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Preface

Science is about discovery. Discovery is the primary paradigm of science. The primary paradigm of

engineering and “applied science” is design. All scientists, whether physicists, biologists, chemists,

psychologists, sociologists, anthropologists, economists, geologists, or any other “ists,” attempt to

discover things. Sometimes, they want to discover the existence of something; sometimes they want

to discover how something works; sometimes they want to discover how several things are related;

sometimes they want to discover why something exists. Regardless, scientists are in the discovery

business. They do not in general want to alter the natural world; they want to understand it. In

contrast, the primary paradigm of engineering and applied science is design. Engineers, and those

who we will call “applied scientists,” want to design things. Clearly, it is important for the engineers

and applied scientists, whom we will call EASs, to understand nature and natural phenomena, but

understanding is not their goal. Their goal is to exploit nature, hopefully in a beneficial and

benevolent manner, in order to make something happen. Thus, the primary goal of the engineer

and applied scientist is design.

Statistics, as a discipline, is mostly oriented toward the discovery paradigm. Statistics courses

emphasize creating predictive models or classificatory models, either predicting nature or classifying

individuals. Most commonly, we hope to reject the hypothesis of no effect, in favor of discovering an

effect. It seems that often statistics is used to prove or disprove the existence of some phenomenon, as

opposed to aiding in the design of a product or process. This is not to say that statistical methods

cannot be used, or are never used, to help design something. Chemical engineers may use designed

experiments to optimize a process; manufacturing engineers may use experimental data to optimize

the operation of a machine; industrial engineers might use data to determine the optimal number of

operators required in a manual assembly process. This text is about gathering and analyzing empirical

observations (data) in order to aid in making design decisions. The EAS may believe that experimen-

tation is unnecessary for designing. He or she might believe that design decisions should be made

without any empirical observation and that experimentation is only useful for verifying or validating

designs. Every electrical engineer knows that V ¼ IR, but what happens to V if both I and R have

some random components? What about the ideal gas law, P ¼ kTV? There seems to be no need for

empirical data when applying these laws. The formulas and equations learned in an elementary

physics course may take on new meaning when accounting for probabilistic variation. Also, there are

many design situations where no simple equation exists. This text is meant to speak to the EAS, and

hopefully motivate her or him to experiment, with the design objective in mind.

Much of the discussion in this book is about models. Models are by definition incorrect. The

question is not whether the model truly represents reality, but rather whether the model adequately
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represents reality with respect to the problem at hand. Many of the ideas presented will focus on how

to gather data in the most efficient way possible in order to construct an adequate model.

The statistical methods presented are not new. In general, the techniques and concepts introduced

in this book are meant to stimulate the reader’s imagination and not meant to be the definitive answers

to problems. Certainly, the ideas presented are not an exhaustive list. The authors hope that this book

will present a variety of design situations familiar to many engineers and applied scientists and inspire

the reader to incorporate experimentation and empirical investigation into the design process.

Software is integrally linked to statistical analyses. Examples in this book have been worked using

several packages/languages/programs, notably SAS, R, JMP, Minitab, and MS Excel. It is the

authors’ belief that there is no “best” software in general. All packages and languages have

advantages and disadvantages. The point of using several types of software was simply to demon-

strate that no one package or language is best overall. This text is not a primer on software, however.

It is assumed that the reader has familiarity with some data analysis software.

This material can be used at the advanced undergraduate or first-year graduate level. The students

who would most benefit from this book are those studying engineering or applied science. The student

would benefit greatly from some accompanying laboratory work. While fully worked examples are

given in every chapter, there is no teacher like hands-on experience. Most of the chapters in this book

are subjects that are covered in an entire book by itself. The goal is to introduce the student to ideas

about empirical investigation in such a way as to motivate him or her to use experimentation as an aid

to design.

The authors encourage instructors to assign the students practical experience in conducting

experiments, making measurements and observations, and analyzing their data. Ideally, the student

should use data that are intrinsically meaningful to him or her, such as experimental data associated

with a thesis or dissertation. The fundamental learning objective of this book is for the reader to

understand how experimental data can be used to make design decisions and to be familiar with the

most common types of experimental designs and analysis methods.

Although the text includes introductory chapters in probability and statistics, it would greatly help

the student to have already been exposed to those subjects, as well as some linear algebra.

We must make a small apology about the letter “p.” We use this letter to symbolize probability,

numbers of parameters in a model, and powers of ½. It can be a little confusing. At least the reader is

warned.

A brief word about data-intensive modeling methods, such as artificial neural networks and fuzzy

algorithms, is appropriate. This is brief, because those methods are not mentioned at all in the text.

While valuable and important, they could have and have had entire texts devoted to those techniques.

This text will focus on methods that can be used with “small” data sets, generally gathered in a

designed experiment.

How to Use This Book as a Text

This book could be used as a text for a course titled something along the lines of “Statistical Methods

for Engineers and Applied Scientists,” “Experimentation in the Design Process,” or “Using Empirical

Data to Aid in the Design of Products and Processes.” It could also provide students some more

in-depth discussion of statistical methods discussed in a Design for Six Sigma course. The first seven

chapters are largely about factorial experimentation, although the material in Chap. 3 on measure-

ment systems does not traditionally appear in experimental design texts. The remaining chapters

might be called “special topics in data analysis,” and much of that material involves application of

experimental designs. The book is intended to stimulate students to engage in empirical investigation
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as part of their design process. It is not a text about engineering design, nor is it strictly an

experimental design text. There are many topics in experimental design and analysis that are not

included (e.g., split-plot designs, One-way ANOVA, partially balanced incomplete blocks, and the

method of steepest ascent), and virtually no discussion about engineering design, per se. Rather, it is

intended to help the student understand how empirical investigation and empirical models could be

used to aid in design. If students had previously taken a course in the elements of probability and

statistical theory, the first two chapters could be skipped. Otherwise, the authors suggest covering

Chaps. 1 and 2 in the first week and one chapter each week thereafter. Some of the chapters, notably

Chaps. 11 (Reliability) and 15 (Robust Design), might require more time than 1 week. Of course, the

instructor should use her or his discretion in including additional materials, excluding some of the

text, or the timing of coverage for any of the text’s material.

Parsippany, NJ, USA Scott A. Pardo
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Chapter 1

Some Probability Concepts

Probability begins with the ideas of “sample space” and “experiment”. An experiment is the

observation of some phenomenon whose result cannot be perfectly predicted a priori. A sample

space is the collection of all possible results (called outcomes) from an experiment. Thus, an

experiment can be thought of as the observation of a result taken from a sample space. These

circular-sounding definitions may be a little annoying and somewhat baffling, but they are easily

illustrated. If the experiment is to observe which face of a six-sided die lands up after throwing it

across a gaming table, then the sample space consists of six elements, namely the array of 1, 2, 3, 4, 5,

or 6 dots, as they are typically arrayed on the faces of a six-sided die. An event is a set of outcomes.

So, for example, the set A ¼ {1, 3, 5} could represent the event that an odd number of dots shows up

after throwing a six-sided die. Events have probabilities associated with them. For discrete events,

such as in the die-throwing experiment, the probability is the number of outcomes contained in the

event set divided by the total number of outcomes possible. So, the probability of event A as

previously defined is:

Pr Af g ¼ #outcomes in A

#outcomes possible
¼ 3

6

Sample spaces need not be so discrete or finite; they can be continuous and infinite, in that they can

have an infinite number of outcomes. For example, if a sample space consists of all possible initial

voltages generated by LiI batteries made in a battery manufacturing plant, then it would have an

infinite (but bounded) number of possible outcomes.

A random variable is a mapping from a sample space into (usually) some subset of the real

numbers (possible over the entire real line). Think of the random variable as a “measurement” taken after

the experiment is performed. Thus, the number of dots in the array showing after the die is cast, or the

voltage as measured by a volt meter, would be random variables. There are two basic classes of random

variables, discrete and continuous. Discrete random variables are mapped from the sample space to

(possibly infinite) subsets of integers, and continuous random variables are mapped to (possibly infinite)

subsets of real numbers. The die example is discrete, and the voltage example is continuous.

Every random variable has a probability distribution function that describes the chances of

observing particular ranges of values for the random variable. In the case of discrete random

variables, it also makes sense to talk about the probability of an experiment resulting in a particular

value, e.g., the probability that the number of dots in the die array showing is 4. For continuous

variables, it makes sense to talk about the probability of obtaining a value in a “small” range, but the

probability of obtaining a particular value is 0. This is not to say that particular values of continuous
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random variables are never observed or measured; it just means that we do not have the ability to

predict a particular value with any non-zero measure of uncertainty.

A probability cumulative distribution function (cdf) describes the probability that a random

variable is less than or equal to a particular value. We will use capital letters to represent the random

variable, and lower case letters to represent particular values. If X is a random variable, then the cdf

for X is symbolized as:

FX xð Þ ¼ Pr X � xf g

In the case of discrete random variables, this function is a sum of probabilities for particular values,

p(xk), up to and including the value x:

FX xð Þ ¼
X
xk�x

p xkð Þ

The function p(xk) is referred to as the probability mass function (pmf). In the case of continuous

random variables, the summation is replaced with and integral, and the discrete probability

mass function is replaced with something called a probability density function, or pdf (usually;

there are some more or less degenerate cases where a density function does not exist), f(x),
which defines the probability that the random variable would have values observed in a small

interval, dx:

f X xð Þdx ¼ Pr x� dx � X � xþ dxf g

So the cdf is:

F xð Þ ¼
ðx

�1
f X ξð Þdξ

In general, the probability mass functions and density functions are defined in terms of parameters

that give these functions their particular characteristics. This book involves several special classes of

density functions and their associated parameters.

There are some special characteristics of random variables called moments. We will only be

concerned with two such characteristics, called expectation (or mean) and variance (and its square

root, called standard deviation). The expectation of a random variable is given by:

E
�
X
� ¼ μ ¼

X
k
xkp xkð Þ

ðþ1

�1
ξf ξð Þdξ

8><
>:

The sum is for discrete random variables, and the integral for continuous. The expectation is like the

center of gravity for the random variable, if one thinks about the density function describing the

distribution of mass over a beam. The variance is:

E X � μð Þ2
h i

¼ σ2 ¼

X
k
xk � μð Þ2p xkð Þ

ðþ1

�1
ξ� μð Þ2f ξð Þdξ

8><
>:
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Again, the summation and integral are for discrete and continuous random variables, respectively.

The square root of σ2 is called the standard deviation, and it is useful in making probability calculations

with the normal probability distribution. Note that the expected value of any function of the form

(X � μ)r is called the rth moment about the mean. That is, the rth moment about the mean is:

E X � μð Þr½ � ¼

X
k

xk � μð Þrp xkð Þ
ðþ1

�1
ξ� μð Þrf ξð Þdξ

8>>>><
>>>>:

It turns out that most of the time, parameters of distributions can be expressed in terms of these

moments.

Table 1.1 shows the parametric forms of density and mass functions for several special random

variables referred to in the text.

Some important concepts used throughout the text are mutual exclusivity, independence, condi-

tional probability and conditional expectation. If A and B are two events, the joint probability is the

probability that after the experiment is performed, both A and B would have occurred. Once again

using the die-throwing experiment, suppose A ¼ {odd number of dots showing} B ¼ {number of

dots showing is less than 4}. The joint probability would be the number of outcomes in the

intersection of the two sets A and B divided by the total number of outcomes, namely:

Pr A \ Bf g ¼ # 1; 3; 5f g\ 1; 2; 3f g
# 1; 2; 3; 4; 5; 6f g ¼ 2

6

The probability that either event A occurs, event B occurs, or both event A and B occur is the

probability of the union of the two sets A and B. In general:

Pr A [ Bf g ¼ Pr Af g þ Pr Bf g � Pr A \ Bf g

Table 1.1 Some probability density and mass functions

Name Parameters Density or mass function Range of values

Normal μ, σ 1ffiffiffiffi
2π

p
σ
exp �1

2
x�μ
σ

� �2� � �1 < x < þ1

Gamma n, λ λn

Γ nð Þ x
n�1exp �λxð Þ x > 0

Chi-squared ν 1=2ð Þν2
Γ ν

2ð Þ x
ν
2
�1exp �1

2
x

� � x > 0

Student’s t ν Γ 1
2
νþ1ð Þð Þffiffiffiffi

πν
p

Γ 1
2
νð Þ 1þ x2

ν

h i� νþ1ð Þ
2 �1 < x < þ1

F ν1, ν2 Γ ν1þν2
2ð Þ

Γ 1
2
ν1ð ÞΓ 1

2
ν2ð Þ

x
ν
2ð Þ�1

1þxð Þ ν1þν2ð Þ=2
x > 0

Poisson λ λke�λ

k!
k ¼ 0, 1, 2, . . .

Binomial n, p n
k

	 

pk 1� pð Þn�k k ¼ 0, 1, 2, 3, . . . n

Beta α, β Γ αþβð Þ
Γ αð ÞΓ βð Þ p

α�1 1� pð Þβ�1 0 < p � 1

1 Some Probability Concepts 3



Two events are called mutually exclusive if:

Pr A \ Bf g ¼ 0

Two events are called independent if:

Pr A \ Bf g ¼ Pr Af gPr Bf g

Conditional probability is the probability of an event given that another event is known to have

occurred.

The idea is that the probability of an event, given that some particular condition is known to exist,

depends on the particular condition. As an example, the probability that the air temperature at the

earth’s surface, given that it is measured inside the arctic circle in January, is between 35 and 45 �C,
is not the same as the probability of obtaining a temperature between 35 and 45 �C, given temperature

is measured in Death Valley, CA, in the same time period. The notation we will use for conditional

probability is:

Pr A
��B� �

which is read, “the probability of event A given that B is known to have occurred”, or more simply,

“the probability of A given B”.
The conditional probability is calculated as:

Pr A
��B� � ¼ Pr A \ Bf g

Pr Bf g

Manipulating the formula for conditional probability gives an expression for the joint probability in

terms of conditional probabilities:

Pr A \ Bf g ¼ Pr A
��B� �

Pr Bf g ¼ Pr B
��A� �

Pr Af g

There is a generalization of this relationship, called Bayes’ Theorem. Suppose there are a set of

events, B1, B2, . . ., Bk that are mutually exclusive and they partition the sample space, S, i.e.:
{Bi} \ {Bj} ¼ ϕ ¼ {} ¼ the empty set, i 6¼ j, and [ k

i¼1 Bif g ¼ S
Then if A is some other event, then

Pr Af g ¼
Xk
i¼1

Pr A\Bif g ¼
Xk
i¼1

Pr A
��Bi

� �
Pr Bif g

Thus, Bayes’ theorem states that

Pr Bj

��A� � ¼ Pr A
��Bj

� �
Pr Bj

� �
X k

i¼1
Pr A

��Bi

� �
Pr Bif g

This theorem, and its continuously-valued analog, is particularly useful when A represents

observations (data), the Bi represent different possible values (or sets of values) for some parameter,

Pr{A|Bi} is the likelihood of observing A if the parameter is equal to (or in the set) Bi, and Pr{Bi} is the

degree to which it is believed, prior to getting data A, that the parameter equals (or is in the set) Bi.
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Expected values can also be conditional. For example, the average duration of daylight, given that

the location is New York City in June, will not be the same as the average duration of daylight, given

the location is Melbourne, Australia in June. The notation is:

E Y
��x� 

where Y is a random variable, and x is a known condition, which in turn could be a particular value of
another random variable, or the value of some parameter. Formally, conditional expectation is defined

in terms of conditional probability mass or density functions. That is, perhaps the density of variable Y
depends of the value of another variable, X. If f(y|X ¼ x) is the conditional density of Y given X ¼ x,
then the conditional expectation of Y given X ¼ x is:

E Y
��X ¼ x

�  ¼
ðþ1

�1
yf y

��X ¼ x
� �

dy

Two random variables, X and Y, are said to have a joint probability distribution, with a joint

cumulative distribution function F(x,y) ¼ Pr{X � x AND Y � y}. If it exists, the two variables

have a joint density function:

f x; yð Þ ¼ ∂2F x; yð Þ
∂x∂y

The two variables are said to be independent if:

F x; yð Þ ¼ FX xð ÞFY yð Þ

FX(x) and FY(y) are the respective cumulative distribution functions of each random variable. These

one-variable cdfs are referred to as marginal cdfs. Similarly, if the joint density function exists, then

when X and Y are independent:

f(x,y) ¼ fX(x) fY(y). The conditional density of Y given X ¼ x is expressed in terms of the joint and

marginal densities:

f
Y
��x y

��x� � ¼ f x; yð Þ
f X xð Þ

Key Points

• Probability is a mapping from sets, called events, into the interval [0,1].

• Random Variables (RVs) are mappings from sample spaces into (usually) the real numbers.

• RVs can either be discrete or continuous.

• RVs have cumulative distribution functions (cdfs); discrete RVs have probability mass functions;

continuous RVs usually have probability density functions.

• CDFs often have parametric forms.

• Bayes’ Theorem provides a convenient way of using data to update the uncertainty about a

distribution’s parameters.
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Exercises and Questions

1. A production lot of 100 million plastic beads consists of 60 % red, 20 % white, and 20 % blue

beads. Five percent of the red beads are defective and 2.5 % of the white beads are defective.

The overall percent defective beads is 7 %. What percent of the blue beads are defective?

A: 17.5 % (Hint: express Pr{Defective} in terms of the conditional probabilities of defective

given bead color)

2. The expected value of the weight of a seed from a hybrid corn plant is 3.0 g, and the variance is

0.01. Assuming that seed weight is normally distributed, what is the probability that a seed will

weigh between 2.75 and 3.25 g? A: ~0.98758

3. Are there any situations where the probability of an event is not conditional?

4. How do you interpret the statement: “There is a 70 % chance of rain tomorrow.”?
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Chapter 2

Some Statistical Concepts

This book is concerned with making inferences about parameters of probability distribution

functions. An inference is a generalization made from some specific observations. The specific

observations are the data; the generalization is about the values of the parameters. The data are

presumed to be a (relatively) small subset of values obtained, measured, or observed in some way

from a larger population (sample space). Generally, the parameters are unknown. What we have

instead are sample statistics, which are functions of the data. These statistics are themselves random

variables, in that every new subset of values from the population yields potentially at least a new

value for the statistic. As a result, the sample statistic also has a sample space associated with it, and a

probability distribution function as well. The probability distribution function for a sample statistic is

often referred to as a sampling distribution function (Meyer 1970). The form of the sampling

distribution usually depends on the formula for the statistic, and the distribution function of the

random variable for which the data constitute a subset of values or observations.

One common situation is to make inferences about the expected value of a random variable having

a normal probability density, i.e.:E Xð Þ ¼ 1ffiffiffiffi
2π

p
σ

Rþ1
�1 xe�

1
2

x�μ
σ

� �2
dx ¼ μ (it is a convenient coincidence

that the expected value of a normally distributed random variable happens to be one of its parameters)

The problem is that both μ and σ, the two parameters for the normal distribution, may not have

known values. We can only infer something about this expected value based on a finite subset of

values from this normally distributed population. Let x1, x2, x3, . . ., xn represent the values of this

finite subset, called a sample. We can compute two sample statistics:

x ¼ 1

n

Xn

i¼1
xi, and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � xð Þ2
s

These represent sample estimates for the population parameters μ and σ. These estimates are referred

to as “point” estimates, in that they are single values, and not a range or interval.

An inference would be made if we wanted to know (infer) that the expected value of this particular

normal distribution was equal to a particular value or not.

There is some formalism, called hypothesis testing, concerning inference. The notion is that we do

not know the value of a parameter, but perhaps we would like to know specifically if the parameter

either equals a particular value or if it falls in some particular range. Hypotheses always come

in pairs; the “null” hypothesis, usually symbolized as H0 (hence the term “null”) and the alternative,

H1, which is in some sense the logical negation of the null. The idea is that a test statistic, such as x,
would, if the null hypothesis is true, have a value that would fall within some interval with some a
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priori determined probability, which we will call 1 � α. The probability, α, is the probability of

obtaining a value of the statistic outside the pre-specified range even though the null hypothesis is

true; this is called Type I risk. Since we do not know if the null is true or not, we only decide to believe

it (accept) or disbelieve it (reject). Often, the alternate hypothesis can be true under an infinite number

of possible alternative values for the parameter of interest. For example, if we were interested in

testing the hypothesis that a population mean, μ, was either equal to a specific value, say μ0, or that μ
is not equal to μ0, the pair of hypotheses might look like:

H0: μ ¼ μ0 vs. H1: μ 6¼ μ0.
Of course, there are an infinite number of possible values for μ that would make the null hypothesis

false. The probability of rejecting the null hypothesis when it is false is called power. The power,

usually symbolized as 1 � β, is a function of alternate values of μ (i.e., values other than μ0). The
value of β is referred to as Type II risk. Usually, a curve of power as a function of alternate values of

the parameter is constructed. Oddly enough, this curve is referred to as a “power curve”.

If we “hypothesize” about whether the expected value is equal to μ0, i.e., some specific value, we

form yet another sample statistic:

t ¼
ffiffiffi
n

p
x� μ0ð Þ
s

This statistic, if the expected value of the random variable X actually is equal to μ0, has a sampling

distribution called Student’s t with a parameter called degrees of freedom (df) equaling the conve-

nient (and known) value n � 1. The inference to be made is whether it is believable that the expected

value of X is equal to μ0 or not. If the value of the statistic t falls within a “reasonable” range we would
expect (say a range that covers 95 % of values for a random variable having a Student’s t distribution
with df ¼ n � 1). In other words, if p ¼ α

2
, α ¼ 0.05, and tp represents the 100p percentile of this

Student’s t distribution, we would expect the sample statistic to fall somewhere between tp ¼ t0.025
and t1�p ¼ t0.975 with probability 0.95 (95 %). So the inferential rule for this statistic could be the

following:

If the sample statistic, t, falls in the interval (t0.025,t0.975) then we are willing to believe that the

expected value of the random variable we were sampling is equal to μ0. Otherwise, we will not

believe it. Alternatively, we can calculate the probability that, given the null hypothesis is true, a

Student’s t variable would be greater than (in absolute value) the computed test statistic, t. This
probability is called a p-value. If the p-value is lower than some pre-specified level, say 0.05, then we

would reject the null hypothesis H0 in favor of the alternate, H1. The power is computed by

calculating the probability that the t statistic would fall outside the range (t0.025,t0.975) when in fact

μ equals to some values other than μ0. If μ actually equals μ0, then the power is equal to 0.05 (i.e., α).
In the case of the t statistics, the power is calculated using probabilities from something called a non-

central t distribution (Bickel and Doksum 2007). The non-central t (which we will symbolize as T’)
distribution has an extra parameter, called the non-centrality parameter (ncp), which would equal in

this case:

ncp ¼
ffiffiffi
n

p
μa � μ0ð Þ
σ

The value of μa is varied, and the power is the probability calculated using the non-central t:

Pr T
0
< t0:025 OR T

0
> t0:975

��ncp ¼
ffiffiffi
n

p
μa � μ0ð Þ
σ

� �
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The values t0.025 and t0.975 are percentiles of the usual (central) t distribution. As sample size

increases, the ability to “detect” departures from H0 (i.e., reject the null hypothesis) increases.

There are virtually an infinite number of possible test statistics. However, there are only a few for

which the distribution of the statistic, given some null hypothesis, is relatively easy to use to make

probability calculations. In this text, we will mostly encounter t statistics and F statistics.

A concept closely related to hypothesis testing is the confidence interval. Unlike point estimates,

confidence intervals are ranges of values that have some stated probability (confidence level) of

containing the actual value of parameters. Confidence intervals are computed using data, and they can

be constructed for any parameter. The trick is that the confidence intervals of some parameters are

more difficult to construct than others. Nowadays, with modern computing capabilities, it is relatively

easy to construct confidence intervals for parameters that can be expressed in terms of

expectations. The method of boot-strapping (Efron 1982) is particularly useful in computing confi-

dence intervals. In some important cases, however, confidence intervals have relatively simple

closed-form expressions. In particular, the 100(1 � 2α) % confidence interval for the expected

value, μ, given the sample mean, x, and sample standard deviation, s, is:

x� t1�α n� 1ð Þ sffiffiffi
n

p

The constant t1-α(n � 1) is the 100(1 � α) percentile of s Student’s t distribution with n � 1 degrees

of freedom. The value:

sffiffiffi
n

p

is the sample estimate of the standard error of the mean, which is the standard deviation of sample

means. Note that as the sample size, n, increases, the width of the confidence interval decreases. Thus
increasing sample size increases the precision of estimation.

One of the nice things about the confidence interval formula for the mean is that it actually yields

a truly 95 % confidence interval for μ, regardless of how the random variable X is distributed, at least

as the sample size gets “big enough”. This fact is due to something called the central limit theorem.

Of course, “big enough” depends on how close you need to be to having 100(1 � 2α) % confidence.

Even smaller sample sizes (say 10 or 20) are probably adequate for insuring that the confidence level

is really about 100(1 � 2α) %. In general, and the sample size increases, the width, or imprecision, of

the confidence interval decreases. It is important to understand that increased sample size does not

increase the confidence level; rather, increasing sample size decreases the width of the interval.

Two intervals, having the same confidence level, could have very different widths. Suppose that with

a sample size of n ¼ 5, the experimenter obtained a sample mean of x ¼ 10 and a sample

standard deviation of s ¼ 2. With this sample size, and α ¼ 0.025, t1�α ¼ t0.975 � 2.78. Then the

100(1 � 2(0.025)) % ¼ 95 % confidence interval for the mean would be:

x� t0:975
sffiffiffi
n

p � 10:0 � 2:78
2ffiffiffi
5

p � 10:0� 2:49 ¼ 7:51; 12:49ð Þ

Now suppose the experimenter obtained x ¼ 10 and s ¼ 2, but n ¼ 35. Then t0.975 � 2.03 and the

95 % confidence interval would be approximately:

x� t0:975
sffiffiffi
n

p � 10:0 � 2:03
2ffiffiffiffiffi
35

p � 10:0� 0:69 ¼ 9:31; 10:69ð Þ
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Both of these are 95 % confidence intervals, and both are based on identical values for the sample

statistics. However, the interval with n ¼ 35 is considerably narrower in width that the interval with

n ¼ 5.

The confidence level is statement about the interval, and not about the parameter. That is, the

parameter is assumed to have some unknown value. The EAS constructs an interval that has a 100

(1 � 2α) % chance of “capturing” the true value of the parameter. The precision of that interval

depends mostly on the sample size.

For an excellent coverage of probability and statistical topics, see Meyer (1970).

A Brief Note on Sample Size Estimation

The topic of how to determine an appropriate sample size is in fact worthy of an entire book.

Generally, sample size is chosen to either provide a particular probability to reject a null hypothesis

when the truth departs from the null assumption by some specific quantity, or to provide a confidence

interval of some pre-specified width. For a much more complete discussion of how to choose a sample

size, see Desu and Raghavarao (1990).

Key Points

• Statistics are computations made using empirical observations, and are used to estimate

parameters of a population. Any computation with data is referred to as an “estimate”.

• Statistics are themselves random variables, and as such have distributions, called “sampling

distributions”.

• Sampling Distributions are used to make inferences about population parameters, through hypoth-

esis tests and confidence intervals.

• A confidence interval can be constructed for any parameter; some confidence intervals are easier to

compute than others.

Exercises and Questions

1. The 95 % confidence interval, based on a sample of n parts, for mean length of a steel rivet is

(0.245 cm, 0.255 cm). Does this mean that there is a 95 % probability that the true mean length is

between 0.245 and 0.255 cm?

2. How is a confidence interval affected by increasing the sample size? Consider the confidence

interval formula for the expected value.

3. What does the width (difference between upper and lower limits) of a confidence interval tell you?

4. Will a sample standard deviation shrink to zero as the sample size increases?
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Chapter 3

Measurement Systems Analysis

The EAS bases most of his or her decisions about design parameters on measurements, so it is

imperative that those measurements be trustworthy. There are two categories of measurement quality

we will discuss, namely accuracy and precision. Accuracy is the degree to which the measurement

differs from the truth, on the average. Precision is the degree to which the measurements vary from

instance to instance of measuring the same unit or item. These definitions would probably be better

termed “inaccuracy” and “imprecision”, but we will use the terms “accuracy” and “precision” to more

or less mean inaccuracy and imprecision. In order to assess accuracy, the true value of the dimension

or performance parameter for each part (or item being measured) in the sample must be known. In lieu

of knowing the true value, a more trustworthy “reference method” might be used to provide a more

accurate and precise measurement against which the measurement system to be evaluated will be

compared. This chapter will treat both the case where only precision can be evaluated (no reference)

and where accuracy may also be evaluated (in comparison to a reference method result).

No Reference Results Available

Initially we will focus on precision. The first question to ask is “how precise is precise enough?”

Consider the problem of measuring items to determine whether or not the dimension or parameter of

interest is within specified limits. The simplest case is when the measurement is continuously-valued,

and the dimension or parameter has both a lower and upper specification limit, and when the

measurement is non-destructive, so that items (which we will refer to as “parts”) may be measured

multiple times without being altered in any meaningful way. We are hoping that the amount of

variability when an operator measures a particular part multiple times is small compared to the

variability between parts. Furthermore, we are also hoping that regardless of which operator uses the

measurement device (which we will call “gauge”), the differences between operators is small

compared to the differences or variation between parts. Suppose that L and U represent the lower

and upper specification limits, respectively, for the dimension or parameter of interest. That means if

any part’s dimension is anywhere in the interval [L, U], then that part would be considered acceptable
for use. Suppose further that the variation in measurements made on a single part by a single operator

is normally distributed, with standard deviation σw. Assuming further that on the average, the

measurements are at the midpoint of the specification range, UþL
2
, then the range 6σw would contain

approximately 99.73 % of the measurements made on a single part by a single operator. Since the
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range U � L is the range of acceptable values for the dimension, then it would be desirable for the

ratio:

6σw
U � L

to be small. Conversely, we would want the reciprocal, which is the “capability index” called Cp, to

be large. Keep in mind that in this case, σw represents the variability in the measurement of a single

part, and not the variability between parts. If Cp were equal to 1, then for a part whose dimension is

exactly at the midpoint of the specification range, there would be approximately a 99.73 % chance

that the measurement would be within the limits. The smaller the within-part, within operator

variation, the larger the value of Cp would get. Values of Cp greater than 1 are desirable.

If a part’s dimension is equal to either U or L, then there would be a fairly high chance that the

part’s measurement would be outside the limits. The problem is to assess the conditional

probabilities:

PI ¼ Pr{measurement is within (U,L) j a part’s dimension is truly within (U,L)}

PO ¼ Pr{measurement is outside (U,L) j a part’s dimension is truly outside (U,L)}

Symbolize detection of an out-of-spec part with “+”, and no detection with a “�”. Figure 3.1

illustrates the four possible combinations of measurement-based decisions and actual true states.

Clearly we desire both PI and PO to be “high” probabilities (somewhere in the range of

95–99.99 %). Suppose X represents the measurement, and Y represents the true value of the part’s

dimension. If we assume that both have normal distributions, and that the expected value of X given

Y ¼ y is the true value of the dimension, and the average part’s dimension is truly μB, then we can

represent the probability Pr{L � X � U|Y ¼ y} mathematically:

Pr L � X � U
��Y ¼ y

� � ¼
ðU
L

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�y
σwð Þ2dx

The joint probability Pr{L � X � U, L � Y � U} is given by:

Pr L � X � U, L � Y � Uf g ¼
ðU
L

1ffiffiffiffiffi
2π

p
σB

e
�1

2

y�μB
σB

� �2ðU
L

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�y
σwð Þ2dxdy

The probability, PI, is then:

Pr L � X � U
��L � Y � U

� � ¼

ð U

L

1ffiffiffiffi
2π

p
σB

e
�1

2

y�μB
σB

� �2ð U

L

1ffiffiffiffi
2π

p
σw
e�

1
2

x�y
σwð Þ2dxdyð U

L

1ffiffiffiffi
2π

p
σB

e
�1

2

y�μB
σB

� �2

dy

Actual State
Measurement Decision Part is In-Spec Part is Out-of-Spec

Part is In-Spec (-) PI Pr{False "-"}

Part is Out-of-Spec (+) Pr{False "+"} PO

Fig. 3.1 Combinations

of decisions and states
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Assuming that the events {Y < L} and {Y > U} are mutually exclusive, then we can partition the

probability PO into two additive terms:

Pr X < L OR X > U
��Y < L OR Y > U

� � ¼ Pr X < L OR X > U
��Y < L

� �
Pr Y < Lf g

þ Pr X < L OR X > U
��Y > U

� �
Pr Y > Uf g

The left-hand side expression is a slight abuse of notation, but we want to emphasize the dependence

upon conditions involving Y. We can make some further simplifying assumptions that if Y < L, it is
virtually impossible for X > U, and similarly it is of negligible probability that if Y > U, X < L. The
approximation is then:

PO ¼ Pr X < L
�� Y < L

� �
Pr Y < Lf g þ Pr X > U

�� Y > U
� �

Pr Y > Uf g

The two terms are given by:

Pr X < L
��Y < L

� �
Pr Y < Lf g ¼

ðL
�1

1ffiffiffiffiffi
2π

p
σB

e
�1

2

y�μB
σB

� �2 ðL
�1

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�y
σwð Þ2dxdy

and

Pr X > U
��Y > U

� �
Pr Y > Uf g ¼

ðþ1

U

1ffiffiffiffiffi
2π

p
σB

e
�1

2

y�μB
σB

� �2 ðþ1

U

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�y
σwð Þ2dxdy

Even in their most simple forms, these probabilities have no closed form, and are fairly complex for

computation. As a heuristic, rule-of-thumb, method for determining howmuch variability and error to

tolerate in a measurement system, first consider the two conditional probabilities:

Pr X < L
��Y ¼ L

� � ¼
ðL

�1

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�L
σwð Þ2dx

Pr X > U
��Y ¼ U

� � ¼
ðþ1

U

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�U
σwð Þ2dx

We are assuming that the conditional expectation of X given Y ¼ y is y. Both of these probabilities are
in fact equal to 50 %. This is not helpful. That is, the sum of the two probabilities is 1.0:

Pr X < L
��Y ¼ L

� � þ Pr X > U
��Y ¼ U

� � ¼ 0:50 þ 0:50 ¼ 1:0

This fact is fairly obvious, and follows from the symmetric nature of the normal density function.

What we need is another parameter, call it E, such that:

Pr X < L
��Y ¼ Lþ E

� � ¼
ðL

�1

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�L�E
σwð Þ2dx ¼ p
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and:

Pr X > U
��Y ¼ U � E

� � ¼
ðþ1

U

1ffiffiffiffiffi
2π

p
σw

e�
1
2

x�UþE
σwð Þ2dx ¼ p

where p is a sufficiently small probability. In other words, if the true dimension is inside the

specification range by some small, pre-specified amount E, we want only a small chance that the

measurement would fall outside the range (L, U ). The probabilities lead to the following equations:

�E
σw

¼ zp

and

E
σw

¼ z1�p

where zp is the z-score for probability p. Due to symmetry of the normal distribution, the number of

equations is not sufficient to solve for both E and σw (i.e., zp ¼ �z1�p). There are two possible ways to

proceed:

1. Pick a value for E, and then solve for the maximum allowable value of σw:

σw ¼ E
z1�p

Once data have been gathered and an estimate of σw has been computed, the hypothesis:

H0 : σw >
E

z1�p

Can be tested against the alternative:

H1 : σw � E
z1�p

So, if

bσw � E
z1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2df , 1�α

df

s

where bσw is a sample estimate of σw, and χ2df , 1�α is the 100(1 � α) percentile of a Chi-squared

distribution with df degrees of freedom, then reject H0 in favor of H1, and conclude that the

measurement system is adequate.

2. Estimate σw and then compute the estimated value:

bE ¼ bσwz1�p

If this estimate seems small enough, or to be more conservative, if the upper 100(1 � α) %
confidence limit on E:
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bE1�α ¼ z1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dfð Þbσ2
χ2df ,α

s

seems small enough, where df is the degrees of freedom associated with the estimate bσw, then you

know your measurement system is adequate.

An Example: No Reference Method Result

A part has a dimension with specification limits L ¼ 9, U ¼ 16 (the units will go unmentioned). The

same five parts will each be measured twice by each of two operators, Operator A and Operator

B. The data were entered into a Minitab™ 16 project file. Figure 3.2 shows the data.

The analysis is selected from menu options Stat ! Quality Tools ! Gage Study ! Gage R&R

Study (Crossed). Figure 3.3 shows the initial input window.

Figure 3.4 shows the choices made in the “Options” window.

Figure 3.5 shows the output from the Minitab™ session window. There are several references to

ANOVA. The reader not familiar with this concept will be afforded more detail about it in further

chapters.

The single most valuable result from this output is the Repeatability StdDev (SD), i.e., the standard

deviation of measurements within part, within operator. This number is found in the Gage R&R

Table, and it is the estimate of σw � 0.334. The second most valuable results are the degrees of

freedom (column labeled “DF”) associated with this “Repeatability” estimate, which, from the

ANOVA table, is df ¼ 10. We can now make several computations.

6bσw
U � L

� 6 0:334ð Þ
16� 9

� 0:2863

Its reciprocal is:

bCp �
16� 9

6 0:334ð Þ � 3:493

Assuming the risk probability p ¼ 0.001, and α ¼ 0.05,

z1�p � 3:090

bE ¼ bσwz1�p � 0:334 3:090ð Þ � 1:032

bE1�0:05 ¼ z1�0:001

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dfð Þbσ 2

w

χ2df ,α

s
� 3:090

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð Þ* 0:334ð Þ2

3:940

s
� 1:644

Thus, we could say that we are 95 % confident that there is no more than a 0.1 % chance that our

measurement system would indicate that a part was out of the specification range if its dimension was

truly within the interval (9 + 1.644, 16 � 1.644) ¼ (10.644, 14.356).
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When Reference Method Results Are Available

The confidence statement about the risk probability, p, depends upon the assumption that measure-

ment errors are normally distributed, that variation in the parts is also normally distributed, and that

the conditional expectation of the measurement, given the true value of the part’s dimension, is the

true dimension, i.e.

E X
��Y ¼ y

� 	 ¼ y

In other words, the calculations presume a perfectly accurate, albeit not perfectly precise, measure-

ment system. If, however, the system is not perfectly accurate, then it is possible that

E(X|Y ¼ y) ¼ f(y), where f is some function. Perhaps the most common form of f is linear:

Fig. 3.2 Measurement

system example data
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Fig. 3.3 Minitab™ 16 Gage R&R Study (Crossed) initial input window

Fig. 3.4 Gage R&R (crossed) options
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Fig. 3.5 Minitab Gage R&R Study (crossed) output
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E X
��Y ¼ y

� 	 ¼ β0 þ β1y

The only way to obtain estimates of the parameters β0 and β1 would be to have pairs of values (x, y)
for at least two parts. That is, for each part, obtain a value x using the measurement system of interest,

together with a value y that represents the true dimension. If another measurement method, one that

may be more accurate and precise, but possibly more difficult or expensive to use, is available, then a

linear regression may be used to estimate the parameters β0 and β1.
Suppose the estimates of β0 and β1 are b0 and b1, respectively. Following the earlier arguments,

and generalizing from the conditional probabilities gives:

L� b0 þ b1 LþbEð Þð Þbσw ¼ zp

and

U � b0 þ b1 U �bEð Þð Þbσw ¼ z1�p

Solving for bE gives:

bEL ¼ �zpbσw þ 1� b1ð ÞL� b0
b1

and

bEU ¼ z1�pbσw � 1� b1ð ÞU þ b0
b1

Thus, the “point” estimate of the interval of part dimensions for which there is a 100p % chance of

getting a measurement outside [L, U] is LþbEL, U � bEU
 �
.

Unfortunately, obtaining a confidence limit for EL and EU is not so simple when β0 6¼ 0 and β1 6¼ 1.

However, even the point estimates LþbEL, U � bEU
 �
may give enough insight into the adequacy of

the measurement system.

Example Revisited: With Reference Method Results

By way of example, suppose in the previous example we had measured the parts using another, much

more precise and accurate system. Figure 3.6 shows the original data with the reference method

(called “Reference”) added.

Figure 3.7 shows a scatter plot of measurement by Reference, with the regression line. Figure 3.8

shows the results of the regression analysis done with Minitab.

With b0 ¼ 0.873 and b1 ¼ 0.990, p ¼ 0.001, σw ¼ 0.334, the estimates of EL and EU are

bEL � 0:252

and
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bEU � 1:763

Thus, the interval of part dimensions that is estimated to yield only a p ¼ 0.001 chance of obtaining a

measurement outside the specification range is approximately

LþbEL, U � bEU
 � � 9:25, 14:24½ �

The approach of evaluating the adequacy of a measurement system described above may be used

whenever the measurement of interest is continuously valued, regardless of whether the dimension

has a two-sided specification (L and U ) or a single-sided specification (either L or U but not both).

This is an advantage over the use of Cp, which requires a two-sided specification. Furthermore, the

approach can be used whether there does not exist any “reference method” for determining the “true”

value of a part’s dimension (or performance parameter) or whether such a method exists and a part

may be measured both with the system in question and the reference method.

Fig. 3.6 Measurement

system data with reference

added
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Fig. 3.7 Scatter plot with measurement and reference

Fig. 3.8 Regression analysis for measurement vs. reference
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Concerning Numerical Precision

Data are often reported and recorded based on some number of significant digits (whether or not the

data are recorded in scientific or engineering notation). There is no universally accepted standard for

how much numerical precision should be used in reporting sample statistics. The topic of numerical

precision will be largely ignored in this text. However, this is not to say that it is unimportant. Rather,

the EAS must use his or her judgment, based on the particular context. A rule of thumb that some

people have employed is that the statistic should be reported to one more decimal place of precision

than the measurements themselves. However, even this is not universally true. For example, when

reporting proportions, or percentages, the rules guiding the reporting of means and standard

deviations may not apply. Furthermore, the numerical precision for reporting p-values may vary

from one application/context to another. The experimenter must determine what makes sense in each

context.

Key Points

• Experimentation depends on measurement, so insuring that measurement systems are both accu-

rate and precise enough is paramount.

• If a reference measurement is available, it may be possible to assess both precision and accuracy.

• Without a reference, only precision can be assessed.

Exercises and Questions

1. What is required in order to assess accuracy of a measurement system?

2. What is σw? Why is it important? How would you estimate it? Can you compute a confidence

interval for it?
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Chapter 4

Modeling with Data

Engineers and Applied Scientists (EASs) require mathematical models to predict the value of some

critical performance variable or some characteristic of a product or process output. Generally, there

are two kinds of variables:

1. Inputs

2. Outputs

As a point of terminology, we will often refer to the output variables as “response variables” or

simply “responses”, and the input variables as “regressors”, in that we will rely heavily upon multiple

regression methods for building models from empirical observations. Sometimes the input variables

are referred to as “factors”, especially in relation to a class of data gathering plans called “factorial

experiments”.

Furthermore, the EAS would like to have a mathematical equation to describe the relationships

between the input and output variables, i.e.,

Outputs ¼ f Inputsð Þ

The bad news is that often the function “f” is unknown. The good news is that we have a means of

approximating “f”, even when it is unknown. The bad news is that we must obtain empirical observations

under a variety of conditions in order to approximate f. The good news is that someone has created a

means of determining the fewest possible number of conditions under which to gather data in order to

approximate fwith a polynomial function. The bad news is that in order to accomplish this approximation,

we need to know that f is at least piecewise continuous and differentiable. The good news is that most

functions we will ever care about are in fact piecewise continuous and differentiable, at least in the range

of inputs that is of interest. The bad news is that fmay be highly nonlinear, and polynomial functions, even

of higher orders, may not “fit” very well. The good news is that we can oftenmake some relatively simple

transformations (usually on input variables) so that we can reasonably approximate f as a polynomial in

the transformed variables. OK, so we end the discourse about bad news/good news on a good note.

There are some special cases for the function “f” that will be important. The first is the case were

all or some of the inputs are discrete, or categorical. In those cases, identical methods will be used to

approximate f, but the interpretation will be very different than in the case where the inputs are

continuously valued. The other case is where the general form of “f” is known or at least guessed, and
it is inherently non-linear in terms of the coefficients or parameters. In this text, we will only consider

a very special non-linear case. The reader interested in a more general and complete treatment of

non-linear model building should consult Seber and Wild (1989).
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Polynomial Approximation

Every student of first year calculus knows that any infinitely differentiable function can be

approximated with a Taylor/Maclaurin polynomial, and the error in such an approximation is

determined by the order to which one decides to truncate such a polynomial.

In other words, if f is infinitely differentiable, it can be expressed as an infinite Taylor/Maclaurin

series:

f xð Þ ¼
X1
k¼0

f kð Þ 0ð Þ
k!

xk

where f(k)(0) is the kth derivative of f evaluated at x ¼ 0. Furthermore, we can approximate f with a

finite polynomial function of the form:

ef xð Þ ¼
Xn
k¼0

f kð Þ 0ð Þ
k!

xk

And we can choose n to yield a desired level of error:

R xð Þ ¼
ðx
0

xn

n!
f nþ1ð Þ tð Þdt

Inasmuch as we have no knowledge of f per se, we cannot evaluate any of its derivatives. So how can

we evaluate the coefficients of the polynomial ef xð Þ

βk ¼
f kð Þ 0ð Þ
k!

and how can we possibly evaluate (or control) the error in the approximation?

Empirical Approximation

Let us begin with a motivating, simplified example. Suppose an EAS is designing a joint in which two

subassemblies are held together with an epoxy adhesive. Once the epoxy is applied and the two

subassemblies are joined, the epoxy must “cure” for some period of time in order to insure that the

joint has sufficient strength. Of course, shorter cure times would be desirable, since less time for

manufacturing means larger numbers of units produced per unit time. The required minimum pull

strength is 7.000 N, or approximately 1.574 lbs. The design problem can be stated as: find the

minimum cure time that insures a pull strength no less than 7.000 N.

Inasmuch as the “optimal” cure time is unknown, the EAS performs an experiment in which she

makes three pairs of subassemblies, joins them with the epoxy, and allows each to cure. After

τ1 ¼ 60.0 s, she measures the bond’s pull strength (force required to pull the two subassemblies

apart) of one of the assemblies. After τ2 ¼ 70.0 s, she measures the pull strength of the second

assembly, and after τ3 ¼ 80.0 s, she measures the pull strength of the third. Her data are shown in

Table 4.1.
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The EAS noticed that none of her cure times seemed to produce the desired pull strength. She fit a

least squares regression (Draper and Smith 1998) line to her data, to obtain a predictive equation, and

attempted to project the cure time required to obtain the pull strength of at least 7.000 N. Solving for

time, she found that the minimum cure time appeared to be approximately 81.6 s. She runs a second

experiment, this time using cure times of 85, 95, and 105 s. Her data for experiment 2 are shown in

Table 4.2.

Much to her chagrin, the cure time of 85 s yielded a pull strength of only 6.810 N, and she requires

7.000 N. The cure time of 95 s yielded a higher-than-minimally-desired force (7.463 N). Oddly

enough, the pull strength decreased from 7.463 to 7.273 N at a cure time of 105 s. A decrease in pull

strength after extending the cure time by 10 s seemed unlikely, but it clearly occurred. Before

performing yet a third experiment, she decides to plot all the data from both experiments on a single

graph, shown in Fig. 4.2.

Now the EAS has come to three realizations:

1. The function that underlies the relationship between cure time for this epoxy and pull strength is

certainly not linear over all time;

2. Either the underlying pull strength function is not monotonically increasing, or there is some noise

in the measurements;

3. Extrapolating beyond the range of the observed time points is at best risky.

Table 4.1 Epoxy cure time

experiment 1
Time (s) Pull strength (N)

60.0 3.843

70.0 5.494

80.0 6.710

The EAS makes a plot of her data, shown in Fig. 4.1

Table 4.2 Epoxy cure time

experiment 2
Time (s) Pull strength (N)

85.0 6.810

95.0 7.463

105.0 7.273

Force = 0.1433*Time - 4.684
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Experiment 1: Pull Strength (N)

Fig. 4.1 Plot of pull strength data, experiment 1
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If the function of cure time that describes pull strength were known, and it was differentiable, then

the minimization problem would be simple. Differentiate the function with respect to cure time, set

the derivative equal to zero, and solve subject to the constraint that pull strength must be at least

7.000 N. In fact, it would be even simpler, in that all the EAS would need to do is find the cure time

that yields a pull strength of 7.000 N, as long as the pull strength function is non-decreasing.

Meanwhile, our EAS has decided to repeat the two experiments she performed, so see just how

much noise there is in the measurements. She obtained pull strength data for additional subassemblies

using the cure times of experiments 1 and 2. Her original data, together with the additional “repeat”

data, are shown in Table 4.3. We will refer to the repeated measurements as “replicates”.

With these data, the EAS will attempt to approximate the data-generating function using the

Taylor series approach. She will first guess at the highest order term to include in her polynomial

approximation. Given the apparent curvature (imagine a curve going through the middle of the points

in Fig. 4.3) a second order approximation seems appropriate. The approximating function, which we

will call the “model” would have the form:

3.000
3.500
4.000
4.500
5.000
5.500
6.000
6.500
7.000
7.500
8.000

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

105.0

110.0

115.0
Fo

rc
e 

(N
ew

to
ns

)

Cure Time (seconds)

Experiment 1 & 2: Pull Strength (N)

Fig. 4.2 Plot of pull strength data, experiment 1 and 2

Table 4.3 Experiment

1 and 2 with replicates
Experiment Replicate Time (s) Pull strength (N)

1 1 60.0 3.843

1 2 60.0 3.546

1 1 70.0 5.494

1 2 70.0 5.923

1 1 80.0 6.710

1 2 80.0 6.334

2 1 85.0 6.810

2 2 85.0 7.186

2 1 95.0 7.463

2 2 95.0 7.316

2 1 105.0 7.273

2 2 105.0 7.752

The data are plotted in Fig. 4.3
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f τð Þ ¼ β0 þ β1τ þ β2τ
2 þ ε

The variable τ represents cure time (in seconds) and the symbol ε represents random “noise”,

which, for reasons that will become clear later, will be assumed to have a normal (Gaussian)

distribution with mean 0 and some standard deviation. The coefficients, βk, are the Taylor series

coefficients:

βk ¼
f kð Þ 0ð Þ
k!

Using the method of least squares, the data are used to obtain estimates of the βk (and an estimate of

the standard deviation of noise). The predictive model (i.e., the way in which the pull strength is

predicted for a given cure time, τ) turned out to be:

bf tð Þ ¼ �16:04215þ 0:47377τ � 0:00238τ2

Figure 4.4 shows all the data, together with the prediction equation over the cure time range 60–105 s.

Our EAS computed the average result at each of the time points for which she collected data, and

then computed, using her empirical model equation, the predicted pull strength at each of those time

points. Table 4.4 shows the data with the averages and predictions.

She noticed that the predicted value of pull strength was too low at 80 s and too high at 95 s. Again,

using the prediction model, she found that at 84.7 s, the predicted pull strength was approximately

7.002 N (an artifact of rounding time to the nearest tenth of a second), which is only 0.002 N above

her specification limit of 7.000 N. So, using data in two separate experiments, with a total of 6 cure

times, and two replicates per cure time, the EAS was able to approximate the function that governs

how pull strength was related to cure time for this epoxy and the two subassemblies being joined.

Furthermore, she was able to use this approximation to determine a cure time that would provide her

with the desired pull strength.

There are, unfortunately, some more questions to answer:
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Fig. 4.3 Experiment 1 and 2 with replicated results
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1. How can we assess the error in the model? Perhaps we should have carried out the Taylor series to

more terms. Perhaps the model is good for predicting the data we observed, but how good would it

actually be at predicting the pull strength of a joint cured for 84.7 s?

2. How can we assess the probabilistic variation in future results? If we did the experiment with many

subassembly pairs cured at 91.9 s, would all of the resulting joints have a pull strength of 7.385 N?

What is the probability that a joint would have a pull strength of at least 7.385 N if cured for 91.9 s?

Fig. 4.4 Pull strength data

with prediction equation

Table 4.4 Pull strength data with averages, SDs, and predictions

Experiment Replicate Time (s) Pull strength (N) Ave. SD Predicted

1 1 60.0 3.843 3.695 0.2105 3.811

1 2 60.0 3.546

1 1 70.0 5.494 5.708 0.3035 5.453

1 2 70.0 5.923

1 1 80.0 6.710 6.522 0.2662 6.618

1 2 80.0 6.334

2 1 85.0 6.810 6.998 0.2664 7.022

2 2 85.0 7.186

2 1 95.0 7.463 7.389 0.1033 7.474

2 2 95.0 7.316

2 1 105.0 7.273 7.513 0.3385 7.448

2 2 105.0 7.752
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Examining Model Adequacy

ANOVA (analysis of variance) can be used to decide whether or not the model had any ability to

explain or predict the outcomes that were observed. Briefly, ANOVA is a method for partitioning the

sums of squared differences between each observation and the mean of all observations, regardless of

the conditions under which those observations were obtained. Symbolically, ANOVA provides the

terms in the following equation:

SST ¼ SSM þ SSE

SST stands for Total sums of squares, SSM stands for Model sums of squares, and SSE stands for Error

sums of squares. If fij represents the jth force observed at the ith cure time, and f is the average of all
the pull strength forces, then

SST ¼
X6
i¼1

X2
j¼1

f ij � f
� �2

¼
X6
i¼1

X2
j¼1

f 2ij � 6 � 2 � f
2

SSM ¼
X6
i¼1

þ f i � f
� �2

SSE ¼
X6
i¼1

X2
j¼1

f ij � f
� �2

The analysis of variance (ANOVA) allows us to test whether or not the model accounted for

anything more than random variation, completely unrelated to the cure time. In this case, the plot

shown in Fig. 4.4 most likely dispels any thoughts that there was no relationship between pull strength

and cure time. In more complex situations, where the variable on the left side of the equation is

potentially a function of multiple variables on the right, plots may not be so obvious. Therefore, a test

of significance is the first line of defense in deciding whether or not a model has any meaning. To

perform the test, we compute the ratios:

MSmodel ¼ SSM= k � 1ð Þ

MSerror ¼ SSE= n� 1� k � 1ð Þð Þ

where n ¼ 6 * 2 ¼ 12, or the total number of observations used to fit the model, and k ¼ number of

parameters (coefficients) in the model ¼ 3. MS stands for “Mean Square”.

Finally, we form the ratio:

F ¼ MSmodel=MSerror

This ratio, if there is no relationship between the left side of the model equation and the terms on the

right (other than noise), and assuming that noise is Gaussian, has an F distribution with numerator

degrees of freedom k – 1 and denominator degrees of freedom n – 1 – (k� 1). If this F ratio statistic is

larger than say the 95th percentile of an F distribution with the corresponding degrees of freedom, or

analogously if the p-value for the statistic is below a pre-specified value (usually 0.05, or 5 %) then

we begin to believe that there is at least some ability of our model to predict, i.e., controlling cure time
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has at least some effect on pull strength. Table 4.5 shows the ANOVA results, together with the F
ratio. The 95th percentile of an F distribution with 2 and 9 degrees of freedom in numerator and

denominator, respectively, is approximately 4.2565. Since the sample F ratio is clearly greater than

this, we suspect that the model has some value.

A frequently used measure of goodness for models is called Adjusted R2. It is referred to as the

coefficient of determination (Draper and Smith 1998) and is a measure of the amount of variation in

the data explained by the model. It is computed as:

R2
adj ¼ 1�MSE

MST

where MST ¼ SST / (n – 1) ¼ Total Mean Square. In this case,

R2
adj ¼ 1� 0:06704

1:91521
� 0:96499

The closer Adjusted R2 is to 1, the “better” the model.

A related quantity, called simply R2, is given by the formula:

R2 ¼ 1� SSE

SST

Inasmuch as this quantity does not include the degrees of freedom, it does not account for the sample

size or the number of parameters in the model. Therefore, we will avoid using it or discussing it any

further.

An important assumption required to make the F ratio actually have an F distribution is that the

random errors, or noise, associated with observations, are not only normally distributed, but the noise

has the same standard deviation, or variance, regardless of the values of the regressors. The condition

of constant variance is the most important assumption. Violation of this assumption is referred to as

heteroscedasticity (Armitage 1971).

Another question is, why stop at a second-order model? The EAS has a total of 6 cure times at

which the pull strength was measured. She could fit up to a fifth order polynomial to her data. Surely

the Taylor series approximation would be improved with every additional term. However, she would

potentially be making the mistake of over-parameterizing. That is, suppose that in truth the underly-

ing function was a second-order polynomial. Then adding three other terms would only be adding

noise to the fit. In fact, adding too many terms might make the model fit quite well, but it would have

poor predictability. There is a balance between reducing errors in the model with respect to actual

observations and making a model that is perfect for the observed data but predicts future observations

poorly. The balance is chosen to satisfy the dictum (razor) of William Ockham (or sometimes spelled

Occam), circa 1320 CE:

Pluralitas non est ponenda sine neccesitate
Or, roughly, don’t over-explain the data (but don’t under-explain them either). The rule of

Ockham’s Razor is also referred to as the rule of parsimony.

Table 4.5 ANOVA table

for second order model
Source DF Sum of squares Mean square F ratio

Model 2 20.4639015 10.2319507 152.613

Error 9 0.60340636 0.06704515 –

Total 11 21.0673078 – –
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One method for choosing the “right” order model employs Mallow’s Cp (Draper and Smith 1998).

This Cp statistic is not to be confused with the capability index Cp as it applies to measurement

systems analysis. Here is how Mallow’s Cp works:

The highest order model the EAS can fit to these data is fifth order. A fifth order polynomial would

thus have six parameters (including the intercept). Suppose she fits this model and obtains the SSE and

MSE for it. Call the MSE for the fifth order model MSEmax. Then she proceeds to fit fourth, third,

second, and first order models, and records the MSE (not the SSE) for each. Let SSEp represent the

SSE for a model with p parameters. Mallow’s Cp statistic is:

Cp ¼ SSEp

MSEmax
� n� 2pð Þ

where n ¼ the total sample size (in this case n ¼ 12), and p ¼ number of parameters in the model

(including the intercept). The idea is that if the ( p-1)th order model was correct, then the expected

value of Cp would be approximately:

E Cp

� � ¼ E
SSEp

MSEmax

� 	
� n� 2pð Þ � n� pð Þσ2

σ2
� n� 2pð Þ ¼ p

So, the idea is to compute Cp for all models up to max( p) – 1, and choose the model with the smallest

Cp that is approximately equal to p. Table 4.6 shows all the computations for Cp and for Adjusted R
2.

Thus, the second order model (with p ¼ 3) has the smallest Cp that is approximately equal to p.
Although the second-order model does not have the highest Adjusted R2 of the models fit to the data,

it is probably the best choice, since it not only has the lowest value of Cp. But also its Cp value is very

close to p ¼ 3. The EAS concludes that the best polynomial approximation to the pull strength as a

function of cure time is second order (quadratic).

Examining Variation

The residuals, or differences between actual observations and predicted values, reveal a lot about

variability. Figure 4.5 shows a histogram of the residuals for the second order model.

With only n ¼ 12 residuals, the histogram is not a good indicator of whether the residuals are

distributed normally (Gaussian). However, the standard deviation of the residuals gives some

indication of how much noise may be affecting the measurements. With a residual standard deviation

of s � 0.2342 N, we can get some idea of how much variation there would be in a predicted value of

pull strength at any given cure time. Another estimate of noise standard deviation is obtained from the

ANOVA for the model. The ANOVA algebraically “partitions the total variation of the data into two

additive terms, one for the “model” and one for error, or noise. From this partitioning, we obtain

another estimate of the noise standard deviation, sometimes called root mean square error, or RMSE.

For these data with the quadratic model the EAS fit, the RMSE was s � 0.2589.

Table 4.6 Cp calculations n Order p MSEmax SSEp Cp Adj. R2

12 Fifth 6 0.06726 0.40357 6.00 0.96488

12 Fourth 5 0.06726 0.43267 4.43 0.96773

12 Third 4 0.06726 0.47941 3.13 0.96871

12 Second 3 0.06726 0.60341 2.97 0.96499

12 First 2 0.06726 3.59026 45.38 0.81254

Examining Variation 31



The standard error of a prediction (assuming that the model is actually perfect, which is rarely

actually true) is given by the formula:

SE by

τ0� � ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 0
0 T

0
T

� ��1
τ0

q

where:

τ0 ¼
1

τ0
τ20

2
4

3
5

Quantiles

100.0% maximum 0.4704
99.5% 0.4704
97.5% 0.4704
90.0% 0.4204
75.0% quartile 0.1461
50.0% median 0.0110
25.0% quartile -0.2032
10.0% -0.2786

-0.28442.5%
0.5% -0.2844
0.0% minimum -0.2844
Moments

Mean -7.4e-17
Std Dev 0.2342117
Std Err Mean 0.0676111
Upper 95% Mean 0.148811
Lower 95% Mean -0.148811
N 12

Fig. 4.5 Histogram and

sample statistics for

residuals from second order

model

32 4 Modeling with Data



and:

T ¼
1 τ1 τ21
⋮ ⋮ ⋮
1 τ12 τ212

2
4

3
5

The 0 indicates matrix transpose.

The variable τ0 represents the cure time of interest. With n ¼ 12, and τ0 ¼ 84.7,

SE by

τ0 ¼ 84:7
� � � 0:1085

What are the implications? The EAS can use this standard error calculation to create a 95 % lower

confidence limit for a predicted value at 84.7 s. That is, the value:

by � t 0:95, n� pð ÞSE by

τ0� �
is a feasible lower limit for what to expect as a predicted pull strength at τ0 cure time seconds. The

letter t represents a percentile from a Student’s t distribution. In this particular case,

t 0:95, 12� 3 ¼ 9ð Þ � 1:8331

The 95 % lower confidence limit for a predicted value of pull strength at 84.7 s is therefore

approximately 7.002 – 1.8331 * 0.1085 � 6.803 N. In other words, if the model is correct, then

there is approximately a 95 % chance that the predicted value of pull strength at 84.7 s would be no

less than 6.803 N.

Some people may be tempted to interpret the limit as a 95 % percentile of pull strengths at 84.7 s.

This is not correct. The limit gives 95 % confidence about predicted values coming from this

quadratic model with n ¼ 12 observations. The limit is a measure of repeatability of

predictions. Given that the lower specification limit for pull strength is 7.000 N, and given that the

lower confidence bound on predicted values at 84.7 is 6.803 N < 7.000 N, the EAS is concerned that

84.7 may not be adequate cure time. After all, it is feasible that she could have gathered a different set

of subassemblies, joined them and measured pull forces at the same cure times as in her experiments

1 and 2, fit a second order polynomial model, and obtained a predicted pull strength value less than

7.000 N. The EAS wants to have a high level of confidence (99 %) that the pull strength of joints will

be at least 7.000 N. In other words, she wants to find the smallest value of τ0 such that:

by � t 0:99, n� pð ÞSE by

τ0� � � 7:000

Using a numerical solver program, she finds that a cure time of 89.7 s yields a lower 99 % confidence

limit for predicted value of pull strength to be approximately 6.988 N.

Verification

Once our EAS has made the decision to set the cure time to 89.7 s, she decides wisely to validate her

decision. She looks at the data she had already gathered, and notices that only at 95 s and 105 s were

all observations of pull strength over the 7.000 N limit. She computes the 99 % lower confidence

limits of predicted pull strength at 90, 92.5, and 95 s, which are 7.0007 N, 7.100 N, and 7.160 N,
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respectively. Being cautious, she decides to repeat the experiment at 89.7 s, and at 92.5 s (half-way

between 90 and 95 s). Her results are given in Table 4.7.

Based on these results, it appears 89.7 s is sufficient. However, standard deviation of pull strength

at 89.7 s is approximately 0.3904, and 0.1644 at 92.5 s. Of course, these are all computed using only

n ¼ 2 observations. Although the average results at both 89.7 and 92.5 exceeded the specification

limit, the EAS is concerned about individual results due to the relatively large standard deviations.

Noticing that all other conditions (raw material lots, machinery, even operators) have not changed

between her model-fitting runs and the “verification” runs, the EAS decides to add the new data to the

old and refit the second order model. The new model is:

bf tð Þ ¼ �16:08556þ 0:47297τ � 0:00238τ2

The adjusted R2 for this model is 0.9364, which is lower than the model with the earlier data. The

ANOVA for the new model is given in Table 4.8.

The critical value for the F Ratio is approximately 3.8056, so clearly the model has meaning.

Relative to a fifth order model with the new data, Mallow’s Cp is 8.86, which is much higher than the

second order model with the original data. The EAS decides to fit third, fourth, fifth, and sixth order

models with the new data. Table 4.9 shows the Cp calculations, together with the adjusted R2 values.

The fifth order model has a Cp that is closest to the theoretical ideal (Cp � p), and it has a fairly

high adjusted R2. Therefore, the EAS decides to use the fifth order model fit to the total dataset. She

then computed the lower bound on the predicted pull strength at each time point she observed.

Figure 4.6 shows the observed data, the predicted values and the 99 % lower bounds. Drawing an

horizontal line at pull strength ¼ 7.0, and noting where it intersects the 99 % lower limit, the EAS

decides that her best choice of cure time is approximately 92.5 s.

Table 4.7 Validation

experiment results
Time (s) Pull strength (N) Mean pull SD pull

89.7 7.581 7.305 0.3904

89.7 7.029

92.5 7.320 7.203 0.1644

92.5 7.087

Table 4.8 ANOVA for

second order model with

additional data

Source DF Sum of squares Mean square F ratio

Model 2 23.2476748 11.6238374 252.2918

Error 13 0.59894883 0.04607299

C. total 15 23.8466237 – –

Table 4.9 Mallow’s Cp

and adjusted R2 original

and with new data

n Order p MSEmax SSEp Cp Adj. R2

12 Fifth 6 0.06726 0.40357 6.00 0.9649

12 Fourth 5 0.06726 0.43267 4.43 0.9677

12 Third 4 0.06726 0.47941 3.13 0.9687

12 Second 3 0.06726 0.60341 2.97 0.9650

12 First 2 0.06726 3.59026 45.38 0.8125

16 Second 3 0.06773 0.8506 2.56 0.9590

16 Third 4 0.06773 0.85060 4.56 0.9637

16 Fourth 5 0.06773 0.66551 3.83 0.9621

16 Fifth 6 0.06773 0.62702 5.26 0.9608

16 Sixth 7 0.06773 0.60959 7.00 0.9576
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There is one small issue. Our EAS reads a book on regression methods, such as Draper and Smith

(1998), and discovers that the standard error formula she used to compute the lower 99 % bound on

predicted values did not account for variation in future values of observations. To account for the

additional variability, she would have to use the standard error formula:

SE by

τ0, future� � ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ

0
0 T

0
T

� ��1
τ0

q

She also discovers another type of limit, called a precision limit (Dunn 2010) that is computed as:

by � t 0:99, n� pð Þs

where s is the root mean square error from the regression. She plots all the limits, together with the

predicted values, over the entire range of times used in her experiments. The plot is shown in Fig. 4.7.

Now the EAS is not so certain that 92.5 s is in fact adequate. The most optimistic limit, 99 %

prediction lower limits, indicates that 92.5 s would be adequate with 99 % probability. The most

pessimistic limit, future value 99 % lower limits, and even the next most pessimistic limit, the

precision 99 % lower limit, indicate that 105 s may not be adequate. The model indicates an

inexplicable dip in pull strength between 92.5 and 95 s. All the observations past 92.5 s (admittedly

only four values) gave pull strengths over the lower specification limit of 7.000 N. The EAS decides

that the dip in pull strength may be due to random effects, and the model is falsely indicating lower

than desirable pull strengths between 92.5 and 105 s. So, she decides to hedge her bets, and set the

time to 95 s. However, she is not so careless as to run at 95 s without at least a small test.

Fig. 4.6 All data with fifth

order model predictions

and prediction limits for

pull strength
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To confirm her decision, the EAS makes two more tests at a cure time of 95.0 s. The results are

shown in Table 4.10. It appears that her decision was well-founded, as the two pull strengths were

both greater than 7.0. Furthermore, the standard deviation is low enough so that the specification limit

approximately 1.9 standard deviation units below the sample mean of 7.466. The sample z-score for

the limit of 7.000, based on the mean and standard deviation of these two values, yields approxi-

mately a 97 % chance of obtaining pull strengths above the lower limit. Therefore, the EAS has

strong confidence that the cure time of 95.0 s will in fact yield acceptable pull strengths.

What We Have Discovered

Sometimes we are trying to make a decision about one controllable variable or set of controllable

variables that affect a critical output or response variable (or set of variables). It may be that there is

some functional relationship between the input and output variables, but its exact mathematical form

may be unknown. We presumed that this unknown mathematical form is “smooth”, or in other words,

Fig. 4.7 Pull strength data

with fifth order model

predictions and 99 % lower

limits

Table 4.10 Confirmatory tests

at cure time ¼ 95.0 s
Time (s) Pull strength (N) Mean pull SD pull

95.0 7.639 7.466 0.2455

95.0 7.292
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infinitely differentiable. Thus we employed a Taylor series sort of argument as an attempt to

approximate the function with a polynomial.

Choosing the order of the polynomial approximation is not a simple process. Even in the case of a

single input variable (e.g., cure time) wewere not certain what order to choose. If we had only obtained

functional values (outputs, i.e., pull strength) at two different values of the input variable, we could

only have approximated the relationship with a first order polynomial. Recognizing the possibility that

a first order approximation might be insufficient, the EAS chose three points. There is no absolute rule

about the order of approximation; choosing is more art than science. Clearly the number of points

should exceed the highest order approximation you would ever want to consider by 1. So, if you

thought that the highest order approximation you would want was second order, then select three input

values. Often the choice of approximation is constrained by resources; you may only have budget or

time enough to collect data at two input variable points. The EAS must make stakeholders and

decision-makers aware of the limitations and risks associated with the experimentation. Fewer input

points results in a cruder approximation. In the case of the example, not only was the linear approxi-

mation inadequate, but the range of input points did not include the “optimal” point. It may be possible

tomake decisions about experimental conditions in a sequential fashion, adding new data to previously

collected data. Once the EAS discovered that her three input point did not seem to cover the desired

output, she was able to add data from additional points. In her case, interfering conditions such as raw

material lots, different machines/production lines, operators, and test equipment were not an issue.

Thus, she had the luxury of adding points as she performed analyses.

We saw that the method of least squares can be used to find an approximating polynomial.

Inasmuch as the approximation is made using empirical observations, and that observations have a

random component, some statistical methods should be employed to determine whether the approxi-

mation was reasonable. The first tool was the ANOVA for the model, which indicates whether or not

there is any relationship between the approximation and the actual underlying function. We used the

F-ratio test and the adjusted R2 statistic to decide if our approximating process was on track. We then

used Mallow’s Cp to help choose an order of approximation. By obtaining data at a sufficient number

of input points, we were able to compare Cp for a number of polynomials, and we were able to choose

the polynomial approximation for which Cpwas closest to the number of parameters in the model. We

also want adjusted R2 told be as close to 1 as possible, but sometimes we may decide to trade

increased R2 for a closer to optimal Cp. Using the Cp criterion is in concert with Ockham’s Razor, or

the principle of parsimony in model building.

Once the model is built, the next step is to determine the optimal input point, that is, the point at

which the output is closest to whatever value we desire. Desires are usually either to minimize,

maximize, obtain a particular threshold value (either minimum or maximum) or obtain a specific

target value for the output. If you want to maximize or minimize some objective function “on the

average”, it may be sufficient to find an adequate polynomial model fit to data, and then use

deterministic optimization methods (e.g., modified Newton-Raphson methods) to find the optimal

point, at which no data may have been gathered yet. In any empirical investigation, the variation in

sample results should be considered. Once an optimal point is selected, some additional data at (or at

least near) the optimal point should be obtained. These data may verify that the selected point is in

fact acceptable, or they might indicate that there is enough variability in the response to warrant

accounting for a margin of error. Confidence limits for predicted values, or prediction limits, may be

useful in choosing an operating point that provides adequate margin.

We are not necessarily advocating incrementally increasing the range of the experimental factor

(s), in this case cure time, and consequently incrementing the order of polynomial approximation.

More frequently, there is more than one factor involved, and choosing experimental conditions in a

multifactor experiment is better achieved through the use of factorial experimental design, the topic
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of the next chapter. In this chapter we are trying to illustrate how an unknown function can be

reasonably approximated by a polynomial fit to data.

A Note About Outliers

Sometimes a small number of points can be so influential as to drastically alter the order of the “best”

approximating polynomial. Such points are often referred to as “outliers”. Be aware that just because

a point is highly influential does not make it “wrong”, or worthy of discarding. Much more could be

said about “outliers”. For now, it is sufficient to be aware that there are some diagnostic calculations

for identifying points as highly influential, and that identification of high influence is not sufficient

reason to discard a point from analyses or model-building.

Key Points

• Models are useful for approximating real phenomena.

• Polynomial models can be built using empirical observations via least squares regression.

• Models can be assessed for adequacy.

• Adjusted R2 is one measure of model adequacy; ANOVA and confidence intervals for predicted

values are other measures.

• The order of the polynomial fit should follow Ockham’s Razor, or the rule of parsimony.

Exercises and Questions

1. Do you agree with the decision our EAS made about the pull strength problem? Would you have

done anything differently?

2. What are the issues associated with over-fitting, or having too many parameters/terms in a model?
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Chapter 5

Factorial Experiments

We have emphasized the need of the EAS to construct an approximating function to relate product

design features to performance measures. The EAS needs a method for choosing the different

combinations of input feature/characteristic values in the most efficient manner possible. Also,

sometimes the EAS is faced with the problem of deciding which smaller subset of too many input

variables are most important, that is, have the greatest influence on the response. Attempting to

optimize a response over many inputs may be at best difficult, if not completely impractical. The EAS

will need a plan that involves the fewest number of input variable points to determine whether or not

each potential input variable should or should not be investigated further. This chapter will be largely

concerned with making such plans, which are termed “factorial experiments”. In this context, the

input variables will often be referred to as “factors”.

The initial screening of factors involves a linear (first order) approximation to the response

function. For each input variable, the question to be answered is whether changing the variable

increases or decreases the average value of the response, or if changing the input variable induces no

change on the average. Admittedly, this assessment is crude. However, if the EAS is faced with more

input variables that can be simultaneously optimized in an economically feasible fashion, it may be

the best assessment that can be made. Suppose, for example, there were five input variables that were

of potential interest. In order to fit a fourth order polynomial in each input variable simultaneously,

the EAS would require 55¼ 3125 points. Imagine if the EAS wanted to duplicate results at each point.

The EAS would require N ¼ 6250 measurements of the response variable. This is probably infeasi-

ble. If, however, the EAS desires to decide whether any of the input variables could be disregarded

initially, he should consider using a linear approximation to the response function.

In order to fit a linear function to data, two points are minimally required for each input variable.

The potential values to be included in the experiment for a given factor are called “levels”. In the case

of five input variables, the number points would be 25 ¼ 32, corresponding to all possible

combinations of two levels per factor, with r ¼ 5 factors. This is considerably fewer than 3125.

A first order model may have the form:

y ¼ β0 þ
Xr

i¼1

βixi þ
X
i 6¼j

X
γijxixj þ ε

The symbol ε represents the random “noise” that is associated with response values observed or

measured under “identical” conditions, at least in terms of the input variables. The EAS could include

higher-order cross-product terms in the first order model, e.g.:
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xixjxk 3‐wayð Þ
xixjxkxl 4‐wayð Þ

⋮
x1x2x3 . . . xr r‐wayð Þ

Generally, for a first order model used primarily to decide which inputs are truly important, anything

beyond the two-way cross-products is overkill.

In order to obtain statistical estimates of the coefficients βi and γij, some minimum number of

points must be selected for data gathering. Suppose there were k input variables, and the EAS wanted

to estimate coefficients for a “complete” linear model, i.e., including all possible cross-product terms.

Then, as mentioned earlier, the minimum number of points would be 2k. So, if k ¼ 5, 25 ¼ 32 points

would be required. With duplicate response values at each point, a total of n ¼ 64 measurements

would be required.

Assessing the Effect of Each Factor

In the case of a single input variable, or factor, to assess the linear effect of the factor, x, on a response
variable, y, we require observations of y at two different values, or levels, of x. The levels chosen

should cover the range of interest. That is, the lower of the two levels should be the lowest value for

which x could feasibly be set, and the highest level should be the highest value at which x could

feasibly be set. Denote the low and high levels of x by x� (for low) and x+ (for high). Let y� represent

the value of response y+ observed at x�, and y+ the value of the response at x+. The effect of x is

estimated by

E ¼ yþ � y�

If n observations or measurements of the response variable are obtained at each condition, then the

average value of the response under each condition is used to compute the effect:

E ¼ yþ � y�

Notice that the slope of the line segment joining the points, (x�,y�) and (x+,y+) is given by:

b ¼ yþ � y�

xþ � x�
¼ E

xþ � x�

Now suppose we computed the midpoint between x� and x+:

m ¼ x� þ xþ

2

Then transform, or code, the x variable into a new variable whose range is (�1, +1) with midpoint 0:

H ¼ x� m
1
2
xþ � x�ð Þ
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When x ¼ x�, H ¼ �1; when x ¼ x+, H ¼ +1; when x ¼ m, H ¼ 0. Now the new slope, call it b0,
with respect to the coded input variable, w, is given by:

b
0 ¼ yþ � y�ð Þ

2
¼ E

2

This coding transformation is called Helmert coding, named after Professor Dr. Friedrich Robert

Helmert. Unless otherwise specified, we will assume that all input variables are expressed as Helmert-

coded. Thus �1 will represent the lowest level, and +1 the highest level, of each factor in the

experimental design.

We would like to gather data under various conditions determined by multiple input factors in such

a way as to allow the independent estimation of all coefficients in the first order model. Each unique

condition will be called a “run”. The collection of conditions used to gather the data for fitting the

model (i.e., estimating the coefficients) is called an experiment. The collection of conditions is also

called an experimental design, or simply “design”.

Assessing the Cross-Product, or Interaction Effects

Suppose there is more than one input factor that may have some effect on the response. It is possible

that the first order approximation model should include at least the two-way cross-product terms.

Cross-product terms are also called interaction effects, in that the levels of all factors included in the

cross-product “interact” in their joint effect on the response. Just as in the main effect of each factor

individually, and interaction effect can be computed. The two-way interaction effect for any two

factors would be the difference between the effect of the first factor when the second is at its “low”

(�1) level, and the effect of the first factor when the second is at its “high” (+1) level. The choice of

which factor is “first” and which is “second” is arbitrary. If there were exactly two input factors, x1
and x2, coded to (�1, +1), the experimental runs could be symbolized as in Table 5.1.

If the symbols y(�,�), y(�,+), y(+,�), and y(+,+) represent the average responses in each run,

then the effect of x1 at each level of x2 can be computed as:

Ex2¼�1 ¼ y þ;�ð Þ � y �;�ð Þ

Ex2¼þ1 ¼ y þ;þð Þ � y �;þð Þ

The interaction effect is computed as:

Ex1,x2 ¼ Ex2¼þ1 � Ex2¼�1

2

Table 5.1 A two-factor, two-level

experiment
Run x1 x2 y

1 �1 �1 y (�,�)

2 �1 +1 y (�,+)

3 +1 �1 y (+,�)

4 +1 +1 y (+,+)
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The coefficient corresponding to this cross-product term is:

b12 ¼ Ex1,x2

2

It turns out that the coefficients computed in the fashion described are actually the least squares

estimates.

A Three-Factor Example

Consider the following example. The processing of a liquid chemical mixture can have different

yields (in volume), depending on how the temperature (oC), pressure (kP), and dwell time (s) are set.

Nominally, the temperature has been set at 37oC, the pressure at 12.00 kP, and dwell time of 300 s.

The yield has been averaging 20 liters (L) per batch. An EAS is assigned the task of increasing the

volume yield, if possible. He decides to perform an experiment to fit a first order model in the three

factors. The levels and their coded values for all the runs are shown in Table 5.2.

There are 23 ¼ 8 runs, representing all possible combinations of levels for the three factors. The

model to be fit is:

y ¼ β0 þ β1H1 þ β2H2 þ β3H3 þ γ12H1H2 þ γ23H2H3 þ γ13H1H3 þ δ123H1H2H3 þ ε

The three-way cross-product term is probably not necessary, but since all possible combinations of

factor levels are included in the design, it is possible to estimate the coefficient for this term. The EAS

decides to get n ¼ 2 duplicate values for each run. The data are given in Table 5.3.

There are two very important properties of this experimental design that are made apparent by the

use of Helmert coding. The first is balance; for any input factor, there are equal numbers of

observations made when the input factor is set to its low (�1) value and its high (+1) value. If you

sum all the�1’s and +1’s in any column, the result is zero. The second is orthogonality; if each of the

columns in Table 5.3 are thought of as column vectors, the dot product of any two columns is zero.

Balance and orthogonality greatly simplify the calculations of least squares.

Once the data are gathered, the analysis begins with a least squares fit, or estimation of the

coefficients in the first order model.

With two-level experiments, where each input variable is Helmert-coded, there is a simple way to

compute the effects and coefficients for each term in the first order model. Suppose hij represents the
jth coded value for the ith input variable, and yj represents the jth value of the response variable. If

there are m ¼ 2k unique runs in the experiment, with n replicate values for each run, then the estimate

of the effect, Ei, and the least squares estimate of the coefficient, βi, are given by:

Table 5.2 Experimental

design—volume yield
Run

Natural Coded

Temp Pressure Time H1 H2 H3

1 32 10 240 �1 �1 �1

2 32 10 360 �1 �1 +1

3 32 14 240 �1 +1 �1

4 32 14 360 �1 +1 +1

5 42 10 240 +1 �1 �1

6 42 10 360 +1 �1 +1

7 42 14 240 +1 +1 �1

8 42 14 360 +1 +1 +1
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bEi ¼ 1
1
2
nm

Xnm
j¼1

hijyj

bi ¼
bEi

2
¼ 1

nm

Xnm
j¼1

hijyj

Table 5.3 Volume yield experiment

Run Temp Pressure Time H1 H2 H3 Volume

1 32 10 240 �1 �1 �1 20.8

1 32 10 240 �1 �1 �1 20.8

2 32 10 360 �1 �1 1 21.6

2 32 10 360 �1 �1 1 21.3

3 32 14 240 �1 1 �1 17.8

3 32 14 240 �1 1 �1 17.7

4 32 14 360 �1 1 1 17.9

4 32 14 360 �1 1 1 17.7

5 42 10 240 1 �1 �1 17.6

5 42 10 240 1 �1 �1 17.8

6 42 10 360 1 �1 1 16.5

6 42 10 360 1 �1 1 16.7

7 42 14 240 1 1 �1 24.1

7 42 14 240 1 1 �1 24.4

8 42 14 360 1 1 1 23.3

8 42 14 360 1 1 1 23.0

Table 5.4 Volume yield data with calculations of some of the coefficient estimates

Run Temp Pressure Time H1 H2 H3 y ¼ volume H1*y H2*y H3*y H1*H2*y

1 32 10 240 �1 �1 �1 20.8 �20.8 �20.8 �20.8 20.8

1 32 10 240 �1 �1 �1 20.8 �20.8 �20.8 �20.8 20.8

2 32 10 360 �1 �1 1 21.6 �21.6 �21.6 21.6 21.6

2 32 10 360 �1 �1 1 21.3 �21.3 �21.3 21.3 21.3

3 32 14 240 �1 1 �1 17.8 �17.8 17.8 �17.8 �17.8

3 32 14 240 �1 1 �1 17.7 �17.7 17.7 �17.7 �17.7

4 32 14 360 �1 1 1 17.9 �17.9 17.9 17.9 �17.9

4 32 14 360 �1 1 1 17.7 �17.7 17.7 17.7 �17.7

5 42 10 240 1 �1 �1 17.6 17.6 �17.6 �17.6 �17.6

5 42 10 240 1 �1 �1 17.8 17.8 �17.8 �17.8 �17.8

6 42 10 360 1 �1 1 16.5 16.5 �16.5 16.5 �16.5

6 42 10 360 1 �1 1 16.7 16.7 �16.7 16.7 �16.7

7 42 14 240 1 1 �1 24.1 24.1 24.1 �24.1 24.1

7 42 14 240 1 1 �1 24.4 24.4 24.4 �24.4 24.4

8 42 14 360 1 1 1 23.3 23.3 23.3 23.3 23.3

8 42 14 360 1 1 1 23.0 23.0 23.0 23.0 23.0

SUM: 7.8 12.8 �3.0 39.6

COEFF: 0.49 0.80 �0.19 2.48
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The least squares estimates of any two-way interaction coefficients are computed in a similar fashion:

bij ¼
bEij

2
¼ 1

nm

Xnm
k¼1

hikhjkyjk

Table 5.4 illustrates the computations of some of the coefficient estimates for the volume yield data.

The only reason these simple formulas for the least squares estimates of the coefficients work is

because this is a two-level, balanced, orthogonal design, where each input factor is Helmert-coded.

Figure 5.1 shows the output from the “Fit Model” function of the software package JMP 8.0. Note

the agreement between the “Parameter Estimates” section of the Figure and the results in Table 5.4.

Now that the estimates of the first order approximation model are obtained, the next stage is to

decide which input variables are likely to have a non-zero effect on the response. In Fig. 5.1, in the

Parameter Estimates section, along with the “Term” and “Estimate” columns are three others: Std

Error, t Ratio, and Prob >jtj. The Std Error (SE) column is the standard error of the estimated

coefficient, or parameter estimate, given by:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror
nm

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

n2k

r

The t Ratio is:

t ¼ b

SE

where b represents the estimate of the coefficient for the term in question. The formula for SE only has

this simple form due to Helmert coding.

Finally, the column labeled “Prob >jtj” is the p-value for testing the hypothesis that the coefficient
is actually 0. P-values less than some pre-specified level (usually 0.05) are considered statistically

significant, meaning that the actual coefficient does not appear to be 0. Any terms for which the

p-value is above the pre-determined threshold are candidates to be excluded from the model.

Figure 5.2 shows Minitab 16 output for the same data and model.

Figure 5.3 shows output (and SAS code) from SAS 9.2

Figure 5.4 shows the output and code for R 3.0.1

Notice that JMP calls
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

p
the “Root Mean Square Error”, Minitab calls it “S”, SAS calls it

“Root MSE”, and R calls it “Residual standard error”.

In examining the fit of this model, we notice several things. One is that all the three factors, H1, H2,

and H3, are significant at the 0.05 level. Thus it does not appear that any of the three are candidates to

be ignored. Another is that the interaction terms, H2*H3 and H1*H2*H3, are not significant at the 0.05

level. The fact that these interactions are not significant does not imply that any of the factors included

in the interaction are not important to control. Yet another thing is that the adjusted R2 is relatively

high (0.99674), indicating that possibly the first order polynomial may be a good enough

approximation.

We notice that the run with the highest average volume is run 7, with H1 ¼ +1 (Temperature

¼ 42oC) H2 ¼ +1 (Pressure ¼ 14 kP) and H3 ¼ �1 (Time ¼ 240 s). The average volume was

24.25 L, which is an improvement over the current volume of 20.0 L. Notice also that the predicted

value of volume for run 7 conditions is:

Volume ¼ 19:9þ 0:487 þ1ð Þ þ 0:800 þ1ð Þ � 0:188 �1ð Þ þ 2:48 þ1ð Þ � 0:363 �1ð Þ � 0:0750 �1ð Þ
þ 0:0750 �1ð Þ ¼ 24:25
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Fig. 5.1 JMP output—volume yield first order model
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It turns out that the least squares-based predicted value of the response (also called the least-squares

mean) for any run is actually the arithmetic average response for that run, provided the experiment is

balanced. This is another convenient consequence of the two-level experimental design. Many

software systems provide least squares means as outputs.

Since this EAS had no specific goal for volume (other than to make it as high as possible), it may

be that the only additional experimentation he would want to perform is confirmatory, namely,

replicates of run 7, H1 ¼ +1 (Temp ¼ 42oC), H2 ¼ +1 (Pressure ¼ 14 kP) and H3 ¼ �1 (Time

¼ 240 s). Upon completing another two replicates, the EAS obtained the values 24.4 L and 24.5 L.

These two values, and their average, 24.45 L, were close enough to the prediction that the EAS

decided that the best conditions were at Temperature ¼ 42oC, Pressure ¼ 14 kP, and Time ¼ 240 s.

It is quite possible that the chosen operating conditions are suboptimal. The presumption is that the

chosen range of input factors in which the experiment was conducted at least contains the optimal

point. Secondly, there is no way using the data gathered in this two-level experiment to decide that

any higher order terms would improve the polynomial approximation. It might be helpful to perform

the experiment at an intermediate point; something between the “corners” as defined by the high and

low levels of the input factors. Recall that the factors in natural units were Helmert-coded by

Fig. 5.2 Minitab output—volume yield first order model
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subtracting the midpoint values from the high and low values of each factor. The midpoints for each

factor would then be coded (or mapped) to the value 0. The “center” of the experimental space in

coded units would then be at Hi ¼ 0, i ¼ 1, 2, 3. If the average response at this center point is “close’

to the predicted value from the first order model, then it is more believable that no higher order terms

are necessary. Note that at the Helmert-coded center point, the predicted value is the intercept

estimate, which was ~19.94 L.

The center point conditions for the volume yield experiment are Temperature ¼ 37oC, Pressure

¼ 12 kP, Time ¼ 300 s. The EAS obtained two replicate values for the center point: 20.3 L and

19.6 L, for an average response of 19.95 L. This is very close to the intercept estimate of 19.94 L.

Therefore, evidence indicates that the first order model is adequate within the range of the input

factors in which the experiment was conducted.

Fig. 5.3 SAS output—volume yield first order model
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Non-continuously Valued Input Factors and Multiple Comparisons

Often factors are ordinal or even nominal valued. That is, a setting on a machine might have only

discrete, albeit ordered, values (slow, medium, and fast speeds, for example) or a factor’s levels may

have no order at all (colors, such as white or red, for example). In these cases, Helmert coding can still

be used, but the interpretation of the output is very different. Instead of fitting the model to be

predictive, the model is discriminatory. That is, rather than interest in estimating the model

coefficients, we would be more interested in estimating the effect, and testing whether the effect

for a given term is significantly different from zero. Most the models we have created so far were

predictive polynomial approximations to the relationship between the response and the factors. The

number of parameters associated with a factor or an interaction was one, and it was interpreted as a

Fig. 5.3 (continued)
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slope. When factors are discrete, the notion of slope does not really apply. Even in the case where a

discrete factor has only two levels, the effect, as described in the beginning of this chapter, is a more

meaningful measure than slope. In Figs. 5.2 and 5.3, the reader may have noticed tables with columns

labeled “source” and “DF”. The “source was the factor or regressor variable, and DF was the degrees

of freedom associated with the factor, and it was always one. In the case of discrete factors, the

degrees of freedom associated with the factor are the number of levels�1. The degrees of freedom for

a factor are actually the number or parameters required to represent the factor’s effect. In the case of

Fig. 5.4 R output—volume yield first order model
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two-level factors, and in fact for any continuously valued factor, only one parameter is required. If a

factor is continuous, then the parameter can be interpreted as a slope. In the case of discrete factors,

the parameters associated with those factors are only useful inasmuch as they are used to assess the

factor’s effect.

Usually, in the case of discrete factors, the EAS wants to know more specifically which

combinations of levels for a factor differ significantly from each other. Tests of significance

comparing specific combinations of factor levels are called multiple comparison tests (Montgomery

2001). These tests are generally only applied if the overall effect is significant, and are most useful

when a factor has more than two levels. The tests are designed to control for inflating the chance of

concluding that a significant difference between pairs of specific combinations of factor levels exists,

when in fact it does not. One such test is the Tukey-Kramer test (Montgomery, ref.cit.), or sometimes

referred to as Tukey’s Honestly Significant Difference, or HSD, test (Adler 2010). Figure 5.5 shows R

code for an example with one discrete factor having three levels (called “first”, “second”, and

“third”). The R Output for the example, including the Tukey HSD test, is shown in Fig. 5.6. The

columns labeled “lwr” and “upr” in the output for the TukeyHSD function are the lower and upper

limits of simultaneous 95 % confidence intervals for the differences between the average response at

the particular levels being compared. By “simultaneous” we mean that jointly the confidence level for

all the intervals is 95 %. The p adj column is the p-value, adjusted to account for multiple

comparisons.

In this example, the factor fF1 is significant (p ¼ 1.111e-05). While level “second” differs

significantly from level “third” (p ¼ 0.0000122) and from level “first” (p ¼ 0.0007988), level

“first” does not differ significantly from level “third” (p ¼ 0.3909875).

If all the factors in the experiment, continuous or non-continuous, are restricted to two levels, then

we can take advantage of all the computational efficiencies afforded by 2k factorial designs. So, the

designs and their associated characteristics are not restricted to only continuously valued factors. In

fact, both discrete and continuous factors may be included in a single experimental design.

It is possible that in addition to controlling levels of discrete and continuous factors, the EAS may

find that there are one or more continuously-valued quantities that vary without control, but which can

Fig. 5.5 Example R code

with Tukey HSD function
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Fig. 5.6 R output for TukeyHSD function
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be measured. For example, the ambient temperature may not be completely controllable, and it may

have some effect on experimental response variables. A version of ANOVA, called Analysis of

Covariance (ANCOVA) was developed to allow the experimenter to compare the levels of discrete

factors while compensating for a free-varying “covariate”, which may attenuate the response signal.

ANCOVA is a sort of combined ANOVA and regression. It is not the same as including a continu-

ously varying but uncontrolled input in a regression model; rather ANCOVA is a means of adjusting

the test of significance for discrete factors, to compensate for unwanted effects of the covariates.

Inasmuch as this text focuses mostly on constructing predictive models, and not so much on

determining the significance of discrete factors, no more will be said about ANCOVA. The

Montgomery text already cited several times has an excellent coverage of this topic.

Matrix Form

Suppose H is the matrix of all the columns relating to the intercept and each input factor coefficient,

including each cross-product terms (obtained by row-wise multiplication of the factors in the cross-

product terms). Furthermore, let Y represent the vector of all the Volume (response) results. They

would look like Fig. 5.7.

The first order model can be represented by the vector equation:

Y ¼ Hθþ ε

Fig. 5.6 (continued)
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where:

θ ¼

β0
β1
β2
β3
γ12
γ13
γ23
δ123

2
666666664

3
777777775

and ε is a nm � 1 vector of random noise variables. If bθ represents a vector of the ordinary least

squares estimates of the model coefficients, then it can be expressed in the vector equation:

bθ ¼ H
0
H

h i�1

H
0
Y

That is, bθ is the solution to the least squares minimization problem (Draper and Smith 1998), namely

to find the values of the coefficients that minimize the sum of squared errors (SSE).
Recall the formula for the standard error of predicted values:

SE by��h0� � ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

0
0 H

0
H

� ��1
h0

q

where s is the root mean square error, and h0 represents a particular design point (i.e., a value

corresponding to each column of theHmatrix) in the Helmert-coded input variable space. Once again

the Helmert coding simplifies the computations. The matrix H0H has diagonal elements all equal to

np, where p ¼ number of parameters in the model ¼ number of columns in the matrix H, and all

off-diagonal elements equal to 0. The inverse of such a matrix is simply the reciprocal of the diagonal

elements on its diagonal and zero everywhere else. That means:

H Matrix Y vector

Intercept H1 H2 H3 H1H2 H1H3 H2H3 H1H2H3 y=Volume

1 -1 -1 -1 1 1 1 -1 20.8

1 -1 -1 -1 1 1 1 -1 20.8

1 -1 -1 1 1 -1 -1 1 21.6

1 -1 -1 1 1 -1 -1 1 21.3

1 -1 1 -1 -1 1 -1 1 17.8
1 -1 1 -1 -1 1 -1 1 17.7
1 -1 1 1 -1 -1 1 -1 17.9
1 -1 1 1 -1 -1 1 -1 17.7
1 1 -1 -1 -1 -1 1 1 17.6
1 1 -1 -1 -1 -1 1 1 17.8
1 1 -1 1 -1 1 -1 -1 16.5
1 1 -1 1 -1 1 -1 -1 16.7
1 1 1 -1 1 -1 -1 -1 24.1
1 1 1 -1 1 -1 -1 -1 24.4
1 1 1 1 1 1 1 1 23.3
1 1 1 1 1 1 1 1 23.0

Fig. 5.7 Matrix

representation of volume

yield experiment
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SE by��h0� � ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

0
0 H

0
H

� ��1
h0

q
¼ sffiffiffi

n
p

For run 7, h
0
0 ¼ þ1, þ 1, þ 1, � 1, þ 1, � 1, � 1, � 1½ �, and

SE by��h0� � ¼ sffiffiffi
2

p

With s � 0.1581, the 99 % lower confidence bound on the predicted value for run 7 is:

by � t 0:99, 16� 8ð ÞSE by��h0� � � 24:25� 2:896�0:1581ffiffiffi
2

p � 23:93

So, now we have seen three different ways to compute the least squares estimates of the first order

polynomial coefficients using data from a balanced, 2k factorial experiment:

1. Compute the “effect” in terms of differences in average response at the high and low levels of the

input factor, and then dividing by 2;

2. Using the coded column for the input factor, multiply it row-wise with the corresponding response

variable values, and then sum the products; divide by the total number of response values;

3. Use the matrix/vector solution to the least squares minimization problem;

All three of these methods yield the same answer. Method 2 only works for Helmert-coded,

balanced, orthogonal two-level experiments.

Reducing the Model

Inasmuch as two interaction terms in the Volume Yield model were not significant (i.e., the p-values

for the t-ratios of their coefficient estimates were greater than 0.05), we might consider what would

happen if we “reduced” the model, excluding the H2H3 and H1H2H3 terms, which both had associated

p-values of approximately 0.09435 (Fig. 5.4). The JMP output for the reduced model is shown in

Fig. 5.8.

Apart from missing the H2H3 and H1H2H3 terms, the coefficients in the new model are identical to

those of the corresponding terms in the full model. The reduced model has a lower adjusted R2

(0.9950 instead of 0.9967), a higher root means square error (0.1949 instead of 0.1581), and therefore

correspondingly higher standard errors for the coefficients (0.0487 instead of 0.0395). The only

question is whether the reduced model gives better predictions than the full model. For run 7, the

predicted value of volume with the full model was 24.25 L. With the reduced model, it is also about

24.25 L. The two models agree very closely at all the runs. Table 5.5 shows the predicted values at

each of the 8 runs. Of course, since the intercept estimates are identical for the two models, the

predicted values at the center point run, H1 ¼ H2 ¼ H3 ¼ 0, are the same.

The only way to assess which model yields superior predictions is to replicate runs at which the

two predictions (full and reduced model) do not agree. In particular, since the H2H3 and H1H2H3

interactions were dropped in the reduced model, it might be instructional to replicate a run in which

all three coded variables had the same sign, and a run in which one variable differed in sign from the

other two. Run 1 (H1 ¼ H2 ¼ H3 ¼ �1) and run 8 (H1 ¼ H2 ¼ H3 ¼ +1) are the two runs where all

variables have the same sign. Any of the other runs would satisfy the 2 out of 3 runs having different

signs. However, note that the predicted values for runs 5, 6, and 7 are identical, so the information
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Fig. 5.8 JMP output—reduced model—volume yield first order model

Table 5.5 Predicted values, full

and reduced models
Run Full model Reduced model

1 20.80 20.95

2 21.45 21.30

3 17.75 17.60

4 17.80 17.95

5 17.70 17.70

6 16.60 16.60

7 24.25 24.25

8 23.15 23.15
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about which model yields a better prediction would not be available. So, in order to assess which

model yields better predictions, runs 2, 3, or 4 are the best candidates.

Before obtaining any further experimental data, however, examine the differences in the

predictions. Are those differences materially different? Furthermore, does it matter, since the

maximum prediction for both models is 24.25 L at “run 7” conditions? Since the function being

maximized is linear in the parameters, and the only constraints on the inputs are that they fall within

specified ranges (coded to the range�1 to +1), there are no intermediate settings of the input variables

that will increase the polynomial approximation to the yield function. Therefore, given that the center

point data did not indicate any higher order effects beyond the linear model, and given that the

reduced model did not yield any alteration in what appeared to be the optimal conditions, the EAS

may conclude that the process should be run at “run 7” conditions, namely temperature ¼ 42oC,

pressure ¼ 14 kP, and time ¼ 240 s. The 99 % lower bound on expected volume yield is:

by � t 0:99, 16� 6ð ÞSE by��h0� � � 24:25� 2:764�0:1949ffiffiffi
2

p � 23:92

based on the reduced model.

To reiterate the modeling, analysis, and decision process:

1. Choose an objective, such as maximizing yield, minimizing waste, or obtaining a measurement

that exceeds some lower limit. In all the cases discussed in this chapter, there is a single output, or

response variable, and that is can be expressed as a real number.

2. Choose a set of candidate input variables, which are those controllable factors that are suspected

to have some effect on the output response.

3. Choose operating ranges for each of the controllable input factors.

4. Fit the full, first order polynomial to Helmert-coded input variables.

5. Obtain some runs at the center point.

6. Compare the average of the center point runs to the intercept. Are they “close”?

7. Determine which, if any, terms in the full model have coefficients that are not significantly

different from zero.

8. Compute predicted values for a reduced model, which only contains terms with significant

coefficients.

9. Find the run conditions that provide the “best” predicted output response. Compute bounds for

the prediction (lower, upper, or both).

10. If possible, consider obtaining some additional data using conditions that were not included in the

original experiment (other than the center point). Compute a predicted value from the model, and

compare it to the actual average response from the additional run(s). Are they “close”? Does the

prediction “seem” reasonable?

11. If the predicted values seem close to the actual results obtained from additional runs, then use the

run conditions that yield the “best” predicted value.

12. If the average value of the center point runs is not close to the predicted value of the response, or

the actual values of additional runs are not close to predicted values, then a higher order

approximation may be necessary.

Keep in mind that there are potentially other phenomena that may affect the modeling and analysis

process. There can be budgetary as well as physical constraints that limit your ability to experiment. It

is possible that some input factors may only have either an operating minimum or maximum, so that

choosing a range may be challenging. Of course, measurement systems for both output and input

variables may constrain the ability to know the true optimal value or choose optimal operating/design

conditions. And noise levels may make confidence limits wider than desirable for a given sample size.
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Key Points

• System features can be thought of as input factors that affect the value of a performance measure,

called the response variable.

• Factorial experiments are sets of factor values used to assess the effects of each factor on the

average value of the response variable.

• Two-level factorial experiments are used to find first-order approximating polynomials. They can

tell you if increasing a given factor increases, decreases, or does not change the average value of

the response.

• Interaction effects are assessed by including two-way cross-products of input factors into the

model.

Exercises and Questions

1. What order polynomial can be fit using data from a two-level factorial experiment?

2. How can a center point run be useful?

3. What analyses can be used for discrete factors? How do those analyses differ from continuous

factors?
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Chapter 6

Fractional Factorial Designs

In the two-level experiment with k input factors, there are 2k possible runs. For k ¼ 3, there are only

eight runs. But even with five factors, 25 ¼ 32 runs may be prohibitively expensive and time

consuming. The question is whether it is possible to use some subset of all possible runs and still

be able to fit a first order polynomial approximation to the response function. The answer is yes, but

you must give up some resolution in your approximation. The amount of resolution lost is generally in

terms of which interaction effects which can be included in your model.

The process of selecting the subset of runs is called fractional replication, and the experimental

designs resulting from the process are called fractional factorials. The term comes from the fact that

selected fractions of the total number of runs are of the form 1
2p
, where p ¼ 1, 2, 3,. . . So, for example,

if there are five factors over which the experiment is to be performed, then there are 25 ¼ 32 possible

runs, and a
1

21
or one-half fraction would require only 16 of those runs. This section will deal with a

sort of taxonomy for fractional factorial designs, in terms of the amount of information lost, together

with a method for choosing the particular fraction of the total number of possible runs. The method of

choosing those runs will preserve balance and orthogonality, the two essential characteristics that

allow for the unambiguous estimation of model coefficients.

Resolution

The degree to which information is lost when a fraction of the total number of runs are used in an

experiment is called resolution. A complete, full factorial design has full resolution. The next resolution

level most commonly employed is called Resolution V (Roman numeral 5), or ResV. The resolution in

a design limits the order of interaction, or cross-product terms, which can be included in a model. For

ResV designs, the approximating first order polynomial can have all possible two-way cross-product, or

interaction, terms. All three-way or higher order cross-product terms are what is called “aliased” with

two-way terms. That means the coefficient estimates for any three-way terms will be identical to the

estimate for some two-way term. The other resolution levels we will discuss are ResIV (where single

factor terms are not aliased with each other, although they are aliased with higher order cross-product

terms, and two-way cross-products are aliased with other two-way cross-products and higher order

cross-products, but no cross-product terms are aliased with any single factor terms) and ResIII (where

two-way and higher order cross-product terms are all aliased with single factor terms, but single-factor

terms are not aliased with each other). Generally, a design is of resolution K if the lowest order term that

any k-order term is aliased with is K-k. So for example, in a ResV (K ¼ 5) design, the lowest order term
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any first-order term will be aliased with is a 5 � 1 ¼ fourth order cross-product term, second order

terms will be aliased with 5 � 2 ¼ third-order terms, and of course third-order terms will be aliased

with 5 � 3 ¼ second-order terms.

First, we will illustrate the idea of aliasing. Secondly we will describe a method for dividing the 2k

runs into 2p subsets, or fractional designs, in such a way as to preserve balance and orthogonality.

Then we will discuss a method for determining p in order to have a particular resolution.

Aliasing

Suppose we had three Helmert-coded input factors, call them H1, H2, and H3. Suppose that we had

chosen to make only four runs, as shown in Table 6.1. If we did this experiment, then the estimate for

the coefficients of factors H1 and H3 would be identical. They are said to be aliased. Suppose we tried

to fit the model:

y ¼ β0 þ β1H1 þ β2H2 þ β3H3 þ ε

Using the information in Table 6.1, we would have the following estimates of the coefficients β1 and β3:

b1 ¼ �1ð Þy1 þ �1ð Þy2 þ þ1ð Þy3 þ þ1ð Þy4
4

and

b3 ¼ �1ð Þy1 þ �1ð Þy2 þ þ1ð Þy3 þ þ1ð Þy4
4

So the estimates would be identical.

If we tried to use a computer program to compute the estimates of the model coefficients, we

would get an error message, telling us about a singular matrix or collinearity or some other message

that indicates the least squares estimates for the coefficients could not be computed. So, in models fit

to data from fractional factorial experiments, care must be taken to only include terms in the model

that are not aliased with each other.

In all fractional factorials, the single-factor terms of the models will be aliased with some other

terms. We would like to exclude from the model the higher-order cross-product terms that are aliased

with lower-order terms, so that the model would give us the best approximation possible. Generally,

the higher the order of the cross-product, the less important it is in terms of approximation. The

largest fraction of a 2k design that would be able to preserve balance and orthogonality would be 2�1

or one half of the total number of runs. To select such a fraction, write down the runs of a complete or

full 2k � 1 design, using Helmert-coded levels. Then compute the levels for the kth factor by

multiplying across the columns of the k � 1 factors. For example, suppose we wanted a one-half

fraction of a 23 experiment. The rows of the 2(3 � 1) ¼ 22 full factorial would look like Table 6.2:

Table 6.1 An experiment

with aliasing
Run H1 H2 H3 Y

1 �1 �1 �1 y1
2 �1 1 �1 y2
3 1 �1 1 y3
4 1 1 1 y4
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To add the third factor, equate it to the interaction (cross-product) term W1W2:

Table 6.3 illustrates this fractional design:

Thus, in this fractional design, the third factor, H3, is aliased with the H1H2 cross-product.

Similarly, you can verify that the single-factor term W1 is aliased with the W2W3 cross-product,

and H2 is aliased with H1H3. Thus, the only model that can be fit using this experiment that would

include all three input variables is:

y ¼ β0 þ β1H1 þ β2H2 þ β3H3 þ ε

It would be possible to fit instead the model:

y ¼ β0 þ β1H1 þ β2H2 þ β12H1H2 þ ε

In fact, the estimates of β3 and β12 would be identical. Of course, we are hoping that the single-factor
term H3 is actually dominating the two-way cross-product H1H2. The tacit assumption is that the

higher order the cross-product, the less influence it has on the response variable. Of course, it is

possible that this assumption is incorrect.

Generating a Fractional Factorial

To create a 2�p fraction of a 2k design, first write down in Helmert-coded for all the runs for any

subset of k � p factors. Then create a new column for the next factor, by multiplying the coded values

for k � p of the previously selected factors. Do this for each additional column, choosing different

combinations of the other factor columns.

As an example, consider the 2�1 or one-half fraction of a 25 design. In a full two-level, five-factor

experiment, there would be 25 ¼ 32 runs. In an half-fraction, there would be 25

21
¼ 16 runs.

Suppose we label the factors H1, H2, H3, H4, and H5. First, write down the coded columns of a full

24 design in, say, H1 through H4. There would be 24 ¼ 16 runs for this design. Then, compute the

column for H5 ¼ H1*H2*H3*H4. Table 6.4 illustrates the design.

In this experiment, for example, run 1 would have factors H1–H4 all set to their “low” (�1) level,

and H5 set to its “high” (+1) level. The coefficient estimate for H5 would be identical to that of the

fourth order cross-product term H1H2H3H4. Similarly, the levels of H1 would be identical to those of

the fourth-order cross-product H2H3H4H5. Again, invoking Ockham’s razor, we will opt to include

the first-order term H1 in our model, and exclude the fourth-order terms. Note that the lowest order

Table 6.3 One-half fraction

of the 23 design
Run H1 H2 H3 ¼ H1H2

1 �1 �1 1

2 �1 1 �1

3 1 �1 �1

4 1 1 1

Table 6.2 Full 22 factorial

experiment
Run H1 H2

1 �1 �1

2 �1 1

3 1 �1

4 1 1
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cross-product terms for which any first-order term is aliased is a 5 � 1 ¼ fourth order term. Also, the

second-order terms are aliased with third-order terms (check, for example, the column for the H1H2

term and for the H3H4H5 column). Thus, the k ¼ second order terms are aliased with the 5 � 2 ¼
third-order terms. Since second order cross-products are not aliased with each other or with first order

terms, this half-fraction of the 25 design is a ResV design.

There is a simply procedure to determine exactly which terms are aliased. First, we chose the H5

term to be aliased with the fourth-order term H1H2H3H4. We obtained the H5 column by multiplying

across the rows the columns of H1, H2, H3, and H4. Any column multiplied by itself, row by row,

would yield a column of all +1’s. Multiplying any column by a column of all +1’s would yield the

original column. In other words, the column of all +1’s acts like a multiplicative identity. Since we

chose to alias H5 with H1H2H3H4, we will call the product I ¼ H1H2H3H4H5 (¼ H5*H5) the

generator of the design. To find out which other terms any term is aliased with, simply multiply the

symbol for that term with the identity, and recognize that any term multiplied by itself will yield a

column of all +1’s, so that it can simply be ignored. Here are the aliases for our half-fraction design:

H1*I ¼ H12H2H3H4H5 ¼ H2H3H4H5

H2*I ¼ H1H22H3H4H5 ¼ H1H3H4H5

H3*I ¼ H1H2H32H4H5 ¼ H1H2H4H5

H4*I ¼ H1H2H3H42H5 ¼ H1H2H3H5

H5*I ¼ H1H2H3H4H52 ¼ H1H2H3H4

H1H2*I ¼ H12H22H3H4H5 ¼ H3H4H5

H1H3*I ¼ H12H2H32H4H5 ¼ H2H4H5

H1H4*I ¼ H12H2H3H42H5 ¼ H2H3H5

H1H5*I ¼ H12H2H3H4H52 ¼ H2H3H4

H2H3*I ¼ H1H22H32H4H5 ¼ H1H4H5

H2H4*I ¼ H1H22H3H42H5 ¼ H1H3H5

H2H5*I ¼ H1H22H3H4H52 ¼ H1H3H4

H3H4*I ¼ H1H2H32H42H5 ¼ H1H2H5

H3H5*I ¼ H1H2H32H4H52 ¼ H1H2H4

H4H5*I ¼ H1H2H3H42H52 ¼ H1H2H3

Table 6.4 Half-fraction

of a 25 design
Run H1 H2 H3 H4 H5 ¼ H1H2H3H4

1 �1 �1 �1 �1 1

2 �1 �1 �1 1 �1

3 �1 �1 1 �1 �1

4 �1 �1 1 1 1

5 �1 1 �1 �1 �1

6 �1 1 �1 1 1

7 �1 1 1 �1 1

8 �1 1 1 1 �1

9 1 �1 �1 �1 �1

10 1 �1 �1 1 1

11 1 �1 1 �1 1

12 1 �1 1 1 �1

13 1 1 �1 �1 1

14 1 1 �1 1 �1

15 1 1 1 �1 �1

16 1 1 1 1 1
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Since the term H1H2H3H4H5 ¼ I (column of all +1’s) it is actually aliased with the intercept

term. Recall from Chap. 4 that the “design” (H) matrix had a column of all 1’s appended to the

columns of the input variables, and that this column was used in the estimation of the intercept.

Now it is easy to see that all the first-order terms are aliased with fourth order terms, and all the

second-order terms are aliased with third-order terms, and the fifth-order term is aliased with the

intercept. Mr. Ockham would tell us to (at least in the beginning) include the lowest order terms not

aliased with each other in our model. Our model would then be:

y ¼ β0 þ
Xr

i¼1

βiHi þ
X
i6¼j

X
γijHiHj þ ε

There are always two one-half fraction designs for any full 2k design corresponding to �I. So, we

used I ¼ H1H2H3H4H5 to generate the half fraction; we could also have used I ¼ �H1H2H3H4H5.

That is, instead of assigning to the H5 column the row-wise product of the columns H1, H2, H3, and

H4, we could just as easily taken those products and multiplied them by �1. Table 6.5 shows the

original half-fraction with H5 ¼ H1H2H3H4, and an alternate fraction where H5

(alt) ¼ �H1H2H3H4.

Either of these fractions (use either H5 or H5(alt)) would allow us to fit the same model containing

the first and second-order cross-product terms. Neither is superior in any statistical sense. It is

possible that one of the fractions may be easier to execute for some physical reason. Both fractions

are ResV.

Aside from controlling the nature of aliasing, the process we have used to select a half-fraction

preserves balance and orthogonality. Thus the coefficient estimation procedure is identical for

fractional and full two-level designs. The only thing that has changed is the model which we can

fit to the data. Clearly, using fractional designs induces a loss in information; we are hoping that

Ockham was right, and that we are losing the least important bits of information as a tradeoff for

economy.

Table 6.5 Two possible half-fractions of a 25 design

Run H1 H2 H3 H4 H5 ¼ H1H2H3H4 H5(alt) ¼ �H1H2H3H4

1 �1 �1 �1 �1 1 �1

2 �1 �1 �1 1 �1 1

3 �1 �1 1 �1 �1 1

4 �1 �1 1 1 1 �1

5 �1 1 �1 �1 �1 1

6 �1 1 �1 1 1 �1

7 �1 1 1 �1 1 �1

8 �1 1 1 1 �1 1

9 1 �1 �1 �1 �1 1

10 1 �1 �1 1 1 �1

11 1 �1 1 �1 1 �1

12 1 �1 1 1 �1 1

13 1 1 �1 �1 1 �1

14 1 1 �1 1 �1 1

15 1 1 1 �1 �1 1

16 1 1 1 1 1 �1
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Generating a One-Quarter Fraction

Suppose we had not five factors, but six factors with which to experiment. A full factorial in six

factors would require 26 ¼ 64 runs. A one-half fraction would require 26 � 1 ¼ 32 runs. If we could

only afford 16 runs, we would need to generate a 2�2 or one-quarter fraction of the total 64 runs. The

method is very similar to that for generating the 2�1 fraction. First, write down the runs for a full 24

design in factors H1, H2, H3, and H4 (the full factorial with the required number of runs). Then assign

to another column for H5 the levels (in Helmert-coded form) computed from the row-wise product of

H1, H2, and H3. Then assign to yet another column for H6 the product of H2, H3, and H4. In the

quarter-fraction design, there are p ¼ 2 generators. The result will be a 16-run design with six

factors. Table 6.6 shows the design.

To determine the aliases of each other term, multiply the term by each generator, H1H2H3H5 and
H2H3H4H6. Furthermore, multiply each term by the product of H1H2H3H5 and H2H3H4H6 ¼
H1H4H5H6. Just as in the case of the half-fraction, we define identity products based on the terms we

chose to alias, namely I ¼ H1H2H3H5 ¼ H2H3H4H6. However, since I*I ¼ I, we must also

include in the definition of the identity the product of H1H2H3H5 and H2H3H4H6, or

H1H2H3H5*H2H3H4H6 ¼ H1H22H32H4H5H6 ¼ H1H4H5H6. So, the full definition of the iden-

tity cross-product is:

I ¼ H1H2H3H5 ¼ H2H3H4H6 ¼ H1H4H5H6.

To determine the aliases of each term, multiply those terms by the identities:

H1*I ¼ H2H3H5 ¼ H1H2H3H4H6 ¼ H4H5H6

H2*I ¼ H1H3H5 ¼ H3H4H6 ¼ H1H2H4H5H6

H3*I ¼ H1H2H5 ¼ H2H4H6 ¼ H1H2H3H5H6

H4*I ¼ H1H2H3H4H5 ¼ H2H3H6 ¼ H1H5H6

H5*I ¼ H1H2H3 ¼ H2H3H4H5H6 ¼ H1H4H6

H6*I ¼ H1H2H3H5H6 ¼ H2H3H4 ¼ H1H4H5

The second-order products have an interesting alias structure. For example:

H1H2*I ¼ H3H5 ¼ H1H3H4H6 ¼ H2H4H5H6

Table 6.6 A one-quarter

fraction
Run H1 H2 H3 H4 H5 ¼ H1H2H3 H6 ¼ H2H3H4

1 �1 �1 �1 �1 �1 �1

2 �1 �1 �1 1 �1 1

3 �1 �1 1 �1 1 1

4 �1 �1 1 1 1 �1

5 �1 1 �1 �1 1 1

6 �1 1 �1 1 1 �1

7 �1 1 1 �1 �1 �1

8 �1 1 1 1 �1 1

9 1 �1 �1 �1 1 �1

10 1 �1 �1 1 1 1

11 1 �1 1 �1 �1 1

12 1 �1 1 1 �1 �1

13 1 1 �1 �1 �1 1

14 1 1 �1 1 �1 �1

15 1 1 1 �1 1 �1

16 1 1 1 1 1 1
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Notice that this second-order product term is aliased with another second-order product. That

means, in our model, we cannot have both H1H2 and H3H5.

The design of this one-quarter fraction is ResIV, since for the k ¼ second-order product terms,

they are aliased with another K � k ¼ 4 � 2 ¼ 2, or second-order cross-product. The problem is

that now the modeler must chose only a subset of the second-order cross-product terms to include in

the model. Sometimes, physical laws and known phenomena may dictate which cross-product is most

likely to have an effect, but sometimes it is altogether unclear.

In order to generate the half-fraction design with r factors, we wrote down a full design in k – 1

factors, and added a column by aliasing the last factor with the (k – 1)th-order cross-product term. In

the case of the quarter-fraction, we wrote down a full design in k – 2 factors, and then aliased each of

the two remaining factors with (k – 3)th-order cross-products. We could have chosen to alias H5 with

the product H1H2H3H4, and H6 with H2H3H4H5. If we had, then the identity relation would have

been:

I ¼ H1H2H3H4H5 ¼ H2H3H4H5H6 ¼ H1H6.

Thus, the single factor terms H1 and H6 would be aliased each other, and we would only be able to

include one of them in the model.

Just as in the case of the half-fraction, there are multiple quarter-fraction designs associated with

any pair of cross-product terms. In other words, we could have used any combination of

�H1H2H3H5 and �H2H3H4H6 to generate the columns for H5 and H6. Regardless of which of

the four combinations we chose, the resulting design would be ResIV, and the same models could be

fit using any of the four resulting designs.

Smaller Fractions and Resolution III Designs

In a ResIII design, all single-factor terms are aliased with K – k ¼ 3 – 1 ¼ 2, or second-order cross-

products. That means our model will only include single-factor terms (again invoking Mr. Ockham’s

rule). Such designs and models are mostly useful when there are so many factors (>5) and the EAS

Table 6.7 An eighth-fraction design in seven factors

Run W1 W2 W3 W4 W5 ¼ W1 W2 W6 ¼ W2W3 W7 ¼ W3W4

1 �1 �1 �1 �1 1 1 1

2 �1 �1 �1 1 1 1 �1

3 �1 �1 1 �1 1 �1 �1

4 �1 �1 1 1 1 �1 1

5 �1 1 �1 �1 �1 �1 1

6 �1 1 �1 1 �1 �1 �1

7 �1 1 1 �1 �1 1 �1

8 �1 1 1 1 �1 1 1

9 1 �1 �1 �1 �1 1 1

10 1 �1 �1 1 �1 1 �1

11 1 �1 1 �1 �1 �1 �1

12 1 �1 1 1 �1 �1 1

13 1 1 �1 �1 1 �1 1

14 1 1 �1 1 1 �1 �1

15 1 1 1 �1 1 1 �1

16 1 1 1 1 1 1 1
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must choose a smaller subset (at least initially) with which to experiment. The ResIII designs are like

heats in a race; they really meant as a means of eliminating factors. Consider a 27 � 3 design, with

seven factors in 27 � 3 ¼ 24 ¼ 16 runs. To generate the design, write down a full 24 design in H1, H2,

H3, and H4, and then compute columns for H5, H6, and H7 by aliasing these single-factor terms with

second-order cross-products. Table 6.7 shows the design.

The identity is:

I ¼ H1H2H5 ¼ H2H3H6 ¼ H3H4H7

That is, there are p ¼ 3 generators in this 2�3 fraction of a 27 deign. As in the case of the quarter

fraction, the products of these identity elements are also identity elements. There are three pairs of

products and 1 three-way product. So, the complete definition of the identity is:

I ¼ H1H2H5 ¼ H2H3H6 ¼ H3H4H7 ¼ H1H3H5H6 ¼ H1H2H3H4H5H7 ¼ H2H4H6H7

¼ H1H4H5H6H7

The aliases for the single-factor terms are:

H1*I ¼ H2H5 ¼ H1H2H3H6 ¼ H1H3H4H7 ¼ H3H5H6 ¼ H2H3H4H5H7 ¼ H1H2H4H6H7

¼ H4H5H6H7

H2*I ¼ H1H5 ¼ H3H6 ¼ H2H3H4H7 ¼ H1H2H3H5H6 ¼ H1H3H4H5H7 ¼ H4H6H7

¼ H1H2H4H5H6H7

H3*I ¼ H1H2H3H5 ¼ H2H6 ¼ H2H4H7 ¼ H1H5H6 ¼ H1H2H4H5H7 ¼ H2H3H4H6H7

¼ H1H3H4H5H6H7

H4*I ¼ H1H2H4H5 ¼ H2H4H6 ¼ H3H7 ¼ H1H3H4H5H6 ¼ H1H2H3H5H7 ¼ H2H6H7

¼ H1H5H6H7

H5*I ¼ H1H2 ¼ H2H3H5H6 ¼ H3H4H5H7 ¼ H1H3H6 ¼ H1H2H3H4H7 ¼ H2H4H5H6H7

¼ H1H4H6H7

H6*I ¼ H1H2H5H6 ¼ H2H3 ¼ H3H4H6H7 ¼ H1H3H5 ¼ H1H2H3H4H5H6H7 ¼ H2H4H7

¼ H1H4H5H7

H7*I ¼ H1H2H5H7 ¼ H2H3H6H7 ¼ H3H4 ¼ H1H3H5H6H7 ¼ H1H2H3H4H5 ¼ H2H4H6

¼ H1H4H5H6

All the single-factor terms are aliased with a second-order cross-product. The model should be

simply:

y ¼ β0 þ
Xr

i¼1

βiHi þ ε

Some Terms and Some Generalities

The collection of terms used as identities are referred to as the defining relation of the fractional

design. Each particular term is called a word in the defining relation. The size of a word is the number

of factors comprising the word. In the case of half fractions, there is always exactly one word in a

defining relation. In order to obtain the highest resolution, the word for the half-fraction should be

comprised of k factors. In the case of the quarter fraction, there are always three words in the defining
relation, one for each of the p ¼ 2 generator words, and the product of those two words.

It is generally desirable to maximize the resolution of a fractional design. The resolution is equal to

the smallest word in the defining relation. For a half-fraction, there is always exactly one word in the
defining relation. In a quarter-fraction, there are always three. In an eighth-fraction design with

k factors, there are
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words in the defining relation. In general, for a 2�p fraction, the number of words in the defining
relation is:

p
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þ p
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� �
þ � � � þ p

p

� �
¼ 2p � 1

We usually will choose to alias p of the single-factor terms such that the smallest word in the defining

relation will be as large as possible. The resolution will depend on the number of runs (i.e., the size of

the fraction) and factors, namely N ¼ 2k � p and k. Unfortunately, there is not in general a unique

mapping from k and p to a defining relation. The smallest word in the defining relation will be the

product of the two words with the greatest number of common factors.

Recall that there are 2p 2�p fractions of any design for a given defining relation. There is no

particular statistical benefit or detriment in choosing any of these 2p fractions. The fraction in which

all the words have positive signs is called the principle fraction.
Several statistical software packages will generate the runs for fractional designs.

Figure 6.1 shows a screen shot of Minitab 16 menu selections for generating a fractional factorial

design.

Fig. 6.1 Minitab 16 screen shot—creating a fractional factorial design—Part 1

Some Terms and Some Generalities 67



Figure 6.2 shows the next Minitab screens in the design process.

We have asked Minitab to select the design with the default generator words, that we have six

factors, and that we want a 16-run design. Note that in the main “Create Factorial Design” window,

the user may select the “Factors” button to provide names for the factors, and even select codes for the

low and high levels of each factor. The default coding is Helmert. The “Options” button allows the

user to control how the design columns will be presented, and order in which the run rows will appear

in the worksheet.

Table 6.8 shows the Session Window output, which describes the design and its alias structure.

The factors are named A-F, even though the user may have chosen more meaningful names. The

“+” signs are used in the way we have previously used “¼” in describing aliases.

Figure 6.3 is a screen shot of the Minitab worksheet. In the worksheet, the factor names given by

the user appear as column headings. The columns labeled CenterPt and Blocks have no meaning in

this context; their meaning will be apparent later in the text. The columns StdOrder and RunOrder are

identical here. The user has the option of asking Minitab to provide an order in which the different

runs should be executed. In many cases, the user may want to perform the runs in a random order, in

order to mitigate the potential effects of order on the response.

A similar process for generating the design can be achieved with SAS 9.1 PROC FACTEX.

Figure 6.4 shows the SAS code to generate the design.

The output from these statements is shown in Fig. 6.5.

This SAS procedure uses the symbol “0” to represent the complete alias structure for the identity,

or defining relation.

Fig. 6.2 Minitab 16 screen shot—creating a fractional factorial design—Part 2
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The designs generated by Minitab and SAS are very similar, but not identical. However, both

designs are ResIV. In the Minitab design, since H1H5 ¼ H2H3 (AE ¼ BC in Minitab’s notation),

only one of these two-way cross-products could be included in the model. In the SAS design, H1H5 is

not aliased with H2H3, so both of those terms could be included in the model.

JMP, another software package, can also be used to generate design tables. Figure 6.6 shows the

screens, together with the output table.

JMP refers to fractional factorials as “screening designs”. It also adds a column in the output table

that identifies the pattern of low and high levels for each run. For example, the pattern “----–”

indicates that the run has all six factors set to their “low” (�1) level.

Fries and Hunter (1980) described another measure of assessing design quality in addition to

resolution. They called it aberration. It is the number of words in the defining relation with the

smallest size. It is possible for two designs to have the same resolution, yet one may be somewhat

more desirable. That is, the fewer words in the defining relation with the smallest size, then lower the

amount of aliasing. Hinkelmann and Kempthorne (2005) give an example of two 28 � 3, ResIV

designs. The first, they call D1, has the defining relation:

I ¼ H1H2H3H4H5 ¼ H3H4H5H7 ¼ H1H2H6H7 ¼ H2H4H5H8 ¼ H1H3H6H8 ¼ H2H3H7H8

¼ H1H4H5H6H7H8

Table 6.8 The 26 � 2 fractional design—Minitab output
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The other, D2, has the relation:

I ¼ H3H4H5H6 ¼ H1H2H4H5H7 ¼ H1H2H3H6H7 ¼ H1H2H3H5H8 ¼ H3H4H7H8

¼ H5H6H7H8

Design D2 has only three words of size 4, but D1 has 5. Both designs are ResIV, but in some sense

D2 may be more desirable. SAS PROC FACTEX can be told explicitly to provide the minimum

aberration design for a given resolution. However, it is not necessarily true that the minimum

aberration design is best. Usually, the default design for a given resolution and/or maximum number

of runs will be perfectly sufficient. In the case of ResIII designs, usually the objective of “screening”,

or reducing the number of factors in which to experiment, the first-order model approximation is very

coarse. Thus, concern over aberration may be of secondary or even lower priority relative to creating

a design with a sufficiently low number of runs. In the case of ResV designs, minimizing aberration

would result in reducing the numbers of four-way cross-products to which the two-way cross-

products are aliased. Again, this is probably of considerably lesser importance than obtaining a

ResV design. The biggest issue is for ResIV designs, since two-way cross-products are aliased with

each other. However, minimizing aberration generally only affects the three-way and higher order

cross-product terms, which are more likely to be excluded from the models fit to ResIV design data

anyway. However, especially in ResIV designs, care must be taken to note which two-way cross-

products are aliased, so that an appropriate model can be fit.

Fig. 6.3 The 26�2 fractional design—Minitab worksheet
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Blocking Effects

Blocking effects are factors that are not of particular interest to the designer, but are unavoidable

constraints to making experimental runs. For example, raw material for making an injection-molded

part may come in batches, or lots, and differences between lots may affect the value of the response

variable. When all the runs cannot be completed using a single batch, or in other words, within a

single block, then a decision must be made as to how to split the runs between two or more blocks.

One method is to include the block variable as another factor, and in designing a fractional factorial,

alias the block factor with some higher-order interaction (Montgomery 2001). For example, suppose

the EAS wants to do a full four factor, two-level experiment. The coded factor names are H1, H2, H3,

and H4. This is a 24 experiment, with 16 runs. The EAS cannot perform all 16 runs in a single day, and

she is concerned that there may be some day-to-day differences. She lets a fifth factor, B1, equal to the

product of the levels (rows) of the other four factors, B1 ¼ H1H2H3H4. The factor B1 represents

Day, and it is aliased with the four-way cross-product term. Table 6.9 shows the runs. The value of B1

determines on which day the run is to be conducted (e.g., B1 ¼ �1 is for Day 1, and B1 ¼ +1 is for

Day 2). This method for assigning run to blocks works well for 2k � p fractional designs if the number

of blocks required to perform all the necessary runs is a power of 2. If not, then splitting the runs into

multiple blocks is more complex. For more complicated blocking systems, the reader is directed to

Cochran and Cox (1992).

Fig. 6.4 SAS Proc FACTEX code for generating the 26�2 ResIV design
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Fig. 6.5 Proc FACTEX output
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The Moral

The moral of the fractional factorial design story is:

1. Fractional designs can save money/time, but you will pay in terms of the information and level of

approximating the response function you can achieve;

2. ResV designs provide a premium balance between level of approximation and economy; all the

two-way cross-products are aliased with only the higher-order terms, which generally provide less

impact on the approximation;

3. ResIII designs are really only useful to narrow down, in a rational fashion, the number of factors in

which to experiment;

4. ResIV designs can be useful, especially if it is possible to use prior knowledge to determine which

two-way cross-product terms are most likely to have an impact on the response variable(s);

5. The generation of these fractional designs is done in a manner that preserves balance and

orthogonality, the two properties that allow for the optimal estimation of the model coefficients;

the generation techniques also control the amount of information that is lost (resolution);

6. There are several software packages that will generate the runs for fractional designs.

Fig. 6.6 JMP 26�2 Res IV design
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Examples

ResV

An EAS is trying to design an hypodermic needle. The needle point geometry has three angles,

primary bevel angle (X1), secondary bevel angle (X2), and side bevel angle (X3). In addition to the

angles, there are the primary bevel length (X4) and secondary bevel length (X5) factors. The EAS

decides to perform a two-level experiment in the five factors. He can afford 16 runs, and he can

perform n ¼ 3 replicates for each run. Thus he decides to perform a 25 � 1 half-fraction, which is

ResV. The factors and their associated low and high levels, are given in Table 6.10. The runs, with

Helmert-coded variables, are shown in Table 6.11.

The defining relation for this design has only one word:

I ¼ H1H2JH3H4H5

Since it is a half-fraction, it has only one generator. We have chosen the principal fraction, having

purposely aliased H5 with the four-way cross-product H5 ¼ +H1H2H3H4.

Accordingly, each single factor term is aliased with no lower than a four-way cross-product, and

each two-way cross-product is aliased with no lower than a three-way cross-product. Again, follow-

ing Ockham, the model will be:

Table 6.9 A 24

experiment in two blocks
Pattern H1 H2 H3 H4 B1 ¼ H1H2H3H4

���� �1 �1 �1 �1 1

���+ �1 �1 �1 1 �1

��+� �1 �1 1 �1 �1

��++ �1 �1 1 1 1

�+�� �1 1 �1 �1 �1

�+�+ �1 1 �1 1 1

�++� �1 1 1 �1 1

�+++ �1 1 1 1 �1

+��� 1 �1 �1 �1 �1

+��+ 1 �1 �1 1 1

+�+� 1 �1 1 �1 1

+�++ 1 �1 1 1 �1

++�� 1 1 �1 �1 1

++�+ 1 1 �1 1 �1

+++� 1 1 1 �1 �1

++++ 1 1 1 1 1

Table 6.10 Hypodermic

needle variables—five

factors

Variable Factor Units Low (�1) High (+1)

X1 Primary angle degrees 14.5 15.5

X2 Secondary angle degrees 9.5 10.5

X3 Side angle degrees 4.5 5.5

X4 Primary length mm 0.245 0.255

X5 Secondary length mm 0.095 0.105
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y ¼ β0 þ
Xr

i¼1

βiHi þ
X
i6¼j

X
γijHiHj þ ε

The response variable for this needle design experiment is the penetration force generated using a

fixture that penetrates a needle through simulated skin, driving the needle at a constant velocity. The

force the needle imparts on the artificial skin membrane is measured continuously, from the time the

needle contacts the membrane to the time after the needle tip has broken through and completely

penetrated, and the peak force is recorded. Lower forces imply a better needle. Table 6.12 shows all

the data for the 16 runs.

Figure 6.7 shows the output from JMP “Fit Model” function. Note that the p-values for testing the

hypotheses that model coefficients are actually 0 are greater than 0.05 in most of the cases. In fact, the

only terms with significant coefficients are H1 (or X1 ¼ primary angle), H3 (or X3 ¼ side angle), H5

(X5 ¼ secondary length) and the interaction, or cross-product terms, H1*H4 and H2*H5. Although

by themselves, H2 and H4 did not have significant coefficients, since they are factors in significant

two-way cross-products, they are potentially important. In the spirit of parsimony, we will drop out

those two-way cross-products from the model, and use predicted values from a reduced model:

y ¼ β0 þ β1H1 þ β2H2 þ β3H3 þ β4H4 þ β5H5 þ γ14H1H4 þ γ25H2H5 þ ε

Figure 6.8 shows the JMP output for the reduced model. The adjusted R2 was slightly increased in the

reduced model

Figure 6.9 shows the R code and output for the same model.

Figure 6.10 shows the SAS code and output for the same reduced model.

When using Minitab to fit the same model, the user must create columns for the cross-

products. Figure 6.11 illustrates via screen shot how such columns can be computed.

Figure 6.12 shows the Minitab output.

Table 6.11 25�1 ResV design with coded levels

Run

Primary angle Secondary angle Side angle Primary length Secondary length

X1 X2 X3 X4 X5

H1 H2 H3 H4 H5

1 �1 �1 �1 �1 1

2 �1 �1 �1 1 �1

3 �1 �1 1 �1 �1

4 �1 �1 1 1 1

5 �1 1 �1 �1 �1

6 �1 1 �1 1 1

7 �1 1 1 �1 1

8 �1 1 1 1 �1

9 1 �1 �1 �1 �1

10 1 �1 �1 1 1

11 1 �1 1 �1 1

12 1 �1 1 1 �1

13 1 1 �1 �1 1

14 1 1 �1 1 �1

15 1 1 1 �1 �1

16 1 1 1 1 1
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ResIV

Suppose that instead of only having five input factors for needle design, the EAS also has an

additional variable, namely lubrication quantity (X6). With six factors, even if they are limited to

two levels, the total number of possible runs is 26 ¼ 64. The EAS can only afford to perform 16 of

these 64 possible combinations. Thus, he requires a 26 � 2, or one-quarter fractional design. SAS Proc

Factex can be used to generate such a design, as illustrated in Fig. 6.13.

What’s wrong with this design? Earlier we found that the only two-way cross-products that

seemed to be significant were H1H4 and H2H5. In the above design, the cross-product H1H6

(primary angle * lubrication) is aliased with H2H5 (secondary angle * secondary bevel length). As

we have no information on H6 or H1H6, we would rather not have it aliased with something we

already know is significant. JMP allows us to alter the generators for the design and examine the alias

structure. Figure 6.14 is a screen shot of the design window.

H1*H2 ¼ H3*H6

H1*H3 ¼ H2*H6 ¼ H4*H5

H1*H4 ¼ H3*H5

H1*H5 ¼ H3*H4

H1*H6 ¼ H2*H3

H2*H4 ¼ H5*H6

H2*H5 ¼ H4*H6

The generators for this design are:

H5 ¼ H1H3H4

H6 ¼ H1H2H3

Table 6.12 25�1 ResV needle design data

Run H1 H2 H3 H4 H5 Peak force Run H1 H2 H3 H4 H5 Peak force

1 �1 �1 �1 �1 1 0.092 9 1 �1 �1 �1 �1 0.085

1 �1 �1 �1 �1 1 0.098 9 1 �1 �1 �1 �1 0.077

1 �1 �1 �1 �1 1 0.114 9 1 �1 �1 �1 �1 0.061

2 �1 �1 �1 1 �1 0.026 10 1 �1 �1 1 1 0.156

2 �1 �1 �1 1 �1 0.043 10 1 �1 �1 1 1 0.108

2 �1 �1 �1 1 �1 0.033 10 1 �1 �1 1 1 0.134

3 �1 �1 1 �1 �1 0.121 11 1 �1 1 �1 1 0.119

3 �1 �1 1 �1 �1 0.142 11 1 �1 1 �1 1 0.113

3 �1 �1 1 �1 �1 0.106 11 1 �1 1 �1 1 0.103

4 �1 �1 1 1 1 0.064 12 1 �1 1 1 �1 0.155

4 �1 �1 1 1 1 0.058 12 1 �1 1 1 �1 0.15

4 �1 �1 1 1 1 0.059 12 1 �1 1 1 �1 0.124

5 �1 1 �1 �1 �1 0.063 13 1 1 �1 �1 1 0.107

5 �1 1 �1 �1 �1 0.058 13 1 1 �1 �1 1 0.097

5 �1 1 �1 �1 �1 0.046 13 1 1 �1 �1 1 0.118

6 �1 1 �1 1 1 0.077 14 1 1 �1 1 �1 0.106

6 �1 1 �1 1 1 0.059 14 1 1 �1 1 �1 0.084

6 �1 1 �1 1 1 0.073 14 1 1 �1 1 �1 0.104

7 �1 1 1 �1 1 0.182 15 1 1 1 �1 �1 0.04

7 �1 1 1 �1 1 0.171 15 1 1 1 �1 �1 0.047

7 �1 1 1 �1 1 0.146 15 1 1 1 �1 �1 0.101

8 �1 1 1 1 �1 0.025 16 1 1 1 1 1 0.205

8 �1 1 1 1 �1 �0.003 16 1 1 1 1 1 0.202

8 �1 1 1 1 �1 0.03 16 1 1 1 1 1 0.203
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Fig. 6.7 JMP Fit Model output—ResV needle design experiment
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Fig. 6.8 JMP “Fit Model” output—ResV needle design experiment—reduced model
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In this design, H1H6 is not aliased with either H1H4 or H2H5. Furthermore, H2H6 is not aliased

with either H1H4 or H2H5. Of course, H1H4 and H2H5 are not aliased with each other. There is, of

course, no guarantee that the H4H6 cross-product is not significant, and it is aliased with H2H5,

which we already believe is significant. Inasmuch as we already are operating under the constraints of

Fig. 6.9 R “lm” code and output—ResV needle design experiment—reduced model
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Fig. 6.10 SAS “Proc GLM” code and output—ResV needle design experiment—reduced model
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only allowing 16 runs, and that we also realize we are at best approximating the relationship between

peak force and the six input variables, we must recognize that such an experiment and modeling

exercise is flawed. However, the flaws are outweighed by obtaining at least an ability to approximate.

Furthermore, once a model is constructed, it is not chiseled in stone; a new model may be constructed,

and potentially additional experimentation may be used to adjudicate which cross-products are truly

active.

Fig. 6.10 (continued)

Examples 81



Based on the above alias structure, and the prior experience, we might consider fitting the model:

y ¼ β0 þ β1H1 þ β2H2 þ β3H3 þ β4H4 þ β5H5 þ β6H6

þ γ14H1H4 þ γ25H2H5 þ γ16H1H6 þ γ26H2H6 þ ε

Figure 6.15 shows the JMP output from fitting the model. As in the five-factor experiment, H1 (coded

version of X1), H3, and H5 are all significant single-factor terms, and H2 and H4 are not significant.

In addition, H6 (coded for X6 ¼ lubrication quantity) is a significant single-factor term. The two-way

cross-products, H1H4 and H2H5 are still significant, and so is H1H6. H2H6, however is not

significant. As in the five factor model, we will keep H2 and H4 in the model, since they are part

of significant two-way cross-products, but it appears that we could reduce the model by excluding the

H2H6 cross-product. Figure 6.16 shows the JMP output for the reduced model. Although the

estimates of the coefficients for terms included in the reduced model did not change, the adjusted

R2 actually increased, and the p-values for the coefficients changed slightly.

By way of illustration, Fig. 6.17 shows the SAS program and output for fitting the same reduced

model.

Fig. 6.11 Minitab screen shot—computing a cross-product column

82 6 Fractional Factorial Designs



Res III

An EAS is designing a simple RLC circuit with impressed voltage of the form:

V tð Þ ¼ V0 cos ωtð Þ

She implements the circuit on an electronics “breadboard”, in order to decide on parameter settings

by experimentation. Table 6.13 shows the input parameters and the ranges of values over which she

intends to experiment.

The variables Ih(0) and Ihdot(0) represent the initial conditions for the associated homogeneous

equation. The output response variable of interest is the current over a 100 ms period. The question is

which parameters are most important in terms of affecting this current. Even though the equation for

an RLC circuit is well known: L€Q tð Þ þ R _Q tð Þ þ 1
CQ tð Þ ¼ V0 cos ωtð Þ and I tð Þ ¼ dQ tð Þ

dt , it is not clear

which inputs have the largest effect on current. Furthermore, due to thermal and other sources of

noise, the current is not deterministically known. The EAS realizes that a full, 27 ¼ 128 run factorial

experiment is not realistically possible. In fact, even though she will use a breadboard “prototype” to

Fig. 6.12 Minitab “Regression” output—ResV needle design experiment—reduced model
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Fig. 6.13 SAS Factex output—26�2 fractional factorial
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make measurements, she can only afford the time to make eight runs, with two replicate current

measurements for each run. The data are given in Table 6.14.

The column labeled “Pattern” indicates the levels of each of the seven factors for the run (“�”

means low level, “+” means high level).

Since this was a Res III experiment, no cross-product terms can be included in the approximating

formula. Figure 6.18 shows the JMP output with coefficient estimates for each of the single-factor

terms, and the intercept.

All the factors are significant (p < 0.05). The factors L, C, omega, and V0 have coefficients that

are an order of magnitude or more greater than those of the other factors. Thus, it appears that these

factors have the most influence, so that further experimentation might involve these four factors only,

with the others set to a constant value.

In this case, the natural values for the levels of the factors were used to fit the model (i.e., estimate

the coefficients). One of the disadvantages of using natural units is scale. That is, each factor is

expressed in different units, so interpreting relative differences in the magnitude of the model

coefficients might be difficult. Figure 6.19 shows the output of fitting the same model, but using

Helmert-coded factors.

By using coded units, the coefficients are now on a common scale. The EAS can now see that

inductance, L, is not as influential as it had appeared when the factors were expressed in natural units.

Capacitance was the most influential, followed by the phase angle. The initial charge, Ihdot(0),

appears to be more important than initial current, Ih(0), which was not the conclusion the EAS might

draw using the natural units.

Fig. 6.14 JMP screening design window—altering the design generators
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Fig. 6.15 JMP output from fitting model to 26�2 ResIV needle design experiment
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Fig. 6.16 JMP output from fitting reduced model to 26�2 ResIV needle design experiment

Examples 87



Fig. 6.17 SAS code and output from fitting reduced model to 26�2 ResIV needle design experiment
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Fig. 6.17 (continued)
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A Special ResIII Design: Plackett-Burman

If there are many factors that potentially have importance, ResIII designs are useful to narrowing

down the experimental space to the “vital few”. In particular, if number of factors, k, is such that k + 1

is a multiple of 4, and not a power of 2 (e.g., k ¼ 11, 19, or 23), then a special class of ResIII designs,

called Plackett-Burman Designs (PBD, Montgomery 2001), with number of runs equal to N ¼ k + 1,

can be useful. To generate the design matrix for a PBD, the EAS must begin with a sort of “seed”

column, which depends on the number of factors. The column will have k rows. The seed column is

assigned to the first factor, H1. The column for the second factor, H2, is created by assigning the value

in the kth row of the previous column to the first row of the new column, and then the value of the first

row of the previous column becomes the value of the second row, the second row of the previous

column becomes the value in the third row, etc., until k rows are completed. Once k columns are

generated, add a single row to the bottom of the matrix, where this row in every column is set to the

low level (�1) of the corresponding factor. Table 6.15 shows a list of “seed” columns for k ¼ 11,

19, 23, 27. Note that a “�” implies the Helmert-coded level of �1, and “+” the level +1.

As an example, for k ¼ 11 factors, the PBD would look like Table 6.16.

The Plackett-Burman design is balanced, with equal numbers of runs with low (�1) and high (+1)

levels of each factor. Furthermore, the columns are all orthogonal to each other. One criticism of the

PBD is that the alias structure is very difficult to determine (Hinkelmann and Kempthorne 2005).

However, if the EAS has decided to use a ResIII design, simply knowing that all interactions are

unresolvable, or completely aliased with each other and the main effects, may be sufficient. For a

more complete set of seed columns, see Cochran and Cox (1992).

Table 6.13 Circuit

parameters
Factor Symbol Low (�1) High (+1) Units

Inductance L 0.2 0.5 henry

Resistance R 300 500 ohm

Capacitance C 0.0001 0.0005 farad

Frequency ω 0.5 1 radian

Initial voltage V0 0.5 1 volt

Initial current Ih(0) 1 2 amp

Initial charge Ihdot(0) 1 2 coulomb

Table 6.14 Data for 27�4 Res III RLC experiment

Pattern L R C omega V0 Ih(0) Ihdot(0) I meas.

����+++ 0.2 300 0.0001 0.5 1 2 2 1.40E�05

����+++ 0.2 300 0.0001 0.5 1 2 2 1.39E�05

��++��+ 0.2 300 0.0005 1 0.5 1 2 1.55E�04

��++��+ 0.2 300 0.0005 1 0.5 1 2 1.56E�04

�+�+�+� 0.2 500 0.0001 1 0.5 2 1 2.66E�05

�+�+�+� 0.2 500 0.0001 1 0.5 2 1 2.80E�05

�++�+�� 0.2 500 0.0005 0.5 1 1 1 9.33E�05

�++�+�� 0.2 500 0.0005 0.5 1 1 1 9.68E�05

+��++�� 0.5 300 0.0001 1 1 1 1 5.30E�05

+��++�� 0.5 300 0.0001 1 1 1 1 5.47E�05

+�+��+� 0.5 300 0.0005 0.5 0.5 2 1 3.98E�05

+�+��+� 0.5 300 0.0005 0.5 0.5 2 1 4.19E�05

++����+ 0.5 500 0.0001 0.5 0.5 1 2 6.70E�06

++����+ 0.5 500 0.0001 0.5 0.5 1 2 8.08E�06

+++++++ 0.5 500 0.0005 1 1 2 2 3.40E�04

+++++++ 0.5 500 0.0005 1 1 2 2 3.41E�04

90 6 Fractional Factorial Designs



Fig. 6.19 Analysis output for 27�4 Res III RLC experiment—Helmert-coded factors

Fig. 6.18 Analysis output for 27�4 Res III RLC experiment
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Key Points

• Fractional Factorial experiments allow the experimenter to run a subset (fraction) of the total

number of combinations of levels of all factors, and still be able to fit a first-order model.

• The drawback of fractional factorials is called aliasing; aliasing means that some effects are not

resolvable, because they are computed identically to some other effects. The level of fractional

replication dictates the degree of aliasing.

Table 6.15 Some “Seed”

columns for selected

Plackett-Burman designs

Row k ¼ 11 k ¼ 19 k ¼ 23 k ¼ 27

1 + + + +

2 + + + �
3 � � + +

4 + � + +

5 + + + +

6 + + � +

7 � � + �
8 � + � �
9 � � + �
10 + + + �
11 � � � +

12 + � �
13 � + �
14 � + �
15 � � +

16 � � �
17 + + �
18 + � +

19 � + +

20 � +

21 � �
22 � +

23 � �
24 +

25 +

26 �
27 +

Table 6.16 A k ¼ 11

Plackett-Burman design
Run H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11

1 1 �1 1 �1 �1 �1 1 1 1 �1 1

2 1 1 �1 1 �1 �1 �1 1 1 1 �1

3 �1 1 1 �1 1 �1 �1 �1 1 1 1

4 1 �1 1 1 �1 1 �1 �1 �1 1 1

5 1 1 �1 1 1 �1 1 �1 �1 �1 1

6 1 1 1 �1 1 1 �1 1 �1 �1 �1

7 �1 1 1 1 �1 1 1 �1 1 �1 �1

8 �1 �1 1 1 1 �1 1 1 �1 1 �1

9 �1 �1 �1 1 1 1 �1 1 1 �1 1

10 1 �1 �1 �1 1 1 1 �1 1 1 �1

11 �1 1 �1 �1 �1 1 1 1 �1 1 1

12 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1
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• There are classes of the degree of aliasing, called Resolution; Res V allows the experimenter to

include all two-way cross-product terms in the model; Res IV allows for including some two-way

cross-products; Res III only allows for first-order terms (no cross-products).

• Helmert coding transforms the range of the input factors to the interval [�1,+1]. This transforma-

tion is unitless and scale-free.

• A center point is a set of factor values where each factor is set at the midpoint of its experimental

range. Results from center points can be useful in detecting the presence of second-order effects.

Exercises and Questions

1. Generate a ResIII experiment with 11 factors. What model could be fit to the data from this design

if all 11 factors are included? What is the defining relation for the design?

2. Describe a situation where a ResIV design would be appropriate.

3. How, and under what circumstances, would you convince stakeholders that a ResV design is worth

its cost?
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Chapter 7

Higher Order Approximations

Two-level factorial or fractional factorial experimental designs are used for obtaining a first-order

approximation to the response function. They are particularly useful for selecting a smaller subset of

potential input factors with which to formulate a better approximation equation. In this chapter, we

will discuss some classes of experimental designs useful for fitting second-order (Quadratic)

approximating equations.

A two-level experiment cannot support the inclusion of second-order terms in a model. If a center

point is included in a two-level design, a plot of model residuals against model predicted values may

indicate the need for second-order terms. If the residual plot shows that at the predicted response for

the center point, the residuals are appreciably higher or lower than they are at the other predicted

values, then it is likely that a second-order effect exists, and a second-order model is required for good

predictability. Consider a full two-level, three-factor experiment with replication at the center point,

together with the observed response, the predicted values, and the residuals, shown in Table 7.1.

A first-order model was fit to these data:

Y ¼ β0 þ β1H1þ β2H2þ β3H3þ β12H1*H2þ β13H1*H3þ β23H2*H3þ ε

The residual plot is shown in Fig. 7.1. Note that the residuals at the three replicates of the center point

run are appreciably greater than the residuals at the other runs. This indicates that at least one factor

has an associated higher-order effect on the response.

A Brief Digression: Residuals, Heteroscedasticity, and Normality

A plot of residuals against predicted values can help identify “outlier” points, which may have

unusual response values due to unintended or uncontrolled effects. When examining a residual plot,

the EAS should ask whether there were any extenuating conditions that might be the cause of an

unusually high or low residual value. If, in the case of center points, all the residuals at the center

seem to be higher or lower than all the other residuals, it is reasonable to guess that higher-order

effects exist. In fact, if the residuals at any particular point seem to “group” together and depart from

the values of residuals at other points, higher-order effects that are not accounted for in the model may

exist. A simple method for deciding whether a residual is “unusually” large in magnitude, is to

normalize the residuals, by dividing them by the standard deviation of the residuals. The normalized

residuals are said to be “Studentized” (Draper and Smith 1998). The idea is that if residuals are
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distributed as normal with mean 0 and some unknown standard deviation, then the Studentized residuals

will be approximately t-distributed, with n�1 degrees of freedom. Thus, any Studentized residual that

fell outside, say, a 99 % range for a t-distributed random variable with n�1 degrees of freedom (t0.005,
t0.995), would be somewhat suspect. Furthermore, if more than about 1 % of residuals fell outside this

range, the model might be suspect. In general, whenever there are residuals that seem appreciably higher

or lower than the majority, the EAS should investigate possible “assignable causes”.

Residuals plotted against predicted values can also reveal a lack of homogeneity of noise variance.

If the plot looks like a funnel, with the small end of the funnel at the lower predicted values, and the

larger end near the larger predicted values, then this is an indication that noise variance increases

proportionally to the value of the response, a common form of heteroscedasticity. Figure 7.2

illustrates this phenomenon.

If this is the case, then it may be helpful to make a transformation of the response. The model can

be fit to the transformed response, and the tests of significance for the coefficients may be more

correct. A widely-used family of transformations is the Box-Cox transformation (Box et al. 1978):

Ytrans ¼ Yorig
λ � 1

λYorig
λ�1

The value of λ is chosen to minimize the variance of residuals. A special limiting case when λ ! 0 is

Ytrans ¼ ln(Yorig). The Box-Cox transformation can only be applied when the response, Yorig, is

Table 7.1 A two-level,

three-factor experiment

with a center point

Run H1 H2 H3 Y Predicted Y Residual Y

1 �1 �1 �1 �10.15 �9.25 �0.90

2 �1 �1 1 �8.51 �6.94 �1.57

3 �1 1 �1 �5.26 �3.70 �1.57

4 �1 1 1 �1.61 �0.71 �0.90

5 1 �1 �1 �10.26 �8.70 �1.57

6 1 �1 1 0.73 1.62 �0.90

7 1 1 �1 �4.96 �4.07 �0.90

8 1 1 1 5.37 6.94 �1.57

9 0 0 0 1.32 �3.10 4.42

9 0 0 0 �0.68 �3.10 2.42

9 0 0 0 �0.10 �3.10 3.00
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Fig. 7.1 Residual plot for

the two-level, three-factor

experiment with a center

point
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positive. In general, any obvious pattern in a residual vs. predicted plot usually indicates either

higher-order effects not included in the model, or non-homogeneous noise variance.

Another assumption required for p-values to be valid is the normality of errors, or noise. One way

to assess the validity of the normality assumption is to perform one of a number of tests using the

residuals. The Shapiro-Wilk test and the Kolmogorov-Smirnov test (Conover 1999) are two such

tests. Figure 7.3 shows the output of the distribution-fitting function in JMP. The Prob < W is the

p-value for the Shapiro-Wilk test. If the p-value is below the pre-specified threshold (usually 0.05),

then reject the null hypothesis that the data come from a normal population. If the residuals from a

model fail a test for normality, there are a number of possible remedies. The Box-Cox transformations

can sometimes induce normality. Replacing the observations with their relative ranks (i.e., the rank of

the smallest observation is 1, and the rank of the largest is n) can be used to induce symmetry in the

distribution. The Johnson family of transformations (Johnson 1949) can also be useful for inducing

normality. Perhaps the most common is the SU transformation (U stands for unbounded):

z ¼ γ þ δ sin h�1 y� ξð Þ=λð Þ

The parameters, γ, δ, ξ, and λ can be estimated from data.

Another Johnson transformation is called SB (B for bounded), and is given by:

z ¼ γ þ δln y� ξð Þ= ξþ λ� yð Þð Þ for ξ < y < ξþ λ

The new variable will have approximately a normal distribution with mean 0 and standard deviation

1 (called a “standard normal”), under the null hypotheses that none of the factors have any relation-

ship to the response. Minitab will perform the estimation and provide the transformed data. Figure 7.4

shows the Minitab output transforming data column Y.

Note that Minitab uses the Anderson-Darling goodness-of-fit test, a test similar to the Shapiro-

Wilk test. Also, Minitab decided to use the SB transformation.

The histograms of the original data and the transformed data are given in Fig. 7.5.

Fig. 7.2 Residual plot

illustrating proportional

noise variance
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Fig. 7.3 Histogram with normal density fit and Shapiro-Wilk test
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Back to Second-Order Designs

By restricting the factor levels to only two possible values, the only approximation equation we can fit

is first-order. In order to fit a second-order equation, we will need three values. If we had k potential
input factors, and we generated an experiment in which each factor was varied with three levels, the

number of runs would be 3k. Even with a relatively small number of factors, the number or

experimental runs would soon become large and probably too expensive. While fractional designs

for three-level factors are quite possible, the aliasing structure of such designs is quite complex, and

can be difficult at best to interpret. A center point (all factors set to their middle value, which

corresponds to coded variables set to 0) would provide a third value. However, since it is identically

the same point in the design for all the factors, the quadratic terms for each factor would be aliased

with each other. We require a means for including a squared term for each factor uniquely in the

approximating model. We will therefore only talk about two classes of experimental designs that will

allow fitting a second-order approximating equation. Those two are called Central Composite

Designs (CCDs) and Box-Behnken Designs (BBDs). Both of these classes of designs can be fairly

economical, and both will allow the EAS to fit a second-order approximating equation.

Rotatability

In the two-level experiments, we were concerned with orthogonality and balance. For designs used to

fit second-order approximations, another characteristic is important, namely rotatability. Rotatability

is the characteristic that the standard error of predicted values would be the same for all points
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(experimental conditions) equidistant from the center point. The standard error for the predicted

values are given by:

SE byjh0ð Þ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

0
0 H

0
H

� ��1
h0

q

Where H is a matrix of experimental runs, where entries are in Helmert-coded units. The lower case

h0 represents a particular combination of values for the terms, which can be thought of as a point in

the “term” space.

The CCD and BBD families are all rotatable.

CCD

A central composite design is a 2k�p fractional factorial with two other conditions added: center

points and axial points. Center points were discussed earlier. They are conditions where all the input

factors are set to their “middle” value, i.e., the center of the range in which the experiment is being

conducted. In some cases, where replicates are expensive or in some way difficult to obtain, center

points may be the only condition in which replication is performed. Axial points are points that go

beyond the “low” and “high” values set for experimentation, and allow for unique estimation of

coefficients for quadratic terms in each factor. There are two axial conditions associated with each

factor. If Hi represents the coded values for factor Xi, then the coded axial points would be where all

the other Hj ( j 6¼ i) variables are set equal to 0, and Hi is set to�
ffiffi
r

p
, |r| > 1. Usually, r is set equal to

k, the number of factors.

As an example, consider a two-factor experiment. The two coded factors are H1 and H2. The value

�1 represents a “low” value for the corresponding factor in natural units, and +1 represents a “high”

value. The runs in the CCD that correspond to those of the two-level design are referred to as “corner”

points. The set of corner points for the two factors are given in Table 7.2.

The center point run is where H1 ¼ H2 ¼ 0. The axial points are where

H1 ¼ � ffiffi
r

p ¼ � ffiffiffi
2

p � �1:414, H2 ¼ � ffiffi
r

p ¼ � ffiffiffi
2

p � �1:414. Table 7.3 shows all the runs for

this CCD.

Table 7.2 Corner point

runs for a two-factor

experiment

Run H1 H2

1 �1 �1

2 �1 +1

3 +1 �1

4 +1 +1

Table 7.3 All runs for the

two-factor CCD
Run H1 H2

1 �1 �1

2 �1 +1

3 +1 �1

4 +1 +1

5 0 0

6 �1.414 0

7 +1.414 0

8 0 �1.414

9 0 +1.414
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Clearly, if for example, Run 6 requires that the coded variable H1 be set equal to �1.414, then

H1 ¼ �1 cannot be the code for the lowest POSSIBLE value of X1. Rather, H1 ¼ �1 represents a

low value for X1, but not the lowest possible value. The Helmert coding formula:

H ¼ X � m
1
2
xþ � x�ð Þ

Is still valid, but x� and x+ no longer represent the most extreme values for the uncoded (natural units)

factor. In fact, x� and x+ must be set such that

maxX � mþ 1

2
R

ffiffiffi
k

p
and minX � m� 1

2
R

ffiffiffi
k

p

where R ¼ xþ � x� and m ¼ xþþ x�
2

.

A Medieval EAS, Geoffrey Llewellyn, the Yeoman, is trying to decide how to set up a new kind of

catapult, called a mangonal. The mangonal works by torsion. The throwing arm is attached to a

twisted rope that provides tension. The arm is pulled down by another line, tightening the torsion

rope. When the pulling line is released, the torsion rope unwinds, propelling the arm forward.

A crossbar stops the arm, and the projectile (usually a rock) is released into ballistic flight. The

crossbar angle governs the release angle for the projectile. Figure 7.6 shows a picture of a mangonal.

Unbelievably, Geoffrey actually discovered all of the laws of motion attributed to Isaac Newton, who

was born about 250 years after Geoffrey had faced his catapult problem. Some say that Sir Isaac

actually discovered an old palimpsest, which had all of Geoffrey’s notes covered by a portrait of the

Earl of Phlegmingham, Geoffrey’s Liege Lord. It turned out that the Earl was having a little war with

his next-door neighbor, who had an imposing castle with lots of archers. The Earl asked Geoffrey to

figure out how to deploy this new mangonal in an optimal fashion. Geoffrey figures that he and his

crew must inflict some serious damage to the castle without getting shishkababed by enemy arrows.

Using the equations of ballistic flight, Geoffrey computed the altitude of the projectile after t units
of time in flight:

y tð Þ ¼ �1

2
gt2 þ v0 sin θð Þð Þt

Fig. 7.6 The mangonal
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g ¼ gravitational constant (~9.8 m/s2)

θ ¼ launch angle

t ¼ time (s)

v0 ¼ initial velocity (m/s)

The distance the projectile would travel after t units of time would be

x tð Þ ¼ v0 cos θð Þð Þt

Geoffrey wants the projectile to hit the window of the castle’s “keep” (the most protected part of the

castle) while he and his crew are out of range from the archers on the castle walls. He soon discovers

that the arrows cannot fly more than100 m from the castle wall. The keep is approximately 25 m away

from the wall, and spies have told Geoffrey that the window to the keep is approximately 9 m high

with its center 40 m from the ground. The wall of the castle is only 15 m high. So, Geoff decides that

his catapult must be placed 125 m away from the target, he wants the projectile to achieve an height

of 40 m after it has traveled the 125 m. In other words, he wants to have tf, the flight time to be

such that:

y tf
� � ¼ �1

2
gt2f þ v0 sin θð Þð Þtf ¼ 40

and

x tf
� � ¼ v0 cos θð Þð Þtf ¼ 125

These are of course two equations in three unknowns, tf, θ, and v0. This is further complicated by the

fact that while the launch angle, θ, can be set by altering the position of the crossbar on the mangonal,

the initial velocity, v0, cannot easily be set. Geoffrey knows that v0 is mostly a function of the number

of twists in the launching rope, but this function is at best elusive, and pretty much unknown.

Geoffrey, being fairly adept at algebra, realizes that he can solve the x(t) equation for tf, and then

substitute the solution in the y(t) equation. This solving and substitution process gives him:

tf ¼ 125

v0 cos θð Þ

y v0; θð Þ ¼ �1

2
g

125

v0

� �2

sec2 θð Þ þ 125 tan θð Þ � 40 ¼ 0

Undaunted, Geoffrey decides to make one change of variables:

η0 ¼
1

v0

So that the equation is now:

y η0; θð Þ ¼ � 1252

2
gη20sec

2 θð Þ þ 125 tan θð Þ � 40 ¼ 0

Geoffrey thinks about setting the launch angle, θ, equal to 45o. If he did, then his equation would be

simply:
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y η0; 45ð Þ ¼ �1252gη20 þ 85 ¼ 0 ) η ¼ þ
ffiffiffiffiffiffiffiffiffi
85

1252g

q
, or in other words, he would need

v0 ¼ 125

ffiffiffiffiffi
g

85

r
� 42:44m=s

If the launch angle, θ, is 45o, and initial velocity is 42.44 m/s, then the terminal time should equal:

tf ¼ 125

42:44 cos 45ð Þ � 4:165s

Wow! This is great! Geoffrey was ecstatic. Now all he needed to do was figure out howmany twists of

the launching rope it would take to achieve this velocity. But, Geoff also realizes that he can alter the

length of the throwing arm (lever), and that might affect the initial velocity. This problem calls for an

experiment. Geoffrey has his intrepid crew construct a 120 m tower with a painted target centered at

approximately 40 m off the ground. Then he had the crew move the catapult approximately 125 m

away from the tower. Now, Geoff needs a plan. He decide to vary the number of twists (rotations of a

tightening gear) between 10 and 15, and the length of the launch lever arm (which was cleverly

designed to be continuously adjustable) between 2 and 3 m. Figure 7.6 shows a picture of Geoffrey’s

mangonal. Table 7.4 shows the various runs that Geoff and his crew decided to try.

Oddly enough, they chose a two-factor CCD, with two replicates at the center point. Note the axial

points extend beyond the lower (�1) and upper levels (+1) for the two factors. Table 7.5 shows the

same design in Helmert-coded units.

The axial points are located at � ffiffiffi
2

p� �
coded units away from the center point in each variable’s

direction.

Table 7.4 Experimental

runs for catapult

experiment—natural units

Run Rotations Arm

1 10 2

2 10 3

3 15 2

4 15 3

5 9.0 2.5

6 16.0 2.5

7 12.5 1.8

8 12.5 3.2

9 12.5 2.5

10 12.5 2.5

Table 7.5 Experimental

runs for catapult

experiment—coded units

Run H1 H2

1 �1 �1

2 �1 1

3 1 �1

4 1 1

5 �1.414 0.0

6 1.414 0.0

7 0.0 �1.414

8 0.0 1.414

9 0.0 0.0

10 0.0 0.0
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So, if everything works according to plan, the optimal conditions would result in a flight time of

approximately 4.165 s. As it turns out, time measurement was not quite up to the thousandths of a

second in Geoff’s day. In fact, Geoff could not even measure time to the nearest minute. What he

could do was measure the height, in meters, at which the projectile struck the tower. This is precisely

what he did. Of course, he wanted to reuse his practice tower, so instead of launching rocks, Geoff had

his crew launch watermelons. They had the added advantage of leaving a nice mark where they hit, so

the height could be easily measured. Table 7.6 shows the data he and his crew gathered.

Figure 7.7 shows the JMP output from fitting a second-order model to the data.

All the terms in the model had significant coefficients, and the adjusted R2 was approximately

0.9953. Thus it looks like the model will provide reasonable approximations to the height at time of

impact (Y(tf)) response variable. Table 7.7 shows the actual data together with the model predictions.

All things considered, Geoff was pretty happy with his model. The next step was to find the

optimal conditions for rotations and arm length, in order to hit the tower at approximately 40 m from

the ground. Using JMP “Contour Profiler”, we are able to see a contour in the approximating second-

order “surface” where the height is equal to 40 m, approximately. Figure 7.8 shows the plot. The

contour shown on the plot is the 40-m mark. Thus any point (Rotations, Arm length) on this contour is

predicted to yield a striking height of 40 m. For example, if Rotations is set to about 9.62 turns, and

Arm Length is approximately 2.17 m, then the model predicts the striking height from 125 m away

would be at 40 m.

We have found that with approximately 9.62 rotations with an arm length of approximately 2.17 m

will deliver the projectile at the 40 m mark (predicted value � 40.19 m) on the keep of the castle, as

long as the catapult is 125 m from the outer wall (and safely out of archery range). The 95 %

confidence interval for this predicted value is approximately (37.00 m, 43.37 m). Since the window

was 9 m in height, with the center at 40 m, they figured that they had a pretty good chance of getting

the projectile to fly through it. However, to verify the optimal conditions, Geoffrey had his crew try

out the optimal conditions. They attained a height of 40.48 m, which is a little high, but close enough.

Our EAS used factors in natural units to fit his approximating model. In this case, he was interested

in obtaining a predictive equation, not in comparing magnitudes of coefficients. It was more intuitive

to be able to relate the factors in their natural units to the response variable.

The reader might notice a few flaws in our analysis of the catapult problem. For one thing, the

projectile is not exactly massless. Secondly, the projectile certainly will provide some air resistance.

Thirdly, we have assumed that the window in the keep tower will be open when the projectile arrives.

Well, these are all good points, but the bottom line is that we have employed a CCD to obtain an

approximating equation for making design decisions.

Table 7.6 Catapult

experimental runs with data
Rotations Arm Y(tf)

10 2 35.3

10 3 77.6

15 2 84.2

15 3 103.8

9 2.5 49.0

16 2.5 101.2

12.5 1.8 57.0

12.5 3.2 98.4

12.5 2.5 81.5

12.5 2.5 85.2
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BBD

The Box-Behnken designs consist of “face center” points, together with a design center. A face center

is a run in which one factor is set to its center value and the other factors are at one of their extreme

(low or high) values. In a two-factor experiment (such as the catapult problem), there are four face

centers. Table 7.8 shows the runs for a BBD.

Fig. 7.7 Second-order approximating model for catapult data
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A BBD will allow the analyst to fit a second-order model to the data, and it requires fewer design

points than the CCD. As in the case of the CCD, it is common to replicate the design-center point.

There are some disadvantages. Unlike the CCD, there is no two-level design “embedded” in the BBD

(consider runs 1–4 in Tables 7.4 and 7.5). Should data be lost at the axial or center points of the CCD,

at least a first-order model can be fit. The other potential issue is the fact that there are no axial points,

per se, in the BBD. Thus, it might be helpful to extend the lower and upper limits of the experimental

ranges for the factors in the BBD.

Table 7.7 Catapult data

with model predictions
Rotations Arm Y(tf) Model predictions

10 2 35.3 36.2

10 3 77.6 77.8

15 2 84.2 85.0

15 3 103.8 103.9

9 2.5 49.0 48.4

16 2.5 101.2 100.8

12.5 1.8 57.0 56.0

12.5 3.2 98.4 98.3

12.5 2.5 81.5 83.3

12.5 2.5 85.2 83.3

Contour Profiler

Fig. 7.8 Optimal contour—catapult model
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Another Slight Digression: Hypothesis Tests About Model Parameters

Sometimes the EAS may want to test an hypothesis about a given parameter in a model. One question

that the EAS might ask is the power provided by a particular design to test such an hypothesis. As an

example, consider a second-order model.

Fit a model of the form:

yijk ¼ β0 þ
X
i

βixi þ
X
i, j

βijxixj þ
X
i

γix
2
i þ εijk

Let X represent the design matrix, which has a column for each parameter in the model, and a row for

each run and replicate. Usually, the levels of the regressors (x) are coded via Helmert coding. Since

this is a second-order model, the levels will be coded to �1, 0, and +1 (assuming a designed

experiment).

The least-squares estimates of the parameters will be called b0, bi, bij, and gi, corresponding to the
intercept, first order terms, cross-product terms, and the second order terms.

If b represents the vector of least-squares parameter estimates, then the variance-covariance matrix

of the estimates is given by:

V bð Þ ¼ σ2 X
0
X

h i�1

where σ represents the standard deviation of noise, ε. This standard deviation is assumed to be

constant over all observations. The standard error of any parameter component of the vector b is the

square root of the corresponding diagonal component in the matrix V(b). Call the diagonal element of

[X0X]�1 ckk
2 , so that the standard error of bk is:

SE bkð Þ ¼ σckk

Under the null hypothesis that βk ¼ ν0, the statistic:

t ¼ bk � ν0bσckk
has a Student’s t distribution with degrees of freedom equaling the error degrees of freedom (dfe)
from the model (assuming Gaussian noise, ε). The symbol bσ is the estimate of σ, which is usually the
root mean square error from the model fitting. So, to test the hypothesis:

H0: βk ¼ ν0 against the alternative H1: βk 6¼ ν0

Compare the statistic jtj to a 100(1�α/2) percentile of a central Student’s t distribution, t1�α/2. If

jtj > t1�α/2, then reject H0.

Under the alternative hypothesis that βk ¼ λ 6¼ ν0, the statistic has a non-central t distribution
(Johnson et al. 1995) with dfe degrees of freedom and non-centrality parameter:

Table 7.8 BBD for a

two-factor experiment
Run Type H1 H2

1 Face-center �1 0

2 Face-center +1 0

3 Face-center 0 �1

4 Face-center 0 +1

5 Design-center 0 0
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λ� ν0bσckk
Note that the value of ckk is dependent upon the number of runs and replicates. It is also dependent on

the way in which the factors are coded.

Suppose the experiment consists of a three factor Box-Behnken design with Helmert coding, and

replication only at the center point. Furthermore, suppose that three center points are run. Thus, the

experiment consists of 15 runs, as illustrated in Table 7.9. The design matrix would include the

columns X1, X2, and X3 in Table 7.9, and additional columns for the intercept, the three two-way

cross-product terms and the three second-order terms. In total, the design matrix, X, would have

10 columns and 15 rows.

Table 7.10 shows the inverse of the matrix X0X, namely X0X�1.

Note that X0 represents the entry for the intercept, X12, X13, X23 are the entries for the two-way

cross-product terms, and X1S, X2S, and X3S are the entries for the squared terms.

We will consider testing the hypothesis H0: β23 ¼ ν0 ¼ 0 against the alternative H1: β23 6¼ 0.

As an example, the value of c77 ¼
ffiffiffiffiffiffiffiffiffi
0:25

p
corresponds to the standard error of the coefficient for the

X23 cross-product term (X2*X3). The standard error for the estimate b23 is:

SE b23ð Þ ¼ σc77 ¼ σ
ffiffiffiffiffiffiffiffiffi
0:25

p

Table 7.9 Three factor

Box-Behnken design—

from Minitab 16

StdOrder RunOrder PtType Blocks X1 X2 X3

1 1 2 1 �1 �1 0

2 2 2 1 1 �1 0

3 3 2 1 �1 1 0

4 4 2 1 1 1 0

5 5 2 1 �1 0 �1

6 6 2 1 1 0 �1

7 7 2 1 �1 0 1

8 8 2 1 1 0 1

9 9 2 1 0 �1 �1

10 10 2 1 0 1 �1

11 11 2 1 0 �1 1

12 12 2 1 0 1 1

13 13 0 1 0 0 0

14 14 0 1 0 0 0

15 15 0 1 0 0 0

Table 7.10 X0X�1 for three factor Box Behnken design

X0 X1 X2 X3 X12 X13 X23 X1S X2S X3S

X0 0.3333 0 0 0 0 0 0 �0.1667 �0.1667 �0.1667

X1 0 0.125 0 0 0 0 0 0 0 0

X2 0 0 0.125 0 0 0 0 0 0 0

X3 0 0 0 0.125 0 0 0 0 0 0

X12 0 0 0 0 0.25 0 0 0 0 0

X13 0 0 0 0 0 0.25 0 0 0 0

X23 0 0 0 0 0 0 0.25 0 0 0

X1S �0.1667 0 0 0 0 0 0 0.2708 0.0208 0.0208

X2S �0.1667 0 0 0 0 0 0 0.0208 0.2708 0.0208

X3S �0.1667 0 0 0 0 0 0 0.0208 0.0208 0.2708
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In this design with a second-order model there are 15 – 10 ¼ 5 degrees of freedom for error. If an a

priori guess for the value of bσ can be obtained, then a power or operating characteristic (OC) curve

(Grant and Leavenworth 1980), which is 1—power plotted against alternative values for the parame-

ter, can be constructed for the hypothesis test.

The 97.5th percentile of a central Student’s t distribution with five degrees of freedom is approxi-

mately 2.5706. The power is the probability that a non-central t statistic will exceed (in absolute

value) this percentile:

Pr t 0 df ¼ 5, ncp ¼ λbσ ffiffiffiffiffiffiffiffiffi
0:25

p
� �

< �2:5706 OR t 0 df ¼ 5, ncp ¼ λbσ ffiffiffiffiffiffiffiffiffi
0:25

p
� �

> 2:5706

	 


¼ Pr t 0 df ¼ 5, ncp ¼ λbσ ffiffiffiffiffiffiffiffiffi
0:25

p
� �����

���� > 2:5706

	 


Where t0 represents a non-central t with df degrees of freedom and non-centrality parameter ncp. Note
that ncp is a function of λ, the alternate value of the regression parameter. At λ ¼ ν0, the probability is
α. The power here is calculated for both positive and negative values of λ, but the x-axis only shows

the absolute value of λ.
Figure 7.9 shows the power curve with an assumed bσ ¼ 0:02, and with the null hypothesis that

H0: β23 ¼ 0.

Figure 7.10 shows the R script that was used to generate the power curve.
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Fig. 7.9 Power curve for testing H0: β23 ¼ 0
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Fig. 7.10 R script for generating the power curve
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Key Points

• In order to fit a second-order polynomial model, the factors/regressors must have at least three

levels included in the experiment.

• A Center Point run with a two-level experiment can help detect the presence of higher order

effects.

• A Central Composite Design (CCD) is a two-level factorial design with a center point and axial or

face-centered points added.

• A Box-Behnken Design (BBD) requires fewer points than a CCD, but does not include the “corner

points” of a two-level design.

• Both CCDs and BBDs are rotatable.

• Confidence intervals and hypothesis tests can be computed for model parameters.

Exercises and Questions

1. How many unique runs (not including any replicates) would a Box-Behnken design in five factors

require?

2. Would you ever consider using a Central Composite Design with 10 factors? If yes, in what

situation?

Fig. 7.10 (continued)
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Chapter 8

Mixture Experiments

The basic mixture/formulation problem is to decide, for a given set of components, how much of each

component should be put into the mixture. Commonly, the quantity of the mixture is fixed (either by

weight or volume) so that the amount of each component can be expressed as a fraction or percent of

the whole mixture.

Generally there is a response variable that is an unknown function of the distribution of

components, also referred to as mixture variables. The EAS must use empirical data to find an

approximating equation to describe the relationship between the response and the mixture variables.

So far, this is sounding a lot like the problems in factorial experimentation. The big difference is that

we cannot choose the “levels” of the mixture variables independently of each other. That is, if there

are only two components, and one comprises 25 % of the mixture, then the other must comprise

75 %. So, in experimentation with mixture variables, we cannot simply choose low and high values,

and pick various combinations of low and high levels for each of the mixture variables.

Mixture variables, call them xk, satisfy the following constraints:

xk � 0, k ¼ 1, q;

Xq

i¼1

xi ¼ 1:

There are several points to mention about these constraints. First, it is allowable for any given mixture

variable (also called components) to equal 0 or 1. Secondly, a mixture is defined by a combination of

values for the mixture variables. Thirdly, the constraint that all the values of the components add to

1 could be slightly altered, to say that they must add to a fixed value, say A. In other words, the

summation constraint could be:

Xq

i¼1

xi ¼ A:

For our discussions, we will assume that the mixture variables have been “normalized”, so that their

values are proportions of the total mixture.

The constraints on mixture variables creates a geometric structure for the space in which mixtures

are defined. The structure is called a simplex. While the topological and geometric properties of the

simplex are fascinating, we will not discuss them, except to elucidate properties of experiments. As in
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the case of factorial experiments, we will not provide a complete exposition of mixture experiments

and their associated analyses. We will cover some basic ideas.

The First-Order Model

Suppose the EAS must create a mixture of q components. Suppose further that the quality of any

mixture can be assessed by measuring a response variable, Y. Perhaps the EAS wants to maximize Y,

or minimize it, or even have Y fall between two specification limits. The first step is to be able to

predict the value of Y given a particular mixture. So, as in the case of the factorial experiments, the

EAS needs an approximating equation, or model. A first-order model might look like:

yj ¼ β0 þ
Xq

i¼1

βixi þ Ej for j ¼ 1,m:

This implies that in order to estimate the q + 1 coefficients, m � q + 1. Now consider the equivalent

model:

yj ¼ β0
Pq

i¼1 xi þ
Pq

i¼1 βixi þ Ej, which is equivalent since
Pq

i¼1 xi ¼ 1. Rearranging terms gives:

yj ¼
Pq

i¼1 β0 þ βið Þxi þ Ej and making the assignment αi ¼ β0 þ βi we can express the first-order
model as:

yj ¼
Pq

i¼1 αixi þ Ej which has only q parameters to estimate. The interpretation of this “reduced”

model is also more intuitive, perhaps. After all, the response variable must equal 0 if all the

components are set to 0 (i.e., there is no mixture on which to make any measurements).

Example: First-Order Model

Suppose a mixture may be made of exactly two components, x1 and x2. Furthermore, suppose it is

possible to use only one of either of these two components as the entire mixture. That is, suppose the

mixture could consist of 100 % of component one (x1 ¼ 1, x2 ¼ 0) or vice versa (x1 ¼ 0, x2 ¼ 1).

The classic example is mixing different octane-numbered gasolines, and measuring the miles per

gallon (we will use the English Standard units for this example, rather than metric or SI units). So the

experimental design will be mixtures of two types of gasoline, high octane and regular octane. Let x1
represent the proportion of the tank filled with high octane gas, and x2 the proportion of the tank filled
with regular. The response, Y will represent the miles per gallon, computed as the number of miles

driven divided by gallons used. The next question is how to collect the data that will allow us to

generate the approximating equation.

Here is one thought. Suppose we try one case where only the high octane gas is used (x1 ¼ 1,

x2 ¼ 0) and another with only regular octane gas (x1 ¼ 0, x2 ¼ 1). Suppose further we replicate the

experiment. Table 8.1 shows the data.

Figure 8.1 shows SAS code and output for fitting the first-order model.

The fitted model is:

y ¼ 30:54x1 þ 24:17x2

Since x1 + x2 ¼ 1 (one of the mixture constraints), the model clearly indicates that the optimal

mixture (highest mpg) is predicted to be x1 ¼ 1, x2 ¼ 0.
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One thing that may be bothering you is that our model was a linear function fit to two points,

namely (x1 ¼ 1, x2 ¼ 0) and (x1 ¼ 0, x2 ¼ 1). We had no observations of mpg for any non-pure

mixtures. Suppose we add the point, x1 ¼ 0.5, x2 ¼ 0.5. The data are shown in Table 8.2. They are

graphically depicted in Fig. 8.2. The SAS output for the refitted first-order model is given in Fig. 8.3.

Notice that the mpg results at the 50/50 mixture was higher than any of the other observations.

There is not a big change. The fitted model is now:

y ¼ 33:57x1 þ 27:20x2

It appears that the optimal mixture is still 100 % high octane (x1 ¼ 1, x2 ¼ 0). Yet the data seem to

indicate that this may not be the case. In factorial experiments, the midpoint, or centroid, data may

indicate that a first-order model is inadequate.

The Second-Order Model

In the case with independent factors, a second-order model might look like:

y ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 þ β3x
2
1 þ β4x

2
2 þ E

We have already discussed eliminating the intercept in the case of mixture variables. Since the values

of the mixture variables are dependent on each other (since their total must add to 1), notice that:

x21 ¼ x1 1� x2ð Þ ¼ x1 � x1x2 and x22 ¼ x2 1� x1ð Þ ¼ x2 � x1x2

Replacing these expressions in the model (assuming we have already eliminated the intercept):

y ¼ β1x1 þ β2x2 þ β12x1x2 þ β3x1 þ β3x1x2 þ β4x2 � β4x1x2 þ E

Collecting terms:

y ¼ β1 þ β3ð Þx1 þ β2 þ β4ð Þx2 þ β12 � β3 � β4ð Þx1x2 þ E

Relabeling the parameters leaves us with:

y ¼ α1x1 þ α2x2 þ α12x1x2 þ E

The second-order model went from having six parameters to having only three parameters to

estimate. Our old friend William Ockham would be proud. Of course, it is half as expensive to

estimate three parameters compared to estimating six. The two-variable cross-product terms are

referred to as “quadratic” terms in the context of mixture experiments.

Table 8.1 Octane

experiment—2-Point

design

High octane Regular octane mpg

x1 x2 y

1 0 30.9

0 1 22.0

1 0 30.2

0 1 26.4
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Fig. 8.1 Octane experiment—SAS code and output
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Fitting the second-order model to the data in Table 8.2 is accomplished using the SAS Code and its

associated output in Fig. 8.4.

So now the predictive equation is:

y ¼ 30:54x1 þ 24:17x1 þ 36:37x1x2

Fig. 8.1 (continued)
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Table 8.3 shows the data together with predicted values from both first-order and second-order

models.

It appears that the second-order model gives better predictions, at least for those conditions used to

fit the model.

Another question we might ask is, what is the optimal mixture? Clearly this optimization must be

performed subject to the mixture constraints, so the problem could be described as a nonlinear

program:

Maximize: y ¼ 30.54x1 + 24.17x1 + 36.37x1x2
Subject to:

x1 � 0

x2 � 0

x1 þ x2 ¼ 1

There are many solver programs. Figure 8.5 shows a screen shot from JMP Profiler which can be used

to find optimal values for factors or mixture variables. Notice that the constraint:

x1 þ x2 ¼ 1

was added. The non-negativity constraints did not need to be added, since the JMP profiler will only

plot the objective function (the model) over the range of values observed for the mixture variables.

Table 8.2 Octane

experiment—3-Point

design

High octane Regular octane mpg

x1 x2 y

1 0 30.9

0 1 22.0

1 0 30.2

0 1 26.4

0.5 0.5 37.9

0.5 0.5 35.0

Fig. 8.2 Graphic

presentation of octane

experiment data
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Figure 8.6 shows the profiler graphs in greater detail.Note that the optimalmixture is x1 ¼ 0.58 (58 %

high octane) and x2 ¼ 0.42 (42 % regular octane). The expected maximum response is 36.73 mpg.

Constraints in Mixture Designs

Typically mixtures or formulations have constraints on the components. Rarely are there mixture

problems that allow for “pure blends”, i.e., a mixture where xi ¼ 1 and xj ¼ 0, j 6¼ i. In fact, there can
be many different constraints. Perhaps most simply are those constraints where some or all

Fig. 8.3 Octane experiment—SAS output with centroid point added
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Fig. 8.4 Octane experiment—second-order model
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Fig. 8.4 (continued)
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components must comprise some minimum proportion of the mixture and no more than some

maximum:

Li � xi � Ui, i ¼ 1, q

Choosing the particular combinations of mixture variable values to include in an experiment becomes

more complicated. For one thing, the summation constraint:

Xq

i¼1

xi ¼ 1

must still be satisfied for each mixture included in the experiment. Therefore, constraints placed on

individual mixture variables must be feasible, in the sense that the summation constraint must be

satisfied, as well as all the other constraints. For example, suppose we had decided to constrain the

high octane variable to be no less than 60 % of the mixture, and at the same time we had constrained

the regular octane variable to be no less than 50 % of the mixture. These two constraints would be

infeasible, also referred to as inconsistent. When there are only two mixture variables, determining

Table 8.3 Octane

experiment data with

predictions

High octane Regular octane mpg First Second

x1 x2 y order order

1 0 30.9 33.6 30.5

0 1 22.0 27.2 24.2

1 0 30.2 33.6 30.5

0 1 26.4 27.2 24.2

0.5 0.5 37.9 30.4 36.4

0.5 0.5 35.0 30.4 36.4

Fig. 8.5 Optimization of second-order model
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whether or not constraints may be inconsistent is fairly simple. For mixtures with more than two

components, where constraints are expressed as lower and upper bounds, a procedure can be followed

to detect whether constraints are inconsistent.

1. Compute the ranges, Ri ¼ Ui � Li, i ¼ 1, q
2. If:

Ri > 1�
Xq

j¼1

Lj or Li þ
X

j 6¼i

Uj < 1:

Then the constraint Ui is said to be unattainable.

3. If:

Ri >
Xq

i¼1

Ui � 1:

Then the constraint Li is said to be unattainable.

If any of the constraints are unattainable, then the constraints are inconsistent. The values must be

adjusted by raising upper limits or lowering lower limits.

Optimal Design

Generally, computers are used to evaluate algorithms for finding sets of mixtures that satisfy

constraints, and adjusting constraints to make them consistent. The experimental designs are usually

chosen to satisfy an optimality criterion based on standard errors, either standard errors of the

Fig. 8.6 Optimal mixture from second-order model
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coefficient estimates, or standard errors of predicted values. The most common, and easiest to satisfy,

is called D-optimality. A D-optimal design is a set of points chosen to minimize the volume of the

joint confidence region of the model parameters. A G-optimal design is a set of points that minimizes

the maximum standard error of a predicted value (within the set of points in the design). A V-optimal

design minimizes the average standard error of predicted values (again, within the design points).

In JMP, V-optimality is called I-optimality.

Optimal designs are optimal with respect to the order of the model being fit. Let X represents a

matrix of design points (i.e., a set of mixtures), where the columns are assigned to each of the terms in

the model, and the rows are the values each term takes for a given mixture. Then these optimality

criteria are realized by doing the following:

D-Optimality: choose a set of mixtures that minimizes the determinant of the matrix X
0
X

� ��1
.

This minimizes the imprecision of estimation for the model parameters.

G-Optimality: choose a set of mixtures that minimizes the maximum value of x
0
X

0
X

� ��1
x. This

minimizes the width of confidence intervals for an individual predicted value.

V-Optimality: choose a set of points that minimizes 1
n x

0
X

0
X

� ��1
x, where n ¼ the number of

mixtures included in the design. This minimizes the width of confidence intervals for the average

predicted value.

In practice, the optimal designs are chosen by computer program for a fixed number of points, or

mixtures, to include in the experiment. So, before an optimal design may be chosen, the experimenter

must specify to the software both a model order and a number of design points.

A particularly excellent text on mixture experiments is that of Wendell F. Smith (2005).

Key Points

• Mixture experiments involve factors whose “levels” add to a constant that is the same for each run;

usually the constant is 1.

• Second-order mixture experiments have second-order cross-product terms, but no squared terms.

• Analyses for mixture experiments are the same as those for designs with factors whose levels are

independently chosen from one another.

• The choice of design can be done to satisfy various optimality criteria, such as minimizing the

parameter estimate variance (D-optimal), minimizing individual predicted value variance

(G-optimal), or minimizes average predicted value variance (V-optimal).

Exercises and Questions

1. Create a mixture design for fitting a second-order model with four mixture components, X1, X2,

X3, X4, and the following constraints:

X1 � 0:025
X2þ X3 � 0:60
X4 � 0:15

2. What sort of designs might be constructing if there are both mixture components and processing

variables?
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Chapter 9

Some Examples and Applications

Range Finding

Once an optimal point has been found, it may be desirable to find ranges of the factors where the

response may not be optimal but may be sufficient. The approach we will take is based on the notion

of inverse regression (Draper & Smith, 1998).

Suppose a first-order model has been fit:

by ¼ b0 þ b1x

Suppose further that we have determined a range of values for the response variable, y, that are

acceptable. Let the range be described as:

y0 � δ

The range of x values expected to yield acceptable values of the response are:

xL ¼ y0 � δ� b0
b1

and

xU ¼ y0 þ δ� b0
b1

The estimation issue is that since both b0 and b1 have sampling variation, we would like to obtain

some kind of probabilistic bounds on xL and xU. Using the standard error formula for a predicted value

from a simple linear regression, the lower confidence limit for a “predicted” value of y0 � δwould be
given by:

byL ¼ y0 � δ� ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ xLL � xð Þ2

SSx

s

where SSx ¼
Pn

i¼1 xi � xð Þ2, t is the appropriate percentile of a Student’s t distribution,byL ¼ b0 þ b1xL, and s is the RMSE from the regression. Solving for xLL entails finding the roots of
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a quadratic polynomial, and using the smaller real root as the lower confidence limit on xL. A similar

process could be followed for xUU, namely, solving:

bYU ¼ y0 þ δþ ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ xUU � xð Þ2

SSx

s

For the sake of being conservative, use the larger real root as the upper confidence limit for xU. In the
cases of no real roots, one could use � zj j, where z is the complex root. The idea of using the

confidence limits for the potential range of x values is to provide the experimenter with a set of

experimental conditions to use in an exploratory fashion. That is, once the range of x values is

determined algebraically, an experiment should be performed, to verify that the response values are in

fact acceptable at the extended limits on x.
More generally, suppose the polynomial model is fit:

by ¼ b0 þ b1Z1 þ b2Z2 þ . . .þ bkZk

Note that the Zj could be powers of a single regressor, or they could be other variables. The inverse

regression problem would be to find values of the Zj, call them Zj
0, such that

by0 ¼ b0 þ b1Z
0
1 þ b2Z

0
2 þ . . .þ bkZ

0
k

To obtain point estimates for the ranges of the regressors, solve:

by0 � δ ¼ b0 þ b1Z
L
1 þ b2Z

L
2 þ . . .þ bkZ

L
k

and

by0 þ δ ¼ b0 þ b1Z
U
1 þ b2Z

U
2 þ . . .þ bkZ

U
k

Finding confidence limits for the Zj
L and the Zj

U would involve finding solutions to:

t2SE2 ¼ b0 þ b1Z
LL
1 þ b2Z

LL
2 þ . . .þ bkZ

LL
k � by0 � δð Þ� �2

and

t2SE2 ¼ b0 þ b1Z
UU
1 þ b2Z

UU
2 þ . . .þ bkZ

UU
k � by0 þ δð Þ� �2

SE ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
0
0 Z

0
Z

� ��1
z0

q

z0 ¼
1
Z0
1

⋮
Z0
k

2
64

3
75
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Z ¼ matrixof regressorvalues

s ¼ RMSEfromregression

t ¼ appropriatepercentileof Student0s tdistribution:

A Quadratic Example

Suppose the equation resulted from a least squares fit:

by ¼ 10:39þ 38:10x� 48:80x2

Figure 9.1 illustrates the data and the approximating polynomial.

The root mean square error (RMSE) from the model was s ¼ 0.7124. If x0 represents the optimal

point, then the estimate of the optimal response is the solution to:

Fig. 9.1 Data and polynomial fit for quadratic range finding example
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38:10� 48:80x0 ¼ 0, x0 � 0:3904, by0 � 17:83

Suppose that any value of the response withinby0 � δ ¼ 17:83 � 0:15would be acceptable. Then
all that is necessary to find values of x such that:

b0 þ b1xþ bx2 ¼ y0 � δ ð9:1Þ

or

b0 þ b1xþ bx2 ¼ y0 þ δ ð9:2Þ

Since the value of y0 is a maximum for this quadratic function, the solutions to equation (9.1) are what

we seek. The solutions are therefore xL � 0.3349 and xU � 0.4458. That is, these are “point

estimates” for the limits of acceptable x values. However, a 100(1-α)% confidence limit for y0 � δ
would be:by0 � δ� tSE by0��x0� �

where t is the appropriate percentile of a Student’s t distribution and

SE by0��x0� � ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

0
0 X

0
X

� ��1
x0

q

and

x0 ¼
1

x0
x20

2
4

3
5

X ¼
1 x1 x21
⋮ ⋮ ⋮
1 x12 x212

2
4

3
5

As usual, s represents the RMSE from the regression. To find confidence limits xL or xU, find the

solutions to the equation:

b0 þ b1xþ bx2 ¼ y0 � δ� tSE by0��x0� �
With

SE by0��x0� � � 0:2165

then:

by0 � δ� tSE by0��x0� � � 17:2088:

The 95 % confidence limits are xL � 0.2779 and xU � 0.5029. This interval may be interpreted as the

range of x values which is 95 % certain of yielding an acceptable response value.

Once the range of x values has been determined, a confirmatory experiment is appropriate. That is,

observe the value of y at xL and at xU and check to see if your observations actually are within the

desired range of the response.
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By accounting for sampling variation in the predicted value, the solutions xL and xU may yield

response values that are outside the acceptable range of performance. However, by performing an

additional experiment over the range (xL, xU), the EAS may find that there is a wider interval in x,
beyond the “point estimate” limits, over which acceptable response values can be obtained with a

high degree of probability.

In the case of the quadratic approximating equation in a single factor, solving for the limits (xL, xU)
can be accomplished with the quadratic solution formula. When there are more than one regressors, or

there are higher-order terms, such formulas may not exist. Numerical methods can be used, however.

The MS Excel™ Solver Add-in provides a tool for solving maximization/minimization/root-finding

problems subject to constraints. Figure 9.2 shows an Excel worksheet with a set-up for finding limits

using Solver.

Figure 9.3 shows the Solver window.

Since there are two solutions to the equation, the Solver must be executed twice, with a starting

value for x (X) that is lower than desirable, and a starting value of x that is higher than desirable. In

this case, the objective is to set the function:

Diff Yl CL ¼ Ycalc� Y0 � tSE� δð Þ

to equal 0, by changing the value of X. Ycalc is given by:

Ycalc ¼ b0þ b1*Xþ b2*X2

Fig. 9.2 Excel set-up for finding limits with quadratic response equation
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A Factorial Problem

Otto and Wood (2001) describe the use of a factorial experiment to aid in the design of a household

blender. The objective is to design a device that will liquefy solid vegetable matter. The

experimenters chose to attempt to blend 200 g of vegetables for 10 s. The response variable is the

percent of the 200 g that are liquid after 10 s of blending. Their design concept involves adding a

plunger that imparts a force on the vegetables as they are being blended. There were five factors:

1. Plunger shape

2. Plunger size

3. Type of surface (part of the plunger that contacts the vegetables)

4. Plunger force (force imparted on the vegetables)

5. Plunger rotation

Suppose the experimenters decided to use a one-half fraction of a 25 design, that is, 25-1, which is

resolution V. That is, they decided to use exactly two different values for each factor. Table 9.1 shows

the factors and their levels.

Figure 9.4 shows the experimental design alias structure as generated using Minitab 16.

Notice that the generator effect for this design is the five-way cross-product term, so that each main

effect is aliased with a four-way cross-product and each two-way cross-product is aliased with a

Table 9.1 Blender experimental

factors and levels
Factor Low (�1) High (+1)

Plunger shape Rectangular Circular

Plunger size 6.4 cm 9.7 cm

Type of surface Concentrated Distributed

Plunger force 0 N 40 N

Rotation None Rotation

Fig. 9.3 Solver screen
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Fig. 9.4 Blender experimental design
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three-way cross-product. The model we will fit to data will therefore only include main effects and

two-way cross-product terms.

Table 9.2 shows the runs for this ½ fractional design.

Each run was replicated twice (each of the 16 prototypes were run with two loads of 200 g each).

The data are given in Table 9.3.

Figure 9.5 shows the ANOVA output from JMP 11.

Figure 9.6 shows the residual plot for this model. Inasmuch as the residuals plotted against the

expected results average percent blended for each run) show no discernable pattern, it seems

reasonable to believe that the underlying assumption of constant noise variance is true. Thus, the

p-values are fair indicators that the effects we have observed are repeatable. All main effects were

significant (p < 0.0001). Table 9.4 shows the average response for each main effect at each of the two

levels. Three two-way cross-products were significant; P.Shape*Rotation, P.Size*P.Force, and P.

Force*Rotation. Figure 9.7a, b, and c shows the interaction plots for the significant cross-products.

If the experimenters were to use the mean results by factor and level, then they might conclude that

the best design would be P.Shape ¼ circular, P.Size ¼ 9.7 cm (radius of plunger), Surface ¼
concentrated, P.Force ¼ 40 N, and Rotation ¼ Rotate. There are some possible problems with this

conclusion. The interaction plot of P.Force*Rotation indicates that P.Force ¼ 0 N and Rotation ¼
None is the best (i.e., highest percent blended). A post-hoc comparison indicates that in fact there is a

significant (repeatable) difference between all four combinations of P.Force and Rotation, and that P.

Force ¼ 40 N and Rotation ¼ None is the best configuration. Figure 9.8 shows the comparisons,

together with p-values, using the Tukey Honestly Significant Difference (HSD) method.

Finally, consider the run that yielded the best results, namely run 12, which had P.Shape ¼
circular, P.Size ¼ 9.7 cm, Surface ¼ concentrated, P.Force ¼ 40 N, and Rotation ¼ None. The

data seem to lead to three different conclusions about the best design. Of the three contenders, only

one has data (Run 12) that were actually observed in the experiment. One way to adjudicate this

situation is to compute predicted values for each of the three possible configurations. A model can be

fit, using the Helmert-coded levels, and incorporating only those interactions that were significant in

the ANOVA. Figure 9.9 shows the regression fit output. Note that all coefficients are significantly

different from 0 (p < 0.0001), and adjusted R2 is approximately 0.9963, indicating a good fit.

Table 9.5 summarizes the three possible configurations, together with predicted response values

and associated 95 % confidence intervals.

Table 9.2 Runs for the

25-1 blender experiment
Run P.Shape P.Size Surface P.Force Rotation

1 �1 �1 �1 �1 1

2 1 �1 �1 �1 �1

3 �1 1 �1 �1 �1

4 1 1 �1 �1 1

5 �1 �1 1 �1 �1

6 1 �1 1 �1 1

7 �1 1 1 �1 1

8 1 1 1 �1 �1

9 �1 �1 �1 1 �1

10 1 �1 �1 1 1

11 �1 1 �1 1 1

12 1 1 �1 1 �1

13 �1 �1 1 1 1

14 1 �1 1 1 �1

15 �1 1 1 1 �1

16 1 1 1 1 1
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It appears that in this case, the run with the best observed response values (Run 12, Alt. 3) is the

optimal choice for the product design. The presence of interaction effects made the choice indicated

by maximizing the average results of the main effects (Alt. 1) yield a suboptimal design choice.

Furthermore, simply choosing the design based on the optimal results for only one of the significant

interaction effects also proved to yield a less desirable alternative (Alt. 2).

Despite the fact that the conditions of Run 12 were clearly the best, based on the model and

experimental data, it would be prudent to obtain some additional data with all three alternatives.

Table 9.6 shows the results of three replicates of the experiment with the three alternative designs.

The means and standard deviations (SD) of percent blended for each of the alternatives is given in

Table 9.7.

The confirmatory experiment indicates that in fact Alternative 3 (Run 12 from original experi-

ment) appears to be the winning design for the product. It also appears to have the added benefit of

having the most consistent results (smallest SD). In order to test whether we should believe that the

reduced SD is a repeatable phenomenon, we can compute the ratios of variances:

Table 9.3 Blender experiment data

Run P.Shape P.Size (cm) Surface P.Force (N) Rotation Percent Blended

1 Rect. 6.4 Concentrated 0 Rotate 63.86

1 Rect. 6.4 Concentrated 0 Rotate 66.91

2 Circ. 6.4 Concentrated 0 None 42.28

2 Circ. 6.4 Concentrated 0 None 41.05

3 Rect. 9.7 Concentrated 0 None 7.80

3 Rect. 9.7 Concentrated 0 None 6.22

4 Circ. 9.7 Concentrated 0 Rotate 67.38

4 Circ. 9.7 Concentrated 0 Rotate 68.57

5 Rect. 6.4 Distributed 0 None 3.73

5 Rect. 6.4 Distributed 0 None 2.58

6 Circ. 6.4 Distributed 0 Rotate 64.86

6 Circ. 6.4 Distributed 0 Rotate 65.14

7 Rect. 9.7 Distributed 0 Rotate 44.82

7 Rect. 9.7 Distributed 0 Rotate 47.04

8 Circ. 9.7 Distributed 0 None 24.22

8 Circ. 9.7 Distributed 0 None 26.47

9 Rect. 6.4 Concentrated 40 None 29.32

9 Rect. 6.4 Concentrated 40 None 24.64

10 Circ. 6.4 Concentrated 40 Rotate 36.39

10 Circ. 6.4 Concentrated 40 Rotate 40.36

11 Rect. 9.7 Concentrated 40 Rotate 70.86

11 Rect. 9.7 Concentrated 40 Rotate 68.62

12 Circ. 9.7 Concentrated 40 None 94.66

12 Circ. 9.7 Concentrated 40 None 95.84

13 Rect. 6.4 Distributed 40 Rotate 20.16

13 Rect. 6.4 Distributed 40 Rotate 20.22

14 Circ. 6.4 Distributed 40 None 45.42

14 Circ. 6.4 Distributed 40 None 44.70

15 Rect. 9.7 Distributed 40 None 56.00

15 Rect. 9.7 Distributed 40 None 54.08

16 Circ. 9.7 Distributed 40 Rotate 69.80

16 Circ. 9.7 Distributed 40 Rotate 67.40

A Factorial Problem 133



Fig. 9.5 ANOVA output—blender experiment

Fig. 9.6 Residual by

expected plot



F1 ¼ SD2
Alt:1

SD2
Alt:2

� 1:3632

0:3192
� 18:26

Under the null hypothesis of no difference in variances between Alternative 1 and Alternative

2, the statistic F1 has an F distribution with 3 � 1 ¼ 2� of freedom in both numerator and denomi-

nator. The p-value from an F distribution with 2� of freedom in the numerator and denominator is

approximately 0.0519, which is close to significant. Similarly,

F2 ¼ SD2
Alt:2

SD2
Alt:3

� 0:5862

0:3192
� 3:37

which has a p-value of approximately 0.2288. This is clearly not significant. Although a larger sample

size might yield significant p-values, the experimenters/designers should determine whether the

additional experimentation would be worth knowing that the most desirable alternative in mean

response is also the most consistent.

Another Factorial Problem

From elementary physics, we know that voltage, V, is electrical potential, the potential energy

required to move electrical charge, q, through a conductor. The change in voltage is electromotive

force, namely the force required to move a charge through the conductor between two points along

the conductive path. Work, W, is the change in voltage times the electrical charge. Power, P, is the

work per unit time, t. The mathematical expressions are the following:

ΔV ¼ W

q
¼> W ¼ qΔV

P ¼ W

t
¼ qΔV

t

From Ohm’s law, we know the relationship between voltage, V, current, I, and resistance, R:

V ¼ IR

Table 9.4 Mean response

by factor and level
Factor Level Least sq mean Std error

P.Shape Rect. 36.677 0.3956

P.Shape Circ. 55.909 0.3956

P.Size 6.4 cm 38.226 0.3956

P.Size 9.7 cm 54.360 0.3956

Surface Concentrated 51.547 0.3956

Surface Distributed 41.039 0.3956

P.Force 0 N 40.183 0.3956

P.Force 40 N 52.403 0.3956

Rotation None 37.438 0.3956

Rotation Rotate 55.149 0.3956
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So:

ΔV ¼ IR� I0R0

where I0 and R0 are the initial values of current and resistance.

An implantable defibrillator is a device that is used to “restart” a heart that has stopped beating.

The most commonly known cause of heart stoppage is called ventricular fibrillation. Then ventricles

P.Shape*Rotation
Least Squares Means Table
Level Least Sq Mean Std Error
rect.,None 23.044572 0.55946819
rect.,Rotate 50.309776 0.55946819
circ.,None 51.830708 0.55946819
circ.,Rotate 59.987394 0.55946819

LS Means Plot

P.Size*P.Force

a

b

Least Squares Means Table
Level Least Sq Mean Std Error
6.4cm,0N 43.802038 0.55946819
6.4cm,40N 32.649846 0.55946819
9.7cm,0N 36.563768 0.55946819
9.7cm,40N 72.156797 0.55946819

LS Means Plot

Fig. 9.7 (a) Significant interaction plots—P.Shape*rotation; (b) significant interaction plots—P.Size*P.Force;

(c) significant interaction plots—P.Force*rotation
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P.Force*Rotation
Least Squares Means Table
Level Least Sq Mean Std Error
0N,None 19.293506 0.55946819
0N,Rotate 61.072300 0.55946819
40N,None 55.581774 0.55946819
40N,Rotate 49.224870 0.55946819

LS Means Plot

c

Fig. 9.7 (continued)

Fig. 9.8 Pairwise comparisons of P.Force*rotation cross-product (tukey HSD)
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Fig. 9.9 Multiple regression Fit of reduced model—helmert-coded regressors

Table 9.5 Possible conclusions about optimal design

Alt. 1 Alt. 2 Alt. 3

Factor Main effects Interaction Best run

P.Shape Circular (+1) Circular (+1) Circular (+1)

P.Size 9.7 cm (+1) 9.7 cm (+1) 9.7 cm (+1)

Surface Concentrated (�1) Concentrated (�1) Concentrated (�1)

P.Force 40 N (+1) 0 N (�1) 40 N (+1)

Rotation Rotate (+1 ) None (�1) None (�1)

Predicted response 79.07 35.32 94.98

LCL (mean) 77.39 33.64 93.30

UCL (mean) 80.75 37.00 96.66
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are the power pumps of the heart. They regularly pump blood into and out of the heart, and their

pumping cycle is regulated by electrical impulses. If those impulses are interrupted or altered, the

ventricles may not pump. If the pulses increase their frequency, the ventricles may pump so rapidly

that they fail. Rather than pumping steadily, they may simply vibrate, or fibrillate. Ventricular

fibrillation (VF) is a form of heart attack.

An implantable defibrillator has a sensor that detects increased frequency of the electrical impulses

being delivered to the ventricles. If the rate increases beyond some predetermined threshold, the

defibrillator will discharge electrical energy to the heart’s regulator (usually in the range of

200–360 J) to hopefully interrupt the increased impulse rate, and avoid ventricular fibrillation.

There are several factors that affect the delivered voltage. There is the resistance of the cardiac

lead (wire cable) that delivers the voltage. There is the voltage source (battery). The resistance

encountered at the site where the lead contacts the heart’s natural pacemaker affects the delivered

voltage. The power required to end fibrillation is a probabilistic quantity. That is, a given power level

has some probability of stopping the VF. Even if total resistance is known, and the voltage from the

battery is fixed, the required power cannot be known with certainty.

The energy unit Joules (J ) can be expressed as coulomb-volts:

J ¼ CV

Coulombs, in turn, are a product of current, in amperes, and duration of electrical flow, in seconds, s.
Thus:

C ¼ Is
J ¼ IVs

From Ohm’s law, current is the ratio of voltage to resistance:

I ¼ V

R

Table 9.6 Three alternative designs: Confirmatory experiment results

Alternative P.Shape P.Size (cm) Surface P.Force (N) Rotation Percent blended

Alt. 1 Circ. 9.7 Concentrated 40 Rotate 80.84

Alt. 1 Circ. 9.7 Concentrated 40 Rotate 78.65

Alt. 1 Circ. 9.7 Concentrated 40 Rotate 81.16

Alt. 2 Circ. 9.7 Concentrated 0 None 35.69

Alt. 2 Circ. 9.7 Concentrated 0 None 36.82

Alt. 2 Circ. 9.7 Concentrated 0 None 35.99

Alt. 3 Circ. 9.7 Concentrated 40 None 96.15

Alt. 3 Circ. 9.7 Concentrated 40 None 96.34

Alt. 3 Circ. 9.7 Concentrated 40 None 95.71

Table 9.7 Means and standard

deviations of percent blended

for alternative designs

Alternative N Mean % blended SD

Alt. 1 3 80.216 1.363

Alt. 2 3 36.165 0.586

Alt. 3 3 96.067 0.319
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So, the energy (E, measured in Joules) delivered by the defibrillator is:

E ¼ V2

R
s

In addition to controlling V and s, the EAS may choose to use either a monophasic or biphasic wave

form. That means either current flows in one direction, or current changes direction in the middle of

the wave form. Generally, it has been shown that biphasic waveforms require less energy E to

cardiovert (defibrillate) than the monophasic approach. The voltage and the duration of the shock can

be controlled. The resistance, R, is a function of the patient’s physiology, so it cannot be controlled.

However, it can be measured.

In practice, the energy to charge the capacitor in the defibrillator is selected. The voltage can be

calculated:

V ¼
ffiffiffiffiffiffi
ER

s

r

Suppose that the EAS has a cardiac simulator, where heart tissue resistance (in ohms) can be selected,

and where VF can be simulated. This simulator allows the EAS to simulate the action of the

defibrillator, which may or may not stop the VF event. The EAS decides that the factors to be varied,

and the ranges over which they will be varied are:

Energy (E)—in Joules—180–360 J (center value ¼ 270 J)

Heart Resistance (R)—in ohms—2250–5400 Ω (center ¼ 3825 Ω)
Wave-form duration (s)—in seconds—0.02–0.03 s (center ¼ 0.025 s)

The EAS decides to use a 3-factor CCD experiment. In each “run”, the experiment will be

replicated 100 times. The response for the experiment will be the proportion of times in which

defibrillation was achieved. Since the simulator includes some random components, so each time the

simulator is run, the outcome is uncertain. The experiment will be repeated at the centerpoint run two

times, to get an estimate of variability.

Table 9.8 shows the design points in natural and coded units, and the response (Percent Success).

Figure 9.10 shows the JMP output for fitting the full second-order model.

Five of the terms have coefficients that are not significantly different from zero. One of them is a

main effect, s, the duration of the pulse. Three of them are higher-order terms with s as a component.

Apparently the pulse duration, as long as it is between 20 and 30 ms, has no appreciable effect on the

probability of defibrillating. Refitting the model without these terms will yield a more parsimonious

(remember our friend, William Ockham) model. The fit is shown in Figure 9.11.

Now all terms are significant. The final model, with regressors in Helmert-coded units, is:

Pr defibrillationf g ¼ 93:03þ 12:42*E� 7:57*Rþ 6:84*E*R� 7:32*E2

Recall that Pr{defibrillation} is expressed as a percent.

Since resistance, R, is not a design variable, one can ask the question, “for a given value of R, what
value of Ewill make Pr{defibrillation} � 95 %, subject to the constraints that E � 360 J ?” Table 9.9

shows some results.

Of course, 95 % may not be a sufficient likelihood for achieving defibrillation. However, the point

is that the model can be used to make a guess at the energy required. The EAS can then use the

fundamental relationships:
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Table 9.8 Central composite design with percent success data

E R s E-coded R-coded s-coded Percent success (%)

180 2250 0.02 �1 �1 �1 79

180 2250 0.03 �1 �1 1 78

180 3825 0.025 �1 0 0 89

180 5400 0.02 �1 1 �1 95

180 5400 0.03 �1 1 1 94

270 2250 0.025 0 �1 0 80

270 3825 0.02 0 0 �1 90

270 3825 0.025 0 0 0 90

270 3825 0.025 0 0 0 90

270 3825 0.03 0 0 1 89

270 5400 0.025 0 1 0 95

360 2250 0.02 1 �1 �1 82

360 2250 0.03 1 �1 1 81

360 3825 0.025 1 0 0 91

360 5400 0.02 1 1 �1 96

360 5400 0.03 1 1 1 95

Fig. 9.10 Defibrillator full second-order model
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E ¼ IVs

I ¼ V

R

V ¼
ffiffiffiffiffiffi
ER

s

r

to determine voltage and current.

Fig. 9.11 Defibrillator reduced second-order model

Table 9.9 Model results

for achieving Pr

{defibrillation} � 95 %

E (coded) E (J) R (coded) R (Ω) Pr{Defib} (%)

�0.572 218.5 �1 2250 95.01

0.177 285.9 0 3825 95.00

0.662 329.6 1 5400 95.00
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Key Points

• Applications of experimental designs include range finding and optimization.

• Confidence intervals for predicted values will provide a means incorporating variability in

product/system design.

Exercises and Questions

Design an experiment, execute it, and fit a model/analyze the data. Discuss why you chose the

particular design and the model.
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Chapter 10

Binary Logistic Regression

What Are the Odds?

Most people have heard the term “Odds”, and know that it has something to do with the likelihood of

obtaining a “successful” outcome in some sort of game or trial. If P represents the probability of

“success”, then 1 � P is the probability of “not success”. The odds are:

O ¼ P

1� P

As an example, suppose the “game” is to toss a 6-sided die. Perhaps we are interested in the odds of

obtaining an even number of dots face up after the throw. Clearly there are n ¼ 6 possibilities for the

outcome, and 3 of them (2, 4, 6) are even. So:

P ¼ 3

6

And

1� P ¼ 3

6

The odds of an even result (in comparison to not even) is then:

O ¼ P

1� P
¼ 3=6

3=6
¼ 3

3
¼ 1

Thus, the odds of “even” versus “not even” are 1, which, ironically, is called “even odds”. That is,

there is no greater or lesser likelihood of obtaining an “even” number versus a “not even” number.

Suppose we consider a different pair of events, namely obtaining either a “1”, “2”, “3” or a “5” versus

anything else (either “4” or “6”). Then we have:

P ¼ 4

6
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1� P ¼ 2

6

O ¼ P

1� P
¼ 4=6

2=6
¼ 4

2
¼ 2

Now we say that it is two times as likely for obtaining either “1”, “2”, “3” or a “5” versus not, or the

odds of either “1”, “2”, “3” or a “5” are 2 to 1 in favor. Now, if you are told that the odds are 3 to 1 in

favor of a particular horse to win a race, you know that it is three times as likely that this horse will

win, versus not (i.e., some other horse will win).

An odds ratio is the ratio of odds for two different conditions. Suppose there are two teams in a

sporting event. Each team has some probability of winning, and consequently a probability of losing.

Let P1 represent the probability that team 1 will win, and P2 the win probability for team 2. We

presume that the probabilities of winning are not conditioned on the fact that these particular two

teams are competing against each other. Thus P1 and P2 are not necessarily complementary; P1 is not

necessarily equal to 1 � P2. Then the odds for each team are:

O1 ¼ P1

1� P1

O2 ¼ P2

1� P2

The odds ratio is then:

O1

O2

¼ P1= 1� P1ð Þ
P2= 1� P2ð Þ

The odds ratio in the number of times more likely the “numerator” team is to win compared to the

“denominator” team. Suppose P1 ¼ 0.90 and P2 ¼ 0.45. Then the odds ratio of team 1 to team 2 is:

O1

O2

¼ P1= 1� P1ð Þ
P2= 1� P2ð Þ ¼

0:90=0:10

0:45=0:65
� 13

So team 1 is 13 times more likely than team 2 to win the contest. Note that the ratio of P1 to P2 is only

0.90/0.45 ¼ 2. This ratio does not incorporate the probability that a given team could lose.

The Logit Transformation

It will be convenient to use the natural logarithm of odds rather than the odds directly. So we will

define the logit (pronounced “low-jit”) of P to be:

λ ¼ ln Oð Þ ¼ ln
P

1� P

� �
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If one was given the logit’s value, one could solve for P:

P ¼ 1

1þ e�λ

Keep in mind that P represents the probability of obtaining a “success”, however success is

defined. Furthermore, we will define a Bernoulli random variable, Y, to have the following binary

values:

Y ¼ 1 if “success”
0 otherwise

�

Thus,

P ¼ Pr Y ¼ 1f g

Suppose that the logit was in fact a linear function of some regressor, X, so that:

λ Xð Þ ¼ ln Oð Þ ¼ ln
P Xð Þ

1� P Xð Þ
� �

¼ β0 þ β1X

By solving for P(X), we get:

P Xð Þ ¼ Pr Y ¼ 1
��X� � ¼ 1

1þ e�λ Xð Þ ¼
1

1þ e� β0þβ1Xð Þ

Once data are collected, the parameters β0 and β1 may be estimated. The estimates may be

obtained in many ways, but a common way is via maximum likelihood. The likelihood function for

a sample of binary results, y1, y2, . . .,yn, and the associated regressor values x1, x2,. . .,xn, is given by:

L βð Þ ¼
Yn
i¼1

πyi xið Þ 1� π xið Þð Þ1�yi

where:

π xið Þ ¼ eβ0þβ1xi

1þ eβ0þβ1xi
¼ 1

1þ eβ0þβ1xi
¼ Pr Y ¼ 1

��xi� �
The idea is to find values of β0 and β1 that maximize the likelihood function. Generally it is easier

to maximize the logarithm of the likelihood function, since it involves sums and not products. Taking

the natural log of L(β), differentiating with respect to β0 and β1, and setting the partial derivatives

equal to 0 gives the equations:

Xn
i¼1

yi � π xið Þð Þ ¼ 0

and
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Xn
i¼1

xi yi � π xið Þð Þ ¼ 0

Inasmuch as both of these equations are non-linear with respect to the two unknown parameters, there

is no closed form solution. Rather, numerical approximation methods such as Newton-Raphson must

be employed.

Once the model parameters are estimated, a measure of goodness is given by:

D ¼ �2
Xn
i¼1

yiln
bπ i

yi

� �
þ 1� yið Þln 1� bπ i

1� yi

� �� 	

Where bπ i ¼ 1

1þeβ̂0þβ̂1xi
is the predicted probability that Y ¼ 1 when X ¼ xi. Note that if yi ¼ 0, then the

first term in the sum is set to 0, and if yi ¼ 1, then the second term is set to 0. The quantity D is called

the deviance (Hosmer and Lemeshow 1989), and is analogous to the sums of squares for error in a

usual multiple regression model. It can be used to compare the goodness of fit for models with

different combinations of regressors. In general, lower deviance is more desirable.

It is fairly easy to generalize the logistic equation to multiple regressors:

P Xð Þ ¼ Pr Y ¼ 1
��x� � ¼ 1

1þ e�λ xð Þ ¼
1

1þ e�x
0β

x
0 ¼ 1 x1 x2 � � �xk½ � is a vector of regressors (the “1” is the “regressor” for the intercept)
and

β ¼
β0
⋮
βk

2
4

3
5 is a vector of unknown parameters.

The values of the xj could be chosen in a designed experimental fashion, say a 2k � p design. The yi
are binary observations. For the Moment, we will assume that the xj are continuously valued

regressors, and our objective is to find a predictive equation for the probability of a “success”

(Y ¼ 1) in terms of the xj. Furthermore, in building this probability model, we would like to determine

which if any of the regressors (xj) actually affect the probability that Y ¼ 1.

Example: Continuous Regressors

Consider the problem of designing a natural gas pipeline (White 2012). Suppose that the EAS wants

to maximize the probability that the pipe will not leak. Furthermore, to simplify the problem, suppose

that there are only three design factors to be considered:

Pipe outer diameter (OD)

Pipe wall thickness (WT)

Specified minimum yield strength (SMYS)

OD and WT are fairly obvious in their nature, and will be measured in inches. SMYS is defined to

be the force (in psi) at which the steel used to make the pipe begins to stretch (White, ref.cit.).

Table 10.1 shows these factors and the range over which our EAS is interested.

The EAS asks the engineering lab to put together several prototype systems, and perform a leak

test. The response for each test is binary; either the pipe leaked (Y ¼ 0) or not (Y ¼ 1). Furthermore,
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the EAS decides to fit a logistic function using data from a 3-factor Box-Behnken design, with each

design point replicated n ¼ 15 times. Table 10.2 shows the design points (runs). Run #7 is the center

point.

The EAS first uses Helmert coding to transform the regressors into the interval (�1,+1), and then

fits the data to the model using the R code shown in Fig. 10.1. The R output is shown in Fig. 10.2.

The last line of code stores all the predicted probabilities for “success” (no leak), as computed by

the logistic model. Figure 10.3 shows SAS code for fitting the same model. The SAS procedure

GENMOD allows the use to compute confidence intervals for predicted values at each point.

Figure 10.4 shows the SAS output. Table 10.3 shows the predicted probabilities of No Leak, together

with 95 % confidence limits (LCL, UCL) for each run.

One might ask just how the confidence intervals for predicted values are computed. Assume the

vector:

x ¼
1

x1
⋮
xk

2
64

3
75

represents a particular point in the regressor space. Then the predicted logit at this point is:

bλ xð Þ ¼ x
0bβ

and

bβ ¼
bβ0

⋮bβk

2
4

3
5

is the vector of coefficient estimates.

Table 10.1 Pipeline factors and levels

Factor Low Middle High Units

Outer diameter (OD) 48 60 72 Inches

Wall thickness (WT) 6 12 18 Inches

Specified max yield strength (SMYS) 60,000 70,000 80,000 psi

Table 10.2 Box-Behnken

design—3 factors, 13 runs
Run OD WT SMYS

1 48 6 70,000

2 48 12 60,000

3 48 12 80,000

4 48 18 70,000

5 60 6 60,000

6 60 6 80,000

7 60 12 70,000

8 60 18 60,000

9 60 18 80,000

10 72 6 70,000

11 72 12 60,000

12 72 12 80,000

13 72 18 70,000
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The variance of the estimated logit at x is:

V bλ
 �
¼ x

0 bΣx
where bΣ is the estimate of the variance-covariance matrix of the coefficient estimates. The standard

error, SE bλ
 �
of the estimated logit is the square root of the variance.

The confidence limits for the logit are:

bλ xð Þ � SE bλ xð Þ

 �

¼ x
0bβ � z1�α

2

ffiffiffiffiffiffiffiffiffiffi
x

0 bΣxp

The computation of the estimated variance-covariance matrix is given by Hosmer and Lemeshow

(1989). The variance-covariance matrix is the inverse of the information matrix. The information

matrix has diagonal elements:

Xn
i¼1

x2ijpi 1� pið Þ;

where the sum is over all the individual observations, and the off-diagonal elements are:

Xn
i¼1

xijxilpi 1� pið Þ

Fig. 10.1 Logistic regression R code

150 10 Binary Logistic Regression



Fig. 10.2 Logistic regression R output
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Fig. 10.2 (continued)
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The pi are the predicted probabilities at each observation:

pi ¼
1

1þ e�x
0
i
bβ

The confidence intervals for the predicted values are given by inverting the logit transformation:

1

1þ e�
bλ xð Þ�SE bλ xð Þ

 � �
Fleiss et al. (2003) gives a simplified formula for the standard error of logits when there is a single

regressor, X:

SE logit bP xð Þ

 �
 �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se bβ0


 �
þ 2xcov bβ0; bβ1


 �
þ x2 se bβ1


 �
 �2
r

Fig. 10.2 (continued)
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where:

logit bP xð Þ

 �

¼ bβ0 þ bβ1x

wi ¼ pi 1� pið Þ

Xw ¼
Xn

i¼1
wixiXn

i¼1
wi

Fig. 10.3 SAS proc GENMOD for logistic regression
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Fig. 10.4 SAS proc GENMOD output
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SSw ¼
Xn
i¼1

wi xi � Xw

 �

se bβ0


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Xn

i¼1
wi

þ X
2

w

SSw

vuut

se bβ1


 �
¼ 1ffiffiffiffiffiffiffiffi

SSw
p

cov bβ0; bβ1


 �
¼ � Xw

SSw

Back to the example. The optimal run was #9, which had OD at the center value (60 in.), and WT and

SMYS at their high values (18 in., 80,000 psi, respectively). The highest predicted value, however, is

achieved when all three factors are set to their highest levels, namely OD ¼ 72, WT ¼ 18, SMYS

¼ 80,000. Under these conditions, the predicted probability of no leak is approximately 0.9994. The

largest coefficient of the coded factors is for SMYS, so we can conclude that this is the most

influential factor in determining the probability of no leak.

One might ask what values of the regressors would yield some minimally acceptable probability,

call it Pmin, of no leak. The EAS could use the MS Excel solver to compute the values of the regressors

that yield at least a Pmin probability of no leak. For example, suppose Pmin ¼ 0.99. Table 10.4 shows

the computations and the solution as provided by the Excel solver function.

Table 10.3 Percentiles

for predicted probability

of no leak by run

Run OD WT SMYS Predicted prob LCL UCL

1 48 6 70,000 0.0278 0.0037 0.1790

2 48 12 60,000 0.0063 0.0008 0.0492

3 48 12 80,000 0.9038 0.7823 0.9608

4 48 18 70,000 0.6756 0.4800 0.8245

5 60 6 60,000 0.0035 0.0004 0.0282

6 60 6 80,000 0.8373 0.6763 0.9269

7 60 12 70,000 0.5330 0.4208 0.6419

8 60 18 60,000 0.2020 0.0961 0.3758

9 60 18 80,000 0.9973 0.9774 0.9997

10 72 6 70,000 0.3847 0.2200 0.5810

11 72 12 60,000 0.1218 0.0527 0.2567

12 72 12 80,000 0.9951 0.9605 0.9994

13 72 18 70,000 0.9785 0.8541 0.9972

Table 10.4 Input parameters for minimum acceptable Pr{No Leak} ¼ Pmin

Optimization

Effect Coeff Coded level Coeff * Effect Decoded Units

Intercept 0.132 1 0.132 NA

OD 1.5417 0.018024677 0.027788645 60.22 Inches

WT 2.1432 0.830706743 1.780370691 16.98 Inches

SMYS 3.9493 0.672261325 2.654961652 7,6722.61 Psi

Logit: 4.595120988

exp(�logit): 0.010100999

Pr{Y ¼ 1}: 0.990000011

Goal 0.99

Diff �1.12621E�08
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So, subject to the constraints that OD � 72 in., WT � 18 in., and SMYS � 80,000 psi, the

solution that yields an estimated Pmin ¼ 0.99 is OD � 60 in., WT � 17 in., SMYS � 76,723 psi.

Of course, it may be that such specifications would require custom manufacturing, so that it could be

more economical to choose materials with specifications equal to those in run #9.

Example: A Discrete Factor

Logistic regression can be used to compare probabilities of success between discrete groups, much

like ANOVA or t-tests are used to compare averages. We will consider a simple case of a single

factor, call it X, with two discrete states. For convenience, the two states will be coded as X ¼ 1 and

X ¼ 0. The response variable, Y, is of course binary, with its states coded as Y ¼ 1 for “success” and

Y ¼ 0 for “non-success”. As done earlier, we use the logit transformation, and assume it has a linear

relationship to the factor, namely:

λ Xð Þ ¼ ln Oð Þ ¼ ln
P Xð Þ

1� P Xð Þ
� �

¼ β0 þ β1X

P(X) is the probability that Y ¼ 1 given X.
The inverse logit is:

P Xð Þ ¼ Pr Y ¼ 1
��X� � ¼ 1

1þ e�λ Xð Þ ¼
1

1þ e� β0þβ1Xð Þ

The way in which the coefficients are estimated is identical in nature to the case where the regressors

were continuously-valued, namely via maximum likelihood. The only thing that differs is the

interpretation.

The odds of Y ¼ 1 given X are:

O Xð Þ ¼ P Xð Þ
1� P Xð Þ ¼ eβ0þβ1X

The odds ratio is:

O 1ð Þ
O 0ð Þ ¼

eβ0þβ1

eβ0
¼ eβ1

Thus eβ1 is the number of times more likely to obtain a “success” when X ¼ 1 than it is when X ¼ 0.

The natural logarithm of the odds ratio is called the “log odds ratio” and in the logistic case is simply

β1.
The value of the log odds ratio could be a design criterion. For example, an EAS may desire to

improve a design by at least doubling its odds of achieving some goal. In that case, the EAS would

want:

eβ1 ¼ 2
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Or in other words:

β1 ¼ ln 2ð Þ � 0:69315

Suppose a human factors engineer has tried to improve a computer “App” to increase the ease with

which users can perform a task. The current App has an 80 % success rate for first-time users, so the

odds of success are:

Oc ¼ Pc

1� Pc
¼ 0:8

0:2
¼ 4

The EAS wished to increase the success rate to 90 %, so the odds of success using the new App

would be:

On ¼ Pn

1� Pn
¼ :9

:1
¼ 9

The desired odds ratio is then:

On

Oc
¼ Pn= 1� Pnð Þ

Pc= 1� Pcð Þ ¼
9

4
¼ 2:25

A new prototype App was created, and an experiment was performed with a sample of 40 subjects

randomly selected from the target population. Half were randomly selected to use the current App,

and half to use the new App. The results of the experiment are summarized in Table 10.5

Figure 10.5 shows the SAS Genmod code for analyses the data. The states for the App are coded as

App ¼ 0 for Current and App ¼ 1 for New. Figure 10.6 shows the Genmod output. In this analysis,

the “noint” option was used in the Proc Genmod. Genmod will then produce estimates of log odds for

each App. The estimate for App ¼ 0 is the log odds for the Current App, and the estimate for

App ¼ 1 is the log odds for the New App. Note that in the “App Least Squares Means” Table, the

“Estimate” column is the log odds for each level of App. Thus, the estimated odds of success for the

Current App are:

bOc � e1:3863 � 4:00

And the estimated odds of success for the New App are:

bOn � e2:1972 � 9:00

Thus it appears that the EAS has achieved his goal. Of course, the confidence intervals (see the

columns labeled “Lower” and “Upper” in the App Least Squares Means Table) for the odds are fairly

wide, due to the relatively small sample size.

Table 10.5 Summary of

new vs. current App

experimental results

App Result Count Percent (%)

Current Non-success 4 20.00

Current Success 16 80.00

New Non-success 2 10.00

New Success 18 90.00
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Figure 10.7 shows the output from the JMP 11 “Fit Model” function. Note that this version of JMP

does not allow the “no intercept” option for logistic regression. The estimate for the intercept minus

the estimate for the “App” term is approximately�2.1972, which gives the log odds for the reciprocal

of the odds for success using the New App. The point to consider is that interpreting the output of

software, especially for logistic regression with discrete regressors must be done carefully.

For this simple example, the odds, and hence the log odds, for both Current and New Apps can

be computed very easily. Recall that with the Current App, 16 out of 20, or 80 %, of the

participants were successful. With the New App, 18 out of 20 were successful (90 %). The odds

can be computed as:

Fig. 10.5 SAS Genmod code—computer App example (single categorical factor)
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Fig. 10.6 SAS Genmod output—computer App example (single categorical factor)
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bOc ¼ 0:80

0:20
¼ 4:00

and

bOn ¼ 0:90

0:10
¼ 9:00

The standard error formula for logits when there is a single regressor simplifies even further when

that regressor is discrete with only two states. The basic equations remain unchanged, however the

following simplifications (Fleiss et al. 2003) can be substituted:

Fig. 10.6 (continued)
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Xn
i¼1

wi ¼ ncpc 1� pcð Þ þ nnpn 1� pnð Þ

Xw ¼ nnpn 1� pnð Þ
ncpc 1� pcð Þ þ nnpn 1� pnð Þ

SSw ¼ nnpn 1� pnð Þ � nnpn 1� pnð Þf g2
ncpc 1� pcð Þ þ nnpn 1� pnð Þ ¼

nnpn 1� pnð Þncpc 1� pcð Þ
ncpc 1� pcð Þ þ nnpn 1� pnð Þ

Note that the subscripts “c” and “n” refer to Current or New App, respectively.

Key Points

• Odds, the ratio of the probability of “success” and its compliment, are a measure of the chance of

success.

• The log of odds gives rise to the logit transformation.

• Binary logistic regression is a means of creating a predictive model for probabilities when the

response variable is binary.

• The parameters in a binary logistic regression model are the log odds.

Fig. 10.7 JMP output for logistic regression with a discrete regressor
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Exercises and Questions

1. Suppose equal numbers of two varieties of rice, A and B, are planted in a greenhouse/lab. After a

fixed [period, the number of shoots that sprouted were counted. For variety A, 90 % of the seeds

sprouted, and 85 % of the variety B seeds sprouted. What are the odds for sprouting for each, and

the odds ratio of variety A to variety B?

2. Assuming that for both varieties in question 1, n ¼ 100, compute 95 % confidence intervals for

the logits of the probability of sprouting for each variety. Then transform the confidence interval

limits into limits on the probability of sprouting (inverse logit, or logistic transform).
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Chapter 11

Reliability, Life Testing, and Shelf Life

The Reliability and Related Functions

Everything will fail, eventually. Reliability is a probability that a system (or a component) will fail no

sooner than t time units from the time it begins operating. Reliability has many manifestations, or one

might consider reliability as a special case of probabilities that some specific type of event will occur

no sooner than t units from some initial reference time. Other manifestations include survival of

patients having a particular disease, or the shelf life of drugs. For simplicity, we will refer to

reliability in terms of time to failure, with the understanding that this time could be the time from a

reference point to the occurrence of some specific type of event (such as death, progression of disease,

a drug concentration in a human body drops below some threshold, or potency/reactivity loss). The

point is to derive a model by which the probability of interest can be predicted, and to incorporate

design parameters into this model. In this way, we hope to help the EAS design a system so that it will

have a desired reliability for a particular time-to-event.

To begin, we borrow from elementary chemical kinetics (Whitten et al. 2004), and consider a first-

order system. Suppose we can measure a response variable that indicates the degree to which a system

is operating properly (we realize this could be challenging in many cases, but it is our point of

departure.) Let Y(t) be the response variable observed at time t. A first-order differential equation

model that describes the change in this response over time can be expressed as:

dY tð Þ
dt

¼ �λY tð Þ

With initial condition Y(0) ¼ y0, the solution to the equation is:

Y tð Þ ¼ y0e
�λt

Some may recognize this as the equation governing first-order chemical reaction kinetics (Whitten

et al. 2004), or the equation for radioactive decay (Rutherford 1900). The parameter λ is called the

rate parameter (as in the rate of reaction). If we presume that the response variable Y(t) is a decreasing
function of time, as in the case of analyte concentrations in chemical reactions, then it is a maximum

at t ¼ 0, and its maximum value is y0. Thus we can express the response as a proportion of its initial

value, namely:
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Y tð Þ
y0

¼ e�λt

The proportion can be thought of at a probability, namely the probability that the value of the

response is not zero after t time units. So, if we replace Y(t) with a new variable, namely T ¼ the

time at which Y(t) is zero, then we can express the value of Y(t) as a proportion of its initial value with
Pr{T � t}, or:

Pr T � tf g ¼ e�λt

It turns out that this is the complement of the cumulative distribution function of an exponential

random variable. That is,

Pr T � tf g ¼ 1� Pr T � tf g ¼ 1� e�λt

In the language of Reliability, the parameter λ is called the failure rate. The exponential time to failure

variable is characterized by a constant failure rate. That is, potentially the rate of failure could change

with time, t. if h(t) represents the failure rate, then for the exponential time to failure variable,

h tð Þ ¼ λ 8t

The exponential time to failure variable is related to a discrete random variable with a Poisson

distribution. The variable, X, is the number of failures (or events) within a fixed length of time. It has a

Poisson distribution if:

Pr X ¼ x
��λ, t� � ¼ λtð Þxe�λt

x!

The value of t is a fixed length of time, and λ is the (constant) failure rate.
Suppose that the failure rate actually changes with time. For example, the rate of failure could be

fairly high initially, then drop after a “burn-in” period to a constant, and then climb back up after the

product reaches a “wear-out” time. Such a failure rate function is sometimes called a “bath-tub”

curve, as illustrated in Fig. 11.1.

The failure rate function is also called the hazard rate function.

To generalize our initial first-order differential equation model for the response variable Y(t), we
could replace the constant λ with h(t):

dY tð Þ
dt

¼ �h tð ÞY tð Þ

Again using the initial condition Y(0) ¼ y0, the solution is

Y tð Þ ¼ y0e
�
ð t

0

h τð Þdτ
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Of course, if h(t) ¼ λ (a constant), then: ð t

0

h τð Þdτ ¼ λt

The function:

H tð Þ ¼
ð t

0

h τð Þdτ

is called the cumulative failure rate or cumulative hazard rate function for our new random variable T,
time to failure. So, in general, using our slightly generalized first order kinetics model,

Pr T � tf g ¼ e
�
ð t

0

h τð Þdτ
¼ e�H tð Þ

If we define the reliability function to be:

R tð Þ ¼ Pr T � tf g ¼ e
�
ð t

0

h τð Þdτ
¼ e�H tð Þ

Then the reliability function can be thought of as a curve in time. We also have some potentially

useful relationships:

�lnR tð Þ ¼ H tð Þ

h tð Þ ¼ dH tð Þ
dt

Fig. 11.1 “Bath-tub”

failure rate curve
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Another related pair of functions is:

F tð Þ ¼ 1� R tð Þ ¼ 1� e�H tð Þ

G tð Þ ¼ �lnF tð Þ

F(t) is the cumulative distribution function for time-to-failure.

Thus we have the relationship:

R tð Þ ¼ 1� e�G tð Þ

The design problem is to state either the reliability function or cumulative failure rate function in

terms of design parameters, and then choose values of those parameters that yield the desired

reliability curve.

Obtaining an Empirical Reliability Model

Suppose the EAS does not know the specific form of R(t), H(t), or h(t). She or he could perform an

experiment to obtain a polynomial approximation. We will call the experiment a Life Test. In this

experiment, n items (devices, systems, components) will be “started” and allowed to run until failure.

The elapsed time from start to failure will be recorded. Suppose the n times to failure are ordered form

shortest to longest. Call these times t1, t2, . . ., tk, . . ., tn. These times are referred to as “order statistics”

(Conover 1999). Compute the empirical reliability function:

bR tkð Þ ¼ 1� k

n
¼ n� k

n
k ¼ 1, n

or the empirical cumulative distribution function:

bF tkð Þ ¼ 1� bR tkð Þ ¼ k

n
k ¼ 1, n

For a lack of a better term, we will call this formula, or estimator, the empirical maximum likelihood

(EML) estimator. Now suppose that the cumulative hazard rate function, H(t), can be approximated

by a low order polynomial in t, for example:

H tð Þ ¼ β0 þ β1tþ β2t
2

Given the relation:

�lnR tð Þ ¼ H tð Þ

It may be advantageous to approximate G(t) as a second-order polynomial, i.e.:

G tð Þ ¼ β0 þ β1tþ β2t
2
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The EAS can now obtain via least squares an estimate of the parameters βk, and thus an approxima-

tion formula for R(t). That is, the estimated approximation formula would be:

~R tð Þ ¼ 1� exp �G tð Þð Þ ¼ 1� exp �bβ0 � bβ1t� bβ2t2� �
The bβi are the least squares estimates of the H(t) approximation formula parameters. The approxima-

tion formula could be used to interpolate values of R(t), but interpolation is not its most important use.

More importantly, it can be used as a design tool.

Relating the βi to Design Parameters

Consider a system with design factors or parameters, x1, x2, . . .,xj, . . ., xm. The EAS could perform a

designed experiment in these factors, where the response is T ¼ time to failure. At each run in the

experiment, the reliability function approximation can be fit to the data. In this way, the reliability

parameters can be related to the design factors. That is, we want to obtain an approximation formula

that allows us to predict each of the parameters, β0, β1, and β2, as polynomial functions of the design

factors x1, x2, . . ., xj, . . ., xm. These approximating polynomials are obtained once again via least

squares. Pardo (2009) describes how this methodology can be used for designing solid dosage forms

for pharmaceuticals.

An example will help. Suppose the EAS wants to design an artificial hip joint replacement. The

design will be a metal-on-polyethylene system. The questions are which metal material (steel or

aluminum), the shape of the polyethylene (PE) pin (or truncated cone), and the type of lubricant

(albumin or gamma globulin) to use. Normally, hip joint replacements are intended to last 15–20

years with a high degree of probability. That is, the expectation is that the reliability at 15 years

should be at least 90 %. The EAS decides to perform a 23 factorial experiment in the three factors,

metal, PE, and lube. Table 11.1 shows the eight different prototypes to be constructed.

A simulator device was constructed, so that years of wear could be achieved without actually

implanting the devices in people and waiting for them to fail. A total of n ¼ 10 units of each

prototype were constructed and tested on the simulator until they failed.

Table 11.2 shows the time-to-failure data from the simulator. For each prototype, the times have

been sorted from shortest to longest, and the empirical reliability has been calculated.

For each of the prototypes, a second order polynomial approximation was fit to

bG tð Þ ¼ �lnbF tð Þ ¼ β0 þ β1tþ β2t
2 þ E

Table 11.3 shows the resulting estimates of the parameters. In addition, the predicted reliability at

t ¼ 20 years is computed for each prototype.

Table 11.1 23 factorial

experiment in hip

replacement prototypes

Prototype Metal PE pin Lube

1 Steel Cone Albumin

2 Steel Cone GG

3 Steel Cylinder Albumin

4 Steel Cylinder GG

5 Aluminum Cone Albumin

6 Aluminum Cone GG

7 Aluminum Cylinder Albumin

8 Aluminum Cylinder GG
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If the design objective is to achieve a 95 % reliability at t ¼ 20 years, it is clear that Steel is not

adequate. What is not clear is whether there is an interaction between The PE Pin and the Lube. It

appears that the Cone shape may be superior to Cylinder, but it may be that Cylinder with GG is at

least as good as Cone with Albumin.

An ANOVA could be performed to determine which factors have an effect on time-to-failure, at

least on the average. Figure 11.2 shows the output from JMP.

The residual by predicted value plot indicates that the noise variance is constant over the range of

failure times, so the p-values are probably valid. The only statistically significant (i.e., probably

repeatable) interaction effect was between Metal and Lube. However, the difference in average

failure time for Cone, between Albumin and GG (~2.9 years), and the difference for Cylinder

between Albumin and GG (~2.2 years) were not much different that the difference for Aluminum

between Albumin and GG (~3.1 years) and for Steel between Albumin and GG (~1.0 years). The

greater discrepancy was for the Metal/Lube interaction, which was apparently large enough to make

the interaction significant.

Table 11.4 shows the mean and standard deviations (SD) for time-to-failure and the mean

predicted reliability at 20 years for each level of the three factors. The maxima for both mean failure

time and reliability are shown in bold font. Note that the conditions that yield maximal values are

Aluminum, Cone, and GG (P6). The average time-to-failure for this condition is 28.46 years, and the

predicted reliability at 20 years is 0.975. A close second place is Aluminum, Cylinder, GG (P8), with

a predicted reliability of 0.974. A very close third place is Aluminum, Cone, Albumin (P5), with

predicted R(20) ¼ 0.973. The lower SD for P5 indicates that it may yield more consistent wear and

hence more predictable time-to-failure. The lower limit of the 95 % confidence interval for predicted

reliability at 20 years for P5 is 0.9585, which actually exceeds our design criterion (0.950).

The ANOVA has indicated several things we might not have known without this experiment:

1. Metal type, Pin type, and Lube type all significantly affect the time-to-failure;

Table 11.2 Time-to-failure (years) data from simulator experiments

Rhat P1 P2 P3 P4 P5 PS P7 PB

0.9 16.23 18.37 16.36 14.30 21.48 24.05 19.71 22.28

0.8 18.25 18.56 18.51 16.84 22.01 24.63 20.93 22.57

0.7 18.95 18.72 18.72 17.76 22.90 26.86 21.43 22.95

0.6 19.27 19.21 18.95 19.86 23.20 27.35 21.67 24.17

0.5 19.41 20.94 18.97 20.38 23.86 29.09 23.53 25.29

0.4 20.05 21.83 19.59 20.63 24.08 29.51 24.07 25.66

0.3 20.42 22.01 19.79 20.77 24.71 30.10 24.57 25.66

0.2 20.91 22.62 20.37 21.99 25.57 30.50 24.93 26.12

0.1 21.19 22.80 20.71 23.57 25.59 31.00 25.40 26.53

0 21.95 24.05 21.21 24.10 26.64 31.51 25.56 27.63

Table 11.3 Parameter estimates for second-order polynomial fits to H(t)

Prototype

G(t) ¼ B0 + B1*t + B2*t2

B0 B1 B2 R(20)Metal PE pin Lube

P1 Steel Cone Albumin 15.11 �1.04 0.02 0.459

P2 Steel Cone GG 28.92 �2.38 0.05 0.610

P3 Steel Cylinder Albumin 16.06 �1.08 0.02 0.351

P4 Steel Cylinder GG 9.65 �0.67 0.01 0.506

P5 Aluminum Cone Albumin 58.80 �4.43 0.08 0.973

P6 Aluminum Cone GG 16.97 �0.88 0.01 0.975

P7 Aluminum Cylinder Albumin 29.81 �2.21 0.04 0.869

P8 Aluminum Cylinder GG 41.50 �2.92 0.05 0.974
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Fig. 11.2 ANOVA for hip replacement time-to-failure
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Fig. 11.2 (continued)
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2. Although related, the probability that time-to-failure exceeds 20 years and the mean time to failure

are not surrogates for each other;

3. The effect of Lube may in fact depend on the type of Pin; The interaction effect may be more

apparent in terms of consistency of wear;

Had we not constructed the low-order polynomial approximations for G(t), we would not have

been able to generate predictions for reliability at 20 years. Had we not used a designed experiment,

we might not have realized that all three factors actually do affect time-to-failure. Furthermore,

without both the designed experiment and the models for G(t), we might not have discovered that the

Pin type and Lube type interact with each other in terms of reliability, even though they do not appear

to interact in terms of mean time-to-failure.

Fig. 11.2 (continued)

Table 11.4 Mean time-to-failure and predicted R(20)

Prototype Metal PE pin

Time-to-failure

SD Pred. R(20) LCL-R(20) UCL-R(20)Lube N Mean

P5 Aluminum Cone Albumin 10 24.00 1.66 0.973 0.9585 0.9826

P6 Aluminum Cone GG 10 28.46 2.62 0.975 0.9117 0.9930

P7 Aluminum Cylinder Albumin 10 23.18 2.08 0.869 0.8290 0.9001

P8 Aluminum Cylinder GG 10 24.89 1.81 0.974 0.9039 0.9930

P1 Steel Cone Albumin 10 19.66 1.64 0.459 0.3844 0.5239

P2 Steel Cone GG 10 20.91 2.06 0.610 0.4510 0.7229

P3 Steel Cylinder Albumin 10 19.32 1.37 0.351 0.2158 0.4627

P4 Steel Cylinder GG 10 20.02 3.02 0.506 0.4434 0.5610
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Censored Time-to-Failure

Sometimes limits are placed on the length of time over which experimental units will be observed, or

on the number of units (out of a sample of size n) that will be allowed to fail before the test is stopped.

Such restrictions are called censoring. Stopping the test at a fixed time is referred to as Type I

censoring (Mann et al. 1974), and stopping the test after a fixed number of units fail is called Type II

censoring (Mann et al. 1974) The question is how to estimate reliability in the face of such censoring.

We will address Type I censoring first.

Suppose the EAS did a life test with a sample of n experimental units, and stopped the test after

Tmax time units. Out of the n units on test, only r < n actually failed. The remaining n – r units were
still functioning at time Tmax. Suppose further that the r failure times are sequenced from shortest to

longest, and that t1, t2, t3, . . ., tr represent those order statistics. So the empirical reliability function

could be represented as it was when there was no censoring:

bR tkð Þ ¼ 1� k

n
¼ n� k

n
k ¼ 1, r

The is the EML with right-censoring (EMLC). The EAS could treat this computed empirical

reliability function in the exact same way he or she did when there was no censoring. There is

another method for computing an empirical reliability function at times other than those which were

explicitly observed failure times. The method is due to Kaplan and Meier (1958), and is described in

Lee (1992). The formula for the Kaplan–Meier (K–M) estimator is:

bR tð Þ ¼
Y
tk�t

n� k

n� k þ 1

where tk are the failure times for uncensored observations. At t ¼ tk, this formula can be written as:

bR tkð Þ ¼ bR tk�1ð Þ n� k

n� k þ 1

The K–M estimator is particularly useful if censoring can occur even though the time has not

exceeded Tmax. For example, a unit may fail during the test, but due to some cause other than the

particular failure mode of interest.

The variance, and thus standard error, of the K–M reliability estimate, can be approximated (Lee

1992) by:

V bR tkð Þ
� �

� bR2
tkð Þ

Xk
i¼1

1

n� ið Þ n� iþ 1ð Þ

The approximate standard error is the square root of this variance approximation

Using either the EML, EMLC, or K–M estimators, the highest reliability estimate is at failure time

t1, and it is (n � 1) / n. The lowest reliability value would be at tr. If r ¼ n, then EML ¼ EMLC, and

at tr, R(tr) ¼ 0. For the K–M estimator, this is not the case if there are any intermediate censored

failures (i.e., if a unit fails before Tmax in some mode other than the one(s) of interest).

As an example, consider an EAS testing a circuit board. She is concerned about a particular

component failing. She puts n ¼ 15 boards on test, and sets Tmax ¼ 1000 h. Some of the boards fail

before Tmax, and some do not. Of the boards that fail, some of them had a failure in a component other
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than the one of interest. Those boards that failed due to other components are censored. Table 11.5

shows the failure times, whether the failures were censored or not, the intermediate calculation

(n � k) / (n � k + 1), the K–M estimator for R(tk), and an approximate 95 % confidence interval

(LCL, UCL) for the reliability at each uncensored failure time. The column labeled “factor” is the

summation term:

Xk
i¼1

1

n� ið Þ n� iþ 1ð Þ

Note that for censored observations, no computation is made. The ninth failure time was censored,

as this unit failed in a mode that was not of interest to the EAS.

Regardless of how the reliability estimates were obtained (EML, EMLC, K–M), the computations

for bF tkð Þ, the polynomial approximation of G(t), and the computation of predicted values for R(t)
follow the same procedures.

Accelerated Life Tests

In the case of the hip replacement problem, the EAS had a simulator that could simulate years of life

in a fairly short time. Sometimes, the simulation of life is performed by subjecting experimental units

to some condition which is presumed to accelerate the failure process in such a way as to allow the

EAS to predict the increase in the failure rate. Commonly, temperature is used as the accelerating

condition. Presuming that the increase in failure rate is proportional to an increase in the rate of a

chemical reaction, a model called the Arrhenius Reaction Rate Law (Mann et al. 1974) is employed to

relate the failure rate to temperature. The Arrhenius model is:

λP ¼ Aexp
�E=K

P

� �

Table 11.5 Censored failure times with Kaplan–Meier estimates

k Time-to-failure Censored? (n � k)/(n � k + 1) R(tk) K–M Factor SE LCL UCL

1 870 Uncensored 0.9333 0.9333 0.00476 0.06441 0.8071 1.0000

2 872 Uncensored 0.9286 0.8667 0.01026 0.08777 0.6946 1.0000

3 884 Uncensored 0.9231 0.8000 0.01667 0.10328 0.5976 1.0000

4 889 Uncensored 0.9167 0.7333 0.02424 0.11418 0.5095 0.9571

5 909 Uncensored 0.9091 0.6667 0.03333 0.12172 0.4281 0.9052

6 915 Uncensored 0.9000 0.6000 0.04444 0.12649 0.3521 0.8479

7 916 Uncensored 0.8889 0.5333 0.05833 0.12881 0.2809 0.7858

8 932 Uncensored 0.8750 0.4667 0.07619 0.12881 0.2142 0.7191

9 937 Censored

10 939 Uncensored 0.8333 0.3889 0.10952 0.12870 0.1366 0.6411

11 951 Uncensored 0.8000 0.3111 0.15952 0.12426 0.0676 0.5547

12 962 Uncensored 0.7500 0.2333 0.24286 0.11499 0.0080 0.4587

13 979 Uncensored 0.6667 0.1556 0.40952 0.09955 0.0000 0.3507

14 1000 Censored

15 1000 Censored
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The constant A is specific to the particular materials and reactions that underlie the failure mode. The

constant E is called the energy of activation, and is also specific to the materials and chemical

reactions involved in failure. The letter K stands for Boltzmann’s constant, and P is the temperature in

degrees Kelvin (we use the letter P, for “parameter”, so as to not confuse it with T for time-to-failure).

So λP is the average failure rate at temperature P. The usual presumption is that the time-to-failure

follows an exponential distribution, so that at temperature P, the reliability function is given by:

R t
��P	 
 ¼ e�λPt

The question is how to determine the degree of acceleration achieved by exposing experimental units

to a particular temperature, say PA. The first problem is to estimate the parameters A and B ¼ �E/K
(note that B is just a normalized energy of activation). The answer depends on the nature of the data.

Life tests may be performed by placing n units into a temperature chamber, at a fixed temperature, PA,

for a given time, T. At time T, the units are taken out and inspected or tested, and the number of units

that “survive”, S ¼ s, are counted. Assuming that the time-to-failure is exponentially distributed, and

an estimate of the reliability at time T is pA ¼ s
n, then the reliability is given by:

bR T
��PA

	 
 ¼ e�λAT ¼ pA ¼ s

n

Solving for λA gives an estimate for the failure rate:

bλA ¼ �ln pAð Þ
T

¼ �ln s
n

	 

T

Suppose an experiment was performed where n1 units were put on test for T time units at temperature

P1 and another n2 units put on test for T time units at temperature P2. Then we would have two

equations in the two unknowns A and B:

�ln
s1
n1

� �
¼ TAexp

�B

P1

� �

�ln
s2
n2

� �
¼ TAexp

�B

P2

� �
Taking logs on both sides yields:

ln �ln
s1
n1

� �� �
¼ lnT þ lnA� B

P1

ln �ln
s2
n2

� �� �
¼ lnT þ lnA� B

P2

These in turn yield the solutions for the estimates:

bB ¼ P1 lnbA � ln �ln
s1
n1

� �
þ lnT

� �
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lnbA ¼ P2

P2 � P1

ln �ln
s2
n2

� �
þ P1

P2

ln �ln
s1
n1

� �
þ P1

P2

lnT

� �
Thus, an expression for the estimate of parameter B in only known quantities is:

bB ¼ P1

P2

P2 � P1

ln �ln
s2
n2

� �
þ P1

P2

ln �ln
s1
n1

� �
þ P1

P2

lnT

� �
� ln �ln

s1
n1

� �
þ lnT

� �
These estimates will allow the EAS to determine how much acceleration was achieved at any given

temperature, P2, compared to a lower temperature, P1. The estimates of B and A may be useful for

future experiments or tests, provided that the materials involved in such tests are at least similar if not

identical to those used to obtain the estimates.

Suppose that the EAS has at least an hypothetical failure rate desired at say 25 �C ¼ 25 + 273

¼ 298�K ¼ P0. Such a failure rate might be determined by having a specification or requirement

that the reliability at time T0 must be at least r0. Assuming the exponential time-to-failure, the failure

rate is given by:

λ0 ¼ �ln r0ð Þ
T0

Now suppose that the EAS wants to accelerate the failure process k times, so that the actual test time

would need to be Ta ¼ T0

k (“a” stands for “accelerated”). This would also mean that the failure rate

under the accelerated conditions would need to be:

λa ¼ kλ0

The EAS must choose a temperature, Pa > P0, to achieve the desired acceleration.

Using the Arrhenius equation:

k ¼ exp �B=Pað Þ
exp �B=P0ð Þ ¼ exp B

1

P0

� 1

Pa

� �� �
Since k is actually given (i.e., the desired acceleration to allow the test to occur in a short enough

time), and P0 is known, the equation can be solved for Pa:

Pa ¼ BP0

B� P0lnk

The only thing required is a value for B, the normalized energy of activation. A simple experiment as

described earlier can be used to obtain an estimate of B.
Recall that test temperatures should be expressed in degrees Kelvin (�K ) when using these

equations.

There are two potential drawbacks to the procedures described for determining parameters of an

accelerated life test. First, we have assumed that the time-to-failure is affected by temperature in the

way described by the Arrhenius equation. Secondly, we have assumed that time-to-failure has an

exponential distribution. Both of these assumptions stem from a more fundamental assumption that

the failure process is related to a first-order chemical reaction (Chow 2007). While these assumptions

may not be completely valid, they may provide at least a practical approach to determining the

amount of acceleration achieved by putting units on test at temperature Pa for time T0.
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As an example, consider a life test with P0 ¼ 25 �C ¼ (25 + 273 ¼ 298)�K and Pa is 40
�C ¼

(40 + 273 ¼ 313)�K. At P0, a test with n0 ¼ 30 units is performed for T0 ¼ 720 h. At Pa, the test is

also performed for T0 ¼ 720 h. with n2 ¼ 30 units. At P0, the number of “surviving” units was

s0 ¼ 29. At Pa, the number of operating units after 720 h. was sa ¼ 20. Figure 11.3 shows some R

code, together with session window output, for computing the estimates of A, B, and k.
Note that due to the vectorized nature of the computations in R, and the fact that the data were

entered with separate rows for the 25 and 40 �C inputs, R computes the parameter estimates as vectors

of length 2.

In this example, increasing temperature from 25 to 40 �C results in an acceleration of about 18.8

times. Thus, the 720 h at 40 �C is equivalent to 18.8*720 ¼ 13,536 h at 25 �C, or about 1.54 years. If
the EAS wished to simulate 2 years ¼ 17,532 h with a test of 720 h, then he or she would need a test

temperature that would yield an acceleration of approximately 17,532/720 ¼ k ¼ 24.35 times. Using

the equation for Pa, given B and k, yields:

Pa ¼ BP0

B� P0lnk
¼ 18231:39 � 298

18231:39� 298 � ln 24:35ð Þ � 314:1oK ¼ 41:1oC

So, it turns out that a relatively small change (1.1 �C) in the test temperature would give the desired

acceleration.

Finally, the EAS may want to have an estimate of the failure rate at the new test temperature of

41.1 �C. Using the Arrhenius equation:

λP ¼ Aexp �B
P

	 
 � 0:0012, or approximately 0.0012 failures per hour at 41.1 �C. The estimated

failure rate at 25 �C would then be:

λ0 ¼ λa
k
� 0:0012

24:35
� 0:000049

The estimated probability that the device would last 2 years is given by the exponential reliability

function:

R 2 years
��25oC	 
 ¼ e�0:000049*17532 � 0:4236;

or about a 42.36 % chance that the device will not fail before 2 years. Recall that at 25 �C, there were
29 out of 30 parts that survived after only 720 h. It does not seem unreasonable to expect such a low

reliability at 2 years. The question of why may require a designed experiment in the features the EAS

determines may have a critical impact on reliability. Armed with the Arrhenius parameter estimates,

the EAS may perform the experiment at 41.1 �C for 720 h per each experimental set of prototypes. If

the only information per unit tested is whether at 720 h it was or was not operational, logistic

regression methods may well be appropriate to determine which device features are most critical, and

what particular choices for each critical feature may be optimal.

Stability and Shelf Life

Shelf life is the amount of time an item may remain unused and still perform adequately. Chemical

products, such as pharmaceuticals, paint, solvents, and even food items are subject to the problem of

estimating, controlling, and elongating shelf life. Shelf life is closely related to reliability, although

the two are not identical concepts. We will treat the case where there is a continuously-valued quality
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Fig. 11.3 R code for accelerated life test parameter estimation
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response variable. Furthermore, we will assume that this variable is monotonic with respect to time

spent “on the shelf”, and that it is continuously degrading. As in the cases of Chaps. 5–8, the shelf-life

variable can be optimized over the list of critical features, components, or factors. We will concen-

trate on how to estimate shelf life, following methods described by Chow (2007).

Assume that the quality variable, Y, is linearly related to shelf time, S, i.e.:

Y ¼ β0 þ β1Sþ ε

There are two sorts of shelf-life problems; (1) find the time, Se, such that there is a 100p % chance that

the value of Y will still be acceptable; (2) determine the probability, p, that Y is acceptable at a

pre-determined “warranty” time, Sw. For both of these problems, a prediction interval approach will

be employed.

Recall that earlier, the standard error of a predicted value from a polynomial regression model was

presented. As a special case of a linear model in a single regressor, namely time, the formula for a

future predicted value at time ¼ sk is:

SE bY ��sk� �
¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ sk � sð Þ2Xn

i¼1
si � sð Þ2

vuut
The standard deviation of the noise variable, ε, namely σ, is estimated by the root mean square error of

the regression fit, bσ . The lower confidence limit for a predicted value of Y at time ¼ sk is then:

bYL ¼ bYsk
� t1�α n� 2ð Þbσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ sk � sð Þ2Xn

i¼1
si � sð Þ2

vuut

Fig. 11.3 (continued)
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To solve problem 1, we will employ the inverse regression approach (Draper and Smith 1998). To

find the time, sk, at which it is expected the response variable, Y, would be no lower than the lower

specification limit, L, with probability 1 � α, solve the equation for sk:

L ¼ bYsk
� t1�α n� 2ð Þbσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ sk � sð Þ2Xn

i¼1
si � sð Þ2

vuut
Solving yields:

sk ¼ sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� bYsk

� �2

t2bσ 2
� 1� 1

n

264
375Xn

i¼1

si � sð Þ2

vuuuut
where t is the 100(1 � α) percentile of a t distribution with n � 2 degrees of freedom.

Problem 2 is simpler. Presume that there is a desired warranty time, call it sw, and we want to know
how likely it is that the product will have an adequate value of Y at that time. If the predicted value of

Y at sw is bYsw
, then the lower confidence limit for the predicted value at time sw is:

bYL ¼ bYsw
� t*bσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ sw � sð Þ2Xn

i¼1
si � sð Þ2

vuut
Setting bYL ¼ L and solving for t* gives:

t* ¼
bYsw

� bYL

bσ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n þ sw�sð Þ2X s

i¼1
si�sð Þ2

s

The probability that Y will not fall below YL before time sw, Pr{Y � YLjsw}, is Pr{T � t*jn � 2},

the probability that T, a Student’s t random variable with n � 2 degrees of freedom, will be less than t*.
Generally, design problems cannot afford to wait for product to be put on test until the expiration

or warranty time has elapsed. Thus, some form of accelerated test is generally required. Presume that

the accelerating parameter is temperature. The question is how to determine the temperature and the

degree to which acceleration is achieved at that temperature. The methods for determining the

Arrhenius parameters described earlier could be employed. However, since the response

variable, Y, is continuously valued, and is assumed here to be monotonic and linear with respect to

time, there is another possible approach. Perform the test at a fixed set of times, say s1, s2,. . .sn, at two
temperatures, P1 and P2, both of which are greater than the “nominal” temperature, P0 (typically

P0 ¼ 25 �C), and P2 > P1. Obtain slope estimates for each set of data. Call the estimates b1
(at temperature P1) and b2 (at temperature P2). An estimate of the acceleration rate for a temperature

difference of ΔP ¼ P2 � P1 is kΔP ¼ b2 / b1. If the EAS desires to simulate T0 time units with

Ta < T0 time units, she or he would require ka � T0 / Ta. Let
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Δa ¼ Pa � P0 be the temperature difference from nominal required to achieve acceleration ka.
Then:

Δa

ΔP
¼ ka

kΔP
) Δa ¼ ka

kΔP
ΔP

So, to simulate T0 time units at nominal temperature P0, test over Ta time units at temperature

Pa ¼ P0 + Δa. The number of time points at which to measure Y should be at least 3, 2 more than the

highest order term in the model, but 4 or 5 would be better. For the purposes of assessing the adequacy

of the model (which we have assumed was first-order), replication at each time point in the form of

multiple units measured, is highly recommended.

For the EAS, the values of sk or t
* depend on the product, which is in turn dependent upon the

chemical or other components. If prototype products are formulated in a designed experimental

fashion, then either sk or t* could act as response variables. In that way, a desired prototype

formulation could be found.

In the shelf life discussion so far, we have only dealt with a case where the quality response

variable is monotonically decreasing, and that there was a lower limit of acceptability. The case

where Y is monotonically increasing, with an upper limit of acceptability, is analogous.

The purpose of this section was to provide some ideas concerning shelf-life testing, and to

encourage the use of designed experiments in order to achieve a desired shelf-life with some stated

level of probability. Shelf-life is a fairly broad topic, and those who are interested are encouraged to

read the book by Professor Chow (2007)

Key Points

• Reliability is the probability that something will not fail before a given time.

• Time-to-event variables give rise to reliability.

• Reliability models stem from the same first-order differential equation describing radioactive

decay and chemical reaction kinetics.

• The cdf, reliability, and hazard functions for a time-to-event variable are all related; one can be

derived from the others.

• When the hazard rate is a constant, time-to-event has an exponential distribution.

• Accelerated life tests involve a model for assessing the degree to which the hazard rate is affected

by “accelerated” conditions (most notably temperature).

• Shelf life or stability is often assessed using regression models.

Exercises and Questions

1. TheWeibull cumulative distribution function can be expressed as:F tð Þ ¼ 1� exp � αtð Þβ
� �

where

α and β are called the scale and shape parameters, respectively. Derive the hazard rate function, h(t).
2. Could you use the cumulative hazard rate function, H(t), of the Weibull distribution together with

sample life test data to estimate the values of α and β via least squares regression? How would you

do it?
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3. Given a set of uncensored life test data, would you rather approximate H(t) with a low-order

polynomial or assume that the time-to-failure has a Weibull distribution?

4. A failure process has a failure rate that follows the Arrhenius law, with B ¼ 6700. At P0 ¼ 25 +

273 ¼ 298�K, what temperature would you recommend to accelerate the failure rate 10 times?

5. At P0 ¼ 298�K, what is the failure rate if A ¼ 1.0E05 (per hour)?
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Chapter 12

Some Bayesian Concepts

Bayesian statistical methods are based on Bayes’ theorem, which was described in Chap. 1. Suppose

X represents a continuously-valued random variable, and f(x|θ) is its density function given parameter

θ. In the Bayesian world, the parameter θ is also treated as a random variable, with a density function

g(θ). This density is referred to as the prior density for θ, inasmuch as it is formulated prior to

obtaining any observations of X. The idea is that g(θ) represents our prior belief about the likelihood
that θ takes on a value in any particular range. Generally, g(θ) is also a function of some other

parameters, which we will call hyperparameters, whose values are chosen to reflect the prior belief

about the possible range of values for θ. The observation of X, call it x, is assumed to be dependent on

the value of θ. The dependency is expressed as a likelihood function, symbolized by L(x|θ). Once the
data, x, are observed, the Bayesian would like to update his or her belief concerning the probability

that the unknown parameter, θ, falls in any particular range. The updated belief is expressed as a

conditional density function, called the posterior density, and is expressed as g(θ|x). Bayes’ theorem
provides a method for deriving the posterior density given the prior density and the likelihood

function:

g θ
��x� � ¼ L x

��θ� �
g θð Þðþ1

�1
L x
��τ� �

g τð Þdτ

Conjugacy is a condition that greatly simplifies computations. A likelihood function and a prior

distribution are said to be a conjugate pair if the resulting posterior distribution is of the same form as

the prior. For conjugate pairs, the posterior distribution has hyperparameters whose values are

generally a closed-form function of the prior hyperparameters and the data. Generally this relation-

ship is the reason why conjugacy greatly simplifies computations.

We will focus on two particular but hopefully useful conjugate cases. The first is the case where

data are binomially distributed with a beta distribution as the prior for the success probability

parameter. The second case has normally distributed data, where the mean parameter has a normal

prior. A very complete exposition of Bayesian methods is given in Gelman et al. (1997).
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Binomial Data with Beta Prior

Let X be a binomially distributed random variable with probability mass function:

L x
��p, n� � ¼ n

x

� �
px 1� pð Þn�x

Furthermore, suppose the parameter p is unknown, and n represents the sample size to be drawn.

Then we might choose as a prior distribution for p a beta with hyperparameters α and β, i.e.,

g pð Þ ¼ Γ αþ βð Þ
Γ αð ÞΓ βð Þ p

α�1 1� pð Þβ�1

Then, given the data x ¼ number of “successes” observed in a sample of size n, the posterior

probability density function of p is given by:

g p
��x, n� � ¼ Γ αþ β þ nð Þ

Γ αþ xð ÞΓ β þ n� xð Þ p
αþx�1 1� pð Þβþn�x�1

In other words, the posterior distribution for p is also beta, with hyperparameters

αþ x and β þ n� x

The prior hyperparameters, α and β, can be thought of as the best guess for percent success (α) and
percent failure (β). That is, if the EAS chooses α and β so that their sum adds to 100, then she or he

could choose their respective values to represent the best guess, prior to getting any data, on the

probability of success and failure. It is not necessary to have α + β ¼ 100; it is just a potentially

convenient way to quantify prior belief.

The expected value of a beta-distributed random variable (i.e., p) is given by:

E p
��α, β� � ¼ α

αþ β

That means the expected value for the posterior distribution is:

E p
��αþ x, β þ n� x

� � ¼ αþ x

αþ β þ n

Note that unlike the normal distribution, the expected value for the beta is not the value of p that

maximizes the density function.

Suppose an EAS has some belief that a particular part design has a 90 % chance of performing

properly. She chooses a beta prior for p, the probability of proper performance, and sets α ¼ 90, and

β ¼ 10. Figure 12.1 shows the prior density for p.
The value of p that maximizes the density is 0.908, which is close, but not identical, to the expected

value of 0.90 (0 %).

She performs a test with n ¼ 100 parts, and finds that only x ¼ 75 perform adequately. The

posterior expectation is:
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E p
��αþ x, β þ n� x

� � ¼ αþ x

αþ β þ n
¼ 90þ 75

90þ 10þ 100
� 0:825

The prior and posterior densities are shown in Fig. 12.2.

The value of p that maximizes the posterior density is 0.828, and not the expected value of 0.825.

The prior probability that p is at least 0.90 is approximately 53.55 %. The posterior probability is

only about 0.07 %. It appears that this design is not adequate, assuming that the EAS was hoping

there was at least a 90 % chance that the part would perform properly.
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p)
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Fig. 12.1 Prior beta

density for p
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Normal Data with Normal Prior

The normal likelihood for X given μ and σ is:

L x
��μ, σ� � ¼ 1

σ
ffiffiffiffiffi
2π

p exp �0:5
x� μ

σ


 �2� �
That is, the likelihood for an individual observation is the normal density function. For a random

sample of n values, the likelihood is:

L x1, . . . , xn
��μ, σ� � ¼ 1

σ
ffiffiffiffiffi
2π

p
� �n

exp � 1

2σ

Xn
i¼1

x2i þ
nμx

σ
� nμ2

2σ

 !

Suppose that σ is known (at least, for now). If the prior density chosen for the unknown parameter,

μ, is also a normal density of the form:

g μ
��μ0, τ0� � ¼ 1

τ0
ffiffiffiffiffi
2π

p exp �0:5
μ� μ0
τ0

� �2
 !

Then the posterior parameters after observing n values of X would be:

μn¼

1
τ2
0

μ0 þ n
σ2 x

1
τ2
0

þ n
σ2

τ2n ¼
1

1
τ2
0

þ n
σ2

x is the arithmetic average of the n values of X.

The posterior density of μ would then be:

g μ
��μn, τn� � ¼ 1

τn
ffiffiffiffiffi
2π

p exp �0:5
μ� μn
τn

� �2
 !

As an example, consider an electrical motor. It is guessed that this motor can generate 44.5

Newton-meters (Nm) of torque. The EAS recognizes that each unit may vary the amount of torque

even if the same voltage is applied. He has found a record of torque measurements where the reported

standard deviation, σ, was 1.105 Nm. The mean torque values were also reported, with a mean value

of μ0 ¼ 44.50 Nm. The standard deviation of these means was τ0 ¼ 0.300 Nm. He plans to make

torque measurements on some new units, but he does not want to disregard historical data. He decides

that the mean torque should have a prior density assigned, with μ0 ¼ 44.50 Nm and τ0 ¼ 0.300 Nm.

His experiment with n ¼ 10 units yields x ¼ 47:56Nm. Using these data, he updates his prior

hyperparameters:
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μn¼

1
τ2
0

μ0 þ n
σ2 x

1
τ2
0

þ n
σ2

� 45:80

τ2n ¼
1

1
τ2
0

þ n
σ2
� 0:2282 � 0:05198

Prior to obtaining any data, the EAS was about 95 % certain that the value of μ was somewhere

between μ0 � 1.96τ0 ¼ 44.50 � 1.96(0.300) � 43.91 Nm and μ0 � 1.96τ0 ¼ 44.50 + 1.96

(0.300) � 45.09 Nm. After obtaining the data, he now believes with 95 % certainty that μ is

somewhere between μn � 1.96τn ¼ 45.80 � 1.96(0.228) � 45.35 Nm and μn � 1.96τn ¼ 45.80 +

1.96(0.228) � 46.25 Nm. These intervals are called “credible intervals” (Gelman et al. 1997), and are

a sort of analog to the classical frequentist confidence interval concept. Figure 12.3 illustrates the

prior and posterior densities of μ. Figure 12.4 gives the R code that was used to generate the graph.

When σ is Unknown

The previous analyses presumed that somehow the parameter σ was known. While it may be possible

that historical data might give rise to a more or less trustworthy value for σ, it often will not be the

case. It turns out that determining a posterior distribution for μ when σ is also unknown is more

complex. Gelman, et al., give a sort of way to get a reasonable approximation. First, assume a prior

distribution for σ. In particular, suppose that 1
σ2 has a gamma distribution with hyperparameters ν0 and

β0 ¼ ν0σ20
2
. The posterior hyperparameters, given the data:
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Fig. 12.4 R code for generating the prior and posterior density graph
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bσ2 ¼ 1

n

Xn
i¼1

xi � μð Þ2

are:

νn ¼ ν0 þ n

βn ¼
2β0 þ nbσ2

ν0 þ n

You may have noticed a small fly in this ointment, namely that the posterior parameters depend on

knowing μ. It turns out that the joint distribution of μ and σ can be derived in a closed form. However,

another method may be used to estimate the posterior expected value of μ. The method, referred to as

the Monte Carlo Markov Chain (MCMC) method, is described in Gelman et al. (1997). The idea is to

randomly draw a value from the prior distribution of 1
σ2. Then use this value to randomly generate a

value from the posterior distribution of μ. Then, in turn, use this randomly generated value of μ to

randomly generate a value of 1
σ2 from its posterior distribution. Continually iterate, updating the

hyperparameters at each iteration, for N times.

Our EAS decides to run an MCMC program, with N ¼ 10,000, as illustrated in Fig. 12.5. The

output values of the prior and posterior hyperparameters, together with the sample mean and standard

deviation of the raw data, are given in Table 12.1. The prior and posterior density functions are plotted

in Fig. 12.6.

In this relatively simple case, the data have overwhelmed the prior guess; the posterior

hyperparameter μn is equal to the sample mean, rounding to two decimal places of numerical

precision.

How can Bayesian methods be used to aid in design? One idea is to have a set of prior

hyperparameters for each run in a designed experiment. After obtaining data, update the

hyperparameters, and compute credible intervals corresponding to each run for the parameter of

interest. As a simple example, consider a single continuously valued response variable with a single

continuously valued regressor.

The conditional expectation for the response, y, is:

E y
��x� � ¼ β0 þ β1x

The response variable is usually assumed to have a normal distribution with this conditional

expectation and variance σ2. Thus, the likelihood function is based on the normal density:

y xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p exp �1

2

y� β0 � β1x

σ

� �2
 !

The regression coefficients, β0 and β1, are assumed to have a bivariate normal prior distribution

with mean vector:

γ0 ¼ γ0
γ1

� 
and covariance matrix:

σ2 X 0X½ ��1
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Fig. 12.5 MCMC program (R code)
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where:

X ¼
1 x1
⋮ ⋮
1 xn

24 35

Fig. 12.5 (continued)

Table 12.1 MCMC output MCMC parameters

nu0 100

beta0 50

sig0 1

Mu0 44.5

Tau0 0.300

Mun 47.56

Taun 0.0037

xbar 47.56

sd(x) 0.167
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Here it is assumed that σ is known. The conditional updating formulae (Box and Tiao 1973) for the

posterior mean vector of the coefficients is given by:

γn ¼
1

2
X 0X½ ��1

X
0
yþ X 0Xγ0

with y ¼
y1
⋮
yn

24 35 being the vector of n observed values of the response.

An MCMC procedure could be used to update the posterior parameters for the coefficients, using

the same prior and posterior conditional gamma conjugate pair for 1
σ2, with μ replaced with:

μ xið Þ ¼ γ0 þ γixi

so that:

bσ2 ¼ 1

n� 2

Xn
i¼1

yi � μ xið Þð Þ2
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Typically, the estimate bσ2 from a regression model would use n � k as the denominator, where

k ¼ number of model coefficients (in this case, k ¼ 2).

If data are obtained sequentially, the EAS can use a recursive updating formula for the regression

posterior hyperparameters, given by Judge et al. (1985). The updating formulae, given a new pair of

values, xn+1, yn+1, is:

γnþ1 ¼ γn þ
Snxnþ1 ynþ1 � x

0
nþ1γn

� �
1þ x

0
nþ1Snxn

and

Snþ1 ¼ Sn �
Snxnþ1x

0
nþ1Sn

1þ x
0
nþ1Snxn

where

x0n+1 ¼ [1 xn+1] and

Sn ¼ 1

nþ 1ð Þ
Xn

i¼1
x2i �

Xn

i¼1
xi


 �2
Xn
i¼1

x2i �
Xn
i¼1

xi

�
Xn
i¼1

xi nþ 1

26664
37775

As an alternative, somewhat unorthodox, model, suppose that the prior hyperparameters are the

slope, β1, and intercept, β0, of a linear model, with an unknown noise variance:

μ � N β0 þ β1x, τ
2
0

� �
and:

1

σ2
� Gamma ν0, γ0 ¼

ν0σ20
2

� �
With a normal likelihood function, the conditional posterior distribution of μ, given σ, is also

normal, with posterior hyperparameters:

μn xð Þ ¼
1
τ2
0

β0 þ β1xð Þ þ n
σ2 y xð Þ

1
τ2
0

þ n
σ2

τ2n ¼
1

1
τ2
0

þ n
σ2

The values of β0 and β1 could be obtained by least squares either using previously gathered data or

even a partial subset of the data just gathered (i.e., partition the data into a “training set” and a “test

set”; the training set could be used to obtain prior values for the hyperparameters). Of course, the

parameters β0 and β1 could also have prior distributions assigned with their own hyperparameters,

making the model complex, and a good candidate for MCMC methods.
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Key Points

• Bayes’ Theorem provides a means of incorporating prior information about parameters together

with empirical observations.

• Bayesian methodology quantifies information about parameters using probability distributions

that describe the degree of uncertainty about the parameters.

• The parameter distribution describing the uncertainty about the parameter before any new data are

gathered is called the prior distribution.

• The probability function that describes the chance of observing particular values given particular

parameter values is called the likelihood function .

• The posterior distribution for parameters describes the uncertainty about those parameters after

data have been gathered; it is computed using the prior distribution and the likelihood function.

• If the posterior distribution can be derived analytically, and has the same parametric form as the

prior, then the prior and associated likelihood function are said to be a conjugate pair.

• Even when a likelihood function and prior are not conjugate, they can be used to compute the

posterior distribution. A technique for using computer simulation with non-conjugate pairs is

called Monte Carlo Markov Chains (MCMCs).

Exercises and Questions

1. Suppose a binomial likelihood function is used together with a uniform prior distribution, namely:

g pð Þ ¼ 1

b� a
, 8p

where a and b are constants, b > a. What would the posterior distribution for p look like? Are

these a conjugate pair?

2. Discuss the appropriateness of Bayesian methods for utilizing experimental data to aid in design.

Consider the formulation of prior distributions, and the possible uses of MCMC methods.
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Chapter 13

Validation and Verification

The terms validation and verification often are used in very specific ways (Nash and Wachter 2007).

Here we will use the terms somewhat loosely, more or less adhering to the following definitions:

Validation: demonstrating that within some tolerance ranges for product or process features, the

values of response variables (measures of goodness) are acceptable with some associated probability

measure.

Verification: demonstrating that a predictive model predicts new response values within accept-

able range of error.

Verification

Beginning with the epoxy example in Chap. 4, we have admonished the EAS to verify predictions by

obtaining some new experimental results. We did not suggest any formal verification process or

procedure. If the predicted response isby xð Þ, where x is a vector of input variable values, and yv xð Þ is
the average of m new response values obtained to verify the model, then the EAS would want the

difference yv xð Þ � by xð Þ to be within some desired limits. Using the data from the model fitting, we

would have an estimate of the variability in this difference, namely:

Var yv xð Þ � by xð Þð Þ ¼ bσ
m

2

þ se2 by xð Þð Þ

An approximate 95 % confidence interval for the difference would be:

yv xð Þ � by xð Þ � t:975 nþ m� k þ 1ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ
m

2

þ se2 by xð Þð Þ
s

The symbol se refers to the estimated standard error of the predicted value, and n is the sample size

used to fit the model. The symbol t.975(n + m � (k + 1)) represents the 97.5th percentile of s Student’s

t distribution with n + m � (k + 1) degrees of freedom. If this confidence interval falls within a

desirable range, then the model is verified with 95 % confidence. This is a very simplistic verification

process, but it may be sufficient. More sophisticated methods might include saving some data as a

“test” set, and not including them in the fitting process. Other methods might include an iterative
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process, where random subsets of data are selected to fit, and then the differences between predicted

and actual responses could be computed. In each iteration, the mean square error (MSE) could be

computed for the “test” set of m values (m < n):

MSE ¼ 1

m

Xm
j¼1

yi � byj� �2
The MSE values from all the iterations could be averaged, and the square root of the average MSE
could be computed (call is root mean square, or RMSE). If this number is a “small enough” percentage

of the average actual response values, then the model might be considered as verified.

Validation

Wewill use the word “validation” to mean validating that the product or process performs adequately,

once it has been designed and manufactured. Of primary importance is defining the range of response

values that would be considered “adequate”. The next question is by how much can any of the product

features vary and still provide with sufficient probability response values that will fall within the

adequate range. One possible means is to interpolate data from an experiment used to optimize the

product design, by finding the ranges of factor or regressor values that will result in predicted values

falling within the adequate performance range. As an example, consider the hip replacement example

in Chap. 10. The desired reliability at 20 years of life was 95 %. The 95 % confidence interval for

reliability at 20 years for design P5 was (95.85 %, 98.26 %). Since, in this case, the features, or

factors, were discrete, the EAS may consider this design “validated”, at least with respect to

reliability. For continuously valued design features with a continuous response, the methods

described in Chap. 8, Range Finding, would be appropriate for product validation. Note that a

confirmatory experiment, centered around the “optimal” design point, should be executed. By way

of simple example, suppose there is only a single continuously valued feature (regressor). Suppose

further that a first-order model is adequate. Suppose x* represents the desired design point. Further-

more, suppose that the values of x that describe the acceptable operating range are xLL and xUU, as
defined in Chap. 8. The EAS performs a confirmatory experiment with x ¼ xLL and x ¼ xUU, and
observes n values of the response at each of these points. She then computes the means and standard

deviations y for each group. The desired value for the response at optimal point x* is y*, and the limits

of acceptability are y* � δ. Compute the confidence range of a future value for the response at each

of xLL and xUU, namely:

L ¼ yLL þ ts

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
and U ¼ yUU � ts

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
If L � y* � δ and U � y* + δ, then the product is valid with respect to y, in terms of x. The value of
t is the 100(1 � α) percentile of s Student’s t distribution with n � 1 degrees of freedom. The ideas

are first, that if the value of the response was truly y* � δ or y* + δ, the EAS would be satisfied with

performance, and that the true performance could not be both y* � δ and y* + δ simultaneously.

The same notions apply when there is an optimal vector of feature/setting values, x*, but the
computation of limit vectors, xLL and xUU, is more complicated.

Sometimes validation is based on a discrete random variable, b, with a Bernoulli distribution, i.e.,

the variable b equals 1 if an observation is a “success” and 0 otherwise. There may be a minimum
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desired probability of “success”, say p*. If n independent Bernoulli observations, bi, i ¼ 1, n, are
obtained, and

X ¼
Xn
i¼1

bi

then X, the number of successes out of n independent Bernoulli trials, has a binomial distribution.

Thus, a critical value, or acceptance criterion, xc, can be found for X. That is, xc is chosen so that:

Pr X � xc
��p*, n� � ¼

Xn
k¼xc

n
k

� 	
p*

 �k

1� p*

 �n�k ¼ 1�

Xxc�1

k¼0

n
k

� 	
p*

 �k

1� p*

 �n�k � 1� α

To be conservative, one should choose the critical value, xc, such that:

1� α ¼ sup Pr X � xc
��p*, n� �

The term “sup” is an abbreviation for “supernum”, or least upper bound. The reason for specifying

that 1 � α should be the least upper bound on the probability of “passing” the test when the actual

probability of “success” is p* is due to the discrete nature of the variable X. For example, if n ¼ 100,

p* ¼ 0.90, and we want 1 � α ¼ 0.95. If we choose xc ¼ 85, then

Pr X � 85
��p* ¼ 0:90, n ¼ 100

� � � 0:9601

If we choose xc ¼ 86, then

Pr X � 86
��p* ¼ 0:90, n ¼ 100

� � � 0:9274

Since we want 1 � α ¼ 0.95 to be the least upper bound on the probability of “passing”, then we

should choose xc ¼ 86 instead of 85. That is, with n ¼ 100 and p* ¼ 0.90, it is not possible to find an

integer critical value such that the probability of passing is exactly 0.95.

Such a criterion can be thought of as the critical value for testing the Noninferiority hypothesis

(Pardo 2014):

H0 : Pr successf g < p* versus the alternative Ha : Pr }success}f g � p*.

In other words, if X � xc, then reject the null hypothesis, H0, in favor of Ha.

Validation is usually a multivariate problem, inasmuch as any product will have more than one key

response variable measuring the product’s performance. That is, there could be k response variables,
Y(1), Y(2), . . ., Y(k), that describe the performance of a product or system. Furthermore, suppose all the

Y( j) > 0, and that they are dependent on the same vector or regressors, x, which represent the product
or system features. One strategy is to map the multiple responses into “desirability” functions, which

can then be mapped into an overall desirability. There are three forms of desirability mappings:

lowest-is-best, target-is-best, and highest-is-best. For each response variable, Y( j), let Ylow
( j ) be a

value a little less than the minimum value of Y( j), and Yhigh
( j ) be a value a little greater than the

maximum. Also, suppose that if there is a target value, it is represented as Y
jð Þ
targ, Y

jð Þ
low < Y

jð Þ
targ < Y

jð Þ
high.

Then the lowest-is-best desirability is given by:
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d jð Þ ¼ Y
jð Þ
high � Y jð Þ

Y
jð Þ
high � Y

jð Þ
low

 !r

The highest-is-best desirability is:

d jð Þ ¼ Y jð Þ � Y
jð Þ
low

Y
jð Þ
high � Y

jð Þ
low

 !r

The target-is-best desirability is:

d jð Þ ¼ 1�
Y jð Þ � Y

jð Þ
targ

��� ���
max Y

jð Þ
high � Y

jð Þ
targ,Y

jð Þ
targ � Y

jð Þ
low

� �
0@ 1Ar

The overall desirability, D, is the geometric mean of the d( j):

D ¼ d 1ð Þd 2ð Þ� � �d kð Þ
� �1 k=

The parameter r > 0 is selected by the EAS; if r ¼ 1, then desirability is linear; if r < 1, the

desirability is convex (less discriminating); r > 1 then it is concave (more discriminating).

The maximum possible value for D is 1. The EAS may optimize simultaneously with respect to all

the response variables by finding the values of the regressors that maximize D. The idea is to suppose
that x* represents the vector of regressors that maximize D (subject of course to whatever constraints

there may be on x), and D* is the optimal value of overall desirability. Also let δ be a vector of

tolerances for the components of x*. Then suppose the two vectors x* � δ are used to find values of

D based on an experimental run with the regressor values x* � δ and x* + δ. Furthermore, suppose

the EAS defines a range of tolerance for desirability, namely that predicted desirability off the optimal

point must be no less than D* � ρ, where ρ is some predetermined quantity. Let the two values bD�δ
and bDþδ represent the predicted (average) overall desirabilities at each of the two “suboptimal” points.

Then the conditions for validation are:

bD�δ þ t
sD�δffiffiffi
n

p � D* � ρ and bDþδ þ t
sDþδffiffiffi
n

p � D* � ρ

where sD�δ and sDþδ are the standard deviations of overall desirabilities D�δ and Dþδ, n is the sample

size (not required to be the same for both �δ and +δ cases), and t is the 100(1 � α) percentile of a
Student’s t distribution with n � 1 degrees of freedom.

Validation is a complex process that involves much more than the analyses of experimental data.

The techniques mentioned in this chapter, and in Chap. 8, will potentially aid in minimizing the

amount of experimentation necessary for validation. More details on the ideas of the tests for

validation can be found in Pardo (2014).
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Key Points

• Validation involves demonstrating that a product or system performs adequately as long as input

features are within tolerances.

• Verification involves showing that a predictive model predicts adequately.

• A priori limits on performance must be identified in order to validate.

• Validation may be multivariate (multiple response variables).

• Desirability functions may help in validation or optimization.

• The general notions of equivalence and non-inferiority apply to validation.

Exercises and Questions

1. Consider a product having k continuously valued features, x1, x2,. . ., xk and a single continuously

valued key response variable, y. Suppose that using an approximating polynomial model, optimal

values of the xiwere found. Describe a strategy for validating the product if the allowable tolerance
for the optimal value of the response, y*, is �δ.

2. Are computations using predicted response values, where the prediction equation was generated

using the design-generating data, sufficient for validating a product? Why or why not?

3. Consider a multivariate validation problem, where at least some of the response variables of

interest do not have symmetric distributions. How important is this fact in determining acceptance

limits for overall desirability?
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Chapter 14

Simulation and Random Variable Generation

Originally, simulation meant using an electronic computer to generate pseudo-random numbers,

uniformly distributed between 0 and 1 (Law and Kelton 1982). The single use of these numbers,

called pseudo-random because they appear to have a uniform probability distribution, but in fact any

sequence of them can be predicted exactly, was to perform numerical integration. Suppose an EAS

wanted to compute a numerical approximation to an integral:

I ¼
ðb
a

f xð Þdx

where f(x) is some fairly complicated and intractable function of x. Of course, nowadays there are

many excellent numerical integration codes available. However, there was a time when such

computing facilities were not easily obtained. It is true that if f(U ) is a function of a random variable,

U, and U has density function g(u), then

E f Uð Þ½ � ¼
ðþ1

�1
f uð Þg uð Þdu

This fact is sometimes referred to as the “Law of the Unconscious Statistician” (Allen 2006). Now

suppose U is uniformly distributed between a and b. Then

g uð Þ ¼ 1

b� a
8u, a � u � b

And therefore:

I ¼ b� að ÞE f Uð Þð Þ ¼ b� að Þ
ðb
a

f uð Þ 1

b� a
du

So, if we randomly generated N values of U, u1, u2, . . ., uN, and computed

y1 ¼ f(u1), y2 ¼ f(u2), . . ., yN ¼ f(uN) then an approximation to integral I is:
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bI ¼ b� að Þ1
N

XN
i¼1

yi

This integral approximation method was the original reason for what became known as Monte Carlo

simulation. In Chap. 12, Monte Carlo simulation methods were used to assess Bayesian posterior

distributions. It turns out that there can be some non-Bayesian applications of Monte Carlo simulation

to the design problem.

Consider a deceptively simple-looking problem. An EAS wished to compute the middle 95 % of a

force distribution. She knows that F ¼ ma, and that the average mass is 5 g (0.005 kg) with a standard

deviation of 0.0002 kg. She wants the average force to be approximately 1 N. In order to achieve a 1 N

force, she believes she requires (on the average) an acceleration of 200 m/s2. The question is how

much standard deviation in both mass (m) and acceleration (a) should she allow so that the force will

be between 1 N � δ, with δ ¼ 0.025 N, 95 % of the time? The variance of the product of two random

variables is not the product of the variances. In fact, Springer (1979) has shown that the product of

two normally distributed random variables is not necessarily normal. The analytic expressions for the

product’s density and cdf are in fact quite complicated, involving infinite series. Our EAS decides to

try simulation. She uses the R code shown in Fig. 14.1, with N ¼ 100,000 simulated values of mass

and acceleration, and gets the histogram of forces shown in Fig. 14.2. The histogram appears quite

symmetrically distributed. Figure 14.3 shows the mean, standard deviation 2.5th percentile, and

97.5th percentile of Force.

If Force were normally distributed, we would expect about 95 % of the results to fall between

MForce � 1.96*SForce ¼ 0.9999829 � 1.96(0.03997325) � (0.9216, 1.0783). This is fairly close

to the range of the 2.5th to 97.5th percentiles (0.9213, 1.0782). The standard deviations used for mass

and acceleration were both 0.0002. The standard deviation of Force was approximately 0.0400.

Certainly, the Force standard deviation is not the square root of the sums of variances of mass and

acceleration. In order to help find distributional parameter values for mass and acceleration that will

satisfy her requirements on Force, the EAS decides to use a full factorial experiment in four factors,

with a center point run. Table 14.1 shows the factors and their low, high, and midpoint levels in

natural units. Table 14.2 shows the experimental runs in Helmert-coded form. Table 14.3 shows the

input values for mass and acceleration, and the Force statistics.

The results of the experiment were somewhat disappointing. The highest percent within the

tolerance range (1 � 0.025) was only 81.19 %, at the center point. The EAS suspects that

the phenomenon has curvature, so she adds runs to make a Central Composite Design (CCD). The

complete results are shown in Table 14.4.

Run 22 is promising. The middle 95 % was (0.9961, 1. 0039), and 100 % of all N ¼ 100,000

simulated results fell within the tolerance range. This run had all factors set to their center level,

except for the standard deviation of mass, set to its low level. Thus, through simulation the EAS has

discovered that in order to meet the specifications for Force, she will need to reduce the variability in

the Mass variable.

Although it seems that run 22 was best, the EAS wanted to know which factor had the greatest

influence on the percent falling within the desired range for Force. Table 14.5 shows the coefficients

of a full second-order model fit to the data with Helmert-coded regressors, sorted by model parameter

estimate magnitudes. Note that the largest magnitudes were the squared terms. It appears that the

greatest effect is average mass squared (MuM*MuM), followed by the standard deviation of mass

squared (SigM*SigM). Without the simulation, and naively computing Force by multiplying average

mass and average acceleration, the EAS would not have concluded that reducing mass variability was

critical.
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Fig. 14.1 Force simulation R code
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The simulation has saved time and expense in creating multiple prototype systems. An actual

experiment at the “optimal” conditions (average mass ¼ 0.005 kg, standard deviation of mass

¼ 0.00001 kg, average acceleration ¼ 200 m/s2, standard deviation of acceleration ¼ 0.000105 m/s2)

must be performed, and Forcemust bemeasured. However, the search for good operational conditions is

greatly reduced.

Fig. 14.1 (continued)
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Fig. 14.2 Histogram of force, N ¼ 100,000
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Another Example: Heat Transfer in a Bioreactor

An EAS wishes to design a thermal regulation system for a bioreactor that will be used to grow a

tissue-engineered arterial graft. The bioreactor design is a cylinder of 2 mm thick crystal polystyrene

tissue-culture plastic with an inner diameter of 5 mm. Cells will be seeded on the inner surface and

liquid media (modeled as water) will be pumped through the length of the cylinder at 30 cm/s

(approximate velocity of arterial blood). The bioreactor must bemaintained at 37 � 0.5 �C for optimal

cell growth. The EAS decides to design a thermostat-based system that consists of a temperature

sensor and a heater. The heat transfer through this system will be modeled as a combination of

> MForce
[1] 0.9999829
> SForce
[1] 0.03997325
> lq

2.5% 
0.9213199 
> uq

97.5% 
1.078199
>pintol
0.46862

Fig. 14.3 Force statistics

from simulation

Table 14.1 Four factors

and their levels
Factor Low (�1) High (+1) Midpoint (0) Units

MuM 0.0045 0.0055 0.005 kg

SigM 0.00001 0.00018 0.000095 kg

MuA 195 205 200 m/s2

SigA 0.00001 0.0002 0.000105 m/s2

Table 14.2 Full factorial

experiment (Helmert-

coded levels)

Pattern MuM SigM MuA SigA

���� �1 �1 �1 �1

���+ �1 �1 �1 1

��+� �1 �1 1 �1

��++ �1 �1 1 1

�+�� �1 1 �1 �1

�+�+ �1 1 �1 1

�++� �1 1 1 �1

�+++ �1 1 1 1

0 0 0 0 0

+��� 1 �1 �1 �1

+��+ 1 �1 �1 1

+�+� 1 �1 1 �1

+�++ 1 �1 1 1

++�� 1 1 �1 �1

++�+ 1 1 �1 1

+++� 1 1 1 �1

++++ 1 1 1 1
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conduction through the polystyrene and convection due to the flow of media. The outer air temperature

is assumed to be 25 �C.
The power output of the heater will increase or decrease depending on the value measured by the

temperature sensor. The success of the thermal regulation system potentially depends on the noise

Table 14.3 Input parameters and results for force simulation—full factorial

Run Pattern MuM SigM MuA SigA MForce SForce lq uq % In Tol.

1 ���� �1 �1 �1 �1 0.8775 0.00194 0.8737 0.8813 0.00 %

2 ���+ �1 �1 �1 1 0.8775 0.00194 0.8737 0.8813 0.00 %

3 ��+ � �1 �1 1 �1 0.9225 0.00204 0.9185 0.9265 0.00 %

4 ��++ �1 �1 1 1 0.9225 0.00205 0.9185 0.9265 0.00 %

5 �+�� �1 1 �1 �1 0.8776 0.03512 0.8085 0.9461 0.26 %

6 �+�+ �1 1 �1 1 0.8774 0.03519 0.8084 0.9465 0.27 %

7 �++� �1 1 1 �1 0.9224 0.03699 0.8498 0.9948 7.52 %

8 �+++ �1 1 1 1 0.9226 0.03684 0.8502 0.9951 7.47 %

9 0 0 0 0 0 1.0000 0.018985 0.9629 1.0371 81.19 %

10 +��� 1 �1 �1 �1 1.0725 0.00195 1.0687 1.0763 0.00 %

11 +��+ 1 �1 �1 1 1.0725 0.00195 1.0687 1.0763 0.00 %

12 +�+� 1 �1 1 �1 1.1275 0.00205 1.1235 1.1315 0.00 %

13 +�++ 1 �1 1 1 1.1275 0.00205 1.1235 1.1315 0.00 %

14 ++�� 1 1 �1 �1 1.0725 0.03514 1.0039 1.1412 0.00 %

15 ++�+ 1 1 �1 1 1.0724 0.03497 1.0040 1.1410 8.52 %

16 +++� 1 1 1 �1 1.1275 0.036797 1.0557 1.2001 0.26 %

17 ++++ 1 1 1 1 1.1275 0.037044 1.0550 1.1999 0.27 %

Table 14.4 Central composite design for force simulation

Run Pattern MuM SigM MuA SigA MForce SForce lq uq % In Tol.

1 ���� �1 �1 �1 �1 0.8775 0.00194 0.8737 0.8813 0.00 %

2 ���+ �1 �1 �1 1 0.8775 0.00194 0.8737 0.8813 0.00 %

3 ��+� �1 �1 1 �1 0.9225 0.00204 0.9185 0.9265 0.00 %

4 ��++ �1 �1 1 1 0.9225 0.00205 0.9185 0.9265 0.00 %

5 �+�� �1 1 �1 �1 0.8776 0.03512 0.8085 0.9461 0.26 %

6 �+�+ �1 1 �1 1 0.8774 0.03519 0.8084 0.9465 0.27 %

7 �++� �1 1 1 �1 0.9224 0.03699 0.8498 0.9948 7.52 %

8 �+++ �1 1 1 1 0.9226 0.03684 0.8502 0.9951 7.47 %

9 0 0 0 0 0 1.0000 0.018985 0.9629 1.0371 81.19 %

10 +��� 1 �1 �1 �1 1.0725 0.00195 1.0687 1.0763 0.00 %

11 +��+ 1 �1 �1 1 1.0725 0.00195 1.0687 1.0763 0.00 %

12 +�+� 1 �1 1 �1 1.1275 0.00205 1.1235 1.1315 0.00 %

13 +�++ 1 �1 1 1 1.1275 0.00205 1.1235 1.1315 0.00 %

14 ++�� 1 1 �1 �1 1.0725 0.03514 1.0039 1.1412 0.00 %

15 ++�+ 1 1 �1 1 1.0724 0.03497 1.0040 1.1410 8.52 %

16 +++� 1 1 1 �1 1.1275 0.036797 1.0557 1.2001 0.26 %

17 ++++ 1 1 1 1 1.1275 0.037044 1.0550 1.1999 0.27 %

18 000� 0 0 0 �1 1.0001 0.039949 0.9218 1.0785 46.97 %

19 000+ 0 0 0 1 0.9998 0.04017 0.9216 1.0790 46.63 %

20 00�0 0 0 �1 0 0.9749 0.01857 0.9385 1.0112 49.50 %

21 00+0 0 0 1 0 1.0250 0.01948 0.9868 1.0632 49.79 %

22 0�00 0 �1 0 0 1.0000 0.00200 0.9961 1.0039 100.00 %

23 0+00 0 1 0 0 0.9999 0.03605 0.9292 1.0706 51.40 %

24 �000 �1 0 0 0 0.9000 0.01898 0.8628 0.9374 0.00 %

25 +000 1 0 0 0 1.1001 0.01895 1.0632 1.1374 0.00 %
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level and numerical precision of both the temperature sensor and the heating element. In addition, the

EAS will consider the delay inherent in the temperature sensor or the heating element. Lower noise

level, greater numerical precision, and shorter delay are expected to improve the thermal regulation,

but also make the system components more expensive. Noise level is quantified as a standard

deviation, and numerical precision is the number of decimal places to which temperature and heater

power are computed. Through an experiment with the simulation program, the EAS hopes to

determine the relative importance of the factors, and if possible, the minimum accuracy, minimum

precision, and maximum delay required to maintain the bioreactor temperature within specification

limits with a high degree of probability.

Table 14.6 shows all the factors under consideration, together with the range of values (low and

high) the EAS would like to investigate.

With seven factors, the EAS decides to perform a ResIII fractional factorial, in order to estimate

the relative importance of the factors. Figure 14.4 shows the Minitab alias structure output for the 27-4

fractional design.

Figure 14.5 shows the runs with Helmert-coded factors.

This experimental design only requires eight runs. Since it is ResIII, it is most useful for ranking

the importance of the factors, helping the EAS reduce the dimensions of the experimental factor

space.

Figure 14.6 shows the R code that implements the simulation.

The temperature equation is based on heat conduction equation for a closed cylinder (Incropera

and De Witt 1990):

Table 14.5 Full second-order force model parameter estimates (sorted)

Term Estimate Abs(estimate) Std error t ratio Prob > |t|

MuM �0.00359 0.003594444 0.030901 �0.12 0.9097

MuA 0.003756 0.003755556 0.030901 0.12 0.9057

MuM*SigM �0.00404 0.00404375 0.032775 �0.12 0.9043

SigM*MuA 0.004044 0.00404375 0.032775 0.12 0.9043

SigA 0.004528 0.004527778 0.030901 0.15 0.8864

SigM*SigA 0.005306 0.00530625 0.032775 0.16 0.8746

MuM*SigA 0.005356 0.00535625 0.032775 0.16 0.8734

MuA*SigA �0.00536 0.00535625 0.032775 �0.16 0.8734

SigM �0.01335 0.01335 0.030901 �0.43 0.6749

MuM*MuA �0.01403 0.01403125 0.032775 �0.43 0.6776

MuA*MuA �0.08461 0.084614124 0.08215 �1.03 0.3273

SigA*SigA �0.11306 0.113064124 0.08215 �1.38 0.1988

SigM*SigM 0.175936 0.175935876 0.08215 2.14 0.0579

MuM*MuM �0.58106 0.581064124 0.08215 �7.07 <.0001

Intercept 0.614041 0.614040678 0.056607 10.85 <.0001

Table 14.6 Heater factors and levels

Factor Units Low High Comment

sens.prec Digits 2 4 Digits of numerical precision, sensor temp

sens.noise Kelvin 3 5 Std.dev. of noise in sensor temperature measurement

sens.time Seconds 3 5 Time delay for sensor reading

heat.prec Digits 2 4 Digits of numerical precision, heater power output

heat.noise Watts 3 5 Std.dev. of noise in heater power

heat.time Seconds 9 11 Time delay for heater response

heat.factor No units 0.001 0.002 Factor for incrementally increasing power proportional to temp
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Q ¼ 2 kpsπ L ΔT= ln r2=r1ð Þ

and on the convection equation:

Q ¼ h A ΔT:

Fig. 14.5 Runs for the 27-4 design

Fig. 14.4 Alias structure for 27-4 design
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Fig. 14.6 Heat transfer simulation code
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Fig. 14.6 (continued)
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The variables and constants are:

kps ¼ thermal conductivity of polystyrene � 0.13

L ¼ length

r2 ¼ outer radius

r1 ¼ inner radius

h ¼ Nu*kwater/D ¼ heat transfer coefficient (convection)

Nu ¼ Nusselt number for laminar internal flow in a cylinder assuming constant wall

temperature � 3.66

kwater ¼ thermal conductivity constant for water � 0.58

D ¼ inner diameter of bioreactor

ΔT ¼ Current temperature inside bioreactor—initial temperature (i.e., air temperature)

The EAS decides that in addition to the eight runs, he will replicate at a center point run (run 9).

Table 14.7 shows the runs and the results.

The main effects model was fit to the average proportion of temperatures within the 37.0 � 0.5 �C
specifications. This response was called “ave.prob.in.spec” in the simulation program. The model was

fit using Helmert-coded factor levels. The results are given in Fig. 14.7. Note that the residual plot

indicates the presence of second-order effects, as evidenced by the larger residual values at the center

point. The only factor that was significant was sens.noise. Using the sorted parameter estimate table,

and given the indication of the presence of second-order effects, the EAS decides to perform a

Fig. 14.6 (continued)

Table 14.7 The 27-4 + center point runs with results

Run

sens.

prec

sens.

noise

sens.

time

heat.

prec

heat.

noise

heat.

time

heat.

factor mn std

ave.prob.in.

spec

1 2 3 3 4 5 11 0.0010 36.901 0.2956 0.9136

2 4 3 3 2 3 11 0.0010 36.907 0.2948 0.9163

3 2 5 3 2 5 9 0.0010 36.908 0.3615 0.8392

4 4 5 3 4 3 9 0.0010 36.885 0.3654 0.8294

5 2 3 5 4 3 9 0.0020 36.988 0.2549 0.9405

6 4 3 5 2 5 9 0.0020 37.001 0.2493 0.9470

7 2 5 5 2 3 11 0.0020 37.005 0.4302 0.7362

8 4 5 5 4 5 11 0.0020 36.982 0.4244 0.7387

9 3 4 4 3 4 10 0.0015 36.969 0.2946 0.8892

9 3 4 4 3 4 10 0.0015 36.967 0.2858 0.8975

9 3 4 4 3 4 10 0.0015 36.999 0.2867 0.9045

Another Example: Heat Transfer in a Bioreactor 213



Fig. 14.7 Regression fit (from JMP) for main effects model
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second-order experiment in the top three factors, namely sens.noise, heat.time, and sens.time.

Furthermore, he does some exploratory runs and decides to alter the ranges of the factors. The

EAS chooses a Box–Behnken experiment with three replicates at the center point. The other factors

were kept constant. Table 14.8 shows the factor levels for the second-order experiment.

Table 14.9 shows the coded levels of the three factors varied in the Box–Behnken experiment.

Table 14.10 shows the natural levels, together with the fixed values of the other factors not included,

and the data.

Figure 14.8 shows the second-order model fit to the ave.prob.in.spec response.

The only significant effect was sens.noise*sens.noise. A reduced second-order model was then fit,

with only the sens.noise, heat.time, sense.noise*heat.time (not significant in the full model, but

having a coefficient twice as big as the next largest coefficient), and sens.noise*sens.noise terms

included. Figure 14.9 shows the results of the fit.

Fig. 14.7 (continued)

Table 14.8 Levels for the Box–Behnken experiment

Factor Units Low High Comment

sens.prec Digits 4 Digits of numerical precision, sensor temp

sens.noise Kelvin 2 4 Std.dev. of noise in sensor temperature measurement

sens.time Seconds 4 6 Time delay for sensor reading

heat.prec Digits 2 Digits of numerical precision, heater power output

heat.noise Watts 1 Std.dev. of noise in heater power

heat.time Seconds 9 11 Time delay for heater response

heat.factor No units 0.002 Factor for incrementally increasing power proportional to temp

Table 14.9 Runs with

coded levels for the Box–

Behnken experiment

Patte rn sens.noise heat.time sens.time

��0 �1 �1 0

�0� �1 0 �1

�0+ �1 0 1

�+0 �1 1 0

0�� 0 �1 �1

0�+ 0 �1 1

0 0 0 0

0 0 0 0

0 0 0 0

0+� 0 1 �1

0++ 0 1 1

+�0 1 �1 0

+0� 1 0 �1

+0+ 1 0 1

0 1 1 0
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Now all the terms, except for the main effect of heat.time, in the model have significant

coefficients. However, since the sens.noise*heat.time term was significant, the heat.time main effect

will be left in the model.

Figure 14.10 shows the Optimization for the reduced second-order model, using the JMP Custom

Profiler function. The optimal design has sens.noise ¼ �1 (2 K) and heat.time ¼ �1 (9 s). These

values are predicted to virtually insure with 100 % probability that the bioreactor will remain in the

temperature range 37 � 0.5 �C.
One note of information about sample means taken over time series data is appropriate. The mean

of the temperatures within a simulation replicate is calculated over temperatures observed in a time

sequence, or time series. Thus, the values of temperature are not independent of each other. In the

case of a random sample, the sample average has estimated variance:

bV xð Þ ¼ s2

n

In the case of an average of time series data (which are said to be autocorrelated, or correlated with

previous values in time), the estimated variance is (Cryer 1986):

bV xð Þ ¼ s2

n
1þ 2

Xn�1

k¼1

1� k

n

� �bρk
" #

where:

bρk ¼
Xn�k

j¼1
xj � x
� �

xjþk � x
� �Xn

j¼1
xj � x
� �2

and:

Table 14.10 Box–Behnken runs with natural levels, fixed values, and data

Run

sens.

prec

sens.

noise

sens.

time

heat.

prec

heat.

noise

heat.

time

heat.

factor mn std

ave.prob.in.

spec

1 4 2 5 2 1 9 0.002 37.006 0.1687 0.9968

2 4 2 4 2 1 10 0.002 37.008 0.1645 0.9970

3 4 2 6 2 1 10 0.002 36.997 0.1680 0.9968

4 4 2 5 2 1 11 0.002 36.999 0.1688 0.9963

5 4 3 4 2 1 9 0.002 36.994 0.2469 0.9463

6 4 3 6 2 1 9 0.002 36.995 0.2520 0.9433

7 4 3 5 2 1 10 0.002 36.996 0.2521 0.9441

7 4 3 5 2 1 10 0.002 36.998 0.2579 0.9408

7 4 3 5 2 1 10 0.002 36.980 0.2604 0.9347

8 4 3 4 2 1 11 0.002 36.979 0.2555 0.9404

9 4 3 6 2 1 11 0.002 36.997 0.2562 0.9411

10 4 4 5 2 1 9 0.002 36.998 0.3439 0.8409

11 4 4 4 2 1 10 0.002 36.993 0.3347 0.8479

12 4 4 6 2 1 10 0.002 36.975 0.3366 0.8466

13 4 4 5 2 1 11 0.002 36.997 0.3304 0.8581

216 14 Simulation and Random Variable Generation



Fig. 14.8 JMP output—full second-order model Fit

Another Example: Heat Transfer in a Bioreactor 217



s2 ¼ 1

n

Xn
i¼1

xi � xð Þ2

Note that the sample variance estimator used here has the factor 1n instead of the more usual 1
n�1

. This is

more for convenience of computation. Practically speaking, the use of n versus n�1 usually has little

impact.

The function, bρk, is the sample autocorrelation function (acf). The values of the variable k are

called “lags”. The R function acf(x) produces the sample autocorrelation function. As an example,

consider the time series generated by the heat transfer simulation, stored in temp.dat. The R command

for computing the acf for the steady state temperature data (beginning 5 min after the simulation

began) is:

rho <- acf(temp.dat[300:2100], lag.max ¼ 1799)

Figure 14.11 shows the plot of the acf which is automatically created by the R function.

The new vector, rho, stores the acf values.

The square root of bV xð Þ is the estimated standard error of the mean, and is required for computing

confidence intervals for the mean.

In this chapter, two examples of how simulation involving the generation of random variables can

assist in making design decisions. Both of these examples incorporated prior knowledge of the

physical aspects of the systems under consideration, but in a non-Bayesian manner. Although

equations that describe the phenomena were known, when uncertainty about input parameters or

when uncontrollable sources of noise exist, simulation aids in predicting and optimizing system

response.

Key Points

• Monte Carlo simulation involves the generation of random variable values using a computer

program.

• Even simple equations of physics cannot necessarily be used to determine the distributional

characteristics of a response variable when the inputs are assumed to be random variables.

• Once input parameters are determined, a simulation program can be constructed, and designed

experiments with the program can be performed to characterize the response distribution.

• Experimenting with a simulation program is less expensive than creating multiple prototypes.

• Simulation models may be non-Bayesian in nature.

• Any conclusions drawn from a simulation must be verified by actual experimentation.

Fig. 14.8 (continued)
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Fig. 14.9 Reduced model second-order fit
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Fig. 14.10 Optimization of reduced second-order model—from JMP custom profiler
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Fig. 14.11 Plot of the time.dat ACF
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Exercises and Questions

1. Consider the Ideal Gas Law: PV ¼ nRT, where P is pressure, V is volume (of a gas in a closed

container), n is the moles of gas, R is the gas’ constant (i.e., a constant specific to the type of gas),

and T is temperature. Suppose that V and T vary probabilistically, having normal distributions

with some range of values for their respective means and standard deviations. Design an experi-

ment with a simulation to assess the distribution of P, and how it is affected by the means and

standard deviations of V and T, and by the value of nR.

2. In the Force example of the text, what, if anything, would you do differently? Would you have

changed the range of factor levels after the first experimental run?

3. Based on the results in Table 14.4, would you guess that the normal distribution is a reasonable

approximation to the distribution of Force? Hint: consider the interval mean �1.96*standard

deviation of Force, and the lower and upper quantiles of the simulated Force distribution at optimal

conditions (Table 14.4, Run #22). You may also use a Shapiro–Wilk or other test for normality.

4. Fit a first-order main effects model to the response “mn” in Table 14.7. Do you conclude the same

thing about the presence of second-order effects as in the case of the ave.prob.in.spec response?

5. Fit a second-order model to the “mn” response using the data in Table 14.10. Use Helmert-coded

factors. Do you conclude the same thing about the significance of factors as in the fit for ave.prob.

in.spec?
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Chapter 15

Taguchi Methods® and Robust Design

Dr. Genichi Taguchi (Taguchi and Wu 1980) described methods for using designed experiments in

designing and improving products and processes. The Taguchi approach differs from the methods

described in previous chapters, mostly due to their lack of fitting polynomial models to data.

Nevertheless, Taguchi methods can be a useful tool in developing product or process designs. We

will describe some of the rudiments of his methods, together with some additional ideas. The

elements we will consider are the quadratic loss function and signal-to-noise ratios, control and

noise parameters, and the designs referred to as orthogonal arrays.

The Quadratic Loss Function

Presume for the moment that the variable X represents a measure of quality. Furthermore, suppose

that ideally X ¼ τ, which we will call the target value for X.
The “loss” is the degree to which X differs from τ. For reasons that may not be apparent, we will

measure this loss in the squared deviation:

L Xð Þ ¼ k X � τð Þ2

The value of k only determines the rate at which the loss changes, so we will generally let k ¼ 1.

The objective for robust design is to find values of control parameters that minimize the average

loss in the face of noise parameters whose values vary in an uncontrolled fashion (except in the

experimentation process).

The loss function can be applied to situations where it is desirable to minimize X or maximize

X. Let τ ¼ 0. The, the loss function is:

L Xð Þ ¼ kX2

Clearly minimizing X will minimize the loss, so that the objective of minimizing loss is achieved by

minimizing X. Similarly, let:

Y ¼ 1

X

# Springer International Publishing Switzerland 2016

S.A. Pardo, Empirical Modeling and Data Analysis for Engineers and Applied Scientists,
DOI 10.1007/978-3-319-32768-6_15

223



so that the loss with respect to Y is:

L Yð Þ ¼ kY2 ¼ k
1

X2

Thus minimizing the loss is achieved by maximizing X.
One might ask why, especially in the case of minimizing or maximizing X, it is valuable to use the

quadratic loss function. The answer lies in the expected value of L(X). For our discussions, we will
simply let k ¼ 1. Then if E[X] ¼ μ is the expected value of X, and V[X] ¼ σ2 is the variance of X,
then it can be derived that:

E L Xð Þ½ � ¼ E X � τð Þ2
h i

¼ μ� τð Þ2 þ σ2

Thus, minimizing the average quadratic loss simultaneously minimizes the average difference of

X from target and the variability of X. When one statistic is simultaneously related to mean and

variance, so that either having a mean closer to target or reducing variability gives it a more desirable

value, it has been called a “concurrent” statistic (Barker 1990).

Some people may have an aversion to minimizing, and Dr. Taguchi recognized this. So, he created

what he called the “signal-to-noise” ratio (SNR). The SNR is nothing more than the loss function

expressed in decibels. So, minimizing the expected value of the loss function is equivalent to

maximizing the expected value of:

SNR ¼ �10log10L Xð Þ

Aside from an emotional tie to maximization, there is no particular reason to use the SNR transfor-

mation of the loss function. Taguchi’s original work did not concern itself with the statistical

significance of parameters; he presumed that all parameters were meaningful, and that their effects

were already known to be repeatable. However, it may be valuable to be able to assess the signifi-

cance of design parameters. As such, it will be much easier to use the loss function directly, as its

statistical sample properties are easier to derive than are those of the SNR.
Suppose a sample of values of X is obtained, x1, x2, . . ., xn. Then the sample average loss function is:

bL x1; x2; � � �; xnð Þ ¼ 1

n

Xn
i¼1

xi � τð Þ2

If the variable X is normally distributed with expected value μ and variance σ2, then:

bL ¼ σ2

n

Xn
i¼1

xi � μ

σ
þ μ� τ

σ

� �2
� σ2

n
χ02 n, λ ¼ n μ� τð Þ2

σ2

 !

χ02 n, λ ¼ n μ�τð Þ2
σ2

� �
stands for a non-central Chi-squared random variable with n degrees of freedom

and non-centrality parameter λ (Johnson et al. 1995). Although both μ and σ2 are generally unknown,
an approximate 100(1 � 2α) % confidence interval is
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bσ2

n
χ

02
α n, bλ ¼ nbZ2

τ

� �
,
bσ2

n
χ

02
1�α n, bλ ¼ nbZ2

τ

� �� �

where:

bZτ ¼ τ � bμ
bσ

and χ
02
p n;bλ� �

¼ the 100pth percentile of a non-central Chi-squared distribution with n degrees of

freedom and non-centrality parameter bλ .
The statistics bμ , bσ are sample estimates of μ and σ, respectively. Since the loss function is in

squared units, it is somewhat uninterpretable as it stands. One possible remedy is to divide it by τ2, so
that the loss is expressed as a proportion (or percent) of the target value, and take its square root (and

the square roots of the confidence limits divided by τ2). We will call this computation the root mean

square percent loss.

Suppose we wanted to compare average loss between two different designs for a product. If the

null hypothesis is that the average loss does not differ with respect to variable X, then if bL1 represents
the average loss for a sample of n1 observations of X with design 1 and bL2 the average loss for a

sample of n2 observations of X with design 2, then the ratio:

bF ¼
n1
σ2
bL
1

n1

n2
σ2
bL
2

n2

¼
bL1bL2

has a doubly non-central F distribution (F00) with n1 and n2 numerator and denominator degrees of

freedom, respectively and numerator and denominator non-centrality parameters:

λk ¼ nk μ� τð Þ2
σ2

, k ¼ 1, 2

respectively. Now we have a means of deciding whether to believe that the average loss for one

design is different from that of another. Compare the sample statistic bF to the lower and upper tails of

a doubly non-central F with n1 and n2 degrees of freedom and non-centrality parameters λk, k ¼ 1,

2. The only problem is that the parameters μ and σ are unknown. If we are also hypothesizing that

μ ¼ τ, then the non-centrality goes away, so we are only comparing the statistic to percentiles of the

usual (central) F distribution. If, however, we are not willing to make that assumption, then one

possibility is to aggregate all the data from both designs and compute the sample average and standard

deviation, call them bμ and bσ . These can then be used to “approximate” the actual numerator and

denominator non-centralities. Thus the estimated non-centrality parameters for the numerator and

denominator would be:

bλk ¼ nk bμ � τð Þ2
bσ2

, k ¼ 1, 2

Inasmuch as percentiles of doubly non-central F distributions are somewhat hard to find, a reasonable

approximation may be obtained with the formula described by Johnson et al. (1995). That is, if

F00( p, n1, n2, λ1, λ2) represents a percentile of a doubly non-central F, and F( p, n1, n2, λ1) the same

percentile for a singly non-central F (with non-centrality λ1 in the numerator only) then:
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F
00 ¼ 1þ λ2

n2

� ��1

F
0

Figure 15.1 shows some R code for computing the approximate percentiles of a doubly non-central F.

Fig. 15.1 Computing percentiles of doubly non-central F distributions
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Parameter Design: Noise Parameters, Control Parameters,
Inner and Outer Arrays

Taguchi identified the need for choosing designs that would be about to perform under the normally

uncontrollable conditions of the environment in which they would be used. The optimization step is

referred to as “Parameter Design”. He divided the design parameters into two groups:

Control: those things whose values the EAS can choose; Noise: those things whose values that the

EAS cannot choose, but must have his or her design perform well regardless of those values

For example, an engineer may choose the materials and dimensions of a cardiac lead, the cable that

delivers electrotherapy from a pacemaker to the heart, but she cannot choose the impedance that the

heart tissue will present. The materials and dimensions are control parameters, whereas the imped-

ance is a noise parameter.

Dr. Taguchi suggested that two experimental designs should be performed together. The designs

are referred to as the inner array (for control parameters) and the outer array (for noise parameters).

The idea is that for every run in the inner array, a complete experiment in the noise parameters (outer

array) should be performed. The noise array would be constructed by varying in a controlled fashion

the noise parameters, in order to have a measure of loss over a wider range of noise “conditions” for

each combination of the control parameters. In that way, the combination of the control parameter

values that minimizes the loss (or maximizes the SNR) in face of the noise parameter variation would

be the most “robust” choice for the product or process design.

The experimental designs employed by Taguchi are of a general class called “Orthogonal Arrays”.

All fractional factorials (or, for that matter, full factorials) are orthogonal arrays, but not all orthogo-

nal arrays are fractional factorials. In order to simplify the choices of experimental design, Taguchi

created a sort of catalogue of orthogonal arrays, categorized by the number of runs (rows). He used

the letter “L”, which stands for Latin Square, together with the number of rows to designate the

design. A Latin Square is a k � k array of k unique items, usually symbolized with capital Latin

letters, such that each item appears in each column and each row exactly once. The orthogonal array is

a sort of generalization of the Latin Square. Thus, the “L8” array has eight rows, or runs, and it can be

used with up to seven parameters (or factors, as we have called them). The fewer the number of

factors (columns) used from a given array, the greater the resolution. Figure 15.2 shows the L8 array,

as generated using JMP 11. This is a two-level design, with the “low” level designated with a “1” and

the “high” level with a “2”. That is, Taguchi preferred to represent the levels as positive integers,

Fig. 15.1 (continued)

Parameter Design: Noise Parameters, Control Parameters, Inner and Outer Arrays 227



rather than with Helmert coding. With k ¼ 7 parameters, this is a 27�4 fractional factorial design of

Resolution III. If only columns X1, X2, and X4 were used (i.e., only k ¼ 3 parameters) this array

would constitute a 23 full factorial design.

The L4 array is given in Fig. 15.3. The L4 is a 22 full factorial design in two factors. Note that here

the columns have been designated as N1 and N2, and we will use this to illustrate the noise array.

Suppose the EAS has decided that there are k ¼ 3 control parameters, and k ¼ 2 noise parameters.

Then he would combine the L8 and L4 arrays, so that each run in the L8array has all four of the L4

array completed. Figure 15.4 illustrates the combined arrays.

The empty cells in the Figure represent the quadratic loss values, given target τ. The columns not

being used are blacked out. The first row represents a run where all three control parameters are set to

their “low” level. The eighth row is a run where all three control parameters are set to their “high”

level. For each row, observations are obtained at four different “noise” conditions.

The idea would be to average the loss over all rows where a given parameter is set to its “low”

value, and compare it to the loss averaged over all the rows where the parameter was set to its “high

level”. The parameter value to use in the design would be the one that yielded the lowest average loss.

This methodology is a considerable departure from all the methods discussed so far, in that we are not

finding an approximating polynomial to predict optimal factor (or regressor, or in the Taguchi

X1 X2 X3 X4 X5 X6 X7 Pattern
1 1 1 1 1 1 1 −−−−−−−
1 1 1 2 2 2 2 −−−++++
1 2 2 1 1 2 2 −++−−++
1 2 2 2 2 1 1 −++++−−
2 1 2 1 2 1 2 +−+−+−+
2 1 2 2 1 2 1 +−++−+−
2 2 1 1 2 2 1 ++−−++−
2 2 1 2 1 1 2 ++−+−−+

Fig. 15.2 The Taguchi L8

array

N1 N2 Pattern
1 1 −−
1 2 −+
2 1 +−
2 2 ++

Fig. 15.3 The L4 array

X1 X2 X3 X4 X5 X6 X7 N1=1,N2=1 N1=1,N2=2 N1=2,N2=1 N1=2,N2=2
1 1 1 1 1 1 1
1 1 1 2 2 2 2
1 2 2 1 1 2 2
1 2 2 2 2 1 1
2 1 2 1 2 1 2
2 1 2 2 1 2 1
2 2 1 1 2 2 1
2 2 1 2 1 1 2

Fig. 15.4 Combined L8 and L4 arrays
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terminology, parameter) values or settings. The biggest disadvantage is that the Taguchi approach

does not allow us to interpolate between levels. The advantage is that it is very simple to implement.

Example: Pharmaceutical Tablet Dissolution

The EAS is designing a tablet for delivering a drug orally. It is desired for the tablet to dissolve at a

certain rate. In particular, the measure of goodness is to have half the tablet’s mass dissolved in the

stomach after 4 h. The time for 50 % of the tablet to dissolve will be called D50. The target value for

D50 is 240 min ¼ 4 h. There are three control parameters of interest in this case:

T ¼ processing temperature of the tablet formation (�C);
C ¼ drying and time (minutes)

P ¼ force used to compact the wet ingredients into the tablet form (Newtons).

The two noise parameters are:

pH ¼ The pH of stomach contents;

V ¼ volume of stomach contents prior to introducing the tablet.

An experimental chamber, in which both pH and V can be controlled, will be used to perform the

tests. The L8 and L4 arrays will be employed. The levels for the L8 (control parameters) are given in

Table 15.1, and the levels for the L4 array are in Table 15.2. The columns of the L8 array that are not

to be used in the experiment are blacked out, except for their column headings.

The quadratic loss is:

Loss ¼ (D50 � 240)2

The data (D50 and Loss) are given in Table 15.3. They are arrayed for each run of the Inner Array,

by Outer Array run.

In order to apply the Taguchi decision process, compute the average loss for each level of each

control parameter. The levels that yield the lower of the two average losses are the Taguchi choice.

Table 15.4 shows the average loss values, the square root of the mean loss as a percentage of target,

the ratios of the loss at level 1 to the loss at level 2, and the critical values from the (approximate)

doubly non-central F distribution. Note that the parameter values used to compute the critical values

were: bμ ¼ 261:9 and bσ ¼ 50:27, which are the estimates obtained over all 8 * 4 ¼ 32 observations

(i.e., the null hypothesis being that none of the control parameters actually affected the D50).

Table 15.1 L8 inner

array—dissolution

experiment

T (�C) C (min) X3 P (N ) X5 X6 X7

38 30 45

38 30 55

38 45 45

38 45 55

42 30 45

42 30 55

42 45 45

42 45 55

Table 15.2 L4 outer

array—dissolution

experiment

pH V (mL)

1.5 175

1.5 300

3.5 175

3.5 300
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The only ratio of L1/L2 that was significant at the α ¼ 0.05 level was for the control parameter P,
the compacting force.

The EAS concludes that setting the compacting force to its low level of 45 N will on the average

get the value of D50 closest to the target of 240 min with the least amount of variation in the face of

variable gastric fluid pH and volume. The values of processing temperature (T ) and time (C) may be

set to whatever are the most economical values. Using the classical Taguchi approach, the EAS would

have chosen the low levels of all three control parameters, since the low levels yielded the minimum

mean loss. It is possible that the low levels of T and C are in fact the most economical, but it would not

have necessarily been true.

Table 15.3 The

dissolution experiment—

data

Inner array run T C P pH V D 50 Loss

1 38 30 45 1.5 175 211 840.20

2 38 30 55 1.5 175 312 5160.33

3 38 45 45 1.5 175 210 915.23

4 38 45 55 1.5 175 310 4850.13

5 42 30 45 1.5 175 207 1065.15

6 42 30 55 1.5 175 311 5035.05

7 42 45 45 1.5 175 212 789.66

8 42 45 55 1.5 175 311 5065.48

1 38 30 45 1.5 300 205 1232.08

2 38 30 55 1.5 300 309 4753.45

3 38 45 45 1.5 300 211 825.11

4 38 45 55 1.5 300 310 4907.88

5 42 30 45 1.5 300 231 89.82

6 42 30 55 1.5 300 316 5834.86

7 42 45 45 1.5 300 216 575.42

8 42 45 55 1.5 300 316 5839.29

1 38 30 45 3.5 175 208 1026.59

2 38 30 55 3.5 175 308 4576.54

3 38 45 45 3.5 175 219 450.90

4 38 45 55 3.5 175 312 5227.32

5 42 30 45 3.5 175 213 724.06

6 42 30 55 3.5 175 313 5338.02

7 42 45 45 3.5 175 209 967.91

8 42 45 55 3.5 175 318 6116.37

1 38 30 45 3.5 300 209 939.10

2 38 30 55 3.5 300 309 4717.00

3 38 45 45 3.5 300 215 623.48

4 38 45 55 3.5 300 306 4325.93

5 42 30 45 3.5 300 212 760.75

6 42 30 55 3.5 300 305 4270.60

7 42 45 45 3.5 300 213 706.23

8 42 45 55 3.5 300 311 5075.41

Table 15.4 Dissolution experiment—mean loss table

Mean loss Root mean loss/target

Level T C P T C P

1 2835.70 2897.73 783.23 22.2 % 22.4 % 11.7 %

2 3015.88 2953.86 5068.35 22.9 % 22.6 % 29.7 %

L1/L2 0.9403 0.9810 0.1545

F"(0.025) 0.3648 0.3648 0.3648

F"(0.975) 2.7508 2.7508 2.7508
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Fowlkes and Creveling (1995) suggested an alternative to a factorial outer array design. They

suggest using a single combination of control parameter values, and perform an array experiment

with only noise parameters. Then find the combination of noise parameters that yields the highest

average value of the response (not the loss, or signal-to-noise, but the raw response itself) and the

combination of values that yields the lowest average response. Then use only those two sets of noise

parameter conditions when running the full inner array. The notion is that:

1. The two conditions chosen would yield the highest variability, so that choosing the control

parameter conditions that minimizes the loss in face of the noise conditions would in fact be the

most robust design choice;

2. Noise parameters and Control parameters do not interact.

Using the tablet dissolution example, the average value of the response, D50, for each of the noise

parameter conditions, is shown in Table 15.5. The conditions that yield the highest and lowest mean

D50 are pH ¼ 3.5, V ¼ 300 (lowest mean D50 ¼ 260.2 min) and pH ¼ 1.5, V ¼ 300 (highest mean

D50 ¼ 264.3 min). Had only data from those two noise parameter conditions been used, the average

loss for the control parameter array would have been as shown in Table 15.6. Finally, the mean loss

table for minimizing loss using only the two “extreme” noise conditions is shown in Table 15.7.

This table would lead us to the same conclusion (that P ¼ 45 N is optimal, and both parameters

T and C could be set to the most economical level) as did Table 15.4 with four (22) noise conditions.

Table 15.5 Mean D50—

noise parameter array
pH V N Mean D50

1.5 175 8 260.5

1.5 300 8 264.3

3.5 175 8 262.5

3.5 300 8 260.2

Table 15.6 Mean loss—

control parameter array

with two noise conditions

V T C P Mean loss

300 38 30 45 1085.59

300 38 30 55 4735.222

300 38 45 45 724.292

300 38 45 55 4616.903

300 42 30 45 425.287

300 42 30 55 5052.729

300 42 45 45 640.826

300 42 45 55 5457.348

Table 15.7 Mean Loss—decision table using only two noise conditions

Mean loss Root mean loss/target

Level T C P T C P

1 2790.50 2824.71 719.00 22.0 % 22.1 % 11.2 %

2 2894.05 2859.84 4965.55 22.4 % 22.3 % 29.4 %

L1/L2 0.9642 0.9877 0.1448

F"(0.025) 0.2281 0.2281 0.2281

F"(0.975) 4.4148 4.4148 4.4148
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Generating Two-Level Orthogonal Arrays

As was mentioned early, all two-level fractional factorials are orthogonal arrays. The methods for

generating 2k�p fractional designs have already been discussed. The two-level arrays are generally

generated as 2k�p fractions. First, the number of runs, N (a power of 2) is selected. The fractional

factorial associated with N is a 2k�p design, with k ¼ N � 1. Thus, 2k�p ¼ 2N�1�p ¼ N, so that

p ¼ N � log2N � 1. The maximum number of factors that can be used with an LN array is

k ¼ N � 1.

Consider the L8 array shown in Fig. 15.2. In this case, N ¼ 8, so k ¼ 8 � 1 ¼ 7 and p ¼ 8 �
log28 � 1 ¼ 4. Thus, the L8 array is a 27�4 factional factorial. Table 15.8 shows the values of N, k,
and p for N ¼ 4, 8, 16, and 32.

The Taguchi orthogonal arrays are not the only orthogonal arrays that can be generated for N � 1

factors with N runs. The method for generating fractional designs described in Chap. 6 can be used to

generate the Taguchi arrays, but the particular design (array) that is generated depends on the choice

of generators. Statistically, the 2k�p fractional design chosen does not affect the outcome or method of

the analyses.

Generating Three-Level Orthogonal Arrays

Generating three-level arrays is slightly more complex than it is for two-level arrays. The three-level

arrays will have numbers of runs equal to powers of 3 (L9 and L27, for example) and the mixed-level

arrays will have both 2 and 3 as factors (L12, L18, L36).

The number of runs, N, in a three-level array is equal to 3k�p, where k ¼ (N � 1)/2 is the

maximum number of factors that can be used with the array. The design parameters are derived in

a very similar fashion as those for the two-level arrays. For three-level arrays, 3k�p ¼ 3N�1�p ¼ N,

so that p ¼ N � log3N � 1. Table 15.9 shows the parameters N, p, and k for L9, L27, and L81

arrays.

In general, three-level fractional factorial experiments are not the most efficient designs for

incorporating a third level. The second-order designs described in Chap. 7 are more efficient.

Generating 3k�p fractional designs requires a different kind of coding, where levels are designated

as 0, 1, or 2, instead of �1, 0, and +1. Furthermore, interaction effects are not only a function of the

Table 15.9 Equivalence

of some orthogonal arrays

and three-level fractional

factorials

L9 L27 L81

N 9 27 81

k ¼ (N � 1)/2 4 13 40

log3(N) 2 3 4

p 6 23 76

3k�p 9 27 81

Note: LN array is the same as a 3k�p fractional factorial

Table 15.8 Equivalence

of some orthogonal arrays

and two-level fractional

factorials

L4 L8 L16 L32

N 4 8 16 32

k ¼ N � 1 3 7 15 31

log2(N) 2 3 4 5

p 1 4 11 26

2k�p 4 8 16 32

Note: LN array is the same as a 2k�p fractional factorial
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number of factors interacting, but also the order of the term (either 1 or 2). Montgomery (2001) gives

an excellent explanation of how interaction terms are formulated in three-level experiments, and a

method for generating 3k�p designs. Hinkelmann and Kempthorne (2005) give a more abstract

discussion of the algebraic and combinatorial properties of the three-level fractions and orthogonal

arrays. Kacker et al. (1991) give a very thorough, general, and mathematically detailed description of

how orthogonal arrays can be generated.

We will use the L9 array to demonstrate the method for generating 3k�p fractional designs, but we

will not attempt to generalize the process here.

For an L9 array, consider a 34�2 fractional design. Each term in a four-factor model can be thought

of as a product of each factor, with an exponent of 0, 1, or 2 on each factor. So, for example, if X1 is

the first factor, then the term:

X11X20X30X42 ¼ X1X42

Let X1, X2, X3, X4 represent the columns of the experimental array, where each row is some

combination of 0 s, 1 s, or 2 s.

In order to identify a particular fraction having 34�2 ¼ 32 ¼ 9 runs, consider two unique terms of

the form:

X1α1X2α2X3α3X4α4

where the exponents, αi, take the values 0, 1, or 2.
If each run in the full 34 experiment is thought of as a column vector, x, whose elements are a

combination of 0 s, 1, and 2 s, and αj is the vector:

αj ¼
αj1
⋮
αj4

2
4

3
5, j ¼ 1, 2

Then the product α
0
jx ¼ 0, 1, or 2 mod 3ð Þ. The designation “mod 3” means that the product is

reduced to its remainder after being divided by 3. To select runs for a 3�2 fraction, chose a set of

values δ1 and δ2, where each of the δi equals either 0, 1, or 2. Then for each run in the full 34

experiment, compute αj
’x and select those runs where

α
0
jx ¼ δj mod 3ð Þ, j ¼ 1, 2

The set of runs where δ1 ¼ δ2 ¼ 0 is called the principal fraction. The equations

α
0
jx ¼ δj mod 3ð Þ, j ¼ 1, 2

Are called the Defining Contrasts (Montgomery 2001). As an example consider the set of αj(i) and δj
coefficients given in Table 15.10.

Of the 34 ¼ 81 possible runs in a four-factor, three-level experiment, there are only nine satisfying

the defining contrasts in Table 15.10. They constitute an L9 array, and are given in Table 15.11.

As in the case of the two-level arrays, the aliasing and resolution of the L9 array depend on the

choices of defining contrasts and number of factors (�4) that are used with this array.

Table 15.10 Coefficients

for the defining contrasts of

a 34�2 experiment

j α 1 α 2 α 3 α 4 δ j

1 1 1 2 0 0

2 1 0 1 1 0
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There are options for generating three-level fractional designs in JMP, Minitab, and SAS. The SAS

PROC FACTEX code for generating an L9 array is given in Fig. 15.5

Table 15.12 shows the array that was generated. SAS uses Helmert coding, so that

0 ! �1

1 ! 0

2 ! +1

Mixed-Level Arrays

Taguchi generated arrays that can accommodate both two-level and three-level factors simulta-

neously. The numbers of runs in these arrays are multiples of 6 (2 * 3). The most common would

be the L12 and L18 arrays. An example of an L12 array, generated with JMP, is given in Table 15.13.

Table 15.11 An L9 array Pattern X1 X2 X3 X4

1111 0 0 0 0

1223 0 1 1 2

1332 0 2 2 1

2122 1 0 1 1

2231 1 1 2 0

2313 1 2 0 2

3133 2 0 2 2

3212 2 1 0 1

3321 2 2 1 0

Fig. 15.5 SAS PROC FACTEX code for generating an L9 array
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This L12 array is an L4 array in two 2-level factors, expanded 3 times, once for each level of an

additional three-level factor. The L18 designs and their generation are more complex, and will not be

discussed. However, it is fairly simple to generate such arrays with the aforementioned software.

Table 15.14 shows an L18 array, generated using the Minitab DOE function, with one 2-level factor

and three 3-level factors.

Tolerance Design

Once the Parameter Design step is performed, and optimal values for the control parameters are

selected, an analysis called Tolerance Design may be performed to help reduce variation in the

response. Barker (1990) provides an example of a Tolerance Design analysis following a Parameter

Design experiment for selecting optimal control parameter values in an electrical circuit. The

Tolerance Design analysis is used to find which control parameters contribute the most to total

Table 15.12 L9 array

generated by SAS PROC

FACTEX

Table 15.9 – 3**(4-2) Res III design

The FACTEX procedure

Aliasing structure

H1 ¼ (2*H2) + (2*H3) ¼ H2 + H4 ¼ H3 + (2*H4)

(2*H1) ¼ H2 + H3 ¼ (2*H2) + (2*H4) ¼ (2*H3) + H4

H2 ¼ (2*H1) + (2*H3) ¼ H1 + (2*H4) ¼ H3 + H4

(2*H2) ¼ H1 + H3 ¼ (2*H1) + H4 ¼ (2*H3) + (2*H4)

H3 ¼ (2*H1) + (2*H2) ¼ H1 + H4 ¼ H2 + (2*H4)

(2*H3) ¼ H1 + H2 ¼ (2*H1) + (2*H4) ¼ (2*H2) + H4

H4 ¼ H1 + (2*H2) ¼ (2*H1) + H3 ¼ H2 + (2*H3)

(2*H4) ¼ (2*H1) + H2 ¼ H1 + (2*H3) ¼ (2*H2) + H3

H1 H2 H3 H4

�1 �1 �1 �1

�1 0 1 1

�1 1 0 0

0 �1 1 0

0 0 0 �1

0 1 �1 1

1 �1 0 1

1 0 �1 0

1 1 1 �1

Table 15.13 An L12 array X1 X2 X3 Pattern

1 1 1 ���
1 1 2 ��0

1 1 3 ��+

1 2 1 � + �
1 2 2 � + 0

1 2 3 �++

2 1 1 +��
2 1 2 + � 0

2 1 3 + � +

2 2 1 ++�
2 2 2 0

2 2 3 +++
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variability in the response (impedance). The total variability in the response is related by an equation

to the contribution to variability from each control parameter. The equation is used to determine the

degree to which each control parameter’s contribution to variance should be reduced in order to

achieve a desired level of overall variability. To create the equation, Barker first performs what is

called a variance components analysis (Searle et al. 2006). The idea is to take the total variance in a

set of data and ascribe to each term in a model a proportion of that variance. In order to accomplish

this, each term contributing to variance would be identified as a “random effect” in many software

packages. Figure 15.6 shows a screen from JMP “Fit Model” function for the tablet manufacturing

problem. The control parameters are identified as random effects via the “Attributes” feature. Note

that the method for estimating the variance components is set to REML (Restricted Maximum

Likelihood). This is the preferred method, as it can guarantee that all the components of variance

will be non-negative (a negative variance is an algebraic impossibility, so that any estimation method

should reflect this).

Figure 15.7 shows the JMP output for this model.

The column labeled “Pct of Total” gives the contribution of each term to the total variance of the

response, D50. The total variance was approximately 119.37, or a total standard deviation of about

10.93 min. If the response was centered at the target of 240 min, then about 95 % of the values would

be expected to be somewhere between 240 	 1.96*10.93, or from 218.58 to 261.42 min. If the EAS

wants to reduce the 95 % “range” of D50 values, she might want to know how much each control

parameter contributes to the total variance, and therefore know which parameters provide the greatest

potential for affecting a reduction in the variability. The equation Barker uses would be, for our

example:

Total Variance ¼ V Totalð Þ ¼ 119:37
¼ 0:00442*V Tð Þ þ 0:0000*V Cð Þ þ 0:8126*V Pð Þ þ 0:1830*V residualð Þ

The variance due to residual error (pure noise) is V(residual) ¼ 21.84. Suppose that a reduction in the

95 % range of D50 is desired to be 240 	 15 min, or (225,255). In other words, the EAS would want

240 � 1.96√V(Total) ¼ 225, so V(Total) would have to beV Totalð Þ ¼ 240�225
1:96

� �2 
 58:57. Thus, the
reduction in Total Variance requires is 58.57/119.37 
 0.4907. If T* and P* represent the required

Table 15.14 An L18 array X1 X2 X3 X4

1 1 1 1

1 1 2 2

1 1 3 3

1 2 1 1

1 2 2 2

1 2 3 3

1 3 1 2

1 3 2 3

1 3 3 1

2 1 1 3

2 1 2 1

2 1 3 2

2 2 1 2

2 2 2 3

2 2 3 1

2 3 1 3

2 3 2 1

2 3 3 2
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fraction of their current variance, and R* represents residual variance, then the Total Variance

Equation could be written as:

0.4907 ¼ 0.00442*T* + 0.8126*P* + 0.1830*R*

Fig. 15.6 JMP fit model specification for variance components analysis

Fig. 15.7 JMP variance components analysis output
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Subtracting out the contribution of residual variance (as a fraction of the Total Variance) gives:

0.4907 � 0.1830*21.84/119.37 
 0.4572 ¼ 0.00442*T* + 0.8126*P*

The next step is to find a reduced fraction of variance for either T* or P* to satisfy the equation.

Since this is a single equation in two unknowns (fortunately, C contributed nothing to the Total

Variance), some trial-and-error is required. Presume for a moment that the fraction of total variance

due to T does not change, i.e., T* ¼ 1.0000. Then solve the equation for P*:

P* ¼ (0.4572 � 0.00442(1))/0.8126 
 0.5572

That means in order to reach the goal of a 95 % range for D50 to be (225, 255), we need to reduce

the variance component for P from 96.9961 to 0.5572*96.9961 
 54.0462. Of course, further

experimentation with the factor P may be required in order to achieve the desired goal in reduction

to variance contribution.

Summary

Taguchi Methods® were developed as a means of using factorial experiments to improve process or

product design performance. The designs are sometimes not as efficient as fractional factorials that

include both control and noise parameters in a single “array”. In particular, the use of three-level

Taguchi designs may be much less efficient than second-order response surface designs such as Box–

Behnken or Central Composite. While Taguchi used the “signal-to-noise” transformation of the

quadratic loss function, it may be easier to use the loss function directly, in light of its more tractable

sampling properties. Taguchi’s implied presumption is that no control parameter would be included

in an experiment if the parameter was not already known to significantly affect the response variable.

Nevertheless, Dr. Taguchi provided a relatively easy method to assess alternative product or process

designs, and he introduced the notion of a loss function as a design tool.

One element of the discussion about robust design that is glaringly missing is the use of

approximating polynomials. Although the traditional Taguchi approach does not include fitting

models, least squares can of course be used with the orthogonal array designs. Approximating

polynomials might be used to fit the raw response data, or the loss function. In the case of loss, it

might be helpful if the logarithm of the absolute value of loss be used as the response, in order to

improve the fit and thus the predictive capability of the polynomial.

Key Points

• Dr. Taguchi considered that the appropriate response variable was the degree of loss due to

missing a target value.

• He used the quadratic loss function, and transformed it into what he called signal-to-noise ratios

(SNRs), so that the objective of design was to maximize SNR rather than minimize loss.

• The loss function has a fairly tractable set of sampling properties, so that it is possible to create

confidence intervals for it and compare average loss between two designs.

• Dr. Taguchi recognized that product and process design were multifactorial in nature, and he

employed factorial experiments to find optimal values of all the factors or features of the product

design.
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• Dr. Taguchi also recognized that factors can be classified into two main categories, namely control

and noise “parameters”. The control parameters are the factors to be optimized in face of the

variation possible among the noise parameters.

• The control and noise parameters are varied in two independent experimental arrays. The control

array is called the “inner” array, and the noise array is called the “outer” array. The original idea

was to run a complete outer array for every run of the inner array.

• A potentially economical method for representing noise without needing to completely replicate

the entire noise array for every run of the control parameter array is to run the noise array for one

set of control parameter conditions or states, and then find the two noise conditions that provide the

minimum and maximum average value of the raw response variable, and using only those two

noise conditions in conjunction with the control parameter array.

• The experimental process is performed in two stages, parameter design and tolerance design.

Parameter design is for optimization of the control parameter values. Tolerance design analyses

helps determine the degree to which contributions to overall variance from each control parameter

should be reduced in order to achieve an overall reduction in response variability.

Exercises and Questions

1. An EAS must design a better (humane) mousetrap. There are three control parameters:

(a) Box height

(b) Box length

(c) Door spring strength (controls the speed of closure)

There are two noise parameters:

N1) mouse length

N2) mouse speed

Assume a mouse may be simulated with a mechanical device having a particular length and speed.

What arrays would you suggest?

2. Using the data in Table 15.3, compute a two-sided 95 % confidence interval for the root mean

square percent loss when P ¼ 45 N (optimal conditions).
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