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Preface

Factorial design has always played a prominent role in the theory and prac-
tice of experimental design. It allows efficient and economic experimentation
with multiple input variables and has been successfully used in a wide range
of applications. Much research has been done and texts have been written
on factorial design in the 70 years since its inception. For economic reasons,
fractional factorials have been extremely popular, especially when the number
of factors is large and the runs are expensive. The first and perhaps the most
important issue faced by experimenters is the choice of a fractional factorial
design. Given the long history of factorial design, an “optimality” theory for
design selection should have emerged long ago. Surprisingly, the first serious
attempt in this direction was made only in the early sixties with the notion of
resolution. It became apparent later that this notion was not discriminating
as a criterion for design selection. Equally surprisingly, it took almost another
20 years to see the birth of the minimum aberration (MA) criterion, which
has since become the major criterion for selecting fractional factorial designs.
Once the importance of the MA criterion was recognized in the late eighties,
research on the theory and algorithms for finding MA and related designs
has grown rapidly in the last 15 years. Besides building and improving upon
existing techniques in projective geometry and coding theory, such research
has led to the development of novel techniques like complementary designs
and efficient search algorithms. Factorial designs with increasing complexity
in the underlying structure (e.g., mixed-levels, blocking, split-plots, and ro-
bust parameter design) have also received considerable attention. A detailed
description of this history and an account of the nature and contents of the
book appear in Chapter 1.

In 2000, the present authors felt that the time was ripe to start planning
and writing a modern book on factorial designs with the MA perspective. Such
a book should contain the major theoretical tools and results, and tables of
optimal or efficient designs available in the literature. It took several visits by
RM to CFJW at the Department of Statistics, University of Michigan, and
later at the School of Industrial and Systems Engineering, Georgia Institute
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of Technology, to complete the project. The hospitality and support of both
institutions are gratefully acknowledged.

All the mathematical and theoretical prerequisites are given in Chapter 2
of the book. For mathematically oriented readers, little additional background
is required to read and follow the logic and derivations in the book, since each
new concept is accompanied with a brief statistical explanation, justification,
or reference. For statistically oriented readers, background in basic design
and analysis of experiments will help in understanding and appreciating the
significance and impact of the concepts and results in the book. The book
can be used as a text for a graduate course in design theory in statistics or
mathematics programs and also as a reference text for a graduate course in
combinatorial mathematics. We hope that it will be a useful reference for
design researchers in general. The extensive collection of design tables should
endear it to practitioners and others interested in the use of factorial designs.

During the course of writing this book, we have received comments and
assistance from colleagues, and former and current students, including Aloke
Dey, Tirthankar Dasgupta, Xingwei Deng, Greg Dyson, Ying Hung, Abhyuday
Mandal, Zhiguang Qian, Xianggui Qu, and Hongquan Xu. We sincerely thank
all of them. The writing of the book was supported in part by NSF grant
DMS-0072489. RM also received support for this project from the Centre
for Management and Development Studies, Indian Institute of Management
Calcutta.

Rahul Mukerjee C.F. Jeff Wu
Calcutta Atlanta
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1

Introduction and Overview

1.1 Prologue

Design of experiments has played a fundamental role in the statistical cur-
riculum, practice, and research ever since R.A. Fisher founded the modern
discipline. It has been successfully applied in many fields of scientific investi-
gation. These include agriculture, medicine, and behavioral research as well as
chemical, manufacturing, and high-tech industries. Concepts like randomiza-
tion, effect confounding, and aliasing, which originated in design and analy-
sis of experiments, have found applications beyond their initial motivation.
Work on the mathematical aspects of design theory, such as block designs
and orthogonal arrays, has also stimulated new research in some branches of
mathematics such as algebra, combinatorics, and coding theory.

Experimental problems can be classified into five broad categories accord-
ing to their objectives (Wu and Hamada, 2000): (i) treatment comparison, (ii)
variable screening, (iii) response surface exploration, (iv) system optimization,
and (v) system robustness. Except for treatment comparison with one- or two-
way layouts, these problems involve the study of the effects of multiple input
variables on the experimental outcome, i.e., the response. These input vari-
ables are called factors and the experiments are called factorial experiments.
Each factor must have two or more settings so that the effect of change in
factor setting on the response can be explored. These settings are called lev-
els of the factor. Any combination of levels of factors is known as a treatment
combination. A treatment combination is also called a run in industrial exper-
imentation. Factorial design concerns the selection and arrangement of treat-
ment combinations in a factorial experiment. It is the most important class of
designs because of its richness in structure, theory, and applications. Applied
design texts typically devote a substantial part of their contents to factorial
designs. Indeed, any investigation involving multiple factors can benefit from
using the concept, theory, and methodology of factorial designs.

A full factorial design involves all possible treatment combinations. The
number of such combinations grows rapidly as the number of factors increases.
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For a factorial experiment with factors at two levels, this number increases
from 64 to 512 as the number of factors grows from 6 to 9. When each factor
has three levels, this number increases from 27 to 729 as the number of factors
grows from 3 to 6. For obvious economic reasons, a full factorial experiment
of large size may not be feasible. A practical solution is to choose a fraction of
the full factorial for experimentation. Choice of such fractions in an economic
and efficient way is the subject of fractional factorial designs.

We illustrate fractional factorial designs via a simple example. Consider
the 16 × 15 array, called a design matrix, in Table 1.1. The rows correspond
to treatment combinations (or runs) and the columns are used for assigning
factors. Each factor has two levels, denoted by 0 and 1 in the table. Columns
1 to 4 consist of all the 16 possible treatment combinations for four factors.
Columns 5 to 15 are formed by taking the sum modulo 2 of any two to four
columns out of the first four. For example, column 5 is obtained as the sum
modulo 2 of columns 1 and 2 and can be interpreted as representing the
interaction between the two factors assigned to columns 1 and 2. Suppose the
run size is fixed at 16. We can use the first four columns to form a 2×2×2×2
full factorial (abbreviated as a 24 factorial) to study four factors. With five
factors, the first four columns can be retained and an additional column out of
the remaining 11 (i.e., those numbered 5 to 15 in the table) can be chosen for
the fifth factor. Given a design objective, this would be an easy search, since
it involves only 11 different choices. The resulting design is a half-fraction of
the 25 factorial. As the number of factors increases, the size of search becomes
more formidable. For nine factors and 16 runs, we will need to find a 1/25

fraction of the 29 factorial, i.e., a 29−5 design. In addition to choosing the

Table 1.1 A 16-run design matrix

Column
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
3 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
4 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
5 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
6 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
7 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
8 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
9 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
10 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
11 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
12 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
13 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
14 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
15 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
16 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0
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first four columns, we then have to choose five more out of the remaining 11
columns, which involves 462 choices. For larger problems, this number can
grow astronomically. The same reasoning as before shows that for studying
13 two-level factors with 32 (= 25) runs, the search involves

(
31−5
13−5

)
=

(
26
8

) ≈
1.56 × 106 choices and the number grows from the millions to 1.65 billion
(≈ (

63−6
14−6

)
=

(
57
8

)
) for studying 14 factors with 64 (= 26) runs. By symmetry

arguments and other techniques, the size of search as represented by these
numbers can be reduced. But it conveys the message that sheer brute-force
search for economic and efficient designs is not feasible and a theory is called
for.

1.2 Why This Book?

Before addressing the issue of “optimal” selection of fractions, we must settle
on the choice of an optimality criterion. The first major criterion is that of
maximum resolution proposed by Box and Hunter (1961a,b). A fractional
factorial design with a higher resolution is considered to be more desirable
(definitions of technical terms are deferred to subsequent chapters). It was
later recognized that this criterion is not discriminating in the sense that
fractions with the same resolution can have very different properties as judged
by further considerations. After a span of nearly 20 years, Fries and Hunter
(1980) proposed a more discriminating criterion, called minimum aberration
(MA), for selecting optimal fractions. Apparently, this seminal work had its
roots in a table on two-level fractional factorial designs given by Box, Hunter,
and Hunter (1978, p.410). Even though their book did not mention the MA
criterion, all the designs in the said table do enjoy the MA property. The classic
work at the National Bureau of Standards (1957, 1959) also contained some
hints on the MA criterion but did not come close to defining it or capturing
its essence.

With the exception of the work by Franklin (1984, 1985), the Fries–Hunter
paper and the MA criterion went unnoticed for another decade. In the early
nineties, one of the present authors and his collaborators recognized the cen-
tral role of this criterion in selecting optimal fractional factorial designs and
the need to develop a theory and computational algorithms to characterize
and search for MA designs. Once the initial papers were published, this new
approach to factorial designs received immediate attention in the design com-
munity. The last fifteen years have witnessed a copious growth in the literature
on MA designs, their extension to more complex situations, and related criteria
like estimation capacity. This research has made a significant impact on text-
books and software. The applied design text by Wu and Hamada (2000) was
the first one to use the MA criterion extensively in selecting optimal fractions
and their tabulation. The second edition of the classic by Box, Hunter, and
Hunter (2005) also made reference to the MA criterion and designs. Statisti-
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cal packages such as SAS/QC, JMP, and Design-Ease now have the option of
using this criterion in selecting optimal fractions.

This book aims at providing a comprehensive account of the modern the-
ory of factorial designs with the MA approach at its core. In order to equip
the reader with the necessary background, we also develop some foundational
concepts and results. In addition, for practical use, extensive tables of MA
and related designs are given throughout the book. The combination of foun-
dational work, recent research results with the MA perspective, and design
tabulation forms the bulk of the book. Among books on factorial designs and
related topics outside the MA paradigm, we refer to Raktoe, Hedayat, and

and Stufken (1999).

1.3 What Is in the Book?

An outline of the book is given in this section. After the introductory chap-
ter, the mathematical foundation of factorial designs is developed at length in
Chapter 2. It begins with an introduction to factorial effects following the clas-
sic work of Bose (1947) and then moves on to define fractional factorial designs
via regular fractions. Optimality criteria based on resolution and aberration
are presented and justified by the effect hierarchy principle. Connection of
fractional factorial designs with orthogonal arrays, finite projective geometry,
and algebraic codes, and the relevant mathematical properties of the latter,
are discussed in the last three sections. The contents of this chapter provide
the mathematical prerequisite for the modern theory in the subsequent chap-
ters. Moreover, they constitute useful background material for other aspects
of experimental design such as incomplete block designs, Latin squares, and
response surface designs. Indeed, this chapter alone should be of value to those
interested in the general area of combinatorial design.

Chapters 3 to 5 form the next unit. Chapter 3 deals with MA designs in
the two-level case and presents the major tools and theoretical results. The
related concepts of clear effects and MaxC2 criterion are also discussed. A
comprehensive treatment of MA 2n−k designs with k ≤ 4 is given. For larger
k (i.e., highly fractionated experiments), a direct attack on the problem be-
comes unmanageable. A novel idea then is to relate the properties of a design
to those of its complementary design through some combinatorial identities.
This approach is particularly useful when the number of factors in the comple-
mentary design is smaller than that in the original design. The development
and applications of this powerful tool are discussed in detail. It will reappear
in the subsequent chapters in increasing complexity. A comprehensive collec-
tion of design tables with 16, 32, 64, and 128 runs is given and their practical
use is discussed. These tables include not only MA designs but also others
that are highly efficient according to the MA or MaxC2 criterion. The design

and Hedayat, Sloane,
Federer (1981), Dey (1985), John and Williams (1995), Dey and Mukerjee (1999),
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tables can be viewed as the “more applied” part of the book. They also form
a data base for possible use by design researchers.

Chapter 4 extends the above work to s-level factorials, s being a prime
or prime power. It first discusses the case of three-level designs and points
out the extra complication in the mathematical treatment and interpretation
of factorial effects while passing from two to three or higher levels. Barring
this complication, the contents and flow of this chapter are similar to those of
Chapter 3. By employing coding-theoretic tools, a major theorem is developed
relating MA designs to their complementary designs. This theorem is one of
the deepest and most significant among the recent work in design theory.
Three-level design tables with 27 and 81 runs are given and their practical
use is discussed. These tables, like those in Chapter 3, include MA designs
and other efficient ones.

As the MA criterion became popular, an attempt was made to provide fur-
ther statistical justification for it via an alternative criterion that relates more
directly to the estimability property under various model assumptions. This
led to the idea of maximum estimation capacity, which is the focus of Chapter
5. Both two- and general s-level factorials are treated. The main technical tool
is again the use of complementary designs, now called complementary sets.

The designs considered in Chapters 3 to 5 concern symmetrical factorials,
i.e., all the factors have the same number of levels. There are, however, prac-
tical situations in which the intrinsic nature of the factors does not allow such
symmetry. For example, all factors may have two levels except for a quali-
tative factor like part supply with four suppliers. The focus of Chapter 6 is
on asymmetrical (or mixed-level) designs, i.e., those with factors at different
numbers of levels. The simplest and most common example is given by the
mixed two- and four-level designs, which are constructed by the method of
replacement. MA designs with one or two four-level factors and a general num-
ber of two-level factors are presented. Designs with s-level and sr-level factors
are then considered. Projective geometry is used for describing such designs
and their MA property is investigated using the technique of complementary
sets. Tables of MA designs are given.

The next three chapters can be viewed as forming the last unit of the book.
They deal with designs that involve two distinct types of factors. In contrast
to Chapter 6, where the distinction among factors is in terms of the number
of factor levels, the distinction here is of a more subtle nature. Additional
care is needed and tools have to be developed to address the new features of
asymmetry. Chapter 7 covers full and fractional factorial designs arranged in
blocks. These designs incorporate a block structure in addition to the factorial
structure for the treatment factors. An extension of the MA criterion is given
for full factorials arranged in blocks. The problem of blocking in fractional
factorial designs is, however, complicated by the existence of two structures:
one defining the fraction for the treatment factors and the other defining
the blocking scheme. Projective geometry is used to describe the necessary
mathematical formulation, and various optimality criteria, motivated by MA,
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are discussed. Tables of block designs with desirable properties are given for
16, 32, 64, and 128 runs in the two-level case, and 27 and 81 runs in the
three-level case.

Chapter 8 is on fractional factorial split-plot designs, where the whole
plot and subplot factors cannot be treated symmetrically because of different
error structures. This necessitates supplementing the original MA criterion by
another follow-up criterion. As in the previous chapters, projective geometry
and complementary sets are used as the main technical tools. This chapter
concludes with tables of optimal designs.

Robust parameter design is a statistical/engineering methodology for vari-
ation reduction that works by choosing appropriate settings of the control fac-
tors so as to make the system insensitive to hard-to-control noise variations.
Parameter design experiments are commonly used in quality improvement,
and Chapter 9 gives an account of their planning aspects. Two experimental
formats, cross arrays and single arrays, are considered. A fundamental result
on the estimability property of cross arrays is given. Here the lack of sym-
metry is due to the different roles played by the control and noise factors in
the choice of designs and modeling strategies. A new effect ordering principle
is developed to address such asymmetry, taking due cognizance of the exper-
imental priorities. This, in turn, leads to a substantial modification of the
MA criterion. The use of the modified criterion in selecting optimal designs is
discussed.

Since the focus of the book is on design of experiments, the modeling issues
are seldom addressed. For information on modeling, analysis, and applications,
we refer to applied design texts like Montgomery (2000), Wu and Hamada
(2000), and Box, Hunter, and Hunter (2005).

1.4 Beyond the Book

In this section, we briefly indicate some promising recent topics in factorial
designs that are not covered in the book. They are still undergoing rapid
development and hence have yet to crystalize.

All the fractional factorial designs considered in the book are called regu-
lar. A precise definition is given in Section 2.4; see also Section 2.7. To give
an idea of what a regular fraction entails, let us refer to the design matrix in
Table 1.1. It is easy to see that the sum modulo 2 of any two different columns
of this matrix can be found among the remaining columns. In this sense, any
fractional factorial design given by a selection of columns from this matrix
is regular. On the other hand, designs arising from the 12-run matrix given
in Table 1.2 (Plackett and Burman, 1946) are nonregular; observe that the
sum modulo 2 of any two of its columns cannot be found among the remain-
ing columns. Traditionally, regular fractions have been the primary focus of
research in factorial designs. They have a neat mathematical structure that



1.4 Beyond the Book 7

Table 1.2 A 12-run Plackett–Burman design matrix

Column
Run 1 2 3 4 5 6 7 8 9 10 11

1 0 0 1 0 0 0 1 1 1 0 1
2 1 0 0 1 0 0 0 1 1 1 0
3 0 1 0 0 1 0 0 0 1 1 1
4 1 0 1 0 0 1 0 0 0 1 1
5 1 1 0 1 0 0 1 0 0 0 1
6 1 1 1 0 1 0 0 1 0 0 0
7 0 1 1 1 0 1 0 0 1 0 0
8 0 0 1 1 1 0 1 0 0 1 0
9 0 0 0 1 1 1 0 1 0 0 1
10 1 0 0 0 1 1 1 0 1 0 0
11 0 1 0 0 0 1 1 1 0 1 0
12 1 1 1 1 1 1 1 1 1 1 1

simplifies the derivation and facilitates the understanding of effect aliasing.
Moreover, they are the most commonly used designs in practice.

Over the years, nonregular designs had received some attention of re-
searchers mainly from the mathematical point of view. In the recent past,
however, there was a realization that they too could be utilized in conducting
efficient experiments with flexibility, run size economy, and ability to exploit

of interest in nonregular designs. The question of their
optimal selection was anatural research topic to follow the parallel work in the
regular case. Various extensions of the minimum aberration criterion to
nonregular designs were proposed. Some major ones are minimum G2-
aberration (Deng and Tang,1999; Tang and Deng, 1999), generalized minimum
aberration (Xu and Wu, 2001), and minimum moment aberration (Xu, 2003).
Although these criteria are mathematically equivalent to the MA criterion in
the regular case, some of them are potentially advantageous even for tackling
regular design problems with relatively complex structure such as blocking
(Xu, 2006). Through the use of indicator functions, Ye (2003) and Cheng
and Ye (2004) investigated nonregular designs from a different viewpoint.

Another promising area of research concerns supersaturated designs, where
the run size is not sufficient even for estimating all the main effects of the
factors. This can be a realistic scenario when the runs are expensive and the
problem is complex enough to suggest many factors for investigation. None
of the designs considered in the book is supersaturated. For example, the
design matrix in Table 1.1 can be used to study up to 15 two-level factors
with 16 runs. Suppose economic considerations limited the run size to 16 and
the investigators were insistent on including, say, as many as 19 factors in the
experiment. A supersaturated design in the form of a 16×19 array would then
be required. Various construction methods for supersaturated designs have
been proposed; see, e.g., Lin (1993, 1995), Wu (1993), Nguyen (1996), Yamada

This led to a growth
interactions (Hamada and Wu, 1992; WuandHamada,2000,Chapters 7 and 8).
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and Lin (1999), and Xu and Wu (2005). On the other hand, much less has been
done on their optimal choice from MA or related perspectives. Interestingly,
most of the optimality criteria for nonregular designs, as indicated in the last
paragraph, are potentially applicable to supersaturated designs.

A further research topic has its motivation in computer experiments. Tra-
ditionally, the great majority of experimentation is done by conducting phys-
ical experiments, which employ designs with factors typically at two to four
levels. As simulation and numerical experiments on a computer have become
technically and economically feasible, computer experiments are gradually as-
suming a significant role in engineering and science. Because the computer
models are usually very complex, it is often imperative to consider factors
with larger numbers of levels. The size of traditional designs can then become
impractically large and hence space-filling designs are used instead. Two ma-
jor classes of space-filling designs are Latin hypercube designs and uniform
designs. We refer to Santner, Williams, and Notz (2003) and Fang, Li, and
Sudjianto (2005) for details on design and modeling strategies for computer
experiments.



2

Fundamentals of Factorial Designs

The basic definitions and technical tools for factorial design theory are given in
this chapter. They include various mathematical definitions of factorial effects,
and tools like Galois fields, finite projective geometry, and coding theory.
These ideas and tools are used to define and discuss fundamental concepts such
as regular fractions, defining pencils, aliasing, resolution, minimum aberration,
and orthogonal arrays.

2.1 Factorial Effects

An experiment involving n (≥ 2) factors F1, . . . , Fn that appear at s1, . . . , sn

(≥ 2) levels is called an s1 × · · · × sn factorial experiment (or an s1 × · · · ×
sn factorial for brevity). In particular, if s1 = · · · = sn = s, it is called a
symmetrical sn factorial; otherwise it is called an asymmetrical factorial. For
1 ≤ i ≤ n, the si levels of the ith factor Fi are denoted by si symbols. Suppose
these levels are coded as 0, 1, . . . , si−1. Then a typical treatment combination,
i.e., a combination of the levels of the n factors, will be represented by an
ordered n-tuple j1 . . . jn, where ji ∈ {0, 1, . . . , si − 1}, 1 ≤ i ≤ n. Clearly,
altogether there are Πn

i=1si treatment combinations.
For example, if there are three factors at two, three, and three levels re-

spectively, then n = 3, s1 = 2, s2 = 3, s3 = 3, and there are 18 treatment
combinations, namely,

000, 001, 002, 010, 011, 012, 020, 021, 022,
100, 101, 102, 110, 111, 112, 120, 121, 122.

(2.1.1)

Let τ(j1 . . . jn) denote the treatment effect corresponding to a treatment
combination j1 . . . jn. These treatment effects are unknown parameters in the
context of a factorial experiment. A linear parametric function

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

l(j1 . . . jn)τ(j1 . . . jn), (2.1.2)
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where l(j1 . . . jn) are real numbers, not all zero, such that

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

l(j1 . . . jn) = 0, (2.1.3)

is called a treatment contrast. In factorial experiments, we are concerned with
special types of treatment contrasts, namely, those belonging to factorial ef-
fects.

To motivate the ideas, consider the simple case of a 22 factorial. Then
there are two factors F1 and F2, each at two levels 0 and 1, and the four
treatment combinations are 00, 01, 10, and 11. The effect of changing the
factor F1 from level 0 to level 1, with the factor F2 held fixed at level 0, is
clearly given by

L(F1|F2 = 0) = τ(10) − τ(00). (2.1.4)

Similarly, the effect of changing F1 from level 0 to level 1, with F2 held fixed
at level 1, is given by

L(F1|F2 = 1) = τ(11) − τ(01). (2.1.5)

The main effect of F1 is measured by the arithmetic mean of the two quantities
in (2.1.4) and (2.1.5), which is given by

L(F1) =
1
2
[{τ(10) − τ(00)} + {τ(11) − τ(01)}]. (2.1.6)

Observe that L(F1) is of the form (2.1.2), with

l(00) = l(01) = −1
2
, l(10) = l(11) =

1
2
. (2.1.7)

Clearly l(00), l(01), l(10), and l(11) add up to zero, i.e., satisfy (2.1.3). Thus
L(F1) is a treatment contrast that measures the main effect of F1. Interchang-
ing the roles of F1 and F2, it is obvious that the main effect of the factor F2

is given by the treatment contrast

L(F2) =
1
2
[{τ(01) − τ(00)} + {τ(11) − τ(10)}]. (2.1.8)

Continuing with a 22 factorial, we next consider the interaction between F1

and F2. This is measured by the influence of the level where F2 is held fixed
on the effect of a level change of F1. Thus the difference between L(F1|F2 =
1) and L(F1|F2 = 0) measures this interaction. By (2.1.4) and (2.1.5), the
interaction F1F2 is then measured by

L(F1F2) =
1
2
[{τ(11) − τ(01)} − {τ(10) − τ(00)}]

=
1
2
{τ(11) − τ(01) − τ(10) + τ(00)}, (2.1.9)
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which is again a treatment contrast. The interaction F1F2 could as well be
visualized in terms of the influence of the level where F1 is held fixed on the
effect of a level change of F2. This is reflected in the fact that (2.1.9) remains
invariant when the roles of the two factors are interchanged.

The two main effects corresponding to the factors F1 and F2 and the
interaction F1F2 are the factorial effects arising in a 22 factorial. Thus in a 22

factorial, we will be concerned with the treatment contrasts L(F1), L(F2), and
L(F1F2), which represent these three factorial effects respectively. Incidentally,
in most statistical applications, treatment contrasts are scaled appropriately,
which is why the multiplier 1/2 in (2.1.6), (2.1.8), or (2.1.9) will have no special
significance in the subsequent development. Indeed, even if this multiplier
1/2 is replaced by any other nonzero constant, one would still get treatment
contrasts proportional to L(F1), L(F2), or L(F1F2) respectively.

We now turn to the general case of an s1 × · · · × sn factorial and intro-
duce the following definition (Bose, 1947) for treatment contrasts belonging
to factorial effects.

Definition 2.1.1. A treatment contrast

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

l(j1 . . . jn)τ(j1 . . . jn)

belongs to the factorial effect Fi1 . . . Fig
(1 ≤ i1 < · · · < ig ≤ n; 1 ≤ g ≤ n) if

(i) l(j1 . . . jn) depends only on ji1 , . . . , jig
,

(ii)writing l(j1 . . . jn) = l(ji1 . . . jig
) in view of (i) above, the sum of l(ji1 . . . jig

)
separately over each of the arguments ji1 , . . . , jig

is zero.

A factorial effect Fi1 . . . Fig
, as defined above, will be called a main effect if

it involves exactly one factor (i.e., g = 1) and an interaction if it involves more
than one factor (i.e., g > 1). Clearly, there are n main effects and

(
n
g

)
g-factor

interactions. Thus the total number of factorial effects in an s1 × · · · × sn

factorial is (
n

1

)
+

(
n

2

)
+ · · · +

(
n

n

)
= 2n − 1.

This is in agreement with our earlier enumeration of three factorial effects
— two main effects and a two-factor interaction (abbreviated as 2fi) — in a
22 factorial. The order of a factorial effect is the number of factors that it
involves. For example, a main effect is of order 1, a 2fi is of order 2, and so
on.

We now demonstrate how the ideas developed previously for a 22 factorial
are encapsulated in Definition 2.1.1. By taking g = 1 and i1 = 1 in this
definition, a treatment contrast belongs to the main effect of F1 provided it
is of the form

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

l(j1)τ(j1 . . . jn), (2.1.10)
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where
s1−1∑
j1=0

l(j1) = 0. (2.1.11)

Note that (2.1.10) and (2.1.11) correspond to the requirements (i) and (ii)
respectively of Definition 2.1.1. Consider now the contrast L(F1) given in
(2.1.6) and observe that it can be expressed as

L(F1) = −1
2
{τ(00) + τ(01)} +

1
2
{τ(10) + τ(11)}.

Hence, in compatibility with Definition 2.1.1 (i), the coefficient of τ(j1j2) in
L(F1) depends only on j1. In other words, L(F1) is of the form (2.1.10) with
l(0) = −1/2 and l(1) = 1/2. Obviously, l(0) + l(1) equals zero, as it should in
view of (2.1.11). Similarly, one can easily check that L(F2), given in (2.1.8),
is also in agreement with Definition 2.1.1.

Turning to the case of the 2fi F1F2, we take g = 2, i1 = 1, and i2 = 2 in
Definition 2.1.1. Then a treatment contrast belongs to F1F2 provided it is of
the form

s1−1∑
j1=0

· · ·
sn−1∑
jn=0

l(j1j2)τ(j1 . . . jn), (2.1.12)

where
s1−1∑
j1=0

l(j1j2) = 0 for each j2(0 ≤ j2 ≤ s2 − 1), (2.1.13)

and
s2−1∑
j2=0

l(j1j2) = 0 for each j1(0 ≤ j1 ≤ s1 − 1). (2.1.14)

As before, (2.1.12) is dictated by the requirement (i) of Definition 2.1.1,
whereas (2.1.13) and (2.1.14) are dictated by the requirement (ii). The con-
trast L(F1F2) defined in (2.1.9) is of the form (2.1.12) with l(00) = l(11) = 1/2
and l(01) = l(10) = −1/2. They obviously satisfy (2.1.13) and (2.1.14). Hence
L(F1F2) is again in agreement with the concept of a treatment contrast be-
longing to interaction F1F2 given in Definition 2.1.1.

2.2 Kronecker Product Formulation for Factorial Effects

Continuing with an s1×· · ·×sn factorial, we now discuss some basic properties
of treatment contrasts belonging to factorial effects. An alternative formula-
tion for such contrasts, which is equivalent to Definition 2.1.1 but involves
Kronecker products of matrices, will be helpful in this context. This formu-
lation was introduced formally by Kurkjian and Zelen (1962, 1963). Some of
their ideas were inherent in Zelen (1958) and Shah (1958).
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The definition and a few elementary properties of the Kronecker product
of matrices are given here; more details are available in Rao (1973, Chapter 1).
If B1 =

((
b
(1)
ij

))
and B2 are matrices of orders p1×q1 and p2×q2 respectively,

then the Kronecker product of B1 and B2, denoted by B1 ⊗ B2, is a (p1p2) ×
(q1q2) matrix defined as

B1 ⊗ B2 =
((

b
(1)
ij B2

))
in the partitioned form. Similarly, the Kronecker product of three matrices
B1, B2, and B3 is defined as

B1 ⊗ B2 ⊗ B3 = B1 ⊗ (B2 ⊗ B3) = (B1 ⊗ B2) ⊗ B3,

and so on. The following properties of Kronecker product will be useful in the
sequel:

(i) for any n matrices B1, · · · , Bn,

(B1 ⊗ · · · ⊗ Bn)′ = B′
1 ⊗ . . . ⊗ B′

n,

where the prime denotes transpose;
(ii) for any n matrices B1, . . . , Bn,

rank(B1 ⊗ · · · ⊗ Bn) = Πn
i=1 rank(Bi);

(iii) for any 2n matrices B11, . . . , B1n, B21, . . . , B2n,

(B11 ⊗ · · · ⊗ B1n)(B21 ⊗ · · · ⊗ B2n) = (B11B21) ⊗ · · · ⊗ (B1nB2n),

provided the ordinary product B1iB2i is well-defined for every i (1 ≤ i ≤
n).

We are now in a position to proceed with the Kronecker product formula-
tion for treatment contrasts belonging to factorial effects in an s1×· · ·×sn fac-
torial. Some notation and preliminaries will help. First, we write v = Πn

i=1si to
denote the total number of treatment combinations. Without loss of general-
ity, assume that the v treatment combinations are arranged lexicographically.
For example, if n = 2, they are arranged as

00, 01, . . . , 0s̄2, 10, 11, . . . , 1s̄2, . . . , s̄10, s̄11, . . . , s̄1s̄2,

where s̄1 = s1 − 1 and s̄2 = s2 − 1. Another example of a lexicographic
arrangement with n = 3, s1 = 2, s2 = s3 = 3 appears in (2.1.1). Let τ
be a column vector, of order v, with elements given by the treatment effects
τ(j1 . . . jn) (0 ≤ ji ≤ si − 1, 1 ≤ i ≤ n), which are lexicographically arranged.
Any treatment contrast can then be expressed as l′τ , where l is a nonnull v×1
vector whose elements add up to zero.

For the Kronecker product formulation, it will be convenient to work with
an alternative notational system for factorial effects. Observe that a typical
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factorial effect Fi1 . . . Fig
can be denoted by F (y), where y = y1 . . . yn is a

binary n-tuple such that

yi =
{

1 if i ∈ {i1, . . . , ig},
0 otherwise. (2.2.1)

This establishes a one-to-one correspondence between the set of the 2n − 1
factorial effects and the set Ω of the 2n − 1 nonnull binary n-tuples. For
example, with n = 3, the main effect of F2 can be denoted by F (010), the
interaction F1F3 by F (101), and so on.

We will need some more notation. For 1 ≤ i ≤ n, let 1i be the si × 1
vector with all elements unity, Ii the identity matrix of order si, and Mi an
(si − 1) × si matrix such that

rank(Mi) = si − 1, Mi1i = 0. (2.2.2)

Of course, these equations do not specify Mi uniquely, but the present dis-
cussion does not depend on the specific choice of Mi as long as it satisfies
the conditions in (2.2.2). For any y = y1 . . . yn ∈ Ω, the set of nonnull binary
n-tuples, define

M(y) = My1
1 ⊗ · · · ⊗ Myn

n , (2.2.3)

where, for 1 ≤ i ≤ n,

Myi

i =
{

1′i if yi = 0,
Mi if yi = 1. (2.2.4)

It is not hard to see that M(y) involves m(y) rows and v columns, where

m(y) = Πn
i=1(si − 1)yi . (2.2.5)

We now present the main result of this section, giving a Kronecker product
formulation for treatment contrasts belonging to factorial effects.

Theorem 2.2.1. For any y = y1 . . . yn ∈ Ω, a treatment contrast l′τ belongs
to the factorial effect F (y) if and only if

l′ ∈ R[M(y)],

where R[M(y)] stands for the row space of M(y).

The proof of this theorem is somewhat lengthy. Hence we postpone the proof
till the end of this section and first discuss the implications of the theorem.
Note that by (2.2.2) and (2.2.4), Myi

i has full row rank for each i (1 ≤ i ≤ n).
Hence by (2.2.3), M(y) has full row rank for every y ∈ Ω. Since M(y) has
m(y) rows, the following result is evident from Theorem 2.2.1.

Theorem 2.2.2. For any y = y1 . . . yn ∈ Ω, the maximal number of linearly
independent treatment contrasts belonging to the factorial effect F (y) is m(y).
Furthermore, the m(y) elements of M(y)τ represent a maximal set of linearly
independent treatment contrasts belonging to F (y).
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The concept of orthogonality of treatment contrasts plays a crucial role in
factorial experiments. Two treatment contrasts l(1)

′
τ and l(2)

′
τ are said to be

orthogonal if
l(1)

′
l(2) = 0. (2.2.6)

For example, from (2.1.6), (2.1.8), and (2.1.9), any two of the contrasts L(F1),
L(F2), and L(F1F2) are orthogonal to each other. Since these contrasts belong
to different factorial effects, this is actually a consequence of a more general
result as presented below.

Theorem 2.2.3. Any two treatment contrasts belonging to different factorial
effects are orthogonal.

Proof. In view of (2.2.6) and Theorem 2.2.1, it is enough to show that

M(y)M(z)′ = 0 (2.2.7)

whenever y = y1 . . . yn and z = z1 . . . zn are distinct members of Ω. Now by
(2.2.3),

M(y)M(z)′ = (My1
1 (Mz1

1 )′) ⊗ · · · ⊗ (Myn
n (Mzn

n )′). (2.2.8)

If y and z are distinct members of Ω, then yi �= zi for some i. Without
loss of generality, let y1 �= z1 and suppose y1 = 1, z1 = 0. Then by (2.2.2)
and (2.2.4),

My1
1 (Mz1

1 )′ = 0,

and (2.2.7) follows from (2.2.8). �

Theorems 2.2.2 and 2.2.3 together have an interesting implication. Since
a typical treatment contrast is of the form l′τ, where l is a nonnull v × 1
vector whose elements add up to zero, clearly the maximal number of linearly
independent treatment contrasts (belonging to factorial effects or not) is v−1.
By (2.2.5),

v − 1 =
n∏

i=1

si − 1 =
n∏

i=1

(si − 1 + 1) − 1 =
∑
y∈Ω

m(y).

Hence, in view of Theorems 2.2.2 and 2.2.3, we reach the satisfying conclu-
sion that treatment contrasts belonging to factorial effects together span all
treatment contrasts.

Theorem 2.2.2, in conjunction with (2.2.3) and (2.2.4), also helps in ex-
plicitly describing treatment contrasts belonging to various factorial effects in
any given context. Here is an illustrative example.

Example 2.2.1. Consider a 2×3×3 factorial whose treatment combinations
have already been given in (2.1.1). Here n = 3 and, following (2.1.1), the
vector τ, with lexicographically arranged elements τ(j1j2j3), is given by τ =
(τ(000), τ(001), . . . , τ(121), τ(122))′. Since s1 = 2, s2 = s3 = 3, we have
11 = (1, 1)′, 12 = 13 = (1, 1, 1)′. Also, following (2.2.2) one can take
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M1 = (−1 1),M2 = M3 =
[ −1 0 1

1 −2 1

]
.

By (2.2.3) and (2.2.4),

M(100) = M1 ⊗ 1′2 ⊗ 1′3, M(010) = 1′1 ⊗ M2 ⊗ 1′3,
M(001) = 1′1 ⊗ 1′2 ⊗ M3, M(110) = M1 ⊗ M2 ⊗ 1′3,
M(101) = M1 ⊗ 1′2 ⊗ M3, M(011) = 1′1 ⊗ M2 ⊗ M3,
M(111) = M1 ⊗ M2 ⊗ M3,

where the matrices Mi and the vectors 1i are stated above.
By Theorem 2.2.2, the elements of M(100)τ, M(010)τ, and M(001)τ rep-

resent maximal sets of linearly independent treatment contrasts belonging
to the factorial effects F (100), F (010), and F (001), i.e., the main effects of
F1, F2, and F3 respectively. Similarly, the elements of M(110)τ, M(101)τ,
M(011)τ, and M(111)τ represent maximal sets of linearly independent treat-
ment contrasts belonging to interactions F1F2, F1F3, F2F3, and F1F2F3

respectively. �

Before concluding this section, we present a proof of Theorem 2.2.1. The
following lemma will be useful.

Lemma 2.2.1. For any g (1 ≤ g ≤ n), the row spaces of the matrices M1 ⊗
· · · ⊗ Mg and

Hg =

⎡⎢⎣ 1′1 ⊗ I2 ⊗ · · · ⊗ Ig

...
I1 ⊗ · · · ⊗ Ig−1 ⊗ 1′g

⎤⎥⎦ (2.2.9)

are orthogonal complements of each other.

Proof. To give a flavor of the basic idea of the proof without making the
notation too complex, we prove the lemma for g = 3. At the expense of
heavier notation, the lemma can be proved similarly for any g. By (2.2.9),

H3 =

⎡⎣ 1′1 ⊗ I2 ⊗ I3

I1 ⊗ 1′2 ⊗ I3

I1 ⊗ I2 ⊗ 1′3

⎤⎦ .

For 1 ≤ i ≤ 3, let

M i =
[

1′i
Mi

]
. (2.2.10)

By (2.2.2), M i is nonsingular for every i. Hence premultiplying H3 by the
nonsingular matrix diag(M2 ⊗ M3,M1 ⊗ M3,M1 ⊗ M2) yields

R(H3) = R
⎡⎣ 1′1 ⊗ M2 ⊗ M3

M1 ⊗ 1′2 ⊗ M3

M1 ⊗ M2 ⊗ 1′3

⎤⎦ , (2.2.11)
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where, as before, R(·) stands for the row space of a matrix. But by (2.2.10),

1′1 ⊗ M2 ⊗ M3 =

⎡⎢⎢⎣
1′1 ⊗ 1′2 ⊗ 1′3
1′1 ⊗ 1′2 ⊗ M3

1′1 ⊗ M2 ⊗ 1′3
1′1 ⊗ M2 ⊗ M3

⎤⎥⎥⎦ .

On the basis of similar considerations for M1 ⊗ 1′2 ⊗ M3 and M1 ⊗ M2 ⊗ 1′3,
it follows from (2.2.11) that

R(H3) = R(M̃), (2.2.12)

where

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1′1 ⊗ 1′2 ⊗ 1′3
1′1 ⊗ 1′2 ⊗ M3

1′1 ⊗ M2 ⊗ 1′3
1′1 ⊗ M2 ⊗ M3

M1 ⊗ 1′2 ⊗ 1′3
M1 ⊗ 1′2 ⊗ M3

M1 ⊗ M2 ⊗ 1′3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.2.13)

Now by (2.2.10), [
M̃

M1 ⊗ M2 ⊗ M3

]
= M1 ⊗ M2 ⊗ M3

is nonsingular, while by (2.2.2) and (2.2.13), M̃(M1 ⊗ M2 ⊗ M3)′ = 0. Hence
the row spaces of M̃ and M1 ⊗M2 ⊗M3 are orthogonal complements of each
other. Therefore, by (2.2.12), so are the row spaces of H3 and M1 ⊗M2 ⊗M3.

�
Proof (Proof of Theorem 2.2.1). For notational simplicity, without loss of
generality, consider the factorial effect F (y), where y = y1 . . . yn is given by

y1 = · · · = yg = 1, yg+1 = · · · = yn = 0 (2.2.14)

for some g. By (2.2.1), this amounts to considering the factorial effect F1 . . . Fg.
Note that by (2.2.3) and (2.2.4),

M(y) = M1 ⊗ · · · ⊗ Mg ⊗ 1′g+1 ⊗ · · · ⊗ 1′n (2.2.15)

for y as in (2.2.14). In order to prove the “only if” part, let the treatment
contrast l′τ belong to the factorial effect F (y). Then, interpreting the condi-
tions of Definition 2.1.1 in matrix notation, by condition (i) of the definition
and (2.2.14),

l = l ⊗ 1g+1 ⊗ · · · ⊗ 1n, (2.2.16)
where l is a column vector of order Πg

i=1si. Furthermore, by condition (ii)
of the definition, l satisfies Hgl = 0, where Hg is defined in (2.2.9). Hence
by Lemma 2.2.1, l

′ ∈ R(M1 ⊗ · · · ⊗ Mg). Therefore, by (2.2.15) and (2.2.16),
l′ ∈ R[M(y)], which proves the “only if” part. The proof of the “if” part
follows by reversing the above steps. �
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2.3 A Representation for Factorial Effects
in Symmetrical Factorials

We now focus on the sn symmetrical factorial, i.e., s1 = · · · = sn = s, where
s is a prime or prime power. The theory to be developed here covers, in
particular, the 2n and 3n factorials, which have been of special interest in the
literature from both theoretical and practical considerations. We shall follow
Bose (1947) throughout this section. It will be seen that for an sn factorial
there exists a mathematically elegant representation for treatment contrasts
belonging to factorial effects. This representation provides, in particular, a
significant insight into the issues underlying fractional factorial designs to be
introduced later in this chapter.

The developments in this and subsequent sections will heavily involve the
use of finite fields. A field is a set of elements over which two binary operations,
namely addition and multiplication, are defined such that

(i) the elements of the set form a commutative group under addition,
(ii) the nonzero elements of the set form a commutative group under multi-

plication, and
(iii) the distributive laws hold.

A finite field is nothing but a field having a finite number of elements.
Since s (≥ 2) is a prime or prime power, there exists a finite field with

s elements. Such a field is called a Galois field of order s and denoted by
GF (s). Let α0, α1, . . . , αs−1 be the elements of GF (s), where α0(= 0) and
α1(= 1) are the identity elements with respect to the operations of addition
and multiplication respectively. A good reference for Galois fields is van der
Waerden (1966). In particular, when s is a prime, addition and multiplication
over GF (s) are simply the corresponding operations over the set of integers
{0, 1, . . . , s − 1} modulo s.

A typical treatment combination j1 . . . jn (0 ≤ ji ≤ s − 1; 1 ≤ i ≤ n) of
an sn factorial is identified with the vector (αj1 , . . . , αjn

)′. The sn treatment
combinations are thus represented by the sn vectors of the form

x = (x1, . . . , xn)′, (2.3.1)

where xi ∈ GF (s) for all i. From a geometric viewpoint, the sn vectors of
the form (2.3.1) are points of the n-dimensional finite Euclidean geometry
EG(n, s), based on GF (s) (see Raghavarao, 1971, pages 357–359, for details).
Thus, from a geometric perspective, the sn treatment combinations are rep-
resented by the sn points of EG(n, s). The effect of a treatment combination
represented by x will be denoted by τ(x). Some preliminaries are needed at
this stage.

Lemma 2.3.1. Let b = (b1, . . . , bn)′ be any fixed nonnull vector over GF (s).
Then each of the sets
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Vj(b) = {x = (x1, . . . , xn)′ : b′x = αj}, 0 ≤ j ≤ s − 1, (2.3.2)

has cardinality sn−1.

Proof. Without loss of generality, let b1 �= 0. Then by (2.3.2), x = (x1, . . . ,
xn)′ ∈ Vj(b) if and only if

x1 = b−1
1

(
αj −

n∑
i=2

bixi

)
. (2.3.3)

By (2.3.3), for any x = (x1, . . . , xn)′ ∈ Vj(b), x1 is uniquely determined by
x2, . . . , xn. Since there are sn−1 choices of x2, . . . , xn, the result follows. �

Clearly, the sets Vj(b), 0 ≤ j ≤ s − 1, provide a disjoint partition of
the class of all treatment combinations, or equivalently, of the sn points of
the finite Euclidean geometry EG(n, s). These sets are therefore collectively
called a parallel pencil of flats of EG(n, s). Hence b itself is said to represent
a pencil.

A treatment contrast L is said to belong to the pencil b if it is of the form

L =
s−1∑
j=0

lj

{ ∑
x∈Vj(b)

τ(x)
}

, (2.3.4)

where l0, l1, . . . , ls−1 are real numbers, not all zero, satisfying

s−1∑
j=0

lj = 0.

In other words, a treatment contrast L belongs to b if for all x belonging to
the same Vj(b), the coefficient of τ(x) in L is also the same. By (2.3.4), there
are s − 1 linearly independent treatment contrasts belonging to any pencil b.

Example 2.3.1. Consider a 32 factorial, i.e., s = 3, n = 2. The elements of
GF (3) are simply 0, 1, and 2, and as indicated before, addition and multipli-
cation over GF (3) are the corresponding operations over {0, 1, 2} modulo 3.
(i) First consider the pencil b = (1, 2)′. Then by (2.3.2),

V0(b) = {x = (x1, x2)′ : x1 + 2x2 = 0} = {(0, 0)′, (1, 1)′, (2, 2)′}. (2.3.5)

Similarly,

V1(b) = {(0, 2)′, (1, 0)′, (2, 1)′}, V2(b) = {(0, 1)′, (1, 2)′, (2, 0)′}. (2.3.6)

As such, by (2.3.4), any treatment contrast of the form

L = l0{τ(0, 0) + τ(1, 1) + τ(2, 2)} + l1{τ(0, 2) + τ(1, 0) + τ(2, 1)}
+l2{τ(0, 1) + τ(1, 2) + τ(2, 0)}, (2.3.7)
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where l0 + l1 + l2 = 0, belongs to the pencil b = (1, 2)′. In particular, the
choices l0 = −1, l1 = 0, l2 = 1, and l0 = 1, l1 = −2, l2 = 1, yield two
linearly independent (in fact, orthogonal) contrasts belonging to b.

Incidentally, in this section, the treatment combinations are represented by
column vectors as in (2.3.1). Hence in (2.3.7), one should have ideally written
τ((0, 0)′), τ((1, 1)′) etc. in place of τ(0, 0), τ(1, 1) etc., respectively. This minor
notational change was made in (2.3.7) for simplicity in presentation. Similar
simplified notation will be adopted later on when no ambiguity is caused.

(ii) Consider now the pencil b = (2, 1)′. Then as before,

V0(b) = {(0, 0)′, (1, 1)′, (2, 2)′},
V1(b) = {(0, 1)′, (1, 2)′, (2, 0)′}, V2(b) = {(0, 2)′, (1, 0)′, (2, 1)′}.

These sets are the same as those in (2.3.5) and (2.3.6) with V1(b) and V2(b)
interchanged. Hence it is easily seen that treatment contrasts belonging to the
pencil (2, 1)′ also belong to the pencil (1, 2)′ and vice versa.

(iii) Consider next the pencil b = (1, 1)′. Then

V0(b) = {(0, 0)′, (1, 2)′, (2, 1)′},
V1(b) = {(0, 1)′, (1, 0)′, (2, 2)′}, V2(b) = {(0, 2)′, (1, 1)′, (2, 0)′}.

By (2.3.4), a typical treatment contrast belonging to the pencil b = (1, 1)′

is of the form

L∗ = l∗0{τ(0, 0) + τ(1, 2) + τ(2, 1)} + l∗1{τ(0, 1) + τ(1, 0) + τ(2, 2)}
+l∗2{τ(0, 2) + τ(1, 1) + τ(2, 0)},

(2.3.8)
where l∗0 + l∗1 + l∗2 = 0. It is easily seen that the sum of products of the
corresponding coefficients in (2.3.7) and (2.3.8) equals

(l0 + l1 + l2)(l∗0 + l∗1 + l∗2) = 0.

Thus any treatment contrast belonging to the pencil (1, 1)′ is orthogonal to
any treatment contrast belonging to the pencil (1, 2)′. �

The ideas implicit in the above example will now be formalized. First note
that the pencils (1, 2)′ and (2, 1)′ considered in parts (i) and (ii) of the example
are proportional to each other, in the sense that (1, 2)′ = 2(2, 1)′ over GF (3).
In general, consider any two pencils b and b∗ such that b∗ = λb for some
λ(�= 0) ∈ GF (s). Then by (2.3.2),

x ∈ Vj(b) ⇔ b′x = αj ⇔ b∗
′
x = λαj . (2.3.9)

Since λ is nonzero, λαj assumes all possible values in GF (s) as j varies over
the range {0, 1, . . . , s− 1}. Therefore, by (2.3.2) and (2.3.9), the pencils b and
b∗ induce exactly the same partition of the class of all treatment combinations.
This is precisely what happened in parts (i) and (ii) of the example. In view
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of the above, hereafter, pencils with proportional entries will be considered as
identical. Since the pencils have to be nonnull too, it follows that there are
(sn − 1)/(s − 1) distinct pencils, no two of which are proportional to each
other. Thus in a 32 factorial, there are (32 − 1)/(3 − 1) = 4 distinct pencils,
namely,

(1, 0)′, (0, 1)′, (1, 1)′, (1, 2)′. (2.3.10)

Hereafter, only distinct pencils will be considered in a given context, even when
this is not stated explicitly. The same consideration applies to counting pencils
with any specific property. For example, we will simply write “in a 32 factorial,
there are two pencils with both entries nonzero” to mean that there are two
such distinct pencils.

As noted in part (iii) of Example 2.3.1, treatment contrasts belonging to
the pencils (1, 1)′ and (1, 2)′ are orthogonal. Theorem 2.3.1 below presents
a general result in this regard. The following lemma helps in proving the
theorem.

Lemma 2.3.2. If b(1) and b(2) are distinct pencils, then for every j, j′(0 ≤
j, j′ ≤ s − 1), the set Vj(b(1)) ∩ Vj′(b(2)) has cardinality sn−2.

Proof. An argument similar to the proof of Lemma 2.3.1 will be used. Let
b(1) = (b11, b12, . . . , b1n)′, b(2) = (b21, b22, . . . , b2n)′. By (2.3.2),

x = (x1, . . . , xn)′ ∈ Vj(b(1)) ∩ Vj′(b(2)) (2.3.11)

if and only if [
b11 b12 . . . b1n

b21 b22 . . . b2n

]
x =

(
αj

αj′

)
. (2.3.12)

Since b(1) and b(2) are distinct pencils, they are not proportional to each
other. As such, the 2 × n matrix appearing in the left-hand side of (2.3.12)
has rank two. Without loss of generality, let its first two columns be linearly
independent. Then the 2 × 2 matrix[

b11 b12

b21 b22

]
is nonsingular, and (2.3.12) can be expressed as(

x1

x2

)
=

(
b11 b12

b21 b22

)−1 (
αj −

∑n
i=3 b1ixi

αj′ −∑n
i=3 b2ixi

)
.

Hence for any x = (x1, . . . , xn)′ satisfying (2.3.11), x1 and x2 are uniquely
determined by x3, . . . , xn. Since there are sn−2 choices of x3, . . . , xn, the result
follows. �

Theorem 2.3.1. Treatment contrasts belonging to distinct pencils are orthog-
onal to each other.
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Proof. Following (2.3.4), consider any two treatment contrasts

L1 =
s−1∑
j=0

l1j

{ ∑
x∈Vj(b(1))

τ(x)
}

(2.3.13)

and

L2 =
s−1∑
j=0

l2j

{ ∑
x∈Vj(b(2))

τ(x)
}

(2.3.14)

belonging to distinct pencils b(1) and b(2) respectively, where

s−1∑
j=0

l1j =
s−1∑
j=0

l2j = 0. (2.3.15)

In view of (2.2.6), we consider the sum of products of the corresponding coef-
ficients in (2.3.13) and (2.3.14). Any x ∈ Vj(b(1))∩Vj′(b(2)) contributes l1j l2j′

to this sum. Hence by Lemma 2.3.2, this sum of products equals

sn−2
s−1∑
j=0

s−1∑
j′=0

l1j l2j′ = sn−2

( s−1∑
j=0

l1j

)( s−1∑
j′=0

l2j′

)
,

and invoking (2.3.15), the result follows. �

The next result links pencils with factorial effects.

Theorem 2.3.2. Let b = (b1, . . . , bn)′ be a pencil such that

bi �= 0 if i ∈ {i1, . . . , ig}, and = 0 otherwise, (2.3.16)

where 1 ≤ i1 < · · · < ig ≤ n and 1 ≤ g ≤ n. Then any treatment contrast
belonging to b also belongs to the factorial effect Fi1 . . . Fig

.

Proof. Without loss of generality, let i1 = 1, . . . , ig = g. Then b1, . . . , bg are
nonzero, while bg+1 = · · · = bn = 0, so that by (2.3.2),

Vj(b) =
{

x = (x1. . . . , xn)′ :
g∑

i=1

bixi = αj

}
, 0 ≤ j ≤ s − 1. (2.3.17)

From (2.3.4), recall that any treatment contrast L belonging to b is of the
form

L =
s−1∑
j=0

lj

{ ∑
x∈Vj(b)

τ(x)
}

,

where l0 + · · · + ls−1 = 0. Clearly, by (2.3.17), for any x = (x1, . . . , xn)′, the
coefficient of τ(x) in L depends on x only through x1, . . . , xg. In fact, writing
l(x1, . . . , xg) for the coefficient of τ(x) in L, by (2.3.17), one gets
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l(x1, . . . , xg) = lj if
g∑

i=1

bixi = αj (0 ≤ j ≤ s − 1). (2.3.18)

Now, since b1 �= 0, the quantity
∑g

i=1 bixi equals each of α0, α1, . . . , αs−1 once
as x1 assumes all possible values over GF (s), each exactly once, for any fixed
x2, . . . , xg. Hence by (2.3.18)∑

x1∈GF (s)

l(x1, . . . , xg) = l0 + · · · + ls−1 = 0,

for any fixed x2, . . . , xg. Similarly, for every i (1 ≤ i ≤ g),∑
xi∈GF (s)

l(x1, . . . , xg) = 0,

for any fixed x1, . . . , xi−1, xi+1, . . . , xg. Hence by Definition 2.1.1, the treat-
ment contrast L belongs to the factorial effect F1 . . . Fg. �

In consideration of Theorem 2.3.2, a pencil b as in (2.3.16) is said to belong
to the factorial effect Fi1 . . . Fig

. Since exactly g of b1, . . . , bn are nonzero in
(2.3.16) and pencils with proportional entries are identical, clearly there are
(s − 1)g−1 pencils belonging to Fi1 . . . Fig

. Each of these pencils carries s − 1
linearly independent treatment contrasts. Furthermore, by Theorem 2.3.1,
treatment contrasts belonging to distinct pencils are orthogonal to each other.
Hence the (s−1)g−1 pencils mentioned above provide a representation for the
treatment contrasts belonging to Fi1 . . . Fig

in terms of (s − 1)g−1 mutually
orthogonal sets of contrasts with s− 1 linearly independent contrasts in each
set. This accounts for a maximal collection of (s − 1)g linearly independent
treatment contrasts belonging to the factorial effect Fi1 . . . Fig

(see Theorem
2.2.2 with s1 = · · · = sn = s in (2.2.5)).

Returning to the 32 factorial, the pencils listed in (2.3.10) can now be
assigned to factorial effects. Thus (1, 0)′ and (0, 1)′ represent the main effects
of F1 and F2 respectively and the interaction F1F2 is represented by (1, 1)′

and (1, 2)′.
For the special case of a 2n factorial, (s− 1)g−1 = 1, so that each factorial

effect is represented by a single pencil. Thus, in this case there is practically
no distinction between a factorial effect and the associated pencil.

Remark 2.3.1. While the vector notation for pencils as considered above fa-
cilitates the mathematical development, another notational system, which is
more compact, is useful in other contexts, especially with 2n and 3n facto-
rials. A pencil b = (b1, . . . , bn)′ can also be denoted by 1b12b2 . . . nbn , with
the convention that ibi is dropped for any i with bi = 0. For example, with

listed in (2.3.10) become 1, 2, 12 and 122

tively. This system of notation, popularized by Box and Hunter (1961a),
will be referred to as the compact notation. �

In the next two sections, we introduce and discuss regular fractions,

this notation, the pencils respec-

expanding on Dey and Mukerjee (1999, Chapter 8).
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2.4 Regular Fractions

A regular fraction of an sn symmetrical factorial, where s (≥ 2) is a prime or
prime power, is specified by any k (1 ≤ k < n) linearly independent pencils,
say b(1), . . . , b(k), and consists of treatment combinations x satisfying Bx = c,
where B is a k × n matrix with rows (b(i))′, 1 ≤ i ≤ k, and c is a fixed k × 1
vector over GF (s). The specific choice of c is inconsequential in what follows.
Hence, without loss of generality, it is assumed that c = 0, the k × 1 null
vector over GF (s). Then a regular fraction is given by, say,

d(B) = {x : Bx = 0}. (2.4.1)

Since the rows of the k×n matrix B are given by linearly independent pencils,
the same argument as in proving Lemma 2.3.2 shows that d(B) consists of
sn−k treatment combinations. In this sense, d(B) is called a 1/sk fraction of
an sn factorial, or simply an sn−k design. It is easily seen from (2.4.1) that the
sn−k treatment combinations in d(B), which can as well be viewed as points
of the finite Euclidean geometry EG(n, s), constitute a subgroup of EG(n, s),
the group operation being componentwise addition. In the applied literature,
these treatment combinations are called runs and the number sn−k is called
the run size of d(B).

Example 2.4.1. The two linearly independent pencils b(1) = (1, 1, 0, 1, 0)′

and b(2) = (1, 0, 1, 0, 1)′ yield a 25−2 design. Here

B =
[

1 1 0 1 0
1 0 1 0 1

]
and by (2.4.1), a treatment combination x = (x1, . . . , x5)′ is included in d(B)
if and only if

x1 + x2 + x4 = 0,
x1 + x3 + x5 = 0,

i.e., if and only if
x4 = x1 + x2,
x5 = x1 + x3.

(2.4.2)

Considering all possibilities for x1, x2, and x3, and then evaluating x4 and x5

via (2.4.2), one gets

d(B) ={(0, 0, 0, 0, 0)′, (0, 0, 1, 0, 1)′, (0, 1, 0, 1, 0)′, (0, 1, 1, 1, 1)′,
(1, 0, 0, 1, 1)′, (1, 0, 1, 1, 0)′, (1, 1, 0, 0, 1)′, (1, 1, 1, 0, 0)′}.

�

Example 2.4.2. The two linearly independent pencils b(1) = (1, 0, 2, 2)′ and
b(2) = (0, 1, 1, 2)′ yield a 34−2 design. Here
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B =
[

1 0 2 2
0 1 1 2

]
and by (2.4.1), a treatment combination x = (x1, . . . , x4)′ appears in d(B) if
and only if

x1 + 2x3 + 2x4 = 0,
x2 + x3 + 2x4 = 0,

i.e., if and only if
x1 = x3 + x4,
x2 = 2x3 + x4.

(2.4.3)

As before, considering all possibilities for x3 and x4, and then evaluating x1

and x2 via (2.4.3), one gets

d(B) ={(0, 0, 0, 0)′, (1, 1, 0, 1)′, (2, 2, 0, 2)′, (1, 2, 1, 0)′, (2, 0, 1, 1)′, (0, 1, 1, 2)′,
(2, 1, 2, 0)′, (0, 2, 2, 1)′, (1, 0, 2, 2)′}.

�

With reference to d(B), as introduced in (2.4.1), a pencil b is called a
defining pencil if

b′ ∈ R(B), (2.4.4)

where, as before, R(·) denotes the row space of a matrix. Since the k × n
matrix B over GF (s) has full row rank, the cardinality of R(B) is sk. Since
pencils are nonnull vectors and pencils with proportional entries are identical,
it follows that there are (sk −1)/(s−1) defining pencils. The vectors in R(B)
constitute what is known as the defining contrast subgroup of d(B).

In Example 2.4.1, there are three defining pencils, namely,

b(1) = (1, 1, 0, 1, 0)′, b(2) = (1, 0, 1, 0, 1)′, b(1) + b(2) = (0, 1, 1, 1, 1)′. (2.4.5)

Similarly, in Example 2.4.2, there are (32 − 1)/(3 − 1) = 4 defining pencils,
namely,

b(1) = (1, 0, 2, 2)′, b(2) = (0, 1, 1, 2)′, b(1) + b(2) = (1, 1, 0, 1)′,
b(1) + 2b(2) = (1, 2, 1, 0)′.

(2.4.6)
It can be readily checked that every other pencil satisfying (2.4.4) is pro-
portional hence identical to one of the above. Using the compact notation
introduced in Remark 2.3.1, the defining pencils shown in (2.4.5) can as well
be listed as

I = 124 = 135 = 2345, (2.4.7)

whereas those shown in (2.4.6) can be listed as

I = 13242 = 2342 = 124 = 1223. (2.4.8)
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An equation like (2.4.7) or (2.4.8), listing defining pencils, is called an identity
relation or a defining relation of an sn−k design. The symbol I here signifies
only that defining pencils are being listed and should not be confused with an
identity matrix.

By (2.4.1) and (2.4.4), if b is a defining pencil, then b′x = 0 for every
x ∈ d(B). In view of (2.3.2), this implies that d(B) ⊂ V0(b), i.e., all the
treatment combinations appearing in d(B) belong to only one of the sets
V0(b), V1(b), . . . , Vs−1(b). Hence recalling the definition of treatment contrasts
belonging to pencils, the following result is evident.

Theorem 2.4.1. No treatment contrast belonging to any defining pencil is
estimable in d(B).

As an implication of Theorem 2.4.1, while choosing an sn−k design, it is
important that no pencil belonging to a factorial effect of interest be a defining
pencil.

The status of d(B), relative to pencils other than the defining ones, will
be examined next. The important notion of alias sets needs to be introduced
for this purpose. Let C = C(B) be the class of pencils that are not defining
pencils of the design d(B). Since there are altogether (sn − 1)/(s− 1) pencils
of which (sk − 1)/(s − 1) are the defining ones, it follows that there are

sn − 1
s − 1

− sk − 1
s − 1

=
sk(sn−k − 1)

s − 1

pencils in C. Two members of C, say b and b̃, are aliases of each other if
(b − λb̃)′ ∈ R(B) for some λ(�= 0) ∈ GF (s). However, λb̃ itself is another rep-
resentation of the pencil b̃, since pencils with proportional entries are identical.
Hence, equivalently, two pencils in C are aliases of each other if

(b − b∗)′ ∈ R(B), (2.4.9)

for some representations b and b∗ of these pencils. Because of its symmetry,
hereafter aliasing is defined via (2.4.9) with b and b∗ interpreted as appropriate
representations of the pencils concerned.

Since B =
(
b(1)′ , . . . , b(k)′

)′
has full row rank, it is not hard to see that

any b ∈ C has sk aliases, namely,

b(λ1, . . . , λk) = b +
k∑

i=1

λib
(i), λi ∈ GF (s) (1 ≤ i ≤ k), (2.4.10)

including itself.
By (2.4.9), the relationship of being aliased is an equivalence relation (i.e.,

it is symmetric, reflexive, and transitive) that partitions C into (sn−k − 1)/
(s − 1) equivalence classes, each of cardinality sk. Any such equivalence class
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is called an alias set. Thus the pencils b(λ1, . . . , λk), described in (2.4.10),
constitute the alias set containing the pencil b. Before presenting the theoret-
ical results on alias sets, we revisit Examples 2.4.1 and 2.4.2 to illustrate how,
especially with 2n and 3n factorials, the alias sets can be found in a simple
manner.

Example 2.4.1 (continued). Consider the pencil b = (1, 0, 0, 0, 0)′, which
is not a defining pencil. Since b(1) = (1, 1, 0, 1, 0)′ and b(2) = (1, 0, 1, 0, 1)′, by
(2.4.10), the alias set containing b consists of the pencils

(1, 0, 0, 0, 0)′ + λ1(1, 1, 0, 1, 0)′ + λ2(1, 0, 1, 0, 1)′, (2.4.11)

where λ1, λ2 ∈ {0, 1}. Considering all possible choices of λ1 and λ2, this alias
set turns out to be

{(1, 0, 0, 0, 0)′, (0, 1, 0, 1, 0)′, (0, 0, 1, 0, 1)′, (1, 1, 1, 1, 1)′}.

Using the compact notation, in the spirit of (2.4.7), the above alias set can as
well be described as

1 = 24 = 35 = 12345. (2.4.12)

Since addition over GF (2) uses a binary arithmetic, it is easily seen from
(2.4.11) that (2.4.12) can be obtained from the defining relation (2.4.7) by
multiplying the latter by 1, which stands for the pencil (1, 0, 0, 0, 0)′. This
multiplication must follow the convention that

(i) any squared symbol is dropped, and
(ii) any string of symbols is invariant under multiplication by I.

Thus (1)I = 1, (1)(124) = 24, etc., which yield (2.4.12) from (2.4.7). In a
similar manner, the other alias sets in this example turn out to be

2 = 14 = 1235 = 345,
3 = 1234 = 15 = 245,
4 = 12 = 1345 = 235,
5 = 1245 = 13 = 234,
23 = 134 = 125 = 45,
34 = 123 = 145 = 25.

�

Example 2.4.2 (continued). Consider the pencil b = (1, 0, 0, 0)′, which is
not a defining pencil. Since b(1) = (1, 0, 2, 2)′ and b(2) = (0, 1, 1, 2)′, by (2.4.10),
the alias set containing b consists of the pencils

(1, 0, 0, 0)′ + λ1(1, 0, 2, 2)′ + λ2(0, 1, 1, 2)′, (2.4.13)

where λ1, λ2 ∈ {0, 1, 2}. Considering all possible choices of λ1 and λ2, this
alias set is found to be



28 2 Fundamentals of Factorial Designs

{(1, 0, 0, 0)′, (2, 0, 2, 2)′, (0, 0, 1, 1)′, (1, 1, 1, 2)′, (1, 2, 2, 1)′, (2, 1, 0, 1)′,
(0, 2, 0, 2)′, (2, 2, 1, 0)′, (0, 1, 2, 0)′}.

Since pencils with proportional entries are identical, it can be rewritten as

{(1, 0, 0, 0)′, (1, 0, 1, 1)′, (0, 0, 1, 1)′, (1, 1, 1, 2)′, (1, 2, 2, 1)′, (1, 2, 0, 2)′,
(0, 1, 0, 1)′, (1, 1, 2, 0)′, (0, 1, 2, 0)′},

such that the first nonzero entry of each listed pencil is 1. As in (2.4.8), this
alias set can be expressed as

1 = 134 = 34 = 12342 = 122324 = 12242 = 24 = 1232 = 232. (2.4.14)

Since addition over GF (3) is just addition modulo 3, it is not hard to see
from (2.4.13) that (2.4.14) can be obtained from the defining relation (2.4.8)
by multiplying each term in (2.4.8) and its square by 1, which represents the
pencil (1, 0, 0, 0)′. The multiplication must follow the convention that

(i) any cubed symbol is dropped, and
(ii) any string of symbols is invariant under multiplication by I or I2 and is

counted only once.

Thus (1)I = (1)I2 = 1 and 1 is listed only once in (2.4.14); similarly,
(1)(13242) = 123242 = 134, (1)(13242)2 = 34, (1)(2342) = 12342, (1)(2342)2 =
122324, etc., which yield (2.4.14) from (2.4.8). The other alias sets in this
example can now be obtained as a routine exercise. �

Hereafter, with 2n or 3n factorials, often the defining relation and the
alias sets will be presented using the compact notation. However, for the
mathematical treatment of general sn factorials, the vector notation for pencils
will continue to be useful. The rest of this section presents several results that
aim at understanding the consequences of aliasing.

Lemma 2.4.1. Let the pencils b, b∗ ∈ C be aliases of each other and let

L =
s−1∑
j=0

lj

{ ∑
x∈Vj(b)

τ(x)
}

and L∗ =
s−1∑
j=0

lj

{ ∑
x∈Vj(b∗)

τ(x)
}

be the treatment contrasts belonging to b and b∗ respectively. Then the parts of
L and L∗ that involve only the treatment combinations included in d(B) are
identical.

Proof. For 0 ≤ j ≤ s − 1, let

Vj(b,B) = Vj(b) ∩ d(B), Vj(b∗, B) = Vj(b∗) ∩ d(B). (2.4.15)

By (2.3.2) and (2.4.1),
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Vj(b,B) = {x : b′x = αj and Bx = 0},
Vj(b∗, B) = {x : b∗

′
x = αj and Bx = 0}. (2.4.16)

Since b and b∗ are aliases of each other, by (2.4.9), (b−b∗)′ ∈ R(B). Hence

Vj(b,B) = Vj(b∗, B). (2.4.17)

Now by (2.4.15), the parts of L and L∗ that involve only the treatment com-
binations included in d(B) are given by

L(B) =
s−1∑
j=0

lj

{ ∑
x∈Vj(b,B)

τ(x)

}
and L∗(B) =

s−1∑
j=0

lj

{ ∑
x∈Vj(b∗,B)

τ(x)

}
(2.4.18)

respectively. Hence from (2.4.17), the result is evident. �

Remark 2.4.1. Treatment contrasts with matching coefficients, such as L and
L∗ of Lemma 2.4.1, are called corresponding contrasts. The lemma shows
that corresponding contrasts belonging to pencils that are aliased with each
other cannot be distinguished on the basis of the design d(B). In this sense,
such pencils are said to be confounded with each other. Since b, as considered
in Lemma 2.4.1, does not belong to R(B) and B has full row rank, it is
clear that the (k + 1) × n matrix [b,B′]′ also has full row rank. Hence using
the argument in the proof of Lemma 2.3.2, the set Vj(b,B) considered in
(2.4.16) has cardinality sn−k−1 for each j. Therefore, by (2.4.18), L(B) (or,
equivalently, L∗(B)) itself is a contrast involving the treatment combinations
included in d(B). �

Consider now any pencil b ∈ C and recall that (2.4.10) describes the alias
set containing b. Let A denote this alias set. For any pencil a ∈ A, any
treatment combination x, and any j (0 ≤ j ≤ s − 1), let φj(a, x) stand for
the indicator that assumes the value 1 if x ∈ Vj(a) and the value 0 otherwise.
Thus by (2.3.2),

φj(a, x) =
{

1 if a′x = αj ,
0 otherwise. (2.4.19)

Also, let
∑

a denote summation over all a ∈ A. Then the following two lemmas
hold.

Lemma 2.4.2. For every treatment combination x and every j (0 ≤ j ≤
s − 1), ∑

a

φj(a, x) =

⎧⎨⎩
sk if x ∈ Vj(b,B),
0 if x ∈ d(B) − Vj(b,B),
sk−1 if x �∈ d(B).

Proof. Since A is described by (2.4.10), the pencils in A are of the form
a = b + B′λ, where λ = (λ1, . . . , λk)′ with λi ∈ GF (s) for every i. Hence for
every fixed x and j, by (2.4.19),
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a

φj(a, x) = #{λ = (λ1, . . . , λk)′ : b′x + λ′Bx = αj , λi ∈ GF (s) for all i},
(2.4.20)

where # denotes the cardinality of a set.
(i) If x ∈ Vj(b,B), then by (2.4.16), b′x + λ′Bx = αj for all k × 1 vectors λ
over GF (s). Hence the right-hand side of (2.4.20) equals sk.
(ii) If x ∈ d(B) − Vj(b,B), then by (2.4.1) and (2.4.16), Bx = 0, b′x �= αj .
Hence b′x + λ′Bx cannot equal αj for any k × 1 vector λ over GF (s). The
right-hand side of (2.4.20), therefore, equals 0.
(iii) Next consider x �∈ d(B). Then by (2.4.1), Bx �= 0. Trivially, b′x+λ′Bx =
αj if and only if (Bx)′λ = αj − b′x. Since Bx �= 0, exactly as in the proof of
Lemma 2.3.1, it follows that the right-hand side of (2.4.20) equals sk−1. �

Lemma 2.4.3. Consider the corresponding treatment contrasts

s−1∑
j=0

lj

{ ∑
x∈Vj(a)

τ(x)

}
,

for a ∈ A, where
∑s−1

j=0 lj = 0.Then

∑
a

[
s−1∑
j=0

lj

{ ∑
x∈Vj(a)

τ(x)
}]

= sk
s−1∑
j=0

lj

{ ∑
x∈Vj(b,B)

τ(x)

}
. (2.4.21)

Proof. Let X denote the set of the sn treatment combinations. Using Lemma
2.4.2 and the indicator variable φj(a, x) introduced in (2.4.19),

∑
a

[
s−1∑
j=0

lj{
∑

x∈Vj(a)

τ(x)}] =
∑

a

[
s−1∑
j=0

lj{
∑
x∈X

φj(a, x)τ(x)}]

=
s−1∑
j=0

lj [
∑
x∈X

{
∑

a

φj(a, x)}τ(x)]

=
s−1∑
j=0

lj{sk
∑

x∈Vj(b,B)

τ(x) + sk−1
∑

x�∈d(B)

τ(x)}

= sk
s−1∑
j=0

lj{
∑

x∈Vj(b,B)

τ(x)},

since
∑s−1

j=0 lj = 0. �

As noted in Remark 2.4.1, the right-hand side of (2.4.21) is a contrast
involving only the treatment combinations included in d(B). Hence it is es-
timable in d(B). Therefore, the same is true for the left-hand side of (2.4.21).
Thus while pencils belonging to the same alias set are confounded with one
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another, the sum of the corresponding contrasts belonging to such pencils is
estimable in d(B). Consequently any treatment contrast belonging to a pencil
b that is not a defining pencil is estimable in d(B) if and only if the corre-
sponding contrasts belonging to all other pencils that are aliased with b are
ignorable.

A pencil is said to be estimable in d(B) if every treatment contrast be-
longing to it is estimable. Similarly, if every treatment contrast belonging to a
pencil is ignorable, then the pencil itself is called ignorable. Then, summarizing
what has been said in the last paragraph, the following result is evident.

Theorem 2.4.2. A pencil b that is not a defining pencil is estimable in d(B)
if and only if all other pencils that are aliased with b are ignorable.

As noted earlier from Theorem 2.4.1, while choosing an sn−k design, it is
important that no pencil belonging to a factorial effect of interest be a defining
pencil. Now Theorem 2.4.2 suggests that in addition, no such pencil should be
aliased with any other non-ignorable pencil. For example, if interest lies in the
main effects and there is reason to assume the absence of all the interactions,
then

(i) no main effect pencil should be a defining pencil, and
(ii) no two distinct main effect pencils should be aliased with each other.

These conditions are clearly met in Example 2.4.1; see (2.4.7) and the descrip-
tion of the alias sets. Similarly, by obtaining the alias sets in Example 2.4.2,
one can check that the above conditions are met there too.

Interestingly, the above conclusion regarding Examples 2.4.1 and 2.4.2 can
be reached directly from the respective defining relations (2.4.7) and (2.4.8)
even without explicit determination of the alias sets. This is evident from
taking f = t = 1 in Theorem 2.4.3 below if one observes from (2.4.7) and
(2.4.8) that in both examples, each defining pencil has at least three nonzero
entries. In what follows, a factorial effect is called absent if all treatment
contrasts belonging to it are ignorable.

Theorem 2.4.3. In an sn−k design, all treatment contrasts belonging to fac-
torial effects involving f or fewer factors are estimable under the absence of
all factorial effects involving t + 1 or more factors (1 ≤ f ≤ t ≤ n − 1) if and
only if each defining pencil has at least f + t + 1 nonzero entries.

Proof. For proving the “if” part, suppose each defining pencil in an sn−k

design d(B) has at least f + t + 1 nonzero entries. Consider any pencil b
belonging to a factorial effect involving f or fewer factors. It is enough to show
that all treatment contrasts belonging to b are estimable in d(B). Clearly, b is
not a defining pencil. Now suppose b is aliased with another pencil b∗ belonging
to a factorial effect that involves t or fewer factors. Then b− b∗ is nonnull and
by (2.4.9), (b − b∗)′ ∈ R(B). Therefore, by (2.4.4), b − b∗ is a defining pencil.

b − b∗ has at most f + t nonzero entries,
since b and b∗ have at most f and t nonzero entries respectively. Thus b
This is, however, impossible because
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is neither a defining pencil nor aliased with another pencil belonging to a
factorial effect that involves t or fewer factors. Hence by Theorem 2.4.2, all
treatment contrasts belonging to b are estimable in d(B). This proves the “if”
part.

In order to prove the “only if” part, suppose d(B) allows the estimation
of all treatment contrasts belonging to factorial effects involving f or fewer
factors under the absence of all factorial effects involving t+1 or more factors.
Then by Theorems 2.4.1 and 2.4.2,

(i) no pencil having f or fewer nonzero entries is a defining pencil, and
(ii) no pencil having f or fewer nonzero entries is aliased with another pencil

having t or fewer nonzero entries.

In view of (i), no defining pencil can have f or fewer nonzero entries. Now sup-
pose there exists a defining pencil, say bdef, having exactly p nonzero entries,
where f + 1 ≤ p ≤ f + t. Without loss of generality, let

bdef = (b1, . . . , bp, 0, . . . , 0)′, (2.4.22)

where bi �= 0 (1 ≤ i ≤ p). By (2.4.4),

b′def ∈ R(B). (2.4.23)

Consider now the pencils

b = (b1, . . . , bf , 0, . . . , 0)′, (2.4.24)

b∗ = (0, . . . , 0,−bf+1, . . . ,−bp, 0, . . . , 0)′, (2.4.25)

where 0 appears in the first f and the last n− p positions of b∗. By (2.4.22)–
(2.4.25), (b−b∗)′ = b′def ∈ R(B), so that by definition, the pencils b and b∗ are
aliased with each other. However, by (2.4.24), b has f nonzero entries, while
by (2.4.25), the number of nonzero entries in b∗ is p − f , which is at most
t, since p ≤ f + t. Consequently, (ii) above is violated. Thus every defining
pencil must have at least f + t+1 nonzero entries, which proves the “only if”
part. �

2.5 Optimality Criteria: Resolution
and Minimum Aberration

In view of Theorem 2.4.3, the behavior of an sn−k design depends on the
numbers of nonzero entries in the defining pencils and, in particular, on the
minimum of these numbers. This minimum number is called the resolution of
the design (Box and Hunter, 1961a,b). From (2.4.7), each defining pencil in
Example 2.4.1 has three or four nonzero entries. Hence the design considered
in this example has resolution three. Similarly, by (2.4.8), the design in Exam-
ple 2.4.2 also has resolution three. (In the literature on applied experimental
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design, the value of resolution is often indicated by a Roman numeral such
as III, IV, or V.) Theorem 2.4.3 implies that a design of resolution one or
two fails to ensure the estimability of all treatment contrasts belonging to the
main effects even under the absence of all interactions. Since the main effects
are almost invariably the objects of interest in a factorial experiment, we will
focus primarily on designs of resolution three or higher. The next result then
follows as an immediate consequence of Theorem 2.4.3.

Theorem 2.5.1. An sn−k design of resolution R (≥ 3) keeps all treatment
contrasts belonging to factorial effects involving f or fewer factors estimable
under the absence of all factorial effects involving R − f or more factors,
whenever f satisfies 1 ≤ f ≤ 1

2 (R − 1).

The above result suggests that given s, n, and k, one should choose an
sn−k design with maximum resolution. This is called the maximum resolution
criterion. In the setup of Examples 2.4.1 and 2.4.2, the maximum possible
resolution is three (this will be demonstrated in the next section from a more
general result) and the designs considered in these examples achieve this high-
est resolution.

In many situations, however, there are several designs, each having the
maximum possible resolution. Further discrimination among these rival de-
signs is then warranted on the basis of a closer examination of their defining
pencils and aliasing patterns. Such discrimination is of utmost practical im-
portance, especially when, as often happens in practice, one is not completely
sure about the absence of certain factorial effects. The following example
serves to motivate the ideas.

Example 2.5.1. Consider two 35−2 designs, d(B1) and d(B2), where

B1 =
[

1 1 0 2 0
1 2 1 0 2

]
, B2 =

[
1 1 0 2 0
1 0 1 0 2

]
.

By (2.4.4), the defining pencils in d(B1) and d(B2) are given respectively by

I = 1242 = 122352 = 13245 = 23452 (2.5.1)

and
I = 1242 = 1352 = 1223245 = 232425. (2.5.2)

Both d(B1) and d(B2) have resolution three, which as will be seen in the next
section, is the highest possible in the present setup.

Now, d(B1) has only one defining pencil, namely 1242, with three nonzero
entries. Hence the argument in Theorem 2.4.3 shows that the pencils 12, 142,
and 242, each of which belongs to a 2fi, get aliased with the main effect pencils
4, 2, and 1 respectively. No other 2fi pencil is aliased with any main effect
pencil in d(B1). On the other hand, d(B2) has two defining pencils 1242 and
1352 with three nonzero entries. Arguing as before, there are six 2fi pencils
that get aliased with the main effect pencils in d(B2). Thus by Theorem 2.4.2,



34 2 Fundamentals of Factorial Designs

for the estimation of treatment contrasts belonging to the main effects, one
needs to assume the ignorability of three 2fi pencils in d(B1), and six 2fi pencils
in d(B2). Therefore, if one is not fully confident about the absence of all 2fi’s,
then d(B1) is preferable to d(B2) because the former requires less stringent
assumptions. �

More generally, ifA3 (≥ 0)is thenumberofdefiningpencilswiththreenonzero
entries in any design of resolution three or higher, then 3A3 2fi pencils get
aliased with main effect pencils in such a design. Hence, given any two res-
olution three designs, the one with a smaller value of A3 is preferred. These
considerations lead to the criterion of minimum aberration introduced by Fries
and Hunter (1980) for sn−k designs. The basic premise underlying this crite-
rion is the following principle.

Effect hierarchy principle:

(i) Lower order factorial effects are more likely to be important than higher
order ones.

(ii) Factorial effects of the same order are equally likely to be important.

For 1 ≤ i ≤ n, let Ai(B) be the number of (distinct) defining pencils
with i nonzero entries in an sn−k design d(B). A defining pencil is also called
a word (or a codeword) in coding theory (see Section 2.8). The number of
nonzero entries in a defining pencil is called the length of the word. Using this
terminology, the sequence

W (B) = (A1(B), A2(B), A3(B), . . . , An(B)) (2.5.3)

is called the wordlength pattern of d(B).

Definition 2.5.1. Let d(B1) and d(B2) be two sn−k designs. Let r be the
smallest integer such that Ar(B1) �= Ar(B2). Then d(B1) is said to have less
aberration than d(B2) if Ar(B1) < Ar(B2). A design is called a minimum
aberration (MA) design if no other design has less aberration than it.

Clearly, the resolution of a design d(B) equals the smallest integer j suchthat
Aj(B) > 0. Hence in any given context, an MA design has the highest possible
resolution as well.

Returning to Example 2.5.1, by (2.5.1) and (2.5.2), the wordlength pat-
terns of d(B1) and d(B2) are given by (0, 0, 1, 3, 0) and (0, 0, 2, 1, 1) respec-
tively. Hence d(B1) has less aberration than d(B2). MA designs will be dis-
cussed extensively in the subsequent chapters. It will be evident that the
designs considered in Examples 2.4.1 and 2.4.2 as well as the design d(B1) in
Example 2.5.1 are MA designs.

We conclude this section with a result that will be useful later. Here a
factor Fi is said to be involved in a pencil b = (b1, . . . , bn)′ if bi �= 0.
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Lemma 2.5.1. For an sn−k design d(B) to be a minimum aberration design,
it is necessary that every factor be involved in some defining pencil of d(B).

Proof. Suppose some factor, say F1, is not involved in any defining pencil of
d(B). By (2.4.4), then the first column of B is a null vector. Let B∗ be a
k × n matrix, over GF (s), with first column given by (1, 0, . . . , 0)′. The other
columns of B∗ are identical to the corresponding columns of B. Then B∗ has
full row rank like B, and d(B∗) is also an sn−k design. For any k × 1 vector
λ = (λ1, . . . , λk)′ over GF (s), clearly λ′B∗ has as many nonzero elements as
λ′B if λ1 = 0, and one more nonzero element if λ1 �= 0. From (2.4.4) and
Definition 2.5.1, it now follows that d(B∗) has less aberration than d(B), i.e.,
d(B) is not an MA design. �

2.6 Connection with Orthogonal Arrays

We now introduce the concept of an orthogonal array (Rao, 1947), which
facilitates the study of fractional factorials.

Definition 2.6.1. An orthogonal array OA(N,n, s, g), having N rows, n
columns, s symbols, and strength g, is an N × n array with elements from
a set of s symbols in which all possible combinations of symbols appear equally
often as rows in every N × g subarray.

Since the s symbols can be combined in sg possible ways among the rows of
an N × g subarray, it is clear that N is a multiple of sg in an OA(N,n, s, g).
The integer N/sg is called the index of the orthogonal array. Without loss of
generality, the s symbols may be coded as 0, 1, . . . , s− 1 or as the elements of
GF (s), depending on the context.

Example 2.6.1. In (a), (b), (c) below, we show an OA(8, 5, 2, 2), an OA(9, 4,
3, 2), and an OA(8, 4, 2, 3):

(a) OA(8, 5, 2, 2) (b) OA(9, 4, 3, 2) (c) OA(8, 4, 2, 3)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1 1 0 1
2 2 0 2
1 2 1 0
2 0 1 1
0 1 1 2
2 1 2 0
0 2 2 1
1 0 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

The following result (Rao, 1947) presents useful necessary conditions for
the existence of orthogonal arrays. The lower bounds for N shown in this
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result are called Rao’s bounds. The proof is omitted here, and can be found in
Hedayat, Stufken, and Sloane (1999, Chapter 2) or Dey and Mukerjee (1999,
Chapter 2).

Theorem 2.6.1. In an orthogonal array OA(N,n, s, g),
(a) N ≥ ∑p

i=0

(
n
i

)
(s − 1)i, if g(= 2p, p ≥ 1) is even,

(b) N ≥ ∑p
i=0

(
n
i

)
(s − 1)i +

(
n−1

p

)
(s − 1)p+1 if g (= 2p + 1, p ≥ 1) is odd.

An orthogonal array for which equality holds in either (a) or (b) above is
called saturated or tight. In particular, taking g = 2 or 3 in Theorem 2.6.1,
the following corollary is obtained.

Corollary 2.6.1. (a) In an OA(N,n, s, 2), N ≥ 1 + n(s − 1).
(b) In an OA(N,n, s, 3), N ≥ 1 + n(s − 1) + (n − 1)(s − 1)2.

The following lemmaplays a key role in linking sn−k designs with orthogonal
arrays. Later, it will be found to have other important applications as well.

Lemma 2.6.1. The existence of an sn−k design d(B) is equivalent to the
existence of an (n− k)× n matrix G, defined over GF (s) and having full row
rank, such that

(a) the sn−k treatment combinations included in d(B) are transposes of the
sn−k vectors in R(G),

(b) any pencil b is a defining pencil of d(B) if and only if Gb = 0,
(c) any two pencils are aliased with each other in d(B) if and only if G(b −

b∗) = 0 for some representations b and b∗ of these pencils.

Proof. Recall that for any sn−k design d(B), the matrix B is of order k × n
and has full row rank. Hence given d(B), or equivalently B, one can find an
(n− k)×n matrix G, defined over GF (s) and also having full row rank, such
that

BG′ = 0. (2.6.1)

The row spaces of B and G are then orthogonal complements of each other.
The truth of (a), (b), and (c) now follows from (2.4.1), (2.4.4), and (2.4.9)
respectively.

Conversely, given an (n− k)×n matrix G defined over GF (s) and having
full row rank, there exists a k × n matrix B, again defined over GF (s) and
having full row rank, such that (2.6.1) holds. As before, (a), (b), and (c) will
remain true for the design d(B) as defined in (2.4.1). �

Theorem 2.6.2. Let d(B) be an sn−k design of resolution R. If R ≥ g + 1,
then the treatment combinations included in d(B), when written as rows, form
an orthogonal array OA(sn−k, n, s, g).

Proof. Since R ≥ g+1, each defining pencil in d(B) has at least g+1 nonzero
entries. Hence by Lemma 2.6.1, there exists an (n− k)× n matrix G, defined
over GF (s) and having full row rank, such that
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(i) the treatment combinations included in d(B) are transposes of the vectors
in R(G), and

(ii) no g columns of G are linearly dependent.

Note that (ii) follows from Lemma 2.6.1 (b), since if some g columns of G are
linearly dependent, then one gets a defining pencil having at most g nonzero
entries, in d(B).

Let Q be the array of order sn−k ×n formed by the sn−k vectors in R(G).
In view of (i), it is enough to show that Q is an orthogonal array of strength
g. Consider any sn−k ×g subarray, say Q1, of Q. Let G1 be the corresponding
(n−k)×g submatrix of G. The rows of Q1 are then given by the sn−k vectors
λ′G1, corresponding to the sn−k possible choices of the (n − k) × 1 vector
λ over GF (s). Now by (ii), G1 has full column rank and hence contains a
nonsingular g×g submatrix. Hence, as in the proof of Lemma 2.3.2, there are
sn−k−g choices of λ such that λ′G1 equals any fixed g-component row vector
with elements from GF (s). Consequently, in Q1 each possible g-component
row vector appears with the same frequency sn−k−g. It follows that Q is an
orthogonal array of strength g. �

Recall that the designs shown in Examples 2.4.1 and 2.4.2 have resolu-
tion three. Hence by the above theorem, the treatment combinations included
in these designs, when written as rows, form orthogonal arrays of strength
two. These are precisely the arrays OA(8, 5, 2, 2) and OA(9, 4, 3, 2) shown in
Example 2.6.1.

Theorem 2.6.2, in conjunction with Theorem 2.6.1 or Corollary 2.6.1, yields
necessary conditions for the existence of a design of specified resolution. Two
such conditions are presented in the next result.

Theorem 2.6.3. Let d(B) be an sn−k design of resolution R.

(a) For R ≥ 3,

n ≤ sn−k − 1
s − 1

. (2.6.2)

(b) For R ≥ 4,

n ≤ sn−k−1 − 1
s − 1

+ 1. (2.6.3)

Proof. (a) For R ≥ 3, by Theorem 2.6.2, the treatment combinations in d(B)
form an OA(sn−k, n, s, 2). Hence by part (a) of Corollary 2.6.1, the result
follows.
(b) For R ≥ 4, by Theorem 2.6.2 and Corollary 2.6.1 (b),

sn−k ≥ 1 + n(s − 1) + (n − 1)(s − 1)2,

which, on simplification, yields the desired inequality. �

It will be seen in the next section that the condition (2.6.2) is also sufficient
for the existence of a design of resolution three or higher. A similar result on
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the sufficiency of the condition (2.6.3) for s = 2 will also be presented there.
For general s (≥ 3), however, (2.6.3) is not sufficient for the existence of a
design of resolution four or higher. This will be evident in the next paragraph
when Example 2.5.1 is revisited. Incidentally, Theorem 2.6.3(b) shows that
no design of resolution four or higher exists in the setup of Examples 2.4.1 or
2.4.2. Thus, as claimed earlier, the designs considered in these examples have
the highest possible resolution.

The literature on necessary conditions for the existence of orthogonal ar-
rays is very rich. Extensive reviews of the available results can be found in
Hedayat, Sloane, and Stufken (1999, Chapters 2, 4) and Dey and Mukerjee
(1999, Chapters 2, 5). In view of Theorem 2.6.2, any such necessary condi-
tion is potentially useful for investigating the maximum possible resolution of
designs in a given context. For the purpose of illustration, Example 2.5.1 is
revisited. Here s = 3, n = 5, k = 2, and (2.6.3) is satisfied. Now if a design of
resolution four or higher exists in this setup, then, by Theorem 2.6.2, one gets
an OA(27, 5, 3, 3). However, following a result by Bush (1952) as reported in
Hedayat, Sloane, and Stufken (1999, p.24) or Dey and Mukerjee (1999, p.38),
in an OA(s3, n, s, g), if s ≤ g, then n ≤ g+1. This rules out the existence of an
OA(27, 5, 3, 3) and shows that for s = 3, n = 5, and k = 2, the resolution of a
design can be at most three. Both d(B1) and d(B2), introduced earlier in this
example, have resolution three, which is the highest possible. It is also clear
now that for s ≥ 3, the condition (2.6.3) is only necessary but not sufficient
for the existence of a design of resolution four or higher.

Theorem 2.6.2 has another important implication from traditional opti-
mality considerations. To motivate the ideas, consider an sn−k design d(B) of
resolution three. By Theorem 2.5.1, d(B) allows estimation of all main effect
contrasts under the absence of all interactions. One can, however, consider
any other selection of sn−k treatment combinations and wonder about the
performance of d(B), vis-à-vis any such rival fraction, for the estimation of
the main effect contrasts. Specifically, one may be interested in comparing the
covariance matrix of the estimators arising from d(B) with that for any rival
fraction. In particular, if d(B) minimizes the determinant, trace, or maximum
eigenvalue of this covariance matrix, then it is called D-, A-, or E-optimal
respectively, within the class of all fractions of the same size, i.e., having the
same number of treatment combinations.

Cheng (1980) addressed the issue of optimality, considering a very general
criterion called universal optimality (Kiefer, 1975), which covers the D-, A-,
and E-criteria as special cases. He showed that if the treatment combinations
in a fractional factorial form an orthogonal array of strength two (when written
as rows), then the fraction is universally optimal among all fractions of the
same size for estimating the main effect contrasts under the absence of all
interactions. Returning to the design d(B) of resolution three, Theorem 2.6.2
shows that its treatment combinations form an orthogonal array of strength
two. Hence invoking Cheng’s result, one reaches the satisfying conclusion that
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d(B) is indeed universally optimal among all fractions of the same size, for
the estimation problem considered in the last paragraph.

Cheng’s (1980) result was extended by Mukerjee (1982) to orthogonal ar-
rays of general strength. This, in conjunction with Theorem 2.6.2, helps in
proving the universal optimality of sn−k designs of general resolution. Specif-
ically, supplementing Theorem 2.5.1, it can be shown that an sn−k design of
resolution R (≥ 3) is universally optimal among all fractions of the same size
for estimating factorial effects involving f or fewer factors under the absence of
all factorial effects involving R−f or more factors, whenever 1 ≤ f ≤ 1

2 (R−1).
The issue of universal optimality or the specialized D-, A-, or E- optimality

will not be considered further in this book. First, optimality results on factorial
fractions under these criteria have already been discussed at length in Dey and
Mukerjee (1999, Chapters 2, 6, 7). The second and more compelling reason
is that while these optimality results involve clear-cut assumptions regarding
the absence of certain factorial effects, the present book aims primarily at
reviewing and synthesizing good experimental strategies when the validity of
such assumptions is not taken for granted. From this perspective, criteria like
that of MA will be of greater interest in this book. A hint to this effect has
already been given in Example 2.5.1, where the designs d(B1) and d(B2) were
discriminated on the basis of stringency of assumptions even though both
are of resolution three and hence universally optimal for estimating the main
effect contrasts under the absence of all interactions.

2.7 Connection with Finite Projective Geometry

Another important tool for the study of sn−k designs is finite projective
geometry. The (r − 1)-dimensional finite projective geometry over GF (s),
denoted by PG(r − 1, s), consists of points of the form (x1, . . . , xr)′, where
xi ∈ GF (s) (1 ≤ i ≤ r) and not all of x1, . . . , xr are zero, such that any
two points with proportional entries are considered identical. Evidently, the
pencils in an sn factorial are points of PG(n − 1, s). As with pencils, there
are (sr − 1)/(s − 1) distinct points in PG(r − 1, s). Hereafter, only distinct
points of a finite projective geometry are considered in any given context, even
when this is not stated explicitly. For example, when we refer to a collection
or set of points, it is implicit that the points are distinct. Along the lines of
Remark 2.3.1, in the subsequent chapters it will often be convenient to repre-
sent a typical point (x1, . . . , xr)′ of PG(r − 1, s) using the compact notation
1x1 . . . rxr , where ixi is dropped if xi = 0. More details on finite projective
geometry are available in Raghavarao (1971, pages 357–359).

The connection between sn−k designs and finite projective geometry goes
much deeper than the mere interpretation of pencils in an sn factorial as points
of PG(n − 1, s). Theorem 2.7.1 below, exhibiting a duality between an sn−k

design of resolution three or higher and a set of points of a finite projective
geometry, underscores this point. This theorem looks quite similar to Lemma
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2.6.1 and is actually its consequence. Lemma 2.6.1 and Theorems 2.7.1–2.7.4
are in the spirit of Bose (1947). In what follows, for any nonempty set T of
p points of PG(r − 1, s), V (T ) is an r × p matrix with columns given by the
points of T.

Theorem 2.7.1. Given any sn−k design d(B) of resolution three or higher,
there exists a set T of n points of PG(n − k − 1, s) such that V (T ) has full
row rank, and

(a) the sn−k treatment combinations included in d(B) are transposes of the
sn−k vectors in R[V (T )],

(b) any pencil b is a defining pencil of d(B) if and only if V (T )b = 0,
(c) any two pencils are aliased with each other in d(B) if and only if V (T )(b−

b∗) = 0 for some representations b and b∗ of these pencils.

Conversely, given any set T of n points of PG(n−k−1, s) such that V (T ) has
full row rank, there exists an sn−k design d(B) of resolution three or higher
such that (a)–(c) hold.

Proof. Consider an sn−k design d(B) of resolution three or higher. Then by
Lemma 2.6.1, there exists an (n − k) × n matrix G, defined over GF (s) and
having full row rank such that (a)–(c) of this lemma hold. Since d(B) has
resolution three or higher, by Lemma 2.6.1(b), no two columns of G are lin-
early dependent. Thus the columns of the (n − k) × n matrix G are nonnull
and no two of them are proportional to each other. Hence these columns can
be interpreted as n points of PG(n − k − 1, s). Let T denote the set of these
n points ordered in the same manner as the columns of G. Then G = V (T )
and V (T ) has full row rank as G. The validity of (a)–(c) is now obvious from
(a)–(c) of Lemma 2.6.1.

To prove the converse, consider any set T of n points of PG(n − k − 1, s)
such that the (n − k) × n matrix V (T ) has full row rank. There exists a
k × n matrix B, defined over GF (s) and having full row rank, such that
B[V (T )]′ = 0. As in Lemma 2.6.1, (a)–(c) of this theorem hold for the design
d(B). Furthermore, by the definition of T , no two columns of V (T ) are linearly
dependent. Hence by (b), the design d(B) has resolution three or higher. �

The following corollary is easily obtained from Theorem 2.7.1(b).

Corollary 2.7.1. Let g ≥ 2. An sn−k design of resolution g + 1 or higher
exists if and only if there exists a set T of n points of PG(n − k − 1, s) such
that no g points of T are linearly dependent and V (T ) has full row rank.

Example 2.4.1, s = 2, n = 5, k = 2 and the matrix B stated there yields a
design d(B) of resolution three. The row spaces of B and

G =

⎡⎣ 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

⎤⎦

Examples 2.4.1 and 2.4.2 are now revisited for illustrating Theorem 2.7.1. In
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are orthogonal complements of each other. Interpreting the columns of G as
points of PG(2, 2), the design d(B) corresponds to a set

T = {(1, 0, 0)′, (0, 1, 0)′, (0, 0, 1)′, (1, 1, 0)′, (1, 0, 1)′}

of five points of PG(2, 2) such that V (T ) = G has full row rank. Using the
compact notation described in the beginning of the section, the set T can
as well be expressed as T = {1, 2, 3, 12, 13}. Similarly, the design d(B) of
resolution three, considered in Example 2.4.2, corresponds to the set

T = {(1, 1)′, (1, 2)′, (0, 1)′, (1, 0)′}

of four points of PG(1, 3) such that V (T ) has full row rank. In either example,
it is a simple exercise to verify from first principles that (a)–(c) of Theorem
2.7.1 hold.

The following lemma facilitates the applications of Theorem 2.7.1 to be
considered in this section. This lemma is needed to cope with the stipulation
regarding full row rank of V (T ) in Theorem 2.7.1 or Corollary 2.7.1.

Lemma 2.7.1. Suppose there are n points of PG(n − k − 1, s) such that no
g (≥ 2) of these points are linearly dependent. Then there exists a set T of n
points of PG(n − k − 1, s) such that no g points of T are linearly dependent
and V (T ) has full row rank.

Proof. Let h1, . . . , hn be n points of PG(n − k − 1, s) such that no g (≥ 2)
of these points are linearly dependent. If the (n − k) × n matrix H, given by
the points h1, . . . , hn as columns, has full row rank, then it suffices to take
T = {h1, . . . , hn}. Now suppose rank(H) = p < n − k. Then there exists an
(n − k) × n matrix

Z =
[

Z1

Z2

]
(2.7.1)

defined over GF (s) and having full row rank such that Z1 is p × n, Z2 is
(n − k − p) × n, and

R(Z1) = R(H). (2.7.2)

By (2.7.1) and (2.7.2), no g columns of Z are linearly dependent, for otherwise
the corresponding g columns of H are linearly dependent, which is impossible
by the definition of H. Since g ≥ 2, the n columns of Z represent n points of
PG(n − k − 1, s). Define T as the set of these n points. Then V (T ) = Z has
full row rank and no g points of T are linearly dependent. �

Example 2.7.1. In order to illustrate the ideas in the above proof, let s = 3,
n = 4, k = 1, and g = 2, and consider the points

h1 = (1, 0, 0)′, h2 = (0, 1, 0)′, h3 = (1, 1, 0)′, h4 = (1, 2, 0)′
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of PG(2, 3). Obviously, no two of these points are linearly dependent. However,
the matrix

H =

⎡⎣ 1 0 1 1
0 1 1 2
0 0 0 0

⎤⎦
given by these points as columns does not have full row rank. Consider now
the matrix

Z =

⎡⎣ 1 0 1 1
0 1 1 2
0 0 1 0

⎤⎦ =
[

Z1

Z2

]
over GF (3), where

Z1 =
[

1 0 1 1
0 1 1 2

]
, Z2 = [0 0 1 0].

Then Z has full row rank, R(Z1) = R(H), and no two columns of Z, like
those of H, are linearly dependent. Interpreting the columns of Z as points,
one gets a set

T = {(1, 0, 0)′, (0, 1, 0)′, (1, 1, 1)′, (1, 2, 0)′}
of four points of PG(2, 3) such that no g (= 2) points of T are linearly depen-
dent and V (T ) = Z has full row rank. �

Theorem 2.7.2 below follows readily from Corollary 2.7.1 and Lemma 2.7.1.

Theorem 2.7.2. Let g ≥ 2. An sn−k design of resolution g + 1 or higher
exists if and only if there exist n points of PG(n− k − 1, s) such that no g of
these points are linearly dependent.

Theorem 2.7.2 helps in exploring the sufficiency of the conditions (2.6.2)
and (2.6.3), which were earlier seen to be necessary for the existence of designs
of resolution at least three and four, respectively. By Theorem 2.7.2, an sn−k

design of resolution three or higher exists if and only if there exist n points
of PG(n − k − 1, s), no two of which are linearly dependent. Since there are
altogether (sn−k − 1)/(s− 1) points of PG(n− k − 1, s), no two of which are
linearly dependent, the sufficiency of (2.6.2) is immediate. Thus one gets the
following result.

Theorem 2.7.3. An sn−k design of resolution three or higher exists if and
only if

n ≤ sn−k − 1
s − 1

.

This theorem is of much importance since, as discussed in Section 2.5, only
designs of resolution three or higher are of interest. Turning to (2.6.3), it was
noted in the last section that this condition is not in general sufficient for the
existence of a design of resolution four or higher. Theorem 2.7.4 below shows
that it is, however, sufficient in the special case s = 2. Note that for s = 2,
(2.6.3) reduces to n ≤ 2n−k−1.
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Theorem 2.7.4. A 2n−k design of resolution four or higher exists if and only
if

n ≤ 2n−k−1. (2.7.3)

Proof. The “only if” part is already proved in Theorem 2.6.3 (b). To prove
the “if” part, let (2.7.3) hold. The points of PG(n − k − 1, 2) are nonnull
binary vectors of order (n−k)×1. Consider those points with an odd number
of 1’s. There are (

n − k

1

)
+

(
n − k

3

)
+ · · · = 2n−k−1

such points. Since each of these points has an odd number of 1’s, no three
of these can add up to the null vector, i.e., no three of these are linearly
dependent. Thus there exists a collection of 2n−k−1 points of PG(n−k−1, 2)
such that no three of these points are linearly dependent. The “if” part now
follows from (2.7.3) and Theorem 2.7.2. �

Example 2.7.2. Let s = 2, n = 8, k = 4. Then n − k − 1 = 3 and (2.7.3)
holds. The points of PG(3, 2) having an odd number of 1’s are

(1, 0, 0, 0)′, (0, 1, 0, 0)′, (0, 0, 1, 0)′, (0, 0, 0, 1)′,

(1, 1, 1, 0)′, (1, 1, 0, 1)′, (1, 0, 1, 1)′, (0, 1, 1, 1)′.

Let T be the set of these eight points, no three of which are linearly dependent.
The matrix

V (T ) =

⎡⎢⎢⎣
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎤⎥⎥⎦
has full row rank, and following Theorem 2.7.1, the vectors in R[V (T )] yield a
28−4 design of resolution at least four. In fact, since the third to sixth columns
of V (T ) add up to the null vector, this design has resolution exactly four. �

We conclude this section with two results that will be useful in the subse-
quent chapters.

Lemma 2.7.2. Let Vr be a matrix with r rows and (sr − 1)/(s− 1) columns,
such that the columns of Vr are given by the points of PG(r − 1, s). Then

(a) rank(Vr) = r,
(b) every nonnull vector in R(Vr) has exactly sr−1 nonzero elements.

Proof. Since the points of PG(r−1, s) are represented by nonnull vectors and
two points with proportional entries are considered identical, without loss of
generality, the first nonzero element in each column of Vr can be assumed to
be 1, the identity element of GF (s) under multiplication. Then V1 = (1) and
for r = 1, 2, . . . ,
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Vr+1 =
[

0′ 1′(r)
Vr Mr

]
, (2.7.4)

where 0′ is the null row vector of order (sr − 1)/(s − 1), and 1′(r) is the row
vector of order sr with each element 1. Also, Mr is an r × sr matrix whose
columns are given by all possible r× 1 vectors over GF (s). By (2.7.4), Vr has
the r unit vectors over GF (s) as columns, and (a) follows.

The proof of (b) will be by induction on r. Since V1 = (1), obviously (b)
holds for r = 1. Suppose it holds for r = t and consider any nonnull vector in
R(Vt+1). By (2.7.4), any such vector must be of the form

ξ′ = (λ′Vt, λ01′(t) + λ′Mt), (2.7.5)

where λ0 ∈ GF (s) and λ is a t × 1 vector over GF (s) such that (λ0, λ
′) is

nonnull. By the definition of Mt, the number of zero elements in λ01′(t) +λ′Mt

equals the number of t × 1 vectors x over GF (s) such that λ0 + λ′x = 0. If
λ �= 0, then as in the proof of Lemma 2.3.1 this number equals st−1, so that
λ01′(t) + λ′Mt has st − st−1 nonzero elements. Also, by (a), λ′Vt is nonnull
for λ �= 0, and hence has st−1 nonzero elements by the induction hypothesis.
Therefore, by (2.7.5), ξ has st nonzero elements if λ �= 0. On the other hand,
if λ = 0, then λ0 �= 0, and again by (2.7.5), the same conclusion about ξ holds.
Thus (b) follows by induction. �

Define the m-lag of a row vector W as lag(W,m) = (0, . . . , 0,W ), where
W is preceded by m zeros. Also, given s, n, and k, denote the maximum
possible resolution of an sn−k design by Rs(n, k). Then the following result,
due to Chen and Wu (1991), holds.

Lemma 2.7.3. (a) Given any sn−k design d(B) with wordlength pattern

W (B), there exists an s

(
n+ sk−1

s−1

)
−k design d(Bk), with wordlength pattern

W (Bk) =
(
lag

(
W (B), sk−1

)
, 0′

)
, where 0′ is a null row vector such that

W (Bk) has n + sk−1
s−1 elements altogether.

(b) Rs

(
n + sk−1

s−1 , k
)
≥ Rs(n, k) + sk−1.

Proof. Part (b) is a consequence of (a). If d(B) has resolution Rs(n, k), which
is indeed possible, then d(Bk) has resolution Rs(n, k)+ sk−1. Hence the max-

imum resolution of an s

(
n+ sk−1

s−1

)
−k design is at least Rs(n, k) + sk−1.

To prove (a), define the k ×
(
n + sk−1

s−1

)
matrix Bk = [B Vk], where Vk

is as introduced in Lemma 2.7.2. Since both B and Bk have full row rank,
the nonnull vectors in R(B) and R(Bk) are of the form λ′B and λ′Bk =
(λ′B, λ′Vk) respectively, where λ is any k × 1 nonnull vector over GF (s).
However, by Lemma 2.7.2 (a), Vk has full rank. Therefore, for any such λ,
the vector λ′Vk is nonnull and hence has sk−1 nonzero elements by Lemma
2.7.2 (b). By (2.4.4), it follows that every defining pencil of d(B) corresponds
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to a defining pencil of d(Bk) such that the latter has sk−1 more nonzero
entries than the former. Hence (a) is evident from the definition of wordlength
pattern. �

2.8 Algebraic Coding Theory

This chapter concludes with algebraic coding theory, another important tool
for the study of sn−k designs. Some basic concepts, notation, and results are
given in this section. Details and proofs can be found in MacWilliams and
Sloane (1977), Pless (1989), and van Lint (1999).

Let B be a k × n matrix of rank k over GF (s). Then the row space of B,

C = R(B), (2.8.1)

is an [n, k; s] linear code of length n and dimension k. It is a k-dimensional
linear subspace of the finite Euclidean geometry EG(n, s), where the points
of EG(n, s) are viewed as row vectors. The matrix B is called a generator of
C and the elements of C are called codewords. Without loss of generality, let
B = [Ik H] and write G = [−H ′ In−k]. The row spaces of B and G are then
orthogonal complements of each other and clearly the code C is the null space
of G. The matrix G is called a parity check matrix.

Comparing with Section 2.4, it is easy to see that the [n, k; s] linear code
C is equivalent to the defining contrast subgroup of the sn−k design d(B).
Specifically, by (2.4.4) and (2.8.1), a nonnull codeword in C is equivalent to a
defining pencil of d(B). The mathematical connection between sn−k designs
and algebraic codes was established by Bose (1961).

For a codeword (or vector) u = (u1, . . . , un), the Hamming weight wt(u)
is the number of its nonzero components. For two codewords u = (u1, . . . , un)
and w = (w1, . . . , wn), the Hamming distance

dist(u,w) = wt(u − w)

is the number of j’s with wj �= uj . The minimum distance of a code C is
the smallest Hamming distance between any two distinct codewords of C. Let
Ki(C) be the number of codewords of weight i in C. Then (K1(C),K2(C), . . .)
is called the weight distribution of C. It is easy to show that the minimum
distance of the linear code C is the minimum weight of nonzero codewords in
C, i.e., the smallest i > 0 such that Ki(C) > 0. For convenience, a linear code
is denoted by [n, k, d; s] if its minimum distance is d.

Continuing the previous interpretation, the minimum distance of a linear
code C is mathematically equivalent to the resolution of the corresponding
sn−k design. The importance of the concept of resolution was discussed in
Section 2.5. The concept of minimum distance plays an equally important
role in coding theory, since it determines the capability of error correction of
a code.
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There is also a mathematical equivalence between the weight distribution
of C and the wordlength pattern of the corresponding design as given in
(2.5.3). Specifically, the weight distribution of a linear code C defined in (2.8.1)
and the wordlength pattern of the corresponding design d(B) are related as

Ki(C) = (s − 1)Ai(B), 1 ≤ i ≤ n, (2.8.2)

because pencils with proportional entries are identical. Recall that the MA
criterion was defined on the basis of the wordlength pattern and that its
importance was justified by the effect hierarchy principle. One could similarly
define an MA criterion for the weight distribution, but such a definition would
lack a meaningful interpretation in coding theory. For this reason, unlike the
interplay between minimum distance and resolution, MA designs do not have
counterparts in coding theory.

Example 2.4.2 is now revisited for illustrating the connection between sn−k

designs and linear codes. Here the row space of B, i.e.,

C ={(0, 0, 0, 0), (1, 0, 2, 2), (0, 1, 1, 2), (1, 1, 0, 1), (1, 2, 1, 0),
(2, 0, 1, 1), (0, 2, 2, 1), (2, 2, 0, 2), (2, 1, 2, 0)},

is a [4, 2; 3] linear code. The weight distribution is

K1(C) = K2(C) = 0, K3(C) = 8, K4(C) = 0,

and the minimum distance is 3. On the other hand, as noted in (2.4.8), the
corresponding 34−2 design d(B) has the defining relation I = 13242 = 2342 =
124 = 1223. Therefore d(B) has resolution three and wordlength pattern

A1(B) = A2(B) = 0, A3(B) = 4, A4(B) = 0.

Thus, (2.8.2) holds and the equivalence between the linear code C and the
design d(B) follows.

An important question in coding theory is the existence of a linear code
given n, k, s, d. Let Ds(n, k) be the maximum possible d such that an [n, k, d; s]
linear code exists. Brouwer and Verhoeff (1993) gave a comprehensive list of
lower and upper bounds for Ds(n, k) of binary (i.e., s = 2) codes for 1 ≤ n ≤
127.

We now present some concepts and results from coding theory that will
be useful later in the book. If C is an [n, k; s] linear code, its dual code C⊥ is
the set of vectors that are orthogonal to all codewords of C, i.e.,

C⊥ = {u : uw′ = 0 for all w ∈ C}. (2.8.3)

If C has the generator matrix B and parity check matrix G, then C⊥ has the
generator matrix G and parity check matrix B. Thus C⊥ is an [n, n − k; s]
linear code. From the definition, it is easy to see that C⊥ is equivalent to the
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sn−k design d(B); the codewords of C⊥ are the transposes of the treatment
combinations included in d(B).

A fundamental identity relating the weight distributions of a linear code
C and its dual code C⊥ is given below.

Theorem 2.8.1. The weight distributions of an [n, k; s] linear code C and its
dual code C⊥ satisfy the following identities:

Ki(C⊥) = s−k
n∑

j=0

Kj(C)Pi(j;n, s), (2.8.4)

Ki(C) = s−(n−k)
n∑

j=0

Kj(C⊥)Pi(j;n, s), (2.8.5)

for i = 0, . . . , n, where

Pi(x;n, s) =
i∑

t=0

(−1)t(s − 1)i−t

(
x

t

)(
n − x

i − t

)
(2.8.6)

are the Krawtchouk polynomials.

Equations (2.8.4) and (2.8.5) are known as the MacWilliams identities
(MacWilliams, 1963).

The following identities, known as the Pless power moment identities after
Pless (1963), relate the moments of the weight distributions of C and C⊥.

Theorem 2.8.2. For an [n, k; s] linear code C and r = 1, 2, . . .,

n∑
i=0

irKi(C) =
n∑

i=0

(−1)iKi(C⊥)

⎡⎣ r∑
j=0

j!S(r, j)sk−j(s − 1)j−i

(
n − i

j − i

)⎤⎦ ,

(2.8.7)
where

S(r, j) = (1/j!)
j∑

i=0

(−1)j−i

(
j

i

)
ir

for r ≥ j ≥ 0 is a Stirling number of the second kind.

Exercises

2.1 Show that the row space of the matrix M(y) in (2.2.3) does not depend
on the specific choice of M1, . . . , Mn, as long as the latter satisfy (2.2.2).

2.2 Prove Lemma 2.2.1 for g = 4.
2.3 Prove the “if” part of Theorem 2.2.1 explicitly.
2.4 List the distinct pencils in a 42 factorial. Select any two of them and

verify from first principles that treatment contrasts belonging to these
pencils are orthogonal to each other.

Exercises



48 2 Fundamentals of Factorial Designs

2.5 Obtain the alias sets in Example 2.4.2.
2.6 Show that the sk pencils considered in (2.4.10) are distinct.
2.7 Use Theorems 2.6.1 and 2.6.2 to show that no 2n−k design of resolution

five or higher exists when n ≥ 2n−k−2 + 2.
2.8 Verify from first principles that (a)–(c) of Theorem 2.7.1 hold in Exam-

ples 2.4.1 and 2.4.2.
2.9 Prove Corollary 2.7.1.
2.10 Use Theorem 2.7.1 to obtain the treatment combinations in the 28−4

design considered in Example 2.7.2. Also, find the defining pencils and
hence the wordlength pattern of this design.

2.11 For r = 2, verify Lemma 2.7.2 from first principles, writing the matrix
V2 explicitly and enumerating all nonnull vectors in the row space of V2.

2.12 In an sn−k design, let Aij denote the number of defining pencils that
involve the ith factor and have j nonzero entries. Following Draper and
Mitchell (1970), the letter pattern matrix of the design is defined as the
n × n matrix with elements Aij , where each factor is interpreted as a
letter. As usual, let (A1, . . . , An) denote the wordlength pattern of the
design. Show that Aj = j−1

∑n
i=1 Aij for every j.

2.13 Refer to Table 1.1 in Section 1.1 and consider the 4× 15 subarray given
by the runs numbered 2, 3, 5, and 9. Verify that the columns of this
subarray represent the 15 points of PG(3, 2) and that its four rows span
all the 16 rows of Table 1.1. Hence establish a connection between the
discussion in the last paragraph of Section 1.1 and Theorem 2.7.1.

2.14 Show that the minimum distance of a linear code C equals the minimum
weight of nonzero codewords in C.
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Two-Level Fractional Factorial Designs

Fractional factorial designs with factors at two levels are the most commonly
used in practice. For the same number of factors, they have smaller run size
than designs at more than two levels. This run size economy makes them
attractive for studying a large number of factors. A fundamental question in
this context is the choice of designs. The minimum aberration criterion is
commonly used for selecting optimal designs. Theoretical results on minimum
aberration designs are given in this chapter. Results on related criteria like
maximum resolution and maximum number of clear effects are also considered.
A catalogue of two-level fractional factorial designs with 16, 32, 64, and 128
runs is given.

3.1 Basic Definitions Revisited

Two-level factorials have certain simplifying features that facilitate their study
even without an extensive use of abstract algebra. The first of these features,
evident from (2.2.5) and Theorem 2.2.2, is that each factorial effect is rep-
resented by a unique treatment contrast up to proportionality. We begin by
showing that any such treatment contrast in a 2n factorial can have a natural
interpretation. This generalizes the ideas in Section 2.1 for the special case
n = 2.

Consider a main effect, say that of the first factor F1. By (2.1.10) and
(2.1.11) with s = 2, this main effect is represented by

L(F1) =
1∑

j1=0

· · ·
1∑

jn=0

l(j1)τ(j1 . . . jn), (3.1.1)

where l(0) + l(1) = 0. There are 2n−1 treatment combinations corresponding
to j1 = 0 or 1. Hence, with l(1) = −l(0) = 1/2n−1, one can interpret (3.1.1)
as the difference between the averages of the treatment effects at the levels
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1 and 0 of F1. Note that in applied design texts, level 1 is often assigned to
the high level and level 0 to the low level of a factor. While any other choice
of l(1)(= −l(0)) does not affect the development of the design theory, the
particular choice made above facilitates a natural interpretation.

Consider next the two-factor interaction (abbreviated as 2fi) F1F2. By
(2.1.12)–(2.1.14), this is represented by

L(F1F2) =
1∑

j1=0

· · ·
1∑

jn=0

l(j1j2)τ(j1 . . . jn), (3.1.2)

where
l(00) = −l(01) = −l(10) = l(11) = l, (3.1.3)

and l is any nonzero constant. The choice l = 1/2n−1 will render (3.1.2)
a natural interpretation similar to the one for the main effects. With l so
chosen, (3.1.2) can be expressed as

L(F1F2) =
1
2
{L(F1|F2 = 1) − L(F1|F2 = 0)}, (3.1.4)

where, for j2 = 0, 1,

L(F1|F2 = j2)

=
1

2n−2

1∑
j3=0

· · ·
1∑

jn=0

τ(1j2j3 . . . jn) − 1
2n−2

1∑
j3=0

· · ·
1∑

jn=0

τ(0j2j3 . . . jn).

In the spirit of the last paragraph, L(F1|F2 = j2) represents the conditional
main effect of F1 at level j2 of F2. Thus (3.1.4) exhibits L(F1F2) in terms
of the difference between these conditional main effects. This reinforces the
interpretation associated with (2.1.9) that a 2fi measures the influence of the
level where one factor is held fixed on the effect of a level change of the other
factor. It is not hard to see that (3.1.4) remains invariant, like (2.1.9), when
the roles of F1 and F2 are interchanged.

Similar considerations apply to any other 2fi or higher order interactions.
For example, the treatment contrast representing the three-factor interaction
(3fi) FiFjFr for 1 ≤ i < j < r ≤ n can be expressed as

L(FiFjFr) =
1
2
{L(FiFj |Fr = 1) − L(FiFj |Fr = 0)},

where L(FiFj |Fr = 1) is the conditional 2fi of Fi and Fj at level 1 of Fr, and
so on. For a detailed discussion of this approach to defining factorial effects,
see Chapter 3 of Wu and Hamada (2000).

We now turn to 2n−k designs. Some additional features of two-level facto-
rials that facilitate the understanding of such designs are as follows:

(a) All pencils are distinct.
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(b) Each factorial effect is represented by a single pencil, so that there is
practically no distinction between a factorial effect and the associated
pencil.

Both (a) and (b) are evident from Section 2.3, and (b) was noted near the
end of that section. By (b), a pencil becomes equivalent to a factorial effect.
Therefore, the concept of pencils is not needed explicitly when one considers
2n−k designs. In particular, the aliasing of pencils amounts to the aliasing of
factorial effects.

By (2.4.4), in a 2n−k design, there are 2k − 1 defining pencils or words.
Using the compact notation introduced in Remark 2.3.1, any such word that
corresponds to the factorial effect Fi1 . . . Fig

can be conveniently denoted by
i1 . . . ig. Thus the defining contrast subgroup, introduced below (2.4.4), con-
sists of the 2k − 1 words, together with the identity element I, and is closed
under multiplication with the convention of dropping squared symbols. With a
view to illustrating the above ideas, Example 2.4.1 is revisited from a different
perspective.

Example 3.1.1. Consider the 25−2 design d (= d(B)) in Example 2.4.1. Its
eight treatment combinations can be represented by the eight rows of the
following matrix M :

12 13
‖ ‖

1 2 3 4 5

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
One can visualize the design as follows. Start from a complete factorial in

F1, F2, F3 (based on the first three columns of M). Then add column 4 as the
sum of columns 1 and 2 and column 5 as the sum of columns 1 and 3 modulo
2. If column 4 is assigned to F4, it can be used to estimate the main effect
contrast L(F4) in the spirit of (3.1.1). Because 0 of column 4 corresponds to
00 and 11 of columns 1 and 2, and 1 of column 4 corresponds to 01 and 10
of columns 1 and 2, column 4 can also be used to estimate the interaction
contrast L(F1F2). Hence, L(F4) and L(F1F2) cannot be disentangled on the
basis of d. In other words, the factorial effects F4 and F1F2 are aliased in d,
and this is denoted by 4 = 12. Similarly, one gets the aliasing relation 5 = 13.
As in Section 2.4, these two relations can be rewritten as I = 124 = 135. By
multiplying 124 and 135, one gets a third relation I = 2345. Thus the 25−2

design d is completely characterized by the defining relation
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I = 124 = 135 = 2345, (3.1.5)

which describes its defining contrast subgroup and is the same as (2.4.7). The
alias sets are now easy to obtain via simple multiplication as discussed and
shown below (2.4.12). �

Generally, a 2n−k design is determined by its defining contrast subgroup.
The length of each word therein, or wordlength, is the number of symbols or
letters (i.e., factors) the word contains. The shortest wordlength is the reso-
lution of the design. Let Ai be the number of words of length i in the defining
contrast subgroup. The wordlength pattern W = (A1, A2, A3, . . . , An) and
the minimum aberration (MA) criterion are defined as in (2.5.3) and Defin-
ition 2.5.1. Thus the 25−2 design in Example 3.1.1 has resolution three and
wordlength pattern (0, 0, 2, 1, 0), since its defining contrast subgroup consists
of the words 124, 135, and 2345 (apart from I) with lengths 3, 3, and 4 re-
spectively. As will be shown after Theorem 3.2.1, this design has MA.

Since the properties of a 2n−k design are determined by its defining con-
trast subgroup, two 2n−k designs are said to be isomorphic (or equivalent) if
the defining contrast subgroup of one of them can be obtained from that of
the other by permuting the factor labels. In ranking and selecting designs,
isomorphic designs will be treated as the same.

A theoretical question concerning the maximum resolution criterion is to
find the highest resolution for a 2n−k design with given n and k (i.e., fixed
number of factors and run size). Theorems 2.7.3 and 2.7.4 address this question
to some extent. A good summary of existing results on maximum resolution in
the statistical literature is given in Draper and Lin (1990). These results will
not be reported here for two reasons. First, the maximum resolution criterion
is a special case of MA criterion. Results on the latter, which are the main
focus of this chapter, imply those on the former. Second, more comprehensive
results can be found in the coding-theoretic literature (e.g., Brouwer and
Verhoeff, 1993; Brouwer, 1998). Recall from Section 2.8 that the resolution
of a 2n−k design is equivalent to the minimum distance of a binary [n, k; 2]
linear code and that the concept of minimum distance plays a central role in
error-correcting codes. One difference is that for designed experiments, the
number of factors n is not usually too large, while n can be quite large for
codes. This underscores the need to find good codes (e.g., to maximize the
minimum distance) over a wider range of parameters.

3.2 Minimum Aberration 2n−k Designs with k ≤ 4

When k is small, the defining contrast subgroup of a 2n−k design has fewer
elements, which makes it easier to search for MA designs. General explicit
results are available for k ≤ 5. Results for 1 ≤ k ≤ 4 are given here. Through-
out this section, we consider only those 2n−k designs that have each of the
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letters 1, . . . , n appearing in some word in the defining contrast subgroup. By
Lemma 2.5.1, an MA design must satisfy this requirement.

The case k = 1 is straightforward. It is a half-fraction of the 2n factorial.
The MA 2n−1 design is also the maximum resolution design with defining
relation I = 12 . . . n.

The following lemma, due to Brownlee, Kelly, and Loraine (1948), is useful
in exploring MA designs for k = 2, 3, 4. It gives some fundamental relation-
ships for the Ai’s and the wordlengths. In Lemma 3.2.1,

∑
i iAi is called the

first moment of the 2n−k design and is equal to the sum of lengths of the
2k − 1 words in the defining contrast subgroup.

Lemma 3.2.1. For any 2n−k design,

(a)

n∑
i=1

Ai = 2k − 1, (3.2.1)

(b)

n∑
i=1

iAi = n2k−1, (3.2.2)

(c) either all the words in the defining contrast subgroup have even lengths or
2k−1 of them have odd lengths.

Proof. (a) This is obvious from the fact that there are 2k − 1 words in the
defining contrast subgroup, say G, of the design.

(b) Clearly,
∑n

i=1 iAi =
∑n

i=1 βi, where βi is the number of words in G
containing the letter i. It is enough to show that βi = 2k−1 for every i. For
any fixed i, let Gi(⊂ G) be the set consisting of the βi words as described
above. As indicated in the beginning of this section, Gi is nonempty. Let B
be any fixed word in Gi, and Ḡi be the complement of Gi in G. Since G is a
subgroup under multiplication,

Gi = {BG : G ∈ Ḡi}. (3.2.3)

Now, G has cardinality 2k inclusive of the identity element. Hence (3.2.3)
yields βi = 2k − βi, i.e., βi = 2k−1 as desired.

(c) Let the set G0(⊂ G) consist of words with odd lengths. If G0 is empty
then (c) holds trivially. Otherwise, the same arguments as in (b) show that
G0 has cardinality 2k−1. �

For k = 2, Robillard (1968) gave the following method for constructing
MA 2n−2 designs. Let n − 2 = 3m + r, where 0 ≤ r < 3. Define
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(i) for r = 0, B1 = 12 . . . (2m)(n − 1), B2 = (m + 1)(m + 2) . . . (3m)n;
(ii) for r = 1, B1 = 12 . . . (2m + 1)(n − 1), B2 = (m + 1)(m + 2) . . . (3m + 1)n;
(iii) for r = 2, B1 = 12 . . . (2m + 1)(n − 1), B2 = (m + 1)(m + 2) . . . (3m + 2)n.

(3.2.4)

Theorem 3.2.1. The 2n−2 design d0 with the defining relation I = B1 =
B2 = B1B2, where B1 and B2 are given in (3.2.4), has the maximum res-
olution

[
2n
3

]
and minimum aberration. Here [x] denotes the integer part of

x.

Proof. The three words B1, B2, and B1B2 have lengths {2m+1, 2m+1, 2m+2}
for r = 0, {2m + 2, 2m + 2, 2m + 2} for r = 1, and {2m + 2, 2m + 3, 2m + 3}
for r = 2. Hence d0 has resolution

[
2n
3

]
. From (3.2.2), the sum of the three

wordlengths for any 2n−2 design equals 2n. Therefore the shortest wordlength
(i.e., the resolution) has

[
2n
3

]
as its upper bound, which proves that d0 has

maximum resolution. The MA property is obvious for r = 1, since the three
words have the same length. It is evident also for r = 0, since by (3.2.2),
no design can have only one word of length 2m + 1 and two words of higher
lengths. For r = 2, d0 has only one word of the shortest length 2m + 2 and
two words of the next length 2m + 3. Again (3.2.2) rules out the existence of
designs with less aberration. �

Example 3.2.1. For n = 5, the rule in (3.2.4) becomes B1 = 124 and B2 =
235, which leads to the MA 25−2 design with I = 124 = 235 = 1345. By
mapping 1 → 2, 2 → 1, 3 → 3, 4 → 4, 5 → 5, it is clear that the defining
contrast subgroup of this design reduces to that in (3.1.5), thus showing that
the 25−2 design in Example 3.1.1 or 2.4.1 has MA. �

The study of the cases k = 3 and 4 is facilitated by periodicity consider-
ations implicit in Lemma 2.7.3. For ease in reference, this lemma is restated
below for two-level factorials.

Lemma 3.2.2. (a) Given any 2n−k design d1 with wordlength pattern W1,
there exists a 2(n+2k−1)−k design d2 with wordlength pattern W2 = (lag (W1,
2k−1), 0′), where 0′ is a null row vector such that W2 has n + 2k − 1 elements
altogether.
(b) R2(n + 2k − 1, k) ≥ R2(n, k) + 2k−1.

The next two theorems on MA 2n−3 and 2n−4 designs are due to Chen
and Wu (1991). Considering 2n−3 designs first, let n = 7m+ r, 0 ≤ r < 7. For
i = 1, . . . , 7, define

Bi =
{

(im − m + 1)(im − m + 2) . . . (im)(7m + i), for i ≤ r,
(im − m + 1)(im − m + 2) . . . (im), otherwise. (3.2.5)

The Bi’s divide the n letters into 7 approximately equal blocks.
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Theorem 3.2.2. The 2n−3 design d0 with the defining relation

I = B7B6B4B3 = B7B5B4B2 = B6B5B4B1

= B6B5B3B2 = B7B5B3B1 = B7B6B2B1 = B4B3B2B1,

where the Bi’s are given in (3.2.5), has minimum aberration and maximum
resolution. Its resolution equals

[
4n
7

]− 1 for r = 2 and
[
4n
7

]
for r �= 2.

Proof. For n = 4, d0 has the wordlength pattern W = (0, 6, 0, 1). Hence we
consider only those 24−3 designs that have A1 = 0. By (3.2.1) and (3.2.2), for
any such design,

A2 + A3 + A4 = 7,
2A2 + 3A3 + 4A4 = 16, (3.2.6)

which together with Lemma 3.2.1(c) yield the unique solution A2 = 6, A3 = 0,
A4 = 1, thus proving the MA property of d0.

For n = 5, d0 has the wordlength pattern W = (0, 2, 4, 1, 0). Hence we
consider only those 25−3 designs that have A1 = 0 and A2 ≤ 2. As before,

A2 + A3 + A4 + A5 = 7,
2A2 + 3A3 + 4A4 + 5A5 = 20, (3.2.7)

and A3 + A5 = 0 or 4 by Lemma 3.2.1(c). Thus the unique solution of (3.2.7)
with A2 ≤ 2 is A2 = 2, A3 = 4, A4 = 1, A5 = 0, and the MA property of d0

follows.
For 6 ≤ n ≤ 10, the proofs are similar. For n ≥ 11, the proofs are essen-

tially the same as those for 4 ≤ n ≤ 10 because from Lemma 3.2.2(a), they
involve the same type of equations with a period of length 4 (= 23−1). For
example, if n = 4 + 7m, then one word in the defining contrast subgroup of
d0 has length 4+4m and the rest have length 2+4m each. Hence considering
only those designs satisfying Ai = 0 for i ≤ 1+4m, (3.2.1) and (3.2.2) become

A2+4m + A3+4m + A4+4m + · · · = 7,
(3.2.8)

(2 + 4m)A2+4m + (3 + 4m)A3+4m + (4 + 4m)A4+4m + · · · = 4(4 + 7m).

Subtracting (2+4m) times the first equation from the second equation yields

A3+4m + 2A4+4m + 3A5+4m + · · · = 2,

which forces A5+4m = A6+4m = · · · = 0 and reduces the equations in (3.2.8)
to those in (3.2.6). Therefore the proof for n = 4 + 7m reduces to that for
n = 4.

The MA property of d0 implies that it has maximum resolution. One can
easily check that the resolution of d0 is as claimed. �
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To construct 2n−4 MA designs, we use the same idea as with k = 3. Let
n = 15m + r, 0 ≤ r < 15. Divide the n letters into 15 approximately equal
blocks given by B1, . . . , B15, where

Bi =
{

(im − m + 1)(im − m + 2) . . . (im)(15m + i) for i ≤ r,
(im − m + 1)(im − m + 2) . . . (im) otherwise.

When r �= 5, let

B = {B15B14B12B9B8B7B6B1, B15B13B11B9B8B7B5B2,

B15B14B11B10B8B6B5B3, B15B13B12B10B7B6B5B4}. (3.2.9)

When r = 5, switch B15 and B5 in (3.2.9).

Theorem 3.2.3. The 2n−4 design d0, whose defining contrast subgroup is
generated by the four words in (3.2.9), has minimum aberration and maxi-
mum resolution. Its resolution equals

[
8n
15

]
for r �= 2, 3, 4, 6, 10 and

[
8n
15

] − 1
otherwise.

Proof. For n = 5, d0 has wordlength pattern (0, 10, 0, 5, 0). By Lemma
3.2.1, there are only two possibilities, (0, 6, 8, 1, 0) and (0, 7, 7, 0, 1), for the
wordlength pattern of any design with less aberration. Consider the first one.
Let l be a letter shared by a shortest word and the longest word. Following
the proof of Lemma 3.2.1(b), there are 8 (= 24−1) words containing l. If these
words are deleted, then by (3.2.1) and Lemma 3.2.1(c), the wordlength pat-
tern of the resulting 2n′−3 design (n′ ≤ 4) must be (0, 3, 4, 0), which violates
(3.2.2). The second possibility is also eliminated in the same manner. Thus
the MA property of d0 follows.

Similarly, for n = 6, the only possibilities for the wordlength pattern of
any design having less aberration than d0 are

(a) W = (0, 2, 8, 5, 0, 0),
(b) W = (0, 3, 7, 4, 1, 0).

In case (a), suppose letter l occurs in a shortest word. Delete all the words
containing l. The remaining words will define a 2n′−3 design with n′ ≤ 5.
According to (3.2.2), its first moment is at most 5×4 = 20. On the other
hand, it has A2 ≤ 1, A4 ≤ 5, and Ai = 0 for i �= 2, 3, 4. Hence by (3.2.1)
and Lemma 3.2.1(c), A3 = 4. Using (3.2.1) again, (A2, A4) = (1, 2) or (0, 3).
Therefore 2A2 + 3A3 + 4A4 = 22 or 24, each of which is greater than 20 and
thus violates (3.2.2). In case (b), notice that there is a letter that occurs in
at least two of the three shortest words. This is because A6 = 0 in (b) forces
the product of these three words to have at most length 5. Deleting the words
containing this letter would lead to the same violation as in case (a). Thus,
no other design can have less aberration than d0.

By Lemma 3.2.1, for n = 7, the only possibilities for the wordlength pat-
tern of any design having less aberration than d0 are
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W = (0, 0, 6, 7, 2, 0, 0), W = (0, 0, 7, 6, 1, 1, 0).

To prove that there is no design with either of these wordlength patterns, we
assume the contrary. Suppose d1 is a 27−4 design with W = (0, 0, 6, 7, 2, 0, 0).
Its defining contrast subgroup contains words of odd lengths and hence cannot
be generated exclusively by even-length words. By adding a new letter to all
odd-length generators, we have a 28−4 design d2. Every word in the defining
contrast subgroup of d2 has even length since all its generators have even
lengths. Because the corresponding words in d2 are at least as long as the
words in d1, from (3.2.1) and (3.2.2), the wordlength pattern of d2 has to be

(c) W = (0, 0, 0, 13, 0, 2, 0, 0).

Now we prove the impossibility of (c). Clearly, there exists a letter l appearing
in one of the two longest words but not in the other. By deleting all the words
containing l, the remaining words define a 2n′−3 design with n′ ≤ 7. From
(3.2.1), the wordlength pattern of this design must be (0, 0, 0, 6, 0, 1, 0) with
its first moment being 30, which violates (3.2.2). Therefore such a design does
not exist. The proof of the impossibility of W = (0, 0, 7, 6, 1, 1, 0) is similar.
This proves the MA property of d0 for n = 7.

The proofs are similar for 8 ≤ n ≤ 19. Using the same periodicity argument
as with k = 3 (see (3.2.8)), one can show that the proofs for n ≥ 20 are the
same as those for 5 ≤ n ≤ 19.

The MA property of d0 implies that it has maximum resolution. It is also
easy to check that the resolution of d0 is as claimed. �

Chen and Wu(1991)tabulated the wordlength patterns of the MA designd0

in Theorem 3.2.3 for 5 ≤ n ≤ 19.
The combinatorial arguments used for k = 3 and 4 are not completely

adequate in the exploration of MA 2n−5 designs. They are effective in sub-
stantially reducing the number of candidate designs, but the remaining work
has to be done by computer search. Chen (1992) used a combination of these
two techniques to find MA 2n−5 designs in closed form.

Since a word of length two in the defining contrast subgroup would en-
tail the aliasing of main effects, we will not consider designs of resolution
two. In the rest of this chapter, only designs of resolution three or higher are
considered.

3.3 Minimum Aberration Designs via
Complementary Designs

The approach taken in the previous section is useful for finding MA 2n−k

designs with k ≤ 4. As k becomes larger, the number of candidate designs
grows exponentially and therefore a different approach is required. To motivate
the new approach, consider the search for MA 2n−k designs with 16 runs.
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Because n − k = 4, we can rewrite them as 2n−(n−4) designs. Based on the
results for 2n−k designs with k ≤ 4, the cases 5 ≤ n ≤ 8 are solved. For n ≥ 9,
the search for MA designs is greatly simplified if one recalls from Theorem
2.7.1 that each 2n−(n−4) design is equivalent to a selection of n points out of
the 15 points of the finite projective geometry PG(3, 2). Since the number of
remaining points, namely 15−n, is much smaller than n for n ≥ 9, it is easier
to conduct design search over them. Clearly, these remaining points form the
complement of the set of n points for the 2n−k design. This complementary
set is often referred to as the complementary design of the original one. The
terms complementary set and complementary design are used interchangeably
in what follows.

Let m = n − k. Using the compact notation introduced in Section 2.7,
PG(m − 1, 2) can be represented by

Hm = {u1 . . . ur : 1 ≤ u1 < · · · < ur ≤ m, 1 ≤ r ≤ m}, (3.3.1)

where the element u1 . . . ur corresponds to the point of PG(m−1, 2) that has
1 in the u1th,. . . ,urth positions, and 0 elsewhere. For example,

H3 = {1, 2, 12, 3, 13, 23, 123}.
(In coding theory Hm can be viewed as a Hamming code.) Addition of any
two points of PG(m−1, 2) is equivalent to multiplication of the corresponding
elements of Hm with the convention of dropping squared symbols. Indeed,
{I} ∪ Hm forms a group under such multiplication where I is an identity
element. Any g elements of Hm are independent if none of them equals the
product of some or all of the rest. Thus the elements 13, 23, and 123 of H3

are independent, while 12, 13, and 23 are not so because 23 = (12)(13).
Since only designs of resolution three or higher are being considered, the

following result is evident from Theorem 2.7.1.

Theorem 3.3.1. (a) Let m = n − k. Then a 2n−k design is equivalent to a
set T (⊂ Hm) of cardinality n such that there are m independent elements in
T .

(b) Furthermore, with T = {c1, . . . , cn}, the defining contrast subgroup of
the design contains the word i1 . . . ig if and only if ci1 . . . cig

= I.

Throughout this section, a 2n−k design is denoted simply by the corre-
sponding set T as envisaged above. Its wordlength pattern is also denoted by
W (T ) = (A1(T ), . . . , An(T )). The complementary set T = Hm − T , of cardi-
nality f = 2m − 1 − n, represents the complementary design of T . If f = 0,
then T is called a saturated design. Obviously, in this case there is only one
choice of T , namely, T = Hm. Hence to avoid trivialities, let f ≥ 1. Then T
is nonempty and Theorem 3.3.1(b), with T there replaced by T , dictates the
defining contrast subgroup and hence the wordlength pattern of T . The latter
is denoted by W (T ) = (A1(T ), . . . , Af (T )). Clearly Ai(T ) = Ai(T ) = 0 for
i = 1, 2.
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Note that T may not always represent a design in a strict sense. For in-
stance, it may so happen that f ≤ m or that T does not contain m indepen-
dent elements (cf.Theorem 3.3.1(a)). Notwithstanding these possibilities, the
terminology “complementary design” for T is a common usage. At any rate,
the wordlength pattern of T is always well-defined via Theorem 3.3.1(b). For
example, if f ≤ m and the elements of T are independent, then Ai(T ) = 0 for
every i.

Example 3.3.1. Let n = 4, k = 1, m = n−k = 3. Consider two 24−1 designs
represented by the sets T1 = {1, 2, 3, 12} and T2 = {1, 2, 3, 123} of H3. The
only product involving the elements of T1 that equals I is (1)(2)(12). Hence by
Theorem 3.3.1(b), the only word in the defining contrast subgroup of T1 has
length 3, giving W (T1) = (0, 0, 1, 0). Similarly, W (T2) = (0, 0, 0, 1), so that
T2 has higher resolution and hence less aberration than T1. Consider now the
complements T 1 = H3 − T1 = {13, 23, 123} and T 2 = H3 − T2 = {12, 13, 23}.
The three elements of T 1 are independent, while those of T 2 satisfy the relation
(12)(13)(23) = I. Hence, using Theorem 3.3.1(b) again, W (T 1) = (0, 0, 0) and
W (T 2) = (0, 0, 1). Intuitively, this example suggests that when the elements
of the complementary set T are more “dependent,” those of T should be less
“dependent” and thus T may have less aberration. A rigorous version of this
intuitive observation will be developed later in the section. �

Following Tang and Wu (1996), we now describe how the use of comple-
mentary designs can simplify the study of MA designs, especially when the
complementary sets are not too large. The method first employs isomorphism
to reduce the design search. An isomorphism φ is a one-to-one mapping from
Hm to Hm such that φ(xy) = φ(x)φ(y) for every x �= y. Two sets T1 and T2 of
Hm are said to be isomorphic if there is an isomorphism φ that maps T1 onto
T2. Two 2n−k designs are called isomorphic if the corresponding sets are iso-
morphic. Note that this definition of design isomorphism is equivalent to the
one given in Section 3.1. Isomorphic designs are treated as the same design.
For example, they are equivalent according to the MA criterion. The follow-
ing crucial result is evident from the definition of isomorphism. It shows that
while looking for an MA design, one can reduce the class of complementary
designs by isomorphism and then restrict the search to the reduced class.

Lemma 3.3.1. Let T i be the complement of Ti in Hm (i = 1, 2). If T 1 and
T 2 are isomorphic, then T1 and T2 are also isomorphic.

Theorem 3.3.2. Any two 2n−k designs with n = 2n−k − 2 are isomorphic.
The same holds for n = 2n−k − 3.

Proof. Any 2n−k design with n = 2m − 2, where m = n − k, is given by
a set T of 2m − 2 elements of Hm. Its complement T consists of only one
element of Hm. Since any two singleton sets are isomorphic, sets like T must be
isomorphic to one another according to Lemma 3.3.1. Similarly, for n = 2m−3,
the complementary set T consists of two elements. Since all such sets of two
elements are isomorphic, all designs with n = 2m − 3 are also isomorphic. �
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The next simplest case is n = 2n−k − 4, i.e., the complementary set T
has three elements. There are two nonisomorphic choices of T : (i) {a, b, c},
where a, b, c are three independent elements, and (ii) {a, b, ab}, where ab is the
product of a and b. From Example 3.3.1, one would expect the design whose
complementary design has the form (ii) to be superior. The following identities
enable us to verify whether an intuitive guess like this is correct. They relate
the values of A3, A4, A5 for a 2n−k design T to those of its complementary
design T :

A3(T ) = constant − A3(T ),
A4(T ) = constant + A3(T ) + A4(T ), (3.3.2)
A5(T ) = constant − (2n−k−1 − n)A3(T ) − A4(T ) − A5(T ).

The constants in (3.3.2) may depend on n and k but not on the particular
choice of T . These identities are special cases of a more general result to be
given in Chapter 4 (see Corollary 4.3.2). Hence their proofs are omitted.

The following rules for identifying MA designs emerge from (3.3.2). Recall
that f = 2n−k − 1 − n is the cardinality of T .
Rule 1. A design T ∗ has minimum aberration if

(i) A3(T
∗
) = max A3(T ) over all T of cardinality f , and

(ii) T
∗

is the unique set (up to isomorphism) satisfying (i).

Rule 2. A design T ∗ has minimum aberration if

(i) A3(T
∗
) = max A3(T ) over all T of cardinality f ,

(ii) A4(T
∗
) = min{A4(T ) : A3(T ) = A3(T

∗
)}, and

(iii) T
∗

is the unique set (up to isomorphism) satisfying (ii).

Rule 3. A design T ∗ has minimum aberration if

(i) A3(T
∗
) = max A3(T ) over all T of cardinality f ,

(ii) A4(T
∗
) = min{A4(T ) : A3(T ) = A3(T

∗
)},

(iii) A5(T
∗
) = max{A5(T ) : A3(T ) = A3(T

∗
) and A4(T ) = A4(T

∗
)}, and

(iv) T
∗

is the unique set (up to isomorphism) satisfying (iii).

The following example serves to illustrate the use of Rule 1.

Example 3.3.2. Let f = 2w − 1. Clearly, A3(T ) is maximized if and only
if {I} ∪ T is a subgroup of {I} ∪ Hm. Since this subgroup is unique (up to
isomorphism), one obtains a sequence of MA 2n−k designs with n = 2m − 2w,
where w = 1, . . . , m − 1 and m = n − k. In particular, if w = 2, then T of
the form {a, b, ab} yields the MA design. Since w = 2 amounts to f = 3, i.e.,
n = 2n−k −4, this shows the validity of the intuitive guess made above (3.3.2)
for such n. �
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Use of Rule 1 and design isomorphism yields MA 2n−k designs for general
n and k with f = 2n−k − 1 − n = 1, 2, . . . , 9. The corresponding sets T are
summarized in Table 3.1. The results for f = 10 and 11 can be obtained via
Rule 2 and design isomorphism. The explanatory notes (i)–(ix) below indicate
the proofs for most of the cases. Details for all cases can be found in Tang
and Wu (1996). In Table 3.1 as well as the explanatory notes, a, b, c, d are
independent elements of Hm.

Table 3.1 The sets T for MA designs with f = 1 to 9

f 1 2 3 4 5 6 7 8 9

T a b ab c ac bc abc d ad

(Note: For each f , the optimum T consists of the first f elements of the second
row.)

(i) f = 1, 2 are covered by Theorem 3.3.2; f = 3 is covered by Example
3.3.2.

(ii) f = 4. There are three nonisomorphic choices of T :

T 1 = {a, b, c, ab}, T 2 = {a, b, c, abc}, T 3 = {a, b, c, d}.

Since T 1 is the only one with positive A3, it yields the MA design.
(iii) f = 5. First consider T 1 = {a, b, c, ab, ac}. Because T 1 can be viewed as

a 25−2 design and from Theorem 3.3.2 all 25−2 designs are isomorphic,
other choices of T must have four or five independent elements, say,
a, b, c, d, e. Among them, the following four are nonisomorphic:

T 2 = {a, b, c, d, ab}, T 3 = {a, b, c, d, abc},
T 4 = {a, b, c, d, abcd}, T 5 = {a, b, c, d, e}.

Since A3(T 1) = 2 > A3(T 2) = 1 > A3(T i) = 0 for i = 3, 4, 5, T 1 gives
the MA design.

(iv) The proof for f = 6 is similar to that for f =5.
(v) f = 7. The most “dependent” T is of the form

T 1 = {a, b, c, ab, ac, bc, abc}.

From Example 3.3.2, T 1 gives the MA design with A3(T 1) = 7. For use
in (vi) below, we give the A3 values associated with the other noniso-
morphic T . They must have at least four independent elements and are
given by
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T 2 = {a, b, c, d, x1, x2, x3}, T 3 = {a, b, c, d, e, x1, x2},
T 4 = {a, b, c, d, e, g, x}, T 5 = {a, b, c, d, e, g, h},

where a, b, c, d, e, g, h denote independent elements and x1, x2, x3, x de-
note products of the independent elements in the corresponding sets.
It is easy to show that the maximum A3 for T 2 is 4, which is attained
uniquely (up to isomorphism) by choosing x1 = ab, x2 = ac, x3 = bc.
It is also readily seen that max A3(T 3) = 2, max A3(T 4) = 1, and
A3(T 5) = 0.

(vi) f = 8. It will be shown that the set

T
∗

= {a, b, c, d, ab, ac, bc, abc}

uniquely attains the maximum A3 value 7, and thus gives the MA de-
sign. To this end, we write any set of eight elements as T = Q ∪ {x8},
where Q = {x1, . . . , x7}. As noted in (v) above, A3(Q) ≤ 7, with equal-
ity if and only if Q has the form {a, b, c, ab, ac, bc, abc}, in which case T

becomes the same as T
∗
.

From (v) again, the next largest value of A3(Q) is 4 and is uniquely at-
tained by the set Q0 = {a, b, c, d, ab, ac, bc}. Additional relations involv-
ing three elements of T and hence contributing to A3(T ) must involve
x8 and take the form

xixj = x8, 1 ≤ i �= j ≤ 7. (3.3.3)

With Q = Q0 (and x8 �= abc so as to avoid reversal to T
∗
), there is at

most one pair of xi and xj to satisfy (3.3.3). Therefore maxA3(Q0 ∪
{x8}) = 5. For any other choice of Q, A3(Q) ≤ 3 as seen in (v). Noting
that (3.3.3) has at most three solutions, it follows that the maximum
A3 for Q ∪ {x8} with A3(Q) ≤ 3 is 6, thus completing the proof.

(vii) The proof for f = 9 is similar to but more elaborate than that for f = 8.
(viii) f = 11. It will be shown that Rule 2 yields the MA design. Note that

m = n− k ≥ 5, for otherwise n = 2n−k − 1− f ≤ 4, which is impossible
since k ≥ 1. Hence H4 is embedded in Hm. By complete enumeration
it can be shown that T must be a subset of H4, up to isomorphism;
otherwise, A3(T ) is not maximized. Since the size of T is larger than
that of T = H4 − T , it is easier to work with the smaller set T . Since
T has only four elements, according to the case of f = 4, there are only
three nonisomorphic choices for it, namely,

T 1 = {x, y, z, u}, T 2 = {x, y, z, xyz}, T 3 = {x, y, z, xy},

where x, y, z, u are independent elements. Let T i = H4−T i (i = 1, 2, 3).
Since A3(T 1) = A4(T 1) = 0, A3(T 2) = 0, A4(T 2) = 1, A3(T 3) =
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1, A4(T 3) = 0, applying (3.3.2) to the pairs
(
T i, T i

)
that are comple-

mentary with reference to H4, one gets

A3(T 1) = A3(T 2) = A3(T 3) + 1, A4(T 1) = A4(T 2) − 1.

Hence, by Rule 2, T 1 yields the MA design. Note that T 1 is isomorphic
to

{a, b, ab, c, ac, bc, abc, d, ad, bd, cd}. (3.3.4)

(ix) f =10. Arguments similar to those for f =11 show that

T
∗

= {a, b, ab, c, ac, bc, d, ad, bd, cd} (3.3.5)

satisfies Rule 2 and yields the MA design.

For each of the cases 1 ≤ f ≤ 11 considered above, it is satisfying to
note that the set T , representing the MA design, contains m independent
elements, as it should in view of Theorem 3.3.1(a). For illustration, consider
f = 10 and suppose a, b, c, d, e5, . . . , em are m independent elements of Hm.
Then by (3.3.5), the set representing the MA design includes the m elements
abc, abd, acd, bcd, e5, . . . , em, which are independent.

The above results can be applied to complete the search for MA 16-run
2n−(n−4) designs discussed in the beginning of the section. Among the remain-
ing cases, i.e., 9 ≤ n ≤ 15, the case n =15 is trivial since there is only one
design, namely, T = H4. The cases n = 14 and 13 correspond to f = 1 and 2
respectively. By Theorem 3.3.2 or (i) above, all designs are isomorphic in these
two cases. Finally, the cases n = 12, 11, 10, and 9 correspond to f = 3, 4, 5, and
6 and are settled respectively by (i)–(iv) above. For instance, with n = 10, one
may take a = 123, b = 24, c = 34 in (iii) to get T 1 = {123, 24, 34, 134, 124},
which shows that the 210−6 design T1 = {1, 2, 12, 3, 13, 23, 4, 14, 234, 1234} has
MA. Since the result for each f , 1 ≤ f ≤ 11, does not depend on the value
of n, the same rules can be used to find MA 32-run 2n−(n−5) designs with
20 ≤ n ≤ 30 and MA 64-run 2n−(n−6) designs with 52 ≤ n ≤ 62, etc.

Chen and Hedayat (1996) defined a weak MA design as one that minimizes
A3(T ), or equivalently, maximizes A3(T ) in view of (3.3.2). Obviously, an MA
design has weak MA as well. These authors gave a necessary and sufficient
condition for the maximization of A3(T ). This result will be presented in
Chapter 5 (See Lemma 5.3.1) using a projective geometric language. The
findings concerning the maximization of A3(T ) in the case-by-case discussion
above are in agreement with this result and hence demonstrate, from first
principles, its validity for smaller f .

3.4 Clear Effects and the MaxC2 Criterion

From the applications point of view, the properties of a design with regard
to the estimability of factorial effects, especially the lower-order ones, are of
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direct interest. As discussed in Section 2.4, these properties are influenced by
the aliasing pattern. The resolution of a design indeed sheds some light on
the aliasing pattern. Thus in a resolution four design, no main effect is aliased
with another main effect or any 2fi, but some 2fi’s are aliased with other 2fi’s.
Similarly, in a resolution five design, no main effect is aliased with another
main effect or any 2fi or any 3fi, and no 2fi is aliased with any main effect or
any other 2fi. However, note that the resolution of a design gives only partial
information about the nature of aliasing. For example, the mere fact that a
design has resolution four does not determine the exact number of 2fi’s that
are aliased with other 2fi’s.

These considerations led Wu and Chen (1992) to propose the following
classification of effects. A main effect or 2fi is called clear if it is not aliased
with any other main effect or 2fi. By Theorem 2.4.2, a clear main effect or
2fi is estimable under the assumption that the interactions involving three or
more factors are absent. A main effect or 2fi is called strongly clear if it is
not aliased with any other main effect or 2fi or any 3fi. As before, a strongly
clear main effect or 2fi is estimable under the assumption that the interactions
involving four or more factors are absent. Observe that the latter assumption
is less stringent than the former.

For any 2n−k design, let C1 be the number of clear main effects and C2
be the number of clear 2fi’s. The following important and useful rules are now
evident from the facts noted in the beginning of the section.

Rules for 2n−k designs of resolution four or five:
(i) In any resolution four design, the main effects are clear but the 2fi’s are
not all clear.
(ii) In any resolution five design, the main effects are strongly clear and the
2fi’s are clear.
(iii) Among the resolution four designs with given n and k, those with the
largest C2 are the best.

Rule (iii) was proposed in Wu and Hamada (2000, Section 4.2), who jus-
tified it as follows. In a resolution four design, all main effects are clear but
some 2fi’s are aliased with other 2fi’s. One can therefore use C2, the number
of clear 2fi’s, to compare and rank-order resolution four designs. It is called
the MaxC2 criterion. Resolution four designs that achieve the maximum C2
value are called MaxC2 designs. A natural question is whether the MaxC2
criterion is consistent with the MA criterion. In many cases they are, but the
following example shows that the two criteria can be in conflict.

Example 3.4.1. Following (3.2.9) and Theorem 3.2.3, consider the MA 29−4

design d0 whose defining contrast subgroup is generated by the four indepen-
dent words 16789, 25789, 3568, and 4567. The design has resolution four with
A4 = 6. The six words of length four in its defining contrast subgroup are
1238, 1247, 1256, 3478, 3568, and 4567. All pairs formed out of the letters
1, . . . , 8 appear in one or more of these six words, while the letter 9 does not
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appear in any one of them. Hence the only clear 2fi’s are the ones that involve
the letter 9, so that C2 = 8 for d0.

Consider now the rival 29−4 design d1, whose defining contrast subgroup
is generated by the four independent words 1236, 1247, 1345, and 23489. This
design also has resolution four but its defining contrast subgroup contains
seven words of length four, namely, 1236, 1247, 1345, 1567, 2357, 2456, and
3467. Each pair formed out of the letters 1, . . . , 7 appears in one or more of
these seven words, while the letters 8 and 9 do not appear in any of them.
Hence A4 = 7 and C2 = 15 for d1. Consequently, d0 has less aberration than
d1 but d1 has a much larger C2 value than d0. Thus the MA design d0 is
not a MaxC2 design. Using an exhaustive computer search or a proof in Wu
and Wu (2002), it can be shown that d1 is a MaxC2 design and that it is the
second best in terms of the MA criterion. �

From the catalogue of designs at the end of the chapter, there are many
designs with higher C2 values than the MA designs. Before we proceed to this
discussion, we need to state some fundamental properties about clear effects.
For 2n−k designs with a fixed run size, write m = n−k and denote the run size
by 2m. According to Theorem 2.7.4, a 2n−k design can have resolution four or
higher if and only if n ≤ 2m−1, i.e., the number of factors does not exceed half
the run size. Therefore any 2n−k design with n > 2m−1 has resolution three.
In addition, such designs do not have any clear 2fi, as the following theorem
reveals.

Theorem 3.4.1. No 2n−k design with n > 2m−1, where m = n − k, has any
clear 2fi.

Proof. Consider a 2n−k design, which, by Theorem 3.3.1(a), is equivalent to a
set T = {c1, . . . , cn} of Hm. Suppose there is a clear 2fi that involves, say, the
first two factors. Then no word of length three or four contains both the letters
1 and 2. Hence by Theorem 3.3.1(b), c1c2 ∈ T and c1c2ci ∈ T (3 ≤ i ≤ n),
where T = Hm−T . Since the elements c1c2 and c1c2ci (3 ≤ i ≤ n) are distinct,
the cardinality of T is at least n− 1. On the other hand, by definition, T has
cardinality 2m−1−n. Hence 2m−1−n ≥ n−1, i.e., n ≤ 2m−1, a contradiction.

�

By Theorem 2.7.4, there exist designs of resolution four or higher for n ≤
2m−1. The next result says that when the number of factors n is between half
run size and quarter run size plus two, no resolution four design has any clear
2fi.

Theorem 3.4.2. No 2n−k design of resolution four has any clear 2fi if 2m−2+
2 ≤ n ≤ 2m−1, where m = n − k.

Proof. Using the same notation as in the proof of Theorem 3.4.1, consider
the design represented by T . Let T have resolution four and suppose there
is a clear 2fi involving, say, the first two factors. As before, then c1c2ci ∈ T
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(3 ≤ i ≤ n). Also c1ci ∈ T (2 ≤ i ≤ n) and c2ci ∈ T (3 ≤ i ≤ n) since
resolution four rules out words of length three. It is easy to see that the 3n−5
elements just mentioned are distinct. Hence the cardinality of T is at least
3n − 5, i.e., 2m − 1 − n ≥ 3n − 5, which is equivalent to n ≤ 2m−2 + 1, a
contradiction. �

The last two theorems are due to Chen and Hedayat (1998).
Since all 2fi’s in resolution five designs are clear, we focus on resolution four

designs. For n ≤ 2m−2 + 1, are there resolution four designs with clear 2fi’s?
For a fixed run size 2m, m = n−k, let nmax(m) denote the maximum possible
n for which there is a 2n−k design of resolution five or higher. For nmax(m) <
n ≤ 2m−2 + 1, there are resolution four designs. Chen and Hedayat (1998)
showed by a simple construction that for each n in this range, there exists
a resolution four design with some clear 2fi’s. Therefore Rule (iii) above is
particularly relevant in this case. The result just stated and those in Theorems
2.7.4, 3.4.1, and 3.4.2 can be verified with the designs given in the appendix
of this chapter. Take, for example, the case of 32-run designs listed in Table
3A.3. For n > 16, all designs have resolution three and none has any clear 2fi;
for 10 ≤ n ≤ 16, no resolution four design has any clear 2fi (but resolution
three designs can have clear 2fi’s). For 6 < n ≤ 9, there are resolution four
designs with clear 2fi’s. The 29−4 designs in Example 3.4.1 fall in this range.
Here nmax(5) = 6 and there is a 26−1 design of resolution six.

For m = 5 and 6, i.e., with 32 and 64 runs, MA designs have been obtained
in the literature over the range nmax(m) < n ≤ 2m−2 + 1. MA designs with
128 runs are also known for 12 ≤ n ≤ 14 (Chen, 1992, 1998). See the catalogue
at the end of the chapter or the tables in Wu and Hamada (2000, Chapter 4).
Wu and Wu (2002) showed that these MA designs, which all have resolution
four, are also MaxC2 designs, except for the 29−4, 213−7, 214−8, 215−9, 216−10

and 217−11 designs. They also showed that the designs 9-4.2, 13-7.2, 16-10.6,
17-11.6 and 15-8.3 in Tables 3A.3 – 3A.5 are MaxC2 designs though not MA
designs. The proofs in Wu and Wu (2002) will not be given here. They are
quite complicated and vary from case to case. While the proofs for MA designs
generally use a few techniques, there is no unified approach for obtaining
MaxC2 designs. This difference can be explained by the fact that C2 is a
complicated function of the defining contrast subgroup of the design while
the MA criterion is based on the lengths of words in the subgroup.

A resolution three design with some clear 2fi’s may be preferred to a
resolution four design with no clear 2fi. Many such examples can be found
in the catalogue of designs at the end of the chapter. This is also antic-
ipated from Theorem 3.4.2. For illustration, the MA 26−2 design d0 with
I = 1235 = 2346 = 1456 has resolution four. All its six main effects are clear
but no 2fi is clear. Consider now the resolution three 26−2 design d1 with
I = 125 = 1346 = 23456. It has three clear main effects 3, 4, 6 and six clear
2fi’s 23, 24, 26, 35, 45, 56. Which one is better? If only main effects are of in-
terest, d0 is preferred. On the other hand, d1 has altogether nine clear effects,
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while d0 has only six. If only three factors (out of six) and some 2fi’s involving
them are believed to be important a priori, d1 may be preferred. This and
other examples demonstrate that use of the resolution criterion alone may
give a very rough measure of the estimability properties of designs. A more
quantitative measure of such properties is provided by the values of C1 and
C2.

Since the MA criterion and the MaxC2 criterion can be in conflict, we
suggest that MA be used as the primary criterion, supplemented by the use
of C1 and C2 values. If a MaxC2 design is not an MA design, it may be
preferred when the difference in the C2 values is large. Further discussion on
these criteria will be given at the end of Section 5.3, where another criterion
called estimation capacity is considered.

3.5 Description and Use of the Two-Level Design Tables

A catalogue of 2n−k designs with 16, 32, 64, and 128 runs is given in the
appendix of this chapter. The designs with 16, 32, and 64 runs are taken
from Chen, Sun, and Wu (1993) based on an algorithm and a search program
developed by the same authors. The 8-run designs are not included, since the
case is quite straightforward. The listing of 16-run designs in Table 3A.2 is
complete, i.e., it contains all the nonisomorphic designs. For 32 or 64 runs, a
complete listing is too long to be included. To save space, at most ten designs
are given in Tables 3A.3 and 3A.4 for each combination of n − k and n.
Selection of designs for inclusion in these two tables is based primarily on the
MA criterion and supplemented by the MaxC2 criterion. The 128-run designs
for 12 ≤ n ≤ 40 in Table 3A.5 are adapted mainly from Block and Mee (2005),
who also gave designs for n > 40. A few entries in the table are taken from
other sources. Because of the large number of nonisomorphic designs in this
case and the difficulties in verifying the MA property of a design, following
these authors, only one or a few designs are listed in Table 3A.5 for each n.
These are resolution four designs and, except for the one numbered 15-8.3,
have been claimed by Block and Mee (2005) to have the smallest A4 value.
These designs tend to perform well also under the MA, MaxC2, or other
criteria not discussed in the book.

This catalogue of designs can be useful for design search based on criteria
other than the MA. For example, in studying more complex situations such
as fractional factorial designs with blocking or split-plot structure or with the
distinction of control and noise factors (to be considered in Chapters 7, 8,
and 9 respectively), the optimality criteria are more elaborate than the MA
criterion but can include it as a major component. The catalogue can serve
as the basis for searching optimal designs in such situations.

Recall from Theorem 3.3.1 that a 2n−k design is equivalent to a set of n
elements of Hm, where m = n− k and Hm is defined in (3.3.1), such that the
set contains m independent elements. Up to isomorphism, the independent
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elements can always be taken as 1, 2, . . . , m. Thus a 2n−k design can be repre-
sented by the elements 1, 2, . . . , m, together with k additional elements of Hm.
This representation is followed in the catalogue for tabulating designs. Fur-
thermore, instead of using the notation 1, 2, 12, 3, 13, 23, . . . for the elements
of Hm, to save space, we denote them by the corresponding serial numbers
1, 2, 3, 4, 5, 6, . . . . This numbering scheme is shown in Table 3A.1. For instance,
the independent elements 1, 2, 3, 4 of H4 are numbered 1, 2, 4, 8 according to
this scheme. Consequently, in listing any 16-run design (i.e., m = n−k = 4) in
the catalogue, it is implied that the elements numbered 1, 2, 4, 8 are included
but only the serial numbers of the additional k elements are listed under
“Additional Elements”. Similar considerations apply to 32-, 64-, and 128-run
designs. To save space, a notation like 19 – 22 is used to denote elements
numbered 19 to 22.

For clarity, the ith 2n−k design in the catalogue is denoted by n − k.i.
The wordlength pattern W and C2, the number of clear 2fi’s, appear in the
last two columns of the design tables. Again to save space, for 32-, 64-, and
128-run designs, at most five components of W are shown. For any given n−k
and n, the first design n− k.1 in Tables 3A.2 through 3A.4 is the MA design,
and this is in agreement with the tabulated wordlength patterns. The designs
12-5.1, 13-6.1, and 14-7.1 in Table 3A.5 are also known to have MA (Chen,
1992, 1998). Ordering of the remaining designs in Tables 3A.3 and 3A.4 is
not strictly according to the MA criterion. Designs with more aberration but
much higher C2 values may be placed ahead of others with less aberration. For
example, designs 14-8.4 and 14-8.5 have more aberration than designs 14-8.6
to 14-8.10. Use of the design tables is illustrated in the following example.

Example 3.5.1. Consider the 32-run MA design 9-4.1 in Table 3A.3. It is
given by the elements of H5 that are numbered 1, 2, 4, 8, 16, 7, 11, 19,
and 29. Table 3A.1 identifies these elements and shows that the design is
represented by the set {1, 2, 3, 4, 5, 123, 124, 125, 1345} of H5. The nine factors
can be associated with the elements of this set in the order stated. Then
the following aliasing relations are immediate: 6 = 123, 7 = 124, 8 = 125,
9 = 1345. It can be verified that this design is isomorphic to the MA design
d0 in Example 3.4.1. As demonstrated there, the latter design has A4 = 6 and
C2 = 8, which are in agreement with the entries under W and C2 for design
9-4.1 in the table. �

Exercises

3.1 Derive the wordlength patterns for the MA designs in Theorem 3.2.2 for
6 ≤ n ≤ 10.

3.2 Prove Theorem 3.2.2 for 6 ≤ n ≤ 10 by following the proofs for n = 4
and 5.

3.3 Derive the wordlength patterns for the MA designs in Theorem 3.2.3 for
6 ≤ n ≤ 19.
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3.4 (a) Prove that the definition of design isomorphism in Section 3.1 is
equivalent to the definition of design isomorphism in Section 3.3.
(b) Show that if two 2n−kdesigns are isomorphic, then their letter pattern
matrices, as defined in Exercise 2.12, must be identical up to permutation
of rows.

3.5 Prove Lemma 3.3.1.
3.6 (a) Prove the first identity in (3.3.2) A3(T ) = constant − A3(T ) using

definitions and a simple combinatorial argument.
(b) Prove the second identity in (3.3.2) A4(T ) = constant + A3(T ) +
A4(T ) using a more elaborate combinatorial argument.

3.7 Give an example to demonstrate that part (ii) of Rule 1 in Section 3.3
is indispensable.

3.8 Fill in the derivation for the MA design with f = 6 by following the lines
of proof for f = 5.

3.9 Fill in the derivation for the MA design with f = 9 by following the lines
of proof for f = 8.

3.10 Fill in the derivation for the MA design with f = 10 by following the
lines of proof for f = 11.

3.11 Consider two 28−3 designs d1 and d2 whose defining contrast subgroups
are generated by the independent words 126, 137, 23458 and 126, 347,
1358, respectively.
(a) Show that both designs have the same wordlength pattern W =
(0, 0, 2, 1, 2, 2, 0, 0).
(b) Find the letter pattern matrices of d1 and d2. Verify that they are
not identical up to permutation of rows. Conclude that d1 and d2 are not
isomorphic even though they have the same wordlength pattern. Hence
infer that the letter pattern matrix provides a more explicit description
of a design than the wordlength pattern.

Exercises
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n−k Designs with 16, 32, 64,
and 128 Runs

Table 3A.1 Numbering of the elements of Hm for 16-, 32-, 64-, and
128-run designs

(The table gives the serial numbers of the elements of H7; the first 63
entries describe the serial numbers of the elements of H6, the first 31 entries
describe the serial numbers of the elements of H5, and the first 15 entries
describe the serial numbers of the elements of H4. Independent elements are
numbered 1, 2, 4, 8, 16, 32, 64 in boldface.)

Number 1 2 3 4 5 6 7 8 9
Element 1 2 12 3 13 23 123 4 14
Number 10 11 12 13 14 15 16 17 18
Element 24 124 34 134 234 1234 5 15 25
Number 19 20 21 22 23 24 25 26 27
Element 125 35 135 235 1235 45 145 245 1245
Number 28 29 30 31 32 33 34 35 36
Element 345 1345 2345 12345 6 16 26 126 36
Number 37 38 39 40 41 42 43 44 45
Element 136 236 1236 46 146 246 1246 346 1346
Number 46 47 48 49 50 51 52 53 54
Element 2346 12346 56 156 256 1256 356 1356 2356
Number 55 56 57 58 59 60 61 62 63
Element 12356 456 1456 2456 12456 3456 13456 23456 123456
Number 64 65 66 67 68 69 70 71 72
Element 7 17 27 127 37 137 237 1237 47
Number 73 74 75 76 77 78 79 80 81
Element 147 247 1247 347 1347 2347 12347 57 157
Number 82 83 84 85 86 87 88 89 90
Element 257 1257 357 1357 2357 12357 457 1457 2457
Number 91 92 93 94 95 96 97 98 99
Element 12457 3457 13457 23457 123457 67 167 267 1267
Number 100 101 102 103 104 105 106 107 108
Element 367 1367 2367 12367 467 1467 2467 12467 3467
Number 109 110 111 112 113 114 115 116 117
Element 13467 23467 123467 567 1567 2567 12567 3567 13567
Number 118 119 120 121 122 123 124 125 126
Element 23567 123567 4567 14567 24567 124567 34567 134567 234567
Number 127
Element 1234567

of 2Appendix 3A. Catalogue
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(Each design is represented by 1, 2, 4, 8 and the numbers specified under
“Additional Elements”. W = (A3, A4, . . .) is the wordlength pattern of the
design. C2 is the number of clear 2fi’s. Designs for n = 13, 14, 15 are unique
up to isomorphism and hence omitted.)

Design Additional Elements W C2

5-1.1 15 0 0 1 10
5-1.2 7 0 1 0 4
5-1.3 3 1 0 0 7

6-2.1 7 11 0 3 0 0 0
6-2.2 3 13 1 1 1 0 6
6-2.3 3 12 2 0 0 1 9
6-2.4 3 5 2 1 0 0 5

7-3.1 7 11 13 0 7 0 0 0 0
7-3.2 3 5 14 2 3 2 0 0 2
7-3.3 3 5 10 3 2 1 1 0 4
7-3.4 3 5 9 3 3 0 0 1 0
7-3.5 3 5 6 4 3 0 0 0 6

8-4.1 7 11 13 14 0 14 0 0 0 1 0
8-4.2 3 5 9 14 3 7 4 0 1 0 1
8-4.3 3 5 10 12 4 5 4 2 0 0 0
8-4.4 3 5 6 15 4 6 4 0 0 1 0
8-4.5 3 5 6 9 5 5 2 2 1 0 2
8-4.6 3 5 6 7 7 7 0 0 1 0 7

9-5.1 3 5 9 14 15 4 14 8 0 4 1 0 0
9-5.2 3 5 10 12 15 6 9 9 6 0 0 1 0
9-5.3 3 5 6 9 14 6 10 8 4 2 1 0 0
9-5.4 3 5 6 9 10 7 9 6 6 3 0 0 0
9-5.5 3 5 6 7 9 8 10 4 4 4 1 0 0

10-6.1 3 5 6 9 14 15 8 18 16 8 8 5 0 0 0
10-6.2 3 5 6 9 10 13 9 16 15 12 7 3 1 0 0
10-6.3 3 5 6 9 10 12 10 15 12 15 10 0 0 1 0
10-6.4 3 5 6 7 9 10 10 16 12 12 10 3 0 0 0

11-7.1 3 5 6 9 10 13 14 12 26 28 24 20 13 4 0 0 0
11-7.2 3 5 6 7 9 10 12 13 25 25 27 23 10 3 1 0 0
11-7.3 3 5 6 7 9 10 11 13 26 24 24 26 13 0 0 1 0

12-8.1 3 5 6 9 10 13 14 15 16 39 48 48 48 39 16 0 0 1 0
12-8.2 3 5 6 7 9 10 11 12 17 38 44 52 54 33 12 4 1 0 0

Table 3A.2 Complete catalogue of 16-run designs

Appendix 3A
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Table 3A.3 Selected 32-run designs for n = 6 to 28

(Each design is represented by 1, 2, 4, 8, 16 and the numbers specified
under “Additional Elements”. W = (A3, . . . , A7) when n < 17 and W =
(A3, . . . , A6) when n ≥ 17. C2 is the number of clear 2fi’s. Designs for n = 29,
30, and 31 are unique up to isomorphism and hence omitted.)

Design Additional Elements W C2

6-1.1 31 0 0 0 1 0 15

7-2.1 7 27 0 1 2 0 0 15
7-2.2 7 25 0 2 0 1 0 9
7-2.3 7 11 0 3 0 0 0 6
7-2.4 3 29 1 0 1 1 0 18
7-2.5 3 28 1 1 0 0 1 12
7-2.6 3 13 1 1 1 0 0 12
7-2.7 3 12 2 0 0 1 0 15
7-2.8 3 5 2 1 0 0 0 11

8-3.1 7 11 29 0 3 4 0 0 13
8-3.2 7 11 21 0 5 0 2 0 4
8-3.3 7 11 19 0 6 0 0 0 0
8-3.4 7 11 13 0 7 0 0 0 7
8-3.5 3 13 22 1 2 3 1 0 13
8-3.6 3 5 30 2 1 2 2 0 18
8-3.7 3 13 21 1 3 2 0 1 10
8-3.8 3 12 21 2 1 2 2 0 16
8-3.9 3 5 26 2 2 1 1 1 12
8-3.10 3 5 25 2 2 2 0 0 12

9-4.1 7 11 19 29 0 6 8 0 0 8
9-4.2 7 11 13 30 0 7 7 0 0 15
9-4.3 7 11 21 25 0 9 0 6 0 0
9-4.4 7 11 13 19 0 10 0 4 0 2
9-4.5 7 11 13 14 0 14 0 0 0 8
9-4.6 3 13 21 26 1 5 6 2 1 9
9-4.7 3 13 21 25 1 7 4 0 3 12
9-4.8 3 12 21 26 2 3 6 4 0 12
9-4.9 3 5 9 30 3 3 4 4 1 15
9-4.10 3 5 10 28 3 3 4 4 1 13
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Table 3A.3 (continued)

Design Additional Elements W C2

10-5.1 7 11 19 29 30 0 10 16 0 0 0
10-5.2 7 11 21 25 31 0 15 0 15 0 0
10-5.3 7 11 13 19 21 0 16 0 12 0 0
10-5.4 7 11 13 14 19 0 18 0 8 0 0
10-5.5 3 13 21 25 28 1 14 7 0 7 14
10-5.6 3 13 21 25 30 1 10 11 4 3 8
10-5.7 3 12 21 26 31 2 7 12 7 2 6
10-5.8 3 5 14 22 25 2 8 12 4 2 4
10-5.9 3 5 14 23 26 2 9 9 6 4 5
10-5.10 3 5 9 14 31 3 8 11 4 1 12

11-6.1 7 11 13 19 21 25 0 25 0 27 0 0
11-6.2 7 11 13 14 19 21 0 26 0 24 0 0
11-6.3 3 5 14 22 25 31 2 14 22 8 6 0
11-6.4 3 5 14 22 26 29 2 16 16 12 10 6
11-6.5 3 5 14 22 26 28 2 18 14 8 14 6
11-6.6 3 5 10 23 27 28 3 13 19 11 9 3
11-6.7 3 5 9 22 26 29 3 15 13 15 13 4
11-6.8 3 5 9 22 26 28 3 16 12 12 16 4
11-6.9 3 5 9 14 22 26 3 16 13 12 13 4
11-6.10 3 5 9 14 18 29 4 12 18 12 8 5

12-7.1 7 11 13 14 19 21 25 0 38 0 52 0 0
12-7.2 7 11 13 14 19 21 22 0 39 0 48 0 0
12-7.3 3 5 9 14 22 26 29 3 25 23 27 25 5
12-7.4 3 5 9 14 22 26 28 3 26 22 24 28 5
12-7.5 3 5 10 12 22 27 29 4 20 32 22 20 0
12-7.6 3 5 10 12 22 25 31 4 22 28 20 28 0
12-7.7 3 5 6 15 23 25 30 4 23 28 16 28 0
12-7.8 3 5 9 14 17 22 26 4 25 19 27 31 3
12-7.9 3 5 9 14 15 22 26 4 26 20 24 28 3
12-7.10 3 5 9 14 18 20 31 5 19 29 25 23 2

Appendix 3A
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Table 3A.3 (continued)

Design Additional Elements W C2

13-8.1 7 11 13 14 19 21 22 25 0 55 0 96 0 0
13-8.2 3 5 9 14 17 22 26 28 4 38 32 52 56 4
13-8.3 3 5 9 14 15 22 26 29 4 38 33 52 52 4
13-8.4 3 5 9 14 15 22 26 28 4 39 32 48 56 4
13-8.5 3 5 9 14 15 17 22 26 5 38 28 52 62 2
13-8.6 3 5 10 12 15 22 27 29 6 28 51 42 42 0
13-8.7 3 5 9 14 18 20 24 31 6 29 46 46 50 0
13-8.8 3 5 9 15 18 20 24 30 6 30 44 44 56 0
13-8.9 3 5 9 15 18 20 24 31 7 28 42 50 56 2
13-8.10 3 5 6 9 14 17 26 29 7 29 42 46 56 2

14-9.1 7 11 13 14 19 21 22 25 26 0 77 0 168 0 0
14-9.2 3 5 9 14 15 17 22 26 28 5 55 45 96 106 3
14-9.3 3 5 9 14 15 17 22 23 26 6 55 40 96 116 1
14-9.4 3 5 9 15 18 20 24 30 31 8 42 64 85 112 0
14-9.5 3 5 9 14 15 18 20 24 31 8 42 65 84 108 0
14-9.6 3 5 6 9 14 17 22 26 29 8 43 64 80 112 0
14-9.7 3 5 9 14 15 18 20 24 30 8 43 64 80 112 0
14-9.8 3 5 6 9 14 15 23 26 29 8 45 64 72 112 0
14-9.9 3 5 6 9 14 17 22 26 27 9 42 60 84 118 2
14-9.10 3 5 6 9 14 15 17 26 29 9 43 61 80 114 2

15-10.1 7 11 13 14 19 21 22 25 26 28 0 105 0 280 0 0
15-10.2 3 5 9 14 15 17 22 23 26 28 6 77 62 168 188 2
15-10.3 3 5 9 14 15 17 22 23 26 27 7 77 56 168 203 0
15-10.4 3 5 6 9 14 17 22 26 27 28 10 60 90 141 212 0
15-10.5 3 5 6 9 14 15 17 22 26 29 10 61 90 136 212 0
15-10.6 3 5 6 9 14 15 17 22 26 27 11 60 85 141 222 2
15-10.7 3 5 9 14 18 20 23 24 27 29 12 49 108 144 176 0
15-10.8 3 5 6 9 14 18 23 24 29 31 12 51 102 144 192 0
15-10.9 3 5 9 14 15 18 20 23 24 30 12 51 102 144 192 0
15-10.10 3 5 6 9 14 15 17 22 23 26 12 61 80 136 232 2
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Table 3A.3 (continued)

Design Additional Elements W C2

16-11.1 7 11 13 14 19 21 22 25 26 28 31 0 140 0 448 0 0
16-11.2 3 5 9 14 15 17 22 23 26 27 28 7 105 84 280 315 1
16-11.3 3 5 6 9 14 15 17 22 26 27 28 12 83 124 230 376 0
16-11.4 3 5 6 9 14 15 17 22 23 26 29 12 84 124 224 376 0
16-11.5 3 5 6 9 14 15 17 22 23 26 27 13 83 118 230 391 2
16-11.6 3 5 9 14 18 20 23 24 27 29 31 15 65 156 232 315 0
16-11.7 3 5 6 9 10 14 17 22 27 28 29 15 70 141 231 358 0
16-11.8 3 5 6 9 10 14 17 22 23 26 29 15 71 140 226 363 0
16-11.9 3 5 6 9 10 14 15 17 22 26 29 15 73 140 216 363 0
16-11.10 3 5 6 9 10 14 17 22 26 29 31 16 65 148 236 336 0

17-12.1 3 5 9 14 15 17 22 23 26 27 28 29 8 140 112 448 0
17-12.2 3 5 6 9 14 15 17 22 23 26 27 28 14 112 168 364 0
17-12.3 3 5 6 9 10 14 17 22 23 26 27 28 18 95 192 354 0
17-12.4 3 5 6 9 10 14 15 17 22 27 28 29 18 95 193 354 0
17-12.5 3 5 6 9 10 14 15 17 22 23 26 29 18 96 192 348 0

18-13.1 3 5 6 9 14 15 17 22 23 26 27 28 29 16 148 224 560 0
18-13.2 3 5 6 9 10 14 15 17 22 23 26 27 28 21 126 259 532 0
18-13.3 3 5 6 7 9 10 11 17 18 19 28 29 30 22 126 252 532 0
18-13.4 3 5 6 9 14 15 18 21 23 24 27 28 31 24 108 288 552 0
18-13.5 3 5 6 9 10 14 17 22 23 24 27 28 29 24 113 272 547 0

19-14.1 3 5 6 9 10 14 15 17 22 23 26 27 28 29 24 164 344 784 0
19-14.2 3 5 6 7 9 10 11 17 18 19 28 29 30 31 25 164 336 784 0
19-14.3 3 5 6 9 10 14 15 17 18 22 23 26 27 28 28 147 364 791 0
19-14.4 3 5 6 9 10 13 14 15 17 22 23 26 27 28 28 148 364 784 0
19-14.5 3 5 6 9 10 13 14 17 22 23 24 26 29 31 30 136 378 816 0

20-15.1 3 5 6 9 10 14 15 17 18 22 23 26 – 29 32 188 480 1128 0
20-15.2 3 5 6 9 10 13 14 15 17 22 23 26 – 29 32 189 480 1120 0
20-15.3 3 5 6 7 9 – 12 17 18 19 28 – 31 33 188 472 1128 0
20-15.4 3 5 6 9 10 14 15 17 18 22 23 26 27 28 31 35 175 491 1155 0
20-15.5 3 5 6 9 10 13 14 15 17 18 22 23 26 27 28 35 176 490 1148 0

21-16.1 3 5 6 9 10 14 15 17 18 22 23 26 – 29 31 40 220 641 1608 0
21-16.2 3 5 6 9 10 13 14 15 17 18 22 23 26 – 29 40 221 640 1600 0
21-16.3 3 5 6 7 9 – 12 17 – 20 28 – 31 41 220 632 1608 0
21-16.4 3 5 6 9 10 13 14 17 19 22 23 24 26 28 29 31 42 210 651 1638 0
21-16.5 3 5 6 9 10 13 14 15 17 18 21 – 25 26 29 42 213 644 1624 0

Appendix 3A



76 3 Two-Level Fractional Factorial Designs

Table 3A.3 (continued)

Design Additional Elements W C2

22-17.1 3 5 6 9 10 13 – 15 17 18 21 – 23 25 26 29 30 48 263 832 2224 0
22-17.2 3 5 6 9 10 13 – 15 17 18 21 – 23 25 – 28 49 259 833 2240 0
22-17.3 3 5 6 7 9 – 12 17 – 20 25 28 – 31 49 261 825 2240 0
22-17.4 3 5 6 7 9 – 12 17 – 20 24 28 29 30 31 50 260 816 2249 0
22-17.5 3 5 6 7 9 – 13 17 – 20 28 – 31 50 261 816 2240 0

23-18.1 3 5 6 9 10 13 14 15 17 18 21 22 23 25 – 29 56 315 1064 3024 0
23-18.2 3 5 6 7 9 – 13 17 – 20 26 28 – 31 58 311 1050 3056 0
23-18.3 3 5 6 7 9 – 13 17 18 19 20 21 26 27 28 30 59 308 1047 3073 0
23-18.4 3 5 6 7 9 – 13 17 – 20 22 28 – 31 59 310 1041 3065 0
23-18.5 3 5 6 7 9 – 13 17 – 21 26 – 29 59 311 1040 3056 0

24-19.1 3 5 6 9 10 13 – 15 17 18 21 – 23 25 – 30 64 378 1344 4032 0
24-19.2 3 5 6 7 9 – 13 17 – 21 26 – 30 67 371 1324 4088 0
24-19.3 3 5 6 7 9 – 13 17 18 20 21 22 24 26 27 30 31 68 369 1316 4106 0
24-19.4 3 5 6 7 9 – 14 17 – 20 27 – 31 68 370 1316 4096 0
24-19.5 3 5 6 7 9 – 13 17 – 20 22 24 27 – 30 69 366 1311 4129 0

25-20.1 3 5 6 7 9 – 13 17 – 21 26 – 31 76 442 1656 5376 0
25-20.2 3 5 6 7 9 – 13 17 – 20 22 24 27 – 31 78 437 1641 5422 0
25-20.3 3 5 6 7 9 – 14 17 – 21 26 – 30 78 438 1640 5412 0
25-20.4 3 5 6 7 9 – 14 17 – 22 25 – 28 79 436 1632 5430 0
25-20.5 3 5 6 7 9 – 14 17 – 22 25 26 28 31 79 437 1630 5422 0

26-21.1 3 5 6 7 9 – 14 17 – 21 26 – 31 88 518 2032 7032 0
26-21.2 3 5 6 7 9 – 14 17 – 22 25 – 29 89 516 2023 7052 0
26-21.3 3 5 6 7 9 – 14 17 – 22 24 – 26 28 31 90 515 2012 7063 0
26-21.4 3 5 6 7 9 – 15 17 – 22 24 – 26 28 90 515 2013 7062 0
26-21.5 3 5 6 7 9 – 15 17 – 26 90 516 2012 7052 0

27-22.1 3 5 6 7 9 – 14 17 – 22 25 – 30 100 606 2484 9064 0
27-22.2 3 5 6 7 9 – 15 17 – 26 28 101 605 2473 9075 0
27-22.3 3 5 6 7 9 – 15 17 – 27 101 606 2472 9064 0

28-23.1 3 5 6 7 9 – 14 17 – 22 25 – 31 112 707 3024 11536 0
28-23.2 3 5 6 7 9 – 15 17 – 28 113 706 3012 11548 0
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4

Fractional Factorial Designs: General Case

Fractional factorial designs with factors at s levels, s > 2, are used in practice,
especially when the investigator anticipates a curvature effect of a quantitative
factor or when a qualitative factor has several levels. Extension of the work in
Chapter 3 to such designs with s being a prime or prime power is considered
here. A general discussion on minimum aberration designs and the method of
complementary designs are presented. A catalogue of three-level designs with
27 and 81 runs is given.

4.1 Three-Level Designs

In this chapter, we consider sn−k designs, where s (≥ 2) is a prime or prime
power. In order to highlight the difference between two-level and s-level (s > 2)
designs, we focus in this section on the simplest case of three-level designs.
Consider the 32 factorial with factors F1 and F2. As noted near the end of
Section 2.3, the pencils (1, 0)′ and (0, 1)′ represent the main effects of F1

and F2 respectively, and (1, 1)′ and (1, 2)′ together represent the interaction
F1F2. In applied design texts, this is described in another way without use
of projective geometry. Consider the following 9 × 4 array with four columns
represented by 1, 2, 12, and 122. Columns 1 and 2 correspond to factors F1 and
F2 and generate all nine treatment combinations of the 32 factorial. Column 12
corresponds to the pencil (1, 1)′ and column 122 to the pencil (1, 2)′. Together
they represent the interaction effect F1F2. Column 12 is obtained as the sum
of columns 1 and 2 over GF (3) (or equivalently, the sum of columns 1 and
2 modulo 3); similarly column 122 is the sum of column 1 and two times
column 2 modulo 3. We can construct a 33−1 design by assigning factor F3

to column 12 and a 34−2 design by further assigning factor F4 to column 122.
This representation has the advantage that it aids the planning of experiments
by spelling out all the treatment combinations in the 33−1 and 34−2 designs
mentioned above.
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1 2 12 122

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

The distinction between two-level and three-level designs lies in the cor-
respondence between factorial effects and pencils. In the former, there is a
one-to-one correspondence and use of pencils to represent factorial effects is
unnecessary. In the latter, a two-factor interaction (2fi) corresponds to two
pencils. (For s levels, a 2fi corresponds to s−1 pencils.) Therefore use of pen-
cils is indispensable in the theoretical development. However, in describing
3n−k designs, use of the vector notation for pencils can often be avoided. A
more compact notational system was suggested in Remark 2.3.1. This system
is more user-friendly, as can been seen by considering the 33 factorial. Along
the lines of Example 2.3.1, it has 13 pencils. Instead of using vectors, these
can be represented by 1, 2, 3, 12, 122, 13, 132, 23, 232, 123, 1232, 1223, 12232. In
this chapter both notational systems will be used depending on the context.

In the 32 factorial, the decomposition of the 2fi into two components corre-
sponding to the pencils 12 and 122 follows naturally from the algebraic struc-
ture. It also gives justification for the analysis of variance (ANOVA) method.
The total sum of squares (SS) in ANOVA can be decomposed into four terms,
each with two degrees of freedom: SS for factor 1, SS for factor 2, SS for the
pencil 12, and SS for the pencil 122. The contrasts belonging to the pencils
12 and 122 can be explained as follows. Denote the levels of the two factors
by x1 and x2. As seen in Example 2.3.1, the pencil 12 is represented by the
contrasts among the three sets of treatment combinations satisfying x1 + x2

= 0, 1, 2 modulo 3. These sets are denoted by the Latin letters A, B, C in
the following table. Similarly the pencil 122 is represented by the contrasts
among the three sets of treatment combinations satisfying x1 + 2x2 = 0, 1, 2
modulo 3. These sets are denoted by the Greek letters α, β, γ in the same
table. Observe that the table so obtained is a Graeco-Latin square. This is
well anticipated since treatment contrasts belonging to distinct pencils are
orthogonal to each other.

x2

x1 0 1 2
0 Aα Bγ Cβ
1 Bβ Cα Aγ
2 Cγ Aβ Bα
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From the data analysis point of view, there is, however, some difficulty
in interpreting the pencils 12 and 122. Suppose the sum of squares for 12
in ANOVA is significant while that for 122 is not. How can this be properly
interpreted? As noted above, the pencil 12 is represented by the contrasts
among the three sets of treatment combinations denoted by A, B, C. From
the positions of A, B, C in the table, there is no obvious physical interpretation
of the contrasts among these three sets. These difficulties and some remedial
measures are discussed in Chapter 5 of Wu and Hamada (2000).

4.2 Minimum Aberration sn−k Designs with Small k

For ease in reference, recall from (2.4.1) that an sn−k design is given by
d(B) = {x : Bx = 0}, where x is a typical treatment combination and B is a
k × n matrix of full row rank over GF (s). From (2.4.4), a defining pencil b of
d(B) is one that satisfies b′ ∈ R(B), where R(·) is the row space of a matrix,
and there are (sk − 1)/(s − 1) defining pencils.

We begin by exploring minimum aberration (MA) sn−k designs for rela-
tively small k. The objective is to generalize some of the results in Section 3.2.
Throughout this section, attention is restricted to designs where each factor is
involved in some defining pencil. By Lemma 2.5.1, an MA design must satisfy
this requirement. Let (A1, . . . , An) denote the wordlength pattern of any sn−k

design, where Ai is the number of defining pencils (or words) with i nonzero
entries. As a partial generalization of Lemma 3.2.1, the following result holds.

Lemma 4.2.1. For any sn−k design,

(a)
n∑

i=1

Ai = (sk − 1)/(s − 1), (4.2.1)

(b)
n∑

i=1

iAi = nsk−1. (4.2.2)

Proof. Since there are altogether (sk−1)/(s−1) defining pencils, (a) is evident.
To prove (b), consider any sn−k design d(B). With reference to this design,
let βi be the number of defining pencils that involve the ith factor, i.e., the ith
entry is nonzero. As in Lemma 3.2.1,

∑n
i=1 iAi =

∑n
i=1 βi. Hence it suffices to

show that βi = sk−1 for each i. Consider any fixed i, and let ci denote the ith
column of B. If ci = 0, then by (2.4.4), every defining pencil has 0 in the ith
position, i.e., no such pencil involves the ith factor, which is impossible. Hence
ci �= 0, and arguing as in Lemma 2.3.1, there are sk−1 choices of the vector λ
over GF (s) such that λ′ci = 0, i.e., λ′B has 0 in the ith position. Since pencils
are nonnull vectors and pencils with proportional entries are identical, from
(2.4.4) it now follows that there are (sk−1 − 1)/(s− 1) defining pencils with 0
in the ith position. Since there are (sk −1)/(s−1) defining pencils altogether,
one gets
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βi =
sk − 1
s − 1

− sk−1 − 1
s − 1

= sk−1,

which proves (b). �

The next lemma plays a key role in obtaining the results of this section.

Lemma 4.2.2. Suppose there exists an sn−k design d0 such that

(i) each factor is involved in some defining pencil of d0, and
(ii) the numbers of nonzero entries in the defining pencils of d0 differ by at

most one.

Then d0 has minimum aberration and maximum resolution. Its resolution is
given by

R0 =
[
nsk−1(s − 1)

sk − 1

]
, (4.2.3)

where [z] denotes the integer part of z.

Proof. Let (A0
1, . . . , A

0
n) denote the wordlength pattern of d0. By (ii), there

exists a positive integer p (< n) such that

A0
i = 0 (i �= p, p + 1). (4.2.4)

Hence by (i) and Lemma 4.2.1,

A0
p + A0

p+1 = (sk − 1)/(s − 1), pA0
p + (p + 1)A0

p+1 = nsk−1,

yielding the unique solution

A0
p =

(p + 1)(sk − 1)
s − 1

− nsk−1, A0
p+1 = nsk−1 − p(sk − 1)

s − 1
. (4.2.5)

Since both A0
p and A0

p+1 are nonnegative, from (4.2.5) one gets

p ≤ nsk−1(s − 1)
sk − 1

≤ p + 1. (4.2.6)

If the second inequality in (4.2.6) is strict, then by (4.2.5), A0
p > 0, and hence

by (4.2.4), the resolution of d0 equals p. In this case, by (4.2.6), the right-
hand side of (4.2.3) also reduces to p, and the truth of (4.2.3) follows. On the
other hand, if equality is attained in the second inequality in (4.2.6), then, by
(4.2.5), A0

p = 0, A0
p+1 > 0, and (4.2.3) follows again in a similar manner.

It will now be shown that d0 has MA and maximum resolution. By (4.2.4),
d0 has less aberration than every design for which Ai > 0 for some i ≤ p − 1.
Therefore, consider sn−k designs satisfying

Ai = 0 for i ≤ p − 1. (4.2.7)

For any such design, by (4.2.1), (4.2.2), and the first identity in (4.2.5),
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n∑
i=p

(p + 2 − i)Ai = (p + 2)
n∑

i=p

Ai −
n∑

i=p

iAi

=
(p + 2)(sk − 1)

s − 1
− nsk−1 =

sk − 1
s − 1

+ A0
p. (4.2.8)

But
n∑

i=p

(p + 2 − i)Ai ≤
p+1∑
i=p

(p + 2 − i)Ai = 2Ap + Ap+1,

because p + 2 − i ≤ 0 unless i ≤ p + 1. Hence (4.2.8) yields

2Ap + Ap+1 ≥ sk − 1
s − 1

+ A0
p. (4.2.9)

On the other hand, by (4.2.1),

Ap + Ap+1 ≤ sk − 1
s − 1

. (4.2.10)

For any design satisfying (4.2.7), from (4.2.9) and (4.2.10), one gets Ap ≥ A0
p.

Furthermore, by (4.2.5), (4.2.9), and (4.2.10), if Ap = A0
p, then Ap+1 = A0

p+1.
In view of (4.2.4), it follows that d0 has MA. Hence it has maximum resolution
as well. �

As in Section 3.2, the case k = 1 is straightforward. There is only one
defining pencil; cf. (4.2.1). Any design for which this defining pencil has all
entries nonzero has MA and maximum resolution.

Next, consider k = 2. The following construction yields a design as envis-
aged in Lemma 4.2.2. Let

p1 = [n/(s + 1)], p2 = n − p1(s + 1). (4.2.11)

Then 0 ≤ p2 ≤ s. Define the integers u0, u1, . . . , us as

ui =
{

p1 if i ≤ s − p2,
p1 + 1 otherwise. (4.2.12)

These integers are nonnegative and the second identity in (4.2.11) yields

u0 + u1 + · · · + us = n. (4.2.13)

From (4.2.11) and (4.2.12), it is also seen easily that

0 < us < n. (4.2.14)

For example, if us = n, then either p1 = n, p2 = 0 or p1 = n − 1, p2 > 0,
but neither is possible. Let α0(= 0), α1(= 1), α2, . . . , αs−1 be the elements of
GF (s). Define the matrix
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B0 = [B00, B01, . . . , B0,s−1, B0s], (4.2.15)

where

B00 =
[α1 . . . α1

0 . . . 0

]
, B0i =

[
α1 . . . α1

αi . . . αi

]
, 1 ≤ i ≤ s − 1, B0s =

[
0 . . . 0

α1 . . . α1

]
,

and B0i has ui columns for i = 0, . . . , s. If ui = 0 for any i, then the corre-
sponding set of columns does not appear in B0. By (4.2.13), B0 is of order
2×n, while by (4.2.14), it has full row rank. Following (2.4.1), one can there-
fore consider the sn−2 design d0 = d(B0).

Theorem 4.2.1. The sn−2 design d0 = d(B0), where B0 is given by (4.2.15),
has minimum aberration and maximum resolution. Its resolution equals [ns/
(s + 1)].

Proof. Let b(1)′ and b(2)′ denote the two rows of B0. Then by (2.4.4), the
defining pencils of d0 are

b(2), b(2) − α1b
(1), . . . , b(2) − αs−1b

(1), b(1).

Since α1(= 1) is the identity element of GF (s) under multiplication, from
(4.2.15) it is seen that these pencils have n − u0, n − u1, . . . , n − us−1, and
n−us nonzero entries respectively. Hence by (4.2.12), d0 satisfies condition (ii)
of Lemma 4.2.2. From (4.2.15), it also satisfies condition (i) of Lemma 4.2.2.
Therefore, d0 has MA and maximum resolution. Taking k = 2 in (4.2.3), the
resolution of d0 is as stated. �

The above result extends Theorem 3.2.1 to the case of general s. For s = 2,
it is not hard to verify that the designs considered in Theorems 3.2.1 and 4.2.1
are isomorphic.

Example 4.2.1. Let s = 3, n = 6, k = 2. Then by (4.2.11), (4.2.12), and
(4.2.15), p1 = 1, p2 = 2, u0 = u1 = 1, u2 = u3 = 2, and

B0 =
[

1 1 1 1 0 0
0 1 2 2 1 1

]
.

Theorem 4.2.1 shows that the 36−2 design d(B0), with B0 as above, has MA
and resolution four. A look at the rows of the matrix B0 shows that the
defining relation of d(B0) is

I = 1234 = 2324256 = 12256 = 132425262. �

Now suppose k ≥ 3. Then it is difficult to obtain a general result like
Theorem 4.2.1. However, Theorem 4.2.2 below gives MA designs in some cases.
As in Lemma 2.7.2, let Vk be a matrix with k rows and (sk − 1)/(s − 1)
columns, such that the columns of Vk are given by the points of the finite
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projective geometry PG(k − 1, s). Define B∗ = Vk and B+ = [Vk c], where c
is any nonnull k × 1 vector over GF (s). Also, let B− be obtained from Vk by
deleting any one of its columns. By Lemma 2.7.2 (a), B∗ and B+ have full row
rank. It is easy to see that the same holds for B−. Therefore, following (2.4.1),
d(B∗), d(B+), and d(B−) represent sn−k designs, with n = (sk − 1)/(s − 1),
n = (sk − 1)/(s − 1) + 1, and n = (sk − 1)/(s − 1) − 1, respectively.

Theorem 4.2.2. Let k ≥ 3. The designs d(B∗), d(B+), and d(B−) have min-
imum aberration and maximum resolution. The resolutions of these designs
equal sk−1, sk−1 and sk−1 − 1 respectively.

Proof. From Lemma 2.7.2 (b), every nonnull vector in R(Vk) has sk−1 nonzero
elements. Hence by the definition of B∗, B+, and B−, every nonnull vector in
R(B∗) has sk−1 nonzero elements, every nonnull vector in R(B+) has sk−1

or sk−1 + 1 nonzero elements, and every nonnull vector in R(B−) has sk−1

or sk−1 − 1 nonzero elements. Consequently, by (2.4.4), the designs d(B∗),
d(B+), and d(B−) meet condition (ii) of Lemma 4.2.2. It is easily seen that
they also meet condition (i) of this lemma. Hence the result follows. �

4.3 A General Result on Complementary Designs

The results in the last section give MA sn−k designs for small k. For a fixed run
size, these results are useful only when n is also relatively small. For example,
consider 3n−k designs with 27 runs. Then n − k = 3, and the cases k = 1
and 2 discussed in Section 4.2 yield MA designs for n = 4 and 5 respectively.
For n ≥ 6, however, none of the results in Section 4.2 are applicable. The
approach based on complementary designs, introduced in Section 3.3 for s = 2,
can be of help in these situations. This technique is now explored for general
s, and the necessary derivation, which was omitted in Chapter 3, is given.
The finite projective geometric formulation as well as the results from coding
theory presented in Chapter 2 constitute the basic tools for this purpose. As
in Section 2.7, for any nonempty set Q of points of PG(n−k−1, s), let V (Q)
denote a matrix with columns given by the points of Q. The developments in
this and the next section follow Suen, Chen, and Wu (1997).

It was seen in Section 2.5 that a design of resolution one or two fails
to ensure the estimability of the main effects even under the absence of all
interactions. Hence, throughout the rest of this chapter, only sn−k designs of
resolution three or higher are considered. By Theorem 2.7.1, any such design
is equivalent to a set T of n points of PG(n − k − 1, s), with V (T ) having
full row rank and the conditions (a)–(c) of the theorem being satisfied. In
view of this, the design itself is denoted by the corresponding set T , and
its wordlength pattern is denoted by (A1(T ), . . . , An(T )). Since pencils with
proportional entries are identical, it follows from Theorem 2.7.1(b) that
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Ai(T ) = (s − 1)−1#{λ : λ ∈ Ωin, V (T )λ = 0}, 1 ≤ i ≤ n, (4.3.1)

where Ωin is the set of n× 1 vectors over GF (s) with i nonzero elements and
# denotes the cardinality of a set.

Let T denote the complementary set of T in PG(n− k − 1, s). The cardi-
nality of T equals

f = (sn−k − 1)/(s − 1) − n. (4.3.2)

The design T is called saturated if f = 0 and nearly saturated if f is positive
but small. Indeed, in the saturated case, n attains the upper bound in Theorem
2.7.3. Then T is empty and T consists of all the points of PG(n−k−1, s), i.e.,
there is only one choice of T . To avoid trivialities, hereafter it is assumed that
f ≥ 1. The matrix V (T ), of order (n−k)×f , is then well defined. If this matrix
has full row rank and f > n − k, then following Theorem 2.7.1, T represents
an sf−k∗

design where k∗ = f − (n − k). This is called the complementary
design of T and its wordlength pattern is denoted by (A1(T ), . . . , Af (T )).
Analogously to (4.3.1),

Ai(T ) = (s − 1)−1#{λ : λ ∈ Ωif , V (T )λ = 0}, 1 ≤ i ≤ f. (4.3.3)

If V (T ) does not have full row rank or f ≤ n − k, then T does not represent
a design in a strict sense. However, it is still called the complementary design
according to common usage. At any rate, the quantities Ai(T ) remain well-
defined via (4.3.3). Since no two points of PG(n − k − 1, s) are proportional
to each other, it is clear from (4.3.1) and (4.3.3) that Ai(T ) = Ai(T ) = 0, for
i = 1, 2. We also write

A0(T ) = (s − 1)−1. (4.3.4)

Example 4.3.1. Consider the 310−7 design represented by the set T =
{(1, 2, 0)′, (0, 0, 1)′, (1, 0, 1)′, (1, 0, 2)′, (0, 1, 1)′, (0, 1, 2)′, (1, 1, 1)′, (1, 1, 2)′,
(1, 2, 1)′, (1, 2, 2)′} of ten points of PG(2, 3). By (4.3.2), f = 3. Also T =
{(1, 0, 0)′, (0, 1, 0)′, (1, 1, 0)′}, and

V (T ) =

⎡⎣ 1 0 1
0 1 1
0 0 0

⎤⎦ .

Note that V (T ) does not have full row rank. Nevertheless, the quantities
Ai(T ) remain well defined via (4.3.3) and are given by A1(T ) = A2(T ) = 0,
A3(T ) = 1. �

Since A1(T ) = A2(T ) = 0, the complementary design theory to be devel-
oped now aims at expressing the Ai(T ), 3 ≤ i ≤ n, in terms of the Ai(T ),
0 ≤ i ≤ f . This is done in Theorem 4.3.1 below. When f is small compared
to n, it is easier to work with T rather than T , and hence this result and
its corollaries facilitate the study of MA designs. Some preliminaries help in
establishing Theorem 4.3.1.
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From Section 2.8, recall that the defining contrast subgroup of an sn−k

design is equivalent to an [n, k; s] linear code, say C. Let C⊥ be the dual code
of C. Then by (2.8.2) and the MacWilliam’s identity (2.8.5) (note that Ai(B)
in (2.8.2) is now denoted by Ai(T )),

Ai(T ) = (s − 1)−1s−(n−k)
n∑

j=0

Kj(C⊥)Pi(j;n, s), 3 ≤ i ≤ n, (4.3.5)

where Kj(C⊥) is the number of codewords of weight j in C⊥, and following
(2.8.6),

Pi(j;n, s) =
i∑

t=0

(−1)t(s − 1)i−t
(

j
t

)(
n−j
i−t

)
. (4.3.6)

As noted below (2.8.3), the codewords in C⊥ are equivalent to the treatment
combinations in the design T , i.e., by Theorem 2.7.1(a),

C⊥ = R[V (T )]. (4.3.7)

Let r = rank[V (T )]. Since V (T ) has n − k rows and f nonnull columns,
1 ≤ r ≤ n − k and the sr vectors in R[V (T )] form an [f, r; s] linear code, say
M . Following (2.8.3), its dual code is given by

M⊥ = {λ′ : λ is an f × 1 vector over GF (s) satisfying V (T )λ = 0}. (4.3.8)

Let Kj(M) and Kj(M⊥) be the numbers of codewords of weight j in M and
M⊥ respectively. By (4.3.3), (4.3.4), and (4.3.8), Kj(M⊥) = (s−1)Aj(T ), 0 ≤
j ≤ f . Hence (2.8.5) yields

Kj(M) = (s − 1)s−(f−r)

f∑
u=0

Au(T )Pj(u; f, s), 0 ≤ j ≤ f, (4.3.9)

where

Pj(u; f, s) =
j∑

q=0

(−1)q(s − 1)j−q
(

u
q

) (
f−u
j−q

)
, (4.3.10)

analogously to (4.3.6). For any integers t1 and t2, throughout this section,
(
t1
t2

)
is interpreted as

(
t1
t2

)
=

⎧⎨⎩
t1(t1−1)···(t1−t2+1)

t2(t2−1)···1 , for t2 > 0,

1, for t2 = 0,
0, for t2 < 0.

In view of (4.3.5) and (4.3.9), if one can connect the Kj(C⊥) with the
Kj(M), then the objective of expressing the Ai(T ) in terms of the Ai(T ) is
achieved. The next lemma is an important step in this direction.
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Lemma 4.3.1. Let θ = sn−k−1 and µ = sn−k−r. Then

(a) K0(C⊥) = 1 + µKθ(M),
(b) Kj(C⊥) = µKθ−j(M), for 1 ≤ j ≤ θ − 1,
(c) Kθ(C⊥) = µK0(M) − 1,
(d) Kj(C⊥) = Kj(M) = 0, for j > θ.

Proof. Consider the matrix Vn−k, with columns given by the points of PG(n−
k − 1, s). Clearly,

Vn−k = [V (T ) V (T )]. (4.3.11)

By Lemma 2.7.2(a), Vn−k has full row rank. Let H be a matrix, with sn−k

rows and (sn−k − 1)/(s − 1) columns, such that the rows of H are given by
the sn−k vectors in R(Vn−k). Note that

(i) H has one null row, and
(ii) by Lemma 2.7.2(b), each other row of H has θ nonzero elements.

Partition H as
H = [H(T ) H(T )], (4.3.12)

where the columns of H(T ) and H(T ) correspond to those of V (T ) and V (T )
in (4.3.11).

Let ξj be the number of rows of H(T ) with j nonzero elements. Similarly,
define ξj with respect to H(T ). From (4.3.12) and the facts (i) and (ii), the
following are evident:

ξ0 = 1 + ξθ, (4.3.13)

ξj = ξθ−j , for 1 ≤ j ≤ θ − 1, (4.3.14)

ξθ = ξ0 − 1, (4.3.15)

ξj = ξj = 0, for j > θ. (4.3.16)

For instance, (4.3.15) follows by noting that each null row of H(T ), excluding
the one embedded in the null row of H, corresponds to a row of H(T ) with θ
nonzero elements.

Since V (T ) has full row rank, the rows of H(T ) are given by the vectors
in R[V (T )]. Hence by (4.3.7),

Kj(C⊥) = ξj , (4.3.17)

for each j. Similarly, since rank[V (T )] = r, each vector in R[V (T )], i.e., each
codeword of M , appears µ times among the rows of H(T ). Hence

ξj = µKj(M), (4.3.18)

for each j. The result is immediate from (4.3.13)–(4.3.18). �
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Theorem 4.3.1. For 3 ≤ i ≤ n,

Ai(T ) = ρi +
f∑

j=0

ρijAj(T ), (4.3.19)

where

ρi = (s − 1)−1s−(n−k){Pi(0;n, s) − Pi(θ;n, s)}, (4.3.20)
ρij = 0 for j > i, (4.3.21)

and

ρij =
∗∑ (

θ−f
t1

) (
n−θ
t2

) (
f−j
t3

)
(−1)t1+j(s−1)t2(s−2)t3 , for j ≤ i, (4.3.22)

with
∑∗ denoting the sum over nonnegative integers t1, t2, t3 that satisfy

t1 + t2 + t3 = i − j. (4.3.23)

Proof. By definition, Kj(C⊥) = 0 for j > n. Together with Lemma 4.3.1(d),
this implies that

Kj(C⊥) = 0, for j > min(n, θ). (4.3.24)

Similarly,
Kj(M) = 0, for j > min(f, θ). (4.3.25)

By (4.3.5) and (4.3.24),

Ai(T ) = (s − 1)−1s−(n−k)
θ∑

j=0

Kj(C⊥)Pi(j;n, s), 3 ≤ i ≤ n.

Since µ = sn−k−r, using Lemma 4.3.1(a)–(c) and then (4.3.25),

Ai(T ) = (s − 1)−1s−(n−k)
{

Pi(0;n, s) − Pi(θ;n, s) + µ
θ∑

j=0

Kθ−j(M)Pi(j;n, s)
}

= ρi + {(s − 1)sr}−1
θ∑

j=0

Kj(M)Pi(θ − j;n, s)

= ρi + {(s − 1)sr}−1

f∑
j=0

Kj(M)Pi(θ − j;n, s), (4.3.26)

where ρi is given by (4.3.20). Recalling (4.3.9), this yields
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Ai(T ) = ρi + s−f

f∑
j=0

f∑
u=0

Au(T )Pj(u; f, s)Pi(θ − j;n, s)

= ρi + s−f

f∑
j=0

f∑
u=0

Aj(T )Pu(j; f, s)Pi(θ − u;n, s)

= ρi +
f∑

j=0

ρijAj(T ), 3 ≤ i ≤ n,

where

ρij = s−f

f∑
u=0

Pu(j; f, s)Pi(θ − u;n, s), 0 ≤ j ≤ f. (4.3.27)

Thus Ai(T ), 3 ≤ i ≤ n, are of the form (4.3.19) and it remains to show
that (4.3.27) is equivalent to (4.3.21) or (4.3.22) depending on whether j > i
or j ≤ i. To that effect, note that

(i) by (4.3.10), for 0 ≤ j, u ≤ f ,

Pu(j; f, s) =
(
f
u

)
(s − 1)u−jPj(u; f, s)/

(
f
j

)
,

and Pj(u; f, s) is the coefficient of yj in the expansion of (1 − y)u{1 +
(s − 1)y}f−u;

(ii) by (4.3.6), Pi(θ − u;n, s) is the coefficient of zi in the expansion of

(1 − z)θ−u{1 + (s − 1)z}n−θ+u;

(iii) by (i) and (ii), the right-hand side of (4.3.27) equals
{

sf (s− 1)j
(

f
j

)}−1

times the coefficient of yjzi in

∆(y, z) =
f∑

u=0

(
f
u

)
(s−1)u(1−y)u{1+(s−1)y}f−u(1−z)θ−u{1+(s−1)z}n−θ+u.

Now,

∆(y, z) = {1 + (s − 1)y}f (1 − z)θ{1 + (s − 1)z}n−θ

×
f∑

u=0

(
f
u

) [
(s − 1)(1 − y){1 + (s − 1)z}

{1 + (s − 1)y}(1 − z)

]u

= {1 + (s − 1)y}f (1 − z)θ{1 + (s − 1)z}n−θ

×
[
1 +

(s − 1)(1 − y){1 + (s − 1)z}
{1 + (s − 1)y}(1 − z)

]f



4.3 A General Result on Complementary Designs 97

= sf (1 − z)θ−f{1 + (s − 1)z}n−θ{1 + (s − 2)z − (s − 1)yz}f

= sf

⎡⎣∑
t1≥0

(
θ−f
t1

)
(−z)t1

⎤⎦⎡⎣∑
t2≥0

(
n−θ
t2

) {(s − 1)z}t2

⎤⎦
×

⎡⎣ ∑
t3,t4≥0

(
f
t4

)(
f−t4
t3

)
{(s − 2)z}t3{−(s − 1)yz}t4

⎤⎦
= sf

∑
t1,t2,t3,t4≥0

(
θ−f
t1

) (
n−θ
t2

) (
f
t4

)(
f−t4
t3

)
× (−1)t1+t4(s − 1)t2+t4(s − 2)t3yt4zt1+t2+t3+t4 .

The coefficient of yjzi in the above equals 0 when j > i. On the other
hand, if j ≤ i, then this coefficient equals

sf (s − 1)j
(

f
j

) ∗∑ (
θ−f
t1

) (
n−θ
t2

) (
f−j
t3

)
(−1)t1+j(s − 1)t2(s − 2)t3 ,

where the sum
∑∗ is as defined in (4.3.23). From (iii) above, it is now

respectively. �

Corollary 4.3.1. In the setup of Theorem 4.3.1,

ρij =

⎧⎪⎪⎨⎪⎪⎩
(−1)i, if j = i,
(−1)i{s(i − 1) − 2i + 3}, if j = i − 1,
1
2 (−1)i{sn−k − 2(s − 1)n + (s − 2)2(i − 1)(i − 2)
+(s − 2)(2i − 3)}, if j = i − 2.

Proof. If j = i, then by (4.3.23), the sum
∑∗ extends only over t1 = t2 =

t3 = 0. Hence by (4.3.22), ρij is as claimed.
If j = i−1, then by (4.3.23), the sum

∑∗ extends over (t1, t2, t3) = (1, 0, 0),
(0, 1, 0), and (0, 0, 1). Hence by (4.3.22), ρij equals

(θ − f)(−1)i + (n − θ)(−1)i−1(s − 1) + (f − i + 1)(−1)i−1(s − 2).

Since θ = sn−k−1, the claim about ρij follows after a little algebra using
(4.3.2).

The proof is similar for j = i − 2. �

Corollary 4.3.2.

(a) A3(T ) = constant − A3

(b) A4(T ) = constant + (3s− 5)A3(T ) + A4(T ),
(c) A5(T ) = constant − 1

2{s − 2(s− 1)n + (s− 2)(12s− 17)}A3(T )
−(4s − 7)A4(T ) − A5(T ),

clear that (4.3.27) is equivalent to (4.3.21) or (4.3.22) for j > i or j ≤ i,

(T ),

n−k
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where the constants may depend on s, n, and k but not on the particular choice
of T .

Proof. Consider (a). First suppose f ≥ 3. Recall that A1(T ) = A2(T ) = 0
and that by (4.3.4), A0(T ) = (s − 1)−1. Hence from (4.3.19), (4.3.21), and
Corollary 4.3.1,

A3(T ) = ρ3 + ρ30(s − 1)−1 + ρ33A3(T ) = ρ3 + ρ30(s − 1)−1 − A3(T ).

By (4.3.20) and (4.3.22), ρ3 + ρ30(s− 1)−1 is a constant that may depend on
s, n, and k but not on the choice of T . Hence (a) follows for f ≥ 3. On the
other hand, for f ≤ 2, a similar argument yields A3(T ) = ρ3 + ρ30(s − 1)−1

and trivially, A3(T ) = 0; cf. (4.3.3). Thus (a) follows again.
The identities in (b) and (c) can be proved similarly using Corollary 4.3.1

with i = 4 and 5 respectively. �

In particular, for s = 2, Corollary 4.3.2 yields the identities in (3.3.2) that
played a key role in Chapter 3.

Observe that the rank of V (T ) does not influence the conclusions of Theo-
rem 4.3.1 and the above corollaries. Similarly, these results remain valid even
when V (T ) does not have full row rank and hence T lacks interpretation as
an sn−k design. This fact, useful later in Chapter 6, can be established by a
minor modification of the present derivation with V (T ) handled in the same
way as V (T ).

4.4 Minimum Aberration sn−k Designs via
Complementary Designs

The results of the last section, especially Corollary 4.3.2, yield simple rules
for finding MA sn−k designs. This development is parallel to that in Section
3.3 and the concept of isomorphism again helps in reducing the design search.

Consider two sets of points of a finite projective geometry, with the same
cardinality. The sets are called isomorphic if there exists a nonsingular trans-
formation that maps each point of one set to some point of the other set up to
proportionality. Two sn−k designs T1 and T2 are isomorphic if the correspond-
ing sets T1 and T2 are isomorphic. Writing Ti =

{
h

(i)
1 , . . . , h

(i)
n

}
, i = 1, 2, then

there exists a nonsingular matrix Λ, of order n − k and defined over GF (s),
such that for each j, Λh

(1)
j is proportional to some h

(2)
t . Since points with

proportional entries are considered identical in a finite projective geometry,
this means that there is an appropriate representation of the points of T2 such
that

ΛV (T1) = V (T2)R, (4.4.1)

where R is a permutation matrix of order n over GF (s), and, as usual, V (Ti) =(
h

(i)
1 , . . . , h

(i)
n

)
, i = 1, 2. By (4.4.1), for any n × 1 vector b,
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V (T1)b = 0 ⇐⇒ V (T2)Rb = 0, (4.4.2)

i.e., by Theorem 2.7.1(b), b is a defining pencil of the design T1 if and only if
Rb is a defining pencil of the design T2. Obviously, the roles of T1 and T2 are
interchangeable in the above. Hence by (4.4.2), if T1 and T2 are isomorphic,
then they have the same defining pencils, or equivalently the same defining
contrast subgroup, up to a permutation of factor labels. For s = 2, this is
in agreement with the definition of design isomorphism given in Section 3.1.
Obviously, isomorphic designs have the same wordlength pattern and are con-
sidered equivalent in the sequel. The following lemmas are easily obtained
from the definition of isomorphism.

Lemma 4.4.1. Let T1 and T2 be sets of points of PG(n − k − 1, s) with the
same cardinality, and T 1 and T 2 their complementary sets respectively. If T 1

and T 2 are isomorphic, then T 1 and T 2 are also isomorphic.

Lemma 4.4.2. (a) All singleton sets of PG(n − k − 1, s) are isomorphic.
(b) All sets of PG(n − k − 1, s) with cardinality two are isomorphic.

The above lemmas imply that all sn−k designs are isomorphic when the
cardinality f of the complementary sets equals 1 or 2, i.e., by (4.3.2), all such
designs are isomorphic when n = (sn−k−1)/(s−1)−1 or n = (sn−k−1)/(s−
1) − 2. This extends Theorem 3.3.2 to the case of general s. Turning to the
situation f ≥ 3, Corollary 4.3.2 and Lemma 4.4.1 yield the same rules as in
Section 3.3 for the identification of MA designs. For ease in reference, Rules
1 and 2 are reproduced below.

Rule 1. An sn−k design T ∗ has minimum aberration if

(i) A3(T
∗
) = max A3(T ) over all T of cardinality f , and

(ii) T
∗

is the unique set (up to isomorphism) satisfying (i).

Rule 2. An sn−k design T ∗ has minimum aberration if

(i) A3(T
∗
) = max A3(T ) over all T of cardinality f ,

(ii) A4(T
∗
) = min{A4(T ) : A3(T ) = A3(T

∗
)}, and

(iii) T
∗

is the unique set (up to isomorphism) satisfying (ii).

In general, by Theorem 4.3.1 and Corollary 4.3.1,

Ai(T ) = ρi +
i−1∑
j=0

ρijAj(T ) + (−1)iAi(T ), 3 ≤ i ≤ n, (4.4.3)

where ρi and ρij are constants that do not depend on T , A0(T ) = (s − 1)−1,
and Aj(T ) = 0 for j = 1, 2 or j > f . Hence further rules, in the spirit of the
ones stated above, are easy to develop. By (4.4.3), these call for maximization
of A3(T ), then minimization of A4(T ), followed by maximization of A5(T ),
and so on. However, one rarely has to go beyond Rules 1 and 2 for relatively
small f .
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The concept of a flat of a finite projective geometry as well as a few lemmas
are needed for obtaining further results. Consider any w (1 ≤ w ≤ n − k)
linearly independent points of PG(n − k − 1, s). These w points generate, as
their linear combinations, (sw − 1)/(s − 1) points, including themselves, of
the finite projective geometry. Such a collection of (sw − 1)/(s − 1) points

to proportionality, under the formation of nonnull linear combinations of the
points therein. A 0-flat trivially consists of a single point, whereas a 1-flat,
consisting of s + 1 points, is also called a line. On the other extreme, an
(n−k−1)-flat is identical to the entire PG(n−k−1, s). It is easily seen that
for a fixed w, all (w − 1)-flats of PG(n − k − 1, s) are isomorphic.

Lemma 4.4.3. Let f ≥ 3. Then

(a) A3(T ) ≤ 1
6
f(f − 1)min{f − 2, s − 1}. (4.4.4)

(b) For 3 ≤ f ≤ s + 1, equality holds in (4.4.4) if and only if rank[V (T )] = 2.
(c) For f > s + 1, equality holds in (4.4.4) if and only if f = (sw − 1)/(s − 1)

and T is a (w − 1)-flat with w ≥ 3.

Lemma 4.4.4. All sn−k designs T with rank[V (T )] = 2 have the same
wordlength pattern.

Lemma 4.4.3 follows from a result to be presented in Chapter 5 (see Lemma
5.4.1). Lemma 4.4.4 is a consequence of Theorem 4.3.1 and the fact that Aj(T ),
0 ≤ j ≤ f , do not depend on T as long as rank[V (T )] = 2. In view of Lemma
4.4.4, one may wonder whether all sn−k designs T with rank[V (T )] = 2 are iso-
morphic. Interestingly, this is not the case in general. For example, let s = 7,
n = 4, k = 2, and consider the designs T1 = {(1, 3)

′
, (1, 4)

′
, (1, 5)

′
, (1, 6)

′},
T2 = {(1, 2)

′
, (1, 4)

′
, (1, 5)

′
, (1, 6)

′}. Then both V (T 1) and V (T 2) have rank
two, and T1 and T2 have the same wordlength pattern, but a complete enumer-
ation of all nonsingular transformations reveals that they are not isomorphic.

In particular, if n−k = 2 and f ≥ 3, then the 2×f matrix V (T ) has rank
two for every design T . Consequently, by Lemma 4.4.4, all designs have the
same wordlength pattern and hence are equivalent under the MA criterion.
The next two results hold for n−k ≥ 3. The first follows readily from Corollary
4.3.2(a), Lemma 4.4.3(b), and Lemma 4.4.4. The second one is immediate from
Rule 1 and Lemma 4.4.3(c).

Theorem 4.4.1. Let n − k ≥ 3 and 3 ≤ f ≤ s + 1. Then an sn−k design T
has minimum aberration if and only if rank[V (T )] = 2.

Theorem 4.4.2. Let f = (sw − 1)/(s − 1), where 3 ≤ w < n − k. Then an
sn−k design T has minimum aberration if and only if T is (w − 1)-flat

is called a (w − 1)-flat of PG(n − k − 1, s). Evidently, a flat is closed, up
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The condition w ≥ 3 in Theorem 4.4.2 is not restrictive. If w = 1, then
f = 1, which is trivial. If w = 2, then f = s+1, which is covered by Theorem
4.4.1. In the setup of either theorem, the matrix V (T ) corresponding to an
MA design T has full row rank, as it should in view of Theorem 2.7.1 . To
see this for Theorem 4.4.2, let h(1), . . . , h(n−k) be linearly independent points
of PG(n − k − 1, s), and suppose the first w of these generate the (w − 1)-
flat T . Then T includes in particular the n − k linearly independent points
h(1)+h(w+1), . . . , h(w)+h(w+1), h(w+1), . . . , h(n−k), and hence V (T ) must have
full row rank. A similar argument works for Theorem 4.4.1.

Theorem 4.4.1 shows that the 310−7 design in Example 4.3.1 has MA. Two
more examples, illustrating the use of these theorems, are considered below.

Example 4.4.1. Let s = 4, n = 17, k = 14. By (4.3.2), f = 4. Let
T = {(1, 0, 0)

′
, (0, 1, 0)

′
, (1, 1, 0)

′
, (1, α, 0)

′}, where α is a primitive element
of GF (4). Then rank[V (T )] = 2. Here n− k = 3 and 3 < f < s + 1. Hence by
Theorem 4.4.1, the 417−14 design T , with T as shown above, has MA. �

Example 4.4.2. Let s = 3, n = 27, k = 23. By (4.3.2), f = 13[= (33 −
1)/(3− 1)]. Let T be any 2-flat. Then by Theorem 4.4.2, the 327−23 design T
has MA. �

For s = 3 and 3 ≤ f ≤ 13, Suen, Chen, and Wu (1997) obtained MA
designs using Rule 1. Table 4.1 shows the set T for these MA designs. In
this table, the compact notation is used. For example, 132 denotes the point
(1, 0, 2, 0, . . . , 0)

′
, and so on. For each f , one can check that the matrix V (T )

corresponding to the MA design given by Table 4.1 has full row rank.
Using Table 4.1, one can obtain an MA 3n−k design for every n when the

run size is 27, i.e., n − k = 3. Clearly n ≤ 13. The cases n = 13, 12, and 11
are trivial, since they correspond to f = 0, 1, and 2, respectively. The cases
n = 4, 5, . . . , 10 correspond to f = 9, 8, . . . , 3 respectively, and are covered by
Table 4.1. Similarly, Table 4.1 yields 81-run 3n−(n−4) designs for 27 ≤ n ≤ 37.
The cases n = 38, 39, and 40 are trivial, since they correspond to f = 2, 1,
and 0, respectively. For example, using Table 4.1, an MA 328−24 design can be
readily obtained. Noting that n = 28 and f = 12(= 40 − 28), an MA 328−24

design T can be constructed by taking its complementary set T to be the set
of points given in Table 4.1 under f = 12.
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Table 4.1 The sets T for MA 3n−k designs

f T

3 {1, 2, 12}
4 {1, 2, 12, 122}
5 {1, 2, 12, 122, 3}
6 {1, 2, 12, 122, 3, 13}
7 {1, 2, 12, 122, 3, 1223, 12232}
8 {1, 2, 12, 122, 3, 232, 1223, 12232}
9 {1, 2, 122, 3, 132, 232, 1232, 1223, 12232}
10 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123}
11 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232}
12 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 12232}
13 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 1223, 12232}

4.5 Description and Use of the Three-Level
Design Tables

A catalogue of 3n−k designs with 27 and 81 runs is given in the appendix of
the chapter. The listing of the 27-run designs in Table 4A.2 is complete, i.e.,
it contains all the nonisomorphic designs. It is taken from Chen, Sun, and Wu
(1993) with a few corrections. For 81 runs, a complete listing of designs is too
long to be included. Therefore, only a selection of such designs, including all
designs of resolution four or higher, is presented in Table 4A.3 for 5 ≤ n ≤ 20.
This table is adapted from Xu (2005), who also gave 243- and 729-run designs.
Selection of designs for inclusion in Table 4A.3 is based on the MA, MaxC2,
and other criteria not discussed in the book. As in Chapter 3, the MaxC2
criterion aims at maximizing C2, the number of clear 2fi’s. A 2fi, say, between
the first two factors, is now called clear if neither of the interaction pencils 12
and 122 is aliased with any main effect pencil or any other 2fi pencil.

From Section 4.3, recall that a 3n−k design is equivalent to a set of n
points of PG(n − k − 1, 3). The set must contain n − k (= m, say) indepen-
dent points, which can be taken as 1, 2, . . . , m, using the compact notation.
Thus a 3n−k design can be represented by the independent points 1, 2, . . . , m,
together with k additional points. This representation is used in the cata-
logue for tabulating designs. Furthermore, instead of using the explicit nota-
tion 1, 2, 12, 122, 3, 13, . . . for the points of PG(n − k − 1, 3), to save space,
we denote them by the corresponding serial numbers 1, 2, 3, 4, 5, 6, . . . , the
numbering scheme being shown in Table 4A.1. For instance, the independent
points 1, 2, 3 of PG(2, 3) are numbered 1, 2, 5, according to this scheme.
Consequently, in listing any 27-run design (i.e., m = n−k = 3) in Table 4A.2,
it is implied that the points numbered 1, 2, 5 are included but we list only the
serial numbers of the additional k points under “Additional Points”. Similar
considerations apply to 81-run designs.
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For clarity, the ith 3n−k design in the catalogue is denoted by n−k.i. The
wordlength pattern W and C2 appear in the last two columns of the design
tables. To save space, for 81-run designs, at most four components of W are
shown. For any given n − k and n, the first design n − k.1 is the MA design.
Use of the design tables is illustrated in the following example.

Example 4.5.1. Consider the 27-run MA design 6-3.1 in Table 4A.2. It is
given by the points of PG(2, 3) with serial numbers 1, 2, 5, 3, 9, 13. Table
4A.1 identifies these points and shows that the design is given by the set
{1, 2, 3, 12, 1223, 12232}. The six factors can be associated with the points of
the set in the order stated. Then the following aliasing relations are immediate:
4 = 12, 5 = 1223, 6 = 12232. In other words, 1242, 122352, and 1223262 are
three independent defining pencils of this design. From this, one can easily
obtain the other defining pencils and check that A3 = 2, A4 = 9, A5 = 0, and
A6 = 2, which agree with the wordlength pattern W as given in Table 4A.2.

�

Exercises

4.1 (a) Use Theorem 4.2.1 to find an MA 54−2 design.
(b) Rewrite the design in (a) as a 5 × 5 Graeco-Latin square.

4.2 (a) Use Theorem 4.2.1 to find an MA 35−2 design.
(b) Show that this design has the same wordlength pattern as the design
d(B1) in Example 2.5.1. Hence conclude that the latter design also has
MA.
(c) Verify that the two designs in (b) are isomorphic.

4.3 (a) Find an MA 39−6 design using Table 4.1. Denote it by T1.
(b) Find two other nonisomorphic 39−6 designs and verify that they are
inferior to T1 according to the MA criterion. Denote them by T2 and T3.
(c) The theory of complementary designs can be used to confirm the
findings in (b). In particular, compute the values of A3(T i) for i = 1, 2,
3. By applying Rule 1 in Section 4.4 to these values, show that T1 has
MA.

4.4 For f = 5, verify that the set T in Table 4.1 corresponds to an MA
design.

4.5 Prove Corollary 4.3.2(b),(c).
4.6 Prove Lemma 4.4.1.
4.7 Prove Lemma 4.4.2.
4.8 Show that the Aj(T ), 0 ≤ j ≤ f, do not depend on T if rank[V (T )] = 2.

Exercises



104 4 Fractional Factorial Designs: General Case

Appendix 4A. Catalogue of 3n−k Designs with 27 and 81
Runs

Table 4A.1 Numbering of points for 27- and 81-run designs

(The table gives the serial numbers of the points of PG(3, 3); the first
13 entries describe the serial numbers of the points of PG(2, 3). Independent
points are numbered 1, 2, 5, 14 in boldface.)

Number 1 2 3 4 5 6 7 8 9 10
Point 1 2 12 122 3 13 23 123 1223 132

Number 11 12 13 14 15 16 17 18 19 20
Point 232 1232 12232 4 14 24 124 1224 34 134
Number 21 22 23 24 25 26 27 28 29 30
Point 234 1234 12234 1324 2324 12324 122324 142 242 1242

Number 31 32 33 34 35 36 37 38 39 40
Point 12242 342 1342 2342 12342 122342 13242 23242 123242 1223242
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Table 4A.2 Complete catalogue of 27-run designs

(Each design is represented by 1, 2, 5 and the numbers specified under “Ad-
ditional Points”. W = (A3, A4, . . .) is the wordlength pattern of the design.
C2 is the number of clear 2fi’s. Designs for n = 11, 12, 13 are unique up to
isomorphism and hence omitted.)

Design Additional Points W C2

4-1.1 8 0 1 0
4-1.2 3 1 0 3

5-2.1 3 9 1 3 0 0
5-2.2 3 6 2 1 1 0
5-2.3 3 4 4 0 0 4

6-3.1 3 9 13 2 9 0 2 0
6-3.2 3 6 7 3 6 3 1 0
6-3.3 3 6 11 4 3 6 0 0
6-3.4 3 4 6 5 3 3 2 0

7-4.1 3 10 11 13 5 15 9 8 3 0
7-4.2 4 8 9 11 6 11 15 4 4 0
7-4.3 4 8 10 11 7 10 12 9 2 0
7-4.4 3 4 9 13 8 9 9 14 0 0

8-5.1 3 8 9 10 11 8 30 24 32 24 3 0
8-5.2 4 8 9 10 11 10 23 32 30 22 4 0
8-5.3 3 4 9 11 13 11 21 30 38 15 6 0

9-6.1 3 8 9 10 11 13 12 54 54 96 108 27 13 0
9-6.2 3 4 8 9 10 11 15 42 69 96 93 39 10 0
9-6.3 4 9 10 11 12 13 16 39 69 106 78 48 8 0

10-7.1 3 6 7 8 10 11 12 21 72 135 240 315 189 103 18 0
10-7.2 3 4 6 7 8 10 11 22 68 138 250 290 213 92 20 0

Appendix 4A
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Table 4A.3 Selected 81-run designs for n = 5 to 20

(Each design is represented by 1, 2, 5, 14 and the numbers specified under
“Additional Points”. W = (A3, A4, A5) when n = 5 and W = (A3, . . . , A6)
when n > 5. C2 is the number of clear 2fi’s.)

Design Additional Points W C2

5-1.1 22 0 0 1 10
5-1.2 8 0 1 0 4
5-1.3 3 1 0 0 7

6-2.1 9 22 0 2 2 0 4
6-2.2 8 17 0 3 0 1 0
6-2.3 4 22 1 0 3 0 12

7-3.1 9 22 24 0 5 6 1 0
7-3.2 9 18 22 0 6 3 4 0
7-3.3 9 15 22 1 3 6 3 3
7-3.4 9 10 22 1 4 6 0 6
7-3.5 4 22 26 2 0 9 2 15
7-3.6 3 4 22 4 1 3 3 9

8-4.1 9 22 24 31 0 10 16 4 0
8-4.2 9 22 24 25 0 11 12 10 0
8-4.3 9 18 22 38 0 12 8 16 0
8-4.4 9 10 22 35 2 6 18 2 9
8-4.5 9 15 22 28 4 4 12 12 4
8-4.6 3 4 22 26 5 3 9 17 12
8-4.7 3 4 19 32 8 0 0 32 16

9-5.1 9 22 24 31 34 0 18 36 12 0
9-5.2 3 9 22 24 31 1 18 27 28 0
9-5.3 7 9 22 24 25 1 20 20 36 0
9-5.4 6 9 22 24 25 2 17 23 34 0
9-5.5 9 16 22 24 29 5 11 26 31 1
9-5.6 8 9 10 22 23 5 12 27 26 9
9-5.7 3 9 10 13 22 5 18 24 23 2
9-5.8 3 9 10 12 22 6 15 27 21 4
9-5.9 4 6 8 11 12 8 30 24 32 8
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Table 4A.3 (continued)

Design Additional Points W C2

10-6.1 9 22 24 31 34 39 0 30 72 30 0
10-6.2 3 9 22 24 31 34 2 28 57 65 0
10-6.3 3 9 22 24 25 31 2 30 48 80 0
10-6.4 3 6 9 22 24 31 3 30 42 84 0
10-6.5 4 7 9 12 22 24 5 28 48 68 0
10-6.6 3 9 10 11 13 22 8 34 48 62 0
10-6.7 3 6 9 10 13 22 10 28 51 67 2
10-6.8 4 6 7 8 12 17 10 29 48 67 4
10-6.9 4 6 8 11 12 13 12 54 54 96 9

11-7.1 3 9 22 24 31 34 39 3 42 111 132 0
11-7.2 3 9 13 22 24 25 31 3 48 84 177 0
11-7.3 7 9 12 18 22 24 25 3 54 63 195 0
11-7.4 3 6 9 13 22 24 31 5 47 77 182 0
11-7.5 3 4 7 9 12 22 24 10 40 91 154 0
11-7.6 3 4 9 10 11 13 22 15 48 99 162 0
11-7.7 3 4 6 7 9 13 22 15 49 95 165 2
11-7.8 3 4 6 8 11 12 13 21 72 135 240 10

12-8.1 3 9 13 22 24 25 31 37 4 72 144 354 0
12-8.2 7 9 12 18 22 24 25 38 4 81 108 390 0
12-8.3 3 9 13 22 24 25 31 38 5 69 141 375 0
12-8.4 3 6 7 9 13 22 24 31 8 73 124 364 0
12-8.5 3 4 6 7 9 12 13 22 21 81 171 357 2
12-8.6 3 4 6 9 10 11 13 22 22 76 178 364 0
12-8.7 3 4 6 7 8 11 12 13 30 108 252 546 11

13-9.1 3 6 9 13 22 24 25 31 37 7 102 219 690 0
13-9.2 3 7 9 12 18 22 24 25 38 7 105 207 696 0
13-9.3 3 9 13 15 22 24 25 31 37 8 92 249 654 0
13-9.4 3 6 7 9 12 13 22 24 31 12 109 198 672 0
13-9.5 3 4 6 7 9 10 12 13 22 30 118 306 726 0
13-9.6 3 4 6 7 8 9 11 12 13 40 162 432 1092 12

14-10.1 3 6 9 13 18 22 24 25 31 37 10 140 334 1236 0
14-10.2 3 7 9 12 18 22 24 25 31 38 10 141 330 1236 0
14-10.3 3 6 7 9 13 22 24 25 31 37 10 144 330 1209 0
14-10.4 3 6 7 9 12 13 22 24 25 31 13 147 315 1200 0
14-10.5 3 4 6 7 8 9 10 11 12 13 52 234 702 2028 13

Appendix 4A
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Table 4A.3 (continued)

Design Additional Points W C2

15-11.1 3 6 7 9 13 18 22 24 25 31 37 13 192 495 2055 0
15-11.2 3 6 7 9 12 13 22 24 25 31 37 14 198 486 2009 0
15-11.3 3 6 9 13 22 23 24 25 30 31 37 15 171 564 1963 0

16-12.1 3 6 7 9 13 18 22 24 25 31 35 37 16 256 720 3288 0
16-12.2 3 6 7 9 12 13 18 22 24 25 31 37 17 258 711 3275 0
16-12.3 3 6 7 9 13 18 21 22 24 25 31 37 19 232 789 3201 0

17-13.1 3 6 7 9 12 13 18 22 24 25 31 35 37 20 336 1014 5072 0
17-13.2 3 6 7 9 13 16 18 22 24 25 31 35 37 23 306 1107 4952 0
17-13.3 3 6 7 9 13 15 18 22 24 25 31 35 37 24 304 1096 4984 0

18-14.1 3 6 7 9 12 13 18 22 24 25 31 35 37 38 24 432 1404 7608 0
18-14.2 3 6 7 9 12 13 15 18 22 24 25 31 35 37 28 396 1518 7438 0
18-14.3 3 6 9 13 15 16 22 23 24 25 31 34 37 38 30 369 1602 7443 0

19-15.1 3 6 7 9 12 13 15 18 22 24 25 31 35 37 38 33 504 2052 10884 0
19-15.2 3 6 7 9 12 13 15 16 18 22 24 25 31 35 37 36 480 2112 10875 0
19-15.3 3 6 7 9 12 13 15 18 22 24 25 31 35 36 37 37 464 2202 10600 0

20-16.1 3 6 7 9 12 13 15 16 18 22 24 25 31 35 37 38 42 603 2808 15537 0
20-16.2 3 6 7 9 13 15 16 18 22 23 24 25 31 34 37 38 44 584 2852 15608 0
20-16.3 3 6 7 9 12 13 15 17 18 22 24 25 31 35 37 38 44 584 2900 15212 0
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Designs with Maximum Estimation Capacity

This chapter continues with regular fractions of symmetrical factorials. A
criterion of model robustness, called estimation capacity, is introduced and
explored. Results on sn−k designs with maximum estimation capacity are
given. In many situations, these results are consistent with those under the
minimum aberration criterion.

5.1 Preliminaries

The notion of estimation capacity is due to Sun (1993). It was studied in fuller
detail by Cheng, Steinberg, and Sun (1999) and Cheng and Mukerjee (1998).
The development in this chapter follows the last two papers. The criterion
of estimation capacity aims at selecting a design that retains full information
on the main effects, and as much information as possible on the two-factor
interactions (2fi’s) in the sense of entertaining the maximum possible model
diversity, under the assumption of absence of interactions involving three or
more factors. This approach will be seen to provide further statistical justifi-
cation for the more common criterion of minimum aberration (MA).

As before, we consider sn−k designs of resolution three or higher. By Theo-
rem 2.7.1, any such design is equivalent to a set T of n points of PG(n−k−1, s),
so that the matrix V (T ) with columns given by these points has full row rank.
Hence as in Chapter 4, an sn−k design is denoted by the corresponding set of
points T .

From Section 2.4, recall that any sn−k design T involves (sn−k−1)/(s−1)
(= q, say) alias sets, each containing sk pencils. Since T has resolution three
or higher, no two distinct main effect pencils are aliased with each other. Thus
there are n alias sets of T , each of which contains one main effect pencil. Let
f = q − n, and for 1 ≤ i ≤ f , let mi(T ) be the number of 2fi pencils in the
ith of the remaining f alias sets of T . To avoid trivialities, throughout this
chapter it is assumed that f ≥ 1. If f = 0, then there is only one choice of T ,
namely, the entire PG(n − k − 1, s).
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To introduce the criterion of estimation capacity, recall that it evaluates
a design on the basis of its capability to handle model diversity. Note that
in an sn factorial, there are ν =

(
n
2

)
(s − 1) 2fi pencils altogether. Thus, for

1 ≤ r ≤ ν, there are
(
ν
r

)
possible models that include all the main effects and

r 2fi pencils; of course, any of these models assumes the ignorability of the
remaining ν − r 2fi pencils and the absence of all interactions involving three
or more factors. For any fixed r, let Er(T ) be the number of models of this
kind that can be estimated by a design T . In particular, for s = 2, there is
practically no distinction between a factorial effect and the associated pencil.
Hence for two-level factorials, Er(T ) simply represents the number of models
containing all the main effects and r 2fi’s, which a design T can estimate when
the remaining 2fi’s and higher order interactions are absent.

An expression for Er(T ) follows readily from Theorem 2.4.2. By this theo-
rem, any model involving all the main effects and r 2fi pencils is estimable in
T if and only if the r 2fi pencils occur in the f alias sets that do not contain
any main effect pencil and no two of them occur in the same alias set. Thus,
Er(T ) equals the number of ways of choosing r 2fi pencils from these f alias
sets such that no two of them are chosen from the same alias set. Therefore,

Er(T ) =
{ ∑ · · ·∑1≤i1<···<ir≤f

∏r
j=1 mij

(T ) if r ≤ f,

0 otherwise.
(5.1.1)

The criterion of estimation capacity aims at maximizing Er(T ) for every
r (1 ≤ r ≤ ν). An sn−k design that achieves this is said to have maximum
estimation capacity. Furthermore, given any two sn−k designs T1 and T2, T1

dominates T2 with respect to estimation capacity if Er(T1) ≥ Er(T2) for every
r, with strict inequality for some r.

Some ideas from the theory of majorization greatly facilitate the study of
estimation capacity; see Marshall and Olkin (1979) for more details. Consider
vectors u = (u1, . . . , uf )′ and w = (w1, . . . , wf )′ with real-valued elements.
Then u is said to be majorized by w if

f∑
i=1

ui =
f∑

i=1

wi and
j∑

i=1

u[i] ≥
j∑

i=1

w[i] (1 ≤ j ≤ f − 1),

where u[1] ≤ · · · ≤ u[f ] and w[1] ≤ · · · ≤ w[f ] are the ordered elements of u

and w respectively. In this definition, if the condition
∑f

i=1 ui =
∑f

i=1 wi is
replaced by

∑f
i=1 ui ≥

∑f
i=1 wi, then u is said to be upper weakly majorized

by w. A real-valued function g is called Schur concave if g(u) ≥ g(w) whenever
u is majorized by w.

Lemma 5.1.1. If u is upper weakly majorized by w, then g(u) ≥ g(w) for all
functions g that are Schur concave and nondecreasing in each element.

Proof. Since u is upper weakly majorized by w, one gets
∑f

i=1 ui ≥
∑f

i=1 wi.
If equality holds here, then u is majorized by w and the result follows by the
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definition of Schur concavity. Otherwise, let w∗ be a vector obtained from w,
replacing the element of w corresponding to w[f ] by (w[f ]+

∑f
i=1 ui−

∑f
i=1 wi),

and keeping the other elements unchanged. Then u is majorized by w∗ and
g(u) ≥ g(w∗), again by the definition of Schur concavity. The result follows
by noting that g(w∗) ≥ g(w) for all functions g that are nondecreasing in each
element. �

For any sn−k design T, let m(T ) = (m1(T ), . . . , mf (T ))′. Then the follow-
ing result, which plays a fundamental role in the study of estimation capacity,
holds.

Theorem 5.1.1. Given two sn−k designs T1 and T2, if m(T1) is upper weakly
majorized by m(T2) and not obtainable from m(T2) by permuting its elements,
then T1 dominates T2 with respect to estimation capacity.

Proof. By (5.1.1), using a result of Marshall and Olkin (1979, p.78, Proposi-
tion F.1), it can be shown that Er(T ) is a Schur concave function of m(T ) for
each r. It is also easily seen that Er(T ) is nondecreasing in each element of
m(T ). Hence if m(T1) is upper weakly majorized by m(T2), then by Lemma
5.1.1,

Er(T1) ≥ Er(T2) (5.1.2)

for every r. If equality holds in (5.1.2) for every r, then by (5.1.1), the polyno-
mials Πf

i=1{y−mi(T1)} and Πf
i=1{y−mi(T2)} have identical expanded forms

and hence the same set of zeros; i.e., m(T1) can be obtained from m(T2) by
permuting its elements. Since this is not the case here, the inequality must be
strict for some r in (5.1.2). This completes the proof. �

Example 5.1.1. Consider the 35−2 designs d(B1) and d(B2) introduced in
Example 2.5.1. In accordance with the notational system of this chapter, these
are denoted by T1 and T2, where T1 and T2 are the corresponding sets of points
of PG(2, 3). The defining relations of T1 and T2 are given by (2.5.1) and (2.5.2)
respectively. Here n = 5, k = 2, q = 13, and f = q − n = 8. From (2.5.1), it
can be seen that the eight alias sets of T1 that contain no main effect pencil
are given by

122 = 14 = 24 = 352 = · · · , 13 = 25 = · · · ,

132 = 45 = · · · , 23 = 452 = · · · ,

232 = 152 = · · · , 34 = 252 = · · · ,

342 = 15 = · · · , 35 = · · · .

Only the 2fi pencils in each of these alias sets are shown here and the
dots represent pencils belonging to interactions that involve three or more
factors. Thus m(T1) = (4, 2, 2, 2, 2, 2, 2, 1)′. Similarly, by (2.5.2), m(T2) =
(3, 3, 2, 2, 1, 1, 1, 1)′. Clearly, m(T1) and m(T2) satisfy the conditions of Theo-
rem 5.1.1. Hence T1 dominates T2 with respect to estimation capacity, a fact
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that can be verified directly from (5.1.1) as well. It will be seen in Section 5.4
that T1, in fact, has maximum estimation capacity. In addition, T1 has MA
because it is isomorphic to the design 5-2.1 of Table 4A.2. �

In general, do MA designs have an edge over others under the crite-
rion of estimation capacity as well? Theorem 5.1.1 suggests that a design
T should behave well under the latter criterion if

∑f
i=1 mi(T ) is large and

m1(T ), . . . , mf (T ) are close to one another. The next result shows why an
MA design can be expected to meet these requirements. In what follows,
mf+1(T ), . . . , mq(T ) denote the numbers of 2fi pencils in the n (= q−f) alias
sets of T , each of which contains a main effect pencil. As in Chapter 4, the
wordlength pattern of a design T is represented by (A1(T ), . . . , An(T )), and
A1(T ) = A2(T ) = 0.

Theorem 5.1.2. For any sn−k design T ,

(a)
f∑

i=1

mi(T ) =
(

n

2

)
(s − 1) − 3A3(T ),

(b)
q∑

i=1

{mi(T )}2 =
(

n

2

)
(s − 1) + 6(s − 2)A3(T ) + 6A4(T ).

Proof. Part (a) follows from noting that there are ν =
(
n
2

)
(s − 1) 2fi pencils,

that none of them appear in the defining relation of T with resolution three
or higher, and that 3A3(T ) of them are aliased with the main effect pencils.

To prove (b), note that

1
2

q∑
i=1

{mi(T )}2 =
1
2

q∑
i=1

mi(T ) +
1
2

q∑
i=1

mi(T ){mi(T ) − 1}. (5.1.3)

As in the proof of (a),

q∑
i=1

mi(T ) =
(

n

2

)
(s − 1). (5.1.4)

Also, the second term in the right-hand side of (5.1.3) equals the number of
unordered pairs that can be formed out of the distinct 2fi pencils appearing
in the same alias set of T. In accordance with (2.4.4) and (2.4.9), any defining
pencil bdef of T is said to account for such an unordered pair if bdef equals
b− b∗ or b∗− b for some representations b and b∗ of the 2fi pencils in the pair.
Clearly, then bdef has three or four nonzero entries since b and b∗ have two
nonzero entries each and T has resolution three or higher. Now observe the
following:

(i) Each defining pencil of T with three or four nonzero entries accounts
respectively for 3(s − 2) or 3 unordered pairs of 2fi pencils appearing in
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the same alias set of T . For example, a defining pencil (b1, b2, b3, 0, . . . , 0)′,
where bi �= 0 (i = 1, 2, 3), accounts for 3(s − 2) such unordered pairs as
shown below:

{((b11, b2, 0, . . . , 0)′, (b11 − b1, 0,−b3, 0, . . . , 0)′) : b11(�= 0, b1) ∈ GF (s)},
{((b1, b21, 0, . . . , 0)′, (0, b21 − b2,−b3, 0, . . . , 0)′) : b21(�= 0, b2) ∈ GF (s)},
{((b1, 0, b31, 0, . . . , 0)′, (0,−b2, b31 − b3, 0, . . . , 0)′) : b31(�= 0, b3) ∈ GF (s)}.

(ii) No two distinct defining pencils can account for the same unordered pair
as considered here.

The above argument shows that the second term in the right-hand side of
(5.1.3) equals 3(s − 2)A3(T ) + 3A4(T ). Hence (b) follows from (5.1.3) and
(5.1.4). �

An MA design minimizes A3(T ) and, subject to that condition, minimizes
A4(T ) as well. Hence by Theorem 5.1.2, it maximizes

∑f
i=1{mi(T )} and,

subject to that condition, minimizes
∑q

i=1{mi(T )}2. Therefore, one would
also expect

∑f
i=1{mi(T )}2 to be small in an MA design. Thus, in addition to

maximizing
∑f

i=1 mi(T ), an MA design is expected to keep m1(T ), . . . , mf (T )
close to one another. As noted earlier, in view of Theorem 5.1.1, these are
precisely the requirements for a design to behave well under the criterion
of estimation capacity. MA designs are therefore expected to perform well
under the latter criterion. These issues will be explored in more detail in the
subsequent sections and the sufficient condition in Theorem 5.1.1 will be seen
to be particularly helpful in the derivation of the results.

5.2 Connection with Complementary Sets

As in the last two chapters, complementary sets play a key role in the study of
estimation capacity. It is seen below that they arise naturally in this context.

Theorem 2.7.1 suggests a one-to-one correspondence between the q [=
(sn−k − 1)/(s− 1)] points of PG(n− k − 1, s) and the q alias sets of an sn−k

design T . Any alias set of T corresponds to the point V (T )b of PG(n−k−1, s),
where b is any pencil in the alias set. In particular, if an alias set contains a
main effect pencil, say b, then V (T )b reduces to a column of V (T ), i.e., a point
of T. Thus the n alias sets of T containing the main effect pencils correspond
to the n points of T. The remaining f (= q − n) alias sets of T, therefore,
correspond to the f points of T , the complementary set of T in PG(n−k−1, s).
Let T = {h1, . . . , hf} and T = {hf+1, . . . , hq}, where h1, . . . , hq are the points
of PG(n − k − 1, s) and, for 1 ≤ i ≤ f , hi corresponds to the ith alias set of
T that contains no main effect pencil. The following lemma is then obvious.

Lemma 5.2.1. For 1 ≤ i ≤ f, mi(T ) equals the number of 2fi pencils b such
that V (T )b is proportional to, and hence representative of, hi.
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Some more notation will be needed for presenting the subsequent results.
For λ(�= 0) ∈ GF (s) and distinct i, j, r (1 ≤ i, j, r ≤ q), define the indicators

ζijr(λ) =
{

1, if hj + λhr is proportional to hi,
0, otherwise, (5.2.1)

θijr =
{

1, if hi, hj and hr are linearly dependent,
0, otherwise. (5.2.2)

It is easily seen that for any fixed distinct i, j, r, there exists at most one
λ (�= 0) ∈ GF (s) such that ζijr(λ) = 1, and that such a λ exists if and only
if hi, hj , and hr are linearly dependent. Hence∑

λ(�=0)∈GF (s)

ζijr(λ) = θijr. (5.2.3)

Furthermore, linear combinations of any two points of PG(n−k−1, s) generate
additional s − 1 points, so that for any fixed i, j (1 ≤ i �= j ≤ q),

q∑
r=1

r �=i,j

θijr = s − 1. (5.2.4)

For 1 ≤ i ≤ f , define

φi = number of linearly dependent triplets {hi, hj , hr} such that i, j, r are
distinct members of {1, . . . , f} and j < r. (5.2.5)

The following identity shows that the computation of mi(T ) is equivalent
to the computation of φi.

Lemma 5.2.2. For 1 ≤ i ≤ f, mi(T ) = 1
2 (s − 1)(q − 2f + 1) + φi.

Proof. For any fixed i (1 ≤ i ≤ f), let ∆1i, . . . ,∆6i denote sums over θijr with
respect to j and r, the ranges of summation being

(i) f + 1 ≤ j < r ≤ q,

(ii) f + 1 ≤ j �= r ≤ q,

(iii) 1 ≤ j �= r ≤ q, j �= i, r �= i,

(iv) 1 ≤ j �= r ≤ f, j �= i, r �= i,

(v) 1 ≤ j ≤ f, f + 1 ≤ r ≤ q, j �= i,

(vi) f + 1 ≤ j ≤ q, 1 ≤ r ≤ f, r �= i,

respectively. By (5.2.2) and the definition of φi,

∆1i =
1
2
∆2i, ∆5i = ∆6i, φi =

1
2
∆4i. (5.2.6)
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Now, T = {hf+1, . . . , hq} and hence V (T ) = (hf+1, . . . , hq). Since any 2fi
pencil b has two nonzero entries the first of which can be taken as 1, it is
clear that V (T )b must be of the form hj + λhr for some j, r (f + 1 ≤ j <
r ≤ q), where λ is the second nonzero entry of b. Hence by Lemma 5.2.1, for
1 ≤ i ≤ f , mi(T ) equals the number of choices of j, r (f + 1 ≤ j < r ≤ q) and
λ(�= 0) ∈ GF (s) such that hj + λhr is proportional to hi, i.e., by (5.2.1),

mi(T ) =
∑

f+1≤j

∑
<r≤q

∑
λ(�=0)∈GF (s)

ζijr(λ),

so that using (5.2.3), (5.2.6), and (i)–(vi) above,

mi(T ) =
∑

f+1≤j

∑
<r≤q

θijr = ∆1i =
1
2
∆2i

=
1
2
(∆3i − ∆4i − ∆5i − ∆6i) =

1
2
(∆3i − ∆4i − 2∆5i). (5.2.7)

For fixed i, j (1 ≤ i �= j ≤ f), by (5.2.4),

q∑
r=f+1

θijr =
q∑

r=1
r �=i,j

θijr −
f∑

r=1
r �=i,j

θijr = s − 1 −
f∑

r=1
r �=i,j

θijr. (5.2.8)

Summing (5.2.8) over j (1 ≤ j ≤ f, j �= i) and recalling (iv) and (v) above,

∆5i = (s − 1)(f − 1) − ∆4i. (5.2.9)

Similarly, for fixed i (1 ≤ i ≤ f), summing (5.2.4) over j (1 ≤ j ≤ q, j �= i),

∆3i = (s − 1)(q − 1). (5.2.10)

If one substitutes (5.2.9) and (5.2.10) in (5.2.7) and then employs the last
relation in (5.2.6), the result follows. �

Example 5.1.1 (continued). To illustrate the above ideas, consider again
the design T1 in Example 5.1.1. Recall from Example 2.5.1 that the treatment
combinations x in T1 satisfy B1x = 0, where

B1 =
[

1 1 0 2 0
1 2 1 0 2

]
.

The row spaces of B1 and

G1 =

⎡⎣ 1 0 0 1 1
0 1 0 1 2
0 0 1 0 1

⎤⎦
are orthogonal complements of each other. As in the proof of Theorem 2.7.1,
interpreting the columns of G1 as points of PG(2, 3), the set T1 can be ex-
plicitly described as
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T1 = {(1, 0, 0)′, (0, 1, 0)′, (0, 0, 1)′, (1, 1, 0)′, (1, 2, 1)′}.

Thus V (T1) = G1, and

T 1 = {(1, 2, 0)′, (1, 0, 1)′, (1, 0, 2)′, (0, 1, 1)′, (0, 1, 2)′, (1, 1, 1)′, (1, 1, 2)′, (1, 2, 2)′}.

The eight points of T 1 correspond to the eight alias sets of T1 listed in the pre-
vious section. Consider the first set, which is given by 122 = 14 = 24 = 352 =
· · · . Writing any pencil b in this alias set in vector notation, V (T1)b (= G1b)
represents the point (1, 2, 0)′ of T 1. Thus this alias set corresponds to the first
point (1, 2, 0)′ of T 1. Denote the eight points of T 1 by h1, . . . , h8 in the order in
which they are listed above, and observe that there are six linearly dependent
triplets containing h1 = (1, 2, 0)′ and two other points of T 1. These triplets are
{h1, h2, h4}, {h1, h2, h7}, {h1, h4, h7}, {h1, h3, h5}, {h1, h3, h6}, {h1, h5, h6}.
Thus φ1 = 6. Since s = 3, q = 13, and f = 8 in this example, for i = 1,
the right-hand side of the identity in Lemma 5.2.2 now equals φ1 − 2 = 4,
which is the same as the left-hand side, namely, m1(T1). Similarly, one can
verify from first principles that the conclusion of Lemma 5.2.2 holds for each
of the remaining seven alias sets listed earlier. �

Let φ(T ) = (φ1, . . . , φf )′, where φi is defined in (5.2.5). Theorem 5.1.1 and
Lemma 5.2.2 yield the following important result.

Theorem 5.2.1. Given two sn−k designs T1 and T2, if φ(T 1) is upper weakly
majorized by φ(T 2) and not obtainable from φ(T 2) by permuting its elements,
then T1 dominates T2 with respect to estimation capacity.

One needs to consider only thecomplementary set T , of cardinalityf, to get
φ(T ). Thus Lemma 5.2.2 and Theorem 5.2.1 can substantially simplify the
study of estimation capacity, particularly when f is small, a situation that
corresponds to the nearly saturated cases. While this is in the spirit of the
last two chapters, a new feature is that the aliasing pattern has to be explicitly
taken care of.

In particular, for f = 1 or 2, all designs are isomorphic and hence, as with
the MA criterion, they are equivalent with respect to estimation capacity.
This is clear also from (5.1.1) and Lemma 5.2.2 if one notes that φi = 0 for
each i when f = 1 or 2. In the rest of this chapter, therefore, attention will
be focused on the situation f ≥ 3.

5.3 Estimation Capacity in 2n Factorials

Throughout this section, the case s = 2 is considered. Three points of PG(n−
k − 1, 2) are linearly dependent if and only if they add up to the null vector.
Clearly, three such points form a 1–flat or a line; cf. Section 4.4. Thus for
1 ≤ i ≤ f, one can geometrically interpret φi as the number of lines that
pass through the ith point of T and two other points of T . Moreover, since



5.3 Estimation Capacity in 2n Factorials 117

each line contains three points,
∑f

i=1 φi equals thrice the total number of lines
contained in T . Theorem 5.2.1 therefore suggests that a 2n−k design should
perform well with regard to estimation capacity if it keeps the number of
lines contained in T large and distributes these lines over the points of T as
uniformly as possible. Taking s = 2 in (4.3.3) or directly from Section 3.3, it
is evident that the number of lines contained in T is the same as A3(T ).

Lemma 5.3.1 (Chen and Hedayat, 1996), on subsets of PG(n − k − 1, 2)
that contain the maximum number of lines, or equivalently maximize A3(T ),
will be very useful in this section. Its proof is ingenious but somewhat long
and hence omitted here. In what follows, an r-set or an r-subset means a set
or a subset of cardinality r.

Lemma 5.3.1. Let 2w−1 ≤ f < 2w(2 ≤ w ≤ n − k). Then an f-subset T
of PG(n − k − 1, 2) contains the maximum number of lines if and only if
T = F − G, i.e., the complement of G in F , where F is any (w − 1)-flat of
PG(n− k − 1, 2) and G is a (2w − 1− f)-subset of F such that G contains no
line at all.

It is not hard to see that one can always find a subset G as envisaged in
Lemma 5.3.1. Let h(1), . . . , h(w) be linearly independent points in a (w − 1)-
flat F , and define G0 = F− F0, where F0 is the (w − 2)-flat generated by
h(1), . . . , h(w−1). Then G0 contains no line at all since its points are of the form

h(w) + a linear combination of h(1), . . . , h(w−1).

Now f ≥ 2w−1, i.e., 2w − 1 − f ≤ 2w−1 − 1, and G0 has cardinality 2w−1. So
it is enough to choose G as any (2w − 1 − f)-subset of G0.

Theorem 5.3.1. Suppose 2w−1 ≤ f < 2w(2 ≤ w ≤ n−k) and F is a (w−1)-
flat of PG(n−k−1, 2). Furthermore, suppose there exists a (2w−1−f)-subset
G∗ of F such that no four points of G∗ are linearly dependent. Then the 2n−k

design T ∗, where T
∗

= F −G∗, has maximum estimation capacity (MEC). In
this case, if a design T has MEC, then T must have the structure described
above.

Proof. Consider any (2w−1−f)-subset of F , say G, that contains no line, and
let T = F −G. Since F is a (w−1)-flat, each of its points belongs to 2w−1 −1
lines that are contained in F . Hence for 1 ≤ i ≤ f, there are 2w−1 − 1 lines,
contained in F , passing through the ith point of T (⊂ F). Three mutually
exclusive and exhaustive possibilities arise regarding the other two points in
any such line:

(i) both belong to T ,
(ii) one belongs to T and the other to G,
(iii) both belong to G.

By definition, the possibility (i) accounts for φi lines. Also, let there be ri lines
of type (iii), i.e., passing through the ith point of T and two points of G. Since
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two lines can have at most one point in common, these ri lines together cover
2ri points of G. Each of the remaining (2w−1−f−2ri) points of G accounts for
a line of type (ii). This enumeration yields 2w−1−1 = φi+(2w−1−f−2ri)+ri,
that is,

φi = f − 2w−1 + ri, 1 ≤ i ≤ f. (5.3.1)

Now, no four points of G∗ are linearly dependent. Hence G∗ contains no
line, and for any four points h(1), . . . , h(4) ∈ G∗, the lines determined by
(h(1), h(2)) and (h(3), h(4)) do not intersect. Consequently, for T

∗
= F − G∗,

each ri is either 1 or 0, i.e., by (5.3.1), φ1, . . . , φf differ form one another
by at most unity. Also by Lemma 5.3.1, T

∗
contains the maximum possible

number of lines, i.e., maximizes
∑f

i=1 φi. It is therefore clear that φ(T
∗
) is

upper weakly majorized by φ(T ) for all f -subsets T of PG(n − k − 1, 2).
Hence by Theorem 5.2.1, the design T ∗, where T ∗ is the complement of T

∗
in

PG(n − k − 1, 2), has MEC.
If any other T also represents a design with MEC, then φ(T ) can be

obtained from φ(T
∗
) by permuting its elements. Then T , like T

∗
, contains the

maximum possible number of lines, so that by Lemma 5.3.1, T = F−G, where
F is some (w − 1)-flat and G(⊂ F) contains no line at all. Also, since φ(T )
is a permutation of φ(T

∗
), by (5.3.1) each ri is either 1 or 0 with reference

to such G. Thus given any point of T , there exists at most one line passing
through that point and two points of G. Since G contains no line, it follows
that for any four points h(1), . . . , h(4) ∈ G, the lines determined by the pairs
(h(1), h(2)) and (h(3), h(4)) do not intersect. Consequently, no four points of G
are linearly dependent. �

In the setup of Theorem 5.3.1, V (T ∗) satisfies the requirement of having
full row rank whenever w < n − k. This follows using the same argument as
with Theorem 4.4.2.

Some applications of Theorem 5.3.1 are now considered. For f = 2w −
1 (2 ≤ w < n − k), the design given by T ∗ has MEC if and only if T

∗
is a

(w− 1)-flat. For f = 2w − 2, 2w − 3, or 2w − 4 (3 ≤ w < n− k), T ∗ represents
a design with MEC if and only if T

∗
is obtained by deleting (i) any one point,

(ii) any two points, or (iii) any three noncollinear points from a (w − 1)-flat.
In each of these cases, by Lemma 5.3.1, the structure of T

∗
is the only one that

can maximize the number of lines therein. Hence recalling the complementary
design theory developed in Chapter 3, T ∗ has MA as well. The cases considered
above cover, in particular, the nearly saturated situations given by 3 ≤ f ≤ 7,
since 3 = 22 − 1, 4 = 23 − 4, and so on.

For f = 2w −5 (4 ≤ w < n−k), T ∗ has MEC if and only if T
∗

is obtained
by deleting any four linearly independent points from a (w−1)-flat. The same
arguments as with the case f = 11 in Section 3.3 show that such a design has
MA.

For f = 2w − 6 (4 ≤ w < n − k), T ∗ has MEC if T
∗

is obtained by
deleting from a (w − 1)-flat any five points of the form h(1), h(2), h(3), h(4),
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and h(1) + h(2) + h(3) + h(4), where h(1), . . . , h(4) are linearly independent.
However, unless w = 4, this is not the only structure of T to ensure MEC. For
example, when w ≥ 5, let T

∗
1 be obtained by deleting five linearly independent

points from a (w − 1)-flat. Then T ∗
1 also has MEC. It can be seen as before

that T ∗
1 has MA as well. On the other hand, T ∗ is not an MA design unless

w = 4. For f = 2w − 6, if w (≥ 4) equals n − k, will V (T ∗) or V (T ∗
1 ) still

have full row rank? To answer this question, note that if w = n − k, then
n = (2n−k − 1) − f = 5, and since n − k = w ≥ 4, one must have k = 1.
Thus w = n − k = 4, so that T ∗

1 does not arise and T ∗ consists of the five
points h(1), . . . , h(4) and h(1) + · · · + h(4). Since n − k = 4 and h(1), . . . , h(4)

are linearly independent, V (T ∗) indeed has full row rank.

Example 5.3.1. Let n = 21, k = 16. Then f = (2n−k − 1)−n = 10 = 24 − 6.
Using the compact notation, let F be the 3-flat generated by the points 1, 2,
3, and 4. Then by the discussion in the last paragraph, the 221−16 design T ∗,
where

T
∗

= {1, 2, 3, 4, 12, 13, 14, 23, 24, 34}
is obtained by deleting the four linearly independent points 123, 124, 134, 234
and their sum 1234 from F , has MEC. Here f = 10 and from Section 3.3 it is
clear that T ∗ has MA as well. �

Further examples showing the agreement between the two criteria of MA
and MEC abound. For illustration, we revisit the 16-run 2n−k designs. For 5 ≤
n ≤ 12, all nonisomorphic 16-run designs were listed and ranked with respect
to aberration in Table 3A.2. Using the majorization argument of Theorem
5.2.1, from that table it can be seen that the MA design uniquely has MEC
over this range of n except for n = 6 and 7. The case n = 9 is illustrated in
Example 5.3.2 below. One exceptional case n = 6 is treated in Example 5.3.3.
The other exceptional case n = 7 is given in an exercise.

Example 5.3.2. Let n = 9, k = 5. Consider the five 29−5 designs 9-5.1, . . . ,
9-5.5 listed in Table 3A.2. These are ranked according to aberration, i.e., 9-5.1
has MA whereas 9-5.5 performs the worst. Let T 1, . . . , T 5 represent the set T
for the five designs. Using the same notation as in Example 5.3.1, then

T 1 = {23, 123, 24, 124, 34, 134}, T 2 = {23, 123, 14, 124, 134, 234},
T 3 = {123, 24, 124, 34, 134, 1234}, T 4 = {123, 124, 34, 134, 234, 1234},
T 5 = {24, 124, 34, 134, 234, 1234}.

Observe that T 1 contains four lines, namely, {23, 24, 34}, {23, 124, 134},
{123, 24, 134}, and {123, 124, 34}. Out of these four lines, two pass through
any point of T 1. Hence φ(T 1) = (2, 2, 2, 2, 2, 2)′. Similarly,

φ(T 2) = (1, 1, 1, 1, 1, 1)′, φ(T 3) = (2, 1, 1, 1, 1, 0)′,
φ(T 4) = (1, 1, 1, 0, 0, 0)′, φ(T 5) = (0, 0, 0, 0, 0, 0)′.
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Thus, for 1 ≤ j ≤ 4, φ(T j) is upper weakly majorized by φ(T j+1) and not
obtainable from φ(T j+1) by permuting its elements. Hence by Theorem 5.2.1,
the MA design 9-5.1 has MEC as well. Moreover, in this example the two
criteria of aberration and estimation capacity yield identical ranking of the
designs. �

Example 5.3.3. Let n = 6, k = 2. Consider the four 26−2 designs 6-2.1, . . . ,
6-2.4 listed in Table 3A.2. Let T 1, . . . , T 4 represent the set T for these four
designs respectively. As in the last example, it can be checked that

φ(T 1) = (1, 1, 3, 3, 3, 3, 3, 3, 4)′, φ(T 2) = (2, 2, 2, 2, 2, 2, 3, 3, 3)′,
φ(T 3) = (2, 2, 2, 2, 2, 2, 2, 2, 2)′, φ(T 4) = (1, 1, 2, 2, 2, 2, 2, 3, 3)′,

up to a permutation of their elements. The majorization argument of Theorem
5.2.1 shows that both 6-2.3 and 6-2.4 are dominated by 6-2.2 with respect to
estimation capacity. Therefore, one needs only to compare 6-2.1 and 6-2.2.
Since neither of φ(T 1) and φ(T 2) is upper weakly majorized by the other,
one has to compute Er(T1) and Er(T2) explicitly for various r, using (5.1.1)
and Lemma 5.2.2. Here s = 2, q = 15, f = 9, and Lemma 5.2.2 yields
mi(T ) = φi − 1 for each i. Hence

m(T1) = (0, 0, 2, 2, 2, 2, 2, 2, 3)′, m(T2) = (1, 1, 1, 1, 1, 1, 2, 2, 2)′

and by (5.1.1),

(Ei(T1))
9
i=1 = (15, 96, 340, 720, 912, 640, 192, 0, 0)

and
(Ei(T2))

9
i=1 = (12, 63, 190, 363, 456, 377, 198, 60, 8).

Since f = 9, clearly Er(T1) = Er(T2) = 0 for r > 9. Hence the MA design
6-2.1 maximizes Er(T ) for 1 ≤ r ≤ 6, whereas the next best design 6-2.2
maximizes Er(T ) for r = 7, 8, 9. �

Cheng, Steinberg, and Sun (1999) and Cheng and Mukerjee (1998) re-
ported similar studies concerning 32-run 2n−k designs. Again the MA designs
have MEC whenever n ≤ 8 or n ≥ 16.

The results in this section show that the criteria of MA and MEC are in
general agreement. On the other hand, the MaxC2 criterion as introduced
in Section 3.4 can be in conflict with the MA criterion as demonstrated in
Example 3.4.1 and supported by the design tables at the end of Chapter 3.
More specifically, in Example 3.4.1, the 29−4 MA design d0 has eight clear
2fi’s, while the second best 29−4 design d1, according to the MA criterion, has
15 clear 2fi’s. It can be verified that the Er(T ) values of d0 are larger than
those of d1 and thus d0 dominates d1 with respect to estimation capacity
(details left in an exercise). Therefore the two criteria of MEC and MaxC2
are not in general agreement and give different goodness measures of a design.
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The aim of MaxC2 is to find a single model consisting of all the main effects
and as many 2fi’s as possible that can be estimated without being aliased.
The definition of clear effects ensures that the estimability of effects here does
not require the 2fi’s not in the model to be absent. Through the maximization
of the Er(T ) values, the aim of MEC is to get as many models as possible in
which all the main effects and r 2fi’s are estimable. For MEC the estimability
of effects requires all the 2fi’s not in the model to be absent. Because of this
major difference, the behavior of the two criteria can be very different. To
further understand why these criteria perform differently, more research is
needed on their implications in data analysis.

5.4 Estimation Capacity in sn Factorials

We now turn to the case of general prime or prime power s. Consider an
sn−k design T and as before, write T = {h1, . . . , hf}, T = {hf+1, . . . , hq},
and V (T ) = (h1, . . . , hf ). To avoid trivialities, let f ≥ 3. Then the following
lemma holds.

Lemma 5.4.1. (a) For 1 ≤ i ≤ f ,

φi ≤ 1
2
(f − 1)min{f − 2, s − 1}. (5.4.1)

(b) For 3 ≤ f ≤ s + 1, equality holds in (5.4.1) for every i if and only if
rank[V (T )] = 2.
(c) For f > s + 1, equality holds in (5.4.1) for every i if and only if
f = (sw − 1)/(s − 1) and T is a (w − 1)-flat with w ≥ 3.

Proof. (a) By the last identity in (5.2.6), for 1 ≤ i ≤ f ,

φi =
1
2

∑
1≤j �=

j,r

∑
r≤f
�= i

θijr, (5.4.2)

where the indicators θijr are defined in (5.2.2). Since θijr ≤ 1 for each i, j, r,
(5.4.2) yields

φi ≤ 1
2
(f − 1)(f − 2). (5.4.3)

Again, by (5.2.4) and (5.4.2),

φi =
1
2

f∑
j=1
j �=i

⎛⎜⎝ f∑
r=1

r �=i,j

θijr

⎞⎟⎠ ≤ 1
2

f∑
j=1
j �=i

⎛⎜⎝ q∑
r=1

r �=i,j

θijr

⎞⎟⎠ =
1
2
(f − 1)(s − 1). (5.4.4)

Combining (5.4.3) and (5.4.4), the inequality (5.4.1) follows.
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(b) For 3 ≤ f ≤ s + 1, (5.4.1) reduces to (5.4.3), where equality holds for
every i if and only if θijr = 1 for every choice of distinct i, j, r from {1, . . . , f},
i.e., if and only if every three points of T are linearly dependent. Obviously
this happens if and only if rank[V (T )] = 2.

(c) For f > s + 1, (5.4.1) reduces to (5.4.4), where equality holds if and
only if

∑q
r=f+1 θijr = 0 for every i, j ∈ {1, . . . , f}, i �= j. This happens

if and only if no two points of T generate any point outside T as a linear
combination; that is, T is a (w−1)-flat and f = (sw −1)/(s−1) where w ≥ 3
as f > s + 1. �

A proof of Lemma 4.4.3 follows from Lemma 5.4.1. From (4.3.3), ob-
serve that A3(T ) equals the number of linearly dependent triplets that can
be formed out of the points of T . On the other hand, by the definition
of φi, any such dependent triplet is counted thrice in

∑f
i=1 φi. Therefore,

A3(T ) = 1
3

∑f
i=1 φi, and Lemma 4.4.3 is immediate from Lemma 5.4.1.

In particular, if n − k = 2, then q = s + 1. Hence f < s + 1 and trivially
for every choice of T , the 2 × f matrix V (T ) has rank two. Consequently, by
Lemma 5.4.1 (a), (b), together with (5.1.1) and Lemma 5.2.2, all designs are
equivalent with respect to estimation capacity. As noted in Section 4.4, they
are all equivalent under the MA criterion as well. For n−k ≥ 3, the following
results hold as immediate consequences of Theorem 5.2.1 and Lemma 5.4.1.

Theorem 5.4.1. Let n − k ≥ 3 and 3 ≤ f ≤ s + 1. Then an sn−k design T
has maximum estimation capacity if and only if rank [V (T )] = 2.

Theorem 5.4.2. Let f = (sw−1)/(s−1), where 3 ≤ w < n−k. Then an sn−k

design T has maximum estimation capacity if and only if T is a (w − 1)-flat.

A comparison with Theorems 4.4.1 and 4.4.2 reveals that under the setup
of the last two theorems, the two criteria of MEC and MA are in perfect
agreement. In particular, the 417−14 and 327−23 MA designs considered in
Examples 4.4.1 and 4.4.2 have MEC as well.

Further evidence in support of the agreement between the two criteria
of MA and MEC is obtained if one revisits the 27-run 3n−k designs. Then
4 ≤ n ≤ 13, n − k = 3, and all such designs are isomorphic for n = 11, 12,
and 13 (i.e., f = 2, 1, and 0). For 4 ≤ n ≤ 10, all nonisomorphic 27-run 3n−k

designs were listed and ranked with respect to aberration in Table 4A.2. One
can check that for each n in this range not only the MA design has MEC, but
also the two criteria lead to identical ranking of the designs. For this purpose,
the majorization argument of Theorem 5.2.1 works throughout, except for two
pairs of designs, where (5.1.1) has to be invoked explicitly. Returning to the
design T1 in Example 5.1.1, note that T1 is isomorphic to the design 5-2.1 of
Table 4A.2. Hence as discussed above, T1 has MEC.

We conclude this section with the following example.

Example 5.4.1. Let n = 8, k = 5. Consider the three 38−5 designs 8-5.1, 8.5-
2, and 8-5.3 listed in Table 4A.2. These are ranked according to aberration,
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i.e., 8-5.1 has MA, 8-5.2 is the next best, and so on. Let T 1, T 2, and T 3

represent the set T for these three designs respectively. Using the compact
notation, we have

T 1 = {122, 13, 23, 1232, 12232}, T 2 = {12, 13, 23, 1232, 12232},
T 3 = {13, 23, 123, 132, 1232}.

Now T 1 contains four linearly dependent triplets, namely,

{122, 13, 23}, {122, 13, 1232}, {122, 23, 1232}, {13, 23, 1232}.
Hence φ(T 1) = (3, 3, 3, 3, 0)′. Similarly, φ(T 2) = (1, 2, 1, 1, 1)′, φ(T 3) =
(1, 1, 0, 0, 1)′. Thus both φ(T 1) and φ(T 2) are upper weakly majorized by
φ(T 3). By Theorem 5.2.1, both 8-5.1 and 8-5.2 dominate 8-5.3 with respect to
estimation capacity. On the other hand, neither of φ(T 1) and φ(T 2) is upper
weakly majorized by the other. Therefore, in order to compare 8-5.1 and 8-
5.2, one has to obtain Er(T1) and Er(T2) explicitly for various r (details left
as exercise). Based on these values, 8-5.1 dominates 8-5.2. Therefore, the two
criteria yield identical ranking of the designs considered. �

Exercises

5.1 Show that every sn−k design of resolution five or higher has MEC.
5.2 For f = 2, verify from first principles that E2(T ) is a Schur concave

function of m(T ).
5.3 Obtain the alias sets of the 26−2 design with the defining relation I =

1234 = 1256 = 3456. For each alias set, identify the corresponding point
of PG(3, 2).

5.4 Verify Lemma 5.2.2 for the alias set 13 = 25 = · · · in Example 5.1.1.
5.5 For f = 2w −2 (2 ≤ w ≤ n−k), show that a set T as envisaged in Lemma

5.3.1 contains 2
3 (2w−1 − 1)(2w−1 − 2) lines.

5.6 Consider the five 27−3 designs 7-3.1, . . . , 7-3.5 listed in Table 3A.2. Let
T 1, . . . , T 5 be the set T for these five designs respectively.
(a) Compute φ(T i) for 1 ≤ i ≤ 5.
(b) Based on the results in (a) and Theorem 5.2.1, show that each of 7-3.3,
7-3.4, and 7-3.5 is dominated by 7-3.2 with respect to estimation capacity.
(c) Use (5.1.1) and Lemma 5.2.2 to compute Er(T1) and Er(T2) for r ≤ 8.
Show that the MA design 7-3.1 maximizes Er(T ) for 1 ≤ r ≤ 7, whereas
the next best design 7-3.2 maximizes E8(T ).

5.7 For the designs 8-5.1 and 8-5.2 in Example 5.4.1, obtain m(T1), m(T2),
and hence Er(T1) and Er(T2) for various r by using (5.1.1) and Lemma
5.2.2. Based on these, show that 8-5.1 dominates 8-5.2 and has MEC.

5.8 Represent the 29−4 designs d0 and d1 in Example 3.4.1 by sets T0 and T1

of PG(4, 2). Compute φ(T 0) and φ(T 1), and hence Er(T0) and Er(T1) for
various r by using (5.1.1) and Lemma 5.2.2. Based on these, show that d0

dominates d1 according to the criterion of estimation capacity.

Exercises
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Minimum Aberration Designs
for Mixed Factorials

Extension of the ideas in Chapters 3 and 4 to designs with factors at different
numbers of levels is the focus of this chapter. The important special case
of mixed two- and four-level designs is first discussed. An extension of the
minimum aberration criterion is considered. More generally, designs with one
factor at sr levels and n factors at s levels, or one factor at sr1 levels, a
second factor at sr2 levels, and n factors at s levels, where s is a prime or
prime power, are considered. These designs can be conveniently described
and their properties obtained using finite projective geometry. The method
of complementary sets is again seen to provide a general approach for finding
minimum aberration designs in such settings.

6.1 Construction of 4p × 2n Designs via the Method
of Replacement

Among fractional factorial designs with factors at different numbers of levels,
those with factors at two and four levels have the simplest mathematical
structure. We refer to these designs as mixed two- and four-level designs, or
simply as 4p × 2n designs, where p denotes the number of four-level factors
and n the number of two-level factors. To facilitate the discussion on 4p × 2n

designs, we need to extend the definition of orthogonal arrays as given in
Section 2.6.

Definition 6.1.1. An orthogonal array OA(N,n, sn1
1 . . . snu

u , g) of strength g
is an N×n array, n = n1+ · · ·+nu, in which ni columns have si symbols each
(1 ≤ i ≤ u), and all possible combinations of symbols appear equally often as
rows in every N × g subarray.

array. For u = 1, all columns have the same number of symbols and the array
reduces to the one given in Definition 2.6.1. In the latter case, it is called a

For u > 1, the array is called an asymmetricalor mixed-levelorthogonal

symmetrical orthogonal array.
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In particular, an OA(N,n, sn1
1 . . . snu

u , 2) of strength two is denoted simply
by OA(N, sn1

1 . . . snu
u ).

The simplest way to construct a fractional factorial 4p × 2n design is to
start with a two-level design given by a symmetrical orthogonal array with
two symbols (cf. Theorem 2.6.2) and replace three of its columns by a four-
symbol column. To illustrate this method, consider the 27−4 design given by
the array on the right-hand side of Table 6.1. Since column 3 of the array is
equal to the sum of columns 1 and 2 modulo 2, we can replace these three
columns by a four-symbol column with the following replacement rule for each
row corresponding to these columns:

(0 0 0) → 0, (0 1 1) → 1, (1 0 1) → 2, (1 1 0) → 3. (6.1.1)

The resulting array, given on the left-hand side of Table 6.1, has one four-
symbol column denoted by T0 and four two-symbol columns denoted by 4, 5,
6, 7. Following Definition 6.1.1, this array is an OA(8, 4124) of strength two.
Interpreting its rows as treatment combinations, one gets a 4×24 design with
8 runs. Note that the 27−4 design can also be denoted by OA(8, 27), and the
latter notation is used in Table 6.1 for consistency.

Table 6.1 Construction of OA(8, 4124) from OA(8, 27)

T0 4 5 6 7 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 0 0 1 1
1 1 1 0 0 ←− 0 1 1 1 1 0 0
2 0 1 0 1 1 0 1 0 1 0 1
2 1 0 1 0 1 0 1 1 0 1 0
3 0 1 1 0 1 1 0 0 1 1 0
3 1 0 0 1 1 1 0 1 0 0 1

The replacement rule in (6.1.1) can be repeatedly applied to generate ad-
ditional four-symbol columns. First, note that the three two-symbol columns
in the above construction correspond to three dependent elements of the set
H3 introduced in Section 3.3, such that the product of any two of these ele-
ments equals the third. To describe the general procedure, we use the 2m − 1
elements of Hm in (3.3.1) to represent the 2m − 1 factors of the saturated
2ν−k design with ν = 2m − 1 and k = ν − m. By Theorem 2.6.2, this sat-
urated design is represented by a two-symbol symmetrical orthogonal array
OA(2m, 2ν) of strength two, where each column of the array corresponds to a
factor. Suppose that among the 2m − 1 elements of Hm, there are p mutually
exclusive sets of elements of the form {ai, bi, aibi}. We can apply the rule

OA(2m, 2ν) to
generate p four-symbol columns. By retaining the other ν − 3p two-symbol
columns of the original array, we obtain an OA(2m, 4p2n), with n = ν − 3p.
As before, this mixed-level array gives a 4p × 2n design that is saturated in

in (6.1.1) to each of the corresponding p sets of columns of the
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the sense that 3p + n = ν. Unsaturated designs can be obtained by dropping
some of the factors (columns) in the saturated 4p × 2n design. This technique
of construction is called the method of replacement. The maximum number of
four-symbol columns p attainable by this method is (2m−1)/3 for even m and
(2m − 5)/3 for odd m. For a proof of this result and the explicit construction
of the p mutually exclusive sets, see Wu (1989).

Example 6.1.1. The method is illustrated by the construction of a 43×26 de-
sign with 16 runs. Start with the 215−11 design whose 15 factors (columns) cor-
respond to theelements of H4 ={1, 2,12, 3, 13, 23,123, 4,14, 24, 124, 34,134, 234,
1234}. By replacing the three sets of columns represented by {1, 2, 12},
{3, 4, 34}, and {123, 134, 24} by three four-symbol columns and retaining the
other six two-symbol columns corresponding to 13, 23, 14, 124, 234, 1234, we
obtain the desired 43 × 26 design. �

Among the 4p × 2n designs so constructed, which one is “optimal” and
what optimality criterion should be used? An obvious approach is to define an
extension of the minimum aberration (MA) criterion and to find MA designs
accordingly. This will be addressed in the next section.

6.2 Minimum Aberration 4p × 2n Designs
with p = 1, 2

The MA criterion for 2n−k designs requires suitable modification for 4p × 2n

designs because the words in the defining relation that involve the four-level
factors need to be treated differently from those involving only the two-level
factors. To illustrate this difference, we first consider the problem of selecting
a 4 × 24 design with 16 runs. Using the same notation as in Example 6.1.1,
the four-level factor can be represented by the set

T0 = {1, 2, 12}
of H4. The choice of a 4 × 24 design now amounts to choosing four elements
from the remaining 12 elements of H4 for the four two-level factors. First,
consider the design

d1 = d (T0, 3, 4, 23, 134), (6.2.1)

which consists of the four-level factor given by T0 and four two-level factors
represented by 3, 4, 23, 134. It is easy to see that the four elements 3, 4, 23,
134 are independent. In order to obtain the defining relation of the design d1,
we note that the three degrees of freedom associated with the main effect of
the four-level factor correspond to the elements 1, 2, and 12 of T0. This is intu-
itively clear from the replacement rule in (6.1.1) and will also be evident from
the more general discussion in the next section. For notational convenience,
write
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γ1 = 1, γ2 = 2, γ3 = 12.

Obviously, γ3 = γ1γ2. We also denote the elements representing the four two-
level factors by c1, c2, c3, c4, i.e., c1 = 3, c2 = 4, c3 = 23, and c4 = 134. Then
the aliasing relation γ2 = c1c3 follows from 2 = (3)(23). Thus the word γ2c1c3

appears in the defining relation of d1. In this manner, it is easy to see that d1

has the following defining relation:

I = γ1c1c2c4 = γ2c1c3 = γ3c2c3c4. (6.2.2)

For comparison, consider an alternative design

d2 = d (T0, 3, 4, 34, 124).

A similar argument shows that d2 has the following defining relation:

I = c1c2c3 = γ3c2c4 = γ3c1c3c4. (6.2.3)

If the MA criterion for two-level designs is adopted, d1 would have less
aberration than d2 because the A3 value for d1 is one, while the A3 value
for d2 is two. This conclusion is based on the assumption that all words of
the same length are of equal importance. Wu and Zhang (1993) proposed a
refinement of the standard MA criterion by classifying the words into different
types. For 4 × 2n designs, there are two types of words: those involving only
two-level factors are called type 0, and those involving the four-level factor (as
represented by one of the γi’s) and some two-level factors are called type 1.
(Note that any two γi’s that appear in a word can be replaced by the third γi

because of the relation I = γ1γ2γ3. This justifies the consideration of only one
γi in the definition of type-1 words.) It can be argued that a type-1 word is
usually less serious than a type-0 word of the same length. Because the four-
level factor has three degrees of freedom as represented by γ1, γ2, and γ3, it
rarely happens that all three γi’s are important. Therefore, a priori knowledge
may allow the experimenter to choose the least important γi to be included
in a type-1 word in the defining relation. Such an assignment would make the
effect aliasings implied by a type-1 word less severe than those implied by
a type-0 word of the same length. This consideration leads to the following
extension of the MA criterion for 4 × 2n designs.

For a 4× 2n design d, let Ai0(d) and Ai1(d) be the numbers of type-0 and
type-1 words of length i in its defining relation. The vector

W (d) = {Ai(d)}i≥1 , (6.2.4)

where Ai(d) = (Ai0(d), Ai1(d)), is the wordlength pattern of d. The resolution
of d is defined to be the smallest i such that Aij(d) is positive for at least one
j. In view of the foregoing discussion on the two types of words, it is more
important to have a smaller Ai0 than a smaller Ai1 for the same i. This leads
to the following criterion (Wu and Zhang, 1993).
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Definition 6.2.1. Let d1 and d2 be two 4×2n designs with the same run size
and u be the smallest integer such that Au(d1) �= Au(d2). If Au0(d1) < Au0(d2)
or Au0(d1) = Au0(d2) but Au1(d1) < Au1(d2), then d1 is said to have less
aberration of type 0 than d2. A design d has minimum aberration of type 0 if
no other design has less aberration of type 0 than d.

It is easy to see that for the design d1 in (6.2.2), A30 = 0, A31 = 1, A40 = 0,
A41 = 2, while for d2 in (6.2.3), A30 = A31 = 1, A40 = 0, A41 = 1. Thus d1

has less aberration of type 0 than d2.
To extend Definition 6.2.1 to 42 × 2n designs, we first note that the two

four-level factors can be represented by

T01 = {1, 2, 12} and T02 = {3, 4, 34}.
Now, there are three types of words. Type 0 is defined as before. Type 1
involves one four-level factor, as represented by one element of T01 or T02,
and some two-level factors. Finally, type 2 involves both four-level factors,
as represented by one element of T01 and one element of T02, and some two
level factors. For a 42 × 2n design d, let Aij(d) be the number of type-j words
of length i in its defining relation, and W (d) = {Ai(d)}i≥1, where Ai(d) =
(Ai0(d), Ai1(d), Ai2(d)). The resolution of d is defined to be the smallest i such
that Aij(d) is positive for at least one j. As argued previously, for the same
length, a word of type 0 is most serious while a word of type 2 is least serious.
This leads to the following criterion.

Definition 6.2.2. Let d1 and d2 be two 42×2n designs with the same run size
and u be the smallest integer such that Au(d1) �= Au(d2). Suppose that one
of the following three conditions holds: (i) Au0(d1) < Au0(d2); (ii) Au0(d1) =
Au0(d2), Au1(d1) < Au1(d2); (iii) Au0(d1) = Au0(d2), Au1(d1) = Au1(d2),
Au2(d1) < Au2(d2). Then d1 is said to have less aberration of type 0 than
d2. A design d has minimum aberration of type 0 if no other design has less
aberration of type 0 than d.

Example 6.2.1. Consider two 42 × 23 designs with 16 runs, d1 = d(T01, T02,
14, 23, 234) and d2 = d(T01, T02, 14, 23, 1234). For either design, denote the
three elements representing the two-level factors by c1, c2, c3; e.g., c1 = 14,
c2 = 23, c3 = 234 for d1. As before, the three elements of T01 can be repre-
sented by γ1 = 1, γ2 = 2, γ3 = 12. Similarly, the three elements of T02 can be
represented by β1 = 3, β2 = 4, and β3 = 34 with the relation β3 = β1β2. It
can be easily verified that d1 has the following defining relation:

I = γ1β2c1 = γ2β1c2 = γ2β3c3 = γ3β3c1c2 = γ3β1c1c3 = β2c2c3 = γ1c1c2c3.

Therefore, for d1, A30 = 0, A31 = 1, A32 = 3, A40 = 0, A41 = 1, and A42

= 2. Similar calculations show that for d2, A30 = 1, A31 = 0, A32 = 3,
A40 = A41 = 0, and A42 = 3. Thus d1 has a smaller value of A30, and hence
has less aberration of type 0 than d2. �
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Tables of 4 × 2n and 42 × 2n designs having MA of type 0 and with 16,
32, and 64 runs were reported in Wu and Hamada (2000). For completeness,
these optimal designs are adapted from the original source and presented
in Tables 6.2–6.7. In these tables, the column “Design Generators” lists the
elements that generate (i.e., define) the design. For example, the design d1 in
(6.2.1) has T0, 3, 4, 23, 134 as its generators. It can be found in Table 6.2
with n = 4. It is thus an MA design of type 0. Table 6.5 with n = 3 shows
that the design d1 in Example 6.2.1 also enjoys the same property.

Most of the theoretical results on MA designs for mixed factorials are
obtained by employing the technique of complementary sets, which will be
discussed in the remaining sections under a general framework. Following Wu
and Zhang (1993), here we will present one result on 4× 2n designs that does
not rely on the use of this technique and helps in reducing the design search
in the context of Tables 6.2–6.4, which appear at the end of this section.

Consider a 4× 2n design d∗ with 2m runs, where m < n+2. Suppose d∗ is
represented by T0 = {γ1, γ2, γ3}, where γ1 = 1, γ2 = 2, γ3 = 12, and n other
elements c1, . . . , cn of Hm. As before, T0 corresponds to the four-level factor
and c1, . . . , cn correspond to the n two-level factors in d∗. Let k = n + 2−m,
so that d∗ is a 1/2k fraction of a 4 × 2n factorial. Write l = n + 2, and let
d be a 2l−k design represented by the l elements γ1, γ2, c1, . . . , cn of Hm; cf.
Theorem 3.3.1(a). Of course, the set {γ1, γ2, c1, . . . , cn} is supposed to contain
m independent elements.

Theorem 6.2.1 below shows how the MA property of the 4×2n design d∗ is
influenced by the characteristics of the two-level design d. Denote the defining
relations of d and d∗ by DR(d) and DR(d∗) respectively. Let M0,M1,M2,
and M12 denote respectively the sets of words in DR(d) that involve neither
γ1 nor γ2, only γ1 but not γ2, only γ2 but not γ1, and both γ1 and γ2. The
following facts are now evident from the correspondence between d and d∗:

(i) any word in M0 ∪ M1 ∪ M2 appears as it is in DR(d∗);
(ii) any word in M12 appears in DR(d∗) with γ1γ2 replaced by γ3;
(iii)any word in M0 becomes a word of type 0 in DR(d∗);
(iv)any word in M1 ∪ M2 ∪ M12 becomes a word of type 1 in DR(d∗).

As an illustration, if d∗ is taken as the design d1 in (6.2.1), then d is represented
by the elements γ1 = 1, γ2 = 2, c1 = 3, c2 = 4, c3 = 23, and c4 = 134 of H4.
Thus DR(d) is given by

I = γ1c1c2c4 = γ2c1c3 = γ1γ2c2c3c4, (6.2.5)

and each of M1, M2, and M12 is a singleton set consisting of the words
γ1c1c2c4, γ2c1c3, and γ1γ2c2c3c4 respectively. A comparison between (6.2.2)
and (6.2.5) illustrates the facts (i)–(iv) above.

Theorem 6.2.1. (a) Let k = 1. Then a 4× 2n design d∗ has minimum aber-
ration of type 0 if and only if the only word in DR(d) is either γ1c1 . . . cn or
γ2c1 . . . cn or γ1γ2c1 . . . cn.
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(b) Let k ≥ 2. Then in order that d∗ have minimum aberration of type 0, it is
necessary that each of the sets M1, M2, and M12 be nonempty.

Proof. (a) In this case, there is only one word in DR(d∗). By (i), (ii), and (iv)
above, this word has maximum length, n + 1, and is of type 1 if and only if
DR(d) is as envisaged.
(b) For notational simplicity, we prove the result for k = 2. The proof for
general k (≥ 2) involves the same ideas and is left as an exercise. With k = 2,
there are two independent words in DR(d), say ω1 and ω2, i.e., DR(d) is given
by

I = ω1 = ω2 = ω1ω2. (6.2.6)

Suppose at least one of M1, M2, and M12 is empty. By (6.2.6), then either
each of these three sets is empty or exactly one of them is nonempty.

First suppose each of M1, M2, and M12 is empty. Then ω1, ω2 ∈ M0. Let
d̃ be a 2l−k design, k = 2, given by the defining relation

I = γ1ω1 = ω2 = γ1ω1ω2. (6.2.7)

Define d̃∗ as the 4 × 2n design corresponding to d̃. By the fact (i) above,
DR(d∗) and DR(d̃∗) are again given by (6.2.6) and (6.2.7) respectively. Since
ω1, ω2 ∈ M0, by (iii) and (iv) above, the words ω1 and ω1ω2 in DR(d∗) are of
type 0, whereas the words γ1ω1 and γ1ω1ω2 in DR(d̃∗) are of type 1; moreover,
the lengths of the latter two words are one more than those of the former two
words respectively. Hence d̃∗ has less aberration of type 0 than d∗.

Consider next the situation in which exactly one of M1, M2, and M12 is
nonempty. Suppose only M12 is nonempty (the other cases can be treated
similarly). Then both ω1 and ω2 belong to M0 ∪M12 and at least one of them
belongs to M12. Let ω2 ∈ M12, i.e.,

ω2 = γ1γ2ω2, (6.2.8)

where ω2 involves neither γ1 nor γ2. Without loss of generality, it may be
assumed that ω1 ∈ M0, for otherwise, ω1 ∈ M12, ω1ω2 ∈ M0, and one can
take {ω1ω2, ω2} as a spanning set of DR(d). Define a two-level design d̃ and
the corresponding 4 × 2n design d̃∗ exactly as in the last paragraph. Using
(6.2.8), the defining relations (6.2.6) and (6.2.7) of d and d̃ can be expressed
as

I = ω1 = γ1γ2ω2 = γ1γ2ω1ω2

and

I = γ1ω1 = γ1γ2ω2 = γ2ω1ω2,

respectively. Hence by (i) and (ii) above, the defining relations of the corre-
sponding 4 × 2n designs d∗ and d̃∗ are given by
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I = ω1 = γ3ω2 = γ3ω1ω2

and

I = γ1ω1 = γ3ω2 = γ2ω1ω2,

respectively. As in the last paragraph, now it is easily seen that d̃∗ has less
aberration of type 0 than d∗. �

Table 6.2 MA(type 0) 4 × 2n designs with 16 runs, 3 ≤ n ≤ 11

n Resolution Design Generators
3 4 T0, 3, 4, 134
4 3 T0, 3, 4, 23, 134
5 3 T0, 3, 4, 23, 24, 134
6 3 T0, 3, 4, 23, 24, 134, 1234
7 3 T0, 3, 4, 13, 14, 23, 24, 124
8 3 T0, 3, 4, 13, 14, 23, 24, 123, 124
9 3 T0, 3, 4, 13, 23, 34, 123, 134, 234, 1234
10 3 T0, 3, 4, 13, 14, 23, 34, 123, 134, 234,

1234
11 3 T0, 3, 4, 13, 14, 23, 24, 34, 123, 134,

234, 1234

Note: T0 = {1, 2, 12} for Tables 6.2–6.4.

Table 6.3 MA(type 0) 4 × 2n designs with 32 runs, 4 ≤ n ≤ 9

n Resolution Design Generators
4 5 T0, 3, 4, 5, 1345
5 4 T0, 3, 4, 5, 245, 1345
6 4 T0, 3, 4, 5, 235, 245, 1345
7 4 T0, 3, 4, 5, 234, 235, 245, 1345
8 3 T0, 3, 4, 5, 13, 145, 234, 235, 12345
9 3 T0, 3, 4, 5, 13, 14, 234, 235, 245, 1345

Table 6.4 MA(type 0) 4 × 2n designs with 64 runs, 5 ≤ n ≤ 9

n Resolution Design Generators
5 6 T0, 3, 4, 5, 6, 123456
6 5 T0, 3, 4, 5, 6, 1345, 2456
7 4 T0, 3, 4, 5, 6, 1345, 2346, 12356
8 4 T0, 3, 4, 5, 6, 356, 1345, 2456, 12346
9 4 T0, 3, 4, 5, 6, 356, 1235, 1345, 2456, 12346
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Table 6.5 MA(type 0) 42 × 2n designs with 16 runs, 1 ≤ n ≤ 8

n Design Generators
1 T01, T02, 14
2 T01, T02, 14, 23
3 T01, T02, 14, 23, 234
4 T01, T02, 14, 23, 124, 234
5 T01, T02, 14, 23, 24, 124, 234
6 T01, T02, 13, 14, 23, 24, 134, 234
7 T01, T02, 13, 14, 23, 24, 124, 134, 234
8 T01, T02, 13, 14, 23, 24, 124, 134, 234, 1234

Note: All designs in this table have resolution three. T01 = {1, 2, 12} and
T02 = {3, 4, 34} for Tables 6.5–6.7.

Table 6.6 MA(type 0) 42 × 2n designs with 32 runs, 2 ≤ n ≤ 10

n Resolution Design Generators
2 4 T01, T02, 5, 235
3 4 T01, T02, 5, 235, 1245
4 4 T01, T02, 5, 235, 1245, 1345
5 3 T01, T02, 5, 14, 235, 1245, 1345
6 3 T01, T02, 5, 14, 234, 235, 1245, 1345
7 3 T01, T02, 5, 13, 14, 234, 235, 1245, 1345
8 3 T01, T02, 5, 13, 14, 234, 235, 1234, 1245, 1345
9 3 T01, T02, 5, 13, 14, 15, 234, 235, 1234, 1245, 1345
10 3 T01, T02, 5, 13, 14, 15, 234, 235, 345, 1234, 1245, 1345

Table 6.7 MA(type 0) 42 × 2n designs with 64 runs, 3 ≤ n ≤ 7

n Resolution Design Generators
3 5 T01, T02, 5, 6, 123456,
4 4 T01, T02, 5, 6, 1356, 2456
5 4 T01, T02, 5, 6, 1356, 2456, 2346
6 4 T01, T02, 5, 6, 1356, 2456, 2346, 1235
7 4 T01, T02, 5, 6, 1356, 2456, 2346, 1235, 1246

6.3 Designs for (sr) × sn Factorials: Preliminaries

Consider an (sr) × sn factorial with one factor, say F0, at sr levels and n
factors, say F1, . . . , Fn, at s levels each. Here r (≥ 2) is an integer and s is
a prime or prime power. The special case s = r = 2 covers 4 × 2n factorials
discussed in Section 6.2. Typically s is small, say 2 or 3, and n is large. This
is in keeping with some practical applications of mixed factorials that involve
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a large number of factors, each with a small number of levels and very few
factors, like F0, with more levels. The developments in this and the next two
sections follow Mukerjee and Wu (2001).

As in the previous chapters, a finite projective geometric formulation plays
a key role in the study of regular fractions of an (sr) × sn factorial. This
formulation calls for an appropriate representation for the sr+n treatment
combinations in such a factorial. Let t = (sr − 1)/(s− 1) and let R (.) denote
the row space of a matrix. Then one has the following lemma, which helps in
handling the sr-level factor F0.

Lemma 6.3.1. Let Vr be an r × t matrix with columns given by the points of
PG(r − 1, s). Then

(a) there are sr vectors in R(Vr),
(b) for any fixed α ∈ GF (s) and any j (1 ≤ j ≤ t), there are sr−1 vectors in

R(Vr) with jth element equal to α.

Proof. By Lemma 2.7.2 (a), Vr has full row rank and hence (a) follows. Also,
by the definition of Vr, no two of its columns are linearly dependent. Hence
as in the proof of Theorem 2.6.2, the sr vectors in R(Vr) form a symmetrical
orthogonal array OA(sr, t, s, 2). Since each element of GF (s) occurs sr−1 times
in every column of this array, (b) follows. �

In view of Lemma 6.3.1(a), the sr levels of F0 can be identified with the
sr vectors in R(Vr); for a 4 × 2n factorial, this is in agreement with (6.1.1)
since then s = r = 2 and

R(V2) = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

As usual, the s levels of each other factor can be represented by the elements
of GF (s). Thus

X = {(x1, . . . , xt, xt+1, . . . , xt+n)
′
: (x1, . . . , xt) ∈ R(Vr),

xt+1, . . . , xt+n ∈ GF (s)} (6.3.1)

represents the collection of the sr+n treatment combinations in an (sr) × sn

factorial. Clearly, (x1, . . . , xt) refers to a level of F0 and xt+i refers to a level
of Fi (1 ≤ i ≤ n).

Example 6.3.1. For a 9 × 33 factorial, s = 3, r = 2, n = 3, t = 4, and
consideration of the points of PG(1, 3) yields

V2 =
[

1 0 1 1
0 1 1 2

]
.

Hence R(V2) consists of nine vectors, namely,
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(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1), (1, 0, 1, 1), (1, 1, 2, 0),
(1, 2, 0, 2), (2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0).

Consequently, in accordance with (6.3.1), the treatment combinations in a
9×33 factorial can be represented by (x1, . . . , x7)

′
, where (x1, . . . , x4) ∈ R(V2),

and x5, x6, x7 ∈ {0, 1, 2}. �

We are now in a position to introduce a regular fraction of an (sr) × sn

factorial. In the spirit of Theorem 2.7.1, this is done via a geometric approach.
Suppose it is desired to have a fraction consisting of sm treatment combina-
tions, where r < m < r+n. Let P denote the set of the (sm−1)/(s−1) points
of PG(m− 1, s). As in the preceding chapters, for any nonempty subset Q of
P , let V (Q) be a matrix with columns given by the points of Q. Define T0

as the (r − 1)-flat of P that is generated by e1, . . . , er, where e1, . . . , em are
the m × 1 unit vectors over GF (s). Since r < m, the flat T0 is well defined.
Furthermore, it is easily seen that

V (T0) =
[

Vr

0

]
, (6.3.2)

where Vr is defined in Lemma 6.3.1 and 0 is the null matrix of order (m−r)×t.
Let T be an n-subset of P such that T0 and T are disjoint and the matrix

V (T0 ∪ T ) = [V (T0) V (T )] (6.3.3)

has full row rank. Then there are sm vectors in R[V (T0 ∪ T )]. By (6.3.1)–
(6.3.3), the transpose of each of these vectors belongs to X and hence rep-
resents a treatment combination of an (sr) × sn factorial. The collection of
the sm treatment combinations (or runs) so obtained gives a regular fraction,
to be denoted by d = d(T0, T ), of such a factorial. For the special case of a
4 × 2n factorial considered in Section 6.2, the elements of Hm represent the
points of PG(m − 1, 2), T0 = {1, 2, 12} represents the four-level factor, and
T , consisting of n elements from the rest of Hm, represents the n two-level
factors. In the remainder of the chapter, a regular fraction as introduced here
is simply called a design. The number sm is called its run size.

Considering the cardinalities of T0, T , and P , the above construction is
possible if and only if

sr − 1
s − 1

+ n ≤ sm − 1
s − 1

, i.e., sr + n(s − 1) ≤ sm.

This condition is supposed to hold throughout this and the next section. This
construction is motivated by the approach of Wu, Zhang, and Wang (1992)
for the construction of asymmetrical orthogonal arrays. Indeed, if the sm runs
in d(T0, T ) are written as rows and in each of them the subvector (x1, . . . , xt)
is replaced by a single symbol representing the corresponding level of F0, then
one gets an asymmetrical orthogonal array OA(sm, (sr)1sn) of strength two.
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Example 6.3.1 (continued). Continuing with the 9 × 33 factorial, sup-
pose it is desired to have a design with 27 runs. Then m = 3 and T0 =
{(1, 0, 0)′, (0, 1, 0)′, (1, 1, 0)′, (1, 2, 0)′}, which is compatible with (6.3.2). Take
T = {(1, 1, 2)′, (1, 2, 1)′, (1, 2, 2)′}. Then T0 and T are disjoint and the matrix

V (T0 ∪ T ) =

⎡⎣ 1 0 1 1 1 1 1
0 1 1 2 1 2 2
0 0 0 0 2 1 2

⎤⎦ (6.3.4)

has full row rank. Hence consideration of the vectors in R[V (T0 ∪ T )] serves
the purpose. �

In order to study the properties of a regular fraction or design as introduced
above, one needs to extend the concept of pencils to the present setup. With
reference to an (sr) × sn factorial, a pencil is a nonnull vector of the form
b = (b1, . . . , bt, bt+1, . . . , bt+n)′, where bi ∈ GF (s) for every i and among
b1, . . . , bt, at most one is nonzero.

Lemma 6.3.2. For any pencil b = (b1, . . . , bt, bt+1, . . . , bt+n)′ and any α ∈
GF (s), the set {x : x ∈ X , b′x = α} has cardinality sr+n−1.

Proof. First suppose b1 = · · · = bt = 0. Then among bt+1, . . . , bt+n at least
one, say bt+1, is nonzero. Therefore, as in the proof of Lemma 2.3.1, for any
x = (x1, . . . , xt, xt+1, . . . , xt+n)′ belonging to the set under consideration,
xt+1 is uniquely determined by xt+2, . . . , xt+n. Since there are sn−1 choices
of xt+2, . . . , xt+n and sr choices of (x1, . . . , xt), the result follows.

Next suppose b1, . . . , bt are not all zeros. Without loss of generality, let
b1 �= 0. Then b2 = · · · = bt = 0. Again as in the proof of Lemma 2.3.1, for
any x belonging to the set under consideration, x1 is uniquely determined by
xt+1, . . . , xt+n. There are now sn choices of xt+1, . . . , xt+n. Furthermore, by
(6.3.1) and Lemma 6.3.1(b), corresponding to the unique x1 associated with
any such choice, there are sr−1 possibilities for (x1, . . . , xt). Hence the result
follows. �

In view of Lemma 6.3.2, treatment contrasts belonging to a pencil b can
be defined as in (2.3.4). Clearly, there are s − 1 linearly independent treat-
ment contrasts belonging to any pencil. Also, as in Section 2.3, pencils with
proportional entries induce the same partition of X and are hence considered
identical. Hereafter only distinct pencils are considered in any given context
even when this is not stated explicitly.

In particular, if bt+1 = · · · = bt+n = 0 in a pencil b, then one of b1, . . . , bt

is nonzero. In this case, proceeding along the lines of Theorem 2.3.2 and using
Lemma 6.3.1(b), it can be seen that any treatment contrast belonging to b
also belongs to the main effect of F0. Hence the pencil b itself is said to belong
to the main effect of F0. Since there are t = (sr − 1)/(s − 1) pencils of this
kind, each of which carries s−1 linearly independent treatment contrasts, this
accounts for the sr − 1 linearly independent treatment contrasts belonging to
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the main effect of F0. This agrees with Section 6.2, where for a 4×2n factorial
(i.e., s = r = 2), it was noted that the main effect of the four-level factor has
three

(
=(22 − 1)/(2 − 1)

)
components represented by 1, 2, and 12. Similarly,

a pencil b with bt+i �= 0 for some i (1 ≤ i ≤ n) and bj = 0 for every j �= t + i
represents the main effect of the s-level factor Fi.

Any pencil with i (≥ 2) nonzero entries belongs to an i-factor interaction
in the same sense as above. Such a pencil b can involve only some of the s-level
factors F1, . . . , Fn or the sr-level factor F0 together with some of F1, . . . , Fn.
In the former case, b1 = · · · = bt = 0 and in the latter case one of b1, . . . , bt

is nonzero. Following the same terminology as in Section 6.2, pencils of these
two types are called type 0 and type 1 respectively.

As in Theorem 2.7.1(b), a pencil b is a defining pencil of the design d =
d(T0, T ) if

V (T0 ∪ T )b = 0. (6.3.5)

Since T0 and T are disjoint sets of points of P , the columns of V (T0 ∪ T )
are nonnull and no two of them are proportional to each other. Hence every
defining pencil of d has at least three nonzero entries, i.e., belongs to an
interaction involving at least three factors. Thus d has resolution three or
higher. For i ≥ 3, in the spirit of Section 6.2, let Ai0(d) and Ai1(d) denote the
numbers of (distinct) defining pencils of d that have i nonzero entries and are
of types 0 and 1 respectively.

Example 6.3.1 (continued). By (6.3.4) and (6.3.5), the defining pencils of
the design considered in the example are

(1, 0, 0, 0, 1, 1, 0)′, (0, 1, 0, 0, 1, 0, 2)′, (0, 0, 0, 1, 0, 1, 1)′, (0, 0, 1, 0, 2, 1, 2)′.

Each of these is of type 1. Hence counting the numbers of nonzero entries in
these pencils, one gets A30(d) = 0, A31(d) = 3, A40(d) = 0, A41(d) = 1. �

Along the lines of Section 4.4, two designs d (T0, T1) and d (T0, T2) in the
present setup are isomorphic if there exists a nonsingular transformation that
maps each point of T0 to some point of T0 up to proportionality, and each
point of T1 to some point of T2 up to proportionality. From (6.3.5), it can be
seen that isomorphic designs have the same Ai0 and Ai1 for every i.

We now present some notation and lemmas that will be needed in the next
section. Consider any nonempty subset Q of P . Let q be the cardinality of Q,
and for i ≥ 1, let Ωiq be the set of q × 1 vectors over GF (s) having i nonzero
elements. For i ≥ 1, define

Gi(Q) = (s − 1)−1#{λ : λ ∈ Ωiq, V (Q)λ = 0}, (6.3.6)

where # denotes the cardinality of a set. Furthermore, when Q and T0 are
disjoint, define for i ≥ 1,

Hi(T0, Q) = (s − 1)−1#{λ : λ ∈ Ωiq, V (Q)λ is nonnull and
proportional to some point of T0}. (6.3.7)
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Clearly G1(Q) = G2(Q) = 0. Similarly, when Q and T0 are disjoint,
H1(T0, Q) = 0. Also,

Gi(Q) = Hi(T0, Q) = 0 for i > q. (6.3.8)

Since pencils with proportional entries are identical, it is not hard to see
that (6.3.5)–(6.3.7) lead to the important relationships for any design d =
d(T0, T ),

Ai0(d) = Gi(T ), Ai1(d) = Hi−1(T0, T ), for i ≥ 3. (6.3.9)

Lemma 6.3.3. If T0 and Q are disjoint, then
(a) G3(T0 ∪ Q) = constant + G3(Q) + H2(T0, Q),
(b) G4(T0 ∪ Q) = constant + G4(Q) + H3(T0, Q) + 1

2 (sr − s)H2(T0, Q).

Lemma 6.3.4. Let Q = P − Q be nonempty. Then
(a) G3(Q) = constant − G3(Q),
(b) G4(Q) = constant + (3s − 5)G3(Q) + G4(Q).

The constants in these lemmas may depend on s, r, q, and m, but not on
the particular choice of Q. Lemma 6.3.3 is a special case of a more general
result reported by Mukerjee and Wu (1999) in a different context; the inter-
ested reader may see the original source for details. Comparing (6.3.6) with
(4.3.1), Lemma 6.3.4 is immediate from Corollary 4.3.2 and the fact noted in
the concluding paragraph of Section 4.3.

For a design d = d(T0, T ), let T̃ = P − (T0 ∪ T ). The cardinality of T̃ is

f = (sm − sr)/(s − 1) − n.

For f = 0, there is only one design; for f = 1, all designs are isomorphic.
Hence only f ≥ 2 is considered hereafter. Also, to avoid trivialities, let n ≥ 3.
Then, as a consequence of the last two lemmas, the following result holds.

Lemma 6.3.5. With reference to an (sr)× sn factorial, let d = d(T0, T ) be a
design having run size sm and T̃ = P − (T0 ∪ T ). Then

(a) A30(d) = constant − G3(T0 ∪ T̃ ),
(b) A31(d) = constant + G3(T0 ∪ T̃ ) − G3(T̃ ),
(c) A40(d) = constant + (3s − 5)G3(T0 ∪ T̃ ) + G4(T0 ∪ T̃ ),
(d) A41(d) = constant − 1

2 (sr + 5s − 10){G3(T0 ∪ T̃ ) − G3(T̃ )}
−G4(T0 ∪ T̃ ) + G4(T̃ ).

Proof. Since T0 ∪ T̃ = P − T , (a) and (c) are immediate from (6.3.9) and
Lemma 6.3.4. Next by (6.3.9) and Lemma 6.3.3,

A31(d) = H2(T0, T ) = constant + G3(T0 ∪ T ) − G3(T ),

A41(d) = H3(T0, T ) = constant + G4(T0 ∪ T ) − G4(T ) − 1
2
(sr − s)H2(T0, T )

= constant + G4(T0 ∪ T ) − G4(T ) − 1
2
(sr − s){G3(T0 ∪ T ) − G3(T )}.

Hence recalling the definition of T̃ , (b) and (d) follow from Lemma 6.3.4. �
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From the proof of Lemma 6.3.5, it is clear that the constants involved
therein may depend on s, r, n, and m but not on the particular choice of
T . In the practically important nearly saturated cases that correspond to
relatively small f , it is much easier to handle T̃ than T . Thus the above
lemma greatly facilitates the study of MA designs. This will be considered in
the next section.

6.4 Minimum Aberration Designs for (sr) × sn Factorials

We begin by considering the situation in which pencils of type 0 are considered
more important than those of type 1. As indicated in Section 6.2, this can
happen commonly in practice. The case in which pencils of the two types are
equally important will also be discussed briefly later in this section.

With reference to an (sr) × sn factorial, consider designs d1 and d2

both having run size sm. Let u be the smallest integer such that (Au0(d1),
Au1(d1)) �= (Au0(d2), Au1(d2)). As in Definition 6.2.1, if Au0(d1) < Au0(d2)
or Au0(d1) = Au0(d2) but Au1(d1) < Au1(d2), then d1 is said to have less
aberration of type 0 than d2. An MA design of type 0 is a design such that
no other design has less aberration of type 0 than it.

Define the following classes of designs:

D1 = {d = d(T0, T ) : d maximizes G3(T0 ∪ T̃ )},
D2 = {d : d ∈ D1, d maximizes G3(T̃ ) over D1},
D3 = {d : d ∈ D2, d minimizes G4(T0 ∪ T̃ ) over D2},
D4 = {d : d ∈ D3, d minimizes G4(T̃ ) over D3}.

Then the following useful result is evident from Lemma 6.3.5.

Theorem 6.4.1. For any i (1 ≤ i ≤ 4), suppose d belongs to Di and, up to
isomorphism, is the unique member of Di. Then d is a minimum aberration
design of type 0.

Corollary 6.4.1. Let f = 2. Then d = d(T0, T ) is a minimum aberration
design of type 0 provided T̃ = P − (T0 ∪ T ) is of the form

T̃ = {h1, h1 + αh0}, (6.4.1)

for some h1 �∈ T0, h0 ∈ T0, and α(�= 0) ∈ GF (s).

Proof. Since f = 2, by (6.3.8) and Lemma 6.3.3(a),

G3(T0 ∪ T̃ ) = constant + H2(T0, T̃ ). (6.4.2)

Since T0 is a flat and T0 and T̃ are disjoint, it follows from (6.3.7) that
H2(T0, T̃ ) equals unity if T̃ is as in (6.4.1) and zero otherwise. The result
now follows from Theorem 6.4.1 (with i = 1) and (6.4.2) noting that all de-
signs with T̃ as in (6.4.1) are isomorphic. �
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For f = 2 and m − r ≥ 2, not all designs have T̃ as in (6.4.1). Another
choice of T̃ is {h1, h2}, where h1 �∈ T0, h2 �∈ T0, and V (T0 ∪ {h1, h2}) has
rank r + 2. Hence even for f = 2, one can discriminate among rival designs
with respect to the MA criterion of type 0. This may be contrasted with the

equivalent under the MA criterion when f = 2. With i = 1, Theorem 6.4.1
yields another corollary as follows.

Corollary 6.4.2. Let f = (sw − sr)/(s− 1), where w > r. Then d = d(T0, T )
is a minimum aberration design of type 0 provided T0 ∪ T̃ is a (w − 1)-flat of
P, where T̃ = P − (T0 ∪ T ).

Proof. For f as stated, the cardinality of T0 ∪ T̃ equals (sw − 1)/(s − 1),
which is the same as the cardinality of a (w − 1)-flat of P . Hence by (6.3.6),
G3(T0 ∪ T̃ ) is maximum if and only if T0 ∪ T̃ is a (w− 1)-flat of P ; cf. Lemma
4.4.3. Since all such choices of T̃ yield isomorphic designs, the result follows
from Theorem 6.4.1 (with i = 1). �

As a consequence of Theorem 6.4.1, Mukerjee and Wu (2001) also reported
the following result. Its proof is somewhat long and hence omitted. Recall that
T0 is the (r − 1)-flat spanned by e1, . . . , er, where e1, . . . , em are the m × 1
unit vectors over GF (s).

Theorem 6.4.2. Let s = 2 and f = 2w − 2r − u, where w > r and 1 ≤
u ≤ 3. Let hr+1, . . . , hw be any w − r points of P such that the w points
e1, . . . , er, hr+1, . . . , hw are linearly independent, and let T1 be a (w − 1)-flat
of P spanned by these w points. Let T̃ = T1 − (T0 ∪ Q), where

(a) Q = {hr+1} if u = 1,
(b) Q = {hr+1, e1 + hr+1} if u = 2 and w = r + 1,
(c) Q = {hr+1, hr+2} if u = 2 and w > r + 1,
(d) Q = {hr+1, e1 + hr+1, e2 + hr+1} if u = 3 and w = r + 1,
(e) Q = {hr+1, hr+2, e1 + hr+1 + hr+2} if u = 3 and w = r + 2,
(f) Q = {hr+1, hr+2, hr+3} if u = 3 and w > r + 2.

Then d = d(T0, T ) is a minimum aberration design of type 0, where T =
P − (T0 ∪ T̃ ).

Example 6.4.1. With reference to a 4 × 225 factorial, suppose it is desired
to have a design with run size 32. Then s = r = 2, n = 25, m = 5, and
f = 32 − 4 − 25 = 3. Since f = 3 = 23 − 22 − 1, Theorem 6.4.2 is applicable
with w = 3, u = 1. Take h3 = e1 + e2 + e3. Then e1, e2, and h3 are linearly
independent, and

T1 = {e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3}, T0 = {e1, e2, e1 + e2}.
By Theorem 6.4.2(a), Q = {h3} = {e1 + e2 + e3}, so that T̃ = T1 − (T0 ∪
Q) = {e3, e1 + e3, e2 + e3}. Here P ≡ PG(4, 2). Therefore d(T0, T ), where

case of symmetrical factorials, where as noted in Section 4.4, all designs are
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T = PG(4, 2) − (T0 ∪ T̃ ) with T0 and T̃ as shown above is an MA design of
type 0. �

Some useful special cases are now discussed. Considering 4× 2n factorials,
one has s = r = 2 and for f = 3, 4, 9, 10, 11, 12, MA designs of type 0 are given
by Corollary 6.4.2 or Theorem 6.4.2. This is evident because 4 = 23 − 22, 9 =
24 − 22 − 3, and so on. For f = 5, 6, 7, and 8, MA designs of type 0 can be
obtained directly from Theorem 6.4.1. Table 6.8 lists the set T̃ = P − (T0∪T )
for these MA designs of type 0 and indicates how they are obtained. Using
the compact notation, T0 = {1, 2, 12} in Table 6.8 as r = s = 2. Hence if m
is given, then for any f covered by this table, the set T corresponding to an
MA design of type 0 can be easily obtained as T = P − (T0 ∪ T̃ ).

Table 6.8 The sets T̃ for MA designs of type 0 for 4 × 2n factorials

f T̃ Source

3 {3, 13, 23} Theorem 6.4.2(a)
4 {3, 13, 23, 123} Corollary 6.4.2
5 {3, 13, 23, 123, 4} Theorem 6.4.1 (i = 1)
6 {3, 13, 4, 14, 34, 134} Theorem 6.4.1 (i = 2)
7 {3, 13, 4, 14, 24, 34, 134} Theorem 6.4.1 (i = 2)
8 {3, 13, 23, 4, 14, 24, 34, 134} Theorem 6.4.1 (i = 2)
9 {3, 23, 123, 4, 14, 24, 34, 134, 234} Theorem 6.4.2 (e)
10 {3, 13, 23, 123, 4, 14, 24, 34, 134, 234} Theorem 6.4.2 (c)
11 {3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234} Theorem 6.4.2 (a)
12 {3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234} Corollary 6.4.2

Note: T0 = {1, 2, 12}.
In particular, if m = 5 in the setup of Table 6.8, i.e., the run size is 32,

then f = 25 − 22 − n = 28 − n. Thus Table 6.8 gives MA 4 × 2n designs of
type 0 over the range 16 ≤ n ≤ 25 and hence supplements Tables 6.3, which
covers 4 ≤ n ≤ 9.

For 8 × 2n factorials, if 5 ≤ f ≤ 8, then MA designs of type 0 are given
by Corollary 6.4.2 or Theorem 6.4.2. On the other hand, for f = 3 or 4,
such designs are given by T0 = {1, 2, 12, 3, 13, 23, 123} and T̃ = {4, 14, 24} or
T̃ = {4, 14, 24, 34} respectively; this follows from Theorem 6.4.1 with i = 1 or
3 respectively.

Turning to 9 × 3n factorials, Corollary 6.4.2 yields an MA design of type
0 for f = 9 [= (33 − 32)/(3 − 1)]. On the other hand, Table 6.9 gives the
set T̃ = P − (T0 ∪ T ) for such designs over the range 3 ≤ f ≤ 8. This ta-
ble is obtained using Theorem 6.4.1 with i = 1. In the setup of Table 6.9,
T0 = {1, 2, 12, 122}. Hence if m is given, then for any f covered by this table,
the set T corresponding to an MA design of type 0 can be easily obtained as
T = P − (T0 ∪ T̃ ).
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Table 6.9 The sets T̃ for MA designs of type 0 for 9 × 3n factorials

f T̃

3 {3, 1223, 12232}
4 {3, 1223, 12232, 232}
5 {3, 132, 23, 1223, 12232}
6 {3, 13, 23, 123, 132, 232}
7 {3, 13, 23, 123, 132, 232, 1232}
8 {3, 13, 23, 123, 132, 232, 1232, 12232}

Note: T0 = {1, 2, 12, 122}.
As an illustration, we revisit Example 6.3.1. Then s = 3, r = 2, n = 3,

m = 3, and f = (33−32)/(3−1)−3 = 6. For f = 6, Table 6.9 shows that T̃ =
{3, 13, 23, 123, 132, 232}. Here P = PG(2, 3). Hence the set T corresponding
to an MA design of type 0 is given by P − (T0∪ T̃ ) = {1232, 1223, 12232}. It is
now immediate from (6.3.4) that the design considered earlier in this example
is an MA design of type 0.

Before concluding this section, we briefly discuss the situation in which
pencils of types 0 and 1 are equally important. Then it is appropriate to
consider minimum overall aberration designs, which are defined as follows.
With reference to an (sr) × sn factorial, consider designs d1 and d2 both
having run size sm. Let u be the smallest integer such that Au0(d1)+Au1(d1) �=
Au0(d2) + Au1(d2). If Au0(d1) + Au1(d1) < Au0(d2) + Au1(d2), then d1 is said
to have less overall aberration than d2. A minimum overall aberration (MOA)
design is a design such that no other design has less overall aberration than
it.

Lemma 6.4.1. With reference to an (sr)× sn factorial, let d = d(T0, T ) be a
design having run size sm and T̃ = P − (T0 ∪ T ). Then

(a) A30(d) + A31(d) = constant − G3(T̃ ),
(b) A40(d)+A41(d) = constant+(3s−5)G3(T̃ )+G4(T̃ )− 1

2 (sr−s)H2(T0, T̃ ).

Proof. Part (a) is immediate from Lemma 6.3.5 (a) and (b). By Lemma 6.3.5
(c) and (d),

A40(d)+A41(d) = constant−1
2
(sr−s)G3(T0∪T̃ )+

1
2
(sr+5s−10)G3(T̃ )+G4(T̃ ).

Applying Lemma 6.3.3(a) to the second term in the right-hand side, (b) fol-
lows. �

One can obtain an analogue of Theorem 6.4.1 from the above lemma and
use it to derive further results. For example, with f = 2, it can be seen that
d(T0, T ) is an MOA design if and only if T̃ = P − (T0 ∪ T ) is of the form
(6.4.1). For 4× 2n factorials, Table 6.10 gives the set T̃ for MOA designs over
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the range 3 ≤ f ≤ 12. It also indicates the parts of Lemma 6.4.1 that are
needed for the derivation of such designs. In Table 6.10, T0 = {1, 2, 12}. If m
is given, then for any f covered by this table, the set T corresponding to an
MOA design can be easily obtained as before. A comparison of Tables 6.10
and 6.8 reveals that in most cases the criteria of MOA and MA of type 0 yield
different results.

Table 6.10 The sets T̃ for MOA designs for 4 × 2n factorials

f T̃ Needed Part(s) of Lemma 6.4.1
3 {3, 4, 34} (a)
4 {3, 4, 34, 13} (a),(b)
5 {3, 4, 34, 14, 134} (a),(b)
6 {3, 4, 34, 13, 14, 134} (a),(b)

7 (m = 4) {3, 4, 34, 13, 14, 134, 24} (a)
7 (m ≥ 5) {3, 4, 34, 5, 35, 45, 345} (a)
8 (m = 4) {3, 4, 34, 13, 14, 134, 23, 24} (a)
8 (m ≥ 5) {3, 4, 34, 5, 35, 45, 345, 13} (a),(b)
9 (m = 4) {3, 4, 34, 13, 14, 134, 23, 24, 234} (a)
9 (m ≥ 5) {3, 4, 34, 5, 35, 45, 345, 14, 134} (a),(b)

10 {3, 4, 34, 5, 35, 45, 134, 135, 145, 1345} (a),(b)
11 {3, 4, 34, 5, 35, 45, 345, 134, 135, 145, 1345} (a),(b)
12 {3, 4, 34, 5, 35, 45, 345, 13, 14, 134, 15, 1345} (a),(b)

Note: T0 = {1, 2, 12}.
We further remark that the matrix V (T0 ∪ T ) has full row rank for any

MA design of type 0 as envisaged in Corollary 6.4.1, Corollary 6.4.2, Theorem
6.4.2, and Tables 6.8, 6.9. The same holds also for any MOA design given in
Table 6.10.

6.5 Designs for (sr1) × (sr2) × sn Factorials

As noted in Section 6.3, mixed factorials typically involve several factors,
each with a small number of levels and rather few factors with more levels.
From this perspective, regular fractions of an (sr1) × (sr2) × sn factorial are
considered in this section. Such a factorial has one factor, say F01, at sr1 levels,
another factor, say F02, at sr2 levels, and additional n factors, say F1, . . . , Fn,
at s levels each. Here r1 (≥ 2), r2 (≥ 2) are integers and s (≥ 2) is a prime
or prime power. The special case s = r1 = r2 = 2 covers 42 × 2n factorials
discussed in Section 6.2.

The developments in this section closely follow the last two sections. For
i = 1, 2, let ti = (sri − 1)/(s − 1) and Vri

be the ri × ti matrix with columns
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given by points of PG(ri−1, s). Then, in view of Lemma 6.3.1 and analogously
to (6.3.1),

X = {(x1, . . . , xt1 , xt1+1, . . . , xt1+t2 , xt1+t2+1, . . . , xt1+t2+n)
′
:

(x1, . . . , xt1) ∈ R(Vr1), (xt1+1, . . . , xt1+t2) ∈ R(Vr2),
xt1+t2+1, . . . , xt1+t2+n ∈ GF (s)} (6.5.1)

represents the collection of the sr1+r2+n treatment combinations in an (sr1)×
(sr2)×sn factorial. Here (x1, . . . , xt1) refers to a level of F01, (xt1+1, . . . , xt1+t2)
refers to a level of F02, and xt1+t2+i refers to a level of Fi (1 ≤ i ≤ n).

Example 6.5.1. For a 42 × 23 factorial, s = 2, r1 = r2 = 2, n = 3, t1 =
t2 = 3, and as in Section 6.3, R(V2) = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
Thus by (6.5.1), the treatment combinations in a 42 × 23 factorial can be
represented by (x1, . . . , x9)

′
, where (x1, x2, x3) ∈ R(V2), (x4, x5, x6) ∈ R(V2)

and x7, x8, x9 ∈ {0, 1}. �

With reference to an (sr1)×(sr2)×sn factorial, a pencil is a nonnull vector
of the form

b = (b1, . . . , bt1 , bt1+1, . . . , bt1+t2 , bt1+t2+1, . . . , bt1+t2+n)
′
,

where bi ∈ GF (s) for all i, among b1, . . . , bt1 at most one is nonzero, and
among bt1+1, . . . , bt1+t2 at most one is nonzero. Pencils with proportional en-
tries are considered identical. As in Section 6.3, a pencil with i nonzero entries
belongs to a main effect if i = 1 and to an i-factor interaction if i ≥ 2. For any
pencil b belonging to an interaction, one of the following three cases arises:
(0) it involves only some of F1, . . . , Fn, i.e., b1 = · · · = bt1+t2 = 0;
(1) it involves one of F01 and F02 and some of F1, . . . , Fn, i.e., either one of
b1, . . . , bt1 is nonzero and bt1+1 = · · · = bt1+t2 = 0, or one of bt1+1, . . . , bt1+t2

is nonzero and b1 = · · · = bt1 = 0;
(2) it involves both F01 and F02 and possibly some of F1, . . . , Fn, i.e., one of
b1, . . . , bt1 is nonzero and one of bt1+1, . . . , bt1+t2 is also nonzero.
Following the terminology of Section 6.2, pencils of these three types are called
type 0, type 1, and type 2 respectively.

The concept of a regular fraction will now be extended to an (sr1)×(sr2)×
sn factorial. Suppose it is desired to have a fraction consisting of sm treatment
combinations, where r1 + r2 ≤ m < r1 + r2 + n. Let P denote the set of the
(sm − 1)/(s − 1) points of PG(m − 1, s), and for any nonempty subset Q of
P , let the matrix V (Q) be defined as in Section 6.3. Let T01 and T02 be the
(r1 − 1)- and (r2 − 1)-flats of P spanned by e1, . . . , er1 and er1+1, . . . , er1+r2

respectively, where e1, . . . , em are the m × 1 unit vectors over GF (s). Since
r1 + r2 ≤ m, both T01 and T02 are well defined. Furthermore, analogously to
(6.3.2),
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V (T01) =

[
Vr1

0

]
, (6.5.2)

where 0 is the null matrix of order (m − r1) × t1, and

V (T02) =

⎡⎢⎣ 0(1)

Vr2

0(2)

⎤⎥⎦ , (6.5.3)

where 0(1) and 0(2) are null matrices of orders r1 × t2 and (m − r1 − r2) × t2
respectively. Let T be an n-subset of P such that T01, T02, and T are disjoint
and the matrix

V (T01 ∪ T02 ∪ T ) = [V (T01) V (T02) V (T )] (6.5.4)

has full row rank. Then there are sm vectors in R[V (T01 ∪ T02 ∪ T )]. By
(6.5.1)–(6.5.4), the transpose of each of these vectors belongs to X and hence
represents a treatment combination of an (sr1) × (sr2) × sn factorial. The
collection of the sm treatment combinations (or runs) so obtained gives a
regular fraction, to be denoted by d = d(T01, T02, T ), of such a factorial. For
the special case of a 42 × 2n factorial (i.e., s = r1 = r2 = 2), the elements of
Hm represent the points of PG(m−1, 2); T01 = {1, 2, 12}, and T02 = {3, 4, 34}
represent the two four-level factors; and T , consisting of n elements from the
rest of Hm, represents the n two-level factors. Again, hereafter in this section,
a regular fraction is simply called a design.

Considering the cardinalities of T01, T02, T , and P , the above construction
is possible if and only if r1 + r2 ≤ m, and

sr1 − 1
s − 1

+
sr2 − 1
s − 1

+ n ≤ sm − 1
s − 1

, i.e., sr1 + sr2 + n(s − 1) − 1 ≤ sm.

These conditions are supposed to hold throughout this section. This construc-
tion is motivated by the approach of Wu, Zhang, and Wang (1992).

A pencil b is a defining pencil of d = d(T01, T02, T ) if

V (T01 ∪ T02 ∪ T )b = 0. (6.5.5)

As in Section 6.3, any pencil satisfying (6.5.5) has at least three nonzero
entries, i.e., d has resolution three or higher. For i ≥ 3, let Ai0(d), Ai1(d),
and Ai2(d) denote the numbers of (distinct) defining pencils of d that have i
nonzero entries and are of types 0, 1, and 2 respectively. In the present setup,
two designs d(T01, T02, T1) and d(T01, T02, T2) are isomorphic if there exists
a nonsingular transformation that maps each point of T0j to some point of
T0j(j = 1, 2) up to proportionality, and each point of T1 to some point of
T2 up to proportionality. Furthermore, if r1 = r2, then two such designs are
isomorphic also when there exists a nonsingular transformation that maps
each point of T01 to some point of T02, each point of T02 to some point of T01,
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and each point of T1 to some point of T2, up to proportionality. From (6.5.5),
it can be seen that isomorphic designs have the same Ai0, Ai1, and Ai2 for
every i.

Example 6.5.2. Using the projective geometric formulation, we revisit the
42 × 23 design d1 with 16 runs, as considered in Example 6.2.1. Then
s = r1 = r2 = 2, n = 3, m = 4, and d1 = d(T01, T02, T ), where T01 =
{(1, 0, 0, 0)′, (0, 1, 0, 0)′, (1, 1, 0, 0)′}, T02 ={(0, 0, 1, 0)′, (0, 0, 0, 1)′, (0, 0, 1, 1)′},
and T = {(1, 0, 0, 1)′, (0, 1, 1, 0)′, (0, 1, 1, 1)′}. Clearly, T01, T02, and T are dis-
joint and the matrix

V (T01 ∪ T02 ∪ T ) =

⎡⎢⎢⎣
1 0 1 0 0 0 1 0 0
0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 0 1 1
0 0 0 0 1 1 1 0 1

⎤⎥⎥⎦ (6.5.6)

has full row rank. Hence consideration of R[V (T01∪T02∪T )] yields the design
d1. By (6.5.5) and (6.5.6) the defining pencils of d1 are

(1, 0, 0, 0, 1, 0, 1, 0, 0)′, (0, 1, 0, 1, 0, 0, 0, 1, 0)′, (0, 1, 0, 0, 0, 1, 0, 0, 1)′,
(0, 0, 1, 0, 0, 1, 1, 1, 0)′, (0, 0, 1, 1, 0, 0, 1, 0, 1)′, (0, 0, 0, 0, 1, 0, 0, 1, 1)′,
(1, 0, 0, 0, 0, 0, 1, 1, 1)′,

which agree with the defining relation of d1 shown in Example 6.2.1. Among
the pencils listed above, the last two are of type 1 and the rest are of
type 2. Hence counting the numbers of nonzero entries in these pencils, one
gets A30(d1) = 0, A31(d1) = 1, A32(d1) = 3, A40(d1) = 0, A41(d1) =
1, A42(d1) = 2, A50(d1) = A51(d1) = A52(d1) = 0. These again agree with
Example 6.2.1. �

As argued in Section 6.2, we suppose that pencils of type 0 are most
important and those of type 2 are least important. Then it is appropriate to
consider MA designs of type 0, which are defined as follows. With reference
to an (sr1) × (sr2) × sn factorial, consider designs d1 and d2 both having run
size sm. Let u be the smallest integer such that (Au0(d1), Au1(d1), Au2(d1)) �=
(Au0(d2), Au1(d2), Au2(d2)). As in Definition 6.2.2, if either (i) Au0(d1) <
Au0(d2) or (ii) Au0(d1) = Au0(d2) but Au1(d1) < Au1(d2) or (iii) Au0(d1) =
Au0(d2), Au1(d1) = Au1(d2) but Au2(d1) < Au2(d2), then d1 is said to have
less aberration of type 0 than d2. An MA design of type 0 is a design such
that no other design has less aberration of type 0 than it.

Consideration of complementary sets again facilitates the study of MA
designs of type 0. To that effect, some notation is needed. For any nonempty
Q(⊂ P ) of cardinality q, define Gi(Q) via (6.3.6). If, in addition, Q and T01 or
Q and T02 are disjoint, define Hi(T01, Q) or Hi(T02, Q) as in (6.3.7), replacing
T0 there by T01 or T02 respectively. Furthermore, if Q, T01, and T02 are all
disjoint, define for i ≥ 1,



6.5 Designs for (sr1) × (sr2) × sn Factorials 147

Ki(T01, T02, Q) = (s − 1)−1#{λ : λ ∈ Ωiq, there exist nonzero αj ∈ GF (s)
and hj ∈ T0j (j = 1, 2) such that V (Q)λ = α1h1 + α2h2}.

Note that Ki(T01, T02, Q) = 0 if i > q.
Considering a design d = d(T01, T02, T ), by (6.5.5) and analogously to

(6.3.9),

Ai0(d) = Gi(T ), Ai1(d) = Hi−1(T01, T ) + Hi−1(T02, T ),
Ai2(d) = Ki−2(T01, T02, T ), for i ≥ 3. (6.5.7)

Let T̃ = P − (T01 ∪ T02 ∪ T ). The cardinality of T̃ equals

f = (sm − sr1 − sr2 + 1)/(s − 1) − n.

Let

Ψ1(T01, T02, T̃ ) = K1(T01, T02, T̃ ) − G3(T̃ ),

Ψ2(T01, T02, T̃ ) = 2G4(T̃ ) + H3(T01, T̃ ) + H3(T02, T̃ ).

Since there is only one design when f = 0, hereafter suppose f ≥ 1. Also to
avoid trivialities, let n ≥ 2.

Lemma 6.5.1. With reference to an (sr1) × (sr2) × sn factorial, let d =
d(T01, T02, T ) be a design having run size sm. Then

(a) A30(d) = constant − G3(T01 ∪ T02 ∪ T̃ ),

(b) A31(d) = constant + G3(T01 ∪ T02 ∪ T̃ ) + Ψ1(T01, T02, T̃ ),

(c) A32(d) = constant − K1(T01, T02, T̃ ),

(d) A40(d) = constant + (3s − 5)G3(T01 ∪ T02 ∪ T̃ ) + G4(T01 ∪ T02 ∪ T̃ ),

(e) A41(d) = constant − (3s − 5){G3(T01 ∪ T02 ∪ T̃ ) + Ψ1(T01, T02, T̃ )}
−1

2
(sr1 + sr2 − 2s)K1(T01, T02, T̃ ) − 2G4(T01 ∪ T02 ∪ T̃ )

+Ψ2(T01, T02, T̃ ),

(f) A42(d) = constant + (sr1 + sr2 + s − 5)K1(T01, T02, T̃ )

+K2(T01, T02, T̃ ).

The constants in Lemma 6.5.1 may depend on s, r1, r2, n, and m, but not
on the particular choice of T . The proof of this lemma utilizes (6.5.7). It is
available in Mukerjee and Wu (2001) and omitted here. Define the following
classes of designs:
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∆1 = {d = d(T01, T02, T ) : d maximizes G3(T01 ∪ T02 ∪ T̃ )},
∆2 = {d : d ∈ ∆1, d minimizes Ψ1(T01, T02, T̃ ) over ∆1},
∆3 = {d : d ∈ ∆2, d maximizes K1(T01, T02, T̃ ) over ∆2},
∆4 = {d : d ∈ ∆3, d minimizes G4(T01 ∪ T02 ∪ T̃ ) over ∆3},
∆5 = {d : d ∈ ∆4, d minimizes Ψ2(T01, T02, T̃ ) over ∆4},
∆6 = {d : d ∈ ∆5, d minimizes K2(T01, T02, T̃ ) over ∆5}.

Recalling the definition of MA designs of type 0, Lemma 6.5.1 yields the
following result, which serves as a useful tool for finding such designs.

Theorem 6.5.1. For any i (1 ≤ i ≤ 6), suppose d belongs to ∆i and, up to
isomorphism, is the unique member of ∆i. Then d is a minimum aberration
design of type 0.

The above result is analogous to Theorem 6.4.1 and, like the latter, leads
to the following corollaries when applied with i = 1.

Corollary 6.5.1. Let f = 1. Then d = d(T01, T02, T ) is a minimum aber-
ration design of type 0 provided T̃ = P − (T01 ∪ T02 ∪ T ) is of the form
T̃ = {h1 + αh2} for some hj ∈ T0j(j = 1, 2) and α(�= 0) ∈ GF (s).

Corollary 6.5.2. Let f = (sw − sr1 − sr2 + 1)/(s − 1), where w ≥ r1 + r2.
Then d = d(T01, T02, T ) is a minimum aberration design of type 0 provided
T01 ∪ T02 ∪ T̃ is a (w − 1)- flat of P , where T̃ = P − (T01 ∪ T02 ∪ T ).

If m > r1 + r2 then for f = 1, not all designs have T̃ as in Corollary
6.5.1, so that even for f = 1 discrimination among designs is possible on the
basis of the MA criterion of type 0. In general, Theorem 6.5.1 considerably
simplifies the identification of MA designs of type 0 when f is small. As a
specific application, consider 42 × 2n factorials. Then s = r1 = r2 = 2 and
Corollaries 6.5.1 and 6.5.2 settle the cases f = 1 and f = 9 respectively.
For 2 ≤ f ≤ 8, Table 6.11 gives the set T̃ = P − (T01 ∪ T02 ∪ T ) for MA
designs of type 0 and indicates how they are obtained via Theorem 6.5.1.
This table uses the same notation as in Tables 6.8 and 6.10. Thus, in this
table, T01 = {1, 2, 12}, T02 = {3, 4, 34}, so that if m is given, then for any f
covered by the table, the set T corresponding to an MA design of type 0 can
be easily obtained as T = P − (T01 ∪ T02 ∪ T̃ ). For any MA design, as given
by Corollary 6.5.1, Corollary 6.5.2, and Table 6.11, it can be seen that the
matrix V (T01 ∪ T02 ∪ T ) has full row rank.
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Table 6.11 The sets T̃ for MA designs of type 0 for 42 × 2n factorials

f T̃ Use Theorem 6.5.1 with i =

2 {13, 23} 1
3 {13, 23, 123} 1
4 {13, 23, 14, 24} 4
5 {13, 23, 14, 24, 1234} 2
6 {13, 23, 123, 14, 24, 1234} 2
7 {13, 23, 123, 14, 24, 134, 1234} 2
8 {13, 23, 123, 14, 24, 124, 134, 1234} 1

Note: T01 = {1, 2, 12} and T02 = {3, 4, 34}.
As an illustration, we consider the problem of finding an MA design of

type 0, with 16 runs, for a 42 × 26 factorial. Then s = 2, r1 = r2 = 2,
n = 6, m = 4, and f = (24 − 22 − 22 + 1) − 6 = 3. For f = 3, Table 6.11
shows that T̃ = {13, 23, 123}. Here P ≡ PG(3, 2). Hence the set T corre-
sponding to an MA design of type 0 is given by T = P − (T01 ∪ T02 ∪ T̃ ) =
{14, 24, 124, 134, 234, 1234}.

In particular, if m = 5 in the setup of Table 6.11, i.e., the run size is 32,
then f = (25 − 22 − 22 +1)−n = 25−n. Table 6.11 then gives MA designs of
type 0 for 42×2n factorials over the range 17 ≤ n ≤ 23 and hence supplements
Table 6.6, which covers 2 ≤ n ≤ 10.

To conclude the chapter, we mention some other related work. Zhang and
Shao (2001) reported further results on MA designs for mixed factorials. Muk-
erjee, Chan, and Fang (2000) extended the criterion of maximum estimation
capacity to mixed factorials taking cognizance of the distinction among pen-
cils of type 0, 1, etc., and, in the spirit of Chapter 5, observed that the results
tend to agree with those under the MA criterion.

Exercises

6.1 Show that the four-symbol column obtained by applying the method
of replacement to any two-symbol orthogonal array of strength two is
orthogonal to the remaining two-symbol columns of the array.

6.2 Derive the defining relation for the 42 × 23 design d2 in Example 6.2.1
and use it to confirm the Aij values in Example 6.2.1.

6.3 Prove from first principles that the 42 × 23 design d1 in Example 6.2.1
has MA of type 0.

6.4 Prove Theorem 6.2.1(b) for k = 3. Hence indicate the proof for general
k ≥ 2.

6.5 Using Theorem 6.2.1 (b), show that the design d2 whose defining relation
is shown in (6.2.3) does not have MA of type 0.

Exercises
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6.6 Consider a 4× 2n design d∗ with run size 2m. Suppose d∗ is represented
by T0 = {γ1, γ2, γ3}, where γ1 = 1, γ2 = 2, γ3 = 12, and n other elements
c1, . . . , cn of Hm. Assume that
(i) each of γ3, c1, . . . , cn appears in some word in the defining relation
DR(d∗) of d∗,
(ii) the set {γ1, γ2, c1, . . . , cn} contains m independent elements.
(a) Show that

∑
i≥3 iAi(d∗) = (n + 2)2n+1−m − C, where Ai(d∗) =

Ai0(d∗) + Ai1(d∗), and C is the number of words in DR(d∗) containing
γ3. [Hint: use (3.2.2) and the discussion before (6.2.5).]
(b) Show that C = 2n+1−m if γ1 and γ2 do not appear in any word in
DR(d∗), and that C = 2n−m otherwise.

6.7 Under appropriate assumptions, extend the results in the previous exer-
cise to 42 × 2n designs with run size 2m.

6.8 The MA criterion given in Definition 6.2.1 is called type 0 because it first
compares the values of Au0. For 4 × 2n designs, if the roles of Au0 and
Au1 are reversed in the definition, the resulting criterion is called MA
of type 1. A third alternative is to use the minimum overall aberration
criterion introduced in Section 6.4.
(a) Describe situations in which either of these two alternative criteria
make more sense.
(b) Considering 4 × 27 designs with 16 runs, show that the design
d(T0, 3, 4, 14, 23, 34, 123, 134) has less aberration of type 1 than the design
d(T0, 3, 4, 13, 14, 23, 24, 124). Which design has less overall aberration?

6.9 For 4p × 2n designs with general p, extend the definition of type-j words
to 0 ≤ j ≤ p. Based on the extended definitions, define the MA criterion
of type 0 for 4p × 2n designs.

6.10 Prove Lemma 6.3.3(a) by using definitions and combinatorial arguments.
6.11 Considering 4 × 2n factorials with 17 ≤ n ≤ 19, use Theorem 6.4.2 to

obtain MA designs of type 0 when the run size is 32.
6.12 Prove Lemma 6.5.1(c) by using definitions and combinatorial arguments.
6.13 Prove Corollary 6.5.1.
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Block Designs for Symmetrical Factorials

Block designs for factorial experiments are studied in this chapter. They are
useful when the experimental units are not homogeneous. The simpler case of
two-level full factorials is considered first. Then the problem of blocking for
fractions of general symmetrical factorials is taken up and a finite projective
geometric formulation is obtained. Various optimality criteria are discussed
and the method of complementary sets is developed for finding optimal de-
signs. A collection of design tables is given.

7.1 Optimal Block Designs for Full Factorials

The designs studied in the previous chapters involve a completely random allo-
cation of the selected treatment combinations to the experimental units. This
kind of allocation is appropriate only if the experimental units are homoge-
neous. However, such homogeneity may not always be guaranteed especially
when the size of the experiment is relatively large. A practical design strategy
is then to partition the experimental units into homogeneous groups, known
as blocks, and restrict randomization separately to each block. Consequently,
a design should dictate not only the treatment combinations to be included in
the experiment but also their allocation to the blocks. Blocks are often formed
as natural groupings of experimental units such as batches of materials, plots
of land, time periods, etc. Block designs for symmetrical factorials are con-
sidered in this chapter. Throughout, the additivity of the block and treatment
effects is assumed.

While blocking is expected to partition the experimental units into ho-
mogeneous groups, there can be significant heterogeneity from one block to
another. Therefore, the block effects are potentially as substantial as even the
factorial main effects. On the other hand, although the block effects can be
quite nontrivial, they are, as such, of no interest to the experimenter. Interest
lies only in the factorial effects that are rank-ordered according to the effect
hierarchy principle. A major concern now is the extent to which the presence
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of blocks can affect the estimation of the factorial effects. This distinction
between the block and factorial effects is fundamental to the development of
the design criteria to be discussed in this chapter.

Following Sun, Wu, and Chen (1997), we consider in this section the sim-
pler problem of finding optimal block designs for two-level full factorials. As
in Section 3.1, any factorial effect can be conveniently denoted by i1 . . . ig.

Example 7.1.1. To motivate the ideas, consider the problem of designing
a full 25 factorial in 8(= 23) blocks. Start with three independent factorial
effects, say,

b1 = 135, b2 = 235, b3 = 1234. (7.1.1)

For any treatment combination, there are 23(= 8) possibilities, depending on
whether it appears with a plus or minus sign in b1, b2, and b3. This entails
a partitioning of the 25 treatment combinations into eight classes, each of
size four. One can assign each class so formed to one block to get the eight
blocks. Clearly, the treatment combinations in the same block appear with the
same sign in any bi(i = 1, 2, 3). Hence the treatment contrasts representing
b1, b2, b3 are also contrasts among blocks. As a consequence, these factorial
effects are entangled or confounded with blocks. They cannot be estimated in
the presence of block effects. In fact, it is easily seen that this happens for not
only b1, b2, b3 but also the factorial effects that they generate. In other words,
the factorial effects

b1b2 = (135)(235) = 12, b1b3 = (135)(1234) = 245,
b2b3 = (235)(1234) = 145, b1b2b3 = (135)(235)(1234) = 34, (7.1.2)

are also confounded with blocks.
What happens for the remaining factorial effects? One can check that

half the treatment combinations in any block appear with a plus sign and
the remaining half with a minus sign in any of these factorial effects. Hence
they remain estimable even in the presence of block effects, i.e., they are
unconfounded with blocks. �

A more rigorous explanation for the phenomenon of confounding appears
in the next section with reference to a general setting. In Example 7.1.1,
there are altogether seven confounded factorial effects as shown in (7.1.1) and
(7.1.2). Together with the identity element I, they form a group called the
block defining contrast subgroup. It is the blocking counterpart of the (treat-
ment) defining contrast subgroup of a 2n−k design. Generally, as with 2n−k

designs, we can apply the minimum aberration (MA) criterion to the block
defining contrast subgroup on the basis of the effect hierarchy principle. For-
mally, for a block design d, let βi(d) be the number of words of length i in the
block defining contrast subgroup, i.e., βi(d) is the number of factorial effects of
order i that are confounded with blocks. We may use the wordlength pattern
(β1(d), β2(d), β3(d), . . . ) to characterize the properties of d. Obviously, it is
required that β1(d) = 0. The MA criterion, based on sequential minimization
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of β2(d), β3(d), . . . , can be applied to rank-order block designs. A best design
according to this criterion is called a minimum aberration block design. Thus
all the tools and results for MA designs in the previous chapters can be used
here. Since the block defining contrast subgroup of a 25 design in 23 blocks
is equivalent to the (treatment) defining contrast subgroup of a 25−3 design,

that the block design in Example 7.1.1 has MA because it has wordlength
pattern (0, 2, 4, 1, 0).

Because of the mathematical equivalence between 2n designs in 2k blocks
and 2n−k designs, there is no need to separately list tables of optimal block
designs for full factorials. These tables can be found in Sun, Wu, and Chen
(1997). But there are some differences that are worth noting. First, the MA
criterion has a stronger justification for the blocking problem because βi(d)
has a straightforward interpretation as the number of factorial effects of order
i that are “sacrificed” for blocking. The counterpart of βi(d) in a 2n−k design
d is Ai(d); see (2.5.3). The implication of Ai(d) is more complicated and based
on the stringency of model assumptions under the effect hierarchy principle;
cf.Section 2.5. Second, while β2(d) > 0 is allowable, A2(d) > 0 is not. The
latter would imply the aliasing of two main effects, whereas the former merely
means that some two-factor interactions are confounded with blocks.

The previous discussion suggests that a direct definition of estimability can
be given for block designs for full factorials. Any such design is said to have
estimability of order E if E is the largest integer such that all factorial effects of
order E or lower are estimable (i.e., not confounded with blocks). For example,
the design in Example 7.1.1 has E = 1 since two words of length two appear
in (7.1.2). Clearly, E + 1 equals the smallest integer R such that βR(d) > 0.
For a 2n−k design, this R would be the resolution of the design. So, why do
we not use the notion of resolution in this context? Recall the implications
of resolution as summarized in Theorem 2.5.1. For resolution three designs,
the main effects are estimable under the assumption that all interactions are
absent, while for resolution four designs, the same estimability holds under
the weaker assumption that all interactions involving three or more factors
are absent. Therefore, from the point of view of estimability, resolutions three
and four differ only in the assumptions on the absence of interactions. Both
correspond to E = 1 in the context of blocking. The main difference in the
ideas underlying E and R is that the former does not require any assumption
regarding the absence of factorial effects, while the latter does. If a connection
has to be made between them, we can say that estimability of order E for
2n designs in 2k blocks corresponds to resolution 2E + 1 or 2E + 2 for 2n−k

designs.
For simplicity in presentation, we have so far restricted our discussion

to the two-level case. Because the extension of the block defining contrast
subgroup from s = 2 to general prime power s is straightforward, it is clear
that the concepts of MA and estimability order are applicable more generally
to sn block designs. To avoid repetition, this extension is not discussed here.

from (7.1.1), (7.1.2), and the proof of Theorem 3.2.2 (for n = 5), we conclude
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The rest of this chapter is devoted to block designs for fractional factorials with
general s. Their study is far more complicated and difficult due to the presence
of two wordlength patterns, one arising from the choice of the fraction and
the other arising from blocking. An effective treatment of this problem calls
for the employment of formal mathematical tools such as those in Chapter 2.

7.2 Block Designs for Fractional Factorials

Consider a symmetrical sn factorial, where s is a prime or prime power. As
in Chapter 2, a typical treatment combination is denoted by an n × 1 vector
x over GF (s). Also, an sn−k design is given by d(B) = {x : Bx = 0}, where
B is a k × n matrix, of full row rank, over GF (s). Suppose it is desired to
conduct the experiment in sr blocks, each of size sn−k−r, where k + r < n.
This can be achieved as follows. Let B0 be another matrix, of order r×n and
defined over GF (s), such that

rank
(

B

B0

)
= k + r, (7.2.1)

and let Λr be the set of r×1 vectors over GF (s). Index the sr blocks by the sr

vectors in Λr. For any λ ∈ Λr, place the treatment combinations x satisfying

Bx = 0, B0x = λ, (7.2.2)

in the block indexed by λ. The first equation in (7.2.2) dictates the treatment
combinations included in the experiment, while the second equation dictates
their allocation to the blocks. For s = 2, any pattern of plus and minus
signs, as considered in Example 7.1.1, corresponds to some λ. By (7.2.1), the
(k + r)×n matrix (B′ B′

0)
′ has full row rank. Hence from (7.2.2), it is easy to

see that each block has the desired size sn−k−r; cf. Lemma 2.3.1. Thus (7.2.2)
defines an sn−k design in sr blocks of equal size, or briefly, an (sn−k, sr) block
design, which will be denoted by d(B,B0).

Example 7.2.1. Let s = 2, n = 6, k = 2, r = 2. With

B =
[

1 1 1 0 1 0
0 1 1 1 0 1

]
, B0 =

[
1 0 1 1 0 0
1 1 0 1 0 0

]
, (7.2.3)

the rank condition (7.2.1) holds. Consider, for instance, the block indexed by
(1, 1)′. By (7.2.2) and (7.2.3), this block consists of treatment combinations
x = (x1, . . . , x6)′ that satisfy

x1 + x2 + x3 + x5 = 0, x2 + x3 + x4 + x6 = 0,

and
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x1 + x3 + x4 = 1, x1 + x2 + x4 = 1.

It is easily seen that these treatment combinations are (0, 1, 1, 0, 0, 0)′, (0, 0, 0, 1,
0, 1)′, (1, 0, 0, 0, 1, 0)′, and (1, 1, 1, 1, 1, 1)′. Similarly, the blocks indexed by
(0, 0)′, (0, 1)′, and (1, 0)′ are given by

{(0, 0, 0, 0, 0, 0)′, (0, 1, 1, 1, 0, 1)′, (1, 1, 1, 0, 1, 0)′, (1, 0, 0, 1, 1, 1)′},

{(1, 1, 0, 1, 0, 0)′, (1, 0, 1, 0, 0, 1)′, (0, 0, 1, 1, 1, 0)′, (0, 1, 0, 0, 1, 1)′},
and

{(1, 0, 1, 1, 0, 0)′, (1, 1, 0, 0, 0, 1)′, (0, 1, 0, 1, 1, 0)′, (0, 0, 1, 0, 1, 1)′},

respectively. �
Example 7.2.2. Let s = 3, n = 4, k = 1, r = 2. With

B =
[

1 1 1 1
]
, B0 =

[
1 1 0 0
1 0 1 0

]
, (7.2.4)

the rank condition (7.2.1) holds. As before, the block indexed by (2, 2)′ consists
of treatment combinations x = (x1, . . . , x4)′ that satisfy

x1 + x2 + x3 + x4 = 0, x1 + x2 = 2, x1 + x3 = 2.

Thus this block is given by {(0, 2, 2, 2)′, (1, 1, 1, 0)′, (2, 0, 0, 1)′}. Similarly, the
other blocks can be obtained. �

The concepts of defining pencil and aliasing in the (sn−k, sr) block design
d(B,B0) are the same as those in the sn−k design d(B). In other words, a
defining pencil of d(B) is also a defining pencil of d(B,B0), whereas pencils
that are aliases of each other in d(B) remain so in d(B,B0). As in Section
2.4, no treatment contrast belonging to any defining pencil is estimable in
d(B,B0). We now examine the status of d(B,B0) relative to the estimation
of the other pencils, taking cognizance of the block effects. Recall that these
pencils are grouped into alias sets.

Consider any alias set A of d(B), or equivalently, of d(B,B0). For any
pencil b ∈ A, following (2.4.16), define the sets

Vj(b,B) = {x : b′x = αj and Bx = 0}, 0 ≤ j ≤ s − 1, (7.2.5)

where α0, α1, . . . , αs−1 are the elements of GF (s). As noted in Remark 2.4.1,
Vj(b,B) has cardinality sn−k−1 for every j. Let R(·) denote the row space of
a matrix. Then one gets the following result, which is useful in the sequel.
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Lemma 7.2.1. (a) Either

b′ ∈ R
(

B

B0

)
−R(B) for every b ∈ A (7.2.6)

or

b′ /∈ R
(

B

B0

)
for every b ∈ A. (7.2.7)

(b) If (7.2.6) holds, then for every b ∈ A, each block of d(B,B0) is contained
in one of the sets Vj(b,B) (0 ≤ j ≤ s − 1).

(c) If (7.2.7) holds, then for every b ∈ A and every j (0 ≤ j ≤ s − 1), each
block of d(B,B0) intersects Vj(b,B) in sn−k−r−1 treatment combinations.

Proof.

(a) Consider any two pencils in A. Then

(b − b∗)′ ∈ R(B), (7.2.8)

for some representations b and b∗ of these pencils; cf.(2.4.9). Since b is not
a defining pencil, it does not belong to R(B). Therefore, b must satisfy
(7.2.6) or (7.2.7). Similarly, b∗ also satisfies (7.2.6) or (7.2.7). Again, by
(7.2.8), b satisfies (7.2.6) if and only if so does b∗. This proves (a).

(b) If (7.2.6) holds, then for every b ∈ A, it is evident from (7.2.2) that b′x
remains the same for all treatment combinations x in the same block. Since
these treatment combinations also satisfy Bx = 0, (b) follows from (7.2.5).

(c) If (7.2.7) holds, then by (7.2.1), the (k + r + 1)× n matrix (B′ B′
0 b)′ has

full row rank for every b ∈ A. Hence (c) is immediate from (7.2.2) and
(7.2.5). �
Consider now any treatment contrast L belonging to a pencil b in the

alias set A. Following (2.4.18), the part of L that involves only the treatment
combinations in d(B,B0) is of the form

L(B) =
s−1∑
j=0

lj

{ ∑
x∈Vj(b,B)

τ(x)
}

, (7.2.9)

where τ(x) is the effect of the treatment combination x and l0, l1, . . . , ls−1 are
real numbers, not all zero, satisfying

l0 + l1 + · · · + ls−1 = 0. (7.2.10)

If (7.2.6) holds, then by Lemma 7.2.1(b), every block is contained in one of the
sets Vj(b,B). Consequently, by (7.2.9), the expectation of the observational
contrast corresponding to L(B) involves the block effects, and this vitiates
the estimation of L(B). On the other hand, if (7.2.7) holds, then by Lemma
7.2.1(c), every block has sn−k−r−1 treatment combinations in common with
Vj(b,B), 0 ≤ j ≤ s − 1. Therefore, by (7.2.9) and (7.2.10), the block effects
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cancel out in the expectation of the observational contrast corresponding to
L(B), i.e., this contrast estimates L(B) even in the presence of the block
effects. From the points just noted, the following facts are evident:

(I) If (7.2.6) holds for any alias set A, then no treatment contrast belonging
to any pencil in A remains estimable in d(B,B0) under the presence of
block effects. In this sense, the alias set A, as well as all pencils therein,
are said to be confounded with blocks.

(II)If (7.2.7) holds for any alias set A, then Theorem 2.4.2 is applicable to A
even in the presence of block effects, i.e., any pencil b ∈ A is estimable in
d(B,B0) if and only if all other pencils in A are ignorable. In this sense, the
alias set A, as well as all pencils therein, are said to remain unconfounded
with blocks.

It is easy to see that there are (sr − 1)/(s − 1) alias sets that satisfy (7.2.6)
and hence are confounded with blocks. Since there are (sn−k −1)/(s−1) alias
sets altogether, this leaves (sn−k − sr)/(s − 1) alias sets that satisfy (7.2.7)
and hence remain unconfounded.

Example 7.2.2 (continued). Here s = 3, r = 2. Thus there are four alias
sets that are confounded with blocks. By (7.2.4) and (7.2.6), these are

{(1, 1, 0, 0)′, (0, 0, 1, 1)′, (1, 1, 2, 2)′}, {(1, 0, 1, 0)′, (0, 1, 0, 1)′, (1, 2, 1, 2)′},
{(0, 1, 2, 0)′, (1, 2, 0, 1)′, (1, 0, 2, 1)′}, {(1, 0, 0, 2)′, (0, 1, 1, 2)′, (1, 2, 2, 0)′}.

None of the above alias sets contains a main effect pencil, i.e., all alias sets
containing main effect pencils satisfy (7.2.7). Also, from (7.2.4) it is easily seen
that no main effect pencil is aliased with another pencil involving fewer than
three factors. Therefore, by (II) above, every main effect pencil is estimable
in this block design when interactions involving three or more factors are
absent. �

We now indicate an extension of the concept of resolution to block designs.
With reference to a block design d(B,B0), let R be the minimum number of
nonzero entries in any defining pencil. Also, let θ+1 be the minimum number
of nonzero entries in any pencil that is confounded with blocks, i.e., satisfies
(7.2.6). If there are no blocks, then the resolution of a design is given by R.
In the same spirit, Mukerjee and Wu (1999) defined the resolution of a block
design d(B,B0) as R∗, where

R∗ =
{

min(R, 2θ + 1), if R is odd,
min(R, 2θ + 2), if R is even.

(7.2.11)

If R∗ ≤ 2 then either R ≤ 2 or θ = 0, i.e., either the (unblocked) design
d(B) has resolution at most two or a main effect pencil is confounded with
blocks in d(B,B0). Thus a block design of resolution one or two fails to ensure
the estimability of all treatment contrasts belonging to the main effects even
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under the absence of all interactions. Hence we focus on designs of resolution
three or higher. Note that the concept of estimability order in Section 7.1
cannot be extended here because a pencil is no longer estimable merely if it is
unconfounded with blocks; as seen in (II) above, the status of its aliases also
plays a role in this regard.

The following result, analogous to Theorem 2.5.1, is not hard to deduce
from the fact (II) above using the same arguments as in Theorem 2.4.3.

Theorem 7.2.1. An (sn−k, sr) block design of resolution R∗(≥ 3) keeps all
treatment contrasts belonging to factorial effects involving f or fewer factors
estimable under the absence of all factorial effects involving R∗ − f or more
factors, whenever f satisfies 1 ≤ f ≤ 1

2 (R∗ − 1).

Theorem 7.2.1 provides further justification for (7.2.11). For the block
design in Example 7.2.2, R = 4, and one can check that θ = 1. Thus R∗ = 4,
and from Theorem 7.2.1 it is clear why every main effect pencil is estimable in
this design under the absence of interactions involving three or more factors.

7.3 A Projective Geometric Formulation

As with sn−k designs, a projective geometric formulation facilitates the study
and tabulation of block designs. Following Mukerjee and Wu (1999) and Chen
and Cheng (1999), the formulation is given in Theorem 7.3.1 below. This
extends Theorem 2.7.1 to the present setup. Given any nonempty set of points
Q of a finite projective geometry, we continue to write V (Q) for the matrix
with columns given by the points of Q.

Definition 7.3.1. An ordered pair of subsets (T0, T ) of PG(n − k − 1, s) is
called an (r−1, n) blocking pair if(a) T0

n, (c) T0 and T are disjoint, and (d) V (T ) has full row rank.

Theorem 7.3.1. Given any (sn−k, sr) block design d(B,B0) of resolution
three or higher, there exists an (r − 1, n) blocking pair of subsets (T0, T ) of
PG(n − k − 1, s) such that

(a) for every λ ∈ Λr, a treatment combination x appears in the block, indexed
by λ, of d(B,B0) if and only if

x′ = ξ′V (T ) and λ′ = ξ′V (T ∗
0 ), (7.3.1)

for some (n − k) × 1 vector ξ over GF (s), where T ∗
0 is a set of r linearly

independent points of T0,
(b) any pencil b is a defining pencil of d(B,B0) if and only if V (T )b = 0,
(c) any two pencils are aliased with each other in d(B,B0) if and only if

V (T )(b − b∗) = 0 for some representations b and b∗ of these pencils,

is an (r−1)-flat, (b) T has cardinality
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(d) any pencil b that is not a defining pencil is confounded with blocks in
d(B,B0) if and only if V (T )b is nonnull and proportional to some point
of T0.

Conversely, given any (r − 1, n) blocking pair of subsets (T0, T ) of PG(n −
k − 1, s), there exists an (sn−k, sr) block design d(B,B0) of resolution three
or higher such that (a)–(d) hold.

Proof. Consider an (sn−k, sr) block design d(B,B0) of resolution three or
higher. Since the k×n matrix B has full row rank, there exists an (n−k)×n
matrix G, defined over GF (s), such that

rank(G) = n − k and BG′ = 0, (7.3.2)

i.e., the row spaces of B and G are orthogonal complements of each other.
Define the (n − k) × r matrix

G0 = GB′
0. (7.3.3)

The following facts now emerge:

(i) no two columns of G are linearly dependent,
(ii) the r columns of G0 are linearly independent,
(iii)no column of G is spanned by the columns of G0.

As in Theorem 2.7.1, fact (i) is obvious from (7.3.2) because d(B,B0) has
resolution three or higher. In Exercises 7.6 and 7.7, the reader is asked to
verify (ii) and (iii).

By (i), the n columns of G represent points of PG(n − k − 1, s). Let T
be the set of these n points. Similarly, by (ii), the r columns of G0 represent
linearly independent points of PG(n − k − 1, s). Let T ∗

0 be the set of these
r points and T0 be the (r − 1)-flat generated by the points of T ∗

0 . Then by
(iii), T0 and T are disjoint, and by (7.3.2), V (T ) = G has full row rank. Hence
(T0, T ) is an (r − 1, n) blocking pair of subsets of PG(n − k − 1, s).

With T0, T ∗
0 , and T as above, it is not hard to verify (a)–(d). While (b)

and (c) are evident from (7.3.2), we ask the reader to verify (a) and (d) in
Exercises 7.8 and 7.9.

The converse can be proved by reversing the above steps. �

To illustrate Theorem 7.3.1, we revisit the block design in Example 7.2.1.
It can be seen that the design has resolution four. The matrices B and B0 for
this design are shown in (7.2.3). Hence

G =

⎡⎢⎢⎣
1 0 0 0 1 0
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 0 1

⎤⎥⎥⎦
satisfies (7.3.2), and by (7.3.3),
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G0 =
[

1 0 1 1
1 1 0 1

]′
.

The columns of G and G0 represent the points of T and T ∗
0 respectively.

Therefore, T0 = {(1, 0, 1, 1)′, (1, 1, 0, 1)′, (0, 1, 1, 0)′}, and (T0, T ) is an (r−1, n)
blocking pair of subsets, with r = 2, n = 6. We now verify Theorem 7.3.1(a)
for the block indexed by (1, 1)′. Since V (T ∗

0 ) = G0, with λ = (1, 1)′, the
solutions of the second equation in (7.3.1) for ξ are (0, 1, 1, 0)′, (0, 0, 0, 1)′,
(1, 0, 0, 0)′, and (1, 1, 1, 1)′. Since V (T ) = G, the first equation in (7.3.1) now
shows that this block consists of the treatment combinations (0, 1, 1, 0, 0, 0)′,
(0, 0, 0, 1, 0, 1)′, (1, 0, 0, 0, 1, 0)′, and (1, 1, 1, 1, 1, 1)′. This agrees with what was
noted earlier in Example 7.2.1 directly from (7.2.2). Similarly, with T0, T ∗

0 ,
and T as above, one can verify (a) for the other blocks, as well as (b)–(d).

Considering the cardinalities of T0 and T , it follows from Theorem 7.3.1
that given s, n, k, and r, an (sn−k, sr) block design of resolution three or
higher exists if and only if

sr − 1
s − 1

+ n ≤ sn−k − 1
s − 1

, i.e., sr + n(s − 1) ≤ sn−k. (7.3.4)

Observe that with m = n− k, (7.3.4) is the same as the corresponding condi-
tion in Section 6.3 in the context of an sm-run design for an (sr)×sn factorial.
Indeed, (7.3.1) suggests that in an (sn−k, sr) block design, one can identify the
blocks with the levels of an sr-level factor and thus the block design formally
corresponds to an sn−k-run design for an (sr)×sn factorial. However, there is
one major difference between the two settings. Whereas the sr-level factor is
itself of interest in Section 6.3, no such interest lies here in the block effects.
Consequently, as will be seen in the next section, the design criteria for block
designs are different from those in the last chapter.

Given an sn−k design d(B) of resolution at least three, Theorem 7.3.1
can be employed to find the maximum possible blocking of d(B) so that the
resulting block design also has resolution three or higher. This can be done in
two steps:

(i) Following Theorem 2.7.1, represent d(B) by a set T of n points of PG(n−
k − 1, s) such that V (T ) has full row rank.

(ii) Given T , find the largest r such that the complement of T in PG(n− k −
1, s) contains an (r − 1)-flat, say T0. Then (T0, T ) is an (r − 1, n) blocking
pair of subsets. The block design corresponding to (T0, T ), as envisaged
in Theorem 7.3.1, has resolution three or higher and gives a maximum
possible blocking of d(B).

The following example is from Mukerjee and Wu (1999), who addressed the
issue of maximum blocking in some detail.

Example 7.3.1. Let s = 2, k = 1, and to avoid trivialities, suppose n ≥ 4.
Then (7.3.4) yields



7.4 Design Criteria 161

r ≤ n − 2. (7.3.5)

Let T0 be the (n − 3)-flat of PG(n − 2, 2) consisting of the points whose
coordinates add up to zero, e.g., T0 = {(1, 1, 0)′, (1, 0, 1)′, (0, 1, 1)′} for n = 4.
The 2n−1 design d(1) with the highest resolution n is represented by the set
of points T (1) = {e1, . . . , en−1, y} of PG(n − 2, 2), where e1, . . . , en−1 are the
unit vectors, of order n− 1, over GF (2), and y = e1 + · · ·+ en−1. If n is even,
then T0 and T (1) are disjoint. Since T0 is an (n − 3)-flat, it follows that the
bound (7.3.5) is then attainable for d(1), i.e., for even n, d(1) can be partitioned
into 2n−2 blocks so that the resulting block design continues to have resolution
three or higher.

For odd n, however, y ∈ T0, i.e., T0 and T (1) are no longer disjoint.
Nevertheless, suppose the complement of T (1) in PG(n − 2, 2) contains an
(n− 3)-flat, say T̂ . Clearly, then the points of T̂ , in conjunction with y(/∈ T̂ ),
span PG(n − 2, 2). This implies that ei = y + qi, 1 ≤ i ≤ n − 1, for some
q1, . . . , qn−1 ∈ T̂ . Since n is odd, the n− 1 points qi(= ei + y), 1 ≤ i ≤ n− 1,
are linearly independent. But this is impossible because they belong to an
(n − 3)-flat. Hence for odd n, d(1) cannot be partitioned into 2n−2 blocks so
that the resulting block design still has resolution three or higher. In this case,
however, it is possible to partition d(1) into 2n−3 blocks so that the resulting
block design has the desired resolution. To see this, consider the (n−4)-flat T ′

0

consisting of the points of PG(n − 2, 2) whose last coordinate is zero and all
other coordinates add up to zero, and observe that T ′

0 and T (1) are disjoint.
Interestingly, for odd n, the bound (7.3.5) can be attained for the 2n−1

design d(2) with the second highest resolution n − 1. This happens because
d(2) is represented by the set T (2) = {e1, . . . , en−1, e1 + · · · + en−2}, and T0

and T (2) are disjoint for odd n. �

7.4 Design Criteria

From now on, we consider only block designs of resolution three or higher,
i.e., the condition (7.3.4) is supposed to hold. By Theorem 7.3.1, any such
design is equivalent to a blocking pair of subsets (T0, T ) such that (a)–(d)
of the theorem are met. Thus the design itself may be denoted by d(T0, T ).
Given a block design d = d(T0, T ), for 1 ≤ i ≤ n, let Ai(d) denote the number
of (distinct) defining pencils with i nonzero entries; also, let A∗

i (d) denote
the number of (distinct) pencils, with i nonzero entries, that are not defining
pencils but confounded with blocks. Thus one gets two wordlength patterns

W (d) = (A1(d), A2(d), A3(d), . . . , An(d))

and
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W ∗(d) = (A∗
1(d), A∗

2(d), A∗
3(d), . . . , A∗

n(d)),

where A1(d) = A2(d) = A∗
1(d) = 0, since the design has resolution three or

higher. Note that A∗
i (d) is the natural counterpart of βi(d) of Section 7.1 in

the present context.
Under the effect hierarchy principle, a good design aims at keeping Ai(d)

and A∗
i (d) small for smaller values of i. To that effect, as in Section 2.5, one can

define an MA criterion separately with respect to either W (d) or W ∗(d). The
resulting designs are called MA(W ) or MA(W ∗) designs respectively. Quite
often, however, there is no single design that is both MA(W ) and MA(W ∗).
Example 7.4.1 below illustrates this point. Along the lines of the previous
chapters, in what follows, two (sn−k, sr) block designs d(T01, T1) and d(T02, T2)
are called isomorphic if there exists a nonsingular transformation that maps
each point of T01 to some point of T02 up to proportionality, and each point of
T1 to some point of T2 up to proportionality. From Theorem 7.3.1, it is evident
that isomorphic designs have the same W (d) as well as the same W ∗(d).

Example 7.4.1. Let s = 3, n = 4, k = r = 1. Up to isomorphism, there are
five block designs. These are di = d(T0i, Ti), 1 ≤ i ≤ 5, where

T1 = T2 = {1, 2, 3, 123}, T3 = T4 = T5 = {1, 2, 3, 12},

T01 = {122}, T02 = {12}, T03 = {1223}, T04 = {13}, T05 = {122},
using the compact notation for the points of a finite projective geometry. From
Theorem 7.3.1(b) and (d), one can check that

W (d1) = (0, 0, 0, 1), W ∗(d1) = (0, 1, 2, 0),
W (d2) = (0, 0, 0, 1), W ∗(d2) = (0, 2, 0, 1),
W (d3) = (0, 0, 1, 0), W ∗(d3) = (0, 0, 3, 0),
W (d4) = (0, 0, 1, 0), W ∗(d4) = (0, 1, 1, 1),
W (d5) = (0, 0, 1, 0), W ∗(d5) = (0, 3, 0, 0).

Thus d1 and d2 are the MA(W ) designs, while d3 is the MA(W ∗) design. No
design has MA with respect to both W (d) and W ∗(d). �

Examples similar to the above abound. Hence it is unrealistic to look for a
design that is both MA(W ) and MA(W ∗). As a way out, Sun, Wu, and Chen
(1997) and Mukerjee and Wu, (1999) considered the concept of admissibility.

Definition 7.4.1. Given s, n,k, and r, a b lock design d is said to be admissible
if there exists no other b lock design d′ that is at least as good as d with respect
to one of the two wordlength patterns and better than d with respect to the
other, i.e., with reference to (i)–(iv) b elow, neither (i) and (iv) hold, nor (ii)
and (iii) hold, nor (iii) and (iv) hold.

(i) Ai(d′) = Ai(d), 1 ≤ i ≤ n;
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(ii) A∗
i (d

′) = A∗
i (d), 1 ≤ i ≤ n;

i
′

i

Au(d′) < Au(d);
(iv) there exists a positive integer u∗ such that A∗

i (d
′) =A∗

i (d) for i < u∗, and
A∗

u∗(d′) < A∗
u∗(d).

The only admissible designs in Example 7.4.1 are d1 and d3. A comparison
with d1 shows that d2 is inadmissible. Similarly, the inadmissibility of d4 and
d5 follows from comparison with d3.

Theorem 7.4.1 below gives a simple sufficient condition for admissibility
as defined above. Consider an (sn−k, sr) block design d(T0, T ), where (T0, T )
is an (r − 1, n) blocking pair of subsets of PG(n − k − 1, s). Let

N =
sr − 1
s − 1

+ n, K =
sr − 1
s − 1

+ k.

Then N−K = n−k, and T0∪T is a set of N points of PG(N−K−1, s). Also,
V (T0 ∪ T ), like V (T ), has full row rank. Therefore, by Theorem 2.7.1, T0 ∪ T
represents an sN−K design (with no blocks) of resolution three or higher.

Theorem 7.4.1. An (sn−k, sr) block design d(T0, T ) is admissible in the
sense of Definition 7.4.1 if T0 ∪ T represents an sN−K design with minimum
aberration.

The proof of the above theorem is available in Mukerjee and Wu (1999)
and omitted here. The reader may verify that in Example 7.4.1, the designs
d1 and d3 satisfy the condition of Theorem 7.4.1, while the other designs do
not. It is particularly easy to apply this theorem in the nearly saturated cases,
where

f =
sN−K − 1

s − 1
− N =

sn−k − sr

s − 1
− n (7.4.1)

is small, and consideration of complementary sets facilitates the understanding
of the sN−K design represented by T0 ∪ T .

Example 7.4.2. (a) Let s = 2, n = 8, k = 4, r = 2. Consider an (r − 1, n)
blocking pair of subsets (T0, T ), where

T0 = {1, 2, 12}, T = {23, 123, 14, 24, 124, 134, 234, 1234}.
Here N = 11, K = 7, f = 4, and the complement of T0 ∪ T in PG(3, 2) is
T̃ = {3, 4, 34, 13}. From Table 3.1 with f = 4, it is now clear that the 211−7

design represented by T0 ∪T has MA. Hence by Theorem 7.4.1, the (28−4, 22)
block design d(T0, T ) is admissible.
(b) Let s = 3, n = 6, k = 3, r = 2. Consider an (r − 1, n) blocking pair of
subsets (T0, T ), where

T0 = {1, 2, 12, 122}, T = {23, 232, 123, 1232, 1223, 12232}.

(iii) there existsa positive integer u such that A (d ) =A (d) for i < u, and
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Here N = 10, K = 7, f = 3, and the complement of T0∪T in PG(2, 3) is T̃ =
{3, 13, 132}. Hence Theorem 4.4.1 shows that the 310−7 design represented
by T0 ∪ T has MA. Therefore, by Theorem 7.4.1, the (36−3, 32) block design
d(T0, T ) is admissible. �

In the spirit of the previous chapters, the wordlength patterns of a block
design can be expressed in terms of the complementary set T̃ as considered
in the last example. From Theorem 7.3.1(b) and (d), observe that for an
(sn−k, sr) block design d = d(T0, T ),

Ai(d) = Gi(T ), A∗
i (d) = Hi(T0, T ), 1 ≤ i ≤ n, (7.4.2)

with Gi(T ) and Hi(T0, T ) as in (6.3.6) and (6.3.7). Let T̃ be the complement
of T0 ∪ T in PG(n− k − 1, s). Then by Lemma 6.3.3(a) and Lemma 6.3.4(a),

A3(d) = G3(T ) = constant − G3(T0 ∪ T̃ ) = constant − G3(T̃ ) − H2(T0, T̃ ),
(7.4.3)

A∗
2(d) = H2(T0, T ) = constant + G3(T0 ∪ T ) − G3(T )

= constant − G3(T̃ ) + G3(T0 ∪ T̃ ) = constant + H2(T0, T̃ ). (7.4.4)

Incidentally, Lemma 6.3.3 was stated in the last chapter with reference to a
particular (r − 1)-flat and a set Q, but it holds generally for any (r − 1)-flat
T0 as long as Q and T0 are disjoint. If V (T̃ ) has full row rank, then (T0, T̃ )
is an (r − 1, f) blocking pair and d̃ = d(T0, T̃ ) is an (sf−k∗

, sr) block design,
where k∗ = f − (n − k) and f is as in (7.4.1). In this case, using (7.4.2), one
can express (7.4.3) and (7.4.4) as

A3(d) = constant − A3(d̃) − A∗
2(d̃), (7.4.5)

and

A∗
2(d) = constant + A∗

2(d̃), (7.4.6)

respectively. Note that d̃ may be regarded as the complementary design of d.
The constants in (7.4.3)–(7.4.6) may depend on s, n, k, and r, but not on
the particular choice of (T0, T ). Counterparts of (7.4.5) and (7.4.6) for A4(d)
and A∗

3(d) can be obtained with a little more algebra using (7.4.2) and part
(b) of Lemmas 6.3.3 and 6.3.4, in conjunction with part (a) of these lemmas.
The corresponding expressions for general Ai(d) and A∗

i (d) are, of course,
more involved. For two-level factorials, these are available in Chen and Cheng
(1999), who employed a coding-theoretic approach akin to that in Chapter 4.

For two-level factorials, Chen and Cheng (1999) proposed a design criterion
that combines the two wordlength patterns W (d) and W ∗(d), and then applies
the MA criterion to the combined wordlength pattern. Since A1(d) = A2(d) =
A∗

1(d) = 0, in essence, their criterion calls for sequential minimization of

Acomb
3 (d) = 3A3(d) + A∗

2(d), Acomb
4 (d) = A4(d), Acomb

5 (d) = 10A5(d) + A∗
3(d),

(7.4.7)
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and so on. This was motivated by consideration of estimation capacity as
applied to block designs. For instance, analogously to Theorem 5.1.2, Chen
and Cheng (1999) noted that there are

(
n
2

)−Acomb
3 (d) two-factor interactions

(2fi’s) that are neither aliased with main effects nor confounded with blocks,
and that these 2fi’s tend to be uniformly distributed over the relevant alias
sets when Acomb

4 (d) is small. If Acomb
3 (d) = Acomb

4 (d) = 0, then no 2fi is
confounded with blocks or aliased with either any main effect or another 2fi.
They further observed that in this situation Acomb

5 (d) equals the number of
three-factor interactions that are aliased with lower-order factorial effects or
confounded with blocks.

The next example illustrates the use of complementary sets in exploring
the MA criterion based on (7.4.7). We refer to Cheng and Mukerjee (2001) for
results on the estimation capacity of block designs, and to Cheng and Tang
(2005) for discussion on some variations of (7.4.7) from other perspectives.

Example 7.4.3. Let s = 2, n = 9, k = 5, r = 2. Up to isomorphism, there
are four block designs, which correspond to

(a) T0 = {1, 2, 12}, T̃ = {3, 13, 23},
(b) T0 = {1, 2, 12}, T̃ = {3, 4, 34},
(c) T0 = {1, 2, 12}, T̃ = {3, 4, 13},
(d) T0 = {1, 2, 12}, T̃ = {3, 4, 134},

where T̃ is the complement of T0 ∪ T in PG(3, 2). By (7.4.3), (7.4.4), and
(7.4.7), minimization of Acomb

3 (d) is equivalent to maximization of 3G3(T̃ ) +
2H2(T0, T̃ ). Now, for (a)–(d) above, the pair (G3(T̃ ),H2(T0, T̃ )) equals (0, 3),
(1, 0), (0, 1), and (0, 0) respectively. Thus, up to isomorphism, the design in
(a) uniquely minimizes Acomb

3 (d). Hence this is the MA design with respect
to the combined wordlength pattern considered in (7.4.7). �

While Chen and Cheng (1999) suggested combining W (d) and W ∗(d),
criteria based on interpenetration of the two wordlength patterns have also
been proposed in the literature. Sitter, Chen, and Feder (1997) considered the
interpenetration

W
(1)
int (d) = (A3(d), A∗

2(d), A4(d), A∗
3(d), A5(d), A∗

4(d), . . .). (7.4.8)

On the other hand, Cheng and Wu (2002) considered

W
(2)
int (d) = (A3(d), A4(d), A∗

2(d), A5(d), A6(d), A∗
3(d), A7(d), . . .) (7.4.9)

and

W
(3)
int (d) = (A3(d), A∗

2(d), A4(d), A5(d), A∗
3(d), A6(d), A7(d), . . .). (7.4.10)

Chen and Cheng (1999) also mentioned (7.4.10). The MA criterion can be ap-
plied as usual to any of (7.4.8)–(7.4.10). In each of the three criteria, the order-
ing of Ai(d) for i ≥ 3 and of A∗

i (d) for i ≥ 2 follows from the usual effect hierar-
chy principle. Where to insert an A∗

i (d) within the sequence (A3(d), A4(d), . . .)
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will depend on a construal of the effect hierarchy principle for block designs.
Consider, for example, the justification for W

(2)
int (d). Note that any pencil con-

tributing to A4(d) entails three pairs of aliased 2fi pencils, while any pencil
contributing to A∗

2(d) entails the confounding of one 2fi pencil with blocks.
From this perspective, A4(d) is more serious than A∗

2(d). A similar argument
justifies viewing A6(d) more seriously than A∗

3(d). Again, A∗
2(d) is more serious

than A5(d) because the latter does not entail the aliasing of any 2fi pencil with
main effect pencils or other 2fi pencils. A similar argument justifies viewing
A∗

3(d) more seriously than A7(d). On the other hand, in W
(1)
int (d) and W

(3)
int (d),

A∗
2(d) is considered to be more serious than A4(d) from a different viewpoint.

Details can be found in the three papers cited above.
It is not hard to verify that an MA design arising from any of (7.4.7)–

(7.4.10) is admissible in the sense of Definition 7.4.1. Do these approaches for
combining or interpenetrating W (d) and W ∗(d) lead to the same MA design?
This happens in Example 7.4.3, where the design in (a), which was earlier
seen to enjoy the MA property with respect to (7.4.7), uniquely maximizes
G3(T̃ ) + H2(T0, T̃ ). By (7.4.3), therefore, it uniquely minimizes A3(d) and
hence is the MA design with respect to (7.4.8)–(7.4.10) as well. However,
there are plenty of examples showing that this is not the case in general. One
such example is indicated in Exercise 7.12.

7.5 Description and Use of Block Design Tables

Tables of admissible block designs for s = 2 and 3 are presented in the ap-
pendix of this chapter. These tables are adapted from Sun, Wu, and Chen
(1997) and Cheng and Wu (2002). Following these authors, a more elaborate
definition of admissibility is adopted in the tables by bringing in the C1 and
C2 criteria in addition to W (d) and W ∗(d), where C1 and C2 are the num-
bers of clear main effect and 2fi pencils respectively. In the spirit of Section
3.4, a main effect or 2fi pencil is called clear if it is neither confounded with
blocks nor aliased with any other main effect or 2fi pencil. Notice that unlike
in Section 4.5, C2 here refers to 2fi pencils rather than the 2fi’s themselves.
This change is imperative for borrowing the three-level block design tables
from Cheng and Wu (2002).

A good design should aim at keeping C1 and C2 large in addition to
achieving less aberration with respect to W (d) and W ∗(d). From this view-
point, a block design d1 is now called admissible if there exists no other block
design d2 that is at least as good as d1 with respect to each of W (d), W ∗(d),
C1, and C2, and better than d1 with respect to one or more of these four
criteria.

For illustration, we revisit Example 7.4.1. For the designs d1, . . . , d5 in
this example, the pair (C1, C2) equals (4, 5), (4, 6), (1, 6), (1, 5), and (1, 6)
respectively. From this, together with the wordlength patterns for d1, . . . , d5

in Example 7.4.1, it is evident that d1, d2, and d3 are admissible according to
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the above definition. Recall that d1 and d3 were earlier seen to be admissible
according to Definition 7.4.1. Consideration of C1 and C2 in addition to W (d)
and W ∗(d) leads to the admissibility of d2 as well, because d2 has higher C2
than d1 and higher C1 than d3, d4, d5.

Six tables of admissible block designs are presented in the appendix of this
chapter. Tables 7A.1–7A.4 give 16-, 32-, 64-, and 128-run designs for s = 2.
Tables 7A.5 and 7A.6 give 27- and 81-run designs for s = 3. Table 7A.5 is
complete, i.e., it lists all nonisomorphic admissible block designs with 27 runs.
The cases n = 11, 12 are omitted in Table 7A.5 since the designs are unique
up to isomorphism. The other tables display selected admissible designs.

Designs of resolution three or higher are considered in Tables 7A.1–7A.6.
Accordingly, any design is described via an (r − 1, n) blocking pair of subsets
(T0, T ) of PG(n − k − 1, s). Given n, k, and r, the ith admissible design in
any table is denoted by n− k/Br.i, where B signifies that it is a block design.
As with the design tables in Chapters 3 and 4, T is supposed to contain
the independent points 1, 2, . . . , m of PG(n − k − 1, s), where m = n − k,
and only the additional k points of T are shown in the tables under the
column heading Tadd. Also, only r independent points of T0 are displayed
under the column heading T ∗

0 . For ease in presentation, the points of the
finite projective geometry are indicated in the tables via their serial numbers,
the numbering schemes for the two- and three-level designs being as in Tables
3A.1 and 4A.1 respectively. Against each tabulated design, the wordlength
patterns W (d) and W ∗(d) as well as C1 and C2 are displayed. Since A1(d) =
A2(d) = A∗

1(d) = 0 for each design, we show A3(d), . . . , An(d) under W (d)
and A∗

2(d), . . . , A∗
n(d) under W ∗(d). Use of the design tables is illustrated in

the following example.

Example 7.5.1. Let s = 3, n = 4, k = r = 1. Table 7A.5 lists three noniso-
morphic admissible block designs, namely 4-1/B1.1, 4-1/B1.2, and 4-1/B1.3.
Consider 4-1/B1.1. For this design, the columns Tadd and T ∗

0 show the points
with serial numbers 8 and 4 respectively. The numbering scheme displayed in
Table 4A.1 identifies these points as 123 and 122. Since T also contains the
independent points 1, 2, 3 of PG(2, 3), it follows that T = {1, 2, 3, 123} and
T0 = {122} for this design. Thus 4-1/B1.1 is the same as d1 considered in
Example 7.4.1. Similarly, 4-1/B1.2 and 4-1/B1.3 are the same as d2 and d3

respectively in that example. This agrees with what was noted earlier in this
section about d1, d2, and d3. �

Exercises

7.1 Obtain all the blocks in Example 7.2.2.
7.2 In Example 7.2.1, obtain the alias sets that are confounded with blocks.
7.3 Show that there are (sr − 1)/(s − 1) alias sets that satisfy (7.2.6).
7.4 Show that the block design in Example 7.2.1 has resolution four.

Exercises



168 7 Block Designs for Symmetrical Factorials

7.5 Prove Theorem 7.2.1.
7.6 Refer to the proof of Theorem 7.3.1. Suppose a column of G is spanned

by the columns of G0.
(a) From (7.3.3), observe that G(e − B′

0δ0) = 0, where δ0 is some r × 1
vector and e is an n × 1 unit vector, both over GF (s).
(b) Use (7.3.2) to conclude that

e′ ∈ R
(

B

B0

)
.

Argue that this is impossible in view of (7.2.6) since e represents a main
effect pencil and d(B,B0) has resolution three or higher. Hence infer the
truth of fact (iii) in the proof.

7.7 Refer again to the proof of Theorem 7.3.1. Use (7.2.1) and arguments
similar to those in Exercise 7.6 to establish fact (ii) in the proof.

7.8 In order to verify Theorem 7.3.1(a), it suffices to show that (7.2.2) and
(7.3.1) are equivalent. Establish this using (7.3.2), (7.3.3), and the facts
that V (T ) = G and V (T ∗

0 ) = G0.
7.9 Observe that any pencil b satisfies (7.2.6) if and only if b = B′δ + B′

0δ0,
for some vectors δ and δ0 such that δ0 �= 0. Hence use (7.3.2) and (7.3.3)
to verify Theorem 7.3.1(d).

7.10 For the block design in Example 7.2.2, obtain the sets T0 and T as
envisaged in Theorem 7.3.1 and verify, from first principles, (a)–(d) of
the theorem.

7.11 For s ≥ 3 and n ≥ 3, consider any sn−1 design of resolution three or
higher.
(a) Show that the design is represented, up to isomorphism, by a set of
points T = {e1, . . . , en−1, y} of PG(n − 2, s), where e1, . . . , en−1 are the
unit vectors of order n − 1 over GF (s), and y = (y1, . . . , yn−1)′ is some
other point.
(b) Without loss of generality, suppose y1 �= 0. Because s ≥ 3, there
exists α(�= 0) ∈ GF (s) such that α �= y−1

1 (y2 + · · · + yn−1). Show that
the n − 2 points e1 + αei, 2 ≤ i ≤ n − 1, are linearly independent.
(c) Show that the (n − 3)-flat spanned by the n − 2 points in (b) does
not intersect T . Hence conclude that the sn−1 design can be partitioned
into sn−2 blocks such that the resulting block design also has resolution
three or higher.

7.12 Enumerate, up to isomorphism, all (25−1, 21) block designs of resolution
three or higher. Verify that none of these designs has MA with respect
to both W (d) and W ∗(d). Identify the admissible designs in the sense
of Definition 7.4.1. Show that the same MA design does not arise from
each of (7.4.7)–(7.4.10).

7.13 Verify that the designs d1 and d3 in Example 7.4.1 satisfy the condition
of Theorem 7.4.1.

7.14 Derive the counterparts of (7.4.5) and (7.4.6) for A4(d) and A∗
3(d).



Admissible Block Designs

Table 7A.1 Selected two-level admissible block designs with
16 runs

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

5-1/B1.1 15 0 0 1 3 1 1 0 0 5 9
5-1/B1.2 7 0 1 0 11 0 2 0 0 5 4
5-1/B1.3 3 1 0 0 13 0 1 1 0 2 7

5-1/B2.1 15 0 0 1 3 5 3 3 0 0 5 7
5-1/B2.2 7 0 1 0 13 14 2 4 0 0 5 4
5-1/B2.3 3 1 0 0 5 15 2 3 1 0 2 5

5-1/B3.1 7 0 1 0 9 10 12 10 0 4 0 5 0

6-2/B1.1 7 11 0 3 0 0 13 0 4 0 0 0 6 0
6-2/B1.2 3 13 1 1 1 0 6 1 2 1 0 0 3 5
6-2/B1.3 3 13 1 1 1 0 5 2 1 0 1 0 3 6
6-2/B1.4 3 5 2 1 0 0 14 0 2 2 0 0 1 5

6-2/B2.1 7 11 0 3 0 0 13 14 3 8 0 0 1 6 0
6-2/B2.2 3 13 1 1 1 0 10 15 4 5 2 1 0 3 4
6-2/B2.3 3 13 1 1 1 0 5 9 6 3 0 3 0 3 6

6-2/B3.1 7 11 0 3 0 0 5 6 9 15 0 12 0 1 6 0

7-3/B1.1 7 11 13 0 7 0 0 0 14 0 7 0 0 0 1 7 0
7-3/B1.2 3 5 14 2 3 2 0 0 9 1 4 2 0 1 0 2 1
7-3/B1.3 3 5 14 2 3 2 0 0 10 2 2 2 2 0 0 2 2
7-3/B1.4 3 5 10 3 2 1 1 0 12 1 3 3 1 0 0 0 3
7-3/B1.5 3 5 10 3 2 1 1 0 6 2 3 1 1 1 0 0 4
7-3/B1.6 3 5 9 3 3 0 0 1 14 0 4 4 0 0 0 0 0
7-3/B1.7 3 5 6 4 3 0 0 0 15 0 3 4 0 0 1 1 6
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Table 7A.1 (continued)

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

7-3/B2.1 7 11 13 0 7 0 0 0 3 5 9 0 12 0 3 0 7 0
7-3/B2.2 3 5 14 2 3 2 0 0 9 15 5 10 4 2 3 0 2 0
7-3/B2.3 3 5 14 2 3 2 0 0 10 13 6 7 6 4 0 1 2 2
7-3/B2.4 3 5 6 4 3 0 0 0 9 14 5 8 4 4 3 0 1 4

7-3/B3.1 7 11 13 0 7 0 0 0 3 5 9 21 0 28 0 7 0 7 0

8-4/B1.1 7 11 13 14 0 14 0 0 0 1 3 4 0 8 0 4 0 0 8 0
8-4/B1.2 3 5 9 14 3 7 4 0 1 0 15 1 7 4 0 3 1 0 1 0
8-4/B1.3 3 5 9 14 3 7 4 0 1 0 6 3 3 4 4 1 1 0 1 1
8-4/B1.4 3 5 6 15 4 6 4 0 0 1 9 2 4 4 4 2 0 0 2 0
8-4/B1.5 3 5 6 7 7 7 0 0 1 0 9 1 3 4 4 3 1 0 1 6

8-4/B2.1 7 11 13 14 0 14 0 0 0 1 3 5 12 0 24 0 12 0 0 8 0
8-4/B2.2 3 5 9 14 3 7 4 0 1 0 6 10 9 9 12 12 3 3 0 1 1
8-4/B2.3 3 5 10 12 4 5 4 2 0 0 11 13 7 14 10 8 7 2 0 0 0
8-4/B2.4 3 5 6 15 4 6 4 0 0 1 9 14 8 12 8 12 8 0 0 2 0
8-4/B2.5 3 5 6 9 5 5 2 2 1 0 10 13 7 13 10 10 7 1 0 0 2

8-4/B3.1 7 11 13 14 0 14 0 0 0 1 3 5 9 28 0 56 0 28 0 0 8 0

9-5/B1.1 3 5 9 14 15 4 14 8 0 4 1 0 6 4 4 8 8 4 4 0 0 0 0
9-5/B1.2 3 5 10 12 15 6 9 9 6 0 0 1 6 3 7 6 6 7 3 0 0 0 0
9-5/B1.3 3 5 6 9 14 6 10 8 4 2 1 0 15 2 8 8 4 6 4 0 0 0 0
9-5/B1.4 3 5 6 9 10 7 9 6 6 3 0 0 13 2 7 9 6 4 3 1 0 0 0

9-5/B2.1 3 5 9 14 15 4 14 8 0 4 1 0 6 10 12 12 24 24 12 12 0 0 0 0
9-5/B2.2 3 5 10 12 15 6 9 9 6 0 0 1 6 11 9 21 18 18 21 9 0 0 0 0
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Table 7A.2 Selected two-level admissible block designs with 32
runs

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

6-1/B1.1 31 0 0 0 1 7 0 2 0 0 0 6 15
6-1/B1.2 15 0 0 1 0 19 0 1 1 0 0 6 15
6-1/B1.3 7 0 1 0 0 27 0 0 2 0 0 6 9

6-1/B2.1 31 0 0 0 1 13 14 1 4 1 0 0 6 14
6-1/B2.2 15 0 0 1 0 21 22 1 3 2 0 0 6 14
6-1/B2.3 7 0 1 0 0 11 30 0 4 2 0 0 6 9

6-1/B3.1 31 0 0 0 1 21 22 25 3 8 3 0 0 6 12
6-1/B3.2 7 0 1 0 0 13 14 27 3 8 2 0 1 6 8
6-1/B3.3 3 1 0 0 0 15 22 28 3 7 3 0 1 3 9

6-1/B4.1 31 0 0 0 1 3 5 9 17 15 0 15 0 0 6 0
6-1/B4.2 7 0 1 0 0 3 5 9 17 15 0 14 0 1 6 0

7-2/B1.1 7 27 0 1 2 0 0 13 0 2 2 0 0 0 7 15
7-2/B1.2 7 11 0 3 0 0 0 29 0 0 4 0 0 0 7 6
7-2/B1.3 3 29 1 0 1 1 0 14 0 2 2 0 0 0 4 18
7-2/B1.4 3 13 1 1 1 0 0 22 0 1 2 1 0 0 4 12
7-2/B1.5 3 5 2 1 0 0 0 30 0 0 2 2 0 0 2 11

7-2/B2.1 7 27 0 1 2 0 0 21 30 1 6 4 0 1 0 7 14
7-2/B2.2 7 27 0 1 2 0 0 13 14 2 5 4 0 0 1 7 15
7-2/B2.3 7 11 0 3 0 0 0 19 30 0 7 4 0 0 1 7 6
7-2/B2.4 3 29 1 0 1 1 0 22 26 1 5 5 1 0 0 4 17
7-2/B2.5 3 28 1 1 0 0 1 13 22 0 6 6 0 0 0 4 12
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Table 7A.2 (continued)

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

7-2/B3.1 7 27 0 1 2 0 0 14 22 29 5 12 6 2 3 0 7 12
7-2/B3.2 7 25 0 2 0 1 0 21 22 28 5 12 5 4 2 0 7 8
7-2/B3.3 3 29 1 0 1 1 0 18 23 27 5 11 7 3 2 0 4 13

7-2/B4.1 7 25 0 2 0 1 0 3 5 9 17 21 0 33 0 6 0 7 0
7-2/B4.2 7 11 0 3 0 0 0 3 5 9 17 21 0 32 0 7 0 7 0

8-3/B1.1 7 11 29 0 3 4 0 0 0 19 0 3 4 0 0 1 0 8 13
8-3/B1.2 7 11 19 0 6 0 0 0 1 29 0 0 8 0 0 0 0 8 0
8-3/B1.3 7 11 13 0 7 0 0 0 0 30 0 0 7 0 0 0 1 8 7
8-3/B1.4 3 13 22 1 2 3 1 0 0 25 0 3 3 1 1 0 0 5 13
8-3/B1.5 3 5 30 2 1 2 2 0 0 15 0 3 4 0 0 1 0 3 18
8-3/B1.6 3 12 21 2 1 2 2 0 0 26 0 2 4 2 0 0 0 2 16

8-3/B2.1 7 11 29 0 3 4 0 0 0 19 30 1 10 8 0 3 2 0 8 12
8-3/B2.2 7 11 29 0 3 4 0 0 0 5 9 6 3 6 6 0 3 0 8 13
8-3/B2.3 3 13 22 1 2 3 1 0 0 25 28 2 8 7 3 3 1 0 5 13
8-3/B2.4 3 5 30 2 1 2 2 0 0 23 25 1 8 10 2 1 2 0 3 17

8-3/B3.1 7 11 29 0 3 4 0 0 0 14 17 18 8 16 11 12 8 0 1 8 8
8-3/B3.2 7 11 29 0 3 4 0 0 0 18 23 30 9 12 16 12 3 4 0 8 10
8-3/B3.3 7 11 29 0 3 4 0 0 0 5 6 9 15 6 12 16 1 6 0 8 13
8-3/B3.4 3 13 22 1 2 3 1 0 0 17 26 31 7 17 13 9 8 2 0 5 10
8-3/B3.5 3 5 30 2 1 2 2 0 0 9 15 18 7 16 14 10 7 2 0 3 13
8-3/B3.6 3 12 21 2 1 2 2 0 0 10 27 30 8 14 13 14 6 0 1 2 14
8-3/B3.7 3 5 24 3 1 0 2 1 0 15 18 20 7 15 14 12 7 1 0 0 10

8-3/B4.1 7 11 21 0 5 0 2 0 0 3 5 9 17 28 0 65 0 26 0 1 8 0
8-3/B4.2 7 11 19 0 6 0 0 0 1 3 5 9 17 28 0 64 0 28 0 0 8 0
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Table 7A.2 (continued)

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

9-4/B1.1 7 11 19 29 0 6 8 0 0 1 0 30 0 4 8 0 0 4 0 0 9 8
9-4/B1.2 7 11 13 30 0 7 7 0 0 0 1 17 1 3 4 4 3 1 0 0 9 14
9-4/B1.3 7 11 13 30 0 7 7 0 0 0 1 3 3 1 4 4 1 3 0 0 9 15
9-4/B1.4 7 11 13 14 0 14 0 0 0 1 0 19 0 4 0 8 0 4 0 0 9 8
9-4/B1.5 3 13 21 26 1 5 6 2 1 0 0 28 0 5 5 2 2 1 1 0 6 9
9-4/B1.6 3 13 21 25 1 7 4 0 3 0 0 30 0 3 7 4 0 1 1 0 6 12
9-4/B1.7 3 5 9 30 3 3 4 4 1 0 0 15 0 5 7 0 0 3 1 0 2 15
9-4/B1.8 3 5 6 31 4 3 3 4 0 0 1 9 1 3 4 4 3 1 0 0 3 20
9-4/B1.9 3 5 6 31 4 3 3 4 0 0 1 7 3 5 0 0 5 3 0 0 3 21
9-4/B1.10 3 5 6 24 5 3 0 4 3 0 0 15 0 3 7 4 0 1 1 0 0 18

9-4/B2.1 7 11 19 29 0 6 8 0 0 1 0 5 30 4 8 16 8 4 8 0 0 9 8
9-4/B2.2 7 11 13 30 0 7 7 0 0 0 1 17 31 3 13 8 8 13 3 0 0 9 12
9-4/B2.3 7 11 13 30 0 7 7 0 0 0 1 17 18 5 7 12 12 7 5 0 0 9 13
9-4/B2.4 7 11 13 30 0 7 7 0 0 0 1 3 5 9 3 12 12 3 9 0 0 9 15
9-4/B2.5 3 5 6 31 4 3 3 4 0 0 1 9 17 3 9 12 12 9 3 0 0 3 18
9-4/B2.6 3 5 6 31 4 3 3 4 0 0 1 9 14 5 11 8 8 11 5 0 0 3 19

9-4/B3.1 7 11 19 29 0 6 8 0 0 1 0 5 9 30 12 16 32 24 12 16 0 0 9 8
9-4/B3.2 7 11 13 30 0 7 7 0 0 0 1 17 18 20 13 15 28 28 15 13 0 0 9 11
9-4/B3.3 7 11 13 30 0 7 7 0 0 0 1 3 5 9 21 7 28 28 7 21 0 0 9 15
9-4/B3.4 7 11 21 25 0 9 0 6 0 0 0 13 14 31 9 27 18 27 21 9 0 1 9 0
9-4/B3.5 7 11 13 19 0 10 0 4 0 1 0 25 26 28 10 24 18 32 18 8 2 0 9 2
9-4/B3.6 3 5 6 31 4 3 3 4 0 0 1 9 14 18 9 23 24 24 23 9 0 0 3 15

9-4/B4.1 7 11 21 25 0 9 0 6 0 0 0 3 5 9 17 36 0 117 0 78 0 9 0 9 0
9-4/B4.2 7 11 13 19 0 10 0 4 0 1 0 3 5 9 17 36 0 116 0 80 0 8 0 9 0
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Table 7A.3 Selected two-level admissible block designs with
64 runs

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

7-1/B1.1 63 0 0 0 0 1 7 0 1 1 0 0 0 7 21
7-1/B1.2 31 0 0 0 1 0 39 0 0 2 0 0 0 7 21
7-1/B1.3 15 0 0 1 0 0 51 0 0 1 1 0 0 7 21
7-1/B1.4 7 0 1 0 0 0 59 0 0 0 2 0 0 7 15

7-1/B2.1 63 0 0 0 0 1 7 25 0 3 3 0 0 0 7 21
7-1/B2.2 31 0 0 0 1 0 41 46 0 3 2 1 0 0 7 21
7-1/B2.3 7 0 1 0 0 0 27 45 0 0 6 0 0 0 7 15

7-1/B3.1 63 0 0 0 0 1 7 25 42 0 7 7 0 0 0 7 21
7-1/B3.2 7 0 1 0 0 0 30 45 56 0 7 6 0 0 1 7 15

7-1/B4.1 63 0 0 0 0 1 3 5 24 40 6 9 9 6 0 0 7 15
7-1/B4.2 31 0 0 0 1 0 3 12 21 33 5 12 7 4 2 0 7 16
7-1/B4.3 15 0 0 1 0 0 3 5 24 41 5 12 7 3 3 0 7 16

7-1/B5.1 31 0 0 0 1 0 3 5 9 17 33 21 0 35 0 6 0 7 0
7-1/B5.2 7 0 1 0 0 0 3 5 9 17 33 21 0 34 0 7 0 7 0

8-2/B1.1 15 51 0 0 2 1 0 0 21 0 1 2 1 0 0 0 8 28
8-2/B1.2 7 59 0 1 0 2 0 0 29 0 0 4 0 0 0 0 8 22
8-2/B1.3 7 27 0 1 2 0 0 0 45 0 0 2 2 0 0 0 8 22
8-2/B1.4 7 11 0 3 0 0 0 0 61 0 0 0 4 0 0 0 8 13

8-2/B2.1 15 51 0 0 2 1 0 0 21 42 0 4 5 2 1 0 0 8 28
8-2/B2.2 7 59 0 1 0 2 0 0 25 53 0 4 4 4 0 0 0 8 22
8-2/B2.3 7 57 0 1 1 0 1 0 26 44 0 3 6 3 0 0 0 8 22
8-2/B2.4 7 56 0 2 0 0 0 1 27 45 0 0 12 0 0 0 0 8 16

8-2/B3.1 15 51 0 0 2 1 0 0 41 42 61 2 8 10 6 1 0 1 8 26
8-2/B3.2 7 59 0 1 0 2 0 0 37 46 54 1 10 10 4 1 2 0 8 21

8-2/B4.1 15 51 0 0 2 1 0 0 5 9 18 34 7 18 15 10 8 2 0 8 21
8-2/B4.2 7 59 0 1 0 2 0 0 5 9 18 35 7 18 14 12 7 2 0 8 17
8-2/B4.3 7 57 0 1 1 0 1 0 3 12 21 37 7 18 14 11 9 1 0 8 17

8-2/B5.1 7 59 0 1 0 2 0 0 3 5 9 17 33 28 0 69 0 26 0 1 8 0
8-2/B5.2 7 56 0 2 0 0 0 1 3 5 9 17 33 28 0 68 0 28 0 0 8 0



175

Table 7A.3 (continued)

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

9-3/B1.1 7 27 45 0 1 4 2 0 0 0 51 0 1 4 2 0 1 0 0 9 30
9-3/B1.2 7 25 43 0 2 3 1 1 0 0 52 0 1 3 3 1 0 0 0 9 24
9-3/B1.3 7 27 43 0 2 4 0 0 1 0 53 0 0 4 4 0 0 0 0 9 24
9-3/B1.4 7 11 13 0 7 0 0 0 0 0 62 0 0 0 7 0 0 0 1 9 15

9-3/B2.1 7 27 45 0 1 4 2 0 0 0 49 63 0 6 8 5 4 0 0 1 9 30
9-3/B2.2 7 25 43 0 2 3 1 1 0 0 49 60 0 6 8 5 3 1 1 0 9 24
9-3/B2.3 7 27 43 0 2 4 0 0 1 0 13 62 0 4 12 4 0 4 0 0 9 24
9-3/B2.4 7 11 53 0 3 2 0 2 0 0 45 59 0 4 11 6 0 2 1 0 9 21

9-3/B3.1 7 27 45 0 1 4 2 0 0 0 35 53 62 2 14 17 8 8 6 1 0 9 28
9-3/B3.2 7 27 45 0 1 4 2 0 0 0 49 50 60 3 13 14 11 11 3 0 1 9 29
9-3/B3.3 7 27 45 0 1 4 2 0 0 0 49 50 52 6 10 9 16 12 2 1 0 9 30
9-3/B3.4 7 25 43 0 2 3 1 1 0 0 37 46 49 2 14 16 9 9 5 1 0 9 22
9-3/B3.5 7 27 43 0 2 4 0 0 1 0 49 50 60 2 14 16 8 10 6 0 0 9 24

9-3/B4.1 7 27 45 0 1 4 2 0 0 0 3 13 17 37 9 27 26 23 25 9 0 1 9 23
9-3/B4.2 7 27 45 0 1 4 2 0 0 0 3 5 9 48 12 20 25 36 18 4 5 0 9 24

9-3/B5.1 7 11 61 0 3 0 4 0 0 0 3 5 9 17 33 36 0 123 0 80 0 9 0 9 0
9-3/B5.2 7 11 49 0 4 0 2 0 1 0 3 5 9 17 33 36 0 122 0 82 0 8 0 9 0
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Table 7A.4 Selected two-level admissible block designs with
128 runs

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

8-1/B1.1 127 0 0 0 0 0 1 15 0 0 2 0 0 0 0 8 28
8-1/B1.2 63 0 0 0 0 1 0 71 0 0 1 1 0 0 0 8 28
8-1/B1.3 31 0 0 0 1 0 0 103 0 0 0 2 0 0 0 8 28
8-1/B1.4 7 0 1 0 0 0 0 123 0 0 0 0 2 0 0 8 22

8-1/B2.1 127 0 0 0 0 0 1 15 51 0 0 6 0 0 0 0 8 28
8-1/B2.2 31 0 0 0 1 0 0 39 108 0 0 5 0 1 0 0 8 28
8-1/B2.3 15 0 0 1 0 0 0 51 85 0 0 3 3 0 0 0 8 28

8-1/B3.1 127 0 0 0 0 0 1 15 51 85 0 0 14 0 0 0 0 8 28
8-1/B3.2 7 0 1 0 0 0 0 27 45 120 0 0 13 0 0 0 1 8 22

8-1/B4.1 127 0 0 0 0 0 1 3 12 49 84 2 8 10 8 2 0 0 8 26
8-1/B4.2 63 0 0 0 0 1 0 7 25 42 65 1 10 11 4 3 1 0 8 27
8-1/B4.3 31 0 0 0 1 0 0 3 13 52 85 1 10 11 4 2 2 0 8 27
8-1/B4.4 15 0 0 1 0 0 0 3 21 41 77 1 10 11 3 3 2 0 8 27

8-1/B5.1 127 0 0 0 0 0 1 3 5 9 48 81 8 16 14 16 8 0 0 8 20
8-1/B5.2 63 0 0 0 0 1 0 3 5 24 40 73 7 18 15 12 9 1 0 8 21
8-1/B5.3 31 0 0 0 1 0 0 3 12 21 33 68 7 18 15 12 8 2 0 8 21
8-1/B5.4 15 0 0 1 0 0 0 3 5 24 40 73 7 18 15 11 9 2 0 8 21

8-1/B6.1 127 0 0 0 0 0 1 3 5 9 17 33 65 28 0 70 0 28 0 0 8 0
8-1/B6.2 31 0 0 0 1 0 0 3 5 9 17 33 65 28 0 70 0 27 0 1 8 0

9-2/B1.1 31 103 0 0 0 3 0 0 0 43 0 0 3 0 1 0 0 0 9 36
9-2/B1.2 15 115 0 0 1 1 1 0 0 53 0 0 2 2 0 0 0 0 9 36
9-2/B1.3 15 51 0 0 2 1 0 0 0 85 0 0 1 2 1 0 0 0 9 36
9-2/B1.4 7 27 0 1 2 0 0 0 0 109 0 0 0 2 2 0 0 0 9 30
9-2/B1.5 7 11 0 3 0 0 0 0 0 125 0 0 0 0 4 0 0 0 9 21

9-2/B2.1 31 103 0 0 0 3 0 0 0 43 85 0 0 9 0 3 0 0 0 9 36
9-2/B2.2 15 113 0 0 2 0 0 1 0 54 90 0 0 6 6 0 0 0 0 9 36
9-2/B2.3 7 27 0 1 2 0 0 0 0 45 120 0 0 5 6 0 0 1 0 9 30
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Table 7A.4 (continued)

Design Tadd W (d) T ∗
0 W ∗(d) C1 C2

9-2/B3.1 31 103 0 0 0 3 0 0 0 41 46 85 0 6 9 9 3 0 0 1 9 36
9-2/B3.2 15 113 0 0 2 0 0 1 0 19 54 90 0 4 14 6 0 4 0 0 9 36

9-2/B4.1 31 103 0 0 0 3 0 0 0 3 13 37 84 2 14 18 12 7 6 1 0 9 34
9-2/B4.2 15 115 0 0 1 1 1 0 0 5 18 35 73 2 14 18 11 9 5 1 0 9 34
9-2/B4.3 15 113 0 0 2 0 0 1 0 6 19 35 74 2 14 18 10 10 6 0 0 9 34
9-2/B4.4 15 51 0 0 2 1 0 0 0 3 20 41 69 2 14 18 10 9 6 1 0 9 34

9-2/B5.1 31 103 0 0 0 3 0 0 0 7 9 18 33 66 9 27 27 27 24 9 0 1 9 27
9-2/B5.2 15 115 0 0 1 1 1 0 0 3 5 24 40 73 9 27 27 26 26 8 0 1 9 27
9-2/B5.3 15 51 0 0 2 1 0 0 0 5 9 18 34 67 9 27 27 25 26 9 0 1 9 27

9-2/B6.1 31 103 0 0 0 3 0 0 0 3 5 9 17 33 65 36 0 126 0 81 0 9 0 9 0
9-2/B6.2 7 121 0 1 0 1 0 1 0 3 5 9 17 33 65 36 0 125 0 83 0 8 0 9 0
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8

Fractional Factorial Split-Plot Designs

Fractional factorial split-plot designs are considered in this chapter. They are
used when the levels of some factors are difficult to change, and as a result,
a completely random allocation of the treatment combinations to the experi-
mental units is not feasible. The special features of these designs are discussed
and a finite projective geometric formulation is given. An extension of the min-
imum aberration criterion is considered for selecting optimal designs. Tables
of optimal designs are also provided.

8.1 Description and Salient Features

Regular sn−k designs, introduced in Chapter 2 and studied at length in Chap-
ters 3–5, have the following important characteristics:

(a) All factors have the same status.
(b) The experiment based on any such design involves a completely random

allocation of the sn−k treatment combinations to the experimental units.

Of course, (b) is appropriate only when the experimental units are homoge-
neous; otherwise, one has to adopt a restricted randomization via blocking as
discussed in the previous chapter.

We now focus on situations in which neither (a) holds nor (b) is appro-
priate even with homogeneous experimental units. Consider an sn factorial
involving factors F1, . . . , Fn, each at s levels, where s is a prime or prime
power. Suppose that among the n factors, there are n1 (1 ≤ n1 < n) whose
levels are very difficult or expensive to change. Without loss of generality, let
these be F1, . . . , Fn1 . The levels of the remaining n2 (= n − n1) factors are
easy to change. For reasons to be explained later, the hard-to-change factors
F1, . . . , Fn1 are called whole plot (WP) factors and the rest are called subplot
(SP) factors. Obviously, the factors no longer have the same status and (a) is
violated. Furthermore, a completely random allocation as in (b) is inadvisable
since that might entail too many level changes of the WP factors, thus making
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the experiment unduly expensive or infeasible. Fractional factorial split-plot
(FFSP) designs represent a practical option in such situations. These designs
take due cognizance of the distinction between the WP and SP factors and
have two salient features, both targeted to reducing the experimental cost:

(i) They involve not only a fixed number of treatment combinations but also
a fixed number of WP factor settings.

(ii) They allow a two-phase randomization, as opposed to a complete ran-
domization.

In (i), a “WP factor setting” means a combination of levels of the WP factors.
In a similar sense, the term “SP factor setting” will be used later. It will
be seen in the next section that additional distinguishing features of FFSP
designs, concerning isomorphism and estimation efficiency, emerge from (i)
and (ii) above. An illuminating discussion on the use of split-plot designs in
industrial experiments is available in Box and Jones (1992). Further practical
applications have been indicated by Huang, Chen, and Voelkel (1998) and
Bingham and Sitter (1999a, 2001), among others.

Continuing with the above setup, a fuller description of FFSP designs
is now in order. In the spirit of Chapter 2, only regular FFSP designs are
considered. As before, a typical treatment combination x is an n × 1 vector
over GF (s). The experimental units are assumed to be homogeneous and
blocking is not considered.

Suppose the available resources allow experimentation with a total of
sn1+n2−k1−k2 treatment combinations. It is also stipulated that these treat-
ment combinations should involve a fixed number, sn1−k1 , of WP factor set-
tings. Here 0 ≤ k1 < n1, 0 ≤ k2 < n2, and k1 + k2 ≥ 1. An FFSP design
meeting the above specifications is given by

d(B) = {x : Bx = 0}, (8.1.1)

where

B =
[

B11 0
B21 B22

]
(8.1.2)

is a matrix over GF (s), with B11, B21, and B22 of orders k1 × n1, k2 × n1,
and k2 × n2 respectively such that

rank(B11) = k1, rank(B22) = k2. (8.1.3)

If k1 = 0 or k2 = 0, then the corresponding block of rows in (8.1.2), as well
as the corresponding rank condition in (8.1.3), do not arise.

Indeed, (8.1.1) is formally similar to equation (2.4.1) describing an sn−k

design, but the important new feature is that B must have the structure
(8.1.2) and satisfy (8.1.3). A design, as specified by (8.1.1)–(8.1.3), is called
an s(n1+n2)−(k1+k2) FFSP design.
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Theorem 8.1.1. An s(n1+n2)−(k1+k2) FFSP design has the following proper-
ties:

(a) The design involves a total of s(n1+n2)−(k1+k2) treatment combinations.
(b) These treatment combinations involve sn1−k1 WP factor settings.
(c) Each such WP factor setting appears in conjunction with sn2−k2 SP factor

settings.

Proof. By (8.1.2) and (8.1.3), the k1 + k2 rows of B are linearly independent.
Hence, (a) follows from (8.1.1) using the same argument as in Lemma 2.3.2.

To prove (b) and (c), partition any treatment combination x as x = (x(1)′ ,
x(2)′)′, where x(i) has ni elements (i = 1, 2). Clearly, the elements of x(1)

represent the levels of the WP factors, while those of x(2) represent the levels
of the SP factors. Suppose k1 and k2 are both positive. Then by (8.1.2), (8.1.1)
holds if and only if

B11x
(1) = 0 (8.1.4)

and
B22x

(2) = −B21x
(1). (8.1.5)

Since B11 has order k1 × n1, the first rank condition in (8.1.3) implies that
there are sn1−k1 solutions of (8.1.4) for x(1), proving (b). Given any such
solution for x(1), the second rank condition in (8.1.3) similarly shows that
there are sn2−k2 solutions of (8.1.5) for x(2). This proves (c). It is easily seen
that similar arguments work when either k1 = 0 or k2 = 0. �

Equation(8.1.5) suggests that in anFFSPdesign, differentWPfactor settings
can appear in conjunction with different SP factor settings. This is also evident
from the following example.

Example 8.1.1. Let s = 2, n1 = 2, n2 = 4, k1 = 0, k2 = 2, and consider the
2(2+4)−(0+2) FFSP design d0 = d(B0), where

B0 =
[

1 1 1 0 1 0
1 0 1 1 0 1

]
. (8.1.6)

Here k1 = 0 and hence the first k1 rows in (8.1.2) as well as the first rank
condition in (8.1.3) do not arise. Therefore, (8.1.6) is compatible with (8.1.2),
with the matrices B21 and B22 given respectively by the first n1 (= 2) and
the last n2 (= 4) columns of (8.1.6). Clearly, then the second rank condition
in (8.1.3) is satisfied. By (8.1.1) and (8.1.6), d0 consists of the 16 treatment
combinations x = (x1, . . . , x6)′ satisfying

x5 = x1 + x2 + x3, x6 = x1 + x3 + x4. (8.1.7)

Hence it is readily seen that in keeping with Theorem 8.1.1, d0 involves four
settings of the WP factors F1 and F2, and that each such setting appears
in conjunction with four settings of the SP factors F3, . . . , F6. For example,
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the WP factor setting (0, 0) appears in conjunction with the SP factor set-
tings (0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 1), and (1, 1, 1, 0). Similarly, the WP factor
setting (0, 1) appears in conjunction with the SP factor settings (0, 0, 1, 0),
(0, 1, 1, 1), (1, 0, 0, 1), (1, 1, 0, 0), and so on. �

We are now in a position to describe the two-phase randomization in an
s(n1+n2)−(k1+k2) FFSP design. This is done as follows:

(i) Randomly choose any of the sn1−k1 WP factor settings.
(ii) Run the experiment with the associated sn2−k2 SP factor settings. In

the process, keep the WP factors fixed at the setting chosen in (i) and
randomize only SP factor settings.

(iii) Repeat steps (i) and (ii) till all the sn1−k1 WP factor settings are covered.

The two-phase randomization is cost-effective since it is parsimonious in
changing the WP factor settings. Under this kind of randomization, each of
the sn1−k1 WP factor settings defines a whole plot (WP). Any WP incorpo-
rates sn2−k2 individual treatment combinations, each representing a subplot
(SP), obtained through change in the SP factor settings. This explains the
rationale behind the terminology “WP factors” and “SP factors”.

8.2 Design Criteria

In view of (8.1.1), the concepts of defining pencil, defining contrast subgroup,
and aliasing for an FFSP design d(B) remain the same as in Section 2.4. The
concepts of resolution, wordlength pattern, and minimum aberration (MA)
are also the same as in Section 2.5.

Consider, for instance, the design d0 in Example 8.1.1. By (8.1.6), d0 has
the defining relation

I = 1235 = 1346 = 2456. (8.2.1)

Thus it has resolution four and wordlength pattern (0, 0, 0, 3, 0, 0).
The concept of isomorphism for FFSP designs is similar to that for sn−k

designs, with the additional requirement that the distinction between the
WP and SP factors be considered. Two 2(n1+n2)−(k1+k2) FFSP designs are
isomorphic if the defining contrast subgroup of one design can be obtained
from that of the other by permuting the WP factor labels and/or the SP factor
labels. While this is in the spirit of the corresponding definition in Section 3.1,
permutation of factor labels has now to be considered separately for the WP
and SP factors. A more general definition of isomorphism for s-level FFSP
designs will be given in the next section.

Example 8.2.1. In the setup of Example 8.1.1, consider the 2(2+4)−(0+2)

FFSP design d1 = d(B1), where

B1 =
[

1 1 1 0 1 0
1 1 0 1 0 1

]
.
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This design has the defining relation

I = 1235 = 1246 = 3456. (8.2.2)

Observe that (8.2.1) and (8.2.2) can be obtained from each other by inter-
changing the letters 2 and 3. Thus d0 and d1 would have been isomorphic to
each other had these been ordinary 2n−k designs. However, these are FFSP
designs and the letters 2 and 3, which correspond to a WP and an SP fac-
tor respectively, are not interchangeable. Consequently, d0 and d1 are not
isomorphic. A comparison with Theorem 3.2.1 shows that both designs have
MA. �

Because of the lack of interchangeability of the WP and SP factors, the
phenomenon observed in the last example is not uncommon in FFSP designs.
Hence an additional criterion is required for discrimination among rival non-
isomorphic MA designs. The two-phase randomization provides a clue in this
regard. For ease in further elucidation, a few simple concepts are introduced
first. A pencil is said to be of the WP type if it involves only the WP factors
(i.e., has the last n2 entries zero), and of the SP type otherwise. Note that a
WP type pencil cannot involve any SP factor, whereas an SP type pencil can
involve both types of factors. An alias set is said to be a WP alias set if it
contains at least one WP type pencil, and an SP alias set if it contains only
SP type pencils. For example, it is readily seen from (8.2.1) that all the three
defining pencils of the design d0 are of SP type. Furthermore,

1 = 235 = 346 = 12456,
2 = 135 = 12346 = 456,

12 = 35 = 2346 = 1456

are the WP alias sets of d0 (since they contain the WP type pencils 1, 2, and
12 respectively), while

3 = 125 = 146 = 23456

is an SP alias set of d0.
It is well known (Kempthorne, 1952) that the two-phase randomization

results in two sources of error in analysis of variance, one at the WP level
and the other at the SP level, the former being larger than the latter. If we
were considering a full factorial (i.e., k1 = k2 = 0), this would entail lower
estimation efficiency for WP type pencils compared to SP type pencils. In the
same manner, in an FFSP design, estimation from a WP alias set has a lower
efficiency than that from an SP alias set (Bingham and Sitter, 1999a, 2001).
As such, a good FFSP design should avoid assignment of SP type pencils,
especially those representing lower-order factorial effects, to WP alias sets.
In particular, no pencil representing the main effect of an SP factor should
appear in a WP alias set.

The aforesaid considerations led Bingham and Sitter (2001) to suggest a
follow-up criterion for FFSP designs as a supplement to the MA criterion.
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With reference to an FFSP design, for i = 1, 2, . . . , let Ni be the number of
pencils of the SP type that involve i factors and appear in WP alias sets.
The requirement mentioned in the last sentence of the previous paragraph is
equivalent to N1 = 0. In case there are nonisomorphic MA designs, Bingham
and Sitter (2001) proposed selecting one with the smallest N2.

The points noted above can be summarized as follows:

(i) an FFSP design must have N1 = 0;
(ii) in case there are nonisomorphic MA designs, one with the smallest N2

should be selected.

As an illustration, the 2(2+4)−(0+2) MA designs d0 and d1 are considered
again. From (8.2.1) and (8.2.2), it is readily seen that both designs satisfy
N1 0

only SP type pencil that involves two factors and appears in a WP alias set
is 35. Hence N2 = 1 for d0. Similarly, the SP type pencils 35 and 46 appear in
a WP alias set of d1, so that N2 = 2 for d1. Hence although both d0 and d1

have MA, d0 is preferred to d1 in the sense of having a smaller N2. The fact
that d0 and d1 have different N2 values also highlights that these designs are
not isomorphic when one distinguishes between the WP and SP factors.

In the remainder of this chapter, FFSP designs are studied under the
MA criterion. The follow-up criterion of minimizing N2 is also used whenever
necessary. Throughout, attention is restricted to designs that have resolution
three or higher and satisfy N1 = 0.

8.3 A Projective Geometric Formulation

A projective geometric formulation that facilitates the study and tabulation
of optimal FFSP designs is given in this section. Let

t1 = n1 − k1, t2 = n2 − k2, t = t1 + t2, (8.3.1)

and let P denote the set of the (st − 1)/(s − 1) points of the finite projective
geometry PG(t − 1, s). Let e1, . . . , et represent the t × 1 unit vectors over
GF (s). Define P1 as the (t1 − 1)-flat of P that is generated by ei (1 ≤ i ≤ t1),
and P2 as the complement of P1 in P . As usual, for any nonempty subset Q
of P , let V (Q) be a matrix with columns given by the points of Q. Also, let
R(·) denote the row space of a matrix.

Definition 8.3.1. An ordered pair of subsets (T1, T2) of P is called an eligible
(n1, n2)-pair if (a) Ti has cardinality ni (i = 1, 2), (b) Ti ⊂ Pi (i = 1, 2), (c)
rank[V (T1)] = t1, and (d) rank[V (T )] = t, where T = T1 ∪ T2.

As a counterpart of Theorem2.7.1 for sn−k designs, the following result, due
to Mukerjee and Fang (2002), holds.

= 0. A look at the WP alias sets of d , as shown before, reveals that the
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Theorem 8.3.1. Given any s(n1+n2)−(k1+k2) FFSP design d, having resolu-
tion three or higher and N1 = 0, there exists an eligible (n1, n2)-pair of subsets
(T1, T2) of P such that with T = T1 ∪ T2 and

V (T ) = [V (T1) V (T2)], (8.3.2)

the following hold:

(a) the treatment combinations included in d are transposes of the vectors in
R[V (T )],

(b) the WP factor settings in d are given by the vectors in R[V (T1)],
(c) any pencil b is a defining pencil of d if and only if V (T )b = 0,
(d) any two pencils are aliased with each other in d if and only if V (T )(b −

b∗) = 0 for some representations b and b∗ of these pencils.

Conversely, given any eligible (n1, n2)-pair of subsets (T1, T2) of P , there exists
an s(n1+n2)−(k1+k2) FFSP design d, having resolution three or higher and
N1 = 0, such that (a)–(d) hold, with V (T ) defined as in (8.3.2).

Proof. Consider an s(n1+n2)−(k1+k2) FFSP design d = d(B) as specified by
(8.1.1)–(8.1.3). Then it is not hard to see that there exists a matrix

G =
[

G11 G12

0 G22

]
(8.3.3)

over GF (s), with G11, G12, and G22 of orders t1 × n1, t1 × n2, and t2 × n2

respectively, such that

rank(G11) = t1, rank(G22) = t2, (8.3.4)

and
BG′ = 0. (8.3.5)

By (8.1.2) and (8.1.3), B has full row rank. Similarly, by (8.3.3) and (8.3.4),
G has full row rank. Also, [B′ G′]′ is a square matrix in view of (8.3.1). Hence
by (8.3.5), the row spaces of B and G are orthogonal complements of each
other and the following hold:

(i) the treatment combinations included in d are transposes of the vectors
in R(G),

(ii) the WP factor settings in d are given by the vectors in R(G11),
(iii) any pencil b is a defining pencil of d if and only if Gb = 0,
(iv) any two pencils are aliased with each other in d if and only if G(b−b∗) = 0

for some representations b and b∗ of these pencils,
(v) no column of G22 is null.

Of these, (i), (iii), and (iv) are precisely as in Lemma 2.6.1, while (ii) is
immediate from (i) and (8.3.3). In Exercise 8.3, the reader is asked to establish
(v).
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Since d has resolution three or higher, (iii) implies that the columns of G
are nonnull and that no two of them are proportional to each other. Hence
these columns can be interpreted as points of P (≡ PG(t − 1, s)). Let T1 and
T2 be the sets of points given by the first n1 and last n2 columns, respectively,
of G. Then, with T = T1 ∪ T2,

V (T1) =
[

G11

0

]
, V (T2) =

[
G12

G22

]
, V (T ) = G. (8.3.6)

The first two equations in (8.3.6), together with fact (v), imply that Ti ⊂
Pi (i = 1, 2). From (8.3.4) and (8.3.6), it is now clear that (T1, T2) is an eligible
(n1, n2)-pair of subsets of P . Since V (T ) = G and R[V (T1)] = R(G11), the
validity of (a)–(d) of the theorem is immediate from (i)–(iv) above.

The converse can be proved by reversing the above steps. �

In order to illustrate Theorem 8.3.1, we consider the design d0 = d(B0)
in Example 8.1.1. This design has resolution four and satisfies N1 = 0. By
(8.3.1), t1 = n1 = 2, t2 = 2, n2 = 4, and t = 4. The matrix

G =

⎡⎢⎢⎣
1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 1

⎤⎥⎥⎦
has the form (8.3.3), meets the rank conditions in (8.3.4), and satisfies B0G

′ =
0. Hence interpreting the columns of G as points of PG(3, 2), the design d0 is
equivalent to the eligible (2, 4)-pair of subsets (T1, T2), where

T1 = {(1, 0, 0, 0)′, (0, 1, 0, 0)′},
T2 = {(0, 0, 1, 0)′, (0, 0, 0, 1)′, (1, 1, 1, 0)′, (1, 0, 1, 1)′}.

It is easy to verify from first principles that (a)–(d) of Theorem 8.3.1 hold in
this example.

As indicated at the end of the last section, the only FFSP designs of
interest are those having resolution three or higher and N1 = 0. Theorem
8.3.1 shows that in studying such designs, it is enough to consider eligible
(n1, n2)-pairs of subsets of P . The design corresponding to an eligible pair
of subsets (T1, T2) will be denoted by d(T1, T2). Evidently, by (8.3.2) and
Theorem 8.3.1(a) and (b), the WP and SP factors correspond to the points
of T1 and T2 respectively. Considering the cardinalities of T1, T2, P1, and P2,
given n1, n2, k1, and k2, such a design exists if and only if

n1 ≤ st1 − 1
s − 1

, n2 ≤ st − st1

s − 1
, (8.3.7)

where t1 = n1 − k1 and t = n1 + n2 − k1 − k2; cf. (8.3.1). Hereafter, the above
conditions are supposed to hold.



8.4 Use of Complementary Sets 189

Theorem 8.3.1 also paves the way for defining isomorphism of FFSP
designs for general s. Two s(n1+n2)−(k1+k2) FFSP designs d(T11, T12) and
d(T21, T22) are isomorphic if there exists a nonsingular transformation that
maps each point of T11 to some point of T21 up to proportionality, and each
point of T12 to some point of T22 up to proportionality. While this is along the
lines of the definition given in Section 4.4 for sn−k designs, a new feature is the
distinction between the WP and SP factors. From Theorem 8.3.1, it follows
that isomorphic FFSP designs have not only the same wordlength pattern
but also the same Ni for every i. For s = 2, one can verify that the above
definition of isomorphism is equivalent to the one given in the last section.

8.4 Use of Complementary Sets

As in the previous chapters, use of complementary sets often facilitates the
exploration of optimal FFSP designs. For an s(n1+n2)−(k1+k2) FFSP design
d = d(T1, T2), let T 1 and T 2 be the complements of T1 and T2 in P1 and P2

respectively, and write T = T 1 ∪ T 2. The cardinalities of T 1, T 2, and T are
given respectively by

f1 =
st1 − 1
s − 1

− n1, f2 =
st − st1

s − 1
− n2, f = f1 + f2. (8.4.1)

If f = 0, then there is only one design, i.e., the one corresponding to T1 = P1

and T2 = P2. Also, it is not hard to see that all designs are isomorphic when
f = 1. Hence only f ≥ 2 is considered in what follows.

Let (A1(d), . . . , An(d)) denote the wordlength pattern of d = d(T1, T2),
where A1(d) = A2(d) = 0. The following identities, involving the complemen-
tary set T , are immediate from Corollary 4.3.2:

(a) A3(d) = constant − A3(T ), (8.4.2)
(b) A4(d) = constant + (3s − 5)A3(T ) + A4(T ), (8.4.3)

(c) A5(d) = constant − 1
2
{sn−k − 2(s − 1)n + (s − 2)(12s − 17)}A3(T )

−(4s − 7)A4(T ) − A5(T ), (8.4.4)

where the Ai(T ) are as in (4.3.3). Furthermore, denoting the N2 value of d by
N2(d), it was shown in Mukerjee and Fang (2002) that

N2(d) = constant + H2(P1, T 2), (8.4.5)

where as in (6.3.7),

H2(P1, T 2) = (s − 1)−1#{λ : λ is f2 × 1 over GF (s) with two nonzero
elements such that V (T 2)λ is nonnull and proportional to some
point of P1}, (8.4.6)
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and # denotes the cardinality of a set. The constants in (8.4.2)–(8.4.5) may
depend on s, n1, n2, k1, and k2 but not on the particular choice of d.

The identities (8.4.2)–(8.4.5) are particularly useful when f1 and f2 are
relatively small compared to n1 and n2, and hence the complementary sets are
easier to handle. As in Chapter 4, (8.4.2)–(8.4.4) help in finding MA designs,
and then (8.4.5) may be needed for further discrimination if nonisomorphic
MA designs emerge. The possibility of employing (8.4.5) is a new feature of
FFSP designs. Another feature, compared to sn−k designs, is that an arbitrary
set of cardinality f cannot be a candidate for T when (8.4.2)–(8.4.4) are used.
It is required that T be decomposable as

T = T 1 ∪ T 2, (8.4.7)

where
#T i = fi and T i ⊂ Pi, i = 1, 2. (8.4.8)

The next two examples illustrate these ideas. In the rest of this chapter in-
cluding the tables, the uniqueness of a design is up to isomorphism.

Example 8.4.1. Let s = 2, f1 = 4, f2 = 1. Since f1 = 4, from (8.4.1) one
gets t1 ≥ 3. There is a unique design associated with the maximum possible
A3(T ). This corresponds to

T 1 = {e1, e2, e3, e1 + e2}, T 2 = {et1+1},

where, as before, e1, e2, . . . are the t × 1 unit vectors. By (8.4.2), this is the
unique MA design. Here f = 5, and interpreting Table 3.1 in the present
notation, a 2n−k MA design is given by

T = {h1, h2, h3, h1 + h2, h1 + h3}, (8.4.9)

where h1, h2, h3 are linearly independent points of the finite projective geom-
etry P . With f1 = 4 and f2 = 1, however, the set T in (8.4.9) is not decom-
posable as in (8.4.7) and (8.4.8) and hence it cannot arise in the context of
FFSP designs. �

Example 8.4.2. Let s = 3, f1 = 1, f2 = 4. Since f1 = 1, from (8.4.1) one
gets t1 ≥ 2.

(a) If t2 = 1, then as in the last example, the unique MA design is given by

T 1 = {e1}, T 2 = {et1+1, e1 + et1+1, e1 + 2et1+1, e2 + et1+1}. (8.4.10)

(b) If t2 ≥ 2, then up to isomorphism, there are three different designs asso-
ciated with the maximum possible A3(T ). One of these, say d1, is given
by (8.4.10). The other two, say, d2 and d3, correspond to

T 1 = {e1}, T 2 = {et1+1, e1 + et1+1, e1 + 2et1+1, et1+2}, (8.4.11)
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and

T 1 = {e1}, T 2 = {et1+1, et1+2, et1+1 + et1+2, et1+1 + 2et1+2}, (8.4.12)

respectively. Here f = 5, and all these designs have the same A4(T ) and
A5(T ). Hence by Theorem 4.3.1, they all have the same wordlength pat-
tern, and consequently, they are all MA designs. The follow-up criterion of
minimizing N2 is therefore needed at this stage. By (8.4.6) and (8.4.10)–
(8.4.12), the quantity H2(P1, T 2) equals 6, 3, and 0 for d1, d2, and d3

respectively. Hence (8.4.5) implies that d3 uniquely minimizes the value
of N2 among MA designs. �

For the optimal designs in the last two examples, it is not hard to see that
the pair (T1, T2) satisfies the rank conditions of Definition 8.3.1. In particular,
taking t1 = 3 and t2 = 2, or t1 = 4 and t2 = 1 in Example 8.4.1, one gets
the 2(3+23)−(0+21) and 2(11+15)−(7+14) FFSP designs with MA. Similarly, with
t1 = t2 = 2, Example 8.4.2 yields the 3(3+32)−(1+30) FFSP design with MA
and minimum N2.

Further theoretical results on optimal FFSP designs are available in Bing-
ham and Sitter (1999b) and Mukerjee and Fang (2002). The latter also con-
sidered the criterion of maximum estimation capacity for FFSP designs.

8.5 Tables of Optimal Designs

Tables 8.1 and 8.2, adapted from Bingham and Sitter (1999a) and Mukerjee
and Fang (2002), show the sets T1 and T2 for optimal FFSP designs with (i)
s = 2 and 16 runs, and (ii) s = 3 and 27 runs, respectively. All possibilities for
n1, n2, k1, k2 satisfying (8.3.7) are considered, except for the cases n1 + n2 =
14, 15 in Table 8.1, and n1 + n2 = 12, 13 in Table 8.2. These cases correspond
to f = 1 or 0 and are hence trivial. Interestingly, (8.3.7) rules out the case
(n1, n2) = (4, 9) in Table 8.1. Each tabulated design has MA; it is either the
unique MA design or minimizes N2 among all MA designs. The footnotes of
the tables explain the sense in which each design is optimal. As in the previous
chapters, the tables use the compact notation for the points of P .

For smaller n1 and n2, the optimal designs are obtained by direct search.
For relatively large n1 and n2, use of complementary sets helps. The following
example illustrates the latter situation.

Example 8.5.1. Let s = 3. Consider the case n1 = 3, n2 = 5, k1 = 1, k2 = 4
in Table 8.2. By (8.3.1) and (8.4.1), t1 = 2, t2 = 1, t = 3, f1 = 1,
f2 = 4. Therefore, (8.4.10) shows that the unique MA design is given by
T 1 = {1}, T 2 = {3, 13, 132, 23}, or equivalently, by T1 = {2, 12, 122},
T2 = {232, 123, 1232, 1223, 12232}, as reported in Table 8.2. �
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Table 8.1 The sets T1 and T2 for optimal two-level FFSP designs with 16 runs

n1 n2 k1 k2 t1 t2 T1 T2 Optimality
property

1 4 0 1 1 3 {1} {2,3,4,1234} 1
2 3 0 1 2 2 {1,2} {3,4,1234} 1
3 2 1 0 2 2 {1,2,12} {3,4} 1
3 2 0 1 3 1 {1,2,3} {4,1234} 1
4 1 1 0 3 1 {1,2,3,123} {4} 1

1 5 0 2 1 3 {1} {2,3,123,4,124} 1
2 4 0 2 2 2 {1,2} {3,123,4,134} 2
3 3 1 1 2 2 {1,2,12} {3,4,134} 1
3 3 0 2 3 1 {1,2,3} {4,124,134} 1
4 2 1 1 3 1 {1,2,3,123} {4,124} 1
5 1 2 0 3 1 {1,2,12,3,13} {4} 1

1 6 0 3 1 3 {1} {2,3,123,4,124,134} 1
2 5 0 3 2 2 {1,2} {3,123,4,124,134} 1
3 4 1 2 2 2 {1,2,12} {3,13,4,234} 1
3 4 0 3 3 1 {1,2,3} {4,124,134,234} 1
4 3 1 2 3 1 {1,2,3,123} {4,124,134} 1
5 2 2 1 3 1 {1,2,12,3,13} {4,234} 1
6 1 3 0 3 1 {1,2,12,3,13,23} {4} 1

1 7 0 4 1 3 {1} {2,3,123,4,124,134,234} 1
2 6 0 4 2 2 {1,2} {3,123,4,124,134,234} 1
3 5 1 3 2 2 {1,2,12} {3,13,4,14,234} 1
3 5 0 4 3 1 {1,2,3} {4,14,24,34,1234} 1
4 4 1 3 3 1 {1,2,3,123} {4,124,134,234} 1
5 3 2 2 3 1 {1,2,12,3,13} {4,14,234} 1
6 2 3 1 3 1 {1,2,12,3,13,23} {4,1234} 1
7 1 4 0 3 1 {1,2,12,3,13,23,123} {4} 1

1 8 0 5 1 3 {1} {2,12,3,23,4,24,134,1234} 2
2 7 0 5 2 2 {1,2} {3,13,23,4,124,34,1234} 1
3 6 1 4 2 2 {1,2,12} {3,13,4,14,234,1234} 1
3 6 0 5 3 1 {1,2,3} {4,14,24,134,234,1234} 1
4 5 1 4 3 1 {1,2,3,123} {4,14,24,34,1234} 1
5 4 2 3 3 1 {1,2,12,3,13} {4,14,234,1234} 1
6 3 3 2 3 1 {1,2,12,3,13,23} {4,14,234} 1
7 2 4 1 3 1 {1,2,12,3,13,23,123} {4,14} 1
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Table 8.1(continued) The sets T1 and T2 for optimal two-level FFSP designs with
16 runs

n1 n2 k1 k2 t1 t2 T1 T2 Optimality
property

1 9 0 6 1 3 {1} {2,12,3,13,23,4,24,134,1234} 2
2 8 0 6 2 2 {1,2} {3,13,23,4,14,24,134,234} 2
3 7 1 5 2 2 {1,2,12} {3,13,23,4,14,234,1234} 1
3 7 0 6 3 1 {1,2,3} {4,14,24,124,34,134,234} 1
4 6 1 5 3 1 {1,2,3,123} {4,14,24,124,34,1234} 1
5 5 2 4 3 1 {1,2,12,3,13} {4,14,24,234,1234} 1
6 4 3 3 3 1 {1,2,12,3,13,23} {4,14,234,1234} 1
7 3 4 2 3 1 {1,2,12,3,13,23,123} {4,14,24} 1

1 10 0 7 1 3 {1} {2,12,3,13,23,4,14,24,134,234} 2
2 9 0 7 2 2 {1,2} {3,13,23,4,14,24,134,234,1234} 2
3 8 1 6 2 2 {1,2,12} {3,13,23,4,14,24,134,234} 1
3 8 0 7 3 1 {1,2,3} {4,14,24,124,34,134,234,1234} 1
4 7 1 6 3 1 {1,2,3,123} {4,14,24,124,34,134,234} 1
5 6 2 5 3 1 {1,2,12,3,13} {4,14,24,34,234,1234} 1
6 5 3 4 3 1 {1,2,12,3,13,23} {4,14,24,134,234} 1
7 4 4 3 3 1 {1,2,12,3,13,23,123} {4,14,24,34} 1

1 11 0 8 1 3 {1} {2,12,3,13,23,4,14,24,134,234,1234} 1
2 10 0 8 2 2 {1,2} {3,13,23,123,4,14,24,124,34,1234} 1
3 9 1 7 2 2 {1,2,12} {3,13,23,4,14,24,134,234,1234} 1
4 8 1 7 3 1 {1,2,3,123} {4,14,24,124,34,134,234,1234} 1
5 7 2 6 3 1 {1,2,12,3,13} {4,14,24,124,34,134,234} 1
6 6 3 5 3 1 {1,2,12,3,13,23} {4,14,24,134,234,1234} 1
7 5 4 4 3 1 {1,2,12,3,13,23,123} {4,14,24,124,34} 1

1 12 0 9 1 3 {1} {2,12,3,13,23,123,4,14,24,124,34,234} 2
2 11 0 9 2 2 {1,2} {3,13,23,123,4,14,24,124,34,134,1234} 1
3 10 1 8 2 2 {1,2,12} {3,13,23,123,4,14,24,34,134,234} 2
5 8 2 7 3 1 {1,2,12,3,13} {4,14,24,124,34,134,234,1234} 1
6 7 3 6 3 1 {1,2,12,3,13,23} {4,14,24,124,34,134,234} 1
7 6 4 5 3 1 {1,2,12,3,13,23,123} {4,14,24,124,34,134} 1

1. Unique MA design.
2. MA design; uniquely minimizes N2 among all MA designs.
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Table 8.2 The sets T1 and T2 for optimal three-level FFSP designs with 27 runs

n1 n2 k1 k2 t1 t2 T1 T2 Optimality
property

1 3 0 1 1 2 {1} {2,3,123} 1
2 2 0 1 2 1 {1,2} {3,123} 1
3 1 1 0 2 1 {1,2,12} {3} 1

1 4 0 2 1 2 {1} {2,3,23,1223} 2
2 3 0 2 2 1 {1,2} {3,13,1232} 3
3 2 1 1 2 1 {1,2,12} {3,1223} 1
4 1 2 0 2 1 {1,2,12,122} {3} 1

1 5 0 3 1 2 {1} {2,12,3,1223,12232} 1
2 4 0 3 2 1 {1,2} {3,13,1232,12232} 1
3 3 1 2 2 1 {1,2,12} {3,1223,12232} 1
4 2 2 1 2 1 {1,2,12,122} {3,13} 1

1 6 0 4 1 2 {1} {2,12,3,132,232,12232} 2
2 5 0 4 2 1 {1,2} {3,132,23,123,1232} 1
3 4 1 3 2 1 {1,2,12} {3,132,232,12232} 3
4 3 2 2 2 1 {1,2,12,122} {3,13,23} 1

1 7 0 5 1 2 {1} {122,13,132,123,1232,1223,12232} 1
2 6 0 5 2 1 {12,122} {23, 232,123,1232,1223,12232} 1
3 5 1 4 2 1 {2,12,122} {232,123,1232,1223,12232} 1
4 4 2 3 2 1 {1,2,12,122} {123,1232,1223,12232} 1

1 8 0 6 1 2 {1} {12,122,13,132,123,1232,1223,12232} 1
2 7 0 6 2 1 {12,122} {132, 23,232,123,1232,1223,12232} 1
3 6 1 5 2 1 {2,12,122} {23,232,123,1232,1223,12232} 1
4 5 2 4 2 1 {1,2,12,122} {232,123,1232,1223,12232} 1

1 9 0 7 1 2 {1} {12,122,13,132,232,123,1232,1223,12232} 2
2 8 0 7 2 1 {12,122} {13,132, 23,232,123,1232,1223,12232} 1
3 7 1 6 2 1 {2,12,122} {132,23,232,123,1232,1223,12232} 1
4 6 2 5 2 1 {1,2,12,122} {23,232,123,1232,1223,12232} 1

1 10 0 8 1 2 {1} {12,122,13,132,23, 232,123,1232,1223,12232} 2
2 9 0 8 2 1 {12,122} {3,13,132, 23, 232,123,1232,1223,12232} 1
3 8 1 7 2 1 {2,12,122} {13,132,23,232,123,1232,1223,12232} 1
4 7 2 6 2 1 {1,2,12,122} {132,23,232,123,1232,1223,12232} 1

1. Unique MA design.
2. MA design; uniquely minimizes N2 among all MA designs.
3. MA design; minimizes N2 among all MA designs. But there is another noniso-

morphic MA design with the same Ni as the tabulated one for every i.
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Exercises

8.1 For the design in Example 8.2.1, obtain the sets T1 and T2 as envisaged
in Theorem 8.3.1. Hence, from first principles, verify the truth of (a)–(d)
of the theorem for this design.

8.2 Verify the existence of a matrix G as envisaged in the proof of Theorem
8.3.1.

8.3 Refer again to the proof of Theorem 8.3.1. Suppose a column of G22, say
the first column, is null.
(a) Use fact (iii) in the proof to show that the first column of G12, say ξ,
is nonnull. Hence use (8.3.4) to conclude that there exists a nonnull vector
δ over GF (s) such that G11δ = ξ.
(b) Let e be the n2×1 unit vector over GF (s) with 1 in the first position.
Define b(1) = (0′, e′)′ and b(2) = (δ′, 0′)′, where the null subvectors in b(1)

and b(2) are of orders n1 and n2 respectively. With G as in (8.3.3), show
that G(b(1) − b(2)) = 0.
(c) Hence use fact (iv) in the proof to conclude that a pencil representing
the main effect of an SP factor appears in a WP alias set of the design.
Observe the impossibility of the conclusion in (c) and hence infer the truth
of fact (v) in the proof.

8.4 Prove (8.4.5).
8.5 Using the method of complementary sets, show that there are two non-

isomorphic 2(3+26)−(1+23) FFSP designs with MA. Which of these has a
smaller N2?

8.6 For n1 = 1, n2 = 10, k1 = 0, k2 = 7, use the method of complementary sets
to show that the FFSP design in Table 8.1 has MA and that it minimizes
N2 among all MA designs.

8.7 Do the same for the FFSP design shown in Table 8.2 with n1 = 1, n2 = 10,
k1 = 0, k2 = 8.

8.8 For s = 3, n1 = 2, n2 = 3, k1 = 0, k2 = 2, obtain an FFSP design that is
not isomorphic to the one shown in Table 8.2 but has the same wordlength
pattern as well as the same Ni for every i.

Exercises
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Robust Parameter Design

Robust parameter design is an effective tool for variation reduction. The plan-
ning aspect of this methodology is studied in this chapter. The distinction
between the control factors and the noise factors in parameter design exper-
iments is discussed. This leads to new priorities and criteria in the choice
of designs. Two experimental strategies, cross and single arrays, which play
major roles in this context, are explored in the light of the new priorities.

9.1 Control and Noise Factors

Robust parameter design (or parameter design) is a statistical/engineering

of a product or process by appropriately choosing the setting of its control
factors so as to make it less sensitive to noise variation. Its effectiveness lies
in the exploitation of some significant control-by-noise interactions. Because
it is usually much easier and less costly to change the control factor setting
than to tighten the noise variation directly, the methodology has been widely
adopted in engineering practice and is now a commonly used tool in quality
engineering. Its success in manufacturing and high-tech industries has been
documented in many case studies compiled by companies and professional
societies.

The factors in parameter design experiments are divided into two types:
control factors and noise factors. Control factors are variables whose values
(i.e., levels) remain fixed once they are chosen. They include the design para-
meters in product and process design. By contrast, noise factors are variables
whose values (i.e., levels) are hard to control during the normal process or use
conditions. They include variation in product and process parameters, envi-
ronmental variation, load factors, user conditions, and degradation. Consider
the problem of improving the yield of a chemical process. Its control factors
can include reaction temperature and time, and type and concentration of

methodology (Taguchi, 1987) that aims at reducing the performance variation
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catalyst; and its noise factors can include purity of reagent and purity of sol-
vent stream. The latter two are treated as noise factors because purity varies
from batch to batch and is thus hard to control.

From the design-theoretic point of view, the most interesting aspect of ro-
bust parameter design is the difference between the roles played by the control
and noise factors. As hinted above, the control-by-noise interactions are cru-
cial in achieving robustness. Thus this type of two-factor interactions (2fi’s)
must be placed in the same category of importance as the main effects. This
obviously violates the effect hierarchy principle. The importance of the control
main effects and the control-by-noise interactions is underscored by the roles
they play in the two-step procedure for parameter design optimization given
in (9.3.1) below. In the first step, the setting of some control factors is chosen
to reduce the sensitivity (e.g., variance) of the response to the noise variation;
in the second step, the setting of other control factors is chosen to adjust the
mean response value on target. The success of the first step implicitly hinges
on the existence of some significant control-by-noise interactions, whereas to
carry out the second step, the control main effects should be estimable.

Two experimental strategies, cross arrays and single arrays, are discussed
in this chapter. The distinction between the control and noise factors results in
new design priorities with an appropriate modification of the effect hierarchy
principle. The focus continues to be on the planning aspects. For details on
robust parameter design, see Chapters 10 and 11 of Wu and Hamada (2000).

9.2 Cross Arrays

A simple example is first presented to motivate the ideas. Suppose there are
four control factors F1, . . . , F4 and three noise factors F5, F6, F7, each of the
seven factors being at two levels. Let dC be a 24−1 design involving the control
factors alone and specified by the defining relation I = 1234. Similarly, let dN

be a 23−1 design involving only the noise factors and specified by the defining
relation I = 567. Writing the treatment combinations in dC and dN as rows,
these designs can be expressed as

dC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0000
1100
1010
1001
0110
0101
0011
1111

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, dN =

⎡⎢⎢⎣
000
110
101
011

⎤⎥⎥⎦ .

An array such as dC that involves exclusively the control factors is called a
control array. Similarly, an array such as dN that involves exclusively the noise
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factors is called a noise array. A cross array, involving all the seven factors, is
now given by the direct product of dC and dN . In other words, it is obtained
by combining every row of dC with every row of dN and thus has run size
8 × 4 = 32. One can readily check that the cross array is a 27−2 design with
the defining relation

I = 1234 = 567 = 1234567. (9.2.1)

In general, a cross array d is the direct product of a control array dC and a
noise array dN . Typically, as in the above example, dC and dN are chosen as
orthogonal arrays. This ensures reasonable uniformity over the levels of the
noise factors so that running an experiment based on a cross array amounts to
performing a systematic Monte Carlo over the noise variation. For practical
reasons like small sample size, irregular design region, and large number of
factor levels, nonorthogonal arrays like Latin hypercubes or other space-filling
designs may sometimes be chosen for dC and dN ; see Santner, Williams, and
Notz (2003) for details.

Suppose there are altogether n(= n1 + n2) factors F1, . . . , Fn, each at s
levels, s being a prime or prime power. The first n1 factors are control factors
and the last n2 are noise factors. Consider an sn1−k1 design dC for the control
factors and an sn2−k2 design dN for the noise factors as given by

dC = {x(1) : B1x
(1) = 0}, dN = {x(2) : B2x

(2) = 0},

where B1 and B2 are k1×n1 and k2×n2 matrices, of full row rank, over GF (s).
The cross array d, arising from dC and dN , consists of the sn−k treatment
combinations x = (x(1)′ , x(2)′)′, where x(1) is any solution of B1x

(1) = 0, x(2)

is any solution of B2x
(2) = 0, and k = k1 + k2. Thus d itself is an sn−k design

and one can write

d = {x : Bx = 0},
with

B =
[

B1 0
0 B2

]
. (9.2.2)

In the above development, dC or dN can as well be a full factorial, in which
case the corresponding block of rows in (9.2.2) does not arise.

For any n×1 vector b over GF (s), let b(1) and b(2) be subvectors that corre-
spond to the control and noise factors. Then b(1) and b(2) consist respectively
of the first n1 and the last n2 entries of b. Denoting the row space of a matrix
by R(.), it is clear from (9.2.2) that b′ ∈ R(B) if and only if b(i)′ ∈ R(Bi) for
i = 1, 2. This is equivalent to the following result.

Theorem 9.2.1. The vector b′ belongs to the defining contrast subgroup of d
if and only if b(1)′ and b(2)′ belong to the defining contrast subgroups of dC

and dN respectively.
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The above theorem is in agreement with (9.2.1) and, although straight-
forward, has interesting implications. For instance, it shows that the defining
pencils of d are of the form (b(1)′ , 0′)′ or (0′, b(2)′)′ or (b(1)′ , b(2)′)′, where b(1)

and b(2) are any defining pencils of dC and dN . Thus the resolution of d equals
the minimum of the resolutions of dC and dN . We have noted earlier that the
main effects and the 2fi’s involving a control and a noise factor are the fac-
torial effects of greatest interest in parameter design experiments. Hence, as
in the previous chapters, d is hereafter stipulated to have resolution three or
higher, and to ensure this, it is assumed that the same holds for both dC and
dN . The next result shows that d enjoys an attractive property.

Theorem 9.2.2. No 2fi pencil involving a control and a noise factor is aliased
in d with any main effect pencil or any other 2fi pencil.

Proof. Consider any 2fi pencil b involving a control and a noise factor. Let b̃ be
any other pencil with which b is aliased in d. As before, define the subvectors
b(1) and b(2) relative to b, and the subvectors b̃(1) and b̃(2) relative to b̃. Since
b and b̃ are aliased in d, by (2.4.9), (b− b̃)′ ∈ R(B), so that by Theorem 9.2.1,

(b(1) − b̃(1))′ ∈ R(B1), (b(2) − b̃(2))′ ∈ R(B2). (9.2.3)

Because dC and dN have resolution three or higher, for i = 1, 2, it follows
from (9.2.3) that b(i) − b̃(i) is either null or has at least three nonzero entries.
On the other hand, by the definition of b, there is exactly one nonzero entry in
b(i). Thus for i = 1, 2, either b̃(i) equals b(i) and hence has exactly one nonzero
entry or b̃(i) has at least two nonzero entries. The first possibility, however,
cannot arise for both i = 1 and i = 2, because then b̃ = b, which is impos-
sible. Therefore, b̃ must have at least three nonzero entries and the theorem
follows. �

It is possible to work out further ramifications and generalizations of Theo-
rem 9.2.2. In fact, this result has counterparts when dC and dN are mixed-level
designs, nonregular designs, or even nonorthogonal arrays. The details under
appropriate model assumptions are available in Shoemaker, Tsui, and Wu
(1991).

Theorem 9.2.2 can be restated as “in a cross array, all 2fi’s involving
a control and a noise factor are clear.” In view of the importance of such
interactions in achieving robustness, this is a very desirable property of cross
arrays. There is, however, no guarantee that the equally important control
main effects are clear. To ensure further estimability properties for the control
main effects, the control array needs to be chosen according to criteria like
resolution or minimum aberration (MA). This may lead to a large size of the
control array and thus of the cross array. (An economic alternative is to use
single arrays to be discussed in later sections.) A similar remark holds on the
choice of the noise array, but the required increase in run size may be less
prohibitive. This is especially so if the estimation of the noise main effects is
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not required as in the location–dispersion modeling approach to be discussed
in Section 9.3.

Another appealing feature of the cross array format is that it has a natural
layout for experimentation. Each setting of its control factors (i.e., level com-
bination in the control array) is crossed with all settings of its noise factors
(i.e., level combinations in the noise array). This makes it convenient to carry
out the experiment, especially when the levels of the noise factors are easier
to change than those of the control factors, e.g., in an experiment on plasma

applied to all wafers in a batch, while the location of the chips within each
wafer represents a noise factor.

9.3 Modeling Strategies

Two approaches for modeling data from a cross array experiment are now
discussed. These are called location and dispersion modeling and response
modeling. Details can be found in Wu and Hamada (2000, Chapter 10).

A typical observation arising from a cross array d may be denoted by
Yij , which corresponds to the treatment combination given by the ith row of
dC and the jth row of dN . For every fixed i, let Y i be the mean and Si the
standard deviation of the Yij over j. Clearly, the Y i and Si refer to the control
factor settings in dC . The location and dispersion modeling approach builds
models separately for the Y i and the log Si in terms of the control factor main
effects and interactions. Observe that only the control factors can appear in
these models. With the objective of attaining a target value for the response
Y while minimizing performance variation due to noise factors, these models
can be used as follows.
Two-step procedure:

(i) Select the levels of the control factors appearing in the dispersion model
to minimize dispersion.

(ii) Select the levels of control factors appearing in the location model but not
in the dispersion model to bring the location on target.

(9.3.1)

Note that factors appearing in both models are not considered in step (ii)
because a change in the setting of any such factor will affect location as well
as dispersion.

Since the location and dispersion models involve the control factors alone,
the effect hierarchy principle of Section 2.5, as applied to the control factors,
is followed in building these models. Consequently, given dN , the choice of
dC is guided by the same ideas as for ordinary sn−k designs. In other words,
the same criteria and techniques as discussed in Chapters 2–5 can be used in
choosing dC , and therefore this point is not further elaborated.

etching, where the control factors, plasma temperature and etching time, are
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A disadvantage of the location and dispersion modeling approach is that
modeling in terms of the control factors alone may mask important inter-
actions between the control and noise factors. Moreover, log Si may have a
nonlinear relationship with the control factors even if the original response
bears a linear relationship with the control and noise factors. From these con-

1990; Shoemaker, Tsui and Wu, 1991) provides a viable alternative. In this
approach, the response is modeled, directly on the basis of the Yij , as a func-
tion of both the control and noise factors. One can study the control-by-noise
interactions appearing in such a model to identify control factor settings at
which the fitted response has a relatively flat relationship with the noise fac-
tors. These are called robust settings. Then a robust setting at which the
fitted response tends to be close to the target (irrespective of the variation in
the noise factors) may be chosen for the control factors. Alternatively, from
the response model, one can obtain the variance of the fitted response under
suitable assumptions on the variation in the noise factors. This leads to a
transmitted variance model, which involves only the control factors and hence
can be used to find control factor settings with small transmitted variance.
From among the settings so identified, the one that brings the expectation of
the fitted response on target may be chosen for the control factors.

A response model can potentially involve any factor and not just the con-
trol factors. While this is as in the analysis of an ordinary sn−k design, a
key difference lies in the relative importance of the factorial effects for inclu-
sion in the model because the control and noise factors do not play the same
role. This necessitates a new effect ordering principle that takes care of this
distinction and yields new design criteria for cross arrays under the response
modeling approach. Since the choice of single arrays introduced in the next
section is also guided by the same principle, it makes sense to discuss this in a
unified framework. Therefore, a discussion of this principle and its application
to the study of optimal designs is postponed till Sections 9.5 and 9.6.

9.4 Single Arrays

The direct product structure of a cross array may sometimes result in an un-
duly large run size. Suppose, with three control factors and two noise factors,
each at two levels, it is desired to keep all main effects clear. It is easily seen
that then both dC and dN have to be full factorials. Consequently, the re-
sulting cross array is a full factorial with run size 8 × 4 = 32. On the other
hand, the 25−1 design I = 12345, with run size merely 16, has resolution
five and hence keeps all main effects as well as 2fi’s clear. The latter design,
which incorporates the control and noise factors without using a direct prod-
uct structure, is known as a single array and illustrates how single arrays can
significantly reduce the run size without sacrificing factorial effects of interest.

siderations, the response modeling approach (Welch, Yu, Kang, and Sacks,
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As in the last section, now suppose there are n(= n1 + n2) s-level factors.
The first n1 of these are control factors and the rest are noise factors. A single
array is simply an sn−k design

d = {x : Bx = 0}, (9.4.1)

where B is a k × n matrix, of full row rank, over GF (s). The distinction
between the control and noise factors is, however, a new feature, which must
be carefully accounted for in defining design isomorphism or developing design
criteria for single arrays. For the same reasons as before, single arrays of
resolution three or higher are considered in the sequel.

In particular, if B in (9.4.1) has the block diagonal structure (9.2.2), then
a single array reduces to a cross array. Of course, B need not have this form
in general, and consequently single arrays are more flexible than cross arrays.
The location and dispersion modeling approach of the last section requires
that the same noise factor settings appear in conjunction with every setting of
the control factors. Hence this approach cannot be employed to a single array
unless it is also a cross array. The response modeling approach is, therefore,
recommended for experiments based on single arrays. In the same manner
as indicated in Section 9.3, it is applicable to any single array irrespective of
whether B has the form (9.2.2).

Because single arrays cover cross arrays as a special case and the response
modeling approach is applicable to both, the optimal design problem under
this approach may conveniently be studied in the unified framework of single
arrays with the understanding that an optimal design may well turn out to be
a cross array in a specific situation. Before this is taken up in some detail in
the next two sections, it will be helpful to examine the notion of isomorphism
for single arrays.

With all factors at two levels, two single arrays are isomorphic if the defin-
ing contrast subgroup of one can be obtained from that of the other by per-
muting the control factor labels and/or the noise factor labels. Observe that
permutation of factor labels is restricted separately to the control and noise
factors. This is the same as in the last chapter, where the whole plot and
subplot factors were considered separately in defining isomorphism. In a sim-
ilar manner, for s-level factors, isomorphism of single arrays can be defined
following Section 8.3. Clearly, if two ordinary sn−k designs are nonisomorphic
when all factors have the same status, then single arrays given by these de-
signs are again nonisomorphic. However, it is noteworthy that the same sn−k

design may also entail nonisomorphic single arrays depending on which factors
are taken as control factors and which are taken as noise factors. The next
example (Wu and Zhu, 2003) illustrates these points.

Example 9.4.1. Suppose there are three control factors F1, F2, F3 and three
noise factors F4, F5, F6, each at two levels. All nonisomorphic single arrays are
enumerated below for k = 2. Here n = 6 and Table 3A.2 lists all nonisomorphic
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26−2 designs. It is easily seen that the first of these, namely the design 6-2.1,
has the defining relation

I = 1235 = 1246 = 3456. (9.4.2)

From (9.4.2), the mappings

1 → F1, 2 → F2, 3 → F3, 4 → F4, 5 → F5, 6 → F6

and
1 → F1, 2 → F4, 3 → F3, 4 → F2, 5 → F5, 6 → F6

yield single arrays d1 and d2 with the defining relations

d1 : I = 1235 = 1246 = 3456 (9.4.3)

and
d2 : I = 1345 = 1246 = 2356. (9.4.4)

In (9.4.3) and (9.4.4), the letters 1, . . . , 6 correspond to the factors F1, . . . , F6

respectively. Although (9.4.3) and (9.4.4) can be obtained from each other
by interchanging the letters 2 and 4, the single arrays d1 and d2 are not
isomorphic because 2, representing the control factor F2, and 4, representing
the noise factor F4, are not interchangeable. One can check that these are the
only nonisomorphic single arrays that arise from (9.4.2).

Similarly, the design 6-2.2 in Table 3A.2 yields the six nonisomorphic single
arrays

d3 : I = 123 = 1456 = 23456,
d4 : I = 124 = 1356 = 23456,
d5 : I = 145 = 1236 = 23456,
d6 : I = 456 = 1234 = 12356,
d7 : I = 145 = 2346 = 12356,
d8 : I = 124 = 3456 = 12356,

while the design 6-2.3 leads to the two nonisomorphic single arrays

d9 : I = 123 = 456 = 123456,
d10 : I = 124 = 356 = 123456.

Finally, the design 6-2.4 entails six nonisomorphic single arrays:

d11 : I = 123 = 145 = 2345,
d12 : I = 124 = 135 = 2345,
d13 : I = 124 = 156 = 2456,
d14 : I = 124 = 456 = 1256,
d15 : I = 145 = 246 = 1256,
d16 : I = 124 = 345 = 1235.

Thus there are altogether 16 nonisomorphic single arrays in this example. �
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Before concluding this section, we briefly discuss a version of a single array,
known as a compound array. Following Rosenbaum (1994, 1996) and Hedayat
and Stufken (1999), a compound array can be defined generally as a kind
of orthogonal array that may not even be a regular fraction. In the present
context, this definition boils down to that of a single array d for which the
matrix B in (9.4.1) has the form

B =
[

B11 0
B21 B22

]
, (9.4.5)

where B11, B21, and B22 are of orders k1×n1, k2×n1, and k2×n2 respectively,
with k1 +k2 = k, and B11 and B22 have full row rank. The structure (9.4.5) is
formally the same as (8.1.2) for fractional factorial split-plot (FFSP) deigns,
and hence by Theorem 8.1.1, the following hold:

(i) the treatment combinations in d involve sn1−k1 control factor settings;
(ii) each such control factor setting appears in conjunction with sn2−k2 noise

factor settings in d.

Despite the formal similarity between (9.4.5) and (8.1.2), the control and noise
factors do not quite play the roles of the whole plot and subplot factors in
FFSP designs. For example, there is no two-phase randomization here.

In particular, if B21 = 0 then a compound array reduces to a cross array.
In this case, every control factor setting appears in conjunction with the same
set of noise factor settings in d. However, this need not happen in general,
since B21 may be nonnull. It is easily seen that among the single arrays listed
in Example 9.4.1, d3, d9, and d11 are compound arrays and d9 is a cross array.

With reference to (9.4.5), suppose the sn1−k1 , sn2−k2 , and sn−k designs
given by

{x(1) : B11x
(1) = 0}, {x(2) : B22x

(2) = 0}, and {x : Bx = 0}

have resolutions R1, R2, and R respectively. Let g1 = R1 − 1, g2 = R2 − 1,
and g = R − 1. Then by Theorem 2.6.2, the sn1−k1 control factor settings
in (i) above, when written as rows, form an orthogonal array of strength g1.
Similarly, each set of sn2−k2 noise factor settings, which appear with the same
control factor setting as indicated in (ii) above, represents an orthogonal array
of strength g2. Furthermore, the compound array itself forms an orthogonal
array of strength g. Although the strengths g1, g2, and g are important com-
binatorial features of a compound array, they do not completely determine
the design characteristics that are relevant to the present context. For ex-
ample, both the compound arrays d3 and d9 arising in Example 9.4.1 have
(g1, g2, g) = (2, 2, 2), but as seen in Section 9.6 (see (9.6.3)), they do not be-
have identically with regard to clear effects of interest. For this reason, from
now on, single arrays are considered in general without any specific attention
to compound arrays.
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9.5 Effect Ordering Principle

The twin objectives of bringing the mean response on target and reducing
variation dictate the effect ordering principle in robust parameter design. A
generic notation is followed to denote any control factor main effect by C, any
noise factor main effect by N , any 2fi involving a control and a noise factor
by CN , and so on.

Among the factorial effects, C is the most crucial one for mean response
adjustment, whereas CN is expected to have the maximum impact on vari-
ation reduction. If one works with a response model, then N can also play a
role as important as CN in variation reduction. Besides, being a main effect,
N is potentially substantial and its aliasing with other effects of interest can
severely impair the utility of a design. From these considerations, C, N , and
CN are viewed as the most important factorial effects. In contrast with the
effect hierarchy principle, any 2fi CN now enjoys the same status as the main
effects. In order of importance, next come CC and CCN , and then come
CCNN , CNN , and NN . The impact of CC on mean response adjustment is
supposed to be on a par with that of CCN in variation reduction, and hence
they are grouped together. On the other hand, CCN involves only one noise
factor, and therefore it is perceived as more important than CCNN , CNN ,
and NN with regard to variation reduction.

In general, following Wu and Zhu (2003), it is possible to develop a numer-
ical rule for ranking the factorial effects in order of importance. The weight
of any effect involving i control factors and j noise factors is defined as

W (i, j) =

⎧⎨⎩
1 if max(i, j) = 1,
i if i > j and i ≥ 2,
j + 1

2 if i ≤ j and j ≥ 2.
(9.5.1)

For w = 1, 2, 2.5, . . . , let Kw be the set of factorial effects with weight w. Then

K1 = {C,N,CN}, K2 = {CC,CCN}, K2.5 = {CCNN,CNN,NN},
(9.5.2)

and so on. The above discussion may now be summarized by the following
effect ordering principle:

(i) Factorial effects with smaller weights are considered more important than
those with larger weights.

(ii) Factorial effects with the same weight are considered equally important.

Although the effect ordering principle is based on special consideration for
parameter design, it should be used with some discretion. For example, there
may be practical situations in which adequate prior knowledge is available
about the relative importance of the factorial effects so as to warrant a modi-
fication of this principle. Indeed, Bingham and Sitter (2003) proposed an alter-
native effect ordering scheme via a different argument and weight-assignment.
At any rate, even with such other effect ordering, the development of design
criteria should essentially follow the lines of the next section.
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9.6 Design Criteria

The effect ordering principle leads to design criteria appropriate for single
arrays, and hence for cross arrays, under the response modeling approach.
In order to give a flavor of the main ideas while avoiding heavy notation and
algebra, we consider two-level factorials and assume the absence of interactions
involving three or more factors. Then by (9.5.1) and (9.5.2),

K1 = {C,N,CN}, K2 = {CC}, K2.5 = {NN}, (9.6.1)

and Kw is empty for w > 2.5. The following six types of aliasing patterns
arise from (9.6.1):

(I) 1 ∼ 1, (II) 1 ∼ 2, (III) 1 ∼ 2.5,
(IV) 2 ∼ 2, (V) 2 ∼ 2.5, (VI) 2.5 ∼ 2.5.

Here aliasing of two different effects from K1 is denoted by 1 ∼ 1, aliasing
of an effect from K1 with an effect from K2 is denoted by 1 ∼ 2, and so on.
In keeping with the effect ordering principle, (I) is considered most severe,
(II) less severe than (I), and so forth, with (VI) being the least severe. For
any single array d, defining J1(d), . . . , J6(d) as the numbers of aliased pairs of
types (I)–(VI) respectively, the following design criterion, due to Wu and Zhu
(2003), now emerges naturally.

Definition 9.6.1. Let d1 and d2 be two single arrays for the same n1, n2,
and k.

(a) If Ji(d1) = Ji(d2), 1 ≤ i ≤ 6, then d1 and d2 are said to be J-equivalent.
(b) Otherwise, let r be the smallest integer such that Jr(d1) �= Jr(d2). If

Jr(d1) < Jr(d2), then d1 is said to have less J-aberration than d2.
(c) If no other single array has less J-aberration than d1, then d1 is said to

have minimum J-aberration.

Application of the above criterion calls for expressing the Ji = Ji(d) (1 ≤
i ≤ 6) in terms of the defining relation of d. For i ≥ 0, j ≥ 0, and (i, j) �= (0, 0),
let Aij = Aij(d) be the number of words in the defining relation of d that
involve i control factors and j noise factors. Note that Aij = 0 for i + j ≤ 2,
because single arrays of resolution three or higher are being considered. Then

J1 = 2A21 + 2A12 + 2A22, J2 = A21 + 3A30 + 3A31,
J3 = A12 + 3A03 + 3A13, J4 = 3A40, J5 = A22, J6 = 3A04.

(9.6.2)

Since no two distinct main effects are aliased in d, by (9.6.1), any aliased pair
of type (I) must be either (C,CN) or (N,CN) or (CN,CN). The equation
for J1 in (9.6.2) now follows by noting that a word in the defining relation of
d accounts for

(i) two aliased pairs (C,CN) if it is of the form CCN ,
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(ii) two aliased pairs (N,CN) if it is of the form CNN ,
(iii)two aliased pairs (CN,CN) if it is of the form CCNN .

Other equations in (9.6.2) follow similarly and are left as an exercise. Example
9.6.1 below illustrates the use of these equations in applying the minimum J-
aberration criterion.

Practical considerations in specific situations may warrant minor re-
arrangement of the aliasing types (I)–(VI) with regard to their severity. For
instance, one may wish to interchange the ordering of (III) and (IV). This
kind of rearrangement will, in turn, necessitate a corresponding change in
the ordering of J1, . . . , J6 in Definition 9.6.1. Nevertheless, (9.6.2) will remain
valid, and even with any such modified criterion, optimal single arrays may
be explored along the lines of the following example.

Example 9.6.1. Consider the setup of Example 9.4.1 with three control
factors and three noise factors, each at two levels, and k = 2. Among
the 16 nonisomorphic single arrays listed there, only d3, d6, and d9 have
A21 = A12 = A22 = 0. Hence by (9.6.2), J1 equals zero for these arrays and is
positive for the rest. All the three arrays d3, d6, and d9 have A40 = A04 = 0,
and their A30, A03, A31, and A13 values are as follows:

d3 : A30 = 1, A03 = 0, A31 = 0, A13 = 1,
d6 : A30 = 0, A03 = 1, A31 = 1, A13 = 0,
d9 : A30 = 1, A03 = 1, A31 = 0, A13 = 0.

Therefore, by (9.6.2), the vector (J1, . . . , J6) equals (0, 3, 3, 0, 0, 0) for each of
them. Thus d3, d6, and d9 are J-equivalent and they all have minimum J-
aberration. Recall that d6 is actually a cross array. Interestingly, the minimum
J-aberration criterion eliminates the single arrays d1 and d2, which when
viewed as ordinary 26−2 designs, have MA. �

The single arrays d3, d6, and d9, which were seen to have minimum J-
aberration in the last example, enjoy another attractive property. It can be
checked that among all nonisomorphic single arrays, they alone maximize
cl(C) + cl(N) + cl(CN), where for any such array, cl(C), cl(N), and cl(CN)
are the numbers of clear effects of types C, N , and CN respectively. In fact,
the values of cl(C), cl(N), and cl(CN) for d3, d6, and d9 are as follows:

d3 : cl(C) = 0, cl(N) = 3, cl(CN) = 6,
d6 : cl(C) = 3, cl(N) = 0, cl(CN) = 6,
d9 : cl(C) = 0, cl(N) = 0, cl(CN) = 9.

(9.6.3)

While they all have the same cl(C) + cl(N) + cl(CN), the above details may
be useful in further discrimination among them when additional knowledge
about the system is available. For instance, in many practical situations, it is
unlikely that all 2fi’s of type CN are important. If the six clear 2fi’s of this
type in d6 can be chosen to represent the important ones, then d6 has an edge
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over d9. If, in addition, one can reasonably assume the absence of 2fi’s of type
NN , then the noise main effects also become clear in d6 and its advantage
over d9 and d3 becomes more pronounced.

Tables of single arrays that perform well with respect to the J-criterion and
clear effects are available in Wu and Zhu (2003) and Wu and Hamada (2000,
Chapter 10). These tables are obtained via enumeration of nonisomorphic
single arrays as demonstrated in Examples 9.4.1 and 9.6.1. It is not hard to
extend the J-criterion and the equations in (9.6.2) to the situation in which
only interactions involving four or more factors are assumed to be absent.
Although this can be done from first principles, certain general formulas given
by Wu and Zhu (2003) may help.

As in the previous chapters, it is possible to develop a theory, based on
complementary sets, for single arrays. For this purpose, one needs to consider,
along the lines of Theorem 2.7.1, a finite projective geometric formulation
in which the control and noise factors are identified with two disjoint sets
of points of the geometry. Let TC and TN be these two sets and T be the
complement of their union. Formulas for the Aij in terms of either TC and T
or TN and T can be derived. These results are useful when T has a relatively
small size. The details in this regard are available in Zhu (2003) and Zhu and
Wu (2006).

Exercises

9.1 Develop a stronger version of Theorem 9.2.2 when both dC and dN are
known to have resolution four or higher.

9.2 Suppose dC and dN are 2n1−k1 and 2n2−k2 designs respectively in the
control and noise factors. Let HC be a set of factorial effects that are
estimable in dC under the absence of all other factorial effects. Similarly,
define HN with respect to dN . Write HCN for the collection of factorial
effects of the form ECEN , where EC ∈ HC and EN ∈ HN . For example,
if n1 = n2 = 3, HC = {F1, F2, F3}, and HN = {F4, F4F6}, then

HCN = {F1F4, F2F4, F3F4, F1F4F6, F2F4F6, F3F4F6}.

Let d be the cross array obtained from dC and dN . Show that all factorial
effects in HC ∪ HN ∪ HCN are estimable in d under the absence of all
other factorial effects.

9.3 Verify (9.6.3).
9.4 In Example 9.6.1, show that among all nonisomorphic single arrays, d3,

d6, and d9 alone maximize cl(C) + cl(N) + cl(CN).
9.5 (a) With four control factors and two noise factors, each at two levels, and

k = 2, use Table 3A.2 to enumerate all nonisomorphic single arrays.
(b) From among the single arrays obtained in (a), find the one or ones
with minimum J-aberration.

Exercises
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9.6 Verify the last five equations in (9.6.2).
9.7 Describe the sets Kw(w = 1, 2, 2.5, . . .) assuming only the absence of in-

teractions involving four or more factors. Under the same assumption,
obtain counterparts of the equations in (9.6.2) for two-level factorials.
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