on line through web-interface and verify the patient’s eligibility. If inclusion criteria
are met and none of the exclusion criteria are observed, then a random assignment of the
patient to a particular treatment can be issued in a blinded fashion and sent to the study
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center. Otherwise, a message of reasons for refusal to issue randomization codes should be
sent to the study center. This randomization process is not only accomplished in seconds
but also eliminates the human errors that often occur during the randomization process. It
should be noted that a computer system should be validated if it is to be employed for the
generation of randomization codes. In addition all personnel should have appropriate train-
ing. It is suggested that several dry runs with simulated cases be done before the actual
implementation of the system takes place.

4.5 GENERALIZATION OF CONTROLLED RANDOMIZED 
TRIALS

In most clinical trials the group of patients (or sample) who participate is just a small por-
tion of a heterogeneous patient population with the intended disease. As indicated earlier,
a well-controlled randomized clinical trial is necessary to provide an unbiased and valid
assessment of the study medicine. A well-controlled randomized trial is conducted under
well-controlled experimental conditions, which are usually very different from a physi-
cian’s best clinical practice. Therefore it is a concern whether the clinical results observed
from the well-controlled randomized clinical trial can be applied on the patient population
with the disease. As a result the feasibility and generalization of well-controlled random-
ized trials have become an important issue in public health (Rubins, 1994). For illustration
purposes, consider the following two examples.

In early 1970s, a high cholesterol level was known to be a risk factor for developing
coronary heart disease. To confirm this, a trial known as the Lipids Research Clinics Coro-
nary Primary Prevention Trials (CPPT) was initiated by the National Heart, Lung, and
Blood Institute to test the hypothesis whether lowering cholesterol can prevent the devel-
opment of coronary heart disease. In the CPPT trial, a total of 4000 healthy, middle-age
males were randomized to receive either the cholesterol-lowering agent cholestyramine or
its matching placebo (Lipids Research Clinics Program, 1984). The primary endpoint was
the incidence of coronary heart disease after a seven-year follow-up. A statistically signifi-
cant reduction of 1.7% in 7-year incidence of coronary heart diseases was observed for the
cholestyramine group as compared to the placebo (8.1% versus 9.8%). An expert panel
recommended to extrapolate the results for the treatment of high cholesterol in populations
that had never been studied and whose benefit has not yet been demonstrated (The Expert
Panel, 1989; Recommendations for the Treatment of Hypercholesterolemia, 1984). Moore
(1989), however, raises a serious doubt regarding the expert panel’s recommendation for
the treatment of patients with high cholesterol levels. Moore points out that the CPPT trial
was conducted on middle-age males which cannot be applied to a general patient popula-
tion with hypercholesterolemia. Another example concerning the generation of controlled
randomized trials is the U.S. Physician’s Health Study described earlier. The question is
whether the benefit regarding fatal and nonfatal coronary heart disease, which was
observed using 22,000 highly educated males aged over 40 years old, can also be observed
in an average individual regardless of gender, race education, and socioeconomic back-
ground. This question is indeed a tough one to answer. We can address the question in part
by performing a subgroup analysis with respect to the composition of the patients in the
trial. This study led to the United States Congress passing legislation (National Institute of
Health Reauthorization Bill, 1993) which requires the specification of the composition of
any human studies sponsored by the NIH. More detail can be found in Wittes (1994).
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One way to ensure the generalization of controlled randomized trials is to understand
the process for drawing statistical and clinical inference. Basically statistical and clinical
inference for the generalization of results obtained from clinical trials to other patients is a
two-step process. The first step is to internally apply the statistical and clinical inference
on the targeted population to other patients within the population. The second step is to
externally generalize the statistical/clinical inference made on the targeted population to
another patient population with different characteristics. These steps involve the concept of
population efficacy (or safety), individual efficacy (or safety), reproducibility and general-
izability which will be illustrated below.

Note that the current conduct of clinical trials is to compare the difference in distribu-
tions of the clinical responses observed from patients under a test therapy and a standard (or
reference) therapy or a placebo. This concept is referred to as population efficacy (or safety).
Suppose that the distribution of a clinical response can be adequately described by a normal
probability distribution. Then the population efficacy can be assessed through the compari-
son of the first two moments of the distributions between the test and the reference thera-
pies. This is because a normal distribution is uniquely determined by its first two moments.
The comparison of the first moment of the efficacy endpoints for the two therapies is usually
referred to as average efficacy, while the comparison of the second moments is called the
variability of efficacy. To provide a better understanding of average efficacy and variability
of efficacy, the comparison in averages and variabilities are illustrated in Figures 4.5.1
through 4.5.3. For example, to compare the reduction in diastolic blood pressure for evalua-
tion of a new antihypertensive agent against a placebo, Figure 4.5.1 shows that the two 
distributions are very close in both average and variability, which indicates that there is 
no difference in average and variability of the reduction of diastolic blood pressure. There-
fore the new agent may not be efficacious. On the other hand, Figure 4.5.2 demonstrates that
the new agent is more effective in reducing blood pressure. Note that in most clinical trials
with continuous primary endpoints, the objectives are often formulated as hypotheses for
testing the average efficacy. As a result, the population efficacy of the new therapy is often

Figure 4.5.1 Population efficacy in averages and variabilities.
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assessed through the average efficacy under the assumption of equal variability of efficacy.
This assumption, which should be verified, is often ignored by both clinicians and biosta-
tisticians. As illustrated in Figure 4.5.3, it is not uncommon that the new agent shows a 
better efficacy than the placebo and yet exhibits a much larger variability. Since the large
variability of the new agent may cause a safety concern, it is recommended that the possible
causes of the large variability be carefully examined. A large variability may be due to diff-
erences in the composition of patients such as biological variation between two populations.
This will certainly have an impact on the generalization of the results to other populations.
For population efficacy (or safety), we might first generalize the results to similar but
slightly different populations and then, in stages, to much different populations. This con-
cept of generalization is illustrated in Figure 4.5.4 as similarity circles. The strength of the

Figure 4.5.2 Population efficacy in averages and variabilities. Unequal averages and equal variabilities.

Figure 4.5.3 Population efficacy in averages and variabilities. Superior average efficacy and unequal
variabilities.
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generalization is assessed by the distance between any two points within the circle. Note
that the distance is a measure of similarity beween populations, which is a function of fac-
tors such as basic science, animal models, biological variation, and results from other types
of studies.

Note that the establishment of population efficacy does not guarantee that the results can
be generalized to a patient with his or her own biological and genetic makeup, educational
status, and socioeconomic status who is cared by a particular physician at a different geo-
graphical location. The reason is that the efficacy is not established within the patient. The
concept for the comparison between the two distributions of the primary efficacy (or safety)
endpoints obtained from the same patient under repeated administrations of the new agent
and the reference is called individual efficacy (or safety). The concept of individual efficacy
is not new and has been advocated by many clinical researchers. See, for example, Guyatt
et al. (1986) and Sackett (1989). Guyatt et al. (1986) attempt to evaluate individual efficacy
of theophylline through a N-of-1 randomized trial concerning a patient with asthma. The 
N-of-1 randomized trial was conducted based on the following assumptions and proce-
dures: First, the patient and his or her attending physician determined symptoms such as
shortness of breath on ordinarily daily activities, nocturnal spasms of dyspnea, and cough-
ing as primary clinical responses for the treatment of theophylline. The patient agreed 
to record standardized measures of severity of these symptoms. It was also decided that a
10-day treatment would be long enough to evaluate the effectiveness of the treatments. The
N-of-1 randomized trial was performed in a double-blind fashion with randomization of the
order of treatments. At the end of each pair of treatment periods, the patient and physician
met to examine the results (also in a blinded fashion) and decided whether to stop or to con-
tinue another pair of treatments. After administration of two pairs of treatments in a blinded 
and random fashion, the analysis detected a statistically significant difference between the 

Figure 4.5.4 Generalization of clinical results as similarity circle.
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treatments. When the randomization codes were unblinded, it was found that the patient
was better on placebo than theophylline.

Repeated administrations of the test and reference therapies within the same patients
made the comparison between distributions of the primary clinical end-points within the
same individual possible. If we perform this type of trial over N patients in a similar manner,
then a total of N pairs of distributions of the test and reference therapies can be generated.
Consequently both population and individual efficacy can be made based on these N pairs of
distributions. First, within each individual, the individual average efficacy of the test therapy
is assessed as the difference between averages of two distributions. In addition the individ-
ual variability of efficacy can be evaluated as the ratio of individual intrapatient variabilities
between the distributions obtained under the two treatments from the same patient. As a
result individual efficacy can be evaluated by comparing averages and variability of the two
distributions obtained from the same patient. Since the individual average efficacy and vari-
ability of efficacy are obtained from all N patients, we can perform a statistical test to see
whether the individual average efficacy and individual intrapatient variability are homoge-
neous across these N patients. The concept of homogeneity of individual average efficacy
and individual intrapatient variability is referred to as patient-by-treatment interaction for
average and variability, respectively. A patient-by-treatment interaction implies that the rel-
ative efficacy of the test therapy varies from patient to patient. Therefore, if a patient-by-
treatment interaction is found, then the relative efficacy of the test agent must be assessed
individually for each patient, that is, the individual efficacy. On the other hand, if the relative
efficacy is not heterogeneous, then the information of individual average efficacy and indi-
vidual intrasubject variability can be combined over N patients to provide a basis for popu-
lation efficacy. The concepts of population and individual efficacy are motivated from
population and individual bioequivalence (e.g., see Chow and Liu, 1995b, 2000); they are
important concepts for evaluation of bioequivalence between a brand-name drug product
and its generic copies. However, the concept of individual efficacy (safety) has not been
accepted by nor has convinced the clinical/medical community. Guyatt et al. (1986) point
out that the limitations of individual efficacy include (1) it cannot be applied to a disease that
can be cured in a short period of time, and (2) it cannot be assessed with the hard clinical
endpoints such as death or other irreversible condition indicators.

4.6 BLINDING

Although the concept of randomization is to prevent bias from a statistically sound assess-
ment of the study drug, it does not guarantee that there will be no bias caused by subjective
judgment in reporting, evaluation, data processing, and statistical analysis due to the
knowledge of the identity of the treatments. Since this subjective and judgmental bias is
directly or indirectly related to treatment, it can seriously distort statistical inference on the
treatment effect. In practice, it is extremely difficult to quantitatively assess such bias and
its impact on the assessment of the treatment effect. In clinical trials it is therefore impera-
tive to eliminate such bias by blocking the identity of treatments. Such an approach is
referred to as blinding. Blinding is defined as an experimental condition in which various
groups of the individuals involved with the trial are withheld from the knowledge of the
treatments assigned to patients and corresponding relevant information. The blinding is
also known as masking by some research organizations such as NIH.
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For a clinical trial, if the sponsor is to monitor the study and to perform in-house data
management and statistical analysis, then the clinical trial typically involves three parties:
the patient, the study center or investigator, and the sponsor. The patient is the most
important participant in the clinical trial. No clinical trial is possible without the patient’s
dedicated participation, endurance, corporation, and sacrifice. The study center, in a
broad sense, is referred to as those individuals who are either directly in contact with the
patient or perform various evaluations for the patient. Among these individuals is the
investigator, who usually is the patient’s primary care physician and members of the
patient’s care team such as the pathologist for histopathological evaluation, the radiolo-
gist for imaging assessment, a staff nurse who may also serve as the coordinator for the
study center, the pharmacist who dispenses the study medicines, and other health care
personnel at the study center including the laboratory staff and the contracted houses 
that perform the various laboratory evaluations for the blood or urine samples collected
from the patient. Note that in clinical trials sometimes the term investigator may be 
used exchangeably with the term study center or study site in a broader sense. For a clin-
ical trial two functional teams are usually formed by the sponsor. The first team is the
clinical/medical team which consists of the project clinician (e.g., physician monitor) and
clinical monitor such as the CRA. The project clinician has an overall responsibility for
the success of the trial, while the responsibility of the clinical monitor is not only to mon-
itor the conduct of the trial but also to ensure that the investigator adheres to the study
protocol. The second team is the biostatistics and data management team which includes
the project statistician, programmer, and data coordinator. The project statistician over-
sees the activities of data management, programming, and statistical aspects of the trial,
while the programmer is responsible for programming support for data management,
analysis, and report. The data coordinator will coordinate the activity of database setup,
data entry, data verification, data query generation/resolution, database cleanup and final-
ization to ensure the quality of the final database.

Basically blinding in clinical trials can be classified into four types: open label, single
blind, double blind, and triple blind. An open-label study is a clinical trial in which no
blinding is employed. That is, both the investigator and the patient have an idea about
which treatment the patient receives. Since patients may psychologically react in favor of
the treatments they receive if they are aware of which treatments they receive, a serious
bias will occur. For example, for the development of topical cream for the indication of
some skin disorder, after revelation of the dose, two investigators were asked to give their
global evaluation of a patient based on a four-point scale. Despite the fact that the proce-
dures for global evaluation are clearly stated in the protocol, the two investigators gave 
a rather different evaluation for the patient simply because one of them did not believe 
that the drug really works at the dose for the patient received and the other one is an advo-
cate for that type of the compound for the treatment of the skin conditions. On the other
hand, objective endpoints such as systolic and diastolic blood pressures or total cholesterol
levels can be recorded differently if the investigators are aware of treatment assignment.
Although some hard endpoint such as survival (mortality) or incidence of myocardial
infarction are more objective than other clinical endpoints, these can still be subjective. For
example, the determination of the cause of death or the diagnosis of infarction may be
biased if patient’s treatment is known. Therefore open-label trials are generally not recom-
mended for comparative clinical trials. In current practice, open-label trials are not
accepted as adequate well-controlled clinical trials for providing substantial evidence for

c04.qxd  27.10.03  12:54  Page 159



160 RANDOMIZATION AND BLINDING

approval by most regulatory agencies such as the FDA, the European Community (EC),
and Ministry of Health, Labor, and Welfare (MHLW) of Japan. However, under certain cir-
cumstances open-label trials are necessarily conducted. Spilker (1991) provides a list of
situations and circumstances in which open-label trials may be conducted. As indicated in
Chapter 1, in order to provide some potentially promising medications to the patients with
severely debilitating or life-threatening diseases, clinical trials conducted under compas-
sionate plea protocols or treatment IND may be open labeled. In general, open-label trials
are less biased if the clinical endpoints are objective outcomes such as overall survival or
the incidence of coma.

Ethical consideration is always an important factor, or perhaps the only factor that is
used to determine whether a trial should be conducted in an open-label fashion. For exam-
ple, phase I dose-escalating studies for determination of the maximum tolerable dose of
drugs in treating terminally ill cancer patients are usually open labeled. Clinical trials for
evaluation of the effectiveness and safety of a new surgical procedure are usually con-
ducted in an open-label fashion because it clearly unethical to conduct a double-blind trial
with a concurrent control group in which patients are incised under a general anesthesia to
simulate the surgical procedure. Note that premarketing and postmarketing surveillance
studies are usually open labeled. The purpose of premarketing surveillance studies is to
collect the data of efficacy and safety with respect to the duration of exposure of a broader
patient population to the test drug, while the objective of postmarketing surveillance stud-
ies is to monitor the safety and tolerability of the drug product.

By definition, a single-blind study is the one in which either the patient or investigator
is blind to the assignment of the patient. In practice, a single-blind trial is referred to as 
a trial in which only the patient is unaware of his or her treatment assignment. As com-
pared with open-label trials, single-blind studies offer a certain degree of control and the
assurance of the validity of clinical trials. However, the investigator may bias his or her
clinical evaluation by knowing which treatment the patient receives. Spilker (1991) indi-
cates that results of single-blind trials are equivalent to those from open-label trials. There-
fore, when a single-blind trial is planned, it is prudent to ask why this trial cannot be
conducted in a double-blind fashion.

A double-blind trial is a trial in which neither the patients nor the investigator (study
center) are aware of patient’s treatment assignment. Note that the investigator could mean
all of the health care personnel, which include the study center, contract laboratories, and
other consulting experts for evaluation of effectiveness and safety of patients in a broader
sense. In addition to the patients and the investigator, if all members of clinical project
team of the sponsor associated with the study are also blinded, then the clinical trial is said
to be triple-blinded. These members include the project clinician, the CRA, the statistician,
the programmer, and the data coordinator. In addition to the patient’s treatment assign-
ment, the blindness also applies to concealment of the overall results of the trial. In prac-
tice, although the project clinician, the CRA, the statistician, the programmer, and the data
coordinator usually have access to the individual patient’s data, they are generally not
aware of the treatment assignment for each patient. In addition the overall treatment
results, if any (e.g., interim analyses), will not be made available to the patient, the investi-
gator, the project clinician, the CRA, the statistician, the programmer, and the data coordi-
nator until a decision is made at an appropriate time. A triple-blind study with respect to
blindness can provide the highest degree for the validity of a controlled clinical trial.
Hence it provides the most conclusive unbiased evidence for the evaluation of the effec-
tiveness and safety of the therapeutic intervention under investigation.
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To ensure the success of a triple-blind study, it is recommended that the following be
considered:

1. A carefully chosen study design with an appropriate randomization method.

2. A conscientiously selected concurrent control according to study objectives.

3. Adequate conduct of the trial with no apparent protocoal violations.

4. Patient compliance.

5. A sufficient power.

6. Appropriate statistical methods for data analysis.

However, the most important factor for the success of a triple-blind study is to maintain the
blindness throughout the entire course of the trial by all participants of all three parties. To
protect the integrity of blindness, it is helpful to provide in-house training/education to all
personnel related to the clinical trial, including those in the analytical laboratory or in phar-
maceutical science research and development (R&D). For example, personnel in the
department of analytical laboratory are responsible for the assay of blood samples for
active ingredients or metabolites for patients in clinical trials, while the pharmaceutical
science R&D develops the matching placebos for the clinical trial. Therefore the personnel
at analytical laboratory and pharmaceutical science R&D should have a certain under-
standing of the concept of blindness and its implication for the integrity of clinical trials.

For a clinical trial comparing a new therapeutic agent with a concurrent control, the
departments of pharmaceutical science R&D and drug supply/packaging are usually required
to manufacture an identically matched control with the same dosage form. A matched
placebo should be identical to the active agent in all aspects such as size, color, coating, taste,
texture, shape, and odor except that it contains no active ingredient. The study drugs are then
packed in an identical container such as a blister pack or a drug kit affixed with a three-part
double-blind tear-off label with the study and patient number. Manufacturing of a perfectly
matched control requires certain pharmaceutical techniques and packaging skills provided by
both departments. Sometimes, however, a perfectly matched control may not be available
due to technical difficulties for some doses. In this situation the method of administration
should be modified to maintain the blindness. For example, a phase II clinical trial is to be
conducted with daily dose of 100 mg, 300 mg, 600 mg, and a placebo to evaluate the dose-
response relationship of a drug. To keep the blindness throughout the study, it is necessary 
to manufacture placebos to match the drug at different doses. Suppose that the department 
of pharmaceutical science R&D has difficulties in making matched placebos for tablets 
of 300 mg and 600 mg. However, the manufacturing of matching placebo for the smallest
tablets of 100 mg is still possible. In addition, suppose that patients have difficulties in swal-
lowing the largest tablets of 600 mg. In this case we can modify the method of administration
based on 100 mg tablets of the active drug and matching placebos as follows to maintain the
blindness.

The first arm of 600 mg: Six 100 mg tablets of the new agent.

The second arm of 300 mg: Three 100 mg tablets of the new agent and three 100 mg
matched placebo.

The third arm of 100 mg: One 100 mg tablet of the new agent and five 100 mg matched
placebo.

Placebo control arm: Six 100 mg matched placebo.

BLINDING 161
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Note that patients should be instructed to take all six tablets at one time (e.g., in the morning)
so that the blindness will not be broken due to different time of administration. The above
method is known as multiple-placebo or double dummy. This method is useful when treat-
ments involve two different active agents or two different routes of administration. For exam-
ple, a clinical trial is conducted to evaluate a once daily sustained-release formulation of an
anti-hypertensive agent with its standard three-times-a-day (t.i.d.) immediate release formu-
lation. The matched placebos can be made for each of two formulations. A bottle of the active
sustained release formulation (e.g., bottle S) and another bottle of the placebo tablets of 
the immediate release formulation (e.g., bottle I) are dispensed to the patients assigned to 
the sustained-release formulation. The patients assigned to the group of immediate-release
formulation receive a bottle of placebo tablets of the sustained-release formulation and
another bottle of the active immediate-release formulation. Each patient is instructed to take
a tablet from bottle S at 8:00 A.M. in the morning and a tablet from bottle I at 8:00 A.M., 2:00
P.M., and 10:00 P.M. In this case the blindness is preserved without matching tablets identi-
cally for all formulations and placebos.

Another example is ISIS-2 (1988) in which the treatments are one-hour intravenous
infusions of 1.5 µ of streptokinase and one-month of 160 mg/day enteric coated aspirin.
Therefore the corresponding placebo infusion and tablet were manufactured to match the
active treatments as described previously in Chapter 2. However, blindness for ISIS-2 is
possible because the matched placebo infusion has the same one-hour IV infusion at the
same rate. On the other hand, the arm of accelerated rt-PA in the GUSTO I trial (1993) had
a bolus dose of 15 mg, 0.75 mg per kg of body weight, over a 30-minute period, not to
exceed 50 mg; and 0.5 mg per kg, up to 35 mg, over the next 60 minutes. The active control
arms used the same one-hour infusion of 1.5 µ of streptokinase as ISIS-2. Therefore,
because the dose of the accelerated rt-PA had to be adjusted for body weight twice during
the infusion, IV heparin had to be titrated according to the activated partial-thromboplastin
time and its length of infusion was also different from other arms receiving streptokinase.
As a result the GUSTO I study was an open-label study. Although primary efficacy out-
come is the mortality from stroke and bleeding complication as the primary safety end-
point. However, they are subjective to possible bias if the treatments are known to
investigators, in particular, when classification of stroke and bleeding requires clinical
judgment for some borderline cases. Due to the large size of the GUSTO I study, the bias
could be accumulated rapidly and become serious just from some subtle, consciously, sub-
consciously, or unconsciously error in clinical judgment made by an investigator. The
GUSTO I study, however, failed to address the bias issue due to the open label. As a result
there were tremendous debates over the fact that the GUSTO I was an open-label study
(Rapaport, 1993; Sleight, 1993; Rider et al., 1993). In their response to the rebuttal article
by the investigators of the GUSTO I trial (Rider et al., 1994; Lee, 1994), Rider et al. (1994)
state the essence of randomization and blindness in clinical trials: “randomization of
patients is done to try to ensure that no major differences exist in baseline characteristics
between treatment groups before treatments are administered, double-blinding is done to
ensure that no differential effects occur after treatments are given.” It is sad to see that the
breach of blindness, the omitting of a rather routine and operationally and economically
feasible insertion of an extra intravenous line, casts a serious shadow over the scientific
validity of this originally spotless trial, and introduces an inadvertent and impossibly
assessed bias.

For multiple placebos the so-called method of the multiple-evaluator is useful to pre-
serve the blindness. For example, suppose that a clinical trial is conducted in three doses to
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assess the dose-response relationship of a contrast-enhanced agent in conjunction with
magnetic resonance imaging for the diagnosis of malignant liver tumors in patients with
known focal liver lesions. Since the contrast agent is administered as an IV injection by
reconstruction from the vial of an active agent and the vial of a saline solution according to
the body weight of each patient, the clinician who prepares and administers the contrast
medium will know the dose. If the clinician is also responsible for the evaluation of the
results of pre- and postcontrast MRI, bias will occur during the evaluation of films and
safety data due to prior knowledge of the doses. In this case the multiple-evaluator method
is helpful. At each study center, one clinician will prepare the injection according to the
randomization codes in total privacy without divulging the dosing information to anyone in
the study center. The clinician will then administer the contrast medium without showing
the syringe to everyone. The other clinicians at the study center will evaluate the films in a
totally blinded manner. The multiple-evaluator method is also useful in physical therapy. A
clinical trial was conducted to evaluate the transcutaneous electrical nerve stimulation
(TENS) for patients with chronic low back pain (Deyo et al., 1990). This trial employed a
two-group parallel design with a real TENS and a sham TENS group. Although it is known
to be very difficult to implement, in order to maintain blindness over the entire course of
the study, the therapist who is responsible for instructing patients and applying TENS,
asked patients not to discuss their therapy with the clinician who performed the evalua-
tions. The clinician who performed the evaluation at baseline is different than the one at the
follow-up visit. In addition the frequency of visits and duration of treatment were identical
for the two groups, as were all written and verbal instructions and effort to identify ideal
electrode placement.

In practice, even with the best intentions for preserving blindness throughout a study,
blindness can sometimes be breached for such reasons as a distinct adverse event or the
taste of the active treatment. One method to determine whether the blindness is seriously
violated is to ask both patients and investigators to guess the patient’s treatment assign-
ment during the study or at the conclusion of the trial prior to unblinding. Once the guesses
by patients and investigators are recorded on the case report forms and entered into the
database, the degree of unblinding and its impact on introducing bias in the evaluation of
treatment effect can be assessed. In what follows, some examples that may be of interest
for practical use are adopted from the literature.

For example, a one-year double-blind placebo-controlled study was conducted by the
NIH to evaluate and distinguish between the prophylactic and therapeutic effects of ascorbic
acid for the common cold (Karlowski, 1975). 311 employees of NIH were randomly
assigned to receive the active agent or the matched placebo based on the method of com-
plete randomization. One hundred and ninety of them completed the study. In this study,
since there was no time to design, test, and manufacture a perfectly matched placebo for
ascorbic acid due to the seasonal constraint. At an early stage of the study the researchers
discovered that some subjects had tasted the contents of their capsules and professed to
know which treatment they were taking. At the completion of the study, in order to assess
the bias, a questionnaire was distributed to everyone enrolled in the study so that they could
guess which treatment they had been taking. Table 4.6.1 presents the results from the 190
completed subjects for the prophylactic use. The number of correct guesses was 79 and the
number of misses 23. Therefore the expected bias factor is estimated to be 28 (a half of the
difference between 79 and 23). Hence considerable selection bias occurred in this study.
Note that the association between the severity and the duration of symptoms and knowledge
of the medication taken were also established by the researchers of this project.

BLINDING 163
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Note that to test the integrity of blinding, Chow and Shao (2003) propose a method of
testing treatment effects by incorporating the data of patients’ guesses of their treatment
codes. The idea is to include the patients’ guesses as a factor in the analysis of variance
(ANOVA) for the treatment effects.

The entire process of a clinical trial involves many activities by many personnel. Blind-
ing should be applied to all participants performing activities/functions at every stage of
the entire course of a clinical trial. However, for some occasions during a clinical trial,
unblinding the treatment codes for individual subjects may be necessary. For example, the
occurrence of serious adverse events may necessitate the breaking of the treatment code of
the patients. If the sponsor’s staff, including bioanalytical scientists, auditors, and those
responsible for serious adverse event reporting who are not involved in the treatment or
clinical evaluation of the subjects, are required to be unblinded to the treatment codes, the
ICH E10 guidance suggests that the sponsor develops adequate standard operating proce-
dures (SOPs) to guard against inappropriate dissemination of the treatment codes. How-
ever, as indicated by the ICH E10 guidance, breaking the blind should only be considered
when is deemed essential by the patient’s primary care physician. In addition, any inten-
tional or unintentional breaking the blind should be reported and explained irrespective of
the reason for its occurrence. The procedure and timing for revealing the treatment assign-
ments should be adequately documented. Furthermore, checking, editing, and evaluation
of data and preparation of statistical analysis plan (SAP) should also be conducted in a
blinded fashion and should be finalized before the database for the trial is locked and treat-
ment codes are unblinded. Proper documents should chronically record the locking of the
database, the unblinding of the treatment codes of individual subjects, and statistical analy-
sis according to standard operating procedures.

In practice, similar issues for the maintenance of blindness are commonly seen in other
therapeutic areas. For example, beta-blocker agents (e.g., pro-pranolol) have specific phar-
macologic effects such as lowering blood pressure and the heart rate and distinct adverse
effects such as fatigue, nightmares, and depression. Since blood pressure and heart rate are
vital signs routinely evaluated at every visit in clinical trials, if a drug such as propranolol is
known to lower blood pressure and the heart rate, then preservation of blindness is a huge
challenge and seems almost impossible. The Beta-Blocker Heart Attack Trial (BHAT) is 
a landmark, multicenter, double-blind, randomized, placebo-controlled trial designed to test
the effectiveness of beta-blocker in reducing mortality during a two- to four-year period in
postmyocardial infarction patients (Beta-Blocker Heart Attack Trial Research Group, 1982,
1983). At the conclusion of the trial, patients, investigators, and clinic coordinators were
asked to guess the patient’s treatment assignment. Table 4.6.2 provides the proportion of cor-
rect guesses and estimates of the expected bias factor. Apparently blindness was not totally

Table 4.6.1 Results of Patient’s Guess on Treatment for the
Prophylactic Use

Actual Assignment

Patient’s Guess Ascorbic Acid Placebo

Ascorbic acid 40 11
Placebo 12 39
Do not know 49 39
Total 101 89

Source: Karlowski et al. (1975).
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maintained even for this landmark study with a major influence on management of care for
patients who suffer myocardial infarction. Morgan (1985) suggested that to quantify possible
bias, the researchers for BHAT should administer the questionnaire of guesses of patient’s
treatment three months into the trial rather than at the end.

4.7 DISCUSSION

ICH E10 guideline points out that the objective of using a control group in a clinical trial is
to allow discrimination of subject outcomes caused by the test treatment from outcomes
caused by other factors. In order to achieve this goal, subjects in the test treatment and con-
trol groups should be as similar as possible with respect to all baseline and on-treatment
variables, such as the design, conduct, analysis, and interpretation of the results, that could
influence outcome other than the study treatment. Failure to achieve this similarity may
introduce bias. Randomization and blinding are the two techniques to guarantee this simi-
larity. Randomization is the technique to ensure that the test treatment and the control
groups are similar at the beginning of the trial. On the other hand, blinding is employed to
make sure that the two groups are treated similarly during the course of the trial. As a
result, control, randomization, and blinding are three key features for a critical determinant
of quality and persuasiveness of a clinical trial.

As blinding is a key to the integrity of randomized controlled trials, Devereaux et al.
(2001) conducted a survey among attending physicians and textbook on blinding terminol-
ogy. Ninety-one attending physicians at Dalhousie University, McMaster University, and
University of Calgary Foothills Hospital completed a survey that defined the six groups,
who are potential candidates for blinding in a randomized, controlled trial. These six groups
include subjects, health care providers, data collectors, data analysts, judicial assessors of
the outcomes, and personnel writing the paper or report. Responders offer their opinions on
which group should be single-, double-, or triple-blinded. They reported that physician
respondents identified 10, 17, and 15 unique interpretations of single-, double-, and triple
blinding, respectively. They also surveyed 25 textbooks published since 1990 on the defini-
tion of blinding using the terms clinical epidemiology, randomized controlled trials, and
evidence-based medicine. These 25 textbooks provide five, nine, and seven different defini-
tions of single, double, and triple blinding, respectively. In addition, since June 2000, they
also surveyed 200 recently randomized, controlled trials published in the Annals of Internal
Medicine, BMJ, JAMA, The Lancet, and The New England Journal of Medicine. Among
these 200 randomized, controlled trials, 5 are single-blinded and 83 are double-blinded. In
the 5 single-blind trials, 1 trial did not mention which of the 6 groups was blinded, 2 trials
identified 1 group that was blinded, and 1 trial identified 2 groups that were blinded. For the
83 double-blind studies, 41 did not mentioned which of the six groups were blinded, 29 tri-
als identified 1 group that was blinded, 11 trials identified 2 groups that were blinded, 1 trial

Table 4.6.2 Proportions (%) or Correct Guesses for Beta-Blocker Heart Attack Trial

Estimate of the 
Propranolol Placebo Expected Bias Factor

Patient 79.9 42.8 380 (N � 3230)
Investigator 69.6 68.6 568 (N � 3398)
Clinic coordinator 67.1 70.6 669 (N � 3552)
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identified 3 groups that were blinded, and 1 study identified 4 groups that were blinded.
Therefore, there is a great variation in the interpretation and definition regarding the concept
of single, double, and triple blinding by both physicians and textbooks. Devereaux et al.
(2001) suggest that explicit statements about the blinding status of specific personnel
involved in randomized, controlled trials be reported for the paper published by medical
journals. It is interesting to know that the 25 textbooks did not include some well-known
books on clinical trials, including the first edition of this book (Chow and Liu, 1998; Pianta-
dosi, 1997; Pocock, 1996; Wooding, 1994; Friedman et al., 1998; Gilbert, 1992).

Ioannidis et al. (2001) conducted a meta-analysis to compare evidence of treatment effects
between randomized and nonrandomized trials. They searched MEDLINE (1966– March
2000) and Cochrane Library (Issue 3, 2000) for candidate trials. Two hundred and forty ran-
domized clinical trials and 168 nonrandomized trials in 45 diverse topics with binary out-
comes as one of primary measures for efficacy were included in the meta-analysis. They
reported that a very good correlation between the summary odds ratios of randomized and
nonrandomized trials (r � 0.75, p � 0.001). However, nonrandomized trials tended to pres-
ent large treatment effects. In addition, among the 45 topics, the natural logarithm of the odds
ratios differed by at least 50% in 62% of the 45 topics. In addition, in 33% of the 45 topics,
the odd ratios vary by at least two-fold between nonrandomized trials and randomized stud-
ies. Between-study heterogeneity of treatment effects was also more frequently observed in
nonrandomized studies than that among randomized trials. Despite a good correlation
between randomized and nonrandomized trials, the treatment effect observed in nonrandom-
ized studies may be overexaggerated and is more heterogeneous among trials.

As indicated earlier, randomization is integral to the success of clinical trials that
address scientific and/or medical questions. However, it should be noted that in many clin-
ical research situations, randomization may not be feasible. For example, nonrandomized
observational or case-controlled studies are often conducted to study the relationship
between smoking and cancer. As a result, in the report entitled Smoking and Health by the
U.S. Surgeon General issued in 1964, seven key nonrandomized observational studies
were cited as the evidence for the relationship between smoking and cancer. Note that if
the randomization is not used for some medical considerations, the FDA requires that sta-
tistical justification be provided with respect to how systematic selection bias can be avoid.

It should be noted that in practice, for most clinical trials patients are enrolled into study
sites in a nonrandom fashion. The selection of study sites is also a nonrandom process.
Consequently the validity of statistical inference on the targeted patient population is seri-
ously in doubt. It is therefore recommended that appropriate statistical methods be derived
based on the method of the selected randomization model.

Further, although triple blinding is reserved for large cooperative, multicenter studies
monitored by a committee, it has nevertheless been applied to company monitors to ensure
that they remain unaware of the treatment allocation. In general practice, double blinding
is the standard, since it provides the greatest probability for reducing bias.

Blocking is usually employed to ensure that the number of patients in each treatment
group will be similar at certain points. For this purpose, small block sizes such as 2, 4, 6,
and 8 are usually chosen. Within each block, patients are randomly allocated to receive
either the treatment or a control. In some situations, however, deliberate unequal allocation
of patients between treatment groups may be desirable. For example, it may be of interest
to allocate patients to the treatment and the control in a ratio of 2 to 1. This is a considera-
tion in situations where (1) the patient population is small, (2) previous experience with the
study medicine is limited, and (3) the response profile of the competitor is well known.
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5
DESIGNS FOR CLINICAL TRIALS

5.1 INTRODUCTION

As was discussed in Chapter 3, the first step in selecting an appropriate statistical design 
is to determine the objective(s) of the proposed clinical trials. The objective(s) of a clin-
ical trial is usually to answer one or more scientific or medical questions related to the 
therapeutical intervention under study. Once the study objective(s) have been carefully
defined, an appropriate (or optimal) design for the intended clinical can be chosen. Since a
wrong choice of design may result in a worthless study, a good statistical design is
regarded as an essential prerequisite of clinical trials. Spilker (1991) indicates that choos-
ing the most appropriate design for a clinical trial is similar to choosing ready-made
clothes. Temple (1982) indicates that the selection of the most appropriate design or the
optimal design depends on the questions asked. The questions that must be asked before
choosing an appropriate design include the study objective(s), the nature of the study drug,
the disease status/condition under investigation, and other considerations as described in
previous two chapters. Therefore, the FDA suggests that a statement of the specific objec-
tives of the study be provided. To clarify the study objective(s), the following questions are
helpful.

1. What aspects are being studied?

2. Is it important to investigate other issues that may have an impact on the study drug?

3. Which control(s) might be used?

Once the objective(s) of the study is clearly stated, it is important to determine the aspects that
will be studied. These aspects include the dosage form, dose, and the intended indication. For

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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an indication under investigation, an appropriate dosage form is necessary chosen for the 
targeted patient population so that the drug can be delivered to the site of action efficiently for
optimal therapeutic effect. In addition the selected dose may have an impact on the assessment
of the effectiveness and safety of the study drug. For example, a low dose may show a better
safety profile, and yet it may not produce clinically meaningful efficacy of the study drug. On
the other hand, a high dose may cause a serious side effect. In some clinical trials, the dose
may be required to be titrated during the study in order to reach the optimal therapeutic effect.
For dose titration, the titration procedures must be clearly described in the protocol. The com-
monly employed titration procedures include forced titration and titration based on clinical
outcome whereby the dose is titrated upward at intervals until intolerance or some specific
endpoint is achieved. The issues of possible drug-to-drug interactions with food and/or other
concomitant medications, the impact of patient compliance, and pharmacoeconomic out-
comes such as quality of life associated with the efficacy and safety of the study drug should
also be considered in choosing an appropriate statistical design. In addition, as was indicated
in Chapter 3, it is also important to determine what control(s) will be used for comparative
clinical trials. Different controls may serve different purposes of a clinical trial.

Selecting an appropriate statistical design is critical in clinical development during the
process of drug development. In practice, when a new test agent reaches the stage for clin-
ical development, its pharmacological/pharmacokinetic properties and the effectiveness
and safety may have been studied through in vitro laboratory testing and in vivo animal
studies. At this time point, however, the safety and effectiveness in humans are not known,
and the test agent must be rigorously and scientifically evaluated through clinical trials
within the confinement of regulations. As indicated in Chapter 1, the purposes of phase I
and early phase II studies are not only to characterize the safety profile but also to deter-
mine the therapeutic range of the test agent. Since the test agent is never tested in humans,
it is a challenge to acquire information regarding early safety and efficacy of the test agent.
The information is extremely helpful for planning of subsequent trials. To capture as much
needed information as possible, the utilization of an efficient statistical design is critical.

In recent years, there has been tremendous discussion on whether the choice of study
design should be based solely on medical consideration. Another interesting question raised
is whether to include marketing, regulatory, and/or statistical perspectives as well. Ideally an
optimal design will account for considerations from different perspectives. In practice, how-
ever, such a design may not exist. It should be noted that considerations from different per-
spectives always mean limitations to the choice of design. Therefore, Temple (1982) points
out that a study must be sufficient to its task, and design limitations should be understood
before proceeding, first to see whether a better design can be found and to understand the lim-
its on interpretation imposed by a less than optimal design, and second, so that, it necessary,
the limits can be discussed with the regulatory agency and potential problems anticipated.

When planning a clinical trial, it is suggested that the relative merits and disadvantages of
candidate statistical designs be compared before an appropriate design is chosen for the clin-
ical trial. It is important to evaluate the suitability of the chosen design for addressing scien-
tific/medical questions and/or claims. For example, if we are to choose between a crossover
design and a parallel design for a clinical trial, we must first understand the nature of these
two designs. For a parallel design, each patient receives one and only one treatment in ran-
dom fashion, whereas for a crossover design each patient receives more than one treatment at
different dosing periods. If a clinical trial is intending to investigate the residual effect that
may be carried over from one treatment to another, a crossover design could be employed.
Note that the Federal Register (Vol. 42, No. 5, Sec. 320.26(b) and 320.27(b), 1977) indicate
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that a bioequivalence trial (single dose or multiple dose) should be crossover in design,
unless a parallel design or another design is more appropriate for some valid scientific rea-
sons. On the other hand, if a clinical trial is intended to demonstrate the effectiveness and
safety of a study medicine, a parallel design is more appropriate.

In the next section, we introduce parallel designs, including parallel group designs and
matched pairs parallel designs. Section 5.3 describes clustered randomized designs that have
been extensively employed in community-based intervention clinical trials. This section also
addresses the difference between an experimental unit (a unit of randomization) and a unit of
analysis. Section 5.4 discusses several different types of crossover designs. Section 5.5 cov-
ers titration designs, including some variations such as a forced dose-escalation design. The
concept of enrichment designs is given in Section 5.6. Sections 5.7, 5.8, and 5.9 examine
group sequential designs, placebo challenging designs, and blinder reader designs, respec-
tively. In the last section, we provide a discussion regarding the selection of an appropriate
design.

5.2 PARALLEL GROUP DESIGNS

A parallel group design is a complete randomized design in which each patient receives
one and only one treatment in a random fashion. Basically there are two types of parallel
group design for comparative clinical trials, namely, group comparison (or parallel-group)
designs and matched pairs parallel designs. The simplest group comparison parallel group
design is the two-group parallel design which compares two treatments (e.g., a treatment
group vs. a control group). Each treatment group usually, but not necessarily, contains
approximately the same number of patients. The ICH E9 guideline “Statistical Principles
for Clinical Trials” indicates that the parallel group design is the most common trial design
for confirmatory trials (ICH E9, 1998). An example of a three-group parallel design with a
test treatment and two controls (e.g., an active control A and a placebo control B) is illus-
trated in Figure 5.2.1. This is a typical example of multiple controls (ICH E10, 1999). The
use of this three-group parallel design with an active control and a placebo control can dis-
tinguish an ineffective drug from an ineffective design. An effective design can be deter-
mined based on the evaluation of assay sensitivity by showing the superiority of the active
control over placebo. As indicated by ICH E10 guideline, this design is particularly useful
when the test drug and the placebo provide similar results. This is because it provides 
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Figure 5.2.1 Parallel group design.
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170 DESIGNS FOR CLINICAL TRIALS

evidence that the test drug has little or no efficacy as compared to the placebo. On the other
hand, if neither the test drug nor the active control can be distinguished from the placebo in
terms of efficacy, this clinical trial is said to be lack of assay sensitivity, and hence, it does
not provide evidence to conclude that the test drug is effective. Some of major advantages
of a parallel group design are summarized below:

1. It is simple and easy to implement.

2. It is universally accepted.

3. It is applicable to acute conditions (e.g., infection or myocardial infarction).

4. Analysis is less complicated, and interpretation of the results is straightforward.

In addition, for ethical consideration with the control (e.g., the placebo), we can allocate
patients unequally to treatment groups (in a random fashion) to allow more patients to
receive the treatment (e.g., in a 2 to 1 or 3 to 1 ratio). A parallel group design is probably
the most commonly used design in phases II and III of clinical trials. However, it usually
requires more patients than other comparative designs.

The matched pairs parallel group design is a randomized complete block design with 
a block size of 2 in which each patient is matched with another of similar prognostic 
characteristics (e.g., obesity) for the disease under investigation. One patient in each pair is
assigned the treatment, and the other receives the control. As compared to parallel group
designs, matched pairs parallel group designs can reduce variability from treatment compar-
ison. In addition a matched pairs parallel group design requires a smaller patient population.
Therefore it is considered a more suitable design for progressive diseases such as cancer.
However, matched pairs group designs suffer the disadvantages such that (1) the prognostic
characteristics are not easily defined and (2) patient recruitment is usually slow. In practice,
the selection bias for matched pairs designs is usually a concern in patient recruitment, which
often limits its applications in clinical trials. Note that a matched pairs design is in fact an
extreme case of stratification which is often considered to achieve balance in covariates or
prognostic factors. When the number of covariates is large, the matched pairs design is diffi-
cult to implement. Hence the matched pairs design is not of practical interest in this case.
Although at the planning stage it is almost impossible to identify all of the covariates that
may have an impact on the disease, an unbiased estimate of the treatment effect can still be
obtained by adjusting these covariates in analysis regardless of whether they are used for
stratification or matching in order to achieve the balance in covariates.

In clinical trials, for a given clinical endpoint, basically there are two kinds of variability
associated with the response. These two kinds of variability are known as the interpatient
and intrapatient variabilities. Statistically the smaller these variabilities are, the more accu-
rate and reliable the clinical results will be. For a parallel group design, however, these vari-
abilities cannot be identified because each patient receives the same treatment during the
entire course of the study. In other words, the observed variability for any comparisons
between groups contains both interpatient and intrapatient variabilities that cannot be sepa-
rated and estimated due to the nature of the parallel group design. As a result a parallel
design does not provide independent estimates of the interpatient and intrapatient variabili-
ties. In practice, a parallel group design is an appropriate design for comparative clinical tri-
als if the interpatient variability is relatively small compared to the intrapatient variability.
This is because a valid and efficient comparison between treatment is often assessed based
on the intrapatient variability. Therefore, if the interpatient variability is relatively small
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compared to the intrapatient variability, the observed variability will be close to the intrapa-
tient variability. In this case the parallel group design will provide a more accurate and 
precise assessment of the treatment difference. Other considerations for the use of parallel
group designs include patient characteristics (e.g., acute or chronic and very ill or life threat-
ening) and the nature of study medicine (e.g., potential toxicity and long elimination half-
life). In some cases financial consideration may be a key factor for selecting parallel
designs.

Run-in Periods

Before patients enter a clinical trial, a run-in (or lead-in) period of placebo, no active treat-
ment, dietary control, or active maintenance therapy (e.g., diuretic and/or digoxin in heart
failure studies) is usually employed prior to randomization. The inclusion of a run-in period
prior to the active treatment has the following advantages:

1. It acts as a washout period to remove effects of previous therapy.

2. It can be used to obtain baseline data and to evaluate if patient fulfills study entry
criteria.

3. It can be used as a training period for patients, investigators, and their staff.

4. It helps in identifying placebo responders.

5. It provides useful information regarding patient compliance.

6. It can be used to estimate and compare the magnitude of possible placebo effects
between groups.

In clinical trials it is desired to have a washout period prior to an active treatment period
to wear off effects of previous therapy for an unbiased and valid assessment of the study
medicine. A run-in period, however, may not be suitable for patients whose conditions are
acute requiring immediate treatment. It is acceptable if patients can remain without active
therapy for a short period of time. In many clinical trials, it is not uncommon to observe the
placebo effect for many drug products. For example, for antidepressant agents, an intensive
care period may significantly improve the patients’ depression without any treatment. At
the end of active treatment period, it is important to determine whether the observed signi-
ficant effect is due to the placebo or treatment. To eliminate the possible placebo effect, it
is suggested that a run-in period be included to establish patient comparability between
treatment groups at baseline, and this helps to remove placebo effect from comparison at
the endpoint evaluation. In clinical trials, patients’ cooperation and/or their compliance to
study medicine is always a concern. A run-in period can be used as a training period for
patients, investigators, and their staff. For example, if the trial requires patients to complete
diary cards, a run-in period provides a training period for the patients to be familiar with
the diary cards. In addition it may help in identifying uncooperative patients at an early
stage and provide the necessary counseling. This information is useful in improving a
patient’s compliance when the study moves to the active treatment period.

Note that a run-in period is usually employed based on a single-blind fashion. In other
words, the participated patients are not aware of receiving a placebo. Although the inclu-
sion of a run-in period in clinical trials has many advantages, it increases the length of a
study; consequently it often requires extra study visits. This has a direct impact on the
increase of cost and potentially a decrease in enthusiasm by patients and investigators.
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172 DESIGNS FOR CLINICAL TRIALS

Examples of Parallel Group Design in Clinical Trials

During clinical development of a drug product, parallel group designs are often considered to
evaluate the efficacy and safety of a monotherapy or combination therapy with other agents of
the drug product. In addition a parallel group design may be used to study the dose response of
a drug product. For example, consider the clinical development of Glucophage (metformin
hydrochloride). Glucophage is an oral agent for the treatment of type II noninsulin-dependent
diabetes mellitus (NIDDM). Although Glucophage has been on the European market for more
than 20 years, it was not available for the U.S. market until it was approved by the FDA in the
late December 1994. Over the past few years a number of clinical trials were conducted to fur-
ther investigate the clinical pharmacology and other uses of the drug product.

To illustrate the application of parallel group designs in clinical trials, consider the clin-
ical development of Glucophage. Table 5.2.1 lists three studies of Glucophage regarding
evaluation by monotherapy, combination therapy with insulin, and dose response. For the
first study (Dornan et al., 1991), the objective was to test the efficacy and tolerability of
Glucophage. This study was an eight-month double-blind placebo-controlled trial of Glu-
cophage monotherapy in 60 obese patients with NIDDM. This study had a typical parallel
group design with a run-in period. After a dietetic review and a one-month run-in period,
patients were stratified according to the levels of glycosylated hemoglobin (HbA1C) con-
centration and randomized to receive either Glucophage or an identical dose of placebo.
The starting dose was one tablet (500 mg) daily increased at weekly intervals to three
tablets daily after one month. Thereafter the dose was increased by one tablet daily at
weekly intervals to a maximum of two tablets three times daily, aiming for lowering the
level of fasting blood glucose less than 7 mM (7 mmol per liter or 126 mg per deciliter,
mg/dL). Patients were fasted at the beginning and end of the run-in period, and after 1, 3,
5, and 8 months of treatment they were weighted and their blood pressure was measured.
In addition, blood was taken for fasting glucose, total cholesterol, triglycerides, HbA1C,
and serum insulin. The results indicated that Glucophage reduced HbA1C levels from
11.7% to 10.3%, whereas the placebo treatment resulted in a rise from 11.8% to 13.3%.
The mean percent reduction in HbA1C of Glucophage is 23% lower than the placebo with-
out weight gain. In addition the final mean fasting blood glucose level was 5.1 mM
(92 mg/dL) lower on Glucophage than on the placebo. The fasting glucose level fell from
13.5 (243 mg/dL) to 10.2 mM (184 mg/dL) (about 24%) on Glucophage and rose from 12.7
(229 mg/dL) to 15.3 mM (275 mg/dL) (about 17%) on the diet plus placebo. No changes or
differences between groups were observed in body weight, blood pressure, C peptide,

Table 5.2.1 Examples of Parallel-Group Design

Sample Parallel Duration Primary 
Study Purpose Size Groups (Run-in � Active) End Point

Dornan et al. Monotherapy 60 2 1 mo � 8 mo HbA1C, PG
(1991)

Giugliano et al. Combination 50 2 4 wk � 6 mo HbA1C, FPG
(1993) therapy

Bristol-Myers Dose response 360 6 3 wk � 11 wk HbA1C, FPG
Squibb (1994)

Note: PG � plasma glucose; FPG � fasting plasma glucose; HbA1C � hemoglobin A1C.

c05.qxd  27.10.03  12:55  Page 172



PARALLEL GROUP DESIGNS 173

serum insulin, or triglycerides. As a result Dornan et al. (1991) concluded that Glucophage
monotherapy is an effective and well-tolerated first-line treatment for obese patients with
NIDDM. They also indicated that the use of Glucophage should not be restricted to very
obese patients because Glucophage lowers HbA1C and achieves approximately equivalent
improvements in glycemic control in both mildly and moderately to severely obese
patients.

Another application for the use of a parallel group design would be the evaluation of com-
bination therapy of the current insulin regimen with Glucophage. Giugliano et al. (1993)
studied the efficacy and safety of Glucophage in the treatment of obese NIDDM patients
poorly controlled by insulin after secondary failure to respond to sulfonylurea. The study is a
typical parallel group design consisting of a four-week run-in single-blind phase and a six-
month double-blind treatment phase. During the placebo run-in phase, patients were given
the current insulin regimen and asked to maintain their regular diet. After a six-month active
treatment, Glucophage was shown to have significantly improved the glycemic and lipid con-
trol. The results indicated that after four months, the glucose level declined by 31% (4.1 mM
or 73.8 mg/dL) from baseline, HbA1C levels by 1.7%, and fasting insulin levels by 26%. In
addition the necessary insulin dose was also reduced by more than 20% (from 90 to 71 U/d).
Furthermore in the Glucophage group there were significant changes from both the baseline
and placebo in levels of total cholesterol (�0.21 mM), triglycerides (�0.31 mM), and high-
density lipoprotein cholesterol (�0.13 mM), and blood pressure was reduced an average of
8.8 and 4.8 mmHg versus the baseline and placebo, respectively. Therefore, Giugliano et al.
(1993) concluded that combination Glucophage therapy represents a safe and efficacious
strategy for improving glycemic regulation and coronary artery disease risk status in patients
with NIDDM which was inadequately controlled by insulin alone.

Recently, to fulfill the FDA’s requirement, a study was conducted by Bristol-Myers Squibb
to study the dose response of various dose levels of Glucophage compared to a placebo in
patients with NIDDM. The study was a randomized double-blind placebo-controlled parallel-
group study that consisted of two phases. At the end of single-blind placebo run-in period,
qualified patients were randomized to one of the six double-blind treatment groups (i.e.,
placebo, Glucophage at 500 mg, 1000 mg, 1500 mg, 2000 mg, and 2500 mg per day) for 11
weeks. Patients assigned to the dose levels of Glucophage 500 mg/d or Glucophage 1000 mg/d
began the active treatment phase at this dose level and continued on it throughout the study.
Patients assigned to dose levels of Glucophage 1500 mg/d, 2000 mg/d, or 2500 mg/d under-
went a forced titration during the initial three weeks of study to minimize the possibility of
gastrointestinal side effects. All patients were maintained for a minimum of eight weeks 
on their final assigned dose level. The results suggest that there is a dose response showing
Glucophage to be effective at all randomized dose levels. The dose response increased up to
the 2000 mg dose but then decreased as the dose was increased from 2000 mg to 2500 mg.
These results are consistent with those for FPG and HbA1C at treatment weeks 7, 11, and the
end of the trial. Given the dose levels considered in this study, it is concluded that 500 mg is 
the minimum effective dosage ( p�0.03) and 2000 mg is the maximum effective dose level
( p�0.001) compared with the placebo.

Another example concerning the study of metformin with a parallel group design is the
Diabetes Prevention Program (1999, 2002). As risk factors associated with type 2 diabetes,
such as elevated plasma glucose concentrations in the fasting state and after an oral 
glucose load, overweight, and sedentary lifestyle are potentially reversible, the Diabetes
Prevention Program Research Group hypothesized that modifying these factors with 
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a lifestyle-intervention program or the administration of metformin would prevent or delay
the development of diabetes. Therefore, the following three primary scientific questions
were of particular interest to the Diabetes Prevention Program Research Group, which
were intended to be answered by this study:

1. Does a life intervention or treatment with metformin, a biguanide antihyperglycemic
agent, prevent or delay the onset of diabetes?

2. Do these two interventions differ in effectiveness?

3. Does their effectiveness differ according to age, sex, or race or ethnic group?

The Diabetes Prevention Program Research Group employed a randomized, placebo-
controlled three-group parallel design in order to address these three questions. A total of
3,234 nondiabetic subjects with elevated fasting and post-load plasma glucose concentra-
tions were randomized to one of three interventions: standard lifestyle recommendations
plus metformin at a dose of 850 mg b.i.d., standard lifestyle recommendations plus placebo
b.i.d, or an intensive program of lifestyle modification with the goals of at least a 7% weight
loss and at least 150 minutes of physical activity per week. This study initially included a
fourth treatment group, i.e., troglitazone at a dose of 400 mg q.d., which was discontinued
in 1998 due to its potential liver toxicity. Except for the group of a lifestyle modification
program, a double-blinded technique was applied in this study to minimize bias.

5.3 CLUSTER RANDOMIZED DESIGNS

The fundamental theory of the classic experimental design by Fisher (1947) is based on the
fact that the randomization unit is the same as the analysis unit used as the experimental
unit for statistical inference. Statistical inference based on the principle of randomization
unit being the analysis unit is hence the most efficient in the sense that it produces the 
maximum power and requires the minimum sample size. Almost all clinical trials for eval-
uation of therapeutic intervention have adopted such a principle. For example, subjects
such as patients or normal volunteers mentioned throughout this book are not only the unit
of randomization but also a unit of statistical inference. However, on the other hand, for
assessment of nontherapeutic interventions such as lifestyle intervention or new educa-
tional program for smoking cessation, randomization may be easily performed and trials
can be efficiently implemented to reduce bias through randomization of some social intact
units such as family, school, worksites, athletic teams, hospitals, or communities. These
intact social units are called clusters. This type of design is hence referred to as cluster ran-
domized design or group randomized design (Donner and Klar, 2000).

For cluster randomized designs, randomization is performed at the cluster level rather than
at the subject level. Thus, the unit of analysis may not be necessarily the same as the unit of
randomization. If the inference is made at cluster level, then the standard methodologies for
traditional clinical trials provided in this book can be applied because cluster is the unit of ran-
domization as well as the unit of analysis. However, for most clinical trials with a cluster ran-
domized design, the inferences are intended at the subject level, and hence, the standard
methods for sample size calculation and data analysis considering subject as analysis unit are
not appropriate. One of the major considerations for design and analysis of cluster randomized
trials is the control of the intracluster and intercluster variations. As clusters are some intact
social units such as families or worksites, therefore, we would anticipate that the subjects
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within the same cluster might share the same traits or have similar characteristics. In other
words, the subjects within the same cluster are more similar than are those between clusters.
One statistical measure to quantify this similarity is the intraclass correlation coefficient (ICC)
(Snedecor and Cochran, 1980). If the intraclass correlation coefficient, denoted by ρ, is posi-
tive, the intracluster variation is smaller than the intercluster variation. The ICC plays a very
important role in analysis of cluster randomized trials using subjects as the unit of inference.

Denote by Yi some clinical endpoint for subject i from a random sample of n subjects.
Suppose that Yi is normally distributed with population mean µ and variance σ2. Let Y� be
the sample mean of the endpoint from these n subjects. The variance of the sample mean is
given by

V(Y�) � σ 2/n.

Suppose that instead of a single random sample, there are k clusters of m subjects each
for a total of n subjects, i.e., n � km. It can be easily verified that under the assumption of
a constant ICC for all k clusters, the variance of the sample mean is given by

V(Y�) � (σ 2/km)*[1 � (m � 1)ρ]

� σ 2/n*VIF (5.3.1)

where VIF denotes the variance inflation factor. It can be seen from (5.3.1) that the vari-
ance of the sample mean under cluster randomized design increases by the variance infla-
tion factor, which is a function of both ICC and cluster size m. Table 5.3.1 gives the
variance inflation factors for ICC � 0.02 to 0.2 by 0.2 and m � 20 to 100 by 20. Table 5.3.1
reveals that the variance of the sample means under the cluster randomized design inflates
very rapidly as the ICC and cluster size increase. Even for the situation that ICC is as neg-
ligible as 0.02 and the cluster size is as small as 20, the variance of the mean under the
cluster randomized design is still about 38% greater than that under the traditional ran-
domization by individual subjects. In addition, the sample size required for the cluster 
randomized design is the multiple of the sample size needed for randomization at individ-
ual subject level. For example, when ICC� 0.06 and the cluster size is 100, then the trials

Table 5.3.1 Variance Inflation Factors for Various Combination of Intraclass Correlation
Coefficient and Cluster Size

Cluster Size

ICC 20 40 60 80 100

0.02 1.38 1.78 2.18 2.58 2.98
0.04 1.76 2.56 3.36 4.16 4.96
0.06 2.14 3.34 4.54 5.74 6.94
0.08 2.52 4.12 5.72 7.32 8.92
0.10 2.90 4.90 6.90 8.90 10.90
0.12 3.28 5.68 8.08 10.48 12.88
0.14 3.66 6.46 9.26 12.06 14.86
0.16 4.04 7.24 10.44 13.64 16.84
0.18 4.42 8.02 11.62 15.22 18.82
0.20 4.80 8.80 12.80 16.80 20.80
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with a clustered randomized design require a sample size almost seven times as large as
that of the clinical trials using the traditional individual randomization.

Two commonly encountered mistakes in most cluster randomized trials are given below:

1. Although the trials adopt a cluster randomization, the analysis of data completely
ignores this fact and uses subject as the unit of analysis.

2. Sample size estimation fails to take into consideration the variance inflation factor.

The first mistake ignores the intercluster variation and hence could not control the false-
positive rate at the prespecified significance level. The second mistake results in an under-
estimation of the required sample size and hence may increase the false-negative rate.
Cornfield (1978) commented on these issues regarding the use of a cluster randomized
design by stating that randomization by cluster accompanied by an analysis appropriate to
randomization by individual is an exercise in self-deception and should be discouraged.
Despite the disadvantages and drawbacks of the cluster randomized designs, this design
has become increasingly popular in health-related research in the past 20 years. The main
reasons are due to other considerations such as ethical issues, feasibility, cost control, and
experimental contamination (Donner and Klar, 2000). However, the most important reason
is probably experimental contamination. It is difficult to randomly assign half of a cluster
such as family, class, or worksite to an intervention and the other half to the concurrent
control without introducing possible bias due to contamination. Subjects assigned to diff-
erent treatment groups within the same cluster are likely to communicate with each other
by sharing treatment experience because they are in the same intact social unit. Hence,
some of the subjects in the control group may behave like those of the intervention group.
As a result, bias is inevitably introduced in the estimation of treatment differences. For
example, to evaluate the effectiveness and safety of a screening program using the clinics
of general practice as cluster, if investigators or their staff are not blinded to the treatment,
they may unconsciously or purposely introduce bias in the evaluation of the subjects in the
control group. If the subjects are also not blinded, then it is even at a greater risk of intro-
ducing bias because the subjects in the control group may seek screening themselves.

Example 5.3.1 Hutchinson Smoking Prevention Project (HSPP)

The number one cause of preventable death in the United States is cigarette smoking. In
addition, more than 90% of adult smokers started smoking by or before age of 20 years
old. To encounter this serious problem, in 1983, the U.S. National Cancer Institute initiated
a Request for Applications (RFA) on school-based intervention studies for evaluation of
the long-term effectiveness of interventions on the prevention of habitual cigarette smok-
ing among youth. In response to this RFA, the Hutchinson Smoking Prevention Project
(HSPP; Peterson et al., 2000) was proposed by the Fred Hutchinson Cancer Research 
Center (FHCRC) to answer the following scientific question:

To what extent can the grade 3–12 HSPP school-based tobacco use prevention intervention
deter tobacco use, by both girls and boys, throughout and beyond high school?

The school-based intervention program has become increasingly popular because a school
setting is a promising venue for reaching youth with health promotion interventions. How-
ever, evaluation of the intervention on smoking prevention program must follow the 
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following principles of the design and analysis of randomized clinical trials (Peterson 
et al., 2000):

1. The use of school or school district as the experimental unit for randomization.

2. Sufficient sample size to achieve an acceptable statistical power under a cluster ran-
domized design in the presence of ICC of outcomes within cluster.

3. High rates of recruitment of schools.

4. Random assignment of interventions.

5. Compliance of the intervention across schools.

6. The avoidance of intervention contamination in the control group.

7. The participation of school districts for the duration of the trial.

8. High rates of follow-up and participation for outcome ascertainment.

Selection of school or school district as the experimental unit was the first issue regarding
design that the HSPP had to decide at the planning stage of the trial. However, the use of
school as a randomization unit may present various design and methodology deficiencies.
The HSPP is a randomized, controlled intervention trial with a 10-year intervention from
grade 3 to grade 12 with endpoint data collection at the 12th grade and 2 years post-high
school. As a result, the most significant issue is the experimental contamination. If school is
selected as the experimental unit, contamination of subjects assigned to the control group can
occur through unintended acquisition and implementation of the intervention by control
teachers, or by social mixing of subjects from both the intervention and control groups, or via
student movement from the control to the intervention group. The student movement from
one school to another within the same school district poses a serious problem for contamina-
tion. Different schools within the same school district have different treatment assignments.
As students make the transition from junior high school to high school, students from the
control junior high schools will mix up with those from the junior high schools receiving 
the intervention. The effect of the intervention based on smoking prevalence will be underes-
timated. Another problem using the school as the experimental unit is the follow-up of the
students and collection of the longitudinal data. As reported by Peterson et al. (2000), 49% 
of the cohort formed at the 3rd grade was no longer enrolled with their original classmates 
10 years later at the 12th grade. As a result, using the participating schools for tracking the
students and data collection is not totally appropriate. In addition, cooperation from schools
always remains as a challenge for research collaboration.

One of the unique design features for the HSPP trial started in 1984 was the selection
of school district as experimental unit. The reasons for the decision are summarized
below:

1. Permission of the investigation of a multigrade, sequential intervention that spans
the elementary, junior-high, and high-school grades.

2. Minimizing the risk of contamination caused by the contamination by the teachers in
an intervention school and those in a control school within the same district.

3. Elimination of within-school mixing of intervention and control students during the
follow-up.

4. Randomization by school district for the district-wide method by which school dis-
tricts usually adopt and implement curricula.

CLUSTER RANDOMIZED DESIGNS 177
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For the purpose of efficient management of the trial, the inclusion criteria for school dis-
trict are as follows:

1. 50 to 250 students per grade level.

2. Within 200 miles of the FHCRC.

3. With self-contained, stable feeder system consisting of at least elementary school, at
least one junior high school and one high school.

4. With grade 3 to 7 attrition of less than 35%.

The matched pairs parallel group design was chosen to take into consideration the impor-
tant prognostic factors such as tobacco use prevalence, school district size, and location of
school district. A total of 40 HSPP school districts met the above inclusion criteria. Twenty
were randomized to the intervention program, and the other 20 were randomly assigned to
the control program. The diagram of this design is given in Figure 5.3.1.

Example 5.3.2 The WHO Antenatal Care Trial

Donner et al. (1998) and Piaggio et al. (2001) reported an equivalence stratified cluster 
randomization trial for evaluation of a new antenatal care (ANC) model conducted by 

Select and Recruit
40 Washington School Districts

20 Experimental School Districts
N = 4,177 3rd graders

20 Control School Districts
N = 4,211 3rd graders

Endpoint Data Collection
(12th grade)

Endpoint Data Collection
(2 years post high school)

Randomize

Intervention
grades 3-12

i

=
20 Control School Districts

N = 4,211 3rd graders

(

(

ize

Figure 5.3.1 HSPP experimental design. (Source: Peterson et al., 2000.)
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the World Health Organization (WHO) in 53 clinics in Argentina, Cuba, Saudi Arabia,
and Thailand. The women in the intervention group received a new antenatal care model
consisting of tests, clinical procedures, and follow-up sections, and the women in the con-
trol group were given the standard Western ANC model currently implemented in these
clinics. The primary endpoints for this trial are the proportion with infants of low birth-
weight (�2,500 g) and the proportion of women with severe maternal morbidity among
those with singleton pregnancies. These two endpoints were chosen because they are sur-
rogate variables of perinatal and maternal mortality. The primary hypothesis of the trial is
that based on the primary endpoints, the new antenatal care model is equivalent to the
standard Western ANC model. This trial used the standard average bioequivalence crite-
rion on the original scale (see, e.g., Chow and Liu, 2000) to assess the equivalence
between the new and standard ANC models. In other words, the new ANC model is
claimed to be equivalent to the standard ANC model if the proportion of lower birth-
weight infants (or women with severe maternal morbidity) of the new ANC model is
within 20% of that of the western ANC model. Within each country, the clinics were
stratified with respect to the size and type of clinics and were randomly assigned to either
the new ANC model (27 clinics) or to the standard Western ANC model (26 clinics). All
pregnant women initiating ANC at these clinics over an average period of 18 months were
enrolled to yield a total of 24,678 women recruited. Figure 5.3.2 displayed a diagram of
the design for this trial.

5.4 CROSSOVER DESIGNS

A crossover design is a modified randomized block design in which each block receives
more than one treatment at different dosing periods. A block can be a patient or a group of
patients. Patients in each block receive different sequences of treatments. A crossover
design is called a complete crossover design if each sequence contains all treatments under
investigation. For a crossover design it is not necessary that the number of treatments in
each sequence be greater than or equal to the number of treatments to be compared. We will
refer to a crossover design as a p � q crossover design if there are p sequences of treatments
administered at q different dosing periods. Basically a crossover design has the following
advantages: (1) It allows a within-patient comparison between treatments, since each
patient serves as his or her own control. (2) It removes the interpatient variability from the
comparison between treatments. (3) With a proper randomization of patients to the treat-
ment sequences, it provides the best unbiased estimates for the differences between treat-
ments. The use of crossover designs for clinical trials has been much discussed in the
literature. See, for example, Brown (1980), Huitson et al. (1982), Jones and Kenward
(1989), and Chow and Liu (2000).

For a crossover design the notions of the washout or carryover effects (or residual
effects) are important for the analysis of collected clinical data. The washout period is
defined as the rest period between two treatment periods for which the effect of one treat-
ment administered at one dosing period does not carry over to the next. In a crossover
design the washout period must be long enough for the treatment effect to wear off so that
there is no carryover effect from one treatment period to the next. The washout period
depends on the nature of the drug. A suitable washout period must be sufficiently long to
return any relevant changes that influence the clinical response to the baseline. If a drug
has a long half-life or if the washout period between treatment periods is too short, the
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effect of the drug might persist after the end of dosing period. In this case it is necessary to
distinguish the difference between the drug effect and the carryover effects. The direct drug
effect is the effect that a drug product has during the period in which the drug is adminis-
tered, while the carryover effect is the drug effect that persists after the end of the dosing
period.

Note that crossover designs may be used in clinical trials in the following situations
where (1) objective measures and interpretable data for both efficacy and safety are obtained,
(2) chronic (relatively stable) disease are under study, (3) prophylactic drugs with relatively
short half-life are being investigated, (4) relatively short treatment periods are considered,
(5) baseline and washout periods are feasible, and (6) an adequate number of patients for
detection of the carryover effect with sufficient power that accounts for expected dropouts is
feasible or extra study information is available to rule on the carryover effect. Dubey (1991)
also emphasizes that appropriate analyses which can reflect the study design must be carried
out when using crossover design in clinical trials.

Figure 5.3.2 Study design and subject’s flow chart of the antenatal care randomized, controlled
trial. Antenatal care clinics are the unit of randomization (cluster randomization). (*) Women who
did not agree to participate in the trial were asked to provide information needed to complete a 
“classifying” for baseline descriptive purposes only. (Source: Piaggio et al., 2001.)
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at the clinic or

elsewhere

SPECIAL
CARE
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C
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Higher-Order Crossover Designs

The most commonly used crossover design for comparing two treatments (denoted by A and
B) is a two-sequence two-period crossover design. We will refer to this design as a standard
2 � 2 crossover design, which is sometimes denoted by (AB, BA). For a standard 2 � 2
crossover design, each patient is randomly assigned to receive either sequence AB or
sequence BA at two dosing periods. In other words, subjects within sequence AB (BA)
receive treatment A (B) at the first dosing period and treatment B (A) at the second dosing
period. The dosing periods of course are separated by a washout period of sufficient length to
wear the effect due to the drug received in the first period. An example of a standard 2 � 2
crossover design is illustrated in Figure 5.4.1. Note that in the crossover design, the number
of the treatments to be compared does not necessarily have to be equal to the number of peri-
ods. One example is a 2 � 3 crossover design for comparing two treatments as illustrated in
Figure 5.4.2. In this design there are two treatments but three periods. Patients in each
sequence receive one of the treatments twice at two different periods.

When the carryover effects are present, a standard 2 � 2 crossover design may not be
desirable because of potential confounding effects. For example, the sequence effect,
which cannot be estimated separately, is confounded (or aliased) with the carryover effects.
If the carryover effects are unequal, then there exists no unbiased estimate for the direct
drug effect from both periods. In addition the carryover effects cannot be precisely esti-
mated because they can only be evaluated based on the between subject comparison. Fur-
thermore the intrasubject variability cannot be estimated independently and directly from
the observed data because each subject receives either treatment A or treatment B only
once during the study. In other words, there are no replicates for each treatment within
each subject. To overcome the above undesirable properties, a higher-order crossover
design is usually considered (Chow and Liu, 1992 and 2000). A higher-order crossover
design is defined as a crossover design in which either the number of periods is greater
than the number of treatments to be compared or the number of sequences is greater than
the number of treatments to be compared. There are a number of higher-order crossover
designs available in literature (Kershner and Federer, 1981; Laska, Meinser and Kushner,
1983; Laska and Meinser, 1985; Jones and Kenward, 1989). These designs, however, have
their own advantages and disadvantages. An in-depth discussion can be found in Jones and
Kenward (1989) and Chow and Liu (1992, 2000).

Table 5.4.1 lists some commonly used higher-order crossover designs. The design (AA,
BB, AB, BA) is known as Balaam’s design (Balaam, 1968). It is the optimal design in the

Figure 5.4.1 Standard two-sequence, two-period crossover design.
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class of crossover designs with two periods and two treatments. This design is formed by
adding two more sequences (sequences 1 and 2) to the standard 2 � 2 crossover design
(sequences 3 and 4). These two augmented sequences are AA and BB. With additional
information provided by the two augmentable sequences, not only can the carryover effects
be estimated using the within-subject contrasts but the intrasubject variability for both treat-
ments can also be obtained because there are replicates for each treatment within each
subject. Design (ABB, BAA) is the optimal design in the class of crossover designs with
two sequences, three periods, and two treatments. It can be obtained by adding an additional
period to the standard 2 � 2 crossover designs. The treatments administered in the third
period are the same as those in the second period. This type of designs is also known as the
extended-period (extra-period) design. Note that this design is made up of a pair of dual
sequences ABB and BAA, and hence it is also known as a two-sequence dual design. Two
sequences whose treatments are mirror images of each other are said to be a pair of dual
sequences. Jones and Kenward (1989) point out that the only crossover designs worth con-
sidering are those made up of dual sequences. Design (AABB, BBAA) is a doubled stan-
dard 2 � 2 crossover design (AB, BA). It is usually referred to as a replicated design. 
Liu (1995b), Liu and Chow (1995), and Chow (1996; 1999) indicate that a replicated design

Table 5.4.1 Higher-Order Crossover Designs

I. Balaam’s design
AA
BB
AB
BA

II. Two-sequence dual design
ABB
BAA

III. Doubled (replicated) design
AABB
BBAA

IV. Four-sequence design
AABB
BBAA
ABBA
BAAB

Figure 5.4.2 Two-sequence dual crossover design.
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is useful in assessments of bioequivalence between drug products, especially for assessment
of individual bioequivalence (Chow et al., 2002) and population bioequivalence (Chow 
et al., 2003a). Design (AABB, BBAA, ABBA, BAAB) is an optimal design in the class of
the crossover designs with four sequences, four periods, and two treatments. It is also made
up of two pairs of dual sequences (AABB, BBAA) and (ABBA, BAAB). Note that the first
two periods are the same as those in Balaam’s design and that the last two periods are the
mirror image of the first two periods. This design is much more complicated than designs
(AA, BB, AB, BA) and (ABB, BAA), though it produces the maximum variance reduction
for both the direct drug effect and the carryover effects among the designs considered.

Williams Designs

When there are more than two treatments to be compared, a complete crossover design
becomes much more complicated and may not be of practical interest based on the following
considerations:

1. Potential residual effects make the assessment of efficacy and/or safety almost
impossible.

2. It takes longer to complete the study.

3. Patients are likely to drop out if they are required to return frequently for tests.

Williams design could be a useful alternative. In this section, for simplicity, we will restrict
our attention to those designs in which the number of periods equals the number of treat-
ments to be compared. For comparing three treatments, there are a total of three possible
pairwise comparisons between treatments: treatment 1 against treatment 2, treatment 1
against treatment 3, and treatment 2 against treatment 3. It is desirable to estimate these
pairwise differences between treatments with the same degree of precision. In other words,
it is desirable to have equal variances for each pairwise difference between treatments.
Designs with this property are known as variance-balanced designs. It should be noted that
in practice, variability associated with the selected design can vary from design to design.
Thus an ideal design is the one with the smallest variability such that all pairwise differ-
ences between formulations can be estimated with the same and possibly best precision.
However, to achieve this goal, the design must be balanced. A design is said to be balanced
if it satisfies the following conditions (Jones and Kenward, 1989):

1. Each treatment occurs only once with each subject.

2. Each treatment occurs the same number of times in each period.

3. The number of patients who receive treatment i in some period followed by treat-
ment j in the next period is the same for all i � j.

Under the constraint of the number of periods (p) being equal to the number of formula-
tions (t), balance can be achieved by using a complete set of orthogonal Latin squares (John,
1971; Jones and Kenward, 1989). When the number of treatments to be compared is large,
more sequences and consequently more patients are required. This, however, may not be of
practical utility. A more practical design has been proposed by Williams (1949). We will refer
to this as Williams design. Williams design possesses balance property and requires fewer
sequences and periods. The algorithm for constructing a Williams design with t periods and 
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t treatments can be found in Jones and Kenward (1989) and Chow and Liu (2000). Table
5.4.2 gives Williams designs for comparing three and four treatments. It can be seen from
Table 5.4.2 that Williams design requires fewer sequences in order to achieve the property of
variance balance as compared to the complete set of orthogonal Latin squares design. For
example, for comparing four treatments, Williams design only requires 4 sequences, whereas
a complete set of 4 � 4 orthogonal Latin squares requires 12 sequences.

Balanced Incomplete Block Design

When there are a large number of treatments to be compared, a complete crossover design
may not be feasible. Although a Williams design can be used, it can take a long time to
complete. In practice, it is desirable to complete the study in a short period of time. In this
case it is desirable that the number of periods is fewer than the number of treatments to be
compared. Therefore it is suggested that a randomized incomplete block design be used.
An incomplete block design is a randomized block design in which not all treatments are
present in every block. A block is called incomplete if the number of treatments in the
block is less than the number of treatments to be compared. When an incomplete block
design is used, it is recommended that the treatments in each block be randomly assigned
in a balanced way so that the design will possess some optimal statistical properties. This
kind of design is referred to as a balanced incomplete block design. A balanced incomplete
block design is an incomplete block design in which any two treatments appear together an
equal number of times. Table 5.4.3 gives two examples of balanced incomplete block
designs for comparing four treatments with two periods and three periods, respectively.

Note that a balanced incomplete block design possesses some good statistical properties.
For example, unbiased estimates of treatment effects are available and the difference between
the effects of any two treatments can be estimated with the same degree of precision.

Examples of Crossover Design in Clinical Trials

To illustrate the use of crossover designs in clinical trials, we again consider the clinical
development of Glucophage. Table 5.4.4 lists three studies that have investigated the
effects of Glucophage on lipids and other risk factors of cardiovascular disease.

Table 5.4.2 Williams Designs

I. Williams’s design with three treatments
ACB
BAC
CBA
BCA
CAB
ABC

II. Williams’s design with four treatments
ADBC
BACD
CBDA
DCAB
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The objective of the study conducted by Chan et al. (1993) was to compare the meta-
bolic and hemodynamic effects of Glucophage and Glibenclamide in normotensive
NIDDM patients. After a two-week run-in period on dietary treatment alone, 12 Chinese
normotensive patients with uncomplicated NIDDM were randomized to receive either
Glucophage or Glibenclamide for four weeks before being crossovered to the alternative
treatment for an additional four weeks. Their metabolic and hemodynamic indices includ-
ing cardic output estimation by impedance cardiography were measured at the baseline
and at the end of each treatment. The results indicate that at comparable degrees of
glycemic control, Glucophage had the following beneficial effects compared with Gliben-
clamide: (1) greater weight loss (body mass index, �0.58 kg/m2 vs. �0.12 kg/m2), (2)

Table 5.4.3 Balanced Incomplete Block Designs

I. Four treatments with two periods
AB
BC
CD
DA
AC
BD
DB
CA
AD
DC
CB
BA

II. Four treatments with three periods
BCD
CDA
DAB
ABC

Table 5.4.4 Examples of Crossover Design

Sample Duration (Period 1 � Primary
Study Purpose Size Washout � Period 2) Endpoint

Chan et al. Effects on lipids 12 4 wk � 0 wk � 4 wk Metabolic and
(1993) Hemodynamic 

indices

Nagi and Effects on lipids 27 12 wk � 2 wk � 12 wk Insulin resistance 
Yudkin and risk factors for Glycemic control
(1993) cardiovascular disease Cardiovascular risk

Elkeles Effects on lipids 35 3 mo � 6 wk � 3 mo Serum lipids
(1991) Lipoproteins  

Blood glucose 
Glycosylated
hemoglobin
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greater decrease in total cholesterol (�0.7 mM vs. �0.2 mM), and (3) greater decrease in
diastolic blood pressure (�12.9 mmHg vs. �6.8 mmHg). In conclusion Chan, et al. (1993)
indicates that the tendency to greater peripheral resistence with Glibenclamide and to
lower diastolic blood pressure with Glucophage may bear on the development of hyperten-
sion in normotensive patients who are receiving the long-term treatment for NIDDM.

For another application of the crossover design, Nagi and Yudkin (1993) investigated the
effects of Glucophage on glycemic control, insulin resistance, and risk factors for cardiovas-
cular disease in NIDDM patients with different risks of cardiovascular disease. The study
was conducted as a randomized double-blind placebo-controlled crossover design on 27
patients. Glucophage was administered for a total of 12 weeks, and the dose was increased
stepwise from 850 mg once daily for one week to 850 mg twice daily for five weeks and to
850 mg three times daily for another six weeks. The baseline assessment took place on the
day of inclusion in the study, and a similar assessment took place after 12 weeks of therapy
(phase 1). After a washout period of two weeks, patients were reassessed as at entry into the
trial and crossed over to the alternative treatment (phase 2). The patients were reassessed
finally at the end of phase 2. The results indicated Glucophage reduced fasting plasma glu-
cose levels by 3.08 mM, enhanced insulin sensitivity by 4.0%, and diminished triglyceride
levels by 0.2 mM, total cholesterol levels by 0.52 mM, and low-density lipoprotein choles-
terol levels by 0.4 mM. Nagi and Yudlin (1993) conclude that Glucophage therapy improves
glycemic control by diminishing insulin resistance, enhances lipid and lipoprotein profiles,
ameliorates other risk factors for cardiovascular disease independently of weight loss or
improved glycemic control, and may therefore have utility in long-term reduction of coro-
nary artery disease risk among patients with NIDDM.

Elkeles (1991) also conducted a three-month crossover trial on 35 patients with poorly
controlled NIDDM to investigate the effects of Glucophage and Glibenclamide on body
weight, blood glucose control, and serum lipoproteins. After six weeks of a diet that did not
achieve adequate diabetic control, patients were randomized to receive either Glibenclamide
5 mg daily or Glucophage 500 mg twice a day. The dose was increased to achieve a fasting
blood glucose level of 6 mmol/L or less, up to a maximum of 15 mg Glibenclamide or 3 g
Glucophage daily. After three months the treatment was stopped and after six weeks of diet
only again, patients were crossed over to receive the other drug. Before and after three
months of treatment, blood samples were taken for serum lipids, lipoproteins, blood glucose,
and glycosylated haemoglobin. Elkeles reports that Glucophage diminished HbA1C levels by
2.05% and the Glibenclamide by 1.51%. Glucophage also significantly reduced both total
cholesterol and low-density lipoprotein cholesterol. Elkeles points out that the improvement
in HbA1C levels as well as in total cholesterol and low-density lipoprotein cholesterol reverted
when Glucophage was withdrawn for six weeks. Therefore it was concluded that by reducing
total cholesterol and low-density lipoprotein cholesterol over the long term, Glucophage can
improve the coronary artery disease risk profile independently of its effect on glucose home-
ostasis.

Example 5.4.1 Joint Use of Parallel Group Design and Crossover Design

As little or no information regarding the interaction between diet and statins (3-hydroxy-3-
methylglutaryl coenzyme A [HMG-CoA] reductase inhibitors) is available in the literature,
Jula et al. (2002) reported a randomized, controlled crossover trial to evaluate the separate
and combined effects of diet and simvastatin therapy on serum levels of lipids, lipoproteins,
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antioxidants, and insulin. After a 4- to 6-week placebo run-in period, 120 previously
untreated hypercholesterolemic men with a fasting serum cholesterol greater than 232 mg/dL
were first randomized in a parallel group design with a 1:1 ratio to a habitual diet or dietary
treatment group. Within each of these two groups, a standard two-sequence, two-period (2 �
2) crossover design was employed to randomized subjects to receive simvastatin (20 mg/d) or
its matching placebo for 12 weeks in a double-blind fashion. The dietary treatment is a
weighted, modified, Mediterranean-type diet. The main goals of the dietary treatment were to
reduce energy intake from saturated plus trans-unsaturated fats to no more than 10% by
replacing them partly with monounsaturated and polyunsaturated fats rich in omega-3 fatty
acids and to increase intake of fruits, vegetables, and dietary fiber. As a pilot study with 
20 subjects did not show any evidence of period or carryover effect, no washout period 
was included between two treatment periods. The diagram of the design for this study is 
presented in Figure 5.4.3. This study employed a two-group parallel design and the standard
2 � 2 crossover design to investigate the joint effects of statins and diet. The two-group par-
allel design in this study is to compare two diets whereas the effects of statins versus placebo
were investigated through the standard 2 � 2 crossover design. This is also an example of
factorial trials, which will be discussed later in Chapter 7.

255 Had Serum Cholesterol �232 mg/dL

188 Willing to Continue

761 Men Screened

120 Eligible

Placebo Run-in Period (4-6 wk)

120 Randomized

60 Assigned to Receive

Dietary Treatment
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30 Assigned to Receive

Simvastatin
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Placebo
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Placebo
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Crossover
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Figure 5.4.3 Joint application of parallel-group and crossover designs. (Source: Jula et al., 2002.)
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For phase I safety and tolerance studies, Rodda et al. (1988) classify traditional designs as
follows:

1. Rising single-dose design.

2. Rising single-dose crossover design.

3. Alternative-panel rising single-dose design.

4. Alternative-panel rising single-dose crossover design.

5. Parallel-panel rising multiple-dose design.

6. Alternative-panel rising multiple-dose design.

As indicated in Chapter 1, phase I studies are usually conducted in young, healthy male vol-
unteers. The purpose of phase I studies is to obtain initial appraisement of drug safety through
the evaluation of vital signs, physical health, and adverse events and frequent assessments of
hematology, blood chemistry, and urine samples. The above designs are commonly employed
in phase I safety and tolerance studies to efficiently provide the data that can be analyzed for
generating hypotheses rather than for making definitive inference.

In medical practice, if the study medicine is intended for cancer or some life-threatening
diseases, it may not be ethical to conduct phase I safety and tolerance studies on normal vol-
unteers due to potential toxic or fatal effects. In addition results from animal studies provide
little information regarding the therapeutic range for possible efficacy with tolerable safety.
Due to the special characteristics of cancer patients and toxic profiles of cancer treatments,
designs for cancer clinical trials require special considerations, which will be addressed in
Chapter 6.

Standard Titration Design

One of the objectives of phase II clinical trials is to sufficiently characterize the dose-
response relationship, which is the most frequently asked question at the FDA Advisory
Committee’s meeting. The dose-response relationship defines the therapeutic range of a
test drug. The therapeutic range is usually referred to as the dosage range between the min-
imal effective dose (MED) and the maximum tolerable dose (MTD). The MED is the low-
est dose above which the efficacy of the test drug is clinically superior to and statistically
significant from that of the placebo. The MED is usually demonstrated for at least one pri-
mary clinical endpoint. If the range between the MED and MTD is large, then the test drug
is said to have a wide therapeutic window. If the MED is very close to MTD, then the test
drug is considered to have a narrow therapeutic window.

In practice, although preliminary short-term safety information is available after the
completion of phase I clinical trials, information on the dose-response relationship and the
safety profile with respect to a moderate or long-term exposure of patients to the test drug
is usually unknown at the initiation of phase II clinical trials. In order to conform to real
clinical practice and to expose the patients only to the amount of dose they need, it is sug-
gested that a titration design be used to provide a conservative and cautious approach in
investigating the dose-response relationship, which can in turn be used as a preliminary
estimate of the therapeutic window of the drug.

188 DESIGNS FOR CLINICAL TRIALS
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The ICH E4 guideline describes four different designs for assessing dose response: paral-
lel dose-response design, crossover dose-response design, force titration design, and optional
titration design (ICH E4, 1994). Parallel and crossover dose-response designs are special
applications of parallel group and crossover designs to evaluation of dose-response relation-
ship, respectively. Therefore, although these two designs have been addressed in Sections 5.2
and 5.4, they will be further discussed in this section. Force titration is a variation of the force
escalation design that will be described later in this section. On the other hand, the optional
titration design is a modified titration design with a concurrent placebo-controlled group
where subjects are titrated until they reach a well-characterized favorable or unfavorable
response. In this section, both titration and force escalation designs will be introduced along
with their variations.

A traditional titration design is also a dose-escalation study with a set of predetermined
dose levels and prespecified criteria of responders or nonresponders. A titration design starts
with a placebo washout phase during which the previous medications are stopped and the
placebo is administered to the patients. At the end of the placebo washout period, the base-
line clinical measurements are established. Then, all the patients start with the same lowest
dose. A patient is considered a responder and continues to receive the same dose for the
duration of the trial if he or she meets the prespecified criteria at the end of the first dosing
period. If a patient fails to meet the prespecified criteria at the end of the first dosing period,
the dose of the patient is then titrated up to the next higher dose provided that the patient can
satisfactorily tolerate the drug. The titration process continues until all dose levels are
exhausted. A graphical presentation of a typical titration design is given in Figure 2.4.1. The
determination of a responder is usually based on some objective physiological measure-
ments. In practice, the duration of each dosing period is usually chosen to be of sufficient
length so that the stabilization of the selected physiological measurements can be achieved
to define the titration process.

For the analysis of the data from titration studies, several methods have been proposed
in the literature. For example, Chuang (1987) considers the life-table method utilized
along with a logistic linear dose-response model. As an alternative, Shih et al. (1989) and
Chuang-Stein and Shih (1991) propose the method of EM algorithm. Temple (1982), how-
ever, points out that for any titration study the treatment effect is confounded with time. In
addition, the primary clinical measurement used to define the titration process might be
highly correlated with other efficacy and/or safety endpoints. As a result the missing mech-
anism for these clinical endpoints are treatment related and are not at random. Conse-
quently the methods for use of longitudinal data such as generalized estimating equations
(GEE) proposed by Liang and Zeger (1986) are not appropriate (e.g., see Chuang-Stein,
1993). Therefore, a limitation of titration designs is their lack of valid statistical method-
ologies for the analysis of continuous or ordered categorical data in adequately character-
izing the dose-response relationship of a test drug.

Note that there are other variations associated with a titration design that make statisti-
cal analysis even more complicated. An example for such variation is described below. An
open-label phase II clinical trial with three titration groups was conducted before availabil-
ity of the results from CAST to obtain preliminary information of dose-response relation-
ship for a new class IC anti-arrhythmic agent in treatment of patients with ventricular
ectopy. Each titration group had a dosing regimen of the four ascending doses as displayed
in Table 5.5.1. The first group consists of dose levels of a placebo and 50 mg, 75 mg, and
125 mg t.i.d. (every eight hours) of the drug, the second group includes a placebo, 50 mg,
100 mg, and 150 mg, t.i.d. of the drug, while the third group contains a placebo, 100 mg,
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150 mg, and 200 mg t.i.d. of the drug. The duration of each dosing period is three days, and
the patients were assigned to the three groups sequentially. The objective clinical endpoints
are derived from the 24-hour Holter recording processed at a central facility. They were:

1. Hourly average of total ventricular premature contraction (VPC) counts.

2. Hourly average of single VPC counts.

3. Sum of couplets over a 24-hour period.

4. Sum of VT runs over a 24-hour period for which the pulse rate was greater than or
equal to 100 beats per minutes.

A responder for an adequate suppression of ventricular ectopy is defined as (1) at least a
80% reduction in average total VPC count per hour compared to the baseline value
obtained at the end of the placebo dosing period and at least a 90% reduction in the num-
ber of events of repetitive forms (couplets or nonsustained ventricular tachycardia, NSVT)
or (2) at least a 90% reduction in the number of NSVT provided the number of NSVT is 10
or more during the placebo period. Patients may be withdrawn from the study according to
the following efficacy and safety criteria. Efficacy criteria for worsening of ventricular
ectopy is defined as either (1) ln(Y) � 3.118 � 0.646 ln(X), where Y is the hourly average
total VPC count at the end of each dosing period for the active treatment and X is the base-
line average total VPC hourly count at the end of placebo period, or (2) an increase to 50 or
more runs of VPCs if the number or runs over the 24-hour period during the placebo period
is less than five or a tenfold increase in the number of runs and if it is at least five during
the placebo period. The safety criteria include (1) the QRS interval being at least 180 ms,
or (2) an increase of at least 40% in the corrected QC interval compared to the baseline
value of the placebo period or a QC greater than 550 ms.

The dose for patients in each group was titrated upward every third day within each 
dosing group until an adequate suppression of ventricular ectopy according to the above
criteria or patients withdrew from the study if they met either criteria for worsening of ven-
tricular ectopy or safety criteria. It should be noted that each dosing group after the placebo
period actually is a parallel group design. For example, the last dosing period is in fact
compared to three parallel dosing groups: 125 mg, 150 mg, and 200 mg. On the other hand,
within each group, comparison among doses is made within each patient. Consequently as
an example, a comparison between 50 and 100 mg consists in a comparison between group
A and C during the first dosing period and the comparison between 50 and 100 mg within
the patients in group B. In addition to the complexity of the design of this study, it is also
observed that (1) the study is an open-label study with a nonrandom group assignment,

Table 5.5.1 Dose Levels and Number of Patients at Each Dosing Period of the Titration
Design for a Class IC Antiarrhythmic Agent

Dosing Period

Group 0 1 2 3

A P(11) 50 (11) 75 (9) 125 (9)
B P(15) 50 (15) 100 (14) 150 (12)
C P(16) 100 (16) 150 (14) 200 (9)

Note: P � placebo; the numbers outside the parentheses are dose levels in mg, and the numbers within the paren-
theses are the number of patients entered each dosing interval.
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(2) the three dose titration groups have overlapping doses, and (3) possible confounding
dose effects and carryover effects exist because of no washout period between the dosing
periods. Therefore it is suggested that the conclusion and/or interpretation of the results
based on inferential statistics for comparisons among doses be drawn with extremely 
caution.

Another issue regarding the interpretation of the information of the dose-response rela-
tionship from a titration design is the overestimation of the necessary dose. For example,
the results of early titration studies may suggest that a dose of 600 mg per day or more is
necessary for the cardio-selective beta-blocker atenol in the effective reduction of blood
pressure. However, subsequent parallel-group, placebo-controlled studies demonstrate 
that a dose above 100 mg per day has no additional effect in the reduction of blood pres-
sure. To overcome this problem, a titration design with a parallel placebo current control
may be useful. For example, a phase II clinical trial was conducted to obtain initial dose-
response information of an angiotensin-coverting enzyme (ACE) inhibitor captopril.
Patients are randomized to either the active treatment group or placebo concurrent group.
Then the titration process is performed within each group in five dosing periods with five
predetermined doses 0, 25 mg, 50 mg, 100 mg, and 150 mg t.i.d. (Temple, 1982). This
design is illustrated in Table 5.5.2 with the mean diastolic blood pressure (mmHg). Within
each dosing period, patients in the captopril group received the active drug at the titrated
dose level and the patients in the parallel placebo concurrent control group received its
matching placebo. The criterion for a clinical response was defined as a reduction of dias-
tolic blood pressure below 90 mmHg. This design is in fact a parallel group design with
two groups. The study can be conducted in a triple-blind fashion in the sense that not the
patients nor the investigator nor the sponsor know the actual treatment that is assigned to
the patients, although the titration process with the corresponding doses can be made avail-
able to everyone. About 70% of patients were titrated up to 100 and 150 mg. If we only
examine the results from the active treatment group as if this study had been conducted as
the traditional titration design without a parallel placebo concurrent control, there is a very
nice dose-response relationship in reduction of blood pressure from the baseline. In this
case the results of the active group gives a wrong impression that the test drug produces a
monotone increased response up to 150 mg t.i.d. However, at the same time the parallel
placebo concurrent group also presents a sizable placebo effect in the reduction of blood
pressure. It turns out that the treatment effect, which is the difference in reduction from

Table 5.5.2 Titration Design with a Parallel Placebo Concurrent Control with Diastolic
Blood Pressure (mmHg)

Dose Level

0 mg 25 mg 50 mg 100 mg 150 mg

Captopril
Observed DBD 110 100 99 96 94
Change from 0 �10 �11 �14 �16

Placebo
Observed DBD 110 104 104 103 101
Change from 0 �6 �6 �7 �9

Difference in
Change from 0 �4 �5 �7 �6

Source: Summarized from Temple (1982).
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baseline between captopril and placebo, reaches a plateau and remain constant after dosing
period 2 during which 50 mg t.i.d. was administered. Consequently, Temple (1982) sug-
gests that 50 mg t.i.d. seems to treat most hypertensive patients well.

Forced Dose-Escalation Design

The design illustrated in Table 5.5.2 is an example of the optional titration design men-
tioned above. Inclusion of a parallel concurrent placebo control group can correct for
spontaneous changes and investigator expectations. As each subject in titration designs
receives several different doses, in addition to population average dose-response relation-
ship, individual dose-response information can be obtained. In addition, with a careful
planning, the titration design may require fewer subjects than the fixed-dose parallel dose
response design and fewer subjects may be exposed to higher doses. However, time and
dose are confounded with each other. This problem will become particularly troublesome
when one tries to characterize the dose-response relationship for adverse events.

Note that some pharmaceutical agents might induce some undesirable but reversible
safety concerns. In addition they may not be efficacious at lower doses. When conducting
clinical trials with these agents, we would expect a significant number of dropouts. Therefore
it is recommended that a trial with these agents begin very cautiously with a very low dose.
In such a trial the criteria for titration process is based on safety rather than efficacy because
the drug is unlikely to be effective at lower doses. As a result all patients who do not have the
predefined safety problem will be forced to receive the next higher dose in the subsequent
dosing period. This type of titration design is called the forced dose-escalation design. A typ-
ical example for obtaining FDA approval using the forced dose-escalation trials is the
approval of Tacrine which is intended for treatment of mild to moderate dementia of the
Alzheimer’s type. Since Tacrine is known to induce elevation of serum alanine aminotrans-
ferase (ALT) above the upper limit of the normal range in 43% to 54% of the patients and
around 28% of the patients treated with Tacrine showed an elevation of ALT exceeding three
times the upper limit of the normal range, the forced dose-escalation design at six-week inter-
vals was chosen for two adequate well-controlled studies for the approval of the drug. The
design of the first adequate well-controlled randomized study is a 12-week trial that consists
of two six-week double-blind phases with the placebo current control groups as shown in
Table 5.5.3 (Farlow et al., 1992). Patients were first randomized to one of the six sequences.
For the double-blind phase I the patients in sequences 1 and 2, 3 and 4, and 5 and 6 received
placebo, 20 mg, and 40 mg per day, respectively. However, for the double-blind phase II

Table 5.5.3 Forced Dose-Escalation Design for 12-Week Trial of Tacrine 
in Alzheimer’s Disease

Randomized Double-Blind Double-Blind 
Sequences Phase I Week 1 to 6 Phase II Week 7 to 12

1 Placebo Placebo
2 Placebo Tacrine 20 mg/d
3 Tacrine 20 mg/d Tacrine 20 mg/d
4 Tacrine 20 mg/d Tacrine 40 mg/d
5 Tacrine 40 mg/d Tacrine 40 mg/d
6 Tacrine 40 mg/d Tacrine 80 mg/d
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patients in sequences 1, 3, and 5 received the same doses as those in the double-blind phase
I, while the doses of the patients in sequences 2, 4, and 6 who could tolerate the doses in
double-blind phase I were titrated up to 20 mg, 40 mg, and 80 mg during double-blind phase
II, respectively. The second adequate well-control study is a long-term 30-week randomized
double-blind trial that consists of three parallel groups for the active drug and a parallel
placebo current group with a forced dose-escalation design as shown in Table 5.5.4 (Knapp,
1994). To account for anticipated increase incidence of cholingeric adverse events and
dropouts at the highest dose, an unequal randomization with a ratio of 3 : 1 : 3 : 4 for groups 1,
2, 3, and 4, respectively, was used for the assignment of patients to the treatment. Patients
who were randomized to group 1 received a placebo throughout the entire study. Patients
who randomized to group 2 received 40 mg per day for the first six weeks. If they could tol-
erate the dose, the doses of those patients were escalated to 80 mg per day for the rest of the
study. Patients who were randomized to group 3 received 40 mg per day during the first
6 weeks and then were titrated up to 80 mg per day between week 7 and week 12, and again
titrated to 120 mg per day for the rest of the study provided that they could tolerate the dose
levels. The escalation process for the patients who were randomized to group 4 was 40 mg,
80 mg, 120 mg, and 160 mg per day for the first, second, and third 6-week dosing periods,
and for the rest of 12 weeks, respectively. Both trials consist of parallel groups as well as a
dose titration process within each group. Therefore they can provide cross-sectional data for
comparison among parallel groups as well as longitudinal data for comparison among doses
based on the individual patient. However, for the 12-week trial the analysis was performed
separately with the cross-sectional data collected at week 6 for the double-blind phase I and
week 12 for the double-blind phase II. The cross-sectional data at week 30 were analyzed for
the 30-week study. Unfortunately, due to the lack of adequate statistical tools for inference of
treatment effects in the presence of treatment-related withdrawal, longitudinal data were not
utilized to provide useful information regarding the titration process, indeed such data can be
vital for the application of Tacrine in the treatment of patients with probable Alzheimer’s
disease.

One of the key characteristics for the traditional titration design is that the titration is a
dose-escalation process. In other words, the subjects will receive the next higher dose if they
meet some predefined efficacy or safety criteria. However, the dose de-escalation is some-
times employed in the titration design. Goldstein et al. (1998) reported a study for evalua-
tion of oral sildenafil in the treatment of males with erectile dysfunction. A total of 329
males 18 years of age or older with a clinical diagnosis of erectile dysfunction of six months
or longer were randomly assigned to receive placebo or 50 mg of sildenafil approxi-
mately one hour before sexual activity for 12 weeks. At each follow-up visit, the dose can be

Table 5.5.4 Forced Dose-Escalation Design for 30-Week Trial of Tacrine 
in Alzheimer’s Disease

Randomized Week

Groups 0–6 7–12 13–18 19–30

1 Placebo Placebo Placebo Placebo
2 40 mg/d 80 mg/d 80 mg/d 80 mg/d
3 40 mg/d 80 mg/d 120 mg/d 120 mg/d
4 40 mg/d 80 mg/d 120 mg/d 160 mg/d
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doubled up to 100 mg if there is no adequate clinical response and no safety concern. On the
other hand, the dose can also be reduced to 25 mg if there is satisfactory clinical response
but with a concern about some adverse events. As the dose of this design can be titrated
upward as well as downward, it is referred to as the flexible dose escalation design. To
maintain the study in a double-blind fashion, each dose consists of three tablets from the
same row of blister pack in the following configurations: (1) placebo-placebo-placebo, (2)
placebo-placebo-25 mg, (3) placebo-placebo-50 mg, or (4) placebo-50 mg-50 mg. Assess-
ment of the primary efficacy is based on the 15-question International Index of Erectile
Function (IIEF, Rosen et al., 1997). At the end of the 12-week titration process, the propor-
tions of the subjects receiving 25 mg, 50 mg, and 100 mg in the sildenafil were 2%, 23%,
and 74%, respectively. For the placebo group, the corresponding proportions were 0%, 5%,
and 95%. Two-hundred-twenty-five men who completed the 12-week study without any
serious adverse events were enrolled to receive open-label sildenafil for an additional 
32 weeks.

5.6 ENRICHMENT DESIGNS

Some therapeutic agents are likely to be effective in a specific population of patients who
may have an underlying disorder that is responsive to the manipulation of dose levels of
the same agent or several different agents. In practice, instead of an unselected group of
patients, it is of interest to identify the patients in whom the test agent is likely to be benefi-
cial in the early phase of the trial. This phase of manipulation of dose levels of the same
therapeutic agent or test of different agents for identification of patients with drug efficacy
is called the enrichment phase. The patients with drug efficacy identified at the enrichment
phase are then randomized to receive either the efficacious dose of the test agent or the
matching placebo. A design of this kind is known as an enrichment design.

An enrichment design usually consists of at least two phases. The first phase is the
enrichment phase in which an open-label study with a titration design is conducted to 
use some primary pharmacologic effects to identify patients with a clinical response. The
second phase is usually randomized and double-blind, possibly with a concurrent placebo
control to formally and rigorously investigate the effectiveness and safety of the test agents
in these patients. The concept of enrichment design is illustrated in three clinical trials in
the areas of Alzheimer’s disease and arrhythmia.

The first example is a clinical trial conducted in the early stage of development of Tacrine
with doses of 40 and 80 mg four times a day in treatment of the patients with probable
Alzheimer’s disease. As indicated by Davis et al. (1992), the reason for the enrichment
design to be selected for this trial is that the clinical, biochemical, and pathological hetero-
geneity of the disease and clinical experience suggest that not all patients will respond to any
single treatment and that those who respond might do so only within a limited dose range.
This trial consisted of four phases: a six-week double-blind dose-titration enrichment phase,
a two-week placebo baseline phase, a six-week randomized double-blind placebo-controlled
phase, and a six-week sustained active phase, as is displayed in Figure 5.6.1. Patients who
met the inclusion and exclusion criteria were enrolled into the enrichment phase of the trial
which consisted of three titration sequences. Each titration sequence consisted of 3 two-week
dosing periods. The dose in each titration sequence was always titrated up from 40 to 80 mg
four times a day with a placebo in dosing periods 1, 2, and 3 for the titration sequences 1, 2,
and 3, respectively. The patients were randomized into one of the three titration sequences
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which were conducted in double-blind fashion. The potentially therapeutic response for each
patient at each dose were then assessed at the end of each two-week dosing period. The best
dose response for a patient was defined in advance in the protocol as a reduction of at least
four points from the screening value in a total score on the Alzheimer’s disease assessment
scale (ADAS, Folstein et al., 1975) and without intolerable side effects. Then patients with
the identified best dose were then entered into a two-week placebo baseline period with the
hope that this period would be sufficiently long for Tacrine to wear off from the body and for
patients to return to the screening pretreatment state with comparable efficacy outcomes. At
the end of the two-week placebo baseline phase, the patients with a reduction of at least four
point in ADAS during the enrichment phase entered the subsequent six-week randomized
double-blind parallel-group, placebo-controlled phase and were randomized with equal
probability either to the active Tacrine at their best dose or to the matching placebo. The clin-
ical endpoints measured at the end of the two-week placebo baseline phase served as the
baseline for the six-week double-blind phase. Patients who completed the six-week double-
blind phase then entered into the sustained active treatment phase.

This study adopted an enrichment design with three titration sequences to identify
patients who are likely to respond to Tacrine at a certain dose. After a two-week washout

Figure 5.6.1 An enrichment design for tacrine in patients with probable Alzheimer’s disease.
(Source: Davis et al., 1992.)
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period, the identified patients were randomized in either Tacrine at their best dose or to
placebo concurrent control in a double-blind phase. It, however, should be noted that the
fundamental assumption for the use of an enrichment phase is that the best dose responses
are those obtained when patients are on Tacrine. In practice, it is quite possible that some
patients were placebo-responders (i.e., a reduction of at least 4 points on the ADAS scale)
who may not respond to Tacrine. In their paper Davis et al. (1992) did not indicate whether
there were any placebo-responders in the study. In addition, although there were washout
periods between the two-week dosing periods in titration sequences during the enrichment
phase, the carryover effect could still exist. Thus it is impossible to estimate the treatment
difference unbiasedly based on the data from all three dosing periods during the enrich-
ment phase due to the fact that carryover effects are confounded with treatment effects.
Based on the first two weeks of treatment, the enrichment design can provide an unbiased
comparison between the placebo and the 40 mg. However, the other two-thirds of the infor-
mation was wasted. It can be seen from the study that the carryover effect was significant,
which suggests that a placebo baseline phase of two weeks was not long enough for the
patients to return to the pretreatment state at the screening. In addition, since the carryover
effects were confounded with the treatment effects, it is likely that the reduction of at least
four points on the ADAS for the best dose response was in part due to the carryover effect.
As a result Davis et al. (1992) admit that. “Failure to restore baseline conditions fully at the
end of the washout period after dose titration makes it impossible to calculate the size of
drug effect with certainty.” Furthermore it is not clear how to distinguish the characteristics
of the patients with the best dose response from those who failed to produce a best dose.
This information is extremely important for practicing physicians who are in favor of pre-
scribing Tacrine to patients with probable Alzheimer’s disease. Consequently, this study
was not used as one of the two adequate well-controlled studies for approval of Tacrine.

The rationale for selecting the enrichment design in one of the trials during the develop-
ment of Tacrine is that a short-term response to Tacrine is predictive of the long-term
efficacy in prevention of the progression of Alzheimer’s disease. The same clinical end-
points were used in both the enrichment and double-blind phases for evaluation of Tacrine’s
effectiveness. In practice, for other therapeutic agents, the real efficacy endpoint is mortality
which requires a longer time to observe. Therefore, the short-term efficacy of the agents is
assessed by some other objective surrogate endpoints. It is then very important to know
whether the short-term efficacy based on the surrogate endpoint is predictive of a hard end-
point such as mortality. As a result, the enrichment design is usually employed for identifi-
cation of the short-term responders at the initial stage followed by the main phase of the
long-term study. Examples of this type of trial can be found in the area of arrhythmia such
as in the Cardiac Arrhythmia Suppression Trial (CAST) and the Electrophysiologic Study
versus Electrocardiographic Monitoring (ESVEM) trial.

CAST is a multicenter randomized placebo-controlled study sponsored by the U.S.
National Heart, Lung, and Blood Institute to test the hypothesis whether the suppression of
asymptomatic or mildly symptomatic ventricular arrhythmia after myocardial infarction
will reduce the rate of death from arrhythmia. The active drugs included three class IC
antiarrhythmic agents Encainide, Flecainide, and Morcizine with a placebo concurrent con-
trol. Since the objective of the study was to test the predictability of suppression of ventric-
ular arrhythmia based on ventricular premature contractions (VPC) as recorded by the
Holter monitor using the active drugs for mortality, an open-label enrichment design with
two titration sequences involved with only active drugs was selected for this study. The
patients were stratified by left ventricular ejection (�30%) and time between the qualifying
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Holter recording and the myocardial infarction (�90 days or �90 days). Patients with an
ejection fraction of at least 30% were assigned at random to receive either the sequence
Encainide–Morcizine–Flecainide or the sequence Flecainide–Morcizine–Encainide. The
reason for including Morcizine is its inferior efficacy in the suppression of VPC as com-
pared to other two active agents. Each drug was tested at two dose levels. The doses of
Encainde, Flecanide, and Morcizine were 35 mg and 50 mg t.i.d., 100 mg and 150 mg, b.i.d.,
200 mg and 250 mg t.i.d., respectively. Since Flecainide exhibits negative inotropic proper-
ties, it was not administered to the patients with an ejection fraction less than 30%. The pre-
specified criteria for an adequate suppression of ventricular arrhythmia were (1) a reduction
of at least 80% in VPC and (2) a reduction of at least 90% in runs of unsustained tachycar-
dia as measured by 24-hour Holter recording 4 to 10 days after each dose was begun. The
titration process for a particular patient was stopped as soon as a drug and a dose were found
to yield adequate suppression. The patients whose arrhythmia were adequately suppressed
were then randomized to either the best drug identified during the enrichment phase or to
placebo for a three-year long-term follow-up. A diagram of the study’s design is given in
Figure 5.6.2.

The results of CAST, which showed an excessive risk of death for patients who received
Encainide or Flecainide as compared to placebo, are thoroughly discussed and examined
by Ruskin (1989). The enrichment phase of CAST inherited the fundamental flaw of any
titration design in confounding the treatment and carryover effects. For the ethical reason
of a minimal exposure of patients to the test agents, the titration process must be stopped as
soon as a drug and a dose are found to be effective in suppression of VPC. On the other
hand, the optimal drug and dose could not be found for a particular patient. The primary
endpoint for CAST is the death or cardiac arrest with resuscitation due to arrhythmia.

Figure 5.6.2 An enrichment design for cardiac arrhythmia suppression trial (CAST).
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However, the analysis for the comparison of mortality rate between antiarrhythmic agents
and placebo failed to take into account the occurrence of those events during the enrich-
ment phase because of the lack of an adequate statistical tool for combining the results
based on the same primary endpoint from both the enrichment phase and the randomized,
placebo-controlled phase. On the other hand, other patients with adequate suppression
based on VPC as a therapeutic endpoint might respond very differently from patients with
arrhythmia, such as those with ventricular dysfunction or unsustained ventricular tachycar-
dia. This can be seen from the comparison of the mortality rate assumed for sample size
determination and the actual mortality rate. The mortality rate of the placebo concurrent
control for the sample size determination of CAST over a period of three years was 11%,
while the observed mortality of the placebo group was only about 2.2%. As a result the
enrichment design in CAST produced a biased estimate of mortality rate for the placebo
concurrent control and excluded death in open-label titration process during the enrich-
ment phase in the suppression of arrhythmia for a patient population with a low risk of
death.

The results of CAST indicate that the short-term efficacy measured as suppression of
VPC based on noninvasive ambulatory electrocardiographic monitoring such as Holter
monitor might not be a good predictor where mortality is the endpoint. Others have argued
that the failure to induce ventricular tachycardia or fibrillation by some drug assessed by the
invasive electrophysiologic study might be a good alternative independent predictor of
recurrence of arrhythmia. Consequently, the ESVEM trial sponsored by the U.S. National
Institute of Heart, Lung, and Blood was the first large prospective randomized trial con-
ducted to compare the two methods for predictability of long-term recurrence of arrhythmia
by the short-term efficacy assessed by the two methods (ESVEM investigators, 1989, 1993;
Mason and ESVEM investigators, 1993a, 1993b). For the assessment of predictability, a
correlation was obtained using the difference in the recurrence rates of arrhythmia with the
short-term efficacy by both methods. An inpatient enrichment phase was elected to identify
patients in whom a test drug exhibited a short-term efficacy assessed by either of the two
methods. This enrichment design is illustrated in Figure 5.6.3. Patients who met the entry
criteria and a 48-hour Holter monitoring and electrophysiologic study criteria were ran-
domized to one of two parallel groups for the two methods in order to assess the short-term
drug efficacy. For the assessment of the short-term drug efficacy, the first group employed
noninvasive ambulatory electrocardiographic monitoring, while the second group applied
the invasive electrophysiologic study. Within each group the patients received up to six
arrhythmia agents in a random order until one drug was predicted to be efficacious or until
all drugs were tested. A test drug is classified as efficacious when assessed by electrocardio-
graphic monitoring during the inpatient enrichment phase if the following efficacy criteria
are met: (1) 70% reduction in mean VPC count, (2) 80% reduction in VPC pair count, (3)
90% reduction in mean ventricular tachycardia counts, and (4) absence of any runs of ven-
tricular tachycardia longer than 15 seconds. Drug efficacy evaluated by the electrophysio-
logic study during the enrichment phase is defined as failure to induce a run of ventricular
tachycardia longer than 15 seconds with V1V2V3 stimulation at the right ventricular apex.
If a drug was proved to be efficacious for a patient during the enrichment phase, then he or
she was discharged from the hospital for the long-term follow-up with the drug, and the
accuracy of the prediction of efficacy was determined during the long-term follow-up.
Patients in whom no drugs were proved to be effective during the enrichment phase were
not randomized and were withdrawn from the study. However, the vital signs and the recur-
rence of arrhythmia of the withdrawn patients were monitored.
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The application of an enrichment design in the ESVEM study narrowed the patient pop-
ulation to a very highly selective minority of sustained ventricular tachycardia associated
with coronary disease (Ward and Camm, 1993). The patients had to have frequent ventric-
ular ectopic beats by the Holter monitor and inducible ventricular tachycardia or fibrilla-
tion by electrophysiological study. Any meaningful clinical inference was severely limited
by this constraint. In addition, patients were discharged from the hospital as soon as the
first drug proved to be effective. An average of 2.6 (out of 6) drug assessments were per-
formed for each patient. Hence, the patients went to the long-term follow-up on a drug that
was effective but not necessarily the optimal one for the patient. Although the investigator
did not know what the next drug to be tested was until the proceeding drug failed, he or she
was not blinded to the drug currently being tested. Therefore, bias could occur in clinical
judgment or in the interpretation of the results. Mason and the ESVEM (1993b) also com-
pared the differences between the active agent sotolol and the other drugs whose efficacy
was defined as (1) the drug was tolerable during the enrichment phase, (2) the drug was
predicted to be effective, (3) arrhythmia did not occur, and (4) the drug was not discontin-
ued because of an adverse event. However, the results from this analysis (despite its
intention-to-treat database) are biased because (1) the assignment of patients to drugs was
not at random, (2) patients entered the long-term follow-up at the first drug that met the
short-term efficacy criteria, and (3) there was no placebo concurrent control which was
proven to be so crucial in CAST.

Figure 5.6.3 An enrichment design for electrophysiologic study versus electrocardiographic mon-
itoring (ESVEM). (Source: The ESVEM Investigators, 1989).
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In summary, an enrichment design is a part of screening process that further restricts the
target population to a small selective group. However, sometimes it is still not possible to
distinguish this small group from other patients with the same ailment in terms of demo-
graphic and other prognostic factors. On the other hand, statistical methods for analysis
based on the data from the enrichment phase and the double-blind or primary phase of the
trial are not fully developed due to (1) the lack of randomization and (2) different methods
of randomization for the enrichment phase. Therefore, the statistical analysis and clinical
interpretation for a trial using an enrichment design remain a challenge to both statisticians
and clinicians.

5.7 GROUP SEQUENTIAL DESIGNS

One of the unique features and special characteristics of clinical trials is acquisition of
experimental units. All experimental units in most in vitro experiments, agricultural field
trials, and animal trials can be assembled at the beginning of the study, treatments can be
applied to all experiment units, and evaluations can be concurrently performed at the same
time with respect to a uniform schedule. As mentioned before, however, in clinical trials,
the experimental units to which treatment is applied are human subjects. Therefore, unlike
other type of experiments, subjects are recruited sequentially over a time interval called the
accrual period that can range from weeks to months and years. After subjects are screened
and their characteristics meet the inclusion and exclusion criteria of the study, they are to
receive the assigned (probably randomly) treatment for a prespecified duration and to be
evaluated over a follow-up period. The total duration of a clinical trial is hence determined
by the accrual and follow-up periods.

In general, clinical trials are longitudinal in nature. Not only are subjects enrolled into a
clinical trial in a staggering manner, but also the information generated by the study is
accumulated sequentially over time. In addition, the conduct of the trial should be moni-
tored to verify whether it is carried out according to the protocol and it follows the Good
Clinical Practice. Moreover, for ethical reasons and in the best interest of subjects, a
mechanism should be established to terminate the trial before its scheduled completion if 
it generates convincing evidence of either benefit or harm of the investigational drug. A
group sequential design provides an assessment of subject outcomes in a group and
sequential fashion periodically during the trial rather than on a continuous basis as data
from each subject become available. In the past 20 years, various methods of interim
analyses (Pocock, 1977; O’Brien and Fleming, 1979; Lan and DeMets, 1983) were devel-
oped to assess effectiveness and safety of a drug during the trial adopted a group sequential
design. An independent data and safety monitoring committee (DSMC) is usually set up to
monitor the conduct and safety of the trial and to review or perform the interim analysis
arising from a trial with a group sequential design. ICH E9 guideline on Statistical Con-
siderations for Clinical Trials stressed that although the group sequential design is in gen-
eral employed in larger and long-term trials, safety must be monitored in all trials and the
need for formal procedures to all early termination for safety reasons should always be
considered. Despite the fact that methodologies of group sequential designs and interim
analyses have become matured (DeMets and Lan, 1994), new challenges for interim analy-
sis and DSMC are emerging (Dixon and Lagakos, 2000; DeMets, 2000). Different meth-
ods of interim analyses will be reviewed in Chapter 10, and the issues associated with
group sequential design and DSMC will be addressed in Chapter 12.
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Example 5.7.1 Multicenter Automatic Defibrillator Implantation Trial II 
(MADIT II)

Patients with reduced left ventricular function after myocardial infarction (MI) are at risk of
congestive heart failure (CHF) and life-threatening ventricular arrhythmia. Moss et al. (2002)
reported the results of the Multicenter Automatic Defibrillator Implantation Trial II that was
designed to evaluate the potential survival benefit of a prophylactically implanted defibrilla-
tor (in the absence of electrophysiological testing to induce arrhythmia) in patients with a
prior myocardial infarction and a left ventricular ejection faction of 0.30 or less. Over a
period of 4 years, a total of 1,232 patients were randomized in a 3:2 ratio to receive an
implanted defibrillator (742 patients) or conventional medical therapy (490 patients). The
defibrillator was implanted using the standard technique. Every effort was made to achieve
defibrillation within a 10-J safety margin. The primary endpoint was all causes death. This
trial employed a triangular sequential design (Whitehead, 1997) that was modified for a two-
sided alternative and corrected for the lag in obtaining data accrued but not reported before
the termination of the trial. This particular sequential design was chosen to allow weekly
monitoring with prespecified boundaries to permit early termination of the trial if the defi-
brillator therapy was found to be superior to, inferior to, or equal to conventional medical
therapy. The frequency for interim analysis and monitoring is intensive for this trial as com-
pared to that of usual group sequential design. Hence, it required a careful planning, prepara-
tion, administration, and execution of interim analyses and data monitoring. A graphical
presentation of paths for this trial is reproduced in Figure 5.7.1. Patients started to enroll into
the trial in July 1997. From Figure 5.7.1, an interim analysis on November 13, 2001 showed
that the difference in mortality between the defibrillator therapy and conventional medical
therapy had reached the prespecified efficacy boundary for superiority. The trial was termi-
nated on November 20, 2001 based on the recommendation of the data and safety monitoring
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Figure 5.7.1 Sequential monitoring in the triangular design for MADIT II. (Source: Moss  et al., 2002.)
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committee. Database was released on January 16, 2002 for the final analysis where during
the closeout procedure additional survival data and five more deaths that occurred before the
stopping dates were uncovered due to a lag in reporting. As a result, the duration of the trial
is 4 years and 5 months. It should be noted that a patient was entered into the follow-up
period of the study once they received the assigned treatment. The patient’s follow-up period,
therefore, ranged from 6 days to 53 months with an average of 20 months.

Example 5.7.2 Chemotherapy Regimens for Advanced Non-Small-Cell 
Lung Cancer

The survival rate of patients with untreated non-small-cell lung cancer at one year is only
10% with a median survival of 4 to 5 months (Rapp et al., 1988). Lung cancer accounts for
about one-third of all cancer-related deaths. Over the last 10 years, a number of new agents
become available for the treatment of patients with metastatic non-small-cell lung cancer.
Although these newer chemotherapy regimens are currently used frequently, fewer compar-
isons have been made to evaluate the effectiveness among these regimens. Schiller et al.
(2002) reported a randomized clinical trial conducted by the Eastern Cooperative Oncology
Group (ECOG) to compare the efficacy of three commonly used regimens with that of a ref-
erence regimen of cisplatin and paclitaxel. The three regimens included in this trial were
cisplatin plus gemcitabine, cisplatin plus docetaxel, and carboplatin plus paclitaxel. The pri-
mary endpoint was the overall survival from the date of enrollment. The planned sample
size for this study was 300 patients per treatment group over a 30-month period. The ECOG
Data Monitoring Committee was responsible for data and safety monitoring as well as
interim analyses. This trial employed a group sequential design with a frequency of interim
analyses much less intensive than that given in Example 5.7.1. The group sequential design
specified two interim analyses and one final analysis of the overall survival when one-third,
two-thirds, and all of the anticipated number of deaths had occurred. This trial was executed
until the planned number of patients had been enrolled in the study and a total of 1,207
patients were enrolled in the trial from October 1996 to May 1999. The conclusion of this
trial is that none of four chemotherapy regimens offered a significant advantage over the
others in the treatment of advanced non-small-cell lung cancer.

5.8 PLACEBO-CHALLENGING DESIGN

As indicated earlier, in many clinical trials, a parallel group design alone or a crossover
design alone may not be appropriate for evaluation of the safety and efficacy of some drug
products. Instead, a combination of a parallel group design or a crossover design with the
characteristics of some other designs, such as titration design and enrichment design, may
be more appropriate. For example, for evaluation of the efficacy and safety of drug prod-
ucts for treatment of erection dysfunction in male subjects, a design that consists of a titra-
tion phase for achieving optimal dose and a crossover active treatment phase with two
placebo challenges (i.e., pre- and post-treatment) is often considered. We will refer to the
design of this kind as a placebo-challenging design.

For the placebo-challenging design of this kind, subjects are evaluated for eligibility at
screening based on medical history, laboratory test, and physical examination. Eligible
subjects then enter the dose titration phase. Each subject proceeds a stepwise dose titration
until a minimal dose that produces the optimal response is identified. An optimal response is
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defined as an erection sufficient to achieve vaginal penetration and lasting from 30 to 80 min-
utes. At the start of treatment, subjects are required to undergo an in-clinic evaluation of a
double-blind placebo-challenge (i.e., subjects will be randomized to receive either the placebo
or the active dose at the level identified during the titration). After this first period of in-clinic
study, all subjects are to receive a three-month home treatment period at the dose identified
during the titration. At the end of three-month treatment, a second in-clinic double-blind
placebo-challenging is conducted. Note that at the second placebo-challenging, patients are
randomly assigned to receive either the placebo or the active dose. As a result, the above
design is in fact the combination of a titration design and a four-sequence, two-period 
(4 � 2) crossover design. In other words, during the crossover phase, there are four sequences
of treatments, namely, PP, PA, AP, and AA. As an example, for the sequence of AP, subjects
are randomized to receive the active dose at the start of the home treatment and are randomly
assigned to receive the placebo at the end of the three-month home treatment.

Statistical Model and Inferences

For the placebo-challenging design described above, standard statistical procedures may
not be applicable. Chow et al. (2000) studied statistical properties of a placebo-challenging
design and developed some new statistical methodology for analysis of data collected from
such a design. The statistical methodology is briefly outline below.

Suppose that there are a total of 2n subjects in a placebo-challenging design, as described
above, qualified subjects are randomly assigned to two treatment groups (i.e., placebo and treat-
ment) in the first and the last periods of the study. Each group consists of n patients, and the
assignments in two periods are independent. Thus, 2n patients can be classified into the follow-
ing four groups according to the type of treatments received in two periods:

where n1 � n2 � n. Data will be collected in the first and the last periods. A three-month
home treatment period will be given to each patient, and no data will be collected.

Note that the placebo-challenging design is very similar to that of a four-sequence, two-
period (4 � 2) crossover design (Jones and Kenward, 1989). The major difference between
the two designs is that in the placebo-challenge study, there is a three-month home treatment
between the two periods of placebo/treatment. Consequently, statistical models (parameter
specifications) under the two designs are different. For example, in a 4 � 2 crossover design,
one can estimate the period effect, but in a placebo-challenge design, the period effect is con-
founded with the three-month home treatment effect. As the period effect is usually much
smaller than the three-month home treatment effect, we may assume that the former is negli-
gible so that the three-month home treatment effect is estimable.

Let yijk be the observation from the ith patient in the j period and the kth group. We pro-
pose the following statistical model:

yi11 � µ � q1 � τ � Si11 � ei11

yi21 � µ � q1 � τ � β � γ1 � γ2 � Si21 � ei21

Group Treatment Number of patients

1 PP n1

2 AA n1

3 PA n2

4 AP n2
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yi12 � µ � q2 � τ � Si12 � ei12

yi22 � µ � q2 � τ � β � γ1 � γ2 � Si22 � ei22

yi13 � µ � q3 � τ � Si13 � ei13

yi23 � µ � q3 � τ � β � γ1 � γ2 � Si23 � ei23

yi14 � µ � q4 � τ � Si14 � ei14

yi24 � µ � q4 � τ � β � γ1 � γ2 � Si24 � ei24

where µ is the overall mean, qk’s are block (group) effects, q1 � q2 � q3 � q4 � 0, τ is the
placebo-treatment effect, β is the three-month home treatment effect (plus the period effect
if it is not negligible), γ1 and γ2 are interaction effects of two treatment effects (τ and β ) and
block effects, eijk’s are independent random errors with mean 0, Sijk’s are random subject
effects with mean 0, and the pairs (Si1k, Si2k) are independent. Note that Si1k and Si2k are ran-
dom effects from the same subject, and therefore, they may be correlated.

Let µjk � E( yijk), j�1, 2, k � 1, . . . , 4, be the group means. Then, a matrix form of the
proposed model is

The effects τ and β can be interpreted as follows. Assume that qi’s are 0. If there is no inter-
action γ1 � γ2 � 0, then µ11 � µ13 (the mean under placebo in the first period), µ12 � µ14

(the mean under treatment in the first period), µ21 � µ23 (the mean under placebo in the last
period), and µ22 � µ24 (the mean under treatment in the last period). When there are inter-
actions, µ11 � µ13 and µ12 � µ14 still hold, but in the last period, µ21 � µ23 and µ22 � µ24.

Under the model proposed by Chow et al. (2000), some statistical inferences can be
obtained as follows.

Let y�jk be the sample mean based on yijk’s with fixed j and k. Under model (5.8.1), unbi-
ased estimators of model parameters can be derived by inverting the matrix on the right-
hand side of (5.8.1); that is,

(5.8.2)
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It follows that (5.8.2) that estimators of τ, β, γ1, and γ2 are based on the individual differences

dik � yi1k � yi2k, j � 1, 2, k � 1, . . . , 4.

Although yijk’s are correlated for the same subject, dik’s are independent. Let d�k be the sam-
ple mean based on dik, i � 1, . . . , nl, where l � 1 when k � 1, 2, and l � 2 when k � 3, 4.
Then, by (5.8.2),

(5.8.3)

As dik’s are independent, it follows from (5.8.3) that
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2
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where

σk
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Assume that yijk’s are normally distributed and σ 2
k � σ 2 for all k. Then, exact 1 � α

confidence intervals for τ, β, γ1, and γ2 are given by, respectively,
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where

σ̂ 2 � ,

σ̂ 2
k is the sample variance based on dik, i � 1, . . . , nl, and t(α, 2(n � 2)) is the upper α/2

quantile of the t-distribution with 2(n � 2) degrees of freedom.
If σ 2

k, are different or yijk’s are not normally distributed, then it is difficult to obtain exact
confidence intervals. When n is large, approximate 1 � α confidence intervals for τ, β, γ1

and γ2 are given by, respectively,
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where Z(α) is the upper α/2 quantile of the standard normal distribution.

Example 5.8.1 Erectile Dysfunction

A clinical trial was conducted with the placebo-challenging design, as described above, to
evaluate the efficacy and safety of a study drug for treating male patients with erectile dys-
function. A total of 120 male patients met the inclusion and exclusion criteria for eligibil-
ity. At each placebo-challenging, patients were randomly assigned to receive either the
study drug or the placebo. As a result, patients received different sequences of treatments,
which are summarized below:

The primary efficacy evaluations in this study was based on the efficacy outcomes of the
double-blind placebo challenges using a 3-point erection assessment scale (1 � no response,
2 � partial response, i.e., some enlargement but not sufficient for intercourse, and 3 � full
erection). The erection responses are listed in Table 5.8.1.

Group Treatment Number of patients

1 PP 32
2 AA 32
3 PA 28
4 AP 28

(n1�1)σ̂ 2
1�(n1�1)σ̂ 2

2�(n2�1)σ̂ 2
3� (n2�1)σ̂ 2

4
�����

2(n�2)

(5.8.4)
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Based on data given in Table 5.8.1, we may apply formulae (5.8.3) and (5.8.4) to obtain
estimates, standard errors and their corresponding 95% approximate confidence intervals
for τ, β, γ1, and γ2. The results are summarized in Table 5.8.2. As it can be seen from Table
5.8.2, based on the p-values, the placebo-treatment effect τ is significant at the 0.05 level.
The three-month home treatment effect β is also very significant. However, the interactions
γ1 and γ2 are not significant.

Under the placebo-challenging design, as described above, the group sizes n1 and n2 are
random and are generally unequal. As the variances of estimators have minimum values
when n1 � n2, a different way of randomization for assigning patients to four groups may
be useful. In other words, we may assign patients randomly to four groups, PP, AA, PA,
and AP, each consisting of n/2 patients, provided that n is even at the first placebo-
challenging before the active treatment. In this case, the model and formulae for estimators

Table 5.8.1 Data from a Placebo-Challenging Design

Sequence PP AA PA AP

Period 1 2 1 2 1 2 1 2

Subject 1 0 0 0 1 0 1 0 1
2 1 0 1 2 0 2 1 2
3 1 1 0 0 1 2 2 2
4 0 2 0 1 1 1 2 1
5 0 1 0 1 1 1 0 1
6 1 2 0 1 0 0 2 2
7 1 2 0 2 0 2 0 1
8 0 0 2 2 2 1 1 1
9 1 1 0 1 1 1 0 1

10 1 1 1 1 1 2 0 1
11 0 0 0 1 0 2 2 2
12 1 2 1 2 1 2 0 1
13 0 0 1 1 1 2 1 1
14 0 1 1 1 1 2 0 1
15 1 2 0 1 1 1 0 1
16 0 0 2 2 0 0 2 1
17 1 2 2 2 0 1 0 0
18 0 0 1 2 2 2 1 2
19 0 0 0 2 1 2 0 1
20 1 2 0 2 0 1 1 1
21 1 0 0 1 0 1 1 1
22 0 0 1 2 0 2 0 2
23 2 2 2 2 1 2 0 1
24 1 1 2 2 0 1 1 2
25 0 1 0 1 0 1 1 1
26 1 2 2 2 0 0 1 2
27 0 1 1 1 0 1 2 2
28 1 2 1 2 1 2 1 1
29 0 1 0 1
30 2 2 1 2
31 1 2 1 1
32 1 1 2 2

Average 0.6250 1.0625 0.7813 1.4688 0.5714 1.3571 0.7857 1.2500
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and confidence intervals remain the same, with n1 and n2 replaced by n/2. However, the
efficiency of this design is higher than the one with random n1 and n2, especially when n is
small.

5.9 BLINDED READER DESIGNS

Medical imaging drug products are administrated in vivo for diagnosis of diseases or moni-
toring the status of disease conditions. Medical imaging drug products in general are used in
conjunction with medical imaging techniques such as radiography, computed tomography
(CT), ultrasonography, magnetic resonance imaging (MRI), or radionuclide imaging. There
are two general classes of medical imaging drug products: contrast agents and diagnostic
radiopharmaceuticals. By increasing the relative difference of imaging signal intensities,
contrast agents improve the visualization of tissues, organs, and physiologic processes.
Contrast agents can in turn be classified into three categories: (1) iodinated compounds used
in radiography and CT, (2) paramagnetic metallic ions used in MRI, and (3) microbubbles,
microaerosomes, and other related microparticles used in diagnostic ultrasonography. Diag-
nostic radiopharmaceutical is either (1) an article that is intended for use in the diagnosis or
monitoring of a disease or disease status and that exhibits spontaneous disintegration of
unstable nuclei with the emission of nuclear particles or photons or (2) any nonradioactive
reagent kit or nuclide generator that is intended to be used in the preparation of such an arti-
cle. Clinical trials for evaluation of medical imaging drug products should also follow the
general principles in design and analysis for clinical trials such as use of a control group,
blinding, and randomization of treatments. However, many medical imaging drug products
possess unique characteristics that require special considerations in image evaluations for
their efficacy and safety. The U.S. FDA recently issued a draft guidance on Developing
Medical Imaging Drugs and Biological Products to address special issues and challenges in
evaluation of medical imaging drug products (FDA, 2003a).

If an investigational medical imaging agent is being developed for an indication for
which other drug products or diagnostic modalities have been approved, a direct, concur-
rent comparison to the comparator should be performed. In addition, the results of evalua-
tion of both investigational imaging products and comparators should be compared not
only to one another, but also to an independent gold standard. A gold standard (truth stan-
dard ) is an independent method of measuring the same variable being measured by the
investigational imaging drug product that is known or believed to give the true value of the
measurement. Although blinding is one of the fundamental principles to minimize any
potential bias that could arise in a clinical trial, it is infeasible or even impossible to blind
the investigators who administer the investigational medical imaging agents. On the other
hand, effectiveness of medical imaging drug products should be evaluated based on the

Table 5.8.2 Analysis Using Data in Table 5.8.1

Parameter τ β γ1 γ2

Estimate 0.1429 0.2969 0.1250 �0.0313
Standard error 0.0717 0.0358 0.0821 0.0717

97.5% lower bound 0.0024 0.2267 �0.0359 �0.1718
97.5% upper bound 0.2834 0.3671 0.2859 0.1092
Two-sided p-value 0.0466 0.0000 0.1286 0.6600
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images by readers (usually trained radiologists) obtained with the investigational agents or
controls under different conditions or at different times with respect to agent administra-
tion. Therefore, despite the fact that administration of medical imaging agents by investi-
gator is unblinded, evaluation of the images by readers can be performed in a blinded
fashion that is referred to as blinded imaging evaluations. A clinical trial for evaluation of
medical imaging products with blinded imaging evaluation is said to have a blinded reader
design. In addition, for medical imaging drug products, the data and information generated
by the blinded reader design are considered as the substantial evidence from the adequate
well-controlled trials.

Similar to the various degree of traditional blinding used in clinical trials, blinded imaging
evaluations can be also classified into four types: fully blinded image evaluation, image eval-
uation blinded to outcome, sequential unblinding, and unblinded imaging evaluation (FDA,
2003). For a fully blinded image evaluation, readers are blinded to the following information:

1. Results of evaluation of gold standard (or truth standard), of the final diagnosis, of
patient outcome.

2. Any patient-specific information, including inclusion/exclusion criteria, details of
the protocol, anatomic orientation to the images, history, physical examinations, lab-
oratory results, results of other image studies.

3. Treatment identity.

Unlike the usual definition of blinding, readers in a fully blinded image evaluation are not
only masked to the treatments to subjects are assigned to, but also withheld any patient-
specific information.

On the other hand, readers in an image evaluation blinded to outcome may have knowl-
edge of some particular elements of patient-specific information in (2). If the magnitude of
clinical information is given to readers incrementally in successive reading of the same
images, this type of image evaluation is referred to as sequential unblinding image evalua-
tion that typically is a three-step process:

1. A fully blinded image evaluation is performed. The data of this evaluation should be
locked in a secure fashion that it is impossible to change or alter the evaluation when
additional clinical information becomes available.

2. An image evaluation blinded to outcome is performed. The data of this evaluation
are also locked in the similar manner.

3. The results of the above two types of blinded evaluations are compared to that with
the gold standard (or of the final diagnosis, or of patient outcome) to determine diag-
nostic performance of the medical image drug products.

In an unblinded image evaluation, readers are aware of the results of patient evaluation
with the gold standard, of patient-specific information, and of treatment identity. Addi-
tional patient information provided to readers for an unblinded image evaluation may alter
readers’ diagnostic assessments and introduce confounding effects and bias into the image
evaluations. As a result, the FDA draft guidance suggests that only a fully blinded image
evaluation or an image evaluation blinded to outcome serve as the primary image evalua-
tion for demonstration of efficacy to support licensing of medical imaging drug products.
In addition, they should be conducted through sequential unblinding.
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The FDA draft guidance also suggests that at least two blinded readers (and preferably
three or more) evaluate images for each trial that is intended to demonstrate efficacy. Image
evaluations can be classified by the manner that readers appraise the images and where the
images are evaluated. Independent image evaluations are those by independent readers that
are completely unaware of findings of other readers and are not influenced by the findings
of other readers. In addition, the results of each reader’s evaluation of images should be
locked in a database shortly after it is obtained and before other types of image evaluations
are performed so that blinded readers can evaluate images independently. As a result, only
the independent image evaluation by blinded readers can serve as the primary image eval-
uation to establish efficacy of the investigational medical imaging agent. Sometimes differ-
ent readers evaluate the same set of images together. This type of image evaluation is
referred to as consensus image evaluation. Although it involves more than one reader, it
actually only evaluates a single image and does not fulfill the requirement of the image
evaluation by multiple blinded readers mentioned above. For consensus image evaluations,
readers do not assess images independently and therefore they cannot serve as the primary
image evaluation used to demonstrate efficacy of medical imaging drug products.

To control known or unknown factors that can compromise the integrity and introduce
bias to the blinded image evaluations and to ensure that blinded readers conduct their
image evaluation independently of other image evaluations, offsite image evaluations are
recommended by the draft FDA guidance for the trials that are intended to demonstrate
efficacy. Offsite image evaluations are image evaluations performed at sites that have not
been involved in the conduct of the trial, and by readers who have not had contact with
patients, investigators, and other personnel involved in the trial. On the other hand, onsite
image evaluations are performed by investigators involved with the study or in the care of
patients or at sites involved with the conduct of the study. Because readers conducting
onsite image evaluations are not blinded to patient-specific information, results of evalua-
tion of gold standard or patient’s treatment assignment, onsite image evaluations in general
cannot be used for the primary image evaluation to establish efficacy.

One of the key issues in blinded reader designs is the arrangement that different images
from the same patient obtained under different conditions or at different time points during
the trial that are evaluated by a reader. A separate image evaluation is an image evaluation
where a reader evaluates a test image obtained from a patient independently of other test
images obtained from the same patient. In other words, in a separate image evaluation,
readers assess each test image of a patient based on their own merit without reference to or
recalls of, any other test images obtained from the same patient. It follows that in a sepa-
rate image evaluation, readers should not be influenced by the results of evaluations of test
images obtained from the same patients. Because a separate image evaluation assesses
each individual image either of the same patient or of a different patient independently, it is
also referred to as an unpaired image evaluation by the draft FDA guidance. For a separate
image evaluation, images obtained under different conditions or at different times are first
mixed together into a merged set and a sequential identification number is then given to
each test image. Random codes are generated to determine the order of image evaluations
that the blinded reader should follow. A separate image evaluation provides a mechanism
such that multiple test images are not evaluated simultaneously, and the test images are not
evaluated sequentially within the same patients. A stratified randomization can be also
employed to evaluate test images obtained under different conditions. Here conditions can
be considered as stratification factors. A set of separate randomization codes for the order
of image evaluations can be generated for each condition. Test images obtained under one
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condition then can be assessed individually in an order determined by the random codes,
followed by an evaluation of the test images obtained under a different condition using the
random codes for that condition. Of course, the order of evaluation for different conditions
can also be randomly determined.

Sometimes, a reader may simultaneously evaluate two or more test images obtained from
the same patient under different conditions or at different times with respect to administration
of medical imaging drug products. This type of simultaneous image evaluations is referred to
as combined image evaluations or paired image evaluations. For example, for contrast
agents, both unenhanced and enhanced images may be concurrently evaluated in a compara-
tive manner. It should be noted that combined image evaluations will increase the likelihood
of introducing bias to image evaluations. For example, a simultaneous evaluation of images
obtained with two different medical imaging drugs for detection of masses may give a biased
estimate of difference on diagnostic performance between two drugs. A blinded reader who
easily identifies a mass on an image obtained from one drug product might be more likely to
identify a mass on a juxtaposed image obtained from the other drug product even though that
mass is not clearly seen on the latter image. This phenomenon is called over-reading the pres-
ence of mass in a paired comparison. Conversely, under-reading the image is another possi-
ble bias that may be introduced by combined image evaluations. To reduce the bias caused by
over-reading or under-reading the images, it is suggested that not only order for the set of test
images from different patients be evaluated randomly but also simultaneous side-by-side
evaluation of images from the same patients be avoided and the order for evaluation of test
images from the same patient be also randomly assigned. However, this procedure for com-
bined image evaluations cannot completely eliminate the possible recall bias. Because of
inability to eliminate the bias introduced by combined image evaluations, when it is per-
formed, an additional independent separate image evaluation should be completed on at least
one of the members of the combination (FDA, 2003a).

As mentioned before, the gold standard provides an independent means of evaluating
the same variable being assessed by both the investigational medical imaging drug prod-
ucts and its comparator. Therefore, the gold standard is crucial to establish that the results
obtained with the medical imaging drug product are valid and reliable. The draft FDA
guidance lists the following principles that should be incorporated prospectively into the
design, conduct, and analysis of a clinical trial using a blinded reader design for assess-
ment of medical imaging drug products:

1. The true state of the subjects should be determined with a gold standard without
knowledge of the test results obtained from the medical imaging drug product.

2. Test results obtained from the medical imaging drug product should be evaluated
without the knowledge of the results obtained from the gold standard.

3. Gold standards should not include as a component of any test results obtained from
the medical imaging product.

4. Evaluation of the gold standard should be planned for all enrolled subjects, and the
decision to evaluate a subject with the gold standard should not be affected by the
test results of the medical imaging drug product under study.

In general, regardless of the types of image evaluations, they should consist of blinded, ran-
domized, independent readings that are designed to demonstrate the efficacy of the investi-
gational medical imaging drug products. Case report forms (CRF) also play an independent
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role in reducing the potential bias. For example, to reduce recall bias, different pages in the
CRF should be used for two types of image evaluations and each image evaluation should
be performed with sufficient time between readings to decrease recall and without reference
to prior results. If one of the objectives is to estimate the differences among different types
of image evaluations, CRF should contain items or questions that are identical so that differ-
ences can be calculated. Evaluation of medical imaging drug products involve not only the
design and analysis of the trial but also the design and analysis of blinded reader designs.
Randomization and blinding of the treatments as well as randomization and blinding of
image evaluations should be taken into account for assessment of efficacy of medical image
drug products.

5.10 DISCUSSION

In this chapter we discussed several basic statistical designs, the parallel design, the crossover
design, the titration design, and the enrichment design, all of which are commonly employed
in clinical trials at various stages of clinical development. Each design has its own merits and
limitations under different circumstances. How to select an appropriate design when plan-
ning a clinical trial is an important question. The answer to this question depends on many
factors, namely those summarized below:

1. Number of treatments to be compared.

2. Characteristics of the treatment.

3. Study objective(s).

4. Availability of patients.

5. Inter- and intrapatient variabilities.

6. Duration of the study.

7. Dropout rates.

For example, when choosing a design from a parallel design and a crossover design, if
the intrapatient variability is the same as or larger than the interpatient variability, the infer-
ence on the difference in treatments will be the same regardless of which design is used.
Actually, a crossover design in this situation would be a poor choice, since blocking results
in the loss of some degrees of freedom and will actually lead to a wider confidence interval
on the difference between treatments. If a clinical study compares more than three treat-
ments, a crossover design may not be appropriate. The reasons are (1) it may be too time-
consuming to complete the study, since a washout period is required between treatment
periods, (2) it may not be desirable to switch medications too frequently for each subject
due to medical concerns, (3) too many treatment periods may increase the number of
dropouts, and (4) the disease status may change from treatment period to treatment period.
In this case a balanced incomplete block design is preferred. However, if we compare sev-
eral test treatments with a placebo control, the within-patient comparison may not be reli-
able, since the patients in some sequences do not receive the placebo control. If the drug
has a very long half-life, and/or it possesses a potential toxicity, or there are carryover
effects, then a parallel group design may be a possible choice. With this design the study
avoids a possible cumulative toxicity due to the carryover effects from one treatment
period to the next. In addition, the study can be completed in less time compared to that of
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a crossover design. However, the drawback is that the comparison is made based on the
interpatient variability. If the interpatient variability is large relative to the intrapatient vari-
ability, the statistical inference on the difference between treatments is not reliable. Even if
the interpatient variability is relatively small, a parallel group design may still require more
patients in order to reach the same degree of precision achieved by a crossover design. In
practice, a crossover design, which can remove the interpatient variability from the com-
parison between treatments, is often considered to be the design of choice if the number of
treatments to be compared is small, say no more than three. If the drug has a very short
half-life (i.e., there may not be carryover effects if the length of washout is long enough to
eliminate the residual effects), a crossover design may be useful for the assessment of the
intrapatient variability provided that the cost for adding one period is comparable to that of
adding a patient. In summary, choosing an appropriate design for a clinical trial is an
important issue in the development of a study protocol. The selected design may affect the
data analysis and the interpretation of the results. Thus all the factors listed above should
be carefully evaluated before an appropriate design is chosen.

It, however, should be noted that one of the primary assumptions for a crossover design
is that the disease condition remain stable during the study. In practice, this assumption is
usually not met. As a result one of the major disadvantages is that spontaneous changes in
the disease condition may occur during the study. In this case, although we may establish
baseline at each treatment period to eliminate the residual effect, the treatment effect may
be confounded with the residual effect. Therefore a crossover design may not be feasible
when there are carryover effects. Although a parallel group design is not capable of identi-
fying and removing the interpatient variability from the comparison between treatments,
due to its simplicity and easy implementation, it is probably the most commonly used
design in clinical phase II and III studies.

One of the controversial issues in clinical trials is the so-called unethical use of placebo
concurrent control (Rothman and Michels, 1994). To meet this challenge, various variations
of placebo-controlled trials have been proposed to minimize the possibility of the use of con-
current placebo control in clinical trials. These include add-on design, replacement design,
and randomized withdrawal designs (ICH E10, 1999). An add-on design is a placebo-
controlled trial of a new drug conducted in patients also receiving standard therapy. This
design is useful only when standard therapy is not fully effective and can be used to demon-
strate that the new drug can provide additional evidence of improving clinical outcomes. The
add-on design is often employed in evaluation of new agents in the treatment of cancer,
epilepsy, or heart failure. Because it is an add-on design, the efficacy can be established for
the combination therapy. This design, however, is likely to be successful if the new drug uses
a pharmacologic mechanism different from that of the standard therapy.

A variation of the add-on design is the replacement design in which the new drug or
placebo is added by random assignment to the conventional treatment given at an effective
dose, and conventional treatment is then withdrawn gradually, usually by tapering. The
objective of using a replacement design is to compare the ability to maintain the patient’s
baseline status between the new drug and placebo. For example, this design has been used
to investigate steriod-sparing substitution in steriod-dependent patients without need for
initial steriod withdrawal and recrudescence of symptoms in a washout period.

The randomized withdrawal design usually consists of two phases. For a trial using the
randomized withdrawal design, patients receive an investigational drug in the first phase of
a prespecified length and are then randomly assigned to continue to receive the investiga-
tional drug or placebo in the second phase. The active treatment is actually withdrawn for
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the patients receiving placebo in the second period. The first phase of the randomized with-
drawal design is a prerandomization observation period to establish the initial on-therapy
baseline on the investigational drug and in general is longer than the second period. The
objective of this phase is to investigate the long-term persistence of effectiveness of the
drug when long-term use of placebo is not acceptable. The second phase is a withdrawal
phase and a post-randomization observation period. Any differences that are observed
between groups receiving continued drug and placebo in this period would demonstrate
the effect of the investigational drug. This period can also use early escape or time-to-event
endpoints to minimize the exposure of subjects to placebo. As a result, one of the major
advantages of the randomized withdrawal design, when used jointly with an early escape
endpoint, is that the period of placebo exposure with poor response that a patient would
have to undergo is short. In addition, the randomized withdrawal design can also be used to
investigate the dose-response relationship of the investigational drug. After all patients
receive an initial fixed dose, they are randomly assigned to several doses and placebo in the
withdrawal phase. If the first phase of the randomized withdrawal design is a placebo-
controlled titration design, it is an enrichment design with responders randomly assigned
to receive several doses and placebo in the withdrawal phase. The joint utilization of titra-
tion design and randomized withdrawal design enables us to investigate dose-response rig-
orously while allowing the efficiency of the titration design.
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6
DESIGNS FOR CANCER 
CLINICAL TRIALS

6.1 INTRODUCTION

When designing cancer clinical trials for development and evaluation of therapeutic inter-
ventions, two special aspects must be taken into consideration. The first aspect is the target
patient population. In practice, patients in cancer clinical trials are those with malignant
tumors. Unlike other diseases, most cancers are life-threatening diseases in which the dis-
ease process is usually irreversible, and in most cases, they are neither curable nor control-
lable. In addition, patients with malignant tumors have limited life expectancy. The other
issue is that most of the anti-cancer drugs under investigation are cytotoxic agents that 
usually have a very narrow therapeutic window with the following dilemma. At the lower
dose, these cytotoxic agents provide little or no efficacy but can generate more severe and
irreversible toxicities than most of pharmaceutical agents for treatment of other diseases
such as immunosuppression, hepatic, renal, or cardiac toxicity. Effectiveness of these anti-
cancer cytotoxic agents can be delivered only at higher doses that may also induce fatal or
life-threatening serious adverse events. To resolve this dilemma, we may select an appro-
priate study design for evaluation of the cancer therapeutic interventions for phase I and II
trials based on the following criteria that:

1. It minimizes exposure of subjects to these therapeutic interventions.

2. It selects efficacious cytotoxic agents with an acceptable safety profile in the most
efficient manner.

As mentioned above, therapeutic agents for cancer treatment can induce severe safety con-
cern even at lower dose levels. As a result, unlike employing health normal volunteers for
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phase I safety and tolerance studies of pharmaceutical agents, phase I trials for new anti-
cancer agents are often conducted on terminal cancer patients for which the test cytotoxic
drugs may be the last hope. The primary scientific objective of the evaluation of new
chemotherapeutic agents in cancer patients during the phase I clinical development is to
employ an efficient, reliable, but yet practical dose-finding design to search the maximum
dose with an acceptable and manageable safety profile for use in subsequent phase II trials.
This dose with an acceptable and manageable safety profile is usually referred to as the
maximum tolerable dose (MTD). The unacceptable or unmanageable safety profile is in
general called the dose-limiting toxicity (DLT), which is predefined by some criteria such as
Grade 3 or greater hematological toxicity according to the United States National Cancer
Institute’s Common Toxicity Criteria (CTC). In summary, the MTD is the highest possible
but still tolerable dose with respect to some prespecified dose-limiting toxicity (see, e.g.,
Storer, 1993; Korn et al., 1994).

For most cancer treatments, the drug must be delivered at the maximum dose for achiev-
ing the maximum effect. Therefore, once the MTD for a new anti-cancer agent is deter-
mined from phase I trials, then the anti-tumor activity of the drug can be evaluated at the
MTD during the phase II clinical development for which trials usually consist of a single
treatment without a comparative or controlled group. The objective of phase II cancer trials
is to quickly determine whether the new anti-cancer agent has sufficient activity against 
a particular type of tumor to justify its further development. As a result, the objective of 
a phase II cancer trial can be translated in the following statistical hypothesis:

H0: The anti-tumor activity is below some undesirable level, say p0.

vs. Ha: The anti-tumor activity is above or equal to some targeted level, say p1.
(6.1.1)

The reason for using the anti-tumor activity as the primary endpoint for phase II cancer tri-
als is that it can be observed in a considerably shorter period of time than the usual survival
endpoint used for more rigorous phase III trials. The anti-tumor activity is usually measured
by the degree of tumor shrinkage by various different criteria that are often referred to as the
objective tumor response. The World Health Organization’s (WHO) definition of the objec-
tive tumor response (WHO, 1979) and the one suggested by Miller et al. (1981) are proba-
bly the earliest two criteria for evaluation of anti-tumor activity for a cytotoxic agent. These
objective tumor responses are based on the 2D measurements of tumors. In 1994, the Euro-
pean Organization for Research and Treatment of Cancer (EROTC), the National Cancer
Institutes of the United States, and the National Cancer Institute of Canada Clinical Trial
Group set up a task force to review the above criteria for evaluation of the response to treat-
ment in solid tumors. In 2000, the task force published a guideline that proposed a new
method called Response Evaluation Criteria in Solid Tumors (RECIST) based on 1D tumor
measurement to evaluate the anti-tumor activity (Therasse et al., 2000).

In the next section, some general considerations for phase I cancer clinical trials are
addressed. In Section 6.3, we introduce single-stage up-and-down designs, including the
standard dose escalation design for phase I cancer trials for determination of MTD. To over-
come the shortcomings of the standard dose escalation design, two-stage up-and-down
designs, including the accelerated titration phase I design proposed by Simon et al. (1997)
are reviewed in Section 6.4. In addition, in Section 6.5, Bayesian approaches such as con-
tinual reassessment method (CRM) and its variations are discussed. In Section 6.6, we
introduce optimal and flexible multiple-stage designs, including the commonly used Simon
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optimal two-stage design for phase II cancer studies. Section 6.7 reviews the randomized
phase II design proposed by Simon et al. (1985). Final remarks and discussion are given 
in Section 6.8.

6.2 GENERAL CONSIDERATIONS FOR PHASE I 
CANCER CLINICAL TRIALS

In practice, MTD could be statistically interpreted as some percentile of a tolerance distri-
bution or dose-response curve in terms of the presence or absence of DLT. In other words,
the MTD is the dose where a specified proportion of patients, say, p0, experience DLT.
Storer (1997) indicated that the value of p0 is usually in the range from 0.1 to 0.4. Let Y
be the binary response such that Y � 1 denote the occurrence of a predefined DLT and
{di, i � 1, 2, . . . , I} be a set of fixed dose levels. Relationship between the occurrence of
the DLT and dose level d can be described by the following model:

logit [P(x, θ )] � α � βx, (6.2.1)

where logit(�) is the logistic function of the probability of the occurrence of the DLT, x is the
dose level taking one of the values di, and θ � (α , β)�. Thus, the MTD is then defined as

xm � (kp � α)/β,

where kp � logit(p0) � ln[p0 /(1 � p0)] and ln denotes the natural logarithm. On the other
hand, the dose levels employed in the phase I cancer trials for determination of the 
MTD are generally derived from the information of animal studies. Storer (1997) pointed
out that a commonly employed starting dose level is from one-tenth to one-third of the
mouse LD10. In addition, the dose levels are usually selected to be approximately equally
spaced on the logarithmic scale. Schneiderman (1967), for example, suggested the use of
the modified Fibonacci sequence of the diminishing multipliers of {2, 1.67, 1.5, 1.4,
1.33, . . . }.

As indicated earlier, the main purpose of phase I cancer trials is to establish the MTD
with an adequate precision. The following considerations are important for selection of an
appropriate design in phase I trials for estimation of the MTD:

1. The patients are critically ill. Some of them are even in the terminal stage of the dis-
ease and the test anti-cancer agent may be the last hope for the patients.

2. The number of patients available for phase I cancer trials is relatively small.

3. The patient population is usually rather heterogeneous because phase I cancer trials
might enroll terminal cancer patients with different types of malignant tumor at var-
ious disease stages.

4. Phase I cancer trials can be viewed as a screening process where anti-cancer cyto-
toxic agents with a tolerable safety profile are selected and their MTDs are deter-
mined with a minimal number of patients in a minimal amount of time.

5. Most anti-cancer agents generally can induce serious, irreversible, life-threatening,
or even fatal toxicity. Thus, phase I cancer trials are usually conducted to establish
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the MTD from below. In fact, regulatory agencies sometimes dictate the dose for the
first patient.

Designs for phase I cancer trials generally can be classified into three categories: single-
stage design, two-stage design, and Bayesian design. The single-stage and two-stage
designs are up-and-down designs where the doses are adjusted either upward (escalation)
or downward (de-escalation) within the prespecified set of the fixed dose levels. The
Bayesian approach chooses the dose level for the next patients by minimizing some mea-
sure based on the difference between the current estimate of probability for the occurrence
of DLT and p0.

6.3 SINGLE-STAGE UP-AND-DOWN PHASE I DESIGNS

As indicated in Storer (1989, 1993, 2001), three single-stage designs, namely, design A,
design B, and design D are commonly employed in phase I cancer trials. In what follows,
we provide a brief description for each of these designs.

6.3.1 Design A—Standard Dose Escalation Design

For design A, we start with a group of three patients, who are treated at the lowest dose
level. At the second step, if no prespecified DLT is observed in all three patients, then the
dose for the next group of three patients is escalated to the next higher dose level. Other-
wise, the next group of three patients is treated at the same dose level. In Step 3, the dose
of the next group of three patients is escalated to the next higher dose level if the prespeci-
fied DLT is observed at most in one patient of the six patients from both Steps 1 and 2,
otherwise, the trial stops. For Step 4, we repeat Steps 2 and 3 with two consecutive groups
of three patients until the trial stops. A flowchart for design A is given in Figure 6.3.1. Tra-
ditionally, if the study stops at dose level, di, then the MTD is estimated as the next lower
dose level, di � 1. If the trial stops at the dose level where only three patients were treated,
then an additional three patients should be enrolled at the next lower dose level for a total
of six patients. As a result, the MTD is the highest dose where at most one-sixth of the
patients developed DLT.

It can be seen that the standard dose escalation design only allows dose level to be esca-
lated upward. As a consequence, the starting dose level is the lowest dose level d1, and
hence, lots of patients are treated at the doses well below the therapeutically meaningful
level. Therefore, the MTD obtained from this design may be too conservative. Another
drawback of this design is that because too many patients are treated at the lower dose lev-
els, it might take a long time for the MTD to be reached. To overcome these two draw-
backs, Storer (1989) proposed the following three designs, which not only allow both
escalation and de-escalation, but also do not require the use of the lowest dose level as the
starting dose.

6.3.2 Design B

For design B, we start with a single patient at a preselected dose level. For the next step, if
no prespecified DLT is observed in this patient, then the next patient is treated at the same
dose level; otherwise, the next patient is treated with the next lower dose level. At the third

218 DESIGNS FOR CANCER CLINICAL TRIALS

c06.qxd  27.10.03  12:58  Page 218



step, if no prespecified DLT occurs in both consecutive patients, then the next patient is
treated with the next higher dose level. If the DLT is observed in both consecutive patients,
then the dose of the next patient is deescalated to the next lower dose level. Otherwise, the
trial stops. In Step 4, we repeat Steps 2 and 3 until the trial stops. A flowchart for design B
is given in Figure 6.3.2.

6.3.3 Design D

For design D, similar to design A, we start with a group of three patients who are treated at
an initial dose di, i � 1, 2, . . . , I. In the next step, the dose of the next group of three patients
is escalated to the next higher dose level if no DLT is observed in all three patients, or stays
at the same dose level if the prespecified DLT is observed in one patient, or deescalates to
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the next lower level if the DLT occurs in more than one patient. At Step 3, we continue 
Step 2 until all of the prespecified number of the patients have completed the study. A flow-
chart for design D is given in Figure 6.3.3.

6.4 TWO-STAGE UP-AND-DOWN PHASE I DESIGNS

In a simulation study, Storer (1989) reported that none of the single-stage designs performs
well in an arbitrary dose-response setting with a fixed sample size. In addition, the standard
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dose escalation design frequently fails to provide a convergent estimate of MTD. As 
a result, Storer (1989, 1993) and Simon et al. (1997) proposed a variety of combinations of
traditional single-stage designs to overcome the drawbacks of the single-stage phase I
designs. The ideas are to:

1. Concentrate sampling around the MTD.

2. Reduce the duration of the study.

3. Minimize the number of patients treated at subtherapeutic dose levels.

4. Obtain the information about inter-patient variability and cumulative toxicity.
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6.4.1 Design BD (Storer, 1989, 2001)

Storer (1989) proposed a two-stage design that combines design B and design D. We will
denote this design by design BD.

For design BD, we start design B until the trial stops according to the stopping rule
described in design B. At Stage 2, we then continue the trial with design D. If a DLT is
observed in the last patient at the first stage, then the initial dose for the second stage for
design D is the next lower dose level with respect to the dose of the last patient at the first
stage. However, if the last patient at the first stage does not exhibit any prespecified DLT,
then the beginning dose for the second stage is the dose of the last patient at the first stage.
For all designs described above, the prespecified DLT is observed during the first course of
treatment and there is no titration within each individual patient. In other words, there is no
intrapatient dose modification for these four designs. Except for the standard dose escala-
tion design, the MTD under designs B, D, and BD needs to be estimated based on the data
by using a formal statistical inference procedure.

6.4.2 Accelerated Titration Designs

For the accelerated titration designs (ATD), Simon et al. (1997) further classified the toxi-
city grades based on the NCI’s CTC into two categories: moderate toxicity for grade 0–2 or
DLT for grade 3 and above. In addition, the patients will receive at least three courses of
treatment in the accelerated titration designs that consist of an initial accelerated stage and
a standard dose escalation stage. In other words, there is a dose titration within individual
patients. Three types of ATD are described below:

ATD1
For the initial accelerated stage, cohorts of one new patient per dose level start at the low-
est dose level. If the first instance of the DLT is observed at the first course in one patient
or the two patients exhibit grade 2 toxicity of any type during the first course of treatment,
then dose escalation stops and reverts to the standard dose escalation design. For the stan-
dard dose escalation stage, the cohort of current dose level is expanded to three patients
and continues the trial using the standard dose escalation design in a cohort of three
patients. The intrapatient dose escalation is allowed if the worst toxicity is grade 0–1 in the
previous course for that patient. The dose is deescalated if grade 3 or above toxicity occurs
in the previous course. Otherwise, patients will stay at the same dose level. Dose escalation
of the ATD1 uses 40% dose-step increments.

ATD2
Same as ATD1 except that 100% dose steps are used for the initial accelerated stage.

ATD3
Same as ATD2 except that the switch to standard dose escalation design when the first
instance of the DLT in any course or the second instance of any course grade 2 toxicity of
any type is observed.

Both design BD and various versions of ATD provide the possibility of speeding up the
trial and reducing the number of patients assigned to lower dose levels. They use the first
instance of DLT observed during the first course of treatment to trigger the switch to the
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traditional standard dose escalation design. However, ATD proposed by Simon et al. (1997)
also use the grade 2 toxicity observed also during the first course to provide additional cau-
tion. ATD2 and ATD3 allow more rapid dose escalation than ATD1 by using double-dose
step during the initial accelerated stage. However, these more aggressive dose escalation
schemes of ATDs may be associated with more risk. To investigate the likelihood of increas-
ing risk, Simon et al. (1997) performed an extensive simulation study in which the 1000 sets
of simulated data were generated from the parameters estimated from each of 20 different
actual phase I trials of 9 different drugs. The results are summarized in Table 6.4.1.

From Table 6.4.1, it is obvious that the sample size required for the accelerated titration
designs reduces by at least 40% as compared to the standard dose escalation design. As a
result, the duration of ATD trials can be also shortened considerably. In addition, the risk
associated with ATD1 and ATD3 appear acceptable. Because the ATDs employ a dose
titration scheme within each patient, more information is generated for estimation of the
population distribution of MTD, the degree of cumulative toxicity, and the intrapatient and
interpatient variability. Simon et al. (1997) indicated that if interpatient variability is small,
a fixed dose-regimen can be used in phase II cancer trials, and fewer patients will be either
overdosed or underdosed. On the other hand, the use of ATDs requires careful patient man-
agement to track the toxicity over multiple courses and clear definitions for DLT and toxi-
city level considered low that intrapatient titration is acceptable.

6.5 CONTINUAL REASSESSMENT METHOD PHASE I DESIGNS

As mentioned above, patients in cancer phase I trials are often those with terminal cancer
and at high risk of death. The characteristics of the anti-cancer cytotoxic agents evaluated
in phase I cancer trials are that (1) they produce fatal toxicity at a higher dose level, (2)
they yield little or no effectiveness at lower dose levels, and (3) except for some scarce ani-
mal data, no information about the dosing range is available. The standard dose escalation
design and one-stage or two-stage up-and-down designs update the dose for the next
patient based on the information of occurrence of DLT from the current and previous
patients. These designs, however, fail quantitatively to employ a model to combine the
prior information about the MTD and that from the patients collected in the phase I trials.
To address these drawbacks, O’Quigley et al. (1990) proposed the continual reassessment
method (CRM) that updates the information of the dose-response relationship through 
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Table 6.4.1 Summary of Simulations Results of
Comparison between Standard Dose Escalation Design and
Accelerated Titration Design

Average Number of Patients

Worst Toxicity Over 3 Courses

Design Sample Size Grade 1 Grade 2 Grade 3

A 39.9 23.3 5.5 1.9
ATD1 24.4 7.9 6.2 3.0
ATD2 20.7 3.9 6.8 4.3
ATD3 21.2 4.8 6.2 3.2

Summarized from Simon et al. (1997).
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a Bayesian framework as observations on DLT becomes available and then to use this
information to concentrate the trial around the dose that might correspond to the antici-
pated target toxicity level.

Recall that the MTD is the dose associated with the 100p0 percentile of the dose response
relationship with respect to the occurrence of a predefined DLT. Let p1, p2, . . . , pI be the ini-
tial guesses of probabilities of DLT corresponding to the set of fixed dose level d1, d2, . . . , dI,
that are assumed to be monotonically increasing with the dose level. The dose response rela-
tionship can then be characterized by a logistic regression model

logit [P(xi, β)] � α � βxi,

where the intercept α is assumed fixed (see, e.g., Goodman et al., 1995; Ahn, 1998; Ishizuka
and Ohashi, 2001), the slope β is to be estimated, and xi is updated after the information of
the occurrence of DLT for the current patient becomes available using xi � logit�1[P(xi, β)].
The procedure of CRM is then outlined below:

Initially, we choose a dose response model to be employed in the study and select a set of
fixed dose levels with their corresponding probabilities of DLT. Then, choose a fixed sample
size n (usually 18 to 24) for the study. For the next step, a prior distribution of the slope,
denoted by g(β), that reflects the current brief of the investigator about the dose response
relationship is chosen. The dose for the first patient is determined as the dose level that pro-
duces the prior probability of DLT closest to the targeted probability p0. After the result of
the occurrence of DLT for the current patient at dose level xi � 1 becomes available, obtain
the Bayesian estimate of slope β with respect to quadratic error loss function as

βi � E(β �Λi � 1) � ∫ β f(β �Λi � 1)dβ,

where f (β �Λi � 1) is the posterior density, which is given by

f (β �Λi � 1) � qΛi�1(β )g(β )/ ∫ qΛi � 1(z)g(z)dz,

and qΛi � 1(β ) is the likelihood function such that

qΛi � 1(β ) � Π[P(xj, β )]yj [1 � P(xi, β )]1 � yj,

and Λi � 1 � {(x1, y1), . . . , (xi � 1, yi � 1)}, the cumulative data up to the patient receiving
dose level xi � 1.

The dose level for the next patient is then determined as the dose level that minimizes the
absolute loss function �P(xi, βi) � p0� with xi � logit�1[P(xi, βi)], i � 1, 2, . . . , I. We then
repeat the above steps until the result of the last patient is known. Finally, the MTD, xm, is esti-
mated as the dose level for the hypothetical n � 1 patient. The corresponding probability for
the occurrence of DLT can then be estimated as P(xm, βm) with the corresponding 100(1 � α)
credibility interval given as [P(xm, βL), P(xm, βU)], where (βL, βU) is the 100(1 � α) credibil-
ity interval based on the posterior probability of slope β.

The CRM represents a revolutionary approach to estimation of the MTD as compared to
the traditional up-and-down methods. It estimates the MTD from a continuous spectrum of
doses, whereas the other methods choose their MTD from a discrete set of prespecified dose
levels. In addition, the CRM utilizes a statistical model to synthesize the prior belief about
the MTD and cumulative information from the patients in the current trial for selection of
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the dose level for the next patient. However, despite these advantages, as pointed out by
Korn et al. (1994), Goodman et al. (1995), and Ahn (1998), the original CRM is not free of
problems in its implementation for estimation of the MTD in phase I cancer clinical trials.
First, the dose level for the next patient can be determined only after the result on the DLT
for the current patient becomes available. On the other hand, the CRM only uses a cohort
size of one patient for the dose adjustment. Consequently, it may take much longer to com-
plete the trial than the traditional dose escalation design and most other up-and-down
designs. Secondly, the CRM might start the trial with an initial dose above the lowest dose
that is often one-tenth the LD10 in mice. This possibility of the initial dose above the lowest
dose level for the first patient makes many clinicians and regulatory agencies uncomfortable
and reluctant to implement the CRM. Another special feature of the CRM that also reduces
its acceptance is the possibility that dose can be escalated for more than one dose level. This
can result in more patients being treated at high dose levels and being exposed to higher
risks. Møller (1995) demonstrated that the second dose can be escalated to dose level 10
even when the first patient has no DLT at the lowest dose level 1 as the initial dose.

Goodman et al. (1995), O’Quigley and Shen (1996), Ahn (1998), Heyd and Carlin (1999),
Thall et al. (1999), Zohar and Chevret (2001), Storer (2001), and Ishizuka and Ohashi (2001)
have suggested various ways to overcome the above-mentioned drawbacks of the CRM.
These improvements and modifications can be summarized as below:

1. The trial always starts with the lowest dose level as the initial dose for the first
patient.

2. The size of cohorts increases to three patients.

3. The magnitude of dose escalation is limited to one dose level only between two adjacent
cohorts.

4. Use of likelihood approach.

5. Employment of different stopping rules.

6. Different accrual strategies with delayed patient outcomes.

7. Add a model-fitting step at the end for estimation of MTD.

8. Use a two-stage CRM. At the first stage, an up-and-down design is employed until the
first DLT, and then the CRM is implemented to incorporate all information obtained
at that point.

The CRM can be further modified to incorporate other information and to achieve other
objectives. Piantadosi and Liu (1996) and Ishizuka and Ohashi (2001) illustrated that addi-
tional pharmacokinetic data can be incorporated into the CRM. Legedza and Ibrahim (2000)
proposed a longitudinal design for phase I cancer trials based on the CRM to investigate the
cumulative toxicity of anti-tumor cytotoxic agents. Kramar et al. (1999) applied CRM to the
combination of two drugs. Gasparini and Eisele (2000) proposed the use of the product-of-
beta prior for the curve-free application of the CRM. Recently, Thall et al. (2001), through
the framework of the CRM, developed a method for dose-finding on feasibility and toxicity
in T-cell infusion trials. Piantadosi et al. (1998) and Dougherty et al. (1999) provided excel-
lent illustrations for practical implementation of the CRM with real examples. Computer
software for execution of various versions of the CRM is available in public domain through
the Internet, for example, http://odin.mdacc.tmc.edu/anonftp/page_2.html#CRM by Section
of Computer Science, Department of Biomathematics, University of Texas M.D. Anderson
Hospital.
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6.6 OPTIMAL/FLEXIBLE MULTIPLE-STAGE DESIGNS

In phase II cancer trials, it is undesirable to stop a study early when the test drug is promising.
On the other hand, it is desirable to terminate the study as early as possible when the treatment
is not effective. For this purpose, an optimal multiple-stage design is often employed to deter-
mine whether a study drug holds sufficient promise to warrant further testing. In what follows,
we will first consider phase II cancer trials with single arm. Then, we will consider multiple-
stage designs for trials with multiple-arm.

6.6.1 Single-Arm Trials

Optimal multiple-stage designs that are commonly employed in phase II cancer trials with
single arm include optimal multiple-stage designs (e.g., minimax design and Simon’s opti-
mal two-stage design) and flexible multiple-stage designs; see, e.g., Simon, 1989; Ensign
et al., 1994; Chen, 1997; Chen and Ng, 1998; Sargent and Goldberg, 2001.

Optimal Two-Stage Designs The concept of an optimal two-stage design is to permit
early stopping when a moderately long sequence of initial failure occurs. Denote by the
number of subjects studied in the first and second stage by n1 and n2, respectively. Under a
two-stage design, n1 patients are treated at the first stage. If there are fewer than r1

responses, then stop the trial. Otherwise, stage 2 is implemented by including the other n2

patients. A decision regarding whether the test drug is a promising compound is then made
based on the response rate of the N � n1 � n2 subjects. Let p0 be the undesirable response
rate and p1 be the desirable response rate ( p1 � p0). If the response rate of a test drug is at
the undesirable level, one wishes to reject it as an ineffective compound with a high
probability (or the false-positive rate is low), and if its response rate is at the desirable
level, not to reject it as a promising compound with a high probability (or the false-
negative rate is low). As a result, it is of interest to test the following hypotheses:

H0: p � p0 vs. Ha: p � p1

Rejection of H0 (or Ha) means that further (or not further) study of the test drug should be
carried out. Note that under the above hypotheses, the usual type I error is the false-
positive rate in accepting an ineffective drug and the type II error is the false-negative rate
in rejecting a promising compound.

To select among possible two-stage designs with specific type I and type II errors,
Simon (1989) proposed to select the optimal design that achieves the minimum expected
sample size when the response rate is p0. Let EN be the expected sample size. Then, EN
can be obtained as

EN � n1 � (1 � PET)n2

where PET is the probability of early termination after the first stage, which depends on 
the true probability of response p. At the end of the first stage, we would terminate the 
trial early and reject the test if r1 or fewer responses are observed. As a result, PET is
given by

PET � B(r1; p, n1)
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where B denotes the cumulative binomial distribution. We would reject the test drug at the
end of the second stage if r or fewer responses are observed. Hence, the probability of
rejecting the test drug with success probability p is given by

B(r1; p, n1) � �
min(n1,r)

x�r1�1
b(x; p, n1) B(r � x; p, n2)

where b denotes the binomial probability density function. For specified values of p0, p1, α,
and β, Simon’s optimal two-stage design can be obtained as the two-stage design that
satisfies the error constraints and minimizes the expected sample size when the response
probability is p0. As an alternative design, Simon (1989) also proposed to seek the minimum
total sample size first and then achieve the minimum expected sample size for the fixed total
sample size when the response rate is p0. This design is referred to as the minimax design.

Example 6.6.1 Suppose a sponsor is interested in conducting a single-arm cancer trial
with an optimal two-stage design. p0 and p1 were chosen to be 0.20 and 0.40, respectively.
Based on the discussion above, the optimal two-stage design gives (3/13, 12/43) for
achieving an 80% power at the 5% level of significance. In other words, at the first stage, 13
subjects are tested. If no more than 3 subjects respond, then terminate the trial. Otherwise,
accrual continues to a total of 43 subjects. We would conclude that the test drug is effective
if there are more than 12 (out of 43 subjects) responses.

Flexible Two-Stage Designs As an alternative to the optimal two-stage designs described
above, Chen and Ng (1998) proposed optimal multiple-stage flexible designs for phase II
trials by simply assuming that the sample sizes are uniformly distributed on a set of k
consecutive possible values. As an example, the procedure for obtaining an optimal two-
stage flexible design is outlined below.

Let ri and ni be the critical value and the sample size for the first stage and Rj and Nj be
the critical value and sample size for the second stage. Thus, for a given combination of
(ni, Nj), the expected sample size is given by

EN � ni � (1 � PET )(Nj � ni)

where

PET � B(ri; p, ni)

� �
x�ri

b(x; p, ni)

The probability of rejecting the test drug for (ni, Nj) is then given by

B(ri; p, ni) � �
min(ni,Rj)

x�ri�1
b(x; p, ni) B(Rj � x; p, Nj � ni)

The average probability of an early termination (APET ) is the average of PET for all pos-
sible ni. The average total probability of rejecting the test drug (ATPRT ) is the average of
the above probability for all possible combinations of (ni, Nj). The average expected sam-
ple size (AEN) is the average of EN. Chen and Ng (1998) considered the following criteria
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for obtaining an optimal flexible design. If the true response rate is p0, we reject the test
drug with a very high probability (i.e., ATPRT � 1 � α). If the true response rate is p1, we
reject the test drug with a very low probability (i.e., ATPRT � β). There are many solutions
of (ri, ni, Rj, Nj)’s that satisfy the α and β requirements for the specific p0 and p1. The opti-
mal design is the one that has minimum AEN when p � p0. The minimax design is the one
that has the minimum Nk and the minimum AEN within this fixed Nk when p � p0.

Example 6.6.2 Consider the same example as described in Example 6.6.1. Now, suppose
the sponsor is interested in conducting a single-arm cancer trial with a flexible two-stage
design for achieving a 90% power at the 10% level of significance. It is also decided to
choose p0 � 0.1 and p1 � 0.30. In this case, the flexible two-stage design gives (1/11–17,
2/18) for the first stage and (3/24, 4/25 – 28, 5/29 – 31) for the second stage for achieving a
90% power at the 10% level of significance. The optimal flexible two-stage design allows
the first stage sample size to range from 11 (n1) to 18 (n8). The rejection boundary ri is 1 if
ni ranges from 11 to 17, and 2 if ni is 18. If the observed responses are greater than ri, we
accrue 27-ni additional subjects at the second stage. The flexible optimal two-stage design
allows the total sample size to range from 24 (N1) to 31 (N8). The rejection boundary Rj is
3 if Nj is 24, 4 if Nj ranges from 25 to 28, and 5 if Nj ranges from 29 to 31.

Optimal Three-stage Designs The disadvantage of a two-stage design is that it does not
allow early termination if there is a long run of failures at the start. To overcome this
disadvantage, Ensign et al. (1994) proposed an optimal three-stage design, which modifies
the optimal two-stage design. The optimal three-stage design is implemented by testing the
following similar hypotheses:

H0: p � p0 vs. Ha: p � p1

Rejection of H0 (or Ha) means that further (or not further) study of the test drug should be
carried out. At stage 1, n1 patients are treated. We would reject Ha (i.e., the test treatment is
not responding) and stop the trial if there is no responses. If there are one or more
responses, then proceed to stage 2 by including additional n2 patients. We would reject Ha

and stop the trial if the total number of responses is less than or equal to a prespecified
number of r2; otherwise, continue to stage 3. At stage 3, n3 more patients are treated. We
would reject Ha if the total responses for the three stages combined is less than or equal to
r3. In this case, we conclude that the test drug is ineffective. On the other hand, if there are
more than r3 responses, we reject H0 and conclude that the test drug is effective. Based on
the concept of the above three-stage design, Ensign et al. (1994) considered the following
to determine the sample size. For each value of n1 satisfying

(1 � p1)
n1 	 β

where

β � P(reject Ha�p1)

computing the values of r2, n2, r3, and n3 that minimize the null expected sample size
EN(p0) subject to the error constraints α and β, where

EN (p) � n1 � n2{1 � β1( p)} � n3{1 � β1(p) � β2(p)}
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and βi are the probability of making type II error evaluated at stage i. Ensign et al. (1994)
use the value of

β � (1 � p1)
n1

as the type II error rate in the optimization along with type I error

α � P(reject H0�p0)

to obtain r2, n2, r3, and n3. Repeating this, ni can then be chosen to minimize the overall
EN(p0).

Example 6.6.3 Similar to Example 6.6.1, suppose a sponsor is interested in conducting a
single-arm cancer trial with an optimal three-stage design. p0 and p1 were chosen to be
0.25 and 0.40, respectively. Based on the discussion above, the optimal three-stage design
gives (0/6, 7/26, 24/75) for achieving an 80% power at the 5% level of significance. In
other words, at the first stage, six subjects are treated. If no responses are seen, then the
trial is terminated. Otherwise, accrual continues to a total of 26 subjects at the second
stage. If no more than 7 subjects respond, then stop the trial. Otherwise, proceed to the
third stage by recruiting an additional 49 subjects. We would conclude that the test drug is
effective if there are more than 24 responses for the subjects in the three stages combined.

Note that the optimal three-stage designs proposed by Esign et al. (1994) restricts the
rejection region in the first stage to be zero response, and the sample size to at least 5. As
an alternative, Chen (1997) also extended Simon’s two-stage to a three-stage design with-
out these restrictions. As a result, sample sizes can be obtained by computing the values of
r1, n1, r2, n2, r3, and n3 that minimize the expected sample size

EN � n1 � (1 � PET1)n2 � (1 � PETall)n3

PET1 � B(r1; n1, p) ��
x�r1

b(x; n1, p)

PETall � PET1 � �
min(n1,r2)

x�r1�1
b(d; n, p) B(r2 � x; n2, p).

Example 6.6.4 Suppose the sponsor is interested in conducting a single-arm cancer trial
with the optimal three-stage design as described above. With p0 � 0.25 and p1 � 0.40, the
optimal three-stage design gives (4/17, 12/42, 25/79) for achieving an 80% power at the 5%
level of significance. In other words, at the first stage, 17 subjects are treated. If no more
than four responses are seen, then the trial is terminated. Otherwise, accrual continues to a
total of 42 subjects at the second stage. If no more than 12 subjects respond, then stop the
trial. Otherwise, proceed to the third stage by recruiting an additional 37 subjects. We would
conclude that the test drug is effective if there are more than 25 responses for the subjects in
the three stage combined.

6.6.2 Multiple-Arm Trials

In the previous section, we introduced procedures for sample size calculation under (flexi-
ble) optimal multiple-stage designs for phase II cancer trials with single arm. Sargent and
Goldberg (2001) proposed a flexible optimal design considering a phase II trial that allows
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clinical scientists to select the treatment to proceed for further testing for a phase III trial
based on other factors when the difference in the observed responses rates between two
treatments falls into the interval [�δ, δ], where δ is a prespecified quantity. The proposed
rule is that if the observed difference in the response rates of the treatments is larger than δ,
then the treatment with the highest observed response rate is selected. On the other hand, if
the observed difference is less than or equal to δ, other factors may be considered in the
selection. In this framework, it is not essential that the very best treatment is definitely
selected; rather, it is important that a substantially inferior treatment is not selected when a
superior treatment exists.

To illustrate the concept proposed by Sargent and Goldberg (2001), for simplicity, con-
sider a two-arm trial. Let p1 and p2 denote the true response rates for the poor treatment and
the better treatment, respectively. Without loss of generality, assume that p2 � p1.

Let p̂1 and p̂2 denote the corresponding observed response rates for treatment 1 and
treatment 2, respectively. Sargent and Goldberg (2001) considered the probability of cor-
rectly choosing the better treatment, i.e.,

PCorr � P{p̂1 � p̂1 � δ � p1, p2}

and the probability of the difference between the two observed response rates falling into
the ambiguous range [�δ, δ ], i.e.,

PAmb � P{�δ � p̂2 � p̂1 � δ �p1, p2}

Assuming that each treatment arm has the same n̂umber of subjects (i.e., n1 � n2 � n). The
above two probabilities are given by

PCorr �  �
n

x�0
�
n

y�0
I{(x � y)/n � δ}� �� � p2

x(1 � p2)
n � x p1

y(1 � p1)
n � y

and

PArm �  �
n

x�0
�
n

y�0
I{�δ � (x � y)n � δ}� �� � p2

x(1 � p2)
n � x p1

y(1 � p1)
n � y

where I{inequality} is the indicator function, which equals 1 if the condition of the ine-
quality holds and equals 0 otherwise. Sargent and Goldberg (2001) suggest n be selected
such that Pcorr � ρpAmb � γ, a prespecified threshold. Table 6.6.1 provides results for ρ � 0
and ρ � 0.5 for different sample sizes for p2 � 0.35 and δ � 0.05.

n
y

n
x

n
y

n
x
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Table 6.6.1 Probability of Various Outcomes for Different Sample 
Sizes (δ � 0.05)

n p1 p2 pCorr pAmb pCorr � 0.5pAmb

50 0.25 0.35 0.71 0.24 0.83
50 0.20 0.35 0.87 0.12 0.93
75 0.25 0.35 0.76 0.21 0.87
75 0.20 0.35 0.92 0.07 0.96

100 0.25 0.35 0.76 0.23 0.87
100 0.20 0.35 0.94 0.06 0.97
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Liu (2002) indicated that by the Central Limit Theorem, we have

pCorr � P�Z > 

δ �

σ
ε


�
and

pAmb � P�Z � 

δ �

σ
ε


� � P�Z �

�δ

σ
� ε

�

where Z is the standard normal variable, ε � p2 � p1 and

σ 2 � 

1
n


 [p1(1�p1)�p2(1�p2)]

The power of the test for the following hypotheses:

H0: p1 � p2 vs. Ha: p1 � p2

is given by

1 � β � 1�Φ �Z(α / 2) � 

δ
ε


� � Φ �� Z(α / 2) � 

δ
ε


�,

where Φ(�) denotes the cumulative distribution function of the standard normal variable
and Z(α /2) is the α /2th upper quantile of the standard normal distribution.

Let λ � pCorr � pAmb. It can be verified that

λ � 1�Φ �Z(α/2) � 

�

ε

 � � ρβ

As a result, sample size per arm required for a given λ can be obtained. Table 6.6.2 gives
sample sizes per arm for δ � 0.05 and λ � 0.80 or 0.90 assuming ρ � 0 or ρ � 0.5 based on
exact binomial probabilities.

Note that the method proposed by Sargent and Goldberg (2001) can be extended to the
case in which there are three or more treatments. The selection of the best treatment, how-
ever, may be based on pairwise comparison or a global test. Table 6.6.3 provides sample
sizes per arm with three or four arms, assuming δ � 0.05 and λ � 0.80 or 0.90.
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Table 6.6.2 Sample Sizes per Arm for Various λ Assuming
δ � 0.05 and ρ � 0 or ρ � 0.5

ρ � 0 ρ � 0.5

p1 p2 λ � 0.90 λ � 0.80 λ � 0.90

0.05 0.20 32 13 16
0.10 0.25 38 15 27
0.15 0.30 53 17 31
0.20 0.35 57 19 34
0.25 0.40 71 31 36
0.30 0.45 73 32 38
0.35 0.50 75 32 46
0.40 0.55 76 33 47
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Chen and Ng (1998) indicated that the optimal two-stage design described above is similar
to the Pocock sequence design for randomized, controlled clinical trials where the probability
of early termination is high, the total possible sample size is larger, and the expected size under
the alternative hypotheses is smaller (see also Pocock, 1997). The minimax design, on the
other hand, is similar to O’Brien–Fleming design where the probability of early termination is
low, the total possible size is smaller, but the expected size under the alternative hypotheses 
is larger (O’Brien and Fleming, 1979). The minimax design is useful when the patient source
is limited, such as a rare cancer or a single site study.

Recently, multiple-stage designs have been proposed to monitor response and toxicity
variables simultaneously. See, for example, Conaway and Petroni (1996), and Thall et al.
(1995, 1996). In these designs, the multivariate outcomes are modeled and family-wise
errors are controlled. It is suggested that this form of design should be frequently used in
cancer clinical trials because delayed toxicity could be a problem in phase II trials. Chen
(1997) also pointed out that one can use optimal three-stage design for toxicity monitoring
(not simultaneous with the response). The role of response with that of no toxicity can be
exchanged, and the designs are similarly optimal and minimax.

In practice, the actual size at each stage of the multiple-stage design may deviate
slightly from the exact design. Green and Dalberg (1992) reviewed various phase II
designs and modified each design to have variable sample sizes at each stage. They com-
pared various flexible designs and concluded that flexible designs work well across a vari-
ety of p0 and p1s, and powers.

6.7 RANDOMIZED PHASE II DESIGNS

In addition to optimal and flexible multiple-stage design introduced in the previous sec-
tion, other designs such as Gehan’s phase II design (Gehan, 1961) or Fleming’s multiple-
stage design (Fleming, 1982) had also been proposed to investigate anti-tumor activity
during phase II clinical development of new promising agents. Mariani and Marubini
(1996) provided a review of designs for phase II cancer clinical trials. However, most of
these designs are single-arm, nonrandomized in nature, and without a comparative or 
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Table 6.6.3 Sample Size per Arm for Trials with Three or
Four Arms for ε � 0.15, δ � 0.05, and λ � 0.80 or 0.90

n(ρ � 0) n(ρ � 0.5)

ε r � 3 r � 4 r � 3 r � 4

λ � 0.80
0.2 18 31 13 16
0.3 38 54 26 32
0.4 54 73 31 39
0.5 58 78 34 50

λ � 0.90
0.2 39 53 30 34
0.3 77 95 51 59
0.4 98 119 68 78
0.5 115 147 73 93
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control group. In addition, the primary endpoint for searching promising anti-tumor agents
during phase II development is the tumor response rate, possibly by different criteria.
However, Simon et al. (1985) indicated that a tremendous variation exists in the observed
response rates among different trials of the same anti-cancer agent. They also provided the
following factors that contribute to the variability of observed response rates:

1. Patient selection

2. Response criteria

3. Interobserved variability in response assessment

4. Dosage modification and protocol compliance

5. Reporting procedures

6. Sample sizes

As a matter of fact, the response rate observed in a single-arm, nonrandomized cancer trial
not only is a measure of anti-tumor activity of the new agent under investigation, but also
it is a complicated function of the above-mentioned factors and their interactions with the
new agent. Hence, it is extremely difficult or impossible to obtain an unbiased estimate of
anti-tumor activity of the new agent based on tumor response rate from single-treatment,
nonrandomized trials. Therefore, if several new treatments are available for evaluation of
their anti-tumor activity, Simon et al. (1985) proposed the randomized phase II cancer clin-
ical trials to select a promising new treatment for further evaluation in phase III clinical
development. New treatments may consist of different new cytotoxic agents or involve
analogs, different dosing regimen of the same agent, different preparations of the same
drug, or different agonists or antagonists of a pharmaceutical compound.

The objective of phase II cancer clinical trials, usually based on the tumor response rate,
is to select a promising new cytotoxic agent, among several available, with sufficient anti-
tumor activity for further investigation. It follows that detection of a statistically significant
difference among treatments by traditional hypothesis testing procedures not only fails to
achieve the goal of phase II cancer clinical trials, but also it requires the same sample sizes
as that of phase III trials. On the other hand, the statistical methods for ranking and selec-
tion can be directly applied to choose a promising new agent for phase III evaluations. In
addition, ranking and selection do not directly test whether differences between treatments
are statistically significant. Therefore, as will be shown below, the required sample size is
much smaller than that required for phase III trials, and hence, it is reasonably manageable
for any phase II cancer trials. Because for randomized phase II cancer clinical trials
patients are randomly assigned to treatments, known or unknown factors that influence
evaluation of tumor response rates are distributed approximately evenly or balanced
among treatment groups. As a result, unbiased estimation of differences on the degree of
tumor activity among treatment groups can be obtained, although due to the small sample
size, the precision of such estimates may be not as high as that obtained from phase III tri-
als. However, unbiasedness for comparison of tumor activity ensures that new agents can
be reliably ranked when large differences are obtained.

The procedure for randomized phase II cancer clinical trials proposed by Simon et al.
(1985) is rather simple. Initially, patients who meet inclusion and exclusion criteria are
randomly assigned to one of treatments. When the study is completed, the promising new
agent for further phase III evaluation is selected as the one with the greatest tumor
response rate (or the best value of the other primary endpoint), regardless of how small or
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nonsignificant its advantage over the other agents seems to be. The sample size for ran-
domized phase II cancer clinical trial is determined to ensure that if a new agent is superior
to all other test agents by an amount of δ, then it will be selected with a probability P, usu-
ally 0.8 or 0.9. If there are two new agents with equal anti-tumor activity that is superior to
all others by δ, then the sample size should be determined to ensure that one of the two bet-
ter agents will be chosen with a probability P. Reasonable values for δ are 0.15 or 0.20.
δ 	 0.15 usually leads to an unrealistically large sample size, whereas δ � 0.20 provides
little or no information of the new agents (Simon and Hall, 1997). Table 6.7.1 provides the
number of patients per arm for δ � 0.15 and P � 0.9. Sample sizes for other conditions can
be easily calculated according to the formulas given in the Appendix of Simon et al.
(1985).

Example 6.7.1 Suppose that a sponsor intends to select one of the two new cytotoxic
agents for further phase II evaluation. Based on historical information, it is expected that the
smallest response rate of the two agents is about 30%. From Table 6.7.1, the sample size of
35 patients per group can provide a 90% probability of selecting the promising new agent
that has a true response rate of 45%. However, the sample size for detection of a clinically
meaningful difference of 15% (30% vs. 45%) with 90% power at the 5% significance level
for a two-sided test is 230 per arm (Table A.3, Fleiss, 1981), a 6.6-fold increase from that
required for ranking and selection of randomized phase II cancer clinical trials. However, as
discussed before, a new agent will be selected and even the actual response rate of the better
agent is less than 30% or the observed difference is smaller than 15%.

One of the reasons causing variation of tumor response rates is the inherent heterogene-
ity of cancer. For example, it is extremely difficult to evaluate tumor response of patients
with prostatic, brain, or pancreatic cancers. On the other hand, for advanced colorectal can-
cer, advanced non-small-cell lung cancer, or advanced hepatocellular carcinoma, survival
can be observed in a relatively short period of time. In such situations, survival rather than
tumor response rate may be used as the primary endpoint for ranking and selection in the
randomized phase II cancer clinical trials. As a new agent may not exist under which sur-
vival function is uniformly higher than those of all others across time, it is not clear how to
define the best treatment based on observed survival functions. Liu et al. (1993), under the
assumption of the Cox’s proportional hazards model, suggested the use of hazard ratios for
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Table 6.7.1 Number of Patients per Arm for Randomized
Phase II Cancer Clinical Trials for δ �0.15 and P � 0.9

Number of Treatments

Smallest Response Rate(%) 2 3 4

10 21 31 37
20 29 44 52
30 35 52 62
40 37 55 67
50 36 54 65
60 32 49 59
70 26 39 47
80 16 24 29

Source: Simon et al. (1985).

c06.qxd  27.10.03  12:58  Page 234



ranking and selection of the promising new agents for further phase III trials. They also
provided the required sample size for the least favorable configuration in which only one
new agent has the best survival and the rest of the agents are all second best with the same
survival. Table 6.7.2 presents the total sample sizes with P � 90% under the exponential
distribution.

As the randomized phase II design has gained popularity in cancer research, its misuse
and misapplications also become more frequently prevalently. Liu et al. (1999) indicated
that the major misuse of the design is the treatment of the phase II trials as ends in them-
selves without further and definitive evaluation in more rigorous phase III trials. In addi-
tion, many practitioners also inappropriately perform post-hoc hypothesis testing and
present p-values that are less than 0.05. Many users should remember that although the
randomized phase II cancer clinical trials are randomized studies, the objective is to select
a new promising agent with the best observed response rate (or survival) through ranking
the observed response rates among all test agents. The sample size required for the ran-
domized phase II cancer clinical trials will not be large enough to provide a definitive
inference of superiority, noninferiority, or equivalence among different agents. Liu et al.
(1999) reported that false-positive rates of the randomized phase II designs range from
20% to 40%. They especially cautioned against inclusion of control arms in the random-
ized phase II designs. If a control arm is included in the randomized phase II design of
K � 1 new cytotoxic agents and if there is no difference among all treatments, then all
treatments have equal chances of being the best agents, including the control. The proba-
bility that a new agent will appear better than the control is (K � 1)/K. When K � 4, this
probability is 0.75. The probability of observing an impressing difference between the test
agents and control is at least 2/K of the above probabilities. In this situation, if the control
is selected because of its higher observed response over all other test agents, its effect can
be disastrous. Liu et al. (1999) pointed out that a new test agent with similar efficacy as the
control but less severe toxicities can be discarded as ineffective once and for all. Therefore,
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Table 6.7.2 Total Sample Size for Randomized Phase II Cancer Clinical Trials Based 
on Survival for P � 0.9

C � Ratio of Median Survivals

Two Groups Three Groups Four Groups

Median K 1.3 1.4 1.5 1.3 1.4 1.5 1.3 1.4 1.5

0.5 0 229 143 102 513 320 226 822 512 361
0.5 141 88 62 317 197 138 598 315 221
1 117 72 51 263 162 114 421 260 182

0.75 0 306 192 137 685 429 304 1098 686 485
0.5 177 111 79 398 248 175 638 397 280
1 139 87 61 312 194 136 500 310 218

1 0 384 242 173 860 539 383 1377 862 611
0.5 216 135 96 483 302 214 774 483 341
1 163 102 72 365 228 161 586 365 257

Source: Liu et al. (1993).

Median: median survival for all other groups.
K: Additional follow-up in years after the end of accrual.
C: Ratio of median survivals of the best agent to that of all other groups.

c06.qxd  27.10.03  12:58  Page 235



a control arm should not be included in the cancer clinical trials using the randomized
phase II design.

6.8 DISCUSSION

A vast amount of literature in designs for phase I cancer trials is available. Our review in this
chapter by no means is either comprehensive or complete. We, however, covered four funda-
mental and commonly used designs for phase I cancer clinical trials. These include the stan-
dard dose escalation design, one-stage or two-stage up-and-down designs, accelerated
titration designs, and continual reassessment method. Table 6.8.1 summarized the basic char-
acteristics of these designs. From Table 6.8.1, although the standard dose escalation design
and most up-and-down designs are implicitly based on a dose-response model, they all select
the MTD operationally without actually modeling the relationship between the occurrence of
DLT and dose based on the data collected in the trial. For these designs, the traditional likeli-
hood approaches such as delta method, the Fieller’s theorem, and likelihood ratio method fail
to provide an adequate estimate of the MTD and its corresponding confidence interval. The
reason is that they are unable to take into account the adaptive and sequential nature of a 
discrete Markov chain for these designs (Storer, 1993). Storer (1989, 1993, 2001) proposed 
a two-parameter logistic regression mode to fit the data collected from design BD. On the
other hand, as mentioned above, the CRM employs a single-parameter model to fit the data
after the completion of the study. It should be noted that for the CRM, the model for updating
the dose levels is different from the model for the dose-response model to describe the rela-
tionship between the DLT and the dose. In addition, Shen and O’Quigley (1996) showed that
the CRM provides a consistent estimate of the MTD even under model misspecification.

Over the last decade, many simulations have been performed to empirically compare
the standard dose escalation design, up-and-down designs, the original CRM, and its vari-
ous modifications. The results can be found in O’Quigley and Chevret (1991), Korn et al.
(1994), Goodman et al. (1995), Ahn (1998), O’Quigley (1999), Korn et al. (1999), and
Storer (2001). Some of the results are summarized below:

1. The standard dose escalation design treats more patients at the subtherapeutic dose
levels.

2. The standard dose escalation design underestimates the maximum tolerable dose.

3. The original CRM requires fewer patients than does the standard dose escalation
design.

4. The average number of cohorts of the original CRM with a patient per cohort is
larger than that of the standard dose escalation design. Hence, the duration of the
trials using the original CRM may be longer than other phase I designs.

5. The average number of cohorts reduces dramatically for the modified CRM with
three patients per cohort and is similar to that of the standard dose escalation
design.

6. The two-stage (modified) CRM does not provide better performance than the one-
stage modified CRM.

7. The CRM is independent of the targeted percentile of some tolerance distribution
that is prespecified for other designs. In addition, it, theoretically, has convergence
properties.
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8. If the number of patients is not fixed in advance, design BD required more cohorts
than the standard dose escalation design.

9. Design BD exposes more patients at toxic doses than the standard dose escalation
design.

10. Design BD provides improved estimates of MTD over the standard dose escalation
design.

11. No design performs uniformly well in all possible dose-response settings.

12. The estimates of MTD generated from the CRM generally have smaller bias than
those from design BD, although the bias is relatively small.

13. The estimates of MTD from design BD have a greater precision than those of the
CRM. The addition of a model-fitting step only slightly improves the precision of
CRM.

14. The standard dose escalation design produces the estimates of MTD with largest
bias and worst precision.

However, little or no empirical evidence is available on evaluation of performance between
the accelerated titration design and the CRM. This urgently deserves further investigation.

Although the primary objective of phase II cancer clinical trials is to select a new anti-
cancer agent for which its anti-tumor activity reaches a prespecified target level or above,
it is not uncommon that phase II cancer clinical trials try to evaluate a new anti-cancer
treatment against the current standard treatment. This type of trials is referred to as 
phase IIB cancer clinical trials (Simon and Hall, 1997). Phase II cancer clinical trials are
also conducted without inclusion of the standard therapy in a single-treatment and nonran-
domized fashion despite the fact its objective is to compare the anti-tumor activity between
the new and standard treatments. One way to encounter this issue is to let p0 in hypothesis
(6.1.1) represent the anti-tumor activity of the standard treatment. However, p0 is a popula-
tion parameter that must be estimated from the data provided by the trials conducted pre-
viously for evaluation of the standard treatment. Any inference of the new treatment by
assuming the estimate of p0 as a constant is incorrect because the variability of estimate of
p0 is not accounted for. Thall and Simon (1990) developed optimal single-stage phase II
designs that use historical data from the previous trials of the standard treatment to account
for the variability of p0 of prior studies. On the other hand, Fazzari et al. (2000) proposed
another method to taking into account the variability inherent in estimation by setting p0 as
the (1 � α)100% upper confidence limit for the k-year survival rate derived from the 
historical data. Thall and Simon (1990) also found that a trial with an imbalanced random-
ization to both new and standard treatments might be superior to a single-arm, nonran-
domized trial of the new treatment alone. In addition, they concluded that when the
uncertainty of estimates for anti-tumor activity in historical control is great, the traditional
phase IIB cancer clinical trial is not reliable. The Bayesian approach to phase II cancer
clinical trials has been suggested. For details, see Thall and Simon (1994a, 1994b).
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7
CLASSIFICATION OF CLINICAL 
TRIALS

7.1 INTRODUCTION

For approval of a new drug, the FDA requires that substantial evidence of the effectiveness
of the drug be provided through the conduct of adequate and well-controlled clinical trials.
The characteristics of an adequate and well-controlled clinical study include appropriate
methods for bias reduction such as double-blinding, randomization of treatment assign-
ments, a well-defined patient population, and scientific and valid statistical methods for
data analysis.

Basically, there are several different types of clinical trials, depending on their functions
and performance characteristics, although they are not mutually exclusive. These different
types of clinical trials include multicenter trials, superiority trials, sequential trials, active
control and equivalence/noninferiority trials, dose-response trials, combination trials, bridg-
ing studies, and vaccine clinical trials. They are usually applied in different situations
depending on the objectives of the planned clinical trials. For example, a multicenter trial
may be desirable because it provides replication and generalizability of clinical results to
the target patient population across study centers. If the objective of the intended clinical
trial is to show that the test treatment is better than a concurrent control in terms of its pri-
mary clinical endpoints, then it is referred to as the superiority trial. In many cases, an
active control trial is necessarily conducted to establish the efficacy of a new drug when the
patients under study are very ill or have severe or life-threatening diseases. On the other
hand, one of the goals for the active control trials may be to verify that the efficacy of the 
test treatment is similar or is not worse than that of the current active control. The active
control trials with the objective of this kind are referred to as equivalence/noninferiority

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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trials. Noninferiority trials are to establish therapeutic equivalence between the test treat-
ment and an active control by showing its noninferior efficacy with respect to the active 
control (usually the current standard treatment). For the approval of a generic drug, a bio-
equivalence trial is required by the FDA to demonstrate that the generic copy is bioequiva-
lent to the innovator drug product in terms of the rate and extent of drug absorption.
Bioequivalence is usually established by showing that the pharmacokinetic parameters
derived from the blood or plasma concentration time curve of the active ingredient of the
generic copy is similar to those from the innovator drug product.

During the phase II clinical development, dose-response trials are usually conducted to
determine the therapeutic window of the test drug and the relationship between the efficacy/
safety and doses within the therapeutic window. When the drug under study consists of
more than one active ingredient, a combination trial is required to assess the treatment
effect by taking into account potential drug-to-drug interaction. Combination trials are par-
ticularly useful in evaluation of AIDS and cancer treatments or alternative herbal medi-
cines. To address the impact of ethnic factors, the ICH E5 Guideline entitled, Ethnic
Factors in the Acceptability of Foreign Clinical Data, suggests conducting bridging stud-
ies in the new region to extrapolate the foreign data to the new region. Because the target
patient population for vaccine trials is usually normal healthy individuals, ethnics, safety,
design, and sample size for vaccine trials require special considerations.

In the next section, the limitations of single-site studies and the feasibility of multicen-
ter trials are briefly discussed. The concept and considerations for superiority trials are
given in Section 7.3. Issues and concerns for the use of active control and equivalence/non
inferiority trials are provided in Section 7.4. Section 7.5 presents the basic features and
characteristics of dose-response trials. Some statistical deliberations for combination trials
are outlined in Section 7.6. Objectives of bridging studies and their dilemmas and chal-
lenges are given in Section 7.7. Basic design considerations and statistical methods for
vaccine trials are discussed in Section 7.8. Final remarks and discussion are presented in
Section 7.9.

7.2 MULTICENTER TRIAL

When conducting a clinical trial, it may be desirable to have the study done at a single
study site if (1) the study site can provide an adequate number of relatively homogeneous
patients that represent the targeted patient population under study and (2) the study site has
sufficient capacity, resources, and supporting staff to sponsor the study. One of the advan-
tages for a single-site study is that it provides consistent assessment for efficacy and safety
in a similar medical environment. As a result, a single-study site can improve the quality
and reliability of the collected clinical data and consequently the inference of the clinical
results. However, a single-site study has its own limitations and hence may not be feasible
in many clinical trials. These limitations include the availability of patients and resources
in a single site. If the intended clinical trial calls for a large number of patients, a single-site
study may take a long time to complete the study, since qualified patients may not be avail-
able at the same time. Besides, even if qualified patients were available at the same time,
the single-study site may not have sufficient resources to enroll these patients at the same
time. In practice, qualified patients are usually enrolled sequentially at different times until
the required number of patients is reached to achieve a desired power for the detection of 
a clinically meaningful difference.
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Goldberg and Kury (1990) indicate that a single-site study may not be appropriate in
situations where (1) the intended clinical trials are for relatively rare chronic diseases and
(2) the clinical endpoints for the intended clinical trials are relatively rare (i.e., require a
large number of patients to observe an incidence). For example, as observed by Goldberg
and Kury (1990), if the intended clinical trial is to study a relatively rare chronic disease
such as polycythemia vera (a disease characterized by an elevated hematocrit which has as
natural consequences, stroke, hemorrhage, leukemia, and death), a single-site study is not
feasible because it is unlikely that a single site is able to recruit a sufficient number of
patients within a relatively short time frame to achieve the desired power for the detection
of a meaningful clinical difference. Even if the single site is able to recruit the required
number of patients, it will take a relatively longer time to complete the study. As Goldberg
and Kury (1990) point out, if the clinical endpoint for the intended clinical trial is relatively
rare such as mortality in clinical trials for acute myocardial infarction, then the single site
may be required to enroll a large number of patients in order to observe a mortality. In such
case, a single-site study is of little practical interest.

To overcome the disadvantages of a single-site study, the multicenter study is usually
considered. A multicenter study is a single study involving several study centers (sites or
investigators). In other words, a multicenter trial is a trial conducted at more than one dis-
tinct center where the data collected from these centers are intended to be analyzed as a
whole. At each center an identical study protocol is used. A multicenter trial is a trial with
a center or site as a natural blocking or stratified variable that provides replications of clin-
ical results. A multicenter trial should permit an overall estimation of the treatment differ-
ence for the targeted patient population across various centers. In what follows, we will
discuss the impact of treatment-by-center interaction and some practical issues when plan-
ning a multicenter trial.

Treatment-by-Center Interaction

The FDA guideline suggests that individual center results should be presented for a multi-
center study. In addition, the FDA suggests that statistical tests for homogeneity across
centers (i.e., for detecting treatment-by-center interaction) be provided. The significant
level used to declare the significance of a given test for a treatment-by-center interaction
should be considered in light of the sample sizes involved. Any extreme or opposite results
among centers should be noted and discussed. For the presentation of the data, demo-
graphic, baseline, and postbaseline data as well as efficacy data should be presented by
center, even though the combined analysis may be the primary one. Gail and Simon (1985)
classify the nature of interaction as either quantitative or qualitative. A quantitative inter-
action between treatment and center indicates that the treatment differences are in the same
direction across centers but the magnitude differs from center to center, while a qualitative
interaction reveals that substantial treatment differences occur in different directions in dif-
ferent centers. Figure 7.2.1 depicts situations where there are quantitative and qualitative
treatment-by-center interactions. As an illustration, consider the following two examples
which exhibit quantitative and qualitative treatment-by-center interactions.

As indicated by Ebbeling and Clarkson (1989), muscle soreness and elevations in serum
creatine kinase (CK) can be used as a biochemical marker for skeletal muscle injury.
Recently a study was conducted to evaluate the hypothesis that exposure of skeletal mus-
cle to exercise-induced stress in combination with prior administration of a study drug
(e.g., drug A) will produce a greater increase in CK than the effects of exercise alone. This
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study was a randomized, two-arm parallel study comparing the study drug A plus exercise
and a placebo control plus exercise which was conducted at two distinct study centers.
Table 7.2.1 lists the mean CK values at 24 hours post-treatment. Figure 7.2.2 provides a
preliminary investigation of a potential treatment-by-center interaction. The plot shows
that there is a potential quantitative treatment-by-center interaction. This was confirmed by
an analysis of variance that includes the terms of treatment, the center, and the treatment by
center interaction ( p-value � 0.08 � 0.1). A subgroup analysis by center reveals that there
is a significant treatment effect at the second center ( p-value � 0.029 � 0.05).

As another example, consider a clinical trial for the assessment of a study drug’s effi-
cacy in treating mild to moderate hypertension. The study was conducted as a randomized
placebo-controlled multicenter trial that involved 219 patients in 27 study centers. Table 7.2.2
lists the mean change in seated diastolic blood pressures after six weeks of treatment. A plot
of mean change in seated diastolic pressures against study centers is given in Figure 7.2.3.
In the figure the centers are grouped according to the magnitude of differences in mean
change from the baseline. That is, the center with a difference in mean change from base-
line of �19.89 are labeled site 1 and the center with a difference in mean change from
baseline of 9.11 are labeled site 27. As can be seen, 19 centers (70.4%) show the difference
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Figure 7.2.1 Treatment-by-center interaction
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in the positive direction, while 8 centers (29.6%) are in the negative direction. An analysis
of variance indicates that a significant qualitative interaction between treatment and group
has occurred ( p-value � 0.01). If we ignore the interaction and perform an analysis of
variance, an overall estimate of the treatment effect based on the difference in the mean
change from the baseline is given by �4.36 � 1.9 or (�6.26, �2.46) with a p-value less
than 0.01. This positive significant result, however, is somewhat misleading because it is
not reproducible in those 8 out of 27 centers. In other words, there is a relatively high
chance that we may observe a totally opposite result if we are to randomly select a center
from a pool of centers and repeat the study with the same protocol. Besides, the 8 centers
involve 60 patients, who show different results, or about 27.4% of the patients under study.
Therefore the reproducibility and generalizability of the results to the targeted patient pop-
ulation and the treatment setting is questionable.
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Table 7.2.1 Mean CK Values at 24 Hours 
Post-Treatment

Center

Treatment 1 2

Drug A 15 9
355.87 549.78
(69.85) (237.27)

Placebo 16 11
213.31 208.64
(26.34) (35.79)

Note: The top values and the values in the parentheses are corre-
sponding sample sizes and standard errors.

Figure 7.2.2 The mean CK values at 24 hours post-treatment
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Practical Issues

As was indicated earlier, a multicenter trial with a number of centers is often conducted to
expedite the patient recruitment process. Although these centers usually follow the same
study protocol to evaluate the efficacy and safety of a study drug, some design issues need
to be carefully considered. These design issues include the selection of centers, the ran-
domization of treatments, and the use of a central laboratory for laboratory evaluations.
The selection of centers is important to constitute a representative sample for the targeted
patient population. However, in multicenter trials the centers are usually selected based on
convenience and availability. When planning a multicenter trial with a fixed sample size, it
is important to determine the allocation of the centers and the number of patients in each
center. For example, if the intended clinical trial calls for 100 patients, the sponsor may
choose to have 5 study centers with 20 patients in each, 10 study centers with 10 patients
in each, or 20 study centers with 5 patients in each. The chance for observing a significant
treatment-by-center interaction for the selection of 20 centers is expected to be higher than
those for the selections of 10 centers and 5 centers. If there are potential dropouts, the
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Table 7.2.2 Mean Change From the Baseline for Seated Diastolic 
Blood Pressure After Six Weeks of Treatment

Site N Placebo Drug Difference

1 6 2.44 �17.44 �19.88
2 9 1.07 �13.00 �14.07
3 29 �1.74 �12.07 �10.33
4 5 �2.44 �11.73 �9.29
5 5 �1.70 �9.24 �7.54
6 5 �0.67 �7.89 �7.22
7 12 �3.89 �11.06 �7.17
8 4 �11.00 �18.00 �7.00
9 6 1.33 �4.67 �6.00

10 24 �1.18 �6.77 �5.59
11 7 �8.00 �13.50 �5.50
12 7 �6.44 �11.75 �5.31
13 8 �4.83 �10.00 �5.17
14 4 �1.00 �5.93 �4.93
15 6 �6.44 �11.33 �4.89
16 7 �7.83 �12.44 �4.61
17 8 �6.17 �10.47 �4.30
18 4 �2.07 �5.67 �3.60
19 11 �4.56 �7.93 �3.37
20 6 �11.78 �11.67 0.11
21 5 �8.67 �7.53 1.14
22 11 �14.67 �13.20 1.47
23 6 �14.22 �12.00 2.22
24 8 �13.67 �10.50 3.17
25 9 �8.00 �2.80 5.20
26 10 �8.27 0.67 8.94
27 5 �13.11 �4.00 9.11
Total 219 �5.50 �9.78 �4.36
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selection of 20 centers may result in a number of small centers (i.e., with a few patients in
the center). For comparative clinical trials, the comparison between treatments is usually
made between patients within centers. If there is no treatment-by-center interaction, the
data can be pooled for analysis across centers. Therefore, it is not desirable to have too few
patients in each center. A rule-of-thumb is that the number of patients in each center should
not be less than the number of centers. In this case the selection of 10 sites for a fixed sample
size of 100 patients may be preferable. Some statistical justification for this rule can be
found in Shao and Chow (1993). Once the centers are selected, it is also important to
assign treatments to patients in a random fashion within each center. The methods of ran-
domization described in Chapter 4 should be applied. The issue whether a central labora-
tory will be used for the laboratory testing of samples collected from different centers has
a significant impact on the assessment of efficacy and safety of the study drug. A central
laboratory provides a consistent assessment for laboratory tests. If a central laboratory is
not used, the assessment of laboratory tests may differ from center to center depending on
the equipment, analyst, and laboratory normal ranges used at that center. In such a case
possible confounding makes it difficult to combine the laboratory values obtained from the
different centers for an unbiased assessment of the safety and efficacy of the study drug.

Another practical issue of great concern in a multicenter trial is statistical analysis of the
collected data from each center. As was indicated earlier, if there is no evidence of
treatment-by-center interaction, the data can be pooled for analysis across centers. The
analysis with combined data provides an overall estimate of the treatment effect across
centers. In practice, however, if there are a large number of centers, we may observe sig-
nificant treatment-by-center interaction, either quantitative or qualitative. As indicated by
Gail and Simon (1985), the existence of a quantitative interaction between treatment and
center does not invalidate the analysis in pooling data across centers. An overall estimate
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Figure 7.2.3 Mean seated diastolic blood pressures versus study site.

c07.qxd  27.10.03  13:00  Page 245



of the average treatment difference is statistically justifiable, and it provides a meaningful
summary of the results across centers. On the other hand, if a qualitative interaction
between treatment and center is observed, the overall or average summary statistic may be
misleading and hence considered inadequate. In this case it is preferable to describe the
nature of the interaction and to indicate which centers contribute toward the interaction. In
practice, if there are too many centers, the trial may end up with big imbalances among
centers, in that some centers may have a few patients and others a large number of patients.
If there are too many small centers (with a few patients in each center), we may consider
the following two approaches. The first approach is to combine these small centers to form
a new center based on their geographical locations or some criteria prespecified in the pro-
tocol. The data can then be reanalyzed by treating the created center as a regular center.
Another approach is to randomly assign the patients in these small centers to those larger
centers and reanalyze the data. This approach is valid under the assumption that each
patient in a small center has an equal chance of being treated at a large center.

As was indicated before, for approval of a new drug, two well-controlled clinical trials are
conducted to provide substantial evidence of the effectiveness and safety of the new drug.
Since a multicenter trial involves more than one distinct center, whether a single multicenter
trial is equivalent to that of two separate trials has become an interesting question. The FDA
indicates that an a priori division of a single multicenter trial into two studies is acceptable for
establishing the reproducibility of drug efficacy to NDA approval. Nevius (1988) proposes 
a set of four conditions under which evidence from a single multicenter trial would provide
sufficient statistical evidence of efficacy. These conditions are summarized below:

1. The combined analysis shows significant results.

2. There is consistency over centers in terms of direction of results.

3. There is consistency over centers in terms of producing nominally significant results
in centers with sufficient power.

4. Multiple centers show evidence of efficacy after adjustment for multiple comparisons.

To address the consistency over centers, Chinchilli and Bortey (1991) propose the use of
the noncentrality parameter of an F distribution as a means of testing for consistency the
treatment effect across centers. As an alternative, Khatri and Patel (1992) and Tsai and
Patel (1992) consider a multivariate approach assuming random center effects. Huster and
Louv (1992) suggest the use of the minimax statistic as a method that can quantify the
amount of evidence for reproducibility of treatment efficacy in a single multicenter trial.
To describe the minimax statistic, we consider an example given by Huster and Louv
(1992). Suppose that there is a four-center clinical trial. Denote the four centers by a, b, c,
and d. Consider all possible divisions of these four centers into two mutually exclusive sets
of centers. The minimax statistic can then be summarized as follows: First, for each of the
seven divisions, find the p-value for the drug effect (adjusted for the center) for each study.
Then find the maximum of these two p-values for each division. Second, find the minimum
of these maximum p-values across all divisions. The rationale for choosing the maximum
at the first step is that if a particular division is to show reproducibility of a drug effect,
then both studies within that division should exhibit a significant drug effect. On the other
hand, the rationale for choosing minimum at the second step is that the optimal division is
one where the evidence against the null hypothesis from both studies in the greatest. As
indicated by Huster and Louv (1992), the minimax statistic approach provides a reasonable
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assessment for the amount of evidence for reproducibility of treatment efficacy in a single
multicenter trial. In addition it gives an objective answer to the question whether a second
confirmatory study is required.

Note that the analysis of a multicenter trial is different from that of a meta-analysis. The
analysis of multicenter trials combines data observed from each study center; the data are
generated based on the methods prospectively specified in the same study protocol with 
the same method of randomization and probably at the same time. In contrast, a meta-
analysis combines data retrospectively observed from a number of independent clinical tri-
als, which may be conducted under different study protocols with different randomization
schemes at different times. In either case the treatment-by-center interaction for multicen-
ter trials or treatment-by-study interaction for meta-analyses must be carefully evaluated
before pooling the data for analysis.

7.3 SUPERIORITY TRIALS

According to the ICH E9 Guideline entitled, Statistical Principles for Clinical Trials, a
superiority trial is defined as a trial with the primary objective of showing that the response
to the investigational product is superior to a comparative agent. Scientifically, superiority
trials can provide the most convincing evidence of superior efficacy of the test drug prod-
uct to that of comparative controls. However, as discussed in Section 2.6, from a regulatory
review/approval process point of view, the superiority of a test drug product is in fact
established in a two-step procedure. Let µT and µC be the summary population parameters
of some primary efficacy endpoint for the test drug product and comparative control,
respectively. Here µT and µC can be the population means if the primary efficacy endpoint
is a continuous variable, or the proportions if the primary efficacy endpoint is a binary vari-
able or survival function if the primary efficacy endpoint is a censored variable. In addition,
a larger value of the summary population parameter represents a superior efficacy. Then,
the first step is to establish the superior efficacy of the test drug product by testing the fol-
lowing two-sided hypotheses at a prespecified significance level, say, α:

H0: µT � µC versus Ha: µT � µC. (7.3.1)

After the null hypothesis is rejected at the α level of significance and if the estimate of
µT � µC is positive, the test drug product is then claimed to be superior to the control agent
in efficacy. The ICH E9 guideline indicates that this two-step procedure is consistent with
the two-sided confidence intervals that are generally considered an appropriate method for
estimating the possible size of the difference between the test drug product and the com-
parative control. In other words, the superiority of the test drug product is established if the
lower limit of the (1 � α)% two-sided confidence interval for µT � µC is greater than 0.
This two-step procedure is actually equivalent to testing the following one-sided hypothe-
ses at the α /2 significance level:

H0: µT � µC vs. Ha: µT � µC. (7.3.2)

It follows that this two-step approach establishes the superiority of the test drug product at
the α /2 significance level rather than at the usual α significance level. Hence, the issue of
one-sided or two-sided approaches to inference on establishment of superior efficacy
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remains controversial and generates a lot of discussions and debates. The rationale behind
this controversial issue from a regulatory viewpoint is that no one would know for sure
during the clinical development that there is a difference between the test drug product and
its comparative control. Therefore, one should first provide evidence of the difference
between the test drug product and comparative control at the usual α significance level. If
there is no such evidence, then no claim of superior efficacy for the test drug product can
be concluded. Once sufficient evidence is provided to support the existence of a difference
between the test drug product and the comparative control, then superiority of the test drug
product can be claimed only when the difference is in the positive direction. Otherwise, the
efficacy of the test drug product is inferior to the comparative control. For more details on
this topic, see Peace (1991), Koch (1991), Fisher (1991), and Dubey (1991).

Example 7.3.1 Chelation Therapy for Ischemic Heart Disease

As indicated in Example 3.4.1, the PATCH is a double-blind, randomized, placebo-
controlled trial to evaluate whether the EDTA chelation therapy is superior to placebo on
exercise ischemic threshold and quality of life in patients with stable ischemic heart disease.
The primary efficacy endpoints for this study are change from baseline to 27-week follow-up
in time to ischemia (1-mm ST depression), and mental and physical component summary of
Health Status Survey Short Form-36 (Ware et al., 1994). The sample size of 40 patients per
group for this study was chosen to provide a 90% power for detection of a difference of 
60 seconds in mean change in exercise time from baseline to 27-week follow-up, assuming 
a standard deviation of 80 seconds in both groups. The results of these two primary endpoints
are summarized in Table 7.3.1. The p-values for treatment comparisons given in Table 7.3.1
are for the two-sided hypotheses given in (7.3.1). The mean change in exercise time to
ischemia at the 27-week follow-up for the chelation and placebo groups were 63 seconds
(95% CI: 29 to 95, p-value � 0.001) and 54 seconds (95% CI: 23 to 84, p-value � 0.001),
respectively. Although improvement of the exercise time to ischemia is highly statistically
significant for both groups, the difference in mean change at 27-week follow-up between the
chelation and placebo group is only 9 seconds with a 95% confidence interval from �36 to
53 seconds. As the p-value for the two-sided hypothesis in (7.3.1) is 0.69 � 0.05 and the
lower limit of the 95% confidence interval is �36 seconds � 0, then based on the exercise
time to ischemia, there is no evidence to support that EDTA chelation therapy provides supe-
rior efficacy to placebo. A similar conclusion can be reached based on the results on the men-
tal and physical component summaries of SF-36. Because the standard deviations of these
primary efficacy endpoints and other variables were comparable between the chelation and
placebo groups, this trial is considered a well-conducted trial.

As mentioned in the ICH E9 guideline for regulatory settings, the approach of setting
type I errors for one-sided tests at half the conventional type I error used in two-sided test is
preferable for superiority. However, such a requirement is not necessary for other research
environments in which superiority can be proved in a one-step procedure by performing a
one-sided hypothesis (7.3.2) at the traditional α level of significance.

Example 7.3.2 The Prostate, Lung, Colorectal, and Ovarian (PLCO) 
Cancer Screening Trial

In the United States, the most common cancers are lung and colorectal cancers that accounted
for 46% of cancer deaths in males and 34% of cancer death in females in 1989. Prostate
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cancer was the third leading cause of cancer mortality in males and accounts for 11% of can-
cer deaths. Ovarian cancer accounted for 5% of cancer deaths in females. In short, these types
of cancers account for approximately half of all diagnosed cancers and half of all cancer
deaths in the United States. Although these cancers in males and females are clinically signi-
ficant and have a huge impact in public health and health policy, uncertainty regarding the
value of screening for these cancers has resulted in a conflicting position in the medical com-
munity and confusion in populations at risk. Therefore, a randomized, controlled clinical trial
is necessarily conducted to determine the efficacy of screening based on disease-specific mor-
tality. The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial is a large-
scale, long-term randomized, control trial conducted by the United States National Cancer
Institute (NCI) to address the above issues (PLCO Project Team, 2000). Specifically, the
objectives of the PLCO Cancer Screening Trial are in screenees aged between 55 and 
74 years at entry, whether:

In Females and Males

1. Screening with flexible sigmoidscopy (60-cm sigmoidscope) can reduce mortality of
25% from colorectal cancer as compared to the control group of usual medical care.
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Table 7.3.1 Summary of Results of the PATCH

Endpoint: Time to Ischemia in Seconds

Time
Points Statistics Chelation Placebo Difference

N 39 39
Baseline Mean (SD) 589 (176) 572 (172)
27 Weeks Mean (SD) 652 (174) 626 (186)

Mean Change 63 (29, 95) 54 (23, 84) 9 (�36, 53)
p-value �0.001 �0.001 0.69

Endpoint: SF-36 Mental Component Summary

Time
Points Statistics Chelation Placebo Difference

N 39 39
Baseline Mean (SD) 52.6 (7.6) 48.3 (10.4)
27 Weeks Mean (SD) 54.6 (6.7) 50.5 (9.2)

Mean Change 2.1 (�0.4, 3.6) 2.1 (�0.4, 4.5) 0.01 (�3.4, 3.4)
p-value 0.10 0.09 0.99

Endpoint: SF-36 Physical Component Summary

Time
Points Statistics Chelation Placebo Difference

N 39 39
Baseline Mean (SD) 42.9 (10.1) 39.9 (11.0)
27 Weeks Mean (SD) 45.1 (10.0) 44.9 (10.7)

Mean Change 2.2 (�0.5, 4.9) 5.0 (2.7, 7.3) �2.8 (�6.3, 0.6)
p-value 0.11 �0.001 0.11

Source: Knudtson et al., 2002.
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2. Screening with chest X-ray can reduce mortality of 20% from lung cancer as compared
to the control group of usual medical care.

In males

3. Screening with digital rectal examination (DRE) plus serum prostate-specific antigen
(PSA) can reduce mortality of 25% from prostate cancer as compared to the control
group of usual medical care.

In females

4. Screening with CA125 blood test and transvaginal ultrasound (TVU) can reduce mor-
tality of 35% from prostate cancer as compared to the control group of usual medical
care.

As pointed out by the PLCO Project Team (2000), unlike the drug regulatory setting, the
question for each of the four types of cancer is not whether screening reduces or increases
mortality. In addition, determination of whether screening increases mortality is simply not 
an objective of the trial. Furthermore, the PLCO Project Team (2000) also indicated that if 
the screening intervention has no effect or if it is harmful, the consequences in terms of 
a public health decision are the same—screening is not recommended. Therefore, whether
screening reduces mortality as compared to the usual medical care is of research interest to
the PLCO Project Team. Clearly, this is a superiority trial corresponding to the one-sided
hypotheses described in (7.3.2), which involves a one-sided design and analysis approach. As
a result, sample-size determination based on a one-sided hypotheses testing approach was
employed. To provide approximately 90% power for detection of the above-mentioned mag-
nitude of reduction in mortality for each of the four types of cancers, a total of 74,000 females
and 74,000 males were enrolled. Half of the 74,000 females (37,000) were randomized to the
screening group of chest X-ray, flexible sigmoidscopy, CA125, and TVU, and the other half
of them were assigned to the control group of the usual medical care. Half of the 74,000 males
(37,000) were randomized to the screening group of chest X-ray, flexible sigmoidscopy,
DRE, and PSA, and the other half of them were assigned to the control group of the usual
medical care. Each patient will be followed up for at least 13 years. The pilot phase of the
study began in September 1992 for 2 years, and the main phase of study started in September
1994. The main phase of the study consists of an 8-year accrual period and a 5-year screening
period and a 13-year follow-up period of each patient for a total duration of 23 years. The
PLCO Cancer Screening Trial is scheduled to conclude by September 30, 2015.

7.4 ACTIVE CONTROL AND EQUIVALENCE/
NONINFERIORITY TRIALS

For approval of a test drug, it is required by regulatory agencies that clinical trials be con-
ducted comparing the test drug with a control. Section 314.126 in Part 21 of CFR and ICH
E10 Guideline entitled, Choice of Control Group in Clinical Trials, indicate that there are
five kinds of control, including placebo concurrent control, dose-response concurrent con-
trol, active (positive) concurrent control, no treatment concurrent control, and external or his-
torical control (ICH, 1999). An overview of these controls and examples are given in Section
3.4. A control is usually referred to as active or positive if it is a known active treatment or
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drug. Therefore, an active control (positive control) trial is defined as an adequate and well-
controlled trial in which a test drug product is compared concurrently with a known active
drug. Here, an active control trial is referred to as a two-arm study in which subjects are 
randomly assigned to the test drug product or to the known active drug.

From a regulatory prospective, the effectiveness of a drug product should be established
by demonstrating its superior efficacy to the placebo concurrent control in superiority trials.
However, ethical use of a placebo concurrent group in assessment of efficacy and safety of
new treatments in clinical trials has been continuously questioned and challenged; e.g., see
Rothman and Michels (1994). As a result, it may not be ethical to conduct a placebo-
controlled trial for serious illness or patients with severe or life-threatening diseases for
establishment of the efficacy of a new drug product. On the other hand, as many drug 
products have been approved by regulatory agencies due to substantial evidence of efficacy
and safety generated from placebo-controlled superiority trials for the treatment of a num-
ber of diseases, attention has focused on a search of new therapeutic modalities to compete
with the standard and known effective drug products currently available on the market.
These new products may offer some specific advantages over the standard drugs. These
advantages include a better safety profile such as reduction of risk of intracranial hemor-
rhage, or of some grade 3 or 4 toxicities in some cancer treatments, an easy administration
route such as from IV infusion to oral administration, a short duration of treatment, an
improvement on quality of life, and most importantly, reduction of cost. Due to these 
reasons, the use of active concurrent control has recently become increasingly popular.
However, despite their recent popularity, the use of active control trials is not without unre-
solved problems, issues, and challenges that have to do with the objectives of the active
control trials.

Primary Objectives

For the development of a test drug product, the primary objectives of an active control trial
could be

1. To establish the efficacy of the test drug product.

2. To demonstrate that the test drug product is superior to the active control agent.

3. To show that the test drug product is similar to an active control agent or

4. To verify that the test drug product is no worse than the active control.

Because the placebo concurrent control is not included in the two-arm active control trials,
the efficacy of the test drug product cannot be established due to lack of direct evidence of
effectiveness of the test drug product against placebo (Pledger and Hall, 1986; Temple and
Ellenberg, 2000; Ellenberg and Temple, 2000). Although the hypotheses in (7.3.2) for
superiority trials can be used to assess objective (2) for demonstration of superior efficacy
of the test drug product to the active drug product, it still cannot establish the efficacy of
the test drug product because the two-arm active control trials do not include a placebo
concurrent control. Without inclusion of a placebo concurrent control in a two-arm active
control trial, the efficacy of a test drug product may be inferior to or indistinguishable from
that of placebo even though it is superior to the active control.

Objective (3) can be achieved through a two-sided equivalence trial with the primary
goal of showing that the response to two or more treatments differs by an amount that is
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clinically unimportant (ICH E9, 1998). This objective can be usually verified regarding
whether the true treatment difference is to lie between a lower and an upper equivalence
limits of clinically acceptable differences. It follows that the hypotheses corresponding to
objective (3) as interval hypothesis given in Section 2.7:

H0: µT � µC � U or µT � µC � L

vs. Ha: L � µT � µC � U, (7.4.1)

where L and U are some prespecified clinically meaningful lower and upper equivalence
limits.

Average bioequivalence trials based on pharmacokinetic profiles of plasma concentra-
tions of the active ingredients required for approval of generic drug products are typical
two-sided equivalence trials as mentioned in Section 2.7 (FDA, 2001a). However, when
drugs are not absorbed and plasma concentrations of their active ingredients are negligible,
two-sided equivalence trials are also undertaken to demonstrate a two-sided clinical equiv-
alence of the generic drug product to the innovator’s product.

On the other hand, because of other advantages provided by the active control, many
active control trials are designed to show that the efficacy of a test drug product is not clin-
ically inferior to that of the active comparator. A trial with objective (4) is referred to as a
noninferiority trial. The corresponding hypotheses to a noninferiority trial is given as

H0: µT � µC � L

vs. Ha: µT � µC � L. (7.4.2)

ICH E9 (1998) indicates that statistical analysis for evaluation of equivalence/noninferior-
ity is generally based on the use of a confidence interval. Two-sided equivalence between
the test drug product and the active control is concluded if the lower and upper limit of the
confidence interval for µT � µC is completely contained within (L, U). On the other hand,
if the lower limit of the confidence interval for µT � µC is greater than L, then noninferi-
ority of the test drug product is concluded. Again, both two-sided equivalence trials and
one-sided noninferiority trials cannot provide direct evidence of the effectiveness of the
test drug product because they do not include a placebo concurrent group.

Issues in Active Control Equivalence Trials

Issues, difficulties, and controversies surrounding the active control equivalence trials
(ACET) and the interpretation of their results have long been well recognized and extensively
documented, e.g., Temple (1983, 1996, 1997), Makuch and Johnson (1989), Leber (1989),
Senn (1993), Jones et al. (1996), Ware and Antman (1997), Ebbutt and Firth (1998), ICH E9
guideline (1998), ICH E10 guideline (1999), Fisher et al. (2001), Fleming (2000), Siegel
(2000), Temple and Ellenberg (2000), Ellenberg and Temple (2000), Djulbegovic and Clarke
(2001), and Chow and Shao (2002a, 2002b).

On the other hand, Kirshner (1991) proposed a set of criteria for evaluation of the qual-
ity of active control equivalence trials that is reproduced in Table 7.4.1. The number one
problem of any two-armed clinical control trials without a placebo concurrent control is
the verification of the fundamental assumption of active control equivalence trials—the
effectiveness of the active concurrent control. Had this fundamental assumption been true,
then the effectiveness of the test drug product could have been established if it is shown to
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be equivalent to or not inferior to the active concurrent control. However, without a
placebo concurrent control, the fundamental assumption of active control trials cannot be
proven directly by the present active control trial. However, if this fundamental assumption
is not true and cannot be verified, when the test drug product is equivalent to or not inferior
to the active control, they can be both efficacious and both inefficacious.

Example 7.4.1 Active Control Trials of Antidepressants

Temple (1983, 2000) and Leber (1989) provided an excellent illustration of the danger for
inference of the results from active control trials. A series of six trials was conducted to
investigate the effectiveness of nomifensine (a test antidepressant) for treatment of endoge-
nous depression with an active control imipramine, considered as a standard triclyclic anti-
depressant. The common baseline means and four-week adjusted group means based on the
Hamilton depression scales were given in Table 2.7.1. Table 7.4.2 provides the mean
changes at the 4 weeks from baseline and p-values and power for detecting a difference
between nomifensine and imipramine. As Table 7.4.2 indicates, the sample sizes of these
six trials range from 15 to 59. If we only consider the comparison between nomifensine and
imipramine, each trial showed that both nomifensine and imipramine provided consider-
able improvement in Hamilton depression scale after four weeks of treatment. The two
active drugs were in fact indistinguishable (p-value � 0.63). The six trials seem to provide
substantial evidence on the efficacy of nomifensine. Note that although there is low power
for detection of a 30% difference (ranging from 0.09 to 0.45), the results also seem to be
highly supportive of the effectiveness of both nomifensine and imipramine because the
observed differences were greater than 30% from baseline that is considered a clinically
meaningful difference.

Fortunately, all six trials also include a placebo concurrent control so that assay sensitivity
of the trials can be evaluated. A three-way comparison revealed that there are no significant
differences among placebo, nomifensine, and imipramine except for one study [V311(2)]
that shows a detectable placebo-active drug difference. The results suggest that the historical
assumption about imipramine may be erroneous. In other words, the sensitivity-to-drug
effect of imipramine cannot be verified. This example argues against the idea that active 
control studies of putative antidepressants can serve as a sole basis for concluding that a drug
is effective.
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Table 7.4.1 Criteria for Evaluation of Active Control Trials

1. Is the standard therapy effective, and does the experimental therapy have an advantage that is
generalizable?

2. Can an acceptable minimum effect be defined in terms of the outcome measures?
3. Can this effect be measured precisely?
4. Was the assignment of patients to treatments really randomized?
5. Was the time frame for follow-up sufficient to conclude that the therapies are equivalent?
6. Were factors that determined participation in the study identical to those for receiving the 

standard therapy?
7. Is it probable that the groups differ by less than a minimum effect?
8. Were all patients who entered the study accounted for at its conclusion?
9. Were the treatments administered as they would be in practice?

Source: Kirshner (1991).
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Example 7.4.2 Trials of Beta-Adrenergic Blocking Agents

Temple (1983) indicates that antihypertensive drugs may represent a reasonable class which
active control trials might be appropriate. These antihypertensive drugs regularly can be
shown to be superior to the placebo in a fairly small trial. Table 7.4.3 shows that the results of
five antihypertensive drugs, including metoprolol, pindolol, atenolol, nadolol, and timolol. It
appears that these drugs are all different from the placebo, and all trials showed statistically
significant drug-placebo difference. However, note that the placebo effect can be large in
some trials. For example, in the metoprolol study, the placebo response of �11/6 mmHg was
about as large as the drug response in the timolol study and better than the drug response in
the nadolol trial or the pindolol study 25.

From these two examples, one critical issue of any two-arm active control trial is that
there is no measure of internal validity for assay sensitivity of the trials. As shown in
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Table 7.4.2 Hamilton Depression Scale Endpoints—Mean Change Scores from Baseline

Study Baseline Placebo Nomifensine Imipramine p-value1 Power2

R301 23.9 �9.1(n � 36) �10.5(n � 33) �11.1(n � 33) 0.78 0.40
G305 26.0 �12.1(n � 36) �13.0(n � 39) �12.6(n � 30) 0.86 0.45
C311(1) 28.1 �9.2(n � 13) �8.7(n � 11) �7.8(n � 11) 0.81 0.18
V311(2) 29.6 �6.1(n � 7) �22.33(n � 7) �20.13(n � 8) 0.63 0.09
F313 37.6 �15.6(n � 8) �15.7(n � 7) �15.7(n � 8) 1.00 0.26
K317 26.1 �15.6(n � 36) �14.9(n � 37) �15.3(n � 32) 0.85 0.33

1. Two-tailed p-values for detection of a difference between nomifensine and imipramine.
2. Calculated for a 30% difference between nomifensine and imipramine.
3. Statistically significant difference from placebo at p � 0.001, two-tailed.

Source: Temple (1983) and Leber (1989).

Table 7.4.3 Results of Five Antihypertensive Trials of Marketed Beta-Adrenergic Blocking
Agents Change in Blood Pressure in mmHg (Post/Baseline)

N Difference
Study (Drug/Placebo) Drug Placebo D � P

Metoprolol
Reeves 11/12 �17/11 0/0 �17/11
Bowen 18/16 �19/14 �11/6 �8/8

Pindolol
Study 25 29/28 �9/7 �2/3 �7/4
Study 24 28/30 �14/11 �5/4 �9/7

Atenolol
Curry 15/12 �17/12 �5/4 �12/8

Nadolol
Multicenter 50/50 �9/10 �3/2 �6/8

Timolol
Multicenter 120/144 �11/10 1/2 �12/8

Source: Temple (1983).
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Example 7.4.1, except for Study V311(2), inclusion of a placebo concurrent control was
able to show that all other five trials lack assay sensitivity of an effect of imipramine of a
specific clinically meaningful size as compared to the placebo group and that nomifensine
is ineffective. Without assay sensitivity of imipramine, the results of these five trials will
mislead us to the wrong conclusion of equivalence or noninferiority of nomifensine to
imipramine when nomifensine is in fact inferior. On the other hand, because the actual
effect size of the active control is not measured in two-arm active control trials, the pres-
ence of assay sensitivity must be deduced and external validation for the effectiveness of
the active comparators becomes necessary. External validation of sensitivities-to-drug-
effects is determined from historical experience of the active control.

Validation of historical evidence of sensitivity-to-drug-effects for the active control is
extremely challenging and difficult. As pointed out by ICH E10 (1999), there are many cir-
cumstances in which the effectiveness of drugs considered efficacious cannot regularly be
reproduced in well-controlled studies. These conditions include those in which substantial
improvement and variability exists in placebo concurrent groups, and/or in which the effect of
the active control is small or variable. An excellent illustration is given in Example 7.4.2.
There is a large variation of change in blood pressure in both beta-blocker groups and placebo.
Changes in blood pressure for the placebo groups in seven trials range from �11 mmHg to
1 mmHg . In addition, the reduction in blood pressure in the placebo group of �11 mmHg of
the metoprolol-Bowen study was better than that of the active beta-blockers in three out of the
seven trials shown in Table 7.4.3. Other indications with similar problems are depression,
anxiety, dementia, angina, symptomatic congestive heart failure, seasonal allergies, and symp-
tomatic gastroesophageal reflux disease. In conclusion, even though there is no doubt that the
active control is indeed effective because it has been proven in many well-controlled studies,
it is still quite difficult to describe study conditions in which the active control would reliably
have a minimum effect for determination of equivalence limits (ICH E10, 1999). In addition,
the historical experience of sensitivity-to-drug-effects also evolves over time as the diagnosis
and standard treatment also change rapidly over time. Therefore, if an ACET cannot provide
acceptable support for the sensitivity-to-drug-effects with the selected equivalence limits, a
finding of equivalence/noninferiority cannot be considered informative with respect to
efficacy or to showing of clinical equivalence.

Even though the historical evidence indicates that the proposed ACET in a particular
indication is likely to have sensitivity-to-drug-effects, this likelihood can be jeopardized by
the poor conduct of the trials. ICH E10 guideline lists the following factors that can reduce
ACET assay sensitivity:

1. Poor compliance with therapy

2. Poor responsiveness of the study population to the active control

3. Use of concomitant medication or other treatment that interferes with the test drug
product or that reduces the extent of the potential response

4. A population that tends to improve spontaneously, leaving no room for further drug-
induced improvement

5. Poor diagnostic criteria

6. Inappropriate or insensitive measures of drug effects

7. Excessive variability of measurements

8. Biased assessment of endpoints
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Use of the techniques of randomization and blinding as described in Chapter 4 can in gen-
eral improve the assay sensitivity and reduce the bias associated with investigators and sub-
jects. However, an obvious difference between the ACET and placebo-controlled trial is that
both investigators and subjects know that all subjects in the ACET receive a potential active
drug. This particular knowledge may lead to bias in evaluation and measurement of end-
points, and interpretation of the results. For example, an investigator may tend to read blood
pressure responses greater than they actually are. This will reduce the difference between
the test drug product and the active control. Another example is a biased interpretation of
the results in the form of a tendency toward categorizing borderline cases as success in par-
tially subjective evaluations, e.g., in antidepressant trials. Such biased evaluation and inter-
pretation of the results may reduce variability and/or decrease treatment differences and
hence increase the likelihood of incorrect conclusion of equivalence.

To ensure sensitivity-to-drug-effects of an equivalence/noninferiority trial, the ICH E9
guideline (1998) suggest that a suitable active control be a widely used therapy whose effi-
cacy in the relevant indication has been clearly established and quantified in well-designed
and well-documented superiority trials and that can be reliably expected to show similar
efficacy in the intended active control equivalence trial. Therefore, the design and conduct
of the new ACET should be similar to placebo-controlled studies of the active control in the
past that successfully demonstrated the effectiveness of the active control. Close attention
should be paid to important design characteristics such as the same inclusion/exclusion cri-
teria for the study population (severity of medical condition, method of diagnosis), the
same design, primary endpoints measured and timing and method of assessment, dose and
dosing schedules of the active control, and the use of washout or run-in period to exclude
patients without disease or with spontaneous improvement. In addition, the study conduct
of the trial should be also closely monitored to ensure the study’s assay sensitivity. These
aspects of study conduct include compliance, monitoring of concomitant medications,
enforcement of adherence to inclusion/exclusion criteria, and prevention of study dropout.
Furthermore, the design and analysis of any ACET should also take into account advances
in medical or statistical practice relevant to the intended active control equivalence trial.
More about the issues in active control trials can be also found in Hwang (2001), Hung
(2001), Snapinn (2001), Tsong et al. (2001), Wittes (2001), Kallen and Larsson (2001), and
Chow and Shao (2002b).

Interpretation of the Results of Active Control Trials

The interpretation of the results of active control trials regarding the efficacy and safety of
the drug product under investigation is extremely important in clinical research. In what
follows, examples concerning active control trials are presented to illustrate how the
results should be interpreted.

Example 7.4.3 AIDS Antiretroviral Equivalence Trials

The objective of an antiretroviral therapy is to achieve prolonged suppression of human
immunodeficiency virus (HIV) replication. A standard approach to initial antiretroviral
treatment is with two nucleoside analogues and a protease inhibitor. Although protease
containing antiretroviral regimens can accomplish the goal of delaying progression of the
acquired immunodeficiency syndrome (AIDS) and increase survival, they are not without
problems that limit their long-term effectiveness and complete viral suppression. These
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problems include poor tolerability, metabolic toxic effects, and drug interaction due to
inhibition of cytochrome P450 enzymes and poor compliance due to the complexity of
dosing regimens. Example 3.4.6 indicated that one of the conventional antiretroviral thera-
pies for the treatment of previously untreated HIV infected patients is a triple nucleoside
analogue regimen of indinavir-lamivudine-zidovudine (the ILZ regimen). This particular
regimen asks the patients to take 150 mg of lamivudine and 300 mg of zidovudine twice
daily and 800 mg of indinavir in 200-mg capsule formulation every 8 hours daily for a total
of 16 tablets per day. In addition, indinavir is administrated with water 1 hour before or 
2 hours after a meal and patients should drink at least 1.5 liter of water during the course 
of 24 hours to avoid dehydration. As a result, this triple nucleoside analogue regimen of
indinavir-lamivudine-zidovudine poses considerable inconvenience to the patients and
adherence of the regimen by patients.

Abacavir is a potent inhibitor of HIV reverse transcriptase (TR) that dose does not select
resistant virus in vitro. In addition to its antiretroviral activity as monotherapy, marked anti-
retroviral activity has also been demonstrated in combination of lamivudine-zidovudine. In
addition, the triple nucleoside analogue regimen of abacavir-lamivudine-zidovudine (the
ALZ regimen) only requires patients to take a 300-mg tablet of abacavir twice daily for a
total of four tablets per day. In lieu of several advantages of the ALZ regimen such as twice
daily dosing, low pill burden, low drug interaction, and the potential to reserve other drug
classes for future treatment options, the CNAAB3005 International Study Team (Stas-
zewski et al., 2001) conducted the first randomized, double-blinded trial to evaluate 
the two-sided antiretroviral equivalence between the ALZ and ILZ regimens for initial 
treatment in antiretroviral-naive HIV-infected adults. Primary endpoints were based on the
proportion of the patients with the reduction of plasma HIV RNA copies/mL below some
prespecified level after 48 weeks of treatment. Four hundred copies and 50 copies/mL were
the two levels considered in this trial. After discussion with investigators and with the US
FDA, a symmetric lower and upper equivalence limit of �12% were prespecified as the
largest difference that would be considered as clinically acceptable. The two triple nucleo-
side analogue regimens of ALZ and ILZ were considered equivalent if the 95% confidence
interval for the difference between the regimens is within the limits from �12% to 12%.
From these considerations, the sample size of 275 patients per group provided sufficient
power to achieve the objective of two-sided equivalence.

Table 7.4.4 presents a summary of patient enrollment and discontinuation of this trial,
reproduced from Figure 1 in Staszewski et al. (2001). Seven hundred and eighty one sub-
jects were screened, and 562 patients were randomized: 282 to ALZ group and 280 to ILZ
group. Twenty patients in ALZ group and 15 patients in ILZ group did not take the study
drugs at the start of the trial. Overall, 99 patients in ALZ group and 96 patients in ILZ
group discontinued the study prematurely for various reasons. A total of 316 patients com-
pleted a 48-week randomized treatment: 150 in ALZ group and 156 in ILZ group. As a
result, a total of 527 patients were included in the population of the intention-to-treat
analysis that consists of all randomized patients with any post-treatment measurements.
However, only between 284 and 297 patients were included in the population of as-treated
analysis that consists only of the patients continuing randomized treatment. As a result,
43.6% to 46.1% of patients in the intention-to-treat analysis were not included in the 
as-treated analysis. Note that in Table 7.4.4, it is not clear from Figure 1 in Staszewski 
et al. (2001) why the sum of the numbers of patients not receiving the treatment, switching
treatment, discontinuing study, and completing the study is not added to the number of
patients randomized.

ACTIVE CONTROL AND EQUIVALENCE/NONINFERIORITY TRIALS 257

c07.qxd  27.10.03  13:00  Page 257



Table 7.4.5 presents the point estimates and their corresponding 95% confidence intervals
for the treatment difference on the proportion of patients with a plasma HIV RNA level
either no greater than 400 or 50 copies/mL. The primary efficacy endpoint preselected by the
CNAAB3005 International Study Team was the proportion of patients with plasma HIV
RNA level no greater than 400 copies/mL. For the intention-to-treat analysis, at week 48,
51% of the patients (133/262) in ALZ group and 51% (136/265) in ILZ group had sustained
suppression of HIV RNA levels to less than 400 copies/mL. The treatment difference is esti-
mated as 0.6% with the corresponding 95% confidence interval of (�9%, 8%). Because the
95% confidence interval of (�9, 8%) is completely contained within the equivalence limits
of (�12%, 12%), the CNAAB3005 International Study Team concluded that the efficacy of
the triple nucleoside analogue regimens of ALZ based on the primary endpoint is equivalent
to that of IZT (Staszewski et al., 2001). However, the as-treated analysis yielded a treatment
difference of �7% with the corresponding 95% confidence interval of (�14%, 0%). There-
fore, with respect to the population of as-treated analysis, equivalence between the ALZ and
ILZ cannot be concluded because the 95% confidence interval is not contained within
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Table 7.4.4 Summary of Patient Enrollment and Discontinuation for
CNAAB3005 International Study Through 48 Weeks of Treatment

Event Total ALZ Group ILZ Group

Screening 781
Excluded 219

Randomization 562 282 280
Not receive treatment 35 20 15
Switch of treatment 28 11 17
Discontinuation 195 99 96

Completing the study 316 160 156
Intention-to-treat 527 262 265
As treated 284–297 145–150 139–147

Source: Staszewski et al. (2001).

Table 7.4.5 Summary of Results on the Difference in the Proportion of the Patients with 
a Plasma HIV RNA Level no greater than 400 or 50 copies/mL for CNAAB3005 
International Study

Point 95%
Endpoint Population Estimate Confidence Interval

% � 400 Intention-to-treat 0.6% (�9%, 8%)
As treated �7% (�14%, 0%)

% � 50 Intention-to-treat �6% (�15%, 2%)
As treated �13% (�23%, �4%)
Intention-to-treat and high HIV RNA baseline �14% (�27%, 0%)
Intention-to-treat and low HIV RNA baseline �2% (�13%, 9%)
As treated and high HIV RNA baseline �12% (�23%, �1%)
As treated and low HIV RNA baseline �17% (�34%, 0%)

Source: Summarized from Staszewski et al. (2001).
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(�12%, 12%). Furthermore, one can reach the conclusion that, based on the as-treated
analysis for this primary endpoint, the efficacy of the ALZ group in fact is inferior to that of
ILZ group. If one uses a more stringent criterion for sustained suppression of HIV RNA
level as 50 copies/mL, it can be shown in Table 7.4.5 that neither the intention-to-treat and
as-treated analyses reach the conclusion of equivalence between the ALZ and ILZ groups.
As a matter of fact, based on this criterion, the as-treated analysis yielded a finding that the
efficacy of ILZ is superior to that of ALZ. Other conflicting findings can be also found for
patients with low or high HIV RNA baseline (10,000�100,000 copies/mL or �100,000
copies/mL) in Table 7.4.5. The inconsistency of the results between the intention-to-treat
and as-treated analyses may be due to more than 41% of patients who discontinued the study
prematurely before its schedule completion of randomized treatment at week 48. Therefore,
Djulbegovic and Clarke (2001) commented that the apparent equivalence reflected in the
intention-to-treat analysis might simply be due to a dilutional effect of comparing the
patients between ALZ and ILZ groups whose actual treatments did not differ much. In addi-
tion, the ICH E9 guideline also indicates that the noncompliance in the intention-to-treat
analysis will generally diminish the estimated treatment effect. As a result, in equivalence or
noninferiority trials, unlike the superiority trials, the use of the intention-to-treat analysis is
not conservative and its role should be considered very carefully.

Equivalence /Noninferiority Limits

In addition to the issue of analysis sets, the determination of equivalence limits is also crit-
ical and yet extremely controversial. For Example 7.4.3, it is not clear how the equivalence
limit of (�12%, 12%) was derived, and its clinical interpretation, relevancy, and implica-
tion are also vague. Another issue for selection of equivalence limits is whether the same
equivalence limits should be used for different endpoints. For example, should the same
equivalence limits of (�12%, 12%) be used for the cutoff points of 400 copies/mL and 
50 copies/mL for sustained suppression of HIV RNA levels? The criterion of 400 copies is
more lenient than that of 50 copies. In addition, different PCR assays might have a differ-
ent limit of quantification that may lead to selection of different equivalence limits. For the
CNAAB3005 International Study, two different PCR assays with limits of quantification
of 400 copies/mL and 50 copies/mL were used. One final note is that 284 patients were
included in the as-treated analysis using the criterion of 400 copies. On the other hand, for
more stringent criterion of 50 copies/mL, 297 patients were included in the as-treated
analysis. This inconsistency in the number of patients in the two as-treated analyses might
be due to the use of different PCR assays, as described above.

Example 7.4.4 Continuous Infusion versus Double-bolus Administration of AMI

Example 3.4.5 indicated that the objective of the Continuous Infusion versus Double-bolus
Administration of Alteplase trial (COBALT) investigators (1997), is to test the hypothesis
that double-bolus alteplase is at least as effective as accelerated infusion. The primary end-
point for assessment of noninferiority in double-bolus alteplase in treatment of the patients
with acute myocardial infarction was death from any cause at 30 days. This study employed
the one-sided noninferiority hypothesis to evaluate the clinical equivalence between two
administrations of alteplase. The double-bolus group was considered not inferior to acceler-
ated infusion if the one-sided 95% upper confidence limit for the difference on 30-day
mortality between the double-bolus administration and accelerated infusion is less than

ACTIVE CONTROL AND EQUIVALENCE/NONINFERIORITY TRIALS 259

c07.qxd  27.10.03  13:00  Page 259



0.4%. A total of 7,169 patients with acute MI were randomly assigned to receive accelerated
infusion (3,585) or to receive the double-bolus administration (3,584). The COBALT inves-
tigators reported that 30-day mortality was higher in the double-bolus group than in the
accelerated infusion group: 7.98% as compared with 7.53%. The point estimate for treat-
ment difference in 30-day mortality between the double-bolus and accelerated infusion
group is 0.44% with the corresponding one-sided 95% upper limit of 1.49%. As the one-
sided 95% upper limit is 1.49%, which is greater than the prespecified noninferiority limit
of 0.4%, despite the advantage of the ease of use, the evidence from the COBALT study
failed to support that double-bolus alteplase is equivalent to accelerated infusion with
respect to 30-day mortality.

As indicated earlier, the selection of equivalence critical limits is probably the most
controversial and yet most critical in the design and analysis of ACETs. The ICH E10
guideline indicates that the noninferiority limits is the degree of inferiority of the test drug
product compared to the active control that the ACET will exclude statistically. In addition,
the limit selected for noninferiority trial cannot be greater than the smallest effective size
that the active control would reliably expect to have compared with the placebo. If a dif-
ference between the test drug product and the active control favors the active control by as
much as or more than that magnitude, the test drug product might have no effect at all. The
equivalence/noninferiority limits are usually chosen based on past experience and histori-
cal evidence in placebo-controlled trials of adequate design similar to intended ACETs.
Determination of equivalence/noninferiority limits is based on both clinical judgment and
statistical reasoning that should reflect uncertainties in the evidence and it should be con-
servative.

For fibrinolytic therapy in treatment of suspected acute myocardial infarction, the 
30-day mortality rate is around about 12% for placebo group and is about 8% for tissue
plasminogen activator (t-PA, or alteplase) (Collins et al., 1997). As a result, the treat-
ment effect of t-PA against placebo is estimated as 4%. Example 7.4.4 indicated that the
COBALT investigators (1997) employed an equivalence limit of 0.4%. This limit is one-
tenth of the estimated relative treatment effect against placebo. This implies that the upper
limit of deaths allowed for the double-bolus alteplase to be considered therapeutic equiva-
lent to accelerated infusion is 4 more deaths per 1,000 patients. This number is fewer than
5.6 per 1,000 patients between alteplase and streptokinase reported by Collins et al.
(1997). This noninferiority limit is very conservative because it preserves 90% of the rela-
tive efficacy of t-PA against placebo. Therefore, Ware and Antman in their editorial (1997)
emphasized that a sample size of 50,000 would be required to provide a 80% power to rule
out excessive 30-day mortality rates of 0.4% when the true mortality rates are identical and
in the range of 7.5%. Another remark is that the sample size of 7,169 patients for the
COBALT study is to provide an 80% power to actually reduce a 30-day mortality rate from
6.3% to 5.4% for a superiority trial.

As another example, in treatment of perennial allergic rhinitis, the efficacy is assessed
based on an average daily total symptom score over duration of treatment that is the sum of
four individual symptom scores, each with a range from 0 to 3. It seems reasonable to
select an equivalence limit of 3.2 for evaluation of therapeutic equivalence between a test
drug product and the active control because 3.2 represents 25% of the range for the total
symptom scores. However, this limit of 3.2 is considered unreasonably liberal if one real-
izes that improvement in each of the four individual symptom scores provided by the
active control over placebo estimated from adequate well-controlled studies with sufficient
power is only about 0.5.
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From the above discussion, there are three possible noninferiority limits (margins) that
could be used for evaluation of noninferiority hypothesis in (7.4.2) (Temple and Ellenberg,
2000). The first one denoted as L1 is the smallest effect the active control can be presumed
to have in the study compared to a placebo concurrent control. For fibrinolytic therapy in
treatment of suspected acute myocardial infarction, as demonstrated before, L1 is about
�4%. The second one denoted as L2 is a fraction of L1; it is selected because it is consid-
ered important to assure that the test drug product retains a substantial fraction of the effect
of the active control. For the COBALT study, L2 is chosen as 0.4% that reflects retention of
90% of the effect of the accelerated infusion or that the maximally acceptable loss of the
accelerated infusion with the double bolus is 10%. Another well-known example is the fre-
quently cited 50% rule depicted in Center of Biological Evaluation and Research, U.S.
FDA documents (CBER/FDA, 1999). The last one denoted as L3 is selected as 0. The rela-
tionship among these three limits in noninferiority hypothesis in (7.4.2) can be described
as L � �f (µC� µP), where µC and µP are the means of active control and placebo control
in the placebo-controlled studies conducted previously, assuming that they remain un-
changed over time:

H0: µT � µC � �f (µC � µP)

vs. Ha: µT � µC � �f(µC � µP).
(7.4.3)

f (µC � µP) in (7.4.3) represents the minimum fraction of the effectiveness of the active
control relative to placebo preserved by the current ACET, given that the effectiveness of
the active control relative to placebo has been established by previously conducted ade-
quate placebo-controlled trials.

This set of hypotheses can be reformulated as

H0: µT � µP � (1� f )(µC � µP)

vs. Ha: µT � µP � (1� f )(µC � µP).

If f � 1, L � L1 and the noninferiority hypothesis in (7.4.3) becomes a superiority hypoth-
esis of the test drug product over the placebo:

H0: µT � µP vs. Ha: µT � µP.

When f � 0, L � L3 and the noninferiority hypothesis in (7.4.2) becomes a superiority
hypothesis of the test drug product over the active control:

H0: µT � µC vs. Ha: µT � µC.

Temple and Ellenberg (2000) emphasized that L3 must be used when the active control is
not regularly superior to placebo in which f � 0. As a result, in this situation, only superior-
ity of the test drug product over the active control in the current ACET may be accepted as
evidence of effectiveness, even though, as mentioned before, there is a possibility that both
the test drug product and the active control could be worse than placebo. In most situations,
the efficacy of the active control as compared to the placebo concurrent control has been
demonstrated previously, and L2 is the most common used equivalence/noninferiority limit.
The fraction that L2 must retain, however, depends on the smallest clinically important 
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difference and the degree of advantages that the test drug product can offer (Fleming, 2000).
Wiens (2002) and Wang and Hung (2003) reviewed and proposed statistical methods for
determination of equivalence limits that include criteria such as some fraction of variation
or proportion of similar responses.

Another challenge in determination of equivalence limits is their clinical interpretation
and consequent clinical implication. For fibrinolytic therapy in treatment of suspected acute
myocardial infarction, the GUSTO I trial (GUSTO I, 1993) provided a strong evidence that
the smallest clinically important difference in 30-day mortality rates should be less than 1%
despite the fact that alteplase has a higher cost and higher intracranial hemorrhage (Flem-
ing, 2000). A naive question is that, is a noninferiority limit of 0.4% employed by the
COBALT investigators too stringent and should a more lenient equivalence limits, say,
0.75% or 1%, be used? The answer is no. Suppose that the double-bolus alteplase is clini-
cally equivalent to the accelerated infusion based on a noninferiority limit of 0.75% for the
difference in 30-day mortality rates. Another new easy administration of alteplase, say, for-
mulation B, could be concluded to be no worse than the double-bolus alteplase using the
same equivalence limit of 0.75%. Then, an even newer and easier administration of
alteplase formulation C could be accepted as a noninferior therapy to formulation B, again
using the same limit of 0.75%. It follows that formulation C can replace the accelerated
infusion, and even formulation C provides a 2.25% higher 30-day mortality rate than the
accelerated infusion. Chow and Liu (1997) and Fleming (2000) gave excellent illustrations
of this phenomenon.

Statistical Methods

Example 7.4.5 GUSTO III Trial Reteplase (recombinant plasminogen activator) is a
mutant of alteplase tissue plasminogen activator and has a longer half-life than its parent
molecule. Therefore, it produced superior angiographic results in patients with acute myocar-
dial infarction. GUSTO III investigators (GUSTO III, 1997), therefore, conduct a randomized
trial to test the hypothesis that the double-bolus reteplase is superior to the accelerated
infusion of alteplase in a 30-day mortality rate. A total of 15,059 patients were randomly
assigned in a 2 : 1 ratio to receive double-bolus reteplase (10,138 patients) or accelerated
infusion of alteplase (4,921 patients). The 30-day mortality rate was 7.47% for reteplase and
7.24% for alteplase. The point estimate for the difference in 30-day mortality rates is 0.23%
with the corresponding 95% confidence interval from �0.66% to 1.1%. Because the 95%
confidence interval includes 0 and, hence, there is no statistically significant difference in 30-
day mortality rates, the GUSTO III investigators declared that the double-bolus reteplase and
accelerated infusion of alteplase had similar clinical efficacy.

Because the upper limit of the 95% confidence interval is 1.1%, with the noninferiority
limit of 0.4% used by the COBALT, the data of the GUSTO III do not demonstrate equiv-
alence between reteplase and alteplase (Ware and Antman, 1997). One crucial mistake that
the GUSTO III investigators made is to reach a conclusion of equivalence because there is
a small and nonsignificant difference. The fundamental concept for equivalence is the con-
cept that lack of evidence of a difference is not evidence of lack of a difference (Altman
and Bland, 1995). Therefore, the ICH E9 guideline (1998) stressed that concluding equiv-
alence or noninferiority based on observing a nonsignificant test result of the null hypoth-
esis that there is no difference between the test drug product and the active control is
inappropriate (also see Chow and Liu, 2000).

262 CLASSIFICATION OF CLINICAL TRIALS

c07.qxd  27.10.03  13:00  Page 262



The most critical issue in analysis for evaluation of equivalence/noninferiority in a two-
arm active control trial is lack of a placebo concurrent control. The U.S. FDA requests that
the effectiveness of a test drug product must be established by comparisons with the placebo
concurrent control. However, because the two-arm active control trial does not include a
placebo concurrent control, the effectiveness of the test drug is established through compar-
isons with a placebo nonconcurrent (putative or ghost) control in the hypothesis formulation
for a superiority trial (Tsong et al., 2001):

H0: µT � µPN � 0

vs. Ha: µT � µPN � 0,
(7.4.4)

where µPN is the mean of the placebo putative control.
Note that because a two-arm active control trial does not include a placebo concurrent

control, µPN cannot be estimated from the current ACET. Tsong et al. (2001) proposed the
following equation to explore the relationship between µT � µPN:

µT � µPN � (µT � µC) 	 (µC � µCH) 	 (µCH � µPH) 	 (µPH � µPN), (7.4.5)

where µC is the mean of the active concurrent control, µCH is the mean of the active his-
torical control, and µPH is the mean of the placebo historical control.

If µC � µPN � µCH � µPH, then (7.4.5) can be reexpressed as

µT � µPN � (µT � µC) 	 (µCH � µPH). (7.4.6)

The assumption that the efficacy of the active concurrent control with respect to the
placebo putative control is the same as the efficacy of the active historical control relative
to the placebo historical control is called the constancy assumption of the effective size of
the active control. In other words, the effect of the active control to placebo is assumed
unchanged from historical placebo-controlled trials to the current ACET. This assumption
is extremely difficult to verify. Under the constancy assumption, hypothesis of superior
effectiveness in (7.4.4) can be reformulated as

H0: µT � µC � � (µCH � µPH)

vs. Ha: µT � µC � � (µCH � µPH).
(7.4.7)

In hypotheses (7.4.7), µT � µC on the left-hand side of hypotheses is the difference in
between the test drug product and the active concurrent control in the current ACET. On the
other hand, µCH � µPH on the right-hand side of (7.4.7) is the effective size of the active con-
trol from the historical placebo-control trial. A comparison of hypothesis (7.4.7) and (7.4.2)
reveals that to show the effectiveness of the test drug product, the equivalence limit is deter-
mined by the effective size of the active control from the historical placebo-control trial. In
the current ACET, patients are randomized to either the test drug product or to the active con-
trol but not to the “putative” placebo. One of the consequences is that randomization-based
inference is not possible to perform hypothesis in (7.4.4). Although within-trial randomiza-
tion can minimize the bias in estimation of the parameters within historical trials and current
ACET, bias in comparison of the parameters across the trials still exists.
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Several different statistical methods are currently available in literature for evaluation of
the effectiveness of the test drug products. The first method is called the indirect confi-
dence interval comparison (ICIC) that entails prespecification of the noninferiority limit
against which comparison of the test drug product with the active control. The ICIC
method uses the equivalence/noninferiority limit L2 described above to preserve at least a
certain fraction of the effectiveness of the active control relative to the placebo by the test
drug product. Once the equivalence/noninferiority limit is determined, the test drug prod-
uct is concluded efficacious if the lower (1 � α )100% confidence limit is greater than L2.
The other method is referred to as the virtual comparison (VC) that synthesizes the esti-
mated relative efficacy of the test drug product to placebo from the current ACET and the
relative efficacy of the active control to placebo from the historical placebo-controlled tri-
als. Then the resulting statistics are treated as if it were from the same trial and the null
hypothesis in (7.4.3) is performed by the traditional statistical methods such as t-test or 
z-score. Note that unlike the ICIC method, the VC method does not use the equivalence/
noninferiority margin. In addition, the VC method can also provide an estimate of the frac-
tion of the effectiveness of the active control retained by the test drug product (Hasselbald
and Kong, 2001).

As mentioned before, both methods are based on the constancy assumption and a rea-
sonable estimation from the historical placebo-control trials on the effectiveness of the
active control relative to placebo. The random-effect model through normal approximation
proposed by DerSimonian and Laird (1986) is often used to estimate the relative effective-
ness of the active control from a collection of historical trials. Wang et al. (2002) reported
empirical evidence of type I error rate (false positive) and power (true positive) from an
extensive simulation study comparing these two methods. They found that the VC method
is optimal under the constancy assumption. This method is not valid and cannot control the
false-positive rate at the some prespecified level if the constancy assumption is violated in
the sense that the effectiveness of the active control in the current ACET is smaller than
that from the historical trials. They also reported that the VC method is not valid even
under the constancy method when the effectiveness of the active control is estimated from
a small number of historical trials by the normal approximation in the random-effects
model proposed by DerSimonian and Laird (1986). In addition, they found that the method 
proposed by Hasselbald and Kong (2001) for estimation of the fraction of the effectiveness
of the active control preserved by the test drug product is also misleading because of an
inflated false-positive rate. In contrast, their simulation suggests that the ICIC method is
ultraconservative in terms of a false-positive rate when the assumptions are met. However,
their simulation also shows that the ICIC method can be liberal when the estimated effi-
cacy of the active control in the current ACET is substantially less than that from the his-
torical trials. To overcome the shortcomings of the ICIC and VC methods, Wang and Hung
(2003) proposed the two-stage active control testing (TACT) method for evaluation of non-
inferiority in active control trials. Their method consists of three steps:

Step 1: Validation of sensitivities-to-drug-effects for the active control

Step 2: Verification of the constancy assumption of the active control

Step 3: Establishment of effectiveness of the test drug product through noninferiority
testing

Simulation studies suggest that TACT perform better than the ICIC and VC methods 
in terms of controlling the false-positive rate. Concepts and other statistical methods for
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noninferiority trials can be found in a recently published special issue on noninferiority
trial in Statistics in Medicine (D’Agostino, 2003).

7.5 DOSE-RESPONSE TRIALS

All drugs are potent and poisonous. Only at the right doses, the benefit provided by the
drug exceeds its inherent risk and only then the drug is useful. Therefore, Moore (1995)
pointed that the difference between a drug and a poison is the dose. Information of the rela-
tionship among dose, drug concentration, and clinical responses is extremely important for
the safe and effective use of the drug. A common wrong impression about the dose-
response information is only aimed at the relationship on efficacy or benefit. However, it
should be emphasized that the dose-response relationship on safety is as equally important
as to that on efficacy, if not more important. Critical dose-response information on both
efficacy and safety can help identify an appropriate starting dose, the proper way to adjust
dosage to the need of a particular patient, and a dose beyond which increases would be
unlikely to provide additional benefit or would induce unacceptable adverse events (ICH
E4, 1994). Determination of the dose and dosing range is the most difficult and challeng-
ing task during the clinical development of a test drug product. The issue of whether the
dose-response relationship has been sufficiently characterized is one of the frequently
asked questions at the U.S. FDA advisory committee. Tables 3.4.2 and 3.4.4 in Chapter 3
provided two excellent examples on failure of characterization for dose-response relation-
ship for two test drug products in two different therapeutic areas. Trials conducted to 
characterize the dose-response relationship of the test drug product are referred to as dose-
response trials.

The following objectives of dose-response trials are given by the ICH E9 guideline
(1998):

1. Confirmation of efficacy.

2. Investigation of the shape and location of the dose-response curve.

3. Estimation of an appropriate starting dose.

4. Identification of optimal strategies for individual dose adjustments.

5. Determination of a maximal dose, beyond which additional benefit would unlikely
to occur.

From the above objectives of dose-response trials, it is extremely important to identify the
dosing range of a test drug product and to describe the relationship of the dose and clinical
efficacy and safety responses within that range. Therefore, there are at least two types of
dose-response curves with respect to the responses. The first is the dose-efficacy curve that
describes the relationship between dose and some primary efficacy endpoints. The other is
the dose-safety curve that characterizes the relationship between dose and safety end-
points, such as incidence of some adverse event or changes in some important laboratory
evaluations. The dose-response curve can also be classified as the population average dose-
response curve (PDRC) and individual dose-response curve (IDRC). The PDRC is useful
for description of the shape and location of the response curve based on the average for the
entire patient population. On the other hand, the IDRC is extremely important for selection
of an initial starting dose and subsequent dose adjustment for an individual patient because
many factors can contribute to differences in pharmacokinetics of the test drug products
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among patients, including demographic factors such as age, gender, race; concurrent ill-
ness such as renal or hepatic failure; diet, concomitant therapy, or characteristics of indi-
vidual patients such as weight or genetic differences.

The dosing range or therapeutic window is determined jointly by the dose-efficacy
curve and the dose-safety curve. The lower bound of the dosing range is referred to as the
minimum effective dose (MED). The MED is then defined as the lowest dose level of a test
drug product that provides a clinically significant response in average efficacy that is also
statistically significantly superior to the response provided by the placebo (Rodda et al.,
1988; Ruberg, 1995a). In addition, the MED should also present a safety profile that is no
worse than the placebo. According to this definition, the MED must produce a response
with a magnitude of clinical superiority over placebo because a small but statistically 
significant response resulting from either large sample sizes or small variability can be of
no clinical application. On the other hand, the MED must also provide a statistically signi-
ficant clinical response. This is because a large clinical response, yet statistically insignifi-
cant from the placebo response produced at a dose level, cannot establish the scientific
evidence of the effectiveness at that dose level. Similarly, the maximum tolerable dose
(MTD) is the highest possible but still tolerable dose level with respect to a prespecified
clinical limiting toxicity (Storer, 1989; Korn et al., 1994). The maximum useful dose
(MUE) is referred to as the highest dose beyond which increases would unlikely provide
additional efficacy. The dosing range or therapeutic window is then defined as the range of
the dose levels from the MED to the minimum of MTD and MUE. If the difference
between the maximum of MTD and MUE and MED is large, then the corresponding test
drug product is said to have a wide therapeutic range. On the other hand, if the maximum
of MTD and MUE is very close to or even smaller than the MED, then the product is prac-
tically of little therapeutic value.

The dose-response curve is usually estimated based on the data of primary efficacy 
endpoints collected from dose-ranging or dose-response clinical trials conducted during
phase II clinical development of a drug product. These dose-response studies are usually
randomized, double-blind, parallel-group designs comparing several doses to a concurrent
placebo. Occasionally, a crossover design such as William’s design (Chow and Liu, 2000)
is employed. Many clinicians, however, find a variety of titration designs either with or
without a concurrent parallel placebo group for dose-ranging studies that are useful due to
the impression that they mimic the clinical practices in the real world. The ICH E4 guide-
line (ICH, 1994) classifies the dose-response designs as (1) parallel does-response design,
(2) crossover dose-response design, (3) forced titration design, and (4) optional titration
design (placebo-controlled titration to endpoints).

Randomized Parallel Dose-Response Designs

Randomized parallel dose-response design (RPDRD) is a straightforward application of
the parallel group design described here to investigate the dose-response relationship. It is
simple in concept and easy to implement with straightforward analyses and interpretation
of the results. RPDRD has had extensive use and considerable success in obtaining and
characterizing the dose-response relationship. For RPDRD, patients are randomly assigned
to receive one of several fixed-dose groups. The fixed dose here is referred to as the final or
maintenance dose. Patients in RPDRD may initially be placed on a starting dose and grad-
ually titrated to the final dose according to a prespecified schedule. The study period of the
final dose should be long enough for the full effect of the test drug product to realize and to
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allow dose-response comparison. However, PRDRD provides only the population average
dose response but not the distribution or shape of the individual dose-response curve.

The ICH E4 guideline indicates that it is not necessary to include in placebo concurrent
control in RPDRD, and a positive slope provides evidence of a drug effect. However, it is
highly recommended that a placebo concurrent control must be included in RPDRD to
establish the effectiveness of the test drug product. A placebo concurrent control can avoid
studies that are uninterpretable because all doses produce similar effects so that one cannot
evaluate whether all doses are equally effective or equally ineffective. In addition, by
inclusion of a placebo and active concurrent controls, one allows assessment of assay sen-
sitivity, permitting a distinction between an ineffective dose and an ineffective trial, as
shown in Tables 3.4.2 and 3.4.4. Furthermore, to measure the absolute size of the drug
effect, a placebo concurrent control or an active concurrent control with very limited effect
on the endpoint of interest must be included in RPDRD. The ICH E4 guideline also indi-
cates that there is no need to detect a statistically significant difference in pairwise com-
parisons between doses if a statistically significant positive slope across doses can be
established using all data. However, if the lowest dose employed in the trial is recommend
as the MED, it should demonstrate a statistically significant and clinically meaningful
effect. The primary objective of RPDRD is to establish the effectiveness of the test drug
product and to characterize the dose-response relationship. Because detection of a positive
slope requires fewer subjects than does detection of a difference and the drug-placebo dif-
ference is in general larger than the between-dose difference, RPDRD allow smaller sam-
ple sizes than do the pivotal phase III trials. In addition, unequal allocation of sample sizes
can be employed in RPDRD design to allow more subjects assigned to the proposed MED
and placebo group for obtaining more precise information and increasing power about the
effect of the MED.

Objective (3) for dose-response trials is to estimate an appropriate starting dose, in other
words, to estimate MED. To choose an appropriate statistical design, the selection of dose
levels, the number of dose levels, and sample sizes for each dose group are equally impor-
tant for estimation of the MED. These issues are not only related to each other, but also
very difficult to deal with. The dose range should be chosen as wide as possible within the
safety limit so that an adequate dose-response relationship can be adequately character-
ized. The number of dose levels, including the test drug product and the placebo, therefore,
should be at least four. Ideally, it is preferable to select a dose level whose response is not
expected to be statistically different from the placebo response so that the MED can be
more accurately estimated. Sample size determination includes estimation of the total sam-
ple size and its distribution across different dose groups. Ruberg (1995a) suggested that the
sample size be determined based on the statistical test for the hypothesis of interest for pri-
mary efficacy clinical endpoints. However, it should be noted that the sample size required
for a dose-response study might be different from that for estimation of MED. Further
research for the sample size for estimation of MED is needed.

In summary, a randomized, parallel dose-response trial is a widely used, successful, and
acceptable design for obtaining population-average dose-response information. It should
include three or more dosage levels, one of which may be placebo. For RPDRD, if dose
levels are well chosen, the relationship of the test drug product with clinical efficacy or
safety can be defined. However, it should be noted that the RPDRD with a placebo con-
current control would not be acceptable for the therapeutic areas such as life-threatening
infections or potentially curable tumors. Because of the multiobjectives of RPDRD, statis-
tical methods for estimation of the relationship between the dose and response such as
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construction of confidence intervals and the use of graphical methods are equally impor-
tant as the use of hypothesis testing procedures. The hypotheses for any RPDRD may be
formulated as the natural ordering of the doses or as the particular questions regarding the
shape of the dose-response curve with respect to different objectives of the study.

Crossover Dose-Response Design

Although RPDRD is a widely employed design for obtaining the population average dose-
response relationship, it cannot provide the individual dose-response information. In addi-
tion, a critical understanding of different doses for a particular test drug product by any
clinical researchers, biostatisticians, primary care physicians, or patients is that any given
dose provides a mixture of desirable and undesirable effects, with no single dose necessar-
ily optimal for all patients. Therefore, individual dose-response information is very impor-
tant in real clinical practice for both physicians and patients. Therefore, if a drug effect
develops rapidly and patients return to baseline conditions quickly after termination of
therapy, and if responses are not irreversible, a randomized multiple-period crossover
study of different doses using Williams’ design (Chow and Liu, 2000) can be successful.
Because for this design each individual patient receives several different doses of the test
drug product, in addition to the population average dose-response curve, the distribution of
the individual dose-response curves can be estimated.

Because the statistical inference for the population dose-response curve is based on the
intrasubject variability, it may require fewer patients than the RPDRD. In addition, if the
study is adequately designed and is well conducted with washout periods of sufficient
length, dose and time will not be confounded together, and unbiased inference about the
dose-response relationship can be obtained even in the presence of carryover effects. How-
ever, this design suffers the same shortcomings of all crossover designs. The duration of
the study could be very long for each individual patient. Consequently, the likelihood of a
patient’s withdrawal during the studies is higher than RPDRD. In addition, there is often
uncertainty about the carryover effects and about baseline comparability among different
periods for potential period-by-treatment interaction. All of these in turn create analytic
nightmares and questionable interpretation of the results.

Forced Titration (Dose-Escalation) Design

The forced titration design in ICH E4 guideline in fact employed the forced dose-escalation
design described in Section 5.5, where all subjects move through the series of escalating
doses. This design is similar to the crossover dose-response trials. However, assignment of
subjects to receive different dose levels is ordered, not random. Therefore, a critical draw-
back of this design is that the dose effects of individual periods, time, and carryover effects
(effects of cumulative doses) are all confounded together. No valid and unbiased statis-
tical inference for the dose-response relationship based on continuous endpoints from this
design is currently available. Forced titration trials may be the poor choice for collecting 
the dose-response information on adverse events because of their time-dependent nature.
Other problems that make this design unattractive for the dose-response studies, including
the poor choice for delayed response and spontaneous improvement over time. Conse-
quently, the higher doses under this design may find very little room to show an incremental
effect.
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Similar to the crossover dose-response design, nonetheless, the forced titration design
can provide a reasonable first approximation of both the population average dose-response
curve and the distribution of individual dose-response relationships if the carryover effect
is minimal and the number of dropouts is not excessive. In addition, if a placebo concur-
rent group is included in the forced titration trials, it allows a series of comparisons of an
entire randomized group given several doses with a placebo concurrent control. In addi-
tion, because of inclusion of a placebo concurrent control, the forced titration design can
provide evidence of effectiveness of the test drug product. Because the inference from this
design may be based only on intrasubject variability, the forced titration design requires
fewer patients than does the RPDRD. Because it can be used to investigate a wide range of
doses, the forced titration design with a placebo concurrent group is a reasonable first
dose-response study for helping selection of the doses for the subsequent randomized, par-
allel dose-response trials.

Optional Titration Design (Placebo-Controlled Titration to Endpoint)

The optional titration design in the ICH E4 guideline is the application of the titration
design in Section 5.5 to investigate the dose-response relationship of the test drug product.
The difference between the optional titration design and the forced-titration design, as
described in Section 5.5, is that the subjects in the optional titration design are titrated up
to the next higher doses if they fail to respond at the current dose level with respect to some
prespecified efficacy criteria. Therefore, not all patients will receive all doses in the
optional titration design. On the other hand, in the forced titration design, all patients will
receive all doses if they do not experience any safety problems. Like the forced titration
design, this design is applicable to indications where the response is quite prompt and is
not an irreversible event, such as stroke or death. The design can provide information of
population dose-response and individual dose-response curves. In addition, as shown in
Table 5.5.2, by inclusion of a placebo concurrent group, the optional titration design not
only can correct for spontaneous changes or investigator expectations, but also it can pro-
vide evidence of effectiveness of the test drug produce.

Like the crossover design or forced titration design, this design suffers the same draw-
back that the time, dose, and carryover effects are confounded together in a complicated
yet unknown pattern. Because only the poor responders are titrated up to receive higher
doses, the responses observed at various dose levels are treatment-related, and hence, a
crude analysis of the optional titration design will usually give a misleading inverted 
U-shape response-dose shape. This often leads to select a dose that is well in excess of
what is really necessary, e.g., diuretics for hypertension or zidovudine (AZT) for acquired
immune deficiency syndrome (AIDS). Currently, no valid statistical method for character-
ization of the dose-response relationship is available for the continuous response obtained
from the optional titration design. However, this design mimics the real clinical practice
and it requires much fewer patients than does the RPDRD. The optional titration design
may be especially valuable as an early phase II study to identify doses for definitive paral-
lel studies.

Many factors should be considered for selection of designs, dose levels, endpoints, and
patient population in dose-response trials. These factors include the phase of clinical devel-
opment, the therapeutic indications, and severity of disease in the target patient population.
As pointed out by the ICH E4 guideline, the lack of appropriate salvage treatment of life-
threatening or serious diseases with irreversible outcomes may preclude conduct of studies

DOSE-RESPONSE TRIALS 269

c07.qxd  27.10.03  13:00  Page 269



below the maximum tolerable dose (MTD). If the target patient population is very homog-
enous because of stringent inclusion/exclusion criteria, fewer patients may be required to
achieve the objectives of the dose-response trials. However, the generalizability of the
results from a homogeneous patient population is limited. On the other hand, larger and
diverse patient populations allow detection of potentially important covariates and a much
broader generalization of the results.

From a practical viewpoint, if the endpoints are continuous or categorical variables for
some indications (e.g., blood pressure, analgesia, bronchodilation) that can be quickly
obtained after the treatment is started and is rapidly dissipated after treatment is termi-
nated, a wider range of designs can be used, and simple and small studies can provide use-
ful dose-response information. Under these circumstances, the optional titration design
with a placebo concurrent group is the typical design selected for many dose-response tri-
als during early phase II clinical development to provide guidance for more definitive, ran-
domized, parallel dose-response trials. In contrast, crossover or various titration designs
are not applicable when the endpoints for some indications are delayed, persistent, or irre-
versible, e.g., stroke, asthma prophylaxis, survival in cancer, or treatment of depression. A
randomized, parallel dose-response design is usually required for these indications. In
addition, RPDRD offers protection against missing an effective dose because of an
umbrella or bell-shape dose response curve, where higher doses are less efficacious than
are lower doses (ICH E4, 1994).

It is prudent to conduct dose-responses studies at the early stage of clinical development
to reduce the number of failed phase III trials because of poor choice of the dose, or to
avoid accumulation of a database that consists mainly of exposures at ineffective or exces-
sive doses. It can also speed up the drug development process, and save development
resources and cost. However, the endpoints of the dose-response studies may be different
during different stages of clinical development. For example, as indicated by the ICH E4
guideline, in treatment of heart failure, a pharmacodynamic endpoint such as cardiac out-
put, pulmonary capillary wedge pressure might be used in the early stage. An intermediate
endpoint such as exercise tolerance and symptoms might be employed in the later develop-
ment. However, a mortality or irreversible mortality endpoint such as survival or new
infarction may be used for the final assessment.

7.6 COMBINATION TRIALS

As was indicated in Chapter 1, a treatment is defined as a combination therapy if it consists
of more than one active ingredient. A treatment is called a combined product if it is a com-
bination of different pharmaceutical entities such as drugs, biologics, and/or medical
devices. Since the general principles of statistical designs and analyses for the assessment
of the effectiveness and safety are the same for both combination therapy and combined
product, in this section our discussion will be focused on the evaluation of a fixed dose for
the combination of two or more active ingredients.

In recent years the search and development of combination therapy for various diseases
have become a popular issue in the pharmaceutical industry (e.g., see Lasgana, 1975; Mezey,
1980). In clinical practice it is not uncommon to observe an enhanced therapeutic effect for a
combination drug in which each component (at a certain dose) acts through a different mech-
anism when applied alone. For example, the combination of a diuretic with a beta-blocker has
an enhanced therapeutic effect for the treatment of patients with hypertension. In practice,
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however, each component of the combination drug must be administered alone at a high-dose
level in order to achieve the desired therapeutic effect. In this case the component drugs may
cause severe and/or sometimes fatal adverse events. Therefore it is desirable to control the 
synergistic effect among these components so that a combination at the lower-dose levels 
will reach the same or better effectiveness with less severe clinical toxicity. For example,
Table 7.6.1 lists the conventional maximum tolerable doses for chemotherapeutic agents in 
the treatment of patients with advanced ovarian cancer. Each of these drugs induces serious
organ-specific dose-limiting toxicity that jeopardizes the efficacy when they are administered
alone. It is therefore imperative to search for different combinations of these agents at lower
doses so that a higher equivalent cytotoxic dose can be achieved to provide a clinically mean-
ingfully improvement in response rate and overall survival. For example, McGuire et al.
(1996) report that paclitaxel and cisplatin provided not only a significantly higher response
rate than a standard therapy of cisplatin plus alkylating agent cyclophosphamide (73% versus
60%, p-value � 0.01) for stage III and stage IV ovarian cancer but also a significant improve-
ment in median survival (38 vs. 24 months, p-value � 0.001).

After the initial successful culture of Helicobacter pylori (or H. pylori) in gastric-
biopsy specimens from patients with histologic gastritis in 1982 (Warren, 1982), it was
recognized that more than 95% of patients with duodenal ulcers and more than 80% of
patients with gastric ulcers are infected with H. pylori (Walsh and Peterson, 1995).
Recently the Consensus Development Conference on the U.S. National Institute of Health
recommended that antimicrobial therapy be used to treat patients with ulcers who are also
infected with H. pylori (NIH Consensus Development Panel, 1994). However, it is not easy
to identify effective agents to eradicate the infection of H. pylori. The standard agents such
as H2-receptor antagonists and sucralfate have no effect on H. pylori. In addition, bimuth
such as pepto-mismol and numerous antibiotics including erythromycin, amoxicillin, and
metronidazole have not been proved to provide satisfactory long-term eradication rate
(Peterson, 1991). As an alternative, a different regimen for the combination of antimicro-
bial agents and the combination of antimicrobial and antisecretory agents has been pro-
posed for the treatment of patients with peptic ulcer disease who are infected with 
H. pylori. Table 7.6.2 displays various combinations of antimicrobial and antisecretory
agents in the eradication of H. pylori. As can be seen from Table 7.6.2 these different com-
binations consist of different microbial and antisecretory agents at different dose levels.
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Table 7.6.1 Maximum Tolerable Doses of Single Agents for Treatment 
of Advanced Ovarian Cancer

Maximum Tolerable Organ System of 
Drug Dose (mg/m2/week) Dose-Limiting Toxicity

Cisplatin 35 Renal
Carboplatin 100 Bone marrow
Cyclophosphamide 400 Bladder

Bone marrow
Hexamethylmelamine 2200 Gastrointestinal
Dozorubicin 30 Bone marrow
Paclitaxel 250 Neutropenia

Source: Adapted from Table 1 in Simon and Korn (1991) and Table 1 in Rowinsky and
Donehower (1995).
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The duration for the treatment of these combinations and the corresponding eradication
rates of H. pylori vary from one combination to another with different overall incidence
rates of adverse events. In addition to the eradication rate of H. pylori, other important effi-
cacy endpoints to be evaluated include the rate of complete healing of the ulcer and the
recurrence rate as documented by endoscopy.

Note that although the FDA has a specific policy for the approval of combination ther-
apy, the assessment of the effectiveness and safety for the combination therapy is rather
difficult and yet challenging because of its complexity. The development of a combination
therapy involves the determination of the optimal joint region of therapeutic dosing ranges,
the duration of treatment for each different drug, and the order of administration of these
agents, while the assessment of the combination therapy is usually based on multiple effi-
cacy and safety clinical endpoints. This complexity may limit the chance of a combination
therapy being approved by the FDA.

Fixed-Combination Prescription Drugs

For fixed-combination prescription drugs for humans, the FDA has specific regulations that
are described in Section 300.50 in Part 21 of CFR. The regulation states that “Two or more
drugs may be combined in a single dosage form when each component makes a contribu-
tion to the claimed effects and the dosage of each component (amount, frequency, duration)
is such that the combination is safe and effective for a significant patient population.”
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Table 7.6.2 Combinations Used in the Eradication of H. pylori

Eradication Overall Adverse
Combinations Dose Duration Rate (%) Events (%)

Bismuth 564 mg/4 times/day 14–15 days 89% 32%
Metronidazole 0.6–1.5 g/day 14–15 days
Tetracycline 500 mg/4 times/day 14–15 days

Bismuth 564 mg/4 times/day 10–14 days 84% 31%
Metronidazole 1.0–1.5 g/day 10–14 days
Amoxicillin 1.5–2.0 g/day 10–14 days

Metronidazole 500 mg 3 times/day 12 days 89% 13%
Amoxicillin 750 mg 3 times/day 12 days
Ranitidine 300 mg at bedtime 6 weeks

Clarithromycin 500 mg 3 times/day 10 days 86% 34%
Amoxicillin 750 mg 3 times/day 10 days
Ranitidine 300 mg at bedtime 6 weeks

Metronidazole 400 mg 3 times/day 14 days 90% 13%
Amoxicillin 750 mg 3 times/day 14 days
Omeprazole 40 mg/day 6 weeks

Metronidazole 500 mg 2 times/day 14 days 88% 18%
Clarithromycin 250 mg 2 times/day 14 days
Omeprazole 20 mg 2 times/day 14 days

Source: Table 1 in Walsh and Peterson (1995).
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A fixed-combination prescription drug is defined as a single dosage formulated from differ-
ent pharmacological agents. According to the FDA’s regulation, the fixed-combination
drugs are confined to a class in which different drugs can be formulated into one dosage
form. However, different drugs may be administered in separate and/or different dosage
forms either simultaneously or sequentially. For example, the Second International Study
of Infarct Survival (ISIS-2, 1988) evaluated the effectiveness of the combined therapy of
one-hour intravenous infusion of 1.5 MU of streptokinase up to 24 hours from the onset of
chest pain followed by one month of oral enteric-coated aspirin at a dose of 150 mg per day
for patients with suspected myocardial infarction. The dosage forms and routes of adminis-
tration of the two therapeutic agents considered in ISIS2 are different and are given sequen-
tially. It should be noted that current regulations for fixed-combination drugs do not cover
the combination therapy with different dosage forms and time of administration though, in
principle, the statistical design and analysis are the same for both fixed-combination pre-
scription drugs and combination therapy.

Note that for approval of a combination therapy, the FDA also requires the evidence for
which each component must make a contribution to the claimed effects of the combination
be provided. As indicated in Laska and Meisner (1989) and Hung et al. (1989, 1990, 1993),
the contribution is referred to as the contribution based on a single clinical endpoint. On
the other hand, for approval of a fixed-combination prescription drug, the FDA requires
evidence to be provided of the superiority of the combination over each of its components.
It, however, should be noted that the combination might increase the risk of adverse events
due to the unnecessary exposure of patients to some components that may not have addi-
tional clinical benefit. In addition the FDA regulation states the relationship of the combi-
nation and its constituents in terms of the claimed effects. However, it does not specify the
type, form, and magnitude of the contributions of each component to the claimed effects,
nor does it require the claimed effects to be contrasted with a concurrent placebo control.

Let A and B be the components of a combination drug, denoted by A 	 B, each at a
fixed dose. Let µA, µB, and µAB be the average of the distributions of the clinical endpoints
such as reduction in seated diastolic blood pressure, eradication rate, vascular mortality
rate within a certain time interval, or median survival. Since the FDA requires that the effi-
cacy of the combination be superior to those of each component, the hypotheses can be
formulated as follows (e.g., see Laska and Meisner, 1989; Hung et al., 1990):

H0: µA � µAB or µB � µAB;

vs. Ha: µA � µAB and µB � µAB. (7.6.1)

Note that a larger value of µ indicates a better efficacy. Similar to the interval hypotheses
described in (2.6.3), hypotheses (7.6.1) can be further decomposed into the following two
one-sided hypotheses:

H01: µA � µAB;

vs. Ha1: µA � µAB; (7.6.2)

and

H02: µB � µAB;

vs. Ha2: µB � µAB. (7.6.3)
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The first set of one-sided hypotheses is to verify that the combination drug A 	 B is superior
to component A. If the combination drug is indeed superior to component A, then component
B does make a contribution of the claimed effect of the combination. Similarly the second set
of one-sided hypotheses is to demonstrate that the combination A 	 B is superior to compo-
nent B. As a result, the null hypothesis (7.6.1) is a union of the two null hypotheses (7.6.2) and
(7.6.3) which include all points in quadrants two, three, and four as well as all axes. On the
other hand, the alternative hypothesis is the intersection of the two alternative hypotheses
(7.6.2) and (7.6.3) which consists of all points in the first quadrant excluding the positive axes.
Although hypotheses (7.6.1) can be employed to test statistically whether each component
makes a contribution to the claimed effects of the combination, the type, form, and magnitude
of the joint contribution by both components cannot be quantified. For example, consider the
results of vascular mortality rates in days 0–35 reported by ISIS2, as shown in Table 2.4.2.
The vascular mortality rates of IV placebo 	 active aspirin, IV streptokinase 	 aspirin
placebo, and IV streptokinase and active aspirin are 10.7%, 10.4%, and 8.0%, respectively.
The contribution of IV streptokinase to the combination is 2.7% (10.7% – 8.0%) and contri-
bution of active aspirin to the combination is 2.4% (10.4% – 8.0%). However, without includ-
ing a concurrent placebo control, it is not clear what the joint contribution of both drugs is.
The mortality rate of IV placebo and aspirin placebo is 13.2%. The reduction in mortality rate
of the combination therapy as compared to the concurrent placebo is 5.2% which is approxi-
mately the sum of the contribution of each component (2.7% 	 2.4%). The estimated effect
of combination versus placebo can be expressed as follows:

SA � PP � (SA � PA) 	 (SA � SP) 	 [(SP � PP) � (SA � PA)], (7.6.4)

where S, A, and P stand for mortality rates of IV streptokinase, oral aspirin, and the placebo.
The last term on the right-hand side of (7.6.4) is the interaction between the two compo-
nents, which can be measured by the difference between the difference in vascular mortality
between the streptokinase and placebo for patients taking the aspirin placebo tablets and
that between the streptokinase and placebo for patients taking the active aspirin tablets. In
turns out that the reduction in mortality of the combination as compared to the concurrent
placebo is the sum of the contributions to the reduction in mortality by each component plus
the interaction between two components as demonstrated by the mortality rates from ISIS2.
That is,

8.0% � 13.2% � (8.0% � 10.7%) 	 (8.0% � 10.4%)

	 [(10.4% � 13.2%) � (8.0% � 10.7%)]

�5.2% � �2.7% � 2.4% � 0.1%.

It can be seen from the above that the interaction (0.1%) between IV streptokinase and oral
aspirin in the reduction of mortality is negligible. As a result, the magnitude of the contribu-
tions made by each component to the reduction in vascular mortality is quite similar, and
their joint contribution to vascular mortality of the combination is additive. In practice, it is
recommended that a complete 2 
 2 factorial design, as given in panel A of Table 7.6.3, be
employed to assess the efficacy and safety of the combination with the two components
each at a fixed dose. One could argue that there is no need for a concurrent placebo control
in the evaluation of a fixed-combination drug because the clinical benefits of monotherapy
for each component have been established through prospective, randomized, double-blind,
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and placebo-controlled studies. This information, however, can only be served as a histori-
cal control for external validation for the assessment of a combination drug. Without 
a concurrent placebo control, the clinical benefit of the combination under evaluation may
never be internally validated. In addition the dose levels of the combination assessed 
by clinical trials are usually smaller than those selected for monotherapy in order to produce
synergistic effects that achieve better efficacy and safety. Therefore effectiveness of the dose
levels of each component may not be adequately evaluated alone before as a single agent.
As a result a concurrent placebo control must be used to investigate and quantify the effect
of each component and the type, form, and magnitude of their contributions to the claimed
effects of the combination under study.

Hypotheses (7.6.1), which can be tested based on the data from phase III studies, are
often used to confirm the effectiveness and safety of the combination drug for each compo-
nent at a particular dose level. The doses of each component in a combination drug are often
determined at the stage of phase II clinical development. The combination can then be con-
firmed through phase III clinical trials. In practice, it usually requires sophisticated and
state-of-art statistical design and analysis for identification of possible combinations of
doses at which the contribution of each component to the claimed effects can be assessed.

Multilevel Factorial Design

A commonly employed design for the assessment of combination drugs or therapy is the
factorial design with multilevels, which is known as a multilevel factorial design. For
assessment of a combination drug with a factorial design, each component of the combina-
tion drug is referred to as a factor, and the doses of a component are the levels of the
corresponding factor. Therefore a full multilevel factorial design includes a number of
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Table 7.6.3 Factorial Design for Combination Therapy

Panel A: A Full 2 
 2 Factorial Design for Combination Therapy 
of Two Components Each at Two Dose Levels

Group Drug A Drug B

1 Placebo Placebo
2 Placebo Fixed active dose
3 Fixed active dose Placebo
4 Fixed active dose Fixed active dose

Panel B: A Full 2 
 2 
 2 Factorial Design for Combination Therapy 
of Three Components Each at Two Dose Levels

Group Drug A Drug B Drug C

1 Placebo Placebo Placebo
2 Placebo Placebo Fixed active dose
3 Placebo Fixed active dose Placebo
4 Placebo Fixed active dose Fixed active dose
5 Fixed active dose Placebo Placebo
6 Fixed active dose Placebo Fixed active dose
7 Fixed active dose Fixed active dose Placebo
8 Fixed active dose Fixed active dose Fixed active dose
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treatment groups which is made up of all possible combinations of factors and levels. The
number of treatment groups equals the product of the number of levels and the number of
factors. For example, in panel A of Table 7.6.3 there are two component drugs, and each
component drug has two dose levels including dose 0 (or placebo) and one active fixed
dose level. As a result this factorial design has two factors and each has two levels, so there
are a total of four treatment groups. A design of this kind is denoted by a 2 
 2 factorial
design. As another example, panel B of Table 7.6.3 displays a 2 
 2 
 2 factorial design
for a combination of three component drugs where each component has two dose levels
(i.e., dose 0 or a placebo and a selected active dose level). Therefore there are a total of
eight treatment groups. Note that the statistical designs employed for panels A and B in
Table 7.6.3 are parallel-group designs in which the number of parallel arms equals to the
number of treatment groups. Therefore, when a factorial design is employed, the number
of parallel groups can be as large as the number of factors and/or the number of levels of
each factor increase. For example, Table 7.6.4 provides the treatment groups of clinical tri-
als that assess a combination drug that consists of component drugs A and B. If we include
dose 0 (or placebo) and a active dose levels for A and b active dose levels for B, then there
are a total of (a 	 1) (b 	 1) treatment groups. Hence the number of treatment groups
would be 4, 9, 16, or 25 when the number of active dose levels for each component are 1,
2, 3, and 4, respectively. In addition a parallel-group factorial design usually requires a
large sample size. As an alternative, some crossover designs such as Williams design or
balanced incomplete block design might be useful. Table 7.6.5 provides the Williams
design for a 2 
 2 factorial design with and without a concurrent placebo control group.

For a combination drug consisting of component drugs A and B, in the case where the
effectiveness and safety of component A has been established of the intended indication,
then the selection of the dose of component B is critical in providing an enhanced thera-
peutic effect. In practice, it is suggested that the dose-response relationship of component
B at an established effective dose of component A be examined. In some cases, since
patients who receive component A may exhibit some differential limiting clinical toxicity,
it is suggested that doses of component B be administered at a preselected dose after the
patients are titrated to the maximum tolerable dose of component A. A typical example is

276 CLASSIFICATION OF CLINICAL TRIALS

Table 7.6.4 A Full (a � 1) � (b � 1) Factorial Design for
Combination Therapy of Two Components at a and b Dose Levels

Group Drug A Drug B

1 Placebo Placebo
2 Placebo Active dose 1
� � �

b 	 1 Placebo Active dose b
b 	 2 Active dose 1 Placebo
b 	 3 Active dose 1 Active dose 1
� � �

2(b 	 1) Active dose 1 Active dose b
a(b 	 1) Active dose a Placebo
a(b 	 2) Active dose a Active dose 1
� � �

(a 	 1)(b 	 1) Active dose a Active dose b
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the study of the combination therapy of clyclosporine and methotrexate for patients with
severe rheumatoid arthritis (Tugwell et al., 1995). Note that the type of factorial design
employed in this study is usually referred to as a partial factorial design because it does not
utilize all possible combinations of dose levels from each factor as indicated in Table 7.6.6.

One important advantage of a combination therapy is that it is usually able to achieve a
better clinically significantly synergistic efficacy with fewer adverse events at lower-dose
levels compared to individual monotherapy of its components. In practice, although each
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Table 7.6.5 Williams Designs for Combination Therapy

Panel A: 2 
 2 Factorial Without Concurrent Placebo Control

Period

Sequence I II III

1 A B A 	 B
2 B A 	 B A
3 A 	 B A B
4 A A 	 B B
5 B A A 	 B
6 A 	 B B B

Panel A: 2 
 2 Factorial With Concurrent Placebo Control

Period

Sequence I II III IV

1 Placebo A 	 B A B
2 A Placebo B A 	 B
3 B A A 	 B Placebo
4 A 	 B B Placebo A

Table 7.6.6 Designs for Two-Drug Combined Therapy
With a Fixed Dose of One Component

Panel A: The Same Fixed Dose for One Component

Group Drug A Drug B

1 Active dose 1 Placebo
2 Active dose 1 Active dose 1
� � �

b 	1 Active dose 1 Active dose b

Panel B: Titration of The Dose Level of One Component 
to The Maximum Tolerable Dose

Group Drug A Drug B

1 Titrated to MTD Placebo
2 Titrated to MTD Active dose 1
� � �

b 	1 Titrated to MTD Active dose b
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monotherapy of the component drugs may also achieve the same efficacy at a higher dose,
the corresponding safety may not be tolerable.

Global Superiority of Combination Drug

In order to identify the optimal combination of dose levels and to investigate the potential
drug-to-drug interactions, it is recommended that several or all possible combinations be
explored simultaneously with multilevel factorial designs. Table 7.6.7 provides a cross tab-
ulation of a full multilevel factorial design with µij representing the average response of the
combination made of dose i of component A and dose j of component B. A separate dose-
response relationship of each component can be investigated by the first row for drug B or
first column for drug A where the placebo is administered for the other component. In
order to provide a useful dose-response relationship for therapeutic applications, Hung 
et al. (1989) suggests that the dose ranges to be investigated must include a very low dose
level and a very high dose level that are not in the effective dose range. As a result, the con-
tribution of some doses by one component when added to the other drug may not be dif-
ferent from the placebo, while the contribution of the other component is quite obvious.
Hence with respect to the requirement described in Section 300.50 in Part 21 of CFR that
each component makes a contribution to the claimed effects, Hung et al. (1990) defines the
superiority of a combination drug over its component drugs in a global sense. Strict supe-
riority of a combination drug is defined as the existence of at least one dose combination
that is more effective than its components. Let dij be the minimum gain in efficacy obtained
from combining dose i of drug A and dose j of drug B as compared to its component drugs
at the same dose levels alone,

dij � µij � max(µi o, µoj), i � 1, . . . , a, j � 1, . . . , b. (7.6.5)

The corresponding statistical hypotheses can then be formulated as:

H0: dij � 0 for every 1 � i � a and 1 � j � b;

vs. Ha: dij � 0 for some 1 � i � a and 1 � j � b. (7.6.6)

A combination drug is said to be superior to its components in the wide sense if the aver-
age of all the dose combinations is superior to both the averages of the individual
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Table 7.6.7 Cross Tabulation of a Full (a � 1) � (b � 1) Factorial Design for Combination
Therapy with the Mean Effects

Dose Levels for Dose Levels for Component B

Component A Placebo 1 2 . . . b Overall

Placebo µ00 µ01 µ02 . . . µ0b µ0.

1 µ10 µ11 µ12 . . . µ1b µ1.

2 µ20 µ21 µ22 . . . µ2b µ2.

� � � � . . . � �

a µa0 µa1 µa2 . . . µab µa.

Overall µ.0 µ.1 µ.2 . . . µ.b µ..
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monotherapy doses. Let mA represent difference between the average responses of all (i, j)
combinations over the entire range of active doses and that dose i of component A when
placebo is administered for component B,

mA � Ave(µij � µio).

Similarly

mB � Ave(µij � µoj).

Consequently the concept of the wide global superiority of combination drug can be stated
as:

H0: mA � 0 or mB � 0;

vs. Ha: mA � 0 and mB � 0. (7.6.7)

The strict global superiority of a combination drug restricts our attention to a more effec-
tive class of combinations than either component drug alone. According to dij in the alter-
native hypothesis of (7.6.6), we only need to identify one µij that is better than mean
responses µio and µoj of the corresponding monotherapy of component A at dose i and of
component B at dose j. However, it does not guarantees superiority of one combination
over all dose levels of either monotherapy.

Consider the example given in Hung et al. (1993). Table 7.6.8 displays the mean reduc-
tions from the baseline in post-treatment supine diastolic blood pressure from a clinical
trial that evaluated a combination drug with three dose levels for drug A and four dose lev-
els for drug B, including the placebo (Hung et al., 1993). From Table 7.6.8 the mean reduc-
tions in diastolic blood pressure of all combinations are seen to be more than those at the
corresponding doses of either monotherapy. As a result, the minimum gain dij are positive
for all combinations, which is shown in Table 7.6.9. From Table 7.6.10 suppose that the
mean reduction from the baseline in diastolic blood pressure of dose 3 for component B as
monotherapy is changed from 3 to 7. Table 7.6.11 reveals that although the minimum gain
of all combinations over their corresponding monotherapy is at least 0, only combinations
(1, 1) and (1, 3) surpass the monotherapy of drug B at dose level 3. This result is desirable
because the monotherapy of drug B at the highest dose may induce some severe adverse
events, while the dose level of drug B in combination with a larger reduction is two levels
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Table 7.6.8 Difference From Placebo in Mean Reduction 
in Supine Diastolic Blood Pressure (mmHg)

Dose Levels for Dose Levels for Component B

Component A Placebo 1 2 3

Placebo 0 4 4 3
1 5 9 7 8
2 5 6 6 7

Source: Hung et al. (1993). 
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lower than that of the monotherapy. As a result the combination of dose 1 of drug A with
dose 1 of drug B provides a much safer margin and hence a larger benefit-to-risk ratio.

For assessment of wide global superiority, as outlined in hypotheses (7.6.7), there seem
to be, on the one hand, a combination that is better than its component A and, on the other,
a combination that might not be the same combination but is better than its component B.
Unlike strict superiority, however, this does not guarantee that there is a combination that
is better than both of its components as required by the FDA regulation. Therefore the
strict global superiority meets the current regulatory requirement for approval of a combi-
nation drug product. Hung et al. (1990, 1993) propose two statistical testing procedures for
hypotheses (7.6.6) under the assumption that data are normally distributed. The proposed
methods reduce to the min test for hypotheses (7.6.1) proposed by Laska and Meisner
(1989) when only one active dose level is included in the assessment trial of a combination
drug. Note that the sampling distributions of the methods proposed by Hung et al. are quite
complicated and require special tables for the significance tests. Hung (1996) extends the
application of these two methods to the situations (1) where the variance of the clinical
endpoint is a function of its mean and (2) where an incomplete factorial design is used.

When a combination drug consists of more than two component drugs, the concept of
strict global superiority for the combination drug of two components can be easily extended.
Let dijk be the minimum gain in efficacy obtained by combining dose i of drug A with dose j
of drug B, and dose k of drug C over its components alone at the same dose levels,

dijk � µijk � max(µioo, µojo, µook), i � 1, . . . , a, j � 1, . . . , b, k � 1, . . . , c, (7.6.8)

where µijk is the mean response of the combination of doe i of drug A, dose j of drug B, and
dose k of drug C, and µioo, µojo and µook represent the mean responses of its components A,
B, and C alone at the same dose levels i, j, and k, respectively, where the active agents are
administered with the placebos of the other two components. The strict global superiority
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Table 7.6.9 Minimum Gain of Combinations 
for the Data in Table 6.4.8

Active Dose Levels for

Active Dose Levels
Component B

for Component A 1 2 3

1 4 2 3
2 1 1 2

Source: Hung et al. (1993).

Table 7.6.10 Modified Differences From Placebo in Mean
Reduction in Supine Diastolic Blood Pressure (mmHg)

Dose Levels for
Dose Levels for Component B

Component A Placebo 1 2 3

Placebo 0 4 4 7
1 5 9 7 8
2 5 6 6 7
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of a three-drug combination over its components can be formulated by the following sta-
tistical hypotheses:

H0: dijk � 0 for every 1 � i � a, 1 � j � b, and 1 � k � c;

vs. Ha: dijk � 0 for some 1 � i � a, 1 � j � b, and 1 � k � c. (7.6.9)

The above hypotheses can be tested to verify the existence of strict global superiority of a
combination drug. However, the extension of the methods of Hung et al. (1993) for testing
the above hypotheses is not straightforward. Further research is needed.

Suppose that a combination of two component drugs is developed to treat patients with
benign prostatic hyperplasia (BPH). Two primary efficacy endpoints for assessment of the
combination are peak urinary flow are (mL/s) and AUA-7 symptom scores. Let cij and dij

be the minimum gain of combination of dose i of drug A with dose j of drug B of peak uri-
nary flow rate and AUA-7 symptom scores, respectively. Following the suggestion by
Laska and Meisner (1990), the strict global superiority for more than one clinical endpoint
is defined as that where at least one combination is superior to its component drugs for at
least one clinical endpoint. Hence, if a combination is better than its component drugs for
at least one clinical endpoint, then the minimum gain of the combination based on both
clinical endpoints must be greater than zero. The hypotheses corresponding to the strict
global superiority can be formulated as follows:

H0: min(cij, dij) � 0 for every 1 � i � a and 1 � j � b;

vs. Ha: min(cij, dij) � 0 for some 1 � i � a and 1 � j � b. (7.6.10)

The concept of hypotheses (7.6.10) can easily be extended to an evaluation of the combi-
nation drug based on more than two endpoints. However, the definition of strict global
superiority and its corresponding formulation of hypotheses and proposed statistical pro-
cedures are to verify the existence of at least one combination that is better than both of 
its components. Furthermore they are hypothesis testing procedures and hence cannot
describe the dose-response relationship and potential drug-to-drug interaction among com-
ponents. Consequently they fail to provide a way to search for combinations for which
each component makes a contribution to the claimed effects should they exist.

Method of Response Surface

To overcome the drawbacks associated with the definition of the strict global superiority
for combination drug, the concept of response surface methodology can provide a nice
compliment to the statistical testing procedures suggested by Laska and Meisner (1989)
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Table 7.6.11 Minimum Gain of Combinations 
for the Modified Data in Table 7.6.10

Active Dose Levels

Active Dose Levels for Component B

for Component A 1 2 3

1 4 2 1
2 1 1 0
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and Hung et al. (1993). For a combination trial conducted with a factorial design, if the
dose levels of each component are appropriately selected, then the technique of response
surface can provide valuable information regarding (1) the therapeutic dose range of the
combination drug with respect to effectiveness and safety and (2) the titration process and
drug-to-drug interaction. The response surface method can empirically verify a model that
adequately describes the observed data. For example, we can consider the following statis-
tical model to describe the response:

Yijk � f(Ai, Bj, θ ) 	 eijk, (7.6.11)

where Yijk is the clinical response of patient k who receives dose i of drug A, denoted by Ai

and dose j of dose B, denoted by Bj, θ is a vector of unknown parameters, and eijk is the ran-
dom error in observing Yijk, where k � 1, . . . , nij, j � 1, . . . , b, i � 1, . . . , a. The compo-
nent f (Ai, Bj, θ) in (7.6.11) gives a mathematical description and an approximation to the
true unknown response surface provided by the two drugs. When the primary clinical end-
points of interest are continuous variables, f (Ai, Bj, θ ) is usually approximated by a poly-
nomial. For a detailed description of response surface methodology, see Box and Draper
(1987); also see Peace (1990) for applications of response surface to a phase II develop-
ment of antianginal drugs.

If the assumed mathematical model is not too complicated, then the standard statistical
estimation procedures such as least squares method or maximum likelihood method can be
selected to estimate the unknown parameter θ. After substitution of the parameter in
f (Ai, Bj, θ ) by its estimate, an estimated response surface can be obtained that provides an
empirical description of the dose-response relationship either by a three-dimensional 
surface or by two-dimensional contours. In addition an optimal dose combination can be 
estimated to give an maximum clinical response if it exists and is unique. If the 95% con-
fidence region for the optimal dose combination does not lie on both the horizontal axis
representing drug A and the vertical axis representing drug B at the contours, then it is con-
cluded that the estimated optimal combination is superior to both of its components. The
technique of response surface therefore can estimate an optimal dose combination that
may not be the combination of doses of both components selected for the trial given exis-
tence of such combinations. Hung (1992) suggests a procedure to identify a positive dose-
response surface for combination drugs. Hence the response surface can also estimate a
region in which the combinations are superior to their components. Estimation of a supe-
rior region is particularly appealing if safety is the major reason for the combination drug
because a combination can be chosen from the superior region with much lower doses of
both components to achieve the same superiority in efficacy but with a much better safety
profile. Since µij is estimated using the information of the entire sample, if the assumed
model can adequately describe the dose-response relationship of the combination, the
response surface method requires fewer patients than the procedures for testing strict
global superiority proposed by Hung et al. (1993). Note that estimation of the unknown pa-
rameters, response surface, and the optimal combination dose and construction of the con-
fidence region for the optimal combination dose are model dependent. Consequently, as
indicated by Hung et al. (1990), the FDA is concerned about the application of response
surface method due to the following reasons:

1. The sensitivity of the methods such as lack-of-fit tests, goodness-of-fit tests, and resid-
ual plots for verification of the adequacy of the fitted models is often questionable.
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2. Even if there is no evidence for the inadequacy of the fitted model, the chance of
selecting an inadequate model and the effect of such an error cannot be evaluated.

3. The response surface method is model dependent. Two different models that both
adequately fit the given data may provide contradictory conclusions in any subse-
quent statistical analyses.

The methods for strict global superiority and response surface methodology should play
crucial but complimentary roles in assessment of combination drugs. Existence of a com-
bination superior to its components can be verified first by the model-independent statisti-
cal testing procedures proposed by Hung et al. (1993). Then the response surface technique
can be applied to (1) empirically describe the dose-response relationship, (2) identify for
the region of superior efficacy, and (3) estimate the optimal dose combination. Also it
would be of interest to provide a scientific justification as to why the two methods yield
inconsistent conclusions.

7.7 BRIDGING STUDIES

7.7.1 Introduction

As indicated earlier, for marketing approval of a study medicine, the FDA requires that
substantial evidence of the effectiveness and safety of the study medicine be provided
through the conduct of at least two adequate and well-controlled clinical trials (the so-
called pivotal trials). The purpose of at least two clinical trials is to confirm the repro-
ducibility of the evidence on efficacy, safety, and dose response of the study medicine.
After the study medicine is approved by the regulatory agency, the sponsor may seek reg-
istration of the approved medicine in a new region (e.g., European Community or Asian-
Pacific countries). However, the possible differences in ethnicity, culture, and clinical
practice between the original region where the study medicine is approved and the new
region and their impacts on the safety, efficacy, dose, and dosing regimen have limited the
willingness of the regulatory authority in the new region to accept the clinical data gener-
ated in the original region. As a result, the regulatory authority in the new region often
requests the sponsor to repeat similar studies for obtaining all or much of the clinical data
in the new region to confirm the reproducibility of the evidence on efficacy, safety, and
dose response of the study medicine before the study medicine can be approved in the new
region. This extensive duplication of clinical evaluation in the new region not only
demands valuable development resources, but also it delays availability of the new medi-
cine to needed patients in the new region. To resolve this dilemma, the ICH has recently
published a tripartite guideline entitled, Ethnic Factors in the Acceptability of Foreign
Clinical Data, which is usually referred to as the ICH E5 guideline, to address the above
issues (ICH, 1998).

As stated in the ICH E5 guideline, the objective of the guideline is to provide a frame-
work for evaluation of the impact of ethnic factors on the efficacy and safety of a study
medicine at a particular dosage or dose regimen. In addition, it describes regulatory strate-
gies of minimizing duplication for clinical data and requirement of bridging evidence for
extrapolation of foreign clinical data to a new region. In this section, we will provide an
overview of the ICH E5 guideline, including ethnic sensitivity, necessity of bridging stud-
ies, types of bridging studies, and the assessment of similarity between regions based on
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bridging evidence. Also included is a brief discussion regarding challenges on the estab-
lishment of regulatory requirements, the assessment of bridging evidence, and the design
and analysis of bridging studies.

7.7.2 Ethnic Sensitivity and Necessity of Bridging Studies

Ethnic Sensitivity The ICH E5 guideline lists critical properties of a compound for
assessment of sensitivity to ethnic factors. These critical properties include linear pharma-
cokinetics (PK), flat pharmacodynamic (PD), therapeutic range, degree of metabolism,
extent of bioavailability, potential for protein binding, potential for interactions, genetic
polymorphism, intersubject variability, systemic mode of action, and potential for inap-
propriate use. However, the ICH E5 guideline also points out that no one property of the
medicine is predictive of the compound’s relative sensitivity to ethnic factors. Because of
the complexity due to possible interaction among the drug’s pharmacological class, indi-
cation, and demographic of patient population, the ICH E5 does not provide a precise and
definitive criterion for evaluation of ethnic sensitivity. As a result, no probability
statements can be made for the errors resulting from the decision making on sensitivity to
ethnic factors. Therefore, both regulatory authority in the new region and the sponsor do
not have a criteria and a method for an objective and impartial evaluation of ethnic
sensitivity and the necessity of a bridging study.

Necessity of Bridging Studies As no well-defined and scientifically justifiable criteria
for assessment of ethnic sensitivity are indicated in the ICH E5 guideline, any proposed
approach for the assessment of the necessity of bridging studies could be subjective and
controversial and may not be accepted by the regulatory authority and sponsors in the new
region. However, several approaches have been proposed in the literature based on some
statistical criteria. See, for example, Shao and Chow (2002), Chow et al. (2002), and Liu
and Chow (2002). These approaches are briefly outlined below.

Shao and Chow (2002) proposed the use of the concept of reproducibility probability as
a statistical guide for quantifying the likelihood that under the same experimental condi-
tions, a second trial conducted in the new region can reproduce the same results of the first
trial in the original region. The information of reproducibility probability provides a guide
regarding statistical inference on the chance that clinical results observed in the original
region are reproducible at the new region. Note that the reproducibility of a clinical trial is
referred to as the probability that clinical results observed from a region are reproducible in
the same targeted patient population in the same region or from region to region.

To address the possible impact of ethnic factors, Chow et al. (2002) suggested perform-
ing a sensitivity analysis on the reproducibility probability with respect to a sensitivity
index ∆, which is defined as

∆ � (1 	 ε /µd) /C,

where µd is the mean difference between the treatment groups observed in the original
region, ε is the change of µd in the new region, and C represents the change in variability in
the new region. Chow et al. (2002) refer to the reproducibility probability with respect to
the sensitivity index as the generalizability probability. Note that the generalizability of a
clinical trial is referred to as the probability that clinical results observed from a region are
reproducible in a similar but slightly different (it might be due to a difference in ethnicity
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or other factors such as age or sex) targeted patient population in the same region or from
region to region. The concept of generalizability probability may be useful in providing
regulatory authorities an opportunity to choose a statistical criterion for determining
whether a clinical bridging study is necessary.

For an objective evaluation of the necessity of bridging studies, Liu and Chow (2002)
suggested performing a meta-analysis for a systematic overview of ethnic sensitivities
based on clinical data accumulated regarding the approved medicines. As indicated in the
United States Drug Master File, thousands of medicines have been approved for various
indications for different patient populations by various regulatory authorities in different
geographic regions. Sufficient preapproval and postmarketing experience on the critical
properties regarding ethnic sensitivities and the impact of intrinsic and extrinsic factors on
efficacy, safety, dosage, and dose regimen have been accumulated for these medicines.
Based on these data, an instrument consisting of three domains can be developed to deter-
mine the degree of the impact of difference in ethnic factors on the efficacy, safety, dose,
and dose regimen of these medicines and consequently the necessity of bridging studies.

For example, the first domain may include the critical properties of the compound men-
tioned above. The second domain may consist of intrinsic factors as discussed in Appendix
A of the ICH E5 guideline (see also Table 7.7.1). As described in the ICH E5 guideline,
intrinsic ethnic factors are factors that help to define and identify a subpopulation and may
influence the ability to extrapolate clinical data between regions. Examples of intrinsic fac-
tors include genetic polymorphism, age, gender, height, weight, lean body mass, body
composition, and organ dysfunction. The third domain may comprise the extrinsic ethnic
factors as described in Appendix A of the ICH E5 guideline (see also Table 7.7.1). As indi-
cated in the ICH E5 guideline, extrinsic ethnic factors are factors associated with the
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Table 7.7.1 Intrinsic and Extrinsic Ethnic Factors

Classification Factor Description

Intrinsic Genetic Gender
Race
Genetic polymorphism of the drug metabolism
Genetic diseases

Physiological and Age (children-elderly)
pathological conditions Liver

Kidney
Cardiovascular functions
Disease

Extrinsic Environmental Climate
Sunlight
Pollution

Culture Socioeconomic factors
Educational status
Language

Medical practice Disease definition/diagnostic
Therapeutic approach
Drug compliance

Regulatory practice GCP
Methodology/endpoints
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environment and culture in which a person resides. Extrinsic factors tend to be less gene-
tically and more culturally and behaviorally determined. Examples include the social and
cultural aspects of a region such as medical practice, diet, use of tobacco, use of alcohol,
exposure to pollution and sunshine, socioeconomic status, compliance with prescribed
medications, and particularly important to the reliance on studies from a different region,
practices in clinical trial design and conduct. Within each domain, a scoring scheme for
each property or factors may be designed to characterize the degree of the impact on effi-
cacy, safety, dose, and dose regimen. For example, a possible scoring scheme could be a 
5-point system such as 1 (no), 2 (mild), 3 (moderate), 4 (strong), and 5 (complete).

An algorithm can then be developed to provide a summary index for an overall assess-
ment of the impact on the efficacy, safety, dosage, and dose regimen of the study medicine.
In practice, the database of these compounds can be divided into two date sets, namely, a
training set and a validation set. Based on the summary indices computed from the medi-
cine in the training set, a threshold can be determined to classify these medicines into two
groups. One group consists of medicines that are insensitive to ethnic factors and hence do
not require bridging studies. The other group contains medicines that are ethnic sensitive
and hence require bridging studies. The probability of classification error can then be eval-
uated based on the validation set. Within the group of medicines with the necessity for
bridging studies, further cutoff points can be estimated for different types of bridging stud-
ies. When a new medicine is applied for registration in the new region, the regulatory
authority in the new region and the sponsor can calculate the summary index of the study
medicine to determine whether a bridging study is necessary and what type of the bridging
study is warranted. The above approach seems logical and acceptable to the pharmaceuti-
cal industry and regulatory agencies. However, it requires a joint effort and close collabo-
ration among researchers/scientists from multiple disciplines in pharmaceutical research
and development.

7.7.3 Types of Bridging Studies

In general, the types of bridging studies required depend on the ethnic sensitivity of the
study medicine, clinical experience of the drug class, extrinsic ethnic factors, and ethnic
differences between the new and original regions. As stated in the ICH E5 guideline, a
bridging study could be a pharmacokinetic/pharmacodynamic (PK/PD) study or a con-
trolled clinical trial (CCT). Table 7.7.2 provides a summary of types of bridging studies
with respect to the factors of region, medical practice, drug class, and clinical experience.

As can be seen from Table 7.7.2, there are at least two fundamental issues in the ICH E5
guideline: (1) sensitivity of study medicines to ethnic factors, necessity of a bridging study,
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Table 7.7.2 Types of Bridging Studies

Medical Drug Clinical Bridging 
Medicine Region Practice Class Experience Studies

Insensitive – Similar – – No
Sensitive Similar – – Sufficient No
Sensitive Dissimilar Similar Familiar – PD
Choice of Dose – Different Unfamiliar Insufficient CCT

PD � Pharmacodynamics
CCT � Controlled clinical trials
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and the nature and type of bridging studies; and (2) assessment of similarity based on
bridging evidence.

7.7.4 Assessment of Similarity Based on Bridging Evidence

According to the ICH E5 guideline, a bridging data package consists of (1) selected infor-
mation from the so-called complete clinical data package (CCDP) that is relevant to the
population of the new region, and (2) if needed, a bridging study to extrapolate the foreign
efficacy and/or safety data to the new region. In other words, bridging evidence is actually
provided either in the CCDP generated during clinical drug development program for sub-
mission to the original region or in a bridging study conducted in the new region after the
pharmaceutical product is approved in the original region. When the bridging evidence
provided in the CCDP could not allow extrapolation of foreign clinical data to a new
region, then a bridging study should be conducted in the new region to generate a limited
amount of clinical data to bridge the clinical data between the two regions. The ICH E5
guideline clearly states that assessment of the ability of extrapolation of the foreign data
rely on the similarity of dose response, efficacy, and safety between the new and original
regions, either with or without dose adjustment. However, the ICH E5 guideline does not
provide a precise definition or criteria for evaluation of similarity. For assessment of simi-
larity, a number of different statistical procedures have been proposed based on different
definitions or concepts of similarity, for example, batch similarity in stability analysis for
shelf-life estimation, similarity in drug release for comparison of dissolution profiles
between drug products, similarity in drug absorption for assessment of bioequivalence
between drug products, and the concept of consistency between clinical results. Among
these definitions and concepts of similarity, bioequivalence in drug absorption and consis-
tency between clinical results are most relevant.

Population Similarity Based on the concept of similarity in drug absorption for assessment
of bioequivalence between drug products, Chow et al. (2002) proposed to adopt the concept
of population bioequivalence for assessment of similarity of clinical results between the
original region and the new region. The idea is to establish similarity according to the fol-
lowing aggregated equivalence (similarity) criteria, which is similar to the one proposed in
the recent FDA guidance for establishment of population and individual bioequivalence
(FDA, 2001a):

θ � ,

where σ2
Tk � σ2

Bk 	 σ2
Wk is the total variance in region k, k = 0,1 and σ2

Bk and σ2
Wk are the

between-center variance and the within-center variance in region k. We claim that clinical
results in the new region are similar to those observed in the original region if the 95%
upper confidence bound of the following linearized criterion is less than 0:

ς � (µ0 � µ1)
2 	 σ2

T1 � (1 	 θU)σ 2
T 0 ,

where θU is the similarity margin set by the regulatory authority in the new region.

Consistency Among Studies For the concept of consistency between clinical studies, Shih
(2001) suggested the use of a predictive probability function for measuring the consistency

(µ0 � µ1)2 	 σ 2
T1 � σ 2

T 0
���σ 2

T 0
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between clinical results from different studies. His approach is briefly outlined below.
Suppose that there are a total of H reference studies and each compares the same two
treatment groups. Let W denote the vector of standardized between-group differences of
these H reference studies W � (w1, . . . , wH) and v is the standardized between-group
difference for the bridging study. The result of v from the bridging study is consistent with
the previous results W if and only if

p(v�W) � min{p(wh�W) h � 1, . . . ,H},

where p(a�W) is the predictive probability function that provides a measure of plausibility,
given the previous results W.

Hierarchical Model Under a hierarchical model, on the other hand, Liu et al. (2002)
proposed the use of the concept of equivalence or noninferiority for evaluation of similarity
between the new and original regions. Their approach is summarized below:

Step 1: From the complete clinical data package, under a hierarchical model, use the
clinical data from the original region to obtain the estimate of relative efficacy
and its estimated standard error.

Step 2: From the data of the bridging study, obtain the estimate of relative efficacy and
its estimated standard error in the new region.

Step 3: Based on the estimated relative efficacy and its standard error from both new
and original regions and equivalence limit, perform the usual two one-sided
tests procedure or one-sided noninferiority procedure (or confidence interval).

However, one can argue that the results of clinical data in the new region are similar to
those in the original region if the new region also demonstrates a positive treatment effect.

Bayesian Approach Liu et al. (2002) suggested an empirical Bayesian approach to provide
the evidence of a positive treatment effect. The results on dose response, efficacy, or safety 
of the original region can be incorporated as a prior to evaluate a positive treatment effect 
by the bridging data in the new region. In other words, for a prespecified significance level 
α , 0 � α � 1, one can conclude similarity based on the concept of a positive treatment effect
if the posterior probability

P{a positive treatment effect � data and prior} � 1 � α.

Despite the above different definitions for similarity, a direct interpretation of the ICH E5
guideline on similarity requires performing a between-region (study) analysis to evaluate
the treatment-by-region interaction. It is then very clear that the sample size required for the
test based on the treatment-by-region interaction will be much larger than that for detection
of the treatment effect alone (Liu et al. 2002). This statement is true for all types of studies
and for all types of endpoints. On the other hand, one only wants to verify whether the evi-
dence of efficacy or safety or PK/PD properties observed in the original region can be repro-
duced in the new region. In this context, for example, a statistical significance based on a
particular endpoint can be also obtained from the bridging study conducted in the new
region if it had been observed in the original region. However, an equal or even larger sam-
ple size is required to reproduce a similar statistical significance for detection of treatment
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effect in the new region (see, e.g., Hung et al., 1997; Shao and Chow, 2002; Chow et al.,
2002; Chow and Shao, 2002a). Therefore, these arguments indicate a fundamental conflict
between the evaluation of similarity and the objective of minimizing duplication of clinical
data in the ICH E5 guideline.

Consequently, Bayesian methods have been suggested to synthesize the data from both
the bridging study and the original region to resolve this conflict (Liu et al., 2002; Shih,
2001). However, some difficulties also arise using the Bayesian method. First, a medicine
was approved in the original region due to its substantial evidence of efficacy and safety
based on a sufficiently large sample size. The result of the bridging studies using the empir-
ical Bayesian approach will be overwhelmingly dominated by the results of the original
region due to an imbalance of sample sizes between the regions. In other words, it is very
difficult, if not impossible, to reverse the results observed in the original region; even the
result of the bridging study is completely opposite. In addition, the Bayesian method for
evaluation of probability for error of decision making on similarity still needs to be worked
out. This error probability is extremely crucial for the regulatory authority in the new
region to approve a medicine in their jurisdiction.

The ICH E5 guideline provides a rationale for assessment of ethnic factors in the
acceptability of foreign data for regulatory strategies of minimizing duplication of clinical
data, and it describes the requirements of bridging evidence for extrapolation of foreign
clinical data to a new region. It, however, is too premature to develop statistical methods
for regulatory implementation unless well-known and scientifically justifiable criteria for
(1) the evaluation of sensitivity of medicines to ethnic factors, (2) the assessment of neces-
sity of a bridging study, (3) the determination the nature and type of bridging studies, and
(4) the assessment of similarity based on bridging evidence are addressed in the future
revision of the ICH E5 guideline.

7.8 VACCINE CLINICAL TRIALS

Similar to clinical development of drug products, there are four phases of clinical trials in
vaccine development. Phase I trials are referred to early studies with human subjects. The
purpose of phase I trials is to explore the safety and immunogenicity of multiple dose lev-
els of the vaccine under investigation. Phase I trials are usually of a small scale. Phase II
trials are to assess the safety, immunogenicity, early efficacy of selected doses of the vac-
cine, and generate hypotheses for later testing. Phase III trials, which are usually large in
scale, are to confirm the efficacy of the vaccine in the target population and/or proving 
consistency of manufacturing processes. Phase IV trials are usually conducted for collect-
ing additional information regarding long-term safety, immunogenicity, or efficacy of the
vaccine to fulfill with regulatory requirement and/or marketing objectives after regulatory
approval of the vaccine.

In this section, we provide some design considerations, including special statistical con-
siderations, when conducting vaccine clinical trials. Also included are the classification of
types of immunogenicity vaccine trials and statistical methods for various study endpoints.

7.8.1 Basic Design and Statistical Considerations

In its guidance, the FDA discusses the design and statistical considerations for clinical
studies to demonstrate the safety, immunogenicity, and efficacy of vaccines (FDA, 1997).
These design and statistical considerations are briefly described below.
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Safety Studies As indicated in the FDA guidance, studies of comparative safety should
be randomized and controlled. Follow-up safety should be actively monitored and pro-
spectively planned with baseline and specific post-vaccination time of assessment. It is
suggested that subjects should be actively monitored on designated post-vaccination days
for up to one week for most killed and recombinant vaccines or for 14 or more days for
most live vaccines. Follow-up should be continue through at least 30 days for live or killed
vaccines. Thus, as an example, for a particular killed vaccine, subjects should be monitored
at 6–12 hours, and days 1, 2, 3, 7, and 30 post-vaccination.

Immunogenicity As the objective of comparative immunogenicity studies is to rule out the
important difference between the responses to the study vaccine and a control. Such studies
should have sufficient power to rule out clinically meaningful differences in geometric mean
titers (GMTs) and/or seroconversion rates. In addition, the study design should take into
account the intrinsic variability in assays and subjects. A clinically meaningful difference for
each response should be defined prospectively in the clinical protocol.

Efficacy Clinical trials for demonstration of vaccine efficacy should be randomized and
controlled. Endpoints used to evaluate efficacy could range from disease incidence to a
well-established surrogate marker with activity in correlate of protection. A correlate of
protection in vaccine efficacy is generally a laboratory parameter that has been shown from
adequate and well-controlled trials to be associated with protection from clinical disease.
As indicated in the FDA guidance, an immunological correlate of protection is most useful
if clear qualitative and quantitative relationships can be determined, e.g., a certain type and
level of antibody correlate with protection.

Statistical Considerations In its guidance, the FDA emphasizes the importance of
randomization in vaccine clinical trials. Stratified randomization may be recommended if
warranted by the inclusion criteria or known disease risk factors. For nonrandomized trials,
the FDA requires the validity and reliability of the evaluation of the study vaccine be
provided.

For statistical approaches for data analysis, the FDA indicates that both hypotheses test-
ing and the confidence interval approach are appropriate. The one-sided test for superiority
is not an issue for regulatory approval. However, it is suggested that a difference-detection
trial be designed for demonstration of superiority of the study vaccine as compared to a
control.

For study endpoints, the FDA requires that the evaluation of the study vaccine be per-
formed to rule out a prespecified, clinically meaningful difference between the study vac-
cine and the control and that should be clearly stated in the study protocol. It is also
suggested that the assessment of immune response, common adverse reactions, less com-
mon adverse reactions, and rare adverse events should be carefully carried out according to
specific statistical approaches as described in the guidance.

For sample size, the FDA requires that sample size calculation for each study endpoint
(immunogenicity, safety, and efficacy if applicable) should be performed and the largest
sample size should be selected as the one for overall trial enrollment. The FDA indicates
that sample size calculation may be performed based on confidence interval rather than on
power analysis if it is the planned analysis.

Ellenberg (2001) also discussed some statistical considerations in evaluating the safety
of combination vaccines. In their review article, Chan et al. (2003) further posted some
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statistical issues when analyzing data from vaccine clinical trials. These statistical issues
include intention-to-treat population versus evaluable subset, missing/coarse data and 
lost-to-follow-up, analysis with stratification variables, and interim analysis. In addition,
Chan et al. (2003) suggested that some special considerations, including surrogate markers
of activity, the assessment of immune responses, specificity in endpoint definitions of clin-
ical efficacy based on exposure, confidence in safety, and special health economic consid-
erations of the public health impact of vaccination programs be taken into account when
planning a vaccine clinical trial.

7.8.2 Types of Vaccine Immunogenicity Trials

Vaccine immunogenicity trials are used to study the immune response to vaccination, which
are usually measured by serum antibody concentration or T-cell responses. In early phases
of vaccine development, immunogenicity trials are commonly conducted to assess whether
the vaccine can induce immunity before entering large efficacy trials. In addition, immuno-
genicity is often used to determine whether an immune marker to the vaccine can be used as
a surrogate or correlate of disease protection. Chan et al. (2003) classified vaccine immuno-
genicity trials into the following categories of (1) superiority immunogenicity study, (2)
dose-response immunogenicity study, (3) consistency lots study, (4) bridging study, (5)
combination or multivalent vaccine study, and (6) immunological persistence study, which
are briefly outlined below.

Superiority Immunogenicity Study The objective of superiority immunogenicity stud-
ies is to assess the superiority of immunogenicity of the vaccine under study as compared
to a placebo control. Superiority immunogenicity studies are often conducted in early
phases of vaccine development, which can also be performed to claim superiority of one
vaccine as compared to another from a different manufacturer with respect to immune
responses.

Dose-Response Immunogenicity Study During the development of a new vaccine, dose-
response immunogenicity studies are often conducted to assess the immunologic res-
ponses across different dose levels of the vaccine. A well-established dose response can
help in determining the minimum effective dose and the safe dose. In addition, dose-
response studies are useful in studying the kinetic of potency decay and in determining the
release and end-expiry dose level and shelf-life of the vaccine.

Consistency Lots Study Before a vaccine can be licensed, the FDA requires that evidence
of analytical consistency among at least five lots of vaccine and clinical consistency in at
least three lots of vaccine from the same manufacturing process be provided. Frey et al.
(1999) suggested that vaccines from three consistency lots and a control vaccine be used for
a typical clinical consistency lots study.

Bridging Study When there are minor changes in manufacturing process, storage condi-
tions, routes of administration, or dosing schedules after regulatory approval, the FDA
requires a bridging study be conducted to demonstrate that such changes do not have
adverse effects on the vaccine effectiveness. An immunogenicity bridging study is usually
designed as a noninferiority trial aimed to exclude a clinically significant difference in the
immune response between the modified vaccine and the current vaccine.
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Combination or Multivalent Vaccine Study A combination vaccine is defined as a vaccine
that consists of two or more live organisms, inactivated organisms, or purified antigens
combined either by the manufacturer or mixed immediately before administration (FDA,
1997). A combination vaccine is intended to prevent multiple diseases or to prevent one
disease caused by different strains or serotypes of the same organism. For establishment of
efficacy of a combination vaccine, the immunogenicity of all vaccine components in the
combination or multivalent vaccine should be performed to rule out clinically significant
differences in immune response rates and/or GMTs between the combined vaccine and the
separate but simultaneously administered antigens. In addition, acceptable levels of immuno-
genicity should be demonstrated for each serotype or component.

Immunological Persistence Study In practice, it is recognized that the duration of
vaccine-induced immunity will be considerably longer than the time span of the clinical
studies. Thus, immunological persistence study is often conducted to collect data regard-
ing immune responses over multiple years. Life table or time-to-event data analysis is then
used to assess the cumulative immunological persistence rate for determination of long-
term immunological persistence.

7.8.3 Statistical Methods

As indicated in Chan et al. (2003), one of the most critical steps of evaluations of a new
vaccine is to assess the protective efficacy of the vaccine against the target disease. An effi-
cacy trial is often conducted to evaluate whether the vaccine can prevent the disease or
reduce the incidence of the disease in the target population. For immunogenicity analysis,
the immune response rate and the geometric mean titer or concentration of immune
response post-vaccination are usually considered to assess vaccine immunogenicity. In
what follows, statistical methods for analysis of these endpoints are briefly outlined.

Disease Incidence/Immune Response

Consider a vaccine clinical trial comparing a new vaccine with a control. Subjects who
meet the inclusion/exclusion criteria are randomly assigned to receive either the test vac-
cine (T ) or the placebo control (C). Let pT and pC be the true disease incidence rates or
immune response rates of the nT vaccines and nC controls randomized in the trial, respec-
tively. Thus, the relative reduction in disease incidence for subjects in the vaccine group as
compared to the control groups is given by

π � �
pC

p

�

C

pT
�

� 1 � �
p

p

C

T
�

� 1 � R.

In most vaccine clinical trials, π has been widely used and is accepted as a primary
measure of vaccine efficacy. Note that a vaccine is considered 100% efficacious (i.e.,
π � 1) if it prevents the disease completely (i.e., pT � 0). On the other hand, it has no
efficacy (i.e., π � 0) if pT � pC. Let xT and xC be the number of observed diseases for treat-
ment and control groups, respectively. It follows that the natural estimators for pT and pC
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are given by

p̂T � �
n

xT

T
� and p̂C � �

n

xC

C
�.

Let β � pT/pC, which can be estimated by

β̂ � �p̂

p̂

C

T
�.

By Taylor’s expansion and the Central Limit Theorem (CLT), β̂ is asymptotically distrib-
uted as a normal random variable with mean β and variance given by

σ 2 � �
1
n
�

Tp

p

T

T
� 	 �

1
n
�

Cp
p

C

C
�. (7.8.1)

For a given confidence level of 1 � α, the 100 
 (1 � α ) confidence interval of β is
given by

(β̂ � Z(α /2)σ̂ , β̂ 	 Z(α /2)σ̂),

where σ̂ is obtained according to (7.8.1) by replacing pT and pC by p̂T and p̂C, respectively.
This leads to the following 100 
 (1� α) confidence interval for π :

(1 � exp(β̂ 	 Z(α /2)σ̂), 1 � exp(β̂ � Z(α /2)σ̂)).

Extremely Low Disease Incidence In many cases, the disease incidence rate is extremely
low. In this case, a much larger scale of study is required to demonstrate vaccine efficacy as
described in the preceding subsection. For sufficiently large sample sizes and small
incidence rates, the numbers of cases in the vaccine groups and the control groups may be
approximated by independent. Poisson distribution with rate parameters λT (� nT pT) and λC

(� nC pC), respectively. As a result, the number of cases in the vaccine group given the total
number of cases (denoted by S) is distributed as a binomial random variable with parameter
θ, i.e., b(S, θ), where

θ � �λC

λ
	

T

λT
� � �nT pT

n
	
TpT

nC p��

� �
R 	

R
u

� � �
1 �

1 �

π 	

π
u

�,

where u � nC/nT , because θ is a decreasing function in π, testing the hypotheses that

H0: π � π0 vs. Ha: π � π0

is equivalent to testing the following hypotheses:

H0: θ � θ0 vs. Ha: θ � θ0,

where

θ0 � �1 �

1 �

π0

π
	
0

u�.
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Let xT and xC be the number of the observed diseases for the treatment and control,
respectively. A natural estimator for θ is given by θ̂ � xT /(xT 	 xC). The test statistic is
given by

T ��
�x

�
T� 	�

θ�0(�
x�
1�
C
�
�

��
(θ̂

θ�
�

0)�
θ0)

�

Under the null hypothesis, T is asymptotically distributed as a standard normal random
variable. Hence, we reject the null hypothesis at α level of significance if T � Z(α ).

Relative Vaccine Efficacy In vaccine trials, when the control is a licensed vaccine
(an active control), the relative efficacy π can be evaluated through the relative risk
(i.e., R � PT /PC) based on the relationship π � 1� R. If the absolute efficacy of the
control (i.e., πC) has been established, one can estimate the absolute efficacy of the test
vaccine by

πT � 1� R(1 � πC).

For a comparative vaccine trial, it is often designed as a noninferiority trial by testing the
following hypotheses:

H0: R � R0 vs. Ha: R � R0,

where R0 � 1 is a prespecified noninferiority margin or a threshold for relative risk. In
practice, the hypotheses regarding relative risk are most often performed based on log-
scale. In other words, instead of testing the above hypotheses, we usually consider the fol-
lowing hypotheses:

H0: log(R) � log(R0) vs. Ha: log(R) � log(R0).

This becomes the two-sample problem for relative risk.

Composite Efficacy Measure As indicated by Chang et al. (1994), in addition to the
prevention of the disease infection, a test vaccine may also reduce the severity of the target
disease as well. As a result, it is suggested that a composite efficacy measure be considered
to account for both incidence and severity of the disease when evaluating the efficacy of
the test vaccine. Chang et al. (1994) proposed the so-called burden-of-illness composite
efficacy measure.

Suppose nT subjects were assigned to receive treatment while nC subjects were assigned
to receive control (placebo). Let xT and xC be the number of cases observed in the treatment
and the control group, respectively. Without loss of generality, we assume the first xT sub-
jects in the treatment group and xC subjects in the control group experienced the events. Let
sij, i � T, C; j � 1, . . . , xi be the severity score associated with the jth case in the ith treat-
ment group. For a fixed i � T or C, it is assumed that sij are independent and identically
distributed random variables with mean µi and variance σ 2

i. Let pi be the true event rate of
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the ith treatment group. The hypotheses of interest is given by

H0: pT � pC and µT � µC vs. Ha: pT � pC or µT � µC.

Let

s�i � �
n

1

i
� �

xi

j�1
sij

x� � �
nT

n

s�T

T

	
�
	

n

n
C

C

s�C
�

si
2 � �ni �

1

1� �
ni

j�1
(sij � s�i)

2.

The test statistic is given by

T � .

Under the null hypothesis, Chang et al., 1994 showed that T is asymptotically distrib-
uted as a standard normal random variable. Hence, we would reject the null hypothesis if
�T � � Z (α /2).

It should be noted that safety considerations of vaccines are different from that of phar-
maceutical products. The methods and measurements chosen for assessment of safety of a
vaccine depend on a number of factors, such as the type of vaccine and its specific mecha-
nism for eliciting immune responses. As vaccination can cause allergic or anaphylactic
reactions due to the induction of the immune system, it is suggested that all safety vari-
ables encountered in a vaccine clinical trial and the analytical approach should be specified
in the study protocol. As vaccines will typically be administered to millions of otherwise
healthy individuals, it is strongly recommended that rare but serious adverse events be
carefully evaluated.

In addition to the statistical methods for analysis of vaccine efficacy and immunogenic-
ity endpoints described above, Durham et al. (1998) considered a nonparametric survival
method to estimate the long-term efficacy of a cholera vaccine in the presence of warning
protection. For evaluation of long-term vaccine efficacy, as indicated by Chan et al. (2003),
the analysis of time-to-event may be useful for determining whether breakthrough rates
among vaccinees change over time. It, however, should be noted that sample size calcula-
tion may be different depending on the study objectives, the hypotheses of interest, and the
corresponding appropriate statistical tests.

Clinical development for vaccine has recently received much attention both from regula-
tory agencies such as the US. FDA and the pharmaceutical industry. For example, Ellenberg
and Dixon (1994) discussed some important statistical issues of vaccine trials (related to
HIV vaccine trials). O’Neill (1988b) and Chan and Bohidar (1998) gave asymptotic and
exact formulas for sample size and power calculations for vaccine efficacy studies, respec-
tively. Chan et al. (2003) provided a comprehensive review of vaccine clinical trials and sta-
tistical issues that are commonly encountered in vaccine clinical trials.

s�T � s�C
�����
�x�2� p̂�(1� �� p̂�)�(1�/n�T�	� 1�/n�C)� 	� p̂�(s�0

2/�n�T�	� s�1
2/�n�C�)�
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7.9 DISCUSSION

In Section 7.6 we discussed the use of factorial designs for evaluation of combination
drugs or combination therapy. Its application, however, should not be limited. Factorial
designs are useful in the determination of optimal doses for dose-response studies. For
example, for an evaluation of a possible optimal dosage regimen during phase II clinical
development, it is necessary to investigate the frequency of drug administrations and dose
levels at each administration simultaneously. Therefore the intended trial involves two fac-
tors: the frequency of the dosing and the magnitude of dosing. Therefore a factorial design
is helpful. Ruberg (1995a, 1995b) considers a full two-factor factorial design for the
assessment of the QD and BID regimens and the dose levels given in Table 7.9.1. Ruberg
suggests that for the design in Table 7.9.1, a placebo group for the QD regimen might not
be needed. In addition, in order to get a stronger comparison between the high dose and
placebo of the BID regimen, k in Table 7.9.1 must be greater than 1.

Sometimes the treatment of a certain disease requires inpatient intravenous infusion of
one drug as initial therapy followed by outpatient oral administration of another drug as
maintenance therapy such as streptokinase and aspirin in the ISIS2 study. Then the facto-
rial design given in Table 7.9.2 can be used in the study of a dose-response relationship.
For example, the first row and first column in Table 7.9.2, where placebo of each drug is
listed, gives an independent characterization of the pure dose response for different admin-
istration, of different drugs.

Although a full factorial design is useful for simultaneously evaluating the joint contri-
bution of different components of a combination drug or therapy, the number of treatment
groups can be prohibitively large. This may result in some practical issues during the con-
duct of the trial. For example, human error is more likely when the study involves a ran-
domization of more than 16 parallel treatment groups for 25 study centers. In addition, due
to lack of resource and financial constraints, it may be difficult to conduct a full cross-
classification factorial design. A fractional factorial design is an attractive alternative for
the evaluation of combination drugs (Box et al. 1978). Although fractional factorial
designs are widely found in industry, they are not very common in clinical research. One of
the reasons is that the general principle of a fractional factorial design may not be directly
applied to meet the objectives for evaluation of combination drugs. Therefore proper modi-
fication of the fractional factorial design with valid statistical methods must be made
before it can be accepted for assessment of combination therapy. Hung (1996) extended his
method to the incomplete factorial design for identification of a combination superior to
each component. However, it is not clear how strict superiority can be interpreted if the
incomplete factorial design is disconnected as shown in Table 7.9.3 (Searle, 1971).
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Table 7.9.1 Factorial Design for Dosing Regimen 
and Dose Levels

Dose Levels (Magnitude)

Frequency Placebo 1 2 3

QD n n n n
BID kn n n kn

Source: Ruberg (1995a).

c07.qxd  27.10.03  13:00  Page 296



In combination drug trials, although the primary goal is to identify a combination
whose efficacy is better than each component, the quantitative characterization of the con-
tribution made by each component when it is administrated as monotherapy is also crucial
for clinical practitioners. In addition the interrelationships among the procedures proposed
by Hung and others for identification of a superior combination, of dose levels between
two drugs, and of each component’s effect in monotherapy based on a traditional analysis
of variance are quite complex. Hung et al. (1995) propose a two-stage estimation and test
procedure for treatment effects of monotherapies in two-by-two factorial trials.

For three-arm trials with combined treatment groups and two component drugs, Laska
and Meisner (1989) provide tables of sample sizes for the various powers according to
their min procedure which is based on the Student t-test and the Wilcoxon rank sum test for
univariate clinical endpoints. They found that approximately 25% more patients per treat-
ment group are required for evaluating the superiority of a combination drug than is usual
for comparing the difference between two treatment groups. As for the combination trial
with a full factorial design, the formula for calculating power is given in Hung et al.
(1993), and Hung (1994) can be used to iteratively select sample sizes with a desired
power. However, the relative magnitude of the sample sizes required by the procedures
proposed by Hung et al. (1993) is not known, whereas the traditional F-test is used for
finding the treatment difference among dose levels in monotherapy. When the objective is
to examine possible interaction between two drugs, as pointed out by Byar and Piantadosi
(1985), the sample size for detecting any interaction must be much larger than that for
studying the main effects of monotherapy. More research is definitely needed for applica-
tion to multicenter trials, group sequential methods, and interim analyses of combination
drugs.

Since there can be an ethical concern regarding the inclusion of concurrent placebo con-
trol in active control equivalence trials, Huque and Dubey (1990) explore the possibility of
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Table 7.9.2 Factorial Design for Combination of I.V.
Infusion Followed by Oral Administration

Dose Level of I.V. Infusion Rate

Oral Administration Placebo 1 2 3

Placebo n n n n
1 n n n n
2 n n n n
3 n n n n

Table 7.9.3 An Incomplete Disconnected Factorial Design

Does Level Dose Level of Drug B

for Drug A Placebo 0 1 3

Placebo 
 

1 
 

2 
 

3 
 


Note: The dose 
 indicates the combination being studied.
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designing a group sequential trial by performing interim analyses for the purpose of stop-
ping the placebo arm but continuing the test and active reference control. However, in
order to stop the placebo group early, based on results from interim analyses, the random-
ization codes of all three groups must be broken to reveal the treatment assignment of each
patient. As a result bias will be unavoidably introduced into the subsequent assessment
between the test and active control, and consequently the primary goal for an unbiased
evaluation of the equivalence between the two drugs may be in jeopardy.

For binary data the sample size determination and equivalence limits depend on not
only the assumed reference response rate but also the overall response rate (Huque and
Dubey, 1990). It should be noted that the observed reference and overall response rates
might differ from the assumed rates used for sample size determination at the planning
stage of the trial. In addition they may be different from one interim examination to
another. It is, however, not clear whether the same prespecified equivalence limit should be
used for all interim analyses. Durrleman and Simon (1990) and Jennison and Turnbull
(1993) offer some useful thoughts on the design, conduct, monitoring and analysis of
sequential active control equivalence trials. However, their methodology does not include
a joint evaluation of equivalence and superiority in the efficacy of active drugs in relation
to the placebo (Morikawa and Yoshida, 1995).

Note that our discussion in Section 7.4 only focused on the average equivalence rather
than the population equivalence. Figure 7.9.1 illustrates the case where the cumulative dis-
tribution of the test and reference active control are equivalent, assuming that they both are
(stochastically) larger than that of the placebo group. For assessment of equivalence with
inclusion of a placebo concurrent control in cumulative distribution, the hypotheses are
given as.

H0: � FT � FR� � d or FT � FP or FR � FP,

vs. Ha: � FT � FR� � d and FT � FP and FR � FP, (7.9.1)
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Figure 7.9.1 Empirical cumulative distribution of an active control equivalence trial with a concur-
rent placebo control.
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where FT , FR, and FP are the cumulative distribution functions (CDF) of the clinical
responses of test, reference active control, and placebo concurrent control, respectively.
Hypotheses (7.9.1) can be further decomposed into three sets.

H0E: � FT � FR� � d,

vs. HaE: � FT � FR� � d, (7.9.2)

H0T: FT � FP,

vs. HaT: FT � FP, (7.9.3)

and

H0R: FR � FP,

vs. HaR: FR � FP. (7.9.4)

The standard one-sided Kolmogorov-Simrnov test (Conover, 1980) can be used to ver-
ify whether the distributions of both the test and reference active control are (stochasti-
cally) larger than those of the placebo. Recently, as an alternative, Wellek (1993) proposed
a method that tests the equivalence between two cumulative distributions. However, his
procedure requires an estimation of a noncentrality parameter of the chi-square distribu-
tion under hypotheses (7.9.2). More research on equivalence in distributions is needed.
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8
ANALYSIS OF CONTINUOUS DATA

8.1 INTRODUCTION

As was pointed out in Chapter 1, a well-designed protocol can ensure the success of clini-
cal research. A well-designed protocol focuses on all details including how the intended
clinical trial is to be carried out and how the data are to be collected. It also must reflect
Section 312.23 of 21 CFR which requires that a statistical section, which describes how the
data are to be analyzed, must be a part of the protocol. It is equally important to implement
good clinical practice/good statistical practice to provide an accurate and reliable assess-
ment of the efficacy and safety of the test drug under study. For this purpose appropriate
and valid statistical methods must be determined for the collected data. The collected clin-
ical data are referred to as the responses of the clinical endpoints or variables of patients
under study. These clinical endpoints or variables are used to measure or evaluate the char-
acteristics of the test drug product for treatment of patients with certain diseases under
study. Basically the collected clinical data can be classified as either qualitative (categori-
cal data) or quantitatively (numerical or measurement data).

When the characteristic concerns a qualitative trait that is only classified in categories
and not numerically measured, the resulting data are called categorical data. For the cate-
gorical data, subjects are placed in the proper category or group, and the number of sub-
jects in each category is enumerated. Each subject must be fit into exactly one category. In
clinical trials gender and race are typical categorical variables. Note that if there is order
among the categories, the resulting data are called ranked data or ordered categorical data.
For example, the severity and intensity of pain are considered ranked data. For ranked data
there are not necessarily equal intervals or differences between ranks. On the other hand, if
the characteristic is measured on numerical scales, then the resulting data are numerical

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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data. Note that if the numerical scales are made of distinct numbers with gaps in between
such as the number of drinks daily, then the variables are referred to as discrete variables.
Clinical endpoints are said to be continuous if they can take any values in an interval. Some
variables such as height, weight, survival time, and diastolic and systolic blood pressures
are continuous variables. The responses of a continuous variable are considered continu-
ous data.

In general, different statistical methods are usually applied for different types of data. In
this chapter, our primary emphasis will be placed on statistical analysis for continuous
data. Analysis for categorical data will be discussed in the next chapter. In the next section
the concept of estimation including point and interval estimates will be briefly introduced.
Statistical tests such as paired t and two sample t are given in Section 8.3. In Sections 8.4
and 8.5 the method of variance and covariance analysis are discussed. The use of nonpara-
metric methods and the application of repeated measures are described in Sections 8.6 and
8.7 respectively. A brief discussion is presented in the last section.

8.2 ESTIMATION

As mentioned, clinical endpoints are used to measure or describe the characteristics of a
test drug for the treatment of patients with certain diseases. Based on the observed
responses of the clinical endpoints, we can draw some statistical inferences on the charac-
teristics of the test drug. For example, reductions in seated diastolic and systolic blood
pressures are often used to evaluate the effect of a test drug in the treatment of patients with
mild to moderate hypertension. In this section we will focus on the estimation of some
quantities such as the mean and variability of the characteristics.

Suppose that there are N subjects in a targeted patient population. For a given clinical
endpoint, let y1, y2, . . . , yN be the true responses of the clinical endpoint for the N subjects
in the targeted patient population. Then, the population mean and population variance of
the clinical endpoint are given by

µ � �
N
1

� �
N

i�1
yi,

σ 2 � �
N
1

� �
N

i�1
(yi � µ)2,

respectively. Note that µ and σ 2 are usually unknown. In practice, we make a statistical
inference on µ to assess the efficacy of the drug under study. For example, µ may represent
the mean reduction in the seated diastolic blood pressure in patients with mild to moderate
hypertension. As discussed in Chapter 4, in practice, since N can be very large (e.g., a few
million people), it is impossible to observe all the yi , i � 1, . . . , N values. Therefore, as an
alternative, we select a random sample of size n and then draw statistical inference on µ
from an analysis of information contained in the sample data provided that the random
sample is a representative of the targeted patient population. Intuitively we can use the
mean and standard deviation of the n observations from the random sample to estimate µ
and σ. That is, we let {Y1, Y2, . . . , Yn} be a random sample of size n selected from the tar-
geted patient population {y1, y2, . . . , yN}, then the realization of {Y1, Y2, . . . , Yn} is a sub-
set of {y1, y2, . . . , yN}, where 2 � n � N. Then µ and σ can be estimated by the sample
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mean and sample standard deviation, which are given by

Y� � �
1
n

� �
n

i�1
Yi,

s � ��n �

1
1

� �
n

i�1
(Yi � Y�)2�

1/2

,

respectively. When the sample size n is sufficiently large, Y� and s would be quite close to
the unknown population mean µ and population standard deviation σ, respectively.

Note that if {Y1, Y2, . . . , Yn} results from independent selections, then each has the
same distribution as the population. Since random samples vary, the values of Y� also vary.
In other words, Y� is also a random variable. The sampling distribution of Y� can be obtained
by the following steps:

1. List all possible samples of size n.

2. Calculate the values of Y� for each sample.

3. List the distinct values of Y�, and calculate the corresponding probabilities by identify-
ing all of the samples that yield the same value of Y�.

For the selection of a random sample of size n, there are a total of M possible selections for
a population of size N, where

M � � � � .

Let Y�k be the mean of the kth random sample, where k � 1, . . . , M. Then, the expectation
of Y� is the average of the sample means over all possible samples,

E(Y� ) � �
M
1
� �

M

k�1
Y�k.

If

E(Y� ) � µ,

then Y� is said to be an unbiased estimate of µ. Similarly, the standard error of Y� can be
obtained as follows:

σY� � SD(Y�) � �v�ar�(Y��)� � ��
M
1
� �

M

k�1
[Y�k � E(Y�)]2�

1/2
.

Since YY� is the average of n random variables with common mean µ and variance σ 2, it can
be verified that

σY�
2 � �

1
n� σ 2.

Note that if the population is normal with mean µ and standard deviation σ, then Y� has the
normal distribution with mean µ and standard deviation σ/�n�. However, if the population
is an arbitrary population with mean µ and standard deviation σ, then Y� is approximately
normal with mean µ and standard deviation σ/�n� when n is large (e.g., n � 30). As a
result, since σ can be consistently estimated by s,

z � �
Y�
s/

�

�n�
µ

�

N(N � 1) . . . (N � n)
���

n!
N
n
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is approximately distributed as a standard normal with mean 0 and standard deviation 1.
This property is known as the Central Limit Theorem. As a result, when n is large, in addi-
tion to the point estimate, we can provide an interval estimate for µ based on the Central
Limit Theorem. A large samples 100(1 � α)% confidence interval for µ is given by

�Y� � �
Z(

�
α /

n�
2)s
� , Y� � �

Z(
�
α /

n�
2)s
��, (8.2.1)

where Z(α /2) denotes the upper (α /2)th quantile of the standard normal distribution (i.e.,
the area to the right of Z(α /2) is α /2). The 100(1 � α)% confidence interval is a random
interval that will cover the true µ with probability (1 � α). In other words, if random sam-
ples are repeatedly drawn from the same population and a 100(1 � α)% confidence inter-
val is calculated from each sample, then about 100(1 � α)% of these intervals will contain
the true but unknown value µ. In practice, however, since we only draw one sample (i.e.,
conduct the intended clinical trial once), we never know what happens in a single applica-
tion. Therefore, when we say that we are 100(1 � α)% confident that the confidence inter-
val obtained from the sample will cover the true µ, our confidence draws from the success
rate of 100(1 � α)% in many applications.

Note that the above interval estimate is derived based on the Central Limit Theorem with
large n. In practice, n may not be large, especially when the trial involves enormous medical
expenditives or the disease is rare. In this case, the question What is the sample distribution
of Y� when n is not large? needs to be addressed in order to provide an interval estimate for µ.
As indicated earlier, when Y� is based on a random sample of size n from a normal population
with mean µ and standard deviation σ, Y� is distributed as a normal distribution with mean µ
and standard deviation σ /�n�. Since σ is usually unknown, an intuitive approach is to esti-
mate σ by the sample standard deviation s. This leads to the following t statistic

t � �
Y�
s/

�

�n�
µ

�.

The distribution of the above t statistic is known as Student’s t distribution with n � 1
degrees of freedom. As discussed above, the Student t distribution gets closer to the stan-
dard normal as n becomes larger. For small n, although the t distributions are also symmet-
ric about 0, they have tails that are more spread out than the standard normal distribution.
Therefore, based on the t statistic, we can construct a 100(1 � α)% confidence interval for
µ for small n as follows:

�Y� � �
t(α /2

�
, n

n�
� 1)s
�, Y� � �

t(α /2
�
, n

n�
� 1)s
��, (8.2.2)

where t(α /2, n � 1) is the upper (α /2)th quantile of the t distribution with n � 1 degrees
of freedom.

To illustrate the estimation procedures described above, consider a clinical trial con-
ducted in order to evaluate the safety of an injectable dosage form of a drug product
(denoted by treatment A) that is compared to a placebo (denoted by treatment B) in subjects
undergoing stress echocardiography. This trial was a multicenter, single-blind, and random-
ized study. The primary safety variables included incidence of adverse events and changes
in laboratory parameters. Table 8.2.1 lists the partial data of pre- and post-treatment platelet
counts of 30 patients from the five centers. Table 8.2.2 provides the summary statistics of
the platelet counts. From Table 8.2.2 and using (8.2.2), we obtain the confidence intervals
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Table 8.2.1 Pre- and Post-Treatment Platelet Counts

Center Subject Pre-treatment Post-treatment Treatment

1 1 359,000 396,000 B
1 2 200,000 184,000 A
1 3 149,000 151,000 A
1 4 235,000 242,000 B
1 5 174,000 177,000 B
1 6 271,000 203,000 A
2 7 180,000 199,000 B
2 8 252,000 256,000 A
2 9 188,000 187,000 B
2 10 211,000 210,000 A
2 11 217,000 199,000 B
2 12 195,000 215,000 A
3 13 266,000 192,000 B
3 14 267,000 205,000 A
3 15 217,000 233,000 A
3 16 247,000 241,000 B
3 17 204,000 188,000 A
3 18 340,000 302,000 B
4 19 175,000 173,000 A
4 20 242,000 233,000 B
4 21 383,000 389,000 A
4 22 165,000 154,000 A
4 23 213,000 226,000 B
4 24 244,000 241,000 B
5 25 243,000 223,000 A
5 26 205,000 167,000 B
5 27 373,000 315,000 B
5 28 252,000 271,000 A
5 29 291,000 250,000 B
5 30 162,000 146,000 A

Table 8.2.2 Summary Statistics of Pre- and Post-Treatment Platelet Counts

Treatment N Pre-treatment Post-treatment Difference

A 15 223.1 213.4 �9.7
(15.2) (15.7) (6.7)

B 15 251.6 237.8 �13.8
(16.4) (15.7) (7.9)

A�B 15 �28.5 �24.4 4.1
(15.8) (15.7) (7.3)

Note: The values are corresponding platelet counts (�103/µL) and the numbers in the parentheses, are standard
errors.
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for the average platelet counts at the baseline (pre-treatment) and at endpoints (post-
treatment) for both treatments. For example, for treatment A, since

Y�A � 223066.67 and sA � 15219.18,

the 95% confidence interval for the average pre-treatment platelet counts is given by

Y�A � �
t(α /2,

�
n

n�
� 1)sA
��� 223066.67 � (2.14)��15

�
21

1�
9
5�
.18

��
� 223066.67 � 8409.29

� (214657.38, 231475.96).

Similarly, a 95% confidence interval for the average post-treatment platelet counts can be
obtained. Table 8.2.3 gives 95% confidence intervals for the average pre- and post-treatment
platelet counts for both treatments.

8.3 TEST STATISTICS

In clinical trials, as pointed out earlier, a typical approach for assessment of the efficacy of
a test drug is first to demonstrate that the mean effect (i.e., µ) is significantly different from
zero or a prespecified small value (e.g., µ0) and then claim that the test drug is effective by
showing that there is a desired power for detection of a clinically meaningful difference.
Therefore, the hypotheses of interest are given by

H0: µ � µ0,

vs. Ha: µ 	 µ0. (8.3.1)

If the above hypotheses concern the mean of a normal population, then we may consider
the following test statistic for testing (8.3.1):

t � �
Y�

s/

�

�

µ
n�

0
�,

which is distributed as the Student t distribution with n � 1 degrees of freedom under
H0. Note that the alternative hypothesis given in (8.3.1) is a two-sided hypothesis. In

Table 8.2.3 Confidence Intervals Based on t-Statistic

95% Confidence Interval

Treatment Pre-treatment Post-treatment Difference

A (214.7, 231.5) (204.7, 222.1) (�13.4, �6.0)
B (242.5, 260.7) (229.1, 246.5) (�18.1, �9.5)

A�B (�37.5, �19.5) (�33.4, �15.4) (�9.6, 1.3)

Note: The values in the parentheses are corresponding platelet counts (�103/
L).

c08.qxd  27.10.03  13:02  Page 305



306 ANALYSIS OF CONTINUOUS DATA

practice, as mentioned in Chapter 2, we can consider either one of the following one-
sided hypotheses:

Ha: µ � µ0,

or (8.3.2)

Ha: µ � µ0.

We would reject the null hypothesis of (8.3.1) at the α level of significance if

�t� � t(α /2, n � 1)

On the other hand, for the one-sided hypotheses, we can reject the null hypothesis at the α
level of significance if

t � t (α , n � 1) or t � �t (α, n � 1)

for alternative hypotheses Ha: µ � µ0 or Ha: µ � µ0, respectively.
Note that the concepts of hypotheses testing and confidence interval are operationally

equivalent. For testing the hypotheses in (8.3.1), the rejection region of the level α test is

	�
Y�
s/

�

�

µ
n�

0
�	 � t (α/2, n � 1).

Consequently, the acceptance region is given by

�t(α/2, n � 1) � �
Y�
s/

�

�

µ
n�

0
� � t (α /2, n � 1),

which can be rewritten as

Y� � �
t(α /2

�
, n

n�
� 1)s
� � µ0 � Y� ���

t(α /2
�
, n

n�
� 1)s
�. (8.3.3)

Note that the above expression of the acceptance region is the same as the confidence inter-
val for µ given in (8.2.2). Expression (8.3.3) indicates that any given null hypothesis µ0 will
not be rejected at the significance level of α if µ0 lies within the 100(1 � α)% confidence
interval of µ. Therefore, having established a 100(1 � α)% confidence interval for µ, all null
hypotheses for values of µ0 lying outside this interval will be rejected at the α level of signifi-
cance and all those lying inside will not be rejected. As indicated in Chapter 2, an observed p-
value is always reported in accordance with the test. We would reject the null hypothesis if
the p-value is less than the α level of significance. The confidence interval approach is
regarded as a more comprehensive inference procedure than testing a single null hypothesis
because a confidence interval statement in effect tests many null hypotheses at the same time.

Paired t Test

For some clinical trials such as noncomparative open-label studies, one of the primary objec-
tives is to evaluate the effect before and after the treatment based on changes from baseline of
the endpoint. In this situation, a paired-t test is useful for within treatment comparison. Let
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YBi and YEi be the responses for the ith subject at baseline (or pre-treatment) and endpoint (or
post-treatment), respectively. Statistically, each subject is considered as a block. Therefore,
although (YBi, YEi) are independent of one another, YBi and YEi within the ith subject are
dependent. Consider the endpoint changes from baseline as follows:

Di � YEi � YBi,

where i � 1, . . . , n. Since Di � YEi � YBi, i � 1, . . . , n, remove the block effect, it is rea-
sonable to assume that they constitute a random sample from a population with mean µd

and standard deviation σd , where µd represents the mean difference of before and after
treatment. In other words,

µd � E(Di),

σd � �v�ar�(D�i)�, i � 1, . . . , n. (8.3.4)

The hypotheses of interest for a within treatment comparison are

H0: µd � µ0,

vs. Ha: µd 	 µ0. (8.3.5)

We reject the null hypothesis at the α level of significance if

�t� � 	D��sd/
�

�
µ
n�

0�	� t (α/2, n � 1), (8.3.6)

where

D� � �
1
n

� �
n

i�1
Di,

sd � ��n �

1
1

� �
n

i�1
(Di � D�)2�

1/2

,

and t(α /2, n � 1) is the upper (α /2)th quantile of a t distribution with n � 1 degrees of
freedom. Similarly, we can reject the null hypothesis at the α level of significance if

t � t(α, n � 1) or t � � t(α, n � 1)

for alternative hypotheses Ha: µd � µ0 or Ha: µd � µ0, respectively.
Note that the above test for hypotheses given (8.3.5) is called a paired-t test; the paired-t

test is commonly used for a within-treatment comparison between the baseline and end-
point of a clinical trial. The corresponding confidence interval for µd is given by

�D� � �
t(α /2,

�
n

n�
� 1)sd�, D� � �

t(α /2,

�
n

n�
� 1)sd��.

To illustrate the application of a paired-t test, consider the example of platelet counts
given in the previous section. Based on difference in platelet counts between pretreatment
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and post-treatment, paired-t tests for treatment A and treatment B are given by


tA
 � 	�sd/

D�
�n�
�	 � 	�67

�

02
9
.
6
2
6
9
6
/�
.67

1�5�
�	 � 5.59

and


tB
 � 	�sd/

D�
�n�
�	 � 	�7

�

85
1
5
3
.9
8
7
0
/
0
�
.0

1�
0
5�

�	 � 6.80,

respectively. Since tA and tB are both greater than t(0.025, 14) � 2.14, we reject the null
hypothesis of no difference between pretreatment and post-treatment average platelet
counts for both treatments at the α level of significance. Note that 95% confidence inter-
vals of µd for treatments A and B, as given in Table 8.2.3, are (�13.4, �6.0) and (�18.1,
�9.5) (103/µL), respectively, which do not contain 0. We can conclude that there is a sig-
nificant difference between the pretreatment and post-treatment platelet counts for both
treatments. This result is consistent with that obtained from the paired-t tests.

Recall that Table 8.2.1 showed that the pre- and post-treatment platelet counts are 
positively correlated. Thus, an analysis of changes from the baseline (i.e., post-treatment
minus pretreatment) is more appropriate because it reduces the variability. As indicated in
Table 8.2.2, the variability is reduced by almost a half. In addition a direct comparison sug-
gests that the average platelet counts of treatment B are significantly greater than those of
treatment A. However, Table 8.2.3 indicates that the mean decrease in platelet counts for
treatment A is not statistically different from that of treatment B.

Two-Sample t Test

In comparative clinical trials, the primary objective is to evaluate the efficacy and safety of
a test drug as compared to a control (e.g., a placebo control or an active control). For this
purpose a parallel-group design in which patients are randomly assigned to receive either
the test drug or the control is usually employed. In this design setting we basically compare
two treatment groups (the test drug and the control) or two populations on the basis of in-
dependent samples (i.e., patients who are enrolled in the two treatment groups). Let Yij,
i � 1, 2 and j � 1, . . . , ni, be random samples of sizes n1 and n2 from population 1 (i.e.,
patients under treatment of the test drug) and population 2 (i.e., patients under treatment of
the control), respectively. Note that the two samples are independent. In other words, the
responses under one treatment are uncorrelated to the responses under the other treatment.
Suppose that the two populations are normal with means µ1 and µ2 and standard deviations
σ1 and σ2, respectively. Then, the efficacy of the test drug, as compared to the control, can
be examined by testing the following hypotheses:

H0: µ1 � µ2,
vs. Ha: µ1 	 µ2. (8.3.7)

When sample sizes n1 and n2 are large, according to the central limit theorem, the statistic

Z �
(Y�1 � Y�2) � (µ1 � µ2)
����

�s1
2�n�1��� s�2

2�n�2�
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is approximately normal with mean 0 and standard deviation 1, where Y�1 and Y�2 and s1
2 and

s2
2 are the sample means and sample variances of the two samples respectively. Therefore,

we can reject the null hypothesis at the α level of significance if


Z
 � Z(α /2),

where Z(α /2) is the upper (α /2)th quantile of the standard normal.
When sample sizes n1 and n2 are small, the above test is not valid. However, under the

assumption that (1) both populations are normal and (2) σ1 � σ2 � σ, the test statistic

t � (8.3.8)

has Student’s t distribution with n1 � n2 � 2 degrees of freedom, where

s � � �
1/2

,

which is a pooled estimate of the common standard deviation σ. Therefore, we can reject
the null hypothesis of (8.3.7) at the α level of significance if

�t� � t(α /2, n1 � n2�2),

where t(α /2, n1 � n2 � 2) is the upper (α /2)th quantile of a t distribution with n1 � n2 � 2
degrees of freedom. Similarly, we can reject the null hypothesis at the α level of signifi-
cance if

t � t(α, n1 � n2 � 2) or t � �t(α, n1 � n2 � 2)

for alternative hypotheses Ha: µ1 � µ2 or Ha: µ1 � µ2, respectively. Note that the above test
is known as a two-sample t test. Based on this test, a 100(1 � α)% confidence interval for
µ1 � µ2 is given by

(Y�1 � Y�2) � t(α /2, n1 � n2 � 2)s��
n
1�
1
������

n
1�
2
��.

In practice, σ1 is never the same as σ2. Whether or not to pool the data for an estimate of
σ (under the assumption that σ1 � σ2 � σ) affects the validity of the test statistic described
in (8.3.8). The relative magnitude of the two sample variances s1

2 and s2
2 is usually the indi-

cator used to determine whether or not to pool. For example, if s1
2/s2

2 is far away from 1,
then the assumption that σ1 � σ2 � σ will be in doubt. In practice, as a rule of thumb, if
the ratio falls within the range of

�
1
4

� � �
s
s

2
1
2
2
� � 4,

then we can pool the data for an estimate of the common standard deviation σ.
In the case where σ1 	 σ2, we may reject the null hypothesis if

�t*� � t(α /2, υ*),

(n1 � 1) s1
2 � (n2 � 1) s2

2

���n1 � n2 � 2

(Y�1 � Y�2) � (µ1 � µ2)
����

s�1�/n�1��� 1�/n�2�

c08.qxd  27.10.03  13:02  Page 309



310 ANALYSIS OF CONTINUOUS DATA

where

t* � , (8.3.9)

and

υ* � ,

w1 � s1
2/n1, and w2 � s2

2/n2.

Based on t*, a 100(1 � α)% confidence interval for µ1 � µ2 can be obtained as follows:

Y�1 � Y�2 � t(α /2, υ*)�w�1��� w�2�, (8.3.10)

The above confidence interval is known as Satterthwaite’s confidence interval.
Again, we consider the example of platelet counts to illustrate the use of a two-sample 

t test. The differences in platelet counts between pretreatment and post-treatment for the
two treatments concern two independent samples. Therefore, we can use test statistic
described in (8.3.8) or (8.3.9) to test the null hypothesis of no treatment difference. As can
be seen from Table 8.2.2,

sA � 6702.29 and sB � 7855.97.

Since

�
s
s

2
A
2
B
� � 0.729,

which is within the range (0.25, 4), we can apply the test statistic in (8.3.8) to test the null
hypothesis of no treatment difference as follows:

�t� � 	�s�
(

1�
Y�
/
A

n�
�

A
�

���
Y�B

1�
)

/n�B�
�	

� 	 	
� 	�42

1
6
3
6
3
6
.
.
3
2
3
9

�	 � 1.55,

which is less than t(0.025, 8) � 2.048. Therefore, we fail to reject the null hypothesis of no
treatment difference at the α � 5% level of significance. From (8.3.8) the corresponding
95% confidence interval can also be obtained, which is given by (�9593.89, 1327.23).
Since the 95% confidence interval contains 0, we reach the same conclusion that there is
no significant difference between the two treatments. Note that since nA � nB � 15, the
test statistics in (8.3.8) and (8.3.9) are essentially the same. Both tests fail to reject the null
hypothesis of no treatment difference.

(�9666.67) � (�13800.00)
����

�7�1�0�9�1�2�1�.6�9�

(w1 � w2)2

���
(w1

2/(n1 � 1) � w2
2/(n2 � 1))

(Y�1 � Y�2) � (µ1 � µ2)
���

�w�1��� w�2�
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8.4 ANALYSIS OF VARIANCE

In previous sections we discussed the estimations and tests for comparing two treatments.
Suppose that we are interested in evaluating the efficacy of several test drugs for the same
indication compared to a placebo control. Although we may conduct a number of separate
clinical trials whereby each compares a test drug with the placebo control, it is more effi-
cient to conduct one clinical trial and to simultaneously compare the test drugs and the
placebo. In this case the two-sample t test and its corresponding confidence interval for
mean differences is not appropriate. The alternative analysis of variance (ANOVA) method
can be applied to compare several population means.

One-Way Classification

Let Yij be the response of the jth subject on treatment i, where j � 1, . . . , ni and i � 1, . . . , k.
Also let µi denote the mean of the ith treatment. Then, the hypotheses for a simultaneous
evaluation of the k treatments is given by

H0: µ1 � µ2 � � � � � µk,

vs. Ha: µi 	 µj for some 1 � i 	 j � k. (8.4.1)

To derive a test for the above hypotheses, consider the following model:

Yij� µi � eij

� µ � τi � eij, j �1, . . . , ni, i �1, . . . , k, (8.4.2)

where µ is the overall mean, τi denotes the effect of the ith treatment, and eij are indepen-
dent random errors in observing Yij with mean 0 and standard deviation σ. The analysis of
variance concept is to partition the observations Yij into contributions from different
sources. Let Y�.. and Y�i. be the overall sample mean and the sample mean for the ith treat-
ment group, respectively. Then, the deviation of an individual observation from the overall
sample mean can be described as

Yij � Y�.. � (Y�i. � Y�..) � (Yij � Y�i.) (8.4.3)

or

Yij � Y�.. � (Y�i. � Y�..) � (Yij � Y�i.).

As a result the deviation of an individual observation from the overall sample mean con-
sists of two components: the sum of differences among the means of the treatments and the
random variation in measurements within the same treatment. Expression (8.4.3) leads to
the following partitions of sum of squares (SS):

�
k

i�1
�
ni

j�1
(Yij � Y�..)

2 ��
k

i�1
ni(Y�i. � Y�..)

2 � �
k

i�1
�
ni

j�1
(Yij � Y�i.)

2.

The first term on the left-hand side is the total sum of squares, and the first and second
terms on the right-hand side are sum of squares due to treatment (denoted by SSA) and
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sum of squares due to error (denoted by SSE). Therefore we have

SST � SSA � SSE.

The mean square due to treatment and error is defined as

MSA � �
k
S
�

SA
1

�

� �
k �

1
1

� �
k

i�1
ni(Y�i. � Y�..)2,

MSE � � �
k

i�1
�
ni

j�1
(Yij � Y�i.)

2.

Under the null hypothesis, the population means are all equal (i.e., µi � µ for all i or τi � 0
for all i), Y�i.�Y�.. is expected to be small, and consequently its mean square (MSA) is expected
to be small. On the other hand, if the population means differ, then MSA is likely to be large.
However, the question that is not clear is How large a treatment mean will yield a statistically
significant difference? To determine whether the population means are statistically signifi-
cantly different from one another, since the mean square error provides an estimate of σ 2, we
consider the ratio between the treatment mean square and the mean sum of squares due to
error. Thus, under the null hypothesis of (8.4.1), the ratio

F � �
M
M

S
S

A
E

�

� �
S
S

S
S

E
A

/
/
(
(
N
k �

�

1
k
)
)

�

has an F distribution with (k � 1, N � k) degrees of freedom, where N � Σk
i � 1ni. There-

fore we can reject the null hypothesis at the α level of significance if

F � F(α, k � 1, N � k),

where F(α, υ1, υ2) is the upper α th quantile of the F distribution with (υ1, υ2) degrees of
freedom. Table 8.4.1 provides an analysis of variance table for comparing k treatments.

Simultaneous Confidence Intervals

Suppose that we reject the null hypothesis that there are no differences among the k treat-
ments. Then, we need to show that there is significant difference among the k treatments.
In this case it is often of interest to construct a confidence interval for µi � µi� for i 	 i� to
determine which treatments have unequal means. Based on the mean square error from the
analysis of variance, a 100(1 � α)% confidence interval for µi � µi� where i 	 i� can be
constructed as follows:

Y�i. � Y�i�. � t(α /2, N � k)s��
n
1�

i
� �� �

n
1�
i�
�� , (8.4.4)

1
��
�k

i�1 (ni � 1)

SSE
��
�k

i�1 (ni � 1)
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where

s � �M�S�E� � ��
N
S� S

��
E�k
��

and t(α /2, N � k) is the upper (α /2)th quantile of t distribution with N � k degrees of 
freedom. In practice, one can consider comparing means pairwisely according to (8.4.4) if
the overall F test shows significant differences in the means. However, for k treatments
there is a total of

m � � � � �
k(k

2
� 1)
�

pairwise differences µi � µi�, and (8.4.4) applied to all pairs yield m confidence statements in
which each as a 100(1 � α)% level of confidence. Therefore, it is difficult to determine what
level of confidence will be achieved for claiming that these m statements are all correct. To
overcome this problem, several procedures have been developed in such a manner that the
joint probability that all the statements are true is guaranteed not exceed a predetermined level
such as the α level of significance. The most commonly used method among these procedures
probably is Bonferroni’s simultaneous intervals, also known as multiple-t confidence inter-
vals since the α level is adjusted for multiple comparisons among means. The 100(1 � α)%
Bonferroni’s simultaneous intervals for the m pairwise difference µi � µi� are given by

Y�i. �Y�i�. � t(α /2m, N � k)s��
n
1

i
�� ���

n
1�
i′
��,

where s � �M�S�E� and t(α /2m, N � k) is the upper (α /2m)th quantile of the t distribution
with N � k degrees of freedom. Bonferroni’s simultaneous intervals guarantee that the
probability of all the m confidence statements being correct is at least 1 � α.

Consider a clinical trial on the efficacy of a newly developed drug for treating patients
with migraine headaches (Wang and Chow, 1995). The clinical trial is a double-blind
three-arm parallel randomized study comparing the newly developed drug (denoted by
drug A), an active control agent (denoted by drug B), and a placebo control (denoted by P).
The primary efficacy endpoint is the pain relief score. The pain relief scores are obtained
60 minutes after the administration of treatment based on a visual pain relief scale ranging
from 0 (no relief from pain) to 10 (complete relief from pain). For the purpose of illustra-
tion, Table 8.4.2 gives the pain relief scores for each treatment. From Table 8.4.2, the sum

k
2

Table 8.4.1 ANOVA Table for Comparing k Treatments

Source of 
Variation Sum of Squares df Mean Squares

Treatment SSA � Σ k
i�1 ni(Y�i. � Y�..)

2 k�1 MSA � �
k
S
�

SA
1

�

Error SSE � Σ k
i�1 Σ ni

j�1 (Yij � Y�i.)
2 N�k MSE � �

N
SS

�

E
k

�

Total SST � Σ k
i�1 Σ ni

j�1 (Yij � Y�..)
2 N�1

Note: N � Σk
i�1 ni.
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of squares (SSE) due to error and the sum of squares (SSA) due to treatment can be
obtained as

SSE � �
k

i�1
�
ni

j��1
(Yij � Y�i.)

2 � 1.95,

and

SSA � �
k

i�1
ni(Y�i. � Y�..)

2 � 9.70.

Thus the F test is given by

F �

� �
9
1
.
.
7
9
0
5
/
/
2
6

� � 15.15,

which is greater than F(0.05, 2, 6) � 5.14. Hence we can reject the null hypothesis of no
treatment difference, µA � µB � µP at the α � 0.05 level of significance. The analysis of
variance table is summarized in Table 8.4.3.

Since the overall F test rejects the null hypothesis of no treatment differences, we can
compare the test drug A, with the active control agent (i.e., drug B) and the test drug A with
the placebo P by constructing Bonferroni’s simultaneous confidence intervals for µA � µB

and µA � µP. The resulting confidence intervals are given by (�1.32, 0.48) and (1.13,
3.43), respectively (also see Table 8.4.4). Since the simultaneous confidence interval for
µA � µP does not contain 0, it indicates that there is significant difference between the test
drug A and the placebo. On the other hand, there is no significant difference between the
test drug A and the active control agent B because its simultaneous confidence interval con-
tains 0.

SSA(k � 1)
��
SSE�k

i�1
(ni�1)

Table 8.4.2 Pain Relief Scores for Three Treatments

Treatment Pain Relief (Yij) ni Y�i .

Placebo 0.0, 1.0 2 0.50
Drug A 3.1, 2.7, 3.8 3 3.20
Drug B 2.3, 3.5, 2.8, 2.5 4 2.78

Note: 0.0 means no relief from pain.

Source: Wang and Chow (1995).

Table 8.4.3 Analysis of Variance Table for Pain Relief Data

Source of Sum of Mean Sum 
Variation df Squares of Squares F

Treatment 2 9.70 4.85 15.15
Error 6 1.95 0.32
Total 8 11.65
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Two-Way Classification

As discussed in the previous section, clinical trials are often conducted at several sites. The
purpose of a multicenter trial is not only to expedite the patient enrollment but also to con-
firm that the result is reproducible and hence can be generalized to the targeted patient pop-
ulation. However, if there is treatment-by-center interaction, the reproducibility and
generalizability of the result are questionable. In practice, the following two-way classifi-
cation model is considered to test the existence of the treatment-by-center interaction:

Yijk � µ � τi � βj � (τβ )ij � eijk, (8.4.5)

where i � 1, . . . , a, j � 1, . . . , b, k � 1, . . . , n. In the above model τi is the true effect of
the ith treatment, βj is the true effect of the jth center, (τβ )ij denotes the effect of the inter-
action between τi and βj, in and eijk is the random error is observing Yijk. For simplicity,
both treatment and center effects are assumed fixed here. Since the treatment effects are
defined as deviations from the overall mean, we have

�
a

i�1
τi � 0 and �

b

j�1
βj � 0.

Similarly, the interaction effects are fixed and defined so that

�
a

i�1
(τβ )ij ��

b

j�1
(τβ )ij � 0.

Define Y�i.., Y�.j., Y�ij., Y�... as the corresponding treatment, center, treatment-by-center, and
overall sample mean. Then the deviation of an individual observation from the overall
sample mean can be described as

Yijk�Y�... � (Y�i.. � Y�...) � (Y�.j. � Y�...)

� (Y�ij. � Y�i.. � Y�.j. � Y�...) � (Yijk � Y�ij.). (8.4.6)

As a result, the deviation of an individual observation from the overall sample mean is
partly due to differences among the means of the treatments, centers, treatment-by-center,
and partly due to random variation in the measurements. Expression (8.4.6) leads to the
following partitions of sum of squares (SS):

�
a

i�1
�
b

j��1
�
n

k�1
(Yijk � Y�...)

2 � bn �
a

i�1
(Y�i.. � Y�...)

2 � an �
b

j�1
(Y�.j. � Y�...)2

�n �
a

i�1
�
b

j�1
(Y�ij. � Y�i.. � Y�.j. � Y�...)2

� �
a

i�1
�
b

j�1
�
n

k�1
(Yijk � Y�ij.)

2.

Table 8.4.4 Bonferroni’s 95% Simultaneous Confidence Intervals

Contrast 95% Simultaneous Confidence Interval

µA � µB (�1.32, 0.48)
µA � µP (1.13, 3.43)

Source: Wang and Chow (1995).
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The first term on the left-hand side is the total sum of squares and the first two terms on the
right-hand side are sums of squares due to the treatment and the center, denoted by SSA
and SSC, respectively, while the last two terms are sums of squares due to treatment-by-
center and random error, denoted by SS(AC ) and SSE, respectively. Therefore, we have

SST � SSA � SSC � SS(AC) � SSE.

Assuming that treatment and center are fixed, the expected values of the mean squares are
given by

E(MSA) � E ��a
S

�

SA
1

�� � σ2
� ,

E(MSC) � E ��b
S
�

SC
1

�� � σ2 �  ,

E[MS(AC)] � E ��(a �

SS
1
(
)
A
(b

C
�

)
1)

�� � � σ2 � ,

E(MSE) � E ��ab(
S
n
S
�

E
1)

�� � σ 2.

To test the hypotheses H0: τi � 0 (i.e., no treatment effect), H0: βj � 0 (i.e., no center effect),
and H0: (τβ)ij � 0 (i.e., no treatment-by-center interaction), we can divide the corresponding
mean square by mean square error. This ratio will follow an F distribution with appropriate
numerator degrees of freedom and ab(n � 1) denominator degrees of freedom. Table 8.4.5
summarizes the analysis of variance table for the two-way classification fixed model.

8.5 ANALYSIS OF COVARIANCE

In parallel-group clinical trials, patients who meet inclusion and exclusion criteria are ran-
domly assigned to each treatment group. Under the assumption that the targeted patient
population is homogeneous, we can expect that patient characteristics such as age, gender,
and weight are comparable between treatment groups. If the patient population is known to
be heterogeneous in terms of some demographic variables, then a stratified randomization
according to these variables should be applied. At the beginning of the study, clinical data
are usually collected at randomization to establish baseline values. After the administration
of study drug, clinical data are often collected at each visit over the entire course of study.
These clinical data are then analyzed to assess the efficacy and safety of the treatments.

As pointed out earlier, before the analysis of endpoint values, the comparability of
patient characteristics between treatments is usually examined by an analysis of variance if
the variable is continuous. For the analysis of endpoint values, although the technique of
analysis of variance can be directly applied, it is believed the endpoint values are usually
linearly related to the baseline values. Therefore an adjusted analysis of variance should be
considered to account for the baseline values. This adjusted analysis of variance is called
analysis of covariance (ANCOVA).

n�a

i�1�
b

j�1(τβ )2
ij

��(a�1)(b�1)

an�b

j�1β2
j

��b�1

bn�a

i�1τ2
i��

a�1
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Let Xij and Yij be the baseline and endpoint values for the j th patient in the ith treatment
group, where j � 1, . . . , ni and i � 1, . . . , k. To account for the baseline values, model
(8.4.2) can be modified as follows:

Yij � µ � τi � βXij � eij

or

Yij � µ � τi � β(Xij � X�..) � εij. (8.5.1)

Under the above model, the least squares estimators of µ, τi, and β are given by

µ̂ � Y�..,

τ̂i � Y�i.�Y�..� β̂ (X�i.�X�..),

and

β̂ � �E
E

X

X

X

Y
�,

where X�i. and Y�i. denote the sample means of baseline and endpoint for the ith treatment,
respectively, and

EXX � �
k

i�1
�
ni

j�1
(Xij � X�i.)

2,

EXY � �
k

i�1
�
ni

j�1
(Xij � X�i.)(Yij � Y�i.).

To derive a test for the null hypothesis of no treatment difference as described in (8.4.1), we
denote

SXX � �
k

i�1
�
ni

j�1

(Xij � X�..)
2,

SXY � �
k

i�1
�
ni

j�1

(Xij � X�..)(Yij � Y�..),

SYY � �
k

i�1
�
ni

j�1

(Yij � Y�..)
2,

TXX � �
k

i�1
�
ni

j�1

(X�i. � X�..)
2,

TXY � �
k

i�1
�
ni

j�1

(X�i. � X�..)(Y�i. � Y�..),

TYY � �
k

i�1
�
ni

j�1

(Y�i. � Y�..)
2.
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Note that it can be verified that

EXX � SXX � TXX,

EXY � SXY � TXY,

EYY � SYY � TYY.

Therefore, the sum of squares due to treatment and error can be obtained as follows:

SSA � SYY � �S
S

X

X

X

Y
2

� � SSE,

SSE � EYY � �E
E

X

X

X

Y
2

�.

The analysis of covariance table for one-way classification is provided in Table 8.5.1. Under
the null hypothesis of no treatment difference, namely τi � 0 for all i, the test statistic

F ��
SS

S
E
S
/
A
(N

/(
�

k �

k �

1)
1)

�

follows an F distribution with (k � 1, N � k � 1) degrees of freedom, where Σk
i � 1ni.

Therefore we can reject the null hypothesis of no treatment difference if

F � F(α, k � 1, N � k � 1).

Note that if β � 1, then model (8.5.1) reduces to

Yij � µ � τi � Xij � eij

or

Yij � Xij � µ � τi � eij , (8.5.2)

where Yij � Xij denotes the change from the baseline of endpoint for the jth patient in the ith
treatment group. Therefore, we can perform the usual analysis of variance on {Yij� Xij}.
This analysis is known as a change from the baseline analysis of variance.

ANALYSIS OF COVARIANCE 319

Table 8.5.1 Analysis of Covariance

Source of Sum of
Variation Squares df Mean Squares

Regression �
(E
E

X

X

Y

X

)2

� 1

Treatment SSA k � 1 MSA � �
k
S
�

SA
1

�

Error SSE N � k � 1 MSE ��
N �

SS
k
E
� 1

�

Total SST � SYY N � 1

Note: See the text for definitions of sums of squares and cross products.
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In practice, some researchers often include the change from the baseline analysis of
covariance by treating the baseline as a covariate. This leads to the following model:

Yij � Xij � µ � τi � βXij � eij

or

Yij � Xij � µ � τi � β(Xij � X�..) � εij . (8.5.3)

It should be noted that the above model is equivalent to model (8.5.1), since it can be
rewritten as

Yij � µ � τi � β*(Xij � X�..) � εij, (8.5.4)

where β*�1 � β. In other words, under model (8.5.1), we are interested in testing the
hypothesis that H0: β � 0, which is equivalent to testing the hypothesis that H0: β* � 1
under model (8.5.4).

8.6 NONPARAMETRICS

In the previous section, the statistical inferences derived from the analysis of variance or the
analysis of covariance are primarily based on the normality assumption of random errors. In
practice, the normality assumption is usually not met. In this case the validity of the statisti-
cal inference drawn is questionable. As an alternative, we may consider using the method of
nonparametrics to draw a statistical inference. In other words, no distribution assumptions
are imposed. In this section, for illustration purposes, we will focus on the Wilcoxon signed
rank test for one sample and rank sum test for shift in location due to treatment between two
populations. This concept is also extended to derive the Kruskal-Wallis test for comparing 
k treatment groups. Distribution-free tests for other complicated design situations will not be
covered in this section. However, the details of these tests can be found in Hollander and
Wolfe (1973) and Lehmann (1975).

Wilcoxon Signed Rank Test

Let YBi and YEi be the response of the ith patient at baseline and endpoint, respectively,
where i �1, . . . , n. Suppose that one of the study objectives is to show that there is a sig-
nificant difference between pre- and post-treatment in patient’s response. A nonparametric
approach for this purpose is to consider the model

Di � θ � ei , i �1, . . . , n,

where Di � YEi � YBi, θ is the unknown treatment effect, and ei are random errors which
are assumed to be mutually independent and symmetric about zero. To test the null hypoth-
esis of no treatment effect,

H0: θ � 0,

320 ANALYSIS OF CONTINUOUS DATA
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we may consider the following distribution-free signed rank test. First, form the absolute
differences �Di�, i �1, . . . , n, and let Ri denote the rank of �Di� in the joint ranking from the
least to the greatest of �D1�, . . . , �Dn�. Define

ψi � �
We then reject the null hypothesis at the α level of significance if

T� � t(α2, n) or T� � �
n(n

2
� 1)
�� t(α1, n),

where

T� � �
n

i�1

Riψi

and the constant t(α, n) satisfies the equation

P{T� � t(α, n)} � α.

Note that the values of t(α, n) are given in Appendix A.6. The above distribution-free
signed rank test is usually referred to as a Wilcoxon signed rank test. Under the null
hypothesis, the statistic

T* ��
T�

v
�

ar(
�
E
T

(
�

T
)

�)
��

has an asymptotic standard normal distribution where

E(T�) ��
n(n

4
� 1)
�

and

var(T�) ��
n(n � 1

2
)(
4
2n � 1)
�.

As a result, we may reject the null hypothesis for large samples if

�T*� � Z(α /2).

When there are ties, we can replace var(T�) with the following

var(T�) � �
2
1
4
� n(n � 1)(2n � 1) � �

1
2

� �
g

j�1
tj(tj � 1)(tj � 1)�,

where g is the number of tied groups and tj is the size of the tied group j.

Wilcoxon Rank Sum Test

A distribution-free approach can also be applied to test whether there is a significant dif-
ference between two treatments. Let {Y1i, i � 1, . . . , m} and {Y2i, i �1, . . . , n} be two 

if Di � 0,

if Di � 0.

1

0
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random samples from population 1 and population 2, respectively. Consider the model

Y1i � ei , i �1, . . . , m,

and

Y2j � em � j � ∆, j � 1, . . . , n,

where ∆ denotes the unknown shift in location due to the treatment. In other words, the
null hypothesis of no treatment difference can be formulated as

H0: ∆ � 0,

vs. Ha: ∆ 	 0.

To derive a distribution-free test for the above null hypothesis, we assume that ei, i �
1, . . . , n � m are identically distributed and are mutually independent. The Wilcoxon rank
sum test can be summarized as follows: First, we order the N � n � m observations from
the smallest to the largest and let Rj denote the rank of Y2 j in this order. Then we let

R � �
n

i�1

Rj.

then, the Wilcoxon–Mann–Whitney test statistic is given by

W � R ��
n(n

2
� 1)
�

Thus, the statistic W is the sum of the ranks assigned to the Y2 j’s centered by n(n�1)/2
which follows a distribution symmetric about nm/2. As a result it can be verified that

w(1 � α, m, n) � nm � w(α, m, n),

where the constant w(α, m, n) satisfies

P{W � w(α, m,n)} � α.

Note that values of w(α, m, n) are given in Appendix A.5 which gives the critical values in
the Mann-Whitney form of Wilcoxon rank sum statistic, that is, W � n(n � 1)/2.

Based on the statistic W, we can reject the null hypothesis of no treatment difference at
the α level of significance if

W � w(α2, m, n) or W � [nm�w(α1, m, n)],

where α � α1�α2. For a one-sided test, we reject Ha: ∆ � 0 if

W � w(α, m, n),

and reject Ha: ∆ � 0 if

W � nm � w(α, m, n),
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at the α level of significance. Note that when there are ties among the N observations, W
must be calculated based on average ranks.

For large samples, by the Central Limit Theorem, the test statistic

W* � �
W
[va

�

r(W
E(

)
W
]1/

)
2�

has an asymptotic standard normal distribution as min(m, n) tends to infinity, where E(W)
and var(W) are the expected value and variance of W, which are given by

E(W) � �
n
2
m
�,

var(W) ��
mn(m �

12
n � 1)
�.

Therefore, we can reject the null hypothesis of no shift in location due to treatment at the α
level of significance if

�W*� � Z(α /2).

In the case where there are ties, we can replace var(W) with

s2 � �
m
12

n
� m � n � 1 � �,

where g is the number of tied groups and tj is the size of tied group j (Hollander and Wolfe,
1973). Note that an united observation is considered to be a tied group of size 1.

To illustrate the application of the Wilcoxon rank sum test, consider a clinical trial com-
paring the safety and efficacy of three drugs (A, B, and C) in the treatment of acute sinusi-
tis in adults. This trial was a multicenter parallel-group randomized study. A ten-point
assessment questionnaire (TAQ) is used to capture the improvement of signs and symp-
toms. The set of TAQ consists of ten questions. Each question is intended to capture the
improvement of a specific symptom. A list of the ten symptoms is given in Table 8.6.1. For
each question a score of 0 represents absence and a score 2 indicates presence. Table 8.6.2
lists partial data of the total TAQ scores over the ten questions at the baseline. Based on
data given in Table 8.6.2, pairwise comparisons can be made using a Wilcoxon rank sum

�g

j�1
tj(tj

2 � 1)
���(m � n)(m � n � 1)
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Table 8.6.1 Ten Symptoms in TAQ

Item Symptom

1 Fever
2 Nasal discharge
3 Nasal congestion
4 Cough
5 Headache
6 Facial pain
7 Facial swelling
8 Reduced activity
9 Impaired sleep

10 Impaired appetite
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test. The results are summarized below:

A versus B: W1 � �n
j�1 R1j � 55 � 134 � 55 � 79,

A versus C: W2 � �n
j�1 R2j � 55 � 112 � 55 � 57,

B versus C: W3 � �n
j�1 R3j � 55 � 85 � 55 � 30

where Wi denotes the sum of the ranks assigned to the Y’s for the ith comparison. Since
w(0.975,10,10) � (10)(10) � w(0.025,10,10) � 100 � 24 � 76, W1 is the only test that
is greater than w(0.975, 10, 10). Therefore, we reject the null hypothesis of no difference
between treatments A and B. There are no significant differences between treatments A and
C and between treatments B and C. Note that a normal approximation gives

A versus B: s1 � 76, W* � �2.21, p � 0.027,

A versus C: s2 � 98, W* � �0.51, p � 0.610,

B versus C: s3 � 125, W* � 1.49, p � 0.135.

324 ANALYSIS OF CONTINUOUS DATA

Table 8.6.2 TAQ Scores

Subject Rank of
Treatment Number TAQ Score TAQ Score

A 121 6 1.0
A 169 14 15.5
A 521 8 3.0
A 522 12 9.0
A 526 14 15.5
A 527 14 15.5
A 529 14 15.5
A 531 16 22.5
A 569 14 15.5
A 571 10 6.0
B 525 20 29.0
B 528 16 22.5
B 530 12 9.0
B 532 14 15.5
B 533 12 9.0
B 570 16 22.5
B 572 14 15.0
B 575 18 26.0
B 576 18 26.0
B 577 20 29.0
C 289 8 3.0
C 523 16 22.5
C 524 8 3.0
C 573 20 29.0
C 574 18 26.0
C 689 10 6.0
C 690 14 15.5
C 693 10 6.0
C 694 14 15.5
C 697 14 15.5
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Hence, the normal approximation also indicates that there is a significant difference
between treatments A and B.

Kruskal-Wallis Test

When there are more than two treatments to compare, a similar idea can be carried out to
derive a test for the following hypothesis

H0: µ1 � µ2 � . . . � µk.

Let Yij be the observation for the jth patient in the ith treatment group. Consider model
(8.4.2) repeated below:

Yij � µ �τi � eij , j �1, . . . , ni , i � 1, . . . , k.

We first rank all N � Σk
i�1 ni observations jointly, from the least to the greatest. Let rij be

the rank of Yij in this joint ranking. Also, for i � 1, . . . , k, denote

Ri � �
ni

j�1

rij , R�i � �
R
ni

i
� , and R� � �

N �
2

1
�.

then the test statistic

H � �
N(N

12
� 1)
� �

k

i�1
ni(R�i � R�)2

� ��N(N
12
� 1)
� �

k

i�1
�� 3(N � 1)

can be used to test the null hypothesis of no treatment differences. We reject the null
hypothesis at the α level of significance if

H � h(α, k, (n1, n2, . . . , nk)),

where the constant h(α, k, (n1, n2, . . . , nk)) satisfies

P{H � h(α, k, (n1, n2, . . . , nk))} � α.

The values of h(α, k, (n1, n2, . . . , nk)) can be found in Iman, Quade, and Alexander (1975).
Note that when there are ties, H should be calculated based on the average ranks.

When min{n1, . . . , nk} tends to infinity, H is approximately distributed as a χ2 distribu-
tion with k �1 degrees of freedom. Therefore, for large samples we reject the null hypoth-
esis of no treatment differences if

H � χ2(α, k � 1),

where χ2(α, k � 1) is the upper α percentile of a χ2 distribution with k � 1 degrees of free-
dom. When there are ties, we replace H with H* as follows:

H* ��1 �� ��
�1

H,

where ti and g are defined as before.

�g

i�1(t
3
i �ti)��

N3�N

R�i
2

�ni
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To illustrate the application of Kruskal-Wallis test for comparing k treatments, consider
the example concerning total TAQ scores described earlier. From 8.6.2, the Kruskal-Wallis
test statistic can be easily obtained as

H � ��N(N
12
� 1)
� �

k

i�1
�
R�
n

i

i

2

��� 3(N � 1) � 5.215,

which is approximately χ2 distributed with 2 degrees of freedom. Therefore we fail to
reject the null hypothesis of no treatment differences at the 5% level of significance level
since the observed p-value is given by 0.074.

8.7 REPEATED MEASURES

In clinical trials multiple assessments of a response variable are often performed at various
time points (visits) from each of the patients under study. As a result the collected clinical
data set may consist of repeated observations and a set of covariates (e.g., time and some
patient characteristics) for each of the patients. This type of data is usually referred to as
longitudinal data.

In many clinical trials, repeated observations after the administration of drug products
are necessarily obtained to assess the efficacy and safety of the drug products under study.
The objectives of repeated measures are (1) to determine whether the optimal therapeutic
effect has been reached, (2) to determine whether a dose titration is necessary for good
clinical practice, (3) to monitor the progress and/or health-related quality of life of patients
with chronic diseases such as cancer, or (4) to study the behavior of the study drug over
time (or to detect whether a potential pattern or trend in time exists).

In practice, different statistical models can be applied to address the above objectives
under different model assumptions. In this section we will introduce some commonly used
statistical models for the analysis of repeated measures in clinical trials. These models
include the usual analysis of variance models for assessment of overall average drug effect
across time points, for detection of time (visit) effect, and for determination of treatment-
by-time effect and the method of generalized estimating equations (GEE) proposed by
Zeger and Liang (1986) and Liang and Zeger (1986).

Assessment of Overall Average Effect Across Time

In clinical trials, the ultimate goal is to determine whether there is a drug effect in terms of
efficacy and safety of the drug product under study. Repeated measures occur in each
patient. For simplicity, we may consider the visit as nested within the patient. Then a
nested model can be used to assess the overall average drug effect across time points 
(visits). Let Yijk be the observation from the kth visit for the jth patient who is in the ith
treatment group, where i �1, . . . , a, j �1, . . . , n, and k �1, . . . , m. The nested model
used to describe Yijk is

Yijk � µ �τi �Pj(i) � eijk, (8.7.1)

where µ is the overall mean, τi and Pj(i) denote the fixed effect of the ith treatment and the
effect due to the jth patient within the ith treatment, respectively, and eijk is the random
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error in observing Yijk. It is assumed that eijk are independent and identically normally dis-
tributed with mean 0 and variance σ2. Note that in the complete randomized design, Pj(i) is
often expressed as

Pj (i) � Pj � (AP)ij,

where Pj and (AP)ij denote the effect due to the jth patient and the effect of the interaction
between the jth patient and the ith treatment.

Similarly under model (8.7.1) the deviation of an individual observation from the over-
all sample mean can be partitioned as follows:

Yijk � Y�... � (Y�i.. � Y�...) � (Y�ij. � Y�i..) � (Yijk � Y�ij).

Therefore we have

SST � SSA � SSP(A) � SSE,

where SSA, SSP(A), and SSE denote sum of squares due to treatment, patient within treat-
ment, and error, respectively, with associated degrees of freedoms given as

(anm � 1) � (a � 1) � a(n � 1) � an(m � 1).

As usual, dividing the sum of squares of error by its corresponding degrees of freedom
gives the mean squares. The analysis of variance table of model (8.7.1) is given in 
Table 8.7.1.

It can be seen from Table 8.7.1 that under the normality assumption, the test statistic

FA ��
SS

S
E
S
/
A
[a

/
n
�
(a
(m

�

�

1)
1)]

�

is distributed as an F distribution with (a � 1, an(m � 1)) degrees of freedom. Therefore,
we reject the null hypothesis of no treatment difference; that is, H0: τi � 0, for all i if

FA � F[α, a � 1, an(m � 1)].

Similarly, the effect due to patient within treatment can also be tested by

FP(A) ��
S
S
S
S
P
E
(
/
A
[a
)/
n
[a
(m
(n

�

�

1
1
)
)
]
]

�

which has an F distribution with [a(n � 1), an(m � 1)] degrees of freedom. Note that if
there is a significant difference effect due to the patients within treatment, it indicates that 
the responses to treatment are not consistent from patient to patient. To further investigate
the response of each patient, one might examine the patient means within each treatment
based on the Newmann-Keuls range test (Keuls, 1952).

Detection of Time Effect

It is clear that model (8.7.1) does not provide any information regarding the effect due to
time or visit. To examine whether there is a significant effect due to visit, we may further
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partition the residual sum of squares from model (8.7.1) into sum of squares due to visit
and sum of squares due to error. Therefore, model (8.7.1) can be modified as

Yijk � µ � τi � Pj(i) �Vk � εijk, (8.7.2)

where µ, τi, and Pj(i) are as defined in model (8.7.1), Vk denotes the effect due to the kth
visit (or assessment) and εijk�eijk�Vk. Similarly, we can partition the deviation of an indi-
vidual observation from the overall sample mean as

Yijk� Y�... � (Y�i.. � Y�...) � (Y�ij. � Y�i...) � (Y�..k � Y�...)

� (Yijk � Y�ij. � Y�..k � Y�...).

Therefore, we have

SST � SSA � SSP(A) � SSV � SSE,

where SSV denotes the sum of squares due to visit. The associated degrees of freedoms are

(anm � 1) � (a � 1) � a(n � 1) � (m � 1) � (an � 1)(m � 1).

As usual, dividing each independent sum of squares by its corresponding degrees of freedom
gives the mean squares. The analysis of variance table of model (8.7.2) is given in Table 8.7.2.

As can be seen from Table 8.7.2, under the normality assumption, the test statistic

FV �

is distributed as an F distribution with [m � 1, (an � 1)(m � 1)] degrees of freedom. There-
fore, we reject the following null hypothesis:

H0: υ1 � υ2 � . . . � υm,

where υk, k �1, . . . , m, denote the mean of the kth visit.
If there is a time effect, we can use appropriate contrasts to test whether there is a linear

or quadratic trend over time. Alternatively, we can consider time as a covariate and fit a
least squares slope through each patient’s data points. Then we can perform the usual
analysis of variance based on these slopes by treating the slope as an outcome measure.
Note that the analysis based on slopes for longitudinal lung function data is satisfactory.

Treatment-by-Time Interaction

In model (8.7.2) we consider the visit (or time) as a class variable and perform an analysis
of variance to test to see whether there is a time effect. For simplicity, we assume that the
effect due to the patient is fixed and that there is no treatment-by-time interaction. In many
clinical trials, the responses of the patients are expected to vary from one to another. To
account for between-patient variability and to test for possible treatment-by-time interac-
tion, the following model is useful:

Yijk � µ �τi � Pj(i) � Vk � (τV)ik � εijk, (8.7.3)

SSV/(m � 1)
���
SSE/(an � 1)(m � 1)
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where µ, τi, Vk, and εijk are as defined in model (8.7.2), Pj (i) is the random effect of the jth
patient within the ith treatment, and (τV)ik denotes the effect due to the interaction between
the ith treatment and the kth visit (or assessment). It is assumed that Pj (i) are i.i.d. normal
with mean 0 and variance σ 2

S, which are mutually independent of εijk. Similarly, we can par-
tition the deviation of an individual observation from the overall sample mean as follows:

Yijk � Y�... � (Y�i.. � Y�...) � (Y�ij. � YY�i..) � (Y�..k � Y�...)

� (Y�i.k � Y�i.. � Y�..k � Y�...) � (Yijk � Y�ij. � Y�i.k � Y�i..).

Therefore, we have

SST � SSA � SSP(A) � SSV � SS(AV) � SSE,

where SS(AV) denotes the sum of squares due to the interaction between treatment and
visit. The associated degrees of freedoms are

(anm �1) � (a �1) � a(n �1) � (m �1) � (a �1)(m �1) � a(n �1)(m �1).

The analysis of variance table of model (8.7.3) is given in Table 8.7.3. To test the hypothe-
ses of interest, we can divide the corresponding mean square by mean square error. This
ratio will follow an F distribution with appropriate numerator degrees of freedom and
denominator degrees of freedom. For example, we can reject H0: τi � 0 for all i (i.e., no
treatment effect) if

FA ��
SSP

S
(
S
A
A
)/
/
[
(
a
a
(
�

n �

1)
1)]

�� F[α, a � 1, a(n � 1)],

where F[α, a�1, a(n�1)] is the upper α th quantile of an F distribution with [(a�1),
a(n�1)] degrees of freedom. Similarly, we would reject H0: (τV)ik� 0 (i.e., no treatment-
by-visit interaction) if

FAV �

� F[α, (n � 1)(m � 1), a (n � 1)(m � 1)].

Note that an overall assessment of the average drug effect across visits is possible if the
treatment-by-visit interaction is not qualitatively significant. When an interaction between
treatment and visit is observed, it indicates that the differences in treatment are not consistent
across visits. This inconsistency may be caused by (1) the fact that the time to reach optimal
therapeutic effect varies from one drug to another, (2) the dose titration procedure (if any) is
not done adequately, or (3) the disease status of the patients change over time. In this case it
is suggested that the time effect or pattern be carefully evaluated in order to make valid sta-
tistical inference regarding the efficacy of the drug under study.

Method of Generalized Estimating Equations (GEE)

Thus far we have discussed several linear models for assessing (1) overall average drug effect
across time points, (2) the detection of time effect, and (3) the effect due to treatment-by-time
interaction in clinical trials with repeated measures. The primary assumptions of these linear

SS(AV)/[(n � 1)(m � 1)]
���

SSE/[a(n � 1)(m � 1)]
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models are (1) the outcome follows a normal distribution, (2) the outcome does not vary
across time and/or across subjects, and (3) repeated observations are independent. Note that
with independent observations, generalized linear models (GLMs) can be extended for
time-dependent data in a variety of ways (McCullagh and Nelder, 1983). In addition, the 
parameters in a GLM can also be assumed to vary across time as a stochastic process and/or
across subjects according to a mixing distribution (Zeger and Qaqish, 1988). More recently
Vonesh and Chinchilli (1997) provide a comprehensive review of the various methods for
analyzing repeated measurements.

In clinical trials, however, the outcome may not follow a normal distribution and may vary
across time and/or across subjects. In addition, repeated outcomes for one individual are usu-
ally correlated with one another. Hence, to obtain a valid statistical inference, the analysis of
longitudinal data must take into account for the correlation among repeated observations
within each subject. Failure to account for the correlation may result in inefficient estimates
of the parameters and/or inconsistent estimates with respect to precision across subjects. As a
result, the issue of correlation among repeated observations for a subject provides a challenge
for analysis of longitudinal data.

To account for the correlation among a subject’s repeated observations, Zeger and Liang
(1992) and Diggle, Liang, and Zeger (1994) point out that the following three basic models
are useful: marginal, transition, and random effects models. For a marginal model, the
regression coefficients for the clinical response on covariates and the structure of the intra-
subject correlation are modeled separately. The marginal expectation which is referred to as
the average response over a particular stratum with the common values of covariates being
a function of the explanatory variables. The regression coefficients in the marginal model
hence have the same interpretation as those obtained from a cross-sectional analysis. The
variance in the marginal model is the product of a variance function of the marginal mean
and a scale parameter. The intrasubject correlation at two different time points is also a
function of marginal means at the two time points and possible additional parameters. The
approach of transition models tries to model both regression and intrasubject correlation
simultaneously. Hence, a common equation includes, on the same scale, both unknown 
parameters for the dependence of the clinical endpoints on explanatory variables and for the
intrasubject correlation. The transition model then assumes that the conditioned expectation
at a particular time point is a function of covariates and the proceeding responses. Conse-
quently the prior responses are treated as explicit predictors the same way as any other
explanatory variables. The concept of a random effects model is to consider subjects
enrolled in the study as a representative random sample from the targeted population. As a
result, the regression coefficients of a subject in the trial is also a random vector that is
assumed to follow a probability distribution. Ware et al. (1988) discuss the conceptual and
technical differences between the marginal and transition models.

Zeger and Liang (1986) and Liang and Zeger (1986) propose a method using either the
marginal or transition model in conjunction with the quasi-likelihood approach (McMullagh
and Nelder, 1983; Wedderburn, 1974) in order to obtain consistent estimates of the param-
eters and their corresponding variances under rather weak assumptions on the correlation
among a subject’s repeated observations. This method is known as the generalized esti-
mating equations (GEE). Under some assumptions for the first two moments of the joint
distribution of correlated clinical responses, the regression coefficients, including the treat-
ment effects and the correlation parameter, can be estimated consistently by solving a mul-
tivariate analogue of the quasi-score function without invoking an intractable likelihood
with many nuisance parameters.

REPEATED MEASURES 333

c08.qxd  27.10.03  13:02  Page 333



The quasi-likelihood approach is a regression methodology that requires few assump-
tions about the distribution of the dependent variable, and hence it can be used with a vari-
ety of outcomes. The quasi-likelihood approach is usually applied to the marginal model,
which describes the relationship between the outcome and a set of explanatory variables,
in order to obtain estimating equations of the parameters of interest. Based on the estimat-
ing equations, consistent estimates of the parameters and their corresponding variances can
be obtained.

Let Yit be the observation of the ith subject observed at time t, where t �1, . . . , ni. Also,
let Xit be a p � 1 vector of explanatory variables (or covariates) related to Yit. These
explanatory variables could be patient characteristics such as age and gender or time (visit).
The marginal model relates the marginal expectation of Yit with respect to Xit by

g(µit) � X�it β,

where g is a known link function, µit�E(Yit), and β is a p � 1 vector of unknown parame-
ters. It is also assumed that the marginal variance of Yit is a function of the marginal mean:

var(Yit) � υ(µit)φ,

where υ is a known function and φ is the overdispersion parameter that accounts for the
variation of Yit not explained by υ(µit). In addition, the covariance between Yis and Yit, s �
t � 1, . . . , ni, is assumed to be a function of the marginal means and additional parameter η:

cov(Yis, Yit) � c(µis, µit, η),

where c is a known function and η is a s � 1 vector of unknown parameters that measures
the within-subject correlation. Note that the estimate of β is often used to describe how the
averaged response (rather than one subject’s response) changes with respect to the covari-
ates. Based on the above assumptions, the consistent estimator (or quasi-likelihood estima-
tor) is the solution of the following scorelike estimating equation system.

�
K

i�1
D�i V�1

i     Si � 0,

where

Si � Yi � µ i

Di � �
∂
∂
µ
β

i
�

with Yi � (Yi1, . . . , Yini)� and µi � (µi1, . . . , µini)� and

Vi ��
A1/2

i Ri

φ
(η)A1/2

i
�,

in which Ai is an ni � ni diagonal matrix with g(µij) as the j th diagonal element and Ri(η)
is the ni � ni working correlation matrix for each Yi. Note that we do not expect Ri(η) to be
correctly specified. The GEE method provides consistent estimates even when Ri(η) is
incorrect.
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Zeger and Liang (1992) indicate that the GEE method enjoys at least three useful 
properties. First of all, the estimated regression coefficients are nearly as efficient as the
maximum likelihood estimates for most clinical trials. Second, despite a possible misspeci-
fication of the covariance structure for the correlated clinical responses, the estimates for
regression coefficients are still consistent if the sample size is sufficiently large. Finally, the
statistical inference of the regression coefficients will generally not be influenced by the
covariance matrix of the clinical responses as long as the robust estimated covariance matrix
of the regression coefficient estimates suggested by Liang and Zeger (1986) is used.

Example 8.7.1 For illustration purposes, consider a clinical trial that compares the effect of
gender on the distance (in millimeters) from the center of the pituitary to the pterygomaxillary
fissure. Table 8.7.4 lists measurements obtained from 20 children (10 girls and 10 boys) at
ages of 8, 10, 12, and 14. Figure 8.7.1 plots the mean distances at ages of 8, 10, 12, and 14;
and the plot suggests that there is a significant difference between boys and girls. To assess 
the overall average effect, age effect, and gender-by-age interaction, we consider models
(8.7.1)–(8.7.3). The analyses of variance results are summarized in Table 8.7.5. From 
Table 8.7.3 it can be seen that there is a marginally significant gender-by-age interaction 
(p-value � 0.06). This quantitative interaction, however, does not involve the analysis by
pooling data across ages (see also Figure 8.7.1). Model (8.7.1) provides an overall assessment
of the gender effect. The result indicates that there is a significant difference between boys
and girls (p-value � 0.01). In addition model (8.7.2) reveals that there is an age effect. To
further compare the age effect between boys and girls, we can try to fit the linear regression
for all boys and all girls and then perform an analysis of variance on the estimated slopes.
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Table 8.7.4 Measurements on 10 Girls and 10 Boys at 4 Different Ages

Age in Years

Gender Subject 8 10 12 14

Girl 1 22.130 21.100 22.645 24.190
2 22.130 22.645 25.220 26.765
3 21.615 25.220 25.735 27.280
4 24.705 25.735 26.250 27.795
5 22.645 24.190 23.675 24.705
6 21.100 22.130 22.130 23.675
7 22.645 23.675 24.190 26.250
8 24.190 24.190 24.705 25.220
9 21.100 22.130 23.160 22.645

10 17.495 20.070 20.070 20.585
Boy 1 27.280 26.250 30.370 32.430

2 22.645 23.675 24.190 27.795
3 24.190 23.675 25.220 28.825
4 26.765 28.825 27.795 28.310
5 21.100 24.705 23.675 27.280
6 25.735 26.765 28.310 29.855
7 23.160 23.160 25.735 27.795
8 25.220 22.645 25.735 26.765
9 24.190 21.615 32.430 27.280

10 28.825 29.340 32.430 32.945
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As described in this section, the major disadvantage of the analysis of variance models
(8.7.1)–(8.7.3) is that they assume that the measurements within each subject are indepen-
dent. To account for the correlation among measurements within each subject, the method
of GEE is also considered. To enhance efficiency of the estimate, the following working
correlation structure helps describe the correlation between observations within a subject

 �.

The estimates, standard errors, and Z-scores obtained by the method of GEE are summa-
rized in Table 8.7.6. In Table 8.7.6 all of the parameters are statistically significant

1.00 0.687 0.687 0.687
0.687 1.000 0.687 0.687
0.687 0.687 1.000 0.687
0.687 0.687 0.687 1.000
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Figure 8.7.1 Mean distances from the pituitary to the pteryomaxillary fissure in boys and girls.

Table 8.7.5 Analyses of Variance for Data in Table 8.7.4

Source of Sum of
Model Objective Variation df Squares F p-Value

8.7.1 Overall average Gender 1 202.26 48.05 �0.01
effect Subject (gender) 18 297.48 3.93 �0.01

8.7.2 Age effect Gender 1 202.26 110.35 �0.01
Subject (gender) 18 297.48 9.02 �0.01
Age 3 148.09 26.93 �0.01

8.7.3 Gender-by-age Gender 1 202.26 119.76 �0.01
effect Subject (gender) 18 297.48 9.79 �0.01

Age 3 148.09 29.23 �0.01
Gender-by-age 3 13.27 2.62 0.06
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except for A3 (with Z-score � 1.73), (GA)1 (with Z-score � 1.73), and (GA)3 (with Z-
score � 0.26).

8.8 DISCUSSION

As was indicated earlier, a two-sample t test is useful in comparing two treatment
means and an F test can be applied to compare k treatments. There is relationship
between the t test statistic and the F test statistic when k � 2. That is, t2 � F. In other
words, the F test reduces to the two-sample t test when there are only two groups eval-
uated in a clinical trial.

For nonparametric analysis the Wilcoxon rank sum test and the Kruskal-Wallis test are
fairly robust against outliers because they are based on ranks (or relative order) rather than
absolute difference of the raw data. Both Wilcoxon rank sum test and Kruskal-Wallis test
can also be obtained by replacing the raw data with their corresponding ranks in the t test
and sum of squares for treatment (i.e., SSA) in a one-way analysis of variance.

For the GEE method, the principal distinction between the marginal model and random
effects model is whether the regression coefficients describe an individual’s change or an
average response change with respect to the covariates. As a result, Zeger, Liang, and Albert
(1988) classify these two approaches as population-average (marginal) and subject-specific
(random effects) models. The population-average approach describes how the average res-
ponse across subjects changes with covariates, while the subject-specific method accounts
for the heterogeneity among subjects to estimate subject-specific coefficients. In addition to
the GEE method for the analysis of longitudinal data in clinical trials, there are others dis-
cussed in the literature. For example, Grizzle and Allen (1969) and Hui (1984) consider
fitting growth curves to repeated observations for each subject. When there are missing
and/or unequally spaced examinations, Rosner and Munoz (1988) suggest that an autore-
gressive model be used.

The traditional approach to repeated measurements in clinical trials is to perform an
analysis of variance at the last visit. This method is usually referred to as endpoint analysis
or last observation carried forward (LOCF) analysis. The result is compared with those
obtained by the analyses of variance performed at each visit. If the results from the analy-
sis at each visit are consistent with the endpoint analysis, then an overall conclusion on the
treatment effect is drawn. However, if there is a significant difference among visits and/or
the last visit, then a further analysis is performed to determine whether there is a pattern
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Table 8.7.6 Estimates, Standard Errors, and Z-Scores from the Method of GEE

Parameter Estimate se Naive se Robust Z Robust

Intercept 28.928 0.697 0.651 44.46
Gender �4.017 0.986 0.936 �4.29
Age

A1 �4.017 0.551 0.459 �8.74
A2 �3.863 0.551 0.570 �6.78
A3 �1.339 0.551 0.775 �1.73

Gender*Age
(GA)1 1.082 0.780 0.626 1.73
(GA)2 2.060 0.780 0.677 3.04
(GA)3 0.206 0.780 0.808 0.26
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and/or trend over time. Note that a discussion regarding the validity of the LOCF analysis
in clinical trials can be found in Cheng and Chow (2003).

A commonly encountered problem in clinical trials with repeated measures is missing
data. In general, missing data may have two causes. On one hand, subjects may withdraw
prematurely from the study at a post-treatment time point. These subjects are referred to as
dropouts. As a result the data scheduled to be collected since the last visit would be com-
pletely missing. On the other hand, subjects might be lost to follow-up at a scheduled visit.
However, they may return either on another unscheduled date or on the next scheduled
visit. These subjects may or may not complete the study. Diggle et al. (1994) refer to those
missing values due to the missed visits as intermittently missing values. Several methods
have been proposed that assume the missing values to occur at random within treatment
groups. See, for example, Crépeau et al. (1985), Diggle (1988, 1989), Kenward (1987),
and Ridout (1991). In clinical trials it is suggested that the dropout rates and missing pat-
terns across all visits be compared between treatments. If there is a discrepancy in dropout
rates or a missing pattern, it is crucial to investigate whether a response-dependence or
treatment-related problem has occurred (see also Chow and Shao, 2002a).
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9
ANALYSIS OF CATEGORICAL DATA

9.1 INTRODUCTION

For the assessment of the effectiveness and safety of an investigational pharmaceutical entity,
ideally the scale for the primary clinical endpoint should be numerically continuous to pro-
vide an accurate and reliable assessment. In practice, however, it is impossible, or can be
extremely expensive, to measure responses quantitatively. On the other hand, patients’
responses to treatments can be easily documented according to the occurrence of some
meaningful and well-defined event such as death, infection, or cure of a certain disease and
any serious adverse events. In addition the intensity of these events can be graded according
to some predefined categories. Therefore categorical data can be useful surrogate endpoints
for some unobserved latent continuous variables in clinical trials. Sometimes, to provide an
easy analysis and/or a better presentation of the results, continuous data are transformed to
categorical data with respect to some predefined criteria. As a result many efficacy and safety
endpoints in clinical trials are in the form of categorical data on either a nominal or ordinal
scale. In this section we introduce the concept and methodology for analysis of categorical
data through some real examples from published results of clinical trials. The first example
concerns the U.S. Physicians’ Health Study on the prevention of cardiovascular mortality and
fatal and nonfatal myocardial infarction with a low dose of aspirin (325 mg on alternate
days). Another primary goal of the U.S. Physicians’ Study was to investigate the impact 
of long-term supplementation with beta carotene (50 mg on alternate day) on the incidence of
malignant neoplasm and cardiovascular disease. Table 9.1.1 shows the number of subjects of
malignant neoplasms for the treatment assignment of the beta carotene component (Hen-
nekens et al., 1996). As can be seen in Table 9.1.1, the subjects were classified into two cate-
gories according to the occurrence of malignant neoplasm over an average of 12 years of

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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treatment and follow-up. A clinical endpoint of this kind is referred to as a binary response
on a nominal scale with two categories.

The next example is from a parallel-group, randomized, double-blind, placebo-
controlled trial conducted by the U.S. National Institute of Neurological Disorders and
Stroke (NINDS) to investigate the efficacy and safety of intravenous recombinant tissue
plasminogen activator (rt-PA) for ischemic stroke. This study consisted of two parts. The
first part was to examine the clinical activity of rt-PA in terms of early clinical improve-
ment as compared to the placebo. For the second part, the primary hypothesis of interest
was if there was a consistent and persuasive difference between the rt-PA and placebo
groups in terms of the proportion of patients who recovered with minimal or no deficit
three months after treatment. In addition to the study center, stratified randomization was
performed according to time from the onset of stroke to the start of treatment (0 to 90 or 91
to 180 minutes). One of the primary clinical efficacy endpoints was early clinical improve-
ment, which is defined as at least a four-point improvement from the baseline values in
National Institutes of Health Stroke Scale (NIHSS) score or a resolution of the neurologi-
cal deficit 24 hours after the onset of stroke. Hence, the subjects of this study are also clas-
sified into two groups based on the defined clinical endpoint, namely those with the
defined clinical improvement and those without. The defined clinical improvement is a
binary response. However, unlike the occurrence of malignant neoplasm in the U.S. Physi-
cians’ Study, it is a composite clinical index derived from changes of other endpoints over
the entire course of treatment. Table 9.1.2 relates the number of subjects with clinical
improvement by study part and time.

In order to provide an objective, scientific, and clinically meaningful assessment of
efficacy in the therapy for benign prostatic hyperplasia (BPH), the American Urological
Association developed and validated a symptom index for BPH which is the sum of scores
over seven individual symptoms. This symptom index is usually referred to as the AUA-7
symptom score. Table 9.1.3 lists the seven questionnaires associated with these symptom
indexes. Each question in the AUA-7 symptom score consists of six categories, which are
arranged in a monotone increasing order. This type of categorical data is said to be in the
ordinal scale and is sometimes referred to as ordered categorical data. The results of the ini-
tial question 4 on frequency in the validation of discrimination between the BPH patients
from the controls are displayed in Table 9.1.4. Another example of the use of the ordered
categorical data is to evaluate efficacy and safety of a newly developed contrast agent in
conjection with magnetic resonance imaging for diagnosis of malignant liver lesions. The
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Table 9.1.1 Number of Subjects With Malignant Neoplasms
in the Beta Carotene Component of the U.S. Physician’s
Health Study

Malignant Neoplasm Beta Carotene Placebo

N 11,036 11,035
Yes 1273 1293

Year 1–2 120 130
Year 3–4 157 136
Year 5–9 500 567
�10 years 496 460

No 9763 9742

Source: Hennekens et al. (1996).
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primary diagnostic efficacy endpoint is the change in diagnostic confidence compared to
precontrast MRI scan. This endpoint consists of a total of six categories on the ordinal scale:
worsened, unchanged, minimal improvement, moderate improvement, good improvement,
and excellent improvement. Table 9.1.5 provides the summary of change in diagnostic con-
fidence by treatment group and gender from a hypothetical dataset.

The time-response profile is critical in the assessment of a new proposed therapy for the
treatment of a certain illness. Evaluations of effectiveness and safety for each subject par-
ticipating in the trial are performed at a number of preselected time points during entire
course of the study. As a result, the categorical data collected from most clinical trials are
always repeated categorical endpoints that are not statistically independent within the
same subjects. For some known or unknown reasons, subjects might not come to the clinic
for a particular scheduled visit or subjects might simply drop out and never return to the
study. Therefore, repeated categorical data with missing data is the norm for most clinical
trials. Koch et al., (1990) report partial results from a randomized, multicenter, placebo-
controlled trial in the assessment of a new test drug for a respiratory disorder. The raw data
provided by Koch et al. (1990) is an ordinal categorical endpoint of each subject’s status
measured at baseline and at four prescheduled visits after the initiation of treatment. This
ordinal index, referred as the status score in this chapter, consists of five categories: terri-
ble, poor, fair, good, and excellent. A summary of the transition from baseline to visit 3 in
terms of frequency is provided in Table 9.1.6.
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Table 9.1.2 Number of Subjects Showing Clinical
Improvement

rt-PA Placebo

Part 1
0–90 min

N 71 68
Yes 36 31
No 35 37

91–180 min

N 73 79
Yes 31 26
No 42 53

Part 2
0–90 min

N 86 77
Yes 51 30
No 35 47

90–180 min

N 82 88
Yes 29 35
No 53 53

Source: National Institute of Neurological Disorders and rt-PA Stroke
Study Group (1995).
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Table 9.1.3 AUA Symptom Index

Less Less More 
than than About than 

Not at 1 Time Half the Half the Half the Almost
Questions All in 5 Time Time Time Always

1. During the last month 0 1 2 3 4 5
or so, how often have 
you a sensation of not 
emptying your bladder 
completely after you 
finished urinating?

2. During the last month 0 1 2 3 4 5
or so, how after have 
you had to urinate again 
less than 2 hours after 
you finished urinating?

3. During the last month 0 1 2 3 4 5
or so, how often have 
you stopped and started 
again several times 
when you urinated?

4. During the last month 0 1 2 3 4 5
or so, how often have 
you found it difficult
to postpone urination?

5. During the last month 0 1 2 3 4 5
or so, how often have 
you had a weak 
urinary stream?

6. During the last month 0 1 2 3 4 5
or so, how often have 
you had to push or 
strain to begin urination?

5 or More
Questions None 1 Time 2 Times 3 Times 4 Times Times

7. During the last month, 0 1 2 3 4 5
how many times 
did you most 
typically get up to 
urinate from the 
time you went to 
bed at night until the 
time you got up 
in the morning?

AUA-7 Symptom score is the sum of scores of questions 1 to 7.

Source: Barry et al. (1992).
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In general, different statistical methods are required for the analysis of different cate-
gorical data types. This chapter will not only cover descriptive statistics but also interval
estimation and hypotheses testing for one-sample, two-sample, and multiple-sample cate-
gorical data. These statistics are derived based on random assignment of patients to the
treatment. Since, as discussed in Chapter 4, most randomization-based methods currently
available are for hypothesis testing and the scope of inference is limited only to the sub-
jects in the study, they must be adequately supplemented with a model-based method for
estimation. The advantages of model-based methods include (1) the ability for investiga-
tion of the homogeneity of treatment effects across strata, (2) the flexibility for adjustment
of demographic and baseline characteristics, and (3) the reduction of variability (or the
increase of power) by inclusion of covariates associated with the categorical endpoints.
The major shortcomings of the model-based methods consists in the inability to prove the
underlying assumption required for inference and a greater difficulty in the implementation
and interpretation of the results. As a result, it may be a good idea to combine both the
randomization-based method and the model-based method for analysis of categorical data.

In the next section, statistical analyses of binary data for one sample and comparison
within paired samples are introduced. Statistical inference based on binary data for indepen-
dent samples are given in Section 9.3. Section 9.4 outlines statistical methods for ordered
categorical data. Section 9.5 provides the methodology for combining results from the
analysis of categorical data over strata. We note that most methods covered in Section 9.2
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Table 9.1.4 Partial Results of Validation for 
Question 4—Frequency 1

Point Score BPH Controls

N 73 56
0 8 16
1 18 23
2 17 7
3 14 7
4 8 2
5 8 1

Source: Barry et al. (1992).

Table 9.1.5 Summary by Treatment for Change in Diagnostic Confidence

Placebo Test Drug

Female Male Female Male

N 37 36 36 37
Worsened 4 4 1 1
Unchanged 11 9 1 2
Improvement

Minimal 7 8 2 1
Moderate 4 6 2 3
Good 6 4 12 13
Excellent 5 5 18 17
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through Section 9.5 are randomization-based methods. Model-based methods such as the
logistic regression model are discussed in Section 9.6. In Section 9.7 we review some meth-
ods for the analysis of repeated categorical data. Some final remarks and a brief discussion
are given in Section 9.8.

9.2 STATISTICAL INFERENCE FOR ONE SAMPLE

As described in the previous section, for the NINDS trial, there are two possible outcomes
for each subject based on either the predefined criteria of at least a four-point improvement
from the baseline in NIHSS score or a complete resolution of the neurological deficit. The
two possible outcomes are either a subject improved or did not improve. For this study one
of the primary objectives is to evaluate whether subjects treated with rt-PA have a greater
proportion of early improvement compared to the placebo group. Before a formal statisti-
cal comparison between the rt-PA and placebo is made, a descriptive statistic for estima-
tion of the unknown proportion of the subjects who improved in each group must be
obtained.

Let Yi denote the clinical endpoint that indicates whether a subject had an improvement
in a group of n subjects treated with rt-PA, namely

Yi � � (9.2.1)

where i � 1, . . . , n. Since the n subjects in rt-PA group are different and are not related to
each other, the occurrence of improvement of a subject is random and is independent of
that of other subjects. In other words, Yi are statistically independent for i� 1, . . . , n.
Under the assumption of independence, the population proportion of the subjects with
improvement, denoted by P, can be estimated by the sample proportion of the subjects

1, if subject had an improvement,
0, otherwise.

344 ANALYSIS OF CATEGORICAL DATA

Table 9.1.6 Summary of Frequencies of Transition of Status Score from the Baseline 
to Visit 3

Baseline Terrible Poor Fair Good Excellent Total

Treatment: Placebo

Terrible 0 0 0 0 0 0
Poor 4 2 3 1 1 11
Fair 4 1 9 4 2 20
Good 1 3 2 4 9 19
Excellent 2 0 0 2 3 7

Total 11 6 14 11 15 57

Treatment: Test Drug

Terrible 0 0 2 1 0 3
Poor 0 3 2 1 4 10
Fair 2 0 5 3 8 18
Good 0 0 0 7 5 12
Excellent 0 0 1 2 8 11

Total 2 3 10 14 25 54
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with improvement, denoted by p, which is calculated as the number of subjects with
improvement divided by the total number of subjects treated with rt-PA. In other words,

p � �
1
n

�{number of subjects with improvement} (9.2.2)

� �
1
n

� �
n

i�1
Yi

� �
Y
n

�,

where

Y � �
n

i�1
Yi

represents the number of subjects (out of n subjects) showing improvement who were
treated with rt-PA. Y is usually referred to as a binomial random variable. Since Yi has only
two possible values, 0 and 1, the sample mean p � Y/n is the sample proportion of subjects
with improvement. The variance of p can be estimated by

υ( p) � �
1
n� p(1 � p). (9.2.3)

It follows that the statistic

Z � �
�
p �

υ�(p�
P
)�

� (9.2.4)

has approximately a standard normal distribution when the sample size is large, for exam-
ple, greater than 30. Based on Z, a (1�α) � 100% confidence interval for the population
proportion can be obtained as

p � Z(α /2)�υ�( p�)�, (9.2.5)

where Z(α /2) is the upper (α /2)th quantile of the standard normal distribution.
Note that the confidence interval given in (9.2.4) will not give an adequate coverage proba-

bility when the sample size is small or the number of subjects with improvement is close to 0
or to n. When n is small, Clopper and Pearson (1934) suggest using the so-called exact con-
fidence interval to find the binomial proportion. This method, however, is quite conservative in
the sense that the actual coverage probability is greater than the nominal level of (1�α)100%.
As a result, this method can yield a relatively wide confidence interval. Alternatively, Blyth
and Still (1983) propose a procedure for the binomial proportion. Their proposed interval pro-
vides an adequate coverage probability. In addition, the proposed interval has approximately
equal tail probabilities. Table 9.2.1 reproduces the lower and upper limits of the 95% con-
fidence intervals for n from 1 to 30. When n is greater than 30, they suggest using the formula

�
[n �Z

1
2(α /2)]
�

��(Y � 0.5) � Z2(α /2) � Z(α /2)�(Y� �� 0�.5�)��� �
1
n

���(Y� �� 0�.5�)2� ���
1
4

���Z�2(�α�/2�)��.

(9.2.6)

For Y � 0 or 1, the lower limits are given as either 0 or 1�(1 � α)1/n with an equivalent
exception for Y � n, n � 1.
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Table 9.2.1 Lower and Upper 95% Confidence Intervals for the Binomial Proportion

Sample Total Lower Upper Sample Total Lower Upper 
Size Responses Limit Limit Size Responses Limit Limit

1 0 0.00 0.95 9 4 0.17 0.75
1 1 0.05 1.00 9 5 0.25 0.83
2 0 0.00 0.78 9 6 0.32 0.90
2 1 0.03 0.97 9 7 0.44 0.96
2 2 0.22 1.00 9 8 0.56 0.99
3 0 0.00 0.63 9 9 0.68 1.00
3 1 0.02 0.86 10 0 0.00 0.29
3 2 0.14 0.98 10 1 0.01 0.44
3 3 0.37 1.00 10 2 0.04 0.56
4 0 0.00 0.53 10 3 0.09 0.62
4 1 0.01 0.75 10 4 0.15 0.70
4 2 0.10 0.90 10 5 0.22 0.78
4 3 0.25 0.99 10 6 0.29 0.85
4 4 0.47 1.00 10 7 0.38 0.91
5 0 0.00 0.50 10 8 0.44 0.96
5 1 0.01 0.66 10 9 0.56 0.99
5 2 0.08 0.81 10 10 0.71 1.00
5 3 0.19 0.92 11 0 0.00 0.26
5 4 0.34 0.99 11 1 0.00 0.40
5 5 0.50 1.00 11 2 0.03 0.50
6 0 0.00 0.41 11 3 0.08 0.60
6 1 0.01 0.59 11 4 0.14 0.67
6 2 0.06 0.73 11 5 0.20 0.74
6 3 0.15 0.85 11 6 0.26 0.80
6 4 0.27 0.94 11 7 0.33 0.86
6 5 0.41 0.99 11 8 0.40 0.92
6 6 0.59 1.00 11 9 0.50 0.97
7 0 0.00 0.38 11 10 0.60 1.00
7 1 0.01 0.55 11 11 0.74 1.00
7 2 0.05 0.66 12 0 0.00 0.25
7 3 0.13 0.77 12 1 0.00 0.37
7 4 0.23 0.87 12 2 0.03 0.46
7 5 0.34 0.95 12 3 0.07 0.54
7 6 0.45 0.99 12 4 0.12 0.63
7 7 0.62 1.00 12 5 0.18 0.71
8 0 0.00 0.36 12 6 0.24 1.76
8 1 0.01 0.50 12 7 0.29 0.82
8 2 0.05 0.64 12 8 0.37 0.88
8 3 0.11 0.71 12 9 0.46 0.93
8 4 0.19 0.81 12 10 0.54 0.97
8 5 0.29 0.89 12 11 0.63 1.00
8 6 0.36 0.95 12 12 0.75 1.00
8 7 0.50 0.99 13 0 0.00 0.23
8 8 0.64 1.00 13 1 0.00 0.34
9 0 0.00 0.32 13 2 0.03 0.43
9 1 0.01 0.44 13 3 0.07 0.52
9 2 0.04 0.56 13 4 0.11 0.59
9 3 0.10 0.68 13 5 0.17 0.66

c09.qxd  27.10.03  13:04  Page 346



STATISTICAL INFERENCE FOR ONE SAMPLE 347

Table 9.2.1 (Continued)

Sample Total Lower Upper Sample Total Lower Upper 
Size Responses Limit Limit Size Responses Limit Limit

13 6 0.22 0.74 16 9 0.30 0.80
13 7 0.26 0.78 16 10 0.37 0.82
13 8 0.34 0.83 16 11 0.44 0.87
13 9 0.41 0.89 16 12 0.50 0.91
13 10 0.48 0.93 16 13 0.56 0.95
13 11 0.57 0.97 16 14 0.63 0.98
13 12 0.66 1.00 16 15 0.70 1.00
13 13 0.77 1.00 16 16 0.80 1.00
14 0 0.00 0.23 17 0 0.00 0.19
14 1 0.00 0.32 17 1 0.00 0.28
14 2 0.03 0.42 17 2 0.02 0.35
14 3 0.06 0.50 17 3 0.05 0.42
14 4 0.10 0.58 17 4 0.08 0.49
14 5 0.15 0.63 17 5 0.12 0.54
14 6 0.21 0.68 17 6 0.17 0.59
14 7 0.24 0.76 17 7 0.19 0.65
14 8 0.32 0.79 17 8 0.25 0.72
14 9 0.37 0.85 17 9 0.28 0.75
14 10 0.42 0.90 17 10 0.35 0.81
14 11 0.50 0.94 17 11 0.41 0.83
14 12 0.58 0.97 17 12 0.46 0.88
14 13 0.68 1.00 17 13 0.51 0.92
14 14 0.77 1.00 17 14 0.58 0.95
15 0 0.00 0.22 17 15 0.65 0.98
15 1 0.00 0.30 17 16 0.72 1.00
15 2 0.02 0.39 17 17 0.81 1.00
15 3 0.06 0.47 18 0 0.00 0.18
15 4 0.10 0.53 18 1 0.00 0.27
15 5 0.14 0.61 18 2 0.02 0.33
15 6 0.19 0.67 18 3 0.05 0.41
15 7 0.22 0.71 18 4 0.08 0.47
15 8 0.29 0.78 18 5 0.12 0.53
15 9 0.33 0.81 18 6 0.16 0.59
15 10 0.39 0.86 18 7 0.18 0.63
15 11 0.47 0.90 18 8 0.24 0.67
15 12 0.53 0.94 18 9 0.27 0.73
15 13 0.61 0.98 18 10 0.33 0.76
15 14 0.70 1.00 18 11 0.37 0.82
15 15 0.78 1.00 18 12 0.41 0.84
16 0 0.00 0.20 18 13 0.47 0.88
16 1 0.00 0.30 18 14 0.53 0.92
16 2 0.02 0.37 18 15 0.59 0.95
16 3 0.05 0.44 18 16 0.67 0.98
16 4 0.09 0.60 18 17 0.73 1.00
16 5 0.13 0.56 18 18 0.82 1.00
16 6 0.18 0.63 19 0 0.00 0.17
16 7 0.20 0.70 19 1 0.00 0.25
16 8 0.27 0.73 19 2 0.02 0.32
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Table 9.2.1 (Continued)

Sample Total Lower Upper Sample Total Lower Upper 
Size Responses Limit Limit Size Responses Limit Limit

19 3 0.04 0.39 21 10 0.28 0.70
19 4 0.08 0.45 21 11 0.30 0.72
19 5 0.11 0.50 21 12 0.35 0.77
19 6 0.15 0.55 21 13 0.40 0.80
19 7 0.17 0.61 21 14 0.45 0.85
19 8 0.22 0.66 21 15 0.49 0.87
19 9 0.25 0.69 21 16 0.54 0.90
19 10 0.31 0.75 21 17 0.60 0.93
19 11 0.34 0.78 21 18 0.65 0.96
19 12 0.39 0.83 21 19 0.70 0.98
19 13 0.45 0.85 21 20 0.77 1.00
19 14 0.50 0.89 21 21 0.85 1.00
19 15 0.55 0.92 22 0 0.00 0.15
19 16 0.61 0.96 22 1 0.00 0.22
19 17 0.68 0.98 22 2 0.02 0.29
19 18 0.75 1.00 22 3 0.04 0.34
19 19 0.83 1.00 22 4 0.06 0.39
20 0 0.00 0.16 22 5 0.09 0.45
20 1 0.00 0.24 22 6 0.13 0.50
20 2 0.02 0.32 22 7 0.15 0.55
20 3 0.04 0.37 22 8 0.19 0.58
20 4 0.07 0.42 22 9 0.22 0.62
20 5 0.10 0.47 22 10 0.26 0.66
20 6 0.14 0.53 22 11 0.29 0.71
20 7 0.16 0.58 22 12 0.34 0.74
20 8 0.21 0.63 22 13 0.38 0.78
20 9 0.24 0.68 22 14 0.42 0.81
20 10 0.29 0.71 22 15 0.45 0.85
20 11 0.32 0.76 22 16 0.50 0.87
20 12 0.37 0.79 22 17 0.55 0.91
20 13 0.42 0.84 22 18 0.61 0.94
20 14 0.47 0.86 22 19 0.66 0.96
20 15 0.53 0.90 22 20 0.71 0.98
20 16 0.58 0.93 22 21 0.78 1.00
20 17 0.63 0.96 22 22 0.85 1.00
20 18 0.68 0.98 23 0 0.00 0.14
20 19 0.76 1.00 23 1 0.00 0.21
20 20 0.84 1.00 23 2 0.02 0.27
21 0 0.00 0.15 23 3 0.04 0.32
21 1 0.00 0.23 23 4 0.06 0.39
21 2 0.02 0.30 23 5 0.09 0.43
21 3 0.04 0.35 23 6 0.12 0.48
21 4 0.07 0.40 23 7 0.14 0.52
21 5 0.10 0.46 23 8 0.18 0.57
21 6 0.13 0.51 23 9 0.21 0.61
21 7 0.15 0.55 23 10 0.25 0.64
21 8 0.20 0.60 23 11 0.27 0.68
21 9 0.23 0.65 23 12 0.32 0.73
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Table 9.2.1 (Continued)

Sample Total Lower Upper Sample Total Lower Upper 
Size Responses Limit Limit Size Responses Limit Limit

23 13 0.36 0.75 25 12 0.30 0.68
23 14 0.39 0.79 25 13 0.32 0.70
23 15 0.43 0.82 25 14 0.36 0.75
23 16 0.48 0.86 25 15 0.40 0.78
23 17 0.52 0.88 25 16 0.44 0.81
23 18 0.57 0.91 25 17 0.48 0.84
23 19 0.61 0.94 25 18 0.52 0.87
23 20 0.68 0.96 25 19 0.56 0.89
23 21 0.73 0.98 25 20 0.60 0.92
23 22 0.79 1.00 25 21 0.64 0.94
23 23 0.86 1.00 25 22 0.70 0.97
24 0 0.00 0.13 25 23 0.75 0.99
24 1 0.00 0.20 25 24 0.81 1.00
24 2 0.02 0.26 25 25 0.87 1.00
24 3 0.03 0.31 26 0 0.00 0.12
24 4 0.06 0.37 26 1 0.00 0.19
24 5 0.09 0.41 26 2 0.01 0.24
24 6 0.11 0.46 26 3 0.03 0.20
24 7 0.13 0.50 26 4 0.05 0.34
24 8 0.17 0.54 26 5 0.08 0.38
24 9 0.20 0.59 26 6 0.11 0.42
24 10 0.23 0.63 26 7 0.12 0.47
24 11 0.26 0.66 26 8 0.15 0.51
24 12 0.31 0.69 26 9 0.19 0.54
24 13 0.34 0.74 26 10 0.21 0.58
24 14 0.37 0.77 26 11 0.24 0.62
24 15 0.41 0.80 26 12 0.28 0.66
24 16 0.46 0.83 26 13 0.30 0.70
24 17 0.50 0.87 26 14 0.34 0.72
24 18 0.54 0.89 26 15 0.38 0.76
24 19 0.59 0.91 26 16 0.42 0.79
24 20 0.63 0.94 26 17 0.46 0.81
24 21 0.69 0.97 26 18 0.49 0.85
24 22 0.74 0.98 26 19 0.53 0.88
24 23 0.80 1.00 26 20 0.58 0.89
24 24 0.87 1.00 26 21 0.62 0.92
25 0 0.00 0.13 26 22 0.66 0.95
25 1 0.00 0.19 26 23 0.80 0.97
25 2 0.01 0.25 26 24 0.76 0.99
25 3 0.03 0.30 26 25 0.81 1.00
25 4 0.06 0.36 26 26 0.88 1.00
25 5 0.08 0.40 27 0 0.00 0.12
25 6 0.11 0.44 27 1 0.00 0.18
25 7 0.13 0.48 27 2 0.01 0.23
25 8 0.16 0.52 27 3 0.03 0.29
25 9 0.19 0.56 27 4 0.05 0.33
25 10 0.22 0.60 27 5 0.08 0.37
25 11 0.25 0.64 27 6 0.10 0.41
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Table 9.2.1 (Continued)

Sample Total Lower Upper Sample Total Lower Upper 
Size Responses Limit Limit Size Responses Limit Limit

27 7 0.12 0.46 28 27 0.83 1.00
27 8 0.15 0.50 28 28 0.88 1.00
27 9 0.18 0.54 29 0 0.00 0.11
27 10 0.20 0.57 29 1 0.00 0.17
27 11 0.23 0.60 29 2 0.01 0.22
27 12 0.27 0.63 29 3 0.03 0.27
27 13 0.29 0.67 29 4 0.05 0.31
27 14 0.33 0.71 29 5 0.07 0.36
27 15 0.37 0.73 29 6 0.09 0.39
27 16 0.40 0.77 29 7 0.11 0.43
27 17 0.43 0.80 29 8 0.14 0.46
27 18 0.46 0.82 29 9 0.17 0.50
27 19 0.50 0.85 29 10 0.18 0.54
27 20 0.54 0.88 29 11 0.22 0.57
27 21 0.59 0.90 29 12 0.25 0.61
27 22 0.63 0.92 29 13 0.27 0.64
27 23 0.67 0.95 29 14 0.31 0.66
27 24 0.71 0.97 29 15 0.34 0.69
27 25 0.77 0.99 29 16 0.36 0.73
27 26 0.82 1.00 29 17 0.39 0.75
27 27 0.88 1.00 29 18 0.43 0.78
28 0 0.00 0.12 29 19 0.46 0.82
28 1 0.00 0.17 29 20 0.50 0.83
28 2 0.01 0.23 29 21 0.54 0.86
28 3 0.03 0.28 29 22 0.57 0.89
28 4 0.05 0.32 29 23 0.61 0.91
28 5 0.07 0.36 29 24 0.64 0.93
28 6 0.10 0.41 29 25 0.69 0.95
28 7 0.12 0.44 29 26 0.73 0.97
28 8 0.14 0.48 29 27 0.78 0.99
28 9 0.17 0.52 29 28 0.83 1.00
28 10 0.19 0.56 29 29 0.89 1.00
28 11 0.23 0.59 30 0 0.00 0.11
28 12 0.26 0.62 30 1 0.00 0.16
28 13 0.28 0.65 30 2 0.01 0.21
28 14 0.32 0.68 30 3 0.03 0.26
28 15 0.35 0.72 30 4 0.05 0.30
28 16 0.38 0.74 30 5 0.07 0.35
28 17 0.41 0.77 30 6 0.09 0.38
28 18 0.44 0.81 30 7 0.11 0.41
28 19 0.48 0.83 30 8 0.13 0.45
28 20 0.52 0.86 30 9 0.16 0.48
28 21 0.56 0.88 30 10 0.18 0.52
28 22 0.59 0.90 30 11 0.21 0.55
28 23 0.64 0.93 30 12 0.24 0.59
28 24 0.68 0.95 30 13 0.26 0.62
28 25 0.72 0.97 30 14 0.30 0.65
28 26 0.77 0.99 30 15 0.32 0.68
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Suppose that from the previous reports, about 30% to 35% of the subjects with acute
ischemic stroke who are not treated with rt-PA improve. Hence, clinically it may be of
interest to know whether the proportion of subjects treated with rt-PA is 35%. The follow-
ing hypotheses can be used to address this question:

H0: P � P0 � 0.35, (9.2.7)

vs. Ha: P � 0.35.

Under the null hypothesis, P � 0.35, the large-sample test statistic is given by

Z � �
�

p
p�(

�

1� ��
0.3

p�
5
)/�n�

�. (9.2.8)

At a preselected level of significance α, we reject the null hypothesis and conclude that the
proportion of subjects with improvement in those treated with rt-PA is different from 35% if

�Z� 	 Z(α /2).

The corresponding p-value can be computed based on the standard normal distribution as
follows:

p-value � P{�Z� 	 z}, (9.2.9)

where z is the observed value of Z as given in (9.2.8). Therefore, the null hypothesis is
rejected at the α level of significance if the p-value in (9.2.9) is smaller than α. Note that
there is a relationship between hypothesis testing procedure given in (9.2.8) and the
(1�α )100% confidence interval given in (9.2.5). That is, one rejects the null hypothesis if
and only if the (1�α)100% confidence interval does not contain P � 0.35.

For small samples the exact test procedure based on p-value can be constructed. Under the
null hypothesis Y follows a binomial distribution with P � P0 � 0.35. We would expect an
average of nP subjects treated with rt-PA to show improvement. If the observed Y is smaller
than the expected number of subjects with improvement, the p-value can be calculated as

p-value � 2� �
Y

y�0

�
[y!(n

n
�

!
y)!]

� (P0)
y (1 � P0)

n�y�. (9.2.10)
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Table 9.2.1 (Continued)

Sample Total Lower Upper Sample Total Lower Upper 
Size Responses Limit Limit Size Responses Limit Limit

30 16 0.35 0.70 30 24 0.62 0.91
30 17 0.38 0.74 30 25 0.65 0.93
30 18 0.41 0.76 30 26 0.70 0.95
30 19 0.45 0.79 30 27 0.74 0.97
30 20 0.58 0.82 30 28 0.79 0.99
30 21 0.52 0.84 30 29 0.84 1.00
30 22 0.55 0.87 30 30 0.89 1.00
30 23 0.59 0.89

Source: Blyth and Still (1983).
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On the other hand, when the observed Y is larger than the expected number of subject with
improvement, nP, the p-value is given by

p-value � 2� 1 � �
Y�1

y�0
�
[y!(n

n
�

!
y)!]

� (P0)
y (1 � P0)n�y�. (9.2.11)

Similarly the null hypothesis is rejected at the α significance level if the p-value (calcu-
lated based on (9.2.10) or (9.2.11) is smaller than α.

Example 9.2.1 Consider the dataset of the NINDS trial given in Table 9.2.1. The number
of subjects with early improvement for rt-PA and the placebo group are 147 and 122,
respectively. Since 312 subjects were enrolled in each group, the sample proportions with
early improvement for rt-PA and placebo are 47.1% (147/312) and 39.1% (122/312),
respectively. As presented in Table 9.2.2, the standard errors of estimated sample propor-
tions are 0.0283 (�0�.4�7�1� *� 0�.5�2�9�/3�1�2�) and 0.0276 (�0�.3�9�1� *� 0�.6�0�9�/3�1�2�), respectively.
The large-sample 95% confidence intervals for populations with early improvement for rt-
PA and the placebo group are (41.58%, 52.65%) and (33.68%, 44.52%), respectively. The
Blyth and Still method yields intervals of (41.49%, 52.82%) and (33.69%, 44.78%), which
are 2.3% and 2.4% wider than those large-sample confidence intervals. The observed Z
values for testing whether the proportion of improvement is 35% for rt-PA and the placebo
are 4.287 ((0.471 � 0.35)/0.0283) and 1.485 ((0.391 � 0.35)/0.0276), respectively. As a
result, since the observed Z value for the rt-PA group is greater than z(0.025) � 1.96 with
the associated p-value of 0.00002, we reject the null hypothesis at the 5% level of signi-
ficance and conclude that the proportion of subjects with early improvement for the rt-PA
group is statistically significant greater than 35%. One can reach the same conclusion by
noting that the 95% confidence interval (41.58%, 52.65%) does not contain 35%. For
placebo group, since the observed Z value of 1.485 is less than 1.96, we fail to reject the
null hypothesis. As a result, we conclude that the data of the placebo group do not provide
sufficient evidence to doubt the validity of the null hypothesis that the proportion of the
subjects with early improvement is equal to 35%. The same conclusion was reached based
on (1) the corresponding p-value being 0.138, which is greater than 0.05, and (2) the 95%
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Table 9.2.2 Summary of the Number of Subjects with Improvement by Treatment 
for the NINDS Trial

rt-PA Placebo

N 312 312
With improvement 147 122
Proportion 47.12% 39.10%
Standard error 2.83% 2.76%

95% Confidence Interval
Large-sample (41.58%, 52.65%) (33.68%, 44.52%)
Blyth-Still (41.49%, 52.82%) (33.69%, 44.78%)

Z-statistics 4.287 1.485
p-value

Large-sample 0.00002 0.1375
Exact 0.00001 0.1500
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confidence interval for the placebo group of (33.68%, 44.52%) including P � 35%. The
exact p-value for the placebo group is given by 

p-value � 2�1 � �
121

y�0
�
[y!(3

3
1
1
2
2
�

!
y)!]

� (0.35) y (0.65)312�y�
� 0.150.

Similarly, the exact p-value of rt-PA group is given by 0.00001. Note that in this example,
both the exact and large-sample methods yield similar p-values. These results are summa-
rized in Table 9.2.2.

In clinical trials, the comparison between the pre-treatment (baseline) and the post-
treatment is usually made for the assessment of efficacy and safety of the treatment. This
comparison within the same subjects is usually referred to as the pre-post comparison
which is also known as change from baseline analysis. To illustrate the pre-post compari-
son concept, consider regrouping the five classes of the status score of the Koch’s data set
given in Table 9.1.6 into two categories: unfavorable (i.e., terrible, poor, and fair) and
favorable (i.e., good and excellent). The resulting endpoint is then the favorable status.
Table 9.2.3 reconstructs a 2 � 2 table from Table 9.1.6 based on the favorable status. From
Table 9.2.3, at baseline, it can be seen that subjects in the placebo group and the test drug
group showed similar favorable status with proportions of 45.61% and 42.59%, respec-
tively. However, at visit 3 after treatment, the proportion of subjects with favorable status
in the placebo group remained the same while the proportion increased to 72.22% for the
test drug group. As a result, it is important to verify whether the proportion of the subjects
with favorable status within each group changes significantly after treatment.

For detection of a significant change from the baseline, the same binary endpoint is usu-
ally evaluated at the baseline and at various visits after treatment (also see Section 13.5 for
McNemar’s test). Hence, the resulting binary responses are correlated. In general, data of
this type can be summarized by a 2 � 2 transition table from the baseline as presented in
Table 9.2.4. Basically, within each treatment, Table 9.2.4 classifies subjects into four
groups: the subjects with favorable status at both the baseline and visit 3 (Y11), the subjects
with unfavorable status at both the baseline and visit 3 (Y00), the subjects with a change from
unfavorable status at baseline to favorable status at visit 3 (Y01), and the subjects with 

STATISTICAL INFERENCE FOR ONE SAMPLE 353

Table 9.2.3 Summary of Frequency of Transition of Status from the Baseline at Visit 3

Baseline Unfavorable Favorable Total

Treatment: Placebo

Unfavorable 23 (40.35%) 8 (14.04%) 31   (54.39%)
Favorable 8 (14.04%) 18 (31.58%) 26   (45.61%)
Total 31 (54.39%) 26 (45.61%) 57 (100.00%)

Treatment: Test Drug

Unfavorable 14 (25.93%) 17 (31.48%) 31   (57.41%)
Favorable 1 (1.85%) 22 (40.74%) 23   (42.59%)
Total 15 (27.78%) 39 (72.22%) 54 (100.00%)

Note: Unfavorable � terrible, poor, or fair; favorable � good or excellent. See Table 9.1.6.
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a change from favorable status to unfavorable status at visit 3 (Y10). Hence, Y11 and Y00 rep-
resent the number of the subjects with no change in favorable status, while Y10 and Y01 are
the number of subjects whose favorable status changes from the baseline. Suppose that our
objective is to examine whether the proportion of the subjects with favorable status at visit
3 is the same as that at the baseline. In this case, we can compare the number of subjects
with favorable status at visit 3 with that at baseline, namely Y.1 versus Y1.. This type of com-
parison is known as a marginal comparison between visit 3 and the baseline. However, the
number of subjects with favorable status at visit 3 is the sum of the number of subjects with
the favorable status at both the baseline and visit 3 (Y11) and those with a change from the
unfavorable status at baseline to the favorable status at visit 3 (Y01). Similarly, the number of
subjects with a favorable status at the baseline is the sum of the number of subjects with
favorable status at both the baseline and visit 3(Y11) and those with a change from the favor-
able status at the baseline to the unfavorable status at visit 3 (Y10). Consequently, a marginal
comparison of the number of subjects with a favorable status between visit 3 and the base-
line involves the difference between the number of subjects with a change from the unfa-
vorable status at the baseline to a favorable status at visit 3 and those with a change from the
favorable status at the baseline to an unfavorable status at visit 3, namely Y01�Y10. The pro-
portion can be obtained by dividing the number of subjects by the sample size.

Statistical hypotheses for comparison of proportions with favorable status between visit 3
and baseline can be expressed as

H0: P.1 � P1., (9.2.12)

vs. Ha: P.1 � P1.,

or

H0: P01 �P10,

vs. Ha: P01 � P10.

Let yij and pij denote the corresponding observed number of subjects and proportions for Yij

and Pij, respectively. An unbiased estimator for θ � P01�P10 is given by p01�p10. For
large samples an estimate of the variance of θ can be obtained as

υ (θ ) � var(θ ) (9.2.13)

� �
1
n

� [( p01 � p10) � ( p01 � p10)
2].

It follows that a large sample (1�α)100% confidence interval for θ is given by

(p01 � p10) � Z(α /2) �υ�(θ�)�. (9.2.14)
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Table 9.2.4 Summary of Data for Binary Endpoint 
from the Baseline

Baseline No Yes Total

No Y00(P00) Y01(P01) Y0.(P0.)
Yes Y10(P10) Y11(P11) Y1.(P1.)
Total Y.0(P.0) Y.1(P.1) Y..(1)
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Under the null hypothesis of P01 � P10 � 0, the estimated large sample variance in 
(9.2.13) becomes υ (0) � ( p01 � p10)/n. As a result an asymptotic test statistic for hypothe-
ses (9.2.12) is

χM
2 � �(

(
p
p

0

0

1

1

�

�

p
p

1

1

0

0

)
)
/

2

n�

(9.2.15)

� �
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1

1
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0

)
)

2

�.

We reject the null hypothesis at the α level of significance if

χM
2 	 χ2(α, 1),

where χ2(α , 1) is the upper α th quantile of a χ2 random variable with one degree of freedom.
However, the test statistics in (9.2.15), which is known as McNemar test (Conover, 1980), is
a large-sample approximation of a continuous variable to a discrete variable. χ2

M may commit
type I error too often with respect to the preselected nominal level when p01 � p10 
 0.3. An
approach to overcome this issue is to employ a continuity correction as follows:

χM
2 ��

(�y0

(
1

y
�

01

y
�

10

y
�

1

�

0)
1)2

�. (9.2.16)

Sometimes, the test statistic with such a continuity correction is too conservative to have
sufficient power for detection of a meaningful difference in marginal proportions between
visit and baseline. Then, one computes the exact p-value under the null hypothesis. As 
mentioned before, the comparison in marginal distributions between visit and baseline
depends on the subjects with different status at visit and baseline, namely y01 and y10.
Given the total number of subject with discordant pairs, y � y01 � y10, both probabilities of
a subject with favorable status at the baseline and unfavorable status at the visit and of a
subject with unfavorable status at the baseline and favorable status at the visit are equal
to1/2 under the null hypothesis that P01 � P10. It turns out that y01 follows a binomial dis-
tribution with a probability of success 0.5 given y. The exact p-value for testing hypotheses
(9.2.12) can then be calculated as

2�
y01

i�1
	�i!(y

y
�

!
i)!� 
 (0.5)y if y01 
 �

2
y

�,

p-value � �2 �1 � �
y

y01�1

	�i!(y
y
�

!
i)!� 
 (0.5)y� if y01 	 �

2
y

�, (9.2.17)

1 if y01 � �
2
y

�.

The p-values by formula (9.2.17) are calculated by considering the total number of subjects
with discordant results to be a fixed known number. Hence this is referred to as the condi-
tional exact p-value. Note that the confidence interval and test statistics given in (9.2.14)
and (9.2.16) are unconditional large-sample procedures. In practice, the number of subjects
with different statuses between the visit and the baseline is usually not known until the com-
pletion of the trial. It is in fact a random variable and thus technically not a fixed number. As
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an alternative, Suissa and Shuster (1991) propose an unconditional exact procedure for test-
ing hypotheses (9.2.12). The proposed procedure requires a complicated computation of the
binomial probability over the range between 0 and 1. However, they provide the critical val-
ues for different combinations of significance levels and sample sizes in addition to the
required sample sizes for the different significance levels, P01 � P10, and P01 � P10.

Example 9.2.2 For the data given in Table 9.2.3, the differences in marginal proportions
of favorable status between visit 3 and the baseline for the placebo and the test drug are
estimated as 0 and 0.2963, respectively. The 95% large-sample confidence intervals for the
difference in proportions for the placebo group and the test drug group are (�1.038, 1.038)
and (0.1641, 0.4284), respectively. The results of hypothesis testing by the three pro-
cedures discussed above are summarized in Table 9.2.5. All three methods provide
consistent results. For the placebo groups, there is no statistically significant difference in
proportion of subjects with favorable status between visit 3 and the baseline, while the
proportion of the subjects with favorable status at visit 3 for the test drug group is statis-
tically significant higher than that at the baseline at the 5% level of significance.

9.3 INFERENCE OF INDEPENDENT SAMPLES

One of the primary goals of the NINDS trial is to compare the proportion of subjects
treated with rt-PA who show early clinical improvement with that of the subjects given a
placebo. This type of comparison is usually called a between-group comparison. Compar-
isons among treatments is randomized, parallel group clinical trials usually involve infer-
ence of independent samples because the clinical outcomes of a subject evaluated in terms
of efficacy and safety endpoints have nothing to do with those of the subjects within the
group or from another group. In this section our efforts will be directed toward statistical
inference based on the binary endpoints for two independent samples.

Consider a parallel two group clinical trial that compares a test drug in n1 subjects with a
placebo in n2 subjects. Table 9.3.1 illustrates a simple way for summarization of a binary
endpoint with two categories, yes and no. Yes may mean death, success, improvement, or
eradication. In Table 9.3.1, Yi1 is the number of subjects with a yes response in the ith group
with sample size Yi., namely Yi � ni, i � 1, 2; and Y.. � n1 � n2 � N is the total number of
subjects in the trial. Since Yi1 are independent binomial variables within each group, the
population proportion of a yes response can be estimated by the methods described in 
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Table 9.2.5 Results of Analysis in Table 9.2.3

Treatment Method Test-Statistic p-Value

Placebo Unconditionally large sample
No continuity correction 0 1.0000
With continuity correction 0.0625 0.80259

Conditional exact 1.0000

Treatment Unconditionally large sample
No continuity correction 14.22 0.00016
With continuity correction 12.50 0.00041

Conditional exact 0.00014
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the previous section. However, descriptive measures for comparing proportions of two 
independent samples often involve differences in proportions, odds ratios, and relative risks.

Let yi1 and pi1 be the observed number of subjects and proportion with a yes response in
the ith group. Because of independence, the difference in the population proportions of a
yes response between two groups can be unbiasedly estimated by

dp � p11 � p21

(9.3.1)
� �

y
n
1

1

1
� � �

y
n
2

2

1
�,

with an estimated large-sample variance given as

υ(dp) � �
p11(1

n
�

1

p11)
� � �

p21(1
n
�

2

p21)
�. (9.3.2)

As a result the lower and upper limits of the large-sample (1�α)100% confidence interval
for the difference in population proportions can be obtained as

dp � Z(α /2)�υ�(d�p)�, (9.3.3)

where Z(α /2) is the upper (α /2)th quantile of the normal distribution.
Since treatments can be considered as risk factors, a measure often used to study the

relationship between treatments and responses is the odds ratio. For example, the NINDS
trail defined the odds ratio as the ratio of the odds of a subject with an early clinical
improvement after exposure to treatment of rt-PA to the odds of an improvement of a sub-
ject given the placebo. The odds of a yes response in each treatment group is estimated as

�
p
p
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0
� � �

y
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0
�.

The odds ratio (OR) of a yes response for comparing the test drug against placebo is then
estimated as
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Table 9.3.1 Data Structure of Binary Endpoint 
for a Parallel Two-Group Trial

Binary Response

Treatment No Yes Total

Test drug Y10(P10) Y11(P11) Y1.(1)
Placebo Y20(P20) Y21(P21) Y2.(1)
Total Y.0 Y.1 Y..
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The lower and upper limits of the large-sample (1�α)100% confidence interval for the
odds ratio are given by

exp�ln(OR) � Z(α /2) ��y
1

1
�

0
���� �y

�1

11
�� ���y

�1

20
�� ���y

�1

21
���, (9.3.5)

where Z(α /2) is the upper (α /2)th quantile of the normal distribution; “exp” and “ln”
denote the natural exponential and logarithm, respectively.

Another commonly employed measure for describing the relationship between treat-
ment and its associated binary outcomes is the relative risk. The risk for obtaining a yes
response for the ith group is simply the proportion of the subjects with a yes response. As
a result, the relative risk (RR) for the test drug to placebo can be estimated by

RR � �
p
p

1

2

1

1
�. (9.3.6)

An estimated large-sample variance for the logarithm of the relative risk is given as

υ[ln(RR)] � �
1 �

y11

p11
� � �

1 �

y21

p21
�. (9.3.7)

It follows that the large-sample (1�α)100% confidence interval for the relative risk are
given as

exp�ln(RR) � Z(α /2) ��
1� �

y
�

11

p�11
�� ���

1� �

y
�

21

p�21
���. (9.3.8)

Note that the difference in proportion is an adequate measure for comparing two pro-
portions when they are not close to 0, and when Yij is greater than 5, for j � 0, 1, and
i � 1, 2. This measure that is symmetric about 0. On the other hand, when the proportion
of a yes response is close to 0, then either the odds ratio or the relative risk is a better mea-
sure for comparing two proportions than the difference. Since the odds ratio and the rela-
tive risk range from 0 to infinity, the distributions of their estimates are skewed. If there is
no difference in true proportions of a yes response between two population groups, the
odds ratio or relative risk can be expected to be close to 1. When the number of subjects in
each group becomes large, the estimated odds ratio and relative risk will be very close to
each other. In clinical trials the difference in proportions, odds ratio, and relative risk are
useful measures for comparing prospectively two independent proportions. Note that the
odds ratio can also be employed for retrospective case control studies in which the differ-
ence in proportions and relative risk is inappropriate.

Example 9.3.1 For the NINDS trial, estimates of the subjects experiencing early
improvement for each group are given in Table 9.2.2. From these sample proportions, the
difference in population proportions of the subjects with early improvement between rt-PA
and the placebo is estimated by 8.01% with an estimated large-sample variance of 0.0016.
This leads to a 95% confidence interval of (0.17%, 15.76%). The results are summarized in
Table 9.3.2. As a result, on average, the proportion of the subjects treated with rt-PA
showing an early improvement is about 8% higher than those given a placebo. Note that
the 95% confidence interval does not contain zero, which indicates that significantly more
subjects receiving rt-PA can show early improvement than those receiving the placebo.

For the U.S. Physicians’ Health Study, the proportion of subjects with development of
malignant neoplasm after an average of 12 years treatment is 11.53% for subjects receiving

358 ANALYSIS OF CATEGORICAL DATA

c09.qxd  27.10.03  13:04  Page 358



bet a carotene and 11.72% for those receiving a placebo. The unadjusted odds ratio of
malignant neoplasm for the subjects treated with rt-PA as compared to the placebo is 0.98
with a 95% confidence interval of (0.91, 1.07) (see Table 9.3.3). Similarly, the estimate of
unadjusted relative risk is 0.98, and its corresponding large-sample confidence interval is
from 0.92 to 1.06. The estimated odds ratio and relative risk and their associated 95% con-
fidence interval are consistent and numerically close. Since both 95% confidence intervals
for the odds ratio and relative risk include 1, we conclude that the long-term treatment of
beta carotene does not statistically significantly reduce odds or risk of development of
malignant neoplasm at the 5% level of significance.

Statistical inference of binary data from a parallel two group trial involves testing the
hypotheses regarding the difference in proportions with a yes response between the test
drug group and the placebo group. This can be expressed as

H0: P11 � P21,

vs. Ha: P11 � P21. (9.3.9)

For testing hypotheses (9.3.9), several statistical procedures are available in the literature.
Among these, the method using the difference in proportions is probably the most com-
monly used. Under the null hypothesis the proportion of the subjects with a yes response is
assumed to be equal. As a result we can combine both groups to estimate of the common
proportion of the subjects with a yes response. This gives

p0 � �
y
n
11

1

�

�

y
n

2

2

1
� (9.3.10)

with an estimated large-sample variance

υ (p0) � . (9.3.11)

A test statistic for hypothesis (9.3.9) is the usual Z-statistic:

Z � �
p

�
11

υ�
�

�(p�
p

0

2

)�
1�. (9.3.12)

p0(1 � p0)(n1 � n2)
���n1n2
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Table 9.3.2 Comparison of Subjects with Improvement in the NINDS Trial

Treatment N Improvement Difference (se) 95% Confidence Interval

rt-PA 312 147 (47.12%) 0.0801 (0.04) (0.0017, 0.1576)
Placebo 312 122 (39.10%)

Table 9.3.3 Summary of the Estimated Odds Ratio and the Relative Risk for Malignant
Neoplasm due to Beta Carotene in U.S. Physicians’ Health Study

Beta Carotene Placebo Odds Ratio Relative Risk 
(N�11,036) (N�11,036) (95% CI) (95% CI)

1273 (11.53%) 1293 (11.72%) 0.98 (0.91, 1.07) 0.98 (0.92, 1.06)
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We then reject the null hypothesis and conclude that the proportion of the subjects receiv-
ing the test drug with a yes response is statistically, significantly different from that for sub-
jects receiving the placebo at the α level of significance if �Z� 	 z (α /2), where Z(α /2) is
the upper (α /2)th quantile of the standard normal distribution.

Another commonly employed method is the chi-square test which is a useful statistical
method for examining the relationship between two factors. In the context of comparing
the proportions between two treatments, one factor is the treatment with two levels (i.e.,
the active test drug and the placebo), and the other factor is the binary clinical endpoint
with two categories (i.e., a yes response and a no response). For the 2 � 2 contingency
table given in Table 9.3.1, the chi-square test for testing independence between the two fac-
tors is equivalent to testing the difference in proportion of the subjects with a yes response
between two groups. Under the assumption of independence, the marginal total (i.e., the
number of subjects in each group Y1. and Y2.) and the total number of the subjects in each
category of the binary clinical endpoint (i.e., Y.0 and Y.1) are considered fixed. The
expected frequency for the (i, j) cell is then given by

mij � �
(yi.

N
)(y.j)
�, i � 1, 2, j � 0, 1. (9.3.13)

If the response has nothing to do with the treatment, we can expect the observed frequen-
cies to be fairly close the expected frequencies. As a result the weighted sum of squares of
the differences between the observed and expected frequencies, with expected frequencies
as weights, can serve as a test statistic for comparing two independent proportions

χ
P
2 � �

2

i�1
�
1

j�0
. (9.3.14)

The above statistic χ2
P is usually referred to as Pearson’s chi-square test, and its computa-

tion is given in Table 9.3.4. Under the null hypothesis of no difference in proportions,
χ2

P follows a χ2 distribution with one degree of freedom if the sample size of each group 
is moderate (i.e., greater than 30) and the expected frequency in each cell is at least 5. 
We reject the null hypothesis in (9.3.9) if χ2

P 	 χ2(α , 1), where χ2(α , 1) is the upper α th

(yij � mij)
2

��mij
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Table 9.3.4 Computation of χ2
P Statistics for Hypothesis (8.3.6) Based on Binary Data 

for a Parallel Two-Group Trial

Binary Response

Treatment No Yes Total

Test drug
O y10 y11 y1.

E m10 m11

O � E y10�m10 y11�m11

(O � E)2/E (y10�m10)
2/m10 (y11�m11)

2/m11

Placebo
O y20 y21 y2.

E m20 m21

O � E y20 � m20 y21 � m21

(O � E)2/E (y20 � m20)
2/m20 (y21 � m21)

2/m21

Total y.0 y.1 y..
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quantile of a chi-square random variable with one degree of freedom. Note that the test can
be modified with a continuity correction as follows:

χ
PC
2 � �

2

i�1
�
1

j�0

. (9.3.15)

The above chi-square test is easy to employ. In addition, it can be extended to the situa-
tion where two factors have r and c categories, respectively. The expected frequency for
the (i, j)th cell can be calculated by the formula provided in (9.3.13) as the product of mar-
ginal frequencies for the ith level of one factor and the jth level of the other divided by the
total sample size. The test statistics χ2

P now is the weighted sum of squares over all r � c
cells. The test for independence can be similarly performed by comparing χ2

P with the
upper α th quantile of a chi-square distribution with (r �1) (c �1) degrees of freedom.

When sample size is small or the expected frequency in each cell is smaller than 5,
approximation by the large-sample procedures such as Z-statistic or chi-square test may be
inadequate. In this case, we can consider the exact method for inference of comparing two
proportions. Under the assumption that the marginal frequencies are fixed, there is only
one cell frequency in the 2 � 2 contingency table given in Table 9.3.1, which is allowed to
vary. If we allow the number of subjects treated with test drug having a yes response, Y11,
to vary, then Y11 follows a hypergeometric distribution with the probability for observing
frequency y11 given as follows:

P{Y11 � y11} � . (9.3.16)

It follows that the two-tailed p-value for the Fisher’s exact test is the sum of probabilities
over a set of tables with P(Y11) less than or equal to the probability calculated from the
observed frequency y11.

Note that the only requirement for the assumption of a hypergeometric distribution in
(9.3.16) and the expected frequency of Y11 in (9.3.13) is randomization of subjects to
receive either the test drug or the placebo. As a result the variance of Y11 derived from
hypergeometric distribution is given as

υ11 � �
y
N

1
2
.

(
y
N
2. y

�
.0 y

1
.

)
1

� . (9.3.17)

The randomization chi-square test statistic is then given by

χ
R
2 � �

(y11 �

υ11

m11)
2

� . (9.3.18)

Koch and Edwards (1988) show that the relationship between the Pearson’s and random-
ization chi-square test statistics can be expressed as

χ
R
2 � �

N
N
� 1
�χ

P
2. (9.3.19)

Example 9.3.2 We continue to use the binary endpoint of early clinical improvement from
the NINDS trial for illustration of the statistical testing procedures discussed above. Under

(y1.)!(y2.)!(y.0)!(y.1)!
���N!(y10)!(y20)!(y11)!(y21)!

{max[0, �yij � mij� � 0.5]}2

���mij
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the null hypothesis on the equal proportion of subjects with early clinical improvement in
both groups, the common proportion is estimated as (122 � 147)/[2(312)] � 43.11% with
an estimated large-sample variance of 0.001572. The Z-statistic is then given by (0.4712 �
0.3910)/�0�.0�0�1�5�7�2� � 2.0209 which is greater than Z(0.025) � 1.96. The corresponding
two-tailed p-value is 0.043, and we conclude that the proportion of the subjects treated with
rt-PA showing an early clinical improvement is statistically significantly greater than that
given placebo. Since the sample size of both groups is the same (312), the expected
frequency of an early improvement is the same for both groups, which equals (269)(312)/
624 � 134.5. Similarly, the expected frequency of no improvement is 177.5 for both
groups. The sum of all four expected frequencies is equal to the total sample size of 624.
The test statistic χ2

P
without the continuity correction, computed according to (9.3.14), is

4.084 which is greater than χ2(0.05, 1) � 3.84. The corresponding p-value is 0043. Also,
randomization of the chi-square gives

χ2
R

� (623/624)4.084 � 4.077

with a p-value of 0.043. However, the observed value of χ2
PC with continuity correction

from (9.3.15) is 3.764 which is less than 3.84. The corresponding two-tailed p-value is
0.052. The Fisher’s exact test also gives a two-tailed p-value of 0.052. Consequently,
according to the chi-square test with the continuity correction or the Fisher’s exact test, we
fail to reject the null hypothesis of equal proportions of an early improvement for both
groups. Therefore this numerical example provides an example in which the choice of con-
tinuity correction or exact test can reach different conclusion from those by large-sample
approximation methods in rejection of the null hypothesis.

9.4 ORDERED CATEGORICAL DATA

In clinical trials it is not uncommon to have more discrete efficacy and safety endpoints with
more than two categories. For example, although an adverse event can be classified into
dichotomous groups, such as serious or nonserious adverse event, as a binary response, the
intensity of an adverse event is evaluated according to the categories mild, moderate, or
severe. Similar examples are seen in laboratory safety assessments. For example, we can
assess the safety of a drug based on a particular laboratory parameter such as aspartate
transaminase (AST) or alanine transaminase (ALT). Using the observed value of this partic-
ular parameter, subjects are usually classified into three categories: below, within, and above
the referenced laboratory normal range. For another example, each individual symptom
score in the composite AUA symptom index for benign prostatic hyperplasia (BPH) pre-
sented in Table 9.1.3 consists of six categories. These six categories evaluate individual
symptoms in an increasing severity, from not at all as the first category to almost always as
the last category. Although severity of a symptom is actually a continuous variable, it is,
however, extremely difficult or impractical to measure the severity as a continuous variable
objectively. Therefore it is an unobserved latent variable. In practice, the continuous spec-
trum of severity for a symptom is divided into several ordinal categories to objectively eval-
uate the symptom. This type of categorical data is called the ordered categorical data.
Tables 9.1.5 and 9.1.6 provide other examples of ordered categorical data in the areas of
diagnostic imaging and respiratory disorder.
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The data structure of polychotomous categorical data from a parallel two-group trial is
provided in Table 9.4.1, where Yij represents the number of subjects in the jth category for
the ith group, ni � Yi., j � 1, . . . , J, i � 1, 2. It is then of interest to evaluate whether the
distribution of the subjects across categories is the same for the test drug and the placebo.
For example, if the test drug is effective in treatment of subjects with benign prostatic
hyperplasia, then we would expect a shift in distribution such that more subjects are in the
categories not at all, less than 1 times in 5, or less than half the time. As a consequence of
randomization (nonadaptiveness) of subjects to treatments, the null hypothesis of interest
can be formulated as follows:

H0: The distribution of subjects in response categories
is the same as for both groups. (9.4.1)

This hypothesis in fact tests whether there is relationship between the treatment and res-
ponse categories. Under the null hypothesis and a randomization structure, Yij follow a
hypergeometric distribution

P{Yij} � , j � 1, . . . , J, i � 1, 2. (9.4.2)

Similarly to the 2 � 2 table in (9.3.13), the expected frequencies of Yij is the product of
marginal frequencies in the jth category and the sample size of the ith group divided by the
total sample size, namely

mij � �
yi

N
.y.j
�, i � 1, 2, j � 1, . . . , J. (9.4.3)

Substitution of yij and mij into (9.3.14) and summation over all 2J cells gives the Pearson’s
chi-square test statistic, which has a χ2 distribution with J�1 degrees of freedom if sample
size of each group is moderate (	30) and the expected frequency in each cell is at least 5.
To obtain the randomization chi-square statistic, we need to know the covariance between
Yij and Yi� j�, which is given by

cov(Yij, Yi�j�) � , (9.4.4)

where dii� � 1, if i � i� and dii�� 0, if i � i�; and djj�� 1, if j � j�; and djj� � 0, if j � j�.

mij(Ndii� � yi�.)(Ndjj� � yj�.)
���N(N � 1)

Π2
i�1

(Yi.)!ΠJ

j�1
(Y.j)!

���
N!Π2

i�1 ΠJ

j�1
(Yij)!
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Table 9.4.1 Data Structure of Polychotomous Categorical Endpoints for a Parallel 
Two-Group Trial

Category

Treatment 1 2 . . . J Total

Test drug Y11(P11) Y12(P12) . . . Y1J(P1J) Y1.(1)
Placebo Y21(P21) Y22(P22) . . . Y2J(P2J) Y2.(1)
Total Y.1 Y.2 . . . Y.J N
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Let y, m, and V denote the vectors of the observed and expected frequencies and the
covariance matrix of y, respectively. Also, let A � [IJ �1, 0(J � 1) � 2J], where IJ �1, is a
(J � 1) � (J � 1) identity matrix and 0(J �1) � 2J is a (J �1) � 2J matrix of 0’s. Koch et al.
(1982) show that the randomization chi-square can be expressed as

χ2
R

� (y � m)�A�(AVA�)�1A(y � m)

� �
N

N
� 1
� χ

P
2. (9.4.5)

Both the Pearson’s and randomization chi-square tests are useful for detection of the
existence of general association between treatment and categorical response in either the
nominal or ordinal scale. However, they cannot identify a particular relationship. Suppose
that the categorical data are ordinal, one might want to see whether there is a difference in
the central tendency of the distributions between two treatments. In other words, we may
want to detect a location shift in response categories. Let a � (a1, a2, . . . , aJ) be a set of
scores to reflect the ordinal nature of response categories. Then the mean score for the ith
group can be computed in the usual manner as we calculate the sample mean for a fre-
quency table:

ci � �
J

j�1
�
a
y
j y

i.

ij
�, i �1, 2. (9.4.6)

Because there are only two treatment groups and all marginal frequencies are assumed to
be fixed, the mean score for only one treatment group is random. Hence we can only con-
sider the mean score for the test drug. Koch and Edwards (1988) give the expected value
and variance of c1, respectively, as

c ��
J

j�1
�
a
N
j y.j
�

and

υ(c1) � �
(
(
N
N

�

�

y
1
i.

)
)
y
υ
1.

a
�, (9.4.7)

where

υa ��
J

j�1
�
(aj �

N
c)2y.j
�, i �1, 2.

From (9.4.6) and (9.4.7), the Z-statistic can be constructed to test whether there is a loca-
tion shift in distribution between the two groups:

Z � �
�
c1

υ�
�

(c�
c

1)�
�,

or equivalently

X � Z2 � �
(c

υ
1 �

(c1

c
)
)2

�. (9.4.8)
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If the sample size is fairly large, X approximately follows a chi-square variable with one
degree of freedom. As a result we reject the null hypothesis of no location shift between
two distributions at the α level of significance if X 	 χ2(α, 1).

The large-sample randomization test statistic for location shift can be expressed as

X ��υa[(
K
1/

(
y
c

1

1

.)
�

�

c
(
2

1
)2

/y2.)]
�, (9.4.9)

where K � (N � 1)/N is the finite population correction factor.
Note that except for the finite population correction factor, X is in fact a test statistic for

the detection of mean difference between the two independent samples. As a result, as in
the relationship between t statistic and F statistic for continuous endpoints, the test statis-
tics X for two independent samples given in (9.4.9) can be easily extended to test overall
location shift for I independent samples, I 	 2. The resulting test statistic is the one-way
analysis of variance based on scores a � (a1, a2, . . . , aJ) which is given as

X � (N � 1)�
I

i�1
�
yi.(ci

υ
�

a

c)2

�, (9.4.10)

where ci and υa are similarly defined as in (9.4.6). Note that except for the constant (N�1),
the numerator in (9.4.10) is the between-group sum of squares, and Nυa represents the total
sum of squares. If the sample size in each treatment group is at least moderate, X approxi-
mately follows a chi-square variable with I �1 degrees of freedom.

The choice of ordinal scores affects the statistical analysis and its clinical interpretation,
which usually depends on the question being asked. For example, the last question in the
AUA-7 symptom index for BPH is on how many times a subject gets up during the night to
urinate. The symptom score for this question is a discrete count such as integers 0, 1,
2, . . . , and J. The scores of this kind are called integer scores. If categorical clinical end-
points represent some discrete counts or the classes are equally spaced, one might consider
the use of integer scores. Alternative scores suggested by Koch and Edwards (1988) are
standardized midrank scores and logrank scores. Standardized midrank scores are the
expected values of order statistics of uniform distribution. Koch and Bhapkar (1982)
showed that the resulting test statistic is equivalent to the Wilcoxon rank sum test (or
Kruskal-Wallis test for I 	2) without scaling the categories. Standardized midrank scores
are also referred to as modified ridit scores (van Elteren, 1960; Lehamnn, 1975). They can
be assessed by means of PROC FREQ of SAS® with the statement MIDRIDIT in the
option SCORES. Alternatively, one can use logrank scores or Savage scores, which are the
expected values of order statistics from an exponential distribution. These scores are useful
when the interest is to detect treatment difference for a distribution of the data that is 
L-shaped. The logrank scores can be generated by option statement of SAVAGE in PROC
NPAR1WAY of SAS®.

Note that test statistic X for detecting a location shift has fewer degrees of freedom that
the randomization test, χ2

R or Pearson’s chi-squares test, χ2
P for the general association. In

general, X is a more powerful test than either χ2
R or χ2

P. The approximation of χ2
R or χ2

P by
chi-square distribution depends on cell frequencies yij. Basically the test statistics for the
detection of a location shift can be considered a linear rank statistics that is a linear combi-
nation of scores. Hence, their large-sample approximation depends on a linear combina-
tion of yij. Therefore, the sample size requirement for X for detecting a location shift is less
stringent than that of χ2

R or χ2
P.
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Example 9.4.1 As indicated by Barry et al. (1992), the AUA symptom index should be able
to discriminate the subjects from BPH from those without BPH. The data given in Table 9.1.4
summarize the results of the initial question 4 for urination frequency in two hour since the
last urination in a validation study from the subjects with BPH and controls for the AUA
symptom index. Pearson’s chi-square is 16.874 with a p-value of 0.0047 obtained from a chi-
square random variable with five degrees of freedom. The randomization chi-square statistic
for general association can then be obtained by the relationship

χ
R
2 � �

N
N
� 1
� χ

P
2

� (128/129)16.874

� 16.743

with a corresponding p-value of 0.005. Both Pearson’s and the randomization chi-square
tests reject the null hypothesis at the 5% level of significance, that the response distribution
with respect to urination frequency is the same as for the subjects with BPH and normal
controls. However, this general association does not answer the question of whether urina-
tion frequency for the subjects with BPH is higher than normal controls. From Table 9.4.2,
41.1% of the subjects with BPH had to urinate in less than two hours since the last urina-
tion about half the time, more than half the time, or almost always, while the proportion is
only 17.86% for controls. Therefore, there appears to be a location shift in the distributions
of categories between the two groups. Since the AUA symptom index suggests the use of
integers from 0 to 5 for each of seven symptom scores, we computed the test statistic with
integers scores 0, 1, 2, 3, 4, 5 for detection of location shift which turns out to be 14.90
with a p-value of 0.0001. This result confirms our suspicion that the subjects with BPH
tend to urinate more frequently in two hours of the last urination than controls.

9.5 COMBINING CATEGORICAL DATA

In multicenter clinical trials, the studies are conducted at different centers at which ran-
domization schedules are independently generated. In addition, subjects may be stratified
based on some demographic and/or patient baseline characteristics such as gender, race, or
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Table 9.4.2 Summary of Analysis of Validation for Question 4–Frequency No. 1 
in AUA Symptom Index

Category BPH Control X2
P X2

R X

N 73 56
Not at all 8 (10.96%) 16 (28.57%) 16.87 16.74 14.9
Less than 1 in 5 times 18 (24.66%) 23 (41.07%) (0.0047) (0.0050) (0.0001)
Less than half the time 17 (23.29%) 7 (12.50%)
About half the time 14 (19.18%) 7 (12.50%)
More than half the time 8 (10.96%) 2 (3.57%)
Almost always 8 (10.96%) 1 (1.79%)
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the severity of disease. The NINDS trial is a typical clinical trial of this kind. In addition
the NINDS trial is divided into two parts with additional stratification with respect to the
time from the onset of the stroke to the start of treatment. In practice, the treatment imbal-
ance would occur by chance with respect to some important covariates that are not used as
stratified factors in the randomization process. These covariates are usually called the pos-
trandomization stratified factors. As a result, we can compare the differences between the
test drug and the placebo by combining the results from a set of strata with an appropriate
adjustment of the effects caused by the covariates.

Table 9.5.1 illustrates binary response data obtained from an H strata for comparing a
test drug with a concurrent placebo group. If all marginal frequencies are considered fixed,
similar to (9.3.13) and (9.3.17), the expected frequency and variance for the hth strata are
given by, respectively,

mh11 � �
yh1

N
.y

h

h.1�,

and

υh � �
yh

N
1.

h
2
y
(
h

N
2.

h

y
�
h.0

1
yh

)
.1�, h � 1, . . . , H. (9.5.1)

Mantel and Haenszel (1959) propose the well-known Mantel-Haenszel (MH) statistic to
combine the results of the difference in proportions of a yes response from H different
strata. The calculation of the MH statistic is illustrated in Table 9.5.2. After the expected
frequency and variance of Y11 are calculated for each stratum, the sum of the differences
between the observed and expected frequencies and the sum of variances over all strata can
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Table 9.5.1 Data Structure of Binary Endpoint with H Strata
for a Parallel Two-Group Trial

Binary Response

Treatment No Yes Total

Test drug Yh10(Ph10) Yh11(Ph11) Yh1.(1)
Placebo Yh20(Ph20) Yh21(Ph21) Yh2.(1)
Total Yh.0 Yh.1 Yh..�Nh

Note: h � 1, . . . , H.

Table 9.5.2 Summary of Results of Binary Endpoint with H Strata

Strata Observed Frequency Expected Frequency Difference Variance

1 y111 m111�y11.y1.1/N1 y111�m111 υ1

� � � �

h yh11 mh11�yh1.yh.1/Nh yh11�mh11 υh

� � � �

H yH11 mH11�yH1.yH.1/NH yH11�mH11 υH

Sum �yh11 �mh11 �(yh11�mh11) �υh

Note: υh � [yh1.yh2.yh.0yh.1] /[Nh
2(Nh�1)], h � 1, . . . , H.
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be obtained. The MH statistic is the ratio of the square of the sum of the differences to the
sum of variances:

XMH � . (9.5.2)

When the sum of sample size over all strata is sufficiently large, then XMH approximately
follows a chi-square distribution with one degree of freedom. Consequently, we reject the
null hypothesis of no difference between the test drug and the placebo after adjustment of
covariates at the α level of significance if

XMH 	 χ2(α, 1).

The numerator in the MH statistic is the square of the sum of the differences between the
observed and expected frequencies. Therefore, the MH statistic would be more powerful if
the association between treatment and response were in the same direction over all the
strata. On the other hand, if the difference between the test drug and the placebo is not
homogeneous across strata, the differences in (9.5.2) will cancel each other out, and result-
ing sum will be small. Therefore, the MH statistic is not powerful in the presence of het-
erogeneous treatment across strata in the same direction. A test statistic for the detection of
variation of treatment effects across the strata is

XV � XT � XMH, (9.5.3)

where

XT � �
υ
1

h
� �

H

h�1

(yh11 � mh11)
2. (9.5.4)

One can test the null hypothesis for the absence of heterogeneity in the treatment effect by
comparing the observed XV with a chi-square random variable with H � 1 degrees of free-
dom. If there is no evidence for the presence of variation of treatment differences across
strata,Yusuf et al. (1985) suggests an estimate for the common odds ratio of a yes response as

ORC � exp� �, (9.5.5)

with the corresponding lower and upper limits of a (1 � α)100% confidence interval for
the population common odds ratio as follows:

exp� � �. (9.5.6)

Example 9.5.1 To illustrate the MH method for combining treatment effects, we use the
data from the NINDS trial. Since the trial has two parts and the time was stratified into two
intervals: 0 to 90 and 91 to 180 minutes, there are four 2 � 2 tables, one for each strata.
The frequency used for calculation of the MH test is the number of subjects treated with 
rt-PA who showed clinical improvement. Table 9.5.3 gives the observed and expected
frequencies, the difference, variance, and the square of the difference divided by variance.

Z(α/2)
��

���
H

h�1υh

�H

h�1
(yh11 � mh11)

���

�H

h�1
υh

�H

h�1
(yh11 � mh11)

���

�H

h�1
υh

	�H

h�1
(yh11 � mh11)


2

���

�H

h�1
υh
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The sum of the differences between the observed and expected frequencies is 11.7952 and
the sum of variances is 37.9281. Thus, by (9.5.2), the MH statistic is given by

XMH � �
(1
3
1
7
.
.
7
9
9
2
5
8
2
1
)2

� � 3.6682

with a p-value of 0.055. Therefore, we fail to reject the null hypothesis of no treatment
effect at the 5% significance level. From Table 9.5.3, XT is given by 8.8615. As a result,

XV � 8.8615 � 3.6682 � 5.1933

which is smaller than χ2(0.05, 3) � 7.81. Therefore, there is no strong evidence to doubt
the presence of significant variation of treatment effects across strata. However, from the
fifth column in Table 9.5.3, there seems to be some heterogeneity of differences among
strata. The first three strata indicates that odds of clinical improvement for subject treated
with rt-PA is greater than those given placebo, while the strata for the combination of part
2 and time from 91 to 180 minutes gave the result in the opposite direction. However, only
the stratum with the combination of part 2 and time from 0 to 90 minutes provided a sta-
tistical significant treatment effect at the 5% level of significance. The common odds ratio
is then estimated by

exp�13
1
7
.
.
7
9
9
2
5
8
2
1

�� � exp(0.3110) � 1.3648

with the corresponding 95% confidence interval

exp0.3110 � �
�3�

1
7�
.9
.9�
6
2�8�1�

�� � (0.9928, 1.8761).

Note that the 95% confidence interval contains 1. This result is consistent with that from
hypothesis testing that no statistically significant treatment effect was detected at the 5%
level of significance.

Mantel (1963) showed that similar techniques can be extended to combine the results of
discrete endpoints with a total of J ordered categories from H strata in clinical trials
comparing a test drug with a placebo group. Let Yhij represent the number of subjects in the
jth category for the ith group from the hth stratum, ni�Yi., j � 1, . . . , J, i � 1, 2, h �
1, . . . , H. Since subjects at different strata are different, any clinical endpoints observed
from subjects at different strata are statistically independent. Therefore, the probability of
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Table 9.5.3 Comparison Between rt-PA and a Placebo Effect in Subjects Showing Clinical
Improvement for Adjustment of Part and Time from Onset to Treatment in the NINDS Trial

Observed Expected 
Part Time Frequency Frequency Oh�Eh υh (Oh�Eh)

2/υh

1 0–90 36 34.2230 1.7770 8.7351 0.3615
1 91–180 31 27.3750 3.6250 8.9513 1.4680
2 0–90 51 42.7362 8.2638 10.2188 6.6829
2 91–180 29 30.8706 �1.8706 10.0230 0.3491
Sum 147 135.2048 11.7952 37.9281 8.8615

Note: Observed and expected frequencies are for those subjects showing an improvement in rt-PA group.

c09.qxd  27.10.03  13:04  Page 369



Yhij follows a product hypergeometric distribution given by

P{Yhij} � Π
h�1

H � �. (9.5.7)

Let ch1, ch, and υ(ch1) be the mean score, expected value, and variance for the hth strata as
defined in (9.4.6) and (9.4.7), respectively. Then, the extended Mantel-Haenzsel statistic
for detection of a location shift in distribution between the test drug and the placebo across
strata is given by

XEMH � . (9.5.8)

One can reject the null hypothesis of no location shift after adjustment for covariates at the
α level of significance if

XEMH 	 χ 2(α, 1).

If one chooses to use standard midrank scores, then XEMH is the same as the test procedure
proposed by van Elteren (1960) for combining Wilcoxon rank sum statistics over a set
strata, which is also referred to as the blocked Wilcoxon rank sum statistic (Lehmann,
1975). Extension to more than two treatment groups and a test for homogeneity of location
shifts across strata and related issues can be found in Koch and Edwards (1988).

Similar to the Mantel-Haenszel estimator for the average odds ratio for the stratified
2 � 2 table given in (9.5.5), Davis and Chung (1995) suggest an MH estimator, originally
proposed by Mantel (1963), to estimate the common average treatment effect across strata.
Let chik be the resulting observation of the k th subject in the ith treatment form the hth
strata after application of scores, a1, a2, . . . , aJ to each subject. Also let chi and shi

2 be the
mean score and sample variance for treatment i and stratum h. Then we have

chi � �y
1
hi.
� �

Yhi.

k�1
chik ,

and

shi
2 � �yh

1
i.�1
� �

Yhi.

k�1
(chik � chi)

2. (9.5.9)

The MH estimator of the average treatment effect proposed by Davis and Chung (1995) is
given as

θ̂MH � , (9.5.10)

where

wh � �
yh1

N
.y

h

h2.
� , h �1, . . . , H.

Therefore θ̂MH is a weighted average of the stratum-specific treatment differences with weight
wh. Davis and Chung (1995) also propose the following estimate for the variance of θ̂MH:

υ̂ (θ̂MH) � � �
H

h�1

wh
2 	�y

s
2
h

h

1

1
� � �y

s
2
h

h

2

2
�
�. (9.5.11)

1
��
	�H

h�1
wh
2

�H

h�1
wh(ch1�ch2)

��

�H

h�1
wh

	�H

h�1(ch1 � ch)

2

��
�H

h�1
υ (ch1)

∏2
i �1 (Yhi.)! ∏J

j �1(Yh.j)!
���
(Nh)! ∏2

i �1 ∏J
j �1(Yhij)!
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They indicate that θ̂MH is equivalent to that derived under the fixed-effects analysis of vari-
ance estimator from the main effects model. However, θ̂MH and υ̂ (θ̂MH) are obtained only
under the assumption of randomization of subjects to the treatment assignment without the
assumptions of normality, homoscedasticity, and additivity of effects. In addition their statis-
tical properties are nearly as good as the optimal linear models under normality assumption.

Example 9.5.2 To demonstrate the methods for combining ordered categorical data from
a set of strata, we use the data of change in diagnostic confidence in Table 9.1.5, which
were obtained from a clinical trial for comparing a new contrast agent with a placebo
concurrent control. The stratum for this dataset is the gender of the subjects. We use integer
score from 1 to 6 to denote categories from worsened to excellent in our computation.
Readers can verify that the XEMH is equal to 40.204 with a p-value less than 10�7.
Therefore at the 5% level of significance, there is a statistically significant location shift in
the distribution of subjects with respect to change in diagnosis between the new contrast
agent and the placebo. Table 9.5.4 provides some results for the MH estimate of the
average treatment difference and its estimated large-sample variance. From Table 9.5.4,

θ̂MH �

� 1.7676

and

υ̂ (θ̂MH) �

� 0.05674.

Note that XEMH can be easily obtained by using PROC FREQ of SAS® with the option
statement CMH. One can also perform computation of θ̂MH and υ̂ (θ̂MH) in DATA state-
ment of SAS®.

37.8475 � 37.7230
���

(2 * 18.2466)2

33.1096 � 31.3973
���

(2)(18.2466)
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Table 9.5.4 Estimation of Average Treatment Difference
Based on the Change in Diagnostic Confidence Given in 
Table 9.1.6

Stratum

Female Male

Mean Score

Test 5.13889 5.05405
Placebo 3.32432 3.33333
Difference (D) 1.81457 1.72072
Weight (W) 18.2466 18.2466
W * D 33.1096 31.3973

Variance

Test 1.49444 1.60811
Placebo 2.66976 2.51429
W2

* sum of variance of yhi 37.8475 37.7230
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9.6 MODEL-BASED METHODS

In the previous sections we introduced several statistical methods for analysis of categorical
data. These methods only require random assignment of subjects to treatments. As a result,
valid statistical inference can always be obtained from these methods for randomized clini-
cal trials. However, since these methods are randomization-based methods that are for
hypothesis testing rather than estimation, they cannot describe the relationship between the
categorical response and covariates such as demographical variables, patient baseline char-
acteristics, or stratification factors. In this section we will introduce model-based proce-
dures as alternatives to the randomization methods for analysis of categorical data.

One of the most commonly employed model-based methods for the analysis of categor-
ical data is logistic regression (Agresti, 2002; Hosmer and Lemeshow, 2000). The method
of logistic regression is useful because that (1) it can incorporate discrete covariates such
as gender as well as continuous explanatory variables such as age, (2) it provides a more
powerful inference for treatment effect through the reduction of variability caused by the
covariates, (3) it has flexibility that allows for an adjustment of covariates, and (4) it
enables the investigation of possible interactions between covariates. Thus, the method of
logistic regression is usually employed to provide additional information regarding estima-
tion, relationship between response and covariates, and homogeneity of treatment effect
across different levels of covariates.

To introduce the concept of logistic regression, consider the NINDS trial. Let Yghi be the
number of subjects out of nghi subjects, with time interval h to the start of treatment, who
were randomly assigned to receive the ith treatment and had an early clinical improvement
in study part g. Also let Pghi be the corresponding probability, g � 1, 2, h � 1, 2, and i � 1, 2.
If the subjects in each stratum formed by the complete cross-classification of part, time
interval, and treatment are randomly selected independently from the corresponding tar-
geted population, then Yghi can be described by the following product binomial distribution:

P{Yghi} � Π
g�1

2

Π
h�1

2

Π
i�1

2 ��(Yghi)!
(
(
n
n

g

g

h

h

i

i

)
�

!
Yghi)!

�� P
ghi

Yghi (1�Pghi)
(nghi�Yghi).

Define the logit of Pghi as

logit(Pghi) � ln ��1�

Pg

P
hi

ghi
��. (9.6.1)

The logit of Pghi is therefore the logarithm of the odds of clinical improvement to no
improvement for a subject with the time interval h who was randomized to receive treat-
ment i in study part g. Logistic regression can then be used to investigate the relationship
between the probability of improvement and a set of covariates by assuming that the logit
of Pghi is linearly related to the covariates,

ln ��1�

Pg

P
hi

ghi
�� � α � x�ghi β, (9.6.2)

where α is the intercept and β is a vector of unknown regression coefficients corresponding
to the row vector of x�ghi representing study part g, time interval h, and treatment i. The
expression in (9.6.2) is usually referred to as the logistic regression because the probability
of improvement can be expressed as a function of explanatory variables by the logistic dis-
tribution as

Pghi(α � x�ghi β) � {1 � exp[�(α � x�ghi β)]}�1. (9.6.3)
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Although the logistic regression assumes a linear relationship between the logit of Pghi

and covariates, the equation is in fact a nonlinear function. To obtain estimates of the inter-
cept α and regression coefficients β, the method of maximum likelihood is usually consid-
ered. The maximum likelihood estimates of α and β can be obtained by first substituting
the probability of clinical improvement Pghi in (9.6.1) by the right-hand side of (9.6.3).
Then, differentiating the logarithm of the resulting equation with respect to α and β, we
can solve the resulting normal equations for α and β. It should be noted that in general,
there exist no closed forms for α and β. Thus a variety of methods for numerical optimiza-
tion are usually applied to find the maximum likelihood estimators (MLE) of α and β.
These methods usually involve the technique of iterative reweighted least squares (IRLS)
such as the Newton-Raphson algorithm or the method of scoring which is available in most
commercial statistical computer software packages such as SAS, BMDP, and GLIM. For
further details, see Cox and Snell (1989), Agresti (2002), and Hosmer and Lemeshow
(2000).

Let a and b denote the MLEs for α and β. Basically a and b are consistent estimates for
α and β, the unknown intercept and regression coefficients, in the sense that a and b will be
very close to α and β within a negligible distance when the sample size is sufficiently large.
The joint distribution of a and b can be approximated by a multivariate normal distribution
with mean vector (α, β)� and covariance matrix V. A consistent estimate of covariance
matrix of a and b can be obtained as the following inverse of the observed information
matrix given by Koch and Edwards (1988):

υ(α, β) � � �
2

g�1
�
2

h�1
�
2

i�1

nghiPghi (1�Pghi) (1, xghi)(1, xghi)��
�1

. (9.6.4)

After the MLEs a and b are obtained, the predicted probability of clinical improvement,
pghi , can be obtained by replacing the unknown parameters α and β in (9.6.3) by their
MLEs a and b. Hence the number of subjects with an early clinical improvement predicted
by model (9.6.2) for the stratum formed by the combination of study part g, time interval
h, and treatment i is given by

mghi � nghi pghi. (9.6.5)

Koch and Edwards (1988) suggest using goodness-of-fit for model (9.6.2) by way of the
Pearson’s test or the log-likelihood chi-square test, which are given by, respectively,

χ
P
2 � �

2

g�1
�
2

h�1
�
2

i�1
��(yghi

m
�

gh

m

i

ghi)
2
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(n
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g
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h

h

i

i

�

�

y
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g

g

h

h

i)

i

2

�� , (9.6.6)

and

χ
L
2 � �

2

g�1
�
2

h�1
�
2

i�1

2�yghi ln �m
yg

g

h

h

i

i
�� � (nghi � yghi)ln�n

n

g

g

h

h

i

i

�

�

m
yg

g

h

h

i

i
��� , (9.6.7)

where yghi ln(yghi /mghi) and (nghi � yghi)ln((nghi � yghi)/(nghi � mghi)) are defined to be 0 if
yghi � 0 or nghi�yghi � 0. We conclude that a significant lack-of-fit exists for the assumed
model at the α level of significance if χ2

P
or χ2

L
is greater than the upper αth quantile of a

central chi-square distribution with GHI�(s�1) degrees of freedom, where G, H, and I are
the number of the level for each of the three covariates and s is the number of independent
explanatory variables in the model. For the data of clinical improvement in Table 9.1.2,
G � H � I � 2 because there are two study parts, two treatments (rt-PA and the placebo),
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and two time intervals from the onset of stroke to the start of treatment (0–90 and 91–190
minutes).

Logistic regression is a typical example that relates the random occurrence of clinical
endpoints to the systematic components formed by a set of covariates through a link func-
tion (which is referred to as logit link). Other useful link functions include (1) the identity
link and log link for the Poisson variable, (2) the probit link based on the normality
assumption, and (3) the complementary log-link from the extreme-value distribution. Sta-
tistical inference based on other link functions can be similarly derived. For details regard-
ing other link functions and their applications in clinical trials, see McCullagh and Nelder
(1989).

Example 9.6.1 To illustrate the application of logistic regression, we again consider the
data from the NINDS trial given in Table 9.1.2. In this trial, there are two study parts, 1
(g � 1) and 2 (g � 2), two time intervals for the onset of stroke to the start of treatment, 0
to 90 (h � 1) and 91 to 180 minutes (h � 2), and 2 treatments for this trial, placebo (i � 1)
and rt-PA(i � 2). Thus, there are eight logits. Based on these logits, we can fit a main
effects model with terms of part, time interval, and treatment. Since each covariate has two
levels, for simplicity, the lower level and higher level are coded as 0 and 1, respectively, to
obtain the design matrix of the main effects model. Table 9.6.1 gives the design matrix for
the main effects model. Table 9.6.2 summarizes the estimates of intercept and regression
coefficients, their standard errors, and the corresponding two-tailed p-values. In addition to
the intercept, Table 9.6.2 gives the contribution of these three covariates. The chi-squares
by log-likelihood method and the scoring method are 12.054 and 11.987, respectively. The
corresponding p-values calculated based on a chi-square distribution with three degrees of
freedom are given by 0.0072 and 0.0074, respectively. The results indicate that there is a
significant contribution from the three main effects. Suppose that we are also interested in
exploring the potential interaction and homogeneity of the treatment effect across study
parts and in exploring the time to the start of treatment. Then we can include additional
variables: part*time interaction, part*treatment interaction, and time*treatment inter-
action. These effects can be characterized by the product of the corresponding columns in
the design matrix of the main effects model as given in Table 9.6.1. Note that the last
column of Table 9.6.2 provides estimates, their standard errors, and p-values for the model
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Table 9.6.1 Design Matrix for Main Effects in the Data Set of the NINDS Trial in 
Table 9.1.2

Row Time Column

Part Interval Treatment Intercept Part Time Interval Treatment

1 0–90 Placebo 1 0 0 0
1 0–90 rt-PA 1 0 0 1
1 91–180 Placebo 1 0 1 0
1 91–180 rt-PA 1 0 1 1
2 0–90 Placebo 1 1 0 0
2 0–90 rt-PA 1 1 0 1
2 91–180 Placebo 1 1 1 0
2 91–180 rt-PA 1 1 1 1
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with two-factor interactions. The contributions of the six explanatory variables assessed by
both the log-likelihood and scoring methods are statistically significant at the 5% level of
significance. However, the additional contribution of the three two-factor interactions
based on the log-likelihood method and the scoring method are given by 1.863 and 1.993,
respectively, which are not statistically significant at the 5% level of significance. For the
goodness-of-fit of the main effects model, χ2

P and χ2
L test statistics gave 5.273 and 5.295

with corresponding p-values of 0.260 and 0.258, respectively. In conclusion, the main
effects model is an adequate model for describing the relationship between the probability
of clinical improvement and study parts, time to the start of treatment, and treatment.

The results in Table 9.6.2 indicate that the probability of an early clinical improvement
for a subject with time of onset of stroke to treatment within 90 minutes is statistically sig-
nificantly larger than that for a subject with time to treatment between 90 and 180 minutes.
However, the treatment effect is marginally significant with a p-value of 0.0548. An analy-
sis by strata reveals that subjects with the time to treatment within 90 minutes in the study
part 2 had a significant treatment effect. In addition to the observed frequency and probabil-
ity of clinical improvement, Table 9.6.3 displays the predicted frequency and probability by
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Table 9.6.2 Regression Parameters and Their Estimated Standard Errors 
for the Data Set of the NINDS Trial in Table 9.1.2

Model

Parameter Statistic Main Effect Only With Interaction

Intercept Estimate (se) �0.2193 (0.1682) �0.3459 (0.2282)
p-value 0.1921 0.1295

Part Estimate (se) 0.0302 (0.1637) 0.0488 (0.2893)
p-value 0.8538 0.8659

Time Interval Estimate (se) �0.4581 (0.1633) �0.2085 (0.2905)
p-value 0.0050 0.4730

Treatment Estimate (se) 0.3137 (0.1633) 0.5337 (0.2922)
p-value 0.0548 0.0678

Part*Time interval Estimate (se) �0.0454 (0.3280)
p-value 0.8900

Part*Treatment Estimate (se) 0.0054 (0.3280)
p-value 0.9800

Time interval*Treatment Estimate (se) �0.4435 (0.3273)
p-value 0.1754

Model Chi-Square for Covariates 
Loglikelihood

df 3 6
Chi-square 12.054 13.917
p-value 0.0072 0.0306

Score

df 3 6
Chi-square 11.987 13.980
p-value 0.0074 0.0299
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the fitted main effects model and their standard errors. Note that the standard error of the
observed probability is larger than that of the predicted probability because of the reduction
of variability induced by the covariates.

The estimated logits and their standard errors and odds of improvement with the corre-
sponding 95% confidence intervals are given in Table 9.6.4. For the situation where the
time from the onset of stroke to the start of treatment is greater than 90 minutes, the upper
limit of the 95% confidence interval is less than 1. As a result the odds of clinical improve-
ment is statistically significantly less than 1 at the 5% level of significance regardless of
which treatment a subject is given for both parts of the study. When the time of onset to the
start of treatment is within 90 minutes, the odds of clinical improvement is not statistically
significant, since its 95% confidence interval includes 1. Note that the difference in esti-
mated logits between rt-PA and the placebo is the same across the four (part-by-time inter-
val) strata. This difference is exactly the same as the estimate for the regression coefficient
corresponding to the treatment given by 0.3137. The common odds ratio of clinical im-
provement for a subject receiving rt-PA to a subject given the placebo is estimated as
exp(0.3137) � 1.368. The corresponding 95% confidence interval can be calculated as
exp{0.3137 � (1.96)(0.1633)} which gives (0.9937, 1.8847). These results are consistent
with those obtained by the Mantel-Haenszel method discussed in Example 9.5.1.

The ordinal categorical data such as the AUA-7 symptom score (Table 9.1.4), change in
diagnostic confidence (Table 9.1.5), and status score (Table 9.1.6) have more than two cat-
egories in ascending order. One of the possible models for investigating the relationship
between probabilities and covariates is the proportional odds model based on the cumula-
tive probabilities (Agresti, 2002). For simplicity, consider a trial conducted for comparing
a test drug with a placebo.

Let Pij be the probability of observing the jth possible outcome (in a total of J categories
of clinical responses) for subjects receiving the ith treatment, i �1, 2. The cumulative logit
is defined as the logarithm of the odds of the cumulative probabilities below the jth cate-
gory which is given by

logit(Pi1� . . . �Pij) � ln� �, (9.6.8)
Pi1 � . . . � Pij

���1 � (Pi1 � . . . � Pij)

Table 9.6.4 Estimated Logists and Odds of Clinical Improvement for the Data Set of the
NINDS Trial in Table 9.1.2

Time Sample Logit Standard
Odds of Improvement

Part Interval Treatment Size Estimate Error Estimate 95% CI

1 0–90 Placebo 68 �0.2194 0.1682 0.803 (0.578, 1.117)
1 0–90 rt-PA 71 0.0943 0.1654 1.099 (0.795, 1.520)
1 91–180 Placebo 79 �0.6775 0.1656 0.508 (0.367, 0.703)
1 91–180 rt-PA 73 �0.3638 0.1661 0.695 (0.502, 0.963)
2 0–90 Placebo 77 �0.1892 0.1624 0.828 (0.602, 1.138)
2 0–90 rt-PA 86 0.1245 0.1581 1.133 (0.831, 1.544)
2 91–180 Placebo 88 �0.6473 0.1613 0.523 (0.362, 0.718)
2 91–180 rt-PA 82 �0.3337 0.1606 0.716 (0.523, 0.981)
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where j�1, . . . , J � 1. A reasonable model is to assume a linear regression with different
intercepts for each of the J �1 cumulative logits and a common slope as follows:

logit(Pi1 � . . . � Pij) � αj �βx, (9.6.9)

where x � 1 if the treatment is the test drug and x � 0 if the treatment is the placebo and
j �1, . . . , J �1. This model assumes that the treatment effect on the odds of response
below the jth category is the same for all j. In other words,

logit (P11 � . . . � P1j) � logit(P01 � . . . � P0j)

� ln � �
� αj � β � αj

� β. (9.6.10)

The first expression within the logarithm on the left-hand side of equation (9.6.10) is usu-
ally referred to as the cumulative odds ratio. The model in (9.6.9) assumes that the loga-
rithm of the cumulative odds is proportional to the difference between the values of the
explanatory variables for all j. Because of this property, model (9.6.9) is also called the
proportional odds model. Within the same treatment, we have

logit (Pi1 � . . . �Pij) � logit (Pi1� . . . � Pi( j �1)) � αj�αj�1 , (9.6.11)

where j � 1, . . . , J � 1. Since we assume a common slope for each cumulative logit, they are
parallel to each other by an amount αj � αj � 1, j �1, . . . , J � 1. As a result it is important to
check the parallel lines assumption before the proportional odds model can be applied.

Suppose that there are s covariates. One can fit a full model to the cumulative logits with-
out assuming common slopes. The number of parameters for the full model is s(J�1), so a
proportional odds model has a total of J � 1 � s parameters. Consequently, the chi-square
score statistic for the parallel lines assumption approximately follows a chi-square distribu-
tion with s(J�1)�(J�1 � s) � s(J�2) degrees of freedom. Consequently, one rejects the
assumption of the proportional odds model if the chi-square score statistic is too large.

Example 9.6.2 The data on question 4 given in Table 9.1.4, concerning the urination
frequency within two hours of the last urination in the validation study comparing subjects
with BPH and normal controls, are used to illustrate the application of the proportional
odds model. For this dataset, J � 6 and s � 1. The observed chi-square score statistic is
1.5378 with 4(� 6�2) degrees of freedom. Since the corresponding p-value is 0.8198,
there is no evidence to suspect the validity of the parallel lines assumption. Thus the
proportion odds model is applied to this dataset. Table 9.6.5 provides estimates of five
intercepts, the common treatment effects, and their corresponding standard errors. The
results are summarized in Table 9.6.5. From Table 9.6.5, it can be seen that the treatment
effect is estimated by 1.3192 with a standard error of 0.3364 which is statistically, signi-
ficantly different from zero. The common cumulative ratio for observing a response below
the jth category from a normal control to the BHP subjects is 3.7404 with the corre-
sponding confidence interval of (1.9345, 7.2322).

P(Y � j�i �1)/P(Y 	 j�i�1)
���
P(Y � j�i �0)/P(Y 	 j�i�0)
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9.7 REPEATED CATEGORICAL DATA

As indicated in the previous chapter, repeated measures are often obtained at various time
points after the baseline has been established in order to evaluate the efficacy and safety of
a drug under study. For drug efficacy, repeated categorical data provide valuable informa-
tion regarding the time-response profile which is often used to determine (1) how long the
drug needs to be administered before its clinically meaningful effectiveness is achieved
and (2) how long the effectiveness can be maintained by the treatment. For safety, repeated
categorical measurements can also be used to characterize the time course of the occur-
rence of adverse events.

A commonly used approach for the evaluation of a drug is to compare the differences in
changes of categorical data from the baseline between groups. For example, for data given in
Table 9.2.3 which were used to illustrate the McNemar test in Section 9.2, the proportion of
subjects with a favorable status in the placebo group is 45.61% at both the baseline and visit 3.
As a result there is no change from the baseline at visit 3 in the proportion of favorable status
for subjects receiving the placebo. On the other hand, for those subjects receiving the test drug,
the proportions of favorable status are 42.59% and 72.22% at the baseline and visit 3, respec-
tively. This indicates a 29.63% increase in proportion with favorable status for the test group.
As a result it is of interest to test whether the observed 29.63% difference in the change in pro-
portion with favorable status from the baseline between the test drug and the placebo observed
at visit 3 is statistically, significantly different from zero. For this purpose, we could consider
the changes in marginal probabilities between visit 3 and the baseline as the response variables
for comparison between treatments. This problem is referred to as the two-sample McNemar
test by Feuer and Kessler (1989).

Table 9.6.5 Estimates of Regression Parameters and Their
Estimated Standard Errors for Question 4–Frequency No. 1 in
AUA Symptom Index

Parameter Statistics Value

Intercept 1 Estimate �3.5099
se 0.5797
p-value 
0.0001

Intercept 2 Estimate �1.8712
se 0.5115
p-value 0.0003

Intercept 3 Estimate �1.0113
se 0.4920
p-value 0.0398

Intercept 4 Estimate �0.0018
se 0.5000
p-value 0.9971

Intercept 5 Estimate 0.8619
se 0.5485
p-value 0.1161

Treatment Estimate 1.3192
se 0.3364
p-value 
0.0001
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Let θg be the change in proportion from the baseline at a certain post-treatment visit for
group g:

θg � Pg.1 � Pg1.

� Pg 01 � Pg10, (9.7.1)

where g � T, R. The parameter of interest is then the difference in change of proportion
from the baseline between treatments. That is,

δ � θT � θR. (9.7.2)

Therefore the hypotheses for the two-sample McNemar test can be formulated as follows:

H0: δ � 0,

vs. Ha: δ � 0. (9.7.3)

Similar to the one-sample McNemar test, the maximum likelihood estimator (MLE) for θg

can be obtained by replacing the unknown parameters in (9.7.1) by their corresponding
observed sample proportions as

θ̂g � pg01 � pg10.

An estimate of the large-sample variance of θ̂g is then given by

υ̂ (θ̂g) � , (9.7.4)

where g � T, P. Consequently, the MLE for δ and its large-sample variance are given by,
respectively,

δ̂ � θ̂T � θ̂R (9.7.5)

and

υ (δ̂ ) � υ (θ̂T) � υ (θ̂R). (9.7.6)

Feuer and Kessler (1989) suggest using

X � �
υ
δ
(

ˆ

δ

2

ˆ)
� (9.7.7)

as the test statistic for hypotheses (9.7.3) which approximately follow a chi-square distri-
bution with one degree of freedom. Therefore, the null hypothesis of (9.7.3) is rejected 
at the α th level of significance if X 	 χ2(α, 1). The corresponding large-sample (1 � α)
100% confidence interval for δ is given as

δ̂ � Z(α /2) �υ� (δ�ˆ)�. (9.7.8)

As indicated before, many clinical trials are conducted at different centers with the same
study protocol. The Mantel-Haenszel type of technique can also be applied to combine the

(pg01 � pg10) � (pg01 � pg10)
2

����ng
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results from different centers for the differences in changes from the baseline in marginal
proportions between treatments. Denote δ̂ h as the observed difference in change in propor-
tions of favorable status from baseline between treatments for the hth center at a particular
post-treatment visit. Also let υ (δ̂ h) be its large-sample variance, where h � 1, . . . , H. Then
a test statistic for testing hypotheses (9.7.3) is the ratio of the square of the sum of δ̂ h to the
sum of their variances:

XC � . (9.7.9)

When the total sample size is sufficiently large, the distribution of XC approximately fol-
lows a chi-square distribution with one degree of freedom. As a result, we can reject the
null hypothesis of no difference in change from the baseline in proportions between treat-
ments at the α th level of significance if XC 	 χ2(α, 1).

As described in Example 9.2.2, the binary data for the proportion with favorable status
(Table 9.2.3) are obtained by re-grouping the five categories of the original data (Table 9.1.6).
We can also directly compare the transition in marginal proportions between treatments with-
out combining classes into a binary response. The two-sample McNemar test for comparing
change in proportion from the baseline between groups can be extended to the categorical
data with more than two classes. We first consider the one-sample case. Suppose that a cate-
gorical datum has a total of r categories. Let Pij be the proportion of subjects who had a
response in the ith category at the baseline and a response in the jth category at a post-
treatment visit, i, j � 1, . . . , r. It follows that

Pi. � �
r

j�1
Pij

and

P.j � �
r

j�1
Pij

are the marginal proportions of the number of subjects with a response in the ith category at
the baseline and that with a response in the jth category at a post-treatment visit, respectively.
Within the same group, one can test whether the marginal proportions are the same for both
the baseline and the visit. The hypotheses of interest can be expressed as follows:

H0: Pi. � P.i for all i,

vs. Ha: Pi. � P.i for at least one i, i �1, . . . , r. (9.7.10)

Transition in the proportions from baseline to visit can be summarized by an (r �1)�1
vector d�(d1, d2, . . . , dr�1)�, where di � pi. � p.i is the difference in sample proportions
between the baseline and a visit for the ith category i � 1, . . . , r � 1. The large-sample
covariance matrix for di can then be estimated by

�
W
n� � �

{w
n

ij}
� ,

	�H

h�1
δ̂ h


2

��
�H

h�1
υ (δ̂ h)
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where

wij � �
( pi. � p.i) � 2pii � ( pi. � p.i)

2 if i � j,

�( pij � pji) � ( pi. � p.i)( pj. � p.j) if i � j, (9.7.11)

where 1 � i, j � r � 1. A test statistic proposed by Bhapkar (1966) for the homogeneity of
marginal proportions between the baseline and the visit is given by

Q � nd�W�1d,

which follows a central chi-square distribution with r �1 degrees of freedom. Therefore
the null hypothesis of (9.7.10) is rejected at the α th level of significance if Q 	
χ2(α, r �1), where χ2(α, r � 1) is the upper αth quantile of a chi-square distribution with
r �1 degrees of freedom. The covariance under the null hypothesis, Pi. � P.i, for all i, is
given as

wij
0 � �

( pi. � p.i) � 2pii,

�( pij � pji), (9.7.13)

where 1 � i, j � r � 1. Replacing W in the Bhapkar’s Q statistic with the null covariance
matrix W0, the resulting test statistic is the one proposed by Stuart (1955) which has the
same asymptotic distribution as Bhapkar’s Q.

Let θh represent the vector consisting of r �1 changes in marginal proportions from the
baseline, where

θh�(Ph1. � Ph.1, . . . , Ph(r � 1).�Ph.(r � 1)), h � T, R. (9.7.14)

Then δ � θT � θR is the parameter of interest, which is the difference in changes in pro-
portions from the baseline between treatments. The hypothesis on whether there is a diff-
erence in the change in marginal proportions from the baseline can then be formulated as

H0: δ � 0,

vs. Ha: δ � 0. (9.7.15)

Let dh be the vector of the differences obtained from the observed sample proportions
for the hth group based on sample size nh with its estimated non-null sample covariance
matrix Wh. Then the Bhapkar’s Q statistic for testing hypotheses of (9.7.15) is given by

Q � (dT � dR)� 	�
W
nT

T
� � �

W
nR

R
�


�1
(dT � dR). (9.7.16)

This statistic approximately follows a chi-square distribution with r � 1 degrees of freedom.
As a result we reject the null hypothesis at the α th level of significance if Q 	 χ2(α, r � 1).

Note that the methods for analysis of repeated categorical data discussed in this section
are based on a change from the baseline in marginal proportions. Other functions of the
marginal probabilities such as cumulative logits described in (9.6.8) can be used as response
variables for the characterization of change from the baseline disease status.
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Repeated categorical data are measurements of the same categorical end-point on the
same individuals over the course of a trial. For the same subject repeated categorical data
are correlated to each other. Analysis of repeated categorical data by treating the repeated
data as independent observations will result in some undesirable statistical deficiencies.
First of all, the estimates of treatment effects may not be robust to the selection bias for
nonrandomized trials. Second, statistical inference for an average response is not efficient,
although sometimes it is valid. Finally, estimation for variability is inconsistent. Alterna-
tively, as discussed in the previous chapter, the technique of GEE developed by Liang and
Zeger (1986) and Zeger et al. (1988) can be applied for analysis of repeated categorical
data using either the marginal or transition models. Miller et al. (1993) propose a proce-
dure for the analysis of repeated categorical data with more than two classes using the GEE
in connection with weighted least squares. Lipsitz et al. (1994) report a performance of the
GEE in practical circumstances. Agresti (1983, 1984, 1989, 2002) provides a comprehen-
sive review of models and methods for analysis of repeated ordered categorical response
data. Zeger and Liang (1992) give an overview of methods for the analysis of longitudinal
data. Recent developments on repeated categorical data can be found in Crowder and Hand
(1990), Lindsey (1993), Diggle, Liang, and Zeger (1994), and Hand and Crowder (1996).

Example 9.7.1 Again we use the binary response of favorable status to illustrate the two-
sample McNemar test. Table 9.7.1 presents the results of a one-sample McNemar test
using the non-null variance given in (9.7.4). The results are consistent with those given in
Table 9.2.5. The MLE for the proportional difference in change of favorable status from the
baseline at visit 3 is 29.63%, with an estimated standard error of 0.0972. As a result the
large-sample 95% confidence interval calculated according to (9.7.8) is (10.59%, 48.68%),
which does not contain zero. Hence we reject the null hypothesis at the 5% level of
significance that the change in proportions at visit 3 from the baseline between treatments
is the same. The conclusion is that significantly more subjects receiving the test drug than
those given the placebo changed from their unfavorable status at the baseline to the
favorable status at visit 3.

Next we use the status score data in the original categories for illustration of Bhapkar’s
procedures. Since the data are sparse in the terrible response category, we will combine the
terrible and poor response categories. Table 9.7.2 gives the changes in marginal proportion
at visit 3 from the baseline and their differences between treatments. The one-samples of
Bhapkar’s Q statistics are 21.82 and 8.93 for the test drug and the placebo with p-value 

0.00001 and p-value � 0.0302, respectively. The results indicate that at visit 3 there is a
statistically significant change in marginal proportions from the baseline for both treat-
ments. The two-sample of Bhapkar’s Q is given by 12.05 with a p-value of 0.0072. As 
a result the null hypothesis of no difference in change of marginal proportions between

Table 9.7.1 Summary of Differences in Favorable Status for Data Set Provided 
in Table 9.2.3

Difference Standard
Treatment N in Proportion Error Chi-square p-Value

Test drug 54 0.2963 0.0674 19.31 
0.0001
Placebo 57 0.0000 0.0702 0.000 	0.9999
Difference 111 0.2963 0.0972 9.27 0.0023
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treatments is rejected at the 5% level of significance. From Table 9.7.2 more subjects on
the test drug than on the placebo changed from other statuses at the baseline to the excel-
lent rating at visit 3.

9.8 DISCUSSION

In this chapter, we provided a concise review and introduction to the concept and several
useful statistical methods commonly employed for the analysis of categorical data. How-
ever, we noted that some methods appearing in the literature are not discussed. These
methods include (1) methods that count data using a Poisson distribution and (2) certain
model-based methods such as the loglinear model. For more detail on the analysis of cate-
gorical data and related topics, see Agresti (2002).

The statistical tests discussed in this chapter are mainly for testing hypothesis regarding
the existence of treatment effect. These methods are often misused to establish therapeutic
equivalence between a test drug and a reference drug. For testing therapeutic equivalence
for the binary response, as indicated in Chapters 2 and 6, the following interval hypotheses
should be considered

H0: P11�P21 � U or P11�P21 � L,

vs. Ha: L 
 P11�P21 
 U.

We conclude that the test drug is therapeutically equivalent to the reference drug at the α
level of significance if the (1�2α)100% confidence interval for the difference in popula-
tion proportions computed from (9.3.3) falls within the equivalence limits of (L, U). In

Table 9.7.2 Summary of Marginal Changes in the Data Set of Table 9.1.6

Category

Terrible
Treatment N Time Point or Poor Fair Good Excellent

Test drug 54 Visit 3 9.26% 18.52% 25.92% 46.30%
Baseline 24.07% 33.33% 22.22% 20.37%

Change �14.81% �14.81% 3.70% 25.93%
Bhapkar Q � 21.82

with 3 df
p-value 
 0.0001

Placebo 57 Visit 29.83% 24.56% 19.30% 26.32%
Baseline 19.30% 35.09% 33.33% 12.28%

Change 10.63% �10.53% �14.03% 14.04%
Bhapkar Q � 8.93

with 3 df
p-value � 0.0302

Difference in change �25.44% �4.28% 17.73% 11.89%
Bhapkar Q � 12.05

with 3 df
p-value � 0.0072
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clinical trials, however, the one-sided equivalence is more appealing because the primary
objective is usually to verify whether the efficacy of the test drug is at least as good as that
of the reference drug. Therefore we can conclude that the test drug is at least as effective as
the reference drug and conclude that equivalence is at the α level of significance if the
lower limit of the (1�2α)100% confidence interval is greater than the lower equivalence L.
For more detail on therapeutic equivalence, see Blackwelder (1982), Huque and Dubey
(1990), Durrleman, and Simon (1990), Makuch and Johnson (1990), Farrington and 
Manning (1990), Chow and Liu (2000), and Jennison and Turnbull (1993). For recent
developments of equivalence/noninferiority based on binary endpoints, see Chan (2003)
for a comprehensive review of methods for independent samples and see Hsueh et al.
(2001) and Liu et al. (2002) for paired samples.

The Bhapkar’s Q for the detection of a marginal difference in the change from the 
baseline can be applied to categorical responses on either a nominal or an ordinal scale.
However, the method does not take into account the order of categories. Agresti (1983) pro-
poses a more powerful Mann-Whitney type statistic for testing the homogeneity of marginal
proportions between the visit and the baseline when the true marginal proportions are sto-
chastically ordered. Agresti’s procedure is useful when the categorical response is ordinal
and the number of ordered categories is large.

As discussed in the previous chapter, missing values or dropouts often occur in clinical
trials. Little and Rubin (1987) and Little (1995) gave definitions of a hierarchy of missing
value mechanisms. In general, the entire dataset in which a clinical trial is supposed to col-
lected can be partitioned into two parts. The first part, say Y0, concerns data observed and
collected from the trial; the second part, the data, denoted by Ym, concerns the data that
were supposed to be observed but were not and hence are missing. For instance, let R be a
random variable that indicates whether the data of subjects are observed or missing. The
missing value mechanism is said to be missing completely at random (MCAR) if R is inde-
pendent of both Y0 and Ym. If R is only independent of Ym, the data are said to be missing
at random (MR) or ignorable (Laird, 1988). The missing mechanism is said to be informa-
tive or unignorable if random variable R depends on Ym. Currently, there are no well-
developed methods that can satisfactorily analyze the ordered categorical data with
intermittently missing values. If the mechanism for the missing values is completely ran-
dom, Lachin (1988b) indicates that inference based on the observed complete data can be
treated as a subgroup analysis and hence is valid but less efficient. However, the assumption
of independence between R and (Y0, Ym) and between R and treatment is difficult to verify.
Statistical procedures were proposed by Diggle (1989) and Ridout (1991) for testing the
hypothesis of completely random dropouts, and for missing patterns of the repeated cate-
gorical data by Park and Davis (1993). For repeated categorical data, the issue of premature
dropout is much more complicated than that of intermittent missing data because it almost
certainly suggests that the assumption of MCAR is implausible. Despite the research effort
for the informative withdrawals by prominent statisticians such as Fitzmaurice et al. (1995)
and Diggle and Kenward (1994), further work is needed on repeated categorical data.
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10
CENSORED DATA AND INTERIM
ANALYSIS

10.1 INTRODUCTION

Statistical concepts and methods for analyzing continuous and categorical endpoints in
clinical trials were reviewed in the previous two chapters. Clinical endpoints for assessment
of efficacy and safety of a promising therapy usually include occurrence of some predefined
events such as death, the response to a new chemotherapy in treatment of some advanced
cancer, the eradication of an infection caused by a certain microorganism (e.g., Helicobac-
ter pylori for gastric ulcers), serious adverse events (e.g., neutropenia), or the elevation of
asparate transaminase three times over the upper limit of the normal range. For these events,
the primary parameter of interest is usually time to the occurrence of such an event. Another
parameters of interest is the median survival time. The median survival time is defined as
the time at which 50% of the subjects still survive. Subjects are recruited into the trial at 
different calendar time point. Note that the predefined event may not be observed on the
subjects who complete the scheduled duration of treatment and follow-up. On the other
hand, some subjects may withdraw prematurely without observing any occurrences of the
event before the end of the study. These individuals are said to be lost to follow-up. As a
result we do not have any information on these subjects with respect to the event. The only
information we have is that the predefined event did not occur at these subjects in their last
visit (either at the end of study or at the time they dropped out from the study). The time to
the occurrence of the event therefore is not known for these subjects. We refer an endpoint
of this kind to as a censored endpoint. As an example, consider the most common oppor-
tunistic infection in patients with advanced stages of AIDS, which is the disseminated infec-
tion with Mycobacterium avium complex. Pierce et al. (1996) conducted a randomized,
two-group parallel, placebo-controlled double-blind study to assess the prophylactic effect
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of clarithromycin 500 mg twice daily in prevention of M. avium complex infection and
improvement of survival in patients with advanced AIDS. The entrance criteria for this
study included blood cultures that were negative to M. avium, a Karnofsky performance
score of 50 or higher, a CD4 cell count of 100 or fewer per cubic millimeter. The primary
efficacy endpoints consist of the time to the detection of M. avium, which is defined as the
time interval between randomization and the first positive blood culture, and survival, which
is defined as the time interval from randomization to death from any causes. The data from
the patients without infection were censored at the time of the last negative culture for the
time to the detection. The survival data were censored at the time of the last contact of 
the alive patients. The sample size for this study is 300 patients per group to provide at least
an 80% power for detection of at least a 67% reduction in the incidence of infection of 
M. avium complex for the clarithromycin group as compared with the placebo group. This
trial also specified an interim analysis at the time when the first 300 patients have completed
one year of therapy or when 50 patients developed M. avium infection, whichever, came
first. The study was in fact terminated after the first interim analysis because compelling
evidence of reduction in incidence of M. avium complex provided by clarithromycin.

The Economist (2002) reports that only 1 out of 10,000 molecules screened in a given
program can make it from the stage of drug discovery to marketing launch. The process of
drug development and research is lengthy and on average takes 12 years. The cost increased
from 125 million in US dollars in 1963–1975 to 450 million US dollars in 1991–1995 and to
800 million US dollars in 2002. In addition, the pharmaceutical industry spent 44 billion US
dollars in 2001 for research and development. According to The Economist (2002), about a
decade ago, testing a drug on 1,000 patients was enough to prove its safety and efficacy. Now,
regulatory authorities require a database of 4,000 patients from clinical trials conducted in
different development stages. Most of the budget for research and development goes to clin-
ical trials in clinical development. About 60% of drugs, however, fail during the clinical
development stage and the success rate of drugs from expensive phase III confirmatory trials
to market has fallen by almost 30%. Since drug research and development is not only time-
consuming but also costly and risky, it is helpful to determine whether the efficacy and safety
of a new pharmaceutical entity is promising and compelling at early stage of clinical devel-
opment, be that positive or negative. The information can be used to recommend early termi-
nation of the drug’s development. This is especially important for trials with long-term
follow-up or intended for evaluation of life-threatening or severely debilitating diseases. As a
result interim analyses have become popular in clinical development. The purpose is to pro-
vide early information regarding the test drug in a more cost-effective way. If the reason for
early termination is lack of efficacy or the presence of unexpected or untoward adverse expe-
riences, then the remaining resource may be re-allocated to develop other promising drugs.
Therefore interim analyses to provide statistical evidence for early termination and data mon-
itoring have become an indispensable norm in the management of clinical trials. However, it
should be noted that interim analysis and data monitoring are two different areas. They have
their own functions and procedures, although they are related to each other.

Analysis of censored data and the application of interim analysis for early termination
have become common practice for clinical trials. In this chapter, we will first discuss diff-
erent types of censoring. Some background regarding the survival function and the use of
the Kaplan-Meier’s method (Kaplan and Meier, 1958) for estimation of proportions based
on censored data are given in Section 10.2. The logrank statistic and Gehan’s generaliza-
tion of Wilcoxon rank sum statistic for the censored data (Gehan, 1965a, 1965b) are out-
lined in Section 10.3. Section 10.4 describes the semiparametric proportional hazard
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model with covariates as proposed by Cox (1972). The concept of calendar and informa-
tion time are illustrated in Section 10.5. Different methods for interim analysis are covered
in Section 10.6. These methods include the group sequential methods proposed by Pocock
(1977) and O’Brien and Fleming (1979), repeated confidence intervals suggested by Jen-
nison and Turnbull (1989), the method of alpha spending function by DeMets and Lan
(1994), and B-values by Lan and Wittes (1988). Some final remarks and a discussion will
be provided in the last section. Whenever possible, numerical examples using published
data from real trials will be used to illustrate the methods presented in this chapter.

10.2 ESTIMATION OF THE SURVIVAL FUNCTION

In conducting clinical trials, it is almost impossible and impractical to enroll all the patients
into a study at the same time. Patients are usually enrolled into the trial at different time
points during the study. At the end of the study or at the time of interim analysis, the event
of interest may occur in some patients during the study. As a result, their times to the event
are actually observed. However, for the patients who completed the study or withdrew pre-
maturely from the study without the event, their times to the events may not be observed and
hence are censored (right censored). Figure 10.2.1 displays in calendar time the censoring
patterns for time to a predefined event of a study, starting from the initiation to its end or to
the time at which an interim analysis was performed. Patient 1 enrolled at the beginning of
the study and the event of interest occurred at month 10. Therefore, the time to the event is
10 months. Patient 2 also entered at the beginning of the study, but for some reason this
patient prematurely withdrew from the study at month 8 without the event. Hence, the time
to the event is unknown and censored at 8 months. Patient 3 completed the entire study of 16
months without an occurrence of the event. Therefore, the time to the event of patient 3 is
censored at 16 months. Patient 4 was enrolled at month 2, and the event occurred at month
12. As a result, the time to the event for patient 4 is 10 months. Patient 5 entered into the trial
at month 4 but lost to follow-up. Hence, the time to the event for patient 5 is censored at 
8 months. The time to the event is 8 months and not censored for patient 6 who entered into
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Figure 10.2.1 Censoring pattern in calender time. �: event; �: censored.
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the trial at month 6 and experienced the event at month 14. Patient 7 was enrolled into the
study at month 10. When the study ended at month 16, no occurrences of the event were
observed and hence the time to the event for patient 7 is censored at 6 months. In survival
analysis, it is usually of interest to obtain statistical inference on the time from initiation of
treatment such as randomization to the occurrence of the predefined event. As a result, it is
suggested that the data be arranged in terms of the length of treatment before the occurrence
of the event as illustrated in Figure 10.2.2. As can be seen from Figure 10.2.2, the times to
the event for patient 1 and patient 4 are the same (10 months). Similarly, the times to the
event for patient 2 and patient 5 are both censored at 8 months.

Fleming et al. (1980) report the results from a study conducted in patients with limited
stage II or IIIA ovarian carcinoma at the Mayo Clinic which was to determine whether the
grade was related to the time over which disease progressed. Table 10.2.1 displays either the
observed time in months to the progression of the disease or the time censored at the last
visit. The observed time is given in the second column, while the third column provides
information on whether the observed time to progression was relevant or censored. The last
column indicates whether a patient had low grade or well-differentiated cancer. Table 10.2.1
provides a basic layout for the presentation of censored data which must include patient iden-
tification, time to the event, censored indicator, and other covariates such as treatment assign-
ment and disease status.

Let Y be a continuous random variable representing the time from randomization to the
occurrence of a clinically meaningful event such as the time until the detection of M. avium
or the occurrence of death for the AIDS trial as described in the previous section. Y is usu-
ally referred to as the survival time. The cumulative distribution function (cdf) of Y, denoted
by F(y), is defined as the probability that a subject fails before or equal to the time y, namely

F(y) � P(a subject fails before or equal to y)

� P(Y � y), 0 � y � ∞. (10.2.1)

The cdf is a nondecreasing function of time y such that F(0) � 0 and F( ∞) � 1. The cdf
of Y is usually employed to describe the mortality rate for evaluation of treatment in 
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Figure 10.2.2 Censoring pattern in duration of treatment. �: event; �: censored.
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cardio-vascular diseases, such as the Beta-blocker Heart Attack Trial (BHAT, 1982). In
clinical trials, however, it is more common to use the survival function for the disease
with a high mortality rate. The survival function is the probability that a subject survives
longer than y, namely

S(y) � 1 � F(y)

� P(a subject survives longer than y)

� P(Y � y), 0 � y � ∞. (10.2.2)

390 CENSORED DATA AND INTERIM ANALYSIS

Table 10.2.1 Time in Months to Progression of the Patients with Stage II
or IIIA Ovarian Carcinoma by Low-Grade or Well-Differentiated Cancer

Patient Number Time in Months Censored Cell Grade

1 0.92 No Low
2 2.93 No Low
3 5.76 No Low
4 6.41 No Low
5 10.16 No Low
6 12.40 Yes Low
7 12.93 Yes Low
8 13.85 Yes Low
9 14.70 Yes Low

10 15.20 No Low
11 23.32 Yes Low
12 24.47 Yes Low
13 25.33 Yes Low
14 36.38 Yes Low
15 39.67 Yes Low
16 1.12 No High
17 2.89 No High
18 4.51 No High
19 6.55 No High
20 9.21 No High
21 9.57 No High
22 9.84 Yes High
23 9.87 Yes High
24 10.16 No High
25 11.55 No High
26 11.78 No High
27 12.14 No High
28 12.14 No High
29 12.17 No High
30 12.34 No High
31 12.57 No High
32 12.89 No High
33 14.11 Yes High
34 14.84 No High
35 36.81 Yes High

Source: Fleming et al. (1980).
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Hence S(y) is a nonincreasing function of time y, and S(0) � 1 and S(∞) � 0. As a result 
the probability density function (pdf) of Y is the probability of failure over a very small
time interval,

f (y) � lim
∆y → 0

P(a subject fails between y and y �∆y)/∆y

� lim
∆y → 0

P(y � Y � y �∆y)/∆y, (10.2.3)

Since the pdf of Y is the probability of failure over a time interval, it is greater than or equal
to 0 if y is greater or equal to 0. It equals 0 if y is less than 0. In addition, the area under the
curve f(y) is equal to 1. Comparing the pdf given in (10.2.3) and the cdf given in (10.2.1)
or survival function defined in (10.2.2) reveals that f(y) is the derivative of F(y), which
equals minus of the derivative of the survival function S(y). The hazard function, denoted
as h(y), is the instantaneous death rate, which is the conditional probability that a subject
fails over the next instant given that the subject has survived up to the beginning of the
interval. Mathematically it can be expressed as

h(y) � lim
∆y → 0

P(a subject fails between y and

y � ∆y�the subject survives to y)/∆y

� lim
∆y → 0

P(y � Y � y � ∆y�Y � y)/∆y

� �1 �

f(y
F
)
(y)�

� �S
f(
(
y
y
)
)�. (10.2.4)

Two hazard functions h1(y) and h2(y) are said to be proportional if

h1(y) � λh2(y) for all y � 0, (10.2.5)

where λ is a constant, λ � 0. From (10.2.4) and (10.2.5), the relationship between the cor-
responding survival functions is given by

S1(y) � [S2(y)]λ for all y � 0. (10.2.6)

As a result, if the ratio of two hazard functions is a constant, then the one survival function
can be expressed as the other survival function to the λth power.

If a predefined clinical event is observed in some subjects before the completion of the
study, then their exact failure times are known. On the other hand, some subjects may with-
draw prematurely without observing any occurrences of the event of interest due to some
known or unknown reasons. Sometimes, the event does not occur for some subjects who
completed the study. As a result, the time to the occurrence of the event is censored at the
last known contact, and it is at least as long as the time from randomization to the time of the
last contact. Let C denote the censoring time associated with the failure time Y. If C is
greater than or equal to Y, then the survival time is actually observed. On the other hand, if
the survival time is greater than the censoring time, then the survival time is not observed
and is censored. As a result, the censored data for a subject consist of a pair of responses.
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The first response is the observed time and the second is an indicator identifying whether
the observed time is the survival time or was censored at the last contact. In other words, the
data for the time to the occurrence of a predefined event obtained from n subjects of 
a clinical trial can be arranged as (y1, c1), . . . , (yn, cn), where yi is the observed time for sub-
ject i and

ci � � 1 if yi is the survival time,
0 if yi is censored. (10.2.7)

This type of censoring mechanism is referred to as random censoring (Miller, 1981).
Description for other types of censoring mechanism can be found in Miller (1981) and Lee
and Wang (2003).

Since it is not easy to theoretically evaluate the true distribution of the survival time
(Lee and Wang, 2003; Kalbfleisch and Prentice, 1980), in this chapter we will only cover
Kaplan and Meier’s nonparametric method for the survival function. For parametric meth-
ods, see Lee and Wang (2003) and Marubini and Valsecchi (1995). Let y(1) � . . . � y(K) be
the ordered distinct failure times when the event occurs and dk be the number of events at
time y(k) and mk be the number of censored observations in the interval (y(k), y(k � 1)),
k � 1, . . . , K. The risk set just prior to the time y(k) consists of the subjects who still sur-
vive and whose survival time is not censored before y(k). Thus, under the assumption of in-
dependent censoring, the number of subjects in the risk set just prior to the time y(k),
denoted by nk, is given by

nk � (dk � mk) � . . . � (dK � mK), k � 1, . . . , K.

The Kaplan-Meier nonparametric estimation of the survival function at time y is given by

Ŝ(y) � Π
y(k)� y

�1 � �
d
n

k

k
��. (10.2.8)

The Kaplan-Meier estimate provides a straightforward yet intuitive interpretation of the
survival function. The probability that a patient is alive (or without the event) at y(k) is equal
to the conditional probability that the patient is alive at y(k), given that this patient survived
through all proceeding time points when other patients failed times the probability that this
patient survived all previous time points. In other words,

Ŝ(y(k)) � P(surviving at y(k))

� P(surviving through y(1), y(2), . . . , y(k � 1), y(k))

� P(surviving y(k)�surviving through y(1), y(2), . . . , y(k � 1))

� P(surviving through y(1), y(2), . . . , y(k � 1))

� P(surviving y(k)�surviving through y(1), y(2), . . . , y(k � 1))

� P(surviving y(k � 1)�surviving through y(1), y(2), . . . , y(k � 2))

� . . . �P(surviving y(2)�surviving through y(1))

� P(surviving y(1)). (10.2.9)

From (10.2.9), we see that the Kaplan-Meier estimates of survival are the same as those
between two adjacent observed failure times. Then, the graph of the Kaplan-Meier estimates
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must be a step function. According to the above discussion, the data layout for computing
the Kaplan-Meier nonparametric estimates of survival consists of five columns as demon-
strated in Table 10.2.2. The first column shows the ordered distinct failure times, the second
column the number of events, the third column the number of censored observations, and
the fourth column the number of subject at risk prior to y(k). The last column gives the
Kaplan-Meier estimates of the survival function which are a product of the proportions of
the number of surviving subjects at y(k) and of all proceeding distinct failure times.

The variance of the Kaplan-Meier estimate at time y can be found using Greenwood’s
formula:

υ[Ŝ(y)] � [Ŝ(y)]2 �
y(k)�y

�nk(nk

d

�
k

dk)
�. (10.2.10)

It follows that a large-sample (1 � α)100% confidence interval for S(y) can be obtained as

Ŝ(y) 	 Z(α /2)�υ�[S�(y�)]�. (10.2.11)

The median survival time can then be estimated as

q0.5 � min{y : 1 � Ŝ(y) 
 0.5}. (10.2.12)

A large-sample (1 � α)100% confidence interval for the median survival time can be con-
structed similarly.

Example 10.2.1 The data of time to progression (in months) for 15 patients with limited
stage II or stage IIIA low-grade ovarian cancer given in Table 10.2.1 are used to illustrate
the computation of the Kaplan-Meier survival function in finding the probability of the
patients who did not progress. In the data given in Table 10.2.3, ovarian cancer progressed
in 6 out of 15 patients. At each of the first five progression time points, 0.92, 2.93, 5.76,
6.41, and 10.16 months, there was only one patient with occurrence of the event of cancer
progression. The numbers of the patients in the risk set just prior to the progression time
were 15, 14, 13, 12, and 11, respectively. However, between 10.16 and 15.20 months, there
were 4 patients whose progression times were censored. At 15.20 months, the cancer
progressed in one patient. As a result, the number of patients in the risk set just prior to
15.20 months became 6. Since the progression times for the last 5 patients were censored
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Table 10.2.2 Data Layout for Computation of Kaplan-Meier Survival Function

Ordered Distinct Number of Number Censored Number in 
Event Time Events in [y(k), y(k � 1)] Risk Set Ŝ (y)

y(0)� 0 d0 � 0 m0 n0 1
y(1) d1 m1 n1 1 � d1/n1

y(2) d2 m2 n2 (1 � d1/n1)(1 � d2/n2)
� � � � �
y(K) dK mK nK (1 � d1/n1)(1 � d2/n2) . . .

(1 � dK/nK)
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and were longer than 15.20 months, the probability of the patients who did not progress at
or after 15.20 months can be estimated by (10.2.9) as

Ŝ(15.20 or longer) � ��
1
1
4
5
�� ��

1
1
3
4
�� ��

1
1
2
3
�� ��

1
1
1
2
�� ��

1
1
0
1
�� ��

5
6

�� � 0.5556.

The Kaplan-Meier estimates, the corresponding estimated large sample variance, and 95%
confidence intervals are given in Table 10.2.4. The Kaplan-Meier estimates for patients with
low-grade cancer are plotted in Figure 10.2.3 along with those for patients with well-
differentiated cells. A large-sample variance of Ŝ (15.20 or longer) computed by the Green-
wood’s formula in (10.2.10) is 0.0206. It follows that the large-sample 95% confidence interval
is (0.2744, 0.8367). However, since the probability of patients free of progression at or after
15.20 months is 0.5556 which is greater than 0.5, the median time of no progression cannot be
estimated for the patients with low-grade cancer. On the other hand, for the patients with well-
differentiated cancer, the shortest time for the estimated probability of patients free of progres-
sion greater than 50% is 12.14 months which is the estimated median time of no progression.
The corresponding large-sample 95% confidence interval is from 9.57 to 12.57 months.

10.3 COMPARISON BETWEEN SURVIVAL FUNCTIONS

In clinical trials, the most important inference regarding censored data is to determine
whether the experimental therapy can reduce the morality rate or improve the survival rate
compared to the placebo or standard treatment. Therefore, statistical hypotheses are typi-
cally expressed as

H0: S1(y) � S2(y),

vs. Ha: S1(y) � S2(y). (10.3.1)

One commonly used method for comparing two survival functions is the logrank test. The
logrank test is considered to be the most powerful test for the alternative hypothesis that
hazard functions are proportional, namely,

H0: S1(y) � S2(y),

vs. Ha: S1(y) � [S2(y)]λ. (10.3.2)
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Table 10.2.3 Computation of Kaplan-Meier Survival Function for Patients with 
Low-Grade Cancer in Table 10.2.1

Ordered Distinct Number of Number of Censored Number in 
Progression Time Events in [y(k), y(k�1)] Risk Set S(y)

0 0 0 15 1
0.92 1 0 15 0.9333
2.93 1 0 14 0.8667
5.76 1 0 13 0.8000
6.41 1 0 12 0.7333

10.16 1 4 11 0.6667
15.20 1 1 6 0.5556
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As was discussed in Section 9.5, the logrank test for comparing two independent samples
is the same as the Mantel-Haenszel statistic for combining results from different strata. For
logrank test statistic, a 2 � 2 contingency table by treatment and occurrence of events can
be formed at each of the K distinct event times, y(1) � . . . � y(K) (see Table 10.3.1). As was
mentioned in Section 9.3, under the assumption of a hypergeometric distribution, the con-
ditional expected number of patients with occurrence of events for d1k at the event time y(k)
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Figure 10.2.3 Distribution of Kaplan-Meier survival estimates on time to progression.

Table 10.3.1 Data Structure of Comparing Two
Survival Functions at y( k) by the Logrank Method

Status

Treatment Event No Event Total

Test drug d1k n1k � d1k n1k

Placebo d2k n2k � d2k n2k

dk nk � dk nk

Note: k � 1, . . . , K.
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398 CENSORED DATA AND INTERIM ANALYSIS

for the test drug is given by

e1k � �
n1

n
k

k

dk
�, (10.3.3)

and the conditional variance of d1k is given as

υ1k ��
n1kn

n
2
2
k

k

(
d
n
k

k

(n
�

k �

1)
dk)

� , k � 1, . . . , K. (10.3.4)

It turns out that the following logrank test statistic is the same as Mantel-Haenszel statistic
given in (9.5.2):

XLR �

� �
(d1 �

υ1

e1)
2

�, (10.3.5)

where

d1 � �
K

k�1
d1k,

e1 � �
K

k�1
e1k,

υ1 � �
K

k�1
υ1k.

Table 10.3.2 provides a summary for computation of logrank statistic. Under the null
hypothesis of equal survival functions, the logrank statistic approximately follows a central
chi-square distribution with one degree of freedom when sample size is moderate. Hence,
the null hypothesis (10.3.1) is rejected at the α th significance level if

XLR � χ2(α, 1), (10.3.6)

where χ2(α, 1) is the α th upper quantile of a central chi-square distribution with one degree
of freedom. Peto et al. (1976) suggest that the relative hazard rate λ can be estimated as

λ̂ � exp��d1

υ
�

1

e1
��, (10.3.7)

	�K

k�1 (d1k�e1k)

2

��
�K

k�1υ1k

Table 10.3.2 Computation of Logrank Statistic

Ordered Distinct Observed Number Expected Number
Event Time of Events of Events Difference Variance

y(1) d11 e11 � n11d1/n1 d11 � e11 υ11

y(2) d12 e12 � n12d2/n2 d12 � e12 υ12

� � � � �
y(K) d1K e1K � n1KdK/nK d1K � e1K υ1K

d1 e1 d1 � e1 υ1

Note: υ1k � n1kn2kdk (nk � dk)/[n2
k(nk � 1)].
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where “exp” denotes the natural exponentiation. Therefore, a large-sample (1 � α)100%
confidence interval for λ can be obtained as

exp{[d1�e1)/υ1] 	 Z(α/2)/�υ�1�}, (10.3.8)

where Z(α /2) is the upper (α /2)th quantile of a standard normal distribution.
Sometimes, the randomization of patients is performed according to some predefined or

natural stratified criteria such as gender or ST-segment elevation in assessment of recombi-
nant hirubin with heparin for the treatment of acute coronary syndromes (GUSTO IIb,
1996). An extension of the logrank statistic is to combine results from strata. Suppose that
there are a total of H independent strata. For each strata, dh1, eh1, and υh can be calculated
according to (10.3.5), h � 1, . . . , H, then the Mantel-Haenszel technique can be applied to
combine the results

XMH � (10.3.9)

The null hypothesis of (10.3.1) is rejected if (10.3.6) is true.
The logrank statistic is in fact a special case of a general class of nonparametric tests for

comparing two survival functions which can be expressed in the form of

T � �
K

k�1
wk(d1k � e1k), (10.3.10)

where wk is the weight assigned at the event time y(k). When the weight in (10.3.10) is 1, the
square of T is the numerator of logrank test statistic in (10.3.5). On the other hand, if the
weight is the proportion of patients in the risk set at event time y(k) to the total sample size,
namely nk /n, k � 1, . . . , K, the resulting test statistic is Gehan’s generalization of the
Wilcoxon two-sample rank sum test to the censored data (Gehan, 1965a, 1965b). Since
Gehan’s test gives greater weights to differences that occur at the beginning of a trial, it is
more powerful in the detection of differences evidently early in time (Lee, Desu, and Gehan,
1975). On the other hand, the logrank test is fully efficient (i.e., the most powerful test)
when relative hazards between the two survival functions is a constant. However, it is more
sensitive to differences between the two survival functions that occur late in time. Tarone
and Ware (1977) suggest using the square root of the number of patients in the risk set just
prior to y(k) as the weights for the statistic given in (10.3.10). Another generalization of
Wilcoxon rank sum test suggested by Prentice (1978) is to use the following weights:

S(y) �Π
K

y(k)� y 	1 ��nk

d
�

k

1�
. (10.3.11)

Note that the logrank statistic for comparing two survival functions can be extended to tri-
als for assessment of more than two treatments. Suppose that there are a total of I different
treatments including the placebo which is designated as the last treatment with index I.
Similar to the two independent treatment groups, an I � 2 contingency table by treatment
and the occurrence of event can be formed at each of the K distinct event times so that
y(1) � . . . � y(K), as illustrated in Table 10.3.3. Conditional on the marginal totals, the
expected number of patients with event for dik are given by

eik � �
n
n
ikd

k

k
�, k � 1, . . . , K, i � 1, . . . , I. (10.3.12)

	�H

h�1 (d1h�e1h)

2

��
�H

h�1
υ1h
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400 CENSORED DATA AND INTERIM ANALYSIS

Therefore the sum of difference between the observed and expected number of events over
all K distinct event time points for treatment i is then given by

�
K

k�1
(dik � eik) � di � ei, (10.3.13)

where

di � �
K

k�1
dik and ei � �

K

k�1
eik, i � 1, . . . , I.

The covariance between treatment i and i� for the sum of difference between the observed
and expected number of events is given as

ii� � �
K

k�1
, 1 � i , i� � I, (10.3.14)

where δii� � 1, if i � i�; δii� � 0, otherwise. Let d � (d1, . . . , dI � 1), e � (e1, . . . , eI � 1),
and V � {υii�,1 � i, i� � I � 1}. Then, the null hypothesis that S1 � . . . � SI is rejected if
test statistic

X � (d � e)�V�1(d � e) � χ2(α, I � 1), (10.3.15)

where χ2(α, I � 1) is the α th upper quantile of a central chi-square distribution with I � 1
degrees of freedom.

Example 10.3.1 Again we use the data of the time to the progression (in months) in
patients with ovarian cancer given in Table 10.2.1 to illustrate the computation of logrank
statistic for testing hypotheses of (10.3.1) and to estimate the relative hazard rate λ as given
in (10.3.7). First, we need to form all possible 2 � 2 contingency tables by treatment and the
occurrence of event at each of distinct event times in the combined samples. For this data set,
there are a total of 20 distinct time points recorded as the cancer progressed. For each 2� 2
contingency table, compute the marginal totals n1k, n2k, dk, nk � dk, and nk, k � 1, . . . , 20.
From the marginal totals, the expected number of events and variance of d1k can be computed
according to (10.3.3) and (10.3.4). For example, at the first time point (0.92 month) with 

(nkni�kδii� � nikni�k)dk(nk � dk)
����

n2
k (nk � 1)

Table 10.3.3 Data Structure for comparing I
Survival Functions at y(k) by Logrank Method

Status

Treatment Event No Event Total

Test drug 1 d1k n1k � d1k n1k

Test drug 2 d2k n2k � d2k n2k

� � � �
Test drug i dik nik � dik nik

� � � �
Placebo dIk nIk � dIk nIk

dk nk � dk nk
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the occurrence of progression, n11 � 15, n21 � 20, d1 � 1, n1 � 35, and n1 � d1 � 34. It
follows that

e11 ��
(1)

3
(
5
15)
�� 0.42857,

υ11 ��
(15

(
)
3
(2
5
0
)2
)
(
(
3
1
4
)(
)
34)

� � 0.24490.

The difference between d11 and e11 is equal to 1�0.42857�0.57143. The intermediate
results are given in Table 10.3.4. At the bottom of Table 10.3.4 are given the sums of d1k �e1k,
and υ1k over all distinct event time points. As a result, the logrank test statistic is given by

XLR �

��
(d1 �

υ1

e1)
2

�

��
(�

5
5
.1
.3
0
3
8
2
9
7
8
9)2

�

� 5.5664.

�20

k�1 (d1k�e1k)
2

��
�20

k�1 υ1k
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Table 10.3.4 Computation of Logrank Test Statistic in Table 10.2.1 for Patients with 
Stage II or IIIA Ovarian Carcinoma

Time in 
Months d1k d2k dk n1k n2k nk e1k d1k � e1k υ1k

0.92 1 0 1 15 20 35 0.42857 0.57143 0.24490
1.12 0 1 1 14 20 34 0.41176 �0.41176 0.24221
2.89 0 1 1 14 19 33 0.42424 �0.42424 0.24426
2.93 1 0 1 14 18 32 0.43750 0.56260 0.24609
4.51 0 1 1 13 18 31 0.41935 �0.41935 0.24350
5.76 1 0 1 13 17 30 0.43333 0.56667 0.24556
6.41 1 0 1 12 17 29 0.41379 0.58621 0.24257
6.55 0 1 1 11 17 28 0.39286 �0.39286 0.23852
9.21 0 1 1 11 16 27 0.40741 �0.40741 0.24143
9.57 0 1 1 11 15 26 0.42308 �0.42308 0.24408

10.16 1 1 2 11 12 23 0.95652 0.04348 0.47637
11.55 0 1 1 10 11 21 0.47619 �0.47619 0.24943
11.78 0 1 1 10 10 20 0.50000 �0.50000 0.25000
12.14 0 2 2 10 9 19 1.05263 �1.05263 0.47091
12.17 0 1 1 10 7 17 0.58824 �0.58824 0.24221
12.34 0 1 1 10 6 16 0.62500 �0.62500 0.23438
12.57 0 1 1 9 5 14 0.64286 �0.64286 0.22959
12.89 0 1 1 9 4 13 0.69231 �0.69231 0.21302
14.84 0 1 1 6 2 8 0.75000 �0.75000 0.18750
15.20 1 0 1 6 1 7 0.85714 0.14286 0.12245

Sum 6 16 22 �5.33279 5.10898
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402 CENSORED DATA AND INTERIM ANALYSIS

The corresponding p-value is given by 0.0183. Thus, we reject the null hypothesis that the
survival function for the patients with low-grade ovarian cancer is the same as that with
well-differentiated ovarian cancer at the 5% level of significance.

An estimate of the relative hazard ratio can be obtained as

λ̂ � exp	�d1 �

υ1

e1
�


� exp	��5
5
.1
.3
0
3
8
2
9
7
8
9

�

� exp(�1.04381)

� 0.35231.

The corresponding large-sample 95% confidence interval for the relative hazard λ can also
be obtained as

exp{�1.04381 	 1.96/�5�.1�0�8�9�8�} � {exp(�1.91093), exp(�0.17668)}

� (0.14794, 0.83805).

Note that both the point estimate and the corresponding large-sample interval estimate for
the relative hazard rate λ are smaller than 1. Therefore, we can conclude that the number of
occurrences of progression among patients with low-grade cancer is statistically lower
than among those with well-differentiated cancer. In addition, the time to progression for
patients with low-grade cancer is also statistically longer than that with well-differentiated
cancer. This can further be verified that if the weights at each distinct progression time
point are chosen to be nk /n, k � 1, . . . , 20. The Gehan test statistic is �84 with a variance
of 3146. It follows that the corresponding chi-square value is 2.2428 with a p-value of
0.1342. Therefore, according to the Gehan’s generalized Wilcoxon rank test, we fail to
reject the null hypothesis of equal survival functions. As shown in Figure 10.2.3, the diff-
erence in survival functions between the patients with low-grade and well-differentiated
cancers becomes evident only after 12 months. Therefore, as we learned earlier, the Gehan
test is not as powerful as the logrank test for the detection of this difference later in time.

10.4 COX’S PROPORTIONAL HAZARD MODEL

To provide a fair and unbiased assessment of efficacy and safety of a test drug based on cen-
sored data, the Cox’s proportional hazard model has become a routine statistical method
since it was introduced by Cox (1972). For example, the West of Scotland Coronary Preven-
tion Study Group (1995) reported that the reduction in risk of nonfatal myocardial infarction
or death from coronary heart disease with the cholesterol-lowering agent pravastatin at 40 mg
per day is 31% (95% confidence interval: 17 to 43%, p-value �0.0001) as compared to the
placebo in men with moderate hypercholesterolemia and no history of myocardial infarction.
The Cholesterol and Recurrent Events (CARE, 1996) trial investigators also reported that
pravastatin at 40 mg per day provides a 24% reduction in risk of coronary events (95% con-
fidence interval: 9 to 36%, p-value � 0.003) in patients with myocardial infarction but with
an average cholesterol level. For both studies the reduction in risk and its corresponding 95%
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confidence interval were estimated through the Cox’s proportional hazard model. On the
other hand, in a study for evaluation of methotrexate alone, sulfasalazine and hydroxychloro-
quine, or a combination of all three drugs in the treatment of rheumatoid arthritis (O’Dell 
et al., 1995), to obtain unbiased comparsions among three treatments, Cox’s proportional
hazard model was applied to adjust for differences in covariates at the study entry such as the
erythrocyte sedimentation rate, the patient’s global status, and the total joint score. Another
example of application of the Cox’s proportional hazard model is a prospective randomized
trial comparing high-dose therapy and autologous bone marrow transplantation and conven-
tion chemotherapy in patients with multiple myeloma (Attal et al., 1996). In addition to a
comparison between treatments, Cox’s proportional hazard model was used to identify the
level of beta2-microglobulin in serum as one of the prognostic factors for the overall and
event-free survivals.

Instead of a direct formulation of the survival function with a constraint between 0 and 1,
the dependent response variable in the Cox’s proportional hazard regression model is the
hazard function at time y that can be expressed as the product of a baseline hazard function
and a function of covariates. Let x � (x1, . . . , xp)� be a vector of p covariates collected 
from a subject. The general form of the proportional hazard regression model can be
expressed as

h(y; x) � h0(y) Ω (x; β), (10.4.1)

where h0(y) is called the baseline hazard function and β is a vector of p unknown regres-
sion coefficients that relates to the hazard function at time y and p covariates.

Since the hazard and survival functions are all positive quantities, Cox (1972) suggests
that function Ω (x; β) be formulated in terms of exponentiation as follows:

h(y; x) � h0(y)exp{β�x}

� h0(y)exp� �
p

i�1
βi xi�. (10.4.2)

Note that the regression part in the proportional hazard function, exp{β�x}, does not
involve time t if all covariates are independent of time. The time-independent covariates
are referred to as those collected before the initiation of the study such as demographic or
baseline characteristics. The covariates collected during the study may be vary at different
visits, which are time-dependent variables. The baseline hazard function h0(y) is a function
of time but not a function of the covariates. In addition, the functional form of the baseline
hazard function h0(y) is unspecified. It does explicitly express the relationship between
covariates and the hazard function in a parametric form. As a result, the Cox’s proportional
hazard regression model is a semiparametric statistical procedure.

Another important property of Cox’s proportional hazard regression model is that the
relative risk or hazard ratio, which is the ratio of the hazard at time y to the baseline hazard,
is a function of covariates and does not vary with time if all covariates are time-independent,
namely

λ(x) ��
h
h
(

0

y
(
;
y
x
)
)

� � exp� �
p

i�1
βi xi�. (10.4.3)
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The proportionality of the Cox’s proportional hazard model can also be expressed in terms
of the survival function as

S(y) � [S0(y)]λ(x)

� [S0(y)]exp� Σ
p

i�1
β i xi�, (10.4.4)

where S0(y) is the survival function corresponding to the baseline hazard function h0(y).
For the moment suppose that the covariates of interest are the treatment indicator and

gender. Let X1 be the treatment indictor, which has a value of 1 if treatment is the test drug
and has a value of 0 if treatment is the placebo. Similarly, X2 represents gender, which has
a value of 1 if a subject is a female and is 0 if a subject is a male. Then, model (10.4.2) can
be written as

h(y; x1, x2) � h0(y)exp{β1x1 � β2x2}, (10.4.5)

where β1 measures treatment effect after adjustment of difference in gender and β2 reflects
the prognostic effect of gender, adjusted for the treatment effect. If we are interested in
comparing the test drug and the placebo in female patients, the explicit expression of the
hazard for a female subject assigned to receive the test drug at time t, according to (10.4.5),
is given by

h(y; 1, 1) � h0(y) exp(β1 � β2).

Therefore, the relative risk with respect to the baseline hazard is

λ(1, 1) � exp(β1 � β2).

The hazard corresponding to a female given the placebo is

h(y; 0, 1) � h0(y) exp(β2)

with the respective relative risk

λ(0, 1) � exp(β2).

As a result, the relative risk of the test drug to the placebo for a female subject is then 
given by

�
λ
λ

(
(
1
0
,
,
1
1
)
)���

exp
e
(
x
β
p

1

(β
�

2)
β2)

�

� exp(β1). (10.4.6)

We note that first, (10.4.6) only consists of the regression coefficient with respect to treat-
ment assignment and is not contaminated with the covariate gender. As a result, it can be
used to estimate the treatment effect, adjusted for difference in gender. Secondly, the rela-
tive risk of the test drug to the placebo for a female subject is a constant, which does not
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vary with time. This is a key assumption of Cox’s proportional hazard model, which 
implies that

STF(y) � [SPF(y)]exp(β1),

and

ST (y) � [SP(y)]exp(β1), (10.4.7)

where STF(y) is the survival function at time y for a female subject assigned to test drug and
SPF(y) is the survival function at time y for a female subject given the placebo; ST (y) and
SP(y) are similarly defined.

The second term of (10.4.7) implies that the relationship of survival functions between
the test drug and the placebo for female subjects is the same as that of survival functions
between the test drug and the placebo for any other covariates so long as the same con-
stants are present in treatment groups. Let us denote exp(β1) by λ. Since λ is a constant
over time, the relationship of survival functions between the test drug and the placebo is
the same as that specified in the alternative hypothesis of (10.2.6):

ST(y) � [SP(y)]λ for all y � 0, (10.4.8)

where λ � exp(β1). The relationship between ST(y) and SP(y) specified in (10.3.2) and
(10.4.8) is referred to as Lehmann’s alternative (Lehmann, 1953). This explains why the
logrank test achieves full efficiency under the assumption that the hazard ratio (i.e., relative
risk) between the test drug and the placebo is a constant.

The relative risk between the test drug and the placebo in (10.4.6) is expressed as the
ratio of the relative risks between hazard of each group and the baseline hazard. It, how-
ever, can be written directly as the hazard ratio of the hazard function of the test drug to
that of the placebo:

�
h
h
(
(
y
y
;
;

1
0
,
,
1
1
)
)

���
h0(

h
y

0

)
(
e
y
x
)
p
e
(
x
β
p
1

(
�

β2)
β2)

�

� exp(β1). (10.4.9)

Note that the baseline hazard function of time appears in both numerator and denominator
and therefore it is canceled out. As a result, the relative risk does not involve the baseline
hazard function, and it is not a function of time if there are no time-dependent covariates.
A statistical inference of relative risk and the regression coefficients, and of the correspon-
ding survival functions, can still be made even though we do not specify the baseline haz-
ard function. Cox’s proportional hazard regression model is quite robust in the sense that it
can adequately approximate the true but unknown parametric model. In addition, unlike
the logistic regression for the occurrence of the events, Cox’s proportional hazard model
takes the survival time and censoring pattern into account. Hence, it is more efficient for
the inference of the censored data than the logistic regression because Cox’s proportional
hazard model uses more information.

The likelihood function derived from Cox’s proportional hazard model is based on the
probabilities of the events of interest occurring in the subjects. It explicitly does not include
the probabilities for subjects whose event times are censored. As a result the likelihood, since
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it does not consist of probabilities for all subjects. Let y(1) � . . . � y(K ) be the ordered distinct
times when the event occurs and R(y(k)) be the risk set just prior to time y(k). Conditional on
the risk set R(y(k)), the probability of the occurrence of the event for subject j is given as 

.
(10.4.10)

For example, in the data on time to progression of cancer for the patients with limited stage II
or IIIA ovarian carcinoma, the indicator covariate X takes the value 1 for low-grade cancer and
0 for well-differentiated cancer. The hazard functions at time y are h0(y) for the patients with
well-differentiated cancer and h0(y)exp(β) for the patients with low-grade cancer. Therefore,
exp(β) is the relative risk of progression between lower-grade and well-differentiated cancers.
The first progression occurs after 0.92 month (28 days) on a patient with low-grade cancer.
The corresponding risk set just prior to 0.92 month consists of 15 patients with lower-grade
cancer and 20 patients with well-differentiated cancer. As a result, the probability that pro-
gression did occur at this time in a patient with lower-grade cancer is given by

L1 ��
[20 �

ex
1
p
5
(
e
β
x
)
p(β)]

�.

The second event of progression occurred at 1.12 months on a patient with well-
differentiated cancer. The risk set just prior to 1.12 months includes 14 patients with low-
grade cancer and 20 patients with well-differentiated cancer. Therefore, the conditional
probability of progression at 1.12 month on a patient with well-differentiated cancer is

L2 ��
[20 � 1

1
4 exp(β)]
�.

We can repeat the same process until the last progression time. The partial likelihood cor-
responding to the Cox’s proportional hazard model is the product of the conditional prob-
abilities of the occurrence of events at each of the K distinct event times which is given by

L � L1 � L2 � . . . � LK

� ∏
K

k�1

Lk

� ∏
K

k�1
� �. (10.4.11)

Since the partial likelihood is constructed based on the subjects with the occurrence of the
event at their respective event times, it takes the event time into account. The risk set
R(y(k)) at time y(k) includes the subjects whose event times are censored after y(k). In other
words, the partial likelihood derived from Cox’s proportional hazard model also contains
some information of censored observations. Once the partial likelihood is derived, then the
maximum likelihood estimates (MLEs) of unknown regression coefficients in the Cox’s
proportional hazard model can be obtained through the standard iterative method by treat-
ing the partial likelihood as the ordinary likelihood. Let bi and se(bi) represent the MLE of
βi and its associated large-sample standard error, respectively. Then, we can reject the null

exp��p

i�1 βi xij�
���
�j�R(y(k)) exp��p

i�1 βi xij�

exp��p

i�1 βi xij�
���
�j�R(y(k)) exp��p

i�1 βi xij�
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hypothesis that H0: βi � 0 in favor of the alternative hypothesis that Ha: βi � 0 if the Wald
statistic

Wi � [bi /se(bi)]
2 � χ2(α, 1), i �1, . . . , p, (10.4.12)

where χ2(α, 1) is the α th upper quantile of a central chi-square distribution with 1 degree
of freedom. A large-sample (1 � α)100% confidence interval for βi can be obtained as

bi 	 Z(α /2)se(bi). (10.4.13)

The confidence interval given in (10.4.13) is based on the Wald statistics where the stan-
dard error is calculated through the information matrix evaluated at the estimated bi. The
other equivalent test for large samples is the score test proposed by Rao (1973) where the
information matrix is evaluated at values of βi specified in the null hypothesis. If the model
only includes the treatment indicator and all events occur at distinct event times (i.e., no
tied event times), then the score test derived under Cox’s proportional hazard model is the
same as that under the logrank test for a comparison between two or more survival func-
tions. This indicates that the log-rank test is a fully effective alternative measure of propor-
tional hazard.

Let xk be a vector of p covariates from subject k, xk� be a vector of p covariates associated
with subject k�, and b� (b1, . . . , bp)� be a vector of the p MLEs of unknown regression coeffi-
cients. Then the relative risk or hazard ratio between patient k and k� can be estimated as

λ̂ � exp[(xk � xk�)�b]. (10.4.14)

A large-sample (1 � α)100% confidence interval for λ is then given by

exp�(xk � xk�)�b 	 Z(α /2)�(x�k��� x�k��)��υ�(b�)(�x�k��� x�k��)��, (10.4.15)

where υ(b) is the estimated large-sample covariance matrix of b.
The validity of the statistical inference for the Cox’s proportional hazard regression

model depends on the assumption of proportional hazards among different values of
covariates. Hence it is important to check this assumption before the application of the
model. Several methods are available for detection of possible violation of proportional
hazard assumption (e.g., see Kleinbaum, 1996). Two of these methods will be introduced
in this chapter. The first method is the graphical approach. Recall that

S(y) � [S0(y)]exp(Σ βi xi).

It follows that the minus logarithm of S(y) becomes

� ln[S(y)] � � �ln[S0(y)]exp[�βixi]�.

Note that �ln[S(y)] is positive. As a result, the minus logarithm of �ln[S(y)] is a linear
function of Σβixi with intercept �ln{�ln[S0(y)]}, namely

�ln{�ln[S(y)]} � �ln{�ln[S0(y)]}� �
P

i�1
βixi. (10.4.16)
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Suppose that the only covariate in the model is the treatment indicator, which takes value 1
for the test drug and 0 for the placebo. Then, for a patient assigned to the test drug, we have

�ln{�ln[ST(y)]} � �ln{�ln[S0(y)]} � β.

On the other hand, for patients in the placebo group,

�ln{�ln[SP(y)]} � �ln{�ln[S0(y)]}.

It follows that the difference in �ln{�ln[S(y)]} between the test drug and the placebo is a
constant independent of time as demonstrated below:

�ln{�ln[ST(y)]}�(ln{�ln[S0(y)]}) � β. (10.4.17)

Under the assumption of proportional hazard between the test drug and the placebo, it can
be seen from (10.4.17) that �ln{�ln[S(y)]} should be parallel to each other and the dis-
tance between them is a constant. Therefore this property can be applied to check the
assumption of proportional hazard. For a particular covariate we can obtain the Kaplan-
Meier estimates of the survival function at each level of the covariate. Then, the minus log-
arithms of the minus logarithm of the Kaplan-Meier estimates can be plotted. If the curves
are approximately parallel, then the proportional hazard assumption is not violated. If
these curves cross each other or diverge, then the assumption is not met.

The graphical approach is the simplest and easiest way to verify the proportional hazard
assumption. However, it only allows us to examine one covariate at a time. The graphical
method cannot assess the proportional hazard assumption simultaneously for a group of
covariates when there is more than one covariate in the model. Kleinbaum (1996) recom-
mends that a conservative approach be taken in applying the graphical method. Unless
there is a strong evidence of nonparallelism among the curves of �ln{�ln[S(y)]}, the pro-
portional hazard assumption should not be rejected. However, the graphical method is still
a subjective approach because it does not provide a statistical test for assessing the propor-
tional hazard assumption for a group of covariates.

Inclusion of time-dependent covariates in Cox’s proportional hazard model can provide
another means of a formal statistical assessment of the proportional hazard assumption.
For simplicity, we first consider one covariate for the treatment indicator X, which takes the
value 1 for the test drug and 0 for the placebo. The proportional hazard assumption is then
evaluated, in addition to X, by including the interaction between treatment indicator and
some function of time d(y) in the model. The resulting model is given by

h(y; x) � h0(y)exp{βx � θ xd(y)}, (10.4.18)

where θ measures the interaction between treatment and time (i.e., the differences in treatment
effects at different time points), and d(y) can be any function of time. In practice, there are
many choices for function d(y). For simplicity, we restrict our selection to simple monotone
function of time such as d(y)�y or d(y)� ln(y), for y�0. Similar to the ordinary regression
analysis, y or ln(y) needs to be centered to avoid unnecessary difficulties that may arise during
the iterative processes used in searching the MLEs. If the hazard ratios remain fairly constant
within some time intervals and are markedly different from one time interval to another, then
the d(y) can be chosen as a step function, such as d(y)�0 if y�y0, and d(y)�1 if y
y0, for
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the two time intervals. A nonzero θ usually indicates that the hazard ratios are different over
time at different values of the covariate under investigation. A positive (negative) value of θ
implies that the hazard ratios increase (decrease) as time increases. As a result, the hypothesis
of interest here is whether the regression coefficient is different from 0, namely

H0: θ � 0,

vs. Ha: θ � 0. (10.4.19)

Let us denote LL(β,θ ) as the log-likelihood function under the interaction model (10.4.18),
and let LL(β) be the log-likelihood function under the reduced model

h(y; x) � h0(y)exp{βx}.

The null hypothesis (10.4.19) is rejected if

�2[LL(β) � LL(β, θ)] � χ2(α, 1), (10.4.20)

where χ2(α, 1) is the α th upper quantile of a central chi-square distribution with one
degree of freedom. This approach can be extended to investigate the proportional hazard
assumption for a set of covariates by including interaction terms between each covariate
and some function of time:

h(y; x) � h0(y)exp ��
p

i�1
βi xi ��

p

i�1
θi xidi(y)�. (10.4.21)

The corresponding global hypothesis for the assessment of the proportional hazard simul-
taneously for a group of covariates is then given by

H0: θ1 � . . . � θp � 0,

vs. Ha: θi � 0 for at least one i, 1 � i � p. (10.4.22)

Let LL(β1, . . . , βp; θ1, . . . , θp) be the log-likelihood function under the full model given
in (10.4.21) and LL(β1, . . . , βp) be the log-likelihood function under the reduced model
without the interaction terms between covariates and time given in (10.4.2). Then the null
hypothesis of no time–covariate interaction is rejected if

�2[LL(β1, . . . , βp) � LL(β1, . . . , βp; θ1, . . . , θp)] � χ2(α, p), (10.4.23)

where χ2(α, p) is the α th upper quantile of a central chi-square distribution with p degrees
of freedom.

Suppose that a total of H covariates does not satisfy the proportional hazard assumption,
the stratified Cox proportional hazard model can be applied to control these H covariates.
Suppose that each of these H covariates has qh levels h � 1, . . . , H. As a result, the Q strata
can be formed from these H covariates, where Q � q1 � . . . � qh. Instead of assuming the
same baseline hazard function for all covariates, the stratified Cox proportional hazard
model assumes that the baseline hazard function is the same within a stratum but is differ-
ent for other strata. Therefore the stratified Cox proportional hazard model is given by

hq(y; x) � h0q(y) exp � �
p

i�1
βi xi�, q � 1, . . . , Q. (10.4.24)
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For each stratum the partial likelihood can be formulated in the same manner as (10.4.11),
which is denoted Lq, q � 1, . . . , Q. Since each stratum is mutually exclusive and consist 
of different subjects, the partial likelihood for the entire sample is the product of these Q
partial likelihoods:

L �Π
Q

q�1
Lq. (10.4.25)

Then the MLEs for the regression coefficients in (10.4.24) can be obtained by the standard
method, and the statistical inference with respect to the covariates in the model is made in
the usual way. The effects of the covariates included in the stratified Cox proportional haz-
ard model are estimated after adjustment for other covariates including those used to form
the strata. However, the effects of the covariates used for stratification cannot be estimated.

The stratified Cox’s proportional hazard model in (10.4.24) assumes that the regression
coefficients are the same for all strata. In other words, there is no interaction between the p
covariates included in the model and those H covariates used for stratification. The strati-
fied Cox proportional hazard model with interaction terms is given by

hq(y; x) � h0 q(y)exp ��
p

i�1
βiq xi�, q � 1, . . . , Q. (10.4.26)

There are a total of pQ regression coefficients in model (10.4.26), while model (10.4.24)
includes p regression coefficients. As a result, the global null hypothesis of no interaction
between the covariates in the model and covariates forming strata can be performed by the
usual twice of the minus difference in log-likelihood functions between (10.4.24) and
(10.4.26) with p(Q � 1) degrees of freedom.

Example 10.4.1 In this example, we will once again use the data of progression time for
patients with limited stage II or stage IIIA ovarian cancer to illustrate the application of
Cox’s proportional hazard model. The treatment effect is estimated as 1.1186 with a
standard error of 0.4771 if treatment indicator takes the value 1 for patients with well-
differentiated cancer and 0 for patients with low-grade cancer. The corresponding Wald
statistics if 5.0652 with a p-value of 0.0224. Note that the score test statistic is 5.512 with
a p-value of 0.0189, which is very close to the 0.0183 obtained by the logrank test in
Example 10.3.1. The reason for the small discrepancy between the p-values is that there
are two tied progression times at 10.16 months. A large-sample 95% confidence interval
for the treatment effect is then equal to 1.1186 	 (1.96)(0.4771) � (0.1445, 2.0928). As a
result the relative risk (hazard ratio) of progression for a patient with well-differentiated
cancer compared to others with low-grade cancer is estimated as exp(1.1186) � 3.0606
with the corresponding 95% confidence interval (exp(0.1445), exp(2.0928)) � (1.1554,
9.1076). Therefore, the risk of progression in patients with well-differentiated cancer is
about three times as high as that with low-grade cancer. However, from the 95%
confidence interval, the variability of the estimated relative risk is quite large.

Figure 10.4.1 shows the �ln{�ln[S(y)]} curves for patients with low-grade and with
well-differentiated cancer. Since the two curves intersect each other many times before 12
months, the proportional hazard assumption may be seriously in doubt. It is therefore sug-
gested that a formal statistical test be performed, such as given in (10.4.20), to verify the
assumption. Note that the median progression time is about 12 months. As can be seen
from the figure, the two curves of minus logarithm of minus logarithm of survival function
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become roughly parallel to each other after 12 months. To reflect this phenomenon, we
define the function as a function of time:

d(y) � �
The interaction θ between treatment and time in model (10.4.18) is estimated as 0.2438
with a 95% confidence interval from 0.0251 to 0.4625. Twice the minus of the log-
likelihood is 123.528 for model (10.4.18) and is 128.610 for the reduced model. The diff-
erence is 5.082 with a p-value of 0.0248 which is significant at the 5% level. These results
indicate that the risk for progression of ovarian cancer in a well-differentiated case of can-
cer is statistically greater than that of low-grade cancer, and this risk increases over time
compared to the patients with low-grade cancer.

Example 10.4.2 Kalbfleisch and Street (1990) report the results from a clinical trial on
cyclosporine and methotrexate (CSP � MTX) therapy versus methotrexate (MTX) alone
followed by an infusion of marrow from an HLA-identical family member in patients with
severe aplastic anemia. One of the primary endpoints is the time (in days) to severe (stage 2)
acute graft versus host disease (AGVHD), death, or last contact. The data are reproduced in
Table 10.4.1. The treatment indicator is coded as 0 for CSP � MTX and 1 for MTX. In
addition to treatment, other covariates include age in years at the time of transplantation and
laminar airflow isolation (LAF). Figure 10.4.2 gives the Kaplan-Meier survival estimates for
the two treatments. The horizontal axis is truncated at 70 days because all events occurred
before day 50 and event times of 41 patients (64%) were censored after day 49, more than 5
patients were censored with event times greater than 1,000 days. From Figure 10.4.2, it can
be seen that the addition of CSP to MTX prolonged the time to severe AGVHD, or death over
MTX alone. In addition Kalbfleisch and Street (1990) report that age is not only an important
prognostic factor for the time to severe AGVHD or death but also interaction between
treatment and age exists in favor of older patients (greater than or equal to 26 years older). On

0 for low-grade cancer,
y � 12 well-differentiated cancer.
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Table 10.4.1 Time in Days to Severe (Stage 2) Acute Graft Versus Host Disease
or Death for Patients with Severe Aplastic Anemia

Patient Age in Time in 
Number Treatment Years LAF Days Censored

1 CSP � MTX 40 0 3 Censored
2 CSP � MTX 21 1 8 AGHVD
3 CSP � MTX 18 1 10 AGHVD
4 CSP � MTX 42 0 12 Censored
5 CSP � MTX 23 0 16 AGHVD
6 CSP � MTX 21 0 17 AGHVD
7 CSP � MTX 13 1 22 AGHVD
8 CSP � MTX 29 0 64 Censored
9 CSP � MTX 15 1 65 Censored

10 CSP � MTX 34 1 77 Censored
11 CSP � MTX 14 1 82 Censored
12 CSP � MTX 10 1 98 Censored
13 CSP � MTX 27 0 155 Censored
14 CSP � MTX 9 1 189 Censored
15 CSP � MTX 19 1 199 Censored
16 CSP � MTX 14 1 247 Censored
17 CSP � MTX 23 0 324 Censored
18 CSP � MTX 13 1 356 Censored
19 CSP � MTX 34 1 378 Censored
20 CSP � MTX 27 1 408 Censored
21 CSP � MTX 5 1 411 Censored
22 CSP � MTX 23 1 420 Censored
23 CSP � MTX 37 1 449 Censored
24 CSP � MTX 35 1 490 Censored
25 CSP � MTX 32 1 528 Censored
26 CSP � MTX 32 1 547 Censored
27 CSP � MTX 38 1 691 Censored
28 CSP � MTX 18 1 767 Censored
29 CSP � MTX 20 0 1111 Censored
30 CSP � MTX 12 0 1173 Censored
31 CSP � MTX 12 0 1213 Censored
32 CSP � MTX 29 0 1357 Censored
1 MTX 35 1 9 AGHVD
2 MTX 27 1 11 AGHVD
3 MTX 22 0 12 AGHVD
4 MTX 21 1 20 AGHVD
5 MTX 30 1 20 AGHVD
6 MTX 7 0 22 AGHVD
7 MTX 36 1 25 AGHVD
8 MTX 38 1 25 AGHVD
9 MTX 20 0 25 Censored

10 MTX 25 0 28 AGHVD
11 MTX 28 0 28 AGHVD
12 MTX 17 1 31 AGHVD
13 MTX 21 1 35 AGHVD
14 MTX 25 1 35 AGHVD
15 MTX 35 1 46 AGHVD

c10.qxd  27.10.03  13:18  Page 412



the other hand, LAF is not a significant prognostic factor, so it will be omitted from further
discussion.

It seems that according to Figure 10.4.2, the hazard ratio of MTX to CSP � MTX
increases over time. In order to investigate our conjecture of increasing hazard further and
its relationship with age, as well as to follow the suggestion by Kalbfleisch and Street
(1990), in addition to the original age we categorize age into three groups by the following
two indicator variables AGE1 and AGE2:

AGE1 � �
and

AGE2 � �
The proportional hazard assumption is examined using the method described above by
inclusion of time-dependent covariates in the model; these are the interaction between time-
independent covariates and some function of time. For this example, we choose the function
of time to be the identity function centered at the median of the following time of 173 days:

d(y) � y � 173.

Table 10.4.2 provides the twice minus of log-likelihood for the various models based on
treatment, AGE1, AGE2, and their interactions with time using d(y) as defined above.
Comparison of the twice minus of log-likelihood from models with treatment only and

1 if age is greater than 25,
0 otherwise.

1 if age is between 16 and 25 inclusively,
0 otherwise,
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Table 10.4.1 (Continued)

Patient Age in Time in 
Number Treatment Years LAF Days Censored

16 MTX 19 0 49 AGHVD
17 MTX 21 1 104 Censored
18 MTX 19 1 106 Censored
19 MTX 15 1 156 Censored
20 MTX 26 1 218 Censored
21 MTX 11 0 230 Censored
22 MTX 14 1 231 Censored
23 MTX 15 1 316 Censored
24 MTX 27 1 393 Censored
25 MTX 2 0 395 Censored
26 MTX 3 0 428 Censored
27 MTX 14 1 469 Censored
28 MTX 18 1 602 Censored
29 MTX 23 0 681 Censored
30 MTX 9 1 690 Censored
31 MTX 11 1 1112 Censored
32 MTX 11 0 1180 Censored

Note: CSP�MTX�cyclosporine and methotrexate, MTX�methotrexate, LAF� laminar airflow
isolation.

Source: Kalbfleisch and Street (1990).
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with treatment and treatment-by-time interaction indicates an increase of 6.232(152.587 �
146.355) with a p-value of 0.0119 in chi-square with one degree of freedom. Therefore, the
hazard ratio between two treatments is not constant over time. In addition the regression
coefficient corresponding to the interaction is estimated as 0.1582, which is positive. As a
result the relative risk of progression for MTX to CSP � MTX increases over time. Both
AGE1 and AGE2 are also significant prognostic factors because they increase the likeli-
hood by an amount of 9.433 from the model of treatment alone (152.587 � 143.154). Their
joint contribution is statistically significant at the 5% level of significance (p-value � 0.01).
It is also of interest to check whether the interaction between treatment and time can be
ignored after the inclusion of treatment, AGE1, and AGE2 in the model. The difference in
the twice minus of the log-likelihood between the two models is 6.766(143.154 �
136.388) with a p-value of 0.0093. To examine whether interactions between AGE1 and
AGE2 with time exist, we test the joint contribution of two time-dependent covariates. The
twice minus of the log-likelihood function is 135.744 which slightly increases by an
amount of 0.644 with a p-value of 0.7247. As a result the model with treatment, AGE1,
AGE2, and treatment-by-time interaction seems to be an adequate model. Table 10.4.3 pro-
vides the estimates, their corresponding large-sample standard errors for the model with
treatment, AGE1, and AGE2 along with the model with inclusion of additional treatment-
by-time interaction. Since the estimated coefficient for treatment-by-time interaction is

Figure 10.4.2 Distribution of Kaplan-Meier estimates on time to AGHVD.
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0.1608, the increasing hazard ratio of MTX to CSP � MTX is statistically significant over
time even after the adjustment for age. While the estimates for AGE1 and AGE2 for both
models are quite similar between the two models, the estimate for a treatment effect is
markedly different in magnitude. For the model without treatment-by-time interaction, the
estimated treatment effect is 1.1651 with a large-sample standard error 0.5372. Hence the
hazard ratio is estimated as 3.2062 with a large-sample 95% confidence interval from
1.1187 to 9.1890. On the other hand, for the model with inclusion of treatment-by-time
interaction, the estimated treatment effect is inflated to 25.7644 with a large-sample stan-
dard error 12.7056. Hence the hazard ratio is estimated as 1.546 � 1011 with a large-sample
95% confidence interval from 2.3665 to 1.111 � 1022. It seems that the addition of the
product term between treatment and time causes instability in the estimation of the treat-
ment effect.

For investigation of possible interaction between treatment and age, Table 10.4.4 presents
the twice minus of the log-likelihood from six different models: successive significant contri-
butions of age after treatment (chi-square�5.169, p-value �0.0229), treatment-by-time
interaction after treatment and age (chi-square�6.97, p-value �0.0083), and treatment-by-
age interaction after treatment, age, and treatment-by-time interaction (chi-square�6.212,
p-value �0.0127). Because contributions of all four covariates, as assessed by log-likelihood,
are all statistically significant at the 5% level, the resulting model is a four-parameter model.
Table 10.4.5 displays the estimates of the regression coefficients and their large-sample
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Table 10.4.2 Doubled Minus of the Log-likelihood for Various Models in Table 9.4.1 
with Age Categorized into Three Groups

Model d f �2LR Chi-square

Without covariate 158.247
TMT 1 152.587 5.661
TMT, TMT*g(y) 2 146.355 11.894
TMT, AGE1, AGE2 3 143.154 15.095
TMT, AGE1, AGE2, TMT*g(y) 4 136.388 21.857
TMT, AGE1, AGE2, AGE1*g(y) 4 143.108 15.140
TMT, AGE1, AGE2, AGE2*g(y) 4 143.148 15.099
TMT, AGE1, AGE2, TMT*g(y), AGE1*g(y) 5 136.303 21.946
TMT, AGE1, AGE2, TMT*g(y), AGE2*g(y) 5 135.905 22.234
TMT, AGE1, AGE2, AGE1*g(y), AGE2*g(y) 5 142.938 15.309
TMT, AGE1, AGE2, TMT*g(y), AGE1*g(y), AGE2*g(y) 6 135.744 22.503

Table 10.4.3 Estimates of Models with Treatment, AGE1, AGE2,
and Treatment-by-g(y) Interaction for Data in Table 10.4.1

Statistics TMT AGE1 AGE2 TMT*g(y)

Estimate 1.1651 1.9071 1.6776
se 0.5372 0.7707 0.8097
p-value 0.0301 0.0133 0.0383

Estimate 25.7644 1.9331 1.7798 0.1608
se 12.7056 0.7710 0.8123 0.0813
p-value 0.0426 0.0122 0.0284 0.0480
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standard errors for the four-parameter model and for the model without inclusion of treat-
ment-by-time interaction, both obtained when age is both centered and not centered at the
median age of 21 years old. Although the log-likelihood is the same whether age is centered
or not, estimates of regression coefficients may be drastically different. For the model without
treatment-by-time interaction, the estimated treatment effect is �1.6470 when age is not cen-
tered. On the other hand, when age is centered, the estimated treatment effect is 1.0678, which
is very close to the 1.1651 obtained from the model with treatment, AGE1, and AGE2. This
example illustrates that the collinearity between age and treatment-by-age interaction with
age not centered gives not only an erroneous estimate of the treatment effect but also a wrong
sign. Other estimates, however, are not affected regardless of whether or not the age is cen-
tered. Furthermore the magnitude and sign of estimates for age and treatment-by-age interac-
tion are very consistent for both three-parameter and four-parameter models. A negative
estimate of age effect indicates that the risk of severe AGVHD or death is significantly smaller
in older patients than younger patients. The hazard ratio of MTX to CSP �MTX increases
over time as demonstrated by a significant positive estimated treatment-by-time interaction.
Again the estimated treatment effect is inflated when treatment-by-time interaction is in the
model. A significant treatment-by-time interaction indicates possible different baseline hazard
functions between the two treatments. A stratified Cox proportional hazard model was fitted

Table 10.4.4 Doubled Minus of Log-likelihood for Various Models 
in Table 10.4.1 Without Age Categorized into Three Groups

Model df �2LR Chi-square

Without covariate 158.247
TMT 1 152.587 5.661
TMT, TMT*g(y) 2 146.355 11.894
TMT, AGE 2 147.418 10.929
TMT, AGE, TMT*g(y) 3 140.448 17.800
TMT, AGE, TMT*AGE 3 142.006 16.241
TMT, AGE, TMT*AGE, TMT*g(y) 4 134.236 24.012

Table 10.4.5 Comparison of Estimates of Regression Coefficients With and Without Age
Centered at 21 Years Old in Table 10.4.1

Model Statistics TMT AGE TMT*AGE TMT*g(y)

Age not centered Estimate �1.6470 �0.1641 0.1293
se 0.1293 0.1008 0.0569
p-value 0.2088 0.1035 0.0232

Age centered Estimate 1.0678 �0.1641 0.1293
se 0.5445 0.1008 0.0569
p-value 0.0499 0.1035 0.0232

Age not centered Estimate 24.1590 �0.1758 0.1398 0.1708
se 12.6835 0.1022 0.0580 0.0812
p-value 0.0568 0.0854 0.0159 0.0353

Age centered Estimate 27.0956 �0.1758 0.1398 0.1708
se 12.6770 0.1022 0.0580 0.0812
p-value 0.0324 0.0854 0.0159 0.0353

c10.qxd  27.10.03  13:18  Page 416



to the data using treatment as a stratification factor and AGE1 and AGE2 as covariates in the
model. The results are given in Table 10.4.6. Their estimates and corresponding large-sample
standard errors are very similar to those provided in Table 10.4.3 for both models without and
with treatment-by-time interaction.

10.5 CALENDAR TIME AND INFORMATION TIME

At the planning stage the sample size is usually calculated based on information regarding
the expected difference between treatments, its corresponding variability, and the desired
statistical power for a predetermined risk of type I error. After the study is initiated,
patients are enrolled to receive the treatment for a fixed length of time until he or she
reaches either the end of the study or the time of analysis with survival as one of the pri-
mary endpoints. The Postmenopausal Estrogen/Progestin Interventions (PEPI), for exam-
ple, is a trial funded by the U.S. National Institutes of Health to evaluate the effects of
unopposed estrogen and combined estrogen-progestin therapy on four major cardiovascu-
lar disease risk factors in postmenopausal women (Espeland et al., 1995). These four risk
factors include plasma HDL-cholesterol, systolic blood pressure, two-hour postoral glu-
cose serum insulin, and plasma fibrinogen. Table 10.5.1 gives the five treatments to be
assessed in the PEPI. In this trial 168 women per treatment for a total sample size of 840
women was determined to provide a minimum of 92% statistical power for detecting a
difference of at least 5 mg/dl in mean change in HDL. The sample size was selected to con-
trol an overall type I error rate of 5% with Bonferroni adjustment for all pairwise compar-
isons among treatments. The sample size was also chosen to account for a 10% of lost to
follow-up and 27% of dropouts. This study was conducted in seven clinical centers in the
United States. Each center was expected to recruit and randomize 120 women. Based on
the past experience, it was anticipated that enrollment and randomization of all women
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Table 10.4.6 Results of the Estimates of Age Effects
Stratified for Treatment in Table 10.4.1

Statistics AGE1 AGE2

Estimate 1.9309 1.7902
se 0.7712 0.8121
p-value 0.0123 0.0275

Table 10.5.1 Treatments Evaluated in PEPI

Treatment Estrogen Progestin

1 Premarin: 0.625 mg daily Placebo
2 Premarin: 0.625 mg daily Provera: 10 mg days 1–12

Placebo: 13–28
3 Premarin: 0.625 mg daily Provera: 25 mg daily
4 Premarin: 0.625 mg daily Micronized progestrone:

200 mg days 1–12
5 Placebo Placebo

Source: Espeland (1995).
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could be completed in a 12-month recruiting period, beginning in December 1989.
Although by the end of November 1990 recruiting activities were stopped, a decision was
made to allow the women who entered the screening process to be enrolled. As a result the
last woman was randomized in February 1991. It turned out that a total of 875 women were
actually randomized and enrolled into the study. After randomization, each subject
returned to one of the seven clinical centers after 3, 6, and 12 months for the first year and
at 6-month intervals thereafter for a total of three years.

The length of actual trial of the PEPI was four years and three months. When there is a
gap between the time of recruiting of a subject and the time of randomization after screen-
ing for eligibility, the number of subjects actually randomized is usually larger than the
planned sample size, though for this study there was only about 4% more than the planned
840 subjects. In addition the length of the recruiting period for the PEPI was within the
general limits of the expected time frames.

Since despite a well-prepared protocol and enrollment plan, lots of unexpected prob-
lems and logistic issues can occur during the recruiting period, the duration of the recruit-
ing period of clinical trials is generally much longer than the anticipated length. The target
of the planned sample size cannot be reached if appropriate actions are not taken. There-
fore, after randomization of the first patient, the trial information starts to accumulate as
time progresses. A full 100% of information should be accumulated by the time the last
patient completes the scheduled follow-up.

As illustrated by the following examples, this is not always the case. In particular, for
clinical trials with survival as one of the primary endpoints, the planned sample size is not
even observed. For example, the Beta-blocker Heart Attack Trial (BHAT, 1982) was a ran-
domized, double-blind, placebo-controlled trial sponsored by the National Heart, Lung,
and Blood Institute, the U.S. National Institutes of Health to evaluate the effect of long-
term use of propranolol on possible reduction of mortality of patients with a myocardial
infarction 5 to 21 days within randomization. A total of 3837 patients were recruited
between June 1978 and October 1980. The protocol was planned to have an average three-
year follow-up period that was scheduled to end in June 1982. Since the primary endpoint
was the mortality rate, the sample size was actually the expected deaths by June 1982,
which was postulated to be 628 in the protocol. However, this number was never observed
because the BHAT was terminated early in October 1981 after 318 deaths.

Clearly unexpected harmful events can force investigators to terminate the trial earlier.
Another example was the Cardiac Arrhythmia Suppression Trial (CAST, 1989) which was
stopped early because of a significantly higher number of deaths in patients treated with
flecainide or encainide compared to the placebo group. The CAST was designed to enroll
a total of 4,400 patients to achieve at least 80% power for detection of a 30% reduction in
death from arrhythmia provided by the active drugs, under the assumption of a 11% mor-
tality over three years for placebo. The preliminary report indicated that the CAST was not
designed to prove that an antiarrhythmic drug can cause harm. However, the drugs did, and
the trial was terminated early in April 1989. Both the original 425 arrhythmia events speci-
fied in the protocol and 300 lately revised in March 1989 for early termination were never
observed because the CAST was stopped after 1455 patients received blind therapy and
only fewer than 10% of the total expected events were observed.

Let N be the total sample size stated in the protocol for the provision of a desired power
using a particular alternative hypothesis at a specified significance level. It is expected to
recruit N subjects in the time interval (0, Tc), where Tc is the maximum length of duration in
calendar time for completion of the study. From the above discussion, Tc and Nc (the final
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sample size of any clinical trials) are random variables. The relationship between the duration
and sample size of a clinical trial can be explained by the concept of calendar time and infor-
mation time (Lan and DeMets, 1989; Lan and Zucker, 1993). For simplicity this concept is
illustrated through statistical inference for a population mean by the following hypotheses:

H0: µ � µ0,

vs. Ha: µ � µ0.

As was mentioned earlier, the variance of any estimates of µ obtained from the data is a
measure of the precision of the estimate. The smaller variance is, the higher the precision in
the estimation and the more information regarding parameter µ obtained. As a result the sta-
tistical information about µ provided by its estimator µ̂ computed from the data is defined as
the inverse of the variance of µ̂. Let Y1, . . . ,YN be i.i.d. clinical responses with population
mean µ and variance σ 2. Then the sample mean Y� is the most commonly employed unbi-
ased estimator for µ. Its variance is given by var (Y�) � σ2/N. In other words, the information
about the unknown population mean µ provided by the sample mean is defined as

I � �
σ
N

2�, (10.5.1)

which is the sample size times the inverse of the population variance. If σ2 � 1, then the
information about µ provided by the sample (Y1, . . . , YN) is simply the sample size N.

The experimental units in most of clinical trials are subjects. As a result the information
regarding the effectiveness and safety of the drug under study is also conceptually mea-
sured in terms of the number of patients who complete the study. The more subjects that
complete the trial, the more clinical information is provided. The statistical information
defined above therefore can also be interpreted as the clinical information. Thus the
planned sample size specified in the protocol can be viewed as the minimum information
required in order to achieve the desired power for detecting a minimum treatment effect at
a predetermined risk of type I error.

As illustrated in the previous examples, almost all the clinical trials are longitudinal in
nature in which responses of subjects are evaluated at prescheduled visits during the course of
the study until either subjects complete the trial or they withdraw prematurely from the study
for various reasons. The information defined above is based on the number of the patients who
complete the study. In other words, the contribution to the information is 1 if the patient com-
pletes the study and is 0 otherwise. However, the information provided by the patients who
discontinue the trial before the completion of the study is also valuable and useful for the
assessment of efficacy, safety, and quality of life of the drug under study. The intention-to-treat
analysis requires one to include all measurements at all time points by every patient because
the information provided by the discontinued patients is not 0 but between 0 and 1.

Lan and Zucker (1993) give a definition of information for a particular subject for the
inference of population mean slope under a linear random effects model as

Ii ��σ2
θ{1 � [

1
R/SS(ti)]}
�, (10.5.2)

where

R � �σ
σ

2
θ

2
e

� ,
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σ2
e is the variance for the within-subject error, σ2

θ is the variance for random subject-
specific slope,

SS(ti) � �
Ji

j�1
(tij � t�i)

2

and tij represent the time point j for subject i where the clinical endpoints were measured,
j � 1, . . . , Ji; i � 1, . . . , N. The total information of the entire clinical trial I is then the
sum of information from each individual as given by

I ��
N

i�1
Ii .

SS(ti) in (10.5.2) is the correct sum of squares for the time points of subject i with the length
of follow-up equal to Ji. In addition, ti1 � . . . � tiJi

. It follows that as Ji increases, more
responses are measured and SS(ti) gets larger. Assuming that σ2

θ � 1 if SS(ti) � 0, then the
individual information Ii � 0. However, as SS(ti) tends to infinity, the individual information
becomes 1. The contribution by each subject to the total information depends on the number
of measurements for the primary endpoints made by the individual. The number of mea-
surements for the primary endpoints is, in general, proportional to the length of the duration
that an individual stays in the trial. The longer a patient stays in the study, the more infor-
mation is provided by the patient. The contribution by an individual patient is 1 if he or she
completes the study.

As was indicated before, the entire duration of a clinical trial roughly consists of a fixed
recruiting period plus either a fixed or an open-ended follow-up period. Subjects are
enrolled into the study during different time points, which may be at a different entry rate
during the recruiting period. This type of accrual of patients is referred to as the staggering
entry. In addition patients may withdraw from the study prematurely during the follow-up
period for some known or unknown reasons which may or may not be related to the treat-
ments under the study. As a result, at a given calendar time point t, the information is diff-
erent for each subject in the study. However, the total information can still be obtained at t
by enumeration of the observed number of patients by the length of their durations in the
follow-up period.

Suppose that a clinical trial plans to enroll a total of N patients with a maximum dura-
tion Tc in the calendar time scale. Let n(t) be the number of subjects who complete the
study at calendar time t. For the purpose of illustration, we use first definition of individual
information which is 1 if a subject completes the trial. Therefore, the total information at
calendar time t, I(t) is just n(t). I(t) represents the amount of information accumulated by
calendar time t. Similarly, the total information at the maximum duration Tc , I(Tc), is N(Tc)
which is the maximum information expected to obtain at the maximum duration of the
trial. It follows that the information time at calendar time t is defined as the proportion of
the information available as of calendar t to the total information provided at the maximum
duration Tc (Lan and Zucker, 1993). As a result, the relationship between calendar time and
information time s(t) is given by

s(t) � �
N
n
(
(
T
t)

c)
�, 0 � t � Tc . (10.5.4)

From (10.5.4) the information time is between 0 and 1. Increment of the number of sub-
jects who complete the study is discrete. In other words, the information time s(t) defined
in (10.5.4) is also discrete despite the fact that calendar time is continuous. Let tk be the
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calendar time at which the kth subject completes the study, k � 0, 1, . . . , N. Then the cor-
responding information time is given as

sk � s(tk)

� �N
n
(
(
T
tk

c

)
)�, k � 0, . . . , N. (10.5.5)

We can transform the discrete information times defined in (10.5.5) into a continuous time
by the following relationship:

s �� (10.5.6)

In other words, the explicit expression for the relationship between calendar time and
information time is given as

s(t) � � (10.5.7)

Formulation (10.5.7) states that the information time from calendar time tk , when the kth
subject completes the study, to just prior to tk � 1, when the (k � 1)th subject just about
completes the study, is equal to sk � n(tk)/N(Tc), the fraction of information available at cal-
endar time tk relative to the total information N(Tc) at the maximum duration Tc.

The definition of information time and relationship between the information time and
calendar time assumes that both the maximum duration Tc and maximum information
N(Tc) are known and that the total information at the maximum duration Tc is equal to the
maximum information. However, as illustrated by the PEPI, CAST, and BHAT studies,
both maximum information and maximum duration are random variables. If a clinical trial
is allowed to continue until all N subjects, the predetermined sample size, have completed
the scheduled follow-up period, then its is referred to as the maximum information trial.
On the other hand, if a clinical trial is terminated at the maximum duration Tc, then it is
referred to as the maximum duration trial. Since a maximum information trial continues
until the last of all the predetermined number of patients completes the study, the total
duration of the trial must be a random variable. Similarly for a maximum duration trial, the
total information is a random variable.

Example 10.5.1 The results of BHAT (BHAT Investigators, 1982; Lan and DeMets,
1989) are used to illustrate the concept of calendar time and information time. The BHAT
used the logrank test statistic given in (10.3.5) to compare the mortality of 1912 patients
assigned to propranolol with that of 1921 patients given the placebo who were enrolled
between June 1978 and October 1980. Unlike most test statistics for continuous or
categorical responses, the information provided by the logrank test statistic is a function of
the number of expected deaths. When the BHAT was designed, it was expected to have 628
deaths by June 1982, the scheduled end of the follow-up period. However, the maximum
information of 628 deaths was never observed because the BHAT was terminated early in
October 1981 due to convincing evidence of reduction in mortality provided by propranolol.
The maximum information was revised to 400 when the data were available later in
September 1982. The Data Monitoring Committee (DMC) met six times in May 1979,
October 1979, March 1980, October 1980, April 1981, and October 1981. The corresponding

0 if t � t1,
sk if t � [tk, tk � 1).

0 if s � s1 � �
N
1

�,

sk if s � [sk, sk � 1).
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422 CENSORED DATA AND INTERIM ANALYSIS

number of deaths were 56, 77, 126, 177, 247, and 318. Since the BHAT enrolled the first
patient in June 1978 and was originally scheduled to end the follow-up in June 1982, Tc � 48
months. I(48) was originally planned to be 628 and later was revised to be 400. By the time
when the BHAT was terminated by October 1981, the total duration of the trial in calendar
time was 40 months which is about 83% of the maximum duration of 48 months specified in
the protocol. There were a total of 318 deaths in October 1981. Hence t318 � 40 months. If the
maximum information I(48) � 628 deaths, the corresponding information time at calendar
time t318 � 40 months is s(40) � 0.51. On the other hand, if I(48) � 400, then s(40) � 0.80
which is quite close to 0.83, the cumulative proportion of 40 months with respect to the
scheduled maximum duration of 48 months. Table 10.5.2 gives a summary of calendar times
and information times for each of the six DMC meetings.

10.6 GROUP SEQUENTIAL METHODS

With almost no exception, clinical trials are longitudinal in nature, and it is not impossible
to enroll and randomize all required patients on the same day either. The data of clinical
trials are accumulated sequentially over time. It is therefore ethical and in the best interest
of patients, as well as scientific and economic, to allow monitoring of information for man-
agement of the study and for decision making for possible early termination based on con-
vincing evidence of either benefit or harm of the drug under investigation. The rationale for
interim analyses of accumulating data in clinical trials was established by the Greenberg
Report (Heart Special Project Committee, 1988) almost four decades ago. Since then,
development of statistical methodology and decision processes for implementation of data
monitoring and interim analyses for early termination has attracted a lot of attention. This
section is to provide an overview of some of the most commonly employed statistical
methods for interim analyses and data-monitoring process. Literature in this area is huge,
and this overview is by no means comprehensive. Books on this field include Armitage
(1975), Whitehead (1997), and Jennison and Turnball (2000) for theoretical background
and methodology development and Peace (1992) with emphasis on the biopharmaceutical
applications. Armitage et al. (1969), Haybittle (1971), Peto et al. (1976), Pocock (1977),
and O’Brien and Fleming (1979) provide some well-known group sequential methods. Lan

Table 10.5.2 Calendar Time and Information Time for Beta-Blocker Heart Attack Trial

Cumulative D � 628 D � 400
Time of Calendar Proportion in Cumulative Information Information 
DMCM Time Calendar Time Deaths Time Time

6/1978 0 month 0 0 0 0
5/1979 11 months 0.23 56 0.09 0.14
10/1979 16 months 0.33 77 0.12 0.19
3/1980 21 months 0.44 126 0.20 0.32
10/1980 28 months 0.58 177 0.28 0.44
4/1981 34 months 0.71 247 0.39 0.62
10/1981 40 months 0.83 318 0.51 0.80
6/1982 48 months 1.00 628 1.00 1.00

Source: Lan and DeMets (1989).

Note: DMCM: Data-monitoring committee meeting.
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and DeMets (1983) introduce the alpha spending function. In addition, DeMets and Lan
(1994) give a review of interim analyses through the alpha spending function. PMA Bio-
statistics and Medical Ad hoc Committee on interim analysis also published a position
paper of the U.S. Pharmaceutical Manufacturing Association interim analysis in the phar-
maceutical industry (PMA, 1993). Issues 5 and 6 of volume 12 of Statistics in Medicine
(1993) published the proceedings of a workshop on Practical Issues in Data Monitoring of
Clinical Trials, which was sponsored by the four institutes of the U.S. National Institutes
of Health held at Bethesda, Maryland, on January 27–28, 1992. With respect to cancer tri-
als, a workshop on Early Stopping Rules in Cancer Clinical Trials was held at Robinson
College, Cambridge, England, on April 13–15, 1993. The proceedings for this workshop
was published in Issue 13–14 of volume 13 of Statistics in Medicine (1994). In 2001, the
U.S. FDA issued a draft guidance entitled On the Establishment and Operation of Clinical
Trials Data Monitoring Committee (FDA, 2001c).

We consider a randomized, triple-blind, two parallel-group trial that compares an antihy-
pertensive agent with a matching placebo. One of the primary endpoints is change from the
baseline in diastolic blood pressure (mmHg). The hypotheses can be expressed as follows:

H0: µT � µP,

vs. Ha: µT � µP, (10.6.1)

where µT and µP represent the population mean change from the baseline in diastolic blood
pressure, respectively, for the test drug and the placebo. The intuitive test statistic for the
null hypothesis of (10.6.1) is the Z-statistic which is given by

Z ��se(Y
Y�
T

T

)
�

�

Y�
se

P

(YP)�, (10.6.2)

where Y�T and Y�P are the sample means in the change from the baseline in diastolic pressure
computed from the patient receiving test drug and placebo, respectively, and s.e.(Y�T)
and s.e.(Y�P) are the standard errors of YT and YP. When the sample size is at least moderate,
the standard normal distribution provides an adequate approximation to the distribution of
Z. Hence the null hypothesis of (10.6.1) is rejected at the 5% level of significance if the
absolute value of the observed Z-value is greater than 1.96, which is the 2.5% upper quan-
tile of a standard normal distribution.

The concept of the group sequential procedures is fairly simple. The number of planned
interim analyses can be determined in advance and specified in the protocol. Let N be the
total planned sample size with equal allocation to the two treatments. Suppose that K interim
analyses are planned with equal increments of accumulating data. Then, we can divide the
duration of the clinical trial into K intervals. Within each stage, the data of n � N/K patients
are accumulated. At the end of each interval, an interim analysis will be performed using Z-
statistic, denoted by Zi , in (10.6.2) with the data accumulated up to that point. Two decisions
will be made based on the result of each interim analysis. First, the trial is continued if

�Zi� � zi , i � 1, . . . , K � 1, (10.6.3)

where zi are critical values known as the group sequential boundaries. However, we declare
that we fail to reject the null hypothesis of (10.6.1) if

�Zi� � zi, for all i � 1, . . . , K. (10.6.4)
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Nevertheless, the null hypothesis is rejected, and we can terminate the trial if at any of the
K interim analyses

�Zi� � zi, i � 1, . . . , K. (10.6.5)

For example, at the end of the first interval, an interim analysis is carried out with the data
of n patients. If (10.6.3) is true, we continue the trial to the second planned interim analysis.
Otherwise, we reject the null hypothesis, and we can stop the trial. After the trial continues
to the end of the third interval, the accumulated data of 3n patients will be used for the third
interim analysis. Data of all patients will be utilized for the final interim analysis after equa-
tion (10.6.3) is satisfied at all previous K � 1 interim analyses. The trial will be terminated
at the final analysis regardless if (10.6.3) is true or not. If (10.6.4) is true at the final analy-
sis, then we can declare that the data from the trial do not provide sufficient evidence to
doubt the validity of the null hypothesis. Otherwise, the null hypothesis is rejected, and we
can conclude that there is statistically significant difference in change from the baseline of
diastolic blood pressure between the test drug and the placebo. The data structure for the
group sequential procedures is illustrated in Table 10.6.1. As can be seen from Table 10.6.1,
the interim analysis is scheduled after equal information of n patients is accumulated.
Therefore the time scale for the interim analyses is the information time. For this example
each interim analysis is planned based on information time at 1/K, 2/K, 3/K, . . . , (K � 1)/K,
and 1, which is called the K-stage group sequential procedure.

In contrast to the fixed sample where only one final analysis is performed, K analyses
are carried out for the K-stage group sequential procedure. Suppose that the nominal signi-
ficance level for each of the K interim analyses is still 5%. Then because of repeated test-
ing based on the accumulated data, the overall significance level is inflated. In other words,
when there is no difference in the change from the baseline of diastolic blood pressure
between the test drug and the placebo, the probability of declaring at least one significance
result increases due to K interim analyses. For the five planned interim analyses as shown
in Table 10.6.2 (Armitage, et al., 1969), the overall type I error rate inflates to 14% instead
of 5%. In other words, even though there is no difference between the test drug and the
placebo, the odds of at least one false positive finding increase from 1 out of 20 to 1 in 7.

Various methods have been proposed to maintain the overall significance level at the pre-
specified nominal level. One of the early methods was proposed by Haybittle (1971) and
Peto et al. (1976). They proposed using 3.0 as the group sequential boundaries for all
interim analyses except for the final analysis for which they suggested 1.96. In other words,

zi � �3.0 if i � 1, . . . , K � 1,
1.96 if i � K.

Table 10.6.1 Data Structure of Group Sequential Methods

Number of Interim
Randomization

Information
Analysis (K) Test Drug Placebo Time Z-Statistic

1 n/2 n/2 1/K(n) Z1

2 2n/2 2n/2 2/K(2n) Z2

3 3n/2 3n/2 3/K(3n) Z3

� � � � �
K Kn/2 Kn/2 1(Kn) ZK
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Therefore their method can be summarized as follows:

Step 1. At each of the K interim analyses, compute Zi, i � 1, . . . , K � 1.

Step 2. If the absolute value of Zi crosses 3.0, then reject the null hypothesis and rec-
ommend a possible early termination of the trial; otherwise, continue the trial to
the next planned interim analysis and repeat steps 1 and 2.

Step 3. For the final analysis, use 1.96 for the boundary. The trial stops here regardless
if the null hypothesis is rejected.

The Haybittle and Peto’s method is very simple. However, it is a procedure with ad hoc
boundaries that are independent of any planned interim analyses and stages. Pocock (1977)
proposes different group sequential boundaries that depend on the number of planned
interim analyses. However, his boundaries are constant at each stage of an interim analysis.
For example, when the number of planned interim analyses is 5, Pocock (1977) suggests
using 2.413 as the group sequential boundary for each of the five interims. However, if 
K � 4, then Pocock’s boundary decreases to 2.361. The implementation of Pocock’s group
sequential procedure is the same as that of the Haybittle and Peto steps 1 to 3 above. The
Pocock’s group sequential boundaries are given in Table 10.6.3. Since limited information
is included in the early stages of the interim analyses, O’Brien and Fleming (1979) suggest
setting conservative boundaries for the interim analyses scheduled to be carried out in an
early phase of the trial. Their group sequential boundaries not only depend on the number
of the planned interim analysis but also are a function of their stages. As a result, the
O’Brien-Fleming boundaries can be calculated as:

ziK � �
cK

�
�

i�
K�

�, 1 � i � K, (10.6.6)

where cK is the critical value for a total of K planned interim analyses also provided in
Table 10.6.3. Again let us suppose that five planned interim analyses are scheduled. Then 
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Table 10.6.2 Repeated Significance Tests 
on Accumulative Data

Number of Overall 
Repeated Tests Significance
at 5% Level Level

1 0.05
2 0.08
3 0.11
4 0.13
5 0.14

10 0.19
20 0.25
50 0.32

100 0.37
1000 0.53

∞ 1.00

Source: Armitage et al. (1969).
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c5 � 2.04 and boundaries for each stage of these five interim analyses are given as

zi5 � �
2.0

�
4�

i�
5�

�, 1 � i � 5.

For example, the O’Brien-Fleming boundary for the first interim analysis is equal to (2.04)
(�5�) � 4.561. The O’Brien-Fleming boundaries for the other four interim analyses can be
similarly computed as 3.225, 2.633, 2.280, and 2.040, respectively. A graphical comparison
of the group sequential boundaries among these three methods is given in Figure 10.6.1. It
is evident from Figure 10.6.1 that the O’Brien-Fleming boundaries are so conservative, that
the early trial results must be extreme for any prudent and justified decision-making in rec-
ommendation of a possible early termination when very limited information is available. On
the other hand, in the late phase of the trial when the accumulated information approaches
the required maximum information, their boundaries also become quite close to the critical
value when no interim analysis has been planned. As a result, the O’Brien-Fleming method
does not require a significant increase in the sample size for what has been already planned.
Therefore the O’Brien-Fleming group sequential boundaries have become one of the most
employed procedures for the planned interim analyses of clinical trials. Jennison and Turn-
bull (1989) suggest performing interim analyses by application of repeated confidence
intervals. The repeated confidence intervals take the usual form of a confidence interval but
with critical values replaced by the group sequential boundaries given in Table 10.6.3. The
ith repeated confidence interval for µT � µP, the mean difference in change from the base-
line of diastolic blood pressure between the test drug and the placebo, is given by

(Y�T � Y�P) 	 ziK[se(Y�T) � se(Y�P)], i � i � K, (10.6.7)

where ziK are the group sequential boundaries. The implementation of the repeated con-
fidence interval approach is similar to the group sequential procedure described above. For a
two-sided alternative, an early termination of the ith interim analysis is recommended if the
ith repeated confidence interval does not contain 0. Otherwise, the trial continues. The
repeated confidence interval approach is appealing because it combines aspects of sequential
estimation and testing for a full exploration of the data at each interim analysis. The repeated

Table 10.6.3 Group Sequential Boundaries

Group Sequential Boundaries

Number of Interim
Pocock O’Brien-Fleming

Analyses (K) Value Multiplier Value

1 1.960 �1/i 1.960
2 2.178 �2/i 1.978
3 2.289 �3/i 2.004
4 2.361 �4/i 2.024
5 2.413 �5/i 2.040
6 2.453 �6/i 2.053
7 2.485 �7/i 2.063
8 2.512 �8/i 2.072
9 2.535 �9/i 2.080

10 2.555 �10/i 2.086

Note: Two-sided: 0.05; One-sided: 0.025. i � 1, . . . , K.

Source: Modified from Jennison and Turnball (1989, 1991).
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confidence interval approach can also be applied to the equivalence problem (Jennison and
Turnbull, 1993). Gould (1995b) extends the group sequential procedure to the bioequiva-
lence problem.

The implementation of any group sequential procedures requires someone to specify the
number of planned interim analyses in advance. It also dictates equal increments of informa-
tion (number of patients) for each stage. As illustrated in Table 10.6.1, the time scale for sched-
uling interim analyses is the information time. However, the data-monitoring committee
meetings for the review of the data and interim results are scheduled on calendar time. Unless
the rate of accumulating information is uniform, it is quite difficult to convert information time
to the calendar time for prescheduling the DMC meetings. DeMets and Lan (1994) describe in
details this problem from their experiences with BHAT. Moreover it is not uncommon that an
occurrence of some unexpected beneficial or harmful effect demands, for ethical and scientific
reasons, changes in the frequency of the planned interim analyses and prescheduled DMC
meetings. Under these circumstances the group sequential procedures become rather inflexi-
ble to limit the decisions and actions that the DMC must take for the best interest of the
patients. Lan and DeMets (1983) in their landmark paper introduce the concept of the alpha
spending function to overcome the drawbacks of traditional group sequential procedures.

In the standard group sequential procedures, the boundaries are determined by critical 
values so that the sum of probabilities of exceeding these values at the prescheduled discrete
information time points is equal to the predetermined total probability of type I error. 
The idea of the alpha spending function proposed by Lan and DeMets (1983) is to spend 
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Figure 10.6.1 Two-sided 5% boundaries for Pocock, O’Brien-Fleming, and Peto-Haybittle meth-
ods. (Source: DeMets and Lan, 1994.)
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428 CENSORED DATA AND INTERIM ANALYSIS

(i.e., distribute) the total probability of false positive risk as a continuous function of the
information time. As a result, if the total information scheduled to accumulate over the max-
imum duration T is known, the boundaries can also be computed as a continuous function of
the information time. This continuous function of the information time is referred to as the
alpha spending function, denoted by α(s). The alpha spending function is an increasing func-
tion of information time. It is 0 when information time is 0, and it is equal to the overall sig-
nificance level when information time is 1. In other words, α(0) � 0 and α(1) � α. Let s1

and s2 be two information times, 0 � s1 � s2 � 1. Also denote α(s1) and α(s2) as their corre-
sponding value of alpha spending function at s1 and s2. Then 0 � α(s1) � α(s2) � α. α(s1) is
the probability of type I error one wishes to spend at information time s1. With respect to
α(s1), the boundary z(s1) can then be computed by the following probability statement:

P{Z(s1) � z(s1)} � α(s1).

Suppose that the trial fails to terminate at s1 and continues to accumulate information up to
s2 when we perform the second interim analysis. The cumulative false positive probability
is given by

α(s2) � P{Z(s1) � z(s1) or Z(s2) � z(s2)}

� P{Z(s1) � z(s1)} � P{Z(s1) � z(s1) and Z(s2) � z(s2)}

� α(s1) � P{Z(s1) � z(s1) and Z(s2) � z(s2)}. (10.6.8)

Then α(s2) � α(s1) is the proportion of the probability of type I error one is willing to allo-
cate to the additional accumulation of information s2 � s1. The boundary z(s2) can be
obtained through numerical integration by the following formulation:

α(s2) � α(s1) � P{Z(s1) � z(s1) and Z(s2) � z(s2)}. (10.6.9)

This relationship is given in Figure 10.6.2, which provides a graphical representation of
the alpha spending function. Table 10.6.4 provides different forms of alpha spending func-
tions whose boundaries for 5 interim looks are given in Table 10.6.5.

As an example, consider the O’Brien-Fleming group sequential procedure with a total of
five planned interim analyses with equal increment of information for one-sided alternative

Figure 10.6.2 The alpha spending function α(s).
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at the 2.5% overall significance level. The five boundaries are given as z(0.2) � 4.56,
z(0.4) � 3.23, z(0.6) � 2.63, z(0.8) � 2.28, and z(1.0) � 2.04. The cumulative probabilities
of type I error is given in Table 10.6.6. As a result, the cumulative false positive error rate at
the five information time points are given as

P{Z(0.2) � 4.56} � 2.6 � 10�6

P{Z(0.2) � 4.56 or Z(0.4) � 3.23}

� P{Z(0.2) � 4.56} � P{Z(0.2) � 4.56 and Z(0.4) � 3.23}

� 2.6 � 10�6 � 0.000574 � 0.0006,

P{Z(0.2) � 4.56 or Z(0.4) � 3.23 or Z(0.6) � 2.63}

� P{Z(0.2) � 4.56 or Z(0.4) � 3.23}

� P{Z(0.2) � 4.56 and Z(0.4) � 3.23 and Z(0.6) � 2.63}

� 0.0006 � 0.0039 � 0.0045,

P{Z(0.2) � 4.56 or Z(0.4) � 3.23 or Z(0.6) � 2.63 or Z(0.8) � 2.28}

� P{Z(0.2) � 4.56 or Z(0.4) � 3.23 or Z(0.6) � 2.63}

� P{Z(0.2) � 4.56 and Z(0.4) � 3.23 and Z(0.6) � 2.63

and Z(0.8) � 2.28}

� 0.0045 � 0.0080 � 0.0125,

P{Z(0.2) � 4.56 or Z(0.4) � 3.23 or Z(0.6) � 2.63 or Z(0.8) � 2.28

or Z(0.1) � 2.04}

� P{Z(0.2) � 4.56 or Z(0.4) � 3.23 or Z(0.6) � 2.63

or Z(0.8) � 2.28}

� P{Z(0.2) � 4.56 and Z(0.4) � 3.23 and Z(0.6) � 2.63

and Z(0.8) � 2.28 and Z(1.0) � 2.04}

� 0.0125 � 0.0125 � 0.0250
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Table 10.6.4 Different Forms of Alpha Spending Functions

Approximation

α1(s) � 2{1 � Φ[z(α/2)/�s]} O’Brien-Fleming
α2(s) � α ln[1 � (e � 1)s] Pocock
α3(s) � αsθ, θ � 0 Lan-DeMets-Kim
α4(s) � α[(1 � e�ζs)/(1 � e�ζ)], ζ � 0, Hwang-Shih

Table 10.6.5 Examples of Boundaries by Alpha Spending Function

Interim Analysis(s) O’Brien-Fleming α1(s) Pocock α2(s) α3(s)[θ � 1]

1(0.2) 4.56 4.90 2.41 2.44 2.58
2(0.4) 3.23 3.35 2.41 2.43 2.49
3(0.6) 2.63 2.68 2.41 2.41 2.41
4(0.8) 2.28 2.29 2.41 2.40 2.34
5(1.0) 2.04 2.03 2.41 2.39 2.28

Note: Number of interim analyses � 5. Two-sided: 0.05; One-sided: 0.025.
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430 CENSORED DATA AND INTERIM ANALYSIS

When 40% of information of the trial is accumulated, with respect to the O’Brien-Fleming
boundaries Z(0.2) � 4.56 and z(0.4) � 3.23, the allowable probability of type I error is
only 0.0006. However, the spendable false positive rate is 0.0039 when the third interim
analysis is performed at s � 0.6. According to Table 10.6.6 in the O’Brien-Fleming group
sequential procedure spends very little probability of type I error for the interim analyses
performed early in the trial. On the other hand, successive increments of the false positive
rate in the Pocock group sequential method is a decreasing function of information as illus-
trated in Table 10.6.6. Consequently, most of the significance level is spent at an early
stage of the trial. Figure 10.6.3 graphically compares the alpha spending functions of the
Pocock and O’Brien-Fleming group sequential procedures.

In a maximum duration trial, as noted above, the total information is a random variable, and
it is not observed until the trial ends at the maximum duration Tc. It is not uncommon to revise
the maximum information specified in the protocol as demonstrated by some of well-known
trials sponsored by the U.S. National Institutes of Health such as BHAT (1982) or CAST

Figure 10.6.3 One-sided 2.5% alpha spending function for Pocock and O’Brien-Fleming bound-
aries. (Source: Lan and DeMets, 1994.)

Table 10.6.6 Cumulative Probability of Type I Error

Group Sequential Boundaries

Pocock O’Brien-Fleming

Interim Analysis(s) Value α(s) Increment Value α(s) Increment

1(0.2) 2.41 0.0079 0.0079 4.56 0.0000 2.6 � 10�6

2(0.4) 2.41 0.0138 0.0059 3.23 0.0006 0.000574
3(0.6) 2.41 0.0183 0.0045 2.63 0.0045 0.0039
4(0.8) 2.41 0.0219 0.0036 2.28 0.0125 0.0080
5(1.0) 2.41 0.0250 0.0031 2.04 0.0250 0.0125

c10.qxd  27.10.03  13:18  Page 430



(1989). As a result information time cannot be used for computing the boundaries. Lan and
DeMets (1983) suggest using a monotone function g(t) to convert the calendar time into infor-
mation time. However, sometimes g(t) is not known and must be estimated. One such approx-
imation is t/T, the ratio of the current calendar time to the maximum duration. Suppose that the
trial has progressed to the calendar time tk with information accumulated to sk by previous
interim analyses performed at some discrete information time si, i � 1, . . . , k. Although the
total information is not known as tk, the covariance between Z(si) and Z(sk) can be estimated by
I(ti) to I(tk), the ratio of information available at calendar time ti to tk. Therefore the boundary
for the interim analysis at sk can be computed using the method described above.

The implementation of the alpha spending function requires an advance selection and
specification of the spending function in the protocol. One cannot change and choose
another spending function in the middle of a trial. Geller (1994) suggests that the spending
function be convex and have the property that the same value of a test statistic is more
compelling as the sample sizes increase. Since it is flexible and has no requirement for
total information and equal increment of information, there is a danger of abuse of the
alpha spending function in increasing the frequency of interim analyses as the results
approach the boundary. However, DeMets and Lan (1994) reported that altering the fre-
quency of interim analyses has very little impact on the overall significance level if an
O’Brien-Fleming-type or a Pocock-type continuous spending function is adopted.

Pawitan and Hallstrom (1990) study the alpha spending function for CAST with the use
of a permutation test. A permutation test is conceptually simple, and it provides an exact
test for small sample sizes. In addition, it is valid for complicated stratified analysis in
which the exact sampling distribution is, in general, unknown and large-sample approxi-
mation may not be adequate. Consider the one-sided alternative. For the kth interim analy-
ses, under the assumption of no treatment effect, the null joint permutation distribution of
the test statistics (Z1, . . . , ZK) can be obtained by random permutation of treatment assign-
ments on the actual data. Let (Z*

1b, . . . , Z*
Kb), b � 1, . . . , B, be the statistics computed

from B treatment assignments and B be the total number of possible permutations. Given
α(s1), α(s2) � α(s1), . . . , α(sk) � α(sK � 1), the probabilities of type I error allowed at suc-
cessive interim analyses, the one-sided boundaries z1, . . . , zK can be determined by the
formulas

� α(s1),

� α(s2) � α(s1),

�

� α(sK) � α(sK�1). (10.6.10)

If B is very large, then the above method can be executed by a random sample with a
replacement of size B. The α spending function for an overall significance level of 2.5%
for the one-sided alternative is given by

α(s) � �
α
2

� s if s � 1,

α if s � 1.

Number of (Z*
1 � z1 and Z*

2 � z2, . . . , and Z*
K � zK)

������B

Number of (Z*
1 � z1 and Z*

2 � z2)
����B

Number of (Z*
1 � z1)

���B
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In other words, CAST uniformly spent 50% of the overall probability of type I error until
the end of the trial and allocated the other half for the final analysis. The primary event of
interest for CAST was death from arrhythmia or cardiac arrest which was original
expected to be 425 based on a projection of an event rate of 11% over a three-year follow-
up period. However, the observed event rate was about 2% for the placebo group in the first
year. Therefore the event rate was revised to 300 on the second interim analysis on March
30, 1989. The results of interim analyses and boundaries are given in Table 10.6.7. At the
time of the first interim analysis, the observed number of events was 29. Therefore
α(29/425) � 0.0125(29/425) � 0.0009. The corresponding lower boundary using a ran-
dom sample with replacement of size 4000 computed from (10.6.9) was �3.18. Since the
observed logrank statistic is �2.82 which is greater than �3.18, the trial continued. Simi-
larly the boundary for the second interim analysis based on an observed 42 events and a
revised total expected 300 events was �3.04. But the observed logrank test statistic was
�3.22 which crossed the boundary. This result coupled with other considerations, the
DMC of CAST recommended on April 17, 1989, that the trial be terminated because of the
adverse effect of the class IC arrhythmic suppressant agents.

CAST study (Pawitan and Hallstrom, 1990) also applied the stochastic curtailment
method (Lan et al., 1982) to compute the conditional power of the trial given the current
data for consideration of possible termination of the trial due to lack of benefit if the con-
ditional power is too low. Lan and Wittes (1988) propose the B-value as a tool for monitor-
ing data for the calculation of conditional power under the assumption that the current
trend indicated by the observed data at information time s continues. For simplicity we
consider the one-sample problem. Let Θ � �N�µ, where N is the maximum information
that a trial is planned to accumulate and µ is the population mean. The power of rejecting
the null hypothesis at the α significance level for a two-sided test conditioning on the

Table 10.6.7 Summary of the Interim Results Based on the
Number of Deaths from Arrhythmia or Cardiac Arrest

Calendar Times for Interim Analyses

9/1/88 3/30/89

Placebo 7(576)a 9(725)
Activeb 22(571) 33(730)
Total 29(1147) 42(1455)
Total Expected 425 300

One-sided α 0.0009 0.0011
increment

Observed Logrank �2.82 �3.22
Lower Boundc �3.18 �3.04

aNumbers in the parentheses are the number of patients assigned to the
treatment.
bActive treatments include encainide and flecainide.
cLower bounds were computed from a random sample with replacement
of size b � 4000.

Source: Modified from Pawitan and Hallstrom (1990).
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current trend at information time s is given as

φ(Θ) � 1 � Φ ��[Z(α/2

�
) �

1���
B
s�
(s)/s]

��
� 1 � Φ � �, (10.6.11)

where the B-value at information s is defined as

B(s) � �
Z
�
(s

s�
)

�. (10.6.12)

Lan and Wittes (1988) also consider the application of the B-value to the two-sample 
Z-test, the two-sample Wilcoxon rank sum test, and the logrank test.

Example 10.6.1 Woman’s Health Initiative The Women’s Health Initiative (WHI),
sponsored by the National Heart, Lung, and Blood Institute (NHLBI), the United States
National Institutes of Health (NIH), is a large and complex clinical investigation on
defining the risks and benefits of strategies that could potentially reduce the incidence of
heart disease, breast and colorectal cancer, and fracture in postmenopausal women (The
Women’s Health Initiative Group, 1998; Writing Group for the WHI Investigators, 2002).
One of the components of the WHI protocol is a randomized, double-blind, placebo-
controlled, primary prevention trial on hormone replacement therapy (HRT) that was to
examine the effect of estrogen (conjugated equine estrogen 0.625 mg/day) plus progestin
(medroxyprogesterone acetate 2.5 mg/day) on overall health in 16,608 healthy post-
menopausal women aged 50–79 years with intact uterus recruited by 40 clinical centers in
the United States between 1993 and 1998. The overall health defined by the WHI is the
long-term benefits and risks, including cardiovascular diseases, invasive breast cancer,
stroke, pulmonary embolism, endometrial cancer, colorectal cancer, hip fracture, or dearth
due to other causes. However, this study did not address the short-term risks and benefits
for the treatment of menopausal symptoms.

Most of the clinical trials discussed in previous chapters focus on the so-called treat-
ment or therapeutic trials in which subjects who suffered from a certain disease defined in
the inclusion/exclusion criteria are enrolled. The goal of treatment trials is to evaluate the
therapeutic effect of the intervention on a specific disease with a defined severity. On the
other hand, the subjects in the primary prevention trials are ostensibly healthy volunteers.
As a result, the intervention in the primary prevention trials can affect several diseases
and overall health. However, effects of the intervention evaluated in primary prevention
trials may be either beneficial for some diseases or adverse for others. In addition, the
magnitudes of incidences and the time course of these potentially beneficial and adverse
effects are different for different diseases. However, incidences of occurrence of diseases,
mortality rate, or morbidity rate of healthy subjects in primary prevention trials are much
lower than are therapeutic trials. Consequently, a much larger sample size is required for
primary prevention trials and the study duration of the primary prevention trials is much
longer than that of the treatment trials. It is, therefore, unlikely to repeat a large-scale pri-
mary prevention trial because of cost and long-term nature. For example, the estrogen
plus progestin component of the WHI began to enroll 16,608 subjects in the fall of 1997

[Z(α/2) � Z(s)/�s�]
���

�1���s�
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with expectation of final analysis in the year 2005 after an average of approximately 8.5
years of follow-up.

Note that interim analyses for possible early termination of trials introduced in this
chapter are based on a single outcome with respect to a particular disease, usually the pri-
mary efficacy endpoint, for treatment trials. This traditional approach, however, is not
appropriate for the primary prevention trials due to the inability to repeat and possible
direct applications to public health policy. Freedman et al. (1996) argued that a more com-
prehensive approach to monitoring the primary prevention trials is necessary. They pro-
posed that in addition to considering the effect of the intervention on primary efficacy
endpoints, overall health benefit versus risk considerations be incorporated into formal ter-
minating procedures. In other words, a proper balance between the global assessment of
overall health and effects of the intervention on primary efficacy endpoints for specific dis-
eases must be reached for monitoring of primary prevention trials.

The primary efficacy endpoint for the estrogen plus progestin component of the WHI is
the incidence of coronary heart disease (CHD) because heart disease is the major cause of
morbidity and mortality in US postmenopausal women. Besides, cardioprotective effect of
HRT cannot be proven with either observational or epidemiological studies. On the other
hand, there is a concern that long-term use of estrogen may increase the risk of breast
cancer. Therefore, the incidence of invasive breast cancer was chosen as the primary safety
endpoint. However, there are some other competing benefits and risks associated with
HRT. For the estrogen plus progestin component of the WHI, they are occurrence of
stroke, pulmonary embolism, endometrial cancer, colorectal cancer, hip fracture, or death
due to other causes. A weighted global index is devised to assess the effect of the estrogen
plus progestin on the overall balance of benefit and risk. Let d1, . . . , d8 be the observed
differences in proportions between the estrogen plus progestin and placebo for the eight
outcomes mentioned above. This global index is the weighted sum of d1, . . . , d8:

W � w1d1 � . . . � w8d8

where w1, . . . , w8 represent the weights for these eight outcomes. Freedman et al. (1996)
suggested weighing the occurrence of each disease by the expected proportion of diag-
nosed persons who will die of that disease within a specific number of years of diagnosis.
As a result, the weights are less than 1. The weight for deaths from other causes, however,
is always 1. This global index can then be monitored just like any other endpoints.

For primary prevention trials, benefits and risks are not symmetric and a proper balance
should be maintained between the global assessment and effects on specific diseases. The
estrogen plus progestin component of the WHI adopted a mixed approach to possible early
termination, which is summarized below:

1. O’Brien-Fleming boundaries are used for each of eight outcomes and for the global
index.

2. Asymmetrical upper and lower boundaries are used: a one-sided α � 0.025 upper
boundary for benefit; one-sided α � 0.05 boundaries for adverse effects. In addition, the
adverse-effect boundaries were adjusted using the Bonferroni method for the seven out-
comes other than invasive breast cancer (CHD, stroke, pulmonary embolism, endome-
trial cancer, colorectal cancer, hip fracture, or death due to other causes).
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3. The trial stops if

a. the lower boundary of the adverse effect is crossed

b. the upper boundary for benefit is crossed

c. the result based on the global index is supportive at a nominal level of 0.20

The independent Data and Safety Monitoring Board (DSMB) conducted its semiannual for-
mal monitoring in the fall of 1997. On May 31, 2002, based on the tenth interim analysis, the
DSMB found that the designed specified weighted log-rank test statistic for invasive breast
cancer (z � �3.19) crossed the designated lower boundary for adverse effect (z � �2.32)
and the global index was also supportive (z � �1.62). In addition, the interim results also
suggested that the additional evidence for some increase in CHD, stroke, and pulmonary
embolism outweighed the evidence of benefit for fractures and possible benefit for colon
cancer over the averaged 5.2 years of follow-up. Therefore, the DSMB recommended early
termination of the estrogen plus progestin component of the WHI. Although concepts and
statistical methods for interim analyses are intuitively simple and straightforward, the exam-
ple from the estrogen plus progestin component of the WHI illustrates the complex and yet
delicate nature on application of interim analysis to early stopping of a clinical trial.

10.7 DISCUSSION

The statistical inference for censored data covered in this chapter was restricted to parallel
group designs in which the time to occurrence of a well-defined clinical event is indepen-
dent from patient to patient. On the other hand, in the two-sequence, two-period crossover
design discussed in Chapter 5, each patient with chronic conditions received both treat-
ments during the study. The result was two censored responses, conditioned under different
treatments, were obtained from the same patient. Since they were observed from the same
patient, the two censored clinical endpoints were correlated.

There are many examples of correlated censored endpoints in clinical trials. For exam-
ple, France et al. (1991) report a study whose objective is to evaluate the efficacy of the
monotherapy of atenolol at 50 mg twice a day with that of a combination therapy of atenolol
and nifedipine in the treatment of angina pectoris. Although both drugs are widely used in
the treatment of angina, their modes of action are quite different. Atenolol is a beta-blocker,
while nifedipine is a calcium-channel blocker. In addition the dose of atenolol selected at
50 mg b.i.d. for this study was near the top of the dose-response curve such that any addi-
tional increase in dose was unlikely to improve the drug’s efficacy. Therefore it is expected
that the combined therapy of nifedipine and atenolol might provide a more effective treat-
ment of angina than atenolol alone. The study started with a four-week placebo run-in
period on atenolol, followed by a two-sequence, two-period crossover design with a dura-
tion of four weeks for each treatment period. There was a total of 106 patients who com-
pleted the study. At the end of each period, a treadmill test was performed for each patient
according to the standard Bruce protocol. The clinical endpoints for assessment of efficacy
of the treatment included the time to 1 mm ST segment depression, time to pain, and total
time of exercise as well as the reasons for early stopping on the treadmill test. These
responses were censored if the treadmill test stopped before symptoms occurred.

Liu and Chow (1993) give another example of correlated censored data in the assessment
of clinical equivalence of an albuterol metered dose inhaler (MDI) for acute bronchospasm
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between the test and reference formulations in patients with reversible obstructive airway
disease. Because of its intended route of administration, we have negligible plasma levels.
As a result clinical endpoints are used for assessment of bioequivalence for MDI products.
The clinical endpoints for MDI products recommended by the FDA guidance are derived
from the volume of air forced out of the lung within one second (FEV1) measured at 0, 10,
15, 30, 60, 90, 120, 180, 240, 300, and 360 minutes after dosing. One of the clinical end-
points derived from FEV1 is the time to the onset of a therapeutic response which is defined
as the event that the FEV1 measurement evaluated within 30 minutes after dosing exceeds
115% of its baseline measurement at time 0. In order to reduce the variability between
patients, crossover designs are the designs of choice in evaluations of bioequivalence for
MDI products. As a result the censored data, such as the time to the onset of therapeutic
response in the same patient, are correlated.

Several methods are available for paired censored clinical endpoints. For example,
O’Brien and Fleming (1987) proposed the paired Prentice-Wilcoxon statistic, Huster,
Brookmeyer, and Self (1989) suggest parametric models with adjustments by covariates,
Holt and Prentice (1974) and Kalbfleisch and Prentice (1980) employ the Cox proportional
hazard model to analyze paired censored data. However, these methods fail to take into
account the structure of crossover designs. Recently, under assumption of no carryover
effect, France et al. (1991) and Liu and Chow (1993) extended the method of Cox’s pro-
portional hazard model for paired censored data proposed by Kalbfleisch and Prentice
(1980) to the crossover design.

Basically, the method proposed by Kalbfleisch and Prentice (1980) is the sign test gen-
eralized to the censored data, which can be derived from the binary logistic regression dis-
cussed in Chapter 9. For each sequence within a two-sequence, two-period design, the
treatment effect can be estimated as the regression coefficient for the treatment indicator
variable according to the method suggested by Kalbfleisch and Prentice (1980). The over-
all estimated treatment effect is then the average of individual regression coefficients esti-
mated from each sequence. On the other hand, the period effect is the difference in
individual regression coefficients between the two sequences. However, under Cox’s pro-
portional hazard model, it is not possible to provide a test for the presence of the carryover
effect. Liu and Chow (1993) suggest using the hazard ratio as a criterion in the assessment
of bioequivalence between MDI products. Jung and Su (1995) propose a nonparametric
estimation procedure for the difference or ratio of median failure times for the correlated
censored observations from a two-sequence, two-period crossover study. They recom-
mended the use of a 95% confidence interval for the difference or ratio of median failure
time as a criterion in the assessment of equivalence between drug products.

As was mentioned above, the method for correlated censored data obtained from
crossover designs proposed by France et al., (1991) and Liu and Chow (1993) is an extension
of a sign test that may not be powerful under certain alternatives. Feingold and Gillespie
(1996) therefore suggest two methods to test the treatment effect. The first method is to trans-
form the data into a score and to analyze the score according to the standard procedure for
continuous data under the linear model for a two-sequence, two-period crossover design,
assuming compound symmetry in the covariance matrix. They recommended the use of the
Gehan score (1965b). For a two-sequence, two-period crossover design, the treatment effect,
period effect, and carryover (or sequence) effect can be obtained from within-patient con-
trasts. The second testing method, based on the censoring pattern in each period and signs of
linear contrast, is to classify the result of each patient as uncensored, left-censored, right-
censored, or undefined. Feingold and Gillespie (1996) then suggest testing the differences
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between the two sequences with a distribution-free test developed by Gehan (1965a) and Man-
tel (1967), which is an extension of the two-sample generalized Wilcoxon test for right-
censored data. Feingold and Gillespie (1996) also select the average quantile as the parameter
for estimation of the treatment effect. The average quantile is referred to as the average dis-
tance of each survival curve from the origin, computed over the quantile range where all of the
survival curves are defined. If all data are uncensored, then the average quantile is the mean.
However, their procedure for hypothesis testing is not in accordance with the estimation
results. In other words, if one of the proposed tests indicates a statistically significant treatment
effect, this does not imply that the confidence interval for that parameter does not include zero.

The group sequential procedures for interim analyses are basically in the context of
hypothesis testing which is aimed at pragmatic study objectives concerning which treatment
is better. However, most new treatments such as cancer drugs are very expensive, very toxic,
or both. As a result only if the degree of the benefit provided by the new treatment exceeds
some minimum clinically significant requirement, it will then be considered for the treatment
of the intended medical conditions. Therefore an adequate well-controlled trial should be
able to provide not only the qualitative evidence whether the experimental treatment is effec-
tive but also the quantitative evidence on the unbiased estimation of the size of the effective-
ness or safety over the placebo given by the experimental therapy. For a fixed sample design
without interim analyses for early termination, it is possible to achieve both qualitative and
quantitative goals with respect to the treatment effect. However, with the group sequential
procedure the beneficial size of the experimental treatment by the maximum likelihood
method is usually overestimated because of the choice of stopping rule. Jennison and Turn-
bull (1990) point out that the sample mean might not be even contained in the final con-
fidence interval. As a result, estimation of the size of treatment effect has received a lot of
attention. Various estimation procedures have been proposed such as the modified maximum
likelihood estimator (MLE), the median unbiased estimator (MUE) and the midpoint of the
equal two tailed 90% confidence interval. For more detail, see Cox (1952), Tsiatis et al.
(1984), Kim and DeMets (1987), Kim (1989), Chang and O’Brien (1986), Chang et al.
(1989), Chang (1989), Hughes and Pocock (1988), and Pocock and Hughes (1989).

The estimation procedures proposed in the above literature require extensive computa-
tion. On the other hand, simulation results (Kim 1989; Hughes and Pocock 1989) show
that the alpha spending function corresponding to the O’Brien-Fleming group sequential
procedure is quite concave and allocates only a very small total nominal significance level
to early stages of the interim analyses, and hence the bias, variance, and mean square error
of the point estimator following O’Brien-Fleming procedure are also the smallest. Current
research has mainly focused on the estimation of the size of the treatment effect for the
primary clinical endpoints on which the group sequential procedure is based. However,
there are many other secondary efficacy and safety endpoints to be evaluated in the same
trial. The impact of early termination of a trial based on the results from primary clinical
endpoints on the statistical inference for these secondary clinical endpoints is unclear. In
addition, group sequential methods and their followed estimation procedures so far are
only concentrated on the population average. On the other hand, inference of variability is
sometimes also of vital importance for certain classes of drug products and diseases.
Research on estimation of variability following early termination is still lacking. Other
areas of interest for interim analyses include clinical trials with more than two treatments
and bioequivalence assessment. For group sequential procedures for trials with multiple
treatments, see Hughes (1993) and Proschan et al. (1994). For the group sequential bio-
equivalence testing procedure, see Gould (1995b).
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11
SAMPLE SIZE DETERMINATION

11.1 INTRODUCTION

A major consideration of most clinical studies is to determine whether the drug under
investigation is effective and safe. During the planning stage of a clinical study, the follow-
ing questions are of particular interest to the investigators: (1) How many subjects are
needed in order to have a desired power (e.g., 80% chance of correctly detecting a clini-
cally meaningful difference? (2) What’s the trade-off if only a small number of subjects are
available for the study due to limited budget and/or some medical considerations? To
address these questions, a statistical evaluation for sample size determination/justification
is often employed. Sample size determination usually involves the calculation of a required
sample size for some desired statistical properties such as precision and power, whereas
sample size justification provides statistical justification for a selected sample size which
may be small in number because of budget constraints or some medical considerations. In
this chapter our emphasis will be placed on sample size determination. The concept can be
easily implemented to provide statistical justification for a selected sample size.

For a given study, sample size is usually determined based on some criteria on type I
and/or type II errors. For example, we can choose sample size in such a way that there is a
desired precision at a fixed confidence level (or fixed type I error). This approach is referred
to as precision analysis for sample size determination. The disadvantage of the precision
analysis is that it has a small chance of detecting a true difference. As an alternative, a pre-
study power analysis is usually conducted to calculate sample size. The concept of power
analysis is to select an acceptable type II error for a fixed type I error. In other words, the
selected sample size will have a desired power for correctly detecting a clinical/scientific
meaningful difference at a fixed type I error rate. In most clinical trials the pre-study power
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analysis for sample size determination is the most commonly used method for choosing the
sample size. Therefore, in this chapter we will focus on sample size determination based on
power analysis for various situations of clinical trials.

To perform a pre-study power analysis for sample size determination, the power func-
tion of an appropriate test for the hypotheses of interest is necessarily characterized. The
hypotheses should be established to reflect the study objectives under the study design. In
practice, it is not uncommon to observe discrepancies among study objective (hypotheses),
study design, statistical analysis (test statistic), and sample size calculation. These incon-
sistencies often result in (1) wrong test for right hypotheses, (2) right test for wrong
hypotheses, (3) wrong test for wrong hypotheses, or (4) right test for right hypotheses with
insufficient power. Therefore, before the sample size can be determined, it is suggested
that the following be carefully considered: (1) the study objectives or the hypotheses of
interest be clearly stated, (2) a valid design with appropriate statistical tests be used, and
(3) the sample size be determined based on a test for the hypotheses of interest.

In the next section we will introduce some basic concepts for sample size determination
and outline the precision analysis approach and the method of pre-study power and analy-
sis for sample size calculation. The pre-study power analysis for sample size determination
will be considered to derive formulas for complex clinical trials with different study objec-
tives. In Section 11.3 and 11.4 sample size calculations for two samples comparing two
treatments and multiple samples comparing more than two treatments are discussed,
respectively. The sample size required for complex clinical trials with survival endpoints is
outlined in Section 11.5. In Section 11.6 we explore sample size determination for dose-
response studies. Sample size calculation under the structure of crossover designs is
described in Section 11.7. In Section 11.8, some recent developments for sample size
required for equivalence or noninferiority trials with binary or censored data as primary
endpoints are reviewed. Section 11.9 gives tables for sample size determination of optimal
two-stage designs for phase II cancer trials. The final section provides formulas for sample
size calculation for comparing variabilities in clinical research.

11.2 BASIC CONCEPT

Study Objectives and Hypotheses

In most clinical trials the primary study objective is related to the evaluation of the effec-
tiveness and safety of a drug product. For example, it may be of interest to show that the
study drug is effective and safe compared to a placebo for some intended indications. In
some cases it may be of interest to show that the study drug is as effective as, superior to, or
equivalent to an active control agent or a standard therapy. In practice, hypotheses regarding
medical or scientific questions of the study drug are usually formulated based on the pri-
mary study objectives. The hypotheses are then evaluated using appropriate statistical tests
under a valid study design. To ensure that the test results will have the desired power with 
a certain degree of accuracy and reliability, a sufficient number of subjects is needed. As 
a result sample size determination plays a crucial role in the design of clinical trials.

For a given study objective, a corresponding hypothesis can be formulated. As was dis-
cussed in Section 2.6, in clinical trials a hypothesis is usually referred to as a postulation,
assumption, or statement that is made about the population regarding the effectiveness and
safety of a drug under investigation. For example, the statement that there is a direct drug
effect is a hypothesis regarding the treatment effect. For testing the hypotheses of interest,
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a random sample is usually drawn from the targeted population to evaluate hypotheses
about the drug product. A statistical test is then performed to determine whether the null
hypothesis should be rejected at a prespecified significance level. Based on the test result,
conclusion(s) regarding the hypotheses can be drawn.

The selection of hypotheses depends on the study objectives. For example, if we want to
demonstrate the effectiveness of a drug product compared to a placebo in terms of an out-
come variable, we could consider the following hypothesis:

H0: µT � µP,

vs. Ha: µT � µP, (11.2.1)

where µT and µP are the mean response of the outcome variable for the test drug and the
placebo, respectively. As was discussed before, a typical approach is to show that there is a
statistically significant difference between the test drug and the placebo by rejecting the
null hypothesis and then demonstrating that there is a high chance of correctly detecting a
clinically meaningful difference if such a difference truly exists.

On the other hand, one may want to show that the test drug is as effective as an active
agent or a standard therapy. In this case Blackwelder (1982) suggests testing the following
hypotheses:

H0: µT � µS � �δ,

vs. Ha: µT � µS � �δ, (11.2.2)

where µS is the mean for a standard therapy and δ is a difference of clinical importance.
The concept is to reject the null hypothesis and conclude that the difference between the
test drug and the standard therapy is less than a clinically meaningful difference δ and
hence that the test drug is as effective as the standard therapy. This study objective is not
uncommon in clinical trials especially when the test drug is considered to be less toxic,
easier to administer, or less expensive than the established standard therapy.

To show superiority of a test drug over an active control agent or a standard therapy, we
may consider the following hypotheses:

H0: µT � µS � δ,

vs. Ha: µT � µS � δ, (11.2.3)

The rejection of the above null hypothesis suggests that the difference between the test
drug and the standard therapy is greater than a clinically meaningful difference. Therefore,
we can conclude that the test drug is superior to the standard therapy by rejecting the null
hypothesis of (11.2.3).

In practice, unless there is some prior knowledge regarding the test drug, usually we do
not know the performance of the test drug as compared to the standard therapy. Therefore
hypotheses (11.2.2) and (11.2.3) are not preferred because they have predetermined the
performance of the test drug as compared to the standard therapy. As an alternative, the fol-
lowing hypotheses for therapeutic equivalence are usually considered:

H0: �µT � µS� � δ,

vs. Ha: �µT � µS� � δ. (11.2.4)

We then conclude that the difference between the test drug and the standard therapy is of
no clinical importance if the null hypothesis of (11.2.4) is rejected.
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It should be noted that a valid sample size calculation can only be done based on appro-
priate statistical tests for the hypotheses that can reflect the objectives under a valid study
design. It is then suggested that the hypotheses be clearly stated when performing a sample
size calculation. Each of the above hypotheses has a different requirement for the sample
size in order to achieve a desired power or precision of the corresponding tests.

Type I and Type II Errors

In practice, two kinds of errors occur when testing hypotheses. If the null hypothesis is
rejected when it is true, then a type I error has occurred. If the null hypothesis is not
rejected when it is false, then a type II error has been made. The probabilities of making
type I and type II errors, denoted by α and β, respectively, are given below:

α � P{type I error}

� P{reject H0 when H0 is true},

β � P{type II error}

� P{fail to reject H0 when H0 is false}.

The probability of making a type I error, α, is called the level of significance. The power of
the test is defined as the probability of correctly rejecting the null hypothesis when the null
hypothesis is false, namely,

Power � 1 � β
� P{reject H0 when H0 is false}.

For example, suppose that we want to test the following hypotheses:

H0: The drug is ineffective;

vs. Ha: The drug is effective.

Then a type I error occur if we conclude that the drug is effective when in fact it is not. On
the other hand, a type II error occurs if we claim that the drug is ineffective when in fact it
is effective. In clinical trials none of these errors is desirable. A typical approach is to avoid
type I error but at the same time to decrease type II error so that there is a high chance of
correctly detecting a drug effect when the drug is indeed effective. Chow and Liu (2000)
illustrate the relationship between type I error and type II error (or power). It appears that
α decreases as β increases and α increases as β decreases. The only way of decreasing both
α and β is to increase the sample size.

Typically, sample size can be determined by controlling either a type I error (or con-
fidence level) or a type II error (or power). In what follows we will introduce two concepts
for sample size determination, namely precision analysis based on type I error and power
analysis based on type II error.

Precision Analysis

In practice, the maximum probability of commiting a type I error that one can tolerate is
usually considered the level of significance. The confidence level, 1 � α, then reflects the
probability or confidence of not rejecting the true null hypothesis. Since the confidence
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interval approach is equivalent to the method of hypotheses testing, we can determine the
sample size required based on the type I error rate using the confidence interval approach.
For a (1 � α)100% confidence interval, the precision of the interval depends on its width.
The narrower the interval is, the more precise the inference is. Therefore, the precision
analysis for sample size determination is to consider the maximum half width of the
(1 � α)100% confidence interval of the unknown parameter that one is willing to accept.
Note that the maximum half width of the confidence interval is usually referred to as the
maximum error of an estimate of the unknown parameter. For example, let Y1, Y2, . . . , Yn

be independent and identically distributed normal random variables with mean µ and vari-
ance σ2. When σ2 is known, a (1 � α)100% confidence interval for µ can be obtained as

Y� � Z(α /2) σ/�n�,

where Z(α /2) is the upper (α /2)th quantile of the standard normal distribution. The maxi-
mum error, denoted by E in estimating the value of µ that one is willing to accept, is then
defined as

E � �Y� � µ� � Z(α /2) σ/�n�.

Thus the sample size required can be chosen as

n � 	
Z(α /

E
2

2
)2σ 2

	. (11.2.5)

Note that the maximum error approach for choosing n is to attain a specified precision
while estimating µ which is derived only based on the interest of type I error. A nonpara-
metric approach can be obtained by using the following Chebyshev inequality:

P{�Y� � µ� � E} � 1 � 	
n
σ
E

2

2	

and hence

n � 	
α
σ
E

2

2	 (11.2.6)

Note that the precision analysis for sample size determination is very easy to apply based
on either (11.2.5) or (11.2.6). For example, suppose that we wish to have a 95% assurance
that the error in the estimated mean is less than 10% of the standard deviation (i.e., 0.1σ).
Thus

Z(α /2)σ /�n� � 0.1σ.

Hence

n � 	
Z(α/

E
2

2
)2 σ2
	 � 	

(1
(0
.9
.1
6
σ
)2

)
σ
2

2
	 � 384.2 � 385.

The above concept can be applied to binary data (or proportions). In addition, it can be easily
implemented for sample size determination when comparing two treatments. Table 11.2.1
provides a summary for sample size determination based on precision analysis for situations
where there are one and two samples, respectively.
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Power Analysis

Since a type I error is usually considered to be a more important and/or serious error that
one would like to avoid, a typical approach in hypothesis testing is to control α at an
acceptable level and try to minimize β by choosing an appropriate sample size. In other
words, the null hypothesis can be tested at a predetermined level (or nominal level) of sig-
nificance with a desired power. This concept for determination of the sample size is usually
referred to as a power analysis for sample size determination.

For determination of the sample size based on a power analysis, the investigator(s) is
required to specify the following information: First of all, a significance level has to be
selected at which the chance of wrongly concluding that a difference exists when in fact
there is no real difference (type I error) can be tolerated. Typically, a 5% level of signifi-
cance is chosen to reflect at 95% confidence regarding the unknown parameter. Second, the
desired power has to be selected at which the chance of correctly detecting a difference
when the difference truly exists that one wishes to achieve. A conventional choice of power
is either 90% or 80%. Third, a clinically meaningful difference must be specified. In most
clinical trials the objective is to demonstrate that effectiveness and safety of a drug under
study compared to a placebo. Therefore, it is important to specify what difference in terms
of the primary endpoint is considered clinically or scientifically important. We denote such
a difference by ∆. If the investigator will settle for detecting only a large difference, then
fewer subjects will be needed. If the difference is relatively small, a larger study group (i.e.,
a large number of subjects) will be needed. Finally, the knowledge regarding the standard
deviation (i.e., σ) of the primary endpoint considered in the study is required for the sam-
ple size determination. A very precise method of measurement (i.e., a small σ) will permit
detection of any given difference with a much smaller sample size than would be required
with a less precise measurement.

In the following sections, we describe some methods for sample size determination based
on the power analyses for various situations that are commonly encountered in clinical trials.

11.3 TWO SAMPLES

One-Sample Test for Mean

Suppose that one wishes to test the following hypotheses:

H0: µ � µ0,

vs. Ha: µ � µ0, (11.3.1)
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Table 11.2.1 Sample Size Determination Based on Precision Analysis

Parameter Statistic Confidence Interval Sample Size

µ Y� Y� � Z(α/2)	
�
σ

n�
	 n � 	

Z(α /
E
2

2
)2 σ 2
	

µ1�µ2 Y�1 � Y�2 (Y�1 � Y�2)� Z(α�2) �	
σ
n�1

2

	� 
� 	
σ�
n

2
2

	� n �	
Z(α/2)2

E
	
(σ

2
1
2 
 σ2

2)
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with a significance level α when the variance σ2 is known. For a specific alternative
hypothesis, say

Ha: µ � µ0 
 ∆,

where ∆ � 0 is a constant, the power of the test is given by

1�β � P{reject H0�Ha is true}

� P�	Y� �

σ /

(µ
�

0


n�
∆)

	 � Z(α) �	
σ/

∆
�n�
	 �µ � µ0 
 ∆	.

Under the alternative hypothesis that µ � µ0 
 ∆, the test statistic

	
Y� �

σ /

(µ
�

0


n�
∆)

	

follows a standard normal variable. Therefore

1�β � P �Z � Z(α) � 	
∆�

σ
n�

		 ,

from which we conclude that

�Z(β) � Z(α) � 	
∆�

σ
n�

	

and hence

n �	
σ2[Z(α

∆
)


2
Z(β)]2
	 . (11.3.2)

This result is also true when the alternative is

Ha: µ � µ0.

Then, for testing a two-sided hypotheses

H0: µ � µ0,

vs. Ha: µ � µ0,

we obtain 1 � β power for a specified alternative when

n �	
σ2[Z(α /

∆
2)

2

Z(β)]2
	 (11.3.3)

For the one-sample test for a proportion, the required sample size can be similarly
derived. Let Y be the Bernoulli random variable of interest with the probability of success
P and the probability of failure 1 � P. The objective of the study is to choose between H0:
P � P0 and Ha: P � P1 (P1 � P0) based on a sample of size n. The sample proportion

p � 	
1
n

	 

n

i�1
Yi

444 SAMPLE SIZE DETERMINATION

Clinical_ch11.qxd  27.10.03  14:01  Page 444



approximately follows a normal distribution with mean P and variance P(1 � P)/n, then
the required sample size is given by

n � (11.3.4)

To simplify (11.3.4), many authors (e.g., Lemeshow, Hosmer, and Stewart, 1981; Haseman,
1978) have suggested to consider the following arcsin transformation:

A(p) � 2 arcsin �p�

before performing the normal test. In this case (11.3.4) becomes

n �	
[A
[Z

(
(
P
α
1

)
)



�

Z
A

(
(
β
P

)

0

]
)

2

]2	 (11.3.5)

The above result is also valid for the case where Ha: P � P1 (P1 � P0). Hence, for testing a
two-sided hypotheses, the required sample size is given by

n �	
[
[
A
Z(

(
α
P1

/2
)
)
�




A
Z
(P
(β

0

)
)
]
]

2

2	 . (11.3.6)

Two-Sample Test for Comparing Means

A similar procedure can be applied to determine the sample size required for achieving a
specific power in comparing two treatment means. Let µ1 and µ2 denote the means for
treatment 1 and treatment 2, respectively. The hypotheses of interest are then given by

H0: µ1 � µ2,

vs. Ha: µ1 � µ2. (11.3.7)

Assuming that σ1
2 and σ2

2 are known, for a specific alternative hypothesis that µ1 � µ2
∆,
the power is given by

1 � β � P��	Y�1

σ
�

d

Y�2	� � Z(α /2)�µ1 � µ2 
 ∆	,

where

σd � �	
σ
n�1

1
2

	� 
� 	
σ
n�

2

2
2

	� .

Therefore

β � P��Z(α /2) � 	
σ
∆

d
	 �	

(Y�1�Y�
σ

2

d

) �∆
	� Z(α /2) � 	

σ
∆

d
	�µ1 � µ2 
 ∆	 .

Under the alternative hypothesis, the statistic

	
(Y�1�Y�

σ
2

d

) � ∆
	

[Z(α)�P�0(�1� �� P�0)� 
 Z(β )�P�1(�1� �� P�1)�]2

					
(P1�P0)

2
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is a standard normal variable. Therefore

β � P��Z(α / 2) � 	
σ
∆

d
	 � Z � Z(α /2) � 	σ

∆
d
		,

from which we conclude that

�Z(β ) � Z(α /2) � 	σ
∆

d
	 .

If we assume that n � n1� n2, then

n � 

� , if σ1
2 � σ2

2. (11.3.8)

For the one-sided test, the above expression for the required sample size becomes

n � . (11.3.9)

Note that when the population variance is unknown, the choice of sample size is not
straightforward. For example, in testing the null hypothesis of (11.3.1), when the true value
is µ � µ0
∆, the statistic

	
Y� �

s
(
/
µ
�

0

n�

 ∆)
	

follows a noncentral t distribution and noncentrality parameter δ � ∆ /σ. Tables 11.3.1 and
11.3.2 provide sample sizes for the t test of the mean and the difference between treat-
ments, respectively, for various value of δ.

When the outcome variable is dichotomous (e.g., either improves or does not improve),
the outcome variable of interest is the proportion of patients who have the disease rather
than the mean of a specified measurement. Let P1 and P2 be the proportions of success
(e.g., cure or improvement) in the treatment group and the control group, respectively.
Then the sample size can be similarly determined based on two-sided test as follows:

n � , (11.3.10)

where P � 1/2(P1 
 P2). An arcsin transformation, as defined earlier, gives

n �	
[
[
A
Z(

(
α
P1

/2
)
)
�




A
Z
(P
(β

2

)
)
]
]

2

2	 . (11.3.11)

Stolley and Strom (1986) indicate that (11.3.7) is useful for prospective cohort studies and
retrospective case-control studies as well. For prospective cohort studies, P1 and P2 represent
the smallest proportion developing the disease in the exposed study group and the proportion
expected to develop the disease in the unexposed control group, respectively. The ratio P1/P2,

[Z(α/2)�2�P�(1����P�)� 
 Z(β)�P�1(�1���P�1)� 
� P�2(�1���P�2)�]2

						
(P1�P2)

2

(σ1
2 
 σ2

2)[Z(α) 
 Z(β)]2

			∆2

2σ2[Z(α/2) 
 Z(β)]2
			

∆2

(σ1
2 
 σ2

2)[Z(α /2) 
 Z(β)]2

			∆2
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which is the incidence rate in the exposed group divided by the incidence rate in the control
group, is usually referred to as the relative risk. A relative risk greater than 1.0 indicates that
the exposure appears to increase the risk of the outcome. A relative risk less than 1.0 indicates
that the exposure appears to decrease the risk of the outcome. A relative risk of 1.0 indicates
that there is no association between the exposure and the outcome. For retrospective case-
control studies, P1 and P2 represent the smallest proportion exposed to the risk factor of 
interest that one would consider important to detect in the diseased (case) group and the pro-
portion expected to experience the exposure of interest in the undiseased (control) group.

A comprehensive review of the formulas and tables for the determination of sample
sizes and power in clinical trials for testing differences in proportions for the two-sample
design can be found in Sahai and Khurshid (1996), who provide separate formulas for
equal and unequal treatment group sizes, formulas for the calculation of power given the
sample size, and complete references for all formulas and tables cited.

Example 11.3.1 Suppose that a pharmaceutical company is interested in conducting a
clinical trial to compare two cholesterol lowering agents for treatment of hypercholes-
terolemic patients. The primary efficacy parameter is a low-density lipidprotein cholesterol
(LDL-C). Suppose that a difference of 8% in the percent change of LDL-C is considered a
clinically meaningful difference and that the standard deviation is assumed to be 15%.
Then, by (11.3.8), at α � 0.05, the required sample size for having an 80% power can be
obtained as follows:

n � 

�

� 55.2 � 56.

Therefore a sample size of 56 patients per arm is required to obtain an 80% power for
detection of an 8% difference in percent change of LDL-C for the intended clinical study.

Example 11.3.2 A pharmaceutical company is interested in examining the effect of an
antidepressant agent in patients with generalized anxiety disorder. A double-blind, two-
arm parallel, placebo-controlled randomized trial is planned. To determine the required
sample size for achieving an 80% power, the HAM-A scores is considered as the primary
efficacy variable. It is believed that a difference of 4 in the HAM-A scores between the
antidepressant and the placebo is of clinical importance. Assuming that the standard
deviation is 7.0 obtained from previous studies, the required sample size can be obtained
based on (11.3.8), which is given by

n � 

�

� 48.1 � 49.

2(7)2[1.96 
 0.842]2
			

(4)2

2σ2[Z(α�2) 
 Z(β)]2
			

∆2

2(15)2[1.96 
 0.842]2
			

(8)2

2σ2[Z(α�2) 
 Z(β)]2
			

∆2
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Therefore a sample size of 49 patients per arm is required to obtain an 80% power for
detection of a difference of 4 in HAM-A scores between the antidepressant agent and the
placebo when performing a two-tailed test at α � 0.05.

Example 11.3.3 To evaluate the efficacy and safety of an anti-infective agent compared to
active control in the treatment of lower respiratory tract infections, a clinical trial is planned.
A response rate of 90% for the active control agent is assumed (based on previous studies). In
the interest of having an 80% power for detection of a difference of 10% between the
treatments is such a difference truly exists, (11.3.10) can be used to calculate the required
sample size as follows:

n �

�

� 199.02 � 200.

Therefore a sample size of 200 patients per arm is required to obtain an 80% power for
detection of a difference of 10% between treatment response rates.

11.4 MULTIPLE SAMPLES

Sample Size Calculations for Analysis of Variance Models

For one-way analysis of variance with n observations per treatment, the main objective is
to test

H0: τ1 � τ2 � . . . � τk,

vs. Ha: At least one of τ�i s are not zero.

Recall that

E(MSA) � E	k
S
�

SA
1

	�� σ 2 
 	
k �

n
1

	 

k

i�1
τi

2,

E(MSE) � E	k(n
SS

�

E
1)

	�� σ 2.

Thus, for a given deviation from the null hypothesis H0, as measured by n Σk
i � 1τi

2/(k � 1),
large value of σ2 decreases the chance of obtaining a value FA � MSA/MSE that is in 
the critical region for the test. The sensitivity of the test describes the ability of the proce-
dure to detect differences in the population means, which is measured by the power of the
test. The power is interpreted as the probability that the F statistic is in the critical region
when the null hypothesis is false and the treatment means differ. Since under the null
hypothesis, FA � MSA/MSE follows an F distribution with (ν1, ν2) degrees of freedom,

[(1.96)�2�(0�.8�5�))(�0�.1�5�)� 
 0.842 �0�.9�(0�.1�)�
� 0�.8�(0�.2�)�]2
						

(0.1)2

[Z(α�2)�2�P�(1���P�)� 
 Z(β) �P�1(�1���P�1)� 
�P�2(�1���P�2)� ]2

						
(P1�P2)

2

452 SAMPLE SIZE DETERMINATION

Clinical_ch11.qxd  27.10.03  14:02  Page 452



where ν1 � k � 1 and ν2 � k(n � 1) � N � k. For the one-way analysis of variance, the
power is given by

1 � β � P{FA � f(α, ν1, ν2)�Ha is true}

� P�FA � f(α, ν1, ν2)� 	
k �

n
1

	 

k

i�1
τ i

2	. (11.4.1)

For given values of n Σk
i � 1 τi

2/(k � 1) and σ2, the power can be increased by using a large
sample size. The problem becomes one of designing the experiment with a value of n so
that the power requirements are met. Under the alternative hypothesis that Σk

i � 1τ i
2 � 0, FA

follows a noncentral F distribution with a noncentrality parameter δ where

δ 2 � .

Thus (11.4.1) becomes

1 � β � P�FA � f (α, ν1, ν2)�	k �

n
1

	 

k

i�1
τ i

2	
� P{FA � f (α, ν1, ν2, δ )}. (11.4.2)

As a result the required sample size per group can be determined because ν2 and δ are func-
tions of n. As it can be seen from the above expression, there exists no explicit form for the
required sample size n. As alternative, we can consider a normal approximation proposed by
Laubscher (1960) for solution of n. The idea is to consider the following approximation:

Z � (11.4.3)

which is approximately normally distributed with mean zero and standard deviation one.
From (11.4.3) the required sample size can be determined by solving the following equation:

z(β) � , (11.4.4)

where F *
A � F(α, ν1, ν2).

Note that tables for the solution of (11.4.2) have been constructed by many researchers
such as Kastenbaum, Hoel, and Bowman (1970) and Cohen (1977). Charts for solutions of
(11.4.2) have also been developed by many authors such as Pearson and Hartley (1951)
and Feldt and Mahmound (1958). For example, consider the use of the charts developed by
Pearson and Hartley (1951). For convenience sake, define

λ � ,
n 
k

i�1
τi

2

		
2σ2

�ν�2[�2�(ν�1�
� δ�2)�2��� (�ν�1�
� 2�δ�2)�]� � �ν�1(�ν�1�
� δ�2)�(2�ν�2��� 1�)F�A*�
							

�ν�1(�ν�1�
� δ�2)�F�A*� 
� ν�2(�ν�1�
� 2�δ�2)�

�	ν�1(�2ν�2

ν
��
2
� 1�)F�A	� ��2�(ν�1�
� δ�2)� ���	νν�1

1


� 
�
2
δ�δ

2�
2

	�
					

�	
ν�ν

1F�
2

A
	� 
� 	

ν�ν
1�
1





� 2
δ�δ

2�
2

	�

n 
k

i�1
τi

2

		
2σ2
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and let φ 2�2λ /(ν1 
 1). Then λ and φ 2 can be expressed as

λ �	
ν1E

2
(M
σ 2

SA)
	� 	

ν
2

1
	,

φ2 �	ν1

ν


1

1		
E(MS

σ
A)

2
� σ 2

	.

Table 11.4.1 gives the power of the analysis of variances as a function of φ for various 
values of v1, v2, and the significance level α . This table can be used to determine the sam-
ple size for other fixed effects models such as the randomized complete block model in
which λ and φ are given. For example, for the randomized complete block model,

λ � ,

φ2 � .

Example 11.4.1 To illustrate the use of (11.4.4) for the sample size determination in
comparing more than two treatments, consider the following example: Suppose that we are
interested in conducting a four-arm parallel group, double-blind, randomized clinical trial
to compare four treatments. The comparison will be made based on an F test with a
significance level of α � 0.05. Assume that the standard error within each group is
expected to be σ � 3.5 and that the clinically important differences for the four treatment
groups are given by

τ1 � �0.75, τ2 � 3.0, τ3 � �0.5, and τ4 � �1.75

Thus we have

δ 2 �

�

� 1.092n.

The sample size can be determined using (11.4.4). To obtain the required sample size, we
apply various n to (11.4.4). The results are summarized in Table 11.4.2. From Table 11.4.2,
it can be seen that for n � 11 and F * � F(0.05, 3, 40) � 2.8387, equation (11.4.4) yields
z(β ) � 0.853 which is the closest to z(0.2)�0.842. Therefore n � 11 is the required sample
size per treatment group. Note that the required sample size n � 11 can also be obtained
from Table 11.4.1 by specifying λ and φ.

Sample Size Calculations for Generalized Linear Models

In many cases test statistics for the null hypothesis of no treatment differences can be derived
within the framework of generalized linear models. Self and Mauritsen (1988) propose an
approach for sample size and power calculations within the framework of generalized linear

n[(0.75)2 
 (3.0)2 
 (0.5)2 
 (1.75)2]
				

(3.5)2

n
K

i�1τ2
i	

σ2

b
K

i�1τ2
i	

kσ2

b
K

i�1τ2
i	

2σ2
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models (e.g., McCullagh and Nelder, 1989) that is based on a noncentral chi-square approxi-
mation to the distribution of score statistics. In addition, Self, Mauritsen, and Ohara (1992)
derive a more accurate approach that is based on a noncentral chi-square approximation to
the distribution of the likelihood ratio statistic. Their approaches provide a unified tool for
sample size calculations for continuous and discrete responses. In general, there exist no
explicit formulas to use in determining the sample size for a generalized linear model. Hence
the numerical methods are usually required. These methods have been implemented in
EGRET SIZ (SERC, 1993). The SIZ of EGRET not only calculates sample size for a given
model but also performs a simulation to compare the empirical power with respect to the
nominal one. This provides a way to assess the performance of the calculated sample size in
practice.

Liu and Liang (1995) propose a method to compute sample size and power with corre-
lated observations. Let Yij be the jth repeated measurement of a response variable for the
ith subject, where i � 1, . . . , n and j � 1, . . . , m. Then Yij can be described by the follow-
ing linear regression model:

Yij � Xijψ 
 Zijλ 
 εij,

where Xij and Zij represent the design matrix and covariates, respectively, ψ is a p � 1 vec-
tor of parameters of interest, and λ is a q � 1 vector of nuisance parameters. It is assumed
that εi�(εi1, . . . , εim)� follows a multivariate normal with mean 0 and covariance matrix
σ2Σ. Under the above model, if we consider the special case where p � q � 1 with Zij � 1
for all i and j and Xij � Xi � 1 (treatment) or 0 (placebo), then it reduces to a typical two
samples problem with repeated measures. In this case, the sample size required can be
obtained as

n � , (11.4.5)

where ρ is the within-subject correlation, π is the proportion of subjects in the treatment
group, and ψ1 � ∆ is the difference of clinical importance. The above formula can be
applied to the case where two treatments are compared with binary responses with the fol-
lowing modification:

n � , (11.4.6)
[Z(α/2) 
 Z(β )]2[π P0(1 � P0) 
 (1 � π)P1(1 � P1)][1 
 (m � 1)ρ]
							

mπ (1 � π)(P1 � P0)
2

[Z(α/2) 
 Z(β )]2σ 2[1 
 (m � 1)ρ]
				π (1 � π)ψ1

2m
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Table 11.4.2 Sample Size Calculation for Multiple Samples

n ν1 ν2 F*
A Z(β)

9 3 32 2.901 0.524
10 3 36 2.866 0.693
11 3 40 2.839 0.853
12 3 44 2.817 1.006
13 3 48 2.798 1.152
14 3 52 2.783 1.293

Note: Z(β) are obtained based on(11.4.4).
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where P0 and P1 are response probabilities for the placebo and the treatment groups,
respectively.

11.5 CENSORED DATA

For survival analysis in clinical trials, in order to compare the median survival time to
some event between two populations, some assumptions are essential (Lachin, 1981). Let
Pi(t) denote the probability of surviving to time t for subjects in the ith population, and
assume exponential survival with hazard rate λi, i � 1, 2. Then

Pi(t) � e�λit,

and the median survival time is

Mi � 	
ln
λi

2
	.

As indicated by Lachin (1981), if we further assume uniform censoring time T0 from the
start of the study to termination of follow-up at time T after the start of the study, then

λ̂ i �

approximately follows a normal distribution with mean λi and variance φ (λi)/n, where

φ(λi) � λi
2�1 �	

e�λi(T �

λ

T

i

0

T

)

0

� e�λiT

	�
�1

.

Hence the required sample size for testing H0: M1 � M2 versus Ha: M2 � M1 using a nor-
mal approximation is given by

n � . (11.5.1)

Sample size determination in clinical trials with censored endpoints is complicated by
the fact that the risk of event for patients may not remain constant during the trial. The com-
parison of survival curves between treatments is often performed based on censored data to
determine whether a test treatment can reduce mortality rate or improve survival probability
as compared to a placebo or a standard therapy. Let F and G be the failure time distributions
in the treatment and placebo groups. Then, the hypotheses of interest as given in (10.3.1) are

H0: 1 � F � 1 � G,

vs. Ha: 1 � F � 1 � G. (11.5.2)

In a similar manner the sample size can be determined based on a power analysis of a test
statistic for the above hypotheses. For testing (11.5.2), several tests have been proposed in
literature. For example, George and Desu (1973) and Rubinstein, Gail, and Santner (1981)
discuss tests based on exponential survival curves. Tests based on exponential survival
curves, however, are derived under the very restrictive assumption of constant hazard

�z(α)�2�φ�(λ��)� 
 z(β)�φ�(λ�1)� 
� φ�(λ�2)��
2

				
(λ2 � λ1)

2

Number of events in sample for population i
					

Total follow-up time for population i
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ratios. In practice, the hazard rate, which is often time dependent, can vary even if the
effect of therapy is constant over time. As a result the proportional hazards assumption is
not valid (Wu, Fisher, and DeMets, 1980; Lachin and Foulkes, 1986). Therefore, the usual
tests based on exponential models with constant hazard ratios no longer apply.

As an alternative, the logrank test is often considered. Schoenfeld (1981) and Freedman
(1982) present methods for sample size calculation based on the asymptotic expectation and
variance of the logrank statistic. The conditions under which the formulas for sample size are
derived, however, are very restrictive. In this section, we will introduce a sample size formula
by Lakatos (1986, 1988) which is derived under very general conditions. As was discussed in
Section 10.3, the logrank test statistic is a special case of a general class of nonparametric
tests for comparing two survival functions. Lakatos (1988) considered expressing the logrank
statistic as a member of the Tarone-Ware class of statistics as follows:

T � , (11.5.3)

where d � ΣK
k�1 dk is the total of deaths, Xk is the indicator of the placebo, wk is the kth

Tarone-Ware weight, and njk are the numbers at risk just before the kth death in the jth
treatment. Under a fixed local alternative, Lakatos (1988) indicates that the expectation of
(11.5.3) can be approximated by

E � , (11.5.4)

where N � y(K), φik
is the ratio of patients in the two treatment groups at risk just prior to

the kth death in the y(i)th interval,

θik � 	
P
P

1

2

i

i

k

k
	,

where Pjik
is the hazard just prior to the kth death in y(i)th interval in the jth treatment, and

wik
is the corresponding Tarone-Ware weight. When wik

� 1 for all i and k, (11.5.3) reduces
to the logrank test. Treating this statistic as a normal random variable with mean E and vari-
ance 1, we have

E � Z(α / 2) 
 Z(β ).

Assuming that φik
� φi and wik

� wi for all k in the y(i)th interval and letting ρi � di /d,
then (11.5.4) becomes

E � ,
�d� 
N

i�1
wiρiγi

		


N

i�1
w2

i ρiηi�
1/2


N

i�1 
di

k�1
wik�	1 


φik

φ
θ

i

i

k

k

θik
	 � 	1 


φik

φik
	�

					

�
N

i�1 
di

k�1
	(1

w



2
ikφ

φ
i

i

k

k)2	�
1/2


d

k�1
wkXk �	n2k

n



2k

n1k
	�

			


d

k�1
wk

2�	(n2

n

k

2



kn

n
1k

1k)
2	�

1/2
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where

γi �	
1 


φi

φ
θ

i

i

θi
	� 	

1 


φi

φi
	

and

ηi �	
(1 


φ i

φi)
2	.

This leads to

d � . (11.5.5)

Since

d �	
n(P1

2

 P2)
	,

where P1 and P2 are cumulative event rates for treatment and placebo groups, respectively,
the required total sample size can be obtained as

n �	
P1

2



d
P2

	. (11.5.6)

Yateman and Skene (1992) also propose a method for sample size determination for propor-
tional hazards survival studies with arbitrary patient entry and loss to follow-up distributions.

Example 11.5.1 To illustrate the above methodology for sample size determination,
consider the example described in Gail (1985). Suppose that we have a two-year trial with
event rates of 1 � exp(�1) � 0.6321 and 1 � exp(�	

1
2

	) � 0.3935 per year in the placebo
and treatment groups, respectively, and that the yearly loss to follow-up and noncompliance
rates are 3% and 4%, respectively. Assuming that hazard rate is constant. The quantities ρi,
ηi, and γ i can readily be determined using the Markov model as described in Lakatos (1988)
which accounts for lost to follow-up, noncompliance, lag time, and so forth. Table 11.5.1
displays these parameters including φ i and θi. By (11.5.4) it can be verified that the number
of deaths d is 102. In addition, from the last row of Table 11.5.1, the cumulative event rates
over a two-year period are given by 83.7% and 62.7% for the treatment and placebo groups,
respectively. Thus, the required total sample size for achieving a 90% power at 5% level of
significance can be obtained as

n �	
0.83

2
7
(1



02
0
)
.627

	� 139.

Note that a SAS computer program implementing the Markov models and some varia-
tions is given by Lakatos (1986). In addition, Shih (1995) illustrate the use of SIZE, a
comprehensive computer program for calculating sample size, power, and duration of
study in clinical trials with time-dependent rates of event, crossover, and loss to follow-up.
As indicated by Shih (1995), SIZE covers a wide range of complexities commonly occur-
ring in clinical trials such as nonproportional hazards, lag in treatment effect, and uncer-
tainties in treatment benefit.

[Z(α/2) 
 Z(β)]2 
N

i�1
wi

2ρiηi
				


N

i�1
wiρiγi�

2
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11.6 DOSE-RESPONSE STUDIES

As indicated by Ruberg (1995a, 1995b), the following fundamental questions that dictate
design and analysis strategies are necessarily addressed when studying the dose-response
relationship of a new drug:

1. Is there any drug effect?

2. What doses exhibit a response different from control?

3. What is the nature of the dose-response relationship?

4. What is the optimal dose?

The first two questions are usually addressed by means of the techniques of analysis of
variance, and the last two questions are related to the identification of minimum effective
dose (MED). In this section, we will introduce sample size calculations based on the con-
cept of the dose-response study using analysis of variance and statistical test for MED.

Dose-Response Relationship

In a dose-response study suppose that there is a control group and K dose groups. The null
hypothesis of interest is then given by

H0: µ 0 � µ1 � . . . � µK, (11.6.1)

where µ 0 is mean response for the control group and µi is mean response for the ith dose
group. The rejection of hypothesis (11.6.1) indicates that there is a drug effect. The dose-
response relationship can then be examined under appropriate alternative hypotheses.
Under a specific alternative hypothesis, the required sample size per dose group can then
be obtained. Spriet and Dupin-Spriet (1996) identify the following alternative hypotheses
for dose response:

1. Ha: µ 0 � µ1 � . . . � µK�1 � µK.
2. Ha: µ 0 � . . . � µi � . . . � µj � . . . � µK.
3. Ha: µ 0 � . . . � µi � . . . � µK.
4. Ha: µ 0 � µ1 � . . . � µK.
5. Ha: µ 0 � µ1 � . . . � µi � . . . � µK.
6. Ha: µ 0 � . . . � µi � . . . � µK�1 � µK.
7. Ha: µ 0 � µ1 � . . . � µi � . . . � µK.
8. Ha: µ 0 � . . . � µi � . . . � µK�1 � µK.

Figure 11.6.1 exhibits dose-response patterns under the above alternative hypotheses. Under
these alternative hypotheses the statistical tests can be very complicated, and hence there
may exist no close form for the corresponding power functions. As an alternative, Spriet and
Dupin-Spriet (1996) employ simulations to obtain adequate sample sizes for parallel-group
dose-response clinical trials. An example of an alternative hypothesis on linear contrast is

Ha: 

K

j�0
cjµj � 0,
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where



K

j�0
cj � 0.

The given contrast of means is

C � 

K

j�0
cjµj ;

it can be estimated by the contrast of sample means

Ĉ � 

K

j�0
cjY�j,
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Figure 11.6.1 Commonly encountered dose-response patterns.
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where Y�j is the mean response of n patients receiving the jth dose level. Thus the statistic

T � ,

can be used to test the significance of the dose response of contrast C, where σ̂ 2 is the
mean square error from the analysis of variance model used to estimate C. Under the alter-
native hypothesis, the contrast power is given by

1 � β � Φ�Z(α /2) � �

1 � Φ �Z(1 � α /2) � �,

where Φ() is the cumulative standard normal distribution function. Hence the per-dose
sample size necessary for the (1�β )100% power to show a statistical significance in the
dose response with the contrast is

n � (11.6.2)

Minimum Effective Dose

For the comparison of the mean dose treatment with the control mean, Williams (1971,
1972) proposes a test that determines the lowest dose level at which there is evidence for a
difference from control. Williams considers the alternative hypothesis

Ha: µ0 � µ1 � . . . � µi � 1 � µi � µi 
 1 � . . . � µK,

and proposes the statistic

Ti � ,

where s2 is an unbiased estimate of σ2 that is independent of Y�i and is distributed as
σ 2χν

2 /ν and µ̂i is the maximum likelihood estimate of µi, which is given by

µ̂i � max
1� u � i

min
i � υ � K � 	.

When ni � n for i � 0, 1, . . . , K, the test statistic can be simplified as

Ti � ,
µ̂ i � Y�0
	
s�2�/n�


υ
j�u njY�j

		

υ

j�1 nj

µ̂ i � Y�0
		
s�(1�/n�i)� 
� (�1�/n�0)�

[Z(α/2) 
 Z(β )]2σ̂2 
K

j�0
cj

2

				
�
K

j�0
cjµj�2


K

j�0cjµj
		

��σ2 
K

j�0
cj

2/n


K

j�0cjµj
		

��σ2 
K

j�0
cj

2/n


K

j�0cjY�j
		

��σ̂ 2 
K

j�0
cj

2/n
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which can be approximated by

Ti � 	
Xi �

s
Z0

	,

where

Xi � max
1� u � i



i

j�u

	i �

Z
u

j


 1	

and Zj follows a standard normal distribution. We then reject the null hypothesis (11.6.1)
and conclude that dose i is the minimum effective dose if

Tj � tj (α) for all j � i,

where tj (α) is the upper α th quantile of the distribution of Tj. Note that tj (α) are given in
Tables 11.6.1 through 11.6.4.
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Table 11.6.1 Upper 5% Points tk(α) of the Distribution Tk

k � Number of Dose Levels

1 2 3 4 5 6 7 8 9 10

5 2.02 2.14 2.19 2.21 2.22 2.23 2.24 2.24 2.25 2.25
6 1.94 2.06 2.10 2.12 2.13 2.14 2.14 2.15 2.15 2.15
7 1.89 2.00 2.04 2.06 2.07 2.08 2.09 2.09 2.09 2.09
8 1.86 1.96 2.00 2.01 2.02 2.03 2.04 2.04 2.04 2.04
9 1.83 1.93 1.96 1.98 1.99 2.00 2.00 2.01 2.01 2.01

10 1.81 1.91 1.94 1.96 1.97 1.97 1.98 1.98 1.98 1.98
11 1.80 1.89 1.92 1.94 1.94 1.95 1.95 1.96 1.96 1.96
12 1.78 1.87 1.90 1.92 1.93 1.93 1.94 1.94 1.94 1.94
13 1.77 1.86 1.89 1.90 1.91 1.92 1.92 1.93 1.93 1.93
14 1.76 1.85 1.88 1.89 1.90 1.91 1.91 1.91 1.92 1.92
15 1.75 1.84 1.87 1.88 1.89 1.90 1.90 1.90 1.90 1.91
16 1.75 1.83 1.86 1.87 1.88 1.89 1.89 1.89 1.90 1.90
17 1.74 1.82 1.85 1.87 1.87 1.88 1.88 1.89 1.89 1.89
18 1.73 1.82 1.85 1.86 1.87 1.87 1.88 1.88 1.88 1.88
19 1.73 1.81 1.84 1.85 1.86 1.87 1.87 1.87 1.87 1.88
20 1.72 1.81 1.83 1.85 1.86 1.86 1.86 1.87 1.87 1.87
22 1.72 1.80 1.83 1.84 1.85 1.85 1.85 1.86 1.86 1.86
24 1.71 1.79 1.82 1.83 1.84 1.84 1.85 1.85 1.85 1.85
26 1.71 1.79 1.81 1.82 1.83 1.84 1.84 1.84 1.84 1.85
28 1.70 1.78 1.81 1.82 1.83 1.83 1.83 1.84 1.84 1.84
30 1.70 1.78 1.80 1.81 1.82 1.83 1.83 1.83 1.83 1.83
35 1.69 1.77 1.79 1.80 1.81 1.82 1.82 1.82 1.82 1.83
40 1.68 1.76 1.79 1.80 1.80 1.81 1.81 1.81 1.82 1.82
60 1.67 1.75 1.77 1.78 1.79 1.79 1.80 1.80 1.80 1.80
120 1.66 1.73 1.75 1.77 1.77 1.78 1.78 1.78 1.78 1.78

∞ 1.645 1.716 1.739 1.750 1.756 1.760 1.763 1.765 1.767 1.768

Source: Williams (1971).
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Since the power function of the above test is rather complicated, as an alternative, we may
consider the following approximation to obtain the required sample size per-dose group:

1 � β � P{reject H0�µi � µ0 
 ∆ for some i}

� P{reject H0�µ0 � µ1 � . . . � µK�1, µK � µ0 
 ∆}

� P� � tK(α /2)�µK � µ0 
 ∆	
� P�Z � tK(α/2) �	

σ�
∆
2�/n�
		,

where ∆ is the clinically meaningful difference. If a one-sided alternative is desired, tK (α)
should be used. To have a power of 1 � β, the required sample size is obtained by solving

1 � β � P�Z � tK(α / 2) �	
σ�

∆
2�/n�
		

Y�K � Y�0	
σ�2�/n�
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Table 11.6.2 Upper 2.5% Points tk(α) of the Distribution Tk

k � Number of Dose Levels

2 3 4 5 6 8 10

5 2.699 2.743 2.766 2.779 2.788 2.799 2.806
6 2.559 2.597 2.617 2.628 2.635 2.645 2.650
7 2.466 2.501 2.518 2.528 2.535 2.543 2.548
8 2.400 2.432 2.448 2.457 2.463 2.470 2.475
9 2.351 2.381 2.395 2.404 2.410 2.416 2.421

10 2.313 2.341 2.355 2.363 2.368 2.375 2.379
11 2.283 2.310 2.323 2.330 2.335 2.342 2.345
12 2.258 2.284 2.297 2.304 2.309 2.315 2.318
13 2.238 2.263 2.275 2.282 2.286 2.292 2.295
14 2.220 2.245 2.256 2.263 2.268 2.273 2.276
15 2.205 2.229 2.241 2.247 2.252 2.257 2.260
16 2.193 2.216 2.227 2.234 2.238 2.243 2.246
17 2.181 2.204 2.215 2.222 2.226 2.231 2.234
18 2.171 2.194 2.205 2.211 2.215 2.220 2.223
19 2.163 2.185 2.195 2.202 2.205 2.210 2.213
20 2.155 2.177 2.187 2.193 2.197 2.202 2.205
22 2.141 2.163 2.173 2.179 2.183 2.187 2.190
24 2.130 2.151 2.161 2.167 2.171 2.175 2.178
26 2.121 2.142 2.151 2.157 2.161 2.165 2.168
28 2.113 2.133 2.143 2.149 2.152 2.156 2.159
30 2.106 2.126 2.136 2.141 2.145 2.149 2.151
35 2.093 2.112 2.122 2.127 2.130 2.134 2.137
40 2.083 2.102 2.111 2.116 2.119 2.123 2.126
60 2.060 2.078 2.087 2.092 2.095 2.099 2.101
120 2.037 2.055 2.063 2.068 2.071 2.074 2.076

∞ 2.015 2.032 2.040 2.044 2.047 2.050 2.052

Source: Williams (1972).
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and hence

�Z(β) � tK (α /2) �	
σ�

∆
2�/n�
	.

Thus we have

n � . (11.6.3)

Example 11.6.1 To illustrate sample size calculation based on Williams’s test, consider a
dose-response study on three doses of an active drug in determining a minimum effective
dose. Suppose that the standard deviation of the response variable is 45 and that the
clinically meaningful difference is 25. By Table 11.6.2, we have t3(0.025)�2.032. Then,
by (11.6.3), we have

n �

� 54.

2(45)2(2.032 
 0.842)2
			

(25)2

2σ 2[tK (α �2) 
 Z(β)]2

			∆2
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Table 11.6.3 Upper 1% Points tk(α) of the Distribution Tk

k � Number of Dose Levels

1 2 3 4 5 6 7 8 9 10

5 3.36 3.50 3.55 3.57 3.59 3.60 3.60 3.61 3.61 3.61
6 3.14 3.26 3.29 3.31 3.32 3.33 3.34 3.34 3.34 3.35
7 3.00 3.10 3.13 3.15 3.16 3.16 3.17 3.17 3.17 3.17
8 2.90 2.99 3.01 3.03 3.04 3.04 3.05 3.05 3.05 3.05
9 2.82 2.90 2.93 2.94 2.95 2.95 2.96 2.96 2.96 2.96

10 2.76 2.84 2.86 2.88 2.88 2.89 2.89 2.89 2.90 2.90
11 2.72 2.79 2.81 2.82 2.83 2.83 2.84 2.84 2.84 2.84
12 2.68 2.75 2.77 2.78 2.79 2.79 2.79 2.80 2.80 2.80
13 2.65 2.72 2.74 2.75 2.75 2.76 2.76 2.76 2.76 2.76
14 2.62 2.69 2.71 2.72 2.72 2.73 2.73 2.73 2.73 2.73
15 2.60 2.66 2.68 2.69 2.70 2.70 2.70 2.71 2.71 2.71
16 2.58 2.64 2.66 2.67 2.68 2.68 2.68 2.68 2.68 2.69
17 2.57 2.63 2.64 2.65 2.66 2.66 2.66 2.66 2.67 2.67
18 2.55 2.61 2.63 2.64 2.64 2.64 2.65 2.65 2.65 2.65
19 2.54 2.60 2.61 2.62 2.63 2.63 2.63 2.63 2.63 2.63
20 2.53 2.58 2.60 2.61 2.61 2.62 2.62 2.62 2.62 2.62
22 2.51 2.56 2.58 2.59 2.59 2.59 2.60 2.60 2.60 2.60
24 2.49 2.55 2.56 2.57 2.57 2.57 2.58 2.58 2.58 2.58
26 2.48 2.53 2.55 2.55 2.56 2.56 2.56 2.56 2.56 2.56
28 2.47 2.52 2.53 2.54 2.54 2.55 2.55 2.55 2.55 2.55
30 2.46 2.51 2.52 2.53 2.53 2.54 2.54 2.54 2.54 2.54
35 2.44 2.49 2.50 2.51 2.51 2.51 2.51 2.52 2.52 2.52
40 2.42 2.47 2.48 2.49 2.49 2.50 2.50 2.50 2.50 2.50
60 2.39 2.43 2.45 2.45 2.46 2.46 2.46 2.46 2.46 2.46
120 2.36 2.40 2.41 2.42 2.42 2.42 2.42 2.42 2.42 2.43

∞ 2.326 2.366 2.377 2.382 2.385 2.386 2.387 2.388 2.389 2.389

Source: Williams (1971).
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Thus 54 subjects per treatment group are needed in order to have an 80% power for deter-
mining the minimum effective dose for the subjects under study.

11.7 CROSSOVER DESIGNS

Point Hypotheses for Equality

Let Yijk be the response of the ith subject in the kth sequence at the jth period. Then the fol-
lowing model without consideration of unequal carryover effects can be used to describe a
standard two-sequence, two-period crossover design:

Yijk � µ 
 Sik 
 Pj 
 T( j, k) 
 eijk, (11.7.1)

where i(subject) � 1, 2, . . . , nk, j(period), k(sequence) � 1, 2. In model (11.7.1), µ is the
overall mean, Sik is the random effect of the ith subject in the kth sequence, Pj is the fixed
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Table 11.6.4 Upper 0.5% Points tk(α) of the Distribution Tk

k � Number of Dose Levels

2 3 4 5 6 8 10

5 4.179 4.229 4.255 4.270 4.279 4.292 4.299
6 3.825 3.864 3.883 3.895 3.902 3.912 3.197
7 3.599 3.631 3.647 3.657 3.663 3.670 3.674
8 3.443 3.471 3.484 3.492 3.497 3.504 3.507
9 3.329 3.354 3.366 3.373 3.377 3.383 3.886

10 3.242 3.265 3.275 3.281 3.286 3.290 3.293
11 3.173 3.194 3.204 3.210 3.214 3.218 3.221
12 3.118 3.138 3.147 3.152 3.156 3.160 3.162
13 3.073 3.091 3.100 3.105 3.108 3.112 3.114
14 3.035 3.052 3.060 3.065 3.068 3.072 3.074
15 3.003 3.019 3.027 3.031 3.034 3.037 3.039
16 2.957 2.991 2.998 3.002 3.005 3.008 3.010
17 2.951 2.966 2.973 2.977 2.980 2.938 2.984
18 2.929 2.944 2.951 2.955 2.958 2.960 2.962
19 2.911 2.925 2.932 2.936 2.938 2.941 2.942
20 2.894 2.903 2.915 2.918 2.920 2.923 2.925
22 2.866 2.879 2.885 2.889 2.891 2.893 2.895
24 2.842 2.855 2.861 2.864 2.866 2.869 2.870
26 2.823 2.835 2.841 2.844 2.846 2.848 2.850
28 2.806 2.819 2.824 2.827 2.829 2.831 2.832
30 2.792 2.804 2.809 2.812 2.814 2.816 2.817
35 2.764 2.776 2.781 2.783 2.785 2.787 2.788
40 2.744 2.755 2.759 2.762 2.764 2.765 2.766
60 2.697 2.707 2.711 2.713 2.715 2.716 2.717
120 2.651 2.660 2.664 2.666 2.667 2.669 2.669

∞ 2.607 2.615 2.618 2.620 2.621 2.623 2.623

Source: Williams (1972).
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effect of the j th period, T( j, k) is the direct fixed effect of the treatment administered at
period j in sequence k, namely

T( j, k) � �
and eijk is the within-subject random error in observing Yijk. For model (11.7.1) it is assumed
that {Sik} are independently and identically distributed with mean 0 and variance σS

2 and
that {eijk} are independently distributed with mean 0 and variance σ2. {Sik} and {eijk} are
assumed to be mutually independent. Let us test the following hypotheses:

H0: µT � µP,

vs. Ha: µT � µP. (11.7.2)

Under model (11.7.1), we can consider period differences for each subject within each
sequence which are defined as

dik � 	
1

2
	 (Yi2k � Yi1k),

where i � 1, . . . , nk; k � 1, 2. Then a test for hypotheses (11.7.2) can be obtained based
on a two-sample t statistic as follows:

Td � ,

where

Y�T � 	
1

2
	 (Y�.21 
 Y�.12),

Y�P � 	
1

2
	 (Y�.11 
 Y�.22),

σ̂ 2
d �	

n1 


1
n2 � 2
	 


2

k�1


nk

i�1
(dik � d�.k)

2,

and

Y�.jk � 	n
1
k
	 


nk

i�1
Yijk,

d�.k � 	n
1
k
	 


nk

i�1
dik.

Under the null hypothesis (11.7.2), Td follows a t distribution with n1 
 n2 � 2 degrees of
freedom. We can reject the null hypothesis of (11.7.2) if

�Td� � t(α/2, n1 
 n2 � 2).

Under the alternative hypothesis that µT � µP 
 ∆, the power of the test Td can be simi-
larly evaluated. In the interest of balance, we assume that n1 � n2 � n; that is, each
sequence will be allocated the same number of subjects at random. As a result, the sample

Y�T � Y�P
			
σ̂d�(1�/n�1)� 
� (�1�/n�2)�

if k � j,

if k � j, k � 1, 2, j � 1, 2,

Placebo

Test Drug
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size per sequence for testing the hypotheses of equality (11.7.2) can be determined by the
formula

n � , (11.7.3)

where σ 2
d can be estimated from previous studies and ∆ is the clinically meaningful differ-

ence which we want to detect. If we need to have a power of 80% for detection of a differ-
ence of at least 20% of the unknown placebo mean, then (11.7.3) can be simplified as

n � [t(α /2, 2n � 2) 
 t(β, 2n � 2)]2 �	
C
20

V
	�

2
, (11.7.4)

where

CV � 	
�

µ
2�
P

σd
	 � 100%.

Since (2n � 2) in (11.7.3) and (11.7.4) are unknown, a numerical iterative procedure is
required to solve for n.

Example 11.7.1 To illustrate (11.7.3), consider the problem of determining the sample
size for a clinical trial that compares a test drug with a placebo under a standard two-
sequence, two-period crossover design (Chow and Liu, 2000). For this trial, the sponsor is
interested in having an 80% power for detection of a 20% difference between the test drug
and the placebo. Based on the results from previous studies, it is estimated that the reference
mean is 82.559 with a CV of 15.66. Thus (11.7.4) can be applied to determine the sample
size per sequence. For iterative purposes we first guess that n � 9. This gives degrees of
freedom 2(n � 2) � 16, t(0.025, 16) � 2.12, and t(0.2, 16) � 0.865. By (11.7.4),

n � (2.12 
 0.865)2 �	15
2
.
0
66
	�

2

� 5.5 � 6.

We then start with n � 6 and repeat the same calculation, which gives n � 5.9 � 6 which
is very close to the previous solution. Therefore we conclude that a total of N � 2n � 12
subjects are required to provide an 80% power for detection of a 20% difference of the ref-
erence mean at the 5% level of significance.

Interval Hypotheses for Equivalence

As pointed out by Chow and Liu (2000), the power approach for sample size determination
based on the hypothesis of equality (11.7.2) is not statistically valid in assessing equiva-
lence between treatments. For the assessment of equivalence between treatments under the
standard two-sequence, two-period crossover design, it is suggested that the following
interval hypotheses be tested:

H0: µT � µP � θL or µT � µP � θU,

vs. Ha: θL � µT � µP � θU, (11.7.5)

2σ 2
d [t(α /2, 2n � 2) 
 t(β, 2n � 2)]2

				
∆2
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where θL and θU are some clinically meaningful limits for equivalence. The concept of
interval hypotheses is to show equivalence by rejecting the null hypothesis of inequiva-
lence. The above hypotheses can be decomposed into two sets of one-sided hypotheses:

H01: µT � µP � θL,

vs. Ha1: µT � µP � θL,

and

H02: µT � µP � θU,

vs. Ha2: µT � µP � θU.

Under model (11.7.1), Schuirmann (1987) proposes two one-sided test procedures for the
above two one-sided hypotheses. We can reject the null hypothesis of inequivalence if

TL � � t(α, n1 
 n2 � 2)

and

TU � � �t(α, n1 
 n2 � 2).

Let θ � µT � µP and φS(θ) be the power of Schuirmann’s two one-sided tests at θ. Assum-
ing that n1 �n2 � n, the power at θ � 0 is given by

1 � β � φS(0)

� P�	σ̂d

�

�
∆
2�/n�
	
 t(α, 2n � 2) � 	

σ̂d�
Y

2�/n�
	 � 	

σ̂d�
∆

2�/n�
	� t(α, 2n � 2)	, (11.7.6)

where Y � Y�T � Y�P. Since a central t distribution is symmetric about 0, the lower and
upper endpoints of (11.7.6) are also symmetric about 0:

	
σ̂d

�

�
∆
2�/n�
	
 t(α, 2n � 2) � � �	σ̂d�

∆
2�/n�
	 � t(α, 2n � 2)	.

Therefore, φS(0) � 1 � β implies that

�	σ̂d�
∆

2�/n�
	 � t(α, 2n � 2)�� t(β /2, 2n � 2),

or that

n(θ � 0) � 2[t(α, 2n � 2) 
 t(β /2, 2n � 2)]2 �	
σ
∆
ˆ
d

	�
2

(11.7.7)

If we must have an 80% power for detection of a 20% difference of placebo mean, then
(11.7.7) becomes

n(θ � 0) � [t(α, 2n � 2) 
 t(β /2, 2n � 2)]2 �	
C
20

V
	�

2
, (11.7.8)

Y�T � Y�P � θU
			

σ̂d�(1�/n�1)� 
� (�1�/n�2)�

Y�T � Y�P � θL
			
σ̂d�(1�/n�1)� 
� (�1�/n�2)�
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We will now consider the case where θ � 0. Since the power curves of Schuirmann’s two
one-sided test procedures are symmetric about zero (Phillips, 1990), we will only consider
the case where 0 � θ � θ0 � ∆. In this case, the statistic

has a central t distribution with 2n � 2 degrees of freedom. The power of Schuirmann’s
two one-sided test procedures can be evaluated at θ0, which is given by

1 � β � φS(θ0)

� P� 
 t(α, 2n � 2) � � � t(α, 2n � 2)	.

(11.7.9)

Note that unlike the case where θ � 0, the lower and upper endpoints of (11.7.9) are not
symmetric about 0. Therefore, as indicated by Chow and Liu (2000), if we choose

� t(α, 2n � 2) � t (β /2, 2n � 2),

then the resultant sample size may be too large to be of practical interest, and the power
may be more than we need. As an alternative, Chow and Liu (2000) consider the inequal-
ity for obtaining an approximate formula for n

φS(θ0) � P� � � t(α, 2n � 2)	.

As a result, φS(θ0) � 1 � β gives

� t(α, 2n � 2) � t(β, 2n � 2),

or

n(θ0) � 2[t(α, 2n � 2) 
 t(β, 2n � 2)]2 �	∆ �

σ̂d

θ0
	�

2

. (11.7.10)

Similarly, if we must have an 80% power for detection of a 20% difference of placebo
mean, then (11.7.10) becomes

n(θ0) � [t(α, 2n � 2) 
 t(β, 2n � 2)]2 �	20
C
�

V
θ0�

	�
2

, (11.7.11)

where

θ0� � 100 � 	µ
θ

P

0
	 .

∆ � θ0
	
σ̂d�2�/n�

∆ � θ0
	
σ̂d�2�/n�

Y � θ0
	
σ̂d�2�/n�

∆ � θ0
	
σ̂d�2��n�

∆ � θ0
	
σ̂d�2��n�

Y � θ0
	
σ̂d�2��n�

�∆ � θ0
	
σ̂d�2��n�

Y � θ0
	
σ̂d�2��n�
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Example 11.7.2 We continue the previous example to illustrate the computation of the
sample size in achieving an 80% power when θ0� � 5% and ∆ � 20%. From the previous
example, the estimated CV is given by 15.66%. If our initial guess of n is 6, then

t(α, 2n � 2) � t(0.05, 10) � 1.812,

t(β, 2n � 2) � t(0.20, 10) � 1.879.

Thus

n � (1.812 
 0.879)2 �	2
1
0
5
�

.66
5

	�
2

� 7.9 � 8.

We then use n � 8 as the initial value for the next enumeration. Since t(0.05, 14) � 1.761
and t(0.20, 14) � 0.868, (11.7.11) gives

n � (1.761 
 0.868)2 �	2
1
0
5
�

.66
5

	�
2

� 7.9 � 8.

Since the last two enumerations generate the same required sample size per sequence a
total of 16 subjects would be required to achieve an 80% power.

Table 11.7.1 presents the required total sample sizes necessary to achieve either an 80%
or a 90% power for θ from 0 to 15% by increments of 5% as well as CVs from 10% to 40%
by increments of 2% (Liu and Chow, 1992).

Higher-Order Crossover Designs

As was demonstrated in Chapter 5, the standard two-sequence, two-period crossover design is
not useful in the presence of carryover effects. In addition it does not provide independent esti-
mates of intrasubject variabilities. To account for these disadvantages, in practice, it is of inter-
est to consider a higher-order crossover design (Chow and Liu, 1992, 2000; Chow and Wang,
2001). A higher-order crossover design is defined as a crossover design in which either the
number of periods or the number of sequences is greater than the number of treatments to be
compared. The most commonly used higher-order crossover designs are Balaam’s design, the
two-sequence dual design, and four-period designs with two or four sequences. For a higher-
order crossover design, the general model given in (11.7.1) can be used with the appropriate
indexes on j and k. Table 11.7.2 summarizes these higher-order crossover designs.

For a given higher-order crossover design, the sample size is similarly determined based
on either the point hypotheses for equality or the interval hypotheses for equivalence under
model (11.7.1). Let us consider the sample size determined by the interval hypotheses
(11.7.5). Let ni � n be the number of subjects in sequence i of a higher-order crossover
design, and let Fν denote the cumulative distribution function of the t distribution with v
degrees of freedom. Then it can be verified that the power of Schuirmann’s two one-sided
tests at the α level of significance for the m th design is given by

φm(θ ) � Fνm	CV
∆

�
�

b�
θ
m�/n�

	� t(α,νm)�
� Fνmt(α, νm) �	

CV
∆

�



b�
θ
m�/n�

	�
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480 SAMPLE SIZE DETERMINATION

Table 11.7.1 Sample Sizes for Schuirmann’s Two One-Sided Test Procedures
at ∆ � 0.2 and the 5% Nominal Level in 2 � 2 Standard Crossover Design

θ � µT � µR

Power CV(%) 0% 5% 10% 15%

80% 10 8 8 16 52
12 8 10 20 74
14 10 14 26 100
16 14 16 34 126
18 16 20 42 162
20 20 24 52 200
22 24 28 62 242
24 28 34 74 288
26 32 40 86 336
28 36 46 100 390
30 40 52 114 448
32 46 58 128 508
34 52 66 146 574
36 58 74 162 644
38 64 82 180 716
40 70 90 200 794

90% 10 10 10 20 70
12 10 14 28 100
14 14 18 36 136
16 16 22 46 178
18 20 28 58 224
20 24 32 70 276
22 28 40 86 334
24 34 46 100 396
26 40 54 118 466
28 44 62 136 540
30 52 70 156 618
32 58 80 178 704
34 66 90 200 794
36 72 100 224 890
38 80 112 250 992
40 90 124 276 1098

Source: Liu and Chow (1992).

for m�1 (Balaam design), 2 (two-sequence dual design), 3 (four-period design with two
sequences), and 4 (four-period design with four sequences), where

ν1 � 4n � 3, ν2 � 4n � 4, ν3 � 6n � 5, ν4 � 12n � 5;

b1 � 2, b2 � 	
3
4

	 , b3 � 	
1
2
1
0
	 , b4 � 	

1
4

	 .
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Hence the formula of n required to achieve a 1 � β power at the α level of significance for
the mth design when θ � 0 is given by

n � bm[t(α, νm) 
 t(β/2, νm)]2 �	
C
∆
V
	�

2

, (11.7.12)

and if θ � θ0 � 0, the approximate formula for n is given by

n(θ0) � bm[t(α, νm) 
 t(β, νm)]2 �	∆
C
−
V

θ
	�

2

(11.7.13)

for m � 1, 2, 3, and 4.
Note that Tables 11.7.3 through 11.7.6 give the required total number of subjects Nm for

each dosing (m) to achieve either an 80% or a 90% power for θ from 0 to 15% by incre-
ments of 5% as well as CVs from 10% to 40% by increments of 2%, where

N1 � 4n, N2 � 2n, N3 � 2n, and N4 � 4n.

11.8 EQUIVALENCE AND NONINFERIORITY TRIALS

As indicated in Chapter 7, equivalence or noninferiority trials have been widely employed
for evaluation of new treatments. These new treatments may be developed for less invasive
or easier administration (better safety profiles) or for lower cost. Therefore, it is very
important to verify that these new treatments can still maintain similar efficacy as com-
pared to the standard treatment. In here, similarity can be defined as two-sided equivalence
or one-sided noninferiority. The controversies in design and analysis of an active equiva-
lence/noninferiority trial and in selection of equivalence limits have been discussed in
Chapter 7. Sample size determination is another controversial yet important issue in design
of equivalence and noninferiority trials because it depends on the equivalence limits. The
more stringent the equivalence limits, the larger the sample size required. In practice, the
equivalence limits are usually chosen based on results observed from similar studies con-
ducted previously. As a result, equivalence limits are in fact estimates, whose variability
should be accounted for. In this section, however, statistical methods or procedures for
sample size calculation based on binary or survival endpoints are reviewed under the
assumption that the equivalence limits are predefined known constants. Note that the sam-
ple size required for a two-sided equivalence trial is generally larger than that required for
a one-sided noninferiority trial, which is in turn larger than that for a superiority trial. More
details can be found in the editorial by Ware and Antman (1997) for the COBALT study
(1997) and Chow et al. (2003).
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Table 11.7.2 Commonly Used Higher-Order Crossover Designs

Design Sequence Period Design

1 4 2 Balamm design
2 2 3 Two-sequence dual design
3 2 4 Four-period design with two sequences
4 4 4 Four-period design with four sequences
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11.8.1 Independent Binary Endpoints

There is a vast literature on statistical methodology for testing equivalence or noninferiority
for binary outcomes (e.g., success/failure or yes/no) obtained from parallel group studies. For
example, for asymptotic methods, see Dunnet and Gent (1977), Blackwelder (1982),
Farrington and Manning (1990), Nam (1995), Dunnet and Gent (1996), Chen et al. (2000),
and Chow et al. (2003). For exact methods, see Chan (1998), Rohmel and Mansmann (1999),
Chan and Zhang (1999), Kang and Chen (2000), Chan (2003), and Chow et al. (2003b).

In this section, we first review the method for sample size determination based on the
asymptotic method proposed by Farrington and Manning (1990). Suppose a clinical trial is
conducted to compare a test treatment in nT subjects to a standard treatment in nC subjects.
Let YT and YC be the number of subjects with a (success) response to their treatment,
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Table 11.7.3 Sample Sizes for Schuirmann’s Two One-Sided Test
Procedures at ∆ � 0.2 and the 5% Nominal Level in Balaam’s Design

θ

Power CV(%) 0% 5% 10% 15%

80% 10 20 24 52 200
12 28 36 76 288
14 36 48 100 392
16 48 60 132 508
18 60 76 164 644
20 72 92 200 796
22 88 108 244 960
24 104 132 288 1144
26 120 152 336 1340
28 136 176 392 1556
30 156 200 448 1784
32 180 228 508 2028
34 200 256 576 2292
36 224 288 644 2568
38 252 320 716 2860
40 276 356 796 3168

90% 10 24 36 72 276
12 36 48 104 400
14 48 64 136 540
16 60 80 180 704
18 76 104 224 892
20 92 124 276 1100
22 108 152 336 1328
24 128 180 400 1584
26 152 208 468 1856
28 172 244 540 2152
30 200 276 620 2472
32 224 316 704 2808
36 284 400 892 3556
38 316 444 992 3960
40 352 492 1100 4388
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respectively. Denote PT and PC as the true unknown response rate of the test and standard
treatments, respectively. The noninferiority hypothesis in (7.4.2) can be expressed for the
proportion difference θ � PT � PC as

H0: PT � PC � �∆ vs. Ha: PT � PC � �∆, (11.8.1)

where ∆ is a prespecified equivalence limit of clinical importance.
Noninferiority of the test treatment, as compared to the standard treatment, is concluded

at the α level of significance if

TL � (pT � pC 
 ∆)/�v0� � z(α), (11.8.2)
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Table 11.7.4 Sample Sizes for Schuirmann’s Two One-Sided Test Procedures at
∆ � 0.2 and the 5% Nominal Level in Two-Sequence Dual Design

θ

Power CV(%) 0% 5% 10% 15%

80% 10 6 6 12 38
12 6 8 16 56
14 8 10 20 74
16 10 12 26 96
18 12 16 32 122
20 14 18 38 150
22 18 22 46 182
24 20 26 56 216
26 24 30 64 252
28 28 34 74 292
30 30 38 86 336
32 34 44 96 382
34 38 50 108 430
36 44 56 122 482
38 48 62 136 538
40 54 68 150 596

90% 10 6 8 14 54
12 8 10 20 76
14 10 14 28 102
16 12 16 34 134
18 16 20 44 168
20 18 24 54 208
22 22 30 64 250
24 26 34 76 298
26 30 40 88 350
28 34 46 102 404
30 38 54 118 464
32 44 60 134 528
34 48 68 150 596
36 54 76 168 668
38 60 84 188 744
40 66 94 208 824
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where pT and pC are the observed sample response rates for the test and the standard treat-
ments, respectively,

v0 � pT� (1 � pT�)/nT 
 pC� (1 � pC� )/nC

� [pT� (1 � pT�) 
 pC� (1 � pC� )/r]/nT , (11.8.3)

and p�T and p�C are the restricted maximum likelihood estimators (REML) of PT and PC

obtained under the boundary point of the null hypothesis PT � PC � �∆, and r � nC /nT.
The RMLE p�T is the unique solution in (�∆, 1) of the following maximum likelihood

equation:

ax3 
 bx2 
 cx 
 d � 0,
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Table 11.7.5 Sample Sizes for Schuirmann’s Two One-Sided Test Procedures at
∆ � 0.2 and the 5% Nominal Level in Four-Period Design With Two Sequences

θ

Power CV(%) 0% 5% 10% 15%

80% 10 4 4 8 28
12 6 6 12 40
14 6 8 14 54
16 8 10 18 72
18 10 12 24 90
20 12 14 28 110
22 14 16 34 134
24 16 18 40 158
26 18 22 48 186
28 20 26 54 214
30 22 28 62 246
32 26 32 72 280
34 28 36 80 316
36 32 40 90 354
38 36 46 100 394
40 40 50 110 436

90% 10 4 6 12 40
12 6 8 16 56
14 8 10 20 76
16 10 12 26 98
18 12 16 32 124
20 14 18 40 152
22 16 22 48 184
24 18 26 56 218
26 22 30 66 256
28 24 34 76 296
30 28 40 86 340
32 32 44 98 388
34 36 50 110 438
36 40 56 124 490
38 44 62 138 546
40 50 68 152 604
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where a � 1 
 r, b � �[1 
 r 
 pT 
 rpC �∆(r 
 2)], c � ∆2 � ∆(2pT 
 r 
 1) 
 pT 

rpC, and d � pT∆(1 � ∆). The solution is given by

pT� � 2u cos(w) � b/3a and pC� � pT� 
 ∆,

where

w � [π 
 cos�1(v /u3)]/3, υ � b3/(3a)3 � bc/(6a2) 
 d/2a and

u � sgn(υ)[b2/(3a)2 � c/3a]1/2.
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Table 11.7.6 Sample Sizes for Schuirmann’s Two One-Sided Test Procedures at ∆ � 0.2 and
the 5% Nominal Level in Four-Period Design With Four Sequences

θ

Power CV(%) 0% 5% 10% 15%

80% 10 4 4 8 28
12 4 8 12 40
14 8 8 16 52
16 8 8 20 64
18 8 12 24 84
20 12 12 28 100
22 12 16 32 124
24 16 20 40 144
26 16 20 44 168
28 20 24 52 196
30 20 28 60 224
32 24 32 64 256
34 28 36 72 288
36 32 40 84 324
38 32 44 92 360
40 36 48 100 400

90% 10 4 8 12 36
12 8 8 16 52
14 8 12 20 68
16 8 12 24 92
18 12 16 32 112
20 12 16 36 140
22 16 20 44 168
24 20 24 52 200
26 20 28 60 236
28 24 32 68 272
30 28 36 80 312
32 32 40 92 352
34 32 48 100 400
36 36 52 112 448
38 40 56 128 496
40 44 64 140 552
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The asymptotic formula for sample size for achieving a desired power of 1�β for testing
the hypotheses in (11.8.1) at the α level of significance level is then given by

nT � {Z(α) sqrt[pT� (1 � pT� ) 
 pC� (1 � pC� )/r] 
 Z(β ) sqrt[PT(1 � PT)


 PC (1 � PC)/r]}2/[PC � PT � ∆]2. (11.8.4)

In many trials, however, the primary endpoint for evaluation of efficacy for binary out-
comes is not the difference in proportion but the relative risk (i.e., the ratio of the propor-
tion of the subject with the predefined risk of the test treatment to the standard treatment).
The risk could be occurrence of a certain disease or death. The noninferiority hypothesis
based on relative risk can be formulated as

H0: R � R0 vs. Ha: R � R0, (11.8.5)

where R � PT / PC, the relative risk of the test treatment to the standard treatment, and R0 is
some prespecified tolerance limit. Based on the relative risk, the noninferiority of the test
treatment, as compared to the standard treatment, is concluded at the α level of signifi-
cance if

TL � ( pT � R0pC)/�w�0 � Z(α), (11.8.6)

where pT and pC are the sample observed response rates for the test and the standard treat-
ments, respectively,

w0 � p*T (1 � p*T )/NT 
 p*C (1 � p*C )/nC

� [p*T (1 � p*T ) 
 (R0 /r)p*C (1 � p*C )/r]/nT, (11.8.7)

and p*T and p*C are the REML of PT and PC obtained under the boundary point of the null
hypothesis PT � R0PC, and r � nC /nT. The RMLE p*T is the unique solution in (0, 1) of the
following maximum likelihood equation:

ax2 
 bx 
 c � 0,

where a � 1 
 r, b � �[R0(1 
 rpC) 
 r 
 pT], and c � R0(pT 
 rpC). The solution is
given by

p*T � [�b � (b2 � 4ac)1/2]/2a, and p*C � p*
T

/R0. (11.8.8)

For the relative risk, the asymptotic formula for sample size for achieving a desired power
of 1 � β for testing the hypotheses in (11.8.5) at the α level of significance is then given by

nT � {Z(α) sqrt[p*T (1 � p*T ) 
 (R0 /r)p*C (1 � p*C )/r] 
 Z(β ) sqrt[PT (1 � PT)


 (R0/r)PC(1 � PC)/r]}2/[PT � R0PC]2. (11.8.9)

Table 11.8.1 provides the required sample sizes for achieving a 90% power for testing 
the noninferiority hypothesis at the 5% level of significance based on independent binary 
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outcomes for various combinations of PT, PC, ∆, and R0. The sample size formulas given in
(11.8. 4) and (11.8.9) are derived from the asymptotic procedures for testing the noninferi-
ority hypothesis that are generally valid when the sample size is large and PT and PC are in
the range between 0.2 and 0.8. These asymptotic procedures may inflate type I error rate
when sample size is small and PT and PC approach to either 0 or 1. Under these circum-
stances, exact procedures based on the exact (or permutational) distributions of the test 
statistics, which provide a valid inference, should be used. However, the calculation of 
p-value, power, and sample size determination require extensive computation because of
the iterative nature of the exact procedures. For details on the sample size determination
based on the exact tests for evaluation of noninferiority between two treratments with inde-
pendent binary endpoints, see Chan (2003).

11.8.2 Paired Binary Endpoints

Evaluation of noninferiority or equivalence between the new and standard treatments
sometimes is based on paired binary outcomes. For example, in comparing diagnostic effi-
cacy of a new test noninvasive diagnostic procedure to a standard invasive diagnostic pro-
cedure, the patients will first receive the test diagnostic procedure followed by the standard
invasive diagnotic procedure. For this type of study, two binary outcomes are observed in
each patient. Because they are observed from the same patient, these two binary endpoints
are correlated. Recently, statistical procedures have been proposed for evaluation of nonin-
feriority or equivalence based on paired binary endpoints (Lu and Bean, 1995; Nam, 1997;
Tango, 1998; Lachenburg and Lynch, 1998; Lui and Cumberland, 2001; Liu et al., 2002).
In what follows, we introduce the sample size formula based on the asymptotic method
proposed by Liu et al. (2002).

Let Y0j, Y1j, j � 0 (no or failure), and 1 (yes or success) be the binary responses repre-
senting the diagnostic results for the test and the standard procedures, respectively. Let y00,
y01, y10, and y11 be the observed numbers of pairs (0,0), (0,1), (1,0), and (1,1). Table 11.8.2
provides the 2 � 2 table for the four outcomes and probabilities. Note that PT � P11 
 P10

and PC � P11 
 P01. The noninferiority hypothesis of (11.8.1) can be expressed in terms
of disconcordant probabilities as follows:

H0: P10 � P01 � �∆ vs. Ha: P10 � P01 � �∆. (11.8.10)
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Table 11.8.1 Sample Sizes1 per Group with Equal Allocation for Noninferiority
Hypothesis Based on Independent Binary Outcomes for Two Group Parallel Design

PT PC � nT R0 nT

0.1 0.1 �0.2 46 0.1 46
0.2 0.1 �0.1 57 0.5 57
0.05 0.05 �0.2 32 0.1 96
0.1 0.05 �0.05 128 0.5 126
0.01 0.01 �0.2 18 0.1 501
0.02 0.01 �0.01 695 0.5 677

1 Sample size for a 90% power at the 5% significance level.
Summarized from Farrington and Manning (1990).

Clinical_ch11.qxd  27.10.03  14:02  Page 487



Following Nam (1997) and Liu et al. (2002), the noninferiority of the test procedure to the
standard procedure is concluded at the α level of significance if

TL � (p10 � p01 
 ∆)/�s�0 � Z(α), (11.8.11)

where p10 and p01 are the observed sample response rates for the test and standard respectively,

s0 � ( p10� 
 p01� ) � ∆2, (11.8.12)

and p10� and p01� are the maximum likelihood estimators of P10 and P01 evalauted at the
boundary point of the null hypothesis P10 � P01 � �∆, which are given by

p01� � [�a 
 (a2 � 8b)1/2]/4, p10� � p01� � ∆,

where a � �(p10 � p01)(1 � ∆) � 2(p01 
 ∆) and b � ∆(1 
 ∆)p01.
The asymptotic formula for sample size for achieving a desired power of 1 � β for testing

the hypotheses in (11.8.10) at the α level of significance when PT � PC � 0 is then given by

n � 2P10{[(Z(α)/g) 
 Z(β )]/∆}2, (11.8.13)

where g � [2P10 /(2p10� � ∆ � ∆2)]1/2.
Table 11.8.2 provides the required sample sizes for achieving an 80% power for testing

the noninferiority hypothesis at the 5% level of significance based on paired binary out-
comes for various values of ∆ and P01. � P10. Although the test procedure proposed by Liu
et al. (2002) is a generalization of the McNemar’s test, its interpretation is very different.
For the McNemar’s test for detection of existence of difference between PT and PC, the
McNemar’s test takes into account only the information of discordant pairs y10 and y01. The
intepretation of the results of 10 discordant pairs in a sample of 20 subjects is very different
from the same number of discordant pairs in a sample of 10,000 subjects in testing the
equivalence/noninferiority hypothesis. Therefore, concordant pairs provide information on
the consistency between the two treatements and should not be ignored for the construction
of the statistical procedures and confidence interval in testing the equivalence or noninferi-
ority hypothesis. When sample size is small or the number of discordant pairs is small, the
asymptotic tests are not reliable for controlling the type I error rate. Hsueh et al. (2001) pro-
posed unconditional exact tests for testing the equivalence or noninferiority hypotheses
based on paired binary endpoints with the corresponding confidence intervals. However,
computation of the unconditional exact confidence interval is intensive. For recent develop-
ments on exact unconditional tests for paired binary endpoints, see Berger and Sidik (2003).
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Table 11.8.2 The Four Outcomes and Probabilities

Diagnosis for 
Standard Procedure

Diagnosis for  Test Procedure 1(Yes) 2(No) Total

1(Yes) y11(P11) y10(P10) yT(PT)
0(No) y01(P01) y00(P00) n�yT(1�PT)

yC(PC) n�yC(1�PC) n
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11.8.3 Independent Censored Endpoints

As mentioned in Chapter 10, the primary endpoint for some clinical trials are censored
data, which are defined as the time from randomization to the occurrence of a predefined
event, such as death, eradication of an infection caused by a certain microorganism, or pro-
gression of the disease. Recently, an increasing number of trials was conducted to evaluate
noninferiority or equivalence of new cytotoxic chemotherapy for cancers to the standard
treatment because of a reduced toxicity and a better quality of life offered by the new treat-
ment. Therefore, it is very important to verify that the survival provided the new treatment
is no worse than or equivalent to the standard treatment if it is not superior to the standard
treatment. Com-Nougue et al. (1993) proposed a test for a one-sided hypothesis in the rel-
ative risk to establish the noninferiority of the new treatment. On the other hand, under the
assumption of proportional hazards, Wellek (1993) derived an asymptotic uniformally
most power (UMP) test for equivalence of survival functions between two treatments.

For two independent samples, let SC (.) and ST (.) be survival functions for the test and
standard treatments, respectively. In addition, we assume that SC (.) and ST (.) are from the
same proportional hazard model:

ST (t) � [SC(t)]λ for all t � 0 and some λ,

where λ � eθ.
The equivalence hypothesis in (7.4.1) can be expressed as the difference between two

survival functions as:

H0: sup �SC(y) � ST(y)� � δ vs. Ha: sup �SC(y) � ST (y)� � δ, (11.8.14)

for some δ � 0.
Wellek (1993) showed that the hypotheses in (11.8.14) could be reformulated in terms

of θ as

H0: sup�θ � � θ* vs.   Ha: sup �θ � � θ*, (11.8.15)

where exp[θ */(1 � eθ *)] � exp[θ*eθ */(1 � eθ *)] � δ.
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Table 11.8.3 Sample Sizes1 per Group for Noninferiority
Hypothesis Based on Paired Binary Outcomes when
P01 � P10

P01 ∆ n

0.05 0.05 350
0.10 0.05 644
0.15 0.05 949
0.15 0.10 242
0.15 0.15 111
0.20 0.05 1259
0.20 0.10 317
0.20 0.15 142
0.20 0.20 81
0.30 0.20 116

1 Sample size for a 80% power at the 2.5% significance level.
Summarized from Liu et al. (2002).
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Let rjυ be the number of subjects at risk in the vth sample at the jth smallest failure time
y( j ), d
υ be total number of failures in the vth sample, and dj 
 be the total number of fail-
ures at the jth smallest failure time. The maximum likehood estimator of θ satisfies


dj
[rj2e
θ/(rj1 
 rj2e

θ )] � d
2, (11.8.16)

and the observed information at the MLE is given as

I(θ̂) � 
dj
rj1rj2e
θ/(rj1 
 rj2e

θ)2. (11.8.17)

Wellek (1993) proposed an asymptotic uniformly most powerful (UMP) level α test with
the rejection region

�θ̂ ��I�(θ̂) � χ[α, θ*�I�(θ̂)], (11.8.18)

where χ[α, q] is the square root of the α th upper quantile of a noncentral chi-square distri-
bution with 1 degree of freedom and noncentrality parameter q.

It is easy to see that the hypotheses of (11.8.15) can be decomposed into two one-sided
hypotheses as

H0U: θ � �θ* vs. HaU: θ � �θ*
and (11.8.19)

H0L: θ � θ* vs. HaL: θ � θ*.

The survival functions of the test and standard treatments are claimed equivalence with
respect to equivalence limit δ at the α significant level if and only if

TL � (θ̂ � θ*)/�I�(θ̂) � �Z(α)
and (11.8.20)

TU � (θ̂ 
 θ*)/�I�(θ̂) � �Z(α).

Denote 1 � GC(y) and 1�GT (y) as the distribution function of the censored time for the
test and standard treatments, respectively, and ρ � limn→∞ nT / n, where n � nT 
 nC.

The asymptotic formula for sample size for achieving a desired power of 1 � β for test-
ing the hypotheses in (11.8.15) at the α level of significance at θ � 0 based on the Wellek’s
test in (11.8.18) and based on the two one-sided tests’ procedure in (11.8.20) are given by

χ[α, �N�θ*/v(0)] � Z(β/2) (11.8.21)

and

N � [v2(0)/θ *2][Z(α) 
 Z(β/2)]2, (11.8.22)

respectively, where

1/v2(0) � �p(y)q(y)u(y)dy,

p(y) � ρGT (y)/[ρGT(y) 
 (1 � ρ)GC(y)] � 1 � q(y), and (11.8.23)

u(y) � [ρGT(y) 
 (1 � ρ)GC(y)]{d[1 � SC(y)]/dy}.
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The noninferiority hypothesis for the survival functions is formulated as

H0: inf [ST(y) � SC(y)] � �δ vs. Ha: inf[ST (y) � SC(y)] � �δ, (11.8.24)

or equivalently,

H0L: θ � θ * vs. HaL: θ � θ*.

As a result, TL in (11.8.20) can be employed in testing the noninferiority hypothesis in
(11.8.24). The asymptotic sample size for achieving a desired power of 1 � β for testing
the noninferiority hypothesis in (11.8.24) at the α level of significance at θ � 0 is given by

N � [v2(0)/θ *2][Z(α) 
 Z(β )]2 (11.8.25)

Table 11.8.4 provides the empirical type I error rate and power through simulation for the
Wellek’s test and the two one-sided tests’ procedure (TOST) and for the noninferiority test
for various sample sizes at the 5% level of significance with equivalence limit δ � 0.10
(θ* � 0.2727) when θ � 0. It can be seen that from Table 11.8.4 that although the
Wellek’s is an asymptotic UMP test, its advantage over the two one-sided tests’ procedure
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Table 11.8.4 Empirical Size and Power for the Wellek’s test and TOST for Equivalence and
the Noninferiority Test at 5% Significance Level for � � 0.10(θ * � 0.2727)

Distribution Total Sample Size Test Size Power

Lognormal 400 Wellek 0.0491 0.5800
TOST 0.0483 0.5763
NI 0.0490 0.7918

500 Wellek 0.0497 0.7268
TOST 0.0496 0.7266
NI 0.0496 0.8629

600 Wellek 0.0490 0.8254
TOST 0.0490 0.8254
NI 0.0490 0.9111

700 Wellek 0.0502 0.8839
TOST 0.0502 0.8839
NI 0.0502 0.9425

Exponential 400 Wellek 0.0500 0.5609
TOST 0.0496 0.5774
NI 0.0498 0.7803

500 Wellek 0.0512 0.7223
TOST 0.0512 0.7214
NI 0.0512 0.8564

600 Wellek 0.0510 0.8121
TOST 0.0510 0.8121
NI 0.0510 0.9077

700 Wellek 0.0475 0.8821
TOST 0.0475 0.8821
NI 0.0475 0.9426

NI � noninferiority one-sided test.
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diminishes as the sample size increases. When sample is moderately large, the TOST pro-
cedure in (11.8.20) not only can control the type I error rate, but also it provides the same
power as the Wellek’s test without necessity for enumeration of noncentrality parameter. In
fact, Hsueh et al. (2002) showed that when the total sample size is sufficiently large to pro-
vide a power at least 80%, the performance of the Wellek’s test and the TOST procedure in
terms of size and power are identical. As a result, the required sample sizes are identical for
both methods as shown in Table 11.8.5.

11.9 MULTIPLE-STAGE DESIGN IN CANCER TRIALS

As was discussed in Section 6.6, in phase II cancer trials, it is undesirable to stop a study
early when the treatment appears to be effective but desirable when the treatment seems to
be ineffective. For this purpose, a multiple-stage design is often employed to determine
whether an experimental treatment holds sufficient promise to warrant further testing (see,
e.g., Fleming, 1982; Simon, 1989; Chang et al., 1987; Therneau et al., 1990). The concept
of a multiple-stage design is to permit early stopping when a moderately long sequence of
initial failures occurs. Chow et al. (2003b) provided tables for sample size calculation for
two-stage designs such as minimax design, Simon’s optimal two-stage design, and flexible
two-stage design and three-stage designs such as optimal three-stage design and flexible
design for single-arm phase II cancer trials.

Example 11.9.1 Suppose an investigator is interested in planning a clinical trial in patients
with a specific carcinoma where standard therapy has a 20% response rate. Suppose further
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Table 11.8.5 Sample Size Required per arm with Equal Allocation for the Wellek’s Test and
TOST for Equivalence and the Noninferiority Test at the 5% Significance Level for δ � 0.15,
SC(5) � 0.55, Censored Rate � 0.20

Log-normal Distribution Exponential Distribution

Power Method (∞,*)a (5.1)b (5.2)c (∞,*)a (5.1)b (5.2)c

70% Wellek 107 302 233 107 271 224
TOST 107 302 234 107 271 224
NI 70 198 153 70 178 147

80% Wellek 127 360 278 127 323 266
TOST 127 360 278 127 323 266
NI 92 260 201 92 234 192

90% Wellek 161 454 351 161 408 336
TOST 161 454 351 161 408 336
NI 127 360 272 127 323 266

(�,*)a: infinity accrual and follow-up

(5.1)b: 5 years of uniform accrual and 1 additional year of follow-up

(5.2)c: 5 years of uniform accrual and 2 additional year of follow-up

NI�noninferiority one-sided test.
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that the test treatment is a combination of the standard therapy and a new agent. The inves-
tigator would like to determine whether the test treatment will achieve a response rate of
40%. Since the test treatment may not be effective, it is desirable to warrant early study ter-
mination. In this case, the optimal three-stage design described above is useful. We consider
the optimal three-stage design for testing

H0: p � 0.20 vs. H1: p � 0.40

with α � β � 0.10 which result in the following sample size allocation at each stage:

(0/8, 3/16, 11/42).

That is, at stage 1, 8 patients are to be tested. We would terminate the trial if no response is
observed in the eight patients. If there are one or more responses, we continue to the next
stage. At the second stage, eight more patients are treated. We stop the trial if fewer than
three responses are observed in the sixteen patients; otherwise continue to stage 3. At stage
3, 26 more patients are treated. We conclude the test treatment is effective if there are more
than 11 responses in the 42 patients.

11.10 COMPARING VARIABILITIES

In clinical research, when comparing a test treatment and a control or a reference treat-
ment, the treatment effect is usually established by comparing mean response change from
the baseline of some predetermined study endpoints between treatment groups, assuming
that their corresponding variabilities are comparable. In practice, however, the variabilities
associated with the test treatment and the control or reference treatment could be very diff-
erent. When the variability of the test treatment is much larger than that of the control or
reference treatment, the safety of the test treatment could be a concern. Thus, in addition to
comparing mean responses between treatment groups, it is also of interest to compare the
variabilities associated with the responses between treatment groups. In general, variabili-
ties can be classified into two categories, namely, the intrasubject (or within-subject) vari-
ability and the intersubject (or between-subject) variability. Intrasubject variability refers
to the variability observed from repeated measurements from the same subject under the
same experimental condition, whereas intersubject variability is the variability due to the
heterogeneity among subjects. The total variability is simply the sum of the intrasubject
and intersubject variabilities.

For clinical trials intended for comparing variabilities, sample size calculation may be
performed based on appropriate statistical methods for testing equality, noninferiority/
superiority, and similarity (equivalence) between treatment groups. The problem of com-
paring intrasubject variabilities is well studied by Chinchilli and Esinhart (1996) through
an F statistic under a replicated crossover model. A similar idea can also be applied to
comparing total variabilities under a parallel design without replicates. For comparing
intersubject and total variabilities under a crossover design, statistical methods developed
by Lee et al. (2003) and Lee et al. (2002) are useful (see also Chow, 2003; Chow et al.,
2003b).

In what follows, statistical tests for equality, noninferiority/superiority, and similarity
(equivalence) in intrasubject variability and intersubject variability under a parallel-group
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design with replicates or a replicated crossover design are briefly described. Also included
are corresponding formulas for sample size calculation.

11.10.1 Comparing Intrasubject Variabilities

Parallel Design with Replicates Let xijk be the observation of the kth replicate (k � 1, . . . , m)
of the jth subject ( j � 1, . . . , ni) from the ith treatment (i � T, R). It is assumed that

xijk � µi 
 Sij 
 eijk, (11.10.1)

where µi is the treatment effect, Sij is the random effect due to the jth subject in the ith treat-
ment group, and eijk is the intrasubject variability under the ith treatment. It is assumed that
for a fixed i, Sij are independent and identically distributed as normal random variables
with mean 0 and variance σBi

2 , and eijk, k � 1, . . . , m are independent and identically dis-
tributed as a normal random variable with mean 0 and variance σWi

2 . Under this model, an
unbiased estimator for σWi

2 is given by

σ̂Wi
2 � 	

ni(m
1
� 1)
	 


ni

j�1


m

k�1
(xijk � x�ij.)

2, (11.10.2)

where

x�ij. � 	
m
1

	 

m

k�1
xijk. (11.10.3)

It can be seen that ni(m � 1)σ̂Wi
2 /σWi

2 is distributed as a χ2
ni(m�1) random variable.

Test for Equality For testing equality in intrasubject variability between treatment
groups, the following hypotheses are often considered:

H0: σWT � σWR vs. Ha: σWT � σWR.

A commonly used test statistic for testing the above hypotheses is given by

T � 	
σ
σ
ˆ
ˆ
W

W

T
2

R
2	 .

Under the null hypothesis, T is distributed as an F random variable with nT(m � 1) and
nR(m � 1) degrees of freedom. Hence, we reject the null hypothesis at the α level of signi-
ficance if

T � F(α/2, nT(m�1), nR(m�1))

or

T � F(1�α /2, nT(m�1), nR(m�1)),

where F(α/2, nT (m�1), nR(m�1)) is the upper (α /2)th quantile of an F distribution with
nT (m � 1) and nR(m � 1) degrees of freedom. Under the alternative hypothesis, without
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loss of generality, we assume that σWT
2 � σWR

2 . The power of the above test can then be
approximated by

1 � β � P( T � F(1�α/2, nT(m�1), nR(m�1))

�P(1/T � F(α /2, nR(m�1), nT(m�1))

�P	σ
σ
ˆ
ˆ

2

2

W

W

T

R/
/

σ
σ

2

2
W

W

R

T
	� 	

σ
σ

2
W

2
W

R

T	 F(α/2, nR(m�1), nT(m�1))�
�PF(nR(m�1), nT(m�1)) � 	

σ
σ

2
W

2
W

R

T	 F(α /2, nR(m�1), nT(m�1))�,

where F(a, b) denotes an F random variable with a and b degrees of freedom. Under the
assumption that n � nR � nT and with a fixed σ2

WT and σ2
WR, the sample size needed in order

to achieve a desired power of 1 � β can be obtained by solving the following equation for n:

	σ
σ

2
W

2
W

R

T
	 � .

Test for Noninferiority/Superiority As indicated in Chow et al. (2003), the problem of
testing noninferiority and superiority can be unified by the following hypotheses:

H0: 	σ
σ

W

W

R

T
	 � δ vs. Ha: 	σ

σ
W

W

R

T
	 � δ.

When δ � 1, the rejection of the null hypothesis indicates the superiority of the test prod-
uct over the reference in terms of the intrasubject variability. When δ � 1, the rejection of
the null hypothesis indicated the noninferiority of the test product over the reference. Con-
sider the following test statistic:

T � 	
δ2

σ̂
σ̂

2
WT

2
WR
	.

Under the null hypothesis, T is distributed as an F random  variable with nT (m � 1) and
nR(m � 1) degrees of freedom. Hence, we reject the null hypothesis at the α level of signi-
ficance if

T � F(1�α, nT(m�1), nR(m�1)).

Under the alternative hypothesis that σ2
WT /σ2

WR � δ, the power of the above test can be
approximated by

1 � β � P(T � F(1�α, nT(m � 1), nR(m � 1))

� P(1/T � F(α, nR(m � 1), nT(m � 1))

� P 	σσ
ˆ
ˆ

2
W
2
W

R

T

/
/
σ
σ

2
W
2
W

R

T
	� 	δ

σ
σ

2
W
2
W

T

R
	 F(α, nR(m � 1), nT(m � 1))�

� P F(nR(m � 1), nT(m � 1)) �	
δ
σ
2σ

2
W

2
W

T

R

	 F(α, nR(m � 1), nT(m � 1))�.

F(1�β, n(m�1), n(m�1))
			

F(α/2, n(m�1), n(m�1))
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Under the assumption that n � nT � nR, the sample size needed in order to achieve a
desired power of 1 � β at the α level of significance can be obtained by solving the fol-
lowing equation for n:

	δ
σ
2σ

2
W

2
W

T

R
	 � .

Test for Similarity or Equivalence For testing similarity or equivalence in intrasubject
variability between treatment groups, consider the following hypotheses:

H0 : 	σ
σ

2
W

2
W

R

T	 � δ or 	σ
σ

2
W

2
W

R

T	 � 1/δ vs. Ha : 	
1
δ

	 � 	σ
σ

2
W

2
W

R

T	 � δ,

where δ � 1 is the similarity limit. The above hypotheses can be decomposed into the fol-
lowing two one-sided hypotheses:

H01 : 	σ
σ

W

W

R

T
	 � δ vs. Ha1 : 	σ

σ
W

W

R

T
	 � δ

and

H02 : 	σ
σ

W

W

R

T
	 � 	

1
δ	 vs. Ha2 : 	σ

σ
W

W

R

T
	 � 	

1
δ	.

The following two test statistics are useful in testing the above two one-sided hypotheses:

T1 � 	
δ
σ
σ
ˆ
ˆ
W

W

T

R
	 and T2 � 	

δ
σ̂
σ̂
W

W

R

T	.

We then reject the null hypothesis and conclude similarity at the α level of significance if

T1 � F(1�α, nT(m � 1), nR(m � 1)) and T2 � F(α, nT(m � 1), nR(m � 1)),

Assuming that n � nT � nR and σWT �� σWR, under the alternative hypothesis that the
power of the above test can be approximated by

1 � β � P  � 	σ
σ
ˆ
ˆ

W

W

R

T
	 � δ2 F(1�α, n(m � 1), n(m� 1))�

� P  � 	σ
σ
ˆ
ˆ

2
W

2
W

R

T	 � δ 2F(1�α, n(m � 1), n(m � 1))�
� 1 � 2P 	

σ
σ
ˆ
ˆ

2
W
2
WT

R	 � δ2F(1�α, n(m � 1), n(m � 1))�
� 1 � 2P F(n(m�1), n(m � 1)) �	

δ
σ

2σ
2
W

2
W

R

T	 F(1�α, n(m � 1), n(m � 1))�.

Thus, a conservative estimate for the sample size required for achieving a desired power of
1 � β can be obtained by solving the following equation for n:

	
δ
σ

2σ
2
W

2
W

R

T	� .
F(β /2, n(m�1), n(m�1))
				

F(1�α, n(m�1), n(m�1))

1
				
F(1�α, n(m�1), n(m�1))δ2

F(α, n(m�1), n(m�1))
			

δ2

F(1�β, n(m � 1), n(m � 1))
			

F(α, n(m � 1), n(m � 1))
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Example 11.10.1 Suppose an investigator is interested in conducting a clinical trial
under a two-arm parallel trial with 3 (m � 3) replicates per subject for comparing the vari-
ability of an inhaled formulation (treatment) with a subtaneous (SC) injected formulation
(control) of a compound. The primary study endpoint is area under the blood concentration
time curve (AUC). Based on pharmacokinetic data observed from a pilot study, it is
assumed the true variance of treatment and control are given by 30% (σ 2

WT � 0.30) and
45% (σ 2

WR � 0.45), respectively.
For testing equality in intrasubject variability, the sample size needed in order to achieve an

80% power at the 5% level of significance can be obtained by solving the following equation:

	
0
0
.
.
3
4
0
5	 � .

This gives n � 96. The sample size required for testing noninferority/superiority and/or
similarity/equivalence can be similar using the formulas given above.

Replicated Crossover Design Unlike parallel-group designs with replicates, one of the
advantages of a replicated crossover design is that it allows comparisons within subjects.
For convenience’s sake, we consider a 2 � 2m replicated crossover design comparing two
treatments (a test treatment and a control or reference treatment). Under a 2 � 2m repli-
cated crossover design, in each sequence, each subject receives the test treatment m times
and the control treatment m times at different dosing periods. When m � 1, the 2 � 2m
replicated crossover design reduces to the standard two-sequence, two-period (2 � 2)
crossover design. On the other hand, when m � 2, the 2 � 2m replicated crossover design
becomes a 2 � 4 crossover design, which is a design that is recommended by the FDA for
assessment of population/individual bioequivalence (FDA, 2001).

Suppose that n1 subjects are assigned to the first sequence and n2 subjects are assigned to
the second sequence. Let xijkl be the observation from the jth subject ( j � 1, . . . , ni) in the
ith sequence (i � 1, 2) under the lth replicate (l � 1, . . . , m) of the kth treatment (k � T, R).
Chinchilli and Esinhart (1996) proposed the following mixed effects model:

xijkl � µk 
 γikl 
 Sijk 
 εijkl, (11.10.4)

where µk is the treatment effect for treatment k, γikl is the fixed effect of the lth replicate on
treatment k in the ith sequence with constraint



2

i�1


m

l�1
γikl � 0.

(SijT, SijR)�’s are the random effects of the jth subject in the ith sequence, which are inde-
pendent and identically distributed as a bivariate normal random vector with mean (0,0)�
and covariance matrix


 B
�  �.

Note that σ 2
BT and σ 2

BR are intersubject variances under the test treatment and the control or
reference treatment, respectively. εijkl’s are independent random variables from the normal
distribution with mean 0 and variance σ 2

WT or σ 2
WR, which are intrasubject variabilities

under the test drug and the reference drug, respectively. It is assumed that (SijT, SijR)� and
εijkl are independent.

ρσBTσBR

σ 2
BR

σ 2
BT

ρσBTσBR

F(0.80, 2n, 2n)
		
F(0.025, 2n, 2n)
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To obtain estimators of intrasubject variances, it is a common practice to use an orthog-
onal transformation, which is considered by Chinchilli and Esinhart (1996). A new random
variable zijkl can be obtained by using the orthogonal transformation

zijk � P�xijk, (11.10.5)

where

x�ijk � (xijk1, xijk2, . . . , xijkm), z�ijk � (zijk1, zijk2, . . . , zijkm)

and P is an m � m orthogonal transformation under which P�P is a m � m diagonal matrix.
The first column of P is usually defined by the vector m

1
		 (1, 1, . . . , 1)� to obtain zijk1 � x�ijk,

and the other columns can be defined to satisfy the orthogonality of P and Var(zijkl) � σ 2
Wk

for l � 2, . . . , m. For example, in a 2 � 4 crossover design, the new random variable zijkl

can be defined as

zijk1 �	
xijk1 


2
xijk2

	 � x�ijk and zijk2 � .

Now, the estimator of intrasubject variance can be defined as

σ̂2
WT � 


2

i�1


ni

j�1


m

l�2
(zijTl � z�i.Tl)

2,

σ̂2
WR � 


2

i�1


ni

j�1


m

l�2

(zijRl � z�i.Rl)
2,

where

z�i.kl � 	
n
1

i
	 


ni

j�1
z�ijkl.

It should be noted that σ̂2
WT and σ̂2

WR are independent and distributed as F-distribution,
respectively.

Test for Equality Similarly, we consider the following hypotheses:

H0 : σWT � σWR vs. Ha : σWT � σWR

for testing equality in intrasubject variability.
Under the null hypothesis, test statistic

T � 	σ
σ
ˆ
ˆ

2
W

2
W

R

T	

is distributed as an F random variable with d and d degrees of freedom, where d �
(n1 
 n2 � 2)(m � 1). Hence, we reject the null hypothesis at the α level of significance if

T � F(α /2, d, d)

or

T � F(1�α /2, d, d).

1
			
(n1 
 n2 � 2)(m � 1)

1
			
(n1 
 n2 � 2)(m � 1)

xijk1 � xijk2
		

�2�
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Under the alternative hypothesis, without loss of generality, we assume that σ̂2
WT � σ̂2

WR.
The power of the above test can then be approximated by

1 � β � P(T � F(1�α /2, d, d))

� P(1/T � F(α /2, d, d))

� P 	σσ
ˆ
ˆ

2
W
2
W

R

T

/
/
σ
σ

2
W
2
W

R

T
	� 	σ

σ
ˆ
ˆ

2
W

2
W

R

T	 F(α /2, d, d)�
� P F(d, d) � 	σ

σ
2
W

2
W

R

T	 F(α /2, d, d)�.

Under the assumption that n � n1 � n2 and with fixed σ̂2
WT and σ̂2

WR, the sample size needed
in order to achieve a desired power of 1�β can be obtained by solving the following
equation for n:

	
σ
σ

2
W

2
WT

R
	 � .

Test for Noninferiority/Superiority Similarly, we consider the following hypotheses:

H0 : 	σ
σ

W

W

R

T
	 � δ vs. Ha : 	σ

σ
W

W

R

T
	 � δ

for testing noninferiority and superiority. Consider the following test statistic:

T �	δ
σ
2

ˆ

σ̂

2
W

2
W

T

R
	.

Under the null hypothesis, T is distributed as an F random variable with d and d degrees of
freedom. Hence, we reject the null hypothesis at the α level of significance if

T � F(1�α, d, d).

Under the alternative hypothesis that σ 2
WT /σ 2

WR � δ, the power of the above test can be
approximated by

1 � β � P(T � F(1�α, d, d)

� P(1/T � F(α, d, d)

� P 	σσ
ˆ
ˆ

2
W
2
W

R

T

/
/
σ
σ

2
W
2
W

R

T
	 � 	δ

σ
σ

2
W
2
W

T

R
	 F(α, d, d)�

� P F(d, d) �	δ
σ
2σ

2
W

2
W

T

R
	 F(α, d, d)�.

Thus, under the assumption that n � n1 � n2, the sample size needed in order to achieve a
desired power of 1 � β at the α level of significance can be obtained by solving the following
equation for n:

	δ
σ
2σ

2
W

2
W

T

R
	� .

F(1�β, (2n�2)(m�1), (2n�2)(m�1))
				F(α, (2n�2)(m�1), (2n�2)(m�1))

F(1�β, (2n�2)(m�1), (2n�2)(m�1))
				
F(α /2, (2n�2)(m�1), (2n�2)(m�1))
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Test for Similarity or Equivalence For testing similarity or equivalence in intrasubject
variability, similarly, we consider the following two one-sided hypotheses:

H01 : 	σ
σ

W

W

R

T
	 � δ vs. Ha1 : 	σ

σ
W

W

R

T
	 � δ

and

H02 : 	σ
σ

W

W

R

T
	 � 	

1
δ

	 vs. Ha2 : 	σ
σ

W

W

R

T
	 � 	

1
δ

	.

These two hypotheses can be tested by the following two test statistics:

T1 �	δ
σ
2

ˆ

σ̂

2
W

2
W

T

R
	 and T2 �	

δ
σ

2

ˆ
σ̂
2
W

2
W

R

T	.

We then reject the null hypothesis and conclude similarity at the α level of significance if

T1 � F(1 � α, d, d) and T2 � F(α, d, d).

Assuming that n � n1 � n2, under the alternative hypothesis that σ̂2
WT � σ̂2

WR, the power of
the above test can be approximated by

1 � β � P � 	σ
σ̂
ˆ

2
W
2
W

T

R
	 � δF(1 � α, d, d)�

� P � 	σ
σ̂
ˆ

2
W
2
W

T

R
	 � δF(1 � α, d, d)�

� 1 � 2P 	
σ
σ
ˆ
ˆ

2
W
2
W

R

T
	 � δ2F(1 � α, d, d)�

� 1 � 2P F(d, d) �	
δ
σ

2σ
2
W

2
W

R

T	F(1 � α, d, d)�.

Hence, a conservative estimate for the sample size needed in order to achieve the power of
1 � β can be obtained by solving the following equation:

	
δ
σ

2σ
2
W

2
W

R

T	� .

Example 11.10.2 Consider Example 11.10.1 described above. Suppose the intended study
will be conducted under a 2 � 4 replicated crossover design rather than a parallel design with
three replicates.

It is assumed that the true variance of inhaled formulation and SC formulation are given
by 30% (σ 2

WT � 0.30) and 45% (σ 2
WR � 0.45), respectively. Hence, the sample size needed

for testing equality in intrasubject variability for achieving an 80% power at the 5% level
of significance can be obtained by solving the following equation:

	
0
0
.
.
3
4
0
5

	 � .F(0.80, 2n � 2, 2n � 2)
			
F(0.025, 2n � 2, 2n � 2)

F(β�2, (2n � 2)(m � 1), (2n � 2)(m � 1))
					
F(1 � α, (2n � 2)(m � 1), (2n � 2)(m � 1))

1
		
F(1 � α, d, d) δ

F(α, d, d)
		

δ
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This gives n � 98.
Under the 2 � 4 replicated crossover design, the sample sizes required for testing non-

inferiority, superiority, and similarity or equivalence can be similarly obtained using the
formulas given above.

11.10.2 Comparing Intersubject Variabilities

In clinical research, it is not uncommon that clinical results may not be reproducible from
subject to subject within the target population or from subjects within the target population
to subjects within a similar but slightly different population due to the intersubject vari-
ability. As pointed out in Chow et al. (2003b), the following difficulties are usually encoun-
tered when testing a difference in intersubject variabilities. First, unbiased estimators of
the intersubject and total variabilities are usually not chi-square distributed under both par-
allel and crossover designs with replicates. Second, the estimators for the intersubject and
total variabilities under different treatments are usually not independent under a crossover
design. As a result, unlike tests for comparing intrasubject variabilities, the standard F test
is not applicable. Tests for comparing intersubject variabilities under a parallel design can
be performed by using the method of a modified large sample (MLS) method. See, e.g.,
Howe (1974), Graybill and Wang (1980), Ting et al. (1990), Hyslop et al. (2000), and Lee
et al. (2003).

Parallel Design with Replicates Under model (11.10.1), define

s2
Bi � 	

ni �

1
1

	 

ni

j�1
(x�ij. � x�i..)

2, (11.10.6)

where x�ij.. is given in (11.10.3) and

x�i.. � 	
n
1

i
	 


ni

j�1
x�ij..

Note that E(s2
Bi) � σ 2

Bi 
 σ 2
Wi / m. Therefore, the unbiased estimators for the intersubject

variances are given by

σ̂ 2
Bi � s2

Bi � 	
m
1

	σ̂ 2
Wi ,

where σ̂ 2
Wi is defined in (11.10.2).

Test for Equality For testing equality in intersubject variability, the following hypotheses
are usually considered:

H0: 	σ
σ

B

B

R

T
	 � 1 vs. Ha: 	σ

σ
B

B

R

T
	 � 1.

Testing the above hypotheses is equivalent to testing the following hypotheses:

H0: σ 2
BT � σ 2

BR � 0 vs. Ha: σ 2
BT � σ 2

BR � 0.

Let η � σ 2
BT � σ 2

BR. An intuitive estimator of η is given by

η̂� σ̂ 2
BT � σ̂ 2

BR.
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It follows that

η̂ � σ̂ 2
BR � σ̂ 2

BT

� s2
BT � s2

BR � σ̂ 2
WT /m 
 σ̂ 2

WR/m.

An (1�α)�100% confidence interval of η is given by

(η̂L, η̂U),

where

η̂L � η̂� �∆�L�, η̂U � η̂ 
 �∆�U�

and

∆L �s4
BT1 � �

2


 s4
BR �

2


	
σ̂
m

4
W
2
T	 1 � �

2


  �
2

∆U � s4
BT1 � �

2


 s4
BR1 � �

2


 	
σ̂
m

4
W
2
T	 1 � �

2


 	
σ̂
m

4
W
2
R	 1 � �

2

.

We reject the null hypothesis at the α level of significance if 0 � (η̂L, η̂U). Under the alter-
native hypothesis, without loss of generality, we assume that σ 2

BR � σ 2
BT and n � nT � nR.

Thus, the power of the above test procedure can be approximated by

P�N	�n�(σ2
B

σ
T

*
� σ2

BR)
	, 1�� z(α/2)	,

where

σ *2 � 2�σ 2
BT 
 	

σ
m

2
WT
	�

2


 σ 2
BR 
 	

σ
m

2
WR
	�

2


	m2(
σ
m

4
W

�
T

1)	
	m2(
σ
m

4
W

�
R

1)	�.

As a result, the sample size needed in order to achieve the desired power of 1 � β at the
α level of significance can be obtained by solving the following equation:

Z(α/2) �	
�n�(σ

σ

2
BT

*
� σ 2

BR)
	� Z(β).

This leads to

n � .σ *2(Z(α/2) 
 Z(β))2
			

(σ 2
BT � σ 2

BR)2

nR(m � 1)
			χ2(1 � α/2, nR(m � 1))

nT(m � 1)
		χ2(α/2, nT(m � 1))

nR �1
		χ2(α/2, nR � 1)

nT � 1
			χ2(1 � α/2, nT � 1)

1 � nR(m� 1)
		χ2(α/2, nR(m � 1))

σ̂ 4
WR

	
m2

nT(m � 1)
			χ2(1 � α/2, nT(m � 1))

1 � nR � 1
			χ2(1 � α/2, nR � 1)

nT � 1
		χ2(α/2, nT � 1)
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Test for Noninferiority/Superiority Similar to testing intrasubject variabilities, the problem
of testing noninferiority/superiority can be unified by the following hypotheses:

H0: 	σ
σ

B

B

R

T
	 � δ vs. Ha: 	σ

σ
B

B

R

T
	 � δ.

Testing the above hypotheses is equivalent to testing the following hypotheses:

H0: σ 2
BT � δ 2σ 2

BR � 0 vs. H1: σ 2
BT � δ 2σ 2

BT � 0.

Define

η � σ 2
BT � δ 2σ 2

BR.

For a given significance level α, similarly, the (1 � α) � 100%th MLS upper confidence
bound of η can be constructed as

η̂U � η̂
 �∆�U� ,

where ∆U is given by

∆U � s4
BT1 � �

2


 δ 4s4
BR1 � �

2


	
σ
m

ˆ4
W

2
T	 1 � �

2


	
δ4

m
σ̂

2

4
WR	 1 � �

2

.

We then reject the null hypothesis at the α level of significance if η̂U � 0. Under the
assumptions that n � nT � nR, using a similar argument as the previous section, the power
of the above testing procedure can be approximated by

P�N	�n�(σ 2
BT

σ
�

*
δ 2σ 2

BR)
	, 1�� Z(α)	,

where

σ *2 � 2�σ 2
BT 
 	

σ
m

2
WT	�

2


 δ 4 σ 2
BR 
 	

σ
m

2
WR	�

2


	
m2(

σ
m

4
W

�
T

1)
	
	

m2
δ
(m

4σ
�

4
WR

1)
	�.

As a result, the sample size needed in order to achieve the power of 1�β at the α level
of significance can be obtained by solving the following equation:

Z(α) � � �Z(β ).

This gives

n � .
σ *2(Z(α) 
 Z(β))2

		
(σ 2

BT � δ 2σ 2
BR)2

�n�(σ 2
BT � δ 2σ 2

BR)2

			σ *

nR(m � 1)
			
χ2(1 � α, nR(m � 1))

nT(m � 1)
		χ2(α, nT (m � 1))

nR � 1
		
χ2(α, nR � 1)

nT �1
		
χ2(1 � α, nT � 1)
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Example 11.10.3 Consider Example 11.10.1 as described above. Suppose the investigator
is interested in testing the difference in intersubject variability between inhaled and SC
formulations. Suppose based on pharmacokinetic data observed from a pilot study, the
intrasubject and intersubject variabilities for the treatment and the control are estimated as
20% and 30% (i.e., σ WT � 0.20 and σ WR � 0.30) and 35% and 40% (i.e., σ BT � 0.30 and
σ BR � 0.40), respectively. Thus, we have

σBT � 0.30 σBR � 0.40,

σWT � 0.20 σWR � 0.30.

It follows that

σ *2 � 2�0.302 
 	
0.2

3
02
	�

2


 0.402 
 	
0.3

3
02
	�

2


 	
32

0
(3
.2

�

04

1)
	
	

32
0
(3
.3

�

04

1)
	�

� 0.095.

Hence, the sample size needed for testing equality in intersubject variability for achieving
an 80% power (1 � β � 0.80) at the 5% level of significance (α � 0.05) is given by

n �

� 151.4 � 152.

Sample sizes required for testing noninferiority, superiority, and similarity/equivalence
can be similarly obtained by using the formulas given above.

Replicated Crossover Design Under model (11.10.4) and new random variable zijk1 � x�ijk.
in (11.10.5), the estimators of intersubject variances can be defined by

s2
BT �	

n1 


1
n2 � 2
	 


2

i�1


ni

j�1
(x�ijT. � x�i.T.)

2,

s2
BR �	

n1 


1
n2 � 2
	 


2

i�1


ni

j�1
(x�ijR. � x�i.R.)

2,

where

x�i.k. � 	
n
1

i
	 


ni

j�1
x�ijk..

Note that E(s2
Bk) � σ 2

Bk 
 σ 2
Wk /m for k � T, R. Therefore, the unbiased estimators for the

intersubject variance are given by

σ̂ 2
BT � s2

BT � 	
m
1

	σ̂ 2
WT, (11.10.7)

σ̂ 2
BR � s2

BR � 	
m
1

	σ̂ 2
WR. (11.10.8)

0.095(1.96 
 0.84)2
			

(0.302 � 0.402)2
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Test for Equality For testing the equality in intersubject variability, the following hypotheses
are considered:

H0: 	σ
σ

B

B

R

T
	 � 1 vs. Ha: 	σ

σ
B

B

R

T
	 � 1.

Testing the above hypotheses is equivalent to test the following hypotheses:

H0: σ 2
BT � σ 2

BR � 0 vs. Ha: σ 2
BT � σ 2

BR � 0.

Let η � σ 2
BT � σ 2

BR. An intuitive estimator of η is given by

η̂ � σ̂ 2
BT � σ̂ 2

BR,

where σ̂ 2
BT and σ̂ 2

BR are given in (11.10.7) and (11.10.8), respectively. It follows that

η̂� σ̂ 2
BR � σ̂ 2

BT

� s2
BT � s2

BR � 	
m
1

	σ̂ 2
WT 
 	

m
1

	σ̂ 2
WR.

Random vector (x�ijT., x�ijR.)� for the jth subject in ith sequence has a bivariate normal distri-
bution with covariance matrix given by

ΩB �  �. (11.10.9)

The unbiased estimator of covariance matrix �B can be obtained as

Ω̂B �  �, (11.10.10)

where

s2
BTR �	

n1 


1
n2 � 2
	 


2

i�1


ni

j�1
(x�ijT. � x�i.T.)(x�ijR. � x�i.R.)

is the sample covariance between x�ijT. and x�ijR.. Let λi, i � 1, 2 be the two eigenvalues of
the matrix ΘΩB, where

Θ �  �. (11.10.11)

Hence, λi, i � 1, 2 can be estimated by

λ̂ i � for i � 1, 2.

Without loss of generality, it can be assumed that λ̂1 � 0 � λ̂2, By Lee et al. (2003), an
(1 � α) � 100% confidence interval of η is given by

(η̂L, η̂U),

where

η̂L � η̂ � �∆�L�, η̂U � η̂ 
 �∆�U�

s2
BT � s2

BR � �(s�2
BT� 
� s�2

BR�)2� �� 4�s4
B�TR�

				2

0
�1

1
0

s2
BTR

s2
BR

s2
BT

s2
BTR

ρσBTσBR

σ2
BR 
 σ2

WR/m
σ 2

BT 
 σ 2
WT/m

ρσBTσBR
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and

∆L � λ̂1
2 1 � �

2


 λ̂2
2 1 � �

2


	
σ̂
m

4
W
2
T	 1 � �

2


 	
σ̂
m

4
W
2
R	 1 � �

2

,

∆U � λ̂1
2 1 � �

2


 λ̂2
2 1 � �

2


	
σ̂
m

4
W
2
T	 1 � �

2


 	
σ̂
m

4
W
2
R	 1 � �

2

,

where ns � n1 
 n2 � 2. Then, we reject the null hypothesis at the α level of significance
if 0 � (η̂L, η̂U).

Let n � n1 
 n2 � 2. Under the alternative hypothesis, the power of the above test can
be approximated by

P�N	�n�(σ 2
BT

σ
�

*
σ 2

BR)
	, 1�� Z(α/2)	,

where

σ *2 � 2�σ 2
BT 
 	

σ
m

2
WT	�

2


 σ 2
BR 
 	

σ
m

2
WR	�

2

� 2ρ2σ 2
BTσ 2

BR


	
m2(

σ
m

4
W

�
T

1)
	
	

m2 (
σ
m

4
W

�
R

1)
	�.

Thus, the sample size needed in order to achieve the power of 1 � β at the α level of sig-
nificance can be obtained by solving the following equation:

Z(α/2) �	
�n�(σ

σ

2
BT

*
� σ 2

BR)
	� �Z(β).

This leads to

n � .

Test for Noninferiority/Superiority Similar to testing intrasubject variabilities, the problem
of testing noninferiority/superiority can be unified by the following hypotheses:

H0: 	σ
σ

B

B

R

T
	 � δ vs. Ha: 	σ

σ
B

B

R

T
	 � δ.

Testing the above hypotheses is equivalent to testing the following hypotheses:

H0: σ 2
BT � δ 2σ 2

BR � 0 vs. Ha: σ 2
BT � δ 2σ 2

BR � 0.

σ *2(Z(α/2) 
 Z(β))2

			
(σ 2

BT � σ 2
BR)2

ns(m � 1)
		
χ2(α/2, ns(m � 1))

ns(m � 1)
			
χ2(1 � α/2, ns(m � 1))

ns � 1
		χ2(α/2, ns � 1)

ns � 1
			χ2(1 � α/2, ns � 1)

ns(m � 1)
			
χ2(1 � α/2, ns(m � 1))

ns(m � 1)
		
χ2(α/2, ns(m � 1))

ns � 1
			χ2(1 � α/2, ns � 1)

ns � 1
		χ2(α/2, ns � 1)
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When δ � 1, the rejection of the null hypothesis indicates the superiority of the test drug
versus the reference drug. When δ � 1, the rejection of the null hypothesis indicates the
noninferiority of the test drug versus the reference drug. Let η � σ 2

BT � δ 2σ 2
BR. For a given

significance level of α, similarly, the (1 � α)th upper confidence bound of η can be con-
structed as

η̂U � η̂
 �∆�U�,

where ∆U is given by

∆U � λ̂1
2 1 � �

2


 λ̂2
2 1 � �

2


	
σ̂
m

4
W
2
T	 1 � �

2


	
δ 4σ

m

ˆ 4

2
WR	 1 � �

2

,

where ns � n1 
 n2 � 2 and

λ̂ i � for i � 1, 2.

We then reject the null hypothesis at the α level of significance if η̂U � 0.
Using a similar argument in the previous section, the power of the above test procedure

can be approximated by

PN	�n�(σ 2
BT

σ
�

*
δ 2σ 2

BR)
	, 1�� Z(α)�,

where

σ *2 � 2�σ 2
BT 
 	

σ
m

2
WT
	�

2


 δ 4 σ 2
BR 
 	

σ
m

2
WR
	�

2

� 2δ 2ρ2σ 2
BTσ 2

BR


	
m2(

σ
m

4
W

�
T

1)
	
	

m2
δ
(m

4σ
�

4
WR

1)
	�.

As a result, the sample size needed in order to achieve a power of 1 � β at the α level of
significance can be obtained by solving the following equation:

Z(α)� � �Z(β).

This leads to

n � .

Example 11.10.4 Consider Example 11.10.3. Suppose it is of interest to compare inter-
subject variabilities under a 2 � 4 crossover design (ABAB, BABA). Information from the

σ *2(Z(α) 
 Z(β))2

		
(σ 2

BT � δ 2σ 2
BR)2

�n�(σ 2
BT � δ 2σ 2

BR)
			σ *

s2
BT � δ 2s2

BR � �(s�2
BT� 
� δ�2s�2

BR�)2� �� 4�δ�2s�4
BT�R�

					2

ns(m � 1)
		

χ2(α, ns(m � 1))
ns(m � 1)

			
χ2(1 � α, ns(m � 1))

ns � 1
			χ2(α, ns � 1)

ns � 1
			χ2(1 � α, ns � 1)
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pilot study indicates that ρ � 0.75, σ BT � 0.3, σ BR � 0.4, σ WT � 0.2, and σ WR � 0.3. It
follows that

σ *2 � 2�0.302 
 	
0.2

2
02
	�

2


 0.402 
 	
0.3

2
02
	�

2

� 2(0.75)2 (0.3)2 (0.4)2


 	
0.

2
2

2
04
	 
 	

0.
2
3

2
04
	�

� 0.08.

Hence, the sample size needed for testing equality in intersubject variability for achieving
an 80% power (1 � β � 0.80) at the 5% level of significance (α � 0.05) is given by

n �

� 129.12 � 130.

Because n � n1 
 n2 � 2, approximately 66 subjects per sequence are required for achieving
an 80% power at the 5% level of significance.

Sample sizes required for testing noninferiority, superiority, and similarity/equivalence
can be similarly obtained by using the formulas given above.

11.11 DISCUSSION

For convenience sake, we have considered ni � n for all i, where i can be the ith treatment
group in parallel designs or the ith sequence in crossover designs. In practice, ni are not
necessarily the same for all i. For example, when conducting a placebo control clinical trial
with very ill patients or patients with severe or life-threatening diseases, it is not ethical to
put too many patients in the placebo arm. Then the investigator must put fewer patients in
the placebo (if the placebo arm is considered necessary to demonstrate the effectiveness
and safety of the drug under investigation). A typical ratio of patient allocation for situa-
tions of this kind is 1 : 2; that is, each patient has a one-third chance of being assigned to
the placebo group and a two-third chance of receiving the active drug. For different ratios
of patient allocation, the sample size formulas discussed in this chapter can be directly
applied with appropriate modifications of the corresponding degrees of freedom (see, e.g.,
Chow et al., 2003b).

It should be noted that the sample size obtained based on the formulas in this chapter is
the number of evaluable patients required in order to achieve a desired power. In practice,
we may have to enroll more patients in order to obtain the required evaluable patients due
to potential dropout. Therefore, during the stage of planning, a sample size that can
account for the potential dropout is usually selected. For example, if the sample size
required for an intended clinical trial is n and the potential dropout rate is p, then we need
to enroll n/(1 � p)2 patients in order to obtain n evaluable patient at the completion of the
trial (Lachin, 1981). It should also be noted that the investigator may have to screen more
patients in order to obtain n/(1 � p)2 qualified patients at the entry of the study based on
inclusion/exclusion criteria of the trial.

0.08(1.96 
 0.84)2
			

(0.302 � 0.402)2
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In many clinical trials, multiple comparisons may be performed. In the interest of con-
trolling the overall type I error rate at the α level an adjustment for multiple comparisons
such as the Bonferroni adjustment is necessary. The formulas for sample size determina-
tion discussed in this chapter can still be applied by simply replacing the α level with an
adjusted α level.

Fleiss (1986a) points out that the required sample size may be reduced if the response
variable can be described by a covariate. Let n be the required sample size per group when
the design does not call for the experimental control of a prognostic factor. Also let n* be
the required sample size for the study with the factor controlled. The relative efficiency
(RE ) between the two designs is defined as

RE � 	
n
n
*
	.

As indicated by Fleiss (1986a), if the correlation between the prognostic factor (covariate)
and the response variable is r. The RE can be expressed as

RE � 	
1

1
�

00
r2	.

Hence we have

n* � n(1 � r2).

As a result the required sample size per group can be reduced if the correlation exists. For
example, a correlation of r � 0.32 could result in a 10% reduction in the sample size.

In most clinical trials, although the primary objectives are usually to evaluate the effec-
tiveness and safety of the test drug under study, the assessment of drug safety has not
received the same level of attention as the assessment of efficacy. As a result sample size
calculations are usually performed based on a pre-study power analysis for the primary effi-
cacy variable. If the sample size is based on a primary safety variable such as the adverse
event rate, a large sample size may be required especially when the incidence rate is low.
For example, if the incidence rate is one per 10,000, then we will need to include 10,000 in
order to observe one incidence. O’Neill (1988a) indicates that the magnitude of rates that
can feasibly be studied in most clinical trials is about 0.01 and higher. However, observa-
tional cohort studies usually can assess rates on the order of 0.001 and higher. O’Neill
(1988a) also indicates that it is informative to examine the sample sizes that are needed to
estimate a rate or to detect or estimate differences of specified amounts between the rates for
two different treatment groups.
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510

12
ISSUES IN EFFICACY EVALUATION

12.1 INTRODUCTION

As was discussed in Chapter 1, the characteristics of an adequate, well-controlled clinical trial
include a study protocol with a valid statistical design, adequate controls, appropriate random-
ization and blinding procedures, the choice of sensitive efficacy and safety clinical endpoints,
a strict adherence to the study protocol during the conduct of the trial, and a sound statistical
analysis. These components are crucial for providing a scientific and unbiased assessment of
the effectiveness and safety of a drug product. After the completion of a study, it is extremely
important to summarize the clinical results and provide a valid scientific interpretation.

To assist the sponsors in the preparation of final clinical reports for regulatory submis-
sion and review, most regulatory agencies have developed guidelines for the format and
content of a clinical report. In the United States, before the mid-1980s, clinical study reports
were typically prepared by the study’s medical monitor using the study’s statistical reports.
As a result, for each clinical study, two reports were submitted to the FDA for review. The
clinical report was reviewed by the respective therapeutic division and the statistical report
was reviewed by the biometrics division. The disadvantage of this arrangement is that the
clinical reports may not provide the medical reviewers with the sufficient information for an
adequate and correct interpretation of the results of statistical analyses. On the other hand,
statistical reports often lack important clinical interpretations for the statistical reviewers to
appreciate and understand the clinical significance and the magnitude of the study findings.
To overcome this disadvantage, the FDA made a revolutionary change in the reporting of a
clinical trial by publishing the Guideline for the Format and Content of the Clinical and Sta-
tistical Sections of an Application in July 1988. This guideline specifies that two separate
clinical and statistical reports must be combined into a full integrated report. The full 

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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integrated report cannot be derived by simply attaching a separate statistical report to the
clinical report. The advantage of this revolutionary change is that it forces both medical and
statistical reviewers to review the relevant material and information in a single report.

In 1994 the Committee for Proprietary Material Products (CPMP) Working Party on
Efficacy on Medicinal Products of the European Community issued a similar guideline enti-
tled A Note for Guidance on Biostatistical Methodology in Clinical Trials in Applications for
Marketing Authorizations for Medical Products (CPMP, 1995). In July, 1996, the Interna-
tional Conference on Harmonization (ICH) issued a guideline entitled the Structure and Con-
tents of Clinical Study Reports. The ICH recommended its adoption to the three regulatory
agencies. Technically speaking, clinical and statistical reports must now include clinical data
listing, statistical methods, and results of statistical analysis in addition to documentation on
the conduct of the clinical trial. For an integrated clinical and statistical report, the FDA
guidelines suggest that tables and figures be incorporated into the main text of the report or
placed at the end of the text. The study protocol, investigator information, related publica-
tions, patient data listings, and technical statistical details such as derivations, computations,
analyses, and computer output must be provided in the appendixes of the report.

In clinical trials the observed clinical data can basically be summarized at three differ-
ent levels. The first level concerns patient data listings which include death, discontinued
patients, protocol deviations, patients excluded from the efficacy analysis, listings of seri-
ous adverse events, laboratory abnormal values, individual demographic, efficacy and
adverse events listings, and laboratory measurements. The FDA also requires that the case
report tabulations be included at this level. The second level concerns statistical tables and
figures provided at the end but not in the text of the report. These statistical tables and
figures are derived from the results of the designated statistical methods stated in the pro-
tocol. The third level concerns the summary tables and figures in the text which are con-
densed from the summary statistical tables and figures. Cross-references must be provided
to summary tables and figures in the text, statistical tables and figures at the end of the
study, and individual patient data listings in the appendices of the study.

For efficacy evaluation of the drug product under investigation, formal statistical infer-
ential procedures are usually performed to establish the benefit of the treatment based on
the efficacy data. However, many clinical and statistical issues may be raised during the
analysis of efficacy data. These issues need to be addressed before a fair and unbiased
assessment of efficacy can be reached. The FDA guidelines on the format and content for
the full integrated clinical and statistical report and the ICH guidelines on the structure and
contents of clinical study reports require the following issues be addressed in the final
reports: (1) baseline comparability, (2) analyses of the intention-to-treat dataset versus
evaluable dataset, (3) adjustments of covariates, (4) multicenter trials, (5) subgroups analy-
sis, (6) multiple endpoints, (7) interim analysis and data monitoring, (8) active control
studies, and (9) handling of dropouts or missing data. Due to the globalization and recent
advancement on genetics and bioinformatics, combining efficacy evidence from different
geographic regions with different ethnic backgrounds and use of genomic information to
account for variation among regions and ethnicities have become a critical yet challenging
issue for evaluation of the efficacy of the medicine under investigation. Note that the issues
of active control studies and equivalence trials were previously addressed in Section 7.4. In
addition the issue of group sequential procedures for interim analyses was discussed in
Chapter 10. In this chapter, we will focus on some remaining issues.

In Section 12.2, we will discuss baseline comparability between treatment groups with
respect to patient characteristics. The concept of the intention-to-treat dataset is elucidated
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and compared with the evaluable dataset in Section 12.3. Statistical methods for adjust-
ment of treatment effects by covariates are discussed in Section 12.4. Some statistical
issues regarding multicenter studies, multiple comparisons such as subgroup analyses, and
multiple endpoints are addressed in Sections 12.5 and 12.6. Various aspects with respect to
data monitoring are provided in Section 12.7. Section 12.8 illustrates the concept for uti-
lization of genomic information for evaluation of the efficacy of a medicine under investi-
gation. In Section 12.9 some final remarks are given.

12.2 BASELINE COMPARISON

Baseline measurements are those collected during the baseline periods as defined in the
study protocol. Baseline usually refers to as measurements obtained at randomization and
prior to treatment. Sometimes, measurements obtained at screening are used as baselines.
Also, baselines are not always restricted to pretreatment measurements. For example, for
complicated designs such as the enrichment design for the assessment of Tacrine in the
treatment of Alzheimer’s disease and CAST for arrhythmia, there may have several phases
with the primary clinical endpoints evaluated at two successive phases. Then the measure-
ments that would be used as the baseline for the entire trial or for a particular phase of the
study should be precisely stated in the study protocol and in the final clinical report.

Basically the objectives for the analysis of baseline data are threefold. First, the analy-
sis of baseline data provides a description of patient characteristics of the target population
to which statistical inference is made, along with useful information on whether the
patients enrolled in the study are representative of a targeted population according to the
inclusion and exclusion criteria of the trial. Second, since baseline data measure the initial
patient disease status, they can serve as reference values for the assessment of the primary
efficacy and safety clinical endpoints evaluated after the administration of the active treat-
ment. Finally, the comparability between treatment groups can be assessed based on base-
line data to determine potential covariates for statistical evaluations of treatment effects.

In clinical trials the baseline data usually consist of demographic data such as age, gen-
der, or race; initial disease status as evaluated by the primary efficacy, safety endpoints, and
other relevant data; and medical history. The ICH Guideline on Structure and Contents of
Clinical Study Reports requires that baseline data on demographic variables and some 
disease factors be collected and presented. These disease factors include (1) specific entry
criteria, duration, stage and severity of disease and other clinical classifications and sub-
groupings in common usage or of known prognostic significance, (2) baseline values for
critical measurements carried out during the study or identified as important indicators of
prognosis or response to therapy, (3) concomitant illness at trial initiation, such as renal
disease, diabetes, and heart failure, (4) relevant previous illness, (5) relevant previous treat-
ment for illness treated in the study, (6) concomitant treatment maintained, (7) other fac-
tors that might affect response to therapy (i.e., weight, renin status, and antibody level), (8)
other possibly relevant variables (e.g., smoking, alcohol intake, and special diets), and for
women, menstrual status and data of last menstrual period if pertinent for the study.

Note that in most clinical trials, it is tempting to collect more baseline information than
needed. It is suggested that we only focus on the baseline or prognostic variables that
might affect the response to be treatment.

The effectiveness and safety of the treatment is usually assessed by the change from the
baseline of some primary clinical endpoints. They change can be either the absolute
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change from the baseline, which is defined as the difference between the post-treatment
value and the baseline value, or the relative change such as the percent change from the
baseline, which is the absolute change from the baseline divided by the baseline value 
multiplied by 100. The change from the baseline, which can be negative or positive, is
symmetric about zero. The percent change from the baseline is in fact the ratio of the post-
treatment value to the baseline value minus 1. Thus, the range of the percent change from
the baseline is from �100 to infinity. As a result, the percent change from the baseline is
not symmetric about 0 nor 1. If the post-treatment and the baseline values are positively
correlated, then the variability of the change from the baseline will be smaller than that of
the raw value. Therefore, the change from the baseline measures the alteration caused by
the treatment. In addition, it may provide a more precise statistical inference of the treat-
ment effects because of a possible reduction of variability. If the distribution of a clinical
endpoint is approximately normal, then the distribution of the change from the baseline for
this endpoint is also normal. However, the distribution of the percent change from the
baseline is not normal; rather it is a Cauchy distribution whose moments such as mean and
variance do not exist. As a result, no inference about the mean or variance can be made. In
this case it is recommended that nonparametric methods be employed to obtain inference
of the treatment effect based on the median.

As was indicated above, the baseline data are often used as reference values for assessing
changes in disease status after administration of the treatment. In practice, multiple baseline
measurements are often obtained not only to assess variability but also to evaluate the sta-
bility of the disease status before the administration of active treatment. However, the 
reasons for multiple baseline measurements are manifold (Carey et al., 1984; Frick et al.,
1987; Manninen et al., 1988). For example, some investigators feel that due to various
causes, a single baseline measurement might not provide reliable assessments for some crit-
ical disease characteristics. On the other hand, in antiarrhythmia trials, multiple baseline
measurements are evaluated during the washout period to ensure that patients are free of
previous antiarrhythmia medications. As a result, some of multiple baseline measurements
evaluated at the end of the washout period can provide an actual description of the initial
disease status for each patient. In addition the FDA guideline for the studies of benign pro-
static hyperplasia (Boyarsky and Paulson, 1977) suggests that baseline measurements be
collected in a placebo run-in period of at least 28 days. The purpose in collecting multiple
baseline measurements during the placebo run-in period is to assess the placebo effect by
some important clinical endpoints and to evaluate the stability of the disease status.

However, when there are more than one baseline measurement for a particular endpoint,
the question arises whether one of the measurements or the average of all or part of the
measurements should be used as a single baseline value. For example, in antihypertensive
trials it is customarily to use the average of two or three measurements of systolic and dias-
tolic blood pressures taken within the prespecified window of the baseline period as the
baseline value without formal statistical justification. The question regarding which mea-
surements should be used as baseline is subjective to clinical judgment, which should be
addressed either in the study protocol or prior to the initiation of the trial based on the
information from previous or related trials and pilot studies. In some cases, however, it
may be of interest to establish the stability of the disease state or to evaluate the placebo
effect through the placebo run-in period. In this case multivariate statistical procedures are
useful. In practice, for multiple baseline measurements, it is suggested that valid statistical
methods be used to justify a single baseline, such as the average, by combining baseline
measurements.

BASELINE COMPARISON 513
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Let Yhij be the response of a clinical endpoint evaluated at the jth time point during 
the baseline period for the ith subject receiving the hth treatment; h � 1, . . . , H, i � 1, . . . ,
ni, j � 1, . . . , p, and ni � p �1. Since baseline measurements are obtained prior to treat-
ments, it is not anticipated that there are differences among treatment groups (due to the
treatment). The following model is commonly used for investigation of the time effect of
baseline measurements by suppressing the subscript h for treatment:

Yij � αj � eij, j � 1, . . . , p, i � 1, . . . , N, (12.2.1)

where αj is the average of clinical endpoint at time point j, eij is the random error associ-
ated with Yij, and N � n1 � . . . � nH;

Let the p � 1 vector Yi� (Yi1, . . . , Yip) be the p measurements of the clinical endpoint
measured at p time points during the baseline period. Also, let ei � (ei1, . . . , eip) be the cor-
responding error vector. Assume that ei follow a multivariate normal distribution with
mean vector 0 and a nonsingular covariance matrix Σ. Then the Hotelling T2 can be used
to investigate the trend and placebo effect for multiple baselines (Morrison, 1976). Let C
be a (p � 1) � p matrix with the jth row vector c�

j of orthogonal contrast such that

1�pcj � 0 and cj�cj� � 0 for  j � j�,

where 1p is p � 1 column of 1. Then the hypothesis of no overall trend effect due to time is
rejected at the α th level of significance if the test statistic

T 2 � �
(n

N
�

�

1)(

p
p

�

�

1

1)
�NY��C�(CSC�)�1 CY�

� F(α, p �1, N � p �1) (12.2.2)

where Y� is the sample means of Y1, . . . , YN, S is the sample covariance matrix from 
Y1, . . . , YN with N �1 degrees of freedom, and F(α, p �1, N � p �1) is α th upper quan-
tile of an F distribution with p �1 and N � p �1 degrees of freedom.

Since the Helmert transformation compares a measurement of the baseline value at a par-
ticular time point to the average of baseline values at subsequent time points, it can be used
to evaluate the placebo effect and determine the time point at which the baseline stabilizes
(Searle, 1971). For the Helmert matrix, the jth row of C is constructed such that the first j �1
elements are 0, the jth element is 1, and rest of the elements are 1/( p � j), j � 1, . . . , p � 1.
If the time point where the baselines stabilize can determined by the Helmert transformation,
it is not only possible to estimate the placebo effect but also to combine the stabilized multi-
ple baseline measurements into a single baseline. Note that if there is no time effect for the
stabilized baseline measurements, model (12.2.1) can be rewritten as

Yij � α � eij, j � 1, . . . , p, i � 1, . . . , N. (12.2.3)

Under model (12.2.3), Yi follows a multivariate normal distribution with mean vector α1p

and covariance matrix Σ. The criterion used to summarize the stabilized multiple baseline
measurements of a clinical endpoint is to find the best linear unbiased estimate of α. In
addition, since Yi1, . . . , Yip represent p unbiased estimators of a scalar parameter α and
covariance matrix Σ, the best linear unbiased estimator for α based on Yi1, . . . , Yip by the
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generalized least squares procedure (GLS), under model (12.2.3), is given by (O’Brien,
1984).

Xi � (12.2.4)

with variance

VX � �1�p ��1
1p�

�1
.

Some investigators (e.g., Carey et al., 1984; Frick et al., 1987) suggest the use of a simple
average to combine with stabilized multiple baseline measurements, which is given by

Zi � �
1
1
�

�
p

p

Y
1p

i
�, (12.2.5)

with variance

VZ � .

Although the covariance matrix Σ is usually unknown, it can be estimated by its consis-
tent sample estimator for large samples. Let S1, . . . , SH be the within-group sample
covariance matrices from H treatment groups. Then an unbiased consistent estimator of Σ
can be obtained as

Sp � �
N �

1
H

� [(n1 � 1)S1 � . . . � (nH � 1)SH].

As a result the estimated generalized least square (EGLS) estimator of α is given by

xi � �
1
1
�

�
p

p

S
S

�

�

1
p

1
p

Y
1p

i
�, (12.2.6)

where xi is asymptotically unbiased and follows an asymptotic distribution such as that
of (12.2.4). Unbiased consistent estimators of variances of xi and Zi are given by,
respectively,

υx � �
N

N
�

�

p �

H
1

� (1�pSp
�11p)

�1

and

υZ � �
1�pS

p
p
�

2

11p
� .

Example 12.2.1 A parallel two-group randomized phase II study with 22 patients per
treatment group was conducted to investigate the efficacy and safety of a newly developed
pharmaceutical entity, compared to a placebo, in suppressing ventricular arrhythmia. One
important safety endpoint in this trial was the supine heart rate (beats/minutes). Baseline
measurements were obtained daily prior to the morning (placebo) dose during a four-day
placebo run-in period. The sample means and pooled within-group sample covariance
matrix are given in Table 12.2.1.

1�p�
�1

1p
��

p2

1�p�
�1

Yi
��
1�p�

�1
1p
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To detect the placebo effect and determine the time point where the mean heart rate sta-
bilizes, a preliminary analysis can be performed by the following 3 � 4 Helmert matrix:

C � � �.

The corresponding T 2 is 0.23 with a p-value of 0.87 (3 and 41 d.f.). Since we failed to
reject the null hypothesis at the α level of significance, we can conclude that there is no
placebo effect, and we do not pursue individual hypotheses about the time point where the
heart rate stabilizes. Similar results for time trends can be tested based on the following
linear contrasts:

C � � �.

Since there is no placebo effect during the placebo run-in period, an attempt is made to
construct a combined baseline heart rate for each patient from the four baseline measure-
ments. The estimated generalized least square estimate of the combined baseline heart rate
is given by

xi � �0.1764Yi1 � 0.3027Yi2 � 0.5478Yi3 � 0.3259Yi4.

The simple average of the four baseline heart rates, Zi, uses equal weights for the combined
baseline, while the EGLS procedures uses weights proportional to the row totals of the
inverse of the pooled within-group sample covariance matrix. The estimated variances of xi

and Zi are 66.32 and 73.21. Therefore, with respect to this dataset, the estimated variance
of the combined baseline heart rate by the EGLS procedure is reduced about 9% compared
to that of the simple average.

�3 �1 1 3
1 �1 �1 3

�1 3 �3 1

1 ��13� ��13� ��13�

0 1 ��12� ��12�

0 0 1 �1

Table 12.2.1 Daily Mean Heart Rate (Beats per Minute) and the Pooled
Within-Group Covariance Matrix

Day 1 Day 2 Day 3 Day 4

Placebo
N � 22 74.2 73.9 74.1 73.6

Treatment 
N � 22 75.0 73.5 73.1 73.8

Covariance
Matrix (d f � 42)
Day 1 140.2 70.2 66.3 88.2
Day 2 110.8 45.6 47.5
Day 3 73.3 59.3
Day 4 92.9
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12.3 INTENTION-TO-TREAT PRINCIPLE AND 
EFFICACY ANALYSIS

In clinical trial development, despite a thoughtful and well-written study protocol, devia-
tions from the protocol may be encountered over the course of a trial. For example, some
patients randomly assigned to receive one of the treatments may be found not meeting the
inclusion and/or exclusion criteria after the completion of the trial due to the reason that
some laboratory evaluations (on which inclusion criteria are based) are not available at the
time of randomization and drug dispensation. In some situations patients might receive
wrong treatment due to a mix-up in randomization schedule. Some patients who received
the assigned treatment might be switched to receive the other treatment in an emergency or
after deterioration of the patient’s disease status. In addition, for every clinical trial, it is
likely that patients will withdraw from the study prematurely before the completion of the
trial due to various reasons. For patients who complete the study, they might miss some
scheduled visits. Another example is patient compliance to the treatment regimen. As a
result a legitimate question is which patients should be included in the analysis for a valid
and unbiased assessment of the efficacy and safety of the treatment.

Before we address the question, it is helpful to review the concept of randomization 
discussed in Chapter 4. Recall that randomization does not guarantee equal distributions of
baseline variables such as demographic and patient characteristics among treatment groups.
It, however, does provide an unbiased comparison between treatment groups. Cornell (1990)
pointed out that randomization can avoid bias not only with respect to clinical endpoints,
which can be readily identified, measured, and controlled in advance, but also with respect to
those endpoints not measured and perhaps not yet known to be influential. In addition, as was
indicated in Chapter 4, the random assignment of patients to treatment groups is the key to a
valid statistical inference. However, as pointed out by Lachin (2000), randomization alone is
not sufficient to provide an unbiased statistical inference. The sufficient conditions for a valid
unbiased statistical inference include:

1. Missing data of randomized patients do not jeopardize unbiased comparisons
between treatment groups.

2. Trial outcomes are assessed in a uniform and unbiased manner for all patients in the
study.

In practice, the first condition can be achieved by the intention-to-treat principle (ITT prin-
ciple). The ITT principle is described in the ICH E9 guidance entitled, Statistical Princi-
ples for Clinical Trials (1998). In the ICE E9 guidance, the ITT principle is reffered to as
“the principle that asserts that the effect of a treatment policy can be best assessed by eval-
uating on the basis of the intention to treat a subject (i.e., the planned treatment regimen)
rather than the actual treatment given.” It follows that all subjects allocated to a treatment
should be followed up, evaluated, and analyzed as members of that groups regardless of
their compliance with the planned treatment. On the other hand, the second condition can
be achieved through the blinding technique introduced in Chapter 4. Note that it is very
important that blinding be enforced to all personnel involved during the study. The person-
nel include but are not limited to patients, clinicians, outcome assessors research nurses,
trial pharmacists, and laboratory analysts.

Sackett et al. (1991) and Spilker (1991) report on a clinical trial that compares surgical
therapy with medical therapy in treatment of patients with bilateral carotid stenosis. This
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study enrolled 167 patients. Among these patients, 94 were randomized to the surgical
group and 73 were randomly assigned the medical therapy. Sixteen patients who either had
stroke or died during initial hospitalization were not included in the analysis. Fifteen of the
16 excluded patients were randomized to the surgical group. Consequently, a statistically
significant number of patients in surgical therapy was excluded in the evaluable analysis 
(p-value � 0.0011 based on a two-sided Fisher’s exact test). The rate of occurrence of sub-
sequent transient ischemic attack, stroke, or death for the evaluable analysis is 54.4% in the
surgical therapy as compared to that of 73.6% in the medical therapy. This indicates that
there is a statistically significant reduction of risk 27% in the surgical therapy (p-value �
0.018 based on two one-sided Fisher’s exact test). However, the intention-to-treat analysis,
which includes all randomized patients, the reduction of risk is estimated as low as 16%,
which is not statistically significant at the 5% level of significance (p-value � 0.10 based on
the Fisher’s two-sided test). These results are summarized in Table 12.3.1. The statistically
significant reduction of risk in subsequent transient ischemic attack, stroke, or death of the
surgical therapy observed from the evaluable analysis is a typical example of a biased infer-
ence and may be misleading because of the exclusion of patients from analysis.

Table 12.3.1 discussed above illustrates an excellent example of a biased inference from
a reduced analysis set by treatment-related exclusion of patients. Therefore, from the defi-
nition, the ITT principle implies that the analysis should included all randomized subjects
and their data should be analyzed according to their planned randomized treatment. In
other words, the ITT principle requires complete follow-up of all randomized subjects for
study outcomes. The set of subjects included in the analysis that is as close as possible to
the ITT principle is referred to as the full analysis set (ICH E9, 1998). In practice, however,
the full compliance of the ITT principle is difficult to accomplish. For example, after ran-
domization, subjects may be found to violate some major inclusion/exclusion criteria,
patients may fail to take any assigned treatment drug, or patients may just disappear and
hence do not provide any postrandomization data. As a result, the full analysis set may not
include these subjects. Consequently, potential bias may be introduced from the exclusion

Table 12.3.1 Summary of Surgical Versus Medical Therapy in Treatment of Bilateral
Carotid Stenosis

Therapy

Surgical Medical p-Value

I. Patients excluded

N 94 73 0.0011
Number excluded 15 (16.0%) 1 (1.4%)

II. Evaluable analysis

N 79 72 0.018
TIA, stroke or death 43 (54.4%) 53 (73.6%)

III. Intention-to-treat analysis

N 94 73 0.10
TIA, stroke or death 58 (61.7%) 54 (74.8%)

Note: TIA: Transient ischemic attack; p-values are obtained from the two-tailed Fisher’s exact test.

Source: Adapted from Sackett et al. (1991) and Spilker (1991).
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of these subjects. Therefore, it is suggested that a discussion be provided to address this
issue as fully as possible. For example, whether the entry criteria were measured before
randomization and detection of violation of entrance criteria were made objectively and
uniformly for all subjects should be fully addressed. In addition, whether failure to take
study medication or failure to return after the randomization visit has anything to do with
or is influenced by knowledge of treatment assignment should also be addressed.

In general, the ITT analysis is a conservative approach with better capability of provid-
ing an unbiased inference about the treatment effect. The ITT analysis can reflect real clini-
cal practice better than any other analyses. In order to provide an unbiased and valid
inference based on the ITT analysis, the study protocol should include dropout rates, rates
of poor compliance, patterns of missing values, and other related variables as response vari-
ables. These response variables should be compared between the treatment groups. In addi-
tion interactions between treatment groups and noncompleters (or completers) should also
be examined with respect to demographic variables and baseline disease characteristics. The
CPMP Working Party on Efficacy of Medicinal Products suggests that at least demographic
and baseline data on the disease status in the wider population screened for entry, or en-
rolled into a screening phase of the study prior to randomization, should be summarized to
provide information about the numbers and characteristics of excluded patients, both eligi-
ble and ineligible, together with their reasons for exclusion, in order to guide assessment of
the potential practical impact on the study results (European Commission, 1990, 1994).

For the ITT analysis, serious bias can be introduced if no data are collected for the
patients who discontinued the study prematurely. Therefore it is recommended that the pri-
mary clinical endpoints of the trial be evaluated at the time of withdrawal. In many clinical
trials the method of the last observation carried forward (LOCF) is applied to patients who
withdrew prematurely from the study with no additional follow-up data after discontinua-
tion. This approach, however, is biased if the withdrawal of patients is treatment related. In
principle, the ITT analysis is performed according to the random allocation of treatment
regardless of the real treatment that patients actually receive. If the proportion of mix-up in
treatment assignments exceeds a specified level, the ITT analysis, nor any other analysis,
will no longer be valid for the interpretation of the results. This is the fatal consequence of
poor conduct of randomization codes, packaging, and dispensation of the study drugs. If
this situation does occur, the trial has little value in providing clinical evidence for the
efficacy and safety of the study drug.

Thus far, we only focus on the analysis aspect of the ITT principle. As mentioned before,
however, a biased inference may occur in the presence of missing data, which may result
from premature discontinuation of assigned treatment or withdrawal of subjects before their
scheduled completion of the study or poor adherence of subjects to the study schedule. Note
that statistical analysis based on the full analysis set does not fully comply with the ITT
principle due to the exclusion of the subjects with violation of entry criteria or with no post-
randomization data. As a result, this analysis is not a true intention-to-treat analysis, but it is
another subset analysis. The ITT principle, therefore, requires complete follow-up of all ran-
domized subjects for study outcomes, and hence, an unbiased comparison among treat-
ments can be made based on complete data from all randomized subjects. This concept in
the design of clinical trials is referred to as the ITT design. Lachin (2000) defines the ITT
design, wherein all subjects are followed until death or the end of trial, until the outcome is
reached regardless of whether the subject is still receiving or complying with the assigned
treatment. It follows that premature discontinuation of assigned treatment is different from
premature withdrawal of subjects from the study. Subjects may discontinue their randomly
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assigned treatment due to various reasons such as safety. However, as Lachin (2000) pointed
out, premature discontinuation of treatment should not lead to premature withdrawal of sub-
jects from the study. In addition, regardless of premature discontinuation of assigned treat-
ments, all scheduled assessment and evaluation should be performed on all subjects until the
death of the subject or the scheduled conclusion of the study. Only in this manner can a true
ITT analysis be performed.

In addition to the ITT analysis, many subsets of the ITT dataset may be constructed for
efficacy analysis. These subsets may include (1) all patients with any efficacy observations or
with a certain minimum number of observations, (2) only patients completing the study,
(3) all patients with an observation during a particular time window, and (4) only patients with
a specified degree of compliance. Analyses based on these subsets are referred to as evaluable
analyses. The patient population for the evaluable analysis is called the per-protocol or
efficacy patient population. The criteria for inclusion of patients in the evaluable analysis
should be specified in the study protocol in advance. It should not be established after the data
are collected and randomization codes are unblinded. The criteria for the evaluable analysis
usually include the following characteristics:

1. Satisfaction of a prespecified minimal length of exposure to the treatment of the
investigated therapy.

2. Provision of data on primary clinical endpoints at prespecific and relevant scheduled
time points.

3. Satisfactory compliance with treatment.

4. No major protocol violations or deviations including the inclusion or exclusion crite-
ria, incorrect randomization, concomitant medications.

Note that the above criteria should be specified in the study protocol. The definition of 
protocol violation should also be specified in the study protocol prior to the initiation of 
the trial. In addition the nature and reasons for protocol violation should be reviewed,
described, decided, and documented by blinded data coordinators, medical monitor and
other personnel before the randomization codes are broken and the database is locked 
for analysis. The evaluable analysis is usually considered the preferred analysis by the
sponsor because, in general, it maximizes the probability of showing the efficacy of the
drug under study. The evaluable analysis, however, is much more vulnerable to bias than
the ITT analysis because of inherent subjectivity for exclusion of patients from the evalu-
able analysis as demonstrated by the example given in Table 12.2.1. For clinical trials with
comparative controls or placebos, the ITT analysis will give a less optimistic estimate for
the efficacy, since the inclusion of noncompleters will generally dilute the treatment effect.
Lachin (2000) pointed out that the per-protocol analysis not only inflates the type I error
rate up to 50% or higher even when the null hypothesis is true, but also it provides less
power than the ITT analysis. On the other hand, if the objective of the trial is to show ther-
apeutic equivalence between treatment groups, the ITT analysis is still less biased than the
evaluable analysis, but it is no longer conservative in the context of equivalence trials. The
results obtained from the ITT analysis should be interpreted with extreme caution.

From the above discussion, it is helpful to provide a disposition of all patients who
entered the study so that the patients in the datasets for the ITT and evaluable analyses can
be clearly defined. The principle is to account for every single patient participated in the
study. Both the FDA and ICH guidelines on clinical reports require that the numbers of
patients who are randomized, and complete each phase of the study be provided, as well as
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the reasons for all post-randomization discontinuation. Tables 12.3.2 and 12.3.3 give two
examples of the summary data on patient disposition as provided in the ICH Guideline on
the Structure and Content of Clinical Study Reports (ICH, 1996). The FDA guideline also
suggests, as illustrated in Table 12.3.4, that there be provided summaries of the number of
the patients who entered and completed each phase of the study, or each week/month of 
the study. In addition a listing should be provided as shown in Table 12.3.5, by center and
treatment group, for the patients who discontinued from the trial after enrollment, with the
information on patient identifier, demographic characteristics, the specific reasons for dis-
continuation, the treatment and dose level, and the duration of the treatment before discon-
tinuation. After the status of each patient during the trial is accounted for, we need to decide

Table 12.3.3 Example of Tables for Disposition of Patients
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on the dataset for efficacy, in particular, which patients should be included in the efficacy
analysis. These information should be provided in the clinical report. Table 12.3.6 gives a
listing of the patients and visits excluded from an efficacy analysis. The FDA guidelines also
require the investigator to provide a summary table of the number of patients excluded
from the efficacy analysis by reason and week or phase (see Table 12.3.7). The primary
efficacy analysis should be based on all randomized patients according to their 
random assignments of treatment. If the preferred efficacy analysis by the sponsor is based
on a reduced subset of the intention-to-treat dataset, any discrepancies and inconsistencies
between the two analyses should be explained and clarified in the report.

12.4 ADJUSTMENT FOR COVARIATES

For assessment of the efficacy and safety of a drug product, it is not uncommon that primary
clinical endpoints are affected by some factors such as the demographic variables of age,
gender, and race and/or patient characteristics such as disease severity, concomitant medica-
tions, and medical history. These factors are referred to as covariates and are also known as
confounding factors, prognostic factors, or risk factors. In clinical trials, we might identify
some covariates of an impact on the clinical outcomes so that these covariates can be mea-
sured during the trial. In practice, it is common not to collect information on covariates that
may be influential and yet unknown at the planning stage of the trial. If patients are randomly
assigned to receive treatments, as indicated in Chapter 4, the estimated treatment effect is
asymptotically free of the accidental bias induced by omission of one or more covariates. In
other words, a randomized trial is asymptotically free of covariate imbalance, even for
unknown and unmeasured covariates. Covariate balance can typically be reached when the
sample size tends to infinity. In practice, however, the sample size is finite; consequently the
estimated treatment effect is biased if there is an imbalance in one or more covariates.

As an example, let us consider a antihypertensive trial that compares a test drug against
a placebo. Let Yij and Xij be the diastolic blood pressure (mmHg) measured at the end 
of the study and its corresponding baseline value for jth patient and the ith treatment; 
j � 1, . . . , ni, i � T, P. The analysis of covariance model is given in (8.5.1) is

Yij � µ � τi � β (Xij � X�..) � εij, (12.4.1)

Table 12.3.4 Disposition of Patients

STUDY #
(Data Set Identification)

Number of Patients Completing Each Period of Study

Randomized Treated Week 1 Week 2 Week 4

Test drug # #(%)
Active control
Placebo ———— ———— ———— ———— ————
Total ———— ———— ———— ———— ————
Comparability test ( p-value) ———— ———— ———— ————

Source: U.S. FDA Guideline for the Format and Content of the Clinical and Statistical Sections of an Applica-
tion (1988).
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Table 12.3.6 Listing of Patients and Observations Excluded from Efficacy Analysis

STUDY #
(Data Set Identification)

Center:
Treatment Patient # Sex Age Observation Excluded Reason(s)

Test Drug/
Investigational
Product

Treatment Patient # Sex Age Observation Excluded Reason(s)

Active
Control/
Comparator

Treatment Patient # Sex Age Observation Excluded Reason(s)

Placebo

(Repeat for other centers)

Reference Tables

Summary:

Source: U.S. FDA Guideline for the Format and Content of the Clinical and Statistical Sections of an Application
(1988).

Table 12.3.7 Number of Patients Excluded from Efficacy Analysis

STUDY #
(Data Set Identification)

Test Drug N �
Week

Reason 1 2 4 8
———— ———— ———— ———— ————
———— ———— ———— ———— ————
———— ———— ———— ———— ————
———— ———— ———— ———— ————
———— ———— ———— ———— ————
———— ———— ———— ———— ————
———— ———— ———— ———— ————
Total ———— ———— ———— ————

Note: Similar tables should be prepared for the other treatment groups.

Source: U.S. FDA Guideline for the Format and Content of the Clinical and Statistical Sections
of an Application (1988).

where X�.. is the overall average of the baseline values. The parameter of interest is the treat-
ment effect, which is given by

θ � τT � τP.

We denote Y�i. and X�i. as the average of the diastolic blood pressures and the corresponding
baseline values of the ith treatment, i � T, P. If the baseline diastolic blood pressure is
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526 ISSUES IN EFFICACY EVALUATION

ignored, then an intuitive estimate of the treatment effect is the difference in the unadjusted
treatment average between the test drug and the placebo, namely

θ̂* � Y�T. � T�P. (12.4.2)

The expected value of θ̂* is

E(θ̂*) � τT � τP � β (X�T. � X�P.). (12.4.3)

From (12.4.3) we note that in addition to the true treatment effect, E(θ̂*) contains a covari-
ate. Therefore, unless the baseline diastolic blood pressure is balanced between the test and
the placebo groups, namely X�T. � X�P, the estimated treatment effect (12.4.2) is biased. We
define

Y�i
* � Y�i.� β̂ (X�i.� X�..) (12.4.4)

as the adjusted treatment average for the ith treatment, i � T, P, where β̂ is the least
squares estimate (LSE) of the regression coefficient of the diastolic blood pressure at the
end of the study on the corresponding baseline value. Since the LSE of β is unbiased, the
expected value of the adjusted treatment average is given by

E(Y�i
*) � E[Y�i.� β̂ (X�i.� X�..)]

� µ � τi � β (X�i.� X�..) � β (X�i.� X�..)

� µ � τi.

Let θ̂ denote the difference in adjusted treatment average between the test drug and the
placebo. The expected value of θ̂ is given by

E(θ̂ ) � E(Y�T
* � Y�P

*)

� τT � τP.

Since the expected value of θ̂ consists of only the treatment effect which is independent of
the covariate, it is an unbiased estimator of the unknown but true treatment effect. As dis-
cussed above, if the covariates are not balanced, then the difference in the simple average
between treatment groups will be biased for estimation of the treatment effect. Hence the
covariates must be included in the statistical model for an unbiased estimate of the treat-
ment effect.

In the case where covariates are not balanced between the treatment groups, to obtain a
valid inference of the treatment effect, it is necessary to adjust for covariates that are statis-
tically significantly by correlated with the clinical endpoints. As was mentioned above, if a
covariate is balanced, then the difference in the simple averages between treatments is an
unbiased estimate for the treatment effect. This is equivalent to assuming the following
one-way analysis of variance model:

Yij � µ � τi � ε∗
ij . (12.4.5)
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ADJUSTMENT FOR COVARIATES 527

A comparison between models (12.4.1) and (12.4.5) reveals that the analysis of covariance
is a combination of analysis of variance and regression analysis techniques. As a result, the
error term ε∗

ij in model (12.4.5) not only includes the pure error term εij but also the part of
the regression of the response endpoint on the covariate. If a statistically significant corre-
lation exists between the response endpoint and the covariate, then a significant portion of
variability of the response endpoint can be explained by the covariate. As a result, the
residual sum of squares obtained under the model (12.4.1) is much smaller than that under
model (12.4.5) without the inclusion of the covariate. Although both models (12.4.1) and
(12.4.5) yield unbiased estimators of the treatment effect, the precision of the estimated
treatment effect under model (12.4.1) is better because the covariate helps to remove the
variability of the response endpoint. In summary, an adjustment of covariates not only pro-
vides unbiased statistical inference but also increases precision of the statistical inference.

Note that the model (12.4.1) with covariates in statistical inference for estimation of the
treatment effect assumes a common slope for both the test and placebo groups. The treat-
ment effect at a particular value of the covariate is then the distance between the two lines
at that value. Under the assumption of a common slope, the regression lines for the two
groups in their relationship to the response endpoint and the covariate, which are parallel
to each other, are shown in Figure 12.4.1. Since the distance between the two lines is the
same for the entire range of the covariate, a common treatment effect can be estimated.

If there is an interaction between treatment and covariate, then the two regression lines
will not have the same slope. In this case model (12.4.1) can be modified as

Yij � µ � τi � βi(Xij � X�..) � εij. (12.4.6)

It follows that the two regression lines are not parallel any more. This implies that the treat-
ment effect is different at different values of the covariate. Although an unbiased estimate
can still be obtained at a particular value of the covariate, it is not possible to unbiasedly

Figure 12.4.1 Adjustment for covariate in estimation of treatment effect. Case I: Common slope.
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528 ISSUES IN EFFICACY EVALUATION

estimate the common treatment effect over the entire range of the covariate. Figure 12.4.2
depicts a situation where the treatment effect has the same direction for the possible range
of the covariate. The treatment effect increases as the value of the covariate increases. This
might indicate that test drug is more efficacious for those patients with a large covariate
value. On the other hand, the treatment effect might change signs at the different ranges of
the covariate as shown in Figure 12.4.3. In other words, the test drug is worse than the
placebo for patients with low covariate values. If interaction between the treatment and a
covariate exists, a stratified analysis might be performed by dividing the entire range of
covariates into several strata so that the treatment effect is homogeneous. This subgroup
analysis will be discussed in this chapter.

Another key assumption in the adjustment of covariates of the treatment effect under
model (12.4.1) is that the treatment should not affect the covariates. This assumption is eas-
ily satisfied by subject-specific covariates such as demographic variables and baseline dis-
ease characteristics that are measured only once prior to the initiation of the treatment and
are time independent. Certain other covariates may be measured at every post-treatment
visit when the primary clinical endpoints are evaluated. Typical examples of such covariates
are heart rates and cholesterol levels in the antihypertensive trials or in a prevention trial of
cardiovascular events, and CD4 in AIDS trial. Since these covariates are likely to be infl-
uenced by the treatment, interpretation of the estimated treatment effect after adjustment for
the time-dependent covariates must be made with extreme caution. As a result the CPMP
Working Party on Efficacy of Medicinal Products advises investigators not to adjust the
primary analysis for covariates measured after randomization (European Commission,
1994). In addition, it is recommended that statistical methods that account for covariate
imbalance between treatment groups be used to improve the precision of the inference.

Model (12.4.1) is a model for the adjustment of covariates with continuous endpoints.
The blocked Wilcoxon rank sum test (Lehmann, 1975) can be used for categorical covari-
ates when the normality assumption of continuous endpoints are questionable. The logistic

Figure 12.4.2 Adjustment for covariate in estimation of treatment effect. Case II: Different slopes,
same direction but different magnitude.
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regression or generalized estimation equations (GEE) discussed in Chapter 9 can be
employed for the analysis of categorical endpoints. The adjustment for covariates with
censored data can be handled through Cox’s proportional hazard model, as described in
Chapter 10. Since there are many possible covariates and statistical methods for adjust-
ment, the FDA and ICH guidelines for clinical reports require that the selection of and
adjustment of any covariate should be explained in the reports. In addition methods for
adjustment, results of analyses, and supportive information should be fully documented
along with other statistical methods. If the covariates or the methods for adjustment are
different from those planned in the protocol, the results of the planned analyses should be
presented and the discrepancies should be explained in detail. Examples of how the adjust-
ment of covariates results should be presented are given in the FDA guideline, these exam-
ples are reproduced in Tables 12.4.1 and 12.4.2.

12.5 MULTICENTER TRIALS

A multicenter trial is a single study that is conducted simultaneously at more than one site
(or center) according to a common protocol. A multicenter trial is not equivalent to sepa-
rate single-site trials. Hence the data collected from different centers of a multicenter trial
are intended to be analyzed as a whole. The history of multicenter trials can be traced back
to early 1960s when Sir Bradford Hill designed his classical multicenter controlled trial of
antihistamine, cortisone, and streptomycin (Hill, 1962).

There are many reasons for conducting multicenter trials. The most important rationale
is probably that the framework of multicenter trials provides an efficient means of accruing
sufficient numbers of patients in order to achieve a desired power within a predetermined
time frame. If a trial is conducted at a single site, the resulting estimate of the treatment
effect might be uniquely related to some characteristics, known or unknown, of the center.

Figure 12.4.3 Adjustment for covariate in estimation of treatment effect. Case III: Different slopes,
different direction with different magnitude.
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Thus the generalization of trial results can be very restricted. Multicenter trials provide a
basis for a broad generalization of the trial results because the patients are recruited from a
wider spectrum of the targeted population. In addition, the study drug is administrated
under a broader clinical setting and practice, with a large number of investigators who will
provide a more comprehensive clinical judgment concerning the value of the study drug.

Table 12.4.1 Summary of Results for Prognostic Factors for Analysis 
of Time to Treatment Failure

Prognostic Factor Study 1b Study 2

Baseline performance status 	0.01 	0.01
Age 0.02 0.29
Disease-free interval 0.08 0.48
Adjuvant chemotherapy 0.53 0.01

Race 0.96 0.12
Estimated coefficient for treatment, betaa �0.12 �0.27
Standard error of beta 0.12 0.13
p-value of treatment effect 0.30 0.03

eBETA � estimated ratio of hazard rates
(active:test)a 0.89 0.76

(95% confidence interval) (0.70, 1.12) (0.59, 0.99)

aAdjusted for all prognostic factors whose p-value was 	0.20 (significance at 0.20 level
should not be taken as an FDA policy).
bp-Value from final Cox regression model.

Source: U.S. FDA Guideline for the Format and Content of the Clinical and Statistical Sec-
tions of an Application (1988).

Table 12.4.2 Effect of Prognostic Factors of the Comparison of Treatments
Before and After Adjusting for Prognostic Factors

Efficacy Variable Study 1 Study 2

Time to treatment failure

Estimated hazard ratio (T:A)

Unadjusted 0.90 0.81
(95% confidence limits) (0.72, 1.14) (0.63, 1.04)
p-value 0.39 0.09

Estimated hazard ratio (T:A)

Adjusted 0.89 0.76
(95% confidence limits) (0.70, 1.12) (0.59, 0.99)
p-value 0.30 0.03
Factors adjusted PS, AGE, INTa PS, ADJ, RACEa

Note: T � test drug, A � active control.
aPS � Baseline performance status, AGE � age, INT � disease-free interval, ADJ � adjuvant
chemotherapy, RACE � race.

Source: U.S. FDA Guideline for the Format and Content of the Clinical and Statistical Sec-
tions of an Application (1988).
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Although a multicenter trial possesses the characteristics that (1) it is conducted under a
single protocol, (2) it follows a set of pre-specified schedules and evaluation procedures, and
(3) the data are processed under a centralized management system, patients recruited at diff-
erent centers may be inherently subtly different due to the fact that (a) individual inves-
tigator’s clinical practice and standard operating procedures might be consistent but not
completely the same and (b) equipment might be differently calibrated. These issues and
other known and unknown reasons may cause variation among centers. In addition, the num-
ber of patients recruited at each center is in fact a random number that cannot be controlled
as desired. For example, the protocol might call for at least 20 patients at each center. It might
turn out that distribution of the patient is quite heterogeneous across centers. Table 12.5.1
provides a tabulation of the number of patients for the example given in Section 2.3. This
example presents the situation where a phase IIB multicenter trial with four treatment groups
was conducted at a small number of centers. A large number of patients, namely more than
60, were randomized at three of the four centers. However, the other center only recruited
three patients. As a result, at this center no patients were even randomized to the low- and
high-dose groups. Table 12.5.2 presents another situation where a phase IIB multicenter trial
with four treatment groups was conducted at a large number of centers. Although it was
anticipated that 20 patients were recruited at each center, only 9 of the 25 centers reached the
goal which constitutes 60% of 428 randomized patients. On the other hand, fewer than 15
patients were randomized at other 9 centers with a total of 97 patients (or 23% of 428 ran-
domized patients). In addition two centers only randomized no more than three patients. For
both examples, since at some centers some treatment groups did not have randomized
patients, the result /interpretation of statistical analyses were not reliable.

For the analysis of a multicenter trial, Lewis (1995) posed the following questions
which are helpful for the analysis of clinical data in a regulatory context:

1. Are some of the centers too small for reliable separate interpretations of the results?

2. Are some of the centers so big that they dominate the results?

3. Do the results at one or more centers look out of line with the others, even if not sig-
nificantly so? Can the reason for this be established?

4. Do any of the centers show a trend in the wrong direction? Can this be explained?
How can we restrict the use of a drug to the appropriate patients if we do not under-
stand such trends?

5. If a treatment-by-center interaction is detected, is the trial validated?

Both the FDA and ICH guidelines require statistical tests for homogeneity across centers
in order to detect possible quantitative or qualitative treatment-by-center interaction. For

Table 12.5.1 Example for the Distribution of Patients by Center and
Treatment—I

Center Placebo Low Medium High Total

San Diego 16 19 17 18 70
Phoenix 15 17 18 14 64
Houston 15 18 20 16 69
Minneapolis 1 0 2 0 3

Total 47 54 57 48 206
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example, let Yijk be the reduction in diastolic blood pressure (mmHg) observed from
patient k receiving treatment i at center j in a clinical trial that evaluates the efficacy and
safety of a test drug with a placebo control at J centers in treatment of patients with mild to
moderate hypertension; k � 1, . . . , nij, j � 1, . . . , J, i � T, P. It is assumed that Yijk

approximately follows a normal distribution with population average µij and variance σ2.
Here we use a normal continuous endpoint. Similar concepts can be applied to non-normal
continuous data, categorical data, or censored data from a multicenter trial. Descriptive
statistics for site j are summarized in Table 12.5.3. Traditionally, data from multicenter tri-
als can be analyzed by the two-way analysis of variance model with or without interaction,
as discussed in Section 8.4. The model with interaction is given as

Yijk � µij� εijk

� µ � τi � βj � (τβ)ij � εijk (12.5.1)

The analysis of variance model without interaction can be obtained from (12.5.1) by
excluding the interaction term (τβ)ij

Yijk � µij � εijk

� µ � τi � βj � εijk, (12.5.2)

where εijk is assumed to follow a normal distribution with mean 0 and variance σ2.

Table 12.5.2 Example for the Distribution of Patients by
Center and Treatment—II

Center Placebo 100 mg 200 mg 300 mg Total

1 5 5 5 6 21
2 3 4 3 4 14
3 6 6 6 6 24
4 3 2 2 3 10
5 5 5 5 5 20
6 4 3 4 3 14
7 9 9 9 9 36
8 7 6 7 6 26
9 9 9 9 9 36

10 6 6 5 6 23
11 2 2 3 3 10
12 1 0 1 1 3
13 5 5 4 5 19
14 9 9 8 8 34
15 5 5 4 5 19
16 2 2 2 2 8
17 4 5 4 5 18
19 4 5 5 5 19
20 4 3 3 3 13
21 9 9 9 9 36
22 2 4 4 3 13
24 2 3 3 2 10
25 0 1 1 0 2

Total 106 107 106 109 428
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At center j the treatment effect between the test drug and the placebo can be expressed as

δj � µTj � µPj. (12.5.3)

An unbiased estimator for δj can be obtained as

dj � Y�Tj. � Y�Pj., (12.5.4)

with an estimate of its variance given by

υ(dj) � sj
2

� , j � 1, . . . , J. (12.5.5)

As a result, at site j, the null hypothesis of no treatment effect is rejected at the α level of
significance if

� tj � � ��sj /�

dj

w�j�
�� � t (α/2, nPj � nTj � 2), j � 1, . . . , J, (12.5.6)

or the (1�α)100% confidence interval of δj does not contain zero.
The objective for the analysis of clinical data from a multicenter trial is twofold. It is not

only to investigate whether a consistent treatment effect can be observed across centers but
also to provide an estimate of the overall treatment effect. These objectives, however,
depend on (1) whether the center should be considered a fixed or a random factor, (2) what
is the appropriate definition of the overall treatment effect, and (3) whether one should esti-
mate the overall treatment in a manner similar to a stratified analysis. Table 12.5.2 illustrates
the possibility that a multicenter trial might have a large number of centers, each with a rel-
atively small number of patients. In addition, it is reasonable to consider the centers partici-
pating in a multicenter trial as a representative sample randomly selected from a population
of centers. Chakravorti and Grizzle (1975) recommend that the center effect be considered

(nPj � 1)sPj
2 � (nTj � 1)sTj

2

���nPj � nTj � 2

Table 12.5.3 Descriptive Statistics for Site j of a Multicenter Trial

Treatment

Statistics Placebo Test Drug Difference

N nPj nTj

Mean Y�Pj . Y�Tj. dj � Y�Pj. � Y�Tj.

Standard deviation sPj sTj sj

Confidence Interval CIpj CITj CIj

sj
2 � [(nPj � 1)sPj

2 � (nTj � 1)sTj
2 ]/(nPj � nT j�2)

CIij � Y�ij.� (sij/�nij) t (α /2, nij � 1), i � T, P

CIj � (Y�Tj. � Y�Pj. ) � (sj /�wj)t(α /2, nPj � nTj � 2); wj � (1/nPj) � (1/nTj)
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as random rather than fixed. Under the assumption that the center effect is random, model
(12.5.1) becomes a mixed effect model. Under this model, Fleiss (1986b) indicates that the
inference of the difference between the treatment averages can be made by a linear combi-
nation of the pooled variance s2 and the interaction mean square MS(AC), where

s2 � , (12.5.7)

MS(AC) � �
J �

1
1

� ���
w
1

j
�� (dj � d�*)2, (12.5.8)

and

d�* � .

Except for the balanced situation where the equal number of responses for the clinical end-
points observed for each treatment-by-center combination is proportional to its marginal
(i.e., nij � ni.n.j /n for all i, j), statistical methods can be very complicated in the analysis of
mixed effects from a multicenter trial, and only approximate results are available (Searle,
1971; Fleiss, 1986b; Chkravorti and Grizzle, 1975; Mielke and McHugh, 1965). Hence,
the analysis of the data from a multicenter trial under the assumption of a mixed effects
model is unnecessarily perplexing.

In practice, a center is often selected based on the criteria that (1) it can recruit a mini-
mum number of patients from the targeted population as specified by the sponsor, (2) the
investigators at the center have expertise and experience in the treatment of the disease,
and (3) the center has special equipment or facilities required for the study. As a result, the
selection of centers in multicenter trials is not a random process but a much deliberated
one. Fleiss (1986b) and Goldberg and Koury (1990) suggest that the center effects thus
should not be considered random when performing statistical analyses. Note that the pri-
mary interest of a multicenter study is not for the comparison between centers. Hence, the
centers should not be considered as a designed factor rather than a classification factor.

For assessment of the treatment effect in multicenter trials, it is suggested that a param-
eter be used for the overall treatment effect, which is the simple average over the treatment
effects of J individual centers:

δ � �
1
J

� �
J

j�1
δj

� �
1
J

� �
J

j�1
(µTj � µPj). (12.5.9)

Denote d� as the simple average of dj:

d� � �
1
J

� �
J

j�1
dj

� �
1
J

� �
J

j�1
(Y�Tj. � Y�Pj.). (12.5.10)

� (1/wj)dj
��
� (1/wj)

� � (nij � 1)s2
ij

��
� � (nij � 1)
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Then d� is an unbiased estimator for δ with estimated variance

υ(d�) � . (12.5.11)

The null hypothesis that H0: δ � 0 is rejected with respect to a two-sided alternative at the
α level of significance if

� t � � � � � t �α /2, � � (nij � 1)�. (12.5.12)

The (1�α)100% confidence interval for δ is given by

d� 
 �s�	�wj/J � t �α /2, � � (nij � 1)�. (12.5.13)

Note that an unbiased estimator for δ exists and that the test based on (12.5.12) is theo-
retically correct regardless of the sample sizes and presence of treatment-by-center interac-
tion. When there is no interaction, the cell-means model (12.5.1) reduces to the main-effect
model (12.5.2), which assumes that the treatment and center effects are additive. It follows
that the treatment effect δj at center j is given by

δj � µTj � µPj

� (µ � τT � βj)�(µ �τP � βj)

� τT � τP, j � 1, . . . , J.

From the above it can be seen that due to the additivity of the main-effects model, the indi-
vidual treatment effect within center j does not involve the center effects and is a constant
across all centers. In addition, since δ in (12.5.9) is defined as the simple average over the
treatment effects of J centers, under the main-effects model the overall treatment effect is
also equal to τT � τP. Hence the overall treatment effect is a valid parameter for evaluation
of treatment effects under both the cell-mean model and the main-effects model.

When there is no treatment-by-center interaction, the minimum variance unbiased esti-
mator (MVUE) of τT � τP can be obtained as

d� * � , (12.5.14)

with the estimated variance given by

υ(d�*) � . (12.5.15)

The hypothesis testing can be performed and confidence interval for τT � τP can be con-
structed through the t statistic as described above.

The estimator for the overall treatment effect d�* is the same as the combined estimator
obtained from a post-treatment stratified analysis by considering each center as a stratum.
The ratio (1/wj)/Σ(1/wj) represents the information on the proportion of eligible patients in

s2
�
� (1/wj)

� (dj/wj)
�
� (1/wj)

d�
��

s�	�wj /J

s2�wj
��

J2
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the targeted population who are from center j. As a result, d�* is still a consistent estimator
in presence of treatment-by-center interaction which is close to the difference between the
two treatment averages when the sample size is sufficiently large. Fleiss (1986b) points out
that this ratio also reflects the ability and efficiency of patient recruitment for center j.

The null hypothesis of no treatment-by-center interaction is rejected at the α level of
significance if

FI � �
MS

s
(
2
AC)
� � F �α, J � 1, � � (nij � 1)�, (12.5.16)

where F(α, J � 1, ΣΣ(nij � 1)) is the α th upper quantile of a central F distribution with
J � 1 and ΣΣ(nij � 1) degrees of freedom. If the null hypothesis of no treatment-by-center
interaction is rejected, it is helpful to determine whether the interaction is of quantitative 
or qualitative type. A quantitative interaction implies that the heterogeneity of the treatment
effect across centers is due to the magnitude rather than the direction. On the other hand, a
qualitative interaction indicates that the treatment effect is not only heterogeneous in mag-
nitude but also changes direction from center to center as shown in Figure 2.4.5. Define

Q� � � �
d

s2
j

j
� I[dj � 0]

and

Q� � � �
d

s2
j

j
� I[dj 	 0] (12.5.17)

Gail and Simon (1985) propose rejecting the null hypothesis of no qualitative interaction if

min(Q�, Q�) � c, (12.5.18)

where c is the critical value provided in Table 1 of Simon and Gail (1985).
In multicenter trials, although the sample size is selected to achieve a desired power for

detection of the overall treatment effect, it is rarely large enough to identify the treatment-
by-center interaction with adequate power. Fleiss (1986b) recommend the use of a 10% level
of significance for the detection of treatment-by-center interaction. If the null hypothesis is
rejected, then d� should be used for the inference of the overall treatment effect because it is
an unbiased estimator for δ. Note that both d� and d�* are unbiased for δ* in the absence of
treatment-by-center interaction. Since d�* is the MVUE for δ*, there are more degrees of
freedom for estimation of σ2. Hence, if we fail to reject the null hypothesis of no treatment-
by-center interaction, then δ* and σ2 should be estimated from the reduced main-effects
model. However, if the number of centers is relatively small and the treatment-by-center
interaction is not significant, both d� and d�* will be close.

If all centers enroll very small numbers of patients, Goldberg and Koury (1990) suggest
ignoring the centers in the analysis. For the unbalanced situations of patient enrollment
among centers as presented in Tables 12.5.1 and 12.5.2, since no patients were randomized
to treatment groups at some centers, the results and their interpretation are consistent if we
ignore the center effect in the analysis. However, one should always follow the rule that if
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randomized then analyzed. One should never omit any centers from the analysis of multi-
center trials. One way to resolve the situation, as illustrated in Table 12.5.1 and 12.5.2, is to
randomly assign the patients at those centers to empty cells at other centers before the
analysis of data.

Note that the overall treatment effect defined here is the simple average of center-specific
treatment effects. Hence, if the qualitative treatment-by-effect interaction does exist, the
overall treatment effect may be null. Although the statistical inference provided by d� is
theoretically correct, both FDA and ICH guidelines require that not only individual center
results be presented but also any extreme or opposite results among centers be noted and
discussed. A graphical presentation of individual center results is provided in Figure 12.5.1.
In addition all data, including demographic, baseline, post-baseline data, and efficacy data,
should be presented by center.

12.6 MULTIPLICITY

Lepor et al. (1996) report the results of a double-blind, randomized multicenter clinical
trial that evaluated the efficacy and safety of terazosin (10 mg daily), and α1-adrenergic-
antagonist, finasteride, a 5α-reductase inhibitor (5 mg daily) or both with a placebo control
in equal allocation in 1229 men with benign prostatic hyperplasia. The primary efficacy
endpoints of this trial are the American Urological Association (AUA) symptom score
(Barry et al., 1992) and the maximum uroflow rate. These endpoints were evaluated twice
during the four-week placebo run-in period and at 2, 4, 13, 26, 39, and 52 weeks of ther-
apy. The primary comparisons of interest included pairwise comparisons among the active
drugs and combination therapy, while the secondary comparisons consisted of a pairwise
comparison of the active drugs and combination therapy with the placebo. The results for

Figure 12.5.1 Difference in treatment means and 95% confidence intervals. Mean test drug change
from the baseline minus the mean placebo change from the baseline. (Source: U.S. FDA Guideline
for the Format and Content of the Clinical and Statistical Sections of an Application, 1988).
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the primary efficacy endpoints presented in Lepor et al. (1996) were obtained by per-
forming analyses of covariance with repeated measurements based on the intention-to-
treat population.

One of the objectives of the trial is to determine the time when the treatments reach
therapeutic effects. Therefore comparisons among treatment groups were performed at
each scheduled postrandomization visits at 2, 4, 13, 26, 39, and 52 weeks. In addition to
the original observations of the primary endpoints, the change from baseline can also be
employed to characterize the change after treatment for each patient. It may be of interest
to see whether the treatment effects are homogeneous across race, age, and baseline dis-
ease severity. Therefore, some subgroup analyses can be performed such as for caucasians
and for noncaucasians patients, for patients below or at least 65 years of age, for patients
with the baseline AUA symptom score below 16 or at least 16, or for patients with the max-
imum uroflow rate below 10 or at least 10 ml/s. As a result, as illustrated in Table 12.6.1 the
number of the total comparisons for the primary efficacy endpoints can be as large as 1344.
If there is no difference among the four treatment groups and each of the 1344 comparisons
are performed at the 5% level of significance, we can expect 67 statistically significant
comparisons with reported p-values smaller than 0.05. The probability of observing at least
one statistically significant difference among 1344 comparisons could be as large as 1
under the assumption that all 1344 comparisons are statistically independent. The number
of p-values does not include those from the center-specific treatment comparisons and
from other types of comparisons such as treatment-by-center interaction.

Although the above example is a bit exaggerated, it does point out that the multiplicity
in multicenter clinical trials is an important issue that has an impact on statistical inference
of the overall treatment effect. In practice, however, it is almost impossible to characterize
a particular disease by a single efficacy measure due to (1) the multifaceted nature of the
disease, (2) lack of understanding of the disease, and (3) lack of consensus on the charac-
terization of the disease. Therefore, multiple efficacy endpoints are often considered to
evaluate the effectiveness of test drugs in treatment of most diseases such as AIDS, asthma,
benign prostatic hyperplasia, arthritis, postmenopausal osteoporosis, and ventricular
tachycardia. Some of these endpoints are objective histological or physiological measure-
ments such as the maximum uroflow rate for benign prostatic hyperplasia or pulmonary
function FEV1 (forced expiratory volume in one second) for asthma. Other may include

Table 12.6.1 Summary of Possible Number of Comparisons

Item Number of Comparisons

Pairwise comparison
Primary 3
Secondary 3

Visit 7
Primary end point 2
Response 2
Race 2
Baseline severity of disease

AUA symptom score 2
Maximum uroflow rate 2

1344
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the symptoms or subjective judgment of the well-being of the patients improved by the
treatments such as the AUA symptom scores for benign prostatic hyperplasia, asthma-
specific symptom score for asthma, or the Greene climacteric scale for postmenopausal
osteoporosis (Greene and Hart, 1987). Hence one type of multiplicity in statistical infer-
ence for clinical trials results from the source of multiple endpoints.

On the other hand, a clinical trial may be conducted to compare several drugs of differ-
ent classes for the same indication. For example, the study by Lepor et al. (1996) compares
two monotherapies of terazosin, finasteride with the combination therapy, and a placebo
control for treatment of patients with benign prostatic hyperplasia. Some other trials might
be intended for the investigation of a dose-response relationship of the test drug. For exam-
ple, Gormley et al. (1992) evaluate the efficacy and safety of 1 and 5 mg of finasteride with
a placebo control. This type of multiplicity is inherited from the fact that the number of
treatment groups evaluated in a clinical trial is greater than 2. Other types of multiplicity
are caused by subgroup analyses. Examples include a trial reported by the National Insti-
tute for Neurological Disorders and Stroke rt-PA Study Group (1995) in which stratified
analyses were performed according to the time from the onset of stroke to the start of
treatment (0–90 or 91–180 minutes). In addition, the BHAT (1982) and CAST (1989) stud-
ies were terminated early because of overwhelming evidence of either beneficial efficacy
or serious safety concern before the scheduled conclusion of the trials by the technique of
repeated interim analyses. In summary, multiplicity in clinical trials can be classified as
repeated interim analyses, multiple comparisons, multiple endpoints, and subgroup analy-
ses. Since the causes of these multiplicities are different, special attention must be paid 
to (1) the formulation of statistical hypotheses based on the objectives of the trial, (2) 
the proper control of experimentwise false positive rates in subsequent analyses of the 
data, and (3) the interpretation of the results. Since repeated interim analyses have been
discussed in Chapter 10, in what follows, we will only address the remaining types of 
multiplicities.

Multiple Comparisons

Multiple comparisons are referred to as the comparisons among more than two treatments.
If there is no structure among the treatment groups, then Bonferroni’s technique discussed
in Section 8.4 is appropriate. The concept of Bonferroni’s technique is to adjust the 
p-values for control of experimentwise type I error rate α for pairwise comparisons. The
method is useful when the number of treatments is small. In addition Bonferroni’s method
does not require that the structure of the correlation among comparisons be specified nor
that the number of patients in each treatment group be equal. However, when the number
of treatment groups increases, Bonferroni’s adjustment for p-values becomes very conser-
vative and may lack adequate power for the alternative in which most or all efficacy end-
points are improved. To overcome this drawback, many modified Bonferroni procedures
have been proposed. For illustration purposes, in what follows we will only introduce
modified procedures proposed by Holm (1979) and Hochberg (1988).

Holm (1979) proposes that Bonferroni’s procedure be modified as follows: Let p(1) �
p(2) � . . . � p(m) be the ordered values of p-values p1, p2, . . . , pm obtained from testing the
following hypotheses:

Hk0: µi�µj � 0

vs.     Hka: µi�µj � 0, i � j; k � 1, . . . , m. (12.6.1)
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Holm’s procedure starts with the ordered hypothesis H(1)0, which is the hypothesis with the
smallest p-value, p(1):

Step 1. Stop the procedure and conclude that all pairwise comparisons are not statisti-
cally significant at the α level of significance if mp(1) � α. Otherwise, reject the
null hypothesis H(1)0 and continue to step 2.

Step 2. Stop the procedure and conclude that the remaining (m � 1) pairwise compar-
isons are not statistically significant at the α level of significance if (m � 1)p(2)

� α. Otherwise, reject the null hypothesis H(2)0 and continue to the next step.

�

Step k. Stop the procedure and conclude that the rest of the (m � k � 1) pairwise com-
parisons are not statistically significant at the α level of significance if
(m � k � 1)p(k) � α. Otherwise, reject the null hypothesis H(k)0 and continue to
the next step. Repeat step k until it stops.

The Holm’s Bonferroni’s procedure is the same as the original Bonferroni’s procedure
for testing H(1)0 at which the p-value is adjusted down by dividing the nominal level of sig-
nificance by the number of total comparisons. But for the rest of (m � 1) hypotheses,
Holm’s procedure is much sharper than Bonferroni’s procedure, since it only requires that
the p-values be adjusted according to the number of remaining pairwise comparisons.
Because Holm’s procedure requires the smallest p-values to be smaller than α / m, Hochberg
(1988) suggests another version of Bonferroni’s procedure which is even sharper than
Holm’s procedure. Hochberg’s procedure begins with the ordered hypothesis H(m)0 corre-
sponding to the largest p-value p(m).

Step 1. Stop the procedure and conclude that all m pairwise comparisons are statisti-
cally significant at the α level of significance if p(m) � α. Otherwise, do not
reject the null hypothesis of H(m)0 and continue to step 2.

Step 2. Stop the procedure and conclude that the remaining m � 1 pairwise comparisons
are statistically significant at the α level of significance if 2p(m�1) � α. Other-
wise, do not reject the null hypothesis of H(m�1)0 and continue to the next step.

�

Step k. Stop the procedure and conclude that all (m � k � 1) pairwise comparisons are
statistically significant at the α level of significance if (m � k � 1)p(m�k�1) � α.
Otherwise, do not reject the null hypothesis of H(m � k � 1)0 and continue to the
next step. Repeat step k until it stops.

Hochberg’s procedure is more powerful than Bonferroni’s procedure or Holm’s procedure
because it only requires that the largest p-value be smaller than α to declare one statisti-
cally significant comparison.

Sometimes, clinical trials are planned to compare the effectiveness and safety of K doses
of a test drug versus a placebo group to determine the minimum effective and maximum 
tolerable dose. As a result, in addition to characterization of the dose-response relationship,
pairwise comparisons between each dose and the placebo are of clinical interest. In this case
the hypothesis of interest can be formulated as follows:

Hk0: µi � µ0 � 0,

vs. Hka: µi � µ0 � 0, i � 1, . . . , K. (12.6.2)
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Dunnett’s procedure for comparison with a control can be directly applied (Dunnett, 1955).
Let Y�i � Y�0 be the observed sample mean difference between dose i and the placebo, and let
υ(Y�i � Y�0) denote the estimated variance of Y�i � Y�0, i � 1, . . . , K. Then hypothesis (12.6.2)
is rejected at the α level of significance if the (1�α)100% simultaneous confidence interval
for µi � µ0,

Y�i � Y�0 
 �υ�(Y��i ��Y��0)�t(α, K, d fE, ρij) (12.6.3)

does not contain zero, where t(α, K, dfE, ρij) is the critical value of the two-sided compar-
ison for comparing K treatments with a control as given in Hochberg and Tamhane (1987),
dfE is the error degrees of freedom from the appropriate analysis of variance table, and ρij

is the correlation between Y�i � Y�0 and Y�j � Y�0 which is given by

ρij � ��(n	
i �	 n	K

n
)	in
(	n

j	
j �	 n	K)�	 .

Dunnett’s procedure for the one-sided alternative is also available (Dunnett, 1955). In
addition step-down and step-up versions of Dunnett’s procedure for comparing treatments
with a control are proposed by Dunnett and Tamhane (1991, 1992) for various multiple
comparisons of treatments with a control. An overview of multiple comparisons in clinical
trials can be found in Dunnett and Goldsmith (1995).

Multiple Endpoints

As mentioned earlier, the efficacy of a test drug in treatment of a certain disease can be
characterized through multiple clinical endpoints. Capizzi and Zhang (1996) classify the
clinical endpoints into primary, secondary, and tertiary categories whose criteria are modi-
fied and given below:

Primary endpoints should satisfy the following criteria:

• Should be of biological and/or clinical importance.

• Should form the basis of the objectives of the trial.

• Should not be highly correlated.

• Should have sufficient power for the statistical hypotheses formulated from the objec-
tives of the trial.

• Should be relatively few (e.g., at most 4).

For secondary endpoints, typical criteria include whether the endpoints are (1) biologically
and/or clinically important, but with less adequate statistical power, (2) potentially impor-
tant, but highly correlated with primary endpoints, and (3) address other important, but
ancillary objectives. The criteria of tertiary endpoints depend on whether (1) they are
exploratory endpoints and (2) they are not of major importance.

Since the sample size of a clinical trial is usually selected to provide a sufficient power
for detection of a difference in some or all primary clinical endpoints, we focus on the issue
of false positive and false negative rates caused by multiple primary endpoints. It is, how-
ever, very important to understand the objective of the trial and to tailor and formulate the
corresponding statistical hypotheses to the specific objectives in terms of multiple end-
points. Consider a randomized, parallel group, double-blind trial that evaluates the efficacy
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of a test drug versus a placebo control through a set of K primary endpoints. Let Yijk denote
the kth endpoint for the jth subject in treatment group i; k � 1, . . . , K, j �1, . . . , ni, i � T,
P. Define the population average for the kth endpoints of group i as

E(Yijk) � µik, k � 1, . . . , K, i � T, P.

The following statistical hypothesis formulates the clinical objectives of the trial. We
declare that the test drug is efficacious if the test drug demonstrates a superior efficacy in
any one of the K primary endpoints under the assumption that large values are better.

H0: µTk � µPk for all k,

vs. Ha: µTk � µPk for at least one k � 1, . . . , K. (12.6.4)

Let d�k � Y�T k � Y�Pk be the observed difference in sample mean of endpoint k between the
test drug and the placebo. Also let υ(Y�Tk � Y�Pk) be the estimated variance of Y�Tk � Y�Pk,
k � 1, . . . , K. Denote pk as the observed p-value based on the test statistics corresponding
to hypothesis (12.6.4):

tk ��
�υ�

Y�

(

T

Y��
k

T

�

k
� ��

Y�P

Y��
k

Pk
�)�

� , k � 1, . . . , K. (12.6.5)

Then Bonferroni’s adjustment of the p-value described above can be directly applied to
control the false positive rate based on p1, . . . , pk. Table 12.6.2 provides the Bonferroni
correction and the true nominal significance level to maintain the overall false positive rate
of 5% for various correlation coefficient when the number of endpoints is 4. In general, if
the number of primary endpoints is small and the correlation between them is less than 0.5,
Bonferroni’s correction of p-value works reasonably well. However, when the number of
endpoints increases and their correlations become large, then Bonferroni’s adjustment will
be too conservative and lack the power to detect any treatment effects in the primary end-
points. The criteria for primary endpoints specify that the number of primary endpoints
should be at most 4 and that the correlation should not exceed 0.5. Both Bonferroni’s tech-
nique and its modification proposed by Hochberg (1988) are appropriate methods for
adjustment of p-values for hypotheses of (12.6.4).

Note that Bonferroni’s method achieves its greatest power when the true treatment
effect exists in only one of the K endpoints. However, some early phase II trials may have
a large number of clinical endpoints that are highly correlated one another. In phase III

Table 12.6.2 Bonferroni’s Correction and the True Nominal Significance Level to Maintain
the Overall False Positive Rate of 5% for Various Correlation Coefficients the Number 
of End Points is 4

Correlation Coefficient

Bonferroni’s 
Correction 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α level (%)

1.25 1.27 1.30 1.38 1.40 1.54 1.70 1.84 2.20 2.69 5.0
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studies it is useful to obtain a single composite index from multiple endpoints that provides
a summary of the treatment’s efficacy. Several methods for the construction of a composite
index have been proposed by O’Brien (1984), Pocock et al. (1987), and Tang et al. (1989).

Assume that Yijk defined above have been standardized (i.e., subtracting the overall
mean from each observation and dividing by the within-group sample standard deviation).
Let d� be the vector of the observed sample mean differences of the K endpoints and S
denotes the estimated within-group correlation matrix obtained under the assumption of
the common covariance matrix of the K endpoints for both treatment groups. Then the
global test statistic under the normality assumption proposed by O’Brien (1984) is an esti-
mated generalized least squares (EGLS) method, which is given by

Tc � �
�w�

1�

(
S
1��

�

S�

1d
��
�

11�)�
� (12.6.6)

where 1 is the k � 1 vector of 1 and w � (1/nT) � (1/nP). The null hypothesis is rejected at
the α level of significance if

Tc � t(α, N � 2K),

where t(α, N � 2K) is the α th upper quantile of a central t distribution with N � 2K degrees
of freedom. The numerator of the global test statistic in Tc is a linear combination of the K
observed sample mean differences with weights equal to the column sums of S�1. As a
result the endpoints that are highly correlated with other endpoints receive small weights.

When the normality assumption for the distribution of multiple endpoints is in doubt, a
nonparametric procedure (O’Brien, 1984) is also available for hypothesis (12.6.4). The non-
parametric method is a rank-sum type test that starts ranking Yijk among all observations of
endpoints k in the combined sample. Let us denote Rij as the sum of the ranks assigned to the
jth patient in group i, j � 1, . . . , ni, i � T, P. We can then apply the Wilcoxon rank-sum test
to Rij for testing hypothesis (12.6.4).

Pocock et al. (1987) extends O’Brien’s procedure to combine multiple binary clinical
endpoints which are commonly used to evaluate the efficacy of patients’ response to the
treatment. The test statistic of their procedure for combining multiple binary endpoints is
to replace the elements in vector d� and the estimated correlation matrix S by pTk� pPk and
skk�, 1 � k � k� � K, respectively, where pTk and pPk are the proportions of patients respond-
ing to the test and placebo groups, respectively, and

skk� � , (12.6.7)

where pkk� is the proportion of patients with responses in both endpoints k and k�, and pk are
the proportion of the patients in both groups whose response was defined in (9.3.10). If the
sample size is moderately large, then the global test statistic Tc follows a standard normal
distribution.

Pocock et al. (1987) propose an extension of the O’Brien EGLS method that combines cen-
sored and binary endpoints as are common in cancer chemotherapy trials. For example, let
endpoint k be the censored survival time and endpoint k� be the tumor response. The test sta-
tistic is obtained by substituting the elements of d� and S in test statistic Tc by zk and skk�, respec-
tively, where zk is the square root of the logrank statistic XLR defined in (10.3.5), and

skk� � , (12.6.8)
Rd��p(t)

��
N�υ�kp�k(�1���p�k)�

pkk� � pk pk�
���
�p�k�p�k��(1���p�k)�(1���p�k��)�
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where Rd is the total number of the patients who responded to the treatment but neverthe-
less died, υk given by the denominator of the logrank statistics in (10.3.5), pk is defined
above in (12.6.7), p(t) is the proportion of patients who responded among those who were
at risk at time t, and the summation is over all death times.

The null hypothesis (12.6.4) assumes that all K endpoints are equally important. As a
result the weights for the test statistics based on the EGLS method given above are only
based on the pairwise correlations between endpoints. However, if the relative importance
of endpoints can be specified a priori in the protocol with known weights ck, k �1, . . . , K,
then the global test statistic given in (12.6.6) can be easily modified to accommodate the
unequal priorities among the K endpoints as follows:

Tc ��
�w�

1�

[
(
1�
C
�(�
S
C�
C
S�
)
C�

�1

)��
d�

11�]�
�, (12.6.9)

where C is a k � k diagonal matrix with diagonal elements being ck.
The objective of clinical trials for a certain class of drug products with respect to some

diseases may be more stringent than that for the formulation of hypothesis (12.6.4), and the
test drug may be claimed to be efficacious only if it demonstrates a statistically signifi-
cantly superior effect in all of the K primary endpoints. In other words, the corresponding
statistical hypothesis is then expressed as

H0: µTk � µPk for at least one k,

vs. Ha: µTk � µPk for all k, k � 1, . . . , K. (12.6.10)

The null hypothesis (12.6.4) is that the treatment difference between the test drug and
placebo in all K endpoints are zero versus the alternative that the test drug is superior in at
least one of the K endpoints. One the other hand, the null hypothesis (12.6.10) indicates
that the treatment difference between the test drug and placebo is zero in any one of the K
endpoints while the alternative hypothesis of (12.6.10) requires that the test drug be effec-
tive in all K endpoints. Hence, the intersection-union test (IUT) proposed by Berger (1982)
can be applied to test hypothesis (12.6.10) which is rejected at the α level of significance if
and only if each of the K individual null hypotheses Hk0 is rejected at the α significance
level, k � 1, . . . , K. Although the size of the IUT procedure is α (i.e., an α size test), it is
very conservative as demonstrated in Table 12.6.3. Using a simulation, Capizzi and Zhang
(1996) provide the nominal significance level at which each individual hypothesis is tested
to achieve an experimentwise false positive rate of 5%. The simulation result is reproduced
in Table 12.6.4 for four endpoints. For example, if the correlation among four endpoints is
equal to 0.4, then for each endpoint the hypothesis must be tested at a nominal level of
0.289 to maintain an experimentwise type I error rate of 0.05. However, this approach with

Table 12.6.3 False Positive Rate (%) for the IUT Procedure Performed 
at the Significance Level When the Number of End Points is 4

Correlation Coefficient

0 0.2 0.4 0.6 0.8 1.0

	0.01 0.02 0.14 0.5 1.3 5

Source: Capizzi and Zhang (1996).
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a nominal level 0.289 for each of four tests does not have a size of 5%. Suppose that there
is a ranking among the K endpoints. The individual hypotheses for the important primary
endpoints are tested at the 5% level as usual. However, for other endpoints with less 
relevance, individual tests can be performed at a higher nominal significance level to
improve the power of the IUT procedure. But the resulting IUT procedure does not have an
experimentwise false positive rate of 5%. In general, if the hypothesis for each of the K
endpoints is tested at αk, k � 1, . . . , K, then the experimentwise false positive rate (i.e.,
size) of the IUT procedure for hypothesis (12.6.10) is the maximum of α1, . . . αK (Berger
and Hsu, 1996).

Hypothesis (12.6.4) is somewhat too liberal in the sense that the declaration of the test
drug’s effectiveness only requires demonstration of superior efficacy at one of the K end-
points. In contrast is the strict requirement of superior efficacy at all K endpoints demanded
by hypothesis (12.6.10). As a result Capizzi and Zhang (1996) propose a hybrid hypothe-
sis in which the test drug is claimed to be effective if superior efficacy is demonstrated at M
of K endpoints. The corresponding statistical hypotheses are given as

H0: µTk � µPk for at most K�M endpoints,

vs. Ha: µTk � µPk for at least M of K endpoints, (12.6.11)

k � 1, . . . , K. Note that hypothesis (12.6.10), which requires a demonstration of superior
efficacy at each of the primary endpoints, is often considered the hypothesis of choice for
declaring the effectiveness of a drug. For example, finasteride at 5 mg was approved by
U.S. FDA in treatment of patients with benign prostatic hyperplasia because its effective-
ness was demonstrated at all three primary endpoints such as a statistically significant
decrease in total urinary-symptom scores (p-value 	 0.001), a statistically significant
increase of 1.6 ml/s in maximal urinary-flow rate (p-value 	 0.001), and a statistically sig-
nificantly 19% reduction in prostatic volume (p-value 	 0.001). On the other hand,
hypotheses (12.6.4) and (12.6.11) may be appropriate for clinical trials during phase II
development because the primary endpoints may not be fully understood for some diseases
or the effects of the drug on different aspects of the disease are still under investigation.

Subgroup Analysis

Although the primary objective of clinical trials is to provide a valid and unbiased infer-
ence of the treatment effect for the disease under study, it is of great interest to observe
whether the treatment effect is consistent across some demographic factors such as age,
gender, race, baseline disease severity, some prognostic factors, or previous medical condi-
tions and concomitant medications. As a result, subgroup analyses are performed within

Table 12.6.4 Nominal Significance Level (%) for the IUT Procedure to
Maintain an Experimentwise False Positive Rate of 5% when the 
Number of Endpoints is 4

Correlation Coefficient

0 0.2 0.4 0.6 0.8 1.0

47.3 37.6 28.9 20.9 13.6 5

Source: Capizzi and Zhang (1996).
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strata according to some stratification or classification factors. The primary goal of these
subgroup analyses is not for a definitive statistical inference of the treatment effect for each
subgroup but rather for an exploratory identification of unusual or unexpected results.

The difference between subgroup analyses and multiple comparisons and multiple end-
points is that patients in subgroups stratified by different values of a covariate are different
and the test statistics obtained from different subgroups are statistically independent. For
example, consider a randomized double-blind, parallel-group clinical trial for the investi-
gation of a new antihypertensive agent’s effectiveness versus a placebo. The primary end-
point is the change from the baseline in diastolic blood pressure (mmHg). Suppose that it
is of interest to investigate whether the reduction in diastolic blood pressure is consistent
across age groups. Therefore, patients are divided into groups according to age groups of
18–30, 31–50, 51–70, and over 70. The two-sample unpaired t-statistic can be computed
within each age group to test whether the new antihypertensive agent is efficacious in each
of the four age groups. Since patients in each age group are different and these age sub-
groups are mutually exclusive, the four unpaired t-statistics are independent of each other.
As a result the adjustment of p-values is straightforward. Let α be the desired experiment-
wise false positive rate for a total of K subgroups. Then, the nominal significance level α*
of the test performed for each subgroup is given as

α* � 1 � (1 � α)1/K. (12.6.12)

Since the purpose of subgroup analyses includes implicit future hypotheses, the experi-
mentwise false positive rate must be adequately controlled and conservative methods such
as Bonferroni’s correction of p-values are often used. However, the ICH guidelines on
structure and contents of clinical study reports require that where there is a prior hypothe-
sis of a differential effect in a particular subgroup, this hypothesis and its assessment
should be part of the planned statistical analysis. Even so, it is recommended that the clin-
ical reports should state that their subgroup analyses are exploratory. On the other hand,
CPMP also issues a note for Guidance on Biostatistical Methodology in Clinical Trials in
Applications for Marketing Authorizations for Medicinal Products which expresses a diff-
erent view on subgroup analyses (CPMP, 1995). The note emphasizes that the model
approaches such as analysis of covariance, logistic regression, or Cox’s proportional haz-
ard model should include covariates and treatment-by-covariate interactions in order to
obtain an overall treatment effect. The note does not recommend the multiple separate
analyses within strata defined by the covariates. Under the assumption of no treatment-by-
covariate interaction, d�* given in (12.5.14) is the minimum variance unbiased estimator
for the overall treatment effect.

12.7 DATA MONITORING

Definition and Objectives

Data monitoring is an active process involving a completely blinded review of clinical data
while a trial is in progress (PMA, 1993). O’Neill (1993) provides some viewpoints from a
regulatory perspective. He suggests that data monitoring should include the following:

1. Assessments of the quality and relevance of the data and the extent to which the pro-
tocol is being followed.

2. Arrangements for data processing, auditing, cleaning, and report generation.
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3. Compilation and an assessment of safety data.

4. Compilation and an assessment of efficacy data.

5. Points in time for decision making on whether to continue or stop a trial based on
observed results.

Data monitoring is multifaceted process that can vary from stage to stage during the clin-
ical development of a drug product. For example, during phases I and II clinical studies are
mainly of an exploratory nature, whereas during phase III they take a confirmatory form. In
addition, the purpose might differ depending on the sponsors such as the pharmaceutical
industry and the U.S. National Institutes of Health. However, if a clinical trial demonstrates
overwhelming evidence of beneficial efficacy or unexpected harmful adverse effects for the
test drug, then it is recommended that the trial be terminated before the scheduled comple-
tion of the trial. Data monitoring and interim analyses are commonly employed for clinical
trials on the treatment of life-threatening diseases or severely debilitating illnesses with
long-term follow-up and endpoints such as mortality or irreversible morbidity. The decision
for early termination of such clinical trials is crucial and cannot be made simply based 
on an application of one of many statistical procedures for interim analyses discussed in
Chapter 9. Data monitoring and interim analysis are extremely complex processes for which
there exist no definitive rules, and they are critical to good clinical practice. Canner (1981)
points out in decision making in clinical trials, no single statistical decision rule or proce-
dure can take the place of well-reasoned considerations of all data by a group of concerned,
competent, and experienced persons with a wide range of scientific backgrounds and points
of view. In particular, the decision for early termination of a clinical trial should be based on
such considerations as baseline comparability, unbiased evaluation, compliance, internal
consistency with other endpoints and subgroup analyses, external consistency, benefit and
risk, length of follow-up, public impact, repeating testing, and multiple comparisons.

Regulatory Concerns

Improper and sloppy data monitoring and interim analyses can potentially alter the con-
duct of a clinical trial. Consequently, serious bias may be introduced in the treatment
effects. Both the FDA (FDA, 1988) and ICH guidelines (ICH, 1996) on the format, struc-
ture, and contents of a clinical report explicitly state that:

The process of examining and analyzing data accumulating in a clinical trial, either formally or
informally, can introduce bias and/or increase type I error. Therefore, all interim analyses, for-
mal or informal, pre-planned or ad hoc, by any study participant, sponsor staff member, or data
monitoring group should be described in full, even if the treatment groups were not identified.
The need for statistical adjustment because of such analyses should be addressed. Any operat-
ing instructions or procedures used for such analyses should be described. The minutes of
meetings of any data monitoring group and any data reports reviewed at those meetings, partic-
ularly a meeting that led to a change in the protocol or early termination of the study, may be
helpful and should be provided. Data monitoring without code-breaking should be also
described, even if this kind of monitoring is considered to cause no increase in type I error.

In addition, as indicated by O’Neill (1993), the FDA classifies the issues of data monitor-
ing in clinical trials as planning, reporting, operation, and documentation of the trials. These
issues include (1) unreported interim analyses, (2) planned or unplanned interim access 
to unblinded comparative study results, (3) failure of assessment of impact of unplanned
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interim analyses on study results, (4) bias on the future conduct of the trial caused by
unblinded assess to study results, (5) the recognition of all relevant parties of the regulatory
implications of early termination of trials, (6) development of efficient, effective communica-
tion and information flow between the data-monitoring committee and the regulatory author-
ity, (7) appropriate evaluation of exploratory trials, (8) planning trials not to stop early for
efficacy reasons alone but to balance the need for safety data on longer-term exposure with
short-term follow-up of early efficacy results, (9) establishment of policies regarding access
to ongoing data, access to unblinded data, and participation in the decision-making chain.

The above regulatory issues on data monitoring and interim analyses are concerned with
a potential bias in estimating the treatment effect, an inflation of a false positive rate, and doc-
umentation of the processes. Since data monitoring and interim analyses can affect the sub-
sequent conduct of the trial, a bias may be introduced that may not be measurable or
quantifiable. As a result the generalizability of the trial results (or inference) is placed in seri-
ous jeopardy. In addition the integrity and credibility of the trial becomes seriously affected.
Therefore it is important to make any attempts/efforts to eliminate both known and unknown
biases. As discussed earlier in this book, one way to avoid a potential bias is to maintain
blindness throughout the study. To achieve this objective, standard operating procedures
should be followed in the selection of plans, methods, data management, documentation of
data monitoring, planned and unplanned interim analyses, and dissemination of the results.

In general, phase IIB, phase III, and phase IV trials must be triple-blinded in the sense
that patients, investigators, and the clinical project team responsible for the development
are unaware of any individual treatment assignments and treatment results until all data of
the trial have been received, entered, edited, and verified and the database locked for analy-
sis. According to the definition given by the PMA, data monitoring is to be used for all tri-
als with and without planned interim analyses. In principal, all parties except for the
project statistician, data coordinator, and programmer are kept blinded until after the data-
base is locked and the statistical analyses completed, reviewed, and approved. When an
interim analysis is required, then only a statistician who is not involved in the trial is
authorized to merge the file of randomization codes of the individual treatment assign-
ments with the dataset of endpoints by patient number required for the interim analysis.
The file of randomization codes must be kept in a classified and secure area in a database
management system that is separate from the rest of the trial data and can only be accessed
by the authorized personnel. The extent of data included in the dataset for the interim
analysis should be (1) specified in the protocol and (2) minimal in order to satisfy the
objectives of the interim analysis and information for any subsequent decision-making
process leading to termination of the trial. On the other hand, the results of the interim
analysis could be presented as an overall summary with proper treatment identification for
a meaningful interpretation but excluding individual patient listings. These and any results
of interim analyses should be accessible only to a few designated people such as the mem-
bers of an independent data monitoring committee. A standard operating procedure must
be established to maintain the blindness of the study.

Early and Late Stages of Drug Development

As was mentioned earlier, the objectives of data monitoring depend on the stage of drug
development. In the early stages the trials are often exploratory in nature. As a result the
objectives of data monitoring and interim analyses are in the context of trial management
such as verification of design assumptions, detection of possible design flaws, monitoring
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for unexpected side effects, and generation of hypotheses for future use. Although general
principles of data monitoring can be applied to clinical trials at early phases of drug devel-
opment, their protocols usually do not specify the objectives, procedures, frequencies, and
methods of interim analyses. In addition, since these trials always proceed to completion
regardless of any interim analyses, the p-values obtained from interim analyses remain
generally unadjusted. Consequently they should be considered as descriptive rather than
inferential. Moreover, since clinical trials at an early stage are focused on generating
hypotheses to be confirmed at later stages, decisions made for future trials are sometimes
based on incomplete information. Accordingly, these decisions may be misleading due to
(1) unadjusted p-values of interim analyses and (2) small sample sizes of these studies. It is
suggested that data monitoring and interim analyses for these early trials be planned with
respect to dates of interim analyses, numbers of patients, summary statistics, and any other
adequately documented decisions.

Clinical trials conducted in the late stage of clinical development are confirmatory, ade-
quate well-controlled studies to provide substantial evidence of effectiveness and safety for
approval. On the other hand, phase IV studies and mega trials such as physician health
study, ISIS series trials, or GUSTO study are conducted to evaluate the drugs or compare
different agents in various combinations for the same indication in a much larger targeted
population. There trials are usually very large and involve more patients and take much
longer to complete with huge human and financial investment. Therefore, for ethical and
scientific reasons interim analyses are planned for these trials, in particular, with survival
and irreversible morbidity such as stroke or myocardial infarction as primary endpoints.
However, early termination of a trial conducted in non-life-threatening diseases solely due
to efficacy is not common. The guidelines for data monitoring and interim analyses for
large confirmatory trials include:

1. Group sequential methods introduced in Chapter 10 should be described in the proto-
col with respect to the required primary endpoints, frequency, boundaries, and refer-
ences of the employed methods for interim analysis and decision rules derived partly
from the results of interim analyses.

2. An independent data monitoring committee with internal or external members should
be established to monitor the data and to review the results of interim analyses.

3. Principles of adequate documentation with respect to the results of interim analyses
and minutes of data monitoring committee are essential for good practice of data
monitoring.

4. Blindness on dissemination of the results of interim analyses and deliberation of data
monitoring committee should be strictly enforced and tightly controlled.

Administrative Interim Analyses

From a functional point of view, interim analyses by the data-monitoring committees can
be classified as formal and administrative analyses (PMA, 1993; Williams et al., 1993).
The aim of a formal interim analysis is to decide on early termination of a planned study if
there is compelling evidence of beneficial effectiveness or harmful side effects. The admin-
istrative interim analysis is relevant in pharmaceutical cases and is conducted for the rea-
sons external to a trial at the request of regulatory agencies or upper management. Such an
administrative analysis rarely concerns early termination, and it is usually performed at an
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early stage of the trial in order to verify the design assumptions, check the data entry, edit-
ing, and review processes, and compare the simple baseline summary statistics used in the
enrollment of patients. Nevertheless, sometimes trials are terminated this early due to
major design flaws, an unusual placebo effect or unexpected toxicity, and other reasons
relating to recruitment problems, budget considerations, administrative cutoffs, company
merges, and contracting the study out to a contract research organization (CRO). For these
reasons standard operating procedures for early termination based on an administrative
analysis must be established. The standard operating procedures should identify the indi-
vidual responsible for authorizing an administrative interim analysis and outline a clear
paper trail for the reasons and actions as a consequence of such an analysis. It is important
to recognize that the potential danger of any administrative interim analysis lies in intro-
duction of bias and inconclusive evidence of trend because of lack of power.

Data Monitoring Committee

An independent data monitoring committee (DMC) should be established for any confirma-
tory trials with planned interim analysis, in particular, for the trials conducted in life-
threatening diseases or severely debilitating ailments. The model of data monitoring
committee formulated by the U.S. National Institutes of Health (NIH model) is usually
adopted for the trials sponsored by government. The model of the NIH clinical trials consists
of sponsor, steering committee, center or principal investigators, data coordination and statis-
tical analysis center, central laboratories, and data monitoring committee. The members of
the NIH DMC may include those with the disciplines in clinical, laboratory, epidemiology,
biostatistics, data management and ethics. In order to be independent, the members and their
family should have no conflict of interest, such as, no financial holdings in companies. In
addition, the members should not discuss nor disseminate the results of the interim analyses
outside DMC. A member representing the sponsor is usually included in DMC as a nonvot-
ing member and is allowed to attend the open session of DMC meetings only.

The responsibilities of DMC are to monitor the safety and ethical aspects of the trial
with respect to the patients, investigators, sponsors, and the regulatory authorities in
descending order of priority. DMC achieves these responsibilities by review of protocols;
interim review of study progress and the quality of trial conduct, monitoring safety data
and possible efficacy and benefit, and recommendation of early termination of trials and
dissemination of the primary results. Documentation is also a crucial part of functions of
DMC which include protocol, operational manuals for key data, decisions processes, and
different situations that might be encountered during the conduct of the trial and their pos-
sible resolutions, and interim data reports and minutes of the meetings.

The DMC should be prepared and ready from the start and should concentrate on the
primary efficacy and safety endpoint but not on individual case reports. Therefore, an on-
line data management and analysis system is essential for minimization of delay in data
entry and event verification so that any decision made by DMC is on the currently avail-
able data. As a result, sometimes, an independent data coordination and statistical analysis
center is usually established for trials sponsored by government. The data coordination and
statistical analysis center should be independent of the sponsor and responsible for case
report design, on-line data management system for data entry, editing and verification, and
for the quality control of the conduct of the trial through training, certification, tracking of
case report forms and reports, and design and maintenance of on-line analysis system for
interim and final analyses. In order to provide a good practice of data monitoring and to
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work problematically, the data coordination and statistical analysis center is required to
function and interact closely with the sponsor, clinics, steering committee, and most
importantly, the data monitoring committee.

The philosophy for decision-making process taken by DMC should be be ahead of time,
be prepared, and be problematic. Various formats of DMC meetings can be set up for diff-
erent objectives. The first one is an open session in which the representative from the 
sponsor might attend. The objective of the open session is to blindly review the progress,
conduct, recruiting, and logistic issues of the trial. The second format is a closed session at
which the members of DMC review the summary efficacy and safety results from interim
analyses by treatment group. The real treatments or dummy treatment codes such as A ver-
sus B could be used for review of interim results. However, the sponsor is not allowed to
attend the close session. The last format is the executive session at which the decision of
early termination will be deliberated and made. Sometimes, a quorum is set up for any
decision about trial termination. This quorum usually include the statistician of DMC.

The DMC might report to different parties such as the sponsor, the study chair, or the
executive or steering committee depending on the model and organization of the trial. For
example, the Cooperative North Scandinavian Enalapril Survival Study II (CONSENSUS
II) was a Scandinavian study sponsored by a U.S. pharmaceutical company with a planned
sample size of 4500 patients to compare enalapril, an angiotensin converting enzyme
(ACE) inhibitor, to a placebo in the treatment of acute myocardial infarction (Williams 
et al., 1993). This trial had a steering committee of 12 members, including a nonvoting
sponsor’s representative and a DMC consisting of three clinicians and one statistician from
the academe and a nonvoting sponsor’s statistician. The responsibility of the DMC for this
trial was to review unblinded analyses and to make recommendations to the steering com-
mittee. The sponsor’s statistician at the DMC, who was the unblinded sponsor’s employee
for this trial, provided analyses to the DMC.

As was mentioned earlier, interim analyses are an established part of the pivotal phase
III trials conducted by pharmaceutical companies with mortality or irreversible morbidity
as the primary endpoints. The method of the DMC can vary according to external involve-
ment of the trial. For certain trials with non-life-threatening diseases, a complete in-house
DMC may be set up for data monitoring and interim analyses. The next level of data mon-
itoring and interim analyses is an independent external DMC but the analyses must be per-
formed blinded internally, such as in CONSENSUS II. Sometimes a trial may have an
external DMC with data processing performed internally but with the interim analyses
done externally. The sponsor of the trial is allowed to attend the open sessions of the DMC
meetings. This structure and function is well accepted. Under this structure the sponsor
must have sophisticated computer and data management systems and sufficient resources
to process a large volume of data. Data are monitored blindly and independently, and
interim analyses are performed independently too. However, an independent external
DMC may have both data processing and analyses performed externally. The most extreme
method of the DMC is a complete hands-off approach with the external data processing
and analyses done with no sponsor’s representative. A typical example is the GUSTO trial.

Regulatory authorities such as the FDA and ICH have expressed their interest in having
access to clinical trial results, including raw data, methods for analyses, detailed assess-
ments of a study’s conduct and quality, compliance with protocol, and other trial docu-
mentations. Although the regulatory authority is aware of the progress of a trial, it should
not interfere with the decision made regarding the progress or termination of the trial. That
is to say, the authority should not routinely participate in the DMC meeting and should not
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be a voting member of DMC. The involvement of the regulatory authority with the DMC
should not go beyond communication and regulatory authority’s representative’s atten-
dance at open sessions so that blinding of the trials can be maintained. However, regulatory
agencies should be informed of the DMC decisions as soon as possible. O’Neill (1993)
indicates that this model has evolved from involvement in AIDS studies. The model has
worked well for various NIH trials especially for the ATCG program of the U.S. National
Institute of Allergy and Infectious Disease.

In the late 1960s, although the concept for having a formal committee being in charge
of reviewing the accumulating data for safety and efficacy of medicines under investigation
was well received, it was not until recently that a few trials sponsored by the pharmaceuti-
cal industry or medical community incorporated the concept of a data monitoring commit-
tee (DMC). The reasons for increasing number of industry-sponsored clinical trials
employing DMC include:

1. Growing number of industry-sponsored trials with mortality or major morbidity end-
points.

2. Increasing number of trials cosponsored by the pharmaceutical industry and govern-
ment that requires DMC under the policies of government funding agencies.

3. Awareness within the medical/scientific community of problems in trial conduct and
analysis that might lead to inaccurate and/or bias results.

However, as mentioned above, many different models have been proposed and used for the
operation of DMC under different environment, sponsors, and funding agencies with vari-
ous degrees of success, failure, advantages, and drawbacks. In November 2001, the Center
of Biological Evaluation and Research (CBER) of the U.S. FDA issued a draft guidance on
the Establishment and Operation of Clinical Trial Data Monitoring Committees that dis-
cusses the roles, responsibilities, and operating procedures of DMC. Although currently
the FDA regulations do not require the use of DMC in trials, this draft guidance assists
sponsors of clinical trials in determining when a DMC is needed for optional study moni-
toring, and how such committees should operate. Various technical and ethical issues are
emerging as the use of DMC and interim analysis becomes increasingly popular. Dixon
and Lagakos (2000) and DeMets (2000) provide different views on whether different
DMCs are allowed to share confidential data. On the other hand, Korn and Simon (1996)
discussed the issues of lower-than-expected accrual or event rates in monitoring data.
Reboussin et al. (2000) described an interactive Fortrain program for computation of group
sequential boundaries using the Lan–DeMets alpha spending function method that does
not require an equally spaced time interval and a prespecified number of interim analyses.

12.8 USE OF GENETIC INFORMATION FOR EVALUATION 
OF EFFICACY

As indicated in Chapter 2, one type of variation that is commonly observed in any clinical
responses is the biological difference among trial subjects. Factors such as age, gender, educa-
tion or social-economic status, smoking habit, weight, sexual orientation, and the underlying
disease characteristics at baseline may contribute to the variation among subjects. To reduce
the biological variation and to improve the accuracy and precision and generalizability of the
trial results, the inclusion/exclusion criteria are usually clearly specified in the study protocol
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to keep the characteristics of subjects as homogeneous as possible in the targeted patient pop-
ulation. In addition, other techniques such as blinding, randomized allocation of patients to
treatments, and standardized procedures for evaluation of clinical outcomes are implemented
to eliminate possible bias and to reduce different sources of variation. However, despite these
efforts and stringent scientific and statistical requirements by various guidances such as ICH
E6 guideline for Good Clinical Practice or ICH E9 guideline for Statistical Principles for
Clinical Trials, considerable variation of clinical responses or outcomes still occurs for most
of the clinical trials. One of the fundamental reasons may be due to the genetic differences
among trial participants. For example, O’Brien and Dean (1997) reported that genes were
found to protect against HIV infection. In addition, Winkler et al. (1998) observed a correla-
tion between the variability in survival of the HIV-infected subjects with their genotypes.
Weinshilboum (2003) and Evans and McLeod (2003) provided an excellent review on inheri-
tance and drug response and on pharmacogenomics, respectively. How to use the genetic
information for assessment of new treatments in clinical trials has emerged as a new challenge
to all clinical scientists/researchers.

As the Human Genomic Project has come to its conclusion, the mapping and sequencing
of the human genome has created a tremendously rich amount of genetic information that
provides clinical researchers with a golden opportunity to gain insight and understanding of
genetic mechanisms for causes of variation observed in clinical responses among subjects.
The new addition of genetic information will not only revolutionize the drug development
for the pharmaceutical industry, but also it will utiltize the science of pharmacogenomics to
individualize treatment selection and to predict efficacy and safety outcomes of selected
treatments for the individuals. However, the impact of genetic information on the clinical
outcomes for all new treatments for different diseases must be rigorously and scientificially
studied in clinical trials before their real clinical practices. Before the genomic era, the data
generated from clinical trials are basically the clinical outcomes of the phenotypic data such
as reduction in sitting systolic blood pressure, fasting plasma glucose level, increase in
high-density lipoprotein (HDL) cholesterol level, or prolongation of survival. However,
these clinical outcomes are in fact derived from complicated interactions between genetic
factors and environmental factors—treatment. Now, in the post-genomic era, the availabil-
ity of genetic information enables us to link the phenotypic data with the genotypic data to
investigate the mechanisms of the interaction of genes and treatments on the clinical out-
comes. In this section, we will introduce three examples from real clinical trials to illustrate
the use of genetic information on selection of patients and analysis of results. We will also
address the impact of genetic information on sample size and duration of trial.

Example 12.8.1 Treatment of Chronic Myelogenous Leukemia

It was estimated that chronic myeloid leukemia constitutes about 20% of newly diagnosed
leukemia (CML) in adults. It is a clonal disorder in which cells of myeloid lineage undergo
massive clonal expansion. The disease is characterized by three distinct phases: a chronic
phase of duration between three to six years, an accelerated phase, and then a blast crisis,
during which the leukemia loses its differentiation ability. The only curable treatment of
CML is allogeneic stem-cell transplantation. However, it is associated with considerable
mortality and morbidity. In addition, only 30% of CML patients have suitably matched
fonors. The first line of drug therapy includes interferon-alfa that can induce a complete
cytogeneic response only in about 5–20% of the CML patients with serious adverse events.
The cytogeneic responses are rare for the second line agents, including hyroxyurea or
busulfan after the failure of interferon-alfa.
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The reason for 90% of CML patients is due to a reciprocal translocation between the
long arms of chromosomes 9 and 22, which forms the so-called Philadelphia (Ph�) chro-
mosome. The direct consequence of this genetic abnormality from this reciprocal transloca-
tion of regions of the BCR and ABL genes is the formation of a BCR-ABL fusion gene. The
product of the BCR-ABL fusion gene is the generation of the fusion BCR-ABL protein,
which is a constitutively activated tyrosine kinase with an important role in regulation of
cell growth, and it can be found in almost all CML patients. Both in vitro studies and animal
models have established that BCR-ABL tyrosine kinase alone is sufficient to induce CML.
In addition, mutational analysis has shown that the tyrosine kinase activity is required for its
oncogenic activity. Because of this mechanism, an inhibitor of the BCR-ABL tyrosine
kinase could be an effective treatment for CML.

Imatinib mesylate is one of the selective and competitive inhibitors of the BCR-ABL pro-
tein tyrosine kinase. Several phase I and phase II trials have shown that imatinib mesylate at
400 mg per day after failure of previous treatment of interferon-alfa can induce major cyto-
geneic responses in about 60% of patients with confirmed late chronic phase CML and com-
plete hematologic responses in about 95% of the CML patients (Druker et al., 2001;
Kantarjian et al., 2002). Because imatinib mesylate was the first drug successfully using the
concept of molecular targeting in treating cancer patients, under the accelerated approval
regulations for severe or life-threatening illnesses, in less than three months, on May 10,
2001, the U.S. FDA approved imatinib mesylate for oral treatment of patients with CML
based on the results of surrogate cytogeneic and hematologic endpoints from three separate
single-arm studies in about 1,000 patients. Imatinib mesylate is also a selective inhibitor of
the transmembrane receptor KIT, which has tyrosine activity and is the product of the KIT
proto-oncogene. It has been reported that KIT activation occurs in all cases of gastrointesti-
nal stromal tumors (GIST) (Rubin et al., 2001). Demetri et al. (2002) reported the results of a
phase II study in which imatinib mesylate 400 mg or 600 mg daily cannot only induce any
complete response, but also it can provide a 54% partial response rate in patients with
advanced gastrointestinal stromal tumors. On February 1, 2002, the U.S. FDA also approved
imatinib mesylate for oral treatment of patients with GIST. However, the real clinical benefit
contributed by imatinib mesylate for the patients with either CML or GIST such as improve-
ment on survival remains to be confirmed.

Although the genetic mechanism for CML and its molecular target are quite clear, not
all patients can achieve cytogenetic or hematologic responses. When they do, the extent of
responses and time required to reach responses also vary among patients. Therefore, con-
siderable variation in responses to treatment of imatinib mesylate still exists among
patients with CML. In other words, Philadelphia (Ph�) chromosome, BCR-ABL fusion
gene, and its product, BCR-ABL tyrosine kinase, are sufficient to induce CML. There
might be other causes for CML. In addition, variation of the BCR-ABL fusion gene and its
interaction with other known or unknown genes may cause the variation in responses of
CML patients to the treatment of oral imatinib mesylate.

Example 12.8.2 Treatment of Metastatic Breast Cancer

Approximately 1.6 million women have breast cancer in the United States, with 180,000
new cases each year. In addition, it is estimated that each year more than 40,000 women die
of metastatic breast cancer in the United States despite recent advances in diagnosis and
treatment of breast cancers (Hortobagyi, 1998). Chemotherapy can induce objective
responses in most of the patients with metastatic breast cancers. However, it can rarely cure
the cancer. Moreover, most forms of chemotherapy are cytotoxic and can cause serious and
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substantial adverse events. The human epidermal growth factor receptor (HER2) is a growth
factor receptor gene that is amplified in about 30% of the patients with metastatic breast
cancer. HER2 encodes the HER2 protein found on the surface of some normal cells that
plays an important role in regulation of cell growth. In addition, this encoded protein is pres-
ent in abnormally high levels in the cancerious cells. Studies have demonstrated that
patients with breast cancers with overexpressed HER2 have an aggressive form of the can-
cer with statistically significantly shorter progression-free survival and overall survival
(Seshadri et al., 1993; Ravdin and Chamness, 1995). Because the HER2 gene is a prognos-
tic and predictive marker in breast cancer, it provides an opportunity to target an inhibitor of
HER protein as a treatment for the patients with metastatic breast cancer.

Herceptin is a monoclonal antibody bioengineering from part of a mouse antibody
whose anti-binding region was fused to the framework region of IgG to minimize im-
munogenecity. It was tested against breast-cancer cancer cells that overexpressed HER2
both in vitro and in vivo. When used alone, Herceptin was found to inhibit tumor growth.
In addition, it provides additive effects when used in combination with other chemoagents
such as paclitaxel. Phase I studies demonstrated that Herceptin is relative safety, and
because of its selectivity, most of the antibody is confined to tumor cells. Phase II trials
showed that for after the failure of previous chemotherapy, Herceptin induced an objective
response in a considerable number of women with the metastatic breast cancer. Therefore,
several large-scaled, randomized Phase III trials were conducted to confirm the effective-
ness and safety of Herceptin in patients with overexpressed HER2 (Slamon et al., 2001).

Enrichment design was actually employed in these studies to compare Herceptin plus
chemotherapy with chemotherapy alone. Unlike the clinical endpoints such as reduction of
VPC in CAST or ADAS for Alzheimer’s disease, as illustrated in Chapter 5, employed dur-
ing the enrichment phase, immunohistochemical assay for the levels of expression of HER2
was used to screen the patients with overexpressed HER2. In particular, Slamon et al.
(2001) only randomized the patients who had weak-to-moderate staining of the entire
tumor-cell membrane for HER2 (score of 2�) or more than moderate staining (score of 3�)
in more than 10% of tumor cells on immounohistochemical analysis. The overall objective
responses rates were 50% and 32% for Herceptin plus chemotherapy and chemotherapy
alone. The one-year survival rate was 78% for Herceptin plus chemotherapy and 67% for
chemotherapy alone. In addition, the patients who respond best to Herceptin had the highest
levels of HER2 protein. The most important adverse event is congestive heart failure that
occurred in 27% of the patients receiving Herceptin in combination with anthracyclines and
cyclophosphamide (AC). Therefore, Herceptin was not approved to be used with AC by the
U.S. FDA in 1998. Unlike the trials using enrichment design discussed in Chapter 5, the
enrichment phase of the trial by Slamon et al. (2001) actually can be implemented into real
clinical practice to identify the 20–30% of the patients with metastatic breast cancer and
with overexpressed HER2 who can potentially benefit from treatment of Herceptin. There-
fore, it is extremely critical to develop accurate, reliable, and yet inexpensive devices or 
procedures to achieve this goal with acceptable sensitivity and specicity. Bazell (1998)
described the details of ups and downs on the development of Herceptin.

Example 12.8.3 Estrogen Receptor Polymorphism

Until the conclusive evidence provided by the Women Health Initiatives (Writing Group
for WHI, 2002), elevation of plasma levels of high-density lipoprotein (HDL) cholesterol
by estrogen was thought to be one of the reasons for the lower incidence rate of heart
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disease in postmenopausal women receiving hormonal replacement therapy (HRT). How-
ever, considerable variation of HDL levels exists in the postmenopausal women who
receive exogeneous estrogen provided by HRT. A significiant portion of variation of HDL
levels observed among postmenopausal women receiving HRT may be due to genetic fac-
tors or to interaction between genetic factors and HRT. One of the genes responsible for
variation in the phenotypic measurement is the gene located at 6q24.1 that encodes estro-
gen receptor α(ER-α). Its allelic variants can modify its expression and hence may be
account for some variation in the HDL level.

The Estrogen Replacement and Atherosclerosis (ERA) trial (Herrington et al., 2002) is a
randomized, double-blind, three-arm, placebo-controlled trial to evaluate the effects of 
estrogen replacement therapy (0.625 mg per day oral conjugated estrogen) with or without
continuous low-dose Progestin (2.5-mg oral medroxyprogesterone acetate per day) versus
placebo on progression of coronary artery atherosclerosis in a total of 309 women with
angiographical verified coronary disease (Herrington et al., 2000a; Herrington et al., 2000b).
One of the objectives for the ERA trial was to measure and identify the association between
10 sequence variants in ER-α and the response of the HDL cholesterol to HRT among 
postmenopausal women. For this specific objective, the phenotypic data, i.e., HDL choles-
terol level including substraction 2 (HDL2) and subtraction cholesterol level, must be mea-
sured. In addition, to obtain the genotypic data, DNA was isolated and genotyping was
performed for each single nucleotide polymorphism (SNP). A linear model was used to
describe the relationship among HDL levels and estrogen treatment, various genotypes, and
their interaction after adjustment for the covariates such as baseline HDL levels, age, race,
diabetes status, body-mass index, baseline smoking status, frequency of exercise, and alcohol
intake.

As the result of resequencing by the ERA trial, a total of nine SNPs and the TA-repeat
dinucleotide polymorphism were identified and located within ER-α. These 10 nucleotide
polymorphisms were in the Hardy–Weinburg equilibrium. In addition, frequencies for the
variant SNP alleles ranged from 7.3% to 47.8% (Herrington, 2002). Results from the 
analysis by linear models indicated that increases in HDL cholesterol levels with HRT were
greatest in women who were homozygous for the less common alleles for the intron 1 poly-
morphisms of human estrogen receptor α. One of the four SNPs is the first intervening
sequence-401 (IVS1-401) polymorphism that involves the substitution of nucleotide from
cytosine to thymine. As shown in Table 12.8.1, HDL cholesterol levels remained relatively

Table 12.8.1 Mean High-Density Lipoprotein Cholesterol Levels and Baseline and 
Follow-up with Respect to Treatment Group and Genotypes of IVS1-401

Genotype of IVS1-401

C/C C/T T/T

HRT Placebo Diff. HRT Placebo Diff. HRT Placebo Diff.

Baseline 47.4 47.6 �.02 47.2 44.4 2.8 42.8 44.6 �1.8
Follow-up 60.4 47.9 12.5 53.1 47.7 5.4 48.8 45.2 3.6

Difference 13.0 0.3 12.7 5.9 3.3 2.6 6.0 0.6 5.4

p-value for genotype-by-treatment interaction � 0.0009.
Summarized from Herrington et al. (2002).
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unchanged for the placebo group irrespective of different genotypes. However, the
responses in HDL cholesterol levels of the patients receiving the hormonal replacement
therapy varied considerably with respect to different genotypes. In particular, the differences
in change from baseline in HDL cholesterol levels between HRT and placebo groups for
genotypes C/C, C/T, and T/T were 12.7, 2.6, and 5.4 mg/dL respectively. It followed that the
interaction between the first intervening sequence-401 (IVS1-401) and treatment was great-
est among the four SNPs in intron 1 with a p-value of 0.004 by the dominant model. The
above results actually represent the differences in means of the marginal distributions for
change from baseline in HDL levels between the treatment groups for genotypes C/C, C/T,
and T/T averaged over all other nine nucleotide polymorphisms. Therefore, evaluation 
of joint effects of different ER-α polymorphisms and possibly with closed linked genotypes
remains a challenge to clinical scientists/researchers though the augmented response 
of HDL cholesterol to the HRT in the women with the ER-α. IVS1-401 C/C genotype 
might be worth performing genetic screening for this allelic variant if elevation of 
HDL cholesterol can translate into clinical benefit of reducing the risk of cardiovascular
events.

Example 12.8.4 Sample Size Considerations

From Example 12.8.1, 90% of CML patients have Philadelphia (Ph�) chromosome. On
the other hand, from Example 12.8.2, 20–30% of the patients with metastatic breast cancer
have overexpressed HER2. In addition, from Herrington et al. (2002), about 19% of the
postmenopausal women have the IVS1-401 C/C genotype that induces an augmented
effect on the response of HDL cholesterol level to hormonal replacement therapy. There-
fore, a significant portion of disease susceptibility might be due to genetic factors. For
example, Winkler et al. (1998) reported a tremendous variation of survival for HIV-
infected patients with different genotypes. The 18-year survival rate ranges from 30% for
the patients with less protective genes to almost 100% for the genetic protective individu-
als. For simplicity, one can classify the genes or their genotypes into two groups. The first
group of the genes will respond to the environmental intervention such as drug therapy.
This group of the genotypes may be referred to as the reactive genotypes. The other group
of the genotypes belongs to those whose impact on the response to treatment intervention
is relatively minimal. This group of the genotypes may be referred to as the inert geno-
types. For clinical trials without including an enrichment phase for screening the subjects
with reacting genotypes, heterogeneity among the subjects due to the genetic variation not
only reduces the trial’s power, but also it increases the study duration (Fijal et al., 2000).

Suppose that the primary endpoint for a particular trial is an occurrence of a predefined
event such as eradication of a certain strain of bacteria causing infection or improvement of
disease defined by some objective criteria. One measure to evaluation of the effectiveness
of the treatment is to compare the response rate between treatment groups. As illustrated in
Chapter 9, the response rate for a treatment group is usually estimated as the proportion of
the subjects with occurrence of the event divided by the total number of subjects receiving
the assigned treatment. If every patient has the reactive genotypes, then the estimated
response rate is unbiased. However, if some patients contain inert genotypes, they will
never respond or respond differently to the treatment regardless of whether the treatment 
is efficacious, and hence, the observed proportion of the subjects with occurrence of the
predefined event will be underestimated for the true response rate.

c12.qxd  27.10.03  14:14  Page 557



558 ISSUES IN EFFICACY EVALUATION

Let GR and GI be the probabilities that a subject has the reactive or inert genotypes,
respectively, and PRj and PIj denote their corresponding true response rates under treatment
j, j � T, C. We can always assume that PRj � PIj � 0. Therefore, the observed response
rate can be written as

pj � GR PR j � GI PIj, j � T, C. (12.8.1)

For simiplicity, we consider the extreme situation in which the patients with inert geno-
types will never respond to any treatment, i.e., PIj � 0 for all j. pj in (12.8.1) then can be
simplified as

pj � GR PR j 	 PR j, j � T, C. (12.8.2)

Then the observed response rate is a biased estimator for the true response rate for the
target population of the patients with reactive genotypes. If the proportion of the patients
with inert and reactive genotypes is the same for both test and control groups, then the 
difference in observed response rates between treatment groups also underestimates the
difference in the true response rates because

pT � pC � GR(PR T � PRC) 	 PR T � PR C. (12.8.3)

Underestimation of the difference in true response rates due to inclusion of patients with
inert genotypes will increase the required sample size and the study duration. Screening
the patients with reactive genotypes, therefore, will lead to a smaller sample size and pre-
sumably a shorter trial period. However, as shown in Examples 12.8.2 and 12.8.3, the pro-
portion of the patients with reactive genotypes sometimes is rather smaller, usually under
30%. More subjects will be screened to obtain the required sample size of the patients with
reactive genotypes. In addition, the cost for screening and the length of accrual period
increase as the proportion of the subjects with reactive genes decreases. In concept, geno-
typic screening is very important to reach a homogenous target population for a clinical
trial with a smaller sample size and a short duration. The results from such studies can be
also transformed into real clinical practice for the patients who can benefit from the treat-
ment. However, implementation of genotypic screening for a clinical trial must consider a
lot of real issues, such as cost, accrual, ethnics, and privacy of the subjects. For more
details on impact of genotypes on sample size and study duration, see Fijal et al. (2000).
Lavori et al. (2002) reported the principles, organization, and operation of a DNA bank for
clinical trials.

12.9 SAMPLE SIZE RE-ESTIMATION

In clinical trials the sample size is determined by a clinically meaningful difference and
information on the variability of the primary endpoint. Since the natural history of the dis-
ease is usually not known or the test drug under investigation is a new class of drug, the
estimate of variability for the primary endpoint for sample size determination may not be
adequate. As a result the planned sample size may need to be adjusted in the middle of the
trial if the observed variance of the accumulated responses on the primary endpoint is very
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different from that used at the planning stage. Procedures have been proposed for adjusting
the sample size (or re-estimation) during the course of the trial without unblinding and
altering the significance level (Gould, 1992, 1995a; Gould and Shih, 1992).

For example, let us consider a randomized trial with two parallel groups comparing a
test drug and a placebo. Suppose that the distribution of the response of the primary end-
point is (or is approximately) normal. Then the total sample size for a two-sided alternative
hypothesis can be determined using the following formula as given in Example 11.3.2:

N � .  (12.9.1)

In general, σ2, the within-group variance, is unknown and must be estimated based on pre-
vious studies. Let σ*2 be the within-group variance specified for sample size determina-
tion at the planning stage of the trial. At the initiation of the trial, we except the observed
variability to be smaller than σ*2 so that the trial will have sufficient power to detect the
designated clinical meaningful difference. However, if the variance turns out to be much
larger than σ *2, we will need to re-estimate the sample size without breaking the random-
ization codes. If the true within-group variance is in fact σ�2, then the sample size to be
adjusted to achieve (1�β)100% power at the α level of significance for a two-tailed alter-
native is given by

N� � N �
σ
σ

*
�2

2�, (12.9.2)

where N is the planned sample size calculated from σ *2.
However, σ�2 in (12.9.2) is unknown and must be estimated from the accumulated data

available from a total n of N patients. One simple approach to estimate σ �2 is based on the
sample variance calculated from the n responses which is given by

(n�1)s2 � � � (Yij � Y�..)
2, (12.9.3)

where Yij is the jth observation in group i and Y� is the overall sample mean, j � 1, . . . , ni,
i � T, P, and n � nT � nP. If n is large enough for the mean difference between groups to
provide a reasonable approximation to ∆, then it follows that σ�2 can be estimated by
(Gould, 1995a)

σ�2 � �
n
n
�

�

1
2

��s2 � �
∆
4

2
��. (12.9.4)

Note that the estimation of within-group variance σ�2 does not require the knowledge of
treatment assignment, and hence the blindness of the trial is maintained. However, this
approach does depend on the mean difference, which is not calculated and is unknown.
The other procedure for estimating σ�2 without a value for ∆ is the EM algorithm (Gould
and Shih, 1992; Gould, 1995a). Suppose that n observations, Yi, i � 1, . . . , n, on a primary
endpoint have been obtained from n patients. The treatment assignments for these patients
are unknown, and Yi are the observations of patient i that can be randomly allocated to
either of the two groups. Gould and Shih (1992) and Gould (1995a) assume that the treat-
ment assignments are missing at random. Define πi as the treatment indicator

πi � 
 (12.9.5)
1 if the treatment is the test drug

0 if the treatment is placebo.

4σ2[Z(α /2) � Z(β)]2
���

∆2
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The E step is, after substitution of the current estimates of µT, µP, and σ, to obtain the pro-
visional values of the expectation of πi (i.e., the conditional probability that patient i is
assigned to the test drug given Yi), which is given by

P{πi � 1�Yi} � , (12.9.6)

where µT and µP are the population mean of the test drug and the placebo, respectively. The
M step involves the maximum likelihood estimates of µT , µP, and σ after updating πi by
their provisional values obtained from (12.9.6) in the log-likelihood function of the interim
observations, which is given by

1 � n log σ � . (12.9.7)

The E and M steps are iterated until the values converge. Gould and Shih (1992) and
Gould (1995a) indicate that this procedure can estimate within-group variance quite satis-
factorily, but fail to provide a reliable estimate of µT � µP. As a result the sample size can
be adjusted without knowledge of treatment allocation. For sample size re-estimation with
respect to binary clinical endpoints, see Gould (1992, 1995a).

From the above procedures, the sample size adjustment can be performed during 
the study without unblinding the treatment allocations and knowledge of any treatment
differences. Therefore it is not necessary to adjust the significance level. However, the
magnitude of adjustment of the planned sample size for the phase III pivotal trials may be
relatively significant. This is a consequence of the variability between observations from
phase II and from the current phase III trials. One has to find the possible causes for any
within-group variances such as due to different patient populations between phase II and
phase III trials. Although the technique does not require adjustment of the p-value and does
maintain blinding, sample size re-estimation is rather seldom performed because of con-
cerns for the integrity of a trial (Williams et al., 1993). For a review of the methods for
sample size re-estimation, see Shih (2001b).

12.10 DISCUSSION

The statistical analysis of efficacy data from clinical trials involves many complicated
issues. The problems of missing values and dropouts add yet another dimension to this
complex analysis. There are two types of missing values (Diggle, Liang, and Zeger, 1994).
The first concerns missing values when patients withdraw from a trial at any time before its
planned completion. As a result the data scheduled to be collected beyond the patient’s
dropout time are missing. We refer to the missing values due to reasons other than dropouts
as intermittent missing values.

There are many causes of dropouts and missing values. Dropouts can occur because of
the duration of study, the nature of the disease, the efficacy and adverse effects of the drug
under study, intercurrent illness, accidents, patient refusal or moving, and any number
administrative reasons. Some of these causes are treatment-related and some are not.
Based on these causes, the mechanism of missing values can generally be grouped into
three types (Little and Rubin, 1987). If the causes of missing values are independent of the
observed responses and of the responses which would have been available had they not
been missing, then the missing values are said to be completely random. On the other hand,

� [πi(Yi � µT)2 � (1 � πi)(Yi � µp)
2]

����
2σ2

1
�����
1 � exp[(µT � µP)(µT � µP � 2Yi)/2σ2]
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if the causes for missing values depend on the observed responses but are independent 
of the scheduled but unobserved responses, then the missing values are said to be random.
The missing values are said to be informative if the causes for missing values depend on
the scheduled but unobserved measurements.

If the missing mechanism is either completely random or random, then the statistical
inference derived from the likelihood approaches based on patients who complete the study
is still valid. However, this inference is less efficient under the completely random or ran-
dom missing mechanism (Diggle, Liang, and Zeger, 1994). If the missing values are
informative, then the inference based on the completers would be biased. As a result the
FDA and ICH guidelines on clinical reports both indicate that despite the difficulty, the pos-
sible effects of dropouts and missing values on magnitude and direction of bias must be
explored as fully as possible. That is to say, before any analyses of efficacy endpoints, at
various intervals during the study the frequency, reasons, and time to dropouts and missing
values should also be compared between treatment groups. Their impact on the trial’s
efficacy has to be fully explored and understood, and only after the missing mechanism has
been identified can appropriate statistical methods be employed for the analysis (Diggle,
1989; Ridout, 1991). Although some procedures have been proposed (Diggle and Kenward,
1994), there exists no satisfactory well-developed methodology to account for missing val-
ues or intermittent missing values. Therefore the conservative strategy seems to be to con-
tinue to collect the data on the primary endpoints after a patient withdraws from the study
and then to analyze the efficacy endpoints based on the intention-to-treat principle with all
available data from all randomized patients.

DISCUSSION 561
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13
SAFETY ASSESSMENT

13.1 INTRODUCTION

As was indicated in Chapter 1, the safety of marketed drugs did not become a public 
concern until the Elixir Sulfanilamide disaster in late 1930s which led to the Federal Food,
Drug and Cosmetic Act (FD&C Act). The FD&C Act requires the pharmaceutical compa-
nies to submit all reports of investigations on the safety of new drugs. This requirement
was subsequently strengthened by the Kefauver-Harris Drug Amendments to the FD&C
Act. These federal regulations have influenced the quantity and quality of safety informa-
tion on drugs on the market. Consequently, throughout the development and marketing of 
a new drug, there are involved stages of government safety assessments. O’Neill (1988)
classifies these stages as pre-marketing, post-marketing, and drug labeling. O’Neill indi-
cates that the assessment of the safety of a new drug begins in the pre-approval stage with
pre-clinical animal studies and with early phase I studies that examine the absorption,
excretion, dose ranging, tolerance, and other pharmacokinetic performance of the drug in
humans. This continues with phase II and phase III of clinical development. During the
post-approval marketing, much broader patient populations become involved. The safety
information may be obtained from voluntary reports, monitoring system, uncontrolled
patient follow-up, and formal epidemiological studies.

For the pre-marketing safety assessment, the FDA requires that a summarization and
analysis of safety information of a new drug be included in the NDA submission. In particu-
lar, Section 314 of CFR [314.50 (d)(5)(ii)] indicates that an integrated summary of all 
available information on the safety of the drug product be submitted, including pertinent ani-
mal data, demonstrated or potential adverse effects of the drug, clinically significant drug-
to-drug interactions, and other safety considerations such as data from the epidemiological

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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studies of a related drug. The applicant has to date periodically its pending application 
with new safety information learned about the drug that may reasonably affect the statement
of contraindication, warnings, precautions, and adverse reactions in the draft labeling. After
the drug is approved, Section 21 CFR 314.80(b) also requires that the sponsor promptly
review all adverse drug experience information obtained or otherwise received by the spon-
sor from any source, foreign or domestic, including information derived from commercial
marketing experience, post-marketing clinical investigations, post-marketing epidemio-
logical/surveillance studies, reports in scientific literature, and unpublished papers. Section
21 CFR 314.80(c)(1)(ii) also requires that the sponsor periodically review the frequency of
adverse drug experience reports which are both serious and expected (in the labeling) and
report any significant increase in frequency that might suggest a drug-related incidence
higher than previously observed or expected. The safety update report should be submitted
(1) four months after the initial submission, (2) following receipt of an approvable letter,
and (3) at the times requested by the FDA. For drug labeling, Section 21 CFR 201.57(e) 
on warnings states when the label should describe serious adverse reactions and potential
safety hazards. In addition, Section 21 CFR 201.57(g)(2) requires that the frequency of the
serious adverse reactions be expressed under the section of Adverse Reaction of the labeling,
and if known, the approximate mortality and morbidity rates for patients sustaining the 
reaction.

In general, the assessment of drug safety in clinical trials has not received the same level
of attention as the assessment of efficacy. For example, in most clinical trials, sample size is
determined to achieve a desired power for detection of a clinically meaningful difference in
the primary efficacy variable rather than safety parameters. In addition, unlike the assess-
ment of efficacy, the hypotheses for safety assessment are usually much less well-defined.
As a result statistical methods for the assessment of safety are limited. In practice, descrip-
tive statistics for safety data obtained from clinical trials, both controlled and uncontrolled,
are often used to (1) summarize rates of occurrence of adverse events in exposed groups and
(2) examine any patterns or trends for subgroups of patients experiencing differential rates
of adverse events. In practice, safety data obtained in clinical trials are often summarized in
terms of rates or relative risks of certain events. Therefore it is important to develop a sound
statistical methodology that provides an accurate and reliable assessment of drug safety. In
addition to safety data of rates and relative risks of certain events, most clinical trials also
contain a large battery of routine laboratory measures as part of the safety evaluation of the
drug under investigation. Since laboratory data are obtained from analytical methods, they
are often the least biased and the most precise data collected in clinical trials. Although lab-
oratory data can provide information on systemic toxicity, these data are often underutilized
for evaluation of drug safety.

In this chapter, our goal is to describe approaches for assessing the safety of a drug prod-
uct in terms of rates or relative risks of adverse events and laboratory data during its clinical
development and marketing stages. In the next section the toxicity (or risk) of the exposure
to a drug under study is briefly described including the incidence rate of an event and labo-
ratory tests. In Section 13.3 we provide definitions for adverse drug reaction, adverse event,
and serious adverse events adopted by the FDA and ICH. Also included in the section are
the coding, filing, and reporting of observed adverse events according to some acceptable
dictionaries such as COSTART, MedDRA, or IMT. Statistical methods for the assessment
of safety in terms of adverse events are reviewed in Section 13.4. Analyses of laboratory
data for the assessment of safety are discussed in Section 13.5. Some remarks and discus-
sions are given in the last section.
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13.2 EXTENT OF EXPOSURE

As indicated in Federal Register (vol. 61, no. 138, 1996) and ICH E3 guideline entitled
Structure and Content of Clinical Study Reports (1996), the evaluation of safety-related
data can be considered at three levels: (1) the extent of exposure, (2) the more common
adverse events and laboratory test changes, and (3) serious adverse events and other signifi-
cant adverse events. In this section we will discuss the extent of exposure of a test drug or
an investigational drug product. The extent of exposure can be used to determine the
degree to which safety can be assessed from the study. The extent of exposure to a test drug
or an investigational product is usually characterized according to the number of patients
exposed, the duration of exposure, and the dose to which patients were exposed. Duration
of exposure to any dose is usually expressed as a median or mean. In practice, it is helpful
to describe the number of patients exposed for specified periods of time. In addition it is
suggested that the number of patients exposed to the test drug for various durations be bro-
ken down by age, sex, racial subgroups, and any other pertinent subgroups (e.g., disease,
disease severity, or concurrent illness) in order to get a good profile of the exposure effect
on different populations. Another measure of the extent of exposure is the number of
patients exposed to specified daily dose levels. The daily dose levels used could be the
maximum dose for each patient, the dose with longest exposure for each patient, or the
mean daily dose. Similarly it is suggested that the number of patients exposed to various
doses be broken down further by age, sex, racial, and any other pertinent subgroups to
examine the profile of the extent of exposure for dose. In some cases a cumulative dose
may be pertinent. In practice, it is often useful to provide combined dose-duration infor-
mation such as the numbers exposed for a given duration to the most common dose, the
highest dose, or the maximum recommended dose.

Risk of Exposure

In clinical trials the toxicity or risk of exposure to a drug can generally described as a func-
tion of the exposure to the drug:

Toxicity � f(exposure),

where the exposure to the drug depends on the dose and time of exposure. If we assume a
constant dose, then the toxicity is a function of the time of exposure. The toxicity or risk of
exposure is usually measured by some parameters such as occurrence, number, duration, and
time pattern of an event. The event may be an absorbing (irreversible) event (e.g., death), a
recurring even with negligible duration (e.g., seizure), or a recurring event with a duration
(e.g., migraine headache episodes). Therefore, all of the parameters such as occurrence,
number of events, and duration are not meaningful for all events. Meaningful parameters 
are rather the probability of occurrence, the number of events, and the percentage of time
affected for an absorbing event, a recurring event, and a recurring event with a duration,
respectively.

For quantification of the exposure risk of patients to a drug, the most commonly used
measure is a crude incidence rate, which is defined as

CR � ,Number of patients with the event
����

Number of patients at risk
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where the patients at risk are all patients enrolled and treated. Under the assumption that each
patient has the same probability of experiencing the event, CR is a binomial estimate. In prac-
tice, the binomial holds only if each patient undergoes one exposure unit. Tremmel (1996)
points out that even by this assumption, the incidence rate may be misleading in long-term
clinical trials because (1) it does not take exposure time into account and (2) every patient
experiencing the event must disregard parameters of severity such as duration and the num-
ber of events. Further, in cases where there are early terminations, the full initial patient sam-
ple used as the denominator will lead to a downward bias. Thus Tremmel (1996) suggests
that CR be used only when each patient receives one exposure unit such as in phase I trials.
For short-term trials the use of CR is also justifiable if all patients experience about the same
amount of exposure.

As an alternative to the CR estimate, Tremmel (1996) suggests the following two basic
techniques which can be used to quantify the exposure risk of patients to a drug by control-
ling for the exposure to the drug. The first is to divide the number of events by total exposure
by implicitly assuming a constant hazard. In other words, we calculate the number of events
per time units such as the number of deaths per patient year. The other is to consider strati-
fication by exposure time by forming time intervals. In other words, we consider estimates
of the number of events per time interval assuming a constant hazard function.

Absorbing Events

For describing the exposure risk for absorbing events, Tremmel (1996) suggests using the
number of events per patient-time unit, which is defined as

h � .

The basic assumption is that one unit of patient-time is equivalent to and independent of
another unit of patient-time. In other words, each patient-time unit is a binomial observa-
tion with the probability of success P � h. If the absorbing event is death, Rothman (1986)
estimates the risk of exposure by means of the number of deaths per time unit of exposure:

h � ,

where h estimates the constant hazard. This is a typical example of constant hazard, also
known as death per patient year (DPPY). In practice, since the hazard may vary over time,
we need to allow for a nonconstant hazard, such as a decreasing hazard function (O’Neill,
1988). For nonconstant hazards, h is a function of time (known as hazard function). As
indicated by Salsburg (1993), hazard functions provide useful information that helps us not
only to assess drug causality but also to identify periods of increased risks. In addition the
corresponding survival rates

S(t) �Π [1 � h(t)]

provide probability statements of occurrence similar to the crude incidence rate which are
unbiased because they are based on the corrected denominators (O’Neill, 1988a). Besides,
they are adjusted for exposure by being functions of exposure time.

Number of deaths
���
Number of total exposure

Number of positive patient-time units
����

Number of all patient-time units
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As was pointed by Tremmel (1996), event per patient-time unit such as death per patient
year is a meaningful parameter for the assessment of exposure risk if the event can only
occur once.

Recurring Events with Negligible Duration

Recurring events with negligible duration are referred to as events with relevant recurrences
such as reinfections, seizures, or sensitivity reactions. Similar to the absorbing events with
constant hazard, one may consider the following for recurring events:

h � .

Thus h is the risk of getting the event for the first time or again. h provides a probability
estimate under the assumption that each patient-time unit at risk is a binomial observation
with the probability of success P � h.

For nonconstant hazards, since the recurring events may be dependent on individual
subjects, the quantification of the exposure risk is more complicated. Basically there are
two approaches with so-called subject-induced dependencies. For models that ignore
subject-induced dependencies, the hazard function h(t) can be estimated within different
time intervals by the number of events in that interval divided by the total patient-exposure
in that interval. The expected event counts for an individual at risk can be derived by inte-
grating the hazard function for the risk interval. Confidence intervals can also be con-
structed (Andersen et al., 1993). Based on the same idea, Andersen and Gill (1982)
considered Cox’s proportional hazards model with the hazard being a function of time and
a subject-related risk score to allow for recurring events. To account for the number of 
preceding events, Andersen and Gill (1982) further considered including the number 
of preceding events as a time-dependent covariate in the model. As a result the estimation
of the expected event counts becomes more difficult and depends on the stochastic struc-
ture of the future development of the covariates (Andersen et al., 1993).

To account for subject-induced dependencies, we can consider either a normal model for
count data proposed by Hoover (1996) or a random-effects model (or frailty model). For 
the normal model for count data, the idea is to form time intervals with complete exposures
by deleting data that are censored in the interval and then, for each subject and interval,
determine the event count. We next estimate the mean counts, variances, and covariances of
counts between time intervals, assuming that the matrix of counts is from a multivariate 
normal distribution. We apply the central limit theorem to justify the estimates, which we
finally use to derive point estimates and confidence intervals for event counts over time. The
purpose of the random effects model is to examine whether there is a subject effect over 
a potentially relevant variable such as exposure time. The subject effect is defined as the
observed count over time for each subject.

Various statistical procedures have been proposed in the literature for analysis of recur-
rent events or multiple failure time data. For example, Wei and Glidden (1997) provided an
overview on statistical methods for multiple failure time data in clinical trials, which were
developed before 1995. These methods include the Anderson-Gill (AG) model and the
methods proposed by Prentice et al. (PWP, 1981) and Wei et al. (WLW, 1989). The AG
model is a generalization of the Cox proportional hazard model, which is in a multiplica-
tive manner that relates the intensity function of recurrence to the covariates. The method

Number of positive patient-time units
����Number of all patient-time units at risk
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by Prentice et al. (1981) is an alternative for analysis of the recurrent events. The PWP
model handles the dependence between event times by the stratification of the prior num-
ber of failures. The method proposed by Wei et al. (1989) is to obtain the maximum partial
maximum likelihood estimates using the usual proportional hazards model. In addition,
Pepe and Cai (1993), Lawless et al. (1997), and Lin et al. (2000) proposed a robust semi-
parametric procedure for inferences about the rate and mean functions of the recurrent
events. Recent development for analysis of recurrent events can been found in Wang and
Chang (1999), Chang and Wang (1999), Wang and Chen (2000), Kelly and Lim (2000),
Chang (2000), Lin and Ying (2001), Wang et al. (2001), and Mahe and Chevret (2001).
However, little information on the power and sample size determination for the recurrent
events is available (see, e.g., Hughes, 1997).

Recurring Events with Nonnegligible Duration

To quantify the risk of exposure of recurring events with nonnegligible duration, the most
commonly employed approach is to calculate either the prevalence rate or the incidence
rate at a given time. The prevalence rate is the risk of having an event at a given time,
which is defined as

hP � .

As can seen from the above definition, the prevalence rate includes patients in both the
numerator and denominator throughout the duration of an event. As a result, the prevalence
rate is the proportion of a population that is affected by disease at a given point in time.
Continued suffering increases the number of patient-time units affected. On the other hand,
the incidence rate is the risk of getting an event at a given time which is defined as

hI � .

The differences between the prevalence rate and the incidence rate are that (1) the contin-
ued suffering does not count in numerator and that (2) patient-time units of continued
suffering are not at risk of getting the event and hence are removed from the denominator.
Let us consider the example listed in Table 13.2.1 which was given in Tremmel (1996). In
the table the total patient-time units is given by 10(4) � 40 and the patient-time units
affected is 10 (the number of crosses). Therefore, the prevalence rate is given by

hP � �
1
4
0
0
� � 0.25.

On the other hand, the patient-time at risk is 40 � 6 � 34 and the incidences is 4. Thus the
incidence rate is

hI ��
4
1
0
0

�

�

6
6

�� �
3
4
4
� � 0.12.

Note that the prevalence rate can be estimated by the incidence rate if it is multiplied by the
average duration of the disease (Rothman, 1986).

Number of incidences
����
Number of patient-time units at risk

Number of patient-time units affected
����
Number of patient-time units exposed
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Laboratory Data

Another approach that is commonly employed to investigate the extent of exposure to 
a drug in clinical trials is to perform routine laboratory tests. In practice, many clinical
studies contain a large battery of routine laboratory measurements as part of the safety
evaluation of the drug under investigation. Compared to the rates or relative risks of certain
events observed from clinical trials, laboratory data are often the least biased and the most
precise data because they are obtained by analytical methods. The laboratory data not only
provide reliable information on system toxicity but also valuable information for evaluat-
ing the efficacy and safety of the drug under study.

In clinical trials, routine laboratory tests are usually performed not only to screen
patients for inclusion in trials prior to randomization but also to protect patients during tri-
als. In many clinical trials, laboratory tests are considered as the primary efficacy variables
and hence are used for assessment of drug effects. For example, laboratory tests for choles-
terol and triglycerides are often used to assist the diagnosis of patients with coronary heart
disease. Cholesterol measurements includes total cholesterol (TOTAL-C), high-density
lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). A high
value of LDL-C, a low value of HDL-C, or a high value of triglycerides combined with a
low value of HDL-C constitutes a high-risk factor of coronary heart disease. For a normal
subject, its total cholesterol, HDL-C, LDL-C, and triglycerides should be within the ranges
of 130–200 mg/dL, 35–65 mg/dL, �130 mg/dL, and �250 mg/dL, respectively. The rela-
tionship among TOTAL-C, HDL-C, LDL-C, and triglycerides can be expressed by the well-
known Fieldewald equation as follows:

LDL-C � TOTAL-C�[HDL-C � 0.2(triglycerides)].

For another example, consider a laboratory test for glucose for patients with diabetes mellitus.
According to the American Diabetes Association, a subject with fasting glucose �126 mg/dL
or two-hour post cibum (2-hr PC) glucose �200 mg/dL would be diagnosed as a patient with
diabetes mellitus. If 2-hr PC glucose is between 140 and 200 mg/dL, then the subject is con-
sidered to have impaired glucose tolerance. In general, it is estimated that approximately
1–5% of the patients with impaired glucose tolerance will have diabetes mellitus.

In clinical trials any significant change in laboratory measurements could be an indica-
tion of potential toxicity or an exposure risk of the drug under study. A careful assessment
of such changes is necessary. In general, different laboratory tests can be performed to
meet different study objectives of clinical trials with different indications and patient pop-
ulations. On average, about 20 to 35 laboratory tests are typically performed in a clinical
trials. Tables 13.2.2 through 13.2.4 list some commonly performed laboratory tests for

Table 13.2.1 Recurring Events with Nonnegligible Duration

Patient 1 2 3 4 5 6 7 8 9 10

1 — — — — � � � � — —
2 — — — — — � — — — —
3 — — — — — — — — — —
4 — — — � � — — � � �

Source: Tremmel (1996).

Note: � indicates affected.
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hematology, clinical chemistry, and urinalysis and their corresponding reference ranges (or
normal ranges) for normalities (if available).

13.3 CODING OF ADVERSE EVENTS

13.3.1 Definitions of Adverse Events

For clinical trials, it should be recognized that the safety information for the treatment
under study is at least as important as or more important than the efficacy. However, differ-
ent terms and/or definitions are often employed in different trials for evaluation of treat-
ments across different therapeutic areas, For example, adverse events, adverse experience,
adverse drug reactions, side effects, severe adverse events, significant adverse events, or

Table 13.2.2 Laboratory Tests for Hematology

Laboratory Test Normal Range

WBC (white blood cell count) 3.6–9.8 � 103/µL
RBC (red blood cell count) Male: 4.2–6.2 � 106/µL

Female: 3.7–5.5 � 106/µL
Hemoglobin Male: 12.9–17.9 g/dL

Female: 11.0–15.6 g/dL
Hematocrit Male: 38–53%

Female: 33–47%
WBC classification

Band neutrophil 0–3% or 0–5%
Segmented neutrophil 45–70%
Lymphocyte 25–40% or 2.4 � 0.8 � 103/µL
Monocyte 2–8%
Eosinophil 1–3% or 70–400/µL
Basophil 0–0.5%

MCV (mean corpuscular volume) 82–98 fL (i.e., 10�15 L)
MCH (mean corpuscular hemoglobin) 27–32 pg (i.e., 10�12 g)
MCHC (mean corpuscular hemoglobin 

concentration) 31–36%
Platelet count 120–400 � 103/µL
RDW (red cell distribution width) 11.5–14.5
MPV (mean platelet volume) 9.8 � 1.2 fL
Reticulocyte count 0.5–1.5%
ESR (erythrocyte sedimentation rate) Male: �10 mm/hr

Female: �20 mm/hr
Bleeding time 3–10 min
Clotting time 8–10 min
PT (prothrombin time) 10–13 s
APTT (activated partial thromboplastin time) 26–36 s
G-6-PD (glucose-6-phosphatase 

dehydrogenase) 4.10–7.90 IU/g Hb
Fibrinogen 200–400 mg/dL
FDP (fibrinogen degradation product) �10 µg/mL
Total eosinophil count 70–400/mm3
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Table 13.2.3 Laboratory Tests for Clinical Chemistry

Laboratory Test Normal Range

Liver function tests
ALP (alkaline phosphatase) 65–272 IU/L
AST/SGOT (serum glutamic 

oxaloacetin transaminase) 15–35 IU/L
ALT/SGPT (serum glutamic 

pyruvate transaminase) 3–30 IU/L or 8–45 IU/L
γ-GT (gamma glutamyl transferase) 5–40 IU/L
Bilirubin 0.3–1.0 mg/dL
LDH (lactic acid dehydrogenase) 150–400 IU/dL
Total protein 6.6–8.1 gm/dL
Albumin 3.9–5.1 gm/dL
Globulin 2.3–3.5 gm/dL

Renal function tests
BUN (blood urea nitrogen) 5–20 mg/dL
Creatinine 0.7–1.5 mg/dL
Creatinine clearance Male: 62–108 ml/min

Female: 57–78 ml/min
Electrolytes

Sodium (Na�) 135–140 mmol/L
Potassium (K�) 3.5–5.0 mmol/L
Chloride (Cl�) 98–108 mmol/L
Calcium (Ca2�) 2.1–2.6 mmol/L
Phosphorus (P) 2.5–4.5 mg/dL
Magnesium (Mg2�) 1.9–2.5 mg/dL

Uric acid Male: 3.5–7.9 mg/dL
Female: 2.6–6.0 mg/dL

CPK (creatinine phosphokinase) 37–289 IU/L
Aldolase 1.7–4.9 units/L
Amylase Serum: 30–200 IU/L

Urine: 4–30 IU/2 h
Lipase �200 units/L
Cholesterol

Total cholesterol 130–200 mg/dL
HDL-cholesterol 35–65 mg/dL
LDL-cholesterol �130 mg/dL

Apo A-1 (apolipoprotein A-1) Male: 66–151 mg/dL
Female: 75–170 mg/dL

Apo B (apolipoprotein B) Male: 49–124 mg/dL
Female: 26–119 mg/dL

Triglycerides �250 mg/dL
Glucose

AC glucose 70–110 mg/dL
30 PC glucose 90–160 mg/dL
1-hr PC glucose 90–160 mg/dL
2-hr PC glucose 75–125 mg/dL
3-hr PC glucose 70–110 mg/dL

HbA1C (glycosylated hemoglobin) 4–7%
Serum iron Male: 89–200 µg/dL

Female: 70–180 µg/dL
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serious adverse events, risks, or toxicities are terminologies often used (either exchangeably
or differently) for safety assessment in different trials across different therapeutic areas. In
addition, even for the same terminology, different definitions may be applied in different
therapeutic areas by different countries or regions. Nickas (1995) classified adverse event
data into three categories, namely, (1) known adverse drug reaction; (2) adverse events
where a causal relationship is uncertain, a possible adverse drug reaction; and (3) adverse
events that are considered unrelated to study drug. Northington (1996) provided a general
definition, which considers an adverse event any negative event that a patient/subject expe-
riences during the course of a clinical trial. The term negative event is broad and vague and
allows too much flexibility for an accurate and reliable interpretation. As a result, although
this definition may increase the number of events reported, it may also increase the chance
of capturing all potentially important events. More specifically, Northington (1996) indi-
cated that an adverse event might be defined as any unfavorable change in the structure
(signs), function (symptom), or chemistry (laboratory data) of the body temporally associ-
ated with participation in the clinical trials, irrespective of the believed relationship to the
study drug. This specific definition would also include intercurrent illness or injuries, clini-
cal significant results from laboratory tests or other medical procedures, and clinically sig-
nificant findings uncovered during a physical examination.

On the other hand, in the 1988 FDA guideline entitled, Guideline for the Format and Con-
tent of the Clinical and Statistical Section of an NDA, the FDA states that an adverse event
tabulation of particular interest that should be produced for all studies would include all new
adverse events (i.e., those not seen at the baseline or that worsened during treatment).

Table 13.2.3 (Continued)

Laboratory Test Normal Range

Ferritin Male: 27–300 ng/ml
Female: 10–130 ng/ml

Acid P-tase (acid phosphatase) Male: 4.7 IU/L
Female: �3.7 IU/L

Protein electrophoresis
Total protein 5.9–8.0 g/dL
Albumin 4.0–5.5 g/dL
Alpha-1 globulin 0.15–0.25 g/dL
Alpha-2 globulin 0.43–0.75 g/dL
Beta globulin 0.50–1.00 g/dL
Gamma globulin 0.60–1.30 g/dL

Lipoprotein electrophoresic
Pre-beta 20 � 6%
Beta 50 � 5%
Alpha 36 � 7%

Hemoglobin electrophoresis
Hb A 97%
Hb A2 1.5–3.5%
Hb F �2.0%
Hb C 0
Hb S 0

Osmolality 280–295 mOsm/kg
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Adverse events of any kind are known as treatment-emergent adverse events (TEAE). This
definition, however, is also vague and subject to various interpretations. Northington (1996)
provided a more explicit definition of TEAE as follows. An adverse event that occurs during
the active phase of the study will be considered as a TEAE if (1) it was not present at the time
the active phase of the study began and it is not a chronic condition that is a part of the
patient’s medical history, or (2) it was present at the start of the active phase of the study or as
part of the patient’s medical history but the severity or frequency increased during therapy.

Basically, an adverse event can be gathered either (1) during a clinical trial or (2) spon-
taneously from reports on drugs already on the market. The purpose of collecting an
adverse event is to enable a complete and accurate summarization of adverse events that
can be expected in the target patient population. The information can also be used to guide
the practicing physician in the use of the drug for good medical practice. In addition, the
events reported by a patient are helpful in determining whether he/she is likely to be
related to the drug. The goal of obtaining reports of spontaneous events is to detect marked
changes in frequency and seriousness of events from what were observed from the trials
conducted during the clinical development. Therefore, it is extremely important to have a
unique definition and terminology, as well as procedures to ensure uniform Good Clinical
Practice (GCP) standards for collection, reporting, and analysis of safety information such
as adverse events. Scherer and Wiltse (1996) emphasized that the definition of an adverse

Table 13.2.4 Laboratory Tests for Urinalysis

Laboratory Test Normal Range

Dipstick tests
pH 4.6–8.0
Protein �8 mg/dL
Glucose
Ketone
Occult blood
Urobilinogen 0.1–1.0 EU/dL
Leukocyte esterase
Nitrite �105 colony/ml

Sediment
RBC �5/HPF
WBC �5/HPF
Epithelial cells 0
Casts 0/LPF
Crystal
Microorganisms
Parasites
Spermatozoa

Specific gravity 1.016–1.022
Gram stain
Bence-Jones protein
Paraguat test
Porphobilinogen
Myoglobin
Pregnancy test
Fractional urinalysis
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event should encompass the concepts of (1) any undesirable experience (2) that occurs in
clinical trial participant (3) whether or not it is considered related to the study drug,
(4) even if the patient never receives the study drug (intention-to-treat). For regulatory
authorities, however, the ICH has harmonized various terminologies and their definitions
of the safety information in ICH E2A guideline entitled, Clinical Safety Data Manage-
ment: Definitions and Standards for Expedited Reporting (ICH, 1995), and ICH E6 guide-
line entitled, Good Clinical Practice: Consolidated Guidance (ICH, 1996). The following
are the definitions of adverse events (AE), adverse drug reactions (ADR), serious adverse
events (SAE), and unexpected adverse drug reaction (UADR) given by the ICH.

Adverse Events (AE) An adverse event is any untoward medical occurrence in a patient
or clinical investigational subject administrated a pharmaceutical product and that does not
necessarily have a causal relationship with this treatment. An AE can therefore be any
unfavorable and unintended sign (including an abnormal laboratory finding), symptom,
or disease temporally associated with the use of a medicinal (investigational) product,
whether or not it is related to the medicinal (investigational) product.

Adverse Drug Reactions (ADR) In the preapproval clinical experiences with a new medic-
inal product or its new usages, particularly as the therapeutic dose(s) may not be established,
all noxious and unintended responses to a medical product related to any dose should be
considered adverse drug reactions. The phrase “responses to a medicinal product” means that
a causal relationship between a medicinal product and an adverse event is at least a
reasonable possibility; i.e., the relationship cannot be ruled out. Regarding marketed
medicinal products: A response to a drug that is noxious and unintended and that occurs at a
dose normally used in humans for prophylaxis, diagnosis, or therapy of diseases or for
modification of physiological function.

Serious Adverse Events (SAE) or Serious Adverse Drug Reaction (SADR) A serious
adverse event or reaction is any untoward medical occurrence that any dose:

• Results in death

• Is life-threatening

• Requires inpatient hospitalization or prolongation of existing hospitalization

• Results in persistent or significant disability/incapacity

• Is a congenital anomaly/birth defect

Unexpected Adverse Drug Reaction (UADR) In an adverse reaction, the nature or
severity is not consistent with the applicable product information (e.g., Investigator’s
Brochure for an unapproved investigational medical product or package insert /summary
of product characteristics for an approval product).

In the past, the term side effect has been used in different ways to describe not only neg-
ative (unfavorable) effects but also positive (favorable) effects. Therefore, the ICH E2A
guideline recommends that this term no longer be used and particularly should not be
regarded as synonymous with adverse event or adverse reaction. In addition, one should
distinguish the difference between severe and serious adverse events. As indicated in the
ICH E2A guideline, the term severe is used to describe the intensity of a specific event.
However, this event may be of a minor medical significance, e.g., severe headache. On the
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other hand, the definition of SAE is based on patient /event outcome or action criteria 
usually associated with events that pose a threat to a patient’s life or functioning. In addi-
tion, the ICH E3 guideline entitled, Structure and Contents of Clinical Study Reports, also
requires reporting other significant adverse events that are defined as marked hematologi-
cal and other laboratory abnormalities (other than those meeting the definition of serious)
and any events that led to an intervention, including withdrawal of test drug/investigational
product treatment, dose reduction, significant additional concomitant therapy, other than
those reported as serious adverse events. Although the ICH’s various guidelines or guid-
ances provide uniform definitions and terminologies for adverse events or adverse drug
reactions for the regulatory setting, they do not provide a precise definition for grading the
intensity associated with an adverse event nor the degree of causality with the study drug.

As mentioned in Chapter 6, two special features must be considered for evaluation of
treatments for treating cancer patients. The first is that the patients in cancer clinical trials
are those with malignant tumors. Unlike other diseases, most cancers are life-threatening
diseases in which the disease process is usually irreversible, and in most cases, they are
neither curable nor controllable. The second feature is that most of the anti-cancer drugs
are cytotoxic agents that can generate severe, irreversible, life-threatening, and sometimes
fatal outcomes, such as immuno-suppression, hepatic, renal, or cardiac toxicity. As a
result, the Cancer Therapy Evaluation Program (CTEP) of the United States National 
Cancer Institute (NCI) and the European Organization of Research and Treatment of 
Cancers (EORTC) employ similar but different definitions, terminologies, and criteria for
evaluating safety of cancer treatments. In the CTEP’s Common Toxicity Criteria Manual
(CTC manual, 1999), an adverse event is defined as any unfavorable symptoms, sign, or
disease (including and abnormal laboratory finding) temporally associated with the use of
a medical treatment or procedure that may or may not be considered related to the medical
treatment or procedure. The definition of toxicity given in the CTC manual is an adverse
event that has an attribution (the relationship to investigational agent) of possible, proba-
ble, or definite. However, because toxicity is not clearly defined by regulatory organiz-
ation, the NCI recommends that the term toxicity not be used. For their sponsored trials,
both the NCI and EORTC employ the CTC criteria, Version 2.0 (1999), for providing
descriptive terminology of adverse event reporting as well as the grading severity and
causality of adverse events. Although the CTEP, CTC v2.0 uses the term toxicity for his-
torical reason, it recommends that the term adverse event with its attribution be used when-
ever possible. In addition, the NCI also defines the life-threatening adverse event as any
adverse event that places the patient or subject, in view of the investigator’s, at immediate
risk from the reaction. An unexpected adverse event is any event that is not listed in the
NCI Agent Specific Expected Adverse Event List. A comparison between the ICH guide-
lines and the NCI/EORTC guidelines reveals that (1) similar but slightly different defini-
tions for adverse events and unexpected adverse event are given, (2) both use the same
definition for serious adverse event, (3) the NCI/EORTC guidelines do not provide any
definition of adverse drug reaction, (4) the ICH guideline does not provide the definition
for life-threatening adverse event, and (5) the NCI/EORTC guidelines do not give the defi-
nition for other significant adverse events.

For fatal or life-threatening, unexpected adverse events or adverse drug reactions occur-
ring during clinical investigation, the ICH E2A guideline recommends that regulatory
agencies should be notified as soon as possible but no later than 7 calendar days after first
knowledge by the sponsor that a case qualifies, followed by as complete a report as possi-
ble within 8 additional calendar days. On the other hand, serious, unexpected AEs or ADRs
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that are not fatal or life-threatening must be filed as soon as possible but no later than 
15 calendar days after first knowledge by the sponsor that the case meets the minimum 
criteria for expedited reporting. The ICH E2A guideline also suggests that for regulatory
purposes, initial reports should be submitted with the above-prescribed time as long as the
following minimum criteria are met:

1. An identified patient.

2. A suspect medicinal product.

3. An identifiable reporting source.

4. An event or outcome that can be identified as serious and unexpected, and for which,
in clinical investigation cases, there is a reasonable, suspected causal relationship.

In addition, follow-up information should be actively sought and submitted as it becomes
available.

Most regulatory agencies such as the U.S. FDA, the Medical Control Agency of the
United Kingdom (U.K. MCA), or the MHWL of Japan recommend that a dictionary for
grouping similar events be used in reporting the adverse events. The purpose of grouping
the observed adverse events is to assess the safety profile of the drug under investigation.
There are many dictionaries available for this purpose. These dictionaries include the Cod-
ing Symbols for a Thesaurus of a Adverse Reaction Term (COSTART) developed by the
U.S. FDA, the World Health Organization Adverse Reaction Terminology (WHOART),
recommended by the World Health Organization, the Common Toxicity Criteria (CTC) by
the U.S. NCI/EORTC for cancer trials, the International Classification of Diseases (ICD)
adopted codes, Japanese-Adverse Reaction Terminology (J-ART), HARTS, a dictionary
developed by the then Hoechst, and most recently, the Medical Dictionary for Regulatory
Activities (MedDRA) Terminology developed by the ICH. Among these dictionaries, cod-
ing systems, and criteria for evaluation and reporting of adverse events, the COSTART,
CTC, and MedDRA are the most commonly used dictionaries and coding systems for
grouping similar events in the summarization and reporting of adverse events. What fol-
lows provides a brief description of these three dictionaries and criteria.

13.3.2 COSTART

The COSTART is the terminology developed and used by the FDA for the coding, filing,
and retrieving of adverse reaction reports. It provides a method to deal with the variation in
vocabulary used by those who submit adverse events to the FDA. The COSTART diction-
ary was derived in the 1960s from the dictionary of adverse reaction terms (DART). As of
the fifth edition, the COSTART has more than 6,000 glossary terms collapsing to approxi-
mately 1,200 unique COSTART terms. Basically the COSTART is divided into seven
indexes that provide different information on adverse events’ coding, filing, and reporting.
The use of these indexes is briefly summarized below.

Index A of the COSTART dictionary is composed of a hierarchical Body System
Classification, General Search Categories, and Special Search Categories. Hierarchical
Body System Classification is the primary category, and it contains 12 subcategories which
are summarized in Table 13.3.1. For each primary category there may be a number of sub-
categories associated with it. The coding symbols are chosen to reflect both the primary
category and its subcategories. For example, for Body as a Whole, the primary category is
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coded as BODY and its subcategories Head, Neck, and Thorax are coded as BODY/HEAD,
BODY/NECK, and BODY/THOR, respectively. The purpose of the General Search Cate-
gories is for search and retrieval strategies. The Body System Classification sometimes
serves as the basis of the search strategy. For the most part the need has been superseded by
the use of the pathophysiologic classification of COSTART as presented in Index F. The
Special Search Categories are useful for the assessment of possible fetal and neonatal dis-
orders associated with drug or biologic product used in utero or in early life. The Special
Search Categories include codes for recording whether a suspected drug was given to (1)
either parent before conception, (2) the mother during gestation, (3) the mother at a partic-
ular time during delivery or while nursing, (4) the fetus directly in utero, (5) the infant dur-
ing the first two years of life. These symbols signify that a particular reaction occurred
during a particular time, fetal life, or in the new born.

Index B of the COSTART dictionary gives a comprehensive alphabetical listing of the
COSTART symbols and obligatory Body System categories and subcategories, and Index C
lists COSTART symbols stratified by Body System categories. Index C is useful in reviewing
and/or determining the selection of a COSTART term. Index D of the COSTART dictionary
is a glossary that contains nearly 6,000 reported terms with appropriate COSTART symbols.
Index E of the COSTART dictionary reflects the FDA’s attempt for a pathophysiologic clas-
sification of COSTART terminology. The arrangement of terms was developed by identify-
ing 17 categories of drug-induced diseases and subdividing these into sometimes overlapping
subcategories of more specific types of dysfunction or disease (see Table 13.3.2). Note that
some of the definitions in Index E are broad. Therefore, although there is a high level of sen-
sitivity, the false positive rate is high.

Since many companies use the WHOART and the FDA encourages the sponsors to also
give the corresponding COSTART terms when reporting adverse drug reactions, there is a
need to translate WHOART to COSTART. Indexes F and G describe the relationship
between the COSTART dictionary and the dictionary adopted by the World Health Organ-
ization Adverse Reaction Terminology (WHOART). Index F of the COSTART dictionary
lists the translation of each and every COSTART term to an acceptable WHOART term,
while Index G of the COSTART dictionary provides translations of each and every pre-
ferred WHOART term to an acceptable COSTART term.

Table 13.3.1 Body System Classification of COSTART
Dictionary

Classification Coding Symbol

Body as a whole BODY
Cardiovascular system CV
Digestive system DIG
Endocrine system ENDO
Hemic and lymphatic system HAL
Metabolic and nutritional disorders MAN
Musculoskeletal system MS
Nervous system NER
Respiratory system RES
Skin and appendages SKIN
Special sense SS
Urogenital system UG
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The COSTART dictionary is widely used for the purpose of grouping similar events. Any
potential trend in adverse events can be detected in this efficient way. However, there are
potential problems with any dictionary used for grouping. First, we may map synonymous
clinical events to different class terms. This is known as the problem of one-to-many prob-
lems. For example, Heart attack could be classified to either Cardiovascular disorder, Asys-
tole, Myocardial infarction, or Coronary artery disorder. On the other hand, we may map
clinically different events to a single class term, which is usually referred to as many-to-one.
For example, the terms such as Angiography, Coronary, Left ventricular aneurysm and
thrombus, and Heart murmur may be classified to the category of Surgical procedure. In
practice, it is difficult to avoid these mapping problems.

13.3.3 MedDRA

As mentioned above, currently there is no uniform definition for adverse events. As a result,
no internationally accepted medical terminology exists for evaluation of safety information
for regulatory purpose. However, most pharmaceutical companies as well as regulatory
agencies employ one of the international adverse drug reaction terminologies in combina-
tion with morbidity terminology. For example, regulatory agencies in Europe use a combi-
nation of WHOART and ICD-9th Revision (ICD-9). The COSTART adopted by the U.S.
FDA is usually used in conjunction with ICD-9-CM (a clinical modification of ICD-9). On
the other hand, the Japanese have developed their own version of the international termi-
nologies, namely, J-ART and MEDIS. These established international medical terminolo-
gies and coding systems have been criticized for the lack of specificity of terms provided at
the data entry level, limited data retrieval capability, and inability to handle syndromes
effectively. As a result, regulatory agencies and pharmaceutical companies have used these
international terminologies in a modified format or have developed their own in-house ter-
minologies to overcome these deficiencies.

Table 13.3.2 General Categories of Drug-Induced
Diseases

Category Description

1 Automatic nervous
2 Cardiovascular
3 Endocrine
4 Gastrointestinal
5 Genitourinary
6 Gynecdogic
7 Hematologic
8 Maternal-fetal
9 Metabolic

10 Nervous
11 General/nonspecific
12 Opthalmic
13 Pathological
14 Pulmonary
15 Renal
16 Reticuloendothelial
17 Skin
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For a particular drug product, different terminologies and coding systems might be used
at different stages of clinical development. For example, safety data such as an adverse
event are frequently classified using ICD for preregistration clinical trials, whereas J-ART,
WHOART, or COSTART are employed for postmarketing surveillance. This often makes it
very difficult to cross-reference adverse event data across different times during the life span
of the drug product. In addition, different regions or countries may use different terminolo-
gies or coding systems for the same adverse events. This problem exacerbates when differ-
ent subsidiaries of global pharmaceutical companies use different terminologies because of
variations in regulatory requirements for submission of adverse data. This problem, how-
ever, has been recognized by the regulatory agencies as well as by the pharmaceutical indus-
try for a long time. The resolution of this problem requires standardization of the content
and structure of the data set.

In 1989, the U.K. Medical Control Agency (MCA) identified the need for a single med-
ical terminology to support classification of terms relating to all aspects of drug regulations
for use within the MCA computer database. The MCA medical terminology was intro-
duced in the MCA pharmaco-vigilance database in 1991. In 1993, the MedDRA Working
Party was formed to assess the potential applicability of MCA medical terminology for
other regulatory agencies and the pharmaceutical industry. At the end of 1993, the CPMP
approved MedDRA remit and objectives. MedDRA version 1.0 was completed in August
1994. The ICH Steering Committee adopts MedDRA version 1.0 as the basis for the new
international medical terminology for regulatory purposes. In September 2002, MedDRA
version 5.1 was released (MedDRA Introductory Guide, 2002). Most regulatory agencies
in the ICH region have subscribed to the MedDRA.

The MedDRA terminology is intended to apply to all phases of drug product (biologi-
cals) development, excluding animal toxicology. It is also applied to the health effects of
devices (e.g., uteric rupture after intrauterine device insertion, or infection because of fail-
ure to sterilize a catheter). To achieve the above objectives, the terms in MedDRA are clas-
sified in the following categories:

• Symptoms

• Signs

• Diseases

• Diagnosis

• Therapeutic indications

• Names and qualitative results of investigations, including pharmacokinetics

• Surgical and medical procedures

• Medical/social/family history

In addition, the terminology defined above has been developed for regulatory authorities and
the regulated medical product industry for utilization in data entry, retrieval, evaluation, and
presentation, in both pre- and postmarketing phases of the regulatory process as follows:

• Clinical trials

• Reports of spontaneous adverse reactions and events

• Regulatory submission

• Regulatory product information
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Table 13.3.3 lists the established terminologies included in the MedDRA terminology.
However, the MedDRA has not been developed as a metathesaurus and other established
terminologies such as COSTART or WHOART are not subsets of MedDRA. Therefore,
data entry terms from other terminologies do not necessarily have the same Preferred Term
(PT) in MedDRA terminology. Basically, the MedDRA terminology comprises medical
terms with their unique codes organized and grouped in a hierarchical and horizontal fash-
ion through three categories.

Equivalence A term in the MedDRA terminology is a single medical concept that may
be reported by investigators using different but equivalent terms such as verbatim terms or
reported terms. For example, fatigue is an underlying medical concept that can be reported
as exhaustion, loss of energy, tiredness, worn out, tire out, and so on. The MedDRA groups
synonymous terms or terms regarded as equivalent under one standard term called Pre-
ferred Term (PT).

Hierarchical These Preferred Terms are grouped under a five-level hierarchical framework
of medically meaningful terms. This hierarchy provides levels of superordination or subordi-
nation, in which the superordinate term is a broad grouping term applicable to each
subordinate descriptor linked to it. As a result, this hierarchical framework represents vertical
links in the MedDRA terminology and provides an important mechanism for flexible data
retrieval and presentation of data for easy review. Table 13.3.4 provides the structure hierar-
chy of the MedDRA terminology. At the bottom of the hierarchical is the Lowest Level
Terms (LLT), which are equivalent terms for a single medical concept. Each LLT is linked to
a PT in any of the following relationships:

• Synonyms—different terms for the same descriptor

• Lexical variant—different word forms for the same expression (e.g., full names ver-
sus abbreviations) and direct versus inverted word order included from preexisting
terminologies

• Quasi-synonyms—terms where meanings are generally regarded as different, but that
can be treated as equivalent clinically for medical product regulatory purposes

For the purpose of data entry, one LLT is identical to the PT. Preferred Terms in the 
MedDRA terminology is a distinct descriptor (i.e., a single medical concept) for a symp-
tom, sign, disease, diagnosis, therapeutic indication, investigation, surgical or medical pro-
cedure, medical, social, or family history characteristic. PT is used to group equivalent
LLTs. As a result, when there are one or more equivalent terms, the term selected as PT is
preferred for use in the regulatory environment, formatted according to the terminology

Table 13.3.3 Inclusion of Terms from Established Terminologies 
by MedDRA

WHO-ART (98:3) Preferred Terms, Included Terms
J-ART (1996) Preferred Terms, Included Terms
COSTART (Fifth Edition) Preferred Terms, Glossary Terms
ICD-9 Terms associated with 3 and 4 digits
ICD-9-CM (Fourth Edition) Terms associated with 3,4 and 5 digits
HARTS (Release 2.2)
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conventions. In other words, in the context of regulatory and international requirements,
PTs should be unambiguous and as specific and self-descriptive as possible. In addition,
the granularity/specificity of the PT level is such that clinical pathologic or etiological
qualifiers of the descriptors are represented at the PT level. This level of specificity ensures
that the multiaxial nature of the MedDRA terminology can be exploited maximally. There
is no limit to the number of LLTs that can be linked to a PT. However, a PT term must have
at least one LLT below it.

The next two higher levels in the hierarchy are the High Level Terms (HLT) and High
Level Group Terms (HLGT). An HLT is a superordinate descriptor for the PTs linked to it
inclusively by anatomy, pathology, physiology, etiology, or functions. Because the termi-
nology is not taxonomy, the specificity of HLTs is not uniform throughout the MedDRA
terminology. An HLGT is a superordinate descriptor for one or more HLTs, related also by
anatomy, pathology, physiology, etiology, or functions. However, HLGT groups HLTs
together to aid retrieval by broader concepts. HLGTs are subordinate to System Organ
Class (SOC), which is the highest level of the hierarchy and provides the broadest concept
for data retrieval. SOCs comprise grouping by

• Anatomical or physiological system (e.g., gastrointestinal disorders)

• Body organ (e.g., eye disorders)

• Etiology (e.g., infections and infestations)

• Purpose (e.g., surgical and medical procedures)

There are a total of 26 SOCs, which are listed in Table 13.3.5 in an internationally agreed
order. Each term in the MedDRA terminology is assigned a unique nonexpressive eight-
digit code. For example, Gastric Cancer is a single underlying medical concept. Therefore,
Gastric Cancer is a PT with code 10017760 in MedDRA with a total of 24 LLTs below it,
including stomach cancer (10017758), stomach carcinoma (10042090), carcinoma, stom-
ach (10007474), gastric carcinoma (1001770), gastric malignancy (10017796), carcinoma,
gastric (10007350), malignant stomach neoplasm, malignant stomach tumor, malignant
gastric neoplasm, and gastric cancer. The PT Gastric Cancer (10017760) is linked to SOC
Neoplasm benign and malignant (including cysts and polyps) (10029104) through the
route via HLT Gastric neoplasms malignant (10017812) and HLGT Gastrointestinal neo-
plasms and malignant and unspecified (10017991). The numbers in the parentheses are
nonexpressive eight-digit codes from which no information can be derived. In fact, these
eight-digit numeric codes are applied to all terms across all categories. Initially, the codes

Table 13.3.4 Structure Hierarchy of the Medical
Dictionary for Regulatory Activities Terminology

System Organ Class (SOC)
↕

High Level Group Terms (HLGT)
↕

High Level Term (HLT)
↕

Preferred Term (PT)
↕

Lowest level Term (LLT)
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were assigned in alphabetical order starting with 10000001. Codes will not be reused, even
if a term is not used anymore. New terms added to the MedDRA terminology will be
assigned the next available sequential number. Currently, there are a total of 26 SOCs, 334
HLGTs, 1,663 HLTs, approximately 16,100 PTs, and 57,000 LLTs.

From the above example, a PT must be linked to at least one SOC via an HLT and one
HLGT. However, it can only be linked to a particular one SOC via one route. In addition,
an HLT must be also linked to at least one SOC and an HLGT must be linked to at least one
SOC and one HLT. There is no limit to the number of SOCs to which an HLGT can be
linked. As a result, PTs can be represented in more than one SOC. To overcome the prob-
lem of double counting, PTs in the MedDRA terminology are assigned a Primary System
Organ Class, which determines the SOC where the term is displayed in these outputs. This
facility does not prevent display and counting of the term in any of the SOCs in which it is
represented for data retrieval purposes, which do not involves all SOCs.

Special Search Categories (SSC) Special Search categories link groups of PTs horizontally
via an associative relationship in the MedDRA terminology. In general, SSCs are used 
to group PTs relevant to an issue, usually a disease of syndrome, and accommodate clinical
concepts that cross SOC hierarchies. Table 13.3.6 lists the nine Special Search Categories 
in MedDRA terminology. For example, hemorrhage terms are scattered throughout the 
body system and organ SOCs, but they form a useful data retrieval grouping. However, the

Table 13.3.5 The Medical Dictionary for Regulatory Activities Terminology
System Organ Class Internationally Agreed Order

Infection and infestations
Neoplasms benign and malignant (including cysts and polyps)
Blood and lymphatic system disorders
Immune system disorders
Endocrine disorders
Metabolism and nutrition disorders
Psychiatric disorders
Nervous system disorders
Eye disorders
Ear and labyrinth disorders
Cardiac disorders
Vascular disorders
Respiratory, thoracic and mediastinal disorders
Gastrointestinal disorders
Hepato-biliary disorders
Skin and subcutaneous tissue disorders
Musculoskeletal, connective tissue and bone disorders
Renal and urinary disorders
Pregnancy, puerperium and perinatal conditions
Reproductive system and breast disorders
Congenital and familial/genetic disorders
General disorders and administration site disorders
Investigations
Injury and poisoning
Surgical and medical procedures
Social circumstances
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hierarchy of the blood and the lymphatic system disorders’ SOC reflects established
classification groupings, which precludes retrieval, via the HLGT/HLT hierarchy, of all PTs
relevant to bone marrow suppression, an important grouping in medical product regulatory
terms. An SSC blood dyscrasias/bone marrow depression was formed to overcome this
deficiency. There is no restriction to the number of PTs that can be linked to SCC, and terms
for any SOC may be included; SSCs usually comprise PTs belonging to different hierarchies,
but they may include terms from the same hierarchy.

13.3.4 Common Toxicity Criteria

As indicated above, because of the life-threatening nature of cancer and the severity and
complexity of toxicity associated with most cancer treatments, both the U.S. NCI and
EORTC recommend the use of the Common Toxicity Criteria (CTC Manual, version 2.0,
1999) to evaluate adverse events for their sponsored cancer clinical trials. The primary or-
ganization of the CTC is based on path physiological and anatomical categorical to facili-
tate location of related adverse events. Table 13.3.7 provides a list of these 24 categories.
Within each of these categories, specific adverse events are listed alphabetically with the
grade of severity. There are a total of 200 individual adverse events, which are also classi-
fied by occurrence with use of investigational treatment, including chemotherapy, biologi-
cal therapy, radiation therapy, and surgery. In addition, for selected adverse events,
different grading criteria are provided together for different patient populations. In other
words, the adverse event name is the same, but the criteria for grading are changed.

For each adverse event, a grade is assigned and defined using a scale from 0 to 5, with 0
representing no adverse event within normal limits and 5 representing death related to an
adverse event:

0 � No adverse event or within normal limits

1 � Mild adverse event

2 � Moderate adverse event

3 � Severe and undesirable adverse event

4 � Life-threatening or disabling adverse event

5 � Death related to adverse event

One of the most difficult parts in evaluating and grading an adverse event is to distinguish
a treatment-related condition from a disease-related condition. CTC v2.0 specifies that 

Table 13.3.6 The Medical Dictionary for Regulatory Activities Terminology
Special Search Categories

Anaphylaxis
Arrest (Cardiac)
Blood Dyscrasias/Bone marrow depression
Cardiac Ischaemia
Hemorrhage
Hypersensitivity reactions
Thrombosis
Upper GI bleeding/perforation
Vasculitis
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disease progression signs and symptoms definitely related to disease should not be graded.
In addition, treatment delivery system malfunctions or sequeale only to the treatment
delivery system, such as a broken needle requiring excision, should not be graded as
adverse events. All other symptoms, signs, or diseases (including abnormal laboratory
findings) that might be associated with investigational drugs or therapies must be captured
and graded. Table 13.3.8 gives the system for evaluation of attribution of causality of
adverse events used by the CTC v2.0. If an adverse event is of any probable, possible, or
definite relationship to the investigational drugs, CTC v2.0 recommends that investigators
must document and grade the adverse event. However, adverse events that are definitely
not related to disease should not be graded. On the other hand, if an adverse event is caused
by a combination of treatment and disease, the adverse event should be graded as it is
observed with no adjustment. Furthermore, the CTC v2.0 requires that for each event, the
physician or clinician in conjunction with the research nurse who examined and evaluated
the patient should assign the attribution. The CTC v2.0 Manual specifically recommends
that the assignment of the attribution for adverse events should not be performed by the
data managers who have been removed from the clinical assessment of the patient.

In 1999, as part of its commitment to the ICH, the U.S. FDA agreed to adopt an inter-
nationally agreed International Medical Terminology (IMT) based on the U.K. MCA Med-
DRA for use in reporting medical information from clinical trials. To facilitate data
transfer, the U.S. NCI has supported the mapping of adverse event names from the CTC
v2.0 to PT in the IMT. However, as a result of international harmonization, currently, all

Table 13.3.7 Categories in the Common Toxicity Criteria

Allergy/Immunology Infection or Febrile Neutropenia
Auditory/Hearing Lymphatics
Blood/Bone marrow Metabolic/Laboratory
Cardiovascular Musculoskeletial

(Arrhythmia)
Cardiovascular Neurology

(General)
Coagulation Ocular/Visual
Constitional Symptoms Pain
Dermatology/Skin Pulmonary
Endocrine Renal/Genitourinary
Gastrointestinal Secondary malignacies
Hemorrhage Sexual/Reproductive function
Hepatic Syndromes

Table 13.3.8 Attribution of Adverse Events by the Common Toxicity Criteria

Code Descriptor Definition

5 Definite The adverse event is clearly related to the investigator agents
4 Probable The adverse event is likely related to the investigator agents
3 Possible The adverse event may be related to the investigator agents
2 Unlikely The adverse event is doubtfully related to the investigator agents
1 Unrelated The adverse event is clearly not related to the investigator agents
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references to formally IMT Codes and Terms have been replaced by the MedDRA termi-
nology described in Section 13.3.3. The NCI has established a computer data management
system called “Clinical Data Update System version 3” (CDUS version 3.0, 2002) to col-
lect adverse events for its sponsored cancer clinical trials. In addition, it also issued guide-
lines on Expedited Adverse Event Reporting Requirements for NCI Investigational Agents
(2001) and established an electronic system, the Adverse Event Expedited Reporting Sys-
tem (AdEERS), for expedited submission of adverse events, including serious and unex-
pected events. For more details of CTC v2.0, CDUS version 3.0, and AdEERs, visit the
CTEP homepage at http://ctep.info.nih.gov.

Some Concerns

How should syndromes be recorded on the case report form? as the syndrome, as symptom
separately, or both? A syndrome is a collection of signs, symptoms, or laboratory findings
that together describes a distinct clinical entity. For example, congestive heart failure is
described by one or more of shortness of breath, peripheral edema, easy fatiguability, pul-
monary rales, elevated venous pressures, low plasma sodium, and elevated BUN. The com-
monly encountered problem with the summarizing syndrome and its components is that
symptoms that occur alone are not distinguished from those that occur as part of the syn-
drome. Moreover, increased incidence of true adverse events related to the drug may be
lost in a high incidence of the same event that occurs as a component of a syndrome in both
groups. These problems may misrepresent the effect of the drug.

How should primary versus secondary adverse event be recorded? The problems include
(1) multiple counting of same events and (2) over-reporting of components of syndrome or
secondary events, which are not in and of themselves related to drug. These concerns may
lead to inaccurate conclusions about undesirable effects of the drug. Thus, analysis of pri-
mary events leads to correct understanding of causal relationship between the drug’s admin-
istration and adverse events. Both primary and secondary adverse events can be recorded on
CRF, with the secondary event clearly linked to the primary event or syndrome.

13.4 ANALYSIS OF ADVERSE EVENTS

As indicated earlier, the evaluation of safety-related data can be considered at three levels.
The next levels involve the more common adverse events and serious adverse events. The
analysis of adverse events is not only to identify factors that may affect the frequency of
adverse reactions/events such as time dependence, relation to demographic characteristics,
relation to dose or drug concentration but also to determine whether the identified adverse
events are drug related. For this purpose, we may consider the approaches of data listing,
summary tables, and statistical analysis.

Adverse Event Data Listing

For evaluation of adverse events, it is helpful to list all adverse events including the same
event on several occasions by the patient and by the treatment group. The listing should
include both the preferred term and the original term used by the investigators. For a com-
plete listing of adverse events, the ICH guidelines suggest that the information listed in
Table 13.4.1 be included in the data listing.
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In Table 13.4.1 the patient characteristics may include height if relevant. The adverse
event should be displayed both as the preferred term and the reported term. The degree of
severity may be classified as mild, moderate, or severe, while the seriousness can be
expressed as either serious or nonserious. For action taken, it could be none, dose reduced,
treatment stopped, specific treatment instituted, and so forth. The causality assessment
may include two categories of related and not related. However, how it was determined
should be clearly described in the protocol.

Note that also required is that all deaths during the study, including the post-treatment
follow-up period and deaths that resulted from a process that began during the study should
be listed by patient. All serious adverse events other than death but including the serious
adverse events temporally associated with or preceding the deaths should be listed. In addi-
tion other significant adverse events and any events that led to an intervention, including with-
drawal of test drug/investigational product treatment, dose reduction, or significant additional
concomitant therapy, other than those adverse events reported as serious should be listed.

Summary Tables of Adverse Events

The ICH guidelines suggest that all adverse events occurring after the initiation of study
treatments be displayed in summary tables. The adverse events include events that are
likely to be related to the underlying disease or events that are likely to represent a con-
comitant illness. The summary tables list each adverse event, the number of patients in
each treatment group in whom the event occurred, and the rate of occurrence. In most
cases it is helpful to identify and summarize events not seen at the baseline and events that
worsened even if present at the baseline. Moreover, the summary tables should include
changes in vital signs and any laboratory changes that are considered serious adverse
events or other significant adverse events.

Table 13.4.1 Information to be Included in the List of Adverse Events

Patient identifier
Age, race, sex, weight
Location of case report forms if provided
Adverse event
Duration of the adverse event
Severity
Seriousness
Action taken
Outcome
Causality assessment
Date of onset or date of clinic visit at which the event was discovered
Timing of onset of the adverse event in relation to the last dose 

of the last drug
Study treatment at the time of event or the most recent study taken
Test drug/investigational product dose in absolute amount,

mg/kg or mg/m2, at time of event
Drug concentration (if known)
Duration of test drug/investigational product treatment
Concomitant treatment during study
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In practice, adverse events are grouped by body system and then divided into defined
severity categories. However, in presenting adverse events, it is important to display both
the original terms used by the investigators and to attempt to group related events so that
the true occurrence rate is not obscured. The ICH guidelines recommend that a standard
adverse reaction/events dictionary be used for grouping. As indicated in the previous sec-
tion, the ICH MedDRA and the COSTART are probably the most commonly used diction-
ary for this purpose.

In most cases the summary tables help divide the adverse events into those considered at
least possibly related to drug use and those considered unrelated, or by another causality
scheme such as unrelated or possibly, probably, or definitely related. However, when a
causality scheme is used, it is suggested that the summary tables include all adverse events
regardless of whether they are drug related or represent intercurrent illnesses. It is also impor-
tant to identify each patient having the adverse event for safety evaluation. An example of
such a tabular presentation as specified in the ICH guidelines is reproduced in Table 13.4.2.
In addition to Table 13.4.2, the summary tables should include a comparison of common
adverse events between the treatment and control groups. The observed safety profiles from
the summary tables can then be confirmed by some formal statistical tests which will be dis-
cussed in the next subsection.

Graphical Presentation

To provide a preliminary examination of adverse events between treatment groups, a graph-
ical presentation is usually helpful. A creative graphical presentation enables clinical scien-
tists/researchers to discover trends/patterns about the data that are unanticipated. Levine
(1996) recommends that a study design and patient flow display, raw data display, and
inferential displays of clinical trial adverse events be provided. Levine indicates that these
graphical presentations provide not only rapid answers to prespecified questions but also the
insight into the structure of the raw data. In addition a creative graphical presentation can
generate new questions regarding safety and provide rapid assessment to these new ques-
tions. For example, Figure 13.4.1 gives a scatter plot showing adverse events by the body
system against the percentage of patients reporting events from a placebo-controlled clinical
trial. This scatter plot not only provides a preliminary examination of adverse events rates
within treatments but also compares the adverse event rates between treatments.

Analysis of Adverse Events

Although adverse event data listing, summary tables of adverse events, and graphical pre-
sentations of adverse events provide useful information for the safety evaluation of a study
drug, they do not provide any statistical inference for the safety assessment. As was indi-
cated earlier, most clinical studies are not designed to examine safety. As a result the analy-
sis of adverse events is less standardized than that for efficacy data. Silliman (1996)
classifies adverse events into rare adverse events and common adverse events. For rare
adverse events the primary interest is to estimate the occurrence. For common adverse
events, in addition to estimation of occurrence, it is also of interest to make comparisons
between treatments and/or among subgroups. Basically the analysis of adverse events
depends on the type of data, which can be classified as nominal (binary) or ordinal,
counts or rates, or time to occurrence. These types of data are among those described in
Section 13.2 and are usually analyzed by Fisher’s exact test or the Mantel-Haenszel test,
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logistic regression, and survival analysis. In this section, for illustration purposes, we will
only consider the commonly used approaches for comparison of adverse event rates
between treatments (e.g., treatment vs. control). For other types of adverse events data
such as absorbing events and recurring events with and/or without duration as described in
Section 13.2, statistical methods including the Kaplan-Meier and the Cox proportional
hazards models, as described in Chapter 10, can be directly applied.

For simplicity, consider the case where the event severity categories and/or the causal-
ity categories of a given response (adverse event) are combined into a 2 � 2 contingency
table as shown in Table 13.4.3. For a 2 � 2 contingency table, a typical approach is to use
the Mantel-Haenszel test. For the 2 � 2 table given in Table 13.4.3, the Mantel-Haenszel
test is given by

χMH
2 ��

N
n
(

1

a
n
d

2m
�

1

b
m
c

2

)2

� (13.4.1)

or with a continuity correction as

χMH
2 ��

N(	a
n
d

1

�

n2

b
m
c	

1

�

m
n

2

/2)2

�.

Table 13.4.3 The 2 � 2 Contingency Table for Adverse
Events

Adverse Events

Presence Absence Total

Treatment a b n1

Control c d n2

Total m1 m2 N

Figure 13.4.1 Scatter plot of adverse events versus incidence rates: � placebo, � drug.
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Note that χMH
2 can be written as

χMH
2 � �

N
N
� 1
� ���

a�
v�
E
ar�

(
(
a
a�
)
)�

��
2

� �
N

N
� 1
� χ

P
2,

where

E(a) � �
n1

N
m1
�

and

var(a) � �
N

n
2
1

(

n

N
2m

�

1m

1).
�.

When the sample size is sufficiently large, the Mantel-Haenszel test is approximately distrib-
uted as a chi-square random variable with one degree of freedom. Therefore, we can reject
the null hypothesis of no difference between treatment groups at the α level of significance if

χMH
2 � χ2(α, 1).

When the sample size is small, Fisher’s exact test as described in (9.3.16) is often used as an
alternative to the Mantel-Haenszel test. For a 2�2 table, Fisher’s exact test yields the proba-
bility of observing a table that gives at least as much evidence of association as the one actually
observed, given that the null hypothesis is true. In other words, with row and column margins,
namely n1, n2, m1, m2 considered fixed, the distribution of a has the hypergeometric form

P(a|n1, n2, m1, m2) �
� � � �

,

� �
where a takes on values between max(0, n1 � m1 � M) and M � min(n1, m1). Thus we can
reject the null hypothesis of no difference if

p-value ��
M

i�1
P(i|n1, n2, m1, m2) (13.4.2)

is less than the α level of significance.
In clinical trials, although an adverse event can be classified into dichotomous groups

such as presence versus absence or serious versus nonserious (see Table 13.4.3), it is often of
interest to examine the intensity or severity of an adverse event that may be evaluated accord-
ing to c categories such as mild, moderate, and severe (where c � 3). In this case, the 2 � 2
table becomes 2 � c table. On the other hand, the intended clinical trial may be designed to
compare r treatments. In this case the 2 � 2 table becomes a r � c table. Both the Mantel-
Haenszel test and Fisher’s exact test can be extended to analyze r � c tables. Note that the
Mantel-Haenszel test for r � c tables is also known as the Cochran-Mantel-Haenszel test.
Agresti and Wackerly (1977) consider generations of Fisher’s exact test for r � c tables.
Pagano and Halvorsen (1981) propose an algorithm, which does not require the total 

N
m1

n2

m1�a
n1

a
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enumeration of all tables consistent with the given marginals, for calculating the exact per-
mutation significance value for r � c tables.

In practice, since most clinical trials are conducted at more than one study site, it is nec-
essary to adjust for the effects that may be due to the study site (or center) when comparing
adverse event rates between treatment groups. For this purpose the Cochran-Mantel-
Haenszel (CMH) test is useful. The concept behind the CMH test is to consider the study
site (or center) as a stratum and assume that the strata are independent and that the mar-
ginal totals of each stratum (center) are fixed. Under these assumptions the null hypothesis
is that there is no association between treatment and response (a given adverse event say)
in any of the strata. Consequently the multiple hypergeometric model can be used to derive
the CMH test. Let nhi� (nhi1, nhi2, . . . , nhic)
, where nhij is the cell frequency of the res-
ponse at the jth intensity or severity category for the ith treatment group at the hth center,
i � 1, . . . , r (the number of treatments), j � 1, . . . , c (the number of categories for the
response), and h � 1, . . . , H (the number of centers). Also let

nh � (nh1, nh2 , . . . , nhr)


and

Phi. � �
n
N

h

h

i.
�, Ph.j � �

n

N
h

h

j.
�,

where Nh is the total at the hth center. Thus we have

Ph*. � (Ph1., Ph2., . . . , Phr.)


and

Ph.* � (Ph.1, Ph.2, . . . , Ph.c)
.

Under the null hypothesis the expected value and covariance matrix of the frequencies are
then given by

mh � E(nh) � Nh(Ph.* � Ph*.)

and

var(nh) ��
Nh

N
�
h
2

1
�[(DPh.*

� Ph.*P
h.*) � (DPh*.
� Ph*.P
h*.),

where � denotes Kronecker product multiplication and DA is a diagonal matrix with ele-
ments of A on the main diagonal. The generalized CMH test is then defined as

χCMH
2 � G
VG

�1 G, (13.4.3)

where

G � �
h

Bh(nh � mh),

VG � �
h

Bh var(nh)B
h,
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and where

Bh � Ch � Rh

is a matrix of fixed constants based on column scores Ch and row scores Rh. Under the null
hypothesis, χ2

CMH is approximately distributed as a chi-square random variable with
degrees of freedom equal to the rank of Bh. Note that the CMH test given in (13.4.3) is for
the general case of r � c tables stratifying for the study sites. When r � c � 2, the CMH test
can be expressed as

χCMH
2 � ,

where ah, n1h, n2h, m1h, m2h, and Nh are defined as in Table 13.4.3 for the hth center.
As was indicated earlier, for a premarketing safety assessment, the FDA requires that an

integrated summary of all available information about the safety of the drug product be sub-
mitted (Section 314 of CFR [314.50 (d)(5)(ii)]). The purpose of such an integrated summary
is to allow examination of differences among population subsets not possible with the rela-
tively small numbers of patients in individual studies. Therefore the integrated summary is, in
part, simply a summarization of data from individual studies and, in part, a new analysis that
goes beyond what can be done with individual studies. Silliman (1996) suggests that com-
bining data across studies in the integrated summary of safety be done by either subgroup
analysis (pooling the data) or by performing a meta-analysis. For analysis of subgroup safety
data by pooling, the Fisher exact test, the CMH test (or Breslow-Day test), logistic regres-
sion, and survival analysis are commonly employed. The objectives of subgroups analysis
are to address the following questions in an integrated summary safety report:

1. Are adverse event rates the same across a subgroup for patients taking experimental
drug?

2. Within subgroup levels, are adverse event rates the same across treatment groups?

3. Is there a consistent association between the treatment group and the adverse event
response across levels of a subgroup?

4. Does the subgroup predict an adverse event response?

5. Is the time the occurrence of the adverse event the same across levels of a subgroup?

For an analysis of subgroup safety data using meta-analysis, the commonly used statistical
methods include the CMH test (or Breslow-Day test), logistic regression such as propor-
tional odds model, and survival analysis such as the Kaplan-Meier (log-rank), piecewise
exponential, and incidence density tests. The objective of a meta-analysis is to address the
above questions by controlling for the study and/or time interval.

13.5 ANALYSIS OF LABORATORY DATA

In clinical trials the analysis plan for laboratory data is usually vague. A typical approach
is to compare the change from baseline to the last patient visit both between and within
each treatment group. The comparison can be made either based on the absolute mean

(�H

h�1 [ah�(n1h m1h /Nh)])2

�����
�H

h�1
[n1h n2h m1h m2h /Nh

2 (Nh � 1)]
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change from baseline in laboratory values or based on the frequencies of the values outside
the reference or normal ranges. Either way provides a different analysis and interpretation
of the laboratory data. In this section we will focus on the analysis of frequencies of the
values according to the reference or normal ranges. For analysis of the absolute mean
changes from baseline, the statistical methods described in Chapter 8 can be used.

Reference Ranges

In practice, most clinical trials are conducted at more than one study site in order to enroll
enough patients within a desired time frame. In this case a concern may be whether the lab-
oratory tests should be performed by local laboratories or a central laboratory. The relative
advantages and drawbacks between the use of a central laboratory and local laboratories
include (1) the combinability of data, (2) timely access to laboratory data, (3) laboratory
data management, and (4) cost. For example, a central laboratory provides combinable
data with unique normal ranges, while local laboratories may produce uncombinable data
due to different equipment, analysts, and normal ranges. As a result laboratory data
obtained from central laboratories are more accurate and reliable compared with those
obtained from local laboratories.

Combinability of Laboratory Data

Since different local laboratories may have different normal ranges, it is necessary to trans-
fer laboratory results according to the investigators’ normal ranges or local laboratories’
normal ranges to a standard range before analysis. Typically, a laboratory result can be
transformed according to the following formula:

Rt � SL ��
R
IH

u

�

�

I
I

L

L
� (SH � SL). (13.5.1)

where Ru and Rt denote the untransformed result and transformed result, respectively, and
(IL, IH) and (SL, SH) are the investigators’ and standard lower and upper limits of normality,
respectively. Note that if both lower limits are equal to 0, then the transformation is based
only on the ratio of upper limits. Moreover, if an untransformed result is within the inves-
tigator’s limits, then the transformed result will be within the standard limits. However,
data cannot be transformed when lower and upper limits are equal. An example of such a
case is hemoglobinuria whose normal ranges are known to be (0, 0); that is, complete
absence is the only normal condition. As can be seen from (13.5.1), if results for a specific
test have different investigators’ ranges, the transformation procedure effectively removes
data variations due to the different sources to be examined under equivalent conditions and
displays comparable values.

Chuang-Stein (1996) propose similar methods to combine data from different laborato-
ries. Let IW be the width of the investigators’ normal range,

IW � IH � IL.

Then

IM � �
1
2

� (IL � IH)
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and

IS � �
1
2

� (IH � IM)

are the midpoint and the �
1
4

� of the investigators’ normal range. Chuang-Stein (1996) sug-
gests using the following two methods for combining data from different laboratories: The
first method is to combine the data by means of the transformation

R1 ��
Ru

I
�

W

IL
�. (13.5.2)

As can be seen from the above, R1 ∈ (0,1) when Ru ∈ (IL, IH); otherwise, R1 is outside of
the interval. The second method is to consider.

R2 ��
Ru�

IS

IM
�. (13.5.3)

When Ru ∈ (IL, IH), R2 is within the interval of (�2, 2); otherwise, it is outside of this 
interval.

For safety assessment based on laboratory data, correct normal ranges are important for
the following reasons: First, notable outlying values and/or clinically significant changes
from the baseline must be identified in order to protect the patients during the clinical trial.
Second, patients who exhibit unusual laboratory results may be excluded from the trial. In
addition, patients with notable test results must be identified, studied, and discussed in the
final study report. As a result the determination of normal ranges will have an impact on
the assessment of safety of the drug under study. In practice, the commonly encountered
difficulties with normal ranges are (1) normal ranges are usually based on healthy volun-
teers who may not be representative of the patient population of the intended clinical trial,
(2) some normal ranges may be inaccurate due to a small-sample estimate, and (3) the
underlying distribution of many laboratory analyses is not normally distributed. To over-
come these difficulties, it is suggested that the so-called Lilly reference limits be used. The
concept behind Lilly reference limits is to use a large number of laboratory data obtained
from the baseline visits. The laboratory data are first examined for the effect of various
covariates such as age, gender, origin, smoking, and alcohol use. Lilly reference limits are
then obtained using actual percentiles without any distributional assumptions.

Note that before the data from different laboratories can be combined for analysis,
it may be of interest to evaluate the repeatability and reproducibility of the results. The
repeatability of the results is referred to as within-laboratory variability, while the repro-
ducibility of the results is the assessment of between-site variability. Typically the repeata-
bility and reproducibility can be assessed by sending to each laboratory identical samples
that represent a wide range of possible values. The results can then be analyzed using the
method analysis of variance.

Clinically Significant Changes

Before one can determine whether there is a clinically significant change in laboratory
data, the definition of clinically significant change is essential. The definition of clinically
significant change depends on the objectives of the laboratory evaluation. For example, if
the objective is to determine whether a patient’s change in laboratory value from the base-
line is within the normal range, then we can claim that a clinically significant change has

ANALYSIS OF LABORATORY DATA 593
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occurred provided that the patient’s change in laboratory value from the baseline results in
moving the patient from the status of normality to abnormality or from abnormality to nor-
mality. For assessing abnormal change, the most straightforward approach is to transform
the result to the categories of either normal and abnormal according to some established
reference or normal range.

The classification of patients’ laboratory results to either normal or abnormal cate-
gories, however, cannot assess the magnitude of change. To assess the magnitude of
change in terms of absolute (or actual) change or relative (percent) change, we need to
establish an equivalence range so that any changes in laboratory values from the baseline
within the range is not of clinical significance. This equivalence range can then be used as
a reference range for determination of a clinically significant change. It should be noted
that a clinically significant change may not result in a change in the status of normality or
abnormality. To provide a consistent assessment, some pharmaceutical companies have
suggested not to classify a subject into the category of abnormal unless (1) the result is
outside of the normal range in a direction potentially adverse and (2) the change is of clin-
ical significance. In practice, one may want to divide the magnitude of change from the
baseline into a number of ranges to distinguish between different grades of change. For
example, for a laboratory test of hematocrit, the normal range for a male is between 38%
and 53% (see Table 13.2.2). We may consider three grades of change in either direction
(i.e., increasing or decreasing direction) as 5% to 10% (grade 1), 10% to 15% (grade 2),
and greater than 15% (grade 3). In this case clinically significant changes depend on the
magnitude of change in the grades of interest.

In some clinical trials a patient’s laboratory results are classified into several categories
to assess the degree of concern depending on the frequency with which the abnormalities,
singly or in succession, were found. Table 13.5.1 provides some examples of categories
used in assessing the degree of concern. From Table 13.5.1 it can be seen that the cate-
gories range from all results normal (category I), to two are more successive abnor-
malities, and to the last observed value was abnormal (category V). That is to say, the
definition of a clinically significant change is a change from one category to another cat-
egory.

In many clinical trials, laboratory tests are performed at the visits (or time points). The
change is assessed as a trend over time or at some specific time points. For patients without
a value at a specified time, but with a value prior to and another following the specified

Table 13.5.1 An Example of Categories for Assessing 
the Degree of Concern

Category Definition

I All results normal

II 1. No two successive abnormalities
2. Last result normal

III 1. Two or more successive abnormalities
2. Last result normal

IV 1. No two successive abnormalities
2. Last result abnormal

V 1. Two or more successive abnormalities
2. Last result abnormal
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time, an estimate at the specified time can be made by linear interpolation between given
times as follows:

Rk � Ri�1 ��ti
ti
�

�

ti

t

�

k

1
��� Ri ��

t
t
k

i �

�

t
t

i

i

�

�

1

1
��,

where Ri�1 is the nearest result preceding the desired result (Rk), Ri is the nearest result fol-
lowing Rk, and tk is the desired observation time. The definition of a clinically significant
change for detection of a trend over time is based on the slope of the fitted linear regression
if the relationship between the laboratory results and time is linear. For specific time
points, a clinically significant change may depend on the disease status or duration of the
treatment at that time point.

Shift Analysis

For a given laboratory test, subjects are usually classified into categories such as below the
normal range, within the normal range, and above the normal range at pre- and post-
treatment evaluation. Let nij be the number of subjects allocated to category i before treat-
ment but to category j after treatment. Then the allocation of the subjects to the categories
pre- and post-treatment can be set out in a 3 � 3 table (see Table 13.5.2). In Table 13.5.2
the entries on the main diagonal, namely nij for i � j, give the numbers of subjects for
whom pre-treatment and post-treatment are in agreement. The off-diagonal cells show the
disagreements. For example, n12 is the number of subjects whose laboratory values are
below the normal range before treatment but are within the normal range after treatment,
while n21 is the number of subjects whose laboratory values are within the normal range
before treatment but fall below the normal range after the treatment.

A typical approach for the analysis of laboratory data as presented in Table 13.5.2 is to
perform a shift analysis between pre- and post-treatment. The shift analysis for safety
assessment is to test whether the number of subjects about which before and after treat-
ment disagreed was similarly distributed across categories. The first analysis of interest is
then to compare the distributions of row and column totals. In other words, it is of interest
to examine whether the overall distribution of subjects to categories, irrespective of which
subjects are allocated to which categories, is the same between pre- and post-treatment.
For this purpose consider

di � ni.�n.i,

Table 13.5.2 Allocation of Subjects to Categories of Pre-Treatment 
and Post-Treatment

Post-treatment

Below Within Above Total

Pre-treatment
Below n11 n12 n13 n1.

Within n21 n22 n23 n2.

Above n31 n32 n33 n3.

Total n.1 n.2 n.3 n

Note: Below, within, and above mean below, within, and above normal range: n �Σ3
j�1Σ3

i�1 nij.
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where i � 1, . . . , K, the number of categories at pre- and post-treatment and

ni. � �
K

j�1
nij, n.j � �

K

i�1
nij.

It can be easily verified that

v̂ar(di) � ni. � n.j � 2nij

for i � j and

ĉov(di, dj) � �(nij � nij)

for i � j. Since the covariance matrix for the d1, d2, . . . , dK is singular, we may consider
omitting one of the d’s; that is let

d � (d1, . . . , dK�1)
.

Then, under the null hypothesis that the distributions of row and column totals are the
same, statistic

d
 �
^�1

d,

is asymptotically distributed as a chi-square random variable with K�1 degrees of free-
dom, where 

^Σ is an estimate of the covariance matrix of d. Therefore we reject the null
hypothesis that the distributions of row and column totals are the same at the α th level of
significance if

d
 �
^�1

d � χ2(α, K � 1) (13.5.4)

where χ2(α, K � 1) is the upper αth quantile of a chi-square distribution with K�1 degrees
of freedom. Note that the rejection of the null hypothesis would imply that for at least one
of the categories of the pre- and post-treatment differs in the proportions of the total sam-
ple allocated to that category. However, failure to reject the null hypothesis would not
imply that the proportions of the subjects allocated to the different categories at pre- and
post-treatment are necessarily the correct proportions, much less would it imply that the
subjects are correctly classified.

In practice, it is also of interest to investigate whether the number of subjects at which
pre- and post-treatment disagreed was distributed by them in a similar manner among other
categories. In other words, it is of interest to compare frequencies in corresponding cells
about the main diagonal in Table 13.5.2. Thus for i � j the hypotheses of interest can be
expressed as

H0: µij � µji,

vs. Ha: µij � µji, (13.5.5)

where

µij � E(nij).
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Under the null hypothesis of (13.5.5), the test statistic

XSM ��
i�j

�
(
(
n
n
i

i

j

j

�

�

n
n
j

j

i

i

)
)

2

� (13.5.6)

follows a chi-square distribution with �
1
2

�K(K � 1) degrees of freedom. Therefore, at the αth
level of significance, we can reject the null hypothesis of (13.5.5) if

XSM � χ2[α, �
1
2

�K(K � 1)],

where χ2[α, �
1
2

�K(K � 1)] is the upper α th quantile of a chi-square distribution with �
1
2

�K(K � 1)
degrees of freedom. The test statistic given in (13.5.6) is known as the Stuart-Maxwell test.

Note that when K � 3, the Stuart-Maxwell statistic can be rewritten as

XSM � , (13.5.7)

where

n�ij ��
nij �

2
nji

�.

Example 13.5.1 To illustrate the statistical methods for comparing the distributions of row
and column totals and frequencies in corresponding cells about the main diagonal as described
above, consider the laboratory test results of a given parameter for a sample of 115 subjects in
a clinical trial. The results were summarized in Table 13.5.3. From Table 13.5.3 we have

d1 � 12 � 25 � �13

d2 � 49 � 47 � 2,

d3 � 44 � 43 � 11;

v̂ar(d1) � 12 � 25 � 2(10) � 17,

v̂ar(d2) � 49 � 47 � 2(32) � 32,

v̂ar(d3) � 54 � 43 � 2(41) � 15;

n�23d
2
1 � n�13d

2
2 � n�12d

2
3

����2(n�12n�13 � n�12n�23 � n�13n�23)

Table 13.5.3 Allocation of Subjects for Hemoglobin 
Laboratory Test

Post-treatment

Below Within Above Total

Pre-treatment
Below 10 2 0 12
Within 15 32 2 49
Above 0 13 41 54

Total 25 47 43 115

Note: Normal ranges for hemoglobin test are 12.9–17.9 g/dL for male and 11.0–15.6 g/dL for
female.

c13.qxd  27.10.03  14:17  Page 597



598 SAFETY ASSESSMENT

and

ĉov(d1, d2) � � (15 � 2) � �17,

ĉov(d1, d3) � �(0 � 0) � 0,

ĉov(d2, d3) � �(13 � 2) � � 15.

Thus the matrix of variance and covariance of the d’s is given by

� �.

If we delete the last row and the last column of the matrix, we then have

�
^

� � �.

As a result the inverse matrix is given by

�
^�1

� �
2
1
55
� � �� � �.

Thus

d
 �
^�1

d � 17.909 � χ2 (0.05, 2) � 7.378.

Therefore, at the 5% level of significance, we can conclude that there is a significant diff-
erence in the distributions of row and column totals.

To compare frequencies in corresponding cells about the main diagonal, we apply the
test statistic given in (13.5.6). The test result and the contributions of each cell to the over-
all chi-square test from the three pairs of cells are summarized in Table 13.5.4. The test
result indicates that there is a shift in classifications between pre- and post-treatment. Table
13.5.4 also indicates that the greatest discrepancy occurs between cells n12 and n21 and
between cells n23 and n32. Therefore an attempt to improve agreement could be directed to
eliminate the discrepancy.

As described in Chapter 9, another approach is to collapse Table 13.5.2 into a 2 � 2
table as illustrated in Table 13.5.5. Under Table 13.5.5 we can then apply the following
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Table 13.5.4 Individual Contributions to Overall 
Chi-Square Test

Cells Contribution to χ2

n12 and n21 9.941
n13 and n31 0.000
n23 and n32 8.067
Total χ2 � 18.008
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McNemar’s statistic to test the difference in changes:
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Note that

a� n22,
b � n21 � n23,
c � n12 � n32,
d � n11 � n13 � n31 � n33.

If it is not significant, we can conclude that the change is due to chance. In other words, the
treatment does not have any influence on the change.

Other Analyses

In addition to shift analysis, the ICH guidelines also suggest that the number or fraction of
patients who had a parameter change of a predetermined size at selected time intervals be
summarized in tables. For example, for BUN, it might be decided that a change of more
than a predetermined value of BUN should be noted. For this parameter the number of
patients having a similar or greater change would be shown for one or more visits, usually
grouping patients separately depending on the baseline BUN. The advantage of this table
is that changes of a certain size are noted even if the final value is not abnormal.

Another commonly used approach is the scatter plot with a 45° line. This approach is a
graph combining the initial value and the on-treatment values of a laboratory measurement
for each patient by locating the point defined by the initial value on the ordinate. If no
changes occur, the point representing each patient will be located on the 45° line. A general
shift to higher values will show a clustering of points above the 45° line. The scatter plot
with a 45° line not only shows the baseline and most extreme on-treatment values but also
helps identify potential outliers. Since the scatter plot with a 45° line usually shows a single
time point for a single treatment, a time series approach for the analysis and interpretation
of these plots is employed in comparing adverse events between treatment groups.

Table 13.5.5 Summary Table for Pre- and Post-Study
Laboratory Test Results

Post-study

Normal Abnormal Total

Pre-study
Normal a b a � b
Abnormal c d c � d

Total a � c b � d n
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13.6 DISCUSSION

Unlike hypotheses for efficacy assessment, safety hypotheses usually cannot be speci-
fied a priori due to the following reasons. First, clinical trials are not designed to detect
differences in safety outcomes. Second, clinical trials are usually not prepared to test
hypotheses regarding rare safety events. However, as indicated by Levine (1996), fail-
ure to achieve statistical significance does not mean that a safety finding can be
ignored.

In clinical trials, as was shown in this chapter, an adequate protocol must clearly define
the responsibilities of the investigator in reporting and documenting all adverse events. The
person(s) responsible for notifying appropriate authorities (regulatory, hospital ethics com-
mittee, etc) must be identified. When clinical and laboratory tests are used to monitor
safety, parameters to be measured, timing and frequency, normal values for laboratory pa-
rameters, and definition of test abnormalities should be provided. For safety assessment, it
is suggested that all patients entered into treatment who receive just one dose of the treat-
ment should be included in the safety analysis. If a patient is not included, an explanation
must be provided.

For measurement of risk of various adverse events type and data, Tremmel (1996) sug-
gests that the crude rate or cumulative rate be used for short-term clinical trials and all
types of adverse events. For long-term clinical trials, the hazard function or median sur-
vival time can be used as a meaningful measure of risk for absorbing adverse events. For
recurring events with short duration, hazard functions or expected counts can be employed
to have meaningful measures of risk. For recurring events with long duration, however, it
is suggested that alternative approaches such as prevalence functions or expected propor-
tions of time affected be used. For analysis and interpretation of adverse events, the FDA
guidelines suggest that attention be given to (1) frequency of treatment-emergent events;
(2) relevant Body System categories; (3) severity categories (if used); (4) relationship/
causality (if used); (5) original terms used by the investigator (individual study report) and
group related reactions, such as defined in one of the dictionaries (integrated safety sum-
mary). If a dictionary is not used in the study report, any synonymous reactions should be
grouped together. If the study size permits, more common adverse events that seem to be
drug related should be examined for their relationship to the levels of drug exposure and to
the baseline characteristics. Laboratory findings can reflect an adverse event (ECG abnor-
mality suggesting infarction, serious arrhythmia, etc).

For safety assessments in clinical trials, it is helpful to examine the correlation between
the drug concentration data such as concentration at the time of an event, maximum
plasma concentration, or area under the curve (if available) and adverse events or changes
in laboratory variables.

Note that for the safety assessment of laboratory data, since a majority of the laboratory
measurements are surrogates and reference ranges can vary from method to method, many
different types of errors can occur during laboratory testing. The sources of errors can be the
technician, an instrument, the environment, or reagents. As a result multiple laboratory meth-
ods within a statistical analysis should be avoided. In practice, it is strongly recommended
that standard procedures for good laboratory practice (GLP) such as quality assurance/
control, well-defined procedures, well-trained staff, and well-defined data management 
system be employed to minimize these potential errors.

In summary, there are still problems encountered in defining, capturing and evaluating
safety-related data including adverse events and laboratory data in clinical trials. These
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problems may be best resolved by the ICH in a standardized approach to defining, evaluat-
ing, recording, and summarizing safety-related data for a complete safety assessment of
the drug product under investigation. It should be noted that both FDA and ICH Guidelines
pointed out that it is not intended that every adverse event be subjected to rigorous statisti-
cal evaluation. As a result, the analysis of adverse events is basically descriptive in nature.
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14
PREPARATION AND IMPLEMENTATION
OF A CLINICAL PROTOCOL

14.1 INTRODUCTION

As mentioned in Section 1.4, a clinical trial protocol is the document that specifies the
research plan for a clinical investigation. A protocol is the most important document to ensure
quality control of a clinical trial. It is also a document for communications among centers and
research staff, such as clinical investigators, study nurses, pharmacists, and all others who are
involved in a clinical trial. A clinical trial protocol is also required to be reviewed both inter-
nally and externally. Internal review may involve the institutional review board (IRB) or ethics
committee (EC) within the medical institution from which the protocol is originated. In most
countries, a clinical trial can be conducted only after the health authorities or national IRB
approves its protocol. In addition, a protocol is a legal document that specifies the legal
responsibilities of all parties participating in a clinical trial. Finally, although a clinical trial is
a research plan for a scientific investigation, its experimental units are humans and, hence, the
ethical obligations of all personnel involved in a clinical trial should be clearly stated in the
protocol. In summary, a clinical trial protocol is a plan that meets scientific and ethical require-
ments as well as good clinical practice (GCP) (see, e.g., ICH E6).

The ultimate goal of a clinical trial is to prospectively design an investigation to make an
unbiased inference with possibly the best precision to scientifically answer clinical questions
with respect to a target patient population. As pointed out in Chapter 1, the most important
elements in a clinical trial are experiment unit, treatment, and evaluation. Therefore, a
clinical trial protocol should provide a plan with complete specifications for the following:

• research question

• target patient population

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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• design characteristics
• treatment characteristics
• data collection and analysis
• ethical obligations
• legal responsibilities
• research management

On the other hand, a well-written protocol should be scientifically valid, ethical, flexible,
structured, logical, and complete. From the above discussion, it is not easy to develop a
good clinical trial protocol. However, the most difficult parts for development of a clinical
trial protocol include:

1. Formulation of and development of a set of important and yet feasible scientific/
medical questions

2. Necessary resources (patients, funds, time, personnel, equipment) to answer the
questions

Although a clinical trial protocol is well prepared, thoroughly thought out, and adequately
written, its implementation can still face lots of difficulties and obstacles due to some
unforeseen situations and unanticipated issues during the conduct of the clinical trial. Some
of these issues are relatively minor, which are the so-called protocol deviations, and some of
them are quite major, which are usually referred to as protocol violations. Some protocol
violations are very serious, which may lead to misconduct or fraud in clinical trials. There-
fore, monitoring and audit during the trial by the sponsor are required to ensure that a clini-
cal trial is conducted according to the clinical trial protocol and GCP. An official inspection
by the health authorities is usually conducted to evaluate quality and performance of a clin-
ical trial after the completion of the trial. All of these efforts are aimed to ensure that trials
are conducted and data are generated, documented, and reported in compliance with the
trial protocol, GCP, and applicable regulations set forth by the health authorities. The pur-
pose is to make sure that the subjects enrolled in trials are adequately protected and that
valid data are generated to answer the scientific questions stated in the clinical trial protocol.

In the next section, the structure and components of a clinical trial protocol will be intro-
duced. Points to be considered and some common pitfalls arising during development and
preparation of a clinical trial protocol will be discussed in Section 14.3. Commonly occur-
ring departures from the protocol during the conduct of a clinical trial will be given in Sec-
tion 14.4. Section 14.5 briefly discusses the roles of monitoring, audit, and inspection for
quality assurance of clinical trials. Quality assessment of a clinical trial will be provided in
Section 14.6. Discussion and final remarks are given in Section 14.7.

14.2 STRUCTURE AND COMPONENTS OF A PROTOCOL

As indicated in Section 1.4, the minimum requirements for the protocol of a clinical trial
are provided in Section 312.23 of 21 CFR. In addition, Table 1.4.2 provides an example for
format and contents of a protocol for a well-controlled clinical trial. A protocol cover sheet
suggested by the FDA provides a tabular summary of information and characteristics for
the trial. On the other hand, a protocol synopsis with a length of one to two pages can
depict a narrative summarized description of a complicated and lengthy protocol. The table
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604 PREPARATION AND IMPLEMENTATION OF A CLINICAL PROTOCOL

of contents of the protocol not only provides the structure and framework of the protocol,
but also it serves as an index for each section of the protocol. Basically, a protocol can be
structured into three major components: the scientific, ethical, and administrative parts.
According to the ICH E6 guideline on Good Clinical Practice: Consolidated Guidance
(ICH, 1996), the administrative parts consist of general information, organization of research
teams, communication schemes among participants involved in the trials, shipping plan for
specimen, data transfer network, obligations of clinical investigations, medical institutions,
and sponsors, investigational drug accountability, case report forms, study registry, record
retention, financing and insurance, publication policy, signature of investigators, confiden-
tial statements, and other administrative matters.

The research team of the clinical trial usually consists of the team of clinical staff at the
study site, which includes clinical investigators, residents, research fellows, research nurse,
pharmacists, laboratory technicians, and clinical assistants. The leader of this team is referred
to as the principal investigator (PI). Individuals such as residents, research associates, and
research fellows who are supervised by the principal investigator to perform critical trial
related procedures and to make important trial related decisions are sometimes referred to
as subinvestigators. If a clinical trial is sponsored by a pharmaceutical company, another
research team is formed by the staff of the pharmaceutical company that may include proj-
ect clinicians, a statistician, a pharmacokineticist, and a project manager. For a large-scale
multicenter trial, a steering committee is usually formed to set up the research strategy, to
make key decisions, and to oversee the activities of the trial. One of the principal investi-
gators is usually selected as the chairperson of the steering committee. The steering com-
mittee is critical for successful management of large, long-term, and complicated clinical
trials such as the PLCO trial discussed in Chapter 7. In practice, it is not uncommon to
have a data and safety monitoring committee (DSMC) as another research team for clini-
cal trials. As a matter of fact, the NIH requires that all clinical trials sponsored by the NIH
have a DSMC. Furthermore, most phase 2 and phase 3 trials sponsored by the pharmaceu-
tical industry also include DSMC. One key and crucial distinction between and DSMC and
other research teams is that all members of the DSMC should not be involved with the con-
duct of the trials. In addition, the DSMC should function independently.

According to the ICH E6 GCP guideline, the general information provided by the pro-
tocol should include the following:

• Protocol title, protocol identifying number, and date. Any amendment(s) should also
bear the amendment number(s) and date(s)

• Name and address of the sponsor and monitor (if other than the sponsor)

• Name and title of the person(s) authorized to sign the protocol and the protocol’s
amendment(s) for the sponsor

• Name, title, address, and telephone number(s) of the sponsor’s medical expert (or
dentist when appropriate) for the trial

• Name and title of the investigator(s) who is (are) responsible for conducting the trial,
and the address and telephone number(s) of the trial site(s)

• Name, title, address, and telephone number(s) of the qualified physician (or dentist, if
applicable) who is responsible for all trial site–related medical (or dental) decisions
(if other than investigator)

• Name and address(es) of the clinical laboratory(ies) and other medical and/or techni-
cal department(s) and/or institutions involved in the trial.
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The scientific part contains the specific applications of the most methodological tools cov-
ered in the previous chapters of this book. They include background information, the objec-
tives of the trials, definition of target patient population according to inclusion and exclusion
criteria, the trial design, intervention or treatment under investigation for the trials, methods
for evaluation of efficacy and safety, reporting procedures for serious and unexpected adverse
events, and sample size determination, data collection, and a statistical plan for analyses. If
the treatment under investigation is a pharmaceutical product, then the ICH E6 GCP guide-
line indicates that the following background information should be provided:

• Name and description of the product(s)

• A summary of findings from nonclinical studies that potentially have clinical signifi-
cance and from clinical trials that are relevant to the trial

• Summary of the known and potential risks and benefits, if any, to human subjects

• Description of and justification for the route of administration, dosage, dosage regi-
men, and treatment period(s) for the treatment evaluated in the trial

• A statement that the trial will be conducted in compliance with the protocol, GCP,
and applicable regulatory requirement(s)

• A brief description of the population to be studied and its rationales

• References to literature and data that are relevant to the trial, and that provide back-
ground for the trial

The most important and yet difficult part during the development of a clinical trial protocol
is the objective section that lays out the goals for the trial. From Example 3.2.1 to 3.2.7 of
Section 3.2, the objectives of clinical trials are formulated through the experimental units,
treatments, and evaluation in conjunction with the mechanism for data generation and the
intentions of the trial. In the primary objective of Example 3.2.7, the experimental units 
are patients with atrial fibrillation. The treatments include the investigational product and
the active comparator. In general, the dose and route of administration should be also given
in the objective. The evaluation endpoint is the all-stroke (fatal and nonfatal) and systemic
embolic events. The mechanism for data generation is the design used in the trial, which is
a randomized parallel group design. Finally, the intention of the trial is to show that the
investigational drug is not inferior to that of the active comparator for the prevention of all-
stroke (fatal and nonfatal) and systemic embolic events. Therefore, this trial is a secondary
prevention and noninferiority trial. Sometimes, it is useful to state the treatment duration
and the length of follow-up period. It would be more complete if the expected event rate and
noninferiority margin can be stated in the primary objective. However, the objective would
become too long and yet confusing with too much information. Therefore, it is very difficult
to reach a proper balance among comprehensiveness, completeness, clearness, and concise-
ness. A sound statement regarding the objectives of a clinical trial protocol, however, should
at least include experimental units, treatment, evaluation, design, and intention.

Depending on the relative importance or priority of study endpoints, as shown in Example
3.2.5 to 3.2.7, the objectives of a clinical trial can also be classified into the primary, second-
ary, and tertiary objectives. In general, there should be only one primary objective and several
secondary and tertiary objectives. The endpoint stated in the primary objective is the primary
endpoint for the trial that is used for sample size calculation. In practice, there may be more
than one primary objective, each with different primary endpoints. In such a case, the multi-
plicity issue discussed in Chapter 12 should be addressed in appropriate sections (e.g., the
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objective section and the statistical section) of the clinical protocol. In addition to inclusion
and exclusion criteria discussed in Section 3.3 for the target patient population, the ICH E6
GCP guideline also provides the following subject withdrawal criteria:

• When and how to withdraw subjects from the trial/investigational product treatment

• The type and timing of the data to be collected for withdrawn subjects

• Whether and how subjects are to be replaced

• The follow-up for subjects withdrawn from trial treatment

As pointed out in the ICH E6 GCP guideline, the integrity of the trial and the credibility of
the data obtained from the trial depend considerably on the design employed in the trial.
Therefore, the ICH E6 GCP guideline suggests that the design section should include the
following:

• A description of the type/design of trial to be conducted (e.g., double-blind, placebo-
controlled, parallel design) and a schematic diagram of trial design, procedures, and
stage.

• A description of the measures taken to minimized/avoid bias, including randomiza-
tion and blinding.

• A description of the trial treatment(s) and dosage and dosage regimen of the investi-
gational product(s). Also includes a description of the dosage form, packaging, and
labeling of the investigational product(s).

• The expected duration of subject participation, and a description of the sequence and
duration of all trial periods, including follow-up, if any.

• A description of the stopping rules or discontinuation criteria for individual subjects,
parts of trial, and entire trial.

• Accountability procedures for the investigational product(s), including the placebo(s)
and comparator(s), if any.

• Maintenance of trial treatment randomization codes and procedures for breaking codes.

• The identification of any data to be recorded directly on the CRF’s (i.e., no prior written
or electronic record of data), and to be considered to be source data.

The treatment section should provide all relevant information of all treatments administered
to the subjects during the trial. These include the name(s) of all the product(s), the dose(s),
the dosing schedule(s), route/mode(s) of administration, treatment period(s), and follow-up
period(s) for subjects for each investigational product treatment/ trial treatment group/arm
of the trial. In particular, quantity, frequency, time, and duration should be specified for the
investigational products that are orally administered. For the IV investigational products, the
preparation, reconstitution procedures, the infusion rate, loading, and maintenance doses
should be also described clearly in this section. For the treatments that require titration,
dose, schedule, criteria, and its based endpoints should be specified in this section. For the
trials evaluating chemotherapy in cancer patients, schema for dose modifications due to
adverse events or toxicities should also be described in detail in the treatment section. On
the other hand, the treatment section should also include the procedures for monitoring sub-
ject compliance and methods for improving compliance. In order to avoid bias in estimation
of treatment effects, the treatment section should describe the procedures to collect the
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information on concomitant medications. In addition, medication/treatments permitted
(including rescue medications) and not permitted before and/or during the trial should be
specified in detail with prespecified time intervals.

Basically, the section of assessment of efficacy can be divided into two parts. The first part
includes definitions and specifications of efficacy parameters. In this part, depending on clin-
ical relevance and importance, efficacy parameters can be classified further in the primary,
secondary, and tertiary efficacy parameters in accordance with the primary, secondary, and
tertiary hypotheses specified in the objective section. Spilker (1991) gave a list of desirable
features of efficacy parameters, which is reproduced with permission in Table 14.2.1. For
each efficacy parameter, a precise definition should be clearly given in detail. In particular,
the definitions of some derived efficacy parameters such as response rate should include the
efficacy parameters on which they are based and their calculations. In addition, if some
efficacy parameters are derived from some criteria or instrument scale, they should be vali-
dated for their validity, reliability, and reproducibility. Some examples include RECIST for
evaluation of tumor response in caner chemotherapy (Therasse et al., 2000), Hamilton
depression scale for evaluation of treatment in patients with depression, NIHSS for evalua-
tion of treatment in patients with stroke (NINDS, 1995), and ADAS for evaluation of treat-
ment in patients with probable Alzheimer’s disease (Folstein et al., 1975).

The second part should provide a detailed narrative description for methods and timing
for assessing, recording, and analyzing efficacy parameters. In addition to selection of reli-
able, valid, and reproducible efficacy parameters, the time points for measurement of efficacy
parameters should be selected to demonstrate efficacy in relation to the time of administra-
tion of treatment under investigation described in the treatment section, e.g., just prior to dos-
ing. In addition, it is crucial to define the times for evaluating inclusion/exclusion criteria that
are based on efficacy parameters and for establishing the baseline values for efficacy param-
eters. Appendices should be provided for detailed narrative description of procedures if eval-
uations and measurements for some efficacy parameters require special equipments, training,
or techniques. Some examples are bone densitometry for evaluation of bone mineral density
and NIHSS, which requires additional training for neurologists in assessment of improve-
ment by the treatment for the patients with stroke.

Table 14.2.1 Desirable Characteristics of Efficacy Parameters

1. Easy to administer
2. Rapid to administer
3. Little or no training necessary to administer
4. Easy to interpret
5. Rapid to interpret
6. Little or no training necessary to interpret
7. Sensitive to changes elicited by treatments under investigation
8. Insensitive to efforts brought about by treatments that might interfere with 

the efficacy parameter
9. Low rate of false-positive responses

10. Low rate of false-negative responses
11. May be used multiple times without a training effort
12. Results are reproducible
13. Results are valid
14. Interpretation is correlated with other efficacy parameters

Reproduced from Spilker (1991).
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Similar to the section for assessment of efficacy, the section for assessment of safety can
also be divided into two parts. The first part provides specifications of safety parameters that
include adverse events, laboratory evaluations, vital signs, and some specific safety param-
eters. The second part includes the methods and timing for assessing, recording, and ana-
lyzing safety parameters. The definition of adverse events should be given in details. The
information collected for adverse events should also be specified clearly in this section. This
includes description of events, onset date and time in relation to the treatment, nature of the
adverse events, its duration, intensity, seriousness, relationship to the treatment, actions taken,
and resolution of adverse events. In addition, to avoid a possible overestimation of the inci-
dence rate of an adverse event, the information of adverse events should be obtained by
indirectly questioning using a nonleading question. One should not, in the protocol, prepare
a list of all possible adverse events and ask patients whether they experience them. The cod-
ing system for adverse events described in Chapter 13 to be used in the trial should be also
prespecified in this section. On the other hand, the time interval for collection of adverse
events even after the completion of the trial treatment should be specified in this section.

Serious adverse events (SAE) and unexpected adverse events are the most important
safety information to be collected and evaluated for a clinical trial that also require expedited
reporting to the medical institute’s IRB and health regulatory authority and the industry spon-
sors. Therefore, a detailed and precise narrative description of the definition and procedures
for obtaining and reporting SAE should be provided in this section. Currently, the ICH defi-
nition of serious or unexpected adverse events is used for most of clinical trials sponsored by
the pharmaceutical companies. Currently, the time frame for expedited reports of serious or
unexpected adverse events suggested by the ICH is also adopted by most of the trials spon-
sored by the pharmaceutical industry. In addition, there should be a statement indicating that
the principal medical monitor or sponsor should be notified promptly by phone of any death
or serious or unexpected adverse event, even though they are not product-related. The name,
address, business phone number, business hour, fax number, and email address of the princi-
pal monitor should be given in the protocol along with the same information for the physician
on duty for nights, weekends, and holidays.

Other safety parameters include laboratory evaluations, vital signs, and some special
safety parameters. In general, routine laboratory evaluations include hematology, blood
chemistry, and urinalysis. The time and procedures for collecting, labeling, and shipping the
blood and urine samples should be described in this section. For multicenter trials, whether
a central laboratory is used for analyzing the blood or urine samples should be specified. If
samples are to be analyzed at site laboratories, a standardization procedure among different
laboratories should also be depicted in this section. Vital signs usually include systolic and
diastolic blood pressures, heart and respiratory rates, and sometimes body temperature.
Examples for special safety evaluations include ECG and pap smears tests. Again, the proto-
col should specify the procedures and time points for evaluation of these safety parameters.

However, there should be another section on other clinical evaluations that include med-
ical history, medication history, and physical examination. A section on the conduct of the
study can be very helpful. In this section, narrative descriptions for every evaluation of all
efficacy and safety parameters performed at each visit for all visits are provided by visit. In
addition, a flowchart is given in appendices to provide a summary of all evaluations by
time points. In this flowchart, columns represent the visits or time points; the rows repre-
sent the evaluations of efficacy and safety parameters. Therefore, each entry in the flow-
chart indicates a particular efficacy or safety evaluation to be performed at a specific time
point.
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The section on statistics should include the following parts: statistical hypotheses and
sample size determination, definition of analysis set, analysis of demographic data and base-
line characteristics, analysis of efficacy parameters, and analysis of safety parameters. First,
the objectives in the beginning of the protocol should be translated into statistical hypotheses.
Based on the expected difference on primary efficacy parameter between treatment arms and
their corresponding anticipating variability, the sample size for the trial can be determined by
the corresponding statistical method used for analysis of the primary efficacy parameter to
achieve a predetermined level of power at a prespecified significance level. Clinical relevance
for selection the difference between treatment arms or equivalence/noninferiority margin for
determination of sample size should be justified. The sample size calculation should also take
dropout rate into consideration. If the trial is a multicenter trial, the number of subjects pro-
jected for each site should be specified. In addition, the projected accrual rate and anticipated
completion of enrollment should be provided.

The statistics section should clearly define the analysis sets from which the conclusions of
the trial are derived. The definition of analysis sets and the criteria for selection of subjects
into analysis sets should be clearly described and specified in this section. The methods for
analysis of each efficacy and safety parameters should be provided with relevant references if
necessary. If interim analyses are planned for the trial, the timing of interim analyses and the
methods for determination of spending significance level at various time points for interim
analyses and the corresponding stopping boundaries should also be provided in detail. The
procedures for early termination of the trial based on planned interim analyses should also be
prespecified in the protocol. Furthermore, if necessary, the methods for sample size reestima-
tion should be also given. However, the procedures to avoid or eliminate bias due to the
planned or unplanned interim analyses and sample size reestimation should be specified in
the protocol to protect the integrity of the trial. The statistics section should provide the pro-
cedures for addressing the issues of multicenter trial, use of covariates (both subject-specific
covariates and time-dependent covariates), missing values, and multiplicity.

The last component of the protocol is the ethical section. Because the experimental
units in clinical trials are human subjects, the ethical section is probably the most impor-
tant component in the protocol for protection of the trial subjects. This component should
include the detailed review procedures both internally and externally. In addition, a copy of
the proposed informed consent form should be included as one of the appendices. Other
procedures for elimination of any unnecessary risk from the trial subjects should be pro-
vided in this section.

14.3 POINTS TO BE CONSIDERED AND COMMON PITFALLS DURING
DEVELOPMENT AND PREPARATION OF A PROTOCOL

Development and preparation of a clinical trial protocol begin with scientific/medical ques-
tions and end with a comprehensive and complete investigational plan that is doable and
feasible to test and verify clinical hypothesis. A good and well-written protocol can not only
achieve its goal by answering the scientific/medical questions if it is executed according to
the plan, but also prepare different contingency plans to handle and resolve various unfore-
seen or unexpected situations and issues during the implementation of the trial protocol.
Therefore, it is a challenging and complicated process that requires careful and thoughtful
planning. The Women’s Health Initiative Clinical Trial (1998) and the Prostate, Lung, Colo-
rectal and Ovarian (PLCO) cancer screening trial (2000) provide two excellent examples of
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complexity in development and preparation of clinical trial protocols. Table 14.3.1 provides
a list of key issues that must be considered for development and preparation of a clinical
trial protocol.

As it can be seen from Table 1.4.2, a protocol is a product of a joint effort by experi-
enced experts from different disciplines. Therefore, the starting point for development of 
a clinical protocol is to assemble a project team of qualified professionals from different
areas. They may include clinical physicians specialized in the therapeutic area under study;
medicinal chemists who are familiar with the properties of the investigational products;
pharmacokinetics and pharmacodynamic (PK/PD) experts who understand the metabolism
and mechanism of the products; toxicologists who are familiar with animal safety profiles;
pharmacists who are experts in preparing, packaging, and labeling of the investigational
products; biostatisticians who have the knowledge of choosing a valid design and appro-
priate statistical methods for sample size determination and analyses; and database experts
who are experienced in management of complex clinical data. The next step is to select a
management approach. In general, preparation and implementation require expertise from
different disciplines. Decision by consensus seems a reasonable approach. However, the
most important step in forming a project team is to select a project leader who respects and
appreciates different disciplines and understands the complexity of their individual roles
involved in the clinical trials. The ability and efficiency of communication is also another
key element in successful management of a project team for development and preparation
of a clinical trial protocol.

Once the project team is formed, the first task is to develop the study objectives of the
protocol. The different study objectives of a clinical trial with examples have been dis-
cussed in Chapter 3. The following lists mistakes that are commonly made when develop-
ing the study objectives by a project team:

• The trial objectives are too general, too vague, or too ambiguous such as Example 3.2.1
to 3.2.3

• The trial objectives are too ambitious to achieve, e.g., a reduction of incidence rate 1
out of 100,000 for a certain event by 50%

Table 14.3.1 Points to Consider in Development and Preparation of a Clinical Protocol

1. Assembling a project team of clinical experts
2. Selection of a management approach for development and preparation of a clinical protocol
3. Development of the objectives for the protocol
4. Definition of the target patient population
5. Selection of the proper design for the trial
6. Selection of efficacy and safety parameters
7. Specification of the time for randomization and for baseline evaluation
8. Collection of information on adverse events
9. Ethical considerations and issues, including informed consent form and IRB/EC review processes

10. Regulatory, patent, legal considerations
11. Preparation, packing, labeling, and dispensing of investigational products
12. Preparation of case report forms and instructions for trial subjects, investigators, and other relevant

trial personnel
13. Inconsistency within the protocol
14. Inadequate language and writing style for the protocol
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• The trial objectives either require a complicated statistical design or contain too many
parts or phases that are difficult to implement or demand huge resources to complete

As mentioned earlier in Chapter 3, defining the target patient population requires an ade-
quate balance between variability and recruitment. If inclusion and exclusion criteria are
very stringent, the resulting target patient population may be very homogeneous with
respect to some basic characteristics. However, due to very stringent eligibility criteria,
accrual can be very slow. On the other hand, if inclusion and exclusion criteria are too loose,
data obtained from the trial may be very heterogeneous and are of less clinical meaning.

After the target patient population is defined, the next task is to choose a proper design for
the trial. The study design consists of statistical design, randomization, blindness, selection
of controls, and duration of the trial. Table 14.3.2 provides a list of possible pitfalls for selec-
tion of a clinical trial design. The first pitfall is that no statistician is on the project team. In
practice, it is crucial to have a biostatistician in the project team for selection of an adequate
statistical design to appropriately address the study objectives. Another common pitfall dur-
ing development and preparation of a clinical trial protocol is either too many or too few
efficacy and safety parameters selected for evaluation of treatments. Too few parameters may
result in insufficient clinical data to address the study objectives. On the other hand, a shot-
gun approach may generate too much fruitless data and provide inconclusive results. Another
important issue to be considered during the development of a protocol is the time of random-
ization and evaluation of baseline characteristics of the patients. This issue is particularly
important when a trial is designed with a run-in phase or an enrichment phase. For safety
concerns, other common pitfalls are that excessive blood samples are planned to collect from
subjects or the proposed fasting period is exceptionally long. In addition, because English is
currently the most frequently spoken language in the world, the drug label and dispensing
instructions are prepared only in English for the trials to be conducted in the countries or
areas where patients or even some nurses cannot read or speak English proficiently.

Other common pitfalls include inadequate or ambiguous language with lots of adjec-
tives used in the protocol and inconsistency within the protocol. For example, one inclu-
sion criterion states that the patients should be between 18 and 65 years of age. However,
this inclusion criterion is not clear and precise concerning whether patients of 18 years or

Table 14.3.2 Frequent Pitfalls in Selection of a Trial Design during the Development 
and Preparation of a Clinical Trial Protocol

1. No statistician in the project team to discuss and consult with in details on design issues
2. The selected design fails to address the study objectives of the trial
3. The selected statistical design is too complicated to implement
4. The proposed design is inadequately powered
5. The proposed lengths of screening, running, or treatment periods are either too long or too short

for an appropriate conduct of a clinical trial to be implemented
6. Placebo is not selected for the control when it should
7. Blindness is not proposed when it should and is feasible
8. Randomization procedure is not described in the protocol, and the statistician is not consulted

with the issues of randomization
9. Inadequate selection of dose regimen or doses for the trial

10. The chosen margin of equivalence or inferiority trials is inappropriate to demonstrate the
effectiveness of the treatment
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65 years of age should be enrolled. A better statement may be that the age of the patients is
between 18 and 65 inclusively. The following example illustrates inconsistency within the
protocol. “The treatment is a 4-hour intravenous infusion. Vital signs will be monitored
every 15 minutes for the first 2-hours after initiation of infusion and every hour for the rest
of the 12-hour IV infusion.” Therefore, it is not clear from these two sentences whether the
treatment is 4-hour IV infusion or 12-hour infusion. The minimal writing requirements are
the language should be clear, concise, precise, and consistent without excessive adjectives
or adverbs and long sentences.

14.4 COMMON DEPARTURES FOR IMPLEMENTATION 
OF A PROTOCOL

The U.S. FDA conducts approximately 1,050 inspections of clinical trials each year.
Among these inspections, about 700 involve investigators, 250 IRBs, and 100 institutional
facilities (Steinbrock, 2002a). Table 14.4.1 provides a list of the most common deficiencies
found during the inspection. One of them is the protocol nonadherence, which occurred
26% of the time for the inspections conducted between 1977 and 1990, as reported by
Lisook (1990). This situation did not improve at all for the trials conducted recently.
Woollen (2000b) reported that the protocol nonadherence occurred 27% of the time for the
trials inspected in 1999. Therefore, departures from the protocol during implementation
and conduct of a clinical trial is a common problem that occurred in around 25% of the tri-
als inspected during the last quarter century.

Depending on severity and intensity, departures from the trial protocol may be classified
into three categories, namely, mild, moderate, and severe. Deviation from the protocol is the
mildest form of departure from the protocol. For example, a small group of the patients 
fails to return for a visit or patients are not in full compliance of dosing schedule specified in
the protocol. Another example is that a patient is scheduled to return for a 28-day visit as
specified in a protocol for evaluation of a new drug in treatment of patients with hyperten-
sion. This protocol has specified a �4-day window for each 28-day visit. However, due to 
a family emergency, this patient had this visit 5 days after the scheduled 28 days after the
previous visit, i.e., one day after the allowable interval. Another deviation that occurs much
less frequently during the conduct of the trial is missing a random code during assignment
of treatment to patients. For a randomized trial, prepackaged treatments should be assigned
to patients in a sequential order according to the random codes. For example, patient #10 
is the tenth patient who satisfies the inclusion/exclusion criteria and should be given the

Table 14.4.1 Common Deficiencies Found during Inspection

Year

Deficiencies 77–90 99

Consent form 54% 8%
Protocol nonadherence 26% 27%
Inadequate or inaccurate records 21% 20%
Drug Accountability 25% 9%
AE 15%

Source: Lisook (1990) and Woolen (2000b).
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treatment marked with number 10 on the label. However, if many patients are registered and
enrolled at the same time, some mishaps can happen; instead of the treatment marked with
number 10, patient #10 is assigned to the treatment marked with number 11. Even worse, if
the study uses a stratified randomization, the treatment with number 10 from stratum A is
assigned to patient #10 in stratum B. In general, few incidences of protocol deviations may
have minimal impact on integrity, results, and conclusion of the trial. However, frequent
occurrence of protocol deviations demonstrates lack of quality control for the protocol and
study. In addition, the cumulative effect of frequent occurrence of protocol deviations will
have a serious effect on a valid inference provided by the trial.

Violation of protocol is moderate departure from the protocol during implementation that
might be of serious consequences in the integrity, quality, and validity of clinical trials. One
example is nonadherence of the time of randomization. For example, a trial was conducted to
investigate the effectiveness and safety of a new drug in treatment of allergic seasonal rhini-
tis. This study consisted of a screening visit, a 7-day run-in period, and a 4-week of treatment
period. The primary endpoint was the change of the total symptom score at 4-week visit from
the baseline. The protocol specified that baseline is the end of the 7-day run-in period, which
is also the time for randomization and patients would be randomly assigned to treatment if
the total symptom score is at least 12 at the time of randomization. To increase the enroll-
ment, patients were actually randomized at the screening visit if their total symptom score
was greater than or equal to 12. However, there was a 7-day run-in period between the
screening and the baseline visit. The total symptom score evaluated at baseline for more than
60% of the patients fell below 12. In other words, more than 60% of the patients did not have
the disease severity specified by the protocol at baseline and these patients do not represent
the target patient population that the trial intended to study. Another example of protocol vio-
lation is noncompliance of prohibited concomitant medications. Suppose that a trial is con-
ducted by the department of orthopedics in a large medical center to investigate the efficacy
and safety of a new NSAID in treatment of pain in the patients with osteoarthritis. The proto-
col specifies that no other NSAID in any dosage form be allowed 7 days before the study and
for the entire duration of the study. Due to lack of effective and efficient communications
among different departments within the center, more than 40% of the patients in the trial
were prescribed other NSAIDs when the patients sought medical help from other depart-
ments. As a result, an unbiased estimate of the effectiveness and safety of the new NSAID
using the data generated by this trial is impossible. These two examples show the devastated
impact of protocol violations on integrity and quality of the trial.

Most protocol deviations and violations result from issues and difficulties associated with
the actual implementation of the protocol. The occurrence of protocol deviations and viola-
tions increases as the difficulty of implementing the protocol increases and the feasibility of
the protocol decreases. Once these problems in conduct of the study are identified, they
should be brought to the attention of the steering committee immediately to examine whether
these issues are serious enough to warrant a protocol amendment. Protocol amendments can
also be classified into two types. The first type is the administrative amendments, which
include notification of changes of study personnel and modification of some administrative
procedures. Administrative amendments do not have an impact on the scientific integrity and
conduct of the trial. Therefore, in general, no official approval by the IRB or the health regu-
latory authorities is required. On the other hand, if amendments involve modification of sci-
entific or ethical components of the protocol, then the proposed amendments must obtain the
official approval from the IRB and/or health regulatory authorities before they can be imple-
mented. Examples of these amendments include modification of inclusion/exclusion criteria
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to increase the accrual of the study, sample size reestimation, modification or addition of pri-
mary endpoints, and revision of the informed consent form with updated information.

Protocol deviations or violations are unintentional departures from the protocol because
of some mishaps or mistakes made during implementation of a clinical trial protocol.
However, if departures from the protocol are intentional, then they are referred as to mis-
conduct or fraud in clinical trials. Although the occurrence of misconduct and fraud in
clinical trials is very rare, they did happen. Table 14.4.2 lists some infamous misconduct in
clinical trials. Some of these misconducts involve fabrication or falsification of the data.

Example 14.4.1 Poisson (NSABP) Case

In May 1991, Dr. Roger Poisson, M.D., one of investigators for the National Surgical
Adjuvant Breast and Bowel Project (NSABP), located at L’Hôpital Saint-Luc, University
of Montreal, Quebec, Canada was found to falsify or fabricate the data. Dr. Poisson partic-
ipated in 22 NSABP trials with a total enrollment of 1,500 patients. There were a total of
115 instances of data falsification or fabrication in eligibility criteria from 99 patients, such
as falsified estrogen receptor value and alteration of dates of surgery and biopsy. Although
this misconduct only included changes of data with respect to inclusion/exclusion criteria
to increase trial accrual and no outcome data had been falsified or fabricated, Dr. Poisson
was charged with scientific misconduct and was disqualified for life as a clinical investiga-
tor for conducting any clinical trials involving investigational drugs by the U.S. FDA.

Example 14.4.2 The Demiroglu Case

The other example of fraudulent and forged evidence is the paper by Demiroglu et al.
(2000) regarding the efficacy of interferon for treatment of Behcet’s disease published in
Lancet. Immediate after the paper was published, several authors wrote separate letters to
the Editor of Lancet, Robert Horton, M.D., indicating that they had not participated in the
study and had not signed any copyright agreement. Dr. Horton then asked the Dean of
Hacettepe University Medical School in Turkey to investigate this case. The investigation
revealed that (1) the signatures on the copyright agreement had been forged, (2) no
approval from the ethics committee was obtained, (3) patients in the alleged trials had not
signed the informed consent form, and (4) some data had been fabricated and falsified.
Eight months after the paper was published, Lancet (Horton, 2000) retracted the paper.

Table 14.4.2 Examples of Misconduct in Clinical Trials

Year Case

1981 Darsee case (Relman, 1983; Culliton, 1983)
1994 Poisson (NSABP) case (Angell and Kassire, 1994; Broder, 1994; Bivens and Macfarlane,

1994)
1995 Bezwoda (high-dose chemotherapy for metastatic breast cancer) case (Grady, 2000;

Weiss et al., 2001)
1996 University of Rochester (Steinbrock, 2002a), a healthy volunteer died
1999 University of Pennsylvania (Shalala, 2000), a patient died in a gene therapy trial
1999 Fiddes Case (Eichenwald and Kolata, 1999; Woollen, 2000b)
2000 Demiroglu (interferon in Behcet’s disease) case (Horton, 2000; Horton, 2001).
2001 Case Western University (Steinbrock, 2002b), a control subject died
2001 Johns Hopkins University (Steinbrock, 2002a), a healthy volunteer died in an asthma trial
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Example 14.4.3 Bezwoda Case

One of the most notorious examples of outright fraud in clinical trials is the case of Werner
Bezwoda, M.D., a South African oncologist. The results of his 1995 paper on high dose
chemotherapy for treatment of the patients with metastatic breast cancer published in the
Journal of Clinical Oncology were so promising that the U.S. NCI planned large clinical 
trials based on his results. To assess the integrity of the trial and the quality of the data of 
the study, the U.S. NCI sent a team to South Africa to conduct an on-site audit for the 
Bezwoda’s study. Despite the resistance and uncorporation from Dr. Bezwoda, the audit
team concluded that patient records and diagnoses were unverifiable. Most patients were in
fact ineligible, and verifiable data were not sufficient. Consequently, the paper was retracted
6 years after its publication in the Journal of Clinical Oncology.

Example 14.4.4 The Fiddes Case

Misconduct and fraud in clinical trials are not limited only to academia. Although the trials
sponsored by the pharmaceutical industry for registration of new drugs are tightly regulated
and monitored by both the industry and the U.S. FDA, misconduct and fraud still occur. The
most infamous case is the fraud committed by Dr. Fiddes (Eichenwald and Kolata, 1999;
Woollen, 2000b). Dr. Fiddes was the president of the Southern California Research Insti-
tute, a contract research organization located in Whitter, California. Since the early 1990s,
the Southern California Research Institute has conducted over 200 clinical trials for as many
as 47 pharmaceutical companies. Some examples of misconduct committed by Dr. Fiddes
included making up fictitious study subjects, fabricating laboratory results by substituting
clinical specimens, manipulating laboratory instrumentation, and prescribing prohibited
medications to trial subjects for manipulation of data. The most notorious example of the
fraud by Dr. Fiddes is a clinical trial investigating the efficacy/safety of an antibiotic. One of
the inclusion criteria is the requirement that the patients have a certain type of bacteria
growing in their ears. Dr. Fiddes bought the bacteria from a commercial supplier and
shipped it to testing laboratories and said that they had come from his patient’s ears. In
August 1997, Dr. Fiddes pleaded guilty to a felony charge of conspiracy to make false state-
ments to the U.S. FDA in connection with the drug approval process. He was sentenced 
to 15 months in federal prison and ordered to pay US$800,000 in restitution. In addition,
Dr. Fiddes was disqualified as a clinical investigator for life by the U.S. FDA.

The examples of misconduct or fraud are limited to fabrication, falsification, forged, and
fraudulent evidence. However, some departures from the protocol and misconduct in clinical
trials have led to tragic death of patients or healthy volunteers. These deaths included not
only patients, but also normal healthy volunteers participating in the trials conducted by the
world’s finest medical institutions, such as Johns Hopkins University School of Medicine,
University of Pennsylvania, Case Western University, and University Hospitals of Cleveland.

Example 14.4.5 The Holden-Able Case

A trial was conducted by the Case Western University and the University Hospitals of
Cleveland to investigate the metabolism of the amino acids methionine and homocyteine in
subjects with Alzheimer’s disease and age-matched healthy controls. Methionine is sold
over the counter as a nutritional supplement. On April 4, 2001, several hours of drinking 
a mixture of methionine and orange juice, Holden-Able, a 70-year-old matched healthy
control subject in the trial became critical ill. Unfortunately, she died on May 6, 2001. The
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internal investigation cannot rule out the possibility of an overdose of methionine. This
example demonstrates the hidden risk in clinical trials even though the investigational
product is a nutritional supplement that can be bought over the counter without prescrip-
tion and the subject is a normal healthy volunteer.

Example 14.4.6 The Gene Therapy Case

The other example is the death of 18-year-old Jesse Gelsinger in a gene-transfer trial at the
University of Pennsylvania for a genetically altered virus to treat an inherited liver disease
(Shalala, 2000). An inspection by the U.S. FDA found the following problems in conduct
and execution of the trial protocol in informed consent, patient exclusion criteria, trial stop-
ping rule, protocol changes, and reporting adverse events. An investigation by the NIH
Recombinant DNA advisory committee revealed that reporting unexpected and serious
adverse events had been one of the most important protocol violations in gene therapy trials
sponsored by the U.S. NIH. Before the death of Jesse Gelsinger, only 39 adverse events
from gene therapy trials were reported. However, after his death, the number of reporting
adverse events to the NIH Recombinant DNA advisory committee jumped to 652, a 17-fold
increase. Although gene therapy is a pioneering and advanced treatment that provides real
hope for some patients with previously incurable disease, principles and methodology for
evaluation of efficacy and safety of gene therapy are as old as those first applied by Britain’s
Medical Research Council some 70 years ago.

Example 14.4.7 The Ellen Roche Case

The final example of negligence and failure of the investigator to notice and report unex-
pected and serious adverse events in clinical trials is the death of 24-year-old Ellen Roche.
As a normal healthy volunteer and the third subject, Ellen Roche participated in a clinical
trial entitled Mechanisms of Deep Inspiration-Induced Airway Relaxation at Johns Hopkins
Asthma and Allergy Center. In this trial, hexamethonium was selected to investigate the
mechanism of airway hyperresponsiveness. Hexamethonium was used to treat hypertension
but was withdrawn from the U.S. market in 1972 because of ineffectiveness found by the
U.S. FDA. Therefore, inhalation of hexamethonium at the time of the trial was in fact an
experimental use of a non-FDA–approved drug, for which an IND should be submitted to
the U.S. FDA. However, Dr. Alkis Togias, the principal investigator of the study, failed to do
so. In addition, the first subject after receiving the treatment developed shortness of breath
and a cough. Again, Dr. Togias did not immediately report the adverse events to the IRB.
The second subject received the treatment while the first subject still had symptoms. But
this subject did not develop any adverse event. However, on May 5, 2001, one day after Ms.
Roche inhaled about 1 g of hexamethonium, she developed a cough. She was hospitalized
on May 9 and died on June 2, 2001. On the same day that Ms. Roche was hospitalized, Dr.
Togias found out that hexamethonium can have pulmonary toxic effects. A Johns Hopkins
University internal investigation criticized Dr. Togias for failure to expedite reporting of the
adverse event in the first subject, for failure to conduct a thorough search for previous report
on pulmonary toxic effect of hexamethonium, and for failure not to delay the treatment of
the next subject until the adverse events of the first subject had resolved and proper actions
could be taken to protect the subsequent subjects. These examples demonstrate how impor-
tant it is to follow the protocol and to report any suspected, unexpected, and serious adverse
experiences and to amend the protocol to protect the trial subjects if necessary.

c14.qxd  27.10.03  14:18  Page 616



MONITORING, AUDIT, AND INSPECTION 617

14.5 MONITORING, AUDIT, AND INSPECTION

The examples given in Section 14.4 clearly demonstrate that a full compliance of a clinical
trial protocol is not only critical for scientific validity of the study results but also crucial
for protection of human subjects who are willing to serve as experimental units in the trial.
All parties involved in clinical trials, including sponsors, investigators, medical institu-
tions, and trial subjects, should make sure that the conduct of the trial is in compliance with
the approved protocol. Depending on intensity, frequency, and independence, monitoring,
auditing, and inspection are performed to achieve this goal. What follows, based on the
ICH E6 guideline, Good Clinical Practice: Consolidated Guidance (ICH, 1996), provides
an introduction to the concepts, principles, and procedures regarding monitoring, auditing,
and inspection of a clinical trial sponsored by a pharmaceutical company. Although they
are covered from a viewpoint of the pharmaceutical industry, the following discussions can
be also applied to any trials sponsored by parties other than drug companies.

According to the ICH E6 GCP guideline (ICH, 1996), monitoring of a clinical trial is
defined as the act of overseeing the progress of a clinical trial, and of ensuring that is con-
ducted, recorded, and reported in accordance with the protocol, standard operating procedures
(SOPs), Good Clinical Practice, and applicable regulatory requirement(s). From this defini-
tion, the objectives of trial monitoring include the following:

• To confirm that the right and well-being of human subjects are protected

• To confirm that the conduct of the trial is in compliance with the current approved
protocol/amendment(s), with GCP, and with applicable regulatory requirement(s)

• To verify that the reported trial data are accurate, complete, and verifiable from source
documents

The most crucial document for a successful trial monitoring is a comprehensive and well-
written standard operating procedure on trial monitoring by the sponsor and a carefully
thought out monitoring plan prepared for each particular trial. Based on the objectives,
design, complexity, blinding, sample size, and endpoints of the trial, the monitoring plan
should describe the extent and nature of monitoring based on the guidelines given in the
SOP. In general, on-site monitoring before, during, and after the trial is always necessary.
Although each monitoring visit to the site is equally important, the initiation visit before the
start of the trial and the close-out monitoring visit after the completion of the trial are most
crucial monitoring visits. In addition, monitoring is usually more frequent in the beginning
of the trial due to the trial issues arising based on the fact that investigators and their staff,
patients, and even the sponsors are not familiar with the protocol.

The key personnel to the success of trial monitoring are the trial monitors from the spon-
sor. A trial monitor must be appropriately trained and should have scientific and/or clinical
knowledge to adequately monitor the trial. Most importantly, a trial monitor should be
familiar with the investigational products, the protocol, written informed consent form and
any other written information to be provided to the trial subjects, the sponsor’s SOPs, GCP,
and applicable regulatory requirement(s). The monitor’s responsibilities as defined in the
ICH E6 GCP guideline include the following:

• Serving as the main line of communication between the sponsor and the investigator

• Confirming that the investigator has adequate qualifications and resources throughout
the entire duration of the trial
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• Verifying that the investigational product(s) are properly stored; are dispensed only to
the eligible patients with adequate documentation; and their receipt, use, and return
are controlled and properly documented; and that the disposition of unused investiga-
tional product(s) is in compliance with regulatory requirement(s) and the sponsor’s
authorized procedures

• Confirming that the investigator follows the approved protocol and approved amendment

• Verifying that written informed consent form was obtained before each subject’s par-
ticipation in the trial

• Ensuring that the investigator receives all documents relevant to the trial and the
investigational product(s) that are necessary to conduct the trial and to comply with
regulatory requirement(s)

• Ensuring that the investigator and the trial staff are adequately informed about the trial

• Confirming that the investigator is enrolling only eligible subjects

• Monitoring the subject recruitment rate

• Verifying that source data/documents and other trial records are accurate, complete,
and keep up-to-date

• Confirming that the investigator provides all the required reports, notifications, appli-
cations, and submission that can identify the trial and trial subjects

• Checking the accuracy and completeness of the entries on Case Report Forms (CRF),
source data/documents, and other trial-related records against each other to avoid any
alteration, falsification and fabrication of the data

• Informing the investigator of any CRF entry error, omission, or illegibility

• Determining whether all adverse events are appropriately reported within the time
period required by GCP, the IRB, the sponsor, and the regulatory requirement(s)

• Determining whether the investigator is maintaining the essential documents

• Communicating deviations from the protocol, SOPs, GCP, and the applicable regula-
tory requirements to the investigator and taking appropriate action designed to prevent
recurrence of the detected deviations

The trial monitor should prepare and submit a written report to the sponsor after each on-
site visit or any trial-related communication such as phone contact with the investigator.
The monitoring report should include the date, site, name of the monitor, name of the
investigator, and names of other personnel contacted. The content of a trial monitoring
report usually contains a summary of what the monitor reviewed and the statements
regarding the significant findings/facts, deviations, deficiency, conclusions, actions taken
or to be taken, and/or actions recommended for compliance.

Monitoring is a key function for execution of a trial protocol. Monitors are in fact mem-
bers of the sponsor’s project team and are actively involved with the conduct of the trial.
Therefore, the sponsor of the trial usually conducts a second-tier, independent audit by
someone not involved with the trial to evaluate performance of monitors and conduct of the
trial. The ICH E6 GCP guideline defines an audit as a systematic and independent examina-
tion of trial-related activities and documents to determine whether the evaluated trial-related
activities were conducted, and the data were recorded, analyzed, and accurately reported
according to the protocol, sponsor’s SOPs, GCP, and the applicable regulatory require-
ment(s). In general, there are two types of audits. The first type are the routine audits that are
conducted periodically during the trial. The other type are the direct audits that are usually
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performed when information of serious deficiency or noncompliance of the protocol in trial
conduct has been received.

Auditors appointed by the sponsor should be qualified by training and experience to
conduct audits properly and should be independent of the clinical trial and any related data
collection system. The sponsor should establish an independent auditing system based on
the written SOPs, which specify what to audit, how to audit, the frequency of audit, and
format and content of the audit reports. Then, an audit plan and procedures for a particular
trial should be prepared in accordance with the SOPs and should be included in the sub-
mission along with sample size of the trial, the type and complexity of the trial, the level of
risks to the trial subjects, and any identified issues. The audit reports should document any
observations and findings by auditors.

Both monitoring and audits are conducted by the sponsor of the trial to ensure that the trial
is conducted, recorded, and reported in full compliance with the approved protocol and its
amendment(s), the sponsor’s standard operating procedures, GCP, and any applicable regula-
tory requirement(s). Most monitoring and audits are performed before completion of the
trial. On the other hand, regulatory authorities usually conduct inspections after conclusion
of the trial. The purpose of the inspection is to ensure that the claims by the sponsor are valid
and are derived from the data that are accurate, complete, and verifiable from the trial con-
ducted in accordance of the approved protocol, SOPs, GCP, and regulatory requirements.
The ICH E6 GCP guideline defines inspection as the act by a regulatory authority of con-
ducting an official review of documents, facilities, records, and any other resources that are
deemed by the authority to be related to the clinical trial and that may be located at the site of
the trial, at the sponsor’s and/or contract research organization’s (CRO) facilities, or at other
establishments deemed appropriate by the regulatory authority. Although inspections are
usually conducted after completion of the trial, regulatory authorities do perform inspection
during progress of the trial when serious violations of GCP or misconduct occur. For exam-
ple, the U.S. FDA performed inspections in the Poisson case in Example 14.4.1, in the gene
therapy case in Example 14.4.6, and in the Ellen Roche case in Example 14.4.7.

To improve the conduct and oversight of clinical research and to ensure the protection of
participants in FDA-regulated clinical trials, the U.S. FDA established the Office for Good
Clinical Practice (OGCP) in October 2001. The bioresearch monitoring program in the
OGCP is responsible for inspection of FDA-regulated clinical trials. The purpose of the
FDA’s bioresearch monitoring program is to ensure the protection of research subjects and
the integrity of data submitted to the FDA in support of a marketing application. The FDA’s
bioresearch monitoring program uses the Compliance Program Guidance Manual (CPGM)
to direct the FDA’s field personnel on the conduct of inspectional and investigational activi-
ties. The Compliance Program Guidance Manuals include:

• Clinical Investigators (7348.811)

• Sponsors, Contract Research Organization and Monitors (7348.810)

• Institutional Review Board (7348.809)

• In-vivo Bioequivalence (7348.001)

• Good Laboratory Practice (Non-Clinical Laboratories) (7348.808)

Woollen (2000b) provided a summary of results and major deficiencies found in the
inspections conducted between 1992 and 1999 for clinical investigators, sponsors, contract
organization and monitors, and the institutional review board. As mentioned before, the
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FDA’s inspections are conducted by their field personnel for the trial assigned by the
reviewing center. After inspection, all establishment inspection reports (EIRs), complete
with attachments, exhibits, and any related correspondence, are to be submitted in a timely
fashion to the assigning center. The FDA’s bioresearch monitoring program classifies the
EIRs into the following three categories:

• NAI—No objectionable condition or practices were found during the inspection.

• VAI—Objectionable conditions or practices were found, but no administrative or
regulatory action is recommended.

• OAI—Regulatory and/or administrative actions will be recommended.

In addition, a disqualified/restricted/assurance list for clinical investigators can be found
on the FDA website: http://www.fda.gov/ora/compliance_ref/default.htm.

14.6 QUALITY ASSESSMENT OF A CLINICAL TRIAL

As emphasized many times throughout this book, the fundamental objective of a clinical
trial is to make an unbiased inference with the best possible precision to scientifically
answer the clinical questions with respect to a target patient population. The principles and
methodologies covered and discussed in this book present the necessary tools used in a
clinical trial to achieve this objective. For the same purpose, the ICH E6 GCP guideline is
a set of consolidated guidelines on good clinical practice that provides an international eth-
ical and scientific standard for designing, conducting, recording, and reporting trials that
involve the participation of human subjects. After a trial is completed, a report is usually
written to describe the conduct of the study, any deviation from the protocol, observations
and findings obtained from the trial, and major conclusions of the trial. It follows that
assessment of the quality of a clinical trial can be based on three sources: protocol, conduct
of the study, and the clinical trial report.

As pointed out by Jüni et al. (2001), the quality of a clinical trial is very difficult to define
and it should address the design, conduct, analysis and reporting of a clinical trial, and their
clinical relevance. However, as with any research, the quality of a clinical trial depends on the
validity of its results and conclusion. The validity of a clinical trial can be also classified into
internal and external validity. A clinical trial is said to be internally valid if the differences
observed between the treatment groups, apart from random error, is only due to the treat-
ments under investigation. Internal validity is in fact an unbiased inference. All of the princi-
ples and methods described in this book are to prevent and eliminate possible bias occurring
in design, conduct, analysis, and reporting of a clinical trial. External validity is concerned
about generalizability of the result of the present study to other clinical circumstances,
including different patient populations, modification of treatment regimens, or different
modalities of outcomes. It follows that any quality scale for assessment of a clinical trial
should have the capacity to evaluate both internal and external validity.

A lot of instruments for assessment of quality of a clinical trial have been proposed in lit-
erature. For example, Jüni et al. (2001) indicated that 39 different quality scales were iden-
tified. Most of these instruments are composite indices that combine quality information on
a range of quality components for both internal and external validity into a single numeric
value. Table 14.6.1 provides the quality assessment scale for evaluation of randomized 
controlled clinical trials proposed by Chalmers et al. (1981). This comprehensive quality
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Table 14.6.1 Quality Assessment Scale for Randomized Controlled Clinical Trials 
Proposed by Chalmers et al. (1981)

Checklist Possible Score

Internal Validity
Randomization

Randomization was blind 10
Adequacy was evaluated 3

Blinding
Patients were blinded to treatment group 8
Physicians were blinded to treatment group 8
Patients/physicians are blinded to outcome 4
Statistician was blinded to treatment group 2
Appearance of placebo and active drug was identical 1.5
Taste of placebo and active drug was identical 1.5
Adequacy of blinding was evaluated 3

Patient attrition
Withdrawal and reason for withdrawal were described 3
Withdrawal were handled appropriate

(e.g., intention-to-treat analysis) 4
Statistical Analysis

Statistical analysis was appropriate 4
Multiple looks at preliminary results were accounted for 3

Avoiding random error
Number of subjects needed in trial was estimated as a prior 3

Analysis to assess baseline comparability of groups was done 3
For negative trials, statistical power of observed difference was estimated 3

External Validity
Patients

Description of selection of subjects was adequate 3
Description of patients screened was provided 3

Treatment
Therapeutic regimen was defined 3
Measure of biological activity of the active therapy was made 3
Compliance with treatment was assessed 3

Other Aspects
Additional statistical analyses

Life table or time-series analyses was provided 2
Analysis of subgroup was appropriate 2
If indicated, regression analysis was done 2

Data Presentation
Test statistic and p-value were stated 3
Confidence interval for effect was given 3
All events used as endpoints were tabulated 2
Survival curves or data sufficient to construct survival curves were provided 4

Organizational Aspects
Starting and stopping dates of accession were provided 2

Side Effects
Side effects were described and statistical analysis of them was done 3

Source: Chalmers et al. (1981) and Jüni et al. (2001).
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instrument includes components on internal validity, external validity, and other trial
aspects. For internal validity, it evaluates randomization, blinding, patient attrition, statisti-
cal analyses, and reduction of random error. Evaluation of external validity includes inclu-
sion and exclusion criteria, treatments, and compliance of treatments. Other aspects consist
of additional statistical analyses, data presentation, organization of the trial, and analysis of
adverse events. Depending on relative importance, different points are given to each of the
30 items on the checklist and the total score is 100. A higher score indicates a better quality.

Another widely used scale for quality assessment of a clinical trial is the instrument pro-
posed by Jadad et al. (1996). Contrary to the Chalmer’s index, as shown in Table 14.6.2, the
Jadad’s index only addresses internal validity. The Jadad’s index includes two questions for
randomization, two questions for blinding, and one question for patient attrition. If the
answer for each question is a yes, the score for that question is 1. It follows that the total
score of the Jadad’s index is 5. However, both indices as well as other composite scales
suffer the same drawback. The use of the total score has a masking effect, which makes
composite indices difficult to interpret. For example, two trials with equal total score based
on the Chalmer’s index may have totally different deficiencies in quality of the trials.

Because most clinical trials sponsored by the pharmaceutical industry are to be submitted
to regulatory authorities for market applications, the quality of registration trials receives
tight and close scrutiny by both the sponsor and the regulatory authorities. For example, the
protocol of a registration trial must be undergone through internal review within the sponsor
and external review by the IRB of medical institutions where it will be conducted. However,
the trial cannot start until the regulatory authorities approve the protocol. The purpose of
internal and external reviews is to make sure that appropriate procedures are specified in the
protocol to protect the trial subjects and that adequate methodologies are planned in the pro-
tocol to achieve internal and external validity of the trial. During the progress of the trial,
intensive monitoring and periodic audit by the sponsor are performed to ensure that the trial
is conducted and recorded in accordance with the approved protocol, SOPs, GCP, and any
applicable regulatory requirements. After the trial is completed, the regulatory authority may
conduct inspections to examine whether the trial subjects are protected and the data gener-
ated are credible in support for a market application. Monitoring, auditing, and inspection
verify that the procedures for protection of trial subjects and methodologies for internal and
external validity are executed during the conduct of the trial as those specified in the protocol.

Table 14.6.2 Quality Assessment Scale for Randomized Controlled Clinical Trials 
Proposed by Jadad et al. (1996)

Checklist Possible Points

Randomization
Described as randomized? 1
Allocation sequence appropriately generated? 1

Blinding
Described as double blind? 1
Control treatment (e.g., placebo) described as indistinguishable? 1

Patient withdrawal
Withdrawal described for each group (including the number of patients 

lost or excluded, along with the reasons)? 1

Source: Jadad et al. (1996) and Jüni et al. (2001).
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Finally, a clinical study report is written according to either the U.S. FDA guideline for the
Format and Content of the Clinical and Statistical Section of New Drug Application (FDA,
1988) or the ICH E3 guideline for Structure and Content of Clinical Study Reports (ICH,
1996). A clinical study report documents the following:

• What had been planned in the protocol?

• What had been conducted for the trial?

• What are the deviations from the protocol and their impacts?

• What are the findings, results of analyses, and conclusions?

Some regulatory authorities such as the U.S. FDA also ask the sponsors to submit patient-
level raw data of clinical trials such that the U.S. FDA reviewers can verify the results of
the analyses performed by the sponsors and perform their own analyses to further confirm
the validity of the claims made by the sponsor and to uncover any critical issues that are
not addressed by the sponsor. In summary, assessment of the quality of the clinical trials
should cover an entire spectrum, from the protocol, to the conduct of the trial, to the study
report.

On the other hand, unlike registration trials, in general, the study reports of the academic
clinical trials and relevant raw data are not required to submit to regulatory authorities.
However, the results and important findings of academic trials are published in peer-
reviewed biomedical journals. Referees and editors of most of the biomedical journals
rarely can find the sufficient resources and time that the U.S. FDA reviewers have to review
huge volumes of study reports and to perform their own analyses based on patient-level raw
data, even though the authors of the clinical trials are willing to submit them. They, hence,
have to evaluate quality of clinical trials based on the summarized information of trials from
manuscripts submitted to the journals. In 1996, the Consolidated Standards for Reporting of
Trials (CONSORT) Group developed the CONSORT statement as an evidence-approach to
assisting improvement of the quality of reports of randomized controlled trials (Begg et al.,
1996; Rennie, 1996).

Moher et al. (2001) report the results of a study to investigate whether use of the 
CONSORT statement is associated with improvement of the quality of reports of random-
ized controlled trials. They used the papers published in 1994 from the British Medical
Journal (BMJ), the Lancet, and the Journal of the American Medical Association (JAMA)
as the pre-CONSORT baseline and performed a comparative before-and-after evaluation
for the papers (post-CONSORT) published in the same journals. They also included the
papers published in the same years by the New England Journal of Medicine as a control
that did not adopt the CONSORT statement. They found that the number of CONSORT
checklist items in papers of randomized controlled trials increased in all four journals in
1998. In addition, an increase of the three journals (BMJ, the Lancet, and JAMA) adopting
the CONSORT statement was statistically significant. Furthermore, based on the Jadad’s
index, a statistical significant improvement in the quality score of randomized controlled
trials was found in these three journals. Based on the 1996 CONSORT statement, Huwiler-
Münterner et al. (2002) used 25 items from the 1996 CONSORT statement as a measure of
methodologic quality for clinical trials. These 25 items are given in Table 14.6.3. Papers
from placebo-controlled trials published in English-language journals from 1985 to 1997
were used to examine the relationship between reporting quality and methodologic quality
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by Huwiler-Münterner et al. (2002). They found that similar quality of reporting might
hide important differences in methodologic quality. For example, the median scores on
reporting quality of 33 trials using intention-to-treat analysis is 15.0, whereas it is 14.5 for
14 trials using on-treatment analysis (p-value � 0.67). Therefore, they conclude that a
well-conducted trial may be reported badly and a clear distinction should be made between
conduct and reporting in assessment of quality of clinical trials. Also see Devereaux et al.
(2002) for a relationship between adherence of the CONSORT statement and the method-
ological factors in randomized controlled trials.

To overcome these shortcomings, the CONSORT group published its revised recom-
mendations in improving the quality of reports of parallel group trials in April 2001
(Moher et al., 2001), which is given in Table 14.6.4. However, the CONSORT statement is
still a measure for assessment of the quality of reporting a clinical trial and it is not for
evaluating the quality of a clinical trial. A well-designed, well-conducted but poorly writ-
ten report trial may not score high on the CONSORT statement. On the other hand, a
biased, a poorly conducted but well reported trial may receive full credit in the quality
score for reporting of trials. One should note that in addition to reporting, evaluation of the

Table 14.6.3 Twenty five (25) Items from the 1996 CONSORT for Evaluation 
of Methodological Quality

1. Does the title identify the study as a randomized controlled trial?
2. Is the structural presented in a structured format?
3. Are the objectives stated?
4. Is the hypothesis stated?
5. Is the study population described?
6. Are inclusion and exclusion criteria described?
7. Are the intervention described?
8. Are the outcome measures described?
9. Is a primary outcome specified?

10. Is a minimum important different for the primary outcome reported?
11. Are power calculation described?
12. Is the rationale for the statistical analyses explained?
13. Are the method for statistical analyses described?
14. Are stopping rule described?
15. Is the unit of randomization described?
16. Is the method used to generate the allocation schedule described?
17. Is the timing of assignment described?
18. Is the number of eligible patients reported?
19. Are prognostic variables by treatment and control group described?
20. Is the number of receiving intervention as allocated reported for each comparison group?
21. Are withdrawals and dropouts described for each treatment group?
22. Are protocol deviations described for each comparison group?
23. Is the estimated effect of the intervention on primary and secondary outcomes stated, including

a point estimate and measure of precision (confidence interval)?
24. Are the results stated in absolute numbers?
25. Are summary data and inferential statistics presented in sufficient detail to permit alternative

analyses and replication?

Source: Huwiler-Münterner et al. (2002).
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Table 14.6.4 The CONSORT Checklist

Checklist Descriptor

Title and Abstract How participants were allocated to intervention?
Introduction (Background) Scientific background and explanation of rationale
Methods

Participants Eligibility criteria for participants and the setting and locations
where the data were collected

Interventions Precise details of the interventions intended for each group and how 
and when they were actually administrated

Objectives Specify objectives and hypotheses
Outcomes Clearly defined primary and secondary outcomes and, when

applicable, any methods used to enhance the
quality of measurement

Sample Sizes How sample size was determined and, when applicable explanation 
of any interim analyses and stopping rule

Randomization
Sequence Generation Method used to generate the random allocation sequence, including 

details of any restriction (e.g., blocking, stratification)
Allocation Concealment Method used to implement the random allocation, clarifying whether

the sequence was concealed until intervention was assigned
Implementation Who generated the allocation sequence, who enrolled participants,

and who assigned participants to their groups
Blinding Whether or not participants, those administrating the interventions, and 

those assessing the outcomes were blinded to group assignment, if 
done, how the success of blinding was evaluated

Statistical Methods Statistical methods used to compare groups for primary outcome(s); 
methods for additional anayses, such as subgroup analysis and 
adjusted analyses

Results
Participant flow Flow of participants through each stage (a diagram is strongly recom

mended). Specifically, for each group report the number of partici
pants randomly assigned, receiving intended treatment, completing
the study protocol, and analyzed for the primary outcomes. Describe 
protocol deviations from study as planned, together with reasons

Recruitment Dates defining the periods of recruitment and follow-up
Baseline Data Baseline demographics and clinical characteristics
Number Analyzed Number of participants (denominator) in each group Included in each 

analysis and whether the analysis was by “intention-to-treat”. State 
the results in absolute numbers when feasible (e.g., 10/20, not 50%)

Outcome and estimation For each primary and secondary outcome, a summary of results for 
each group, and estimated effect size and its precision (e.g., 95% 
confidence interval)

Ancillary analyses Address multiplicity by reporting any other analyses performed,
including subgroup analyses and adjusted analyses, indicating 
those prespecified and those exploratory

Adverse events All important adverse events or side effects in each intervention group
Comment
Interpretation Interpretation of the results, taking into account study hypotheses,

sources of potential bias or imprecision, and the dangers 
associated with multiplicity of analyses and outcomes

Generalizability Generalizability (external validity) of the findings
Overall Evidence General interpretation of the results in the context of current evidence

Source: Moher et al. (2001).
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quality of clinical trials include design, conduct, and analysis. Furthermore, we also
believe that protection of the human subject be on the top of checklist for any instrument
measuring the quality of clinical trials.

14.7 DISCUSSION

Clinical trials are scientific/biomedical experimentation for which human subjects are
experimental units. The top priority for any clinical study is to protect the subjects who are
willing to sacrifice themselves for advancement of science and medicine. The keys for
elimination of unnecessary exposure of trial subjects to investigational intervention are 
(1) ethically justifiable and scientifically sound objectives and (2) a sufficient sample size
to reach a valid and definitive conclusion. As indicated before, the study objectives are the
most difficult task for any clinical trial. It must be based on the fundamental uncertainty
principle (Peto and Baigent, 1998). A trial is considered only if there is substantial uncer-
tainty about treatment effects given the assumptions that all treatments in the trial provide
clinically meaningful benefits to patients. For example, an equivalence/noninferiority trial
is conducted to test the hypothesis of whether the efficacy of the test treatment is equivalent
or noninferior to the control given that the test treatment provides other benefits to the
patients, such as a better safety profile, an easy administration route, or an improvement of
quality of life. If a treatment was known to be better or do substantial harm, then the trial
would not be justified. For example, it is unethical and unscientific to conduct a prospec-
tive randomized trial to verify that smoking can cause lung cancer. On the other hand, it is
probably appropriate to conduct a randomized clinical trial to test the effectiveness of 
a school-based smoking prevention program.

Once ethically justifiable and clinically sound objectives are formulated, then the trial
should have a sufficient number of patients such that a conclusion with respect to the
trial objectives can be reached with a high level of confidence. Any underpowered trial
not only fails to provide a concrete conclusion from the trial but also exposes trial sub-
jects to the potential risks and harms caused by the treatments in the study. Therefore,
the contributions of trial subjects are totally wasted. To plan and conduct an underpow-
ered study is unethical too, and one should never perform a trial with inadequate power.
Halpern et al. (2002) pointed out that underpowered clinical trials are ethical in only two
situations:

• They are for rare diseases with a prospective plan for meta-analysis with the results
with those of similar trials

• They are early phase trials in drug development, and they are adequately powered for
defined purposes other than randomized treatment comparisons, such as the use of
Simon’s two-stage design for screening efficacy of cancer drugs

Given that the objectives are ethical and scientific and a sufficient sample size was used to
provide an adequate power for the study, all principles and methodologies such as random-
ization, blinding, and use of appropriate control covered in this book are planned in the pro-
tocol to achieve internal validity. If the trial is conducted, recorded, analyzed, and reported
in full compliance with the protocol, then an unbiased inference with respect to the trial can
be made to the target patient population described in the protocol. However, 100% of accor-
dance with the protocol rarely occurs. Therefore, the inference drawn from the trial may be
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biased. The severity of the bias is a function of departures from the protocol. On the other
hand, if the methods for avoiding bias are not planned in the protocol, even though the pro-
tocol is fully implemented, a biased inference is still obtained from the trial. The trial proto-
col determines the validity and quality that the trial can achieve. The conduct, analysis, and
reporting are the processes to achieve the validity and quality defined by the protocol.
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15
CLINICAL DATA MANAGEMENT

15.1 INTRODUCTION

Madision and Plaunt (2003) define clinical data management (CDM) as the process of col-
lecting and validating clinical information with the goal of converting it into an electronic
format to answer research questions and to preserve it for future scientific investigation.
CDM is an integral part of the clinical trial process, which ensures the validity, quality, and
integrity of data collected from trial subjects to a database system. CDM delivers a clean
and high-quality database for statistical analysis and consequently enables clinical scien-
tists to draw conclusions regarding the effectiveness, safety, and clinical benefit / risk of the
drug product under investigation. An invalid and/or poor quality database may result in
wrong and/or misleading conclusions regarding the drug product under investigation.
Thus, the objective of the CDM process in clinical trials is not only to capture the informa-
tion that the intended clinical trials are designed to capture, but also to ensure the validity,
quality, and integrity of the collected data. In general, the CDM process includes (1) case
report form (CRF) development; (2) database development and validation; (3) data entry,
query, and correction; (4) data quality assurance; and (5) data lock, archive, and transfer.
Figure 15.1.1 provides an example of biostatistics and CDM process that is commonly
adopted by most pharmaceutical companies in clinical trials.

In clinical trials, it is not uncommon to encounter the following obstacles in the CDM
process. First, the CDM process fails to collect useful information for addressing the 
scientific/clinical questions that the clinical trial intends to answer. Second, the CDM pro-
cess may collect information that is irrelevant to the study objectives of the clinical trials.
In addition, the quality of the collected data may be poor with missing values and/or incon-
sistencies across case report forms and/or study sites. As a result, the integrity of the clinical

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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trial is doubtful and the accuracy and reliability of the clinical data collected from 
the clinical trial is questionable. Consequently, the conclusions drawn from the analysis of
the clinical data may not be accurate and reliable and hence misleading. To overcome these
obstacles, the implementation of good data management practice (GDMP) is necessary.
GDMP is a set of standards/procedures for assurance of the validity, quality, and integrity
of clinical data collected from trial subjects to a database system. Although there are no 

Figure 15.1.1 Sample biostatistics and clinical data management process.
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harmonized GDMP regulations and/or gudiances/guidelines on CDM of clinical data for
clinical trials, the requirements of GDMP have been inherently stated in FDA regulations
(e.g., Code of Federal Regulations) and guidances and ICH guidelines. In the pharmaceu-
tical industry, a set of standard operating procedures (SOPs), which describe the functions
and individual responsibilities at various stages of the CDM process, are usually developed
and implemented for compliance of GDMP.

The remaining of this chapter is organized as follows. In the next section, regulations and
guidances/guidelines regarding CDM are described. Section 15.3 discusses the develop-
ment of a case report form (CRF), including CRF design, review, flow, and tracking. Section
15.4 describes procedures for database development and validation. Procedures for data
double entry, query, and correction are described in Section 15.5. Issues regarding data val-
idation and data quality are presented in Section 15.6. Section 15.7 discusses practical
issues in database lock, archive, and transfer. A brief discussion is given in the last section.

15.2 REGULATORY REQUIREMENTS

As indicated earlier, GDMP is the key to the success of good statistics practice (GSP), which
in turn is the foundation of good clinical practice (GCP). However, there are no harmonized
GDMP guidelines on data management of clinical data for clinical trials. The requirements of
GDMP can be seen in regulations and/or guidances/guidelines set forth by regulatory agen-
cies such as the Code of Federal Regulations (CFR), FDA guidances for industry, and ICH
guidelines. As pointed out by Madison and Plaunt (2003), the most relevant regulations and
guidances/guidelines regarding CDM process include (1) 21 CFR Part 11—Electronic Rec-
ords, Electronic Signatures (FDA, 1997b, 2003b), (2) 21 CFR Part 312—Investigational New
Drug Application, (3) 21 CFR Part 314—Applications for Food and Drug Administration
Approval to Market a New Drug, (4) FDA guidance on Bioresearch Monitoring—Compliance
Program Guidance Manual (FDA, 2001b), (5) FDA Guidance for Industry—Computerized
System Used in Clinical Trials (FDA, 1999), and (6) ICH E6 guideline—Consolidated Guide-
line for Good Clinical Practice (ICH, 1997). In what follows, the purpose and scope of each
of these relevant regulations or guidances/guidelines that directly address CDM are described.

21 CFR Part 11—Electronic Records, Electronic Signatures

21 CFR Part 11 describes the criteria under which the FDA will consider electronic records
and signatures to be generally equivalent to paper records and handwritten signatures. It
applies to any records required by the FDA or submitted to the FDA under agency regula-
tions. To reinforce Part 11 compliance, FDA has published a compliance policy guide—
CPG 7153.17, Enforcement Policy: 21 CFR Part 11 Electronic Records, Electronic
Signatures. In addition, the FDA also published numerous draft guidance documents to
assist the sponsors for Part 11 compliance. These draft guidance documents include 
(1) Guidance for industry, 21 CFR Part 11; Electronic Records; Electronic Signatures Val-
idation, (2) Guidance for industry, 21 CFR Part 11; Electronic Records; Electronic Signa-
tures Glossary of Terms, (3) Guidance for industry, 21 CFR Part 11; Electronic Records;
Electronic Signatures Time Stamps, (4) Guidance for industry, 21 CFR Part 11; Electronic
Records; Electronic Signatures Maintenance of Electronic Records, and (5) Guidance for
industry, 21 CFR Part 11; Electronic Records; Electronic Signatures Electronic Copies of
Electronic Records.
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21 Part 11 has a significant impact on the CDM process, which has recently become the
focus for GDMP in compliance with GSP/GCP. For example, 21 CFR Part 11 requires that
procedures regarding creation, modification, maintenance, and transmission of records
must be in place to ensure the authenticity and integrity of the records. In addition, the
adopted systems must ensure that electronic records are accurately and reliably retained.
21 CFR Part 11 has specific requirements for audit trail systems to discern invalid or
altered records. For electronic signatures, they must be linked to their respective electronic
records to ensure that signatures cannot be transferred to falsify an electronic record. The
FDA requires that systems must have the ability to generate documentation suitable for
FDA inspection to verify that the requirements set forth by the 21 CFR Part 11 are met. In
recent years, the compliance of 21 CFR Part 11 has become the focus of the pharmaceuti-
cal industry. Because a large portion of 21 CFR Part 11 has direct relevance to CDM, CDM
has usually been identified as the top priority in the plan for 21 CFR Part 11 compliance. A
typical plan for 21 CFR Part 11 compliance for CDM process usually includes gap assess-
ment, user requirements specification, validation master plan, and tactical implementation
plan. The task is implemented through a team consisting of senior experienced personnel
from multiple disciplinary areas such as information technology (IT), programming, and
data managers.

It should be noted that in its recent draft guidance, the FDA withdrew the draft guidance for
industry 21 CFR Part 11, including Electronic Records, Electronic Signatures, and Electronic
Copies of Electronic Records, due to the concern that some interpretations of the Part 11
requirements would (1) unnecessarily restrict the use of electronic technology in a manner that
is inconsistent with the FDA’s stated intent in issuing the rule, (2) significantly increase the
costs of compliance to an extent that was not contemplated at the time the rule was drafted,
and (3) discourage innovation and technological advances without providing a significant pub-
lic health benefit (FDA, 2003a). As stated in the 2003 draft guidance, there is a narrow inter-
pretation of scope. Under this narrow interpretation of the scope of Part 11, with respect to
records required to be maintained or submitted, when persons choose to use records in elec-
tronic format in place of paper format, Part 11 would apply. Under this consideration, the FDA
considers Part 11 to be applicable to the following records or signatures in electronic format.
They are (1) records that are required to be maintained by predicate rules and that are main-
tained in electronic format in place of paper format; (2) records that are required to be main-
tained by predicate rules, are maintained in electronic format in addition to paper format, and
are relied on to perform regulated activities; (3) records submitted to the FDA, under the pred-
icate rules, in electronic format; and (4) electronic signatures that are intended to be the equiv-
alent to handwritten signatures, initials, and other general signings required by predicate rules.
The FDA intends to exercise enforcement discretion regarding the specific Part 11 require-
ments for validation, audit trail, legacy systems, copies of records, and record retention.

21 CFR Parts 312 and 314

As indicated earlier, 21 CFR Parts 312 and 314 contain regulations for submitting an investi-
gational new drug application (IND) and a new drug application (NDA) or an abbreviated
new drug application (ANDA). Both regulations have direct relevance to CDM, especially
the handling of case record form (CRF). Specifically, Part 312.63 (b) covers requirements for
investigator’s record-keeping and record retention. The investigators are required to keep
adequate case histories that record all data pertinent to the investigation on each individual
administered an investigational drug or used as a control in the investigation. On the other
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hand, Parts 314.50 (f ) (1) and (f ) (2) pertain to the inclusion of CRFs and tabulations in an
application. The FDA requires that full case report tabulations from each adequate and well-
controlled study (phases 2 and 3 studies) and from clinical pharmacology studies (phase 1
studies). Safety data tabulations are required from other clinical studies. These regulations
have a direct impact on the CDM process.

FDA Guidance on Bioresearch Monitoring—Compliance Program Guidance
Manual

The Bioresearch Monitoring guidance provides specific instructions to sponsors, clinical
investigators, laboratories, and institutional review boards regarding FDA inspection for
compliance of requirements set forth to ensure the quality and integrity of clinical data
submitted to the FDA. This guidance provides specific instructions for FDA inspections on
data collection and handling, including the review of data tabulations for each subject, the
review of the sponsor’s and/or contract research organization’s (CRO) data collection, and
the handling of SOPs. This guidance also covers requirements for automated entry of clin-
ical data in compliance with 21 CFR Part 11 described earlier. As a result, this guidance
also has a direct impact on the CDM process. In particular, program 7348.810 of the guid-
ance is directly applicable to the CDM process.

FDA Guidance for Industry—Computerized System Used in Clinical Trials

This guidance provides general principles that are to be followed when computerized sys-
tems are used to create, modify, maintain, archive, retrieve, or transmit clinical data intended
for submission to the agency. Although the primary focus of this guidance is computerized
systems used at clinical sites for data collection, it can be applied to sponsors and CROs. It
should be noted that this guidance addresses requirements similar to those described in 21
CFR Part 11 for electronic records and electronic signatures.

ICH E6 Guideline—Consolidated Guideline for Good Clinical Practice

ICH E6 Guidelines for Good Clinical Practice sets forth a tripartite standard for the con-
duct of clinical trials among the United States, European Union, and Japan. It covers
preparation, monitoring, reporting, and archiving of clinical trials. The ICH E6 guideline
indicates that quality control should be applied to each stage of data handling to ensure that
all data are reliable and have been processed correctly. In addition, any changes or correc-
tions to a CRF should be dated, initialed, and explained (if necessary) and should not
obscure the original entry. This applies to both written and electronic changes or correc-
tions. In any way, an audit trail should be maintained. The ICH E6 guideline suggests that
certain quality control procedures should be employed during data management pro-
cessing and the procedures should be available for audit.

Most recently, a committee of the Society for Clinical Data Management (SCDM)
proposed a draft good clinical data management practice (SCDM, 2000). The draft proposal
provides comprehensive details regarding GDMP. Fong (2001) indicated that GDMP refers
to the compliance with ICH, GCP and FDA guidelines on CDM for clinical trials. Fong
(2001) identified the three most important concepts for GDMP as (1) the implementation of
quality control procedures, (2) an audit trail, and (3) quality quantification of the final
database.
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15.3 DEVELOPMENT OF CASE REPORT FORMS

The CDM process begins with the development of case report form (CRF), which takes
place at an early stage of protocol development. The CRF should be designed to capture
correct information in an effective way. The CRF process includes procedures for handling
CRFs and CRF flow and tracking, which is an important factor for the success of the CDM
process. In what follows, issues in CRF development, procedures for handling CRF flow,
and the CRF tracking system will be briefly outlined.

CRF Design

The CRF is the most commonly used data collection instrument or tool in clinical trials.
The design of CRFs for a given clinical trial requires collaboration of personnel from the
clinical, data management, statistical, and programming areas. Madison and Plaunt (2003)
recommended that the following principles be considered when designing CRFs for an
intended clinical trial: (1) The CRF should be designed to capture all data required per the
study protocol, (2) the CRF should be designed to collect data elements in standardized
format, (3) data elements should be captured on the CRF in a fashion that ensures that data
are suitable for summarization and analysis, (4) data elements planned to be transcribed to
the CRF from source documents should be organized and formatted on the CRF to reduce
the possibility of transcription error and to facilitate subsequent comparison to source doc-
uments, (5) ease of completion for the investigator and study coordinator is key to accurate
and timely CRF completion, and (6) redundant data elements within the CRF should be
avoided and unnecessary data should not be collected. It is essential that all and only the
necessary data be collected. CRF should be designed in a way that promotes simple data-
base design, data capturing, and data validation. A typical approach for development of
CRF is the so-called backwards approach. The backwards approach to CRF design starts
with assessing the type and format in which information will be presented in the study
report. Information is then tracked backwards, and the CRF is designed to capture data in
a manner that allows them to be easily converted or directly placed in the designed tables
or figures (Spilker, 1991). This approach requires the input of the trial/project statisti-
cian/programmers and ensures that the CRF design meets the requirements of the users of
the database.

As pointed out by Grobler et al. (2001), the trial/project statistician/programmer should
be involved in the development of CRF design by providing the following input: (1) Find
the best balance between effective data collection and structuring the CRF to facilitate data
entry, (2) design a CRF in such a way that the resulting datasets would be programmable
with the least amount of data manipulation, (3) collect the minimum amount of necessary
data, (4) data should be collected in a manner that facilitates data analysis, (5) calculated
data should not be recorded in the CRF, but all data needed to perform the calculation
should be included in the CRF, and (6) multiple clinical trials conducted for one submis-
sion should have consistent databases. During the development of CRF, it is essential to
discuss the developed CRF with the relevant personnel who will be involved in the process
after data have been collected. In practice, it would be beneficial if the statistician is con-
sulted and given the chance to review a CRF regardless of whether the statistician is
responsible for the design of a CRF. Data manager and statistician/programmer should
have an opportunity to evaluate the CRF to ensure that the data collected are in proper for-
mat for entry and data analysis.
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A set of well-developed CRFs is not completed without a guide as to how to fill out the
CRFs. In clinical trials, errors/mistakes are inevitable when filling the CRFs regardless of
the design of the CRFs. Ju (2002) proposed some general principles for filling out well-
designed CRFs in clinical trials. These general principles as listed in Table 15.3.1 are help-
ful in reducing the number of queries and maintaining the quality and integrity of the data
captured. In addition, it is also suggested that the following principles be applied when
making corrections: (1) draw line(s) through the incorrect entry, (2) do not write over or
erase an incorrect entry or recopy the original page, (3) do not use correction materials on
the CRFs, (4) write the correct data nearby, and (5) date and initial the corrections. In prac-
tice, it is suggested that these commonly encountered errors and/or mistakes be taken into
consideration in CRF design during the development of CRF.

CRF Flow and Tracking

In clinical trials, CRF flow and tracking is important in the data management process to
maintain the integrity of the clinical trial. Prior to the commencement of a clinical trial,
CRFs with a guide to filling out CRFs should be shipped to each study site. At the initiation
investigator meeting, the CRFs will be reviewed. Any issues regarding the capture of the
data using the developed CRFs will be discussed and the resulting changes will be made
prior to the conduct of the clinical trial. During the conduct of the clinical trial, completed
CRFs are usually reviewed for accuracy, completeness, and consistency with the study
protocol by the clinical monitor and/or clinical research associate before they are for-
warded to the data management group for data entry sequentially.

Upon receipt of completed CRFs, the page numbers or other unique identifiers of the
CRFs, including laboratory or diagnostic test forms, should be recorded on a CRF track-
ing sheet such as a case report form transmission form. Table 15.3.2 provides a sample
case report form transmission form, which is commonly used in the pharmaceutical
companies. In addition, a case report form log sheet should be used to document medical
review and data entry. The original CRF is usually separated from the working copy of the
CRF. The original CRF should be filed in the Central Clinical Trial File, whereas
the working copy and the accompanying log sheet should be forwarded to the data

Table 15.3.1 General Principles for Filling Out CRF

1. Print neatly and legibly.
2. Make all entries on the CRF.
3. Write in black ink and press firmly.
4. Do not write in shaded areas.
5. Avoid use of abbreviations and acronyms; use only abbreviations in standard medical use.
6. Use only subject number and initials, not the full name and chart number of the subject.
7. Use the following abbreviations for missing data: NA (not available/not applicable),

ND (not done), UNK (unknown).
8. Comments must be clear, concise, and in language specified.
9. Do not write data on page margins or outside of allocated spaces.

10. Record dates as specified.
11. Record time in 24-hour clock format.
12. Check all visit dates in chronological order.
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management group. In addition, all CRFs should be cross-referenced against the accom-
panying log sheet.

During the conduct of clinical trials, errors and mistakes inevitably occur regardless
which CRFs are used in clinical trials. Commonly seen mistakes in CRFs are as fol-
lows: (1) There are no page numbers, (2) dates are inconsistent with charts, (3) visit
dates are not in chronological order, (4) there are no investigator’s signature, (5) labo-
ratory units are either incorrect or inconsistent, (6) inconsistent between fields (e.g.,
action taken with medication recorded in adverse events but not shown in concomitant
medication), (7) missing data (e.g., should fill in N/A), (8) error erased and /or correc-
tion made without initial or signature, (9) inconsistencies across CRF pages, and (10)
calculation error.

In the past few decades, the standardization of CRFs has become a popular topic. The
purpose of standardized CRFs is multifold. First, it is to ensure the consistency of data cap-
ture. Second, it is to reduce the time and effort for development of CRFs when new studies
are planned. However, it is a difficult task to standardize CRFs across therapeutic areas due
to differences in the nature of disease, study design, and dose regimen.

For multinational clinical trials, translation of the developed CRFs has become an
issue for capturing consistent information across different countries with different
languages. The perception of the CRFs may be different due to differences in culture and
medical practice in different countries. A typical approach is to adopt the method of trans-
lation and backtranslation to validate the translated CRFs. For this purpose, a small scale
trial may be required to be conducted with the translated CRFs for validation of the trans-
lated CRFs.

15.4 DATABASE DEVELOPMENT

As indicated by Grobler et al. (2001), a database should be designed to facilitate data
entry and the extraction of data for analysis. Database development includes database
design (or setup) and database edit check specifications, which are briefly outlined
below.

Database Design

In practice, for a given clinical trial, to facilitate data entry and the extraction of data for analy-
sis, a protocol-specific database is set up using standard templates (e.g., modules and format
libraries or data dictionaries) where available. The use of standard templates enhances the
efficiency of the database development process and facilitates subsequent aggregation of the
data. The steps in developing a protocol-specific database are illustrated in Figure 15.4.1
(reproduced from Fig. 1 of Madison and Plaunt, 2003). As it can be seen from Figure 15.4.1,
once the applicable standard templates are identified, the protocol-specific database can be
built by creating the following associated structures of (1) data entry screens, which are iden-
tical to CRFs; (2) test data; (3) derived variables; (4) data validation routines; and (5) audit
trail. Prior to the generation of screens for data entry, CRFs will be reviewed for code require-
ments. Coding instructions will then be generated and reviewed by the data manager and the
project statistician to ensure that all information needed for analysis has been captured from
the CRFs. Upon the completion of data entry or at certain percentage of completion of data
entry, data may be extracted for a test run of analysis. Additional variables to be derived from
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collected data may be identified by the project statistician. The derived variables (or derived
data sets), derived from the database according to the statistical analysis plan, are usually
ready for analysis. For a given clinical study, in some cases, it is not uncommon to have more
than one database due to planned interim analyses and/or pharmacokinetic/pharmacodynamic
analyses. In practice, a data validation plan is usually developed during the database develop-
ment process to ensure the validity, quality, and integrity of the data captured from subjects in
the clinical trial. Audit trails are required to document any changes that have incurred during
the database development process.

Data Edit Check Specifications

To ensure completeness and consistency of a database, data validation or plausibility checks
are usually programmed and run on a database. In small databases, or parts of databases that
cannot be validated through a program such as consistency of text data, validation checks

Figure 15.4.1 Sample database development process. (Source: Madison and Plaunt, 2003)
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may also be done manually. Incomplete or inconsistent data are queried with the source data
at a study sites or laboratories. Once query resolutions have been received, the database is
updated accordingly. Any such updates must be documented in an audit trail. In practice, it
is suggested that the trial/project biostatistician should be involved in determining the con-
sistency check specifications. The following should be considered when reviewing the con-
sistency check specifications: (1) missing or incomplete data, (2) range checks included to
detect potentially invalid data, (3) within-subject consistency checks, and (4) manual checks
whenever necessary.

Edit check specifications are usually developed according to CRFs and the study protocol.
Variables and fields with a high risk of potential errors on the CRFs should be included. Edit
checks across CRFs should also be included in the edit check specification to capture any
inconsistencies across CRFs during data entry. Queries should be generated whenever incon-
sistencies are detected.

Edit check specifications are important in database development not only to identify
invalid data but also to capture inconsistencies in data collected from the clinical trial. Con-
sequently, it is an integral part of database development to ensure the validity and quality of
the data collected from the clinical study. For example, if the adverse event dataset denotes
that a subject was withdrawn due to an adverse event, does the reason for subject withdrawal
dataset indicate withdrawal due to an adverse event? For another example, if there is an
adverse event indicating that medication was prescribed to treat the condition, is there a cor-
responding entry in the concomitant medication dataset that is appropriate according to the
indication and period of administration?

It is the responsibility of the statistician to ensure that the design of the database adheres
to the requirements of the programming team and that there is a consistency between the
database across trials involving the same treatment, to ease the pooling the data across
studies. This involves reviewing at least the following: (1) the proposed naming, format-
ting, and labeling of variables and datasets; (2) details of the coding systems to be used; 
(3) the contents of datasets, to minimize data manipulation in extracting data for analysis
and to ensure that the data are captured appropriately; and (4) the proposed design and 
format of data to be downloaded or transferred for statistical analysis. A statistician should
review these characteristics to ensure that they are consistent with the anticipated presenta-
tion of the data in tables and figures. It must be remembered that a poorly designed CRF
cannot be overcome by good database design.

15.5 DATA ENTRY, QUERY, AND CORRECTION

Procedures for data entry/verification, data query, and data correction/validation play an
important role in the CDM process to ensure the validity, quality, and integrity of clinical
data collected from trial subjects. These procedures are briefly described below.

Data Entry and Verification

Upon the receipt of CRFs, a working copy of the original CRFs will be made and reviewed by
the data manager prior to entry. Data from the working copy of the CRFs will be entered into
the database. This is normally accomplished by double data entry (i.e., entry by two different
entry clerks). CRFs will be initialed, dated, and stamped entered after the initial entry. A sec-
ond entry will occur after the initial entry. The two files are then checked for differences by
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running a verification program that compares the two files. If the records do not match, dis-
crepancies are printed out and corrections are made. The process is repeated until such a time
that each file is an exact replica of the other. Any missing or inconsistent information will be
entered on the Query Form. A sample Query Form that is commonly used in clinical trials is
given in Table 15.5.1. After the information has been verified, i.e., there are no inconsistencies
between the initial and the second entries, the CRFs will be initialed, dated, and stamped ver-
itified. Verification ensures that data entered are actually on the CRFs. Validation checks will
then be done using built-in edit check programs in the database developed by the data manager
or by running SAS programs written by the project statistician.

Errors inevitably occur during data entry. Yamuah (2001) indicated that the most com-
mon errors that usually occur during data entry include (1) typographical errors, (2) copy-
ing errors, (3) coding errors, and (4) range errors. For typographical errors, this usually
happens when someone is typing very fast. Copying errors usually occur as a result of
poorly filled-in CRFs with handwriting that is not very legible. A typical example is that
data entry clerks cannot differentiate between a 0 (zero) and an O (letter). Coding errors
can originate either from the personnel filling the CRFs with given codes or data entry
clerks making a mistake with given codes to be assigned to items on the CRFs. A typical
example is the assignment of ethnicity code. Range errors occur where lower and/or upper
limits of known values are exceeded when typing. For example, a body height of 8 feet is
obviously impossible for a regular subject.

Note that the data quality of the resulting database is inversely proportional to the
chance of having the same data entry error in a field by two persons, which is hopefully
negligible. McFadden (1998) indicated that the overall error rate from double data entry
can be as low as 0.001%. Double data entry in clinical trials is, however, only considered
when CRFs are used and its cost-effectiveness has been debated (see, e.g., Gibson et al.,
1994; Day et al., 1998). Although logic checks should be routinely done in all trials,
visual data verification and double data entry are not mandatory. Certain data quality
inspections in addition to logic checks on the database are, however, highly desirable to
quantify the data quality level whenever CRFs or eCRFs are used. Statistical methods uti-
lizing sampling techniques to estimate the error rate are available. However, whatever
procedures are adopted, the estimation method of the error rate should be properly chosen
and clearly documented in order to enable accurate data quality quantification (King and
Lashley, 2000).

Data Query

Any errors, omissions, or items requiring clarification or changes to CRF detected during
the data entry and verification process, by computer edits or during the data analysis, will
be noted on the Query Form and forwarded to the clinical monitor for processing. Data
queries may be generated at any time during the CRF review, data entry and verification,
and data analyses by the data management personnel and/or trial /project statistician. Data
clarifications not requiring CRF alterations will also be entered on the Query Form, where
they will be resolved by the designated monitor. Data queries, which require an alteration
to the CRF, will be noted on the Query Form. Obvious resolutions to queries (e.g., date
errors and transposition of laboratory values) may be made by the data manager on the
Query Form and sent to the designated monitor (or investigator) for confirmation. Query
resolutions that must be obtained by the monitor should be conducted either via telephone
contact with the investigator or through site visit.
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Investigators will be asked to sign and date the form and retain one copy of the com-
pleted Query Form with their copy of the CRF. The original Query Form will be returned
to the individual initiating the query for review. All confirmations and resolutions should
be forwarded to the data management group.

Data Corrections/Validation

All subsequent changes to the database should be made based on information provided 
on the Query Forms. Upon completion of data entry, original Query Forms should be
dated, initialed, and stamped Corrected to indicate that the entry of the data update is com-
pleted. Database finalization will begin after all queries have been addressed and necessary
modifications have been made to the database. Note that working copies of the CRFs
are necessarily updated during the process of data entry and verification, query, and
corrections.

Validation ensures that data entered into the database are valid according to some crite-
ria usually arrived at by an expert in that area. It is important to note that verified data are
not necessarily accurate data. If data are invalid from the field that will be verified, cor-
rectly using double entry but will still remain invalid. If at any stages errors are detected,
CRFs should be returned to the field for clarification or revisited depending on the nature
of the problem.

A database must be reviewed to ensure that it is consistent with the information recorded
in the CRF and that any data that were received electronically have been correctly imported
into the database. In conducting the quality control of a database, it is necessary to deter-
mine which of the efficacy and safety database items are deemed to be critical and noncriti-
cal items, respectively. A statistician should be responsible for determining the critical items
and the population to be audited in accordance with the objectives of the clinical trial. 
Procedures for checking the various types of data should be specified and reviewed for
appropriateness. These procedures may include, for example, a 100% check of all data
items considered to be critical against the CRF. An acceptable database error rate should be
determined, and acceptable and nonacceptable errors should be defined in conjunction with
the project statistician.

15.6 DATA VALIDATION AND QUALITY

Data validation is the cleaning of trial data after they are entered into a computer database
in order to ensure that they attained a reasonable quality level. Errors occur whenever a
true value is not correctly represented in a certain format. This could be a discrepancy
between source data and the CRFs, source data and an electronic data captured database,
or the CRFs and the database, depending on the data acquisition model (Fong, 2001).
Detection of the former two sources of error relies on monitoring visits when source data
certification is performed (Lau, 2000). The third source of errors can be identified by con-
ducting data quality inspections on the database.

Although data quality assurance is highly prioritized in clinical trials, perfect data are
difficult if not impossible to obtain. It has been recognized that high-quality data are used
to arrive at the same conclusion as perfect data (Rasmussen, 2000). An acceptable data
quality level is one that can be considered for providing substantial evidence regarding the
efficacy and safety of the study medicine. However, an acceptable data quality level has not
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642 CLINICAL DATA MANAGEMENT

been defined and there are no regulatory guidelines on an acceptable level of data quality.
This was perhaps due to the diversity in industrial practices. Nevertheless, it is critical to
quantify data quality by identifying errors from different sources, prior to any conclusions
being drawn from the statistical analysis.

Data quality may be measured by the error rate defined as the number of errors divided
by the total number of data. Quality can be attributed to all variables, or to a group of vari-
ables whose quality is deemed to be critical to the final conclusions. During database
inspection, the error rate can be simply estimated by the number of errors found divided by
the number of data inspected. The choice of an acceptable error rate for a database varies in
the industry, but a popular choice was 0.5% overall, 0% to 0.1% for critical variables, and
0.2% to 1.0% for noncritical variables (see, e.g., SCDM, 2000; Shea, 2000). The methods of
estimating the error rate should be documented in the Data Management Master File. Note
that an estimated error rate obtained as 5 errors out of 1000 fields inspected bears a different
precision to that obtained as 50 errors out of 10,000 fields inspected. The letter is a more
precise estimate. There are different data quality inspection procedures for tracking data-
base errors. The common types are logic checks, visual data verification, double data entry,
or a combination of these methods. Logic checks, as described in the previous section of
edit check specifications, are trial-specific procedures to determine the status of data that are
not logically sound.

15.7 DATABASE LOCK, ARCHIVE, AND TRANSFER

Database Lock and Archive

When the database is complete, i.e., there are no outstanding queries, signatures of the
responsible individuals are required to finalize (or lock) the database. A sample Database
Lock Form, which requires signatures from the project statistician, the data manager, and
the clinical monitor, is given in Table 15.7.1.

After the database lock, a written approval from senior managements (e.g., Head of
Clinical Operation and Head of Biostatistics and Data Management) is required to initiate
any changes to a finalized database. The final locked database should remain active in the
system for at least three months before it is archived. An archived database can be retrieved
within two working days.

Database Transfer

Database transfer at a specific format can be done per request, e.g., from CRO to a sponsor.
Data transfers are usually accomplished based on three steps of (1) Data Transfer Request
Form, (2) test data transfer, and (3) data transfer procedure.

First, the requestor should fill out a Data Transfer Request Form. Table 15.7.2 provides a
sample Data Transfer Request Form. Based on the information on the Data Transfer Form,
programmer, data manager, and statistician will develop the data transfer specifications. The
specifications are necessary to (1) ensure that the scope, schedule, and frequency of the data
transfers are clearly defined; (2) make sure that the client’s hardware/software are compatible
with data transfers; and (3) obtain and finalize clearly defined data transfer specifications,
including data structures and system requirements. Prior to the actual data transfer, a test run
for data transfer is usually recommended. The purpose of performing a test run for data
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transfer is to identify and correct any structural errors and inconsistencies that may occur
prior to the first scheduled data transfer.

Data transfer can then be completed by the following procedure:

1. Develop programs when the data specifications are available and at least five patients
have been entered into the database.

2. Communicate with the Project Team for any data handling issues.

3. Perform a quality control check on the database.

4. Make sure that all data involved in the data transfer are clean if clean data are
expected.

a. Make sure that all data involved in the data transfer are appropriately coded if
coding is to be done. Forward any uncoded data to the Project Team for clarifica-
tion and/or review.

b. Make sure that the database contains the required number of patients.

c. Make sure that all of the data streams are present as outlined in the data transfer
specifications.

d. Make sure that only properly validated data are transferred to the client.

e. Notify the programmer(s) when the database is ready for a data transfer run after
database validation.

5. Generate permanent SAS data sets for file transfers.

Table 15.7.1 Sample Final Database Lock Sheet

Final Database Reviewed:

Completed by: ——————————————————————— Date: ——————

Reviewed by: ——————————————————————— Date: ——————

Final Database Locked:

Project Manager: ——————————————————————— Date: ——————

Data Manager: ——————————————————————— Date: ——————

Clinical Monitor: ——————————————————————— Date: ——————

Protocol #:

Protocol title:

Sponsor:
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Table 15.7.2 Sample Data Transfer Request Form

Account: ————————————————————————————————————

Library: —————————————————————————————————————

Directory: ————————————————————————————————————

Files: ——————————————————————————————————————

————————————————————————————————————————

• Data will be ready on ———/———/———.

• Data is promised to sponsor on ———/———/———.

• Department to create cover memo: ————————————
Cover memo will be copied to: 1. —————— 2. —————— 3. ——————

4. —————— 5. —————— 6. ——————

• Database Administration: ————————————

Address: ————————————————————————————————

• Schedule of Transfer:

• Method of transport
� Overnight carrier � Courier � Other

To: From:

Copy: Date:

Re:
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6. Perform program checks and data review during program development.

7. If the client requests flat file data transfer, create ASCII files from the corresponding
permanent SAS data sets.

8. Make sure all forms and checklists related to the data transfer are signed off.

9. Make sure all documents and printouts related to data transfer are filed in a central
master file.

Note that it is suggested that data transfers should be performed based on programming
standards as specified in Good Programming Practice (GPP) (see, e.g., Yam, 2003) and
follow requirements that are specified in 21 CFR Part 11 for electronic records and elec-
tronic signatures.

15.8 DISCUSSION

Data Management Files

For a given clinical study, it is important to maintain a Master Data Management File that
contains critical information regarding the clinical study. A complete Master Data Man-
agement File should include (1) a copy of a final approved study protocol with amend-
ments, if any; (2) a copy of blank CRFs and a Completion Guide to CRFs; (3) coding
instructions and edit check specifications; (4) laboratory normals from each study sites; (5)
a data validation plan; (6) resolved queries forms and outstanding queries, and (7) corre-
spondences regarding the study. The purpose of the master data management file is to
maintain key documents at each critical stage of the clinical data management process for
GDMP in compliance with GCP to ensure not only the quality of the data collected from
the study but also the integrity of the clinical trial.

Electronic Data Capture

In recent years, electronic data capture (EDC) has become an important topic in clinical
trials data management since it was introduced in an NIH-sponsored kidney transplant
histocompatibility study in early 1970. A number of EDC systems have been developed
since 1985. However, many of them are not successful due to the issue of data quality.
Helms et al. (2001) proposed to measure data quality by estimating error rates for
specific sets of data. An error rate is defined for a database subset (a specified set of data
values) not the entire database. The specified set of data values is often limited to certain
types of variables (e.g., excluding long text fields and codes). The specified set of data
values must be definitive (by applying the specifications) so that a computer program is
able to determine precisely whether a specific data value is in the specified set of data
values. The true error rate for a specified set of data values is then defined as the ratio
between the number of incorrect data values in the specified set of data values and the
total number of data values in the specified set of data values. A random sample can then
be drawn using the method of simple random sampling to estimate the true error rate.
For example, a simple random sampling may be applied to randomly select a subset of
patients. Each patient is considered a cluster. Within each selected patient’s data, one
may use simple random sampling to select a random subset of visits (subclusters). Note
that in this case, the random sample consists of all data fields of specified types within
each selected subcluster.
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As the Internet has become more popular, some EDC systems were designed to utilize
the Internet as a means of transmitting data from study sites to a central location. In 1999,
the FDA published a guidance on Computerized Systems Used in Clinical Trials to assist
sponsors in compliance with regulatory requirements of clinical trials data management
when using EDC. In practice, an EDC Internet-based system has the advantage of reducing
the time and effort required for clinical trials data management. When the same procedures
and standards are used to estimate EDC Internet-based system error rates that are used for
estimating error rates of traditional paper-based CRF systems, Helms et al. (2001) indi-
cated that the EDC Internet-based system has essentially zero error rates when capturing
data electronically. Note that his conclusion applies only to electronically captured data in
which the initial data record is on a computer disk.

Interactive Voice Randomization System (IVRS)

For management of clinical trials, the use of an interactive voice randomization system
(IVRS) for patient randomization and drug management has become very popular, espe-
cially for multinational clinical trials. The IVRS is an application based on advanced
computer telephone technology. It has the capability of functioning without human inter-
vention, which makes worldwide access possible. As a result, it is an ideal tool for cen-
tral randomization and drug management in clinical research. IVRS has the ability to
centrally randomize the patients so that treatment balance can be achieved across all
study sites. In addition, the IVRS technology can also provide clinical researchers with 
a new and cost-effective method of collecting real-time quality data and for providing
critical monitoring information at any time and any place where a touch-tone phone is
available.

As indicated in Chapter 4, the randomization schedule is used for drug management,
including packaging, shipping, and dispensing in clinical trials. The traditional approach is to
provide a randomization schedule to the Department of Drug Supply for generation of labels
for packaging. Blocks of drugs are then shipped to each study site according to respective
randomization schedules. In practice, however, some sites may have relatively slow enroll-
ment as compared to others. As a result, the management of drug supply for reduction of drug
wastage is a challenge to clinical researchers. IVRS, on the other hand, is more flexible. One
of the advantages is its ability to separate patient numbers from the randomization codes and
to match them dynamically at time of randomization for treatment balance across all study
sites. The randomization codes serve as a bridge between the treatment assignment and any
patient numbering system. IVRS is applicable to most commonly used randomization meth-
ods, as described in Chapter 4. In addition to the advantage of central randomization, one 
of the major attractive advantages is that IVRS has the capability of collecting real-time qual-
ity data. For example, if the protocol calls for the collection of patient diary data, it is always
a headache to clinical data due to inevitable errors in diary cards and/or missing values.
Using IVRS, quality data can be obtained directly from the patient. In addition, IVRS can
also call and remind the patient to enter the diary data to avoid missing data. As a result, a
high patient compliance for the use of IVRS is expected. IVRS is also a useful monitoring
tool for providing information such as patient enrollment and withdrawal status. This infor-
mation would be very helpful for strategy planning. In some studies for long-term safety,
IVRS can collect real-time crucial safety information such as serious adverse events and
mortality data.
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Because IVRS can collect real-time quality data during the conduct of the trial, it is very
useful when there are planned interim analyses. In practice, however, for good clinical
practice, it is suggested that a standard operating procedure (SOP) for the process of the
reconciliation between the IVRS database and the database developed based on CRFs
should be well documented. More details regarding the use of IVRS in the CDM process
can be found in Chen (2003).

Global Database and System

In recent years, multinational, multicenter clinical trials have become very popular for
clinical evaluation of the effectiveness and safety of experimental drugs under investiga-
tion. As a result, the standardization of databases across different countries with potential
differences in culture and medical practices is necessary in order to provide a consistent
database for final statistical analysis. Hsuan and Genyn (2003) indicated that a global data-
base and system is necessarily implemented for achieving standardization of databases
across different countries. A successful global system requires both good system develop-
ment methodology and good process. The main objective of a global clinical system is to
shorten the drug development time while improving the quality of clinical data, analysis,
summary, and reports. The global clinical database and system will achieve the benefits of
improved submission quality, synergy among countries (sites), shared resources among
countries (sites), shortened submission preparation time, shortened response time for regu-
latory agency inquiries, and electronic data review internally and by the regulatory agen-
cies (Hsuan and Genyn, 2003).

Role of Statistician in Data Management Process

The statistical results from a clinical trial rely on the accuracy and completeness of the
database used to generate the results. The quality of the database depends on the quality of
the data collection methods and the data management procedures. As part of the data
management-biostatistics team, a statistician can ensure that a protocol is written in such a
manner as to enhance data management. A statistician’s input into the subsequent design
of the case report form can facilitate the collection of appropriate and complete data. A
statistician can contribute to the accuracy and validity of a database by providing into the
design both the database structure and data plausibility checks and the quality control 
procedures performed to evaluate the integrity of a database. Finally, performing a statisti-
cal review on the database prior to database lock can detect anomalies that would other-
wise only show up during analysis (Grobler et al., 2001).

As pointed out by Grobler et al. (2001), the following statistical reviews of a database
are helpful to ensure the validity, quality, and integrity of the database prior to the database
lock. These statistical reviews include (1) the comparison of datasets received against the
protocol and annotated CRF to ensure that all variables and time points are included; 
(2) the accountability of every subject at each visit at every site (e.g., which sites have sig-
nificant dropouts; (3) the primary and secondary analysis variables in terms of unexpected
values, outliers, missing values, and other results that may have a significant impact on the
analysis; (4) the consistency of use of imperial, metric, or other units and inclusion of unit
indicators; (5) other data problems not identified in the data management process; 
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(6) accurate coding of data format and size; (7) evaluability of subjects based on the
various analysis population defined; (8) range check for detecting invalid data that are
either below or above expected range; and (9) statistical review using basic SAS proce-
dures. The statistician should identify any data issues that may have an impact on the
analysis and submit them to the data manager for resolution. When all identified changes
have been made, the statistical review should be repeated based on the revised database for
quality assurance.
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Table A.1 Areas of Upper Tail of the Standard Normal Distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264
2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

Source: Table 3 of Statistical Tables for Science. Engineering and Management, J. Murdock and J. A. Barnes, Macmillan,
London, 1968.
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Table A.3 Upper Quantiles of a Central t Distribution

ν/α 0.050 0.025 0.010 0.005

1 6.3138 12.706 25.452 63.647
2 2.9200 4.3027 6.2053 9.9248
3 2.3534 3.1825 4.1765 5.8409
4 2.1318 2.7764 3.4954 4.6041
5 2.0150 2.5706 3.1634 4.0321
6 1.9432 2.4469 2.9687 3.7074
7 1.8946 2.3646 2.8412 3.4995
8 1.8595 2.3060 2.7515 3.3554
9 1.8331 2.2622 2.6850 3.2498

10 1.8125 2.2281 2.6338 3.1693
11 1.7959 2.2010 2.5931 3.1058
12 1.7823 2.1788 2.5600 3.0545
13 1.7709 2.1604 2.5326 3.0123
14 1.7613 2.1448 2.5096 2.9768
15 1.7530 2.1315 2.4899 2.9467
16 1.7459 2.1199 2.4729 2.9208
17 1.7396 2.1098 2.4581 2.8982
18 1.7341 2.1009 2.4450 2.8784
19 1.7291 2.0930 2.4334 2.8609
20 1.7247 2.0860 2.4231 2.8453
21 1.7207 2.0796 2.4138 2.8314
22 1.7171 2.0739 2.4055 2.8188
23 1.7139 2.0687 2.3979 2.8073
24 1.7109 2.0639 2.3910 2.7969
25 1.7081 2.0595 2.3846 2.7874
26 1.7056 2.0555 2.3788 2.7787
27 1.7033 2.0518 2.3734 2.7707
28 1.7011 2.0484 2.3685 2.7633
29 1.6991 2.0452 2.3638 2.7564
30 1.6973 2.0423 2.3596 2.7500
40 1.6839 2.0211 2.3289 2.7045
60 1.6707 2.0003 2.2991 2.6603

120 1.6577 1.9799 2.2699 2.6174
∞ 1.6449 1.9600 2.2414 2.5758

Source: Tables of Percentage Points of the t-Distribution by M. Merrington,
Biometrika (1941), Vol. 32, p. 300.
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Table A.6 Quantiles of the Wilcoxon Signed-Rank Test Statistica

n W0.005 W0.01 W0.025 W0.05 W0.10 W0.20 W0.30 W0.40 W0.50 �
n(n

2
�1)
�

4 0 0 0 0 1 3 3 4 5 10
5 0 0 0 1 3 4 5 6 7.5 15
6 0 0 1 3 4 6 8 9 10.5 21
7 0 1 3 4 6 9 11 12 14 28
8 1 2 4 6 9 12 14 16 18 36
9 2 4 6 9 11 15 18 20 22.5 45

10 4 6 9 11 15 19 22 25 27.5 55
11 6 8 11 14 18 23 27 30 33 66
12 8 10 14 18 22 28 32 36 39 78
13 10 13 18 22 27 33 38 42 45.5 91
14 13 16 22 26 32 39 44 48 52.5 105
15 16 20 26 31 37 45 51 55 60 120
16 20 24 30 36 43 51 58 63 68 136
17 24 28 35 42 49 58 65 71 76.5 153
18 28 33 41 48 56 66 73 80 85.5 171
19 33 38 47 54 63 74 82 89 95 190
20 38 44 53 61 70 83 91 98 105 210
21 44 50 59 88 78 91 100 108 115.5 131
22 49 56 67 76 87 100 110 119 126.5 153
23 55 63 74 84 95 110 120 130 138 176
24 62 70 82 92 105 120 131 141 150 300
25 69 77 90 101 114 131 143 153 162.5 325
26 76 85 99 111 125 142 155 165 175.5 351
27 84 94 108 120 135 154 167 178 189 378
28 92 102 117 131 146 166 180 192 203 406
29 101 111 127 141 158 178 193 206 217.5 435
30 110 121 138 152 170 191 207 220 232.5 465
31 119 131 148 164 182 205 221 235 248 496
32 129 141 160 176 195 219 236 250 264 528
33 139 152 171 188 208 233 251 266 280.5 561
34 149 163 183 201 222 248 266 282 297.5 595
35 160 175 196 214 236 263 283 299 315 630
36 172 187 209 228 251 279 299 317 333 666
37 184 199 222 242 266 295 316 335 351.5 703
38 196 212 236 257 282 312 334 353 370.5 741
39 208 225 250 272 298 329 352 372 390 780
40 221 239 265 287 314 347 371 391 410 820
41 235 253 280 303 331 365 390 411 430.5 861
42 248 267 295 320 349 384 409 431 451.5 903
43 263 282 311 337 366 403 429 452 473 946
44 277 297 328 354 385 422 450 473 495 990
45 292 313 344 372 403 442 471 495 517.5 1035
46 308 329 362 390 423 463 492 517 540.5 1081
47 324 346 379 408 442 484 514 540 564 1128
48 340 363 397 428 463 505 536 563 588 1176
49 357 381 416 447 483 527 559 587 612.5 1225
50 374 398 435 467 504 550 583 611 637.5 1275

Source: Adapted from Harder and Owen (1970), with permission from the Institute of Mathematical Statistics.
aFor n larger than 50, the pth quartile ωp, of the Wilcoxon signed-rank test statistic may be approximated by
ωp � [n(n�1)/4] � χp �n(�n��1)�(2�n��1)�/2�4�, where χp is the pth quartile of a standard normal random variable,
obtained from Appendix A.1.
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696 APPENDIX A

Table A.7 Tolerance Factor For the Degrees Of Confidence 1 � α

1�α � 0.95 1�α � 0.99

n 0.90 0.95 0.99 0.90 0.95 0.99

2 32.019 37.674 48.430 160.193 188.491 242.300
3 8.380 9.916 12.861 18.930 22.401 29.055
4 5.369 6.370 8.299 9.398 11.150 14.527
5 4.275 5.079 6.634 6.612 7.855 10.260
6 3.712 4.414 5.775 5.337 6.345 8.301
7 3.369 4.007 5.248 4.613 5.488 7.187
8 3.136 3.732 4.891 4.147 4.936 6.468
9 2.967 3.532 4.631 3.822 4.550 5.966

10 2.839 3.379 4.433 3.582 4.265 5.594
11 2.737 3.259 4.277 3.397 4.045 5.308
12 2.655 3.162 4.150 3.250 3.870 5.079
13 2.587 3.081 4.044 3.130 3.727 4.893
14 2.529 3.012 3.955 3.029 3.608 4.737
15 2.480 2.954 3.878 2.945 3.507 4.605
16 2.437 2.903 3.812 2.872 3.421 4.492
17 2.400 2.858 3.754 2.808 3.345 4.393
18 2.366 2.819 3.702 2.753 3.279 4.307
19 2.337 2.784 3.656 2.703 3.221 4.230
20 2.310 2.752 3.615 2.659 3.168 4.161
25 2.208 2.631 3.457 2.494 2.972 3.904
30 2.140 2.549 3.350 2.385 2.841 3.733
35 2.090 2.490 3.272 2.306 2.748 3.611
40 2.052 2.445 3.213 2.247 2.677 3.518
45 2.021 2.408 3.165 2.200 2.621 3.444
50 1.996 2.379 3.126 2.162 2.576 3.385
55 1.976 2.354 3.094 2.130 2.538 3.335
60 1.958 2.333 3.066 2.103 2.506 3.293
65 1.943 2.315 3.042 2.080 2.478 3.257
70 1.929 2.299 3.021 2.060 2.454 3.225
75 1.917 2.285 3.002 2.042 2.433 3.197
80 1.907 2.272 2.986 2.026 2.414 3.173
85 1.897 2.261 2.971 2.012 2.397 3.150
90 1.889 2.251 2.958 1.999 2.382 3.130
95 1.881 2.241 2.945 1.967 2.368 3.112

100 1.874 2.233 2.934 1.977 2.355 3.096
150 1.825 2.175 2.859 1.905 2.270 2.983
200 1.798 2.143 2.816 1.865 2.222 2.921
250 1.780 2.121 2.788 1.839 2.191 2.880
300 1.767 2.106 2.767 1.820 2.169 2.850
400 1.749 2.084 2.739 1.794 2.138 2.809
500 1.737 2.070 2.721 1.777 2.117 2.783
600 1.729 2.060 2.707 1.764 2.102 2.763
700 1.722 2.052 2.697 1.755 2.091 2.748
800 1.717 2.046 2.688 1.747 2.082 2.736
900 1.712 2.040 2.682 1.741 2.075 2.726

1000 1.709 2.036 2.676 1.736 2.068 2.718
∞ 1.645 1.960 2.576 1.645 1.960 2.576

Source: Adapted by permission from Techniques of Statistical Analysis by C. Eisenhart, M. W. Hastay, and 
W. A. Wallis. Copyright 1947, McGraw-Hill Book Company, Inc.
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Table A.8 Upper Quantiles of the Studentized Range Distribution

t

ν α 2 3 4 5 6 7 8 9 10

(a) t � 2–10

1 .20 4.353 6.615 8.075 9.138 9.966 10.64 11.21 11.70 12.12
.10 8.929 13.44 16.36 18.49 20.15 21.51 22.64 23.62 24.48
.05 17.97 26.98 32.82 37.08 40.41 43.12 45.4 47.36 49.07
.01 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6

2 .20 2.667 3.820 4.559 5.098 5.521 5.867 6.158 6.409 6.630
.10 4.130 5.733 6.773 7.538 8.139 8.633 9.049 9.409 9.725
.05 6.085 8.331 9.798 10.88 11.74 12.44 13.03 13.54 13.99
.01 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69

3 .20 2.316 3.245 3.833 4.261 4.597 4.872 5.104 5.305 5.481
.10 3.328 4.467 5.199 5.738 6.162 6.511 6.806 7.062 7.287
.05 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462
.01 8.261 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69

4 .20 2.168 3.004 3.527 3.907 4.205 4.449 4.655 4.832 4.989
.10 3.015 3.976 4.586 5.035 5.388 5.679 5.926 6.139 6.327
.05 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.60 7.826
.01 6.512 8.120 9.173 9.958 10.58 11.10 11.55 11.93 12.27

5 .20 2.087 2.872 3.358 3.712 3.988 4.214 4.405 4.57 4.715
.10 2.850 3.717 4.264 4.664 4.979 5.238 5.458 5.648 5.816
.05 3.635 4.602 5.218 5.673 6.033 6.330 6.582 6.802 6.995
.01 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.972 10.24

6 .20 2.036 2.788 3.252 3.588 3.850 4.065 4.246 4.403 4.540
.10 2.748 3.559 4.065 4.435 4.726 4.966 5.168 5.344 5.499
.05 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493
.01 5.243 6.331 7.033 7.556 7.973 8.318 8.613 8.869 9.097

7 .20 2.001 2.731 3.179 3.503 3.756 3.962 4.136 4.287 4.419
.10 2.680 3.451 3.931 4.28 4.555 4.780 4.972 5.137 5.283
.05 3.344 4.165 4.681 5.06 5.359 5.606 5.815 5.998 6.158
.01 4.949 5.919 6.543 7.005 7.373 7.679 7.939 8.166 8.368

8 .20 1.976 2.689 3.126 3.440 3.686 3.886 4.055 4.201 4.330
.10 2.630 3.374 3.834 4.169 4.431 4.646 4.829 4.987 5.126
.05 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918
.01 4.746 5.635 6.204 6.625 6.960 7.237 7.474 7.681 7.863

9 .20 1.956 2.658 3.085 3.393 3.633 3.828 3.994 4.136 4.261
.10 2.592 3.316 3.761 4.084 4.337 4.545 4.721 4.873 5.007
.05 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739
.01 4.596 5.428 5.957 6.348 6.658 6.915 7.134 7.325 7.495

10 .20 1.941 2.632 3.053 3.355 3.590 3.782 3.944 4.084 4.206
.10 2.563 3.270 3.704 4.018 4.264 4.465 4.636 4.783 4.913
.05 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599
.01 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.055 7.213
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Table A.8 (Continued )

t

ν α 2 3 4 5 6 7 8 9 10

(a) t � 2–10

11 .20 1.928 2.612 3.027 3.325 3.557 3.745 3.905 4.042 4.162
.10 2.540 3.234 3.658 3.965 4.205 4.401 4.568 4.711 4.838
.05 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.487
.01 4.392 5.146 5.621 5.970 6.247 6.476 6.672 6.842 6.992

12 .20 1.918 2.596 3.006 3.300 3.529 3.715 3.872 4.007 4.126
.10 2.521 3.204 3.621 3.922 4.156 4.349 4.511 4.652 4.776
.05 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395
.01 4.320 5.046 5.502 5.836 6.101 6.321 6.507 6.670 6.814

13 .20 1.910 2.582 2.988 3.279 3.505 3.689 3.844 3.978 4.095
.10 2.505 3.179 3.589 3.885 4.116 4.305 4.464 4.602 4.724
.05 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318
.01 4.260 4.964 5.404 5.727 5.981 6.192 6.372 6.528 6.667

14 .20 1.902 2.570 2.973 3.261 3.485 3.667 3.820 3.953 4.069
.10 2.491 3.158 3.563 3.854 4.081 4.267 4.424 4.560 4.680
.05 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254
.01 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543

15 .20 1.896 2.560 2.960 3.246 3.467 3.648 3.800 3.931 4.046
.10 2.479 3.140 3.540 3.828 4.052 4.235 4.390 4.524 4.641
.05 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198
.01 4.168 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.439

16 .20 1.891 2.551 2.948 3.232 3.452 3.631 3.782 3.912 4.026
.10 2.469 3.124 3.520 3.804 4.026 4.207 4.360 4.492 4.608
.05 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150
.01 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.349

17 .20 1.886 2.543 2.938 3.220 3.439 3.617 3.766 3.895 4.008
.10 2.460 3.110 3.503 3.784 4.004 4.183 4.334 4.464 4.579
.05 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108
.01 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270

18 .20 1.882 2.536 2.930 3.210 3.427 3.604 3.753 3.881 3.993
.10 2.445 3.098 3.488 3.767 3.984 4.161 4.311 4.440 4.554
.05 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071
.01 4.071 4.703 5.094 5.379 5.603 5.788 5.944 8.081 6.201

19 .20 1.878 2.530 2.922 3.200 3.416 3.592 3.740 3.867 3.979
.10 2.445 3.087 3.474 3.751 3.966 4.142 4.290 4.418 4.531
.05 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038
.01 4.046 4.670 5.054 5.334 5.554 5.735 5.889 6.022 6.141

20 .20 1.874 2.524 2.914 3.192 3.407 3.582 3.729 3.855 3.966
.10 2.439 3.078 3.462 3.736 3.950 4.124 4.271 4.398 4.510
.05 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008
.01 4.024 4.639 5.018 5.294 5.510 5.688 5.839 5.970 6.087
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Table A.8 (Continued)

t

ν α 2 3 4 5 6 7 8 9 10

(a) t � 2–10

24 .20 1.864 2.507 2.892 3.166 3.377 3.549 3.694 3.818 3.927
.10 2.420 3.047 3.423 3.692 3.900 4.070 4.213 4.336 4.445
.05 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915
.01 3.956 4.546 5.907 5.168 5.374 5.542 5.685 5.809 5.919

30 .20 1.853 2.490 2.870 3.140 3.348 3.517 3.659 3.781 3.887
.10 2.400 3.017 3.386 3.648 3.851 4.016 4.155 4.275 4.381
.05 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824
.01 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756

40 .20 1.843 2.473 2.848 3.114 3.318 3.484 3.624 3.743 3.848
.10 2.381 2.988 3.349 3.605 3.803 3.963 4.099 4.215 4.317
.05 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735
.01 3.825 4.367 4.696 4.931 5.114 5.265 5.392 5.502 5.599

60 .20 1.833 2.456 2.826 3.089 3.290 3.452 3.589 3.707 3.809
.10 2.363 2.959 3.312 3.562 3.755 3.911 4.042 4.155 4.254
.05 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646
.01 3.762 4.282 4.595 4.818 4.991 5.133 5.253 5.356 5.447

120 .20 1.822 2.440 2.805 3.063 3.260 3.420 3.554 3.669 3.770
.10 2.344 2.930 3.276 3.520 3.707 3.859 4.987 4.096 4.191
.05 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560
.01 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299

∞ .20 1.812 2.424 2.784 3.037 3.232 3.389 3.520 3.632 3.730
.10 2.326 2.902 3.240 3.478 3.661 3.808 3.931 4.037 4.129
.05 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474
.01 3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157
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Table A.8 (Continued)

t

ν α 11 12 13 14 15 16 17 18 19

(b) t�11–19

10 .20 4.316 4.414 4.503 4.585 4.660 4.730 4.795 4.856 4.913
.10 5.029 5.134 5.229 5.317 5.397 5.472 5.542 5.607 5.668
.05 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405
.01 7.356 7.485 7.603 7.712 7.812 7.906 7.993 8.076 8.153

11 .20 4.270 4.366 4.454 4.534 4.608 4.677 4.741 4.801 4.857
.10 4.951 5.053 5.146 5.231 5.309 5.382 5.450 5.514 5.573
.05 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265
.01 7.128 7.250 7.362 7.465 7.560 7.649 7.732 7.809 7.883

12 .20 4.231 4.327 4.413 4.492 4.565 4.633 6.696 4.755 4.810
.10 4.886 4.986 5.077 5.160 5.236 5.308 5.374 5.436 5.495
.05 5.511 5.615 5.710 5.798 5.878 5.953 6.023 6.089 6.151
.01 6.943 7.060 7.167 7.265 7.356 7.441 7.520 7.594 7.665

13 .20 4.199 4.293 4.379 4.457 4.529 4.596 4.658 4.716 4.770
.10 4.832 4.930 5.019 5.100 5.176 5.245 5.311 5.372 5.429
.05 5.431 5.533 5.625 5.711 5.789 5.862 5.931 5.995 6.055
.01 6.791 6.903 7.006 7.101 7.188 7.269 7.345 7.417 7.485

14 .20 4.172 4.265 4.349 4.426 4.498 4.564 4.625 4.683 4.737
.10 4.786 4.882 4.970 5.050 5.124 5.192 5.256 5.316 5.373
.05 5.364 5.463 5.554 5.637 5.714 5.786 5.852 5.915 5.974
.01 6.664 6.772 6.871 6.962 7.047 7.126 7.199 7.268 7.333

15 .20 4.148 4.240 4.324 4.400 4.471 4.536 4.597 4.654 4.707
.10 4.746 4.841 4.927 5.006 5.079 5.147 5.209 5.269 5.324
.05 5.306 5.404 5.493 5.574 5.649 5.720 5.785 5.846 5.904
.01 6.555 6.660 6.757 6.845 6.927 7.003 7.074 7.142 7.204

16 .20 4.127 4.218 4.301 4.377 4.447 4.512 4.572 4.628 4.681
.10 4.712 4.805 4.890 4.968 5.040 5.107 5.169 5.227 5.282
.05 5.256 5.352 5.439 5.520 5.593 5.662 5.727 5.786 5.843
.01 6.562 6.564 8.658 6.744 6.823 6.898 6.967 7.032 7.093

17 .20 4.109 4.199 4.282 4.357 4.426 4.490 4.550 4.606 4.659
.10 4.682 4.774 4.858 4.935 5.005 5.071 5.133 5.190 5.244
.05 5.212 5.307 5.392 5.471 5.544 5.612 5.675 5.734 5.790
.01 6.381 6.480 6.572 6.656 6.734 6.806 6.873 6.937 6.997

18 .20 4.093 4.182 4.264 4.339 4.407 4.471 4.531 4.586 4.638
.10 4.655 4.746 4.829 4.905 4.975 5.040 5.101 5.158 5.211
.05 5.174 5.267 5.352 5.429 5.501 5.568 5.630 5.688 5.743
.01 6.310 6.407 6.497 6.579 6.655 6.725 6.792 6.854 6.912

19 .20 4.078 4.167 4.248 4.323 4.391 4.454 4.513 4.569 4.620
.10 4.631 4.721 4.803 4.879 4.948 5.012 5.073 5.129 5.182
.05 5.140 5.231 5.315 5.391 5.462 5.528 5.589 5.647 5.701
.01 6.247 6.342 6.430 6.510 6.585 6.654 6.719 6.780 6.837
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Table A.8 (Continued)

t

ν α 11 12 13 14 15 16 17 18 19

(b) t � 11–19

20 .20 4.065 4.154 4.234 4.308 4.376 4.439 4.498 4.552 4.604
.10 4.609 4.699 4.780 4.855 4.924 4.987 5.047 5.103 5.155
.05 5.108 5.199 5.282 5.357 5.427 5.493 5.553 5.610 5.663
.01 6.191 6.285 6.371 6.450 6.523 6.591 6.654 6.714 6.771

24 .20 4.024 4.111 4.190 4.262 4.329 4.391 4.448 4.502 4.552
.10 4.541 4.628 4.708 4.780 4.847 4.909 4.966 5.021 5.071
.05 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545
.01 6.017 6.106 6.186 6.261 6.330 6.394 6.453 6.510 6.563

30 .20 3.982 4.068 4.145 4.216 4.281 4.342 4.398 4.451 4.500
.10 4.474 4.559 4.635 4.706 4.770 4.830 4.886 4.939 4.988
.05 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.429
.01 5.849 5.932 6.008 6.078 6.143 6.203 6.259 6.311 6.361

40 .20 3.941 4.025 4.101 4.170 4.234 4.293 4.348 4.399 4.447
.10 4.408 4.490 4.564 4.632 4.695 4.752 4.807 4.857 4.905
.05 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313
.01 5.686 5.764 5.835 5.900 5.961 6.017 6.069 6.119 6.165

60 .20 3.900 3.982 4.056 4.124 4.186 4.244 4.297 4.347 4.395
.10 4.342 4.421 4.493 4.558 4.619 4.675 4.727 4.775 4.821
.05 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199
.01 5.528 5.601 5.667 5.728 5.785 5.837 5.886 5.931 5.974

120 .20 3.859 3.938 4.011 4.077 4.138 4.194 4.246 4.295 4.341
.10 4.276 4.353 4.422 4.485 4.543 4.597 4.647 4.694 4.738
.05 4.641 4.714 4.781 4.842 4.898 4.950 4.998 5.044 5.086
.01 5.375 5.443 5.505 5.562 5.614 5.662 5.708 5.750 5.790

∞ .20 3.817 3.895 3.966 4.030 4.089 4.144 4.195 4.242 4.287
.10 4.211 4.285 4.351 4.412 4.468 4.519 4.568 4.612 4.654
.05 4.552 4.622 4.685 4.743 4.796 4.845 4.891 4.934 4.974
.01 5.227 5.290 5.348 5.400 5.448 5.493 5.535 5.574 5.611
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Table A.8 (Continued)

t

ν α 20 22 24 26 28 30 32 34 36

(c) t � 20–36

19 .20 4.669 4.759 4.840 4.914 4.981 5.044 5.102 5.156 5.206
.10 5.232 5.324 5.407 5.483 5.552 5.616 5.676 5.732 5.784
.05 5.752 5.846 5.932 6.009 6.081 6.147 6.209 6.267 6.321
.01 6.891 6.992 7.082 7.166 7.242 7.313 7.379 7.440 7.498

20 .20 4.652 4.742 4.822 4.895 4.963 5.025 5.082 5.136 5.186
.10 5.205 5.296 5.378 5.453 5.522 5.586 5.645 5.700 5.752
.05 5.714 5.807 5.891 5.968 6.039 6.104 6.165 6.222 6.275
.01 6.823 6.922 7.011 7.092 7.168 7.237 7.302 7.362 7.419

24 .20 4.599 4.687 4.766 4.838 4.904 4.964 5.021 5.073 5.122
.10 5.119 5.208 5.287 5.360 5.427 5.489 5.546 5.600 5.650
.05 5.594 5.683 5.764 5.838 5.906 5.968 6.027 6.081 6.132
.01 6.612 6.705 6.789 6.865 6.936 7.001 7.062 7.119 7.173

30 .20 4.546 4.632 4.710 4.779 4.844 4.903 4.958 5.010 5.058
.10 5.034 5.120 5.197 5.267 5.332 5.392 5.447 5.499 5.547
.05 5.475 5.561 5.638 5.709 5.774 5.833 5.889 5.941 5.990
.01 6.407 6.494 6.572 6.644 6.710 6.772 6.828 6.881 6.932

40 .20 4.493 4.576 4.652 4.720 4.783 4.841 4.895 4.945 4.993
.10 4.949 5.032 5.107 5.174 5.236 5.294 5.347 5.397 5.444
.05 5.358 5.439 5.513 5.581 5.642 5.700 5.753 5.803 5.849
.01 6.209 6.289 6.362 6.429 6.490 6.547 6.600 6.650 6.697

60 .20 4.439 4.520 4.594 4.661 4.722 4.778 4.831 4.880 4.925
.10 4.864 4.944 5.015 5.081 5.141 5.196 5.247 5.295 5.340
.05 5.241 5.319 5.389 5.453 5.512 5.566 5.617 5.664 5.708
.01 6.015 6.090 6.158 6.220 6.277 6.330 6.378 6.424 6.467

120 .20 4.384 4.463 4.535 4.600 4.659 4.714 4.765 4.812 4.857
.10 4.779 4.856 4.924 4.987 5.044 5.097 5.146 5.192 5.235
.05 5.126 5.200 5.266 5.327 5.382 5.434 5.481 5.526 5.568
.01 5.827 5.897 5.959 6.016 6.069 6.117 6.162 6.204 6.244

∞ .20 4.329 4.405 4.475 4.537 4.595 4.648 4.697 4.743 4.786
.10 4.694 4.767 4.832 4.892 4.947 4.997 5.044 5.087 5.128
.05 5.012 5.081 5.144 5.201 5.253 5.301 5.346 5.388 5.427
.01 5.645 5.709 5.766 5.818 5.866 5.911 5.952 5.990 6.026
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Table A.8 (Continued)

t

ν α 38 40 50 60 70 80 90 100

(d ) t � 38–100

30 .20 5.103 5.146 5.329 5.475 5.597 5.701 5.791 5.871
.10 5.593 5.636 5.821 5.969 6.093 6.198 6.291 6.372
.05 6.037 6.080 6.267 6.417 6.543 6.650 6.744 6.827
.01 6.978 7.023 7.215 7.370 7.500 7.611 7.709 7.796

40 .20 5.037 5.078 5.257 5.399 5.518 5.619 5.708 5.786
.10 5.488 5.529 5.708 5.850 5.969 6.071 6.160 6.238
.05 5.893 5.934 6.112 6.255 6.375 6.477 6.566 6.645
.01 6.740 6.782 6.960 7.104 7.225 7.328 7.419 7.500

60 .20 4.969 5.009 5.183 5.321 5.437 5.535 5.621 5.697
.10 5.382 5.422 5.593 5.730 5.844 5.941 6.026 6.102
.05 5.750 5.789 5.958 6.093 6.206 6.303 6.387 6.462
.01 6.507 6.546 6.710 6.843 6.954 7.050 7.133 7.207

120 .20 4.899 4.938 5.106 5.240 5.352 5.447 5.530 5.603
.10 5.275 5.313 5.476 5.606 5.715 5.808 5.888 5.960
.05 5.607 5.644 5.802 5.929 6.035 6.126 6.205 6.275
.01 6.281 6.316 6.467 6.588 6.689 6.776 6.852 6.919

∞ .20 4.826 4.864 5.026 5.155 5.262 5.353 5.433 5.503
.10 5.166 5.202 5.357 5.480 5.582 5.669 5.745 5.812
.05 5.463 5.498 5.646 5.764 5.863 5.947 6.020 6.085
.01 6.060 6.092 6.228 6.338 6.429 6.507 6.575 6.636

Source: Values were extracted by permission from H. L. Harter, 1969, Order Statistics and Their Use in Testing
and Estimation, Vol. 1, Aerospace Research Laboratory, USAF, U.S. Government Printing Office, Washington,
D.C., pp. 648–657.
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Table A.9 Upper Quantiles of the Dunnett’s t Distribution: One-Sided Comparisons 
with Control

m

ν α 1 2 3 4 5 6 7 8 9

5 .05 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
.01 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03

6 .05 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
.01 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59

7 .05 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
.01 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30

8 .05 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
.01 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09

9 .05 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86
.01 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

10 .05 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
.01 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83

11 .05 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
.01 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74

12 .05 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
.01 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67

13 .05 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
.01 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61

14 .05 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69
.01 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56

15 .05 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
.01 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52

16 .05 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
.01 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48

17 .05 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
.01 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45

18 .05 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
.01 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42

19 .05 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61
.01 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40
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Table A.9 (Continued)

m

ν α 1 2 3 4 5 6 7 8 9

20 .05 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
.01 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38

24 .05 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57
.01 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31

30 .05 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
.01 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24

40 .05 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
.01 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18

60 .05 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48
.01 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

120 .05 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
.01 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06

∞ .05 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42
.01 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00

Source: Values taken by permission from C. W. Dunnett, J. Am. Stat. Assoc., 50(1955):1115–1116.
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APPENDIX B

SAS PROGRAMS

Table B.1 SAS Program Used for Generation of Random Codes by Simple Randomiza-
tion for Two Parallel Groups

Table B.2 SAS Program Used for Generation of Random Codes by Simple Randomiza-
tion for Three Parallel Groups

Table B.3 SAS Program Used for Generation of Random Codes by Permuted-Block
Randomization and Random Allocation for Two Parallel Groups

Table B.4 SAS Program Used for Generation of Random Codes by Permuted-Block by
Random Selection for Parallel Groups

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition
By Shein-Chung Chow and Jen-pei Liu
ISBN 0-471-24985-8 Copyright © 2004 John Wiley & Sons, Inc.
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Table B.1 SAS Program Used for Generation of Random Codes by Simple 
Randomization for Two Parallel Groups

options linesize �70pagesize�40 nodate;
data one;
seed�4576891;
n�1;
p�0.5;
do center�1 to 4;
do sub�1 to 24;
tmt�ranbin(seed,n,p)�1;
subject�(14*100000)�(center*1000)�sub;
output;
end;
end;
run;
proc format;
value tmtf 1�’Active Drug’

2�’Placebo ’;
value centerf 1�’J. Smith, MD’

2�’M. Dole, MD ’
3�’A. Hope, MD ’
4�’C. Price, MD’;

proc sort data�one; by center;
proc print data�one split�’*’ ; pageby center; by center;
id subject; var tmt;
label

subject�’Subject*Number*———’
tmt�’Treatment *Assignment*——————’;

format tmt tmtf. center centerf.;
title1 ’ Table 4.3.3 ’;
title2 ’ Example of Simple Randomization for Four Centers ’;
title3 ’ Program:[DRUGXXX.PXXX014.SAS.NCKUJPL]SIMPRAN.SAS ’;
title4 ’ Random Codes for Drug XXX, Protocol XXX-014 ’;
title5 ’ Double-blind, Randomized, Placebo Control, Two Parallel Groups ’;
run;
proc freq data�one;
tables center*tmt/nopercent nocol norow;
format tmt tmtf.;
run;
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Table B.2 SAS Program Used for Generation of Random Codes by Simple Randomization
for Three Parallel Groups

options linesize�70 pagesize�40 nodate;
data one;
seed�716891;
n�1;
p�1/3;
do center�1 to 4;
do sub�1 to 24;
seed�seed�(sub*(center-1));
tmt�rantbl(seed,p,p,p);
subject�(14*100000)�(center*1000)�sub;
output;
end;
end;
run;
proc print; run;
proc format;
value tmtf 1�’Placebo’

2�’100 mg ’
3�’200 mg ’;

value centerf 1�’J. Smith, MD’
2�’M. Dole, MD ’
3�’A. Hope, MD ’
4�’C. Price, MD’;

proc sort data�one; by center;
proc print data�one split�’*’ ; pageby center; by center;
id subject; var tmt;
label

subject�’Subject*Number*———’
tmt�’Treatment*Assignment*——————’;

format tmt tmtf. center centerf.;
title1 ’ Table 4.3.4 ’;
title2 ’ Example of Simple Randomization for Four Centers ’;
title3 ’ Program:[DRUGXXX.PXXX016.SAS.NCKUJPL]SIMPRAN.SAS ’;
title4 ’ Random Codes for Drug XXX, Protocol XXX-014 ’;
title5 ’ Double-blind, Randomized, Placebo Control, Three Parallel Groups ’;
run;
proc freq data�one;
tables center*tmt/nopercent nocol norow;
format tmt tmtf.;
run;
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Table B.3 SAS Program Used for Generation of Random Codes by Permuted-Block
Randomization and Random Allocation for Two Parallel Groups

options linesize�70 pagesize�40 nodate;
proc plan ordered;
factors center�4 blocks�6 cell�4;
treatments t�4 random;
output out�perblock;
run;
data perblock; set perblock;
tmt�1;
if t gt 2 then tmt�2;
sub�_n_;
subject�(14*100000)�center*1000�(sub-(center-1)*24);
proc format;
value tmtf 1�’Active Drug’

2�’Placebo ’;
value centerf 1�’J. Smith, MD’

2�’M. Dole, MD ’
3�’A. Hope, MD ’
4�’C. Price, MD’;

proc sort data�perblk;  by center;
proc print data�perblock split�’*’ ; page by center; by center;
id subject;
var t tmt;
label

subject�’Subject*Number*———’
t�’ Random*Permutation*——————’
tmt�’Treatment*Assignment*——————’;

format tmt tmtf. center centerf.;
title1 ’ Table 4.3.7 ’;
title2 ’ Example of Permutated-Block Randomization ’;
title3 ’ for Four Centers and a Block Size of Four ’;
title4 ’ Program:[DRUGXXX.PXXX014.SAS.NCKUJPL]PERBLK.SAS ’;
title5 ’ Random Codes for Drug XXX, Protocol XXX-014 ’;
title6 ’ Double-blind, Randomized, Placebo-Control, Two Parallel Groups ’;
run;
proc sort data�perblock; by center;
proc freq data�perblock;
tables center*tmt/nopercent nocol norow;
format tmt tmtf.; run;
proc freq data�perblock; by center;
tables blocks*tmt/nopercent nocol norow;
format tmt tmtf.; run;
proc plan ordered;
factors center�4 cell�24;
treatments t�24 random;
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Table B.3 (Continued)

output out�perblock;
run;
data perblock; set perblock;
tmt�1;
if t gt 12 then tmt�2;
sub�_n_;
subject�(14*100000)�center*1000�(sub-(center-1)*24);
proc format;
value tmtf 1�’Active Drug’

2�’Placebo ’ ;
proc sort data�perblk; by center;
proc print data�perblock split�’*’; page by center; by center;
id subject;
var t tmt;
label

subject�’Subject*Number*———’
t�’ Random *Permutation*———’
tmt�’Treatment *Assignment*———’;

format tmt tmtf. center centerf.;
title1 ’ Table 4.3.6 ’;
title2 ’ Example of Random Allocation for Four Centers ’;
title3 ’ Program:[DRUGXXX.PXXX014.SAS.NCKUJPL]RANALC.SAS ’;
title4 ’ Random Codes for Drug XXX, Protocol XXX-014 ’;
title5 ’ Double-blind, Randomized, Placebo Control, Two Parallel Groups ’;
run;
proc freq data�perblock;
tables center*tmt/nopercent nocol norow;
format tmt tmtf.;
run;
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Table B.4 SAS Program Used for Generation of Random Codes by Permuted-Block by
Random Selection for Parallel Groups

options linesize�70 pagesize�40 nodate;
data one;
do bloc�1 to 6;
do sub�1 to 4;
input tmt @;
output;
end; end;
cards;
1 1 2 2 2 2 1 1 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2
data one; set one;
do center�1 to 4;
output;
end;
proc sort data�one; by center block sub;
proc plan ordered;
factors center�4 nblock�6;
treatments block�6 random;
output out�perblock;
run;
proc sort data�perblock; by center block ;
data perblock; merge perblock one; by center block ;
proc sort data�perblock; by center nblock sub;
proc print;
data perblock; set perblock;
sub�_n_;
subject�(14*100000)�center*1000�(sub-(center-1)*24);
proc format;
value tmtf 1�’Active Drug’

2�’Placebo ’;
value centerf 1�’J. Smith, MD’

2�’M. Dole, MD ’
3�’A. Hope, MD ’
4�’C. Price, MD’

proc sort data�perblk; by center;
proc print data�perblock split�’*’ ; pageby center; by center;
id subject;
var tmt;
label subject�’Subject*Number *———’

tmt�’Treatment*Assignment*———’;
format tmt tmtf. center centerf.;
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Table B.4 (Continued)

title1 ’ Table 4.3.8 ’;
title2 ’ Example of Permutated-Block Randomization by Random Selection ’;
title3 ’ of Blocks for Four Centers and a Block Size of Four ’;
title4 ’ Program:[DRUGXXX.PXXX014.SAS.NCKUJPL]PERBLK.SAS ’;
title5 ’ Random Codes for Drug XXX, Protocol XXX-014 ’;
title6 ’ Double-blind, Randomized, Placebo-Control, Two Parallel Groups ’;
run;
proc sort data�perblock; by center;
proc freq data�perblock;
tables center*tmt/nopercent nocol norow;
format tmt tmtf.; run;
proc freq data�perblock; by center;
tables nblock*tmt/nopercent nocol norow;
format tmt tmtf.; run;
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Absorbing event, 560
Absorption, distribution, metabolism, and excretion

(ADME), 15, 16
Accelerated approval, 6, 27, 554
Accuracy, 47, 93, 98, 126
Additivity, 371
Adherence, 117
Adverse drug experience, 570
Adverse drug reaction (ADR), 569, 573

serious (SADR), 573
unexpected (UADR), 573

Adverse event (AE), 19, 91, 110, 564, 569–572, 574,
608

absorbing, 565
common, 584, 586
primary, 584
rare, 586
secondary, 584
serious (SAE),19, 59, 215, 362, 511, 564, 574, 584,

608
significant, 564, 569, 585
treatment-emergent (TEAE), 572

Adverse Event Expedited Reporting System
(AdEERS), 584

Adverse experience, 21, 569
serious, 21
unexpected, 21

Adverse reaction, 15, 117, 563
Advisory committee, 30, 51

AIDS, 31, 43, 100, 103, 256
Alternative

fixed local, 465
Lehmann’s, 405
one-sided, 428, 431
two-sided, 535

Alzheimer’s disease assessment scale (ADAS),
195–196, 607

Analysis
as-treated, 259
change from baseline, 353
cross-sectional, 333
efficacy, 511, 520
evaluable, 518, 520
intention-to-treat (ITT), 59, 110, 257, 419, 512,

518–520, 624
interim, 19, 89, 109, 112–114, 201, 298, 386–387,

424, 511–512, 609
administrative, 549–550
formal, 549 
unplanned, 547
unreported, 547

meta-, 115–116, 166, 247, 285
ordinary regression, 408
per-protocol, 520
power, 439, 443
precision, 439, 441
preferred, 520
prestudy power, 439

Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition 
By Shein-Chung Chow and Jen-pei Liu
ISBN 0–471–24985–8 Copyright © 2004 John Wiley & Sons, Inc.
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regression, 527
shift, 595
stratified, 141, 431

post-treatment, 535
subgroup, 145, 511, 538, 545–546
survival, 389, 464, 588

Analysis set, 609
full, 518

Analysis of covariance (ANCOVA), 118, 316, 319,
527, 538, 546

Analysis of variance (ANOVA), 311, 337, 527
one-way, 337, 452
two-way, 552

Analysis of variance table, 312, 316, 541
Angiotensin converting enzyme (ACE) inhibitor, 7,

191, 551
Approach

alpha spending, 423
backwards, 633
Bayesian, 288
confidence interval, 306, 442
maximum error, 442 
population-average, 337 
quasi-likelihood, 334

Approximation, 47
large-sample, 365
non-central chi-square, 463 
normal, 324

Arrhythmia, 96
ventricular, 515

Aspirin, 60, 62
Assumption

consistency, 263
fundamental bioequivalence, 115–116
normality, 371, 528, 543
proportional hazard, 408

Atrial fibrillation, 92
Average, 55, 155

adjusted treatment, 526
overall, 525
population, 70, 534
sample, 70
simple, 534
unadjusted treatment, 526

AUA-7 symptom score, 340, 537
Audit, 617
Audit trail, 150, 630

Baseline, 17, 65, 125, 307, 318, 513
multiple, 514

Baseline characteristic, 19, 66, 509
Baseline, comparability, 511, 512
Baseline hazard, 405
Baseline value, 512–514
Beta-block, 191
Beta-blocker Heart Attack Trial (BHAT), 164, 390,

418, 421, 430

Bias, 23, 43, 47, 48, 51, 89, 93, 97, 100, 112, 120, 129,
140, 437

accidental, 48, 128–129, 135–136, 141
investigator’s, 128
judgmental, 48
observer’s, 102
operational, 48
selection, 17, 48, 51, 127–128, 135, 140
statistical, 48
subjective, 127

Bioavailability, 3
Bioequivalence, 3, 80–81, 436

individual, 158, 497
population, 158, 497

Bioinformatics, 511–512
Biologic Act, 12
Biological product, 3, 8, 11
Biostatistician, 35, 119, 149, 156, 610
Biostatistics, 31, 35
Blind

double, 23, 105, 159, 160, 173, 192
single, 159–160, 173
triple, 23, 113, 159–160

Blinding, 17, 89, 118, 120, 158, 165
double, 121, 239
single, 121
triple, 121

Blindness, 113, 158
Blocking, 54, 113, 121
Blood chemistry, 150, 608
Body System Classification, 575
Bone mineral density (BMD), 54, 90
Bonferroni adjustment, 539, 542
Bonferroni correction, 542
Bonferroni technique, 539, 542
Boundary

asymmetric
lower, 434
upper, 433

group sequential, 423–424, 426
O’Brien—Fleming, 425–426, 434
O’Brien—Fleming group sequential, 426
one-sided, 431
Pocock’s group sequential, 425 

British Medical Research Council, 120
B-value, 388, 432–433

Cancer Therapy Evaluation Program (CTEP), 574
Cardiac arrhythmia, 97
Cardiac Arrhythmia Suppression Trial (CAST), 45,

103, 189, 196, 199, 211, 418, 431, 432
Case report form, 33, 42, 65, 119, 212, 618, 628,

631
design, 638
flow, 633–634
principles, 633
tracking, 633–634
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tracking system, 633
transmission form, 634–635 

Case report tabulation, 511
Center, 246, 602
Center for Biologics Evaluation and Research

(CBER), 8, 11, 13, 35, 552
Center for Devices and Radiological Health (CDRH),

8, 11,13
Center for Drug Evaluation and Research (CDER), 4,

8, 11, 13, 35
Center for Food Safety and Applied Nutrition

(CFSAN), 8
Center for Veterinary Medicine (CVM), 8
Central clinical trial file, 634
Central limit theorem, 47, 303, 333
Central tendency, 46
Change from the baseline, 307–308, 319, 423, 512, 538

absolute, 512
percent, 512

Chebyshev inequality, 442
Cholesterol, 46
Cholesterol and Recurrent Events Trial, 402
Chronic lymphocytic leukemia (CLL), 27
Chronic myeloid leukemia (CML), 27
Chronic obstructive pulmonary disease (COPD), 91
Classification

one-way, 311, 319
two-way, 315

Clinical Data Update System (CDUS), 584
Clinical Development Plan, 31–32
Clinical Development Program, 31
Clinical investigator, 14

phase I, 14
Clinical monitor, 159
Clinical research, 36
Clinical research associate, 150, 160
Clinical significant change, 593
Clinical trials

audit, 617–619
definition, 1–2
fraud, 614–616
goal, 89
history, 3–5
inspection, 617
misconduct, 614–616
monitor, 617–618  

Clinician, 36, 156
Cluster, 174
Cluster size, 175
Code of Federal Regulations (CFR), 1, 11,15, 22
Coding Symbols for a Thesaurus of Adverse Reaction

Terms (COSTART), 563, 575–577
Combination

optimal dose, 282, 283
Combination therapy, 270, 277, 537
Combined product, 13, 270
Combined therapy, 13

Committee for Proprietary Material Products, 32, 100
(CPMP) Working Party, 511, 519

Comparative clinical significance, 78
Comparison

baseline, 512
between-group, 356
indirect confidence interval (ICIC), 264
marginal, 354
multiple, 19, 313, 509, 539–540
pairwise, 417
unbiased, 517
virtual, 264
within-patient, 179
within-treatment, 307

Complete clinical data package (CCDP), 287
Compliance, 59, 118, 171

patient, 89, 117–118
Compliance Program Guidance Manual, 619, 632
Composite clinical index, 340
Composite efficacy measure, 294
Composite index, 543
Confidence interval, 66, 68, 70, 75, 81, 257, 303,

306–307, 309, 566
Bonferroni simultaneous, 313–314
exact, 345
large-sample, 393, 399, 407 
multi-t, 313
repeated, 388, 426
Satterwaite’s, 310
simultaneous, 312, 541
symmetric, 70
two-sided, 247

Confidence limit
one-sided, 81, 259 

Confounding, 43, 55, 57
Congestive heart failure (CHF), 201
Consistency, 54, 287
Consolidated Standards for Reporting of Trials

(CONSORT) group, 623
checklist, 625
statement, 624

Contingency table
2 x 2, 360, 400, 588

Continuity correction, 355, 362, 588
Contract Research Organization (CRO), 550, 619, 642
Contrast

linear, 408
orthogonal, 514 
within-subject, 182

Control, 1, 6, 17
active, 100, 169, 239–240, 250–251, 255–256, 440
active concurrent, 22, 101, 106–107, 250
active treatment concurrent, 101
concurrent, 101, 115, 239
dose-comparison concurrent, 22
dose-response concurrent, 101, 105, 250
external, 101, 250
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historical, 22, 101, 109, 250, 263
matched, 161
no treatment, 22, 101
no treatment current, 101, 107–108, 250
placebo, 101, 118, 169
placebo concurrent, 22, 100–107, 250, 263
placebo putative, 263
positive, 161, 251

Control group, 165
Cooperative North Scandinavian Enalapril Survival

Study II (CONSENSUS II), 551
Correlation

intrasubject, 333
pairwise, 544
within-subject, 334, 463

Correlation coefficient, 563
intrablock, 142
intraclass (ICC), 175, 177

Correlation matrix, within-group, 543
working, 334

Coronary Drug Project Research, 153
Cost-benefit analysis, 2
Cost-effectiveness, 2, 31
Cost-minimization, 2
Covariance, 334
Covariance matrix, 335, 373, 596

estimated large-sample, 407
sample, 382, 514
within-group sample, 515

pooled, 516
Covariance structure, 335, 436, 505
Covariate, 19, 60, 126, 320, 329, 388, 403, 463, 523,

609
adjustment, 512, 524
categorical, 528

stratified, 147
subject-specific, 528
time-dependent, 408, 413, 566, 609
time-independent, 403, 413, 609

Criterion, 94 
discontinuation, 606
eligibility, 94–97, 99
entry, 512
exclusion, 17, 94–97, 114, 122, 130, 611
inclusion, 17, 94–97, 114, 122, 130, 611

Critical value, 74, 423

Data
baseline, 513
binary, 359, 422
categorical, 300, 339, 372

combined, 366
ordered, 300, 340, 362
ordinal, 377
repeated, 341, 379, 395

censored, 386–390, 435, 464
correlated, 435–436

left-, 436
right-, 436–437

continuous, 301
cross-section, 193
demographic, 512
efficacy, 118, 548
genotypic, 553
historical, 109
laboratory, 569
longitudinal, 189, 326, 333, 337
measurement, 300
missing, 19, 511
numerical, 320
postrandomization, 518
ranked, 300
repeated, 383
safety, 548

Data correction, 638, 641
Data edit check specifications, 637–638
Data entry, 628, 638

double, 638–639
Data quality, 639, 641, 645
Data query, 628
Data validation, 636, 641
Data verification, 538–641, 642, 644 
Data and safety monitoring committee (DSMC), 200,

201, 604
Data capture

electronic, 645 
Data coordination and statistical analysis center, 550
Data coordinator, 149–150, 159–160, 520
Data management, 141, 151

clinical (CDM), 628
Data management file, 645

master, 645 
Data management process, 647
Data management system, 550
Data monitoring, 89, 109, 112, 387, 511, 546–547
Data monitoring board, 113

external, 113, 114
internal, 113

Data Monitoring Committee (DMC), 421, 550–551
independent, 200, 550

Data monitoring process, 422
Database, 65

archive, 642
design, 636
development, 636
finalization, 642
lock, 642
transfer, 642–645

Database development, 628
Database management system, 550
Dataset

evaluable, 511
intention-to-treat, 511, 523

Death per patient year (DPPY), 565
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De-escalation, 218
Degree of freedom, 303–309, 312–316, 325, 331, 398,

452, 479
Department of Health and Human Service (DHHS), 34
Design, 88, 89

add-on, 213
Balaam, 181, 183, 480
balanced incomplete block, 184–185
blinded reader, 169, 208
complete crossover, 177
completely binomial, 131
complete randomized, 169
cluster randomized, 169, 174, 176
crossover, 54, 58–59, 127, 169, 179, 184, 186, 474

four-sequence, two-period (4 x 2), 203
higher-order, 59, 181, 479
replicated, 182, 494, 497, 504
two-sequence, two-period, 435–436, 476
2 x 3, 181

crossover dose-response, 189, 266, 268
dose escalation, 216, 268

standard, 218
dual, 182
enrichment, 169, 194, 200, 512, 555
experimental, 17, 19
extended-period, 182
factorial, 6, 282, 296 

2 x 2, 60, 274, 276
2 x 2 x 2, 276 
fractional, 296
full, 2, 274, 297
incomplete, 296

disconnected, 297
multilevel, 275
partial, 277

flexible dose-escalation, 194
flexible two-stage, 227
forced dose-escalation, 169, 189, 192
four-period, 480
Gehan’s phase II, 232
group comparison, 169
group randomized, 174
group sequential, 169, 200
matched pairs parallel, 169, 170
minimax, 226, 232
multiple-stage, 492

Fleming’s, 232
flexible, 216, 226–227
optimal, 216, 226–228

optimal, 167, 181, 183
optimal three-stage, 228
optimal two-stage, 226
orthogonal Latin squares, 184
parallel, 54, 112

three-group, 169, 174
two-group, 167, 187

parallel dose-response, 189, 266–267

parallel-group, 169, 171–172, 186
placebo challenging, 169, 202–203, 266, 493
randomized block, 179
randomized complete block, 170
randomized incomplete block, 182
randomized phase II, 232
randomized parallel dose-response, 266
randomized withdrawal, 213
replacement, 213
replicated, 182
selection, 612
single-stage, 128

up-and-down, 218
titration, 169, 188, 193

accelerated, 222
forced, 169, 266, 268
optimal, 269
optional, 189, 266, 269
standard, 188

two-period, two-sequence (2 x 2) crossover, 181, 187
double standard, 182

two-sequence dual, 182, 480
two-stage, 220, 226

flexible, 227
Simon’s optimal, 226
up-and-down, 220

two-stage Simon, 226
up-and-down, 216, 218, 220
variance-balance, 183
Williams, 183, 266, 277

Design matrix, 463
Diabetes Prevention Program, 173
Diabetes Prevention Program Research Group, 173–174
Diagonal matrix, 590
Dictionary

COSTART, 563, 575–577
CTC, 574–575
HARTS, 575
ICD, 577
ICD-9, 577
ICD-9-CM, 577
IMT, 563, 583
J-ART, 575, 577
MedDRA, 563, 577
WHOART, 575–577

Difference
clinical, 44
clinically

important, 80
meaningful, 110, 112, 438, 440
scientific meaningful, 438
significant, 78, 80–81

period, 475
significant, 124
statistical, 44
statistical significant, 78–80, 110, 440
treatment, 81 
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Disease, 2
Alzheimer, 110
coronary heart (CHD), 434

Disease incidence, 292
very low, 293

Dispersion, 46
Distribution

binomial, 351
product, 372

Cauchy, 513
chi-square, 378, 380–382. See also Distribution, χ2

central, 380–382, 398, 400 
noncentral, 490

exponential, 235
extreme-value, 374
F, 312, 316, 318, 331, 452, 494

noncentral, 453
hypergeometric, 361, 363, 397

product, 370
independent and identical, 122
normal, 46, 302, 333, 532

multivariate, 373, 463, 514
permutation, 146, 487

joint, 431
Poisson, 384
population, 46, 65
prior, 224
probability, 122, 124–125, 333
sampling, 47, 65, 73, 125, 431
standard normal, 321, 345, 351, 399, 423, 442, 471
Student t-, 303, 305, 309
t-, 313, 475, 479

central, 477–478
noncentral, 446

χ2, 325
central, 373

DNA bank, 558
Dose

maximum effective, 173
maximum tolerable (MTD), 41, 104, 188, 216–217,

224, 236, 266–267, 271, 540
maximum useful (MUD), 266
minimum effective (MED), 105, 188, 266–267, 468,

470, 540
Dose-response, 30, 265
Dose-response curve, 435

individual average (IDRC), 265
population average (PDRC), 265

Dosing range, 14
Double-dummy, 162
Dropout, 89, 117, 511, 560
Drug, 3, 8, 11

combination, 77, 271, 273, 278
fixed-combination, 272–273

Drug Price Competition and Patient Term Restoration
Act, 3, 29, 116

Duration, maximum, 420, 428, 430

Eastern Cooperative Oncology Group (ECOG), 202
Effect, 73, 77

adverse, 96
block, 142
carryover, 58–59, 179–181, 187, 436
center, 534
common treatment, 528
confounding, 44, 55, 57
direct drug, 180
drift, 55
drug, 180
estimated treatment, 416, 523
fixed, 326, 475

direct, 475
interaction, 44, 55
main, 60
optimal therapeutic, 117
overall average drug, 326, 331
overall treatment, 533
overall trend, 514
period, 436
pharmacokinetic, 14
pharmacological, 14
placebo, 102, 107, 513–516
prophylactic, 386
random, 331, 474
residual, 168, 179
sequence, 58, 181, 436
sensitivity-to-drug, 78, 81, 255–256
side, 14, 20, 549
subject, 566
synergistic, 271
therapeutic, 117, 168, 271
time, 327, 331, 514
treatment, 19, 53, 57–59, 128, 179, 436

consistent, 533
overall, 533–534

treatment-by-time, 326
trend, 514

Effectiveness, 1, 2, 6, 8, 22, 31, 64, 75, 79, 91, 103,
110, 261

Efficacy, 1–3, 6–7, 17, 24, 31, 47, 55, 71, 77, 90, 104,
290

average, 155
clinically meaningful, 168
composite, 294
false negative, 59
false positive, 59
individual, 155–158

average, 158
noninferior, 240
population, 155–156
relative vaccine, 294 
superior, 106–107, 542, 545

Electrophysiologic Study versus Electrocardiographic
Monitoring (ESVEM) Trial, 196–199

EM algorithm, 189, 559
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Endpoint, 6, 14, 89, 307, 318
binary, 353, 385, 481

independent, 482
paired, 487 

binary clinical, 360, 560
categorical, 339–340, 386, 529
censored, 386

independent, 489
censored clinical, 435

paired, 436
clinical, 54, 66, 109, 386

efficacy, 512
safety, 512

clinical surrogate, 45
continuous, 365, 386, 528
efficacy, 17, 60, 64, 66, 89

ordinal categorical, 341
exploratory, 541
hard, 159
multiple, 511–512, 539–543
multiple binary clinical, 543
multiple efficacy, 538
normal continuous, 532 
primary, 48, 423, 486, 538, 542
primary clinical, 47, 55, 66, 94, 126, 339, 437, 512
primary efficacy, 17, 19, 91, 93, 247, 257, 387,

434
primary safety, 92
repeated categorical, 341
safety, 17, 19
secondary, 541–542
secondary efficacy, 91, 93, 437
superior, 247
surrogate, 27, 103
survival, 481
tertiary, 541, 542

Entry, staggering, 420
Equality, 81, 474, 493
Equation

Fieldewald, 569
generalized estimating (GEE), 189, 326, 331,

336–337, 529
maximum likelihood, 484
normal, 373

Equivalence, 81, 476, 483, 579
average, 298
clinical, 44, 77, 111
one-sided, 385
population, 298
therapeutic, 106, 384, 440
two-sided, 252, 257

Equivalence limit, 481
Equivalence/noninferiority, 81, 90
Erectile dysfunction, 90, 106, 193, 206
Error

maximum, 442
measurement, 54–55

random, 48, 53
within-subject, 420

systematic, 420
type I, 71–72, 112, 122, 417, 419, 427, 438, 441
type II, 71, 438, 441
within-subject, 420

Establishment License Application (ELA), 13, 15
Estimate, 65, 336

Bayesian, 224
best linear unbiased, 514
consistent, 128, 236, 334, 373
estimated generalized least squares, 516
inconsistent, 333
inefficient, 333
interval, 60, 70, 301
Kaplan-Meier, 392–394, 414 
Kaplan-Meier survival, 393, 397, 411
least squares (LSE), 526
maximum likelihood (MLE), 335, 373, 406–407,

470, 560
point, 66, 68, 301, 566
unbiased, 470

Estimation, 301
interval, 343

large sample, 402
Kaplan-Meier nonparametric, 392
sample size, 89, 109, 110
unbiased, 437

Estimator
best linear unbiased, 514
combined, 535
consistent, 334, 536
estimated generalized least squares (EGLS), 515
least squares, 318
maximum likelihood, 373, 380, 488

modified, 437
restricted, 484

median unbiased, 437
minimum variance unbiased (MVUE), 535–536,

546
point, 437
quasi-likelihood, 334
unbiased, 58, 501, 526, 533
unbiased consistent, 515

Estrogen Replacement and Atherosclerosis (ERA)
trial, 556

European Community (EC), 24
European Federation of Pharmaceutical Industries

Associations (EFPIA), 35
European Organization for Research and Treatment of

Cancer (EROTC), 216, 574
Evaluation, 1, 2, 17

image, 209
blinded, 209
combined, 211
consensus, 210
fully blinded, 209
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independent, 210
onsite, 210
offsite, 210
primary, 209
separate, 210
unblinded, 209
unpaired, 210  

laboratory, 608 
safety, 77, 110

Evidence
qualitative, 437
quantitative, 437
substantial, 8, 22, 75, 84

Expanded access, 24
Expectation, 333

marginal, 334
Expected value, 323, 526
Experimental unit, 1, 2, 17, 169, 174

Factor, 275
classification, 534
confounding, 59, 110, 523
demographic, 118
designed, 534
ethnic, 285

extrinsic, 285–286
intrinsic, 285

expected bias, 128, 135
finite population correction, 365
fixed, 533
prognostic, 130, 144, 414, 509, 523
random, 533
risk, 523
variance inflation (VIF), 175

Federal Food, Drug, and Cosmetic Act (FD&C), 3, 6,
8, 11, 562 

Federal Register, 34, 168, 564
Fibonacci sequence, 217
Fieller theorem, 236
Food and Drug Administration (FDA), 3, 8, 32, 100

inspection, 613
organization, 8–12

Food and Drug Administration Modernization Act
(FDAMA), 4, 12

Forced expiratory volume in one second (FEV1), 91
Fred Hutchinson Cancer Research Center (FHCRC),

176
Function

baseline hazard, 403–404, 409
cumulative distribution, 389, 479
cumulative standard normal distribution, 470
hazard, 391, 403, 406

proportional, 403
Kaplan-Meier survival, 393, 397
identity, 413
likelihood, 224, 415
link, 334

logistic, 217
log-likelihood, 409–410, 414, 560
monotone, 431
power, 439, 472
probability density, 391
quadratic error loss, 224
quasi-score, 333
spending, 431

alpha, 388, 423, 427, 430, 433
continuous, 431

step, 408
survival, 234, 338, 387, 390, 394, 489

General search category, 575
Generalizability, 82, 84, 239, 243, 284, 315
Generic drug product, 29, 116
Genetics, 510–511, 552
Genotype

inert, 557
reactive, 557

Gold standard, 268
Good clinical practice (GCP), 32–35, 93, 109, 602,

604, 617, 632
Good data management practice (GDMP), 629–630
Good laboratory practice (GLP), 629–630
Good programming practice (GPP), 645
Good statistical practice (GSP), 35, 630
Global Utilization of Streptokinase and Tissue

Plasminogen Activator for Occluded
Coronary Arteries Trial (GUSTO I or Global Use

of Strategies to Open 
Occluded Coronary Arteries), 7, 45, 52, 153, 162,

262
GUSTO III, 262
Greenwood formula, 393
Growth curve, 337

Hamilton depression scale, 78, 79, 104
Hardy-Weinberg equilibrium, 536
Health maintenance organization (HMO), 4
Health status survey short form, 36, 248
Helmert matrix, 517
Helmert transformation, 514
Hematology, 150, 608
Heterogeneity, 536
High level group term (HLGT), 581
High level term (HLT), 581
Holter monitor, 45, 198–199
Holter recording, 190
Homogeneity, 531
Homoscedasticity, 537
Hormone Replacement Therapy (HRT), 433, 556
Hotelling T2, 514–555
Human, 1, 2
Human immunodeficiency virus (HIV), 27, 97, 103,

107, 256
Hypercholesterolemia, 6
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Hypothesis
alternative, 19, 71–73, 305, 394, 544

specific, 444
equivalence, 489
interval, 80, 112, 252, 384, 476, 479
noninferiority, 261, 486, 491
null, 19, 71–77, 80, 124, 306, 309, 318–319
ordered, 540
one-sided, 75, 80, 247–248, 306, 476, 489
point, 80, 112, 474, 479
primary, 607
secondary, 607
statistical, 17, 19, 394, 609
superiority, 261
tertiary, 607
two one-sided, 273, 477
two-sided, 75, 247, 305, 444
two-sided alternative, 559

Human genome project (HGP), 553
Hutchinson Smoking Prevention Project (HSPP),

176–177
Hypothesis of equality, 476
Hypothesis testing, 43–44, 65–66, 71, 306

Imbalance, 141
covariate, 127–128, 136–138, 145
treatment, 133–136

Immune response, 292
Immunogenicity, 289–290
Incidence, disease, 292
Index

Chalmer’s, 622
Jadad’s, 622 
sensitivity, 86–87

Inference
biased, 518
clinical, 89–90, 93, 101, 104, 109
statistical, 17, 23, 44–47, 90–93, 101, 109, 114, 122,

301, 344
unbiased, 517

unbiased, 89
Information, 419, 420

clinical, 419, 628
genetic, 552–553
genomic, 511  
individual, 428
maximum, 420–421, 432
statistical, 419
total, 420, 430

Information matrix, 373, 407
Informed consent form, 100, 103
Inspection, 612, 617
Institutional review board (IRB), 20, 21, 100, 602,

608, 618
Interaction, 43, 60–64, 297

crossover, 64 
drug-to-drug, 168, 282, 562

qualitative, 63–64, 242, 246, 536
quantitative, 63–64, 242, 245, 536
time-covariate, 409
treatment-by-age, 415–416
treatment-by-center, 62, 116, 241, 244–245, 315–316,

535–536
qualitative, 241–242, 246, 531
quantitative, 241–242, 246, 531

treatment-by-covariate, 546
treatment-by-effect, 537–538
treatment-by-period, 58
treatment-by-study, 247
treatment-by-time, 44, 329, 415–416 
treatment-by-visit, 331
two-factor, 375

Interaction between treatment and time, 468
Interaction mean square, 534
Interactive Voice Randomization System (IVRS),

646–647
International Classification of Diseases (ICD), 575
International Conference on Harmonisation (ICH),

34–35, 511
International Index of Erectile Function (IIEF), 194
International Federation of Pharmaceutical Manufacturers

Association (IFPMA), 35
Intervention, 2, 433

therapeutic, 127, 174 
Investigational Device Exemptions (IDE), 13
Investigational New Drug Application (IND), 13–16,

21, 631
commercial, 15
noncommercial, 15
rewrite, 14
treatment, 6, 21

Investigator, 23, 159
clinical, 602
principle, 604

In Vitro, 168, 200, 257
In Vivo, 168
Iterative reweighted least squares, 373

Japanese Pharmaceutical Manufacturers Association
(JPMA), 35

Kefauver—Harris Amendment, 3, 562
Kronecker product, 590

Last observation carried forward (LOCF), 337,
519–520

Latin squares, orthogonal, 183
Laboratory

central, 550, 592, 608
local, 592

LD10, 217
Level, 275

confidence, 66, 77, 441
nominal, 345, 424
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significance, 72, 110, 122, 418, 430, 609 
nominal, 424, 542, 544, 546
overall, 424, 431

Level of significance, 71–77, 306, 423, 441
nominal, 19, 89

Limit
equivalence, 81, 255, 259
equivalence/noninferiority, 259–261
noninferiority, 260–261
similarity, 496

Lilly reference, 593
Link

complementary log, 374
identity, 374
log, 374
logit, 374
probit, 374

Lipid Research Clinics Coronary Primary Prevention
Trial (CPPT), 154

Location, 46
Location shift, 322–323, 365, 370
Logit, 372

cumulative, 377
Lost to follow-up, 386, 417
Lowest level term (LLT), 580

Masking, 113, 158
Maximum urinary flow rate, 102
Mean, 65, 301

arithmetic, 46
marginal, 334 
overall sample, 311, 327
population, 301, 419, 432, 560
sample, 66, 309, 318

Mean square error (MSE), 312, 331, 437
Measure, repeated, 301, 326, 463
Measurement, repeated, 333, 337, 538

baseline, 512–514
multiple, 513

Median, 46
Medical device, 3, 8, 11
Medical Dictionary for Drug Regulatory Affairs

(MedDRA), 563, 577
Medical monitor, 520
Medical Research Council, 4
Medication event monitor system (MEMS), 117
Medicine, 1
Median survival, 235
Metered dose inhaler (MDI), 106
Method

continual reassessment, 41, 216, 223, 235–236
delta, 236
estimated generalized least squares (EGLS), 543
exact, 361
GEE, 334
group sequential, 297, 388, 422, 437
Haybittle and Peto, 425

Kaplan-Meier, 387
least squares, 282
likelihood ratio, 236
life-table, 189 
log-likelihood, 374–375
logrank, 397
maximum likelihood, 282
minimization, 144
model-based, 343, 372
nonparametric, 392
parametric, 392
randomization-based, 343
response surface, 283
scoring, 374–375
stochastic curtailment, 432
two-stage active control testing (TACT), 264

Missing value, 89, 117, 560, 609
completely random, 561
informative, 561
intermittent, 338
random, 561

Missing at random (MR), 118, 385, 559
Missing completely at random (MCAR), 385, 561
Ministry of Health, Labor, and Welfare (MHLW) of

Japan, 32
Mode, 46
Model

analysis of covariance, 523
analysis of variance, 452, 476, 532

one-way, 526
two-way, 532 

Anderson-Gill, 566
autoregressive, 337
cell-means, 535
Cox’s proportional hazard, 402–410, 529, 546

stratified, 409–410
Cox’s proportional hazard regression, 403, 405
fixed effect, 454
frailty, 566
generalized linear (GLM), 323, 454
hierarchical, 288
interaction, 408
invoked population, 123
linear, 128
linear random effect, 419
linear regression, 224, 463
logistic linear dose-response, 189
loglinear, 384
main-effect, 534
marginal, 333–337
Markov, 466
mixed effect, 534
nested, 326
nonlinear, 128
permutation, 142
population, 112
population average, 337
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proportional hazard, 234, 388
proportional hazard regression, 403
proportional odds, 377–378
random effects, 337, 566
randomization, 122–123
randomized complete block, 454
reduced, 409
subject-specific, 337
transition, 333
two-way classification fixed, 316–317

Monitoring, 617
Monotherapy, 275, 279, 297
Mortality, 60–62, 115, 241
Multicenter Automatic Defibrillator Implantation 

Trial II, 201
Multiple baseline measurement, 513
Multiple-evaluator, 162
Multiple-placebo, 162
Multiplicity, 537–538, 609
Myocardial infarction, 45, 60, 92–93, 115, 153, 201,

260, 339

N-of-I randomized trial, 157
National Cancer Institute (NCI), 4, 216
NCI Common Toxicity Criteria (CTC), 216, 574, 581
National formulary, 12, 29
National Heart, Lung, and Blood Institute, 45, 198,

418, 433
National Institute of Allergy and Infectious Disease,

552
National Institutes of Health (NIH), 3, 417, 433
National Institutes of Health Reauthorization Bill, 154
National Institutes of Health Stroke Scale (NIHSS),

55–63, 126, 340, 607
National Institute of Neurological Disorder and Stroke

(NINDS), 55, 340
National Surgical Adjuvant Breast and Bowel Project

(NSABP), 614  
Negative event, 571
New Drug Application (NDA), 6, 13, 15, 22, 24,

631
abbreviated (ANDA), 13, 29, 631
supplemental (SNDA), 30

Newton—Raphson algorithm, 373
Noninferiority, 81, 493

clinical, 81
Noninsulin-dependent diabetes mellitus (NIDDM),

95, 172, 186
Nonparametrics, 320
Normality, 371
Numerical integration, 428

Objective 
primary, 90–92, 251 
primary study, 17, 439
secondary, 17, 90–92
tertiary, 83

Open-label, 121, 159–160
Outcome

binary, 486
paired, 487

Outcomes research, 2

Parallel track regulation, 6, 27
Parameter, 46–47, 68, 83

efficacy
primary, 451, 607
secondary, 607
tertiary, 607

noncentrality, 446, 453
nuisance, 333, 463 
overdispersion, 334
safety, 608–609
scaled, 333

Part 11 compliance, 630–631
Partial likelihood, 406, 410
Patient, 1, 2, 159, 326

evaluable, 508 
qualified, 508

Patient characteristic, 512
Patient data listing, 511
Patient identification number, 113
Patient identifier, 522
Peak urinary flow rate, 63, 123, 125
Period

accrual, 200 
active treatment, 117, 171 
baseline, 512
follow-up, 420, 604
lead-in, 171
placebo run-in, 187, 435, 513
recruiting, 422
run-in, 17, 171, 256
single-blind placebo run-in, 173
treatment, 179, 187
washout, 58, 171, 179, 187, 256

Permutation, 125
random, 135–139 

Pharmaceutical entity, 339
Pharmaceutical identity, 1, 31
Pharmaceutical Research and Manufacturers of

America (PhRMA), 35
Pharmacoeconomics, 2
Pharmacogenomics, 2, 7
Pharmacokinetics/pharmacodynamics (PK/PD), 286,

622
Phase

active, 572
dose-titration enrichment, 194
double-blind treatment, 173
enrichment, 194, 198, 611
maintenance, 117
placebo baseline, 1, 94
double-blind, placebo-controlled, 194 
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placebo run-in, 117
placebo washout, 189
run-in, 611
run-in single-blind, 173 
sustained active, 184

Phase I clinical investigation, 14
Placebo, 2, 52, 60, 90–91, 102, 120, 124, 127

matching, 423
Placebo concurrent group, 103
Placebo responder, 196
Play-the-winner role, 145

modified (MPW), 145–146
randomized (RPW), 145–147

Population, 2, 71
efficacy patient, 520
geriatric, 100
homogeneous, 122, 125
intention-to-treat, 538
patient, 46–47, 114, 122
pre-protocol patient, 520
targeted, 2, 17, 46, 52, 65, 83, 333, 512
targeted patient, 43, 53, 84, 89, 93–94, 114, 122,

215, 243, 301, 602, 611
time-heterogeneous, 123, 140

Posterior density, 224
Postrandomization discontinuation, 522
Postmenopausal Estrogen/Progestin Interventions

Trial (PEPI), 417
Power, 72–73, 97, 110–111, 122, 133, 141, 438, 441,

541, 609
conditional, 432
estimated, 83

Precision, 47, 53–54, 89, 98, 438
optimal, 126

Premarket Approval of Medical Devices (PMA), 13, 15
Premature discontinuation, 519
Premature withdrawal, 520
Premature ventricular beat (PVB), 45
Prescription Drug User Fee Act (PDUFA), 4
Price Competition and Patent Restoration Act, 3
Primary pulmonary hypertension, 108 
Principle

intention-to-treat, 517–520, 560
uncertainty, 626

Probability, 43–46, 128, 406
conditional, 83, 391, 406
coverage, 345
discordant, 487
generalizability, 84–87, 284, 285
posterior, 224
reproducibility, 83, 284

Procedure
blinding, 510
Bonferroni, 530–540
Dunnett, 541–542
exact test, 351
generalized least square (GLS), 516

group sequential, 423–424
K-stage, 424
O’Brien-Fleming, 428–430, 437
Pocock, 425, 430

group sequential bioequivalence testing, 437
Hochberg, 540
Holm’s Bonferroni, 540–541 
intersection union test (IUT), 545
nonparametric, 544
one-step, 248
semiparametric statistical, 403
two one-sided tests, 477, 490
unconditional exact, 356
two-stage, 247
unconditional large-sample, 355

Process
random, 535
titration, 192

Program to Assess Alternative Treatment Strategies to
Achieve Cardiac Health (PATCH), 104, 248 

Product License Application (PLA), 6, 13, 15
Programmer, 149, 159–160
Proportion, 357

binomial, 345
marginal, 381
population, 344, 356
proportional hazard, 407
sample, 344, 444

Prostate, Lung, Colorectal and Ovarian (PLCO) cancer
screening trial, 248, 609

Protocol, 17–18, 43–44, 112, 114, 122
amendment, 20, 613
clinical, 602
component, 603
deviation, 603, 612
fraud, 603–604
implementation, 603
misconduct, 603, 614
preparation, 603
structure, 603
violation, 520, 603, 613

Protocol review committee, 33, 149
internal, 149

Pure Food and Drug Act, 3
P-value, 43–44, 71–73, 82, 112, 124–125, 246, 306

conditional exact, 335 
observed, 74–75, 83

Quality assurance, 150, 601
Quality of life, 2, 7, 31, 66–68, 92, 104, 326
Query form, 639

Random allocation, 129, 134–135, 139
Random assignment, 122–129, 139, 150–153
Random censoring, 392
Randomization, 4, 8–9, 19, 23, 117, 120–123, 127,

165–166, 239
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adaptive, 121, 129, 142
covariate, 129, 142, 144
response, 129, 142, 145
treatment, 129, 142

bias coin, 142, 143
complete, 121, 129–136, 142
cluster, 176
minimization, 153
permuted-block, 121, 129, 136–139, 142
restricted, 132, 142
simple, 131–137
stratified, 126–127, 141, 290, 340
unstratified, 127
urn, 143–144
within-trial, 263

Randomization code, 113, 129, 131–135, 149, 298,
519

Randomization method, 127–128
Random number, 131
Random selection, 122, 129, 139
Range, 46

equivalence, 575
normal, 386, 593–594
reference, 592
referenced laboratory, 362
standard, 592
therapeutic dose, 282

Rank, 321
Rapid eye movement latency (REML), 147
Rate, 565

crude incidence, 564–565
cumulative event, 466
dropout, 337, 519
eradication, 272
experimentwise false positive, 539, 544, 546
experimentwise type I error, 539, 544
event, 432
false negative, 541
false positive, 430, 541–542

overall, 542
cumulative error, 429

hazard, 464
incidence, 451, 567
instantaneous death, 391
maximum uroflow, 537
mortality, 390
prevalence, 567
relative hazard, 398, 402
response, 226, 234, 558
survival, 555, 565
type I error, 417, 438, 492, 520

overall, 509, 639
Ratio

benefit-to-risk, 280
hazard, 234, 405–408, 436
odds, 357

cumulative, 357

relative hazard, 402
signal-to-noise, 84

Recurring event, 567–568
Region

acceptance, 74, 306
rejection, 71, 74, 306

Regression
linear, 378 
logistic, 372, 529, 546, 588

Regression coefficient, 333, 373, 410, 526
estimated, 335
individual, 436

Regulation, 13
Relationship, dose-response, 58, 88, 282, 468, 540
Reliability, 43, 47, 53, 89, 93
Repeatability, 593
Report,

clinical, 510, 523
full integrated, 510
integrated clinical, 511
integrated summary safety, 531
integrated statistical, 511
safety, 21
statistical, 510

Reproducibility, 51, 82, 243, 246, 248, 315, 593
Response

binary, 340, 353
immune, 292
therapeutic, 436

Response Evaluation Criteria in Solid Tumor
(RECIST), 216, 607

Response surface, 281
estimated, 282

Risk
consumer’s, 72
exposure, 565
false positive, 428
producer’s, 72
relative, 357–358, 404–407, 451, 486,

Risk set, 406

Safety, 2, 3, 6–8, 14, 17, 22, 24, 31, 47, 55, 66, 71, 77,
89–90, 103–104, 110, 118, 290

Safety assessment, 109
Safety Medical Device Act (SMDA), 13
Sample

paired, 385
random, 71, 104, 301
representative, 46, 53, 114, 122, 333

Sample size, 47, 53, 77, 111, 114, 125–133, 297, 423,
438

adjustment, 560
determination, 19, 111–112, 438, 443, 609
estimation

censored data, 464
crossover design, 474
dose response, 468
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equivalence and noninferiority, 481
multiple samples

ANOVA, 452
GLM, 454

multiple-stage design, 492
one sample, 443
two sample, 445
variability

intersubject, 501
intrasubject, 494

expected, 226–228, 438    
justification, 111
planned, 559
reestimation, 558–560, 609

Sampling without replacement, 135
Scale

nominal, 339–340
ordinal, 339

Score
American Urinary Association (AUA) symptom, 63
integer, 365
Karnofsky performance, 387
modified Rankin, 93, 365
logrank, 365
positive and negative symptom (PANSS), 84
standardized midrank, 365

Second International Study of Infarct Survival (ISIS2),
60–61, 153, 273, 296

Sequential equivalence testing, 284
Session

closed, 551
executive, 551
open, 551

Sensitivity
assay, 78, 169, 255
ethnic, 284
global, 287

Sherley Amendment, 2
Single nucleotide polymorphism (SNP), 536
Significance

clinical, 77, 510
comparative clinical, 78–79
individual clinical, 78
prognostic, 512
statistical, 78–79

Similarity, 86–87, 175, 287, 483, 486
population, 287

Similarity circle, 156–157
Size, 544

block, 140–141, 166
effect, 86, 255
effective, 260, 263

Skewness, 46
Southwest Oncology Group (SWOG), 27
Special search category, 575, 581
Sponsor, 159
Spontaneous events, 572

Spread, 46
Standard

gold, 208
true, 208

Standard deviation, 46, 65, 301–302, 309, 442
population, 302
sample, 302
within-group sample, 543

Standard operating procedure (SOP), 32, 121, 149, 618
Standard error, 47, 65–66, 70, 302, 336, 423

large-sample, 406, 414
Statistical analysis plan (SAP), 164
Statistics, 47

Bhapkar Q, 382
descriptive, 43–44, 65–66, 532
Gehan test, 402
inferential, 43, 65–66
likelihood ratio, 463
linear rank, 142
logrank, 144, 398–399, 465
logrank test, 397–398, 501
Mantel—Haenszel, 367–368, 397–398

extended, 370
McNemar, 599
minimax, 246
paired Prentice-Wilcoxon, 436
Peto-Prentice-Wilcoxon, 144
sample, 47, 65
score, 503
Stuart-Maxwell, 597
summary, 549
t-, 303

two-sample, 475
two-sample unpaired, 546

test, 82, 305, 351
asymptotic, 355
large sample randomization, 365

Wald, 407
Wilcoxon-Mann-Whitney test, 322
Wilcoxon rank sum, 322

blocked, 370
Z-, 423

Steering committee, 550, 551
Stratification, 23, 54, 121, 126
Stratum, 141
Streptokinase, 45, 60, 62
Study

active control, 511–512
ADME, 32
adequate and well-controlled, 22–23, 71, 101, 153,

260
adequate and well-controlled clinical, 71
bridging, 86, 239, 283–289, 291

clinical, 87
blind reader, 152, 155
case-control, 126
CNAAB3005 International, 257
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dose-escalating, 160, 189
dose proportionality, 105
dose response (ranging), 16, 296, 468
dose titration, 54, 57
double-blind, three-arm, parallel, randomized, 313
Helsinki Heart (Health), 2, 7
immunogenicity

dose-response, 291
superiority, 291

immunogenicity persistent, 292
multivalent vaccine, 292
multicenter, 19, 116
National Institute of Neurological Disorder and

Stroke rt-PA Stroke 
(NINDS rt-PA Stroke Study), 62, 126, 153, 344

observational, 166
parallel-group, 173
pharmacokinetic/pharmacodynamic, 286
phase I, 14
phase I and II, 16
phase I safety and tolerance, 188
phase II, 14
phase IIA, 14
phase IIB, 14
phase II and III, 14, 547
phase III, 14, 543
phase IIIB, 14
phase III and IV, 113
phase IV, 15, 569
phase V, 15
Physicians’ Health, 2, 7, 154, 339, 358
placebo-controlled, double-blind, 386
positive control, 112
postmarketing surveillance, 160
premarketing surveillance, 160
prospective cohort, 446
randomized, 154, 386

multicenter, parallel-group, 323
retrospective case-control, 446
single-site, 241
Systolic hypertension in the elderly (SHEP), 7
titration, 58
two-group parallel, 386
uncontrolled, 100

Study center, 98, 159
Study site, 98
Subgroup, 564
Subject, 1, 2, 3
Subpopulation

heterogeneous, 123
homogeneous, 123

Sum of squares, 133
correct, 420
due to center, 316
due to error, 312–314, 319
due to treatment, 311–319, 337
error, 327

residual, 527
total, 311, 316

Summary statistical table, 511
Superiority, 493

global, 287
strict, 279–281, 296
wide, 280–281

Survival
event-free, 403
exponential, 464 
median, 235, 386
overall, 403

Symmetry, compound, 436
System organ class (SOC), 580

Term
high level, (HLT), 580
high level group (HLGT), 580
lowest level (LLT), 579

preferred, (PT), 579
Test

blocked Wilcoxon rank sum, 370, 528
Breslow-Day, 591
chi-square, 335, 360–361

randomized, 361
Cochran-Mantel-Haenszel, 590–591
distribution-free, 321
F-, 213–319, 327, 452
Fisher exact, 361, 586, 589
Gehan, 399
goodness-of-fit, 282
intersection-union, 544
Kolmogorov-Smirnov, 299
Kruskal-Wallis, 125, 320, 325–326, 337, 365
lack-of-fit, 282
linear rank, 125
logrank, 394, 399–401, 405, 433, 465
log-likelihood chi-square, 373
Mann-Whitney, 322
Mantel-Haenszel, 142, 367, 586–599
McNemar, 355, 365, 488, 600

one-sample, 380
two-sample, 380, 381

Min, 280
Newman-Keuls range, 327
nonparametric, 399
one-sample, 443
one-sided, 75, 76
paired t-, 301, 306–307
Pearson, 373
Pearson chi-square, 360–361
permutation, 123–125, 431

conditional, 125
unconditional, 125

Peto-Peto-Prentice-Wilcoxon, 125
randomization, 144
randomized chi-square, 361
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score, 407
sign, 436
statistical, 73, 75, 79
Stuart-Maxwell, 597
Student t-, 297
t-, 337
treadmill, 435
two one-sided, 479
two-sample, 445
two-sample t-, 77, 301–308
two-sample Z-, 443
two-sided, 73–84
Wilcoxon-Mann-Whitney, 322
Wilcoxon rank sum, 125, 297, 321, 337, 365, 543
Wilcoxon signed rank, 320–323
Wilcoxon two-sample rank sum, 399
Williams, 470–473

Therapeutic range, 168, 188
Therapeutic window, 188
Time, 329

calendar, 388, 417–421, 427
censoring, 391, 464
discrete information, 421
failure, 391
information, 417–421, 427
median failure, 436
median survival, 386, 393, 404
survival, 391–392

Titration
crossover, 17
dose, 326
forced, 17
parallel, 17

T-PA, 45, 63
Tolerability, 91
Toxicity, 92, 564, 568

dose limiting (DLT), 216–220
systematic, 563

Transcutaneous electrical nerve simulation (TENS),
163

Treatment, 1, 2, 17
active, 100, 250
actually given, 517
planned, 517
planned randomized, 518

Treatment-emergent events, 600
Treatment group, 276
Trial

active control, 77, 107, 251, 253, 256
two-arm, 25, 254, 255, 263

active control equivalence (ACET), 252–256, 260
adequate, well-controlled clinical, 11, 30, 43, 75,

82, 100, 283, 510
bioequivalence, 70, 115, 240
clinical, 1–4, 17, 422

quality assessment, 620
combination, 239–240, 270, 282

comparative, 159
comparative clinical, 120
confirmatory clinical, 112
Continuous Infusion versus Double-bolus Admin-

istration of Alteplase (COBALT), 107, 259
controlled clinical (CCT), 286
controlled randomized, 114, 127, 154
dose-ranging, 52
dose-response, 239–240, 265
double-blind, placebo-controlled, 172
double-blind, randomized multicenter

clinical, 537
double-blind, randomized, placebo-controlled, 104 
equivalence, 239, 250, 256, 481

active control, 252
two-sided, 251–252, 481

equivalence/noninferiority, 239, 250
extracorporal membrane oxygenation (ECMO),

146–147
Lipids Research Clinic Coronary Primary Preven-

tion, 154
maximum duration, 421
maximum information, 421
multi-arm, 229
multicenter, 98, 114, 141, 239–240, 244, 511,

529–530, 608
multicenter clinical, 242
noninferiority, 92, 107, 250, 252, 481

one-sided, 252, 481
phase I, 6, 289
phase I cancer, 216, 236
phase I clinical, 16, 27
phase II, 113, 289, 542
phase II cancer, 216, 238
phase II clinical, 27, 188–189
phase III, 16, 289
phase III clinical, 27
phase III confirmatory, 387
phase IV, 15
phase I, II, and III, 4, 24
pivotal, 82, 283
placebo-controlled, 256
placebo-controlled clinical, 508 
primary prevention, 2, 433
Prostate Cancer Prevention (PCPT), 7
randomized, controlled, 165
randomized, double-blind, parallel-group clinical,

546
randomized, double-blind, placebo-controlled, 418
randomized, triple-blind, two-parallel-group, 423
sequential, 239, 298
single-center, 114
single-site, 529
superiority, 75, 239, 247, 251, 263, 481
telescoping, 27
vaccine, 240, 289
vaccine clinical, 139, 289
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well-controlled randomized clinical, 154
women-health, 2

Trial monitor, 617–618

Unbiasedness, 44, 47
Uncertainty, 43–44
Uncertainty principle, 627
Urinalysis, 150, 608
U.S. master drug files, 285
U.S. National Cancer Institute, see National Cancer

Institute
U.S. National Heart, Lung, and Blood Institute, see

National Heart, Lung, and Blood Institute
U.S. National Institute of Allergy and Infectious

Disease, see National Institute of Allergy and
Infectious Disease

U.S. National Institutes of Health (NIH), see National
Institutes of Health

U.S. National Institute of Neurological Disorder and
Stroke, see National Institute of Neurological
Disorder and Stroke

U.S. Pharmacopeia, 12, 29

Validation, external, 255, 275
Validity

assay, 90
external, 114–115
internal, 114, 620–622

Variability, 43, 47, 53, 65, 79, 89, 94, 97, 110, 155,
301, 439

between-patient, 329
between-site, 593
interpatient, 53, 170, 179, 212
intersubject, 493
intrapatient, 158, 170, 212
intrasubject, 54, 182, 493
within-laboratory, 593

Variability of efficacy, 155
Variable

baseline, 512
binomial, 356
continuous, 301
derived, 636
discrete, 301
explanatory, 333–334, 375
latent, 362
Poisson, 374
primary efficacy, 109
primary response, 109

primary safety, 110
prognostic, 512
random, 302

Bernoulli, 444
binomial, 345
continuous, 389
chi-square, 361, 368, 591, 596. See also Variable,

random, χ2

F, 494
normal, 465
χ2-, 355

response, 519
secondary response, 109
standard normal, 446
time-dependent, 403

Variance, 46, 323, 437, 532
estimated, 542
estimated large sample, 357–359
intersubject, 501
intrasubject, 498
large-sample, 380
marginal, 334
pooled, 534
population, 301, 417, 446
sample, 309
within-group, 559

Variation, 46, 53, 120
biological, 45, 53, 156
intersubject, 53–54
intrasubject, 54
random, 311
temporal, 53–54

Ventricular ectopy, 190
Ventricular premature contraction (VPC), 103, 190,

196
Ventricular tachycardia, 538
Veteran Administration Cooperative Urological

Research Group, 123

Weighted least squares, 383
West of Scotland Coronary Prevention Study Group,

452
Women’s Heath Initiative (WHI), 433, 555, 609
World Health Assembly (WHA), 106
World Health Organization (WHO), 35, 179, 216
World Health Organization Adverse Reaction

Terminology (WHOART), 575–577
World Health Organization (WHO) antenatal care

trial, 178–179
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