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Preface

This is the second volume of the two-volume series which contains the
proof of the classification of the flag-transitive P- and T-geometries. A
P -geometry (Petersen geometry) has diagram

P
2 2 2 2 1 '

p
where o —o denotes the geometry of 15 edges and 10 vertices of the
Petersen graph. A T-geometry (Tilde geometry) has diagram

2 2 2 2 2 '

where o ~ o denotes the 3-fold cover of the generalized quadrangle

of order (2,2), associated with the non-split extension 3 • S<»(2) = 3 • Sym^.

The final result of the classification, as announced in [ISh94b], is the
following (we write ^(G) for the P- or T-geometry admitting G as a
flag-transitive automorphism group).

Theorem 1 Let 'S be a flag-transitive P- or T-geometry and G be a flag-
transitive automorphism group of'S. Then *& is isomorphic to a geometry ffl
in Table I or II and G is isomorphic to a group H in the row corresponding
to je.

In the first volume [Iv99] and in [IMe99] for the case <g(J4) the
following has been established (for the difference between coverings and
2-coverings cf. Section 1.2).

Theorem 2 Let #C be a geometry from Table I or II of rank at least 3 and
H be a group in the row corresponding to ffl. Then

IX
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(i) 3V exists and is of correct type (i.e., P- or T-geometry);
(ii) H is a flag-transitive automorphism group of Jf';

(iii) suppose that J f is a_P- or 7-geometry, H is a flag-transitive auto-
morphism group ofjif,(p : Jf" —> Jf is a 2-covering which commutes
with the action of H and the induced action of H on J f coincides
with H, then either q> is an isomorphism or one of the following
holds:

(a) He S 9(3 • M22), 3f = ${M22), H^3M22or3- Au tM 2 2 and
(p is a covering;

(b) S 5 S ^ ( 3 2 3 • Co2), Jf = y{Co2), H S 32 3 • Co2 and <p is not a
covering;

(c) 3* S ^(34 3 7 1 • BM), j f £ ^(BM), 5 S 34371 • BM and cp is not
a covering, in particular,

(iv) either J f is simply connected or Jf = ^(Mii) and the universal
cover of tf is 9(3 • M22).

Table I. Flag-transitive P -geometries

Rank

2

3

4

5

Geometry <?f

9(Alt5)

<S(M21)

9(3 • M2 2)

^(M23)

^(Co2)

^(3 2 3 • Co2)

^(34 3 7 1 • BM)

Flag-transitive automorphism
groups H

Alts, Sym5

M22, Aut M2 2

3 • M22, 3 • Aut M22

M2 3

Co2

3 2 3 • Co2

J4

BM
34371 . BM

If J* is a geometry and F is a flag-transitive automorphism group of
then J^(F , ^") denotes the amalgam of maximal parabolics associated
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with the action of F on 8F. In these terms the main result of this second
volume can be stated as follows:

Theorem 3 Let 0 be a flag-transitive P- or T-geometry of rank at least 3
and G be a flag-transitive automorphism group of 0 . Then for a geometry
3tf and its automorphism group H from Table I or II we have the following:

j/(G,0) = ,*/(#, ,?f).

In the above theorem we can assume that Jf is simply connected. Then
by Theorem 1.4.5, Jf is the universal cover of 0 and H is the universal
completion of J / (G, 0).

Notice that Theorem 3 immediately implies the following

Corollary 4 Let 34? be a geometry from Table I or II and let H be a flag-
transitive automorphism group of Jtif. Then H is one of the groups in the
row corresponding to Jf and either

(i) H is the full automorphism group of JF, or
(ii) & = 0(M22) or 0(3 • M22) and H £ M22 or 3 • M22, respectively

(so that H is the unique self-centralized subgroup of index 2 in the
automorphism group of

Table II. Flag-transitive T-geometries

Rank

2

3

4

5

n

Geometry #f

0(3 • S4(2))

0(M24)

0(CO1)

0(M)

0 ( 3 ^ • S2n(2))

Flag-transitive automorphism
groups H

3 • Alt6, 3 • S4(2) S- 3 • Sym6

M24

He

Coi

M

3^-S 2 n (2)
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Now in order to deduce Theorem 1 from Theorems 2 and 3 it is
sufficient to prove the following

Proposition 5 Let & be a geometry from Table I or II of rank at least
3 and let H be a group in the row corresponding to #f. Suppose that
a : ^f —»• tf is a covering of geometries which commutes with the action
of H and let H denote the action induced by H on Jf. Then the pair
{yf,H) is also from Table I or II, respectively.

Proof. Suppose first that Jf is not a P -geometry of rank 3. Then by
Theorem 2 (iv) and Corollary 4 Jf is simply connected and H is the only
flag-transitive automorphism group of Jf, in particular H is the group
of all liftings of elements of H to automorphisms of Jf. Let JV be the
kernel of the homomorphism of H onto H. Then JV is the deck group
of a and hence JV acts regularly on each of the fibers of a. So JV = 1
if and only if a is an isomorphism. It follows from the structure of H
that H/O}(H) is a non-abelian simple group and OT,(H), if non-trivial,
is an irreducible GF(3)-module for H/O^(H). Hence either JV = 1 or
JV = O3(H). In the latter case !?F = ^(H/O3(tf)) and by Theorem 2 (iii)
the mapping 34? —• 3V is not a covering. Hence JV = 1. The situation
when ^f is a P-geometry of rank 3 (i.e., ^{Mn) or ^(3- M22)) can treated
in a similar way with a few extra possibilities to be considered. •

Below we outline our main strategy for proving Theorem 3. Let 'S be
a P- or T -geometry of rank n > 3, G be a flag-transitive automorphism
group of G and

j * = s/(G,«f) = {Gt \ 1 < i < n }

be the amalgam of maximal parabolics associated with the action of G
on 0 (here G, = G(x,) is the stabilizer in G of the element x, of type i
in a maximal flag O = {xi,...,xn} in <S). Our goal is to identify si up to
isomorphism or, more specifically, to show that si is isomorphic to the
amalgam si{H,3tf) for a geometry ^f and a group H from Table I or
II. In fact, it is sufficient to show that given the type of 0 and its rank
there are at most as many possibilities for the isomorphism type of si
as there are corresponding pairs in Tables I and II.

We proceed by induction on the rank n and assume that all the flag-
transitive P- and T-geometries of rank up to n — 1 (along with their
flag-transitive automorphism groups) are known (as in the tables). Then
we can assume that for every 1 < i < n the residue res^x,) and the
action G, of G, on this residue are known. The kernel K, of this action
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is a subgroup in the Borel subgroup B = n"=1G; which in all the cases
turns out to be a 2-group.

The induction hypothesis can be used further since certain normal
factors of Kt resemble the structure of the residue res#(x,). The most
important case is that the action of K\ on the set of points collinear to
xi is a quotient of the universal representation module of the residue
res^(xi), which is a P- or T-geometry.

Thus, in order to accomplish the identification of the amalgams of
maximal parabolics it would be helpful (and essential within our ap-
proach) to determine the universal representations of the known P- and
7-geometries. Recall that if Jt is a geometry (or rather a point-line inci-
dence system) with three points per line, then the universal representation
module K(Jf) is a group generated by pairwise commuting involutions
indexed by the points of 34? and subject to the relations that the product
of the three involutions corresponding to a line is the identity. It is im-
mediate from the definition that V(JV) is an elementary abelian 2-group
(possibly trivial).

Table III. Natural representations of P -geometries

Rank

2

3

Geometry $e

•ma

0(3 • M22)

dim V{3V

6

11

23

» « * >

infinite

Co2)

0

23

23

0

A< 2 3 )

JA

• BM)

0

0
2BM

For the geometries ^S{JA), ^(BM), &(M) of large sporadic simple
groups the universal representation modules are trivial and this is the
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reason why these geometries do not appear as residues in flag-transitive
P- and T-geometries of higher ranks. On the other hand, if ^ is one
of the above three geometries and G is the automorphism group of CS,
then the points and lines of <§ are certain elementary abelian subgroups
in G of order 2 and 22, respectively, so that the incidence relation is via
inclusion. This means that G is a quotient of the universal representation
group R(<&) of 0. The definition of R{<8) is that of F(0) with the wording
'pairwise commuting' removed. Since ¥(&) is the quotient of R(^) over
the commutator subgroup of R{^), sometimes it turns out to be easier
to show that R{^§) is perfect rather than showing the triviality of K(0)
directly. In Part I we calculate the modules V{*§) for all flag-transitive P-
and T-geometries and the groups R{^) for most of them. These results
are summarized in Tables III and IV. The determination problem for
R(^) for various geometries ^ (including the P- and T-geometries) is of
an independent interest, since, in particular, representations control the
c-extensions of geometries.

Table IV. Natural representations of T-geometries

Rank

2

3

4

5

n

Geometry J?

»(3 • S4(2))

^(M24)

9(C<n)

9(M)

3 ( 3 ^ • S2n(2))

dim V(JV)

11

11

24

0

(2n + 1) + 2"(2"

R(3t)

infinite

«n

A<24)

M

— 1) infinite

The knowledge of the module K ( J f ) for known geometries ^ f forms
a strong background for the classification of the amalgams s#{G, t?) for
the flag-transitive au tomorphism groups G of a P- or T-geometry ^.
This classification is presented in Part II of this second volume. As an
immediate ou tcome we have the following.
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Proposition 6 Let & be a P- or T'-geometry and G be a flag-transitive
automorphism group ofS. Let p be a point (an element of type I) in <§,
2F = res^(p), F = G(p) be the stabilizer of p in G and F be the action
induced by F on 2F. Then {^,F) is not one of the following pairs:

(^(M23),M23), (%(BM),BM), (0(34371-BM),34371-BM), (S(M),M).

Proof. We apply (1.5.2). Suppose that (^,7) is one of the above
four pairs. The condition (i) in (1.5.2) follows from Tables III and IV. If
(p, /, n) is a flag of rank 3 in 0 consisting of a point p, line / and plane n,
then the structure of the maximal parabolics associated with the action
of 7 on & (cf. pp. 114, 224, 210 and 234 in [Iv99]) shows that in each
case F(n) induces Sym^ on the set of lines incident to p and n (so that
(ii) in (1.5.2) holds) and that F(l) is isomorphic respectively to

M2 2, 2l
+

+22.Co2, (2l
+

+22x323).Co2, 2 i + 2 4 .Co , .

Since none of these groups contains a subgroup of index 2 the proof
follows. •

Notice that in the case ( J ^F ) = (^(J4),JA) the subgroup 7(1) =
2++12 • 3 • AutM22 does contain a subgroup of index two, so this case
requires a further analysis to be eliminated (this will be accomplished in
Section 11.6).

The knowledge of universal representations groups enables us to con-
struct and prove simple connectedness of so-called affine c-extensions
^3^{^,R{'S)) of the known P- and T-geometries ^ (cf. Section 2.7).
These extensions have diagrams

or

1

1

c

c

2

2

2

2

depending on whether ^ is a P- or T-geometry.
We formulate here the results on both simple connectedness and the

full automorphisms groups.

Proposition 7 The following assertions hold:

(i) J ^ # " ( ^ ( M 2 2 ) , # I I ) is simply connected with the automorphism group
2n : AutM2 2;

(ii) ^(Af23) does not possess flag-transitive affine c-extensions;
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(iii) si'&rC&(Co2), A ) is simply connected with the automorphism group

22i:Co2;

(iv) ^^(^{Ji), J4) is simply connected with the automorphism group

(v) sHFC&{BM), 2 • BM) is simply connected with the automorphism

group (2 • BM * 2 • BM).2;

(vi) j/#"(^(M24),#n) is simply connected with the automorphism group

211 : M 2 4 ;

(vii) s/^(^(Coi), A ) is simply connected with the automorphism group
2 2 4 : C O l ;

(viii) si!F(f§(M), M) is simply connected with the automorphism group
M12 (the Bimonster). D

The analysis of the amalgam si is via consideration of the normal
factors of the parabolics G\ and Gn. This analysis brings us to a
restricted number of possibilities for the normal factors.

We proceed by accomplishing the following sequence of steps (we
follow notation as introduced at the end of Section 1.1). First we
reconstruct up to isomorphism the point stabilizer G\. Our approach is
inductive so we assume that the action G\ = G\/K\ of G\ on res^(xi)
is one of the known actions in Table I or II. Then we turn to Gi, or
more precisely to the subamalgam @) = {G\,G2\ in si. The subgroup
Gi is the stabilizer of the line %i and it induces Sym^ on the triple of
points incident to X2 (of course xi is in this triple). Hence Gn = G\C\Gi
contains a subgroup K^ of index 2 (the pointwise stabilizer of X2), which
is normal in G2 and Gi/K^ = Sym^. Therefore we identify Kj as a
subgroup of G\, determine the automorphism group of Kj and then
classify the extensions of Kj by automorphisms forming Sym^. In this
step we can refine the choice of the isomorphism type of G\, since within
the wrong choice Kj" might not possess the required automorphisms.

A glance at Tables I and II gives the following.

Proposition 8 Let J5" be the residue of a point in a (known) P- or T-
geometry of rank n > 2 (so that either n > 3 and 8F is itself a P- or
T-geometry or n = 2 and 2F is of rank 1 with 2 or 3 points, respectively)
and let F be a flag-transitive automorphism group of OP'. Then lAutJ5" :
F\<2. D

This immediately gives the following
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Proposition 9 In the above terms G2 — G2/K2 is isomorphic to a subgroup
of index at most 2 in the direct product

G2/K2 x G2/K+,

where G2/K2 = Symj, and Gi/K^ is a flag-transitive automorphism group
o/resj(x2). In particular the centre of O2(G2/K2) contains a subgroup X
which permutes transitively the points incident to %2- •

By Proposition 9 the automorphisms of Kj that we were talking about
can always be chosen to commute with O2(JCf /K2).

Next we extend $8 to the rank 3 amalgam <€ = {Gi,G2, G3}. Towards
this end we first identify S> = {Go, G23} as a subamalgam in $?. Since the
action of G\ on res^(xi) is known, G13 and Gm are specified uniquely
up to conjugation in G\. By Proposition 9, G23 = (G123, Y), where Y
maps onto the subgroup X as in that proposition. Since K2 is a 2-group,
we can choose Y to be a Sylow 3-subgroup (of order 3) in K£.

Thus we obtain the amalgam # = {Gi,G2, G3}, where G3 is the uni-
versal completion (free amalgamated product) of the subamalgam $} in
38. In order to get the amalgam ^ we have to identify in G3 the normal
subgroup N such that G3 = G3/JV. The subgroup /C3~~ can be specified as
the largest subgroup in G123 which is normal in both G13 and G23. Then

G3/X3- S L3(2), G13/K3- = G23/K3- = Sym

and the latter two quotients are maximal parabolics in the former one. In
all cases the parabolics are 2-constrained and the images of both G13 and
G23 in OutX^" are isomorphic to Sym^. These two images must generate
in OutKj' the group LT,{2) (otherwise there is no way to extend 3d to a
correct $). Hence we may assume that

G3/(K3-C~ (K3-)) s L3(2).

Since Gi/K^N is also 1^(2), we see that N must be a subgroup in the
centralizer of /C3~~ in G3, which trivially intersects Xj" and such that

The easiest situation is when the centre of K^ is trivial in which case we
are forced to put N = C-g (Xf), so that N is uniquely determined (8.5.1).
In fact the uniqueness of N can be proved under a weaker assumption:
the centre of /C3~ does not contain 8-dimensional composition factors
with respect to G-<,/KjC^{K^) S L3(2) (8.5.3). The following property
of the known P- and T-geometries (which can easily be checked by
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inspection using information contained in [Iv99] and [IMe99]) shows
that (8.5.3) always applies when Si is isomorphic to the amalgam from a
known example.

Proposition 10 Let (3^, H) be a pair from Table I or II and suppose that
the rank of #C is at least 3. Let n be a plane in Jf (an element of type
3), H(n) be the stabilizer of % in H and K~{n) be the kernel of the action
of H(n) on the set of points and lines incident to % (these points and
lines form a projective plane of order 2). Then every chief factor of H(n)
inside Z(K~(n)) is an elementary abelian 2-group which is either 1- or
3-dimensional module for H(n)/K.-(n) = L3(2). •

After # is reconstructed, the structure of the whole amalgam stf is
pretty much forced. Indeed G4 is a completion of the subamalgam
$ = {G,4 I 1 < i < 3} in (€. It turns out that this subamalgam is always
uniquely determined in <€ (up to conjugation). On the other hand, the
residue res^(x4) is the rank 3 projective GF(2)-geometry, which is simply
connected. By the fundamental principle (1.4.6) this implies that G4 is
the universal completion of $. Hence there is a unique way to extend %>
to the rank 4 amalgam and to carry on in the same manner to get the
whole amalgam si of maximal parabolics.

We would like to thank our colleagues, and especially D.V. Pasechnik,
A. Pasini and C. Wiedorn, for their support and help while we were
writing this book. We dedicate the book to the memory of A.I. Kostrikin,
without whose encouragement the book would not have been written.



1
Preliminaries

In this introductory chapter after recalling the main notions and notation
concerning diagram geometries and their flag-transitive automorphism
groups we prove the fundamental principle (Theorem 1.4.5), which relates
the universal cover of a geometry ^ and the universal completion of the
amalgam si of maximal parabolics in a flag-transitive automorphism
group G of (S. This principle lies in the foundation of our approach to the
classification of flag-transitive geometries in terms of their diagrams. In
the last section of the chapter we recall what is meant by a representation
of geometry. The importance of representations for our classification
approach is explained in Proposition 1.5.1, which shows that under
certain natural assumptions one of the chief factors of the stabilizer of
a point in a flag-transitive automorphism group carries a representation
of the residue of the point (this result is generalized in Proposition 9.4.1
for other maximal parabolics).

1.1 Geometries and diagrams

In this section we recall the main terminology and notations concerning
diagram geometries (cf. Introduction in [Iv99] and references therein).

An incidence system of rank n is a set 'S of elements that is a disjoint
union of subsets ^°",..., ^a" (where ^°" is the set of elements of type a, in
0) and a binary reflexive symmetric incidence relation on <§, with respect
to which no two distinct elements of the same type are incident. We
can identify ^ with its incidence graph T = F(^) having 'S as the set of
vertices, in which two distinct elements are adjacent if they are incident.
A flag in 'S is a set O of pairwise incident elements (the vertex-set of a
complete subgraph in the incidence graph). The type (respectively cotype)
of <I> is the set of types in <$ present (respectively not present) in <D. The

1
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sizes of these sets are the rank and the corank of 0. By the definition a
flag contains at most one element of any given type. If 0 is a flag in CS,
then the residue res#(<l>) of $ in 'S is an incidence system whose elements
are those from 'S \ $ incident to every element in $ with respect to the
induced type function and incidence relation.

An incidence system 0 of rank n is called a geometry if for every flag O
(possibly empty) of corank at least 2 and every a,- ^ a,- from the cotype
of $ the subgraph in the incidence graph induced by 0ar n <&"' n res^(0)
is non-empty and connected (this implies that a maximal flag contains
elements of all types). Clearly the residue of a geometry is again a
geometry.

In what follows, unless stated otherwise, the set of types in a geometry
of rank n is taken to be {1,2,..., n). A diagram of a geometry 0 is a graph
with labeled edges on the set of types in ^ in which the edge (or absence
of such) joining i and j symbolizes the class of geometries appearing as
residues of flags of cotype {i,j} in 0. Under the node i it is common to
write the number <?,• such that every flag of cotype i in ^ is contained in
exactly qt +1 maximal flags. We will mainly deal with the following rank
2 residues:

o o - generalized digon: any two elements of different types
«1 42

are incident, the incidence graph is complete bipartite with parts of size
q\ + 1 and qi + 1;

- projective plane pg(2, q) of order q;

- generalized quadrangle gq(q\,qi) of order {qi,q2)\

the generalized quadrangle ^(S4(2)) of order (2,2),
whose elements are the 2-element subsets of a 6-set and the partitions of
the 6-set three 2-element subsets (equivalently the 1-subspaces and totally
isotropic 2-subspaces in a 4-dimensional symplectic GF(2)-space) with the
natural incidence relation; the automorphism group is S4(2) = Sym^ and
the outer automorphism of this group induces a diagram automorphism

the triple cover 0(3 • S4(2)) of 0(S4(2)) associated with

the non-split extension 3 • S4(2) = 3

o —o - the geometry ^(Alt5) of edges and vertices of the

Petersen graph; the vertices of the Petersen graph are the 2-element
subsets of a 5-set and two such subsets are adjacent if they are disjoint;
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- the geometry of 1- and 2-element subsets of a (q + 2)-set

with the incidence relation defined by inclusion; when q = 2 this is the
affine plane of order 2.

If 3> is a flag in <S, then the diagram of res^(3>) is the subdiagram in
the diagram of ^ induced by the cotype of $.

The notation we are about to introduce can be applied to any rank
n geometry <§, but it is particularly useful when ^ belongs to a string
diagram, i.e., when the residue of a flag of cotype {i,j} is a generalized
digon whenever \i — j \ > 2.

For an element x,- of type i, where 1 < i < n, we denote by resj(x,)
and resg(x,) the set of elements of types larger than i and less than i,
respectively, that are incident to x,-. When <S belongs to a string diagram
they are residues of a flag of type {1,...,i} containing x,- and of a flag of
type {i,..., n} containing x,-, respectively. If G is an automorphism group
of $ (often assumed to be flag-transitive), then G(x,) is the stabilizer of
x,- in G, K(XJ), K+(XJ) and JC~(x,) are the kernels of the actions of G(x,)
on res#(x,), resj(x,) and res^(x,), respectively. By L(x,) we denote the
kernel of the action of G(x,) on the set of elements y, of type i in 'S such
that there exists a premaximal flag *F of cotype i such that both ¥ U {x,}
and ¥ U {y,} are maximal flags.

When we deal with a fixed maximal flag O = {xi,...,xn} in (S, we write
G, instead of G(x,), Kt instead of K(xt), etc. If J £ {l,2,...,n}, then

and we write, for instance, G\i instead of G ^ } , and similar. The
subgroups Gj are called parabolic subgroups or simply parabolics. The
subgroups G, are maximal parabolics. Most of our geometries are 2-local,
so that the parabolics are 2-local subgroups and we put g(x,) = 02(G(x,))
(which can also be written simply as Q,-). Notice that if ^ belongs to a
string diagram and x\ is a point then L\ is the elementwise stabilizer in
G\ of the set of points collinear to xi.

1.2 Coverings of geometries

Let ^f and 'S be geometries (or more generally incidence systems). A
morphism of geometries is a mapping q> : J f —• 'S of the element set
of 3f? the element set of ^ which maps incident pairs of elements onto
incident pairs and preserves the type function. A bijective morphism,
whose inverse is also a morphism is called an isomorphism.
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A surjective morphism cp : J f -> 0 is said to be a covering of 0 if for
every non-empty flag $ of J f the restriction of <p to the residue res^($)
is an isomorphism onto res«?((p(<I>)). In this case J f is a couer of 0 and
<$ is a quotient of Jf. If every covering of ^ is an isomorphism then 0
is said to be simply connected. Clearly a morphism is a covering if its
restriction to the residue of every element (considered as a flag of rank 1)
is an isomorphism. If ip : ̂  —• ^ is a covering and ^ is simply connected,
then \p is the universal covering and ^ is the universal cover of (3. The
universal cover of a geometry exists and it is uniquely determined up to
isomorphism. If q> : #f —> <§ is any covering then there exists a covering
1 : ̂  —» #? such that ip is the composition of % and <p.

A morphism cp : J f —> ^ of arbitrary incidence systems is called an
s-covering if it is an isomorphism when restricted to every residue of rank
s or more. This means that if O is a flag whose corank is less than or
equal to s, then the restriction of q> to res^(O) is an isomorphism. An
incidence system, every s-cover of which is an isomorphism, is said to
be s-simply connected. It is clear that when s = n — 1 's-covering' and
'covering' mean the same thing.

An isomorphism of a geometry onto itself is called an automorphism.
By the definition an isomorphism preserves the types. Sometimes we will
need a more general type of automorphisms which permute types. We
will refer to them as diagram automorphisms.

The set of all automorphisms of a geometry 0 forms a group called
the automorphism group of ^ and denoted by Aut ^ . An automorphism
group G of ^ (that is a subgroup of Aut^) is said to be flag-transitive if
any two flags $i and ®2 in 'S of the same type are in the same G-orbit.
Clearly an automorphism group is flag-transitive if and only if it acts
transitively on the set of maximal flags in (S. A geometry ^ possessing a
flag-transitive automorphism group is said to be flag-transitive.

Let cp : J? -* <& be a covering and H be a group of automorphisms
of Jf. We say that H commutes with (p if for every h e H whenever
<p(x) = q)(y), for x,y € Jtf', the equality q>(xh) = (p(yh) holds. In this case
we can define the action of h on ^ via cp(x)h = q>(xh). Let the induced
action be denoted by H. The kernel of the action is called the subgroup
of deck transformation in H with respect to (p.

The following observation is quite important.

Lemma 1.2.1 Let <p : 3^ —* 'S be a covering of geometries and H be
a flag-transitive automorphism group of J f commuting with (p. Then the
action H induced by H on & is flag-transitive. •
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Let ^ be a geometry (or rather an incidence system) of rank n and N
be a group of automorphisms of ^ . Then the quotient of & over N is an
incidence system # whose elements of type i are the orbits of N on &'
and two iV-orbits, say Q and A, are incident if some co e Q is incident
to some 6 e A in 'S. If the mapping <p : ̂  —• ^ that sends every element
x £ ? onto its N-orbit, is a covering and JV is normal in H then it is easy
to see that H commutes with (p.

1.3 Amalgams of groups

Our approach for classifying P- and T-geometry is based on the method
of group amalgams. This method can be applied to the classification of
other geometries in terms of their diagrams and already has been proved
to be adequate, for instance within the classification of c-extensions of
classical dual polar spaces [Iv97], [Iv98].

Let us recall the definition of amalgam and related notions briefly
introduced in volume 1 [Iv99]. Here we make our notation slightly more
explicit and general.

Definition 1.3.1 An amalgam si of finite type and rank n> 2 is a set such
that for every 1 < i < n there is a subset Aj in si and a binary operation
*i on At such that the following conditions hold:

(Al) {Ah*i) is a group for 1 < i < n;

(A2) sf = UUAi:

(A3) \At nAj\ is finite if i ^ j and C\"i=lAi j= 0;
(A4) (At C\Aj,*i) is a subgroup in (v4,-,*;) for all 1 < i,j < n;
(A5) ifx,ye Aj n Aj then x *,• y = x *,- y.

Abusing the notation we often write si = {At | 1 < iI < n} in order
to indicate explicitly which groups constitute si. In what follows, unless
explicitly stated otherwise, all amalgams under consideration will be of
finite type.

Let si = {At | 1 < i < n} be an amalgam. A completion of si is a pair
(G, q>) where G is a group and <p is a mapping of si into G such that

(Cl) G is generated by the image of q>;
(C2) for every i the restriction of q> to At is a homomorphism, i.e.,

<P(x *i y) = <p(x) • <p(y) for all x,ye At

(here '•' stands for the group multiplication in G).
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If (Gi,<pi) and (62,^2) are two completions of the same amalgam si
then a homomorphism x of G\ onto G2 is said to be a homomorphism of
completions if q>2 is the composition of (pi and #, i.e., if q>i{x) = x(<PiM)
for all x G J / . If K is the kernel of x then (G2, (P2) is called the quotient
of (Gi,<pi) over K. Since G2 is isomorphic to Gi/K via isomorphism
(p2(x) = (p\(x)K for x £ si, the completion (G2,<?2) is determined by

When the mapping <p is irrelevant or clear from the context we will
talk about a completion G of si. The completion (G, cp) is said to be
faithful if <p is injective.

Two elements x,y e si are said to be conjugate in j / if there is a
sequence xo = x,xi,...,xm = y of elements of si such that for every
1 < ; < m the elements x_,-_i and x; are contained in A( (where i might
depend on j) and are conjugate in A{ (in the sense that x, = z~lx\-\z for
some z € X,-). It is easy to see that if (G, <p) is a completion of <E/ then
cp(x) and cp(y) are conjugate in G whenever x and y are conjugate in jtf.

For an amalgam si = \A\• \ 1 < i < n} let C/(^) be the group defined
by the following presentation:

U{si) = (ux, x G si I uxuy = uz if x,y,z e A; for some j and x *,• y = z).

Thus the generators of U{si) are indexed by the elements of si and the
relations are all the equalities that can be seen in the groups constituting
the amalgam.

Lemma 1.3.2 In the above terms let v be the mapping of si into U(si)

defined by

v : x -» ux

for all x £ si. Then (U(si),v) is a completion of si, which is universal in
the sense that every completion of si is a quotient of (U(si),v).

Proof. The fact that (U(si), v) is a completion follows directly from
the definition. Let (G, cp) be any completion of si. Define xp to be a
mapping which sends ux onto cp{x) for every x G si. We claim that \p
extends uniquely to a homomorphism of U(si) onto G. By (Cl) y> maps
a generating set of U(si) onto a generating set of G which implies the
uniqueness. Now consider a defining relation uxuy = uz of U(si). Then
x,y,z G At for some i and x *,• y = z. Since (G, q>) is a representation, we
have

xp(ux)ip{uy) = cp(x)(p(y) = cp(z) = \p{uz).

Hence \p extends to a homomorphism. •
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Thus there is a natural bijection between the completions of si and
the normal subgroups of the universal completion (group) U(si). If N
is a normal subgroup in U(si) then the corresponding completion is the
quotient of (U(si), v) over N. The following result is rather obvious.

Lemma 1.3.3 An amalgam si possesses a faithful completion if and only
if its universal completion is faithful. •

The subgroup B := n"=1j4,- is called the Borel subgroup of si. By (A3)
and (A5), B is a finite group in which the group operation coincides with
the restriction of *, for every 1 < i < n. In particular, the identity element
of B is the identity element of every (At, *,•). The following result can be
easily deduced from Section 35 in [Kur60].

Proposition 1.3.4 Let si = {At | 1 < i < n} be an amalgam of rank n>2
with Borel subgroup B. Suppose that B = AtC\ Aj for all 1 < i < j < n
(which always holds when n = 2) and si ^ A\ for every 1 < i < n. Then
the universal completion of si is faithful and U(si) is the free amalgamated
product of the groups At over the subgroup B, in particular, it is infinite. D

One should not confuse the set of all amalgams and their very special
class covered by (1.3.4). For an amalgam si of rank n > 3 the universal
completions might or might not be faithful and might be infinite or finite
(or even trivial). In general it is very difficult to decide what U{si) is
and this problem is clearly equivalent to the identification problem of a
group defined by generators and relations.

A subgroup M of B which is normal in (A{, *,) for every 1 < i < n
is said to be a normal subgroup of the amalgam si. The largest normal
subgroup in si is called the core of si and the amalgam is said to be
simple if its core is trivial (the identity subgroup of B). Notice that if M is
normal in si then (p{M) is a normal subgroup in G for every completion
(G, q>) of si, but even when si is a simple amalgam, a completion group
G is not necessarily simple.

1.4 Simple connectedness via universal completion

Let f be a geometry of rank n, G be a flag-transitive automorphism
group of ^ and O = {x\,...,xn} be a maximal flag in <§, where x, is of
type i. Let G, = G(x,) be the stabilizer of x, in G (the maximal parabolic
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of type i associated with the action of G on ^) and

si := s/(G,9) = {G, \ l<i<n}

be the amalgam of the maximal parabolics.
We define the coset geometry <€ = ^{G,si) in the following way (it

might not be completely obvious at this stage that # is a geometry rather
than just an incidence system). The elements of type i in # are the right
cosets of the subgroup G, in G, so that

«* = {G,-g | g G G} and

(g = [ J <g"' (disjoint union).

Two different cosets are incident if and only if they have an element in
common:

Gth ~ Gjk <=> Gth O Gjk + 0.

Lemma 1.4.1 Let Q be the mapping which sends the coset Gig from <Sf' onto
the image xf of x,- under g G G:

Q : Gig i-> xf.

Then Q is an isomorphism ofW onto (§.

Proof. First notice that Q is well defined, since if g' e G,g, say g' = / g
for / e G,, then we have

xf = x{8 = (x{)« = xf.

This also shows that for yt e ^ ' the set Q~l(yi) consists of the elements
of G which map x, onto y{.

Next we check that Q preserves the incidence relation. Suppose first
that Gth and Gjk are incident in <%, which means that they contain an
element g in common. Then Gth = G,g, Gjk = G;g and

Since x, and x; are incident and g is an automorphism of <§, xf and
xgj are also incident. On the other hand, suppose that yt = e(G,7i) and
yj = g(Gjk) are incident elements of types i and j in 0. Since G acts
flag-transitively on 0, there is a g e G such that {yi,yj} = {xf,x*}. By
the above observation g € G,7J n Gjk, which means that Gj/i and Gjk are
incident in <£. •
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In the above terms, for 1 < i < n the maximal parabolic G, acts
flag-transitively on the residue resg(xi) of xt in (S. By (1.4.1) we have the
following.

Corollary 1.4.2 The residue res#(x,) is isomorphic to the coset geometry
/i), where

D

By the above corollary the isomorphism types of the residues in ^ are
completely determined by the amalgam si of maximal parabolics in a
flag-transitive automorphism group. Next we discuss up to what extent
the amalgam si determines the structure of the whole of'S.

Let ^ and 0 ' be geometries of rank n with flag-transitive automorphism
groups G and G', amalgams si and si' of maximal parabolics associated
with maximal flags <D = {xi,...,xn} and €>' = {Xj,...,xJ,}, respectively.
Suppose there is an isomorphism x^ of si' onto si (which maps G\ =
G'{x\) onto G, = G(x,)). Suppose first that xd is a restriction to si' of
a homomorphism XQ of G' onto G. Then XQ induces a mapping x<g of
<g" = <g(G',st') (isomorphic to IS') onto <8 = <#{G,si) (isomorphic to 0) :

for all 1 < i ^ n and g' e G'.

Lemma 1.4.3 The mapping x<g is a covering of geometries.

Proof. By the definition T* preserves the type function. If G\h' and
G'jk' are incident (contain a common element g', say) then their images
both contain the element Tc(g') and hence they are incident as well. Thus
x<$ is a morphism of geometries. By (1.4.2) and the flag-transitivity of G',
x<e maps the residue of x' in 0 ' onto the residue of T^-(X') in 'S and the
proof follows. •

In the above terms G and G' are two completions of the same amalgam
si = si'. In general one cannot guarantee that one of the completions
is a homomorphic image of the other. But this can be guaranteed if one
of the completions is universal.

With G and si as above, let G = U(si) be the universal completion
of an amalgam si = {Gj \ I < i <, n} and suppose that si possesses
an isomorphism t > onto si. Since G is a universal completion of si
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by (1.4.3) the geometry ^ := #(G, si) possesses a covering ?«• onto
<$ = <g"(G, jaf). We formulate this in the following lemma.

Lemma 1.4.4 Let G be a faithful completion of the amalgam si. Then
there is a covering of<& = <tf{G,si) onto %(G,si). •

The following result was established independently in [Pasi85], [Ti86]
and in an unpublished manuscript by the second author of the present
book (who claims that the first author lost it) dated around 1984.

Theorem 1.4.5 The covering TV is universal.

Proof. Let

be the universal covering. Let <X> = {5q,...,£„} be a maximal flag in 'S
being mapped under ? onto the maximal flag <i> = {xi,...,xn} in ^ (i.e.,
?(x,-) = Xj for 1 < i < n).

For g e G, let us define an automorphism g = g*'> of ^ as follows.
First xf = x;. Next, if x e ^ is arbitrary, in order to define xg we proceed
in the following way. Consider a path

in <§ joining x, with x (such a path exists since ^ is connected). Let

y = {yo = Xi,yi,...,ym)

be the image of y under ? (i.e., yj = ?(yy) for 0 < j < m) and let

yg = (yo = yo = xi,y
g
l,...,yi)

be the image of y under the element g. Then, since yg is a path starting
at x,, there is a unique path

in 0 starting at x, and being mapped onto ys under ?. We define xg

to be the end term of ft (i.e., yfn in the above terms). First we show
that g is well defined, which means it is independent on the particular
choice of the path 'y joining x, and x. Suppose that y and 5 are paths
both starting at x, and ending at x. Then, by a theorem from algebraic
topology [Sp66], since ? is universal, the corresponding images y and 8
are homotopic. Since g is an automorphism of 'S, it maps the pairs of
homotopic paths onto the pairs of homotopic paths. Hence yg and <5g
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are homotopic, which means that the end terms of their liftings ys and
<5« coincide. Thus g is well defined. Finally it is easy to see from the
definition that g is an automorphism of CS.

Let

G, = {g = g« | g € G,}.

It is easy to check that gigl = gig2 and g~' = g~'. So G, is a group and
/I,- : g i—• gW is a surjective homomorphism. It is also clear that for g € G,
the preimage Aj~'(g) is a uniquely determined element of G,, so A,- is an
isomorphism of G, onto G,. Let J / = {G,- | 1 < i < n} be the amalgam
formed by the subgroups G, and A be the mapping of si onto si whose
restriction to G,- coincides with A,- for every 1 < i < n. We claim that A
is an isomorphism of amalgams. Since the A, are group isomorphisms,
in order to achieve this, it is sufficient to show that A is well defined.
Namely for g e G, n G; we have to show that g^ = g*-'*. Let 5c € 'S
and suppose that y = (5c; = %,'y\,...,'ym = 5c) is a path used to define the
image of 5c under g*1*. Swapping i and j if necessary, we assume that
>>i ^ 5c,-. Then the path (5 = (5c,, %,..., ym = 5c) can be used to define the
image of 5c under g*A Since g fixes the path (XJ, xt) it is quite clear that
the lifted paths y« and <5« have the same end term. Hence the images
of 5c under g*1' and g*J' coincide. Since the element 5c was arbitrary, we
conclude that g^ = g*A

Thus n := X~l is an isomorphism of si onto si. Let G be the subgroup
in the automorphism group of'S generated by si. Then clearly \i induces
a homomorphism of G onto G that commutes with the covering ?. Since
Gj is the stabilizer of x, in G and G, maps isomorphically onto G, under
[L, we conclude that G, is the stabilizer of 5c, in G. Now by (1.4.1) we
observe that § is isomorphic to #(G, s7) and since we have proved that
si is isomorphic to si = si, by (1.4.3) there must be a covering T of <$
onto 0. Since ? is universal, T must be an isomorphism and hence z<g is
also universal. •

The following direct consequence of Theorem 1.4.5 is very useful.

Corollary 1.4.6 Suppose that a geometry & of rank n > 3 is simply con-
nected and G is a group acting flag-transitively (and possibly unfaithfully)
on <S. Then G is the universal completion of the amalgam si{G, <S). •

1.5 Representations of geometries

We say that a geometry ^ of rank n belongs to a string diagram if all
rank 2 residues of type {i,j} for \i — j \ > 1 are generalized digons. In this
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case the types on the diagram usually increase rightward from 1 to n.
The elements which correspond, respectively, to the leftmost, the second
left, the third left, and the rightmost nodes on the diagram will be called
points, lines, planes, and hyperplanes:

-o
points lines planes hyperplanes

The graph T = F(^) on the set of points of ^ in which two points are
adjacent if and only if they are incident to a common line, is called the
collinearity graph of'S.

Given such a geometry <§ and a vector space V, we can ask is it
possible to define a mapping q> from the element set of ^ onto the set
of proper subspaces of V, such that dim <p(x) is uniquely determined
by the type of x and whenever x and y are incident, either cp(x) < (p(y)
or q>{y) < <p(x)? This question leads to a very important and profound
theory of presheaves on geometries which was introduced and developed
in [RSm86] and [RSm89]. A special class of the presheaves, described
below, has played a crucial role in the classification of P- and T-
geometries.

Let ^ be a geometry with elements of one type called points and
elements of some other type called lines. Unless stated otherwise, if ^
has a string diagram the points and lines are as defined above. Suppose
that ^ is of GF(2)-type, which means that every line is incident to exactly
three points. Let FT and L denote, respectively, the point set and the line
set of ^ . In order to simplify the notation we will assume that every
line is uniquely determined by the triple of points to which it is incident.
Let V be a vector space over GF(2). A natural representation of (the
point-line incidence system associated with) ^ is a mapping <p of IIU L
into the set of subspaces of V such that

(i) V is generated by Im cp,

(ii) dim q>(p) = 1 for p e II and dim cp(l) = 2 for / € L,
(iii) if / e L and {p,q,r} is the set of points incident to /, then

{(p(p), (p{q), <p(r)} is the set of 1-dimensional subspaces in <p(l).

If IS possesses a natural representation then it possesses the univer-
sal abelian representation <pa such that any other natural representa-
tion is a composition of q>a and a linear mapping. The GF(2)-vector
space underlying the universal natural representation (considered as
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an abstract group with additive notation for the group operation) has
the presentation

= (vp, peP | vp + vp = 0; vp + vq = vq + vp for p, q € P;

vp +vq + vr = 0 if {p,q,r} = 1 € L)

and the universal abelian representation itself is defined by

(pa : p >-+ vp for p e i>

and

<pa -I*-* (vP,vq,vr) for {p,q,r} = I e L.

In this case K(^) will be called tfre universal representation module of
&. Notice that V(1S) can be defined for any geometry with three points
on a line.

Natural representations of geometries usually provide a nice model
for geometries and 'natural' modules for their automorphism groups.
Besides that, in a certain sense natural representations control extensions
of geometries. Below we explain this claim.

Let IS be a geometry of rank at least 3 with a string diagram such that
the residue of a flag of cotype {1,2} is a projective plane of order 2, so
that the diagram of IS has the following form:

X
o o o
2 2 93

Let G be a flag-transitive automorphism group of'S. Let p be a point of
^ (an element of type 1), G\ = G(p) and ^f = res»(p). Then the points
and lines of 2? are the lines and planes of 9 incident to p. Let K be
the kernel of the (flag-transitive) action of G\ on 2tf, let U be the action
induced by K on the set of points collinear to p and suppose that [ 7 ^ 1 .
Let / = {p,q,r} be a line containing p. Since every k € K stabilizes the
flag {p, /} it either fixes q and r or swaps these two points. Furthermore,
since U =fc 1 and G\ acts transitively on the point-set of Jf, some elements
of K must swap q and r. Hence U is a non-identity elementary abelian
2-group (which can be treated as a GF(2)-vector space). The set of
elements in U which fix / pointwise is a hyperplane [/(/) in U. Let U*
be the dual space of U and U*(l) be the 1-subspace in U* corresponding
to C/(/). Then we have a mapping
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from the point-set of J f into the set of 1-spaces in U'. We claim that cp
defines a natural representation of .?f. For this purpose consider a plane
n in & containing /. By the diagram the set J5" = ies^(n) of points and
lines in & incident to n forms a projective plane pg(2,2) of order 2. By
the flag-transitivity of G the subgroup G3 = G(n) acts flag-transitively
on OF. The subgroup X is contained in G3 and since V ^\,K induces
o n f a non-trivial action (whose order is a power of 2). Since pg(2,2)
possesses only one flag-transitive automorphism group of even order,
we conclude that G3 induces on J5" the group 1^(2). Then G\ n G3
induces Sym4 = 22.Sym-i on & and since K is a normal 2-subgroup in
G\ contained in G3, we observe that the action of U on !F is of order
22. Let \\ = /, h, and h be the lines incident to both p and 7t. Then the
U(lj) are pairwise different hyperplanes for 1 < 1 < 3 and l/(/,-) n [/(/,)
is the kernel of the action of U on !F (having codimension 2 in U) for
all 1 < i < _/ < 3. In dual terms this means that the [/*(/,) are pairwise
different 1-spaces and

([/*(/,) I 1 < i < 3)

is 2-dimensional. Hence <p is a natural representation and we have the
following.

Proposition 1.5.1 Let <& be a geometry with diagram of the form

X
2 2 93

tet G be a flag-transitive automorphism group of &, let p be a point in 'S
(an element of the leftmost type on the diagram), let K(p) be the kernel
of the action of G(p) on Jtf = res^(p), let U be the action which K(p)
induces on the set of points collinear to p and suppose that U ^ 1. Then
U is an elementary abelian 2-group, whose dual U' supports a natural
G(p)/K(p)-admissible representation o/res#(p), in particular, U' is a quo-
tient of V{3f). a

When we follow an inductive approach to the classification of geome-
tries, we can assume that JC and its flag-transitive automorphism groups
are known and we are interested in geometries ^ that are extensions of
J f by the projective plane edge in the diagram. Then the section U is
either trivial or related to a natural representation of Jtf. In particular,
this section is trivial if J f does not possess a natural representation. In
practice it often happens that in this case there are no extensions of Jf
at all. One of the reasons for this is the following result.
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Proposition 1.5.2 In the hypothesis of (1.5.1) let ~H be the action induced
by G(p) on 3ff (so that H = G(p)/K(p)). Let I and n be a line and a plane
in & incident to p (which are a point and a line in JF). Suppose further
that

(i) [7 = 1 (which always holds when V(jf) is trivial);
(ii) H(n) induces Sym$ on the set of lines incident to both p and n.

Then H(l) contains a subgroup of index 2.

Proof. The stabilizer G(n) of n in G induces a flag-transitive action X
of the residual projective plane of order 2 formed by the points and lines
in ^ incident to n. Hence by [Sei73] X s L3(2) or X s F7

3. By (ii) the
latter case is impossible. Hence G(l) induces Symy on the point-set of /
(we can see this action already in G(l) n G(n) assuming that / and n are
incident). Hence the pointwise stabilizer of / has index 2 in G(p) n G(l).
Finally, by (i), K(p) fixes every point collinear to p and hence the index
2 subgroup contains K(p). D

For various reasons it is convenient to consider also a non-abelian
version of natural representations. The universal representation group of
a geometry ^ with 3 points on every line has the following definition in
terms of generators and relations:

R(9) = (zp, PGU\z2
p = l, zpzqzr = 1 if {p,q,r} = / e L).

It is easy to observe that V(<0) = R(^)/[R(^),R(^)]. Notice that gen-
erators zp and zq of RC&) commute whenever p and q are collinear.
There are geometries whose universal representation groups are perfect.
In particular, the geometries ^(J^), ^(BM) and 0(M) have non-trivial
representation groups while their representation modules are trivial.

We had originally introduced the notion of non-abelian representations
in order to simplify and to make more conceptional the non-existence
proofs for abelian representations, which are important for the classifica-
tion of amalgams of maximal parabolics. But this notion eventually led
to a completely new research area in the theory of groups and geome-
tries [IvOl]. It turned out that the knowledge of these representations is
crucial to the construction of affine and c-extensions of geometries. More
recently the calculation of the universal representation group of ^(M)
has been used in a new identification of the famous Ysss-group with the
Bimonster (cf. Section 8.6 in [Iv99]).
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General features

In this chapter we present some techniques for calculating representations
of geometries of GF(2)-type, i.e., with three points on a line. In the last
two sections we discuss some applications of the representations for
construction of c-extensions of geometries and non-split extensions of
groups and modules.

2.1 Terminology and notation

Let Sf = (II, L) be a point-line incidence system with 3 points on every
line. This simply means that n is a finite set and L is a set of 3-element
subsets of FI. We define the universal representation group of S? by the
following generators and relations:

R(.ST) = (zp,p € II | z] = l,zpzqzr = 1 if {p,q,r} = I 6 L).

So the generators of R(y) are indexed by the points from n subject to
the following relations: the square of every generator is the identity; the
product (in any order) of three generators corresponding to the point-set
of a line is the identity. The universal representation of Sf is the pair
(R{£f), (pu) where q>u is the mapping of IT into R(£f) defined by

q>u : p i-» zp for p e II.

Let \p : R(£f) -> R be a surjective homomorphism and cp be the compo-
sition of <pu and \p (i.e., <p(p) = y(<pu(p)) for every p e II). Then (R, <p) is
a representation of Sf. Thus a representation of £f is a pair (R, <p) where
R is a group and <p is a mapping of II into R such that

(Rl) R is generated by the image of <p;
(R2) <p(p)2 = 1 for every p e II;
(R3) whenever {p, q, r} is a line, the equality (p(p)<p(q)(p(r) = 1 holds.

19
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If in addition R is abelian, i.e.,

(R4) [<p(p),(p(q)] = 1 for all p,q e II,

then the representation is said to be abelian. The order of a representation
(R, cp) is the order of R.

Let V(£f) be the largest abelian factor group of R(£f) (i.e., the quotient
of R{Sf) over its commutator subgroup), xp be the corresponding homo-
morphism and cpa be the composition of <pu and \p. Then (V(£f), q>a) is the
universal abelian representation and V(y) is the universal representation
module of £f.

Let G be an automorphism group of Sf. Then the action

(zp)
g = zpg for p G n and g e G

defines a homomorphism x of G into the automorphism group of R(Sf).
Let (R,(p) be an arbitrary representation and N be the kernel of the
homomorphism of R(6P) onto R. Then (R, <p) is said to be G-admissible
if and only if N is #(G)-in variant. In this case the action q>{p)g =
<p(/?g) defines a homomorphism of G into the automorphism group of
R. The universal representation is clearly Aut ̂ -admissible and so is
a representation for which the kernel of the homomorphism xp is a
characteristic subgroup in R(Sf). In particular (V(SP), cpa) is Aut in-
admissible.

Let IS be a geometry, in which II is the set of points and L is the
set of lines, and every line is incident to exactly three points. Then by
a representation of & we understand a representation of its point-line
incidence system Sf = (II, L) (which is a truncation of ^). We denote by
(R(^),(pu) and by (K(0),(pa) the universal and the universal abelian such
representations.

The group V{Sf) is abelian generated by elements of order at most
2. Hence it is an elementary abelian 2-group and can be treated as a
GF(2)-vector space. In these terms V{9>) is the quotient of the power
space 2n of n (the set of all subsets of n with addition performed by
the symmetric difference operator) over the image of 2L with respect to
the incidence map that sends a line / e L onto its point-set (which is an
element of 2n).

Then the GF(2)-dimension of V(Sf) is the number of points minus the
GF(2)-rank of the incidence matrix whose rows are indexed by the lines
in L, and columns are indexed by the points in n , and the (/,p)-entry
is 1 if p € / and 0 otherwise (notice that every row contains exactly
three non-zero entries equal to 1). Thus the dimension of the universal
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representation module can (at least in principle) be found by means of
linear algebra over GF(2).

The universal representation module V{£f) is a GF(2)-module for the
automorphism group Aut y and there is a natural bijection between the
Aut .^-admissible abelian representations and G-submodules in V(y).
The following lemma easily shows that in the point-transitive case V(y)
does not contain codimension 1 submodules.

Lemma 2.1.1 Let y = (II, L) be a point-line incidence system with 3 points
on every line, G be a group of automorphisms of y which acts transitively
on II and suppose that there is at least one line. Then there are no G-
admissible representations of order 2.

Proof. Suppose that (R, q>) is a G-admissible representation of order 2,
say R — {1,/}. Since R is generated by the image of q>, the representation
is G-admissible and G is point-transitive, q>(p) = f for every p e II. Then
if / = {p, q, r} is a line, we have

which is contrary to the assumption that cp is a representation. •

Let (R, cp) be a representation of y = (II, L) and A be a subset of II.
Put

*[A] = ((p(y) I y e A)

(the subgroup in R generated by the elements (p(y) taken for all y e A).
If q>\ is the restriction of (JO to A and L(A) is the set of lines from L

contained in A, then we have the following

Lemma 2.1.2 (R[A],(p\) is a representation o/(A,L(A)). •

If the representation (R, q>) in the above lemma is G-admissible for an
automorphism group G of y, H is the stabilizer of A and H is the action
induced by H on A, then clearly (R[A],(p^) is H-admissible.

Now let A be a subset of A and suppose that R[A] is normal in R[A]
(this is always the case when R is abelian). Then (R[A]/R[A],x) is a
representation of (A, L(A)) (where x is the composition of q>\ and the
homomorphism of R[A] onto R[A]/R[A]). The following observation is
rather useful.

Lemma 2.1.3 Let {p,q,r} be a line in L(A) such that p e A. Then x(q) =

X(r). •
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The following result is quite obvious.

Lemma 2.1.4 Let (i?,, <p,) be representations of ¥ = (II, L) for 1 < i < m.
Let

R = Rix...xRm = {(n,...,rm) | r, e R,}

be the direct product of the representation groups i?, and q> be the map-
ping -which sends p e U onto (cpi(p),...,(pm(p)) e R. Then (Im<p,<p) is a
representation of y. •

The representation (lmq>,<p) in the above lemma will be called the
product of the representations (Rt, (pi) and we will write

(Im<p,<p) = (Ru<pi) x - x (Rm,9m)-

Notice that the representation group of the product is not always the
direct product of the Rt but rather a sub-direct product.

For the remainder of the chapter Sf = (II, L) is a point-line incidence
system with three points on every line and this system might or might
not be a truncation of a geometry of rank 3 or more.

2.2 Collinearity graph

Let F be the collinearity graph of the point-line incidence system y =
(FT, L) which is a graph on the set of points in which two points are
adjacent if they are incident to a common line. For x, y € II by dr{x, y)
we denote the distance from x to y in the natural metric of T. Notice
that the set of points incident to a line is a triangle. For a vertex x of F,
as usual F,(x) denotes the set of vertices at distance i from x in F and
F(x) = F,(x).

For a vertex x of F and 0 < i < d put

Ri(x) = (<p(y)\dr(x,y)<i),

or equivalently

Ri(x) = R[{x}url(x)U...uri(x)].

If for some i > 1 the subgroup Rj-i(x) is a normal subgroup in Ri(x) (of
course this is always the case when R is abelian), we put

Ri(x) = RiM/Ri^ix).

Notice that RQ(X) is in the centre of Ri(x), so that Ri(x) is always defined.
We introduce a certain invariant of F which will be used to obtain

upper bounds on dimensions of V(¥). Let £,(*) be a graph on the set
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r,(x) in which two vertices {M,I>} are adjacent if there is a line containing
u, v and intersecting r,_i(x) (here 1 < i < d where d is the diameter of
T). Notice that I,(x) is a subgraph of T but not necessarily the subgraph
induced by r,(x) (the latter subgraph might contain more edges than
E((x)). Let c(£,(x)) be the number of connected components of S,-(x) and
put

Notice that in general j3(F) depends not only on the graph T but also on
the line set L, but if Zf = (II, L) is flag-transitive (in fact point-transitivity
is enough), then c(I,(x)) = c{T,i(y)) for any x,y € n .

Lemma 2.2.1 dim V(&) < )3(r).

Proof. Let (W, q>) be an abelian representation of y and x e F. Then

d

dim W = 1 + Y^ d i m V?i(xl
i = l

Let u,v G r,(x) be adjacent in S,(x) and / be a line containing u,v and
intersecting r,_i(x) in a point w, say. Then by (2.1.3)

If ui,M2,..., um is a path in S,(x) then by the above statement (cp(uj), W,_i)
is independent on the choice of 1 < j < m. Hence all the points in a
connected component of £,• have the same image in W,(x) and the proof
follows. •

Lemma 2.2.2 Let C = {yo,y\,...,ym = yo) be a cycle in the collinearity
graph F of SP and suppose that z*, 0 < i < (m — 1), are points such that
{yi,}>i+i,Zj} S L. Then for every representation (R,cp) of Sf we have

Proof. By (R2) we have (p(x)cp(x) = 1 for every point x, hence

(p(yo)<p(yi)<p{yi)-(p(ym-i)<p(ym-i)(p(yo) = l-

On the other hand, since (R,q>) is a representation, we have <p(z,) =
(p(yi)q>(yi+i), which immediately gives the result. D
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Lemma 2.2.3 Suppose that Ki(x) = Ri(x)/Ro(x) is abelianfor every x e II.
Ifu,v e II with dr(u,v) < 2, one of the following holds:

(i) [(p(u),cp(v)] = l;
(ii) dr{u,v) = 2, F(u) n r(u) consists of a unique vertex w, say, and

[(p(u),q>(v)] =cp(w).

In particular, q>(u) and (p(v) commute ifdr(u,v) = 1 or ifdj-(u,v) = 2 and
there are more than one paths of length 2 in F joining u and v.

Proof. If u and v are adjacent then q>(u)(p(v) = <p(t) where {u, v, t} is
a line and hence [(p{u), <p(v)] = 1. If Ri(x) is abelian for every x e II
then again cp{u) and <p(u) commute. If Ri(x) is non-abelian, then its
commutator is RQ(X) and the latter contains at most one non-identity
element, which is <p(x). Now the result is immediate. •

2.3 Geometric hyperplanes

A geometric hyperplane H in Sf is a proper subset of points such that
every line is either entirely contained in H or intersects it at exactly one
point. The complement of H is the subgraph in the collinearity graph of
Sf induced by II \ H. The following result is quite obvious.

Lemma 2.3.1 Let % : Sf —»• y be a covering of geometries and H be
a geometric hyperplane in Sf. Then x~[(H) is a geometric hyperplane in
SP. •

The following result shows that when every line is incident to exactly
3 points the geometric hyperplanes correspond to vectors in the dual
of the universal representation module of the geometry. In particular,
the universal representation module of a point-line incidence system Sf
with 3 points per line is trivial if and only if Sf has no geometric hyper-
planes.the following lemma establishes a natural bijection between the
geometric hyperplane and the codimension 1 subspaces in the universal
representation module.

Lemma 2.3.2 Let (V, q>a) be the universal abelian representation of Sf, W
be a codimension 1 subspace in V and H be a geometric hyperplane in Sf.
Let

X(W) = {x G n | <pa(x) e W}.

Let ZH = {0,1} be a group of order 2 and q>n be a mapping ofH into ZH
such that q>H = 0 if x S H and q>H = 1 otherwise. Then
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(i) x(W) is a geometric hyperplane in £f;
(ii) (ZH,(PH) is a representation of Sf;

(iii) the kernel UH of the representation homomorphism of V onto ZH
has codimension 1 in V;

(iv) X(UH) = H.

itemize

Proof. Consider the mapping q>w of FI into V/W defined by

<pw :p*-> <pa{p)W.

Clearly (V/W,cpw) is a representation of Sf. Since V/W is of order 2,
for every line from L either for all or for exactly one point the image
under cpw is 0 and since q>w is surjective, the latter possibility occurs.
Hence (i) follows. The assertions (ii) to (iv) are rather obvious. •

By the above lemma the universal abelian representation can be re-
constructed from the geometric hyperplanes in the following way. Let
H\,...,Hm be the set of geometric hyperplanes in £f, Z(Hj) = {0,1} be
a group of order 2 and q>H, '• n -* Z(Ht) be the mapping, such that
<PH,(P) = 0 if p € /f, and q>H,(p) = 1 otherwise.

Lemma 2.3.3 The universal abelian representation (Va, q>a) of Sf is iso-
morphic to the product of the representations (Z (//,), <p«() taken for all the
geometric hyperplanes Ht in SP.

Proof. Let VU-, Vm be the set of all subgroups of index 2 in Va and
suppose that /(V,) = //, in terms of (2.3.2). Define a mapping \p from Va

into the direct product of Z(H[) x ... x Z(Hm) by \p(v) = (oti(i;),...,am(u)),
where a,-(c) = 0 if v € Vt and a,(u) = 1 otherwise. It is easy to see that
xp is a representation homomorphism of (Va, <pa) onto the product of the
(Z(HJ),(PH,), which proves the universality of the product. •

Corollary 2.3.4 If{V,q>) is a representation of Sf such that V is generated
by the images under q> of the points from a geometric hyperplane H in
Sf. Then the product (V, q>) x (Z(H), q>u) possesses a proper representation
homomorphism onto (V, cp), in particular the latter is not universal. •

The next lemma generalizes this observation for the case of non-abelian
representations.

Lemma 2.3.5 Let (R, q>) be a representation of Sf. Suppose that H is
a geometric hyperplane in £f such that the elements cp(x) taken for all
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x G H generate the whole of R. Then the representation group of the
product (R, cp) x {Z(H), q>n) is the direct product of R and the group Z(H)
of order 2. O

The following result describes a situation when the universal represen-
tation group is infinite.

Lemma 2.3.6 Suppose that H is a geometric hyperplane in Sf whose com-
plement consists of m connected components. Then R(£f) possesses a ho-
momorphism onto a group, freely generated by m involutions. In particular,
R(S?) is infinite ifm>2.

Proof. Let Ai,...,Am be the connected components of the complement
of H. Let D be a group freely generated by m involutions a\ am. Let \p
be the mapping from IT into D, such that tp(x) = a, if x £ At, 1 < i < m,
and xp(x) is the identity element of D if x G H. It is easy to check that
(D, \p) is a representation of y and the proof follows. •

Lemma 2.3.7 Suppose that for every point x G IT there is a partition
II = A{x) U B(x) of II into disjoint subsets A(x) and B(x) such that the
following conditions are satisfied:

(i) the graph 3 on Tl with the edge set £(S) = {(x,y) \ y e B(x)} is
connected and undirected (the latter means that x G B(y) whenever
y G B(x));

(ii) for every x G II the graph Zx on B(x) with the edge set E(2.x) =
{{u,v} | {u,v,w} G L for some w G A(x)} is connected.

Suppose that (R, q>) is a representation of y such that [<p(x), q>(y)] = 1
whenever y G A(x). Then the commutator subgroup of R has order at most
2.

Proof. For x,y eTI let cxy = [<p{x), cp(y)] and Cxy be the subgroup in
R generated by cxy. Then by the assumption cxy = 1 if y G A{x). Let
{w, v, w} be a line in L such that {u, v} is an edge in Zx and w G A{x). Since
q>(u) = <p(w)(p(v) by definition of the representation and [cp(x), <p{w)] = 1,
we have

cxu = [(p(x),cp(u)] = [(p(x),(p(w)q>(v)}

^ ' = [<p(x),cp(v)] = cOT.

This calculation together with the connectivity of Zx implies that Cxu is
independent on the particular choice of u G B(x) and will be denoted by
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Cx. Since

cxy = [(p(x),<p(y)] = [(p(y),<p(x)]~l = c~x,

we also have Cxy = Cyx, which means that Cx = Cy whenever y e B(x),
i.e., whenever x and y are adjacent in the graph S as in (i). Since S
is undirected and connected, Cx is independent on the choice of x and
will be denoted by C. By the definition, (p{x)~lcxycp(x) = c~y

x, which
means that C is inverted by the element <p(x) for every x € n . Now
if {x,y,z} € L then (p(x) = cp(y)(p(z) and hence q>(x) also centralizes C,
which means that the order of C is at most 2. Since R is generated by
the elements cp(x), taken for all x e II, we also observe that C is in the
centre of R, in particular, it is normal in R. Since the images of q>(x)
and cp(y) in R/C commute for all x,y € II we conclude that the order of
the commutator subgroup of R is at most the order of C and the proof
follows. •

Suppose that the conditions in (2.3.7) are satisfied and R is non-abelian.
Then C = R' is of order 2 generated by an element c, say. One can see
from the proof of (2.3.7) that in the considered situation [<p(x), <p(y)] = c
whenever y e B(x), in particular x € A(x) and we have the following

Corollary 2.3.8 Suppose that the conditions in (2.3.7) are satisfied and R
is non-abelian. Let {V,\p) be the abelian representation where V = R/R'
and ip(x) = <p(x)R'/R'. Then the mapping x • V x V -» GF(2), such that
X(<p(x),(p{y)) = 0ify€ A(x) and x((p(x), q>(y)) = I if y € B(x), is a non-
zero bilinear symplectic form. In particular, A(x) is a hyperplane for every

xen. a

Corollary 2.3.9 Suppose that in the conditions of (2.3.8) the representation
(R, <p) is G-admissible for a group G (which is the case, for instance, if
(R, <p) is the universal representation and G = Aut Sf). Then the mapping
X is G-invariant. •

2.4 Odd order subgroups

Let G be a flag-transitive automorphism group of y = (Tl,L) and
suppose that £ is a normal subgroup in G of odd order. Let SP = (n , L)
be the quotient of Sf with respect to E, so that G commutes with the
natural morphism
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and induces a flag-transitive automorphism group of y. Suppose further
that the situation a non-degenerate in the sense that every line from L is
still incident to three points from II.

Let (V,<p) be the universal abelian representation of Sf. Let V2 =
CV(E) and Vc = [V,E] so that V = V2 © Vc and let cp2 and cpc be the
mappings of the point set of y into V2 and Vc, respectively, such that
<p(x) = cpz(x) + (pc{x) for every x € II.

Lemma 2.4.1 In the above notation (Vz,cp2) is the universal abelian repre-
sentation of y.

Proof. Since the mapping q>2 is constant on every £-orbit on the
set of points of y, it is easy to see that (Vz,q>z) is a representation
of y. Let (W,\p) be the universal representation of y and % be the
natural morphism of y onto y. Then it is easy to see that (W,\px)
is a representation of y and in the induced action of G on W the
subgroup E is in the kernel. Since V is the universal representation
module of y, W is a quotient of V. Furthermore, if U is the kernel of
the homomorphism of V onto W then U contains Vc. This shows that
U = Vc and W s Vz. U

Lemma 2.4.2 Let V\ and V2 be GF(2)-vector spaces and Sf = (H,L) be
the point-line incidence system such that II = vf x vf and whose lines are
the triples {(a, x), {b, x), (a + b, x)} and the triples {(a,x),(a,y),(a,x +y)},
for all a,b e vf, x,y G vf. Then the universal representation group of y
is abelian, isomorphic to the tensor product V\ <8> Vi.

Proof. Let (R, cp) be the universal representation of y. Then the
following sequence of equalities for a, b e vf, x, y e Vf imply the com-
mutativity of R:

cp{a, x)(p(b, y) = (p{a + b, x)(p{b, x)tp(b, y)

= (p(a + b, x)cp(b, x + y) = (p(a + b, y)(p{a + b, x + y)q>(b, x + y)

= V(b,y)q>(a,y)(p(a,x + y) = q>(b, y)cp(a, x).

The structure of R now follows from the definition of the tensor
product. •

Suppose now that y — (II, L) possesses an automorphism group E of
order 3 which acts fixed-point freely on the set II of points. Then every
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orbit of £ on II is of size 3 and we can adjoin these orbits to the set L of
lines. The point-line incidence system obtained in this way will be called
the enrichment of Sf associated with £. We will denote this enriched
system by 9".

Lemma 2.4.3 In terms introduced before (2.4.1) if\E\ = 3 then (Vc,<pc) is
the universal abelian representation of ' Sf*.

Proof. Since £ acts fixed-point freely on Vc, <pc(x)+(pc(xz)+q>c(xz2) = 0
for any x € n and a generator z of £. •

Lemma 2.4.4 Let 9" be the enrichment of if associated with a fixed-
point free subgroup E of order 3 and (R',(p) be a representation of 9".
Let x G II and y be an image under E of a point collinear to x. Then

Proof. Let {XQ = X,XQ,XQ} be a line containing x. Let e be a generator
of £ and let x{ be the image of x^ under the i-th power of e, 0 < i < 2.
Let O = {x{ | 0 < i < 2,0 < ; < 2} (we assume that y e O). Then

A = { { x ? , x / , x ? } | 0 < i < 2} U { { 4 , 4 , x{} \ 0 < j < 2 ]

is a set of lines of 9" contained in O. Then the conditions of (2.4.2) are
satisfied for (O, A) with

Vt = <<p(*°) I 0 < i < 2), V2 = (q>(4) | 0 < j < 2)

and hence the elements q>(z) taken for all z e O generate in R' an abelian
subgroup of order at most 16. D

The technique presented in the remainder of the section was intro-
duced in [Sh95] to determine the universal representation modules of the
geometries ${3®* • S2n(2)) forn > 3 and ^(3 2 3 • Co2).

In terms introduced at the beginning of the section assume that £ is
an elementary abelian 3-group normal in G so that £ is a GF(3)-module
for G = G/£ and that Vc ± 0. Since the characteristic of Vc is 2, by
Maschke's theorem Vc is a direct sum of irreducible £-modules. Let U
be one of these irreducibles. Since Vc = [V,E], U is non-trivial, hence it
is 2-dimensional and £ induces on U an action of order 3. The kernel
of this action is an index 3 subgroup in £. A subgroup Y of index 3 in
E is said to be represented if Vy := Cy(Y) =̂ 0. Let 5 be the set of all
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represented subgroups (of index 3) in E. Then we have a decomposition

which is clearly G-invariant with respect to the action (VY)g = VYt for
g e G .

Let x G IT be a point and let E(x) = E n G(x) be the stabilizer of
x in E. Since £ is abelian, E(x) depends only on the image x of x in
Ft, so we can put £(x) = E(x). Thus for every point x we obtain a
subgroup £(x) in E normalized by G(x). Put E = E/E(x) and adopt the
hat convention for subgroups in E. We will assume that the following
condition is satisfied.

(M) The elementary abelian 3-group E is generated by a G(x)-invariant
set SS = {Bj | i G /} of distinct subgroups of order 3. Let S be
the graph on the index set / such that {i,j} £ / is an edge of Z if
and only if there is a line {x, u, w} e L containing x such that the
intersections of £,7- := (B,, Bj) with £(i7) and E(w) together with Bt

and Bj form the complete set of subgroups of order 3 in the group
Btj (which is elementary abelian of order 9).

For a point x G FI and a represented subgroup Y G 3 let vxj be the
projection of <pc{x) into VY and put

(notice that S(x) does not depend on the particular choice of the preimage
x of x in II). For a represented subgroup 7 e 5 put

Qy = {X G fT | 7 £ S(X)} = {X G FT I t^y = 0}.

Notice that if x g fiy then £(x) < 7.

Proposition 2.4.5 7/" (M) /zo/ds then Qy is a geometric hyperplane in if
for every F s S .

Proof. Choose Y G 3. Since Fc is generated by the vectors q>c(y) taken
for all y G n , there is x e II such that vXiY =f= 0 and hence there is x G II
outside Qy and so the latter is a proper subset of II. If / = {x, u,w} G L
then since (Vc, cpc) is a representation, ux>y +uu,y +uw,y = 0, which shows
that every line from L intersects fiy in 0, 1 or 3 points and all we have
to show is that the intersection is never empty.

Suppose to the contrary that both u and w are not in fiy (where
{x,u,w} is a line in L). Consider E = E/E(x). Since x $ fiy, we
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have E(x) < Y, which shows that the image Y of Y in E is a proper
hyperplane in E. Consider the generating set $) from (M). By the flag-
transitivity, G(x) acts transitively on the set of lines passing through x.
This together with (M) implies that there is an edge {i,j} of I such that
By is generated by its intersections with E(u) and E(w). Since both u
and w are not in fty we have B\,Bj < Y. Let k e I \ {j} be adjacent to i
in S and {x,u',w'} be a line in L such that the intersections of B^ with
E(u') and E(v') are of order 3 distinct from each other and also from
Bt and Bk. Since at least one of u' and w' is not contained in fty, the
corresponding intersection is contained in Y, because we know already
that Bt < Y this gives B& < Y. Finally, since £ is connected we obtain
Y = E, a contradiction. •

The above proof also suggests how we can reconstruct Y from fty.
For a geometric hyperplane ft in y put

Lemma 2.4.6 Suppose that (M) Zio/ds and Q is a geometric hyperplane in
"P. Then

(i) the index o/ 7 (ft) in E is at most 3;
(ii) ifY G 5 is represented, then Y = Y{ClY)-

Proof. Let x e IT \ fi. Then by the definition £(x) < Y(Q). Consider
E = E/E(x). Let {i,̂ } be an edge of Z. Then there is a line {x, u, w} such
that among the four subgroups in B,7- one is contained in E(u) and one
is in E(w). Since one of the points M and vv is contained in ft, a subgroup
of order 3 in By is contained in Y(ft). Hence the images in E/Y(Q)
of B, and B; coincide. Since {i,j} was an arbitrary edge of £ and the
latter is connected, we obtain (i). In the proof of (2.4.5) we observed that
E(x) < Y whenever x $ fty. Hence (ii) follows from (i) and (2.4.5). •

A geometric hyperplane ft in y is said to be acceptable if

7(ft) f E.

By (2.4.6) every fty is acceptable. Thus the number of represented
subgroups in E (the cardinality of S) is at most the number of acceptable
hyperplanes in Sf.

Now in order to bound the dimension of Vc it is sufficient to bound
the dimension of VY for a represented subgroup Y in E. Notice that a
line which is not in fty has exactly two of its points outside fty. Hence
all such lines define in a natural way a structure of a graph on the
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complement of fly. Let ny be the number of connected components of
this graph.

Lemma 2.4.7 Suppose that (M) holds. Then dim VY < 2ny.

Proof. Let T be the complement of fly. It is clear that VY is spanned
by the vectors vx>Y taken for all points x € T. For a fixed x its image x in
Sf is the £-orbit containing x. Hence the vectors vuj taken for all u € x
generate a 2-dimensional irreducible £-submodule (in fact any £-orbit
on the non-zero elements of VY spans a 2-dimensional irreducible £-
submodule). Let x,u be collinear points in T. Then by (2.4.5) there exists
a line I = {x,w, W} in Sf such that W e fly. Choose a line / = {x,u,w} of
y which is a preimage of I. Since

tfx,y + VU,Y + yw,y = 0 and vwj = 0,

we obtain vxy = uu,y. Hence the points in every connected component
of T correspond to the same 2-dimensional £-submodule of VY and the
proof follows. •

By (2.3.6) the existence of a geometric hyperplane whose complement
induces a disconnected subgraph in the collinearity graph forces the
universal representation group to be infinite. In view of (2.4.7) this
observation implies the following.

Corollary 2.4.8 Suppose that (M) holds and the universal representation
group of 91 is finite. Then the dimension of VY is either 0 or 2. D

2.5 Cayley graphs

In some circumstances calculation of the universal representation of a
point-line incidence system can be reduced to calculation of the universal
cover of a certain Cayley graph with respect to a class of triangles.

Let if = (II, L) be a point-line incidence system with 3 points on a
line, (Q,rp) be a representation of y , and suppose that ip is injective.
Then

xp(U) := {V(x) | x e n }

is a generating set of Q and we can consider the Cayley graph 0 :=
Cay(Q, y(FI)) of Q with respect to this generating set. This means that
the vertices of 0 are the elements of Q and two such elements q and
p are adjacent if qp~l e tp(Il). Since y(II) consists of involutions, 0 is
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undirected. If e is the identity element of Q (considered as a vertex of
0 ) then \p establishes a bijection of n onto 0(e) = y(IT). A triangle
T = {p,q,r} in 0 will be called geometric if {pq~l,qr~l,rp~1} is a line
from L. If {x,y,z} e L then {e,tp(x), v(y)} is a geometric triangle and all
geometric triangles containing e are of this form.

Let (Q,i/5) be another representation of y such that there is a rep-
resentation homomorphism x '• Q ~* Q- Since ^ is a representation
homomorphism, it maps vertices adjacent in 0 := Cay(Q,y)(U)) onto
vertices adjacent in 0 . Since in addition the valencies of both 0 and
0 are equal to |n | , x induces a covering of © onto 0 (we denote this
covering also by x)- Furthermore one can easily see that a connected
component of the preimage under / of a geometric triangle in 0 is a
geometric triangle in 0 , which shows that the geometric triangles in 0
are contractible with respect to x-

Lemma 2.5.1 In the above terms let (R, cp) be the universal representation of
£f and a : R —» Q be the corresponding homomorphism of representations.
Then the induced covering

a : Cay(R, (p(U)) -> 0

is universal among the covers with respect to which the geometric triangles
are contractible.

Proof. Let 8 : 0 —> 0 be the universal cover with respect to the
geometric triangles in 0 . By the universality property the group of deck
transformations acts regularly on every fiber and since Q acts regularly
on 0 , the group Q of all liftings of elements of Q to automorphisms of
0 acts regularly on the vertex set of 0 . This means that 0 is a Cayley
graph of Q. Let e be a preimage of e in 0 . Then a vertex / e 0 can
be identified with the unique element in Q which maps 'e onto / and
under this identification 8 is a homomorphism of Q onto Q. Since 8 is a
covering of graphs, it induces a bijection /? of 0(e) onto 0(e) and since
xp is a bijection of II onto 0(e) the mapping cp := P~l\p is a bijection of
II onto 0(?). We claim that <p(x) is an involution for every x G IT. The
claim follows from the fact that 8 is a covering of graphs, 8{(p(x)) = xp{x)
is an involution and Q acts regularly on 0 . Let {x,y,z} e L. Since the
geometric triangles are contractible with respect to 8, <p(x) and q>(y) are
adjacent in 0 , which means that the element a := q>(x)q>{y) belongs to
the set (p(Tl) of generators. Since <5(a) = tp(z) we have a = <p(z) and
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hence § is a representation group of Sf. The universality of 8 implies
that Q is the universal representation group, i.e., Q = R. •

2.6 Higher ranks

Let £f = (II, L) be as above, (R, cp) be a representation of Sf, A be a
subset of n and L(A) be the set of lines contained in A. Let cp[A] be the
subgroup in R generated by the elements cp(x) taken for all x € A and
<PA be the restriction of cp to A. The following result is quite obvious.

Lemma 2.6.1 The pair (cp[A],cpA) is a representation o/(A,L(A)). D

Suppose now that Sf is the point-line incidence system of a geometry
1§ of rank n > 3 with its diagram of the form

X
2 2 q,

so that (/?, <p) is also a representation of <$. For an element u e ? define
<p*(u) to be the subgroup in R generated by the elements cp{x) taken for
all points x incident to u. In this way for a point x the element cp(x) is
identified with the subgroup cp'{x) it generates in R. For u as above let
(pu be the restriction of cp to the set of points in 0 incident to u. Then by
(2.6.1) (cp'(u),cpu) is a representation of the point-line incidence system
with the point-set II n res#(u) and whose lines are those of 0 incident to
u. In particular if u is a plane of IS then (cp*(u), cpu) is a representation of
the projective plane pg(2,2) of order 2 formed by the points and lines of
^ incident to u, in particular cp'(u) is abelian of order at most 23.

Let x be a point in <§ and ^ = (I1X,LX) be the point-line system
of res#(x), which means that ITX and Lx are the lines and planes in ^
incident to x.

Lemma 2.6.2 In the above terms let (R, cp) be a representation of <§, x be
a point ofy, R\(x) be the subgroup in R generated by the elements cp(y)
taken for all points y collinear to x, R\(x) = R\{x)/cp{x). Let

cpx :ui-Kp'{u)/<p'(x)

for u e IIX. Then (Ri(x),cpx) is a representation o/res^(x). Furthermore,
let G be an automorphism group of & such that (R, cp) is G-admissible and
let G{x) be the action which G(x) induces on resg(x), then (R\(x),cpx) is
G(x)-admissible.
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Proof. For y € FIX the order of <p'(y)/(p'(x) is at most 2 and hence
the condition (R2) (cf. Section 2.1) is satisfied. Let n € Lx (a plane in
0 containing x), li,h,h be the lines in & incident to both x and n, and
>>,• e /,- \ {x} for 1 < j < 3 be such points that {y\,yi,yi} is a line of %,
then <p(yi)<p()'2)<?'(>'3) = 1) which implies (R3). D

The above result possesses the following reformulation in terms of the
collinearity graph T of'S.

Lemma 2.6.3 Let (R,(p) be a representation of^ which is G-admissible for
an automorphism group G of (S, let Y be the collinearity graph of <S, let x
be a point and G(x) be the action induced by G(x) on res#(x),

Ri(x) = (cp(y) | y e r(x)),

Ro{x) = {(p(x)), Ri(x) = Ri(x)/Ro{x). Then R{(x) is a G(x)-admissible
representation group o/res#(x). D

Let us repeat the definition of the mapping cpx that turns Ri(x) into a
representation group:

<px:l*-+ (p(yi)Ro(x) = (p(y2)Ro(x),

where / = {x,yuy2} is a point of res^(x) which is a line of 0 containing
x.

Suppose that ^ belongs to a string diagram and the residue of an
element of type n (the rightmost on the diagram) is the projective space
pg{n — 1,2) of rank n — 1 over GF(2) (this is the case when 0 is a P-
or T-geometry) and G is a flag-transitive automorphism group of (S. If
{R,cp) is a non-trivial G-admissible representation (i.e., R j= 1) then cp(u)
is abelian of order 21 whenever u is an element of type i in ^.

2.7 c-extensions

Let'S be a geometry of rank n > 2 with its diagram of the form

X
2 2 2 2 q

(in particular, ^ can be a P- or T-geometry), and let G be a flag-transitive
automorphism group of 'S. Let {R, <p) be a G-admissible representation
of y. Suppose that the representation is non-trivial in the sense that the
order of R is not 1. Then it follows from the flag-transitivity (already
from the point-transitivity) that q> maps the point-set of $ into the set of
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involutions in R. Let us extend <p to a mapping q>* from the element-set
of <S into the set of subgroups in R as we did in Section 2.6 (i.e., for
x e ? define (p'(x) to be the subgroup generated by the involutions (p(p)
taken for all points p incident to x). Since (R, cp) is G-admissible, for an
element x of type 1 < i < n in $ the pair (<p*(x), (px) is a G(x)-admissible
representation of res^(x), where <px is the restriction of <p to the set of
points incident to x. Since res^(x) is the GF(2)-projective geometry of
rank i — 1, it is clear (compare (3.1.2)) that <p*(x) is elementary abelian
of order 2'.

Definition 2.7.1 In the above terms the representation (R, q>) is separable
if (p*(x) = (p'(y) implies x = y for all x,y e <&.

Suppose that the representation (R, <p) is separable. Then we can
identify every element x e'S with its image cp'(x) so that the incidence
relation is via inclusion. Define a geometry srftF^, R) of rank n + 1 by
the following rule. The elements of type 1 are the elements of R (also
considered as the right cosets of the identity subgroup) and for j > 1 the
elements of type j are all the right cosets of the subgroups <p*(x) for all
elements x of type j — I in 'S; the incidence relation is via inclusion.

Proposition 2.7.2 The following assertions hold:

(i) sUFifS, R) is a geometry with the diagram

c X
1 2 2 2

(ii) the residue of an element of type 1 in s?JFC&,R) is isomorphic to &;
(iii) the semidirect product H := R : G with respect to the natural action

(by multiplication from the right) is a flag-transitive automorphism
group of st&(&,R);

(iv) if (R, q>) is another representation of & and

is a representation homomorphism, then % induces a 2-covering

xp :

Proof. Let a be the element of type 1 in J f = s4SF(<S, R) which is
the identity element of R. Then the elements of ^f incident to a are
exactly the subgroups (p{x)' representing the elements of <§. Since (R, q>)
is separable, this shows that res^(a) = <§. Clearly R : G (and even R) acts
transitively on the set of elements of type 1 in ^f and hence (ii) follows.
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It follows from the definition that if Xi and X, are incident elements in
Jf of type i and j , respectively, with i < j then X, <= Xj. This shows
that every maximal flag contains an element of type 1 and also that J f
belongs to a string diagram. Let y be an element of type 3 in X (without
loss of generality we assume that y = (p'(l) where / is a line in g.) Since
(R, q>) is separable, y is elementary abelian of order 4. Now the elements
of type 1 and 2 in J f incident to y are the elements of cp'(l) and the
cosets of the subgroups of order 2 in q>'(l), respectively. Clearly this is
the geometry with the diagram o -—o, so (i) follows. And (iii) follows

directly from the definitiori of jf. For a homomorphism x as that in (iv)
define a morphism \p of J f = st&CS, R) onto ^C by

where x G ^ and 7 £ R. Then it is easy to see from the above that \p
is a 2-covering (furthermore, \p is an isomorphism when restricted to the
residue of an element of type 1). •

A geometry with the same diagram as that in (2.7.2 (i)) in which the
residue of an element of type 1 is isomorphic to ^ will be called a
c-extension of 'S; the geometry s£SF{f§,R) will be said to be an affine
c-extension of &.

Proposition 2.7.3 Let & be a geometry with the diagram

X
2 2 2 2 ? '

such that

(i) the number of lines passing through a point is odd.

Let 3? be a c-extension of 'S and H be a flag-transitive automorphism
group of of such that

(ii) any two elements of type 1 in 3f are incident to at most one common
element of type 2;

(iii) H contains a normal subgroup R which acts regularly on the set of
elements of type 1 in Jf;

(iv) »/{xi,3;i} is a pair of elements of type 1 in 3f incident to an element
of type 2 then yi is the only element of type 1 incident with xi to a
common element of type 2, which is stabilized by H(xi)C\H(yi).

Then R is a representation group of &. If in addition R is separable then
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Proof. Let a be an element of type 1 in Jf. Then by (ii) there is a
bijection v of the point-set of ^ onto the set of elements of type 1 in Jf
incident with a to a common element of type 2. For a point p of ^ let rp

be the unique element in R which maps a onto v(p).

Claim 1: rp is an involution.

It is clear that H(<x) n H(v(p)) centralizes rp and hence it fixes element-
wise the orbit of a under rp. By (iv) this means that the image of a under
(rp)~

l must be v(p). Since rp acts regularly on the set of elements of type
1 in #?, the claim follows.

Let P denote the unique element of type 2 incident to both a and v(p).

Claim 2: rp fixes resj.(/?) elementwise.

By Claim 1, rp is an involution which commutes with

H{p) = (H(a)nH(v(p)),rp),

while H(fi) acts transitively on the set 3 of elements of type 3 in Jf
incident to /?. By (i) the number of elements in H is odd and hence the
claim follows.

Claim 3: If {p,s,i} is the point-set of a line / in 0, then rprsrt = 1.

Let y be the element of type 3 in #P that corresponds to /. Then
by Claim 2 (rp,rs,rt) is contained in H(y) and clearly it induces an
elementary abelian group of order 4 on the set of four elements of type
1 incident to y. Hence rprsrt fixes each of these four elements. By (iii) the
claim follows.

Thus if we put cp : p<—> rp then, by the above presentation, (R, cp) is a
representation of IS. The last sentence in the statement of the proposition
is rather clear. D

In certain circumstances the geometry sUFifS,^ possesses some fur-
ther automorphisms. Indeed, suppose that in terms of (2.7.2) the repre-
sentation group R is a covering group of G, i.e., that

G S R := R/Z(R).

Let v : r i—> f be the natural homomorphism of R onto R. Then the
group H as in (2.7.2 (iii)) possesses a subgroup other than R which also
acts regularly on the point-set of siS'^S, R). Indeed, in the considered
situation we have

H = {{ruf2)\rur2eR}
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with the multiplication

(r\,ri) • (r[,r'2) = (rir2r'1rj1,r2^)

and it is straightforward to check that

S = { ( r , ^ ) I r e / ? }

is a normal subgroup in H, isomorphic to R. Furthermore, SC\R = Z(R),
[R,S] = 1 and RS = H. This shows that H is the central product of
R and S. Thus S acts regularly on the point-set of s#&{<S, R) and the
geometry can be described in terms of cosets of certain subgroups in S
(compare (2.7.3)). In particular the automorphism of H which swaps the
two central product factors R and S is an automorphism of sUFifS, R)
and we obtain the following.

Lemma 2.7.4 In terms of (2.7.2) suppose that G S R : = R/Z(R). Then

H = (R* R).2 (the central product of two copies of R extended by the

automorphism which swaps the central factors) is an automorphism group

). •

The situation in (2.7.4) occurs when ^ is isomorphic to
or <S{M) and R is the universal representation group of ^ isomorphic to
J4, 2 • BM or M, respectively. It is not difficult to show that in each of the
three cases H = (R* R).2 is the full automorphism group of s/^(^, R).

The following results were established in [FW99] and [StWOl].

Proposition 2.7.5 Let & be a flag-transitive P -geometry of rank n, such
that either n = 3 and & = ^(M22) or n > 4 and every rank 3 residual
P'-geometry in 'S is isomorphic to ^(M22). Let #f be a non-affine flag-
transitive, simply connected c-extension of % and H be the automorphism
group of #f. Then one of the following holds:

(i) n = 3 and H^ 2- U6(2).2;

(ii) n = 3 and H^M2n;

(iii) n = 4, <S = 0(M23) and H S M24;

(iv) n = 4, <$ = y(Co2) and H ^ Cox;

(v) n = 5, ^ = $(BM) and H^M. D

The geometry ^f in (2.7.5 (iii)) possesses the following description in
terms of the S(5,8,24)-Steiner system (2P, SB) (where 9" is the set of trios)
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(cf. Subsection 1.1 in [StWOl]):

= {{PuP2,P3,P*} I Pi € &,Vi + Pj for i + j},

Jf4 = {(B,,{B2,B3}) | {B1.B2.B3} € F},

Incidences between elements of types 1, 2 and 3 are by inclusion. An
element p e 5fi is incident to an element (Bu{B2,B)}) £ 34?4 if p £ B\
and to B £ 3V5 if p <£ B. Elements x £ 3t2 U 3f3 and y € Jf4 U Jf5 are
incident if all elements of x are incident to y. The elements of type 5 in
res^(x) for x = (Bu {^2,^3}) £ Jf* are B2 and B3.

Proposition 2.7.6 Let $ be a flag-transitive T-geometry of rank n such
that either n = 3 and <§ = ^{Mu) or n > 4 a«d euery ranfe 3 residual
T-geometry in & is isomorphic to ^{Mu). Then every flag-transitive c-
extension ofS is affine. •

2.8 Non-split extensions

In this section we show that certain extensions of a representation group
by a group of order 2 lead to larger representation groups. Notice that if
G is an automorphism group of a geometry 0 and (R, q>) is a G-admissible
representation of <§ then the action of G on the point set II defines a
homomorphism of G into the automorphism group of R and if the action
is faithful and q> is injective, then the homomorphism is also injective.

Lemma 2.8.1 Let £f = (II, L) be a point-line incidence system with 3 points
on a line, G be an automorphism group of y that acts transitively on II
and on L, and (R, (p) be a G-admissible representation of y. Let R be a
group, possessing a homomorphism x onto R with kernel K of order 2. Let

O = {r € R I x(r) = <?(*) for some * e II}

(so that |O| = 2|(p(II)|,). Suppose that the following conditions hold:

(i) there is a subgroup G in AutR which centralizes K and whose
induced action on R coincides with G;

(ii) G has two orbits say Oi and $2 on O;
(iii) there are no G-invariant complements to K in R.
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For i = 1,2 let <p,- be the mapping of TI onto ®, such that q>{x) = x(<Pi(x))
for every x € II. Then for exactly one i € {1,2} the pair (R,<pi) is a
representation of£f.

Proof. Let K be the generator of K and for i = 1,2 let <p, be as defined
above. Then for every x e IT we have q>i(x) = <PI(X)K. Let / = {x,y,z} be
a line from L and 7t,(Z) = (p,(x)(p,(y)(p,(z). Since (R, q>) is a representation
of Sf and K is the unique non-identity element in the kernel of the
homomorphism of R onto R, ni(l) G {1,K} and 712(0 =

 II(/)K- Since the
action of G (with K being the kernel) is transitive on the set of lines,
7E,(Z) is independent of the choice of /. Finally by (iii) O, generates R for
i = 1,2 and the proof follows. •

Notice that the condition (ii) in (2.8.1) always holds when the stabilizer
in G of a point from II does not have subgroups of index 2. In view of
this observation (2.8.1) can be used for calculating the first cohomology
groups of certain modules. First recall a standard result (cf. Section 17
in [A86]).

Proposition 2.8.2 Let G be a group, V be a GF{2)-module for G and V be
the module dual to V. Let V" be the largest indecomposable extension of
V by trivial modules (i.e., such that [G, V] < V and CV-{G) = 0) and Vd

be the largest indecomposable extension of a trivial module by V (i.e., such
that [Vd,G] = Vd and Vd/CV4G) s V). Then dim V/V = Hl(G, V) and
&imCVd{G) = Hl(G,V), here Hl(G,V) is the first cohomology group of
the G-module V. D

We illustrate the calculating method of the first cohomology by the
following example (for further examples see (8.2.7)).

Lemma 2.8.3 Let P ~ 2++2° : U(,{2) be a maximal parabolic subgroup
associated with the action of the Lie type group 2E(,{2) on its F^-building.
Let U = P/O2(P) and W = O2(P)/Z{P) so that W is a 20-dimensional
GF(2)-module for U = U6(2). Then dimHX(U, W) = 2.

Proof. The commutator mapping on 02{P) defines a bilinear form
on W, invariant under U, so that W is self-dual. Hence by (2.8.2)
dimHl(U, W) = 6\mHl{U, W*) is equal to the dimension of the centre
of the largest indecomposable extension of a trivial module by W. By
(3.7.7), W is a representation module of the dual polar space 2 — ^ ( 3 )
of U, and by (3.7.5) the universal representation module of 3> is 22-
dimensional. Hence the kernel of the homomorphism of V(S>) onto
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W is 2-dimensional and clearly U acts trivially on this kernel. By
(2.1.1) V(S>) does not possess 1-dimensional factor modules and hence
V{S>) is an indecomposable extension of a trivial modules by W and
dim Hl(U, W) > 2. On the other hand, the stabilizer in U of a point
from Si (isomorphic to 29 : Lz(4)) does not have subgroups of index 2.
By (2.8.1) this means that whenever V is a (/-admissible representation
module of Si and V is an indecomposable extension of a trivial module by
V, then V is also a representation module of S) (we consider a sequence
Vo = y, Vi,...,Vm = V, where Vt is an indecomposable extension by Fj_i
of the trivial 1-dimensional module for 1 < i < m and argue inductively).
Hence the proof follows. •



3
Classical geometries

In this chapter we study representations of the classical geometries of
GF(2)-type and of the tilde geometries of symplectic type (the repre-
sentations of the latter geometries were originally calculated in [Sh95]).
In Section 3.7 we discuss the recent results which led to the proof of
Brouwer's conjecture on the universal abelian representations of the dual
polar spaces of GF(2)-type.

3.1 Linear groups

Let V = Vn(2) be an n-dimensional GF(2)-space, n > 1. Let i f = ^(Ln(2))
be the projective geometry of V: the elements of 5£ are the proper
subspaces of V, the type of a subspace is its dimension and the incidence
relation is via inclusion. The rank of i f is w — 1 and the diagram is

2 2 2 2"

The isomorphism between V and the dual V of V which is the space
of linear functions on V performs a diagram automorphism of if. We
identify a point of SC (which is a 1-subspace in V) with the unique
non-zero element it contains.

The following classical result (cf. [Sei73] or Theorem 1.6.5 in [Iv99]) is
quite important.

Lemma 3.1.1 Suppose that G is a flag-transitive automorphism group of
y(Ln(2)), n > 3. Then one of the following holds:

(i) G a Ln(2);
(ii) n = 3 and G = Frob] (the Frobenius group of order 2\);

(iii) n = 4 andG^ Altv

In anyone of these cases the action of G on V is irreducible. •

43
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Lemma 3.1.2 / / (R, q>) is the universal representation of j£f, then R = V.
Furthermore (R, (p) is the unique G-admissible representation for a flag-
transitive automorphism group of £f.

Proof. We turn R into a GF(2)-vector space by defining the addition
* via

<p(x) * <p{y) = <p{x + y)

for x,y e S£x. The last sentence follows from that in (3.1.1). •

There are further point-line incidence systems with three points on a
line associated with if. As usual let <£l be the set of elements of type i
in S£ (the i-subspaces). Let x and y be incident elements of type k and /,
respectively, where 0 < k < i < I < n (if k = 0 then x is assumed to be
the zero subspace and if / = n then y is assumed to be the whole space
V). The set of elements in i£x incident to both x and y is said to be a
(M)-flag in Sel. Let O'(U) be the set of all (*,/)-flags in J2". Clearly
the size of a (k, /)-flag is equal to the number of (i — /c)-subspaces in an
(/ — /c)-space.

Thus an (i- l,i + l)-flag in 2" has size 3 and hence (JSf1',O'(i — 1,i +1))
is a point-line incidence system with three points on a line. In these terms
the point-line incidence system of <£ is just ( i f 1 , 0 1 (0,2)).

Lemma 3.1.3 Let (R1, q>) be the universal abelian representation of the
point-line incidence system (if',O'(i — l,i + 1)). Then R' is isomorphic to
the i-th exterior power /\ ' V of V.

Proof. We define a mapping \p from the set of i-subsets of vectors in
V onto R' which sends a linearly dependent set onto zero, otherwise

Let {xi,...,x,-_i,x,-} and {xi,...,Xj_i,xj} be linearly independent i-subsets,
where x\ $ (xi,...,x,_i,xl). Then (xi,...,x,-_i) and (xi,...,xi_i,xI-,x;) are
incident elements from if1 ~' and SC'+i, respectively. Hence

<jp((xi)...,X/_i,Xj)) + (p((xi,...,Xi_i,x{)) = <j»((xi,...,Xj_i,Xj + X-))

and this is all we need in order to define the exterior space structure on
Rf. •

The above lemma is equivalent to the fact that the permutation mod-
ule of Ln(2) acting on the set of i-dimensional subspaces in the nat-
ural module V, factored over the subspace spanned by the lines from
(J&f, O'(i - 1, i + 1)), is isomorphic to /\' V.
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In what follows we will need some standard results on the GF(2)-
permutation module of PGLi(4) acting on the set of 1-dimensional
subspaces of the natural module F3(4) (cf. [BCN89]).

Lemma 3.1.4 Let V be a 3-dimensional GF(4)-space, Q be the set of 1-
subspaces in V (so that Q is of size 2\) on which GL(V) induces the doubly
transitive action of G = PGL(3,4). Let W be the power space of SI (the
GF(2)-permutation module of(G,Si)). Then

(i) w = Wx © We, where Wl = {0,fi} and We consists of the even
subsets ofCl;

(ii) We possesses a unique composition series

0 < T, < T2 < We,

where

(a) T\ is the 9-dimensional Golay code module for G (isomorphic to
the module of Hermitianforms on V) and T\@Wl is generated by
the 2-dimensional subspaces in V (considered as 5-element subsets
of Si);

(b) We/T2 is dual to T,;
(c) T2/Ti is 2-dimensional with kernel G' = PSL(3,4). D

3.2 The Grassmanian

The characterization (3.1.3) of the exterior powers of V can be placed
into the following context.

Let S?1 be the power space of :£?' that also can be considered as the
GF(2)-permutation module of Ln(2) acting on the set <£x of i-subspaces
in V.

For 0 < j < i < n define the incidence map

by the following rule: if w e S£l then y>y(w) is the set of y-subspaces
contained in w and xpij is extended on the whole 0" by linearity.

Lemma 3.2.1 Let 0<j<k<i<n. Then iptj is the composition of \ptk
and xpkj.

Proof. Let w G if' and M G £CJ. Then u G y>y(w) if and only if there
is a fc-subspace t containing u and contained in w (i.e., u G y>kj(t) and
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t 6 rptk(w)). If the number of such subspaces t is non-zero, it equals to 1
modulo 2. Hence the proof. •

The above lemma implies the following inclusions:

0>i = Imxpjj > Imxpj+ij > ... > Imv>n; = { J

and we can consider the mapping

vp.. :<p*

induced by t/jy (here we assume that 1 < j < i < n — 1).

Lemma 3.2.2 / / A e <D'(i - y , j + 1), tfcen A e k e r¥ y .

Proof. We have to show that tpi/(A) e Imv(+ij. Let (x,_y) be the
(i - ;, i + l)-flag in i f such that

A = {z | 2 G J S ? ' , X < Z < y } .

We claim that vy(A) = tpj+ijCy). If M e w./(A)> then M is contained in
some w € A, hence u is also contained in y and belongs to Vi+ijOO-
On the other hand suppose that u € y>i+ij(y), which means that u is a
y-subspace in y. Let y be the subspace in y generated by u and x. Then

i — j < dim JJ < dim u + dim x = i.

Since the number of i-subspaces from A containing v is odd, u e tp,7(A)
and the proof follows. •

In 1996 at a conference in Montreal the first author posed the following
conjecture.

Conjecture 3.2.3 / / 1 < ; < i < n - 1 then the flags from O'(i — j,i + l)
generate the kernel o/vF//.

Let !P'(j) be the quotient of &l over the subspace generated by the
flags from <bl(i—j, i+1). The following observation can be easily deduced
from (3.2.1).

Lemma 3.2.4 For a given j the conjecture (3.2.3) is equivalent to the equal-
ity

(where dim&J is ["j]2).
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Lemma 3.2.5 The conjecture (3.2.3) holds for j = 1.

Proof. By (3.1.3) 3P\\) is the i-th exterior power of V which has
dimension ("). Since

the proof follows from (3.2.4). •

The next case turned out to be much more complicated. It was
accomplished in [LiOl] (using some results and methods from [McCOO])
and implies Brouwer's conjecture discussed in Section 3.7.

Proposition 3.2.6 The conjecture (3.2.3) holds for j = 2. •

In Part II of this volume we will make use of the submodule structure
of 0>x and of the information on the first and second degree cohomologies
of modules /\ ' V.

Recall that 0>x is the GF(2)-permutation module of Ln(2) on the set
of the 1-dimensional submodules in V. Let 8P\ = Imi/>ni = {0, i f1 } be
the subspace of constant functions, &\ be the subspace of functions with
even support and put

3C(i) = 3P\ n Im \pa

for 1 < i < n. Then 3C(i)/2C(i + 1) = 0"'(1) is isomorphic to A' V (cf.
(3.1.3) and (3.2.5)) for 1 < i < n - 1.

We summarize this in the following

Lemma 3.2.7 The following assertions hold:

(i) 0>l = &\ 0 &\ as a module for Ln(2);
(ii) 0>\ = 9C{\)> &(2) > ... > 3C{n - 1) > %(n) = 0 is a composition

series for &\;
(iii) 3C{i)/3C(i + I) = /\'V, 1 < i < n-1 are the composition factors of

In the next section we show that the composition series in (3.2.7 (ii))
is the unique one.

3.3 t^l is uniserial

We analyze the subspace in 9\ formed by the vectors fixed by a Sylow
2-subgroup B of Ln(2). As above we identify every 1-subspace from JS?1
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with the unique non-zero vector of V it contains and treat 0"1 as the
power space of if1 with addition performed by the symmetric difference
operator. Then &\ consists of the subsets of even size.

Since B is a Borel subgroup associated with the action of Ln(2) on the
projective geometry ^(Ln(2)) of V the subgroup B is the stabilizer of a
uniquely determined maximal flag <X>:

0 = V0 < Ki... < FB_, < Vn = V,

where dim Vt = i for 0 < i < n. The orbits of B on ^f1 are the sets
0, = Vt \ 7f_i, 1 < i < n. Furthermore, | 0, |= 2'"1, so that all the
orbits except for 0\ (which is of size 1) have even length. This gives the
following

Lemma 3.3.1

where F(J) = \Ji€J 0, and F(J) G &\ if and only if\$J. In particular

dimC&\(B) = n and dimC&i(B) = n — 1.

•
Lemma 3.3.2 Let W be an Ln(2)-submodule in 0>l, which contains F(J)
for some J £ {1,2,...,«}. IfiGJ and i < n, then W contains

Proof. We can certainly assume that i + 1 £ J. Let Vt, u\l) and u\2)

be the distinct r-subspaces containing Ff_i and contained in Vi+\. Then
0, U 0,+i = Fi+i \ K/_i is the disjoint union of

0i = Vi\V,-U l/ ,a ) \Kf-i and

For a = 1 or 2 let g(a* be an element in Ln(2) which stabilizes the
premaximal flag $ \ K, and maps Vt onto t/, (such an element can be
found in the minimal parabolic of type i). Then

F(J) U F(J)gm U F(J)«<2) = F(J U {i + 1})

and the result follows. n

Lemma 3.3.3 Let 0 =£ J £ {l,2,...,n} and i = min J. Then #"(i - 1) is the
minimal Ln(2)-submodule in &\ containing F{J) and

Ca-(,_1)(B) = {F(K) | K £ {l,2,...,n}, miniC > i},

fn particular dim C2-(,_i)(B) = n — i — 1.
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Proof. By (3.3.2) a submodule which contains F(J) also contains
F(Jj), where J, = {i, i + l,...,n}. We claim that 2£{i— 1) is the minimal
Ln(2)-submodule in &\ which contains F(Jj). Indeed, by the definition
Imy;,-!,! is generated by the (i— l)-subspaces in V (treated as subsets of
:$?'). Since Imyi-1,1 contains Imxpn\ = {0,JS?'}, 3C{i— 1) is generated by
the complements of the (i — l)-subspaces, i.e., by the images under Ln(2)
of V \ Vi-i = F(Jj). Hence the claim follows. Since 2£(i — 1) contains
3C{J — 1) for every j > i, 2£{i — 1) contains F{Jj) for these j , in particular
it contains F{K) for all K = {1,2,...,«} with minK > i. Since 3T(i- 1)
does not contain %{j — 1) for ; < i, the proof follows. O

We need the following standard result from the representation theory
of groups of Lie type in their own characteristic [Cur70], which can also
be proved by elementary methods.

Lemma 3.3.4 The centralizer of B in /\ ' V is 1-dimensional for every 1 <
i < n - 1. •

Now we are ready to prove the main result of this section.

Proposition 3.3.5 The only composition series of&[
e, as a module for Ln(2),

is the one in (3.2.7(ii)).

Proof. Let

9\ = W(l) > W(2) > ... > W(m - 1) > W(m) = 0

be a composition series of &\. Then by (3.3.5) and the Jordan-Holder
theorem m = n and W(i)/W(i + 1) S /\ff(l) V for a permutation a of
{1,2,...,«}. By (3.3.4) the centralizer of B in each composition factor is
1-dimensional and hence dim C H ^ B ) < n — i. Since dimC,j»i(2?) = n — 1
by (3.3.1), we have

dim Cw(i)(B) = n — i for 1 < j < n.

In particular W(i — 1) \ W{i) contains a vector fixed by B. Let j be
the minimal index, such that W(k) = 2£(k) for all k > j and sup-
pose that ; > 2. Then by (3.3.3) W(j) \ W(j + 1) contains a vec-
tor F(J) such that minJ < j + 1. By (3.3.2) W(j) contains F(J,)
for some / < j + 1. Hence by (3.3.3) W(j) contains SC(l) for some
/ < j . Since W(J)/W(J + 1) S W(j)/£(j + 1) is irreducible, this gives
W(j) = 2£(j) contrary to the minimality assumption on j . Hence the
result follows. •
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3.4

In this section we start by calculating the universal representation module
of ^(S^(2)), which turns out to be the universal representation group of
this geometry. The treatment is very elementary and we only present it
here in order to illustrate the technique we use.

First recall some results from Section 2.5 in [Iv99]. So let Sf = (II, L)
be the generalized quadrangle ^(S4(2)) of order (2,2). Then II is the set
of 2-subsets in a set £i of size 6, L is the set of partitions of £2 into three
2-subsets and the incidence relation is via inclusion. Let 2n be the power
space of Q and let &>(Q,)+ be the codimension 1 subspace in 2n, formed
by the subsets of even size. Let

(p : p i -> f i \p

be the mapping of II into 8P{Q)+ (where p is treated as a 2-subset of SI).

Lemma 3.4.1 (^(il)+, q>) is an abelian representation of Sf =

Proof. It is clear that ^ (Q) + is generated by <p(II) (the set of 4-subsets
in Q). If £2 = pi U pi U p-i is a line in Sf then

<P(Pi) = P2 U p3, (p{p2) = P\ U p3, <p(p3) = pi U p 2

and since the addition is performed by the symmetric difference operator,

<P(Pi) + (p(Pi) + (P(Pi) = 0

and the proof follows. •

Let F be the collinearity graph of £f, so that T is the graph on the
set of 2-subsets of Q in which two such subsets are adjacent if they are
disjoint. The suborbit diagram of T is the following

1 3

Lemma 3.4.2 j8(r) = 5.

Proof. Since Sf is a generalized polygon with lines of size 3, every edge
in F is contained in a unique triangle that is the point-set of a line and for
a point x and a triangle T there is a unique point in T which is nearest
to x. In view of these it suffices to notice that the subgraph induced by

is the union of 3 disjoint edges, so c(Fi(x)) = 3 and the subgraph
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induced by ^ ( x ) is connected (isomorphic to the 3-dimensional cube),
so that c(r2(x)) = 1. •

Combining (2.2.1), (3.4.1) and (3.4.2) we obtain the following.

Lemma 3.4.3 The representation {3P{Q)+,(p) in (3.4.1) is the universal
abelian representation. O

But in fact the following holds.

Lemma 3.4.4 The representation (0>(Q.)+, q>) is universal.

Proof. Let 0 = Cay(0>(Q.)+, (p(U)). Then 0 is a Taylor graph with
the following suborbit diagram:

6 6

{a} ©i(a) 02(a) 03(a)

By (2.5.1) our representation is universal if and only if the fundamental
group of 0 is generated by the geometric triangles. One can easily see
from the above suborbit diagram that every triangle in 0 is a geometric
triangle. Thus we have to show that every cycle in 0 is triangulable. Of
course it is sufficient to consider non-degenerate cycles and in 0 they
are of lengths 4, 5 and 6. To check the triangulability is an elementary
exercise. D

In view of (2.3.1) and (2.3.2), by (3.4.3) there are 31 proper geometric
hyperplanes in y. These hyperplanes possess a uniform description. If A
is a subset of Q then

if (A) := {v | v e II, |A| = |A fi v\ (mod 2)}

is a geometric hyperplane in if. Since clearly H(A) = H(il \ A), in this
we obtain all 31 geometric hyperplanes.

If |A| = 2 then H(A) are the points at distance at most 1 from A
(treated as a point) in the collinearity graph. If |A| = 1 then H(A) is
stabilized by Sym5 = Oj(2) while if |A| = 3 then H(A) is stabilized by
Sym3 lSym2 S O4

+(2).

3.5 Symplectic groups

Let V be a 2w-dimensional (n > 2) GF(2)-space with a non-singular
symplectic form XV, then if {v\,...,v],,v\ v%} is a (symplectic) basis, we
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can put *P(uf,i>j) = 1 if i — j and k ^ I and *F(uf,t>j) = 0 otherwise.
The symplectic geometry ^ = ^(S2n(2)) is the set of all non-zero totally
singular subspaces U in V with respect to *F (i.e., such that *¥{u,v) = 0 for
all u, v € I/). The type of an element is its dimension and the incidence
is via inclusion. The automorphism group G = S2«(2) of 10 is the group
of all linear transformations of V preserving *P. The diagram of'S is

Since the points and lines of <§ are realized by certain 1- and 2-subspaces
in V with the incidence relation via inclusion, we observe that V supports
a natural representation of $. We will see below that the universal
representation group is abelian twice larger than V.

Let i; be a point (a 1-subspace in V which we identify with the only
non-zero vector it contains) and

vL = {ue V*\x¥(v,u) = 0}

be the orthogonal complement of v with respect to *P.
The form *F induces on vL/v (which is a (2n — 2)-dimensional GF{2)-

space) a non-singular symplectic form and the totally singular subspaces
in vx/v constitute the residue res»(t>) = ^{Sm-ii^))- The stabilizer G{v)
induces S2«-2(2) on v±/v. The kernel K{v) of this action is an elementary
abelian group of order 22""1. The kernel R(v) of the action of G(v) on u1

(on the set of points coUinear to v) is of order 2 and its unique non-trivial
element is the symplectic transvection

z(v) : a n u + *F(i;,u)v.

The quotient K(v)/R(v) is the natural symplectic module of G(v)/K(v) =
S2n-2(2) and res^(u) possesses a representation in this quotient by (1.5.1).
But in fact res#(t;) possesses a representation in the whole of K(v) and
this representation is universal. We start with the following.

Lemma 3.5.1 Let (W,(pa) be the universal abelian representation of^ =
<g(S2n(2)). Then dim W < 2n+1 and for a point x the dimension ofW2(x)
is at most 1.

Proof. We proceed by induction on n. By (3.4.4) the result holds for
n = 2. Suppose that n > 3 and that the universal abelian representation
of ^(S2n-2(2)) is {In — l)-dimensional. Consider the collinearity graph T
of % and let v be a vertex. Then W0(v) is 1-dimensional, W\(v) is at most
{In — l)-dimensional by (2.6.3) and the induction hypothesis (recall that
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res#(t;) = ^(S2n-2(2))). Finally W2{v) is at most 1-dimensional since the
subgraph in F induced by r2{v) is connected (this is a well-known fact
and can be established as an easy exercise). Since the diameter of F is 2,
we have finished. •

By (2.3.2) | W\ — 1 is equal to the number of geometric hyperplanes in
'S. Thus we can establish the equality dim W = 2« + 1 by producing a
sufficient number of geometric hyperplanes.

So let us discuss the geometric hyperplanes in <&. Let q be a point of
$. Then for every line / of <$ the point q is collinear either to all three
or to exactly one point on /. Therefore the set H(q) consisting of q and
all the points collinear to q forms a geometric hyperplane in ^ (in other
terms H(q) = q1). Since *P is non-singular, different points give rise to
different hyperplanes and we obtain a family

{q1 | q is a point of ^ }

of 22" — 1 (which is the number of points in 'S) geometric hyperplanes.
Clearly G acts transitively on

The remaining hyperplanes come from the quadratic forms on V
associated with *P. Recall that a quadratic form / on V is said to be
associated with ¥ if

«P(«, ») = /(«) + /(») +/(« + »).

for all u,v e V. Let SL denote the set of all quadratic forms on V
associated with *F. The following result is standard [Tay92].

Lemma 3.5.2 The group G = S2n(2) acting on SL has two orbits 2.+ and 2r
with lengths 2n~1(2" + 1) and 2"~1(2n — 1), with stabilizers isomorphic to
0^,(2) ^ Q£,(2).2 and 0^,(2) S Q^(2).2, respectiue/y. 77ie action on either
of these orbits is doubly transitive. •

A subspace U in 7 is said to be totally singular with respect to a
quadratic form / (associated with T) if /(«) = 0 for all « e 1/ (in this
case it is clearly totally singular with respect to *F). Thus the dimension
of a totally singular subspace with respect to / (the Witt index w(/)) is
at most n. In fact vv(/) = n if / is of plus type (i.e., if / e 2.+) and
w(f) = n — 1 if / is of minus type (i.e., if / € 2r).

Lemma 3.5.3 Let f be a quadratic form on V associated with *P and H(f)
be the set of non-zero singular vectors with respect to f:

H(f) = {veV*\ f(v) = 0}.
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Then H(f) (considered as a subset of the point-set) is a geometric hyper-
plane in <$(S2n(2)).

Proof. Let T = {x,y,z} be a line in <g (the non-zero vectors of a
totally singular 2-subspace). Since *F(x, y) = 0, x + y + z = 0 and / is
associated with XV, we have

and hence \T n H(f)\ is of size 1 or 3 and the proof follows. •

Put

JPe = {H(f) | / e f }

for e = + or —. In view of (3.5.2) so far we have seen

22»+i = (22« _ i) + 2»-i(2» + 1) + 2"-1(2" - 1) = |X P | + \jP+\ + \tf~\

geometric hyperplanes in <S.

Lemma 3.5.4 In the above terms the following assertions hold.

(i) dimW = 2n + l ;

(ii) {Jfp, jf+, Jf-} is the complete set of orbits of G S S2n(2) on the set
of geometric hyperplanes in ^ with stabilizers isomorphic to 22""1 :
S2n_2j2), O+(2), O2-(2), respectively;

(iii) dim W2(x) = 2.

Proof. The assertions (i) and (ii) follow from (3.5.1) and the paragraph
preceding this lemma. Then (iii) is immediate from the proof of (3.5.1). •

The universal representation module of ^(S2n(2)) is the so-called or-
thogonal module of S2n(2) = Q2«+i(2). Our final result of this section is
the following.

Proposition 3.5.5 The universal representation o/^(S2«(2)) is abelian.

Proof. Let T be the collinearity graph of <& = ^(S2«(2)), x,y € T
and (V,(pu) be the universal representation of ^ . We have to show
that q>u(x) and <pu{y) commute. If x and y are collinear this is clear.
Otherwise dr{x,y) = 2 and there is a vertex, say z, collinear to them
both. Again proceeding by induction on n we assume that Ri(z) is
abelian. Then [<pu{x),cpu{y)] € ^o(z) since Ri(z) = R\(Z)/RQ(Z) is abelian
by our induction hypothesis. But since two vertices at distance 2 in
F have more than one common neighbour (this is easy to check), the
commutator must be trivial. •
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3.6 Orthogonal groups

In view of the isomorphism S2n(2) = Q.2n+\(2), the results (3.5.1) and
(3.5.5) describe the universal representation of the polar space g?{Clin+\(2))
of the odd dimensional orthogonal group over GF(2). In this section we
establish similar result in the even dimensional case.

Let V be a 2n-dimensional GF(2)-space, where w > 2 and / be a
non-singular orthogonal form on V. Then the Witt index (the dimension
of a maximal totally isotropic subspace) is either n or n — 1, so that /
is of plus or minus type, respectively. The commutator subgroup of the
group of linear transformations of V preserving / is £^,(2) o r 2̂~«(2)
depending on whether / is of plus or minus type.

Let e = + or — denote the type of / . The corresponding polar space
Sf = ^(Q|n(2)) is the geometry whose elements are the subspaces of V
that are totally singular with respect to / ; the type of an element is its
dimension and the incidence relation is via inclusion. Then the rank of
&> is the Witt index of / (i.e., n or n — 1) and the diagram of & is

or
-o

2 2 2 2 4'

respectively.

By the definition if <p is the identity mapping then (V, (p) is an abelian
representation of 0>.

Lemma 3.6.1 The representation {V,q>) is universal.

Proof. Probably the easiest way to proceed is to follow the strategy of
the proof of (3.4.4). So we consider the graph 0 = Cay{ V,\mq>). Then
again 0 is a strongly regular graph (in particular, it is of diameter 2)
that is locally the collinearity graph of &. Every triangle turns out to
be geometric and it is an easy combinatorial exercise to check that 0 is
triangulable. •

We summarize the results in this and the previous sections in the
following.

Proposition 3.6.2 Let V be an m-dimensional GF(2)-space and f be a non-
singular orthogonal form on X. Let 8? be the polar space associated with
V and f, and F be the collinearity graph of £?, and suppose that the rank
of SP is at least 2. Then
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(i) (V,(p) is the universal representation (where <p is the identity map-

ping);

(ii) T is of diameter 2;

(iii) if p is a point then Vi(p) has order 2. •

3.7 Brouwer's conjecture

In this section we discuss representations of the dual polar spaces with
3 points per line. The question about representations of such dual polar
spaces in itself interesting and is also important for the classification of
extended dual polar spaces (cf. Theorem 1.13.6 in [Iv99]).

Let @>t(n) denote the classical dual polar space of rank n > 2 with 3
points per line and D be the simple subgroup in the automorphism group
of $>t(n)- Then @it{n) belongs to the diagram

where t = 2 or 4 and D is isomorphic to S2n(2) or t/2«(2), respectively.
If X is the natural module of D (a 2n-dimensional GF(t)-space) then
the elements of 3>t(n) are the non-zero subspaces of X that are totally
singular with respect to the non-singular bilinear form *P on X preserved
by D; the type of a subspace of dimension k is n — k + 1 and the
incidence relation is via inclusion. In particular the points of 2t{n) are
the maximal (i.e., n-dimensional) totally singular subspaces. Below we
summarize some basic properties of 3>t(n) (cf. [BCN89] and Section 6.3
in [Iv99]).

Let T be the collinearity graph of Q>t{ri) and x e T . Then res®,(n)(x) is
the dual of the projective geometry of the proper subspaces of x. The
stabilizer D{x) of x induces Ln(t) on this residue with Q(x) = 02{D(x))
being the kernel. The subgroup Q(x) is an elementary abelian 2-group
which (as a GF(2)-module for £>(x)/Q(x)) is isomorphic to the n(n+l) /2-
dimensional module of quadratic forms on X if t = 2 and to the n2-
dimensional module of the Hermitian forms on X if t = 4. The action of
Q(x) on Fn(x) is regular.

The graph T is a near n-gon which means that on every line there is a
unique element which is nearest to x in T. Let y e r,(x) for 1 < i < n — 1.
Then x n y is the unique element of type n — i incident to both x and y.
The vertices of F (treated as subspaces in X) that contain xC\y induce in
F a strongly geodetically closed subgraph isomorphic to the collinearity
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graph of

0,(0 s resBl{n)(x n y).

If yi.yz G r,(x) for 1 < i < n, then y\ and y2 are in the same connected
component of the subgraph induced by r,(x) if and only if xC\yi = xC\y2-
In particular the subgraph induced by Tn(x) is connected. Thus D(x) acts
on the set of connected components of the subgraph induced by r,(x) as
it acts on the set of (n — i)-dimensional subspaces in x, in particular Q(x)
is the kernel of the action.

Let us turn to the representations of 2>t{n). The rank 2 case has already
been done.

Lemma 3.7.1 The universal representation group of 2t(2) is elementary
abelian of orders 2s and I6, for t = 2 and 4, respectively.

Proof. Because of the isomorphisms S4(2) = Q5(2) and C/4(2) ^ Hg"(2),
the dual polar spaces under consideration are isomorphic to the polar
spaces of the corresponding orthogonal groups, so (3.6.2) applies. •

Lemma 3.7.2 The dimension dt(n) of the universal representation module
of 3}t(n) is greater than or equal to mt(n), where

and

Proof. Let N be the incidence matrix of the point-line incidence system
of 3>t{n). This means that the rows of JV are indexed by the points in
®,(n), the columns are indexed by the lines in 3>t{n) and the (p, /)-entry
is 1 if p € / and 0 otherwise. Then dt(n) is the number of points in II
minus the GF(2)-rank rk2 N of N. The latter rank is at most the rank
rk JV of N over the real numbers. By elementary linear algebra we have
the following:

rk JV = rk NNT and NNT = A + ["] /,

where A is the adjacency matrix of the coUinearity graph r of 3)t{n) and
["]t is the number of lines incident to a given point. This shows that dt{n)
is at least the multiplicity of — ["]t as an eigenvalue of A. It is known (cf.
Section 8.4 in [BCN89]) that this multiplicity is exactly mt(n). •
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The above result for the case t = 2 was established in an unpublished
work of A.E. Brouwer in 1990 (cf. [BB00]). Brouwer has also checked
that the bound is exact for n < 4 and posed the following.

Conjecture 3.7.3 The dimension of the universal representation module of
@>i(n) is precisely m2{n).

This conjecture (known as Brouwer's conjecture) has attracted the
attention of a number of mathematicians during the 1990s. It was
proved for n = 3 in [Yos92] and [CS97], for n = 4,5 in [Coo97], for
n = 6,7in [BI97].

Lemma 3.7.4 Let (V,(pa) be the universal abelian representation of 2)t(ri)
and let the sections K,(x), 1 < i < n, be defined with respect to a vertex x
of the collinearity graph T of 2t(n). Let <£ be the projective geometry of
the dual of x, so that S£l is the set of (n — i)-dimensional subspaces in x,
and let 0>' be the power space of jSf". Then

(i) Ko(x) and Vn(x) are l-dimensional;
(ii) for 1 < i < n — 1 there is a mapping

x-.P1^ 7,(x)

which is a surjective homomorphism of D(x)-modules;
(iii) Vn-i(x) is isomorphic to a factor module ofQ(x);
(iv) ift = 2 and 2 < i < n — 1 then the flags from the dual of x, contained

in the set O'(i — 2, i + 1) are in the kernel of the homomorphism % as
in (ii).

Proof, (i) is obvious. Since the connected components of the subgraph
induced by r,(x) are indexed by the elements of JSP1', (ii) follows from the
proof of (2.2.1). Let u e rn(x), let {zi,...,zk} = T(u) n rn(x) and let yt be
the vertex in Fn_i(x) such that {u,Zi,yt} is a line, 1 < i < k = ["],. Then
it is easy to check that the vertices y, are in pairwise different connected
components of the subgraph induced by Fn_i(x). On the other hand
Q(x) acts regularly on Fn(x), which means that the subgraph induced
by this set is a Cayley graph of Q(x). This shows that Q{x) possesses a
generating set {q\,...,qk} where qt maps u onto z,-. Let yt be the image of
(pa(yi) in Fn_i(x) and put

v : q, •-» Jt

for 1 < i < k. We claim that v induces a homomorphism of Q(x) onto
Kn_i(x). In order to prove the claim we have to show that whenever
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qhQii-Qim = 1 w e h a v e JuTti-Jin = !• Assuming the former equality put
UQ = u and for 1 < j < m let Uj be the image of «,_i under g,r Since
Q{x) acts regularly on Fn(x), (uo,wi,...,um) is a cycle and if Vj is such that
{UJ-I,VJ,UJ} is a line then it is easy to check that Vj = Jj and the claim
follows from (2.2.2).

Notice that if t = 2 and n = 3, then Q(x) is of order 26, and in this
case Vi{x) is generated by seven pairwise commuting involutions indexed
by the connected components of the subgraph induced by ^ ( x ) . The
product of these involutions is the identity element.

In order to prove (iv) let y e F,+i(x) and z € F,_2(x) be such that
dr(z, y) = 3. Then x n y is an (n — i — l)-dimensional subspace contained
in x n z that is (n — i + 2)-dimensional. Let A be the subgraph in F
induced by the vertices which contain z P\y. Then A is isomorphic to
the collinearity graph of ©2(3). Let ui,...,ti7 be representatives of the
connected components of the subgraph induced by r,(x) which intersect
A. Then T := {u,- n x \ 1 < j < 7} is the set of (n — i)-subspaces in x
containing xC\y and contained in xfiz. In other terms T € <B'(i—j,i + l).
Let Uj be the image of <pa(u,) in F,(x). Then by (iii) and the previous
paragraph we have

M1U2....M7 = 1

and (iv) is proved. •

We apply (3.7.4 (i), (ii) and (iii)) and (3.7.2) to the rank 3 case to obtain
the following result originally proved in [Yos92], [CS97] and [Yos94].

Lemma 3.7.5 The universal representation module for ^((3) has dimension
m2(3) = 15 for t = 2 and m4(3) = 22 for t = 4.

Proof. Suppose first that t = 2. Then x is contained in exactly 7 lines,
so that dim V\(x) < 1. This, together with the bounds in (3.7.4) gives

dim V = dim Vo + dim Fi + d imF 2 + d imF 3 < 1 + 7 + 6 + 1 = 15,

which meets the lower bound in (3.7.2).
If t = 4 then Vi(x) is a quotient of the permutation modules of

(D(x)/Q(x))°° = PSL(3,4) on 1-subspaces of a natural module (which is
a 3-dimensional GF(4)-space). Let Z be a quad in F, isomorphic to the
Schlafli graph. Let n>i,..., W5 be a maximal set of pairwise non-collinear
points from X(x) (one point from every line on x contained in £). It is
easy to deduce from the fact that the universal representation module
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of ^>(fi^(2)) is 6-dimensional (cf. (3.6.1)) that the image in Fi(x) of the
product

<Pa(Wl) • ... • <

is the identity. Hence dim~Fi(x) < 11 by (3.1.4 (ii) (a)). This together
with the bounds (3.7.4) gives

dim V = dim Vo + d imFi + dim F 2 + d imF 3 < 1 + 11 + 9 + 1 = 22,

which again meets the lower bound in (3.7.2). D

By (3.7.4 (iv)) the main result (3.2.6) of [LiOl] implies Brouwer's
conjecture for all n > 2. An alternative independent proof of this
conjecture was established in [BB00]. Very recently Paul Li applied his
technique to prove in [LiOO] the natural analogue of Brouwer's conjecture
for the unitary dual polar spaces (i.e., for the case t = 4) [LiOO]. Thus we
have the following final result:

Theorem 3.7.6 The dimension of the universal representation module of
3>t(n) is equal to the number mt(n) defined in (3.7.2). •

In the rank 3 case the question about the universal representation
group can also be answered completely.

Lemma 3.7.7 Let R be the universal representation group oj'^((3). Then

(i) R is non-abelian;
(ii) the commutator subgroup of R is of order 2.

Proof. Let F be the Lie type group F4(2) or 2E6(2), & be the F4-
building associated with F and S be the collinearity graph of SF. Then
the diagram of 3F is

or

and if x is a point of J5" then res^(x) is isomorphic to Sit(2>) for t = 2 or
4, respectively, and the suborbit diagram of 3 with respect to the action
of F can be found in Section 5.5 of [Iv99]. If F(x) is the stabilizer of x
in F and Q(x) = 02(F{x)), then F(x) s 21 + 6 + 8 : S6(2) if F = F4(2) and
F(x) = 21?20 : U6(2) if F =2E6(2); Q(x) is non-abelian (with commutator
subgroup of order 2) and acts regularly on the set E3 (x) of vertices at
distance 3 from x in 5.
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Let © denote the subgraph in 5 induced by the set 03 (x) and let
y € 0 . The F(x, y) is a complement to Q(x) in F{x), in particular it acts
transitively on res^(x). In addition S3(x) is a complement of a geometric
hyperplane in J5". Hence there is bijection between the point set of
res^s-(x) = ^((3) and the set &(y) of neighbours of y in ©. Let q e Q(x)
map y onto z € ®(y). By considering the orbit lengths of Q(x) = Oi{F(x))
on S or using the geometrical properties of the F4-building we can check
that q2 = 1, which means that 0 is the Cayley graph of Q{x) with respect
to a generating set indexed by the point set of ^,(3).

Since 0 is a subgraph in the collinearity graph of $F, it is clear that
the geometric triangles are present and in view of the discussions in
Section 2.5, we observe that Q(x) is a representation group of Ss and
hence (i) follows.

The suborbit diagrams of the collinearity graph of ®t(3) (when t = 2
and 4, respectively) are given below.

1 3 7

We apply (2.3.7) for B(x) = T3(x). The conditions in (2.3.7) follow from
the above mentioned basic properties of ^((3). •

The remainder of this section concerns the universal representation
group of 3>i{n), in particular for n = 4. We will use the following
elementary result.

Lemma 3.7.8 Let x and y be points o/^2(4) such that dr(x,y) = 4 (so that
x and y are disjoint maximal totally isotropic subspaces in X with respect
to the symplectic form *¥). Define a GF(2)-valued function f — / ^ ' ^ on X
by the following rule: f(v) = 1 if and only ifv = vx + vyfor vx e x, vy € y
and y{vx,vy) = 1. Then f is a quadratic form of plus type associated with
x¥.

Proof. Since D = Sg(2) acts transitively on the pairs of disjoint
maximal totally isotropic subspaces, there is a quadratic form g of plus
type associated with *P such that both x and y are totally isotropic with
respect to g. Let H be the stabilizer of x and y in O(f) S Ot(2). Then
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H = L4(2) = flg"(2), H induces non-equivalent doubly transitive actions
on x* and _y#, and these actions are conjugate in AutH = 0g"(2). This
shows that H has exactly four orbits Ti,..., T4 on X*, where

T, = x*, T2 = y * , T3 = {vx + vy\vxe x*, vy e y#,V(vx, vy) = 0},

T4 = {vx + vy\vxex,vye y,V(vx,Vy) = 1}.

The lengths of these orbits are 15, 15, 105 and 120, respectively. Since
exactly 120 vectors in X are non-isotropic with respect to g, the equality
g = / holds. D

We formulate yet another useful property of @i{n) which can be
deduced directly from the definitions.

Lemma 3.7.9 Let 3) = 2>i{n), T be the collinearity graph of S>, v be
an element of type n in 3> (a l-subspace in the natural module X) and
A = A(v) be the subgraph in F induced by the vertices containing v. Then

(i) A is isomorphic to the collinearity graph o/res@(y) = ^2(» — 1);
(ii) if x G F \ A then x is adjacent in F to a unique vertex from A which

we denote by n&(x);
(iii) if I = {x,y,z} is a line in Si then either I c A, or \l n A| = 1 or

/<=r\A;
(iv) (// c T \ A then {n^x),n&(y),TTA(Z)} IS a line of 2. •

Lemma 3.7.10 In terms of (3.7.9) let R be a group and cp : A —• R be a
mapping such that (R, q>) is a representation o/res®(y) = 2>2(n — \). Define
a mapping \p : F —* R by the following rule:

f 1 ifxeA;
\ (p(n&(x)) otherwise.

Then {R,xp) is a representation of 3.

Proof. Easily follows from (3.7.9). •

Let n = {vi,V2,.-,Vk} be the set of elements of type n in 3>i{n), where
k = 22" — 1. For 1 < i < k let {Ri,(pD be the universal representation
of res®2(n)(u;) and (Ri,xpi) be the representation of @>2(n) obtained from
(Ri,<Pi) as in (3.7.10). Let

be the product of the representations (/?,-, xpi). By the general result (2.1.4)
we obtain the following lemma.
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Lemma 3.7.11 {T,ip) is a representation of @2{n). •

Let us estimate the order of the commutator subgroup V of T when
n = 4. Let z, be the unique non-identity element in the commutator
subgroup R'j of /?,• (/?,' is of order 2 by (3.7.7)). Then the commutator
subgroup TQ of the direct product To := R\ x ... x Rk is of order 2k

consisting of the elements

Vzl »Z2 >-> z t h

where e, e {0,1}. Thus TQ is isomorphic to the power space of the set
n (the set of elements of type 4 in 2>2{4)). By (3.7.10) and the proof of
(3.7.7 (ii)) we have the following.

Lemma 3.7.12 For x,y G T we have

[xpi{x), ipi(y)] = zi

if and only if {x, y) n A(vt) = 0 and dr(nA{Vi){x), n&M(y)) = 3. •

Lemma 3.7.13 For x,y 6 T let

Then

(i) ifdr(x,y) < 2 then Ej(x,y) = 0 for all 1 < i < k;

(ii) ifdr(x,y) = 3 then Sj{x,y) = 1 if and only i / f fxny,! ) , ) = 1;

(iii) ifdr(x,y) = 4 then ei(x,y) = 1 if and only iff[x'y](vt) = 1, where

in the quadratic form defined in (3.7.8).

Proof. If dr(x, y) < 2 then x and y are contained in a common quad
and by (3.7.1) their images commute even in the universal representation
group of ®2(4), which gives (i). If dr(x,y) = 3 then u := x n y is 1-di-
mensional. Hence the intersection (vj- C\ x) n (t),̂ - n y) if non-empty can
only be u and u is in the intersection if and only if *P(u,U() = 0, hence
(ii) follows. If dr(x,y) = 4 then x n y = 0 and every i;, e f̂ possesses
a unique presentation u,- = yx + vy, where i;x e x, vy e y. If vx = 0 or
uy = 0 then u, e y or y, e x, respectively and e,(x, y) = 0 in both cases.
Suppose that vx =f= 0, vy ^ 0 and *P(i;x,i;y) = 0. Then {vi,vx,vu} is the set
of non-zero vectors in a totally isotropic 2-subspace contained in

/ := («;/• n x,«,-) n (u/- n y,«,),



64 Classical geometries

and hence again e,(x, y) = 0. On the other hand, suppose that / contain
a non-zero vector, say w. Then

w = wx + at),- = wy + /to,-,

where vvx e vf- C\ x, wy e vf- C\ y, a, /? G GF(2). Since »,- $ x U y,
{a,/?} = {0,1}. Assume without loss of generality that a = 1, jS = 0.
Then vt = wx + wy and

¥(w,, wy) = Y(w + »,, wy) = «F(w, wy) + ¥(»,, wy) = 0.

This completes the proof. •

It is easy to see that the vectors as in (3.7.13 (ii) and (hi)) generate the
9-dimensional submodule whose non-zero vectors are the complements
of the geometric hyperplanes in <&{Ss(2)). Thus we have the following.

Proposition 3.7.14 The commutator subgroup of the universal representation
group of ^2(4) possesses an elementary abelian quotient, isomorphic to the
dual of the orthogonal module of S8(2) = 09(2). •

3.8

Let <9 = 9(3 • S4(2)), G = Aut 9 ss 3 • S4(2), E = O3(G) and (V,q>) be
the universal abelian representation of'S. Let Vz = Cv(E), Vc = [V,E].
Then by the previous subsection and (2.4.1) Vz is the 5-dimensional
natural module for Os(2) = S4(2). From the basic properties of the
action of M24 on ^(MIA) we observe that the hexacode module Vh is a
representation module for <$. Since E acts on Vh fixed-point freely, Vh is
a quotient of Vc.

Lemma 3.8.1 Vc = Vh.

Proof. The fixed-point free action of £ on Vc turns the latter into a
GF(4)-module for G. If x = {x,y,z} is an orbit of £ on the point set of
# then <pc(x) := (q>c(x), <pc{y), <pc(z)) is a 1-dimensional GF(4) subspaces
of Vc. On the other hand, x is a point of W = ^(S4(2)). Hence we
can consider the mapping x : x 1-* (pc(x) of the point-set into the set of
1-dimensional subspaces of Vc (recall that we are speaking of GF(4)-
subspaces). Arguing as in the proof of (2.2.1) and in view of (3.4.2) it is
easy to show that the GF(4)-dimension of Vc is at most 5. Let U be the
kernel of the homomorphism of Vc onto Vj,. Then the GF(4)-dimension
of U is at most 2 and the action of £ on U is fixed-point free. Since
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G = 3 -Altf, does not split over E, unless U is trivial, U must be a faithful
&F(4)-module for G'. By the order consideration we observe that G' is
not a subgroup of GL(2,4), hence U is trivial and the result follows. D

Let 0* be the enrichment of 0 = 0(3 • S4(2)). Recall that the points of
0* are those of 0 while the lines of 0* are the lines of 0 together with
the orbits of E on the set of points (thus 0 has 45 points and 60 lines).

Lemma 3.8.2 K(0*(3 • S4(2))) = Vh.

Proof. By (3.8.1) we only have to show that R' := K(0'(3 • S4(2))) is
abelian. For this we apply (2.3.7). Consider the collinearity graph F of
0 = 0(3 • S4(2)) the suborbit diagram of which is given in Section 2.6 in
[Iv99] and let q> be the mapping which turns R' into the representation
group of <$'. Let

B(x) = T2(x), A(x) = U\B(x).

We claim that the conditions in (2.3.7) are satisfied. Since {x} U F4(x)
is the only non-trivial imprimitivity block of 3 • S4(2) on F containing
x, it is clear that the graph S defined as in (2.3.7) (i) is connected. We
claim that the graph I* defined as in (2.3.7 (ii)) is connected. From the
suborbit diagram of F we observe that Zx is regular of valency 3 on 24
vertices. Since F is distance-transitive, Zx is vertex-transitive and hence
the size of a connected component of Zx divides 24. Finally, the girth of
£* is at least the girth of F which is 5 and hence a connected component
of Ex contains at least 1 + 3 + 3 -2 = 10 vertices, and the claim follows.
Let y G F,(x) for i = 0,1,3 or 4. If i = 0,1 or 4 then x and y are equal
or adjacent in 0* and hence [<p(x), <p(y)] = 1. If i = 3 then (p(x) and <p(y)
commute by (2.4.4). Thus by (2.3.7) the commutator subgroup of R' is
of order at most 2. By (3.8.1) and (2.4.3) R'/(R')' =s Vh and since 3-S4(2)
does not preserve a non-zero symplectic form on Vh, R' is abelian by
(2.3.8) and (2.3.9). D

In what follows we will make use of the following property of the
hexacode module, which can be checked directly.

Lemma 3.8.3 Let (R',<p) be the universal representation o/0*(3 • S4(2)),
where R' is isomorphic to the hexacode module Vh- Let x be a point and
R\(x) be the subgroup in R* generated by the elements <p(y) taken for the
points y collinear to x in 0(3 • S4(2)) (there are six such points). Then
R{(x)isoforder23. D
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Lemma 3.8.4 The universal representation group of&(3 • Si(2)) is infinite.

Proof. By (2.3.6) it is sufficient to show that <$ = 0(3 • S4(2)) contains
a hyperplane with a disconnected complement. Let 0 = ^(S^(2)) and
X be the covering of 0 onto <$. Let Q, be a set of size 6 so that the
points of 0 are the transpositions in G = Sym(Q). Then the lines of
0 are maximal sets of pairwise commuting transpositions. Notice that
the points of 0 are the involutions of G which map onto transpositions
under the homomorphism of 0 onto 0 and the lines of 0 are maximal
sets of such involutions which commute. Let a be an element of fi and
77 be the set of transpositions which do not stabilize a. Then \H\ = 5
and it is easy to see that H is a geometric hyperplane. The complement
of H consists of 10 transpositions in the stabilizer of a in G, which form
a Petersen subgraph. Let H = %~l(H), so that H is a hyperplane in 0
by (2.3.1). Let S be the preimage in G of the stabilizer of a in G. Then
A := S00 = Alt5 and S/A = Sym3. It is easy to see that the points in the
complement of H (considered as involutions in G) map surjectively into
the set of involutions in S/A. Since two points in the collinearity graph
of 0 are adjacent if they commute, the preimage in the complement of
H of an involution from S/A is a connected component (isomorphic to
the Petersen graph). •

In Section 10.2 we will make use of the following property of the
universal representation module of ^(3 • S42)), which can be checked by
direct calculation.

Lemma 3.8.5 Let (W,\p) be an abelian representation ofg = 0(3 • S4(2)).
Let I be a line ofS and S be the set of points of % collinear to at least
one point in I (so that \ E |= 15J and

d,(W) = dim (v(x) | x € 3).

Then

(i) if W = V is the universal abelian representation module of <§ (so that
dimW = l U thendi(W) = %;

(ii) if W = Vz is the 5-dimensional orthogonal module, then di(W) =
dim W = 5. •

3.9

Recall that the points and lines of 0 = ^(Alts) are the edges and vertices
of the Petersen graph with the natural incidence relation. The collinearity
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graph r of 0 is a triple antipodal covering of the complete graph on 5
vertices with the following intersection diagram.

1 2

Thus every edge is contained in a unique antipodal block of size 3
called an antipodal triple. The following result is an easy combinatorial
exercise.

Lemma 3.9.1 Let $" be the point-line incidence system whose points are
the points of^(Alts) and whose lines are the lines ofS{Alts) together with
the antipodal triples. Then <§' S 0(S4(2)). D

By the above lemma the universal representation group F5(2) of
0(S4(2)) is a representation group of ^ and it is the largest one with the
property that the product of the images of points in an antipodal triple
is the identity. The next result shows that the universal representation
module of 0 is related to ^(3 • S4(2)).

Lemma 3.9.2 The universal representation module V(^(Alts)) has dimen-
sion six and is isomorphic to the hexacode module restricted to a subgroup
Sym5 in 3 • S4(2).

Proof. Let 3f = ^(3 • S4(2)), J? = 0(S4(2)), H = 3 • S4(2), 77 = S4(2).
Let G = Syms be a subgroup in H, whose (isomorphic) image in H acts
transitively on the point set of Jf. Then G has two orbits, FIi and II2 on
the point set of Jf with lengths 15 and 30, respectively. The points in 111
together with the lines contained in 11] form a subgeometry in &P isomor-
phic to 'S and the image of ITi in the hexacode module forms a spanning
set. These facts can be checked by a direct calculation in the hexacode
module and also follow from (4.2.6) and (4.3.2) below. It remains to
prove that K/, is universal. This can easily be achieved by calculating the
GF(2)-rank of the point-line incidence matrix of y(Alts). •

The next lemma shows that the universal representation group of ^ is
infinite.

Lemma 3.9.3 The universal representation group of^(Alt$) is infinite.

Proof. The points and lines of ^ = ^(Alts) are the edges and vertices
of the Petersen graph with the natural incidence relation. Take the
standard picture of the Petersen graph and let H be the set of 5 edges
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which join the external pentagon with the internal star. Then it is easy
to see that H is a geometric hyperplane whose complement consists of
two connected components - the pentagon and the star. Now the proof
is immediate from (2.3.6). •

Recall that if ^ is a P -geometry of rank n > 2 then the derived graph
A = A(^) has #" as the set of vertices and two such vertices are adjacent
if they are incident in ^ to a common element of type n — 1 (the derived
graph explains the term vertices for the elements of type n and the term
links for the elements of type n — 1). The vertices and links incident to
a given element u of type n — 2 in 'S form a Petersen subgraph A[u] in
A. The derived system 3> = Sl^) of ^ is the point-line incidence system
(II, L) whose points are the elements of type n (the vertices) and a triple
of such elements form a line if they are incident to a common element u
of type n — 2 and are the neighbours of a vertex in the Petersen subgraph
A[M]. A representation group of 3) is called a derived group of'S. In the
case of'S = ^(Alts) the points of® are the vertices of the Petersen graph
A and the lines are the sets A(x) taken for all the vertices x in A. Let
Vo be the orthogonal module of 0^(2) = Syms which is also the heart
of the permutation GF(2)-module on a set Z of size 5. Then Vo is the
4-dimensional irreducible module for Syms called the orthogonal module.
The group Syms acts on the set of non-zero vectors in Vo with two orbits
of length 5 and 10 indexed by 1- and 2-element subsets of Z. Let \p be
the mapping from the set of 2-element subsets of £ (the points of Of)
into Vo which commutes with the action of Syms. It is easy to check that
(^o.v) is the universal representation of® that gives the following.

Lemma 3.9.4 The universal representation group of 2(^{Alts)) is the or-
thogonal module Vo for Sym$. •

3.10 0 ( 3 ^ • S2n(2))

Let §? = ^(3[2l2 • S2n(2)), n > 3, so that ^ is a T-geometry of rank n
with the automorphism group G = 3[2l2 • S2«(2). Let x '• & -> ^ b e

the morphism of geometries where ^ = <S(Sin{2)). We can identify the
elements of ^ with the £-orbits on i?, where £ = O^G) and then x sends
an element of 'S onto the £-orbit containing this element. Clearly the
morphism x commutes with the action of G and G = S2n(2) is the action
induced by G on ^ (which is the full automorphism group of <S).

Let {U,q>a) be the universal abelian representation of i?. Then

u = uz e uc = cv(E) e [u, E].
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By (2.4.1) and (3.6.2) Uz is the (2w + l)-dimensional orthogonal module
for G = S2n(2) — i^2n+i(2). In this section we prove the following.

Proposition 3.10.1 In the above terms Uc, as a GF(2)-module for G, is
induced from the unique 2-dimensional irreducible GF(2)-module of

3[5]2.Q^(2).2 < G.

In particular dim Uc = 2"(2" - 1).

Within the proof of the above proposition we will see that the universal
representation group of 0 is infinite.

Let us recall some basic properties of'S and ^ (cf. Chapter 6 in [Iv99]).
Concerning ^ we follow the notation introduced in Section 3.5, so that
V is the natural symplectic module of G, *P is the symplectic form on
V preserved by G and 2. = 2.+ U SL~ is the set of quadratic forms on V
associated with x¥. For / e le (where s e {+, -}) let O(f) = O|n(2) be
the stabilizer of / in G and fi(/) = I2|B(2) be the commutator subgroup
ofO(/).

Let D be a point of <& (which is a 1-dimensional subspace of V
identified with its unique non-zero vector). Let G(v) = 22n~l : S2n_2(2) be
the stabilizer of v in G, K(v) = O2(G(i;)) be the kernel of the action of
G(v) on resg?(t>) and R(v) be the centre of G(v) which is the kernel of the
action of G(v) on the set of points collinear to v. The subgroup R(v) is
of order 2 generated by the element

i(v) : u i-> M + *P(u, v)v,

which is the transvection of V with centre v and axis v1 (the orthogonal
complement of v with respect to ¥) . The following result is rather
standard.

Lemma 3.10.2 Let v be a point of & and f € 2.. Then the following
assertions hold:

(i) C K (t (») ) = »•'•;

(ii) iff(v) = 0 then x{v) $ O(f);
(iii) iff(v) = 1 then T(») e O(f) \ fi(/).

Proof. The group G induces a rank 3 action on the point-set of ^.
Since z(v) is in the centre of G(v) and fixes every point in vx, it must act
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fixed-point freely on V \ v1 and hence we have (i). Let u be a point of
<3. If u G v1 then uT<°) = u and hence /(uT(l))) = /(«); if u G K \ t;1, then

/(ii*-*) = /(« + v) = /(«) + /(») + y(», u).

Since in this case 4*(t;,«) = 1, the equality /(u^"') = /(u) holds if and only
if /(u) = l. By (i) dim Cy(z(v)) = 2n + 1 (which is an odd number) but
we know (cf. p. xii in [CCNPW]) that an element g G O(f) is contained
in fl(/) if and only if dim Cy(g) is even. Hence we have (ii) and (iii). •

Let v be a point of'S such that x(v) = v and G(v) be the stabilizer of
v in G. Then G(v) induces the full automorphism group of res~(y) and
K(v) — O2(G(v)) is the kernel of the action. The natural homomorphism
of G onto G induced by the morphism % maps K(v) isomorphically onto
K(v). In particular the centre of K(v) is generated by the unique element
7(tT). Let R(v) be the subgroup in G generated by z(v).

Lemma 3.10.3 The following assertion holds:

(i) R(v) is the kernel of the action of G(v) on the set of points collinear
to v;

(ii) ifu is a point collinear to v then [r(2),T(u)] = 1.

Proof. Since K(v) stabilizes every line incident to v, the morphism x
commutes with the action of G and x(v) fixes every point collinear to v,
(i) follows. Since R(u) is a characteristic subgroup of G(v), (ii) follows
from (i). a

Recall that G is a subgroup in the semidirect product G = W : G,
where W is an elementary abelian 3-group which (as a GF(3)-module
for G) is induced from a non-trivial 1-dimensional module Wf of the
subgroup O(f) of G, where / G 2r. This means that the elements of fi(/)
centralize Wf and the elements from O(f) \ Q(f) act by negation. Thus
W possesses a direct sum decomposition

The group G permutes the direct summands in the natural (doubly
transitive) way.

For a form / G 1~ let O(f) be the full preimage of O(f) in G (with
respect to the natural homomorphism). Let O(/) = W : 0{f) be a
subgroup of G (where O(f) is treated as a subgroup of the complement
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G to W). It is clear that

W\J\ :=

is a subgroup of index 3 in W normalized by O(f) while JV [f\ = W \J\ :
Q(f) is a normal subgroup of index 6 in 0(f) and the corresponding
factor group is isomorphic to Symi. The next statement follows directly
from the definitions.

Lemma 3.10.4 N[f\ := N[f\ P\O(f) is a normal subgroup in O(f) and

D[f\ :=d(f)/N[f\=Sym3.

•

Let £ denote the natural homomorphism of O(f) onto D[f\. Let e be
the identity element and i\,ij,h be the involutions in D\J\. We define a
mapping Q of the point-set of <$ onto {e, ii, 1*2, 3̂} by the following rule

f e if r(5)
<J(t(5)) otherwise.

Lemma 3.10.5 The following assertions hold:

(i) g"1^) is a geometric hyperplane H(f) in <&;
(ii) for a e {1,2,3} t/ie set (?~'(Ja) is a union of connected components

of the subgraph in the collinearity graph of & induced by the com-
plement of H(f).

Proof. Notice first that by (3.10.2) if z(v) G O(f) we have £(r(i))) = ia

for a e {1,2,3}. L e t 7 = {v,u,w} be a line in § and / = {v,u,w} be its
image under x- Then {0,u, M, W} is an isotropic subspace in V. Hence
/ is zero on exactly one or on all three points in /. In the former case
z(p) $ O(f) for every p e / and / is in Q~l{e). In the latter case exactly one
of the points of T (say iJ) is in Q~l(e) and hence (i) follows. Also in the
latter case we have £(r(u)) = ia and £(T(W)) = ip. Since [r(u),?(iv)] = 1
by (3.10.3 (ii)), we have a = /?, which gives (ii). •

Now by (2.3.6) and (3.10.5) we have the following

Lemma 3.10.6 Let F = F(f) be the group freely generated by the involu-
tions ii, 12 and 13 and let e be the identity element of F. Then (F,Q) is a
O(f)-admissible representation of&, in particular the universal representa-
tion group of '& is infinite. •
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Let F be the quotient of F as (3.10.6) over the commutator subgroup
of F. Then F is elementary abelian of order 23 and is a quotient of the
universal representation module U of §?. Furthermore Cj(E) is of order
2 and is a quotient of l/z, while

U[f\ :=F(f)/Cm(E)

is a 2-dimensional quotient of Uc.

Lemma 3.10.7 Let U° be the direct sum of the representation modules
U\j\ taken for all f e 2L~. Then U° is a representation module of& of
dimension 2" (2" - 1).

Proof. We can define a mapping Q° from the point-set of ^ into U°
applying the construction similar to that after the proof of (2.3.2), so that
the line relations hold. It is easy to see that the kernels of E acting on
the U[f\ are pairwise different, which implies that U° is an irreducible
G-module. Hence U° is generated by the image of Q°. •

The above lemma gives a lower bound on the dimension of Uc.
We complete the proof of (3.10.1) by establishing the upper bound
using the technique of Section 2.4. We are going to show that in
the considered situation the condition (M) from Section 2.4 holds and
describe the acceptable hyperplanes in <$. Towards this end we need
a better understanding of the structure of £ as a GF(3)-module for
G(v) ss 22"-1 : S2n_2(2).

As above let v be a point of §? such that i(v) = v and E(v) be the
stabilizer of 'v in E. The next lemma summarizes what we have observed
above.

Lemma 3.10.8 The following assertions hold:

(i) the subgroup E(v) is independent on the particular choice ofv e x~l(v)
(and hence will be denoted by E(v));

(ii) the subgroup E(v) is of order 3§~*h and it coincides with O3 of the

action ofG(v) on KS~(V) S ${1^ • S2n_2(2));

(iii) E(v) < CE(K(v)). D

We have observed in Section 3.5 that K(v) = 02{G{v)) is elementary
abelian isomorphic to the orthogonal module of G(v)/K(v) = S2n_2(2) S
Q2n_i(2). Hence (3.5.4 (ii)) implies that G(v) has three orbits, Jfp, Jf+

and JV~ on the set Jf of hyperplanes (subgroups of index 2) in K(v)
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with lengths

22"~2 — 1, 2"-2(2"-1 + 1), 2"-2(2"-1 - 1),

respectively.
On the other hand, since K(v) is a 2-group,

and every non-trivial irreducible K(i;)-submodule in E is 1-dimensional
contained in [E,K(v)] with kernel being a hyperplane in K(v). Let $H
be the sum of the irreducibles for which H is the kernel. It is clear that
dim SH is independent on the choice of H from its G(u)-orbit and we
have the following decomposition

[E,K(v)] = ©

Since dimC£(K(i;)) > dim£(u) = $-l]2 by (3.10.8 (Hi)), we conclude that
dim [E,K(v)] is at most g]2 - [-T'h = 2"-2(2"-1 - 1), which is exactly
the length of the shortest G(u)-orbit on Jf. This gives the following.

Lemma 3.10.9 The following assertions hold:

(i) E(v) = CE(K(v));

(ii) [E,H] = [E,K(v)] for all H GJf\ Jf~;

(iii) [E,K(v)] possesses the direct sum decomposition

[E,K(v)] = © gH,

where $?~ is the G{v)-orbit on the hyperplanes in K(v) indexed by the
quadratic forms of minus type and dim $H = 1;

(iv) G(v) induces on the set of direct summands in (ii) the doubly transitive
action ofG(v)/K(v) 3* S2n-2(2) on the cosets o/Ojn_2(2);

(v) the element t(v) negates &n for every H € Jf~, so that E(v) =

CE«V)).

Proof. The assertions (i) to (iv) follow from the equality of upper and
lower bounds on dim[E,K(v)] deduced before the lemma. Since T(V) is
in the centre of G(v) and the latter acts transitively on 3tf~, it is clear
that T(U) acts on all the 8n in the same way. Since i(v) can not centralize
the whole E, (v) follows. •

In order to establish the condition (M) we need the following lemma.



74 Classical geometries

Lemma 3.10.10 Let {v,u,w} be a line in &. Then
(i) the images of x(u) and T(W) in G(v)/K(v) are non-trivial and equal;

(ii) E(u) C\ E(w) < E(v).

Proof. It is immediate from (3.10.3 (ii)) that [t{v), T(U)] = 1 and hence
T(U) € G{v) (similarly for w). It is easy to deduce directly from the
definition of the transvections T(M) and T(W) that they induce the same
non-trivial action on res#(i;), which gives (i). By (3.10.9 (v)) E(v)C\E{u) =
C£(D)(T(U)) and E(v) D £(w) = CE{V)(T:(W)). Since K(v) commutes with
E(v), in view of (i), we have E(v) C\ E(u) = E(v) n E(w). By the obvious
symmetry, the intersections are also equal to E(u) n E(w) and hence (ii)
follows. Q

Lemma 3.10.11 In the considered situation the condition (M) holds.

Proof. Put / = 2/C~ (which is the G(u)-orbit on the set of hyperplanes
in K(v) indexed by the quadratic forms of minus type) and for i 6 / let
B{ be the image in E/E(v) of the subspace Si as in (3.10.9 (hi)). Then
the B, are 1-dimensional and G{v) permutes them doubly transitively by
(3.10.9 (iv)). Thus in order to show that the graph £ in the condition
(M) is connected, it is sufficient to show that it has at least one edge. Let
{v,u,w} be a line in <§. Then by (3.10.9 (v)) and (3.10.10) £(u) ^ E(v)
and therefore T(M) has on / an orbit {i,j} of length 2. By (3.10.10 (i))
the action of T(W) on / coincides with that of T(M) and hence {i,j} is
also a T(w)-orbit. Put B,; = (£,, Bj) and let Bu and Bw be the centralizers
in Bij of T(U) and T(W), respectively. Then Bu and Bw are contained in
the images in E/E(v) of E(u) and E(w), respectively, and Bu =fc Bw by
(3.10.10 (ii)). Since clearly {BU,BW} n {BbBj} = 0, (M) holds. D

Now we are going to complete the proof of (3.10.1) by showing that l/°
as in (3.10.7) is the whole Uc. Since the condition (M) holds by (3.10.11)
we have to bound the number of acceptable hyperplanes. First of all
since U° is a non-trivial quotient of Uc, there are acceptable hyperplanes.
By noticing that the dimension of U° is twice the length of the shortest
G-orbit on the set of geometric hyperplanes in ^ , we conclude that (in
the notation of (3.5.3)) the hyperplanes H(f) for / € 2~ are acceptable.
Since the universal representation group of # is finite by (3.5.5), (2.4.8)
applies and shows that dim Uc is at most twice the number of acceptable
hyperplanes in ^ . Hence it remains to prove the following.

Lemma 3.10.12 Let H be a geometric hyperplane in <§, such that either
H = H(f) for f € J2+ or H = H(v) for a point v on &. Then H is not
acceptable.
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Proof. Suppose that H is acceptable. Then by (2.4.6 (i)) the subgroups
E(u) taken for all points u of ^ outside H generate a subgroup Y(H) of
index 3 in E. It is clear that Y{H) is normalized by the stabilizer G(H) of
H in G. We know by Lemma 6.7.3 in [Iv99] that E (as a GF(3)-module
for G) is self-dual. Hence G(H) must normalize in £ a 1-dimensional
subspace (which is the dual of Y(H)).

Let x be an element of type n in ^, so that x is a maximal totally
isotropic (which means n-dimensional) subspace in V. Its stabilizer
G(x) 2 2"(n+1>/2 : Ln(2) acts monomially on E (cf. Lemma 6.8.1 in [Iv99]).
More specifically C>2(G(x)) preserves the direct sum decomposition

Here if2 is the set of 2-dimensional subspaces of x and every Tx is
a 1-dimensional non-trivial module for 02(G(x)). The factor group
G(x)/Oi{G{x)) = Ln(2) permutes the direct summands in the natural
way (in particular the action is primitive). The kernels of the action of
Oi(G(x)) on different Ta are pairwise different, in particular G(x) acts
irreducibly on E. We are going to show that G(H,x) := G(H) n G(x)
does not normalize 1-subspaces in E.

Let H = H(f) for / e £+ and assume that x is totally singular
with respect to / , in which case G(H,x) = 2"(n~1)/2 : Ln(2). Since
G{H,x)O2(G{x)) = G{x), we conclude that G(H,x) acts primitively on
the set of direct summands Ta. Hence the kernels of the action of
Oi(H, x) on different Ta are different and G(H, x) still acts irreducibly on
E, particularly it does not normalize 1-subspaces in E.

Finally let H = H(v) where v is a point and we assume that v is
contained in x. Then G(H,x) = G(v) n G{x) contains 02(G(x)) and has
two orbits &\{v) and 2\(v) on <£2 with lengths R-1]2 and g]2 - \»~l]2

consisting of the 2-subspaces in x containing v and disjoint from v,
respectively. Since n > 3, each orbit contains more than one element.
Then E, as a module for G{H,x), is the direct sum of two irreducible
submodules

© Tx and © Ta,

each of dimension more than 1 and hence again G(H, x) does not nor-
malize 1-subspaces in E. O



4
Mathieu groups and Held group

Let (0>,@) be a Steiner system of type S(5,8,24), where 0> is a set of 24
elements and 38 is a set of 759 8-element subsets of 3? called octads such
that every 5-element subset of ^ is in a unique octad. Such a system is
unique up to isomorphism and its automorphism group is the sporadic
Mathieu group M24. The octads from 38 generate in the power space 2^
of & a 12-dimensional subspace #12 called the Golay code . The empty
set and the whole set 3P form a 1-dimensional subspace in # n and the
corresponding quotient #n is an irreducible GF(2)-module for M24. The
quotient #12 = 29l^n (equivalently the dual of #12) is the Todd module
. It contains a codimension 1 submodule #n which is dual to #n (#n is
called the irreducible Todd module ). The stabilizer in M2A of an element
p e & is the Mathieu group M23 and the stabilizer of an ordered pair
(p,q) of such points is the Mathieu group M22. The setwise stabilizer
of {p,q} is the automorphism group AutA/22 of M22. The irreducible
Todd module %tn restricted to AutM22 is an indecomposable extension
of a 10-dimensional Todd module #10 for AutM22 by a 1-dimensional
submodule. Recall that a trio is a partition of & into three octads and a
sextet is a partition of 3P into six 4-element subsets (called tetrads) such
that the union of any two such tetrads is an octad.

4.1

For the rank 4 P -geometry ^ = ^(M23) the universal representation
group is trivial. Indeed, the point set of ^ is 3?\{p} for an element p e 2P
and the automorphism group G = M23 of 0 acts triply transitively on
the set of points. Hence every 3-element subset of points is a line, which
immediately implies the following result.

76
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Proposition 4.1.1 The universal representation group of<§(Mii) is trivial. D

Since the representation group of ^(Mii) is trivial, the geometry does
not possess flag-transitive affine c-extensions but there exists a non-affine
flag-transitive c-extension having M24 as the automorphism group (2.7.5).

4.2 «?(M22)

If {p, q} is a 2-element subset of 8P then the points of the rank 3 P-
geometry <$ = ^(A/22) are the sextets which contain p and q in the same
tetrad. Since every tetrad is contained in a unique sextet the set of points
can be identified with the set of 2-element subsets of 2 := SP\ {p,q}. If
B is an octad containing {p,q} then the 6-element subset H := B\ {p,q}
is called a hexad. There are 77 hexads which define on 2 the structure
of a Steiner system S(3,6,22), in particular, every 3-element subset of
2 is in a unique hexad. In these terms a triple of points of 'S is a
line if and only if the union of these points is a hexad. Then the
automorphism group G = AutM22 of ^ is the setwise stabilizer of {p,q}
in the automorphism group of (^,3S) isomorphic to M24. The octads
from SB disjoint from {p,q} are called octets. The octets are the elements
of type 3 in ^(M22).

From the action of C02 on the rank 4 P-geometry ^{Coi) containing
^(Mn) as a point residue, we observe that the 10-dimensional Todd
module is a representation module of <S. Let x = {a, b} be a 2-element
subset of 2 (a point of ^ ) and xp(x) be the image in Wu of the subset
{p,q,a,b} of 0>.

Lemma 4.2.1 0<?ii,y) is an abelian representation of <${M1-2).

Proof. Let {x1.x2.x3} be a line in (§, where x, = {a,,b,} for 1 <
i < 3. Then ip(x\) + y>{xi) + y(x3) is the image in # n of the set
{p,q,a\,bi,ai,bi,a^,b}} which is an octad and hence the image is zero. •

We will show that (^n, v) is the universal representation of <§. First
we show that if (V,x) is the universal abelian representation of $, then
the dimension of V is at most 11.

Let H be a hexad. It follows directly from the definitions that the
points and lines contained in H form a subgeometry Sf in ^ isomorphic
to 9(S4(2)) (cf. Lemma 3.4.4 in [Iv99]).

Lemma 4.2.2 Let (V,x) be the universal abelian representation o
and H be a hexad. Then
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(i) the subspace V[H] in V generated by the vectors x(x) taken for all
points x contained in H is a quotient of the universal representation
module V{<Z(S4(2)) of9(S*(2));

(ii) for every element r e H the vectors x({r>s}) taken for all s G H\ {/•}
generate in V[H] a subspace of codimension at most 1 and

£ X({r,s}) = 0.
seH\{r}

Proof, (i) follows from (2.1.2), (3.4.4) and the paragraph before the
lemma while (ii) is implied by a property of V(^{Sn(2)). D

Notice that in # n the images of all the pairs contained in a hexad
generate a 5-dimensional subspace.

Let r e 2., 1% = 21 \ {r} and JS? be the set of hexads containing r
(equivalently the octads containing {p,q,r}). Then by the basic property
of the Steiner system S(5,8,24) we observe that with respect to the natural
incidence relation n = (^, S£) is a projective plane over GF(4).

Lemma 4.2.3 Let V\r\ be the submodule in V generated by the vectors
%{{r,s}) taken for all s € Gfc. Then the dimension of V\r\ is at most 11.

Proof. Let L be the stabilizer of r in G. Then L = PIL3(4) acts doubly
transitively on St. Thus V\r\ is a quotient of the GF(2)-permutation
module of L acting on the set of points of II. Furthermore by (4.2.2 (ii))
the sum of points on a line is zero. Now the proof follows from the
structure of the permutation module given in (3.1.4). •

Proposition 4.2.4 In the above terms V = V[r\, in particular, dim V = 11
and V S t f n .

Proof. Suppose that V ± V[r\ and put V = V/V[r\. Since every
point of 'S is contained in a hexad containing r, V(H) is not contained
in V\r\ for some hexad H containing r. Since V\r\ is normalized by
L and L acts (doubly) transitively on the set i f of hexads containing r,
the image of V{H) in V is non-trivial for every hexad H containing r.
By (4.2.2 (ii)) this image is 1-dimensional. Let i(H) denote the unique
non-zero vector in this image. By considering a hexad which does not
contain r we can find a triple H\, H2, H} of hexads containing r such
that

Since L acts doubly transitively on the set of 21 hexads containing r, this
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T?*implies that V = {i(H) | r e H}, which is not possible since 21 is not a
power of 2 minus one. •

Proposition 4.2.5 IS tf»e universal representation o

Proof. By (4.2.4) all we have to show is that if {R, x) is the universal
representation of ^ then R is abelian. Let F be the collinearity graph of

whose suborbit diagram is the following:

3+6+12

Recall that y e F \ {x} is contained, respectively, in F(x), Fj(x) and
r\(x) if x, y are disjoint contained in a hexad, intersect in one element,
and are disjoint, not in a hexad (here x and y are considered as 2-element
subsets of 2).

We apply (2.3.7) for B(x) = F^(x) and A(x) = F\B(x). Since the action
of G = Aut M22 on F is vertex-transitive and

\rl(x)\ > I + |r(x)| + \rl
2(x)\,

3 is connected. Let us show that 27 is connected. For a hexad H let
T[H] be the subgraph in F induced by the points contained in H. Then
Y[H] is the collinearity graph of ^(54(2)). Let x = {a, b} and H be a
hexad which contains a and does not contain b. Since any two hexads
intersect in at most 2 elements, it is easy to see that the intersection
T[H] n T\(x) is of size 10 (the pairs contained in H and disjoint from
a) and the subgraph in 27 induced by the intersection is isomorphic to
the Petersen graph. Since the hexads form the Steiner system S(3,6,22),
for every z e T\ there is a unique hexad which contains a and z (this
hexad does not contain b). Hence the subgraphs induced by the subsets
T[H] nr^(x) taken for all hexads containing a and not containing b form
a partition of Fj(x) into 16 disjoint Petersen subgraphs. In a similar way
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the hexads containing b and not containing a define another partition
of F^x) into 16 disjoint Petersen subgraphs. Furthermore, two Petersen
subgraphs from different partitions intersect in at most one point. Hence
every connected component of T.x contains at least 100= 10x10 vertices.
Since G(x) acts transitively on F^x) and a connected component is an
imprimitivity block, we conclude that Zx is connected. By (3.4.4) for a
hexad H the points contained in H generate in R an abelian group (of
order at most 25). Since whenever y e A(x) there is a hexad containing
x and y, all the assumptions of (2.3.7) are satisfied and the commutator
subgroup of R has order at most 2. By (4.2.4), (2.3.8) and (2.3.9) if R is
non-abelian, G acting on #u preserves a non-zero symplectic form. On
the other hand, #n as a module for G is indecomposable with irreducible
factors of dimension 1 and 10 (cf. Lemma 2.15.3 in [Iv99]), which shows
that there is no such form. Hence R is abelian and the result follows. D

Let (V,(p) be the universal representation group of <S, so that V = #n.
Let x be a point of 0. We will need some information of the structure of
V as a module for G(x) =• 2s.Sym5. Put G(x) = G{x)/O2(G(x)) ̂  Sym5.
and follow the notation introduced in Section 2.2.

Lemma 4.2.6 The following assertions hold:

(i) V\(x) is the universal representation module for res»(x) = ^(Alts),
in particular dim V\(x) = 6;

(ii) V2(x)=V[r\(x)] = V[r2
2(x)];

(iii) Vi(x) is the 4-dimensional orthogonal module for G(x) (with orbits
on non-zero vectors of lengths 5 and 10).

Proof. Let V = ((p{y) | y e r \ r | ( x ) ) . We claim that V* = V. By the
last paragraph of the proof of (4.2.5) the graph Z* on Fj(x) is connected,
hence

dim V/V < 1.

If the equality holds, then V* is a hyperplane in V stabilized by G(x)
which contradicts the fact that V = <#n is not self-dual. Hence the claim
follows and implies (ii).

Let Hi,...,Hs be the hexads containing x. Then the intersections
r[Hi] n Tl

2(x), 1 < i < 5 form a partition of P2(x). By (3.5.4) the
image of F|T[iJ]] in Viix) is at most 1-dimensional. In view of (ii)
this implies that F2(x) is at most 5-dimensional. Now let H be a hexad
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intersecting x = {a, b} in exactly one point (as in the proof of (4.2.5)).
Then (compare the diagram on p. 138 in [Iv99]) the stabilizer of H in
G(x) is a complement to O2(G(x)), isomorphic to Syms and

|F [H]nr i (x ) |=5 .

This implies that | T[H] D F[tt,] \= 1 for 1 < i < 5 and hence
F[F[tf]] Vi(x) = V. On the other hand, F[H]nF^(x) is a geometric hyper-
plane in the 0(S4(2))-geometry associated with H. Hence q>(r[H] nF^x))
span in V a 4-dimensional subspace. By (3.9.2) V\{x) is at most 6-
dimensional and so by the dimension consideration we obtain (i) and
(iii). •

Notice that in (4.2.6) the module F2(x) is isomorphic to the derived
group of resgr(x) = ^§{Alts) (compare (3.9.4)).

4.3

Considering the action of Co\ on the rank 4 T-geometry ^{Co\) we ob-
serve that #11 is a representation group of <& = ^(Mu). Let (R, cp)
be the universal representation of ^. Recall that the points of 0
are the sextets. For a 2-element subset {p, q} of $> the sextets con-
taining {p,q} in a tetrad induce a subgeometry !F(p,q) isomorphic to
^{Mn) (the lines and planes in the subgeometry are those of 0 con-
tained in the point set of !F{p,q)). By (4.2.5) the image cp(^(p,q))
of the points from the subgeometry !F(p,q) in R is abelian of order
at most 211 isomorphic to a quotient of #u. Let S = {p,q,r} be a
3-element subset of 2P. Then the intersection S'ip, q) n 2F{q, r) is of
size 21 consisting of the sextets containing S in a tetrad. By (4.2.4)
(p(^(p,q)) is generated by (p(&r(p,q)C\^(q,r)), which immediately shows
that <p{^{p, q)) = q>(^(q, r)). Since the graph on the set of 2-element
subsets of 3P, in which two such subsets are adjacent if their union is a
3-element subset, is connected, we conclude that R = (p(^(p,q)), which
gives the following.

Proposition 4.3.1 The group R{'S(Mu)) is abelian isomorphic to the irre-
ducible Todd module #n . D

We will need some further properties of #i i as a representation group
of ^. Let x € II, G(x) ^ 26.3 • S4(2) be the stabilizer of x in G s M24
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and let F be the collinearity graph of ^. Let (V,q>) be the universal
representation of <$ (where V = Wu by (4.3.1)). The following result is
immediate from the structure of V as a module for G(x) (cf. Section 3.8
in [Iv99]).

Lemma 4.3.2 Let G(x) = G(x)/O2{G(x)) = 3 • S4(2). Then the following
assertions hold:

(i) Vi(x) is isomorphic to the hexacode module for G(x);
(ii) K2(x) = K[F^(x)] = F[F^(x)] and V2(x) is isomorphic to the 4-

dimensional symplectic module o/G(x)/O3(G(x)) = S4(2). D

4.4 0(3-M22)

Let 9 = 9(3- M22), G = Aut^ = 3 • AutM22, E = O3(G), 9> = (II, L)
be the point-line incidence system of 0 and 9" be the enrichment of 9
with respect to £. Recall that the quotient <& of 0 with respect to the
action of £ is isomorphic to 0(M22). The point set of 0 is the set of
2-element subsets of 2. = &\ {p,q}. In this subsection we determine the
universal representation module of 'S and the universal representation
group of SP'. We do not know what the universal representation group
of ^ is and even whether or not it is finite.

Let (V, (p) be the universal abelian representation of <$. In terms of
Subsection 2.4, V = Vz © Vc. By (2.4.1) V1 is the universal represen-
tation module of ^(M22) (isomorphic to %n by (4.2.4)) and by (2.4.3)
Vc is the universal representation module of 9". Hence to achieve
our goal it is sufficient to calculate the universal representation group
R' of 9", since Vc is the quotient of R* over its commutator sub-
group.

Lemma 4.4.1 The group R* possesses a G-invariant factor group isomorphic

Proof. Consider the action of J = J4 on the rank 4 P -geometry
$ = ^(Xt). Let x be a point of ,/, J(x) be the stabilizer of x in J
and Q = O2(J(x)). Then res/(x) = 0, Q is the kernel of the action
of J(x) on res/(x), Q = 21^12 and J(x)/Q = G = 3 • AutM22. Fur-
thermore Z(Q) is the kernel of the action of J(x) on the set of points
collinear to x. By (1.5.1) there is a J(x)-invariant mapping / of the point
set n of 0 = res/(x) into Q — Q/Z(Q) such that (Q,x) is an abelian
representation of ^.
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Let £ be a Sylow 3-subgroup of O2,3(J{x)). Then EQ/Q = O3(G) and E
acts fixed-point freely on Q, which implies that (Q, %) is a representation
of the enriched point-line incidence system of <S. Let G = Nj(X)(E). Then
G/Z(G) S G (in fact G does not split over Z(Q)). Let O = Im(<p) and O
be the preimage of <& in Q. We claim that (a) O consists of involutions
and (b) G acting on O has two orbits. Let D be the point set of a plane
in ^. Then %(D) is the set of 7 non-identity elements of an elementary
abelian subgroup A of order 23 in Q. Then normalizer of A in G induces
on A the natural action of L^I), in particular this action does preserve
a non-trivial quadratic form on A. Hence the preimage A of A in Q
is elementary abelian and (a) follows. Now let T be an £-orbit on the
point set IT of #. Then x(T) is the set of non-identity elements of an
elementary abelian subgroup B in Q of order 22. By (a) the preimage B
of B in Q is elementary abelian of order 23. Clearly E, acting on B* has
two orbits, say B\ and B2 each of length 3. It is easy to see that B = (B,)
for exactly one i € {1,2}. This means that the images of B\ and B2 under
G form two different orbits of G on $ and the claim follows. Applying
(2.8.1) we obtain the proof. •

Proposition 4.4.2 The universal representation module Vc of the en-
riched point-line incidence system 9" is Yl-dimensional isomorphic to
Q = Q/Z(Q).

Proof. (A few lemmas will be formulated within the proof.) The
fixed-point free action of E on Vc turns the latter into a GF(4)-vector
space, so that the representation of SS* in Vc induces a mapping v of
the point set n of ^ into the set of 1-dimensional GF(4)-subspaces in
Vc. Throughout the proof the dimensions of Vc and its subspaces are
GF(4)-dimensions. By (4.4.1) all we have to show is that dim Vc < 6. If
H is a hexad, then the preimages of the points from n contained in H
form in ^ a subgeometry isomorphic to ^(3 • S42)) and hence by (3.8.1)
and the fact that 3 • S<»(2) acts irreducibly on the hexacode module, we
obtain the following, where VC(H) is the subspace in Vc generated by
the images under v of the points contained in H.

Lemma 4.4.3 dim VC(H) = 3. D

Notice that the set of 1-dimensional subspaces v(3c) for x € H are
equal to the set of 15 points outside a hyperoval in the projective GF(4)-
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space associated with VC{H). From the basic properties of the projective
GF(4)-space (cf. Section 2.7 in [Iv99]) we deduce the following.

Lemma 4.4.4 Let x, y be different points contained in a hexad H and let
W be the 2-dimensional subspace of VC(H) generated by v(x) and v(J).
Let m be the number of l-dimensional subspaces in W of the form v(z)for
I G H. Then m = 5 if \x n y\ = 1 and m = 3 ifx and y are disjoint. •

Let r € J and Vc\r\ be the subspace in Vc generated by the images
under v of the 2-element subsets in 2. (points of <&) from the set

A = {{r,s}\se2\{r}}.

Let x,y be different points from A and H be the unique hexad containing
x and y. Since xnj = {r}, by (4.4.4) every l-dimensional subspace in the
2-dimensional subspace of VC(H) generated by v(x) and v(y) is of the
form v(z) for some I G A. Hence every l-dimensional subspace in Vc\r\
is of the form v(z) for some I G A and we have the following.

Lemma 4.4.5 dim Vc\r\ = 3 . •

Let y° = Vc/Vc\r\. For a hexad H containing r the image l^iH) in
y° of VC(H) is l-dimensional and it is easy to see that for s G 2L \ {r}
the image in V° of Vc[s\ is 2-dimensional, and every l-dimensional
subspace in this image is of the form y°(H) for a hexad containing r
and s (there are exactly 5 such hexads). Since the stabilizer of r in G acts
doubly transitively on the 21 subspaces T*(H) taken for all the hexads
H containing r, we conclude that these are all l-dimensional subspaces
in V°. Hence dimV* = 3 and in view of (4.4.5) this completes the proof
of Proposition 4.4.2. D

Proposition 4.4.6 Let (/?*, q>) be the universal representation of the enriched
point-line incidence system of&(3 • M22). Then R* = 2++12.

Proof. By (4.4.1) and (4.4.2) all we have to show is that the commutator
subgroup of R' has order at most 2. We apply (2.3.7). The suborbit
diagram of the collinearity graph F of ^(3-M22) with respect to 3AutM22
(calculated by D.V. Pasechnik on a computer) is the following
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Tl
0(x) = {x}

F>(x) ri(x)

We put B(x) = r$(x) and A(x) = U\B(x). Let x0 = x, {xx,x2} = Fj(x).
Since {xo,xi,x2} is the only imprimitivity block of G on the vertex set of
F which contains x, the graph S is connected. Our next goal is to show
that Sx is connected. It is easy to see from the above suborbit diagram
that

Furthermore, E permutes the sets T\{xi) for i = 0,1,2 fixed-point freely.
Hence there is a line {ZQ,ZI,Z2} in 9" (an orbit of E), such that z,- € F^x,),
0 < i < 2. Thus it is sufficient to show that the subgraph in 2X induced by
T^xi) is connected. For a hexad H the set Q(H) of the preimages in <$ of
the points from G contained in H induces a subgeometry isomorphic to
^(3S4(2)). By (3.8.2) and (4.4.3) the elements q>(y) taken for all y € £1(H)
generate in R' an elementary abelian subgroup of order 26 isomorphic
to the hexacode module for

G[£2(tf )]/O2(G[fi(ff)]) S 3 • S4(2).

Let x = {a,b} <=. 2. be the image of x in <S. If if is a hexad which contains
a and does not contain b then comparing the proofs of (4.2.5) and (3.8.4)
we can see that £l(H) n r\(x) is of size 15 while for every 0 < j < 2 the
intersection Cl(H) n F^x,) is of size 10 and induces a Petersen subgraph.
Now arguing as in the proof of (4.2.5) we conclude that the subgraph in
2X induced by Fj(xi) is connected.
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Let us show that cp(x) commutes with q>(y) for every y G A(x). If
y € rj{x) for 0 < i < 4 then there is a hexad H such that x,y e Cl(H)
and in this case the conclusion follows from the previous paragraph.
Let Rl(x) be the subgroup generated by the elements q>(u) taken for
all u e r}(x) and fl|(x) = R[(x)/<p(x). We claim that ^J(x) is abelian.
By (2.6.2) JR*(x) is a representation group of tf = res#(x) S <g(Alt5).
Since the representation group of J f is infinite, we need some additional
conditions. Recall that the points of J f are the edges of the Petersen
graph and two such edges are collinear if they have a common vertex.
If if is a hexad containing x then the lines of ̂  contained in Q(H) and
containing x correspond to a triple of antipodal edges in the Petersen
graph associated with Jf. By (3.8.3) the product of images in R~\(x) of
these antipodal edges is the identity. On the other hand, if we adjoin
to the line set of #C the five antipodal triple of edges, we obtain the
geometry 0(S42)). Thus R\{x) is a representation group of ̂ (S42)) and
it is abelian by (3.4.4), so the claim follows. The suborbit diagram shows
that there are 3 paths of length 2 joining a vertex y e r\(x) with x.
Since R^x) is abelian, by (2.2.3) [q>(x), cp(y)] = 1, which completes the
proof. •

As an immediate consequence of the above proof we have the following.

Corollary 4.4.7 Let (R",(p) be the universal representation of the enriched
point-line system of <$ = 0(3 • M22) (where R' ^ 21^12) and r be the
non-identity element in the centre of R*. Then for points x,y ofS we have
[(p(x), cp(y)] =r if y € T](x) and [(p{x), <p(y)] = 1 otherwise. •

Let x be a point of <§. We will need some information of the structure of
Vc as a module for G(x) S 25.Sym5. Put G(x) = G(x)/O2(G(x)) S Syms.

Lemma 4.4.8 The module Vc possesses a unique composition series ofG(x)-
submodules:

7(1) < 7(2) < 7O) < 7(4) < 7(5) < yc^

where V^ = <pc{x); V® = Kc[r{(x)]; K<3> = Fc[rj(x)]; F<4> =
7c[I^(x)] = Vc[r\(x)]; V& = Fc[I^(x)]. Furthermore

(i) VW, V(2)/Vm, 7(5)/J/(4) and Vc/V{5) are l-dimensional;
(ii) V(y)/V(1) and 7 ( 4 ) /^ ( 3 ) are isomorphic to the natural (^-dimensional

irreducible) module for G(x);
(iii) 7(5)/7<3) is isomorphic to the indecomposable extension of the natural

module by the l-dimensional trivial module and it is dual to
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Proof. Since Vc = R'/Z{R'), where R' = 21^12, the square map on
R' induces a non-singular quadratic form q of plus type on Vc. Let
H be a hexad. We know that VC[Q(H)] is isomorphic to the hexacode
module Vh for S/O2{S) = 3 • S4(2) where S is the stabilizer of Q(H)
in G. Since S/O2(S) does not preserve a non-zero quadratic form on
V),, VC[Q(H)] is a maximal isotropic subspace with respect to q. Let
/ be the bilinear form associated with q (so that / is induced by the
commutator map on R*). The proof of (4.4.6) in view of (2.3.8) shows
that for y e II we have f{<pc(x), (pc(y)) ^ 0 if and only if y G T\{x). Put
V$(x) = Vc\T\T\{x)]. Then VI is in the orthogonal complement of q>c(x)
and hence dimVc/V?(x) > 1. By the proof of (4.4.6) dimFc/K.c < 1.
Hence the equality holds and K,c(x) is the orthogonal complement of
(pc(x) with respect to / . Let {xi,x2} = T\(x). Then

and (<pc(x),(pc(x\),q>c{x2)) is 2-dimensional. Since / is non-singular, this
implies that Vc[uf=oTj(x)] has codimension 2 in Vc and by the above
exposition this is the orthogonal complement of Kc[{x} U F^x)]. By the
proof of (4.4.6) Vc[r{(x)] has dimension at most 6. If the dimension is 5
then

]* = {(p':(y)\ye{x}uT\(x)}

which is certainly impossible. Let us prove that V^ < V&\ We have just
shown that Kc[r}(x)] is a maximal totally isotropic subspace of Vc, with
respect to the form / . However by (2.4.4) Kc[F}(x)] is contained in the
orthogonal complement of Vc[{x} u r j (x) ] and the latter is an isotropic
line. Hence

by the maximality of the totally isotropic subspace Kc[rJ(x)]. Now the
remaining assertions are straightforward. •

The following information can be found in [J76] or deduced directly.

Lemma 4.4.9 Let (Q, (pa) be the universal abelian representation of the
enriched point-line incidence system o / ^ (3 • M22) as in (4.4.2). Then G =
3 • Aut M22 has exactly three orbits, Q\, Q2, and Qi on the set of non-
identity elements of Q, where Q\ = Im <p is of size 693, Qi is of size 1386
and Qi is of size 2016. In particular, a Sylow 2-subgroup of G fixes a
unique non-zero vector in Q and this fixed vector is in Qi. •
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4.5 3{M22)

Let G = M22, ^ = ^(G) be the P-geometry of M22, and A = A(^) be the
derived graph of 0. Then the action of M22 on A is distance-transitive
and the intersection diagram is the following:

2 2 1
7 1 / - ~ \ 6 1 / ^ \ 4 1 / " - \ 4 6

Let 3) = 3){Mxi) be the derived system of <S. Recall that the points of
3 are the vertices of A and a triple {«, u, w} of such vertices is a line if
there is a Petersen subgraph I in A (an element of type 2 in 1§) and a
vertex x e Z such that {u, v, w} = Z(x) (the set of neighbours of x in Z).

Let (D,5) be the universal representation of 3). As usual for a subset
A of the vertex set of A

D[A] = (S(z) I z G A).

Lemma 4.5.1 Let #10 be the 10-dimensional Golay code module (which is
an irreducible GF(2)-module for M22)• Then (^10, x) IS a representation of
3) for a suitable mapping x-

Proof. The vertices of A (which are the points of 3>) are the octets (the
octads of the S(5,8,24)-Steiner system disjoint from the pair {p, q) of
points involved in the definition of ^(A/22)) and two octets are adjacent
if they are disjoint. The module #10 can be defined as the subspace in the
power space of ^\{p,q} generated by the octets. Let S = {Tu T2,...., T6}
be a sextet such that {p,q} e T\. Then for 2 < i < j < 6 the union
Tj U Tj is an octet and all the 10 octets arising in this way induce in A a
Petersen subgraph Z. Let x be a vertex of E, say x — T2 U T3. Then

M = T4 U T5, v = T4 U T6, w = T5 U T6

are the neighbours of x in Z. Since #10 is a subspace in the power space,
the addition is performed by the symmetric difference operator and hence

u + v + w = 0,

which means that #10 is a representation group of 3>. •

We are going to show that #10 is the universal representation group
of 3>. First we recall some known properties of A. If Z is a Petersen
subgraph in A and x e A then the type of Z with respect to x is the



4.5 9{M21) 89

sequence (to, £1.̂ 2, ^ 4 ) , where tj = |2 n Aj(x)| for 0 < j < 4. The next
two lemmas are easy to deduce from the diagram on p. 137 in [Iv99].

Lemma 4.5.2 For x € A the subgroup G(x) = 23 : L-$(2) acts transitively
on the set of Petersen subgraphs in A of a given type with respect to x.
Furthermore, if 2 is a Petersen subgraph and & is the orbit of 2 under
G(x), then one of the following holds:

(i) 2 is of type (1,3,6,0,0) and \<9\ = 7;
(ii) I is of type (0,1,3,6,0) and |0 | = 28;

(iii) 2 is of type (0,0,2,4,4), \O\ = 84 and a vertex from 2 n A4(x) is
adjacent to 2 vertices from 2nA3(x) ;

(iv) 2 is of type (0,0,0,6,4), |0 | = 112, a vertex from 2nA4(x) is adjacent
to 3 vertices from 2nA3(x), and a vertex from 2nA3(x) is adjacent
to 2 vertices from 2 n A4(x). •

Lemma 4.5.3 Let H be a hexad and Sf = (II, L) be the incidence system,
such that n consists of the edges {x,y} of A such that the sum ofx and y
in #io is the complement of H and L is the set of non-empty intersections
of II with Petersen subgraphs in A. Then

(i) every line in L is of size 3 and forms an antipodal triple of edges in a
Petersen subgraph;

(ii) Sf is isomorphic to the generalized quadrangle ^(S4(2)) of order (2,2);
(iii) for an edge {x,y} G IT the set U contains 6 edges in A2M n A2(y)

and 8 edges in A4(x) D A4(^). •

Lemma 4.5.4 Let I. be a Petersen subgraph in A, let

be an antipodal triple of edges in 2 and S be the set of vertices on these
three edges. Then D[S\ is elementary abelian of order 23 and the product
d(xi)8(yi) is independent of the choice of i £ {1,2,3}.

Proof. The statement can be deduced from (3.9.4) by means of ele-
mentary calculations. D

Lemma 4.5.5 For x e A the equality £>[A3(x)] = £>[A4(x)] holds.

Proof. Let 2 be a Petersen subgraph of type (0,0,0,6,4) and u e
2 Pi A3(x). By (4.5.2 (iv)) u is adjacent to 2 vertices in 2 n A4(x), say to y
and z. Then if v is the unique vertex from 2 n A3(x) adjacent to u then
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8(v) = S(y)S(z), which implies the inclusion D[A3(x)] < D[A4(x)]. The
inverse inclusion can be established similarly by considering a Petersen
subgraph of type (0,0,2,4,4). •

Lemma 4.5.6 In the notation of (4.5.3) let 0 be the set of 30 vertices
incident to the edges from II. Then D[&] is abelian of order at most 26.

Proof. Let d = 8{x)5(y) for an edge {x,y} € IT. Then by (4.5.4) and
(4.5.3) d is independent of the particular choice of the edge. Let

By the definition and (4.5.4) (D[&]/{d)]) is a representation of <f. By
(3.4.4) D[®]/(d) is elementary abelian of order at most 25. Hence the
commutator subgroup of D[&] is contained in (d). We claim that the
commutator subgroup is trivial. Indeed, consider the representation
O îo. x) a s m (4.5.1) and let y> be the homomorphism of D onto #io such
that x is the composition of d and xp. Since #io is abelian, in order
to prove the claim it is sufficient to show that \p(d) is not the identity.
But this is clear since the images under x of two adjacent vertices are
different. Hence the proof. •

Lemma 4.5.7 D is abelian.

Proof. For x,y € A we have to show that <5(x) and 5(y) commute. If
d&(x,y) < 2 then x and y are in a common Petersen subgraph and the
commutativity follows from (3.9.4); if d&(x,y) = 4 then by (4.5.3) x and
y are contained in a set © as in (4.5.6) and the commutativity follows
from that lemma. Finally by (4.5.5) we have D[A3(x)] < D[A4(x)], which
completes the proof. •

Now we are ready to prove the main result of the section. As usual for
a vertex x e A and 0 < i < 4 put

Di(x) = (S(y)\dds,y)<i),

Proposition 4.5.8 The universal representation group of the derived system
ofS{Mri) is abelian of order 210 isomorphic to the Mii-irreducible Golay
code module

Proof. In view of (4.5.1) it is sufficient to show that the order of D
is at most 210. We fix x e A and consider Z>,(x) to be GF(2)-modules
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of G(x) = 23 : L3(2). Let nx denote the residue res^(x) which is the
projective plane of order 2 whose points are the edges incident to x and
whose lines are the Petersen subgraphs containing x.

Step 0. dim£>0(x) <, 1.

Step 1. dimDi(x) < 3.

The set A(x) is of size 7 and the lines of 2) contained in this set turn it
into the point set of the projective plane nx. Now the result is immediate
from (3.1.2).

Step 2. dimZJ2(x) < 3.

For a Petersen subgraph £ of type (1,3,6,0,0) the image of D[T] in
D2(x) is 1-dimensional. There are 7 subgraphs of this type and hence
there are 7 such images which clearly generate the whole D2(x) and are
naturally permuted by G(x)/g(x) S L3(2). Now let S(l), 1 < i < 3 be the
Petersen subgraphs of type (1,3,6,0,0) containing a given edge {x,^}.
Then

{Z(000 I 1 < i < 3}

are the lines of the projective plane ny of order 2 on A(y) containing
a given point x. Let £ be a Petersen subgraph of type (0,1,3,6,0)
containing y. Since any two lines in a projective plane intersect in a
point, we can assume that Z(y) = {v\,V2,vi}, where «,• = £ n ^ ' ' (y) for
1 < i < 3. Then <5(t>i) + (5(u2) + <5(u3) = 0 which turns Z)2(x) into a
representation module of the dual of n. Hence the claim again follows
from (3.1.2).

Step 3. dim2)3(x) <, 3.

By the previous step we see that the image in D3(x) of Di\y] for
y e A(x) is at most 1-dimensional and these images generate the whole
section. Let Z be a Petersen subgraph of type (0,0,0,6,4) and z G InA4(x)
and I(z) = {ui,u2,u3}. By (4.5.2 (iv)) Z(z) £ A3(x). Then the equality
<5(ui) + (5(u2) + <5(u3) = 0 turns I>3(x) into a representation module for
a G(x)/Q(x) = L3(2)-invariant triple system and we apply (3.1.2) once
again.

Step 4. D4(x) < D3(x).

This is an immediate consequence of (4.5.5). •

As a consequence of the proof of (4.5.8) we obtain the following.
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Corollary 4.5.9 Let (D,d) be the universal representation group of the de-
rived system ofS{M2i) and x e A. Then D = D^x) while Di(x) is of order
2>. U

Since Syms acts primitively on the vertex-set of the Petersen graph, it
is easy to deduce from (4.5.8) the following.

Corollary 4.5.10 Let U be a quotient of the GF(2)-permutation module of
M22 acting on the 330 vertices of the derived graph A(^(M22)) such that
the vertices of the Petersen subgraph generate a 4-dimensional subspace.
Then U is isomorphic to the 10-dimensional Golay code module #10. •

4.6
It was shown in [MSm82] that the rank 3 T-geometry 1§(He) associated
with the Held sporadic simple group possesses a natural representation
in an irreducible 51-dimensional GF(2)-module for He (which is the
restriction modulo 2 of an irreducible module over complex numbers for
He). It has been checked by Brendan McKay (private communication)
on a computer that dim V(<&(He)) is 52. Thus in view of (2.1.1) we have
the following result.

Proposition 4.6.1 The universal representation module VC&(Hej), as a
GF(2)-module for He, is an indecomposable extension of a 5l-dimensional
irreducible He-module by a l-dimensional submodule. •



5
Conway groups

The tilde geometry ^{Co\) of the first Conway group, the Petersen
geometry ^{Coi) of the second Conway group and the c-extended dual
polar space #(3 • 1/4(3)) possess representations in 24-, 23- and 12-
dimensional sections of A (the Leech lattice taken modulo 2). We
show that in the former two cases the representations are universal (cf.
Propositions 5.2.3, 5.3.2, and 5.4.1). In the latter case the extension
of the 12-dimensional representation module to an extraspecial group
supports the universal representation of the enriched point-line system
of ^(3 • 1/4(3)) (cf. Proposition 5.6.5, which was originally proved in
[Rich99]). In Section 5.5 it is shown that ^(3 2 3 • Co2) does not possess
faithful abelian representations (the question about non-abelian ones is
still open).

5.1 Leech lattice

The rank 4 T-geometry #(Coi) and its P-subgeometry 'SiCo-i) are best
defined in terms of the Leech lattice A. In this section we recall some
basic facts about A.

Let {0>,2g) be the Steiner system S(5,8,24). This means that 0> is a set
of 24 elements and 38 is a collection of 759 8-subsets of 3P (called octads)
such that every 5-subset of $P is in a unique octad. Such a system is
unique up to isomorphism and its automorphism group is the Mathieu
group M24. Let ^12 be the Golay code which is the (12-dimensional)
subspace in the power space of 8P generated by the octads. Let R24 be the
space of all functions from !? into the real numbers (a 24-dimensional
real vector space). For X € R24 and u e ^ w e denote by Xa the value
of X on a. Let ea be the characteristic function of a (equal to 1 on a
and 0 everywhere else). Then S = {ea \ a e &} is a basis of R24 and
{Xa\a^0) are the coordinates of A € M.24 in this basis.

93
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Let A be the set of vectors X = {Xa \ a G &} in dt2A, satisfying the
following three conditions for m = 0 or 1.

(Al) Xa = m mod 2 for every a g # ;

(A2) {a | Aa = m mod 4} e # i 2 ;

(A3) Eas3» ^ = 4 m m o d 8-

Define the inner product ( , ) of X, v e A to be

Then A is an even unimodular lattice of dimension 24 without roots
(vectors of length 2). The lattice A is determined by these properties up
to isomorphism and it is the Leech lattice. The automorphism group of
A (preserving the origin) is COQ = 2 • Co\ which is the extension of the
first sporadic group of Conway by its Schur multiplier.

It is common to denote by A, the set of Leech vectors (vectors in A)
of length 2i:

' 16
aer

Then Ao consists of the zero vector and Ai is empty since there are no
roots in A.

Let A = A/2A be the Leech lattice modulo 2, which carries the
structure of a 24-dimensional GF(2)-space. We sometimes write A for
A to emphasize the dimension. The automorphism group of A induces
on A the group G = Co\. For a subset M of A by M we denote the
image of M in A. The following result is well known

Proposition 5.1.1 The following assertions hold:

(i) A = Ao U A2 U A3 U A4 (disjoint union);

(ii) if i = 2 or 3 then an element from A,- has exactly two preimages in A,

which differ by sign;

(iii) an element from A4 has exactly 48 preimages in A4;

(iv) G = Co\ acts transitively on A2, A3 and A4 with stabilizers isomorphic
to C02, C03 and 2 " : M24, respectively;

(v) the GF(2)-valued function 9 on A which is 1 on the elements from A3
and 0 everywhere else is the only non-zero G-invariant quadratic form
on A. O
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Let T be the Leech graph that is the unique graph of valency 2 • 1771
on A4 invariant under the action of G on this set. Then the suborbit
diagram of T is the following:

r\(x)
21+630+1120

7+56+56+672

T\{x)

The graph Y is the collinearity graph of the geometry ^§{Co\). The
lines can be defined as follows. If x is a vertex of T and G(x) = 211 : M24
is the stabilizer of x in G, then T(x) is the union of the orbits of length
2 of Q(x) = 02(G(x)) on T (this can be used for an alternative definition
of T). If {y,z} is such an orbit, then T = {x,y,z} is a line (observe that
every edge is contained in a unique line). If we treat the points in T as
elements of A4, then the equality x + y + z = 0 holds (notice that not
every triple {x,y, z} of points with x + y + z = 0 i s a line). Since A is
generated by A4, we have the following

Lemma 5.1.2 The pair (A, (p), (where cp is the identity mapping) is a rep-
resentation ofS{Co\). •

We will show below that the representation in the above lemma is
universal.

In order to deal with representations of <8(Co\) we only need the point-
line incidence system of the geometry but for the sake of completeness
we recall how the remaining elements can be defined. A clique (complete
subgraph) S in T is said to be *-closed if together with every edge it
contains the unique line containing this edge. Then lines are precisely the
•-closed cliques of size 3; elements of type 3 in ^(Coi) are the *-closed
cliques of size 7 and the set of elements of type 4 is one of the two
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G-orbits on the set of "-closed cliques of size 15. The diagram of ^§(Co\)

is

Let u e A2, F = C02 be the stabilizer of u in G and for j = 2,3 and 4

1 = {x e A41 x + u e A,}.

let

Lemma 5.1.3 The sets ®V\ j = 2,3 and 4 are t/ie orbits ofF on A4 (which
is the vertex set of F) and the corresponding stabilizers are isomorphic to
210 : AutM22, M23 and 25 : 24 : L4(2), respectively. D

Let ^ be the subgeometry in ^ = @(Co\) formed by the elements
contained in 0( 2 ' . Then J5" = ^(Coi) is a geometry with the diagram

P

and F induces on
The points of

2 2 2 1

a flag-transitive action,
generate in A the orthogonal complement MX of

the vector w e A2 involved in the definition of 2F with respect to the
Coi-invariant quadratic form 9 as in (5.1.1 (v)). Considered as a GF(2)-
module for F the subspace u1 of A = A will be denoted by A ; it is
an indecomposable extension of an irreducible 22-dimensional F-module
A by a 1-dimensional submodule.

Let 0 denote the subgraph in F induced by 0'2 ' . The suborbit diagram
of 0 with respect to the action of F is the following:



5.2 <&(Co2) 97

5.2 <${Co2)

In this section we show that A is the universal representation module
of & = g(Co2). We will make use of ^(S6(2))-subgeometries in &
described in the following lemma (compare Lemma 4.9.8 in pv99]).

Lemma 5.2.1 Let x e © and y e ©^(x). Then x and y are contained
in a unique subgraph S in 0 isomorphic to the collinearity graph of the
geometry ^(S^(2)) which is a subgeometry in 'S formed by the elements
contained in 3 . The stabilizer ofEinF = Co2 is of the form 2](

+8.S6(2)
and it contains O2(F{x)). •

We will also need the following result (where the vertices of © are
treated as vectors from A).

Lemma 5.2.2 Let x G 0 , then

(i) the intersection of 0 with the orthogonal complement x1 of x with
respect to the Co\-invariant quadratic form 8 is © \ ®3(x);

(ii) a line of 3F which intersects &i{x) intersects it in exactly two points;
(iii) the subgraph in 0 induced by ®i{x) is connected.

Proof, (i) follows from the definition of 9 and the table on p. 176 in
pv99]. Since a line is the set of non-zero vectors of a 2-subspace in A,
(ii) follows directly from (i). To establish (iii) recall that for z e ®i(x) we
have F(x,z) = PEL3(4). Suppose that the subgraph induced by @3(x) is
disconnected, let T be the connected component containing z and H be
the setwise stabilizer of T in F(x). Since F(x) acts transitively on ©3(x),
H acts transitively on T and

PIL3(4) =* F(x,z) <H < F(x) ^ 210 : AutM22.

Clearly |T| := [F(x) : H] = m • n2 where

n, = 210/|O2(F(x))ntf|, and n2 = [F(x) : HO2(F(x))).

Since F(x,z)O2{F{x)) is a maximal subgroup in F(x) of index 22 and
F(x)/O2{F{x)) acts irreducibly on O2(F(x)) of order 210, we conclude that
[F(x) : H] is at least 22 and hence T contains at most |©3(x)|/22 = 210

vertices. On the other hand from the suborbit diagram of © we observe
that (a) the valency of T is 231; (b) every edge of T is in at most 61
triangles and (c) any two vertices at distance 2 in T are joined by at most
15 paths of length 2. This shows that

|T| > \{z}\ + |Y(z)| + |T2(z)| > 1 + 231 + 231 • (230 - 61)/15 > 2834,

which contradicts the upper bound we established earlier. D
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Proposition 5.2.3 Let (V,(pa) be the universal abelian representation of
& = y{Co2), xe® be a point and Jfif = res#(x) = <S(Mn). Then

(i) dim K0(x) = l ;
(ii) V\{x) is either V(3f) (which is the ll-dimensional Todd module ^\\)

or the quotient of V(Jtf') over a l-dimensional submodule;
(iii) V2(x) is V{2>(^f)) (which is the 10-dimensional Golay code module

;_
(iv) dim V3(x)< 1;
(v) V is isomorphic to the Coi-submodule A in the Leech lattice taken

modulo 2.
Proof. We know that (V, <p) is non-trivial (of dimension at least 23)

and F-admissible. Then (i) is obvious, (ii) follows from (2.6.3) and (4.2.4).
Now let us turn to V2(x). In order to establish the statement we will

prove three claims. Let F2(x) be the subspace in F2(x) generated by the
cosets (pa{y)V\{x) taken for all y e 02(x), where ; = 1 or 2.

Claim 1. V2(x) = v\{x) = v\{x).

Let z € 0(x), T be the collinearity graph of resjr(z) ^ 0(M22) and let
lx denote the vertex of T containing x (this is the line of ^ containing
x and z). Then W := V\{Z)/VQ{Z) is a quotient of the ll-dimensional
Todd module ^\\. The image of V\{z) in V2(x) is a quotient of W2(lx)
(where the latter is defined with respect to the graph T). Comparing the
suborbit diagrams of @ (in the previous section) and T (in Section 4.2),
we observe that if y e &2(x), then the line ly of J* which contains z and
y is in TJ

2(lx) for j = 1 and 2. Hence the claim follows from (4.2.6 (ii)).

Claim 2. O2(F{x)) centralizes ~F2(x).

Let S be a subgraph in 0 isomorphic to the collinearity graph of
0(S6(2)) as in (5.2.1) which contains x. Then by (3.5.1) the image V2[E]
of V[E\ in V2(x) is at most l-dimensional and since O2(F(x)) stabilizes
3, it centralizes F2[S]. By (5.2.1) the images V2[E] taken for all such
subgraphs 5 containing x generate K2(x) which is the whole V2{x) by
Claim 1.

Claim 3. F2(x) is as in (iii).

By Claims 1 and 2, and in view of the suborbit diagram of 0 we
observe that F2(x) = V2(x) is generated by 330 elements indexed by the
orbits of 02(F(x)) on 02(x). On the other hand, by Lemma 4.9.5 in [Iv99]
these orbits are indexed by the octets of the Steiner system S(3,6,22) in
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terms of which res^(x) is defined. Since {V,(pa) is universal abelian, it
is F-admissible and hence in view of the above exposition, V2(x) is a
quotient of the Gi;i(2)-permutation module of F(x)/O2(F{x)) = Aut Mn
acting on the set of octets (the vertex set of the derived graph). As above
let z e @(x). Then in view of the diagram on p. 138 in [Iv99] we observe
that 0(z) n 0?,(x) intersects exactly 10 orbits of 02{F(x)) on 0^(x) and
these orbits correspond to the vertex-set of a Petersen subgraph in the
derived graph of res^(x). By (4.2.6 (ii)) the 10 elements corresponding to
these orbits generate in V2(x) a quotient of a 4-dimensional submodule
with respect to F(x,z). Then (4.5.10) applies and gives the claim.

In view of (2.1.3), (iv) follows now from (5.2.2 (ii) and (iii)). Since
the diameter of 0 is three, by the above exposition we observe that
the dimension of V is at most 23. Since we know that J5" possesses a
23-dimensional representation in A , (v) follows. D

Thus a Co?-admissible representation module of ^(Co2) is isomorphic
either to A(23' or to A*22).

The Co2-orbits on A are listed in [Wil89]. This list shows that
the only orbit of odd length of the non-zero vectors in A is Im xp
where (A ,ip) is a representation of 1S{Co2). The suborbit diagram of
0 shows that all the non-diagonal orbitals have even length, which gives
the following.

Corollary 5.2.4 A Sylow 2-subgroup of Co2 fixes a unique non-zero vector
v in A and a unique hyperplane which is the orthogonal complement of
v with respect to the form induced by fi. Furthermore v is the image of a
point of^(Co2) under the mapping which turns A into a representation
module of the geometry. •

5.3 3(Coi)

We look closer at the subgraphs induced in F by the orbits of F = Co2

and at the adjacencies between vertices in different orbits.

Lemma 5.3.1 The suborbit diagram of the Leech graph T with respect to
the orbits of F = Co2 is the following:

462 35+1680 1771

3080 35 f X 1792 1771

2 1 0 :AutM 2 2 2 5 : 2 4 : L 4 ( 2 ) M23
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Furthermore, a line of^(Co\) which intersects 0 ' 3 ' intersects it in exactly
two points and the subgraph induced by 0 ' 3 ' is connected.

Proof. For x e F let Sf{x) be the Steiner system of type S(5,8,24) in
terms of which the residue res^(x) = 1S{Mu) is denned. In particular, the
points of res#(x) (which are the lines of ^ containing x) are the sextets of
£f{x). The stabilizer G(x) = 211 : M24 induces the automorphism group
of ST(x) with kernel K(x) = 02(G(x)).

For Xj e 0( y ) we are interested in the orbits of F(XJ) on F(xj) for
; = 2,3,4. We know by (5.1.3) that F(x2) = 210 : AutM22. Then
F(x2)Q{x2)/Q(x2) is the stabilizer in M24 = Auty(*2) of a pair of
elements, say {p,q}. Then from the structure of a sextet stabilizer (cf.
Lemma 2.10.2 in [Iv99]) we observe that F(x2) has two orbits on the
set of lines containing x2 with lengths 231 and 1540 corresponding to
the sextets in which {p,q} intersects one and two tetrads, respectively.
Furthermore, F(x2) 0 Q(x2) is a hyperplane in Q(x2) which is not the
pointwise stabilizer of a line containing x2. Hence F{x2) has two orbits
on F(x2) with lengths 462 and 3080. From the suborbit diagram of ©
we see that the 462-orbit is in 0( 2 ) and by the divisibility condition the
3080-orbit is in 0( 4 ) .

By Lemma 4.4.1 in [Iv99] F(x4)Q(x4)/8(x4) is the stabilizer of an octad
in A u t , ^ ^ ) . Hence by the diagram on p. 125 in [Iv99] the orbits of
F(x4) on the sextets of Sffa) are of length 35, 840 and 896. It is easy
to see that F(x4) n 6(x4) (which is of order 25) fixes pointwise exactly 35
lines through X4. So the orbits of F(x4) on F(x4) are of lengths 35, 35,
1680 and 1792.

Finally F(x3) = M23 permutes transitively the 1771 lines through X3.
Since F is connected, in view of the above paragraph and the divisibility
condition we conclude that every line though X3 has one point in 0*4'
and two in 0'3 ) . Since F(x2) = M23 is a maximal subgroup in F = C02
(cf. [CCNPW] and references therein) the subgraph induced by 0 ( 3 ' is
connected. •

(24)

Proposition 5.3.2 The Leech lattice A = A taken modulo 2 is the uni-
versal representation module ofS(Co\).

Proof. Let (V, q>a) be the universal abelian representation of <§ =
<8{Co{). Since we know that 'S possesses a representation in A, all
we have to show is that V is at most 24-dimensional. We consider
the decomposition of F into the orbits of F = Co2. It follows from
the definition of & = ^(Coi) that F[0(2)] supports a representation
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of & and hence it is at most 23-dimensional by (5.2.3 (v)). By (2.6.3)
and (4.3.1) V \(XT) is a quotient of the 11-dimensional irreducible Todd
module <^n. Comparing (4.3.1) with (4.2.5) or otherwise, one can see that
the 231 vectors in # n corresponding to the octads containing a given
pair of elements generate the whole ^u. Hence V\{xi) is contained in
F [ r ( x 2 ) n 0 l 2 ' ] . By (5.3.1) T(x2) contains vertices from 0( 4 ) and hence
F[0(4)] is contained in V0% Consider the quotient V = V/V[®™].
By the above, V is generated by the images in this quotient of the
elements cpa{y) for y e ©(3). But it is immediate from the last sentence of
(5.3.1) that all these images are the same, so V is at most 1-dimensional
and the proof follows. •

By the proof of (5.3.2) and (5.2.3 (ii)) we have the following.

Corollary 5.3.3 Let (A, q>a) be the universal abelian representation ofS{Co\)
and x e P. Then the subspace in A generated by the elements q>a{y) taken
for all y € [x] U T(x) is 12-dimensional. •

It is well known that A2, A3 and A4 are the orbits of Co\ on A and
only the latter of the orbits has odd length (cf. Lemma 4.5.5 in [Iv99]).
Furthermore one can see from the suborbit diagram of the Leech graph
T that all the non-diagonal orbitals have even length. This gives the
following

Corollary 5.3.4 A Sylow 2-subgroup of Co\ fixes a unique non-zero vector
v in A and a unique hyperplane which is the orthogonal complement of v
with respect to /?. Furthermore, v G A4 = Im (pa. D

5.4 Abelianization

In this section we complete determination of the universal representations
of the geometries <${Coi) and &(Coi) by proving the following.

Proposition 5.4.1 The universal representation groups of<${Coi) and &(Coi)
are abelian and thus by (5.2.3) and (5.3.2) they are isomorphic to A and
-r-(24) . .

A , respectively.
The proof of the proposition will be achieved in a few steps. We start

with the following.

Lemma 5.4.2 Let (R, (pu) be the universal representation of <§ =
Then the order of the commutator subgroup of R is at most 2.
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Proof. As above, 0 denotes the collinearity graph of (§. We apply
(2.3.7) for B(x) = 03(x) and A(x) = 0 \ B(x). By (2.6.2) i?i(x) supports
a representation of res^(x) = ^{Mii), which is abelian by (4.2.5). Since
any two points at distance 2 in 0 are joined by more than one (in fact at
least 7) paths of length 2, R\(x) is abelian by (2.2.3). Since x can be any
point of <S, we conclude that [cpu(x), cp(y)] = 1 whenever d@(x,y) < 2 (i.e.,
whenever y e A(x)). The set B(x) = ®i(x) is a non-trivial suborbit of the
primitive action of Coi on the vertex set of 0 , hence the corresponding
graph S in (2.3.7 (i)) is connected. Finally, the connectivity of the graph
I x in (2.3.7 (ii)) holds by (5.2.2 (ii) and (iii)). D

We follow the notation of (5.4.2). Since the representation (R,q>u)
is universal it is F-admissible and hence there is an isomorphism x of
F = C02 into the automorphism group of R. Suppose that R is non-
abelian. Then by (5.4.2) the commutator subgroup R' of R is of order 2
and by (5.2.3) there is an isomorphism of R/R' onto A which obviously
commutes with the action of F (identified with its image under %). In
view of (2.3.8) and (2.3.9) the power and the commutator maps in R are
the restrictions to A of the quadratic form 6 as in (5.1.1 (v)) and the
corresponding bilinear map B (we denote these restrictions by the same
letters 6 and B). This shows particularly that the centre Z(R) of R is
elementary abelian of order 22 and it is equal to the preimage of the
radical of B. Clearly F acts trivially on Z{R). Let K be a complement
in Z{R) to R' and Q = R/K. Then Q ^ 21?22 and we can consider the
semidirect product C of Q and the image of F with respect to / . Then

C S 21+22.Co2

and the structure of C resembles that of the stabilizer Bi of a point in
the action of the Baby Monster group BM on its rank 5 P -geometry
y(BM). But unlike C the point stabilizer B\ does not split over 6)2(^1)
and this is where we will reach a contradiction. As we will see in Part
II the chief factors of B\ do not determine B\ up to isomorphism but in
either case the extension is non-split.

The proof of Proposition 5.7 in [IPS96] for the fact of non-splitness
refers to the result established in Corollary 8.7 in [Wil87] that C02 is
not a subgroup of the Baby Monster. Here we present a more direct
argument suggested to us by G. Stroth.

Lemma 5.4.3 Let C = 2^22.Co2, Q = O2(Q and C = C/O2{C), and
suppose C acts on Q/Z(Q) in the same way that it acts on the section
yv of the Leech lattice taken modulo 2. Then C does not split over Q.
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Proof. Since C preserves on A a unique non-zero quadratic, form
the isomorphism type of C/Z{Q) is uniquely determined as a subgroup in
the automorphism group of Q (the automorphism group is isomorphic to
222.Oj2(2)). Thus C/Z(Q) is isomorphic to the centralizer C of a central
involution in the Baby Monster BM factored over the subgroup of order
2 generated by this involution. The centralizer of a 2D-involution T in
3 • Af (24) is of the form U S 22 • U6(2).Sym3 and V := O°°(l/) £ 22 • l/6(2).
If 3 • M(24) is considered as the normalizer of a subgroup of order 3
in the Monster group M, then x is a central involution in M and the
full preimage of U in C M (T) is of the form D £ 21+2+20+2.t/6(2).Sym3.
In particular, D/02(U) = 220+2 : [/6(2).Sym3 and O2(D/O2(U)) is an
indecomposable l/6(2)-module. By (2.8.3) this implies that all subgroups
in D/O2(U) isomorphic to 1/6(2) are conjugate and V is in the preimage
of one of these complements. In Oi{U) there are 3 involutions of the
Baby Monster type in M and if we intersect D with the centralizer in M
of one of these three involutions, say a, we obtain the intersection of D
with 2 • BM. Factoring out the subgroup generated by a, we obtain a
group E of the form E S 21+1+2O+2.C76(2).2 which is the preimage in C
of a maximal subgroup in C = Co2 isomorphic to U(,(2).2. Since U(,{2)
does not split over O2(E)IZ(C), the proof follows. •

Thus the semidirect product of Q ^ 2\¥22 with the action of Q/Z{Q)

the same as on A does not exist. Thus the universal representation

group of y(Co2) is abelian and we have proved (5.4.1) for this geometry.

Now let (R,<pu) be the universal representation of ^ = <&(Co\). Since
the universal representation group of ^(Co2) (which we treat as a sub-
geometry of IS) is proved to be abelian, we know that [<pu(*)> <Puiy)] = 1
whenever x and y are in a common ^(Co2)-subgeometry. Since

0(x) c r(x), ®\{x) cz r>(x),

G2(x) c r2(x), 03(x) c r>(x),

it remains to take y e F2(x) and to show that <pu(y) commutes with
(pu(x). Since F \ r\(x) is a geometric hyperplane in CS, the suborbit
diagram of F shows that there is a line {a, b,)>} such that a, b € Fj(x).
Since <pu(.y) = q>u(a)(pu{b) the required commutativity is established and
this completes the proof of (5.4.1).

5.5

In this section we prove the following
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Proposition 5.5.1 The universal abelian representation of ^ (3 2 3 • C02) is
(A ,v), where v is the composition of the 2-covering

X : «?(323 • Co2) -

and the universal (abelian) representation of 3F as in (5.2.3).

We apply the technique developed in Section 2.4. Our notation here
slightly differs from that in the earlier sections of the chapter.

Let A be the Leech lattice, G' s Co0 = 2 • Co\ be the group of
automorphisms of A preserving the origin. Put

A = A/2A, A = A/3A,

so that A and A are irreducible 24-dimensional G*-modules over GF(2)
and GF(3), respectively. The group G* induces G = Co\ on A and acts
faithfully on A preserving the non-singular bilinear forms B and /? which
are the inner product on A reduced modulo 2 and 3, respectively. For
X e A let X and X be the images of A in A and A, respectively. We identify
X and X with the 1-subspaces in A and A they generate.

If u e A2 then the stabilizer G'{u) of u in G" is F = Co2 and it maps
isomorphically onto G(u). Let

In what follows a pair {t, —t} G 0 will be represented by a single vector
t (or — t). The mapping cpa : 0 -> A4 defined by

<pa : t •-» t + u = t + u

is a bijection of 0 onto the set 0 ' 2 ' defined in the paragraph preceding
(5.1.3). Thus we can treat 0 as the point-set of !F = ^(Co2), so that
(A , (pa) is the universal (abelian) representation of 3F, where A is
the subspace in A generated by the image of <pa. Notice that A is the
orthogonal complement of u with respect to B. By (2.3.2) the geometric
hyperplanes in 2F are in a bijection with the index 2 subgroups in A
In turn the index 2 subgroups correspond to the non-zero vectors of the
module dual to A wh
This gives the following.
module dual to iv which is isomorphic to the quotient of A over w.

Lemma 5.5.2 Let (I be a geometric hyperplane in IF. Then there is a vector
x £ A with x 7̂  u, such that fl = H2(x), where

H2(x) = {t I t € 0,(t + u,x) = 0 mod 2}.

Furthermore, H2(x) = H2(z) if and only ifx = z + a • u for a S {0,1}. •
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Let $F = ^ (3 2 3 • Co2), F = 323 • Co2 be the automorphism group of IF,
E = 03(F) and x '• & —• & be the corresponding 2-covering. Then the
fibers of # are the orbits of E on !F. Thus we can treat the elements of
2F as £-orbits on SF, so that % sends an element onto its £-orbit.

The GF(3)-vector space A as a module for F = G'(u) = Co2 is a direct
sum

A = u © A(23),

where A'23' is the orthogonal complement of M with respect to j8 and
is generated by the 1-subspaces ? taken for all t € 0 . It was shown
in [Sh92] (cf. Proposition 7.4.8 in [Iv99]) that A<23) is an irreducible
F-module which is isomorphic to E. If we identify E and A*23' through
this isomorphism then we have the following

Lemma 5.5.3 Let! be a point of &, t = %(t) € 0 . Then E(t) = ? . Thus £(T)
is cyclic of order 3 and it depends only on the E-orbit t = xif) containing

1 a

Lemma 5.5.4 Let S £ © and suppose that the elements t taken for all
t e a generate in A'23' a proper subgroup. Then there is a vector y e A
with (y, u) = 0 mod 3 such that S £ Hj(y), where

{t\t€Q,(t,y) = 0 mod 3}.

Proof. By the assumption the set {? 11 e S} is contained in a maximal
subgroup A (of index 3) in A(23). Since the restriction of j? to A(23)

is non-singular, A is the orthogonal complement of a non-zero vector
•y g \(23) w j t n reSpect to /?. Now the proof follows by considering a
suitable preimage y of y in A. •

In order to simplify the calculations we are going to perform, it is
convenient to set 2P = {1,2,...,24}. Then 8 = (e\,e2,...,eu) is a basis of
K24 and for X e A we have

X = X\e\ + A2C2 +... + A24C24,

where the coordinates A,- satisfy the conditions (Al) to (A3) in Section 5.1.
Choose M = 4ei - 4e2. Then w e A2 and F = G'(u) = Co2. The vector

v = 4ei +4c2 (strictly speaking the pair {v,—v}) belongs to 0 and it is
characterized by the property that the stabilizer F(v) acts monomially in
the basis S.

More specifically F(v) is the semidirect product of Q(v) = O2(F(v))
and L(v) = AutM22- The subgroup L(v) acts permutationally as the
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setwise stabilizer of {1,2} in the automorphism group of the S(5,8,24)-
Steiner system (3?, 0&). The elements of Q(v) are indexed by the subsets
from the Golay code ^n (associated with {&>,$))) disjoint from {1,2}.
If Y c 0>\ {1,2} is such a subset, then the corresponding element
T(Y) e Q(v) stabilizes e,- if i $ Y and negates it if i G Y. Recall that Q{v)
is the 10-dimensional Golay code module for L(v).

In these terms the orbits of F(v) on 0 are specified by the shapes of
the vectors they contain (cf. Lemma 4.9.5 in [Iv99]). In particular

0(t>) = {4e, + <x4e,- | 3 < i < j < 24, a e {1, -1}}

so that

{{v, 4e, + 4ej, 4e; - 4ej} | 3 < i < j < 24}

is the set of lines containing v.

The structure of A(23) as a module for F(v) easily follows from the
above description of F(v).

Lemma 5.5.5 As a module for F(v) S 210 : AutM22 the module A(23)

possesses the direct sum decomposition

where A*22' = [Q(v), A'23'] is the orthogonal complement ofv with respect
to /?. As a module for Q(v) the module A^22' possesses the direct sum
decomposition

A<22> = © f,,
i=3

where Tt is generated by the image of the vector 8e,- e A and CQ(V)(TJ) is
a hyperplane in Q(v) from the L(v)-orbit of length 22. In particular, F(v)
acts monomially and irreducibly on A'22'. •

Now we proceed to the main proof of the section. Let W be the
universal representation module of $F = ^(3 2 3 • Coi). Then

W = Wz © Wc, where Wz = CW(E), Wc = [W,E].

By (2.4.1), Wz is the universal representation module of 3F and thus
r s A * 3 1 by (5.2.3). We are going to prove that Wc is trivial by
showing that the condition (M) from Section 2.4 holds and that there
are no acceptable geometric hyperplanes in !F.
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Lemma 5.5.6 The condition (M) from Section 2.4 holds.

Proof. In terms of (5.5.5), A(22) is the complement to i; = E{v) in
E = A(23), so it maps isomorphically onto its image in E/E(v). Let B,
be the image of T, in E/E(v) for 3 < i < 24. By (5.5.5) and the above
description of the lines in & passing through v the condition (M) follows.
Notice that in this case the graph £ in (M) is the complete graph on 22
vertices. •

Lemma 5.5.7 There are no acceptable hyperplanes in OF.

Proof. Suppose that £2 is an acceptable hyperplane in #". Then, first
of all, it is a hyperplane and by (5.5.2) there is a non-zero vector x € A
such that fl = Hi{x). On the other hand, Q is acceptable which means
that the subgroups E(t) = ? taken for all t € 0 \ Q generate in E = A(23)

a proper subgroup. By (5.5.4) this means that there is a vector y € A
with (y, u) = 0 mod 3 such that 0 \ Q £ Hi(y). Thus we must have

and we will reach a contradiction by showing that this is not possible.
Let A denote the subspace in A'23' generated by the elements t taken for
all t € Hi(y).

Since H2(x) is a proper subset of 0 (and F acts transitively on 0) we
can assume without loss of generality that Hjix) does not contain v. This
of course means that v e H^y) and ? e A, but also it means that

) =

is odd. Since x is a Leech vector, by (Al) we conclude that all the
coordinates x, of x (in the basis S) are odd. For r = 1 or 3 let

C(r) = {i | 1 < i < 24, Xi = r mod 4}.

Then by (A2) the subsets C(1) and C(3) are contained in the Golay code
#12. We will consider two cases separately.

Case 1: (x,u) = 0 mod 2.

In this case t € 0 is in H2(x) if and only if (t, x) is even. Furthermore,
{1,2} intersects both Cm and C(3). Also for 3 < i < j < 24 the point
e,- + ej 6 &(v) is contained in H2(x) if and only if {i, j} intersects both
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C(1) and C<3>. If {i,j,k} £ C<r> for r = 1 or 3 then the points et + eJt

e, + ek and e7- + e* are not in Hiix), hence they must be in /^(y). Since

{fit + e}) + {et + ek) - {ej + ek) = 2eh

we conclude that (y, 8c,) = 0 mod 3 and hence A contains the subgroup
T, as in (5.5.5). The subsets C*1' and C(3' being non-empty subsets from
the Golay code each contain at least 8 elements each, which shows that
every 3 < i < 24 is contained in a triple {i,j,k} as above. Now (5.5.5)
implies that A = A'23\ which is a contradiction.

Case 2: (x,u) = 1 mod 2.

In this case t e © is in H2(x) if and only if (t, x) is odd. For r = 1
or 3 the subset C(r) is disjoint from {1,2}. Since the negation changes
the residue modulo 4 we can apply to x the element a — t(C(r)) (where
o-(e,) = — a if e, € C'r* and <r(c,) = e,- otherwise) to obtain a vector with
all coordinates equal modulo 4. Then for 3 < i < j < 24 the point
e, + ej is contained in Hi{x), while e, — e, is not and hence is contained in
Hj(y). This enables us to specify the coordinates of y modulo 3. Indeed,
since (y, u) = (y,v) = 0 mod 3, we have y{ = y2 = 0 mod 3 and since
(y, e, — ej) = 0 mod 3, the coordinates y, for 3 < i < 24 are all equal to
the same number e modulo 3. Clearly £ should not be 0, otherwise A will
be the whole A<23>.

Thus the vector y is uniquely determined modulo 3A and hence Hi(y)
is also determined. In order to obtain the final contradiction let us assume
that {3,4,..., 10} is an octad. Then the vectors a = 2c3+2e3+2es+...+2eio
and b = —2ei — 2e* + 2e*, + ... + 2cio are both in &\(v) and direct
calculations show that they are not in Hi(y). Hence they must be in
H2{x), i.e., (x,a) = (x,b) = 1 mod 2. But then

(x, a-b) = (x, 4e3 + 4e4) = 0 mod 2,

which means 4e^ + 4e* is not in H2(x). Since this contradicts what we
have established in the previous paragraph, the proof is complete. •

5.6 9(3 • l/4(3))

As shown in Section 4.14 in pv99] the fixed vertices <D = <D(XS) in the
Leech graph F of a particular subgroup Xs of order 3 are the point-set
of two geometries ^(3 • 1/4(3)) and <?(3 • 1/4(3)) with diagrams
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and

respectively. The group U := CG(XS)/XS s 3 • [/4(3).22, where G^Cou

acts flag-transitively on both geometries. Notice that for €(3 • 1/4(3)) our
numbering of types is reverse to that in [Iv99].

The geometries 0(3 • 1/4(3)) and <?(3 • 1/4(3)) share the point-line in-
cidence system Sf = (II, L) and hence they also share the collinearity
graph O whose suborbit diagram with respect to the action of U is given
below.

If x is a vertex of O (which is also a vertex of the Leech graph F), then

0>(x) U fl^x) s F(x), <S>l
2(x) U <D (̂x) s r\(x),

<s>l(x) u o|(x) s r\(x), o^(x) s r |w , <D̂ (X) S r|(x).
The subgroup D = C>3((/) is of order 3, it acts fixed-point freely on O
and the orbit containing x is {x} U O^x), so the above inclusions show
that the subgraph in F induced by <D is the collinearity graph O* of the
enriched point-line incidence system £/" of £f.

The planes in ^(3 • 1/4(3)) are the subgraphs in $ isomorphic to
the collinearity graph of the rank 2 tilde geometry. Such a subgraph
containing x also contains 6, 24, 12 and 2 vertices from O(x), Oj(x),
O^(x) and 0)^(x), respectively. The planes of S(7, • C/4(3)) are Schlafli
subgraphs in O (isomorphic to the collinearity graph of ^(fi^(2))). Such
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a subgraph containing x contains also 10 and 16 vertices from O(x) and
<b\(x), respectively.

The vertices of O, treated as vectors in A4 generate a 12-dimensional
irreducible [/-submodule W in A. The quadratic form 9 as in (5.1.1 (v))
and the corresponding bilinear form /? restricted to W are non-singular
and by the above inclusions we have the following

Lemma 5.6.1 If x,y e O, then P(x,y) ± 0 if and only if y e <&\(x) U
<J>J(x). •

By the above if cp is the identity mapping then (W, q>) is a representation
of the enriched system Sf*. The universal abelian representation of

t/4(3)) has been calculated in [Yos92].

Proposition 5.6.2 The 12-dimensional representation (W, (p) of the enriched
system 9" is the universal abelian one. •

Straightforward calculations in the Golay code and Todd modules give
the following

Lemma 5.6.3 If x is a point o/3> then W[{x}uO*(x)] is 6-dimensional. D

Let Q = 2l+~12 be an extraspecial group in which the square and the
commutator maps are determined by the (restrictions to W of the) forms
8 and /? via the isomorphism

Q/Z(Q) - W.

We can embed the order 3 subgroup Xs into the parabolic C = 2++24.Coi
of the Monster and put Q to be the centralizer of Xs in Oi{C) (compare
Lemma 5.6.1 in [Iv99]). Then arguing as in the proof of (4.4.1) we obtain

Lemma 5.6.4 Q = 2++12 is a 3 • V^-admissible representation group of
the enriched system 9"'. •

Proposition 5.6.5 The group Q = 2+"12 in (5.6.4) is the universal represen-
tation group of the enriched system 9". •

The above result was established in [Rich99] using a slight generaliza-
tion of (2.3.7). The most complicated part of the proof was to show that
the subgraph in fl> induced by O2(x) is connected. This was achieved by
cumbersome direct calculations in the graph treated as a subgraph in the
Leech graph. We decided it is not practical to reproduce these arguments
here (unfortunately we were unable to come up with an easier argument).
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Involution geometries

In this chapter we consider a class of geometries that always possess
non-trivial representations. Suppose that G is a group which contains
a set W of involutions, such that # generates G, and let JT be a set of
elementary abelian subgroups of order four (Kleinian four-subgroups)
in G, all the non-identity elements of which are contained in <€. If we
identify a subgroup from Jf with the triple of involutions it contains,
then C^.Jf) is a point-line incidence system with three points per line
(the line-set might be empty). We denote this system by ./(G,#, JT) and
call it an involution geometry of G. It is clear from the definition that if i
is the identity mapping, then (G,i) is a representation of ,/(G,#, Jf). We
are interested in the situation when this representation is universal.

6.1 General methods

Let J(G,^, Jf) be an involution geometry of G. If Jf is the set of all
#-pure Kleinian four-subgroups in G (i.e., with all their involutions in #)
then instead of J{G,^, Jf) we simply write J(G,^). If in addition # is
the set of all involutions in G then we denote J{G,<€) simply by J{G)
and call it the involution geometry of G.

Lemma 6.1.1 Let G be a group and J = ./(G, #, .Jf) be an involution
geometry of G. Let G be a group possessing a homomorphism ip onto G,
such that the following conditions hold:

(i) the kernel Kofxp is of odd order;
(ii) K is in the centre ofG (in particular, it is abelian);
(iii) if H is a subgroup in G such that ip(H) = G, then H = G (equiva-

lently.for every L < K there is no complement to K/L in G/L).

Then G is a representation group of J.

I l l
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Proof. Let x G # be a point of J (an involution in G). Since by (i) and
(ii), K is an odd order subgroup in the centre of G, the full preimage of
(T) in G is the direct product of K and a group of order 2. Thus xp~l(x)
contains a unique involution T, say, and we put 7p(x) = 7 . Let {11,12,13}
be a line in J (the set of involutions in a subgroup / of order 22 from Jf).
Then xp~l(l) is the direct product of K and the Kleinian four-subgroup
in G, whose non-identity elements are the T, for 1 < i < 3. Finally, since
G is generated by #, the image of (p generates in G a subgroup which
maps surjectively onto G. So we conclude from (iii), that (G,q>) is a
representation of J and the proof follows. D

A special case of particular importance to us is when # is a conjugacy
class in G. Let J = J(G, <6, Jif) be such an involution geometry of G, and
let (R, <p) be the universal representation of J. Then, by the universality
property, there is a homomorphism xp : R -> G such that

tp(<p(r)) = T for every T € ^ .

Lemma 6.1.2 In the above terms suppose that (p(^) is a conjugacy class of
involutions in R. Then R possesses a homomorphism onto G, whose kernel
K satisfies the conditions (ii) and (iii) in (6.1.1).

Proof. Let TI,T2 G <€. Since <p(#) is a conjugacy class, we have

for some T3 G %>. Applying xp to both sides of the above equality we see
that

= T3,

i.e., T3 is T2 conjugated by x\. We can then define the action of <p(x\) on
<€ by the rule

<p(Ti) : T2 >-> T3 w h e r e T3 =

Then (p(ri) acts exactly as TI acts by conjugation. Hence the kernel K
of the homomorphism of R onto G is in the kernel of the action of R
on <p(#) by conjugation and since <p(<8) generates R, this means that K
is in the centre of G. Let G be the smallest subgroup in G which maps
surjectively onto G and G = R/G. Then G is abelian and the image of
<pC&) is a conjugacy class, generating G. Hence G is of order 1 or 2. The
latter case is impossible by (2.1.1). •

We will generally apply the following strategy. Given an involution
geometry J = J(G,(g,^r) with the universal representation (R, q>), we
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try to prove that <p(#) is a conjugacy class in R. When this is achieved,
the structure of R becomes very restricted since by (6.1.2), R is a non-split
central extension of G. Clearly <p(#) is a conjugacy class in R if and only
if for any Ti,T2 € # we have

where T3 = T1T2T1 e ^ . In particular, # must be a conjugacy class of G
in the first place.

In all the examples we will deal with, <& is a conjugacy class of
involutions in G and Jf is the set of all #-pure Kleinian four-subgroups
(which is always non-empty). Then J(G,^,Jf) is J(G,<g) or even J{G)
and G is a point-transitive automorphism group of J — J(G,m,X). Let
(R, q>) be the universal representation of J (which is G-admissible). By
considering the homomorphism of R onto G we observe the following.

Lemma 6.1.3 Whenever (p(x)(p(o)(p(x) € <p(#) for x,o & <&, the equality

(p(x)<p(o)(p(x) = q>{xax) holds. O

For T e <£ put

Jf{x) = {o€<#\ <p(x)<p{G)q>{x) = <P(T<TT)}.

We will gradually show for more and more points from # that they
are contained in Jf{x), until we show that # contains all the points,
which means (in view of point-transitivity) that <p(%>) is a conjugacy
class in R and (6.1.2) applies. We will make use of the following
result.

Lemma 6.1.4 Let J = J{G, (i, Jf) be an involution geometry of G, where
# is a conjugacy class, and let (R, q>) be the universal representation of J.
Suppose that x,a e %> are such that at least one of the following holds:

(i) T and a are contained in a common Kleinian four-subgroup from Jf;

(ii) there is a subgroup H in G containing x and a which is generated by
Hn<# and the universal representation (Q,x) of/ := J(H,Hn^,Hn

X~) is such that x(H n #) is a conjugacy class in Q;

(iii) there is a subset A c <$ containing a such that the subgroup in R
generated by the elements q>(5) taken for all 5 € A is also generated
by such elements taken for all 5 £ An Jf{x).

Then a 6 JV(X).
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Proof. In case (i) it is clear that the images of a and x in R commute
and a € Jf{x\ In case (ii) the restriction of (p to H n # induces
a representation map for / and hence by the assumption we have
(p(x)(p(a)(p(z) G cp(H n%>), which gives the proof. In case (iii) we have the
equality

(<p(x)(p(5)<p(x) | <5 G A) = (cp(x5x) | <5 G A).

Applying the homomorphism of R onto G it is easy to conclude that
a G JV(X). D

The following useful result is a special case of (6.1.4 (iii)).

Corollary 6.1.5 / / at least two points of a line from J f are contained in
JV(X) then the whole line is in Jf(x). •

The following lemma, whose proof is obvious, refines (6.1.4 (ii)).

Lemma 6.1.6 Suppose that the hypothesis of (6.1.4(H)) holds. For cc, P E
H D <€, let KH and KG be the conjugacy classes of H and G, respectively,
containing the product a/? (so that KH fuses into KG). Suppose that the
natural action of G by conjugation on

is transitive. Then for {x,o} € T\{KQ) we have a G Jf(x). •

The following lemma (which is rather an observation) has been used
in our early studies of involution geometries and their representations.
Although this lemma is not used within the present treatment, we decided
to include it for the sake of completeness.

Lemma 6.1.7 Let Q = 2e
1+2n be the extraspecial group of type s G {+, —}

of order 22n+1, where n > 2 for e = + and n > 3 for e = —. Let (R,(p)
be the universal representation group of the involution geometry J of Q.
Then R = Q.

Proof. Let # and Jf be the set of involutions and the set of Kleinian
four-subgroups in Q, so that J = J(Q, (€, Jf). Let z be the unique non-
identity element in the centre of Q, Q = Q/(z). Let / be the quadratic
form on Q induced by the power map on Q, # be the image of # in Q,
and JT be the set of images in Q of the subgroups from Jf which do not
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contain z. Then / is non-singular, while <€ and Jf are the sets of 1- and 2-
subspaces in Q, isotropic with respect to / . By (3.6.2), Q is the universal
representation group of (C6, JT). To complete the proof it is sufficient
to notice that q>{z) is in the centre of R and hence can be factored
out. a

6.2

Let A = Alt-i and J = J(AltT,^,Jf) be the involution geometry of
A. Recall that according to our notation # and Jf are the set of
all involutions and the set of all Kleinian four-subgroups in A. Every
involution x € # is a product of two disjoint transpositions. If T =
(a, b)(c,d) and a = (e,f)(h,g) are distinct involutions in A, then the
product re is an involution (equivalently [T,<T] = 1) if and only if one of
the following holds:

(I) T and a have the same support, i.e., {a,b,c,d} = {e,f,h,g};
(II) T and a share one transposition and the other transpositions are

disjoint, for instance {a, b) = {e, /} and {c, d} n {h, g} = 0.

It is easy to see that if x is an involution in A then CA(X) = (I>8 xSymi)+

permutes transitively the pair of involutions of type (I) commuting with
T and the set of six involutions of type (II) commuting with x.

The following result, of fundamental importance for the whole of our
project, has been established by D.V. Pasechnik by means of computer
calculations.

Proposition 6.2.1 Let (R, <p) be the universal representation of the involution
geometry J(Alt1,

<6,0^) ofAltj. Then R = 3- Altlt in particular, (p(<#) is
a conjugacy class in R. D

The fact that 3 • Alty is a representation group of J{Alti) follows from
the general principle (6.1.1) in view of the well-known fact that the Schur
multiplier of Alt-i is of order 6, but to conclude that it is the universal
representation group would be highly non-trivial.

Below we present the suborbit diagram with respect to the action of
A of the graph Z = T,(Al^) on the set of involutions in A whose edges
are the pairs of commuting involutions of type (II). This diagram plays
an illustrative purpose in this section, but will be used more essentially
in the subsequent sections.
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Notice that the graph whose edges are the commuting pairs of type
(I) is just the union of 35 disjoint triangles.

Let us explain the notation on this diagram and further diagrams in
this chapter. Let T be a fixed involution (a vertex of £), which corresponds
to the orbit of length 1 on the diagram. Then T.(x,m,K) denotes an orbit
which is of length m of CA(?) on I , and for every a e ~L{x,m,K) the
product T<T belongs to the conjugacy class K of A. Such a suborbit will
be said to be of type K. If K determines the length m uniquely, then
we simply write S(T,/C) for such an orbit. On the other hand, if there
are more than one suborbits of type K of a given length, then we use
indexes / and r (I is for 'left' and r is for 'right') to indicate the suborbits
on the left and on the right sides of the diagram, respectively. Thus on
the above diagram of Y.(Alti) we have two suborbits of type 4A, which
are I,(T, 12,44) and Sr(t, 12,44).

We follow [CCNPW] for the names of conjugacy classes. Notice that
the character tables of the groups whose involution geometries we are
considering in this chapter (which are Alty, Mn, C/4(3), Cot and Co\) are
given in [CCNPW] as well as in [GAP] in a computerised form. Using a
standard routine we can deduce from these character tables the structure
constants of multiplication of conjugacy classes in the relevant group
G. Namely for any three conjugacy classes K, L and M in G we can
calculate the value

m(K,L,M) = #{(fc,/,m) | it € K,l € L,m e M,kl = m}.
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Thus for a given class <$ of involutions in G and a conjugacy class K in
G we can calculate the total lengths of suborbits of type K.

6.3 J{M22)

In this section we study the involution geometry J = J{M22) of the
Mathieu group H = M22. We know that H contains a single class <€
of involutions of size 1155. Let J f = ^(M22) and A = A(M22) be the
derived graph of 2tf. By noticing that there are 1155 elements of type
2 in & (which are the edges of A), and the stabilizer in H of such an
element is of the shape 2++4.(Sym3 x 2) and has the centre of order 2, we
obtain the following.

Lemma 6.3.1 There is a bijection s, commuting with the action of H from
the set t? of involutions in H onto the set of edges of the derived graph
A. a

Below we present the suborbit diagram with respect to the action of
H of the graph Z = £(M22) on # in which two distinct involutions x and
a are adjacent if and only if the edges s(x) and e(c) share a vertex of A.
This means that £ is the line graph of A. The diagram of S is deduced
from the parameters of the centralizer algebra of the action of M22 on its
involutions by conjugation, calculated by D.V. Pasechnik. It also follows
from the parameters that the suborbits S / ( T , 9 6 , 4 B ) and Zr(T,96,4B) are
paired to each other.

The next lemma provides us with a better understanding of the pairs
of commuting involutions in H.

Lemma 6.3.2 Let x be an involution in H = M22, let e(x) = {i>i,i;2} be
the corresponding edge of A, let y be the <S{S^{2))-subgeometry in #C =
@(M22) containing e(x) and let Hi, IT2, IT3 be the Petersen subgraphs in
A containing e(x). Suppose that a € %? commutes with x and let m be the
length of the orbit of Cn(x) containing a. Then either x = a or exactly one
of the following holds:

(i) e(o-) contains vtfor some i e {1,2} and it is contained in IL; for some
j € {1,2,3}, T,<7 e O2(H(VJ)) n O2(H(Uj)) and m = 12;

(ii) e(a) is contained in y and in IL; for some j € {1,2,3}, x, a €
O2(H(y)) fi O2(H{Tlj)) and m = 6;

(iii) e(ff) is contained in Ft; for some j e {1,2,3} but not in £f,x,ae
O2(tf(IL.)) and m = 24;
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y but not in 11/ for any j e {1,2,3}, T, a €(iv) e(a) is contained in
02{H(S>>)) and m = 8.

Proof. Recall that H(vt) £ 23 : L3(2), H(Ylj) £ 24 : Sj>m5 and
= 24 : /4/(6. It is easy to deduce from the basic properties of
) and its derived graph that e(02(H(Vi))#) is the set of 7 edges

containing «,-, e(O2(tf(n,))#) is the edge-set of Uj and e(O2(H(5"))#) is
the set of 15 edges contained in y . In addition, n ; n 5^ is the antipodal
triple in II; containing E(T). Finally, by the above suborbit diagram x
commutes with exactly 50 other involutions in M22. Hence the proof. D

It is well known that H = M22 contains two conjugacy classes of
subgroups isomorphic to A = Alt-] and these classes are fused in Aut M22.
The permutation character of H on the cosets of A given in [CCNPW]
enables us to reconstruct the fusion pattern of the conjugacy classes of
A into conjugacy classes of H. If K^ is a conjugacy class of A whose
elements are products of pairs of involutions (these classes can be read
from the suborbit diagram in Section 6.2) then the class of H containing
KA is shown in the table below.
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Alt-,

M22

2A

2A

3A

3A

3B

3A

AA 5.

4B 5.

A 6A

A 6A

Let us compare the table against the suborbit diagram Y.(Mi2). In view
of the above made remark that the suborbits Z/(T,96,4J3) and £r(T, 96,4.8)
are paired and by (6.2.1), we obtain the following.

Lemma 6.3.3 Let ./(M22) = ^{M2i, %>, Jf) be the involution geometry of
M22 and x,a G c€. Then in terms o/(6.1.4(ii)) and (6.1.6) if a $ 1(^48,4,4),
there is a subgroup A = Alt-] which contains both % and a, in particular,
a € JV{X). O

Lemma 6.3.4 If (R, cp) is the universal representation of i/(M22). Then
(p(%>) is a conjugacy class of R.

Proof. By (6.3.3) all we have to prove is that a 6 ^V(t) when-
ever a € L(T, 48,4,4). Let us have a look at the suborbit diagram
of E(M22). Recall that two involutions a and /? are adjacent in Z if
P € 02{CH(OI))- Furthermore, such a pair {a,/?} is in a unique line (con-
tained in 02(Cfl(a))). On the other hand, if a G £(T, 48,4/1) then there are
at least 9 (which is more than half the valency of I ) vertices 5 adjacent
to a such that <5 £ I ( T , 48,4,4). Since such a vertex S is in Jf{x) by (6.3.3),
the proof is immediate from (6.1.5). D

Proposition 6.3.5 The universal representation group of J{Mn) is isomor-
phic to 3 • M22-

Proof. By (6.3.4) and (6.1.2) the representation group R of J(M22)
is a non-split central extension of M22. The Schur multiplier of M22 is
cyclic of order 12 (cf. [CCNPW]). By (6.1.1) the non-split extension
3 • M22 is a representation group of */(M22), so it only remains to show
that the unique non-split extension H = 2 • M22 is not an //-admissible
representation group of J(M22). Calculating with the character table
of H in the GAP package [GAP] we see that H has two classes #1
and #2 of involutions which map onto <€ under the natural homomor-
phism of H onto H. Furthermore, (up to renumbering) for i = 1 or
2_ an involution from ^, commutes with 18 or 32 other involutions in
^ j . Since an involution from # commutes with 50 other involutions
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from #, this shows that H is not a representation group of ./(M22) (the
Kleinian four-subgroups are not lifted into a single class) and completes
the proof. •

6.4 y(I74(3))

Let % = ^(t/4(3)) be the GAB (geometry which is almost a building)
associated with U = [/4(3) (cf. Section 4.14 in [Iv99]). Then ^ belongs
to the diagram

and admits a flag-transitive action of U. If {1̂ 1,̂ 2,̂ 3} is a maximal
flag in W (where vt is of type i), then U{v{) ^ 1/(173) ^ 24 : 4/t6)

l/(t>2) = 2++4 : (3 x 3) : 4. Since U contains a single conjugacy class # of
involutions and |C(/(T)| = 27 • 32 for T e 1 , we conclude that there is a
bijection e : # —> "^2 which commutes with the action of U.

Below is the suborbit diagram with respect to the action of Aut U =
l/4(3).2)8 of the graph S = Z([/4(3)) on # in which two distinct involutions
T, a are adjacent if and only if

res^(e(t)) = res^(e(cr))

(notice that this equality holds exactly when o € Oi(Cu(x))).

6
f \ 9 3 /- N 6 2 / \
128 3BC) (384 6BC) ( 1152 5A ) 4
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It follows directly from the diagram of Ql that v2 is incident to three
elements of type 1 and three elements of type 3. Furthermore, there are
15 elements of type 2 incident to vi, which are: v2 itself; six elements
incident with v2 to a common element of type 3 and the remaining eight.
In view of the fact that Aut U induces a diagram automorphism of °U,
we obtain the following

Lemma 6.4.1 If x and a are commuting involutions in U then there is
w £%l U<^3 such that x,a e O2(U(w)) and both E(X) and e(y) are incident
to w. •

The group U contains four conjugacy classes of subgroups A = Altj
which are fused in Aut U. The permutation character of U acting on the
cosets of A gives the following fusion pattern of the classes in A that are
products of two involutions into conjugacy classes of U.

Alt-,

t/4(3)

2A

2A

3A

3BC

3B

3D

4A

4B

SA

5A

6A

6BC

Comparing the above table with the suborbits diagrams of £(t/4(3))
and I.(Alti), we obtain the following analogy of (6.3.3).

Lemma 6.4.2 Let J^(C/4(3)) = J{U^3),^,X) be the involution geometry
o/t/4(3). In terms o/(6.1.4(a)) and (6.1.6) ifx,a £<$ando$ Z(T, 144,4A),
then there is a subgroup A = Alt-; which contains both x and a, in partic-
ular, a € Jf(x). •

It is absolutely clear from the suborbit diagram of S(t/4(3)) that there
is a line {a,5i,52} in J f such that a e E(T, 144,44) and <5, £ Z(T, 144,44)
for i = 1,2 which gives the following analogy of (6.3.4).

Lemma 6.4.3 If (R,(p) is the universal representation of J(U^{1>)). Then
is a conjugacy class of R. •
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Thus the universal representation R of J(U^(1>)) is a non-split central
extension of U = l/4(3). The Schur multiplier of U is 32 x 4. By (6.1.1)
32 • 1/4(3) is a representation group of i/([/4(3)). Let us have a look at
U = 2- 1/4(3). Calculations with GAP show that U has two classes #1
and #2 of involutions outside the centre. Furthermore, an involution
from #, commutes with 48 or 18 other involutions from #,- where i = 1
or 2, respectively. Since an involution from # commutes with 64 other
involutions from (€, similarly to the M22-case we conclude that U is not
a representation group of ,/(t/4(3)) and we obtain the main result of the
section.

Proposition 6.4.4 The universal representation group o / . / ( 1/4(3)) is iso-
morphic to 32 • l/4(3).

6.5 f{Coi,2B)

Let £ = ?.{Co2) be the derived graph of $F = y(Co2). The presented
below suborbit diagram of this graph with respect to the action of
F = C02 has been calculated by S.A. Linton. If 1; is a vertex of £ (an
element of type 4 in #") then F{v) = 21+4+6.L4(2) coincides with the cen-
tralizer in F of a 2B-involution in F from the conjugacy class 2J3. In this
way we obtain a bijection s from the conjugacy class # of 2B-involutions
in F onto the vertex-set of A.

Let M be an element of type 1 in ^ and A[u] be the set of vertices
in A (which are elements of type 4 in i2") incident to M. Then F(u) =
210 : AutM22, and the subgraph in Z induced by I[u] is isomorphic
to the 330-vertex derived graph of res^(w) = ^(M22) (cf. Section 4.5).
Since Q(u) := Oi{F{u)) is the kernel of the action of F(u) on res^(u), we
conclude that

{£~Hv) I v € S[u]}

is the orbit of length 330 of F(u)/Q(u) = AutM22 on the set of non-
identity elements in Q{u). Since Q(u) is the 10-dimensional Golay code
module, by (4.5.1) we conclude that Q(u) is a representation group of the
derived system of res^(ti) = ^{Mn), which implies the following.

Lemma 6.5.1 The pair {C02, e~l) is a representation of the derived system
2>{Co2) of the geometry <g(Co2). •
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l 1680 2B

( 2520 2C ) 2

210 2B 2

Comparing the suborbit diagram of H(Co2) and the suborbit diagram
of the derived graph of ^{Mii) given in Section 4.5, we conclude the
following result (the vertices of Z are identified with the 2B-involutions
in F = C02 via the bijection e).

Lemma 6.5.2 Let Z[u] be the subgraph in Z defined in the paragraph
preceding (6.5.1). Suppose x e Z[u]. Then Z[u] consists ofz, 7 vertices from
Z ( T , 1 5 , Z 4 ) , 42 vertices from Z(T, 210,25), 168 vertices from Z ( T , 2 5 2 0 , 2 C )

and 112 vertices /rom Z(T, 1680,2B). a

Lemma 6.5.3 L e t . / = ^(002,2J5) and (R, <p) be the universal representa-
tion of J. Then

(i) every line of J is contained in a conjugate of 02(F(u));
(ii) the elements <p(a) taken for all a € E[w] generate in R a subgroup
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which maps isomorphically onto Oi{F{u)) under the natural homomor-
phism of R onto F = C02 ;

(iii) (R,(p) is the universal representation of the derived system of^Coi).

Proof. From the suborbit diagram of £(Co2) we observe that the
line set c€~ of J consists of two F-orbits, say Jf 1 and Jf2, such that if
{T,<TI,<72} e Jfi then at € S(r,210,25) and at e O 2 (C F (T) ) for i = 1,2,
and if {T,<TI,<T2} € Jf2 then at e E(T, 1680,2B) and <r,- £ O2(CF(z)) for
i = 1,2. By (6.5.2) we observe that O2(F(«)) contains representatives of
both the orbits, which gives (i). The assertion (ii) follows from (4.5.8). By
(i) and (ii) the relations in R corresponding to the lines from X\ imply
the relations corresponding to the lines from Jf 2, which gives (iii). •

Let (R, q>) be the universal representation of J{Co2,2B) (which is also
the universal representation of Q){Coi) by (6.5.3)). We are going to
establish the isomorphism R = C02 by showing that (pC$) is a conjugacy
class of/?. We follow the notation introduced in the paragraph subsequent
to (6.1.3).

Lemma 6.5.4 Let {R,q>) be the universal representation of,/(Co2,2£) and
let x,a G # (where %> is the class of IB-involutions in F = C02) and let
K be the conjugacy class of F containing the product xa. Then a G JV{T)
whenever K £ {2A,2B,2C,3B,4C,4E,5B,6E}.

Proof. If K € {2A,2B,2C} then the claim follows from (6.5.3 (ii)).
In the remaining cases we apply (6.4.4) together with the fact that C02
contains a subgroup isomorphic to C/4(3). The relevant part of the
fusion pattern of the classes obtained via GAP is presented below. This
information gives the proof in view of (6.1.4 (ii)). •

1/4(3)

C02

2A

2B

3BC

3B

3D

3B

4A

AC

4B

4£

5A

5B

6BC

6£

In order to complete the proof that cp(^) is a conjugacy class in R
we apply a version of (6.1.4 (iii)). We use the following preliminary
result (we continue to identify the vertex set of ~L(Co2) and the class of
2B-involutions in C02 via the bijection e).

Lemma 6.5.5 In the notation of (6.5.4) suppose that 8 is a vertex adjacent
to a in £ such that at least 8 neighbours of 3 are contained in JV(T). Then
a € JT(x).
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Proof. Let Rs be the subgroup generated by the elements q>(y) taken
for all y e Z(<5). We claim that Rs is elementary abelian of order 24.
Indeed, Z(<5) (the set of 15 neighbours of 5 in Z) carries the structure of
the point-set of a rank 3 projective GF(2)-geometry whose lines are those
from Jf"i contained in this set. Hence the claim follows from (3.1.2).
Since

{cp(y) | y e Z(<5)}

is the set of non-identity elements of Rs and a maximal subgroup in Rs
contains seven such elements, the proof follows. •

Lemma 6.5.6 The <p(#) is a conjugacy class in R.

Proof. By (6.5.4) all we have to show is that a G Jf{x) whenever T<T is
in the class 44 or 4F.

Let a e Z,(T, 13440,4F) and let <5 € Z(T, 161280,4£) be adjacent to a.
Then by (6.5.4) all the neighbours of <5 are already in JV{Z) and hence so
is a by (6.5.5).

Let a S Sr(r, 13440,4F) and let 8 be the unique neighbour of 5 in the
same orbit of CF{X). Then the remaining 14 neighbours of 5 are in JV{T)

and (6.5.5) applies.
Finally if a G S(T, 1920,4/1), then there is a neighbour (5 of a in the

same orbits whose remaining 14 neighbours are in Z/(T, 13440,4F) and
the latter orbit is already proved to be in Jf{x). •

Since the Schur multiplier of Coj is trivial, we deduce the following
main result of the section from (6.1.2) and (6.5.6).

Proposition 6.5.7 The universal representation (R,q>) of J{Coi,2B) is also
the universal representation of the derived system of ^(Coj) and
R ^ Co2. •

6.6 S(Cou2A)

In this section # is the conjugacy class of central involutions (2/4-
involutions in terms of [CCNPW]) in G S Cox and S = L(Coi) is
the graph on # in which two involutions T, a € # are adjacent if a e
O 2 (C G (T)) (equivalents if % e 02(CG(a))). Notice

Cc(t) S 2V"8.n+(2).

The suborbit diagram of Z with respect to the action of G presented
below is taken from [ILLSS] (the structure constants of the products of
conjugacy classes are computed in GAP).
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Notice that I is the collinearity graph of the dual of the maxi-
mal parabolic geometry 2tf{Co\) (cf. Lemma 4.9.1 in [Iv99]). Let
p be a point of the tilde geometry ^{Co\) (which is also a point
of the maximal parabolic geometry jf(Coi)). Then G(p) = 2n.Mu,
Q(p) := Oi(G(p)) is the irreducible 11-dimensional Golay code module
for G(p) = G(p)/Q(p) = M24. The intersection Q(p) n # contains ex-
actly 759 involutions which naturally correspond to the octads of the
S(5,8,24)-Steiner system associated with G(p). The subgraph in I in-
duced by Q(p) n ^ is the octad graph (cf. Section 3.2 in [Iv99]). If
T e Q(p) n # then Q(p) n <€ contains 30 vertices from I(x, 270,2A), 280
vertices from £(T, 12600,2,4), and 448 vertices from I ( T , 60480,2C). In
view of the above diagram, this gives the following.

Lemma 6.6.1 Let J{Co\,2A) = J(Cou^,Jif) be an involution geometry
of G = Co\ (here <$ is the class of 2A-involutions and X is the set of
all 2A-pure Kleinian four-subgroups in G). Then every line from X is
contained in a conjugate of Q(p). •

(l 2386304 5B) 35

{_

491520 3D ) 9
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The group Co\ contains C02 as a subgroup. The fusion pattern of the
relevant classes computed in GAP is presented below. Notice that the
2B-involutions from C02 are fused to the class of 2A-involutions in Co\.

C02

Co\

2A

2A

2J3

2A

2C

2C

3B

3B

4A

AA

AC

AC

AE

AC

AF

AD

5B

5J5

6£

6£

By (6.1.4), and comparing the above fusion pattern against the suborbit
diagrams of Z(Coi) and L(Co2), we obtain the following

Lemma 6.6.2 Let (R,q>) be the universal representation of J{Co\,2A) =
,^7, Jf). Then cp^) is a conjugacy class of R. D

The Schur multiplier of Co\ is of order 2 and the non-split central
extension 2 • Co\ is the automorphism group COQ of the Leech lattice
preserving the origin. It can be checked, either by calculating the struc-
ture constants or by direct calculations in COQ, that the latter is not a
representation group of J{Co\,2A) and hence we have the following.

Proposition 6.6.3 Co\ is the universal representation group of the involution
geometry J(Co\,2A). •
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Let G be one of the following groups: F'24, J4, BM, and M, and
^(G) be the corresponding 2-local parabolic geometry with the following
respective diagrams:

As usual the first and second left nodes on the diagram correspond to
points and lines, respectively. In this chapter we calculate the universal
representations of these four geometries. Originally the calculations were
accomplished in [Rich99] for Fi'24, in [ISh97] for J4 and in [IPS96] for BM
and M. For the classification of the flag-transitive P- and T-geometries
we only need to know that ^(J4), ^(BM) and ^(M) do not possess non-
trivial abelian representations (cf. Proposition 10.4.3 and Section 10.5)
and this becomes known as a consequence of Proposition 7.4.1, since the
commutator subgroup of Q(p) is (q>(p)).

7.1 Existence of the representations

The geometries <& = ^(G) for G = Fi'2A, J4, BM or M possess the
following uniform description. The set 'S1 of points is the conjugacy
class of central involutions in G. If p is a point, then Q(p) := 0%(G(p))

128
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is an extraspecial 2-group of type 2++2m where m = 6, 6, 11 or 12,
respectively, and H := G(p)/Q(p) is a flag-transitive automorphism group
of Jf := res#(p) (sometimes we write Hp instead of H to indicate the
point p explicitly). The latter residue is isomorphic to ^(3 • U4(3)),
<g(3 • AutM22), &(Co2), and ^(Coi), respectively. A triple {pi,P2,P3} of
points is a line if and only if P1P2P3 = 1 and p,- e Q(pj) for all 1 < i,j < 3.
Since G is a simple group, it is generated by the points and hence we
have the following.

Lemma 7.1.1 If <p is the identity mapping, then (G, <p) is a representation
of<$. D

Next we show that in two of the four cases the universal representation
group is larger than G.

Lemma 7.1.2 With G as above let G be the extension of G by its Schur
multiplier. Then {G,q>) is a representation of & for a suitable mapping (p.

Proof. The Schur multipliers of J4 and M are trivial. The Schur
multiplier of Fi'24 is of order 3 (an odd number), hence (6.1.1) applies. By
the construction given in [Iv99] the geometry ^{BM) is a subgeometry
in ^(M), which means that the points of ^(BM) can be realized by
some central involutions in M. These involutions generate in M a
subgroup isomorphic to 2 • BM, which is the extension of BM by its
Schur multiplier. •

The following theorem (which is the main result to be proved in this
chapter) shows that the representation in (7.1.2) is universal.

Theorem 7.1.3 Let G = Fi'14, J4, BM, or M, and <§ = ^(G) be the 2-local
parabolic geometry of G. Then the universal representation group R(^) of
& is isomorphic to the extension ofG by its Schur multiplier (i.e., to 3-Fi'24,
J4, 2 • BM, and M), respectively.

In the remainder of this section we introduce some further notation.
Let p be a point of ^ and / = {p, q, r) be a line containing p. Let T
be the collinearity graph of J f = res»(p) (so that / is a vertex of Y).
Let Q{p) = Q(p)/(p) (an elementary abelian 2-group). For q € Q(p) and
when q is the image of q in Q(p), let 6(q) = 0 if q2 = 1 and 6(q) = 1
if q2 = p. Then 0 is a quadratic form on Q(p). In each of the four
cases under consideration H acts irreducibly on Q(p) and 6 is the only
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non-zero //-invariant quadratic form on Q(p) (viewed as vector space
over GF(2)). Let /? denote the bilinear form associated with 9:

Lemma 7.1.4 Let I = {p,q,r} and I' = {p,q\r'} be two distinct lines
containing p. Then

(0 Qip) induces on lul' an action of order 4;

(ii) the subgraph induced by 11) I' in the collinearity graph of $ is either

the union of two triangles sharing a vertex or the complete graph;

(iii) a point cannot be collinear to exactly two points on a line.

Proof. If /" = {p, q", r") is another line containing p then q" commutes
with / (where the latter is considered as a subgroup of order 22 in Q{p))
if and only if /?(/, /") = 0. Notice that if q" does not commute with /,
it exchanges the points q and r. Since j3 is non-singular we can find a
point collinear to p which commutes with / but not with /'. In view of
the obvious symmetry between / and /' we have (i). Now (ii) is immediate
and implies (iii). •

G

Q(P)

H

m

O2(H(l))

Table V. Geometries of

21+12

3 • C/4(3).22

25.Alt6

2A15D6El0

J4

21+12

3 • Aut M22

25.Sym5

Large Sporadics

BM

2l+22

Co2

210 :AutM2 2

2^77^330^16

M

2 " : M2 4

2/l759Ci28g

We summarize some of the above mentioned properties of the four
geometries under consideration in Table V. The last row shows the
intersections of O2(//(0) with the conjugacy classes of involutions in
H (we follow the notation of [CCNPW] so that 2XmYn... means that
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02(H(l)) contains m elements from the class 2X, n elements from the
class 27 etc.

Recall that the sextet graph 3 is the collinearity graph of the rank
3 T-geometry ^(M^). The vertices of 3 are the sextets and two such
sextets I = {Si,...,S6} and Z' = {S,'....^} are adjacent if and only if
| Si Pi Sj | is even for every 1 < i, j < 6. The suborbit diagram of 3 with
respect to the action of M24 is as above.

Lemma 7.1.5 Let G = Fi'2i or J4 and let F be the collinearity graph of
y = ^(G). Then T contains the sextet graph 3 as a subgraph. The points,
lines and planes ofS contained in 3 form a subgeometry 9£ = ^(M2A); if
X is the stabilizer ofE in G, then X ~ 2n.Mu, Oi{X) is the irreducible
Golay code module # n (it is generated by the points in E) and X contains
Q(p) for every p e 3 .

Proof. For G = Fi24 the subgraph 3 is induced by the points incident
to an element X4 of type 4 in 0 and 2Z = res^(x4). For G = J4
the subgeometry 9C is the one constructed as that in Lemma 7.1.7 in
[Iv99]. D

Notice that X splits over O2(X) if G = J4 and does not split if G = Fi'24.

7.2 A reduction via simple connectedness

In the above notation let (R, q>u) be the universal representation of 0.
By (7.1.2) there is a homomorphism xp of R onto G such that <p is the



132 Large sporadics

composition of q>u and \p and in order to prove (7.1.3) we have to show
that \p is an isomorphism. The group R acts on ^ inducing the group G
with kernel being \p~l(Z(G)). We are going to make use of the following
fact.

Proposition 7.2.1 The geometry $ is simply connected.

Proof. The simple connectedness of ^(Fi24) was established in [Iv95],
of y(Jt,) in [Iv92b] and again in [IMe99]. For the simple connectedness
results for &(BM) and 0(M) see Sections 5.11 and 5.15 in [Iv99] and
references therein. •

By (1.4.6) and (7.2.1) if O = {xi,X2,...,xn} is a maximal flag in ^ (where
n is the rank), then G is the universal completion of the amalgam

Furthermore, since res^(x;) is simply connected for 4 < j < n (this
residue is the T-geometry ^(A/24) in the case G = Fi'2i, j = 4, and
a projective GF(2)-geometry in the remaining cases). Hence Gj is the
universal completion of the amalgam

<?,-= {G; n G,-I 1 <i< j-l},

and we have the following refinement of (7.2.1).

Proposition 7.2.2 Let p,l,n be a pairwise incident point, line and plane in
&. Then G is the universal completion of the amalgam

( ) }
a

Thus in order to prove (7.1.3) it would be sufficient to establish the
following.

Lemma 7.2.3 The universal representation group R of <$ contains a suba-
malgam 3) = {R[p\,R\l\,R[n\} which generates R and maps isomorphi-
cally onto the subamalgam 38 in G under the homomorphism \p.

We should be able to reconstruct the subgroups R[a\ for a. = p,l and
n in terms of ^ and its representation in R. Towards this end we look
at how the subgroups G(a) can be reconstructed. It turns out that for
a = p, I or n the subgroup G(a) (which is the stabilizer of a in G) is
generated by the elements cp(q) it contains:
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Thus it is natural to define R[a.\ in the following way:

Rl«\=(<Pu(q)\q€'Zl,(p(q)eG(o>)).

Then we are sure at least that R[a\ maps onto G(a) under the homo-
morphism \p.

By a number of reasons (of a technical nature) we prefer to deal with
one type of parabolics, namely with the point stabilizers. So our goal is
to prove the following.

Lemma 7.2.4 For a point p in 'S define

Then

(i) R\j)\ maps isomorphically onto G(p) under the homomorphism \p : R —>
G;

(ii) for a point r collinear to p the subgroup R[p\ f)R[r\ maps surjectively
onto G(p) n G(r).

Since G(p) is the full preimage of the centralizer of p in G, we can
redefine R\_p\ as

Furthermore, it turns out that in each of the four cases under consid-
eration if q commutes with p, then q is at distance at most 2 in the
collinearity graph F of'S. Thus if we put

N(p) = {q\qe9\ [p,q] = l,dr(p,q) < 2}

then R[p\ can be again redefined as

R[p\ = R[N(p)].

We will use this definition (which involves only local properties of the
collinearity graph F) and the fact that it is equivalent to the previous
definitions will not be used.

We will establish (7.2.4 (i)) in Section 7.6 and after this is done, (7.2.4
(ii)) can be deduced from the following result (which is an internal
property of G) that will be established in Section 7.7.

Lemma 7.2.5 / / p and r are collinear points then G(p) fi G(r) is generated
by the elements cp(q) taken for all q G N(p) n N(r).
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7.3 The structure of N(p)

In this section we describe the structure of the set N(p) of vertices in the
collinearity graph T of ^ which are at distance at most 2 from p and
commute with p (considered as central involutions in G).

First we introduce some notation. Clearly N(p) contains T(p). Let
r{(p), 1 < j < t = t(G), be the G(p)-orbits in N(p) n T2{p). Let 2"' be the
length of a Q(p)-orbit in TJ

2(p) (where Q{p) = 02{G(p))) and let n} be the
number of such orbits, so that

\r{(p)\ = T> • n}

(clearly the a,- and «,• depend on j and on G). We will see that for a
given G the numbers <x; are pairwise different and we adopt the ordering
for which oci < <x2 < ... < a,. Let b\ be the number of vertices in FJ

2(p)
adjacent in T to a given vertex from T(p) and Cj be the number of
vertices in T(p) adjacent to a given vertex from TJ

2(p). Then

\T{(P)\ = \T(P)\ • ^}.

Throughout this section (p,q,r) is a 2-path in T such that the lines
/ = {p,q,q'} and /' = {q,r,r'} are different. Then I and /' are different
points of M"1 = res$(q). Let T be the collinearity graph of Jf*. The
suborbit diagram of T with respect to the action of Hq = G{q)/Q(q) can
be found in Section 5.1 when 3fq is ^(Co{) or ^(Co2), in Section 4.4
when tf* is ^(3 • M22) and in Section 5.6 when tf« is ^(3 • t/4(3)).

In the cases G = Fi24 and G = J4 the group Hq (isomorphic to
3 • C/4(3).22 and 3 • Aut M22, respectively) contains a normal subgroup
D of order 3 which acts fixed-point freely on the point-set of J^q. Let
T* denote the collinearity graph of the enriched point-line incidence
system (whose lines are those of &q together with the orbits of D on
the point-set). In order to argue uniformly, for G = BM and M we put
Y* = T. Let y * denote the point-line incidence system for which T* is
the collinearity graph.

Lemma 7.3.1 Let A be the orbit ofr under Q(p) and B the orbit of I' under
02{Hq(l)). Then

(0 Q(p)(^Q(il) IS a maximal elementary abelian subgroup (of order 2m+l)
in Q{q) S 2x+2m and Q{p) n G(q) maps surjectively onto O2(H

q{l));
(ii) \A\ = |fi| = 2 ifdr(p,r) = 1 and \A\ = 4 • \B\ if dr{p,r) = 2;

(iii) r e N(p) if and only if 0(1,1') = 0.
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Proof. Since the commutator subgroups of Q(p) and Q(q) are of
order 2 generated by p and q, respectively, Q(p) n Q(q) is elementary
abelian and its image in Q(q) is totally singular with respect to 6. Hence
the image is at most m-dimensional and \Q(p) n Q(q)\ < 2m+1. On the
other hand, Q(p) n G(q) has index 2 in Q(p) and its image in Hq is
contained in O2(H

q(l)). We can see from Table V in Section 7.1 that
\O2(H"(l))\ = 2m~\ which implies (i).

If r is adjacent to p then the Q(p)-orbit of r is of length 2 and clearly
\A\ = \B\ = 2. Suppose that dr(p,r) = 2. We claim that r and r' are in the
same Q(p)-orbit. Indeed, otherwise /' (which is a subgroup of order 22 in
Q(q)) commutes with Q(p) n Q(q). But by (i), Q(p) D Q(q) is a maximal
abelian subgroup in Q(q). Hence /' must be contained in Q(p) n Q{q),
but in this case r g l ' g Q(p) and r is collinear to p by the definition of
^ , contrary to our assumption. The image of r under an element from
Q{p) \ G{q) is not collinear to q. Hence the orbit of r under Q(p) is twice
longer than its orbit under Q(p) n G(q) and (ii) follows. Finally (iii) is
immediate from the definition of 9 and /?. •

Lemma 7.3.2 The following three conditions are equivalent:

(i) p and r are adjacent in the collinearity graph Tof&;

(ii) reQ(q)r\Q(p);

(iii) / and I' are adjacent in T* ;

Proof. First of all (i) and (ii) are equivalent by the definition of the
collinearity in CS. By (7.3.1), p and r can be adjacent in T only if the
orbit of /' under O2(Hq(l)) has length at most 2. The orbit lengths of
02{Hq(l)) can be read from the suborbit diagram of T*. From these
diagrams we see that p and r can be adjacent only if / and /' are adjacent
in T*. Hence (i) implies (iii). If / and /' are collinear in .?f * then the
union / U /' is contained in a plane, in particular, it induces a complete
subgraph in T. Suppose that / and /' are adjacent in T* but not in T.
In this case G = Fi'24 or G = J* and by (7.1.5), T contains the sextet
graph 3 as a subgraph. The suborbit diagram of 3 shows that in the
considered situation p and r are adjacent. This shows that (iii) implies (i)
and completes the proof. D

As we have seen in the proof of (7.3.1), the image of Q(p) n Q(q)
in Q(q) is m-dimensional. We can alternatively deduce this fact from
(7.3.2). Indeed, Q(q) supports the representation (Q(q),q>) of 9" (compare
(1.5.1)). In view of (5.6.2), (4.4.2), (5.3.2), and (5.2.3) this representation
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is universal when G = Fi'u, J4, or M and has codimension 1 in the
universal when G = BM. Now by (5.6.3), (4.4.8 (i)), (5.2.3 (ii)) and
(5.3.3) (for G = Fi'2A, J4, BM, and M, respectively) we observe that the
elements <p(/') taken for all /' equal or adjacent to / in Y* generate in
Q(p) subspaces of dimension m at least. Since for such an /' the subgroup
<p(l') is contained in the image of Q(p) n Q(q) in Q(p), the dimension of
the image is exactly m.

As a byproduct of this consideration we obtain the following useful
consequence.

Corollary 7.3.3 If p and q are adjacent vertices in T then Q(p) C\ Q(q) is
a maximal abelian subgroup of index 2m~l in Q(p) (where Q(p) = 2++2m>
and it is generated by the elements <p(r) taken for all

re{p,q}U(r(p)nr(q)).
D

We will use the following straightforward principle.

Lemma 7.3.4 Suppose that r G N{p)nr2(p) and let P2(p) be the G{p)-orbit
containing r. Let 7 denote the image of r in Hp = G(p)/Q(p). Then

(i) r€O2(H'(/));
(i) {? I r G TJ

2(p)} is a conjugacy class of involutions in Hp;
(ii) if r and s are in the same Q(p)-orbit then ? = ?;

(iii) the number nj of Q(p)-orbits in T2(p) divides the size kj of the conju-
gacy class ofr in H.

Proof, (i) follows from (7.3.1 (i)), the rest is easy. •
Comparing (7.3.2) with the suborbit diagram of T*, in view of (7.3.4)

and Table V we obtain the following lemma (recall that t = t(G) is the
number of G(p)-orbits in N(p) n

Lemma 7.3.5 In terms of (7.3.1) and (7.3.4) we have the following:

(i) ifG = Fi'24 then t = 4; if r € P2(p) then I' G Y^/), T2
2{1), Y>(/)

or Yl(l); the Q(p)-orbit ofr has lengths 24, 25, 26 or 27; ? is in the
Hp-conjugacy classes 2A, 2A, ID or IE for j = 1,2,3 or 4;

(ii) if G = J4 then t = 3; if r G P2{p) then I' € T\(l), T],(l) or T2
2(l);

the Q(p)-orbit ofr has lengths 24, 25 or 26; ? is in the Hp-conjugacy
classes 2A, 2A or 2B for j = 1,2 or 3;
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(iii) ifG = BM then t = 2;ifrs r{(p) then I' G Tl
2(l) or Y2

2{1); the
Q(p)-orbit of r has lengths 27 or 28; 9 is in the Hp-conjugacy classes
2A or 2B for j = 1 or 2;

(iv) ifG = M then t = 3; if r G P2{p) then V G Y^(/), T^(/) or T^(/);
the Q(p)-orbit ofr has lengths 28, 29 or 213; 9 is in the Hp-conjugacy
classes 2A, 2A or 2C for j = 1,2 or 3. D

By the above lemma for each G under consideration and every
1 < j < t we know that b\ is twice the length of the orbit of I'
under Hq(l) (assuming that r G P2(p)), the length 2a; of a Q(p)-orbit
in F^(p) is also known and the number rij of these orbits is divisible
by the size kj of the //p-conjugacy class of 9 (which can be read from
[CCNPW]). Thus in order to find the length of P2(p) we only have to
calculate c .̂ The above consideration gives the following upper bound
on c{.

Lemma 73.6 Cj divides

a

A lower bound comes from the following rather general principle,
which can be easily deduced from (7.1.4).

Lemma 7.3.7 Suppose that r G TJ
2(p). Let e be the number of 2-paths in

T* joining I and I', i.e.,

Then the subgraph in F induced by r(p)nF(r) has valency 2-e, in particular,
ci

2>\ + 2-e. a

The next four lemmas deal with the individual cases. The diagrams
given in these lemmas present fragments of the suborbit diagrams of T.
These fragments show the orbits of G(p) on N(p) and the number of
vertices in T(p) adjacent to a vertex from such an orbit.

Lemma 7.3.8 The structure of N(p) when G = Fi24 is the same as that on
the following diagram.
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2 • 1701
1+60+4 x , / r(p)

3402

2V+I2.3 • l/4(3).22

Proof. The coUinearity graph of # = ^(Fi'24) is also the coUinearity
graph of the extended dual polar space <f(Fi24) (cf. Lemma 5.6.6 in
[Iv99]). The diagram of <£(Fi'24) is

Let 0 be the subgraph in T induced by the vertices (points) incident
to an element y of type 4 in <f(Fi'24) (we assume that y is incident to
p). Then 0 is the coUinearity graph of the building ^(fljf (2)) with the
suborbit diagram

1+20

with respect to the action of G(y) = 28 : Qjf(2).2 and G(y) contains Q(p).
Since C>2(G(y)) acts transitively on 02(p) of size 26, we conclude that
02(p) £ T\{p) and hence c\ is at least 27. Since fc3 = 378, we obtain
c\ = 27.

Now let S be the subgraph as in (7.1.5) containing p and X = 2n.M24
be the stabilizer of S in G. Since X contains Q(p) and 02(X{p)) acts
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on S\(p) and E\(p) with orbits of lengths 24 and 25, we conclude that
E\(p) £ TjCp) and E\{p) s F^p), in particular when c\ > 9 and c2 > 3.
Since /q = k2 = 2835 we immediately conclude that c\ = 9. A more
detailed analysis shows that c\ = 3. But since the particular value of c\
will not be used in our subsequent arguments, we are not presenting this
analysis here. Finally, since /c4 = 17010, direct calculation shows that
A = \. •

Lemma 7.3.9 The structure of N(p) when G = J4 is the same as that on
the following diagram.

2i+12.3AutM22

Proof. By Propositions 1, 6, 9, and 15 in [J76] we see that G(p) \ Q(p)
contains involutions t!, t\, ti conjugate to p in G with centralizers in Q(p)
of orders 29, 28, 27, respectively. This shows that t! e T\{p), tx e T\{p),
Ti e T\{p). Also by [J76] we know that \CG(p)(x)\ is 217 • 32, 216 • 3, 214 • 3 • 7
for T = t', ti, ti, respectively, and hence Cj are the same as those on the
diagram. If 3 is a subgraph from (7.1.5) containing p, then al

2(p) £ T\(p)
and E\(p) s Tjip). Notice that G(p) acts on the set of g(p)-orbits in
Flip) as it does on the set of planes in res#(p) = ^(3 • M22). •

Lemma 7.3.10 The structure of N(p) in the case G = BM is as on the
following diagram.
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27•56925 28•1024650

63 15,

4928 42240

1+924 2 • 46575 ) F(p)

93150

2l
+

+22.Co2

Proof. We have fci = 56925, k2 = 1024650, so that c\ divides 63
and c\ divides 15. Let S be the subgraph induced by the vertices in a
subgeometry ^(S8(2)) in <S as that in Lemma 5.4.5 in [Iv99]. Then it
is easy to see that (assuming that p e S) ^ ( p ) £ F^p) and c\ = 63.
By (7.3.7) we see that c\ is at least 15. In view of the above it is
exactly 15. D

Lemma 7.3.11 The structure of N(p) when G = M is the same as that on
the following diagram.

Proof. Since k{ = k2 = 46621575 and k3 = 10680579000 we conclude
that c\ = 1 and that c\ divides 135. Let *P be the subgraph of valency
270 on 527 vertices introduced before Lemma 5.3.3 in [Iv99] and suppose
that p e *P. Then the stabilizer of ¥ in G contains Q(p) and |4/

2(p)| = 28.
Hence ^ ( p ) c r\(p) and since * contains 135 paths of length 2 joining
a pair of vertices at distance 2, we have c\ = 135. Proving the fact that
c\ = 15 is a bit more delicate, a proof of this equality can be found
in [MShOl]. In the present work the particular value of c\ does not
play any role and we indicate it on the diagram only for the sake of
completeness. •
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( 28 • 46621575 ) ( 29 • 6293912625 ) ( 213 • 10680579000 )

{P}

7.4 Identifying Ri(p)

In this section we take a first step in establishing (7.2.4) by proving the
following

Proposition 7.4.1 The homomorphism \p : R-+ G restricted to

is an isomorphism onto Q(p) = 02(G(p)).

Since it is clear that y> maps R\(p) surjectively onto Q(p), in order to
prove (7.4.1) it is sufficient to show that the order of Ri(p) is at most
that of Q(p) (which is 213, 213, 224, or 225 for G = Fi'24, J4, BM, or M,
respectively).

By (2.6.2) the mapping

X-l = {p,Q,r}^ (zp,zq,zr)/(zp)

turns Ri(p) into a representation group of J f = res^(p). If G = BM or
M then by (5.4.1) this immediately implies that ^Ri(p) is abelian of order
at most 223 or 224, respectively, and we have the following.

Lemma 7.4.2 If G = BM or M, then (7.4.1) holds. D

For the remainder of this section we deal with the situation when
G = Fi'24 or J4.
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Lemma 7.4.3 / / G = Fi24 or J4 then

(i) (Ri(p),x) is a representation of the enriched point-line incidence system
ST of*;

(ii) Ri(p) is a quotient of R{9") £ 2}+12.

Proof. Let D be a Sylow 3-subgroup (of order 3) in O2,i(G{p)) and
let {h,h,h} be a D-orbit on the set of lines in ^ containing p. Then the
set S = l\ U h U /3 is contained in a subgraph S as in (7.1.5) stabilized
by X ~ 2".M24. Since S generates Oi{X) which is an irreducible Golay
code module for X/OiiX) = M24 we can easily see that S is the set
on non-identity elements of an elementary abelian subgroup of order 23

contained in Q(s) for every s e S. This shows (i). Now (ii) is by (4.4.6)
and (5.6.5). •

By (7.4.3) we see that for G = Fi24 or J4 the size of R\ (p) is at most
twice that of Q(p) (isomorphic to Q(p) in the considered cases). The
next lemma shows that this bound cannot be improved locally. Let
9~ = (II, L) be the point-line incidence system where II = [p] U T{p) and
L = HJY) is the set of lines of IS contained in n.

Lemma 7.4.4 If G = Fi'24 or J4 then R{3T) S Q(p) x 2 ^ 2^n x 2.

Proof. Let (Q(p), <p) be the representation of 9~ where q> is the identity
mapping. Let % be the mapping of the point-set of J f = res#(p) into Q(p)
which turns the latter into a representation group of 2/C. Then x can be
constructed as follows.

Let D be a Sylow 3-subgroup of O2,3(G(p)) and C = CG(P){D)/{p)
(isomorphic to 3 • 1/4(3) or 3 • M22). Then (compare the proof of (4.4.1))
C acts flag-transitively on J f and has two orbits, say $1 and $2, on F(p).
Let ii be the mapping which sends a line / of 0 containing p onto its
intersection with <&,-. Then for exactly one i £ {1,2} the mapping /, is the
required mapping x- We claim that O := Im(x) is a geometric hyperplane
in 9". It is clear from the above that every line containing p intersects O
in exactly one point. Let / e L be a line disjoint from p. Let /,, 1 < i ^ 3,
be the lines containing p and intersecting / and let /, = {p,r,,s,} where
r, e 0 for 1 < i < 3. Then / is one of the following four lines:

{r\,ri,n}, {ri,s2,s3}, {si,r2,S3}, {si,s2,r3}.

Hence $ is indeed a geometric hyperplane. Since Q(p) is extraspecial, it
is easy to see that it is generated by <S>. Now by (2.3.5), 9~ possesses a
representation in the direct product of Q(p) and a group of order 2. On
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the other hand, arguing as in the proof of (7.4.3) we can see that the
order of R(&~) is at most 214 and the proof follows. Q

Thus when G = Fi'24 or J4 we have the following two possibilities:

(PI) The restriction of xp to R\(p) is an isomorphism onto Q(p).
(P2) The restriction of \p to Ri(p) is a homomorphism with kernel Y(p)

of order 2.

Suppose that (P2) holds and let Z be the normal closure in R of
the subgroups Y(p) taken for all points p. Then R/Z possesses a
representation of 0 for which (PI) holds. Furthermore, R/Z is the
universal representation group with this property in the sense that it
possesses a homomorphism onto every representation group for which
(PI) holds (for every point p). Below in this section we show that if (P2)
holds then the kernel Y{p) is independent of the particular choice of the
point p. Hence Z is of order 2. In the subsequent sections of this chapter
we show that the universal group R/Z for which (PI) holds is G (which
is 3 • Fi'24 or J4). Since the Schur multiplier of G is trivial we must have

R^Gx2,

which is not possible by (2.1.1).

Thus in the remainder of this section we assume that (P2) holds and
show that Y(p) is independent on p and in the subsequent sections we
show that the universal group satisfying (PI) is G. In order to have
uniform notation we denote this group by R instead of R/Z.

By (7.4.3) and (7.4.4) we have

Ri(p) S R{3T) £ 2l+n x 2

and

Ri(p) S R{ST) £ 2V"12.

This shows that the commutator subgroup of R\ (p) is of order 2 and if
cp denotes the unique non-trivial element of this commutator subgroup
then cp =/= zp (where zp = cpu(p)) and {cp,zp) is the centre of Ri(p). Under
the homomorphism xp both cp and zp map onto q>(p), which gives the
following.

Lemma 7.4.5 Let p and q be distinct collinear points of &. Then the only
possible equality among the elements zp, zq, cp, cq, zpcp and zqcq is the
equality

P P —
D
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We are going to show that the equality in the above lemma in fact
holds for every pair of points. Since it is clear that zpcp generates the
kernel Y(p) of the restriction of xp to R\{p), by this we will accomplish
the goal of this section.

Let / = {p, q, r} be a line and let

r(/) = {s € T | dr{s, t) < 1 for every t € /}.

For s € F(p) let m be the line containing p and s. By (7.1.4) and (7.3.2)
we know that s e T{1) if and only if / and m are either equal or adjacent
in the collinearity graph T* of the enriched point-line incidence system
of 2tf = res#(p). Let C(l) be the set of points s as above such that m
is either equal or adjacent to / in T (i.e., m and / are equal or collinear
in Jf) and let A(l) be the set of points s such that m is either equal or
adjacent to I in T* but not in T.

Lemma 7.4.6 The following assertions hold:

(i) the pointwise stabilizer of I in G acts transitively both on C(l) and on

(ii) T(/) is the disjoint union of I, C(l)\l and A(l)\l and this partition is

independent on the particular choice of p € I;

(iii) J?[F(/)] is elementary abelian of order at most 2s;

(iv) R[A(l)] has order 23 and R[A(l)]* = {zs\s€ A(l)};

(v) R[C(l)] has order 27.

Proof, (i) is easy to deduce from the suborbit diagram of T in view
of (7.1.4 (i)). (ii) follows from (i) and (7.3.2). Since T(l) = T(p) n T{q)
(compare (7.1.4 (ii))), the commutator subgroups of Ri(p) and Ri(q) are
generated by cp and cq, respectively, and cp ± cq by (7.4.5), JR[F(I)] is
elementary abelian. Since R\(p) contains the extraspecial group 2++12

with index 2, an abelian subgroup in R\{p) has order at most 28 and we
obtain (iii). As we have seen in the proof of (7.4.3), A(l) is the set of non-
identity elements contained in Q(s) for every s e A(l), which immediately
gives (iv). Since R^p) s R{ST), (v) follows from (4.4.8 (i)) and (5.6.3). D

Lemma 7.4.7 The following assertions hold:

(i) R[C{1)] does not contain R[A(l)];

(ii) R[T(l)] is of order 2*;

(iii) cp € R[T(l)].
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Proof. Let Z = {p, /}, #" = res#(£) and M be the action induced on
F by M := G(p) n G(l). Then ^ ^ #(S4(2)) and M £ y4/t6 if G = Fi'24

and 3F ^ #(y4ft5) and M = Sym5 if G £ 74. Clearly M normalizes both
R[C(l)] and R[A(/)]. By (4.4.8 (i)) and (5.6.3) 25(l) •= R[C(l)]/R[l] is a
5-dimensional representation module for & and as a module for M it
contains a unique 1-dimensional submodule, which we denote by £\(l). By
(7.4.6 (iv)) R[A(t)]/R[l] is 1-dimensional. Suppose that R[A(l)] < R[C(l)].
Then R[A(l)]/R[l] = J,(/) and

is the 4-dimensional irreducible representation module of !F and M acts
transitively on the set of non-identity elements of .24(/). Let

be the line of the enriched system of J f = res^(p) which is not a line of
Jf. This means that X is an orbit of D := 03(G(p)/Q(p)). Let

2 = R[C(h)UC(l2)uC(l3)]/R[A(l)].

Then 5 is generated by the elements of J4(/) and their images under
D. Moreover, if n e J4 ( /)# then T := (nd | d e D) is 2-dimensional.
So the generators of 2. are indexed by the pairs (a,x) for a e %{l)*,
x € T and the relations as in (2.4.2) hold. By the latter lemma in view
of the irreducibility of M on J4(/) and of D on T we conclude that SL is
elementary abelian of order 28 isomorphic to i>4(/) ® 7. By (7.4.6 (iv)),
R[A(l)] does not contain cp, which means that the full preimage of 2. in
R\{p) is abelian of order 211, which is impossible, since R\{p) = 2++12 x 2.
This contradiction proves (i). Now (ii) follows from (i) in view of (7.4.6
(iii) to (v)). Since R[T(l)] is a maximal abelian subgroup of Ri{p), it
contains the centre of Ri(p), in particular it contains cp and we have
(iii). •

Lemma 7.4.8 The subgroup

R[l]' = (zs,cs\seA(l))

is elementary abelian of order 24.

Proof. By (7.4.7) and its proof 2\(l) is the unique 1-dimensional
M-submodule in
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Since (R[A(l)],cp)/R[A(l)] is such a submodule, in view of the obvious
symmetry we conclude that R[l]' is the full preimage of 2.\{l) in J?[F(/)]
and the proof follows. •

Now we are ready to establish the final result of the section.

Proposition 7.4.9 The subgroup Y(p) = (zpcp) is independent on the par-
ticular choice of p.

Proof. By (7.4.8), R[l]' is elementary abelian of order 24. It contains
seven elements zs and seven elements cs for s e A(l) which are all pairwise
different by (7.4.5). Thus all the seven products zscs must be equal to
the only remaining non-identity element in R[l]'. Now the proof follows
from the connectivity of F. •

7.5 Ri(p) is normal in R[p\

In this section we assume (7.4.1) and prove the following.

Proposition 7.5.1 R\(p) is a normal subgroup in R\_p\ = R[N(p)].

First of all by (7.3.3) we have the following

Lemma 7.5.2 If q is a point collinear to p then Ri(p)nRi(q) is a maximal
abelian subgroup of index 2"1"1 in Ri(p) (where Q(p) = 2^2m). •

By (7.4.1) the group Ri(p) is abelian and hence by (2.2.3) we have the
following

Lemma 7.5.3 Let (p, q, r) be a 2-path in F. Then the commutator [zp, zr] is
either zq or the identity. •

Let r e N(p) n F2(p). In order to show that zr normalizes R\{p) it
is sufficient to indicate a generating set of elements in Ri(p), whose zr-
conjugates are also in R\(p). Using (7.5.3) we produce a family of such
elements and then check under an appropriate choice of r that this is a
generating family. Let

To(r) = {p}, r1(r) = F(p)nF(r), T2(r) = ( J

T(r) = T0(r)UT1(r)UT2(r).

Lemma 7.5.4 If s e T(r) then [zr,zs] € Ri(p).
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Proof. If s € 7o(r)UT,(r) then [zr,zs] = 1. Suppose that s e T2(r) and q
is a vertex in T{(r) adjacent to s. Then by (7.5.3) [zr,zs] e (zq) < Ri{p). D

Let 7i(r) and /(r) be the subgroups in Ri(p) generated by the zs for all
s taken from To(r)U Ti(r) and from T{r), respectively. Clearly

(zp) < 7i(r) < /(r)

and we can put 7i(r) and 7(r) to be the quotients over (zp) of I\(r) and
I(r), respectively. These quotients are clearly subspaces in Ri(p) (when
the latter is treated as a GF(2)-vector space).

Since the representation (R,cpu) is universal, Ri(p) is a module for
H = G(p)/Q{p), which is isomorphic to Q(p)/{(p(p)) by (7.4.1). Put

H(r) = (G(p) n G(r))Q(p)/Q(p).

Directly by the definition we have the following

Lemma 7.5.5 Both 7i(r) and 7(r) are H(r)-submodules in #i(p). •

Let (Ri{p),x) be the representation of the (extended) point-line in-
cidence system of Jf = res^(p) as defined in the paragraph preceding
(7.4.1). Let Ji(r) and J(r) be the sets of lines in 'S containing p and a
point from T\(r) and T(r), respectively. Since a point in 0 cannot be
collinear to exactly two points on a line, we observe that

|Ji(r)| = |r,(r)|and|J(r)| = |r(r)|.

In these terms 7i(r) and 7(r) are generated by the images under x of the
lines from Ji(r) and J(r), respectively.

Up to conjugation in H the submodule 7(r) depends on the number j
such that r G P2(p). Since

it is natural to expect that when ĉ  is larger, I(r) is more likely to be
the whole of R\(p). This informal expectation works, so we proceed
according to it and put

c\ = max ci,
is;st

so that a = 3,1,1,1 and c\ = 27, 9, 63, 135 for G = Fi'24, J4, BM, and
M, respectively.

For the remainder of this section we assume that r e

Lemma 7.5.6 There is a subgraph A in F, such that
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(i) A contains p, r, r ( p ) n r ( r ) and the Q{p)-orbit ofr;
(ii) A is isomorphic to the collinearity graph of the polar space 3? =

^*(Q) of the classical orthogonal groups fi isomorphic to ftjj"(2), &£(2),
Q9(2) ^ S8(2) and Qf0(2)/or G = Fi'24, J4, BM, and M, respectively;

(iii) the lines of SP are those ofS contained in A;
(iv) the action induced on A by the stabilizer of A in G contains Q.

Proof. When G = Fi'2A we take A to be the subgraph 0 as in the proof
of (7.3.8).

When G = J4 we first embed p and r in the sextet subgraph S as in
(7.1.5). Then p and r can be treated as sextets refining a unique octad
B, say (compare Proposition 3.3.5). We take A to be the subgraph in S
induced by all the sextets refining B. Then the properties of A stated
in the lemma follow from the basic properties of the S(5,8,24) Steiner
system.

When G = BM or M we take A to be the subgraph £ as in the proof
of (7.3.10) or ¥ as in the proof of (7.3.11), respectively. •

Remark. We could also take a = 1 when G = Fi24. Then proceeding
as we did when G = J4 we would produce a subgraph A which is the
collinearity graph of j

It follows from the fundamental property of dual polar spaces that r
is collinear to exactly one point on every line containing p, which gives
the following

Lemma 7.5.7 Ji(r) is the set of lines in the polar space & as in (7.5.6)
containing p. O

Let fi be the restriction to A of the representation mapping cpu and Y
be the subgroup in R generated by the image of n, so that {Y,n) is a
representation of &.

Lemma 7.5.8 (Y,n) is the universal representation of ^(fi), so that Y is
elementary abelian, isomorphic to the natural orthogonal module o/Q.

Proof. The result is obtained by comparing of the subgroup in G
generated by the elements <p(x) taken for all x e A with (3.6.2). •

Combining (7.5.7) and (7.5.8) we obtain our next result.

Lemma 7.5.9 The following assertions hold:

(i) 7,(r) coincides with Yi(p) = Yx(p)/Y0(p);
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(ii) 7i(r) is isomorphic to the universal representation group (module) of
res^p);

(iii) 7i(r) is the natural (orthogonal) module ofTl^ Jig (2), Qj(2), J27(2)
or fig"(2) for G = Fi'24, J4, BM, or M, respectively;

(iv) the action induced by H(r) on T\(r) contains IT. •

The square and the commutator maps on R\(p) induce on R\(p)
quadratic and related bilinear forms which are H-invariant. These forms
will be denoted by the same letters 9 and /J as the forms introduced
before (7.1.4). This should not cause any confusion in view of (7.4.1).
Notice that if G = Fi'2i, J4, or M then /? is nonsingular (isomorphic to
the corresponding form on Q{p)) and if G = BM then the radical of ft is
one dimensional and coincides with the kernel of the homomorphism

Since Y is abelian by (7.5.8), we have the following.

Lemma 7.5.10 The submodule 7i(r) is totally singular with respect to /?
and contains the radical of p. D

The following result is of crucial importance.

Lemma 7.5.11 The orthogonal complement ofl\(r) with respect to /? is the
only maximal H(r)-submodule in Ri(p) containing Ii(r).

Proof. If G = Fi2i then the result is immediate, since 7\(r) is a maximal
totally singular subspace on which H (r) acts irreducibly.

In the remaining three cases we make use of the fact that both c\ and
na (which is the number of Q(p)-orbits in F^p), equivalently, the index
of H(r) in H) are odd numbers. This means that both H(r) and the
stabilizer in H{r) of a line / from Ji(r) contain a Sylow 2-subgroup S2 of
H. We claim that S2 fixes a unique hyperplane in R\(p) which contains
the radical of /? and that this hyperplane is the orthogonal complement
of / with respect to p. This claim is true by (4.4.9), (5.2.4), and (5.3.4)
for G = J4, BM and M, respectively (notice that the hyperplanes in A
containing the radical are in a natural bijection with the hyperplanes
in A ). Hence an /J(r)-submodule of Ri(p) containing 7i(r) must be
contained in the intersection of the P(l) taken for all / € Ji(r) and the
proof follows. D

Now in order to establish the equality 7(r) = ^Ri(p) all we need to do
is prove the following.
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Lemma 7.5.12 There is a line l\ £ J\(r) and a line /2 e J(r) such that
j3(/i,/2) = l.

Proof. As above in this chapter let T and T* denote the collinearity
graph of Jf = res^(p) and of the enriched point-line incidence system
of Jf, respectively. Then Ji(r) and J(r) are subsets of the vertex set.
Furthermore, J(r) is the union of J\{r) and the set of vertices adjacent in
T* to a vertex from J\(r). Let l\ £ Ji(r). We have to show that there is
a vertex in J\(r) adjacent in T* to a vertex which is not perpendicular to
/j with respect to /?. By (7.5.6) and its proof we can easily identify Ji(r).

If G = Fi'24 then J\(r) induces the Schlafli subgraph (cf. Lemmas 4.14.9
and 4.14.10 in [Iv99]), which contains 10 vertices from Y(/i) and 16
vertices from F^ii). Since the vertices from Tj(/i) are not perpendicular
to /i with respect to /J, the result is immediate from the suborbit diagram
ofT.

Let G = J4. Then by (7.5.9 (hi)) the subgraph A in T* induced by
J\{r) is a 3 x 3 grid. Using the fact that in this case the subgraph A is
contained in the sextet subgraph S, it is easy to check that one of the
parallel classes of triangles in A must be triangles from the enriched but
not from the original point-line incidence systems. Hence J\{r) is the
complete preimage of a triangle with respect to the covering

T s r(*(3 • M2 2 )) -> r(^(M22)).

Hence Ji(r) contains a vertex from ~X\{h) and since the vertices in T\{x)
are not perpendicular to l\ the result is again immediate from the suborbit
diagram of T.

If G = BM then J{(r) is the point-set of a ^(S6(2))-subgeometry in Jif,
it contains a vertex from T\(h) which is adjacent to a vertex from Yi(li)
and the latter is not perpendicular to /j .

Finally, if G = M, then the result is immediate from the suborbit
diagram since the vertices in Y\{h) are not perpendicular to l\. •

The results (7.5.10) and (7.5.11) can be summarized in the following.

Proposition 7.5.13 / / r € F^p), then zr normalizes R\(p). n

We are well prepared to prove the final result of the section.

Lemma 7.5.14 Let R\p\' be the subgroup in R[p\ generated by Ri(p) and
the elements z, taken for all r € Fj(p). Then

(i) R[p\' = R[p\ ifG = Fi'14, BM, or M;
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(ii) R[p\' has index 2 in R[p\ if G = J4;

(iii) (7.5.1) holds, i.e., R\(p) is normal in R[p\.

Proof. Let q G F(p). Then by (7.5.2) the quotient X of Ri{q) over
Ri(p)nR\(q) is elementary abelian of order 2m~l. Furthermore the orbits
of the action of G(p) n G{q) on this quotient are described in Table V.
By (7.3.5) the elements zr for r G FSj(p) n T{q) map onto the orbit 0 of
lengths 6, 15, 77 and 759 for G = Fi'24, J4, BM, and M, respectively. In
the first, third and fourth cases 0 generates the whole of X. Indeed, in
the latter two cases X is irreducible and in the first case 0 is outside the
unique proper submodule in X, so (i) follows.

Suppose that G = J4. Then the elements r G Fj(p) are contained in
O2(G(p)) (which has index 2 in G(p)) and hence the index of R[p\' in
R [p\ is at least 2. Let us show that it is exactly 2. The orbit 0 generates
the unique codimension 1 submodule X' in X. On the other hand, by
(7.3.5 (ii)) and (7.3.9) the orbit O\ of length 10 formed by the images of
the elements zs for s G T\{p) n T(p) generates the whole of X. Hence the
set E = {zs I s € Flip)} together with i?i(p) generates the whole of R[p\.
Let us say that two elements zs and zt from E are equivalent if zs = zty
for some y G R[p\. Since [X : X'] = 2 we conclude that two elements
zs and z( are equivalent whenever s and t are adjacent to a common
vertex in F(p). Now it is very easy to see that all the elements in E are
equivalent and (ii) is established.

By (i), (ii) and (7.5.13) in order to prove (iii) all we have to show is that
when G = J4 for every s G T\(p) and q G F(p) we have [zs,zq] G Ri(p).
But this is quite clear since by the above paragraph zs = zty for some t
adjacent to q and y G R[p\'. O

7.6 R[p\ is isomorphic to G(p)

By (7.5.1) we can consider the factor-group

R[P\=R[P\/RI(P)-

Since the elements <p(r) taken for all r G N(p) generate the stabilizer G(p)

of p in G, the homomorphism xp : R —> G induces a homomorphism yJ

°f R[p\ o n t o

H := G(p)/O2(G(p))

(isomorphic to 32 • l/4(3).22, 3 • AutM22, Co2, and C01 for G = Fi'2A, J4,
BM, and M).
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In order to complete the proof of (7.2.4 (i)) it is sufficient to show that
y is an isomorphism, which of course can be achieved by showing that
the order of R[p\ is at most that of H.

Put 8 = 1, 1, 2, and 1 for G = Fi'2A, J4, BM, and M, respectively. Let
Z be the set of images in R[p\ of the elements zr taken for all r € F|(p)
and R\_p\* be the subgroup in R[p\ generated by Z.

Lemma 7.6.1 The following assertions hold:

(i) R[p\' = R[p\ if G = BM or M and R[p\' has index 2 in R[p\ if
G = Fi24 or Jt;

(iii) O2(G(p)) is in the kernel of the action of G(p) on R[p\';
(iv) \p maps Z bijectively onto a conjugacy class 3C of involutions in O2(H);
(v) 9C is the class of2A, 2A, IB or 2A involutions in O2(H)for G = Fi24,

Jn, BM, or M, respectively.

Proof, (i) and (ii) follow from (7.5.14) and its proof. Recall that R|j>J'
is also generated by the images of the elements z, taken for all r e F^(p).
Let A be the subgraph in F which is as in (7.5.6) for G = J4, BM and M
and as in the remark after that lemma for G = Fi'24. Then by (3.6.2 (iii))
the images of the elements zr for all r e A n T^ip) are the same. Since
the stabilizer of A in G(p) contains Q(p), (iii) follows. Since k& = n$ in
terms of Section 7.3, and the equality sQ(p) = tQ(p) for s,t e Tj(p) holds
if and only if s and t are in the same g(p)-orbit, we obtain (iv). Finally
(v) is by (7.3.5). •

Let J be the involution geometry of O2(H)/Z{O2(H)), whose points
are the ^-involutions (where 3E is as in (7.6.1 (v))) and whose lines are the
3"-pure Kleinian four-subgroups. Then in the notation of the previous
chapter J is J(U4(3)), Jr(M22), J(Co2,2B) or £{Co\) for G = Fi'24, J4,
BM or M, respectively. By (7.6.1 (iv)), (xp)~l is a bijection of the point-set
of £ onto Z, the latter being a generating set of involutions in R[p\'.
On the other hand, by (6.3.5), (6.4.4), (6.5.7) and (6.6.3), O2(H) is the
universal representation group of./. Thus in order to achieve the goal of
this section it is sufficient to show that (v?)"1 maps every line of J onto a
Kleinian four-subgroup (i.e., that (R[p$*,(y)~l) is a representation of J).
Towards this end we consider subgroups generated by various subsets
ofZ.

Lemma 7.6.2 Let q be a point collinear to p, I be the line of <& containing
p and q (so that I is a point of Jf = resg(p)). Let Z~q be the set of images
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in Z of the elements zr taken for all r € T\(p) n T(q). Then for G = Fi'24,
JA, BM, and M the set Zq is of sizes 15, 15, 330, and 759, respectively.
The subgroup Tq in R[p\', generated by Zq is elementary abelian of orders
24, 24, 210 and 211, respectively, and it maps isomorphically onto O2(H(l)).

Proof. The result is immediate from (7.4.1) and (7.6.1 (iv)) in view of
Table V. D

Lemma 7.6.3 Let G = Fi24 or J4 and S be the sextet subgraph in the
collinearity graph F of & as in (7.1.5), containing p. Let Z= be the set
of images in Z of the elements zr taken for all r e F j f p j n S and let T=
be the subgroup in R[p\* generated by Z=. Then Z= is of size 15, T= is
elementary abelian of order 24 and

(i) if G = Fi'24, then Ts maps isomorphically onto Oi(H(w)), where w is
an element of type 3 in #P;

(ii) if G = J4, then T= maps isomorphically onto Oi(H(Sf)), where Sf is a
• S4(2))-subgeometry in jHf.

Proof. By (4.3.1) the elements zr taken for all r e S generate in R
an elementary abelian subgroup of order 211 which maps isomorphically
onto 0 2 W , where X ~ 2U.M24 is the stabilizer of 3 in G. By (4.3.2) the
image Ts of this subgroup in ^LPJ* is elementary abelian of order 24. •

Finally we obtain the main result of this section.

Proposition 7.6.4 The following assertions hold:

(i) (KLPJ*,(V>)~') is a representation of the involution geometry J';
(ii) R[p\' ~O\H);
(in) R[p\=G{p).

Proof. The assertion (i) follows from (6.4.1), (6.3.2), (6.5.3 (i)) and
(6.6.1) for G = Fi'24, 4̂> BM and M, respectively. We deduce (ii) from (i),
applying respectively (6.4.4), (6.3.5), (6.5.7) and (6.6.3). Now (iii) follows
from (i) and (ii) in view of (7.6.1 (i)). D

7.7 Generation of G(p) n G(q)

Let p and q be collinear points in ^ and let / be the line containing p
and q. Let K~(l), K+(l) and K(l) be the kernels of the actions of G(/) on
the point-set of /, on the set of elements of type 3 and more incident to
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I and on res*(/), respectively. Then K(l) = O2(G(/)), K+(l)/K(l) £ Sym3

and K~(l) coincides with the subgroup

G(p)C)G(q)

in which we are mainly interested in this section. Recall that q> is the
mapping which turns G into a representation group of ^ and that N(p)
is the set of points in ^ which are at distance at most 2 from p in the
collinearity graph F of ^ and which commute with p (as involutions in
G). The goal of this section is to prove the following.

Proposition 7.7.1 The elements cp(r) taken for all r G N(p)(~)N(q) generate
K-(l) = G(p)nG(q).

The following statement is easy to deduce from the shape of the
parabolic subgroups corresponding to the action of G on (S.

Lemma 7.7.2 For G = 3-Fj'24, J4, IBM, and M, respectively, the following
assertions hold:

(i) the kernels K(l) has orders 217, 217, 233, and 235;

(ii) the quotient K~{l)/K(l) S G(l)/K+(l) is isomorphic to 3 • Alt6, Sym5,

AutM22, and M24. •

Lemma 7.7.3 The following assertions hold:

(i) the elements q>{r) taken for all r e T{p) U T{q) generate K+(l);

(ii) the elements cp(r) taken for all r € (r(p)r\N(q))U(T(q)r\N(p)) generate

Proof. It is clear (see for instance (7.4.1)) that the elements <p(r) taken
for all r e T(p) generate Q{p). Then the result is by (7.3.3) and the order
consideration. Q

Let %/ be the residue in ^ of the flag {p, 1} and Y be the flag-transitive
automorphism group of <W induced by K~(l). Then for G = Fi24, J4, BM,
and M, respectively, the geometry ^ is isomorphic to 0(S4(2)), 1§(Alts),
0(M22) and ^(M24) while 7 = Alt6, Sym5, AutM22, and M24. The next
result follows from the basic properties of <W and Y.

Lemma 7.7.4 In the above terms the group Y is generated by the subgroups
Oi(Y(%)) taken for all points n in <&. •
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Notice that n in (7.7.4) is a plane in 0 incident to p and /. For such
a plane n let s be a point incident to n but not to /. Then clearly every
r € F(s) is at distance at most 2 from both p and g. We know that the
elements q>{r) taken for all r € T(s) generate Q(s). The latter subgroup
stabilizes n and induces on its point-set an action of order 4. It is easy
to see that the kernel Q(s, n) of this action is generated by the elements
cp(r) taken for all r e F(s) n N(p) n

Lemma 7.7.5 The image of Q(s,n) in Y = K~{l)/K(l) coincides with
02{Y{n)).

Proof. The result is by the order consideration in view of (7.3.3). •

Now (7.7.1) is by (7.7.3 (ii)) and (7.7.5) in view of (7.7.4).

7.8 Reconstructing the rank 3 amalgam

In this section we use (7.2.4) in order to deduce (7.2.3). We know by
(7.2.4 (i)) that the restriction of the homomorphism

i o : J ? - > G

to R[p\ := K[N(p)] (where N(p) is the set of points commuting with
p and at distance at most 2 from p in the collinearity graph of ^ ) is
an isomorphism onto G(p) which is the stabilizer of p in the (possibly
unfaithful) action of G on ^ . Let \pp denote the restriction of y> to R\j>\.
By (7.2.4 (ii)) if r is a point collinear to p then the restrictions of \pp and
ipr to R[p\ C\R[r\ induce the same isomorphism (which we denote by
t/y) onto G(p) n G{r).

We formulate explicitly an important property of ^ .

Lemma 7.8.1 For a point p of <$ the set F(p) of points collinear to p
(treated as central involutions in G) generate an extraspecial 2-group Q{p).
A line and plane containing p are elementary abelian subgroups in Q(p) of
orders 22 and 23, respectively. If n is a plane then its stabilizer G(K) in G
induces the natural action ofL3(2) on the set of1 points contained in n. •

Let I = {p = Pi,P2,Pi} be a line containing p and G(/) be the stabilizer
of / in G. Then G(l) induces the group Symy on the point-set of /. If
K~(l) is the kernel of this action then
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The images of the G(l)r\G(pi) in the quotient G(l)/K-(l) for i = 1,2, and
3 are of order 2 and they generate the whole quotient.

This observation suggests the way in which a preimage of G(l) in R
can be defined. For 1 < i < 3 put

RlPi,l\=xp;i
[(G(Pi)nG(l))

and

Lemma 7.8.2 The following assertions hold:

(i) the restriction of \p to R[l\ is an isomorphism onto G(l) (we denote
this isomorphism by xpi);

(ii) the restriction ofxp to R\_p\ C\R[l\ is an isomorphism onto G(p)C\G(l).

Proof. Since \pPl is an isomorphism of R[pi\, it is immediate from the
definition that R[l\ maps surjectively onto G{1) and in order to establish
(i) it is sufficient to show that the order of R[l\ is at most that of G(l).
Let

Then by (7.2.4 (i) and (ii)) R~ [l\ is independent of the particular choice
of i £ {1,2,3} and is of index 2 (in particular it is normal) in R|_p,,/J
for 1 < i < 3. Hence R~[l\ is a normal subgroup in R[l\ which maps
isomorphically onto K~(p). Hence to complete the proof of (i) it is
sufficient to show that R^J : = ^UJ/^~L'J is isomorphic to Sym^. Let ?,•
be the unique non-trivial element in the image of R\j>t, l\, where 1 < i < 3.
In order to identify R\l\ with Sym^ it is sufficient to find elements T, in
R such that i;.R~ ['J =

(ii\l<i<3)R-ll\/R-ll\=Symi.

Towards this end let n be a plane containing /, and q a point in n but not
in /. Since Q(p) is extraspecial and n is an elementary abelian subgroup of
order 23 in Q(p), it is easy to see that there is an element t\ e Q(p) which
commutes with q and conjugates pi onto pi. Then t\ e G(q) and induces
the transposition (p\)(p2,Pi) on the point-set of/. In a similar way we can
find elements ti and (3 contained in G(q) n Q(pi) and G(q) n Q(pi), which
induce on / the transpositions {.pi)(p\,Pi) and (pi){pi,P2), respectively.
Then

(ti I 1 < i < 3)K~(l)/K-{l) S Sym}.
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Let?/ be a preimage of f, in G(q), 1 < i < 3, and T,- = y^'fo)- Since y)q is
an isomorphism of R[q\ onto G(g) it is easy to see that the T, possess the
required property and the proof of (i) is complete. Now (ii) is immediate
from (i) and the definition of R[l\. •

Now let n = {p = p\,P2,-,Pi} be a plane containing / (and hence p as
well). Then the stabilizer G(n) of n in G induces on the point-set of n
the natural action of 1.3(2) (compare (7.8.1)) with kernel

7

and the image of G(n) n G(pt) in G{n)/K~{n) is a maximal parabolic in
Li(2) isomorphic to Sym^. Put

and

R\n\ = (R[p,,n\ | 1 < i < 7).

Lemma 7.8.3 The following assertions hold:

(i) the restriction of xp to R\n\ is an isomorphism onto G(n) (we denote
this isomorphism by \pn);

(ii) the restrictions ofxp to R[p\ ni?[irj and to R[l\ Pi -RL̂ J are isomor-
phisms onto G(p) n G(n) and G(l) C\ G(n), respectively.

Proof. Again by the definition R[n\ maps surjectively onto G(n). Let

By (7.2.4 (i) and (ii)) since the points in n are pairwise collinear, R~\n\
is independent of the particular choice of i G {1,...,7} and is normal in
each R[pi,n\ and hence it is normal in R[n\. Put R[7tJ = R L ^ J / ^ M -
In order to prove (i) we have to show that ^.[n\ = L^{2). We use the fact
that Li(2) is generated by the conjugacy class of its transvections.

Let l(q, m) be an element from G(n) which induces on resort) = pg(2,2)
the transvection whose centre is q (which is a point) and whose axis is m
(which is a line containing q). Let

and t(q,m) be the image of t(q,m) in R[n\. By (7.2.4) if ri and r2 are any
two points fixed by H(q,m) (i.e., r\,ri e m) then

\p-l(t(q,m)) = v^'
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which shows that t(q, m) is contained in R [r, n\ for every r e m. Hence
l?Lr>tJ contains 9 elements t(q,m) and the images of these elements in
the quotient R[n\ generate the whole image of R[r,n\ m the quotient
(isomorphic to Sym^). Hence R[n\ is generated by the above defined 21
elements t(q, m). We claim that these elements form a conjugacy class in
R[n\. Towards this end we need to show that for any two flags {q\,m\)
and (q2, m^) there is a flag (qy, m3) such that

t(q\,mi)t(q2,m2)~t(qi,ml) = t(q3,m3).

The lines mi and mi always have a common point r, say. Then ~r(q\,m\)
and 7(^2; "12) are contained in G(r) and the conjugate 5 of 7(^2. WJ2) by
?(4i>wi) induces a transvection on n (the same as z(qi,ni3) for some flag
(q3>m3)). Then the image of \p~l(5) in R[n\ coincides with £(43, m3) and
the claim follows. Since G(n)/K~(n) = L3(2) is a homomorphic image
of R[n\, by (6.1.2) we have either R\n\ S L3(2) or 5lnJ = L3(2) x 2. We
can see inside the image of R\jp,n\ in R\n\ that if /h/2,'3 are the lines in
n containing p, then

which excludes the latter possibility and completes the proof of (i). Now
(ii) is immediate from (i) as is the fact that the relevant restrictions are
surjective by the definition of R[n\. •

Now in order to complete the proof of (7.2.3) it is sufficient to show
that Q) generates the whole of R. Let O = {p, I, n} be the flag associated
with 3) and write 3){<&) for 3) to emphasize the flag. Clearly it is sufficient
to show that the subgroup in R generated by S>(<3>) contains the amalgam
®(O') for every flag $ ' of type {1,2,3} in ^ . Furthermore, since ^, being
a geometry, satisfies the connectivity conditions, it is sufficient to consider
the case when |<I> n O'| = 2.

In order to argue in a uniform way put O = {a1.a2.a3}. Once again
by the connectivity of 'S and the flag-transitivity of G we have

G(«,) = (G(aO n G(a2), G(a,) n G(a3)>.

Since xp is an isomorphism when restricted to 3>(<&), we have

*L«iJ = W«iJ n/U«2j,KL«,J riK|a3j).

Hence the subgroup in R generated by ®({ai,a2,a3}) contains the amal-
gam ^({a',,a2,a3}) for every OL\ of appropriate type incident to a2 and
a3.

Thus (7.2.3) is proved and in view of (7.2.2) it implies (7.1.3).
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7.9 0(34371 • BM)

In this section we prove

Proposition 7.9.1 The universal representation module of <^(34371 • BM) is
zero-dimensional.

Let §? = 0(34371 • BM), <S = <S{BM) and x : i -> 0 be the correspond-
ing 2-covering. Let (#, <pu) be the universal representation of ^ , where
R = 2 • BM (cf. (7.1.3)). If v is the composition of x and <pu, then clearly
(/?, v) is a representation of ^. Let x be a point of & and x = x(5c). Put
3f = res~(x) = 0(323 • Co2), tf = res<?(x) = ^(Co2) and let \i denote the
2-covering of M? onto ^f induced by i- Let F be the collinearity graph

Lemma 7.9.2 For the representation (R, v) the following assertions hold:

(i) i?i(3c) is of order 224 a«d rte commutator subgroup of R\(x) is (v(3c));

(ii) i?i(x) = A is the universal representation group of &C and the
universal representation module of ffi;

(iii) R\ (x) is the universal representation group of the point-line incidence
system £f = (IT, L) where II = {x} U F(x) and L is the set of lines of
$ contained in II.

Proof. Since v is the composition of/ and (pu, (i) follows from (7.1.3),
(7.1.2) and the definition of ^ in terms of central involutions in BM. And
(ii) follows from (5.2.3) and (5.5.1). Since by (5.2.3), A*23) is the universal
representation of ^f, (iii) follows from (7.4.1). •

Let f be the collinearity graph of §? and y" = (ft, L) be the point-line
incidence system where II = {x} U F(x) and L is the set of lines of <&
contained in II. Notice that the 2-covering x induces a morphism of Sf
onto the point-line system y as in (7.9.2 (iii)). Let (V, \p) be the universal
abelian representation of ^ . Then by (2.6.2) and (5.5.1) the section V\(x)
(defined with respect to F of course) is a quotient of A , in particular,
the representation of $? induced by xp factored through the 2-covering

By the above paragraph we observe that for p g l l w e have \p(y) =
xp(z) whenever x(y) = xffl- Thus the restriction of rp to II is a composition
of the morphism of Sf onto Sf induced by x a n d an abelian representation
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of the point-line incidence system SS. Hence by (7.9.2 (iii)) ip(Tl) is
an abelian quotient of the group Ri(x). By (7.9.2 (i)) the commutator
subgroup of R\(x) is generated by the image of x under the corresponding
representations. From this we conclude that ip(x) = 0 and since this holds
for every point x the proof of (7.9.1) is complete.



Part II

Amalgams





8
Method of group amalgams

In this chapter we collect and develop some machinery for classifying the
amalgams of maximal parabolics coming from flag-transitive actions on
Petersen and tilde geometries.

8.1 General strategy

Let f be a P- or T-geometry of rank n > 3, let <J> = {xu...,%„} be a
maximal flag in 'S (where x, is of type i). Let G be a flag-transitive
automorphism group of ^ and

tf = {G, | 1 < i < n}

be the amalgam of maximal parabolics associated with this action and
related to the flag <D (i.e., G, = G(xt) is the stabilizer of x, in G). Then <8
can be identified with the coset geometry ^(G,s/) and it is a quotient of
the coset geometry #(t/(j/), $4) associated with the universal completion
U(jrf) of si. Our goal is to identify si up to isomorphism or more
specifically to show that it is isomorphic to the amalgam associated with
a known flag-transitive action.

Proceeding by induction on n we assume that

(a) the residue res^(xi) is a known flag-transitive P- or T-geometry;
(b) the action G\ = G\/K\ is a known flag-transitive automorphism

group of res^(xi);
(c) if L\ is the elementwise stabilizer of the set of points collinear to

p, then K\/Li is a known G[/K\ -admissible representation module
of JF (which is the quotient of F(res#(xi)) over a Gi/Ki-invariant
subgroup.)

163
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We achieve the identification of si in a number of stages described
below.

Stage 1. Bounding the order of Gn.

At this stage (see Chapter 9) we consider the action of G on the
derived graph A = A(0) of <$. Recall that the vertices of A are the
elements of type n in ^ and two of them are adjacent whenever they are
incident to a common element of type n — 1. Then Gn is the stabilizer
of the vertex xn in this action. We assume that the residue res#(xi) is
such that a so-called condition (*) (cf. Section 9.3) holds. Under this
condition we are able to bound the number of chief factors in Gn and
their orders.

Stage 2. The shape of {Gi,Gn}.

At this stage we match the structure of Gn against the possible structure
of G\ about which we know quite a lot by the assumptions (a) to (c).
An inspection of the list of the known P- and T-geometries (which
are candidates for the residue of a point in $) and their flag-transitive
automorphism groups shows that either the condition (*) holds (and
hence Gn is bounded on stage 1) or the universal representation module
is trivial. In the latter case we either exclude the possibility for the residue
altogether by Proposition 6 (see the Preface) or bound the number of
chief factors in G\ and Gn. As a result of this stage (to be accomplished
in Chapter 10) we obtain a limited number of possibilities for the chief
factors of G\ and Gn which satisfy certain consistency conditions. These
possibilities (which we call shapes) are given in Table Villa and Table
Vlllb. These shapes are named by the corresponding known examples if
any.

Stage 3. Reconstructing a rank 2 subamalgam.

At this stage we start with a given shape from Table VIII and identify
up to isomorphism the amalgam &§ = {Gi,G2} or 3C = {Gn,Gn_i}. In
the former case we call our strategy direct and in the latter we call it
dual. Let us first discuss the direct strategy. From stage 2 we know the
chief factors of Gi. These factors normally leave us with a handful of
possibilities for the isomorphism types of G\ which depend on whether
or not certain extensions split. We need to identify S% = {Gi,G2} up to
isomorphism. First we determine the type of ^ . By this we understand
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the identification of G\ and Gi up to isomorphism and the specification
of G\2 = G\ n G2 in G\ and G2 up to conjugation in the automorphism
group of G\ and G2, respectively. Since the action G\ of G\ on res^(xi)
is known by assumption (a), the subgroup Gn of G\ is determined
uniquely up to conjugation. Now for G2 we should consider all the
groups containing Gn as a subgroup of index 3. Towards this end we
consider the kernel K̂~ of the action of Gi on the point-set of X2 (which
is clearly the largest normal subgroup of G2 contained in Gn). It can be
shown that G2/K2 is always isomorphic to Sym^ and hence we should
take for K "̂ a subgroup of index 2 in Gn (there is always a very limited
number of such choices). Next we calculate the automorphism group
of K^- Often the existence of the required automorphisms (of order 3)
of K2 imposes some further restrictions on the structure of G\ which
specify G\ up to isomorphism. After the type of 3d is determined we
apply Goldschmidt's theorem (8.3.2) to classify such amalgams up to
isomorphism.

Within the dual strategy K^_{ = Gn,n_i is a uniquely determined (up
to conjugation) subgroup of Gn and Gn_i contains K+_{ with index 2.

Stage 4. Reconstructing the whole amalgam si.

Here we start with the rank 2 subamalgam 8) = {Gi,G2} or % =
{Gn,Gn-\) reconstructed on stage 3 and identify up to isomorphism
the whole amalgam J / . If we follow the direct strategy then as soon
as we know that @) = {Gj,G2} is isomorphic to the similar amal-
gam coming from a known example, we have finished by (8.6.1). In
the case of the dual (or mixed) strategy we apply ad hoc arguments
based on (8.4.2), (8.4.3), (8.5.1), similar to those used in the proof
of (8.6.1).

8.2 Some cohomologies

In this section we summarize the information on first and second
cohomology groups to be used in the subsequent sections. If G is a
group and V is a GF(2)-module for G, then HX(G,V) and H2(G,V)
denote the first and the second cohomology groups of V (cf. Sec-
tion 15.7 in [H59]). It is known that each of these groups carries
a structure of a GF(2)-vector space, in particular it is an elementary
abelian 2-group. The importance of these groups is due to the follow-
ing two well known results (cf. (17.7) in [A86] and Theorem 15.8.1
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in [H59], respectively). Another application of the first cohomology is
(2.8.2).

Proposition 8.2.1 If S = V : G is the semidirect product of V and G
with respect to the natural action, then the number of conjugacy classes of
complements to V in S is equal to the order of H1(G, V). In particular all
the complements are conjugate if and only if HX(G, V) is trivial. •

Proposition 8.2.2 The number of isomorphism types of groups S which
contain a normal subgroup N, such that S/N = G and N is isomorphic to
V as a G-module, is equal to the order of H2(G, V). In particular every
extension ofVbyG splits (isomorphic to the semidirect product of V and
G) if and only if H2(G, V) is trivial. •

Let us explain the notation used in Table VI. By Vn we denote the
natural module of SL^(2) = Alt$ or £L4(2) = Sym5, considered as a
GF(2)-module (notice that the action on the non-zero vectors is tran-
sitive). By Vo we denote the orthogonal module of 0^(2) = Alts or
0^(2) = Sym5. The orthogonal module is also the heart of the GF(2)-
permutation module on 5 points. By Vs we denote the natural 4-
dimensional symplectic module for Sym^ = S4(2) (or for Alt^ = S4(2)')
and of dimension 6 for Se{2). As usual %>\ \ and <€\ \ denote the irreducible
Golay code and Todd modules for M24 while #10 and "^IO denote the
irreducible 10-dimensional Golay code and Todd modules for AutM22
or M22.

The dimensions of the first and second cohomology groups in Table VI
were calculated by Derek Holt (whose cooperation is greatly appreciated)
using his share package 'cohomolo' for GAP [GAP]. Most (if not all) of
the dimensions were known in the literature. The first cohomologies of the
modules Vn, Vo and Vs are given in [JP76] and in [Pol71]. The dimensions
of Hl{Mw,q>\{) and H 1(M2A,#11) have been calculated in Section 9
of [Gri74]. The first cohomology of #10 is given in (22.7) in [A97].
The second cohomology of Vn and the non-triviality of H2(Vs,Syme)
are Theorems 2 and 3 in [Gri73] (the latter theorem is attributed to
J. McLaughlin). The triviality of H2(M24,#n) is stated in [Th79] (with
a reference to the PhD Thesis of D. Jackson.) Since a maximal 2-
local subgroup in the Fischer sporadic simple group Fi'14 is a non-split
extension of ^ n by M24, we know that H1{Mu,(6u) must be non-trivial
by (8.2.2).
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Table VI. Cohomologies of some modules
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dimF dim Hl(G,V) dim H2{G,V)

Alt5

Sym5

Alts

Sym5

Alt6

Sym6

S6(2)

M22

Aut M22

M22

Aut M22

M24

Vn 4

4

4

4

4

4

6

10

10

10

10

11

11

2

1

0

0

1

1

1

1

1

0

0

0

1

0

0

0

0

0

1

1

0

1

0

0

0

1

The situation described in the first and second rows of Table VI
deserves further attention

Lemma 8.2.3 Let A = Alts — SL2(4) and V = Vn be the natural module
of A treated as a 4-dimensional GF(2)-module. Let P = V : A be the
semidirect product with respect to the natural action. Let S be a subgroup
of Aut P containing InnP (where the latter is identified with P). Then P
is isomorphic to a maximal parabolic in PSL-${4) and

(i) P contains exactly four classes of complements to V and Out P =
acts faithfully on these classes;
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(ii) ifS/P is generated by a transposition then S is the semidirect product
of V and Sym$; S contains two classes of complements and it is
isomorphic to a maximal parabolic in Pl,Li(4);

(iii) if S/P is generated by a fixed-point free involution then S is the
semidirect product with A of an indecomposable extension V^ of V
by a l-dimensional module; S contains two classes of complements to

(iv) if S/P = 3 then S is isomorphic to a maximal parabolic in PGLy(A);
(v) if S/P is the Kleinian four group then S is the semidirect product

with A of an indecomposable extension V^ of V by a 2-dimensional
trivial module; S contains a single class of complements and the dual
of V^ is the universal representation module ofS{Alt$);

(vi) if S/P = 22 and contains a transposition then S is the semidirect
product of V^ and Syms containing two classes of complements;

(vii) if S/P = 4 then S is a non-split extension of V^ by Syms;
(viii) if S/P = Sym$ then S is isomorphic to a maximal parabolic in

PrL3(4);
(ix) if S/P = D& then S is the semidirect product ofV(2) and Syms;
(x) if S/P = AlU or SymA then S is the semidirect product of K(2) (iso-

morphic to the hexacode module) and Alts x 3 or (Alts x 3).2 (con-
sidered as a subgroup of 3 • Sym(,). Q

Let T = 3 • Symt and Vh be the hexacode module of T. Since
y = O-$(T) is of order 3 acting fixed-point freely on Vh, we immediately
obtain the following.

Lemma 8.2.4 #^(3 • Sym6, Vh) is trivial for k = 1 and 2. •

The following result is deduced from Table I in [Bel78] (see also
[Dem73]).

Proposition 8.2.5 Let d = dimHk(Ln(2), f\j V), where k = 1 or 2, 1 < i <
n — 1 and V is the natural module of Ln(2). Then one of the following
holds:

(i) d = 0;
(ii) d = 1 and the triple (n,i,k) is one of the following: (3,1,1). (3,2,1),

(3,1,2), (3,2,2), (4,2,1), (4,1,2), (4,3,2), (5,1,2), (5,4,2). •

The standard reference for the next result is [JP76].

Lemma 8.2.6 Let Vs be the natural 2n-dimensional symplectic module of
S2n(2). Then dim H\S2n(2), Vs) = 1. •
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Notice that the unique indecomposable extension of the trivial 1-di-
mensional module by Vs is the natural orthogonal module of S2n(2) =

Lemma 8.2.7 The following assertions hold:

(i) Hl(Cou~tf24)) is trivial;

(ii) //1(Co2,A<22)) is 1-dimensional.

Proof, (i) Let G = Cox and V = A*24'. Since V is self-dual, by (2.8.2) we
have dimHl(G, V) = d i m C ^ G ) , where Vd is the largest indecomposable
extension of a trivial module by V. Let V be an indecomposable extension
of the 1-dimensional (trivial) module by V. Let cp be the mapping which
turns V into a representation module of ^(Coi), $ be the image of q> and
O be the preimage of O in V. Since the stabilizer in G of a point from
^{Co\) (isomorphic to 211 : M24) does not contain subgrous of index 2,
G has two orbits in O. Then the hypothesis of (2.8.1) hold and V must
be a representation module of ^(Coi), but since V is already universal
by (5.3.2), (i) follows.

(ii) Since A is an indecomposable extension of the trivial module
by A*22), and A*22) is self-dual Hl(Co2,A*22*) is non-trivial. Put V = A*23',
G = C02 and let q> be the mapping which turns V into the universal
representation module of ^{Co-i) (compare 5.2.3 (v)) and let O be the
image of cp. Let V be an indecomposable extension of the 1-dimensional
module by V and O be the preimage of $ in V. In this case the point
stabilizer contains a subgroup of index 2, so in principal G could act
transitively on $. Suppose this is the case. Then for v e <t> we have
G(v) S 210 : M22. Let S be the point-set of a ^(S6(2))-subgeometry & in
<§(CO-L) SO that |S| = 63 and the setwise stabilizer S of S in G is of the
form 2++8.S6(2) (compare (5.2.1)). We identify S with its image under <p
and let S be the preimage of S in V. Let v Ga, then on one hand

S(v) 3 2l0.2\Alt6 < 21O.M22)

is the stabilizer in G(v) of a ^(S4(2))-subgeometry in 0(M22). On the
other hand, S(tJ) is a subgroup of index 2 in the stabilizer in S of a point
from y and hence

which shows that S(£i) contains O2(S) and hence the latter is in the kernel
of the action of S on S. Thus the submodule W in V generated by the
vectors from S is a module for S(,{2) = S/02(S) with an orbit of length
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126 = |S| on the non-zero vectors. On the other hand, it is easy to deduce
from the proof of (5.2.3) that the submodule W in V generated by the
vectors from S is the universal (7-dimensional orthogonal) representation
module of Sf. By Table VI, W is the largest extension of a trivial module
by the 6-dimensional symplectic module Vs for $6(2). Hence W = W © U
for a 1-dimensional module U and there are no S -orbits of length 126,
which is a contradiction. Now arguing as in case (i) we complete the
proof. •

We will widely use the following theorem due to Gaschiitz (cf. Theorem
15.8.6 in [H59] or (10.4) in [A86]).

Theorem 8.2.8 (Gaschiitz' theorem) Let G be a group, p be a prime, V
be an abelian normal p-subgroup in G, and S be a Sylow p-subgroup in G.
Then G splits over V if and only if P splits over V. •

In terms of cohomologies the above result states that H2(G/V, V) is
trivial if and only if H2(P/V, V) is trivial. In fact this is an important
consequence of Gaschiitz' theorem which establishes an isomorphism
between H2(G/V, V) and H2(P/V, V) (cf. Theorem 15.8.5 in [H59]).

Lemma 8.2.9 Let G be a group and V be a GF(2)-module for G where
the pair (G, V) is either from Table VI, except for {Alts, Vn), or one of

*24* ?22)
the pairs (Coi.A*24*), (Co2,7?22)). Then the action of G on V is absolutely
irreducible.

Proof. This is all well known and easy to check. In fact, in each case
there is a vector v e F* such that x is the only non-zero vector in V
fixed by G(x). D

Notice that Alts preserves a GF(4) structure on its natural module Vn.

8.3 Goldschmidt's theorem

In this section we discuss the conditions under which two rank 2 amal-
gams are isomorphic.

Let si = {Ai,A2} and si' = {A\,A'2} be two amalgams, where B =
A\ nA2 and B' = A\ C\A'2; *; and *J are the group product operations in
Ai and A\, respectively, for i = 1 and 2. Recall that an isomorphism of si
onto si' is a bijection q> of

Ai U A2 onto A\ U A'2,
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which maps At onto A\ and such that the equality

<p(x *i y) = <p(x) *'i <p{y)

holds whenever x,y € At for i = 1 or 2. Equivalently, the restrictions
(pAl and (p,42 of (/) to A\ and /12 are isomorphisms onto A\ and -42,
respectively.

We say that the amalgams si and si' as described above have the
same type if for i = 1 and 2 there is an isomorphism xp^ of .4, onto A\
such that tp(l)(B) = B'. The pair TT = (\pm, i/)(2)) of such isomorphisms
will be called the type preserving pair. Being of the same type is certainly
an equivalence relation.

If q> is an isomorphism of si onto si' then clearly ((pAl,<pAl) is a type
preserving pair. On the other hand, it is easy to see that the type of si
is determined by

(1) the choice of A\ and Ai up to isomorphism, and
(2) the choice of B as a subgroup in A\ and A2 up to conjugation in the

automorphism groups of A\ and A2, respectively.

As an illustration we present an example of a pair of non-isomorphic
amalgams which are of the same type.

Let P = Sym% act as the automorphism group on the complete graph
T on 8 vertices and let & = {^1,^2} be the amalgam formed by the
stabilizers in P of two distinct (adjacent) vertices x and y. Then

P , S P 2 = Sym1 and B ^ Sym6.

Let P' = Ui(5) : 2 act as the automorphism group on the Hoffman-
Singleton graph F (cf. [BCN89]) and let 9* = {P^Pj} be the amalgam
formed by the stabilizer in P' of two adjacent vertices x' and y' of T'.
Then

P[ ^P^ Sym7 and B' S Sym6.

Since the subgroups in Symj isomorphic to Symt, form a single conjugacy
class, it is clear that the amalgams & and y have the same type. On the
other hand, these amalgams are not isomorphic for the following reason.

Let g e P be an element which exchanges the vertices x and y and
g' e P' be an element which exchanges x' and / . Then g conjugates Pi
onto P2 and vice versa while g' does the same with P[ and P'v Since the
setwise stabilizer of {x,y} in P is Sym^ x 2, g can be chosen to centralize
B. On the other hand, the setwise stabilizer of {x', y'} in P' is Aut Syms, so
g' always induces an outer automorphism of B' = Symt. Since Sym1 has
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a unique faithful permutation representation of degree 7 the cyclic type of
an element from Symi is well defined (unlike the cyclic type of an element
of Symt). By the above, a transposition from Pi, which is contained in
B, is also a transposition in Pi while a transposition from P[, which is
contained in B', is a product of three disjoint transpositions in P'v This
shows that 8P and 8P' cannot possibly be isomorphic. (Here we have
used the well-known fact that if we fix a degree 6 faithful permutation
representation of Sym^ then the image of a transposition under an outer
automorphism is a product of three disjoint transpositions.)

It is clear (at least in principle) how to decide whether or not two
amalgams have the same type. In the remainder of this section we
discuss how to classify the amalgams of a given type up to isomorphism.

We may notice from the above example that the existence of non-
isomorphic amalgams of the same type is somehow related to 'outer'
automorphisms of the Borel subgroup B. We are going to formalize this
observation.

Let si = {A\,Ai} and si' = {^i ,^} >̂e t w 0 amalgams of the same
type and let n = (t/;(1),t/;(2)) be the corresponding type preserving pair. If
the restrictions v>B'' and y)B' of \p^ and ip(2' to B coincide, then clearly
there is an isomorphism <p of si onto si' such that y w = (p^ for i = 1
and 2. In general

is an element of D = Aut B.
Let x(I' and x(2) be automorphisms of A\ and A2, respectively, that

normalize B. Then

is another type preserving pair and

where /g' (the restriction of x® to B) is an element of the subgroup D, in
D which is the image of the normalizer of B in Aut Aj (under the natural
mapping). Notice that by the definition every element of D, is of the
form X{B f o r a suitable x(i) € NAuu((B).

Lemma 8.3.1 In the above terms si and si' are isomorphic if and only if

Proof. Suppose first that c5(7i) = d2d\, where d, G D, for i = 1,2.

Choose x{i) S NAutAl(B) so that d^1 = X{B a n d d2 = xf- T h e n f o r the
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type preserving pair n' = ( V ^ ' V J V ^ Z ^ )
 t n e automorphism 3(n') is

trivial, which proves the required isomorphism between the amalgams.
Now if <p is an isomorphism of si onto si', then for the type preserving

pair E = ((pAl,(PA2)
 t n e automorphism 8(e) is trivial. On the other hand,

Ô) = (rp®)~l(PA, is an automorphism of At normalizing B and as we have
seen above

hence the proof. •

The next proposition which is a direct consequence of (8.3.1) is known
as Goldschmidt's theorem (cf. (2.7) in [G0I8O]).

Proposition 8.3.2 (Goldschmidt's theorem) Let si = {/li ,^} be a rank
two amalgam, where B — A\ n Ai is the Borel subgroup. Let D = AutJS
and let £>, be the image in D ofNAulAi(B)for i = 1 and 2. Then a maximal
set of pairwise non-isomorphic amalgams having the same type as si is in
a natural bijection with the set of double cosets of the subgroups D\ and
D2 in D. •

Since both D\ and D2 contain the inner automorphisms of B the
double cosets of D\ and D2 in D are in a bijection with the double cosets
of 0] and O2 in 0 where 0 = OutB and 0, is the image of D, in 0 for
i = 1 and 2.

If & = {Symy,Symy} is the amalgam from the above example, then
0 = OutSym6 is of order 2 while both 0\ and Oi are trivial. Hence
there are two double cosets and {38,!%'} is the complete list of pairwise
non-isomorphic amalgams of the given type.

In fact (8.3.2) is a very general principle which classifies the ways
to 'amalgamate' two algebraic or combinatorial systems of an arbitrary
nature over isomorphic subobjects. Exactly the same argument works
and gives the same result (compare [Th81] and [KL98]). Of course in
the general case there is no such thing as an inner automorphism.

8.4 Factor amalgams

Let si = {A,I I 1 < i < n} be an amalgam of rank n and M be a normal
subgroup in si. This means that M is a subgroup in the Borel subgroup
B = C\"=iAi which is normal in At for every 1 <L i < n. Then we can
construct the factor amalgam

si = si/M = {Aj/M I 1 < i < n}
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whose elements are the cosets of M in At for all 1 < i < n and group
operations are defined in the obvious way. Notice that the universal
completion (U(si), v)) of si is a completion of si which is the quotient
of (U(si),v) over the subgroup v(M). More generally, for every com-
pletion (G, q>) of si we can construct its quotient over q>{M), which is a
completion of si. We are interested in the following situation:

Hypothesis A. Let si = {At | 1 < i < n} be an amalgam, M be a normal
subgroup in si and si = si'/M be the corresponding factor amalgam.
Suppose further that (G,7p) is a faithful completion of si; (Gi,<pi) and
(G2,q>2) are faithful completions of si such that (G,7p) is the quotient of
(Gi,cpi) and {G2,<Pi) over (pi(M) and <pi{M), respectively.

We consider the above completions as being quotients of the universal
completion (U(si),v) of si. Since the (Gj,q>j) are assumed to be faithful,
the universal completion is faithful. In order to simplify the notation we
identify M with v(M). Let K\, Ki and K be the kernels of the natural
homomorphisms of U(si) onto Gi, Gi and G, respectively. Then (G\,<p\)
and {Gi, <pi) are isomorphic if and only if K\ = K2.

Lemma 8.4.1 Under Hypothesis A we have

(i) K =KiM = K2M;

(ii) Ki n M = K2 n M = 1.

Proof, (i) follows from the assumption that (G,7p) is a quotient of
(Gj,(pj) for j = 1,2, while (ii) holds since the (Gj,q>j) are faithful. •

Lemma 8.4.2 Under Hypothesis A if the centre of M is trivial, then the
completions (G\,(p\) and {Gi,q>2) are isomorphic.

Proof. By (8.4.1) for j=\ and 2 the subgroups Kj and M are disjoint
normal subgroups in U(si), hence they centralize each other. Hence for
i = 1 and 2 the subgroup Kt is a complement to Z(M) in CK{M). If
Z{M) = 1 then clearly K{ = CK{M) = K2 and the proof follows. D

By the above lemma the centre Z = Z(M) of M deserves a further
study. In view of Hypothesis A we can define an action of G on Z which
coincides with the action of Gj on the centre of cpj(M) (here (pj{M)
identified with M) by conjugation for j = I and 2.

Suppose that K\ ^ K2, then K\/{K\ C\K2) is isomorphic to a non-trivial
subgroup N in Z which is normalized by the action of G on Z(M). Let
(G, q>) be the completion of si which is the quotient of (U{si), v) over
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the normal subgroup {K\ nK2)M. Then (G,cp) is a completion of si and
(G,Tp) is its quotient over the subgroup N = K/(Ki (1K.2)M, isomorphic
to AT.

Lemma 8.4.3 Under Hypothesis A either (G\,q>{) and (G2, </>2) are isomor-
phic or there is a non-trivial subgroup N in the centre of M normalized by
the action of G and a completion (G,~v) of si such that there is a normal
subgroup N in G isomorphic to N and the isomorphism commutes with the
action of G = G/N; (G,<p) is the quotient of(G,<p) over N.

8.5 L3(2)-lemma

In this section we apply the technique developed in the previous section
to a particular situation, which is important for establishing uniqueness
of the rank 3 amalgam # = {Gi,G2,G3} when the rank 2 amalgam
38 = {Gi,G2} is given and satisfies certain properties.

When the amalgam 3b is given (usually it is isomorphic to the amalgam
associated to a known example) we can indicate G\i and G23 inside G\
and G2, respectively, by considering the actions of G\ and G2 on the
corresponding residues res#(xi) and res^(x2). The residue r e s ^ ^ ) is a
projective plane of order 2 on which G3 induces L}(2) with kernel Xf
(so that Kj is the largest subgroup in G123 normal in both G13 and G23).
This enables us first to indicate X f and then put Go = Nc,(K-T) for i = 1
and 2. Since G13 and G23 are the maximal parabolics associated with the
action of G3 on res#(x3) we have

Let 3 = {G13, G23}, G3 be the universal completion of 3) and ip : G3 —* G3
be the natural homomorphism. In order to establish the uniqueness of
m we need to show that the kernel K of xp is uniquely determined. Since
both Kf and K are normal subgroups in G3 and the restriction of ip to
K^ is an isomorphism, K < Cjx (ICf).

Lemma 8.5.1 Using the above terms suppose that CG,,(K^) = 1 for i = 1
and 2. Then K = Cg (K^), in particular, K is uniquely determined.

Proof. The result follows from the observation that L3(2) = G1/K3 is
simple and hence by the hypothesis Cc3(Xf) = 1. •

Now suppose that Z = Z(K^) is non-trivial. If there are two possible
kernels K and K', say, we consider the group
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which is generated by the image 2 = {D\,D2\ of the amalgam 3 in G3.
Then 3) is the amalgam of maximal parabolics in L^(2) associated with
its action on the projective plane of order 2. We formulate the uniqueness
criterion in the follow proposition.

Proposition 8.5.2 Let 88 = {G\,G^ be a rank 2 amalgam and /Cf be a
subgroup in Gn = Gi n G2. For i = 1 and 2 put Go = Nc.CKf). Let D, be
the image in Out £3" of G,3 and D = (D\,Di). Suppose that the following
conditions (i) to (iv) hold.

(i) CGo(X3-) < K3- /or i = 1 and 2;

(ii) D = Li(2) and 3> = {D\,Di} is the amalgam of maximal parabolics

associated with the action of D on the projective plane of order 2;

(iii) the centre Z of JCJ" is a 2-group;

(iv) each chief factor of G3 inside Z is either the trivial l-dimensional or
the 3-dimensional natural module for D (or its dual).

Then there exists at most one homomorphism \p of the universal completion
G3 0/{G13, G23} such that the restriction of xp to K^ is a bijection and

£ L3(2).

Proof. By (8.4.3) it is sufficient to show that the amalgam 3 does
not possess a completion G3 such that G?,/02(G{) = D = L3(2) and
02(63) is isomorphic to a D-invariant subgroup Y in Z. Since 3 maps
isomorphically onto its image in 63/02(63), such a group G3 must split
over 02(63) by (8.2.8) and hence it is isomorphic to a semidirect product
of Y and D = £3(2). Thus it is sufficient to show that in such a semidirect
product 7 : D every subamalgam that is isomorphic to £> generates a
complement to Y (isomorphic to L3(2)). Furthermore, we may assume
that Y is elementary abelian and irreducible as a module for D. Indeed,
otherwise we take Y\ to be the largest D-invariant subgroup in Y and
consider the semidirect product (Y/Y\) : D which again must be a
completion of 3. By (iv) up to isomorphism there are just two groups to
be considered: 2 x L3(2) and 23 : L3(2). These cases are dealt with in the
next lemma (8.5.3). •

Lemma 8.5.3 Let D = Lj(2) and 3 = {D\,Di} be the amalgam of maximal
parabolics associated with the action of D on the projective plane of order
2, so that D\ = Di = Sym4 and D\ n D2 is the dihedral group of order
8. Let X = Y : D = 23 : L3(2) be the semidirect product of D with its
natural module Y. Then
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(i) the universal completion of 3) does not possess non-trivial abelian

factor-groups;

(ii) 2 x Li(2) is not a completion of 3>;

(iii) every subamalgam in X isomorphic to 3> generates a complement to Y

in X;

(iv) X is not a completion of 3.

Proof. It is easy to see that all the involutions in Q> are conjugate,
which immediately implies (i) and then of course (ii) follows.

Since Hl(D,Y) is 1-dimensional by (8.2.5), X contains two classes of
complements to Y. Every complement is generated by a subamalgam
isomorphic to 3 and the subamalgams generating complements from
different classes cannot be conjugate. Hence in order to prove (iii) it is
sufficient to show that X (when it acts by conjugation) has on the set of
the subamalgams in X isomorphic to 3) at most two orbits.

Let {Di,D2) be a subamalgam in X isomorphic to 3. We assume
without loss of generality that D\ centralizes a 1-subspace in Y while
Z>2 normalizes a 2-subspace. Let {DuDi} be another subamalgam in X
isomorphic to 3. Since we classify the subamalgams up to conjugation,
we assume that {D 1,1)2} and {D\,Di} have the same image in the factor-
group X/Y and also that £>2 and D2 share a subgroup T of order 3.
Since Nx(T) = D12, T is contained in exactly two subgroups isomorphic
to Symi. Hence in order to prove that there are at most two Z-orbits
on the set of subamalgams isomorphic to 3 it is sufficient to show that
the subamalgams under consideration are conjugate whenever £>2 and
D2 share a subgroup Sym^. Put A = 02(^2) and A = O2(I>2)- Then A is
contained in the subgroup C = [YA, T] which is an elementary abelian
2-group and if A and A are distinct, they are the only subgroups in C
not contained in Y and invariant under B := D\ n D2. Hence there is
an element in Cy(B) which conjugates A onto A and hence it conjugates
Di = AB onto Di = AB. This shows that D2 and D2 are conjugate and
so we assume that Z>2 = D2.

Since D2 maps isomorphically onto its image in X/Y, we have D\ n
£>2 = D\ n D2. Furthermore the intersection is a Sylow 2-subgroup in
each of the four subgroups involved. This means 6)2(^1) = 02(5i). Since
we also have Nx(02(D\)) = Sym4 x 2, we must have D\ = D\. Finally
(iv) follows directly from (iii). •

The following lemma shows that the semidirect product of D = £3(2)
with the 8-dimensional Steinberg module is a completion of 3>.
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Lemma 8.5.4 Let X = S : D s 28 : L3(2) be the semidirect product of D
with the irreducible ^-dimensional Steinberg module S for D with respect
to the natural action. Let Q) = \P\,D-^ be the subamalgam in D as in
(8.5.3). Let z be the unique non-zero element in S centralized by D\ n £>2.
Then X is generated by the amalgam & = {D\,D{\ (which is isomorphic
to 9).

Proof. It is well known (cf. [JP76]) that Hl(D,S) is trivial. Hence all
the complements to S in X are conjugate. Furthermore, suppose that 3>'
is a subamalgam in X such that 3> and 2* have the same image under
the natural homomorphism \p of X onto X/S = D and 3)' generates
a complement to S in X. Then S> and 2)' are conjugate in X. On the
other hand, it is easy to check that \p{2>) = xp(S>') but 2) and $)' are not
conjugate in X. •

Incidentally (8.5.3) resembles Lemma 13.4.7 in [FLM88].

8.6 Two parabolics are sufficient

In this section we prove the following.

Proposition 8.6.1 Let <& be a P- or T-geometry of rank n > 3, G be a
flag-transitive automorphism group of & and let

Let (Jf,H) be a pair from Table I or II and let

rf(H,3f) = {Hi\l<i<n}.

Suppose that 8) = \G\,GT) is isomorphic to {H\,H2\- Then

in particular & is a quotient of the universal cover of Jtif.

Proof. We first claim that the subamalgam S> = {Gn, G23} is uniquely
specified in 08 up to conjugation by elements of Gn- Notice that 2) can
be defined as the image of {//13, #23} under an isomorphism of s/(H, JF)
onto J ^ ( G , IS). To establish the uniqueness, we observe that the subgroups
G13 and G123 in G\ are specified uniquely by the assumptions (a) and
(b) in Section 8.1. Furthermore G23 = (G123, Y), where Y is a Sylow
3-subgroup of !(£, so the claim follows. Notice that Kj is now also
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uniquely determined as the largest subgroup in Gn3 normal in both Gn
and G23. Now the conditions in (8.5.2) hold because of the isomorphism

and by Proposition 10 in the Preface. Hence the isomorphism type of
%> = {Gi,G2,G3} is uniquely determined by (8.5.2) and coincides with

that of {Hi, ff2, #3}-
If n = 3 then we have finished, so suppose that n > 4. Since res#(x4)

is the projective GF(2)-space of rank 3 which is simply connected, by
(1.4.6) G4 is the universal completion of {Gu,Gu,G-^}. Thus there is
a unique way to adjoin G4 to *$. We carry on in a similar manner to
adjoin all the remaining maximal parabolics. This effectively shows that
the universal completions of si{G,^\ <€, {HuH2,Hi} and s^(H,jf) are
pairwise isomorphic. •



9
Action on the derived graph

In this chapter we put the first crucial constraint on the structure of
the maximal parabolics associated with a flag-transitive action on a
Petersen or tilde geometry. The result comes by studying the action
of the flag-transitive automorphism group on the derived graph of the
corresponding geometry. The derived graph of a P- or T-geometry of
rank n is on the set of elements of type n and two vertices are adjacent
if they are incident to a common element of type n — 1.

9.1 A graph theoretical setup

Let ^ be a P- or T-geometry of rank n > 2, so that the diagram of ^ is

1 2 n-2 n-1 P n

1 2 2 2 1

(if'S is a Petersen type geometry) and

(if ^ is a tilde type geometry).
On the diagrams, we indicate the type of the corresponding elements

above the nodes. If x is an element of ^ then t{x) denotes the type of x,
where 1 < t(x) < n. In this section it would probably be more convenient
to work with the dual of ^ in which points, lines and planes are the
elements of type n, n — 1 and « — 2. But since this might cause confusion
with other parts of the book we decided to reserve the names points,
lines and planes for elements of type 1, 2 and 3 and to introduce new
names for elements of type n, n — 1 and n — 2. These elements will be
called vertices, links and quints, respectively (the choice of the names will
be justified below).

180
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Let A = A(^) be the derived graph of 0 which is the collinearity graph
of the dual of <$. In our terms it can be defined in the following way.
The vertices of A are the elements of type n in 0 (therefore we call
such elements vertices) and two vertices are adjacent if they are joined
by a link (incident to a common element of type n — 1). As we will see
shortly, in the case of Petersen type geometries links are the edges of A,
while in the case of tilde type geometries they are 3-cliques. Since a link
is incident to exactly two and three vertices for P- and T-geometries,
respectively, it is clear that every link produces an edge or a 3-clique. In
(9.1.1) below we will show that this mapping is bijective.

Every element x of ^ produces a subgraph I[x] of A. If x is a vertex
then E[x] is the one-vertex subgraph x. For every other type E[x] can
be defined as the subgraph consisting of all the vertices incident to x
in which edges are only those defined by the links incident to x. For
example, if x is a link then I[x] is an edge or a 3-clique depending on
the type of the geometry. For higher types £[x] may not be an induced
subgraph of A, although in the known examples it is usually such. Recall
that res^(x) is the subgeometry of all those y e res#(x) with t(y) > t(x).
If t(x) < n — 2 then resj(x) is a P- or T-geometry of rank n — t(x) and
£[x] is simply the derived graph of that geometry. In particular, it is
always connected.

To finish with the basic terminology, the elements of type n — 2 will
be called quints. For a quint x, £[x] is isomorphic to the Petersen
graph or the tilde graph (which is the collinearity graph of the geometry
0(3 • S^(2))) depending on the type of the geometry. These subgraphs
contain 5-cycles which are crucial for the subsequent arguments. This
explains the terminology. Finally, let us note that if x is a vertex, link, or
quint then we will apply the same name to the corresponding subgraph

Now we are well prepared for our first lemma.

Lemma 9.1.1 Two vertices are incident with at most one link.

Proof. Suppose u and v are vertices, u ^ v, and suppose x and y
are links incident to both u and v. Since res^(w) is a projective space, it
contains a quint q incident to both x and y. Furthermore, q is incident
to v, since 'S has a string diagram. It follows that u, v, x and y are all
contained in res^(q), which is the geometry ^{Alts) of the Petersen graph
or the tilde graph. Hence x = y. D
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Corollary 9.1.2 The graph A has valency 2" — 1 if & is a Petersen type
geometry, and 2(2" — 1) if it is a tilde type geometry. In particular if
t{x) = i, then

(i) the subgraph £[x] has valency 2"~l — 1, ifS is of Petersen type;

(ii) the subgraph E[x] has valency 2(2"~' — 1), if<S is of tilde type. •

We will now show that the geometry ^ can be recovered from the
graph A and the set of all subgraphs I [ x ] , x £ ? .

Lemma 9.1.3 E[x] £ Y.[y] if and only if x is incident to y and t(x) > t(y).

Proof. If t(x) < t(y) then L[x] cannot be a subgraph of l,[y] by (9.1.2).
So without loss of generality we may assume that t(x) > t(y). If x is a
vertex then the claim follows by definition. If x is a link then the 'if
part follows by definition, while the 'only if part follows from (9.1.1).
Suppose that x is of type at most n — 2. If x and y are incident then

resj(x) £ res£(,y)

and hence Z[x] is a subgraph of l,[y]. Suppose now that Z[x] is contained
in L[y]. Let v be a vertex of E[x]. Then both x and y are in res^(u).
Furthermore, since I[x] is a subgraph of I[y], (9.1.1) implies that every
link incident with x is also incident with y. Restricting this to those
links that contain v, we obtain that x, as a subspace of the projective
space res#(u), is fully contained in the subspace y. Hence x and y are
incident. •

Let y be the set of all subgraphs I[x], x € 0. Let v be a vertex. Then
res»(u) is a projective GF(2)-space of rank (« — 1). We can realize this
residue by the set of all proper subspaces in an n-dimensional GF(2)-
vector space U = U(v) so that the type of an element is its dimension
and the incidence is via inclusion. Let £f(v) be the set of subgraphs in y
containing v. Then by (9.1.3) the mapping

a : xi—• Z[x]

is a bijection which reverses the inclusion relation.

The following two lemmas record some of the properties of y.

Lemma 9.1.4 Suppose v is a vertex of both E[x] and Z[y]. Let z e ress?(u)
correspond to the span of the subspaces x and y in U(v) (we put z = vifx
and y span the whole U(v)). In other terms z has the smallest type among
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the elements incident to both x and y. Then the connected component of
Z[x] n2[y] that contains v coincides with E[z].

Proof. Since res»(i;) is a projective space, z (defined as in the statement
of the lemma) is the unique element in res^(u) incident to both x and
y, and with t(z) minimal subject to t(z) > min(t(x), t(y)). If z = v then
v is the entire connected component. So suppose z ^ u . Let u be a
vertex that is adjacent to v in E[x] n Z[y]. Then the link a through v
and u (it is unique in view of (9.1.1)) is incident with both x and y.
Furthermore, z is the unique element incident to a, x, and y of type
minimal subject to t(z) > min(t(x), t(y)). Symmetrically, we can now
conclude that, in res^(w), z corresponds to the span of the subspaces x
and y in res#(u). Thus, the neighbourhood of u in E[x] flE[y] coincides
with the neighbourhood of u in Z[z]. Now the connectivity argument
shows that Z[z] is the entire connected component of L[x] n l [ y ] , •

Lemma 9.1.5 Every path in A of length k, k < n — 1, is contained in Z[x]
for some x of type (n — k) or more.

Proof. We will use induction on k. Clearly, the statement is true
if k = 0. For the induction step, suppose the statement of the lemma
holds for all i < k, where k > 0. Let (vo,v\,...,Vk) be a fc-path. By the
induction hypothesis, the k — 1-path (uo,ui,...,u/c-i) is contained in T.\y]
for some y of type at least n — k + 1. In resy(vk-i), y corresponds to a
subspace of dimension at least n—k+l and the link a through v^-i and Vk
corresponds to a hyperplane in U(vk-i). Thus, both y and a are incident
to an element x e iesg(vk-i) of type at least n — k (the intersection of y
and a). Clearly, Z[x] contains the entire path (vo,vi,...,Vk-i,Vk). •

Remark: It follows from (9.1.4) that there exists a unique element
x of maximal type, such that I[x] is of minimal valency and con-
tains (vo,v\,...,Vk-i,Vk). Namely, Z[x] will be the connected compo-
nent containing VQ of the intersection of all those Z[y] that contain

(Vo,Vi,..-,Vk-\,Vk).

9.2 Normal series of the vertex stabilizer

We start by considering a flag-transitive action of a group G on ^ .
Clearly, G acts on the derived graph A. First we introduce some important
notation associated with this action.

Let us fix a vertex v (i.e., a vertex of A) and let H be the stabilizer of
v in G. Let Q be the kernel of H acting on res^(y) (recall that the latter
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is the GF(2)-projective space of rank n — 1). Define a further series of
normal subgroups in H as follows. Let if, = G,(u), i > 1, be the joint
stabilizer in H of all the vertices at distance at most i from v. (This set
of vertices will be denoted by A<,(t>).) It is clear that in the considered
situation we have

Hi < Q, Hj < H and Hi+i < Ht.

Let us explain the relationship between the introduced notation and the
notation used throughout this book and introduced in Section 1.1. If
O = {xu-,xn_i,v = xn) is a maximal flag in 0 and Gj — G{XJ) is the
stabilizer of xt in G for 1 < j < n, then H = Gn, Q = Kn and Hi = Ln.

By (9.1.3) we know that different elements, say x and y in <§, are
realized by different subgraphs Z[x] and S[y]. Hence an automorphism
of'S which fixes every vertex of A acts trivially on the whole 'S and hence
must be the identity automorphism.

Lemma 9.2.1 Suppose that a subgroup N is contained in Gjn = Gj n Gn

and normal in both Gj and Gn = H for some 1 < j < n — 1. Then N = 1.

Proof. Since ^ is a geometry and G acts on ^ flag-transitively, Gj
and Gn generate the whole of G (compare Lemma 1.4.2 in [Iv99]). Hence
N is normal in G and since N < Gn, N fixes the vertex xn of A. Hence
JV fixes every vertex of A and must be trivial by the remark before the
lemma. •

When considering more than one vertex at a time we will use the
notation G(v) for H, Gt(v) for if,, and Gi(t>) for Q.

We will first recall the properties of H, when ^ is of rank two, that is,
<& is the Petersen graph geometry or the tilde geometry. Recall that if ^
is the Petersen graph geometry then G = Sym5 or Alts, while if 0 is the
tilde geometry then G = 3 • Sym$ or 3 • Alt^. The properties summarized
in the following lemma can be checked directly.

Lemma 9.2.2 Suppose $ is of rank two. Then

(i) H/Q S Sym3 S L2(2);
(ii) Q/Hi is trivial ifS is the Petersen graph geometry, and it is isomorphic

to 22 if IS is the tilde geometry;

(iii) if i is trivial if G = Alt$ or 3 • Alt(,; it has order two if G = Sym$ or

(iv) if Hi ± 1 and h € Hf then h £ G\{u)for all vertices u adjacent to v;
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(v) if u € A2(u) and a is a link on u then Z[a] contains a second (other
than u) vertex at distance at most two from v. •

Notice that in the above lemma Hj = 1 in all cases.

Our approach to the classification of geometries 11 and their flag-
transitive automorphism groups G will be via the study of the factors of
the normal series

H >Q >Hi > . . . > Hj >...

We will have to bound the length of this series and identify its factors.
Clearly, the top factor H/Q is the group induced by H on the (n — 1)-
dimensional projective space res#(i;) defined over GF{2). Because of the
flag-transitivity of H/Q on this residue, by (3.1.1) we have the following

Lemma 9.2.3 The group H/Q is a flag-transitive automorphism group of
the projective space resg(u). In particular, either H/Q = Ln(2), or Frob^
(for n = 3), or Alt-, (for n = 4). •

The remaining factors of our series will be shown to be elementary
abelian 2-groups, and so we will view them as GF(2)-modules for H.
In what follows the natural module for H is provided by the action of
H on the n-dimensional vector space U = U(v) underlying the (n — 1)-
dimensional projective space res^(y). That means that the points in
res#(t>) correspond to the 1-subspaces of U while the links in res^(u)
correspond to the hyperplanes in the natural module of H. Clearly, Q is
the kernel of the action of H on its natural module U. Thus, we can also
view U as an H/Q-module.

Let us now discuss the group Q/H\.

Lemma 9.2.4 Either Q = Hlt or <& is of tilde type, Q/H\ = 2", and, as a
module for H/Q, the quotient Q/H\ is isomorphic to the natural module
U.

Proof. If ^ is of Petersen type then by (9.1.1) the vertices adjacent to
v bijectively correspond to the links on v. Hence Q = H\ in this case.
Now suppose that 0 is of tilde type and Q is strictly larger than H\. Let
g G Q and let a be a link on v. Since g is in Q, it must stabilize a, and
hence it acts on the two points of a other than v. So g2 fixes both of
those points. Since a was arbitrary, g2 e Hi, which means that Q/H\ is
an elementary abelian 2-group. Consider V = Q/H\ and its dual (as a
GF(2)-vector space) V. By the transitivity of H on the links on v, Q
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cannot fix every vertex on a (otherwise, Q = Hi). Hence the kernel of
the action of Q on the points of a is a subgroup of index two in Q, and
hence it corresponds to a non-zero vector v'a in V. Suppose a, b and c
are three links on v, all of them incident to the same quint z. Suppose
g G Q acts trivially on the points of a and b. It follows from (9.2.2 (ii))
that g also fixes all points on c. This means that the vectors v'a, v'b and
v*c together with the zero vector form a 2-space in V, that is, we have a
relation v'a + v'b +v'c = 0. It now follows from (3.1.2) that V* is a quotient
of the dual of the natural module U. Finally, since H/Q is transitive
on the non-zero vectors of U, we have that U is irreducible, and hence
V = U. a

At the moment, all we can say about the remaining factors, Hj/Hi+i,
i> 1, is that they are elementary abelian 2-groups.

Lemma 9.2.5 The factors Hi/Hi+\ are elementary abelian 2-groups for all

i>h

Proof. Suppose g G H, and u G A,-+i(u) (so that u is at distance i + 1
from i; in A). Let w be a vertex at distance i — 1 from v and at distance
2 from u. By (9.1.5), w and u are contained in Z[z] for a quint z. Since
g fixes w and all its neighbours in A, we have that g stabilizes S[z] as
a set and hence it acts on it. By (9.2.2 (iii)), g2 fixes I[z] vertexwise; in
particular, g2 fixes u. Since u was arbitrary, g2 G Hi+\, and the claim
follows. •

In the remainder of this section we will discuss the exceptional cases
of H/Q and Q/H{.

Lemma 9.2.6 The following assertions hold:

(i) H/Q¥Frob*;
(ii) if H/Q ^ Al^ then H{ = 1.

Proof. Suppose first that H/Q = Frob]. Then n = 3. Consider a quint
x incident to v. By (9.2.2 (i)), the stabilizer of x in H induces on the three
links incident to v and x the group Sym^, which contradicts the fact that
H/Q = Frob] (the latter group does not involve Sym^). So (i) follows.

Now suppose n = 4 and H/Q = Alt-j. Let u be a vertex adjacent to v
and let a be the link on v and u. Then the stabilizer of v and a induces
on res^(u) the group 1^(2). Since G(v,u) is of index at most two in the
stabilizer of v and a, G(v,u) also induces on res#(i>) the group LT,(2).

Symmetrically, G{v, u) induces L3(2) on res^(u). Consider now the action
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of H\ on res#(w). Since Hi acts on res^(u) trivially, H\ induces on res»(u)
a 2-group by (9.2.5). On the other hand, Hi is normal in H, and hence in
G(v,u). Since L^(2) contains no non-trivial normal 2-group, this implies
that Hi < Gi(u). We claim that in fact Hi < Gi(u). Indeed, let w e Ai(u).
By (9.1.5) there is a quint z such that Z[z] contains the path (v, u, w). By
(9.2.2 (iv)), an element fixing all neighbours of v and all links on M must
act trivially on Z[z]. Hence it fixes every vertex w G Ai(u).

We proved that Hi < G\{u) for all u € Ai(y). Hence Hi = H2, and by
the vertex-transitivity of G on A, this implies that H\ = I. •

Thus we have the following.

Corollary 9.2.7 IfH/Q $ LB(2) then n = AandH^ Altlt or 2\Alt-,. U

Let us conclude this section with a comment concerning the exceptional
configuration for Q/H\ (compare (9.2.4)). If & is a Petersen type geometry
then, of course, Q must equal Hi. On the other hand, for tilde type
geometries the generic case occurs when Q/H\ = 2". Indeed, in view of
(9.2.7), we may assume that H/Q = Ln(2). Suppose Q = H\. Let a be a
link incident to v. Considering the action on £[#] for a quint q incident
to a and using (9.2.2 (ii)), we obtain that the stabilizer of a in H contains
an element interchanging the two vertices in Z[a] \ {v}. On the other
hand, the stabilizer of a in H/Hi s Ln{2) has structure 2""1 : Ln_i(2). If
n > 3 then the latter has no subgroup of index two. So the stabilizer of
a in H cannot act on L[a] \ {v}. This proves the following.

Lemma 9.2.8 If<$ is of tilde type and H/H\ S Ln(2) then n = 3. •

We will return to this exceptional configuration in Section 10.2 (cf.
(10.2.2)).

9.3 Condition (*,•)

Throughout this section we assume H/Q = Ln(2). We will investigate the
impact of the following conditions on the structure of H.

(*,) If Z = Z[x] for x of type n — i (here 2 < i < n — 1) and if v is a vertex
of Z then the joint stabilizer R of all the vertices of £ at distance (in
Z) at most i — 1 from v induces on Z an action of order at most two.

Notice that since R stabilizes v and all the links incident to both v and
x, it must stabilize x and hence it indeed acts on Z. Notice also that due
to (9.2.2 (iii)) the property (*2) holds for all 0.
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Let Vt = Ht/Hj+i, i > 1. By (9.2.5) Vt is an elementary abelian 2-group.
So we can view it as a vector space over GF(2) and as a module for H.

Lemma 9.3.1 Suppose that (*,) holds. Then either:

(i) V,_i = 1, or
(ii) dim 7(_i = 1, or

(iii) Fj_i is isomorphic to the i-th exterior power /\ ' U of the natural mod-
ule U ofH.

Proof. Put Z = Z[x] for an arbitrary element x G res#(u) of type n — i
(so that x is an (n — i)-subspace in the natural module U of H). By (*,•)
the group H,-_i induces on Z,(i;) (the set of vertices at distance i from
u in Z) an action of order at most two. If the action is trivial then the
same is true for all Z' = Z[j>] for y G res#(i;) of type n — i (because H is
transitive on all such y). By (9.1.5) every vertex in At(v) is contained in
some Z' as above and hence tf,_i = Ht, which implies Vt-i = 1, and (i)
holds.

So we can assume that //,_i induces on each Ej(t>) a group of order
exactly two. Let V = F,_i and V* be the dual of V. Clearly, if, acts
trivially on Z and hence the kernel of the action of H,_i on Z corresponds
to a nonzero vector v'x € V*. Since every vertex from A,-(t>) is contained in
some Z = Z[x], we have that the vectors v'x generate V*. (In particular,
this implies that Q centralizes V, as it fixes every x.) Consider now
elements x,y,z e res^(y) of type n — i such that they are incident to
common elements t and r of type n — i + l and n — i — 1 respectively. This
means that

xr\yC\z = r,(x,y,z) = t.

(If i = n — 1 then we skip r.) Suppose g G H,_i acts trivially on Z[x] and
Z[y]. We claim that g must also act trivially on Z[z]. Suppose not, then
g acts non-trivially on the neighbours in Z[z] of some vertex u G Z[z] at
distance i — 1 from v. Let h £ H take u to u' = uh G Z[f]. Then g' = gft

acts non-trivially on the neighbours of u' in Z[z]. By (*j) the action of
//,_! on Z[z] is of order two. Hence g and g' induce the same action on
Z[z]. In particular, g acts non-trivially on the neighbourhood of u', and
so we can assume that u = u' is contained in Z[t].

Now in the projective geometry res#(u) the elements x and y are
two different subspaces containing r with codimension 1 (two projective
points if i = n — 1). Since g acts trivially on both Z[x] and Z|>] it
fixes every link containing M and contained in either of these subgraphs.
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Hence it fixes every link contained in S[r] (every link containing u if
i = n — 1). In particular, it fixes every link contained in E[z], since z is
yet another subspace containing r with codimension 1 and contained in
t. This contradicts the fact that g acts non-trivially on the neighbours of
u in £[z].

We have shown that if g acts trivially on Z[x] and Z[y] then it also
acts trivially on I[z]. This means that i>* is contained in the subspace
generated by v*x and vy. There are two cases. If this subspace is 1-
dimensional then v'x = vy = v*z. Since H acts flag-transitively on res»(t;)
it acts transitively on the set of all triples {x,y,z} which are incident
to common elements of type n — i — 1 and n — i + 1. This immediately
implies that all vectors v*x are equal, and hence V is 1-dimensional and
(ii) holds.

If the subspace spanned by v'x and vy is 2-dimensional then the three
vectors v*x, v'y and v*z are pairwise distinct, and this implies a relation
v*x + vy + v*z = 0. Again by flag-transitivity such a relation holds for every
triple {x, y,z} as above. It follows from (3.1.3) that V is a quotient of the
(n — i)-th exterior power of the natural module U. Since H/Q = Ln{2) is
irreducible on the exterior powers, we finally conclude that V* is in fact
isomorphic to the /\"~' U. Since the dual of f\"~' U is f\' U, (iii) holds. •

If Vi-i = 1, then Hi-\ = Hi. In view of the vertex-transitivity of G on
A this implies that JJ,_i = 1. Let us see that the length of the normal
series can also be bounded when dim K/_i = 1.

Lemma 9.3.2 J/ |Fj_i| = 2 then Ht = 1.

Proof. Suppose g e Ht and let u e Ai(t>). Then g acts trivially on
A,_J(M). By our assumption the action of the pointwise stabilizer of
A,_I(M) on A,(u) is of order two. Hence the action of g is either trivial
on each A,_i(w), w e AI(M), or it is non-trivial for all w. As the action is
clearly trivial for w = v we conclude that g acts trivially on A,(u). Since
u was arbitrary in A\{v), it follows that g e Hi+l, that is, Ht = Hi+\. Now
the claim follows. •

Here is one more lemma bounding the length of the normal series.

Lemma 9.3.3 / /(*n_i) holds then Hn = 1.

Proof. Let g e H„ and suppose u e An+i(u). Let w be a vertex in
A2(t;)nAn_i(u). By (9.1.5), v and w are contained in some 0 = Z[t] for a
quint t, and similarly w and u are contained in some subgraph Z = Z[r]
for r being a point (an element of type 1). It follows from (9.1.4) that
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& and I meet in I [a] for a link a containing w. Now (9.2.2 (v)) implies
that Z[a] contains a second vertex w' at distance at most two from v.
Now observe that g fixes elementwise the set £<n_2(w). Because of the
property (%-i), either g acts trivially on E, or it acts non-trivially on
Zn_2(t) for every t e Zi(w). Since the latter condition fails for t = w' we
conclude that g acts trivially on S. In particular, g fixes u. Since u was
an arbitrary vertex in An+i(t>), g is contained in Hn+\. Thus, Hn = Hn+\,
and hence Hn = 1. D

Lemma 9.3.4 Suppose that (*n-i) holds. Then, as an H-module, Hn-\ is
isomorphic to a submodule of the GF(2)-permutation module on the vertices
from Ai(y).

Proof. By the preceding lemma we have that Hn = 1, so //n_i acts
faithfully on An(v). Let u € Ai(u). We claim that Hn_i induces on An_i(u)
an action of order two. It will be more convenient for us to prove the
symmetric statement, namely, that K = Gn_i(u) induces on An_i(u) an
action of order two. Observe first that Vn-i = A " 1 U- Indeed, according
to (9.3.1), the only other possibilities are the trivial or 1-dimensional
Kn_2, which would imply that //n_i = 1 (cf. (9.3.2)). Notice that the
/ \"- ' U S U'. Thus, 7n_2 is the dual U' of natural module U. The
action induced by K on An_i is a subspace of Vn-2 invariant under the
subgroup H n G(u). Modulo Q, the latter subgroup maps onto the full
parabolic subgroup of H/Q = Ln{2). Hence the action of K on An_i(u)
is either the entire Kn_2, or it is 1-dimensional, or trivial. In the first case,
K = Hn-u which implies Hn-\ = 1. Similarly, in the last case K = Hn,
which again implies Hn_i = 1. So, as claimed, the action of K on A,_i(u)
is 1-dimensional, and symmetrically, the action of Hn_i on An_i(u) is also
1-dimensional.

Set V = ffn-i- By the previous paragraph, the kernel of the action of
V on An_i(u) is a hyperplane of V, which corresponds to a 1-dimensional
subspace {v*u) of V. Now observe that An(u) is contained in the union
of the sets An_i(u) taken for u e Ai(u). This shows that the vectors u*,
M e Ai(y), span V. Hence V* is a factor module of the permutation
module on Ai(u). Equivalently, V is a submodule of the same permutation
module. •

In quite a few cases Hn-\ will be a trivial module for H. This situation
is refined by the following lemma

Lemma 9.3.5 In the hypothesis of (93A) suppose that Hn-\ is in the centre
ofH. Then |Hn_,| < 2.



9.4 Normal series of the point stabilizer 191

Proof. The result follows from the well-known fact that the cen-
tre of the permutation module of a transitive permutation group is
1-dimensional. •

9.4 Normal series of the point stabilizer

The variety of the possible structures of the vertex stabilizer H = Gn —
G(xn) left by the results of the previous section can be further reduced if
we play those results against the properties of other parabolics.

Let 1 < i < n - 2 if 0 is of P-type and 1 < i < n - 1 if 0 is of T-type.
Let G, = G(xi) be the stabilizer in G of the element Xj in the maximal

Recall that res^(x,) is the subgeometry in ^ formed by the elements
incident to x,- whose type is less than i. This residue is isomorphic to the
projective GF(2)-space of rank i — 1 (of course it is empty if i = 1). Let
Uf denote the universal representation module of the dual of res#(x,).
Thus Uf is generated by pairwise commuting involutions indexed by
the elements of type i — 1 incident to x,- and the product of three such
involutions corresponding to a, b and c is the identity whenever a, b and
c are incident to a common element of type i — 2 (this element is also
incident to x,).

Similarly resj(x,) is the subgeometry formed by the elements in 'S
incident to x,+i whose type is greater than i. Since i < n — 2, the residue
resj(x,) is a P- and T-geometry (depending on the type of ^) of rank
n — i. Let U* be the universal representation module of resj(x,) (whose
points and lines are the elements of type i + 1 and i + 2 incident to x,).

Let Kt be the kernel of the action of G, on res^(x,), so that G,- = Gi/Kj
is a flag-transitive automorphism group of res#(x,-). Let ^(x,) be the set
of elements y,- of type i in $ such that there exists a premaximal flag 4*
of cotype i (depending on j/,-) for which both

Tu{x,} and ?u{y ,}

are maximal flags. Since ^ belongs to a string diagram yt e ^(x,) if and
only if there is an element of type i — 1 incident to both x,- and j/,- and an
element of type i + 1 incident to both x,- and yt. Let L, be the kernel of
the action of Kj on the set ^(x,).

Proposition 9.4.1 In the above terms the quotient £,• := Kj/Lj is an elemen-
tary abelian 2-group and as a module for G, the dual E' ofEi is isomorphic
to a quotient of the tensor product U~ <S> U*.
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Proof. Without loss of generality we can assume that £, =̂  1. If *F is
a premaximal flag of cotype i in 0 incident to x,- (i.e., such that ¥ U {x,}
is a maximal flag) then res^(*P) consists of three elements of type i, one
of which is x,. Let g € Kt. Since K, acts trivially on res»(x,), g stabilizes
every triple res^C?) as above, fixing x,- as well. It follows that g2 acts
trivially on ^(x,) and hence g2 e L,-. This proves that £, is an elementary
abelian 2-group.

With *P as above consider the action of Kt on ress?(*P) (of size 3). If this
action is trivial for some *P then, because of the flag-transitivity of G, on
res#(x,), the action is trivial for every such *F. Hence Kt = L, and £, = 1,
contradicting our assumption. Thus, the kernel of the action of X, on
reŝ C*?) is a subgroup of index 2, and it corresponds to a hyperplane in
£,, or, equivalently, a 1-subspace {e®) in the dual E*.

Suppose j is a type in the diagram of ^, adjacent to i. That is, j = i — 1
or j = i + 1 . Pick a flag S in res#(x,) of cotype ;. (In the entire ^ the flag
*P has cotype {i,./}-) Then res^({x,} US) = {a,b,c} for some elements a,
b and c of type _/. We claim that the following relation holds in E*:

e{a}LG + e{b}uE + C{c}u5 = 0.

Indeed, a group theoretic equivalent of this relation is that K, induces on

Q := resg({a} U 5) U res<?({fc} U 3) U ress?({c} U S)

an action of order four. (Notice that if e{0}uE = {̂fc}ua then also e{a}u~ =
C{C}UH since the stabilizer in G, of S is transitive on {a,b,c}. Then the
action on fi is of order two.) Now observe that Q is fully contained in
res^(S). If <& is of tilde type, i = n — 1 and j = n then the fact that the
action of Kj on Q is of order four is recorded in (9.2.2 (ii)). In all other
cases, res#(S) is a projective plane of order two, and the desired property
can be checked directly.

It remains for us to see that the relations we have just established do
mean that £* is a quotient of Uf ® [/+. First let i = 1. Notice that
resj(xi) = res#(xi) and res^(xi) = 0. According to our definitions, the
second factor in the tensor product is trivial (1-dimensional). So we need
to show that E* is a quotient of Uf = F(res«?(xi)). Observe that if *P
and *P' are two maximal flags from res^(xi) then ey = ey> whenever *F
and 4" contain the same element of type 2. So instead of ey we can
write ey, where y is the element of type 2 from *P. We only have to
note that the elements of type 2 are the points of res#(x,) and that the
sets {a, b,c} = res»({x,-} UE) are the lines, where 3 is a flag of
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of cotype 2. So the relations we have established for E* are exactly the
same as the relations from the definition of F(res#(x,)).

Now let i > 2. Then ey = ey whenever *F and xi" contain the same
elements y and z of types i — 1 and i + 1, respectively. So we can write
eyz in place of e»y. With this notation the relations we established state
that (1) eya + eyb + eyc = 0 for every line {a,b,c} from resj(x), and (2)
eaz + etz + ecz = 0 for every line {a,6,c} from res^(x). According to
(2.4.2) these relations define Uf ® Uf. So E- is a quotient of the latter
module. •

The case i = 1 is of particular importance to us and we summarize
this case in the following (notice that L\ is the kernel of the action of K\
on the set of points collinear to x — 1).

Corollary 9.4.2 In the above terms the quotient K\/L\ is an elementary
abelian 2-group and its dual is a Gi-admissible representation module of
res^(xi) i.e., a quotient of the universal representation module V(resy(x\))
over a subgroup normalized by G\. •

In the remainder of this section we deal only with the case i = 1. We
will again be working with the derived graph A of <S. Let Z = Z[xi]
(notice that the vertex xnis contained in Z).

Lemma 9.4.3 The subgroup L\ acts trivially on res^(u) for every vertex u
ofL.

Proof. Let u be a vertex of £ (which is an element of type n in $)
and let y\ ^ x\ be an element of res#(u) of type 1. Since res#(«) is
a projective space, x\ and y\ are collinear points and hence they are
both incident to an element z of type 2 (which is a line). Since ^ has a
string diagram, x\,y\ € res^^F) for every flag *P cotype 1 that contains
z. Hence L\ stabilizes y\. Since y\ was arbitrary, L\ stabilizes every point
of the projective space res^(u) and so L\ acts trivially on res#(w). •

Let N\ be the joint stabilizer of all the vertices adjacent to £ =
in A. Let us introduce the following property of ^ and G:

Lemma 9.4.4 //"(*») holds then & is of tilde type and

(i) L\/N\ has order 2;
(ii) every g € L\ \N\ acts fixed-point freely on the set of vertices adjacent

to I ;
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(iv) the property (»*) holds for res^(xi) with respect to the action of G\
on it.

Proof. The fact that ^ must be of tilde type follows from (9.4.3) and
the definition of N\. Suppose that g e L\ \ N\. Suppose further that
a is a link incident with a vertex u of Z = Z[xi] but not incident with
xn (notice that g fixes a by (9.4.2)). We claim that g permutes the two
vertices of a other than u (since 'S is of tilde type every link consists
of three vertices). Indeed, suppose g fixes all three vertices of a. Let
0 = Z[z] be a quint containing Z[a]. Let b be the link incident to both z
and x. Then g acts trivially on both Z[a] and Z[b] and (9.2.2 (ii)) implies
that g fixes all the neighbours of u in ©. Furthermore, since g stabilizes
all links incident to any vertex of Z[b], (9.2.2 (iv)) implies that g acts
trivially on the entire ©. Since 0 was arbitrary, g acts trivially on the set
of neighbours of u in A. Also, observe that if u' is a neighbour of u in Z
then some 0 contains u' and a link a' incident with u' but not with xi.
Since g must fix the three vertices of Z[a'] we can use the connectivity
argument to deduce that g fixes every neighbour of Z. So g 6 Ni, which
is a contradiction. Thus, g must act non-trivially on every Z[a] where a
is a link incident to a point of Z, but not incident to x. This proves (i)
and (ii).

To prove (iii) observe that by (9.4.3) an element g € L\ \N\ is contained
in Q, while (ii) implies that g £ H\.

For (iv), consider an element y\ e res#(xn) of type 1, yi =̂  x\. Let
z be the element of type 2, that is incident with both xi and yu and
let g 6 L i \ N\. Then in its action on ~L\y{\ the element g fixes Z[z]
vertexwise and it stabilizes all the links incident to the vertices of Z[z].
On the other hand, by (ii), g acts non-trivially on the neighbours of Z[z]
in Z[y]. So Z[z] satisfies (**). •

Lemma 9.4.5 / / the property (*,), holds for every 2 < i < k (where k <
n — 1) then Ni fixes all vertices at distance at most k from Z[xi].

Proof. We will prove the assertion by induction on the distance. If u
is at distance one from Z = Z[xi] then N\ fixes u by the definition. Now
suppose it is known that all vertices at distance at most i — 1 from Z are
fixed by JVi, where 2 < i < k. Suppose u is at distance i from Z. By (9.1.5)
there exists an element y of type n — i such that Z[y] contains u and a
vertex w of Z. By (9.1.4) both Z and Z[)>] contain Z[z] for some z of
type n — i + 1. In particular this means that Z and Z[y] share some link



9.4 Normal series of the point stabilizer 195

Z[a] containing w. Let w' G I [a] with w' ^ w. By (9.4.3), N\ stabilizes y,
and so it acts on S[y]. Since by the inductive assumption N\ stabilizes
all vertices at distance at most i — 1 from either w or w', and since (*,-)
holds by the assumption of the lemma, we conclude from (9.4.3) that N\
must act trivially on E[}>]. In particular, JVi fixes u. •

Lemma 9.4.6 Suppose (*,•) holds for every 2 < i < n — 1. Then \N\\ < 2.

Proof. Suppose N\ ^ 1 and let g € Nf. By (9.4.5) g e //„_]. In view
of (9.3.3) the action of Hn-i on An(v) is faithful. Therefore, in order to
prove that |JVi| = 2 it is sufficient to show that the action of g on An(v)
is uniquely determined. Let w G An(v) and let u be a neighbour of v such
that the distance between « and w in A is n — 1. By (9.1.5) the shortest
path between u and w is contained in I | j ] for a point y (so that u and
w are at distance n — 1 in £[>>]).

If I[y] meets I = I[xi] in a vertex then (*n_i) and (9.4.5) show that
g fixes H[y] vertexwise. So we only need to consider the case where y is
not incident to the link a that is incident to both v and u. We claim that
for such a y the action of g on Z[y] is non-trivial. In view of (*n-i) the
action of g on l,[y] is then unique and the lemma follows.

Thus it suffices to show that g acts on Z[y] non-trivially. Suppose ad
absurdum that g fixes every vertex of S[j>]. We will show that in this
case g must act trivially on every Z[z], where z e res^(u) is a point not
incident to a. By (9.1.4) the intersection of Z[y] and Z[z] contains a link
on M. Let t be a vertex of this link, t ^ u. Let 0 = H[q] be a quint
containing the path {v,u,t) (compare (9.1.5)). It follows from (9.1.4) that
£ and 0 share a link on v. Let v' =f= v be a vertex of that link that is at
distance at most two from t (see (9.2.2 (v))) and let u' be the common
neighbour in 0 of v' and t. Let a' be the link incident to v' and u'. If u' is
in E then g fixes all vertices of £[z] at distance at most n — 2 from u or
t. Then (*n_i) implies that the action of g on Z[z] is trivial. So without
loss of generality we may assume that u' $ Z. Finally, let y' e res^(w') be
a point incident to t, but not to v'.

Observe that g stabilizes in ! [ / ] all the vertices at distance at most
n — 2 from u'. Besides, it fixes all the vertices in the intersection of
H[y] and E [ / ] . By (9.1.4) the component of the intersection containing
t coincides with E[r] for some r of type 2. Observe that Z[r] cannot
contain u' because it cannot contain the entire quint Z[q]. Due to (*,,-2),
g fixes I [ / ] vertexwise. (Indeed, if X is the group induced on £ [ / ] by
its stabilizer in G, then the stabilizer of u' in X acts transitively on the
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set of subgraphs £[>'] of E [ / ] at distance one from u'. So by (*n-i) if g
acts trivially on one of them then it must act trivially on all of them.)

Symmetrically, since g acts trivially on ! [ / ] , we can now show that
it also acts trivially on E[z]. Since z was arbitrary, g fixes all vertices at
distance n from v, that is, g e Hn = 1, which is a contradiction. •

9.5 Pushing up

In this section we only consider the case where 0 is of Petersen type.
We apply some pushing up techniques to reduce further the structure of
#„_! under the condition (*n-\). First we recall some basic notions and
results.

Suppose that T is a p-group for a prime number p. Then the Thompson
subgroup J(T) of T is generated by all elementary abelian subgroups A
of T of maximal rank. Observe that J(T) =f= 1, if T f 1. The following
is a further important property of the Thompson subgroup.

Lemma 9.5.1 Let T be a p-group and Q<,T. If J{T) < Q then J{T) =

J(Q). °

We denote by Qi(T) the subgroup in T generated by the elements of
order p in T. For a group G, a faithful GF(p^)-module V of G is said to
be an FF-module {failure-of-factorization module) if for some elementary
abelian subgroup A =fc 1 of G we have

\A\ > \V/CV(A)\.

A subgroup A with this property is called an offending subgroup (or just
an offender).

Proposition 9.5.2 Suppose that G is a group, Q is a normal p-subgroup of
G, and T is a p-subgroup of G such that Q<T. Let V = Q](Z(Q)) and
suppose CG{V) = Q. Let G = G/Q. Then one of the following holds:

(i) J{T) = J{Q);or
(ii) V is an FF-module for G over GF(p), and T contains an offending

subgroup.

Proof. Suppose A is an elementary abelian subgroup of T of maximal
rank. If every such A is contained in Q then J(T) = J{Q) and (i) holds.
Thus, without loss of generality we may assume that A £ Q. Observe
that CA{V) = A n Q and so {A n Q)V is elementary abelian. Hence

\AnQ\-\v\
' \{AnQ)nv\-
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Since {AnQ)nV = AnV< CV{A) = CV(A), we finally obtain that
\A\ > \V/CV(A)\, that is, A =j= 1 is an offending subgroup in T and so (ii)
holds. •

We can now apply this proposition to reduce the structure of //„_].

Lemma 9.5.3 Suppose that <§ is of Petersen type and (*n-i) holds. Then
//„_! = Vn-\ is a submodule of the direct sum of the l-dimensional module
and dual natural module.

Proof. It follows from (9.3.3) and (9.3.4) that //„_! = Fn_i is isomor-
phic, as an //-module, to a submodule of the permutation module 5s ' on
points of the projective space Ai(y). (We will be using the notation intro-
duced in Section 3.2.) The structure of this module is described in (3.2.7)
and (3.3.5). In particular, unless the conclusion of the lemma holds, the
submodule corresponding to //n_i must contain !3C(n — 2). That is, as an
//-module, Hn-\ must have at least two non-trivial composition factors:
a composition factor W\, isomorphic to the dual of the natural module,
U', and another one, Wi, isomorphic to the second exterior power of the
dual of the natural module, f\2 U*. In particular, Q = CH(Hn-\).

We will apply (9.5.3) for G = H = G(v). Let T = 02{G(v)nG(u)), where
u G Ai(»). Also let V = Qi(Z(Q)) and /7 = H/Q. Clearly, //„_, < V.
In particular, Q = CH(V), because Q = Cw(/Zn_i). According to (9.5.3),
either J(T) = J(Q), or V is an FF-module and T contains an offending
subgroup. If J(T) = J(Q) then J(T) is normal in H, as well as in the
stabilizer of the edge {v,u}. By (9.2.1) this means that J(T) acts trivially
on A, which is a contradiction. It remains for us to rule out the possibility
that T contains an offending subgroup.

Suppose A < T is an offending subgroup. If x e A then Cwx{x) has
index two in W\, while the index of C^2(x) in W2 is 2"~2. Therefore,
\A\ > \V/CV(A)\ > 2"- ' = \T\. Hence, A = T. However, the index of
CW2(T) in W2 exceeds 2"~2, which implies that the index of Cv(T) in V
exceeds 2"~l = \T\. Thus, T cannot be an offending subgroup. •
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Shapes of amalgams

As before we fix a vertex v = xn and a point *i incident to xn. The
parabolics H = Gn and G\ were defined as the stabilizers in G of v = xn

and x\, respectively. In Section 9.2 we introduced a normal series

Gn = H t> Q > # ! > . . . > Hi ^ ...

in which all the factors except for H/Q (which will be shown to be Ln(2)
in all the cases) are elementary abelian 2-groups and Hn = 1 provided,
that the condition (*n-\) holds (cf. Lemma 9.3.3). In Section 9.4 we have
shown that G\ possesses a normal series

G, >K{ t>L{ >Nh

where the index of JVi in L\ is at most 2 by Lemma 9.4.4 (i) and if (*,•)
holds for every 2 < i < n — 1, then N\ is itself of order at most 2 by
Lemma 9.4.6. Finally E = K\/L\ is an elementary abelian 2-group whose
dual E* is a Gi-admissible representation module of the point-residue
res^(xi) by Corollary 9.4.2. In this chapter we will compare the structures
of Gn and G\, which are related via G\n = G\ C\Gn. This will allow us
to compile a relatively short list of possible shapes (by which at present
we only mean the information about the normal factors) of Gn and G\
summarized in Tables Villa and VHIb. In the next chapter some of
these shapes will be shown to be impossible, and the others will lead to
the actual examples.

10.1 The setting

Notice first that due to our inductive approach we assume that in the
P- or T-geometry ^ of rank n under consideration the point residue

198
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i) is a known P- or T-geometry, of rank n — 1. In Tables Vila and
Vllb we record the structure of H = Gn for the known examples. The
information in these tables enables us to decide, in particular, in which
cases the condition (*,-) holds for the geometry ^ under consideration.

Table Vila. Vertex stabilizers in the known P -geometries

rank

2

2

3

3

4

4

4

5

G

Alt5

Syms

(3-)M22

(3-)AutM22

M23

(323-)Co2

(34371-)BM

2

23

23

26

2 6

210

2

2 4

24

2io

2

2 4

25 25

Table Vllb. Vertex stabilizers in the known T-geometries

rank

2

2

3

3

4

5

3 • Alt6

3 • Syrtit

M24

He

Coi

M

22

22

23

23

24

25

2

23

23

26

2io

2

2

2 4

210

2

25
26

2« 2i(i—1)/2
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In the next section we start considering the concrete variants. Our
method of comparing the structures of G\ and Gn will be very simple.
Given the normal factors of G\ and Gn we can compute the chief factors
of Gin in two different ways and compare the results.

Notice that the kernel Kin of the action of Gln on res#({xi,xn})
coincides with O2(G\n) and

Gin = G\n/K\n = Ln_](2),

since Gn £ Ln(2).
Let m,(F) be the number of chief factors of G\n inside K\n, isomorphic

to F and calculated by restricting of the normal structure of G, to G\n

(where i = 1 or n). We will use the following notation: T for the trivial
1-dimensional module; N for the natural module of G\n (whose non-zero
vectors are indexed by the elements of type 2 incident to xi and xn);
N' for the dual natural module; X for any non-trivial module (in many
cases mi(X) = m,(N) + mt(N')) and others.

10.2 Rank three case

In this section we consider the case n — 3. The condition (*2) holds
due to (9.2.2 (Hi)). So (9.3.1), (9.3.3), (9.3.4), (9.4.5), and (9.4.6) apply.
In particular, these results imply that Q = K3 is a (finite) 2-group. It
follows that Gn = Sym} = £2(2) and every chief factor Gn inside Kj is
an elementary abelian 2-group of rank one (the trivial module T) or two
(the natural module JV).

First let ^ be a Petersen type geometry. Then res#(xi) = ^(Alt$) and
Gi S Alt5 or Sym5.

First suppose that K\ = L\. Then, since the image of G13 in G\ is Sym^
or Sym$ x 2 in view of (9.4.5) and (9.4.6), we conclude that mi(N) = 0.
This is clearly impossible since the image of G13 in G3 is isomorphic to
Sym*, which implies that m-s(N) > 1. Thus E := K\/L\ is non-trivial and
by (9.4.2) £* is a Gi-admissible representation module of ^(Alts). By
(3.9.2) and (8.2.3 (v)) we conclude that £, as a module for O2(G,) S Alts,
is an indecomposable extension of the (self-dual) 4-dimensional natural
module by a trivial module of dimension 1 or 2. This means particularly
that

mi(N) = 2.

One of the 2-dimensional chief factors appears in the image of G13 in
G3, which leaves just one 2-dimensional chief factor of G13 inside X3.
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Therefore, G3 has a unique non-trivial chief factor in K3. It now follows
from (9.3.1) and (9.3.2) that Vi ^ 23. Furthermore, since G3 has a unique
non-trivial chief factor in K3, (9.3.4) and (9.3.5) imply that \H2\ < 2.

Now we are ready to prove the following.

Proposition 10.2.1 Let & be a P -geometry of rank 3 and G be a flag-
transitive automorphism group of (S. Then G\ = Sym^, G3 = £3(2) and
either

(i) K\ is the natural 4-dimensional module for G\ and /C3 = 23 is the dual
natural module of G3 (M22-shape), or

(ii) Ki is the natural module of Gj indecomposably extended by the trivial
l-dimensional module and K3 is an extension of the trivial l-dimensional
module by the dual natural module of G3 (Aut M22-shape.)

Proof. Since Hi ^ H2, we must have G\ = Sym$. Suppose first that
H2 = 1. Then |Ki| = 24, hence L\ = 1 and K\ is the (natural) module
for Gi = Syms and we are in case (i).

Now suppose that \H2\ = 2. Then |Xi| = 25. Observe that H2 acts
trivially on S[xi] (which is the Petersen graph of diameter 2) and hence
H2 < K\. If H2 < L\ then H2 is normal in both G3 and G\, which is
impossible by (9.2.1). Hence L\ = 1 and we are in case (ii). •

Now suppose that ^ is of tilde type. We first deal with the exceptional
configuration from (9.2.8).

Proposition 10.2.2 If Q = Hu then G\ S 3 • Alt6 and G3 S L3(2) (AHT
shape.)

Proof. Since Q = Hi we have H/H{ S L3(2). Note that G3 = H acts
transitively on the set of links incident to X3 and that the stabilizer of
such a link induces on the three vertices incident to the link a group Sym^.
This means, in particular, that G3 is transitive on the 14 vertices from
Ai(*3). This uniquely specifies the action of H/Hi = 1^(2) on Ai(x3) as
on the cosets of a subgroup Alt*. One of the properties of this action
is that the stabilizer of xi in H/Hi (isomorphic to Sym^) acts faithfully
on Si(x3) (where as usual Z = S[xi]). It follows that the vertexwise
stabilizer of Ei(x3) acts trivially on the entire Ai(x3). In particular, Ki
acts trivially on Aj(x3). Since Gi acts transitively on the vertex set of S,
we conclude that

Ki = L, = Ni.
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By (9.4.6) this means that |Ki| < 2. Therefore, |Gi3| < 25 • 3, which
implies that | # i | < 4. By (9.3.1) and (9.3.2), we now have that H2 = 1
and \H{\ < 2. We claim that in fact Hi = 1. Indeed, consider a vertex
u adjacent to X3 and the stabilizer G(x^,u) = H(u) of X} and u. Clearly,
H(u) induces on Ai(u) a group Alt*. Since H\ is normal in H{u) and
since Alt$ has no normal subgroup of index two, H\ must act trivially on
AI(M). Since u was arbitrary we have that H\ = Hi and hence, Hi = 1.
Thus, G3 = H^ L3(2) and, clearly, Gx = 3 • Alt6 (since |Gi3| = 23 • 3). a

Now suppose Q4= Hi and hence Q/H\ = 23 by (9.2.4). We will next
discuss Hj. By (9.2.2), Hi fixes £ vertexwise. That is, Hi<K\.

Lemma 10.2.3 The image of Hi in E = Ki/Li has order at most 23.

Proof. Let (E*,(p) be the representation of res^(xi) as in (9.4.2). Then
(p is defined on the set of links contained in Z and if y is such a link
then cp(y) is the subgroup of index 2 in £ (a 1-subspace in E*) which
is the elementwise stabilizer of the pair {21,^2} of quints, other than Z
containing y.

An element g € Hi fixes every vertex at distance at most 2 from X3
in the derived graph of ^ . This means that g stabilizes every quint
containing a vertex adjacent to X3. Hence the image of g in E is
contained in the intersection of the hyperplanes q>{y) taken for all the
links y contained in I and containing a vertex adjacent to X3. By (the
dual version of) (3.8.5 (i)) the intersection has dimension 3 and the proof
follows. •

Since L\ is centralized by 02{G\), it is clearly centralized by 02(Gu)
and hence (10.2.3) immediately implies the following

Lemma 10.2.4 G13 has at most one 2-dimensional chief factor inside Hi. D

Lemma 10.2.5 m3(JV) < 4.

Proof. We estimate the number of chief factors of G13 treating it as a
subgroup of G3. One such factor is in G13/Q = Sym^, and one is inside
Q/H\ £ 23. Since | Hx/H2 \< 23 by (9.3.1), there is at most one factor in
Hi/Hi and finally we have at most one factor in Hi by (10.2.4). D

Now we are in a position to further restrict the possibilities for E =
Ki/Li.

Lemma 10.2.6 One of the following holds:

(i) E is (the dual of) the hexacode module VhofGi=3- S4(2);
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(ii) E is dual to the 5-dimensional orthogonal module Vo o/Gi/O3(Gi) =

O5(2);
(iii) E is the (self-dual) 4-dimensional natural symplectic module of

(iv) E = 1.

Proof. By (10.2.5) we have m\(N) < 4. On the other hand, there
is one 2-dimensional chief factor of Gn inside G^/Ki which leaves us
with at most three such factors inside E = K\/L\. Recall that by (9.4.2)
and (3.8.1) the dual of £ is a quotient of the 11-dimensional universal
representation module of ^(3 • SA{2)) and the universal module is the
direct sum

v0 e vh,
where Vf, is irreducible and Vo contains a unique proper submodule
which is 1-dimensional. Under the natural action of Gn/K\ each of the
direct summands contains two 2-dimensional chief factors which gives
the proof. D

Suppose first that we are in case (i) of (10.2.6). Then E = Vh involves
two 2-dimensional chief factors of Ga and hence m\(N) = 3. Returning
to G3, we see that Hi/H2 = 23 (the natural module of G3 = L3(2)), while
H2 is a trivial module. It follows from (9.3.4) and (9.3.5) that \H2\ < 2.
Since H\ j= H2, we have that G\ is isomorphic to 3 • Synif, (rather than
to 3 • Alt(). Comparing now the orders of G\ and G3, we observe that
\H2\ = 2 and L\ = 1, which gives the following

Proposition 10.2.7 Let <g be a rank 3 tilde geometry, G be a flag-transitive
automorphism group ofS. Suppose that Q ^ H\ and E = K\/L\ is the
hexacode module. Then G{ ~ 26.3 • Sym6 and G3 ~ 2.23.23.L3(2) (M24-
shape.) O

It remains for us to consider the case where O3(Gi) acts trivially on E.
This situation is handled in the next lemma.

Proposition 10.2.8 Let'S be a rank 3 tilde geometry, G be a flag-transitive
automorphism group ofS. Suppose that Q ^ Hi and O3(Gi) acts trivially
on £ = Ki/Li. Then Gx ~ 25.3 • Sym6, G3 ~ 23.23.L3(2), furthermore

(i) iVi = 1 and L\ = Z(GX) is of order 2;
(ii) .Ki = O2(G\) and K\/Li is the 4-dimensional symplectic module for
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(iii) Hi is the dual natural module for G3 = L3(2) and Q/Hi is the
natural module (S6(2)-shape.)

Proof. By the hypothesis of the lemma we are in case (ii), (iii) or
(iv) of (10.2.6). Since Q/Hx s 23, m3(N) is at least two, so £ cannot be
trivial, i.e., the case (iv) does not occur. So £ necessarily involves the
4-dimensional symplectic module, and hence m3(N) = 3. From this we
obtain that H\/H2 = 23 (the natural module) and that H2 is a trivial
module. In particular, \H2\ ^ 2. Arguing as in the proof of (10.2.3) but
using (3.8.5 (ii)) instead of (3.8.5 (i)) we conclude that H2 < Lx. We are
going to show that in fact H2 is trivial. Towards this end notice that
CG(H2) > Gi and also CG(H2) > Gf, since |Li| <, 4. Clearly,

which means that H2 = 1. It remains for us to determine the normal
factors of G\. First of all, since Hi =̂= H2 we have G\ = 3-Sym^. Therefore,
|Ki| = 25. Suppose that Lx = 1 and so £ = 25. Then, as an Gi/03(G~i)-
module, £ is a non-split extension of a 4-dimensional irreducible module
by a 1-dimensional one. In particular, Li is elementary abelian. We
next notice that Q is also elementary abelian. Indeed, let C be the full
preimage in Q of subgroup C of order two from Q = Q/H\. Clearly, C is
abelian (since Hi < Z(Q)). If it is not elementary abelian then the squares
of the elements of C form a subgroup of order 2 in if 1, which is invariant
under the stabilizer of C in H/Q = L3(2). This is impossible since Q/H1
and Hi are respectively the natural and the dual natural modules. Thus,
C is elementary abelian. Since C was arbitrary, we conclude that Q is
elementary abelian.

Set Z = QDKi. Clearly, QK{ = 02{Gn). Thus, \Z\ = 23 and
Z = Z(O2(Gi3)). Since Go induces on Z a group Sym3, it follows that
Z contains a subgroup Zi of order 2 central in Gi3. On the other hand,
Gi3 acting on £ = Ki leaves invariant no 1-dimensional subspace. The
contradiction proves that Li =/= 1. Hence £ = 24 and L2 = 2. Finally,
since Gi3 leaves invariant no 1-dimensional subspace in H2, Li ^ H2.
Hence Li acts non-trivially on Ai(x3). Therefore, |Li/Ni| = 2 and hence
Ni = 1. This completes the proof. •

10.3 Rank four case

Recall that we follow the inductive approach and assume that in the rank
4 P- or T-geometry & under consideration the point residue res^(xi) is
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one of the known rank 3 geometries of appropriate type and G\ is a
known flag-transitive automorphism group of the residue.

First we rule out the exceptional configuration from (9.2.7).

Lemma 10.3.1 For every flag-transitive action on P- or T-geometry of rank
n > 3 we have H/Q ^ Ln(2).

Proof. Suppose that H/Q ¥ Ln{2). Then by (9.2.7) we may assume
that n = 4 and H £ Alt! (with g = l ) o r H £ 24.Alt1 (with Q s 24). If
Q = 1 then H = Alt-] and hence G14 = L3(2), which immediately yields
a contradiction with the structure of G\ (compare (10.2.1)). So ^ is of
tilde type and Q S 24. Then G14 = 24.L3(2) and again we run into a
contradiction with the structure of d (compare (10.2.2), (10.2.7), (10.2.8)
and (12.1.1)). a

Since res#(xi) is one of the known rank three Petersen type or tilde
type geometries, we obtain from Tables Vila and Vllb that (*3) holds
along with (*2). This means that (9.3.1), (9.3.3), (9.3.4), (9.4.5), and (9.4.6)
apply. In particular, H4 = 1 and \L\ | < 4. Hence, Q and Ki are (finite)
2-groups, and G14 is an extension of a 2-group by L^{2). As we will
see below, every chief factor of G14 in 02(Gi4) is either the trivial 1-
dimensional,the natural or the dual natural module for G14 = L-i{2) and
we continue to use notation introduced at the end of Section 10.1.

We will again start with the case where ^ is a Petersen type geometry.
Then res^(xi) is isomorphic to either ^(Mn) or ^(3

Proposition 10.3.2 If <§ is a P-geometry of rank 4 and \Hi/H2\ < 2 then
G4 = 1.4(2) and G\ is isomorphic to either M22 or 3 • M22 (M23-shape.)

Proof. By (9.3.2) we have H2 = 1 and hence \Hi\ < 2. If Hi = 1 then
G4 = L4(2) and |Gi4| = 26 • 3 • 7. Hence Ki = 1 and d = M22 or 3 • M22.
So it only remains for us to show that \H 11 =f= 2. Suppose on the contrary
that Hi S 2. Then Hi = Z(G4) = Z(G^). Since G34 is of index two in
G3, we obtain that Hi is normal in both G4 and G3; by (9.2.1) this is a
contradiction. D

Now assume that |Hi/H2| > 2. Then by (9.3.1), Hi/H2 s 26, the
module being the second exterior power of the natural module for G4. It
follows that

m4(X) = m4(N) + m4(N') > 3.
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Since 01{Gu/K\) = 23.Li(2) involves exactly one 3-dimensional factor,
at least two such factors are in K\. Therefore, E = K\/L\ is non-trivial.

Recall that by (4.2.4) the universal representation module of ^{Mn) is
isomorphic to the 11-dimensional Todd module # n ; as a module for M22
the latter module is an indecomposable extension of the 1-dimensional
trivial module by the 10-dimensional Todd module #io. By (4.4.6) the
universal representation module for ^(3 • M22) is the direct sum

#11 ® T12,

where T\i is a 12-dimensional self-dual irreducible 3 • Aut M22-module
on which the normal subgroup of order 3 acts fixed-point freely. Since E
is non-trivial (as a module for G\), it involves either #10, or T\i, or both.
In either case, m\{X) > 4. Returning to H, we obtain from (9.3.1) and
(9.3.2) that H2/H3 s 24, the dual natural module. Now the branching
starts. Let us consider the possibilities in turn.

Proposition 10.3.3 Let & be a T-geometry of rank 4 and G be a flag-
transitive automorphism group of ^. Suppose that E' involves #10- Then
G4 ~ 2.24.26.L4(2),

G, ~21 0.AutM2 2 or 210.3 • AutM22.

Furthermore, K\ = 02(Gi) is the irreducible Golay code module #10 for
= AutM22 (Co2-shape.)

Proof. By the assumption and the paragraph before the lemma we
know that £* possesses a quotient isomorphic to #10. Hence E contains
a submodule U, isomorphic to #10. Let U be the full preimage of that
submodule (subgroup) in K\. Since |Li| < 4 and since #10 is not self-dual,
we conclude that U is an abelian group. Furthermore, since the only
other possible non-1-dimensional chief factor of Gj in K\ is Tn, which
has dimension 12 (rather than 10), the U falls into Z{K\). It follows
from [MSt90] and [MStOl] that #10 is not an FF-module for Gi. SO
J(S) = J(Ki) is normal in Gu where S € Syl2(Gi4). By (9.2.1), this means
that J(S) cannot be normal in G4. Invoking (9.5.3), we conclude that
Hi n Z(Q) is of index at most two in H3 and H3 n Z(Q) is a submodule
in the direct sum of a 1-dimensional module and the natural module of
G4. In particular, nn(X) < 5. Returning to E, we see that E* cannot
involve T12 along with ^ i 0 . Hence E = ^10 or E = # n , so m\(X) = 4.

By the above H3 does not involve 3-dimensional chief factors for G^,
which implies by (9.3.4) and (9.3.5) that \H}\ < 2. Notice now that
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G\ = AutM22 or 3 • AutAf22, since Hi induces a non-trivial action on
T.T,(X4). Considering G14 as a subgroup of G4 we see that

|G14| < 217 -3-7 .

On the other hand, considering G14 as a subgroup of G\ we have

|G14| > 217 • 3 • 7.

Therefore, we have the equality in both cases. This implies the equalities

|H3| = 2, Li = 1 and |£ | = 210

and completes the proof. D

It remains for us to consider the case where E' is non-trivial but does
not involve #i0 . In that case E = £* = T\i (since Tn is self-dual) and
this situation is covered by the following lemma.

Lemma 10.3.4 Let $ be a P -geometry of rank 4 and G be a flag-transitive
automorphism group ofS. Suppose that E = Tn. Then

Gi ~ 2.212.3 • AutM22 and G4 ~ 24.24.26.L4(2).

(./4-shape.)

Proof. The hypothesis of the lemma immediately implies that m\(X) =
5 and hence H3 involves exactly one non-trivial composition factor. By
(9.3.4) and (3.2.7) we obtain that #3 PiZ(Q) has index at most two in #3
and Hi C\Z(Q) is either the natural module, or that plus a 1-dimensional
module. In particular,

|G14| > 220 • 3 • 7,

which implies that |L]| > 2. Since |Li| < 4, H2 involves at most one 1-di-
mensional composition factor. By (9.5.3), H3 < Z(Q). Suppose H3 = 25

and let (g) be the 1-dimensional submodule of Hi (so that g € Z(H)).
Observe that g e K\. Since E' = Tn, E, as a Gi4-module, contains
no 1-dimensional composition factors. Thus, g e L\ and hence Cc(g)
contains Gf, leading to a contradiction, since also Cc(g) > H. Thus,
Hi = 24 and |Li| = 2. Finally, since ^ is of Petersen type, we have
L\ = N\ and hence |Ni | = 2. This completes the proof. D

Thus we have completed the consideration of the case where 'S is rank
4 of Petersen type. Now suppose ^ is of tilde type.

By (10.3.1) and (9.2.4) we have H/Q s L4(2) and Q/H{ S 24. By the
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induction hypothesis we also have that res^(xi) is one of the three known
geometries:

and ^ (3 7 • S6(2)).

In each of the three cases G\ is determined uniquely (as M24, He, or
37 • S(,{2), respectively) by the condition that it acts flag-transitively on

Proposition 10.3.5 Let & be a T -geometry of rank 4 and G be a flag-
transitive automorphism group of&. Suppose that I/J1/H2I ^ 2. Then

(i) H = G4 is a split extension of Q = 24 by I*»(2);

(ii) G\ is isomorphic to M24 or He (Truncated M24-shape.)

Proof. By the hypothesis we conclude that m^(X) = 2, which means
that Gi has no non-trivial chief factors in Ky. This yields Ki = L\. We
claim that Hi must be trivial. Indeed, let 0 = I[x2] . Consider the action
of Hi on 0 . Observe that Hi acts trivially on Ai(x4) and Hi is normal
in H. According to Table VII, the vertexwise stabilizer in G3 of ©i(x4)
induces on ©2(^4) a group 23 which is irreducible under the action of
G24 by (9.3.1). This implies that Hi acts trivially on 02(^4). Since for
X2 we can take any quint containing X4, Hi acts trivially on A2(x4), i.e.,
Hi = 1. Hence

| G 1 4 | = 2 1 0 • 3 • 7.

For Gi this means that either Gi = M24 or He, or G1/K1 = 37 • S6(2) and
| K , | = 2 .

Now we are going to prove (i). The subgroup G3 induces on res#(x3)
the group G3 = Sym^ x Li{2). Hence |K3| = 26. Let g be an element
of order three such that (g) maps onto the normal subgroup of order
three in G3. Observe that G34 has two 3-dimensional chief factors in
K3. This implies that either g acts trivially on X3, or it acts on K3

fixed-point freely. In the former case one of the minimal parabolics is
not 2-constraint. This yields a contradiction, since Gi contains such a
minimal parabolic. Hence g acts on Ki fixed-point freely. It follows that

CG,(g) S 3 x L3(2).

Let R = Cc^g)00. Observe that {Hi n Q)gR is a complement to Q in G34.
It follows from Gaschiitz' theorem (8.2.8) that H splits over Q and (i)
follows.

Suppose that Gt ^ 37 • S6(2). Set R = O2(Gi4). The subgroup Ki



10.4 Rank five case 209

is the unique normal subgroup of order two in Gi4. Considering Gn
as a subgroup of G4 = 24 : L4(2), we see that, as a G^/R-module,
R/K\ = 26 is a direct sum of the natural module and the module dual
to the natural module. On the other hand, considering G\i/K\ as a
subgroup of G\ = 37 • $6(2) and factoring out the normal subgroup 37,
we obtain that the same R/K\ is an indecomposable module, which is a
contradiction that implies (ii). •

Proposition 10.3.6 Let & be a T'-geometry of rank 4 and G be a flag-
transitive automorphism group ofS. Suppose that \H\/H2\ > 2 and G\ ^
37 • S6(2). Then Gx ~ 2n.M24 and K\ = O2(Gi) is the irreducible Golay
code module <€\\ for Gi = M24 (Coi-shape.)

Proof. In view of (9.3.1), we have H\/H2 = 26. Consequently, m4(A
r) >

4. Since in G14/K1 we only find two non-trivial chief factors, we conclude
that Ki ^ Li. If resg(xi) ^ <g(He) then, according to (4.6.1), dim£* is
at least 51. So the order of a Sylow 2-subgroup S of G14 is at least 261.
On the other hand, taking into account (9.3.1), (9.3.3) and (9.3.4), we
compute that \S\ < 2̂ +4+6+4+30 = 250,which is a contradiction that rules
out this case.

Thus we can assume that res^(x) = ^(M^). Then according to
(4.3.1), E' = <^n, the irreducible Todd module. Now we can compute
that mi(X) = 5. Therefore, H2/H3 s 24 (compare (9.3.1) and (9.3.2)).
Furthermore, H has no non-1-dimensional chief factors in H3. It follows
from (9.3.4) and (9.3.5) that |# 3 | < 2. Computing the order of G14 in two
ways, we see that \Hj\ = 2 and L\ = 1. This completes the proof. D

We will deal with the possibility that res#(xi) = ^ (3 7 • S6(2)) in
Section 10.6 where we will obtain an infinite series of configurations
involving the symplectic groups. Notice that we have proved that
Hx/H2 = 26 even if res^(xi) S ^(3 7 • S6(2)).

10.4 Rank five case

Here we split cases according to the isomorphism type of the point
residue res^(xi). As usual we start with Petersen type geometries. The
universal representation group of ^(A/23) is trivial and by Proposition 6
in the Preface we obtain the following.

Proposition 10.4.1 ^(Miy) is not the residue of a point in a flag-transitive
P -geometry of rank 5. D
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Now we look at the residue when it is the P-geometry ^(Co2) or its
universal 2-cover ^(32 3 • Co2).

Proposition 10.4.2 Let $ be a P-geometry of rank 5, G be a flag-transitive
automorphism group ofS. Suppose that res^(xi) = ^(Co2) or ^ (3 2 3 • C02).
Then Gi 3* Co2 or 323 • Co2, respectively, \L{\ = 2, E = K\/Lx, as a
module for Gi/O2,3(G\), is isomorphic to the 22-dimensional section A
of the Leech lattice modulo 2 (BM-shape.)

Proof. By Table Vila in addition to (*2) and (*3) we also have (*4).
So #5 = 1. Considering the image of G15 in Gi (see Table Vila once
again), we determine that mi(X) (which is the number of non-trivial chief
factors of Gl5 inside K15) is at least 2. Hence H\/H2 S 210 by (9.3.1). In
turn, this means that ms(X) > 3, and hence K\ j= L\. By (5.2.3 (v)) and
the paragraph after the proof of that proposition we have

From the structure of these modules we deduce that m\{X) = 5. Now it
follows that H2/Hi ss 210, H3/H4 ^ 25 and H4 contains, as an //-module,
a unique non-trivial composition factor. Now (9.3.4) and (3.2.7) imply
that Hi is either the natural module or the direct sum of that with a
1-dimensional module. Suppose H4 contains a 1-dimensional submodule,
say (g). Then, clearly, g acts trivially on E = £[xi] and so g € K\.
Furthermore, it follows from (5.2.4) that G15 acting on E = K\/L\ does
not leave invariant a 1-space. Hence g € L\. However, this means that

CG (g)>(G5,Gf) ,

which is a contradiction. Hence H4 = 25. It remains for us to determine
whether £ = /v and |Li| = 2 (since ^ is a Petersen type geometry,
we have L\ = Ni), or E = A and L\ = 1. Suppose the latter holds.
Then K\ is an abelian group. Observe that H4 < K\. This means that
K\ ^ C//(H4) = Hi, i.e., K[ < H\. However, this means that K\ acts
trivially on res^(xs). Since Gi is transitive on the vertices of Z, K\
stabilizes every Y.\y] where y is a point (an element of type 1) incident
with a vertex of S. This yields K\ = L\, which is a contradiction. Hence
E = K1/L1 = A*22' and \L2\ = 2, which gives the proof. •

Proposition 10.4.3 Let ^ be a P-geometry of rank 5 and G be a flag-
transitive automorphism group of (S. Suppose that res^(xi) = ^{34). Then
G\ ^ 74 and G5 ~ 21O.L5(2) (Truncated J4-shape.)



10.5 Rank six case 211

Proof. Notice that in the considered situation (*4) might not hold. So
we need to use a different line of attack. First suppose that \H\\ < 2.
Then Hi = 1 and m${X) = 1, whereas, when we view G\$/K\ as a
subgroup of G\ = J4, we find that mi(X) > 3. The contradiction proves
that Hi/H2 = 210. (Since (*2) holds, (9.3.1) applies and |S/H2| = 220,
where S € Syh(Gis).) We now turn to G\. By (7.1.3) the universal
representation module of ^(J^) is trivial and by (9.4.2) we have K\ = L\.
Furthermore, by (9.4.4), L\ — N\. Since (•,) holds for i = 2 and 3, we
obtain from (9.4.5) that Kx < H3. This gives |S/H3| < \S/K{\ = 220.
Therefore, H2 = #3 = K\ = 1 and the proof follows. •

Now suppose <§ is of tilde type. The case res^(x) ^ ^(3 3 5 • S8(2)) will
be considered in Section 10.6 along with other configurations involving
the symplectic groups. So we have only one possibility to consider here.

Proposition 10.4.4 Let <$ be a T-geometry of rank 5, G be a flag-transitive
automorphism group of&. Suppose that res#(xi) = ^(Co\). Then G\ ~
2.224.Coi, where L\ is of order 2, and K1/L1 is A , the Leech lattice
modulo 2 (M-shape.)

Proof. In this proposition (*,) holds for i = 2, 3 and 4. In particular,
H5 = 1 and |Li| < 4. By (5.3.2) we have that E = A<24). Since the
condition (•*) fails for ^(Coi), (9.4.4 (iv)) implies that L\ = N\. Thus,
|Li| < 2. We claim that Ki is non-abelian, and hence L\ ± 1. If K\
is abelian then K\ < CH(HA) < Q, since if4 < K\. Therefore, K\ acts
trivially on res^(xs) and, by the transitivity of Gi on the vertices of Z,
it acts trivially on res»(w) for all vertices w € Z. However, this means
that K\ — L\, which is a contradiction. Thus, |Li| = 2. We can now
compute that mi(X) = 8 and that \S\ = 246. This forces Hi/H2 = 210,
H2/Hi s 210, H3/H4 s 25, and also that H4 has two composition factors:
a 1-dimensional and a 5-dimensional. •

10.5 Rank six case

Suppose n = 6 and 'S is not of Si2(2)-shape. Then res»(x) is either
f(BM), or 3?(34371 • BM), or ^(M). In all three cases the universal
representation module is trivial. This is the reason, in a sense, why none
of these geometries appears as a point residue in a flag-transitive P- or
T-geometry of rank 6 (cf. Proposition 6 in the Preface).

10.6 The symplectic shape

In this section we prove the following.
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Proposition 10.6.1 Let <& be a T-geometry of rank n > 4 and G be an
automorphism group of &. Suppose that

Then

Z(G\) is of order 2 and Ki/Z(Gi) is the natural symplectic module for

Gn~2"<"-1»/2.2".Ln(2);

Ln is the exterior square of the natural module of Gn = Ln(2) and Kn/Ln

is the natural module for Gn (S2«(2)-shape.)

Proof. First we claim that Hi = 1. Indeed, let w be a vertex at distance
three from xn. By (9.1.5) without loss of generality we may assume that
w is contained in 0 = I[xn_3]. According to Table Vllb, Hi acts trivially
on 0, and hence Hi fixes w. Since w was arbitrary, Hi = H3 and hence
Hi = 1. Next, we claim that |Hi| > 2. Indeed, if n = 4 then this was
shown in Section 10.3. Thus, without loss of generality, we may assume
that n > 5. We have H/Q ^ Ln{2) and Q/Hi S 2". Hence mn(X) = 2,
where as above mn(X) is the number of non-1-dimensional chief factors
of Gin in Oi(G\n). Furthermore, the non-1-dimensional chief factors
inside H/Q and inside Q/Hi have dimension n — 1. On the other hand,
considering the image of G\n in G\, we immediately obtain that G\n has
chief factors of dimensions n— 1 and (n —l)(n —2)/2. The latter is clearly
greater than n — 1, which is a contradiction. Hence \H\\ > 2. As ('2)
holds, we have that Hi = /\2 U, the second exterior power of the natural
module U of G]. Since also if /g ^ Ln(2) and Q/Hi = 2", we know the
exact size of H and also that mn(X) = 4. Now turning to G\ we find that
Gi = 3[r'l2. S2n_2(2) and |Ki| = 22"-'. Comparing this with the structure
of the universal representation module of ^(3[r'l2 . S2n_2(2)) (compare
the paragraph before (2.4.1), (3.5.1) and (3.10.1)), we see that the faithful
component of that module is not present in £*, where E = K\/L\.
Therefore, E s 22"-2 and \L2\ = 2, or E £ 22"-1 and Li = 1.

The second possibility can be ruled out by induction on n. By (10.2.8)
it does not take place for n = 3. Suppose it does take place for n = 4.
Then E = K\/L\ is the dual of the 7-dimensional orthogonal module for
Gi/03(Gi) £ S6(2) and by (10.2.8) G12/K1 = 21+4 : 3S4(2). Let us turn to
G2. By (9.4.1), K2/L1 is a tensor product of the 2-dimensional module of
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^ = Symj and a representation module Uf of res£(x2) = 0(3-S4(2)).
This representation module is 5-dimensional when considered as a section
of E and 4-dimensional when considered as a section of 02(Gn/K\),
which is a contradiction. Similar argument works for larger n (see
[ShSt94] for any missing details). •

10.7 Summary

In this section we present Tables Villa and Vlllb where we summarize
the possible shapes of P- and T-geometries respectively (cf. (10.2.1),
(10.2.2), (10.2.7), (10.2.8), (10.3.2), (10.3.3), (10.3.4), (10.3.5), (10.3.6),
(10.4.2), (10.4.3), (10.4.4) and (10.6.1)). In the tables Tr ' means 'trun-
cated'.
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Table Villa. Shapes of amalgams for P -geometries

1

rank

3

3

3

4

4

5

n

rank shape

3

3

4

4

4

5

5

M22

Aut M22

M23

Co2

h

Tr J4

BM

C

24.Syro5

25.Sym5

(3-)M22

210.(3-)AutM22

2.212.3-AutM22

J4

2.222.(323-)Co2

Table VHIb. Shapes of amalgams

shape

Altl

S6(2)

M24

TrM 2 4

Co,

M

S2n(2) 2.;

G,

3 • Alte

25.3 • Symf,

26.3 • Sym6

M24 or He

2n.M2 4

2.224.Co,

0,

23.L3(2)

2.23.L3(2)

L4(2)

2.24.26.L4(2)

24.24.26.L4(2)

21O.L5(2)

25.25.210.210.L5(2)

for T-geometries

Gn

L3(2)

23.23.L3(2)

2.23.23.L3(2)

24X4(2)

2.24.26.24.L4(2)

26.25.210.210.25.L5(2)

i on(n—1)/2 on r / o \
I Z .Z •Ljn\L)



11
Amalgams for P -geometries

In this chapter we consider the amalgam of maximal parabolics with
shapes given in Table Villa. We consider the seven shapes one by one
in the seven sections of the chapter. In Section 11.6 we show that an
amalgam of truncated ./4-shape does not lead to a P -geometry. Originally
this result was established in [Iv92b] and here we present a much shorter
proof which makes an essential use of the classification of the flag-
transitive T-geometries of rank 4. For the remaining shapes we prove
that the isomorphism type of an amalgam is uniquely determined by that
of G\. Thus there is a unique isomorphism type of amalgam for each
of the shapes M22, Aut M22 and J4 and two types for the shapes M23,
C02 and BM. Let stf be the amalgam of M23-shape with G\ = 3 • M22.
If the universal completion of si is faithful, the corresponding coset
geometry will be a 2-cover of (&(M.22)- Since the latter geometry is
2-simply connected by Proposition 3.6.5 in [Iv99], there are no faithful
completions. Thus up to isomorphism we obtain at most eight amalgams,
which is exactly the number of amalgams coming from the known
examples as in Table I. This proves Theorem 3 for P -geometries and in
view of Proposition 4 and Theorem 2 completes the proof of Theorem 1
for P-geometries (see the Preface).

11.1

In this section ^ is a rank 3 P -geometry with the diagram

P
-o.

2 2 r
G is a flag-transitive automorphism group of <§, such that

d ~ 24.Sym5, G3 ~ 23.L3(2),

215



216 Amalgams for P -geometries

where K\ = O2(Gi) is the natural module for Gi = Sym5 and K3 = O2(Gi)
is the dual natural module for G3 = Li{2).

Lemma 11.1.1 G\ splits over K\.

Proof. Table VI in Section 8.2 shows that H2(Gi,Ki) is trivial, hence
the proof. •

Lemma 11.1.2 G3 splits over K3.

Proof. The subgroup G\ induces the full automorphism group Sym$ of
the Petersen subgraph I(*i) with K\ being the kernel. Hence by (11.1.1)
G13 is the semidirect product of Ki and a group S = 2 x Sym^. Let X be
a Sylow 3-subgroup of S. Since K\ is the natural module, the action of
X on K\ is fixed-point free. Hence S = NGl{X). On the other hand, X
is also a Sylow 3-subgroup of G3 and CK2{X) is of order 2. This shows
that Ki = O2(CG1 3(0) where t is the unique involution in CG>3(X). The
action of AT on K\ turns the latter into a 2-dimensional GF(4)-vector
space. Hence X normalizes 5 subgroups T\,..., T5 of order 22 in Ki. It
is clear that K\ n K3 is one of these subgroups. If a is an involution in
S which inverts Z , then a acts on ^" = {Ti,...,T$} as a transposition
and hence normalizes a subgroup T from 9~ other than Xi nK.3. Then
(T,.Y,<T) = S_ym4 is a complement to X3 in G13 and the proof is by
Gaschiitz theorem (8.2.8). •

Lemma 11.1.3 The amalgam S> = {Gi,G3} is determined uniquely up to
isomorphism.

Proof. By (11.1.1), (11.1.2) and the proof of the latter lemma it is
immediate that the type of S> is uniquely determined. In order to apply
Goldschmidt's theorem (8.3.2) we calculate the automorphism group of
G13. We claim that Out G13 is of order 2. Let x be an automorphism of
G13. By Frattini argument we can assume that x normalizes S = Symy x 2
(we follow notation introduced in the proof of (11.1.2)). Clearly OutS
is of order 2. Thus it is sufficient to show that T is inner whenever it
centralizes S. The action of S on Ki is faithful and we will identify S
with its image in OutKi = L^(2) = Alt%. It is an easy exercise to check
that in the permutation action of Alt% on eight points the subgroup X is
generated by a 3-cycle. From this it is easy to conclude that

CAlH(S) = Z(S) = (t).
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Thus the action of i on X) is either trivial (and T is the identity) or
coincides with that of t. In the latter case T is the inner automorphism
induced by t.

Since H'(63,^3) is 1-dimensional, G3 possesses an outer automorphism
which permutes the classes of complements to K3. Such an automorphism
clearly does not centralize S and hence Goldschmidt's theorem (8.3.2)
implies the uniqueness of S>. D

Let us turn to the parabolic Gi. Since Ki is the dual natural module,

G23 =

where z is an involution from K3 and K̂ ~ = 02(623). Since [G2 : G23] = 2,
we observe that G2 ~ 2l+4.(Sym3 x 2), which shows that G12 = CG,(z)
where z e K\ 0X3. Thus the subamalgam & = {Gn, G23} is uniquely
located inside 38 up to conjugation.

Proposition 11.1.4 All the amalgams of Mn-shape are isomorphic to
)) and its universal completion is isomorphic to 3 • M22.

Proof. In view of the paragraph before the proposition all we have
to show is that the universal completion G2 of J5" possesses at most one
homomorphism ip whose restriction to K2 = 21+4 is an isomorphism and
y(G2)/w(K2) — Symi x 2. Since K2 is extraspecial with centre of order
2, the kernel of ip is of index 2 in Cg (K2) disjoint from Z(K.2). A direct
application of (8.4.3) proves the uniqueness of \p. The last sentence is by
[Sh85] (see also Section 3.5 in pv99]). •

11.2 AutM22-shape

In this section ^ is a rank 3 P -geometry with the diagram

P
2 2 ?'

G is a flag-transitive automorphism group of 0 such that

d ~ 25.Sym5, G3 ~ 24.L3(2),

where K\ = C>2(G\) is the natural module for G\ = Syms, indecomposably
extended by the trivial 1-dimensional module and /C3 = 02(63) is an
extension of the trivial 1-dimensional module by the dual natural module

Lemma 11.2.1 G3 splits over
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Proof. Consider

G13 ~ 25.(Sym2 x 2) ~ 24.Sym4

and let AT be a Sylow 3-subgroup in G13 (which is also a Sylow 3-subgroup
in d and G3). The structure of Kx shows that Y := O2(CGl(X)) is of order
22 and since CGJ{X) < K3, we conclude that K$ = CG13(Y). Considering
the fixed-point free action of X on the codimension 1 submodule in K\
we find (compare the proof of (11.1.1)) a subgroup T of order 22 in K\
which is (a) disjoint from K\ C\K^, (b) normalized by X, (c) normalized by
an involution a which inverts X. This produces a complement (T,X,a)
to JC3 in G13. Since G13 contains a Sylow 2-subgroup of G3, Gaschiitz'
theorem (8.2.8) completes the proof. •

Lemma 11.2.2 K$ is decomposable as a module for G3 = £3(2).

Proof. Suppose to the contrary that /C3 is the indecomposable exten-
sion of the 1-dimensional submodule Z(G}) by the dual natural module.
Then the orbits of G3 on K.f are of length 1 and 14. This shows that
whenever D is a Sylow 2-subgroup in G3, the equality Z(Gi) = Z(D)
holds. We may assume that D < G23. Since [G2 : G23] = 2, this implies
that Z(G3) is normal in G3 and in

G2 = G2iNG2(D),

which is not possible by (9.2.1). Hence G3 = 2 x 23 : L3(2). •

Lemma 11.2.3 Gi splits over Ki.

Proof. Denote by K[ the codimension 1 submodule in K\ and adopt
the bar convention for the quotient of G\ over K[. Since Sym$ splits over
its natural module K[, it is sufficient to show that G\ = 2 x Sym$. In
any case the centre of G\ is of order 2 and the quotient over the centre
is Sym$. If G\ is not as stated, it either contains SL2(5) = 2 • Alts or is
isomorphic to the semidirect product of Alts and a cyclic group of order
4. In neither of these two cases is there a subgroup G13 = 22 x Sym-j.
Hence the proof. •

Lemma 11.2.4 The amalgam S> = {Gi,G3} is uniquely determined up to
isomorphism.

Proof. We claim that Out G13 is of order (at most) 4. Indeed, first it
is easy to check that Ki is the only elementary abelian 2-group of rank



11.3 M23-shape 219

5 in G13 and hence it is characteristic. By Frattini argument without
loss of generality we can assume that the automorphism T, we consider,
normalizes N := NGu(X) S 2 2 x S y m 3 . Since \Ki C\N\ = 2, it is clear that
JV contains two classes of complements to Ku which z can permute. If
S = 2 x Symi is one of the complements, then we know that Out S is of
order 2 and hence the claim follows. By the proof of (11.1.4) we know
that Out G3 is of order 2 and induces an outer automorphism 03 on G13.
By (8.2.3 (vi)), we know that Out G\ is also of order 2 and it induces
an outer automorphism en of G13. The automorphism o\ centralizes K\
and hence it also centralizes the complement S modulo K\. On the other
hand, (T3 centralizes K3 and hence it normalizes a complement to Ki in
G13. Thus ffi and 0-3 have different images in OutGn and the proof
follows by Goldschmidt's theorem (8.3.2). •

The final result of the section can be proved in a similar way to the
proof of (11.1.4).

Proposition 11.2.5 All the amalgams of AnlMn-shape are isomorphic to
s/(AutM22,y(M22)) and the universal completion of such an amalgam is
isomorphic to 3 • Aut M22. •

11.3 M23-shape

In this section 0 is a rank 4 P -geometry with the diagram

P
2 2 2 1

and G4 = L4(2). Then

G14 S 23 : L3(2), G24 = 24 : (Sym3 x Sym3), G34 3 23 : L3(2)

are the maximal parabolics in G4 associated with its action on
which is the rank 3 projective GF(2)-space.

We follow the dual strategy, so our first step is to classify up to
isomorphism the amalgams 3C = {G4, G3} under the assumptions that
G4 = £4(2), G34 = 23 : L3(2) and [G3 : G34] = 2. Since G34 is normal in
G3, in order to determine the possible type of SC we need the following.

Lemma 11.3.1 OutG34 has order 2.

Proof. Since G34 is a maximal parabolic in G4 = L4(2), we know that it
is the semidirect product with respect to the natural action of L = Z<3(2)
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and Q = 02(634) which is the natural module of L. If L' is another
complement to Q in G34, then clearly there is an automorphism of G34
which maps L onto L'. By (8.2.5) G34 contains exactly two conjugacy
classes of such complements. Clearly an automorphism that sends L onto
a complement which is not in the class of L is outer. Hence to complete
the proof it is sufficient to show that an automorphism a of G34 which
preserves the classes of complements is inner. Adjusting a by a suitable
inner automorphism, we can assume that a normalizes L. An outer
automorphism of L exchanges the natural module with its dual. Since
the dual module is not involved in Q, a induces an inner automorphism
of L and hence we can assume that a centralizes L. In this case the
action of a on Q must centralize the action of L on Q. This immediately
implies that a acts trivially on Q. Hence a is the identity automorphism
and the proof follows. •

Lemma 11.3.2 Let 9C = {G4, G3} be an amalgam such that G4 = 1,4(2),
G34 = 23 : L3(2) and [G3 : G34] = 2. Then % is isomorphic to one of
two amalgams 9C(i) = {G^.G^0}, i = 1 and 2, where G^ = AutG34 and
G3

2) S G34 x 2.

Proof. Since all subgroups in G4 = I*t(2) isomorphic to 23 : Li(2)
are conjugate in Aut G4 the type of SC is determined by the isomorphism
type of G3. By (11.3.1) the type of % is that of SC^ or #( 2 ) . Since
Aut G31' = Aut G34 for both i = 1 and 2 and the centre of G34 is trivial,
the type of SC uniquely determines 3C up to isomorphism by (8.3.2). •

First let us show that the amalgam 9C(1) does not lead to a P-geometry.
Let &F be the affine rank 4 geometry over GF(2), which is formed by
the cosets of the proper subspaces in a 4-dimensional GF(2)-space. The
diagram of gF is

and A = /1GL4(2) is the flag-transitive automorphism group of £F. If A\,
1 < i < 4, are the maximal parabolics associated with the action of A on
#•, then it is easy to see that {^4,̂ 43} is isomorphic to ^2\ An element of
type 2 is incident to four elements of type 4 and its stabilizer A2 induces
Sym* on these four points with kernel Kj" = 24 : Sym^. Furthermore, it
is easy to check that the image of A2 in OutK^ is Sym^. Since Ai is
generated by An and A^, the image is determined solely by the structure
of {At, 43}. Since no flag-transitive automorphism group of the Petersen
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graph possesses Sym^ as a homomorphic image, the amalgam $"(2) indeed
does not lead to a P -geometry.

Thus 9C = {G4, G3} is isomorphic to #"'1>. Consider the action of
G = M23 on ^ = ^(M23) and let G,, 1 < i < 4, be the maximal parabolics
associated with this action. Then 3£ = {G^Cn} is also isomorphic to #"(1).
Let K2 be the kernel of the action of Gi on res±(x2) (where *2 is the
element of type 2 stabilized by G2). Then it is easy to deduce from
the structure of G2 = 24 : (3 x Alts).2 (compare p. 114 in [Iv99]) that
K2 = 24 : 3 and the image of G2 in OutX2 is isomorphic to Syms.
Furthermore, an element of order 3 in K2 acts fixed-point freely on
02(^2) ' w m c h implies that the centre of K2 is trivial and we have the
following.

Lemma 11.3.3 Let xp be the natural homomorphism of the universal comple-
tion of3C = {G4, G3} onto G and \p2 be the restriction ofxp to the subgroup
G2 in the universal completion generated by the subgroups G2j = NQ^K^)

for i = 3 and 4. Then kertp2 = C^K.%). •

By the above lemma the amalgam {G2, G3,G4} is isomorphic to the
corresponding amalgam in G = M23. Furthermore the subamalgam
2 = {Gu I 2 < i < 4} is uniquely determined and hence Gi is either the
universal completion of 3) (isomorphic to 3 • M22) or the M22 -quotient
of the universal completion. In the latter case J / = {G, | 1 < i < 4} is
isomorphic to the amalgam of maximal parabolics in M23 while in the
former case the coset geometry of the universal completion of sd is the
universal 2-cover of ^(M2i). By Proposition 3.6.5 in [Iv99] the geometry

is 2-simply connected, which gives the main result of the section.

Proposition 11.3.4 All the amalgams of M^-shape are isomorphic to
stf{M2i,y{M2i)) (in particular G\ = M22) and the universal completion
of such an amalgam is M23. •

11.4 Co2-shape

In this section ^ is a rank 4 P -geometry with the diagram

P
2 2 2 1

such that the residue of a point is isomorphic to either ^(M22) or
M22) and

Gi ~ 2lo.AutM22 or Gx ~ 210.3 • AutM22
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with K\ = C>2(Gi) being the irreducible Golay code module #10 for
G\/Oi(G\) = AutM22 (where G\ = G\/K\ as usual.) We will assume that
G\ = AutM22, the arguments for the case when G\ = 3 • AutM22 are
basically the same.

By Table VI in Section 8.2 the group H2(A.xxtM22,c$w) is non-trivial
(1-dimensional), so a priori G\ might or might not split over K\. At
this stage we can only say the following. Since H2(M22,<&io) is trivial,
the commutator subgroup G[ of Gi is the semidirect product of <̂ io
and M22 with respect to the natural action. Since Hl(M22,^m) is 1-
dimensional, G\ contains exactly two classes of complements to K\.
This shows that 0 = Out G\ is elementary abelian of order 4 generated
by the images of two automorphisms c and n, where c exchanges the
classes of complements and commutes with G[/Ki = M22, while n
normalizes one of the complements and induces on this complement an
outer automorphism. Then the preimage in Aut G[ of the subgroup (en)
of 0 is the unique non-split extension of #10 by AutM22- Thus Gi is
isomorphic either to this extension or to the semidirect product of "if 10
and AutM22 (the preimage in AutG'j of the subgroup (n)). We will see
in due course that the latter possibility holds.

We follow the direct strategy and reconstruct first the amalgam ^ =
{Gi,G2}. The subgroup Gn is the preimage in G\ of the stabilizer
S = 25 : Sym$ in G\ of X2 (which is a point in res^(xi) = (§(M22))- It
follows from (4.2.6) that ^10, as a module for S, possesses the submodule
series

1 <x{2) <K[1) <KU

where K{2) = CKl(O2(S)) is the orthogonal module Vo of S/O2(S) = Sym5,
K[l) = [K!,O2(5)] has codimension 1 in K{ and K^/K^ ^ O2(S) is the
indecomposable extension of the natural module Vn of F by a trivial
1-dimensional module.

Recall that Vo is also the heart of the GF(2)-permutation module on 5
points. The orbits on the non-zero vectors in Vo have length 5 and 10 and
Vo is the universal representation group of the derived system of ^{Alts)
(cf. (3.9.4)). The action of Syms on the set of non-zero vectors in Vn is
transitive. By (2.8.2) and Table VI in Section 8.2, K[i}/Kf] is the largest
extension Fn" of Vn by trivial modules. We call V" the extended natural
module of Sym$. The extended natural module is the dual of the universal
representation module of ^{Alt^) factored over the 1-dimensional trivial
Syms-submodule (notice that each of Vn and Vo is 4-dimensional and
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self-dual). The following result is similar to (12.6.2), and we follow its
notation.

Lemma 11.4.1 We have

G2 ~ 24+U2.(Sym5 x Sym3),

and furthermore

(i) KiHK2= K\[) has index 2 in Kt;

(ii) K2 = 02(^2) and K2/L2 is the tensor product of the extended natu-
ral module of the Syms-direct factor of G2 and of the 2-dimensional
module for the Sym^-direct factor;

(iii) L2 = ri£€<?£ and L2 = 24 is the orthogonal module for the Symydirect
factor of G2;

(vi) if E is an elementary abelian subgroup of order 29 in K2 which is
normal in Kj" then E € S. •

We know that at least G\ splits over K\ and hence G\C\G\i is a
semidirect product of K\ and a subgroup T = 24 : Syms, which maps
isomorphically onto the stabilizer of X2 in G{ = M22. Since T is a
maximal parabolic associated with the action of M22 on ViMn), we
know that it splits over C>2(T). Let B = Syms be a complement to
in T,

C = {KUB) and £> =

Since Ki induces on res^fe) an action of order 2 with kernel K^, we
observe that D is an extension (split or non-split) of K\ ' by

Lemma 11.4.2 As a module for D/C>2(D) = Syms, K^' possesses the direct
sum decomposition:

K\1) = L2 e vu

where V\ maps isomorphically onto K\ /Kf\

Proof. The result can be checked either by direct calculation in #10
or by noticing that L2 being the orthogonal module is projective. D

Consider D = D/V\ which is an extension by Syms of the orthogonal
module Vo = L2. Since H2(Syms, Vo) is trivial, D contains a complement
F = Syms to O2(D).

Let F be the full preimage of F in D, so that F is an extension of Vi
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(which is an elementary abelian subgroup of order 25) by Syms. Notice
that by the construction we have

Lemma 11.4.3 Let t be a generator of a Sylow 3-subgroup of 02,3(62).
Then

(i) F' <d andFtnKl = l;
(ii) G\ splits over K\;

(iii) F splits over 02(F).

Proof. Since F < K2 and K2 is normal in Gi, it is clear that Fl <G\.
Since t e G2\G\2, t permutes transitively the three subgroups constituting
S. Hence by (11.4.1 (iii)) we have

and since X, = L2 ® V\, where V\ = 02{F), (i) follows. The image of Fl

in G\ contains a Sylow 2-subgroup of G\ and hence (ii) follows from (i)
and Gaschutz theorem. Finally, since F' maps onto a maximal parabolic
associated with the action of Gi = Aut M22 on ^(Mii), we know that it
splits over its O2, hence so does F. D

Thus Gi is uniquely determined up to isomorphism and Gn is uniquely
determined up to conjugation in G\. The next lemma identifies Kj as
a subgroup in G12 (recall that if P is a group, then P00 is the smallest
normal subgroup in P such that P/P™ is solvable).

Lemma 11.4.4 The following assertions hold:

(i) Kj is a semidirect product of Kj and a subgroup X = Syms '<
(ii) Li is the unique elementary abelian normal subgroup in Gn which is

isomorphic to the orthogonal module for X;
(iii) Oi{Gy2)lL2 is the direct sum of two copies of the natural module for

X and K2 = CGn(O2(G?2)/L2);
(iv) if Y = K2/O2(Gf2) then Y is elementary abelian of order 22 and

K2=CCl2(Y).

Proof, (i) follows from (11.4.3 (iii)), the rest is an immediate conse-
quence of (11.4.1). •

Our next objective is to calculate OutK^. Since the centre of Kj~ is
trivial, G2 is the preimage in AutiC^ of a Sym3-subgroup in OutX^". We
start with the following.
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Lemma 11.4.5 The group Kj contains exactly four classes of complements
to K2 = O2(K2-).

Proof. By (11.4.4 (i)), X is one of the complements. Let £ = {£,-1 1 <
i < 3} and £, = K[1] = Kt nK2. Then by (11.4.2), £, as a module for
X is the direct sum L2 © Vx, where L2 is the orthogonal module and Vt

is the extended natural module. It is easy to deduce from Table VI in
Section 8.2 that H^Syms, Vi) is one dimensional. Since Hl(Sym5,L2) is
trivial, by (8.2.1) we see that the group EtX contains exactly two classes
of complements with representatives Xo = X and Xit where 1 < i < 3.
We claim that for 0 < i < j < 3 the complements Xj and Xj are not
conjugate in K^. Let Xi(j) denote the image of Xt in Kj/Ej. Clearly
X0(j) = Xj(j), but for k + j and 1 < k < 3 the image EkX in K^/Ej
is isomorphic to EkX/L2 and still contains two classes of complements,
which shows that Xo(j) ^ X^U) a n ^ proves the claim. In order to get an
upper bound on the number of complements consider the normal series

L2<EX< K2,

where L2 is the orthogonal module while both Ei/L2 and K2/Ei are
isomorphic to the extended natural module V\. We have seen already
that all complements in L2X are conjugate while V\X contains two
classes of complements. Hence altogether there are at most four classes
of complements. •

Lemma 11.4.6 The action ofOuiK^ on the set of four classes of comple-
ments to K2 is faithful, in particular, OutK^ < Sym4.

Proof. Suppose that % € AutK^~ stabilizes every class of complements
as a whole. Then, adjusting i by a suitable inner automorphism we
can assume that T normalizes XQ = Sym$ and since the latter group is
complete, we can further assume that x centralizes .Xo- Consider the
quotient J = X^"/O2(Gf2) = 22 x Symy Then the set of images in J of
the complements X, for 0 < i < 3 forms the set of all Syws-subgroups in
J, which shows that i centralizes J. On the other hand, the images of the
subgroups from $ form the set of subgroups of order 2 in the centre of
J. Hence x normalizes every £, e S. The action of x on £, must commute
with the action of X on £,. We know that £,, as a module for X, is
isomorphic to the direct sum of the orthogonal and the extended natural
modules. Since these two modules do not have common composition
factors, it is easy to conclude that x must centralize £, which shows that
T is the identity automorphism. •
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Lemma 11.4.7 Let G\ be the semidirect product with respect to the natural
action of the irreducible Golay code module %>\ \ for M24 and Aut M22
(considered as a subgroup in M24). Then

(i) Gi contains G\ with index 2;

(ii) Cg(Xf) is trivial;
(iii) the image of N-p (Kf) in OutK^~ has order 4.

Proof, (i) is immediate from (11.4.3 (ii)). It is easy to see that
AutM22 has three orbits on # n \^io with lengths 352, 616, 672 and with
stabilizers Alt-], AutSymg and PGL(2,11), respectively. This shows that
K2KK2 nKi) ^ 25 : Sym5 acts fixed-point freely on <$n \ # i o , which
implies (ii), since we already know that the centre of K̂ ~ is trivial. It is
clear that Kj has index 4 in its normalizer in G\, so (ii) gives (iii). •

Lemma 11.4.8 OutX^" = Sym4.

Proof. By (11.4.6) all we have to do is present sufficient number of
automorphisms. Since Kj is isomorphic to the corresponding subgroup
associated with the action of C02 on <S(Co2), we know that Out/C^"
contains Sym^. By (11.4.7) it also contains a subgroup of order 4, hence
the proof. •

Proposition 11.4.9 The amalgam && = {Gi,G2} is uniquely determined up
to isomorphism.

Proof. Since all Sym3-subgroups in Sym* are conjugate, by (11.4.3 (ii)),
(11.4.4 (iv)) and (11.4.8) the type of 28 is uniquely determined and it only
remains to apply Goldschmidt's theorem. Since the centralizer of K^ in
G12 is trivial, it is easy to see that Aut G12 coincides with the normalizer
of G12 in Aut/Cf. So OutGn has order 2. On the other hand, by (11.4.7
(iii)) the image of iV"AutGi(Gi2) in OutGn is also of order 2. Hence the
type of 81 determines SS up to isomorphism. D

Now (8.6.1) applies and gives the following.

Proposition 11.4.10 An amalgam si of Co2-shape is isomorphic to either

or

and the universal completion of si is isomorphic to either C02 or 323 • C02,
respectively. •
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11.5 J4-shape

In this section ^ is a P -geometry of rank 4 with the diagram

P
2 2 2 1

the residue of a point is isomorphic to ^(3 • M22),

d ~ 2.212.3 • Aut M22, G4 ~ 24.24.26.L4(2),

where L\ is of order 2 and K\/L\ is the universal representation module
of the extended system of ^(3 • M22). We start with the following.

Lemma 11.5.1 K\ = Oi{G\) is extraspecial of plus type, so that G\ ~
2i.+12.3-AutM22.

Proof. Since L\ is of order 2 and K\/L\ is isomorphic to the universal
representation module of the extended system of ^(3 • M22) on which
G\ = 3 • AutM22 acts irreducibly, preserving a unique quadratic form of
plus type, all we have to show is that K\ is non-abelian.

We consider the action of G on the derived graph A of G and follow
the notation in Chapter 9. The subgroup K\ is the vertexwise stabilizer
of the subgraph E = E[xi] induced by the vertices (the elements of type
4) incident to x\. Since K\/L\ is non-trivial, K\ acts non-trivially on
A(x4), which means that its image in H/H\ = L4(2) is non-trivial. On the
other hand, #3 = 24 fixes every vertex whose distance from X4 is at most
3 and since the action of G\ = 3 • M22 on E satisfies the (^-condition,
Hs fixes S vertexwise and hence HT, < K\. Since H/H\ acts faithfully on
H^,K\ is non-abelian. •

Clearly G12 is the full preimage in G\ of the stabilizer G\i/K\ =
2s : Syms of x2 in Gi = 3 • Aut M22. By (4.4.8) we know that (as
a module for Gn/Ki) Ki/L\ possesses a unique composition series
V^ < ... < V& < K1/L1. For 1 < i < 5 let K { ° denote the full preimage
of VW in Ku

Lemma 11.5.2 We have

G2 „ 22+1+4+8+2.(Sym5 x Sym,),

furthermore, if {x\,yi,z\] is the set of points incident to xj, then

(i) K{5) =KxnK2 has index 2 in Ki;
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(ii) K^ = Lj and K2/L2 is the tensor product of the extended nat-
ural module of K2/K2 = Syms and the 2-dimensional module for

(iii) Li is a maximal abelian subgroup in K\ (of order 27);

(iv) V := K^ is elementary abelian of order 23 normal in G2;

(v) K.W = (L(xi),L(yi),L(zi)) is a normal subgroup of order 4 in Gj
and Li/Km is the dual of the extended natural module of K^/Ki
centralized by K2/K2 = Sym^.

Proof. Everything follows from (4.4.8). Notice that V is the largest
subgroup in K2 inside which all the chief factors of Gn are trivial. •

As an immediate consequence of (11.5.2 (v)) we obtain the following.

Lemma 11.5.3 Let cp be the mapping of the point-set of & into G which
sends y onto the unique involution in L(y). Then (G, q>) is a G-admissible
representation ofS. •

The subgroup Gn is not maximal in G\, since it is properly contained
in G12 = (Gn,X), where X is a Sylow 3-subgroup of 02,3(Gi), so that
G12 = G,2Oy(Gi).

Lemma 11.5.4 V is normal in Gn.

Proof. The image X of X in Gi coincides with O3(Gi). By (4.4.8), X
normalizes V^2\ which means that X normalizes V. •

By (11.5.2 (iv)) and (11.5.4), V is normal in both G2 and G12. Further-
more

G12 = G2D Gn and [G2 : Ga] = [Gn : GJ2] = 3.

Lemma 11.5.5 Let C = CGa(V), Q = O2(C), A = Aut V S L3(2), Ax and
A2 be the images in A of G\2 and G2, respectively. Then

(i) {/li,/^} is the amalgam of maximal parabolics in A, so that A\ is
the stabilizer of the l-subspace L\ and A2 is the stabilizer of the 2-
subspace K^ in V;

(ii) Q is the normal closure o//C(4) in G2 of order 215 and C/Q £ Sym5;

(iii) C is the largest subgroup in Gn normal in both G2 and Gn and

C ~ 21 + 1 + 1 + 4 + 4 + 4 .Sym5 .
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Proof. Since Ki is extraspecial by (11.5.1), it induces on V the group
of all transvections with centre L\. Since X acts on V non-trivially and
X is fully normalized in G\2 it is clear that G\2 induces on V the full
stabilizer of L\ in A. Thus Gn induces the Borel subgroup D%. Since
G2 induces Sym^ on Kw, (iii) follows. By the above, K2 induces on V
an action of order 4, and hence (ii) follows from (11.5.2). The amalgam
{A\,A2} is simple and it is clear that

CCl(V)<Gl2 and C^JV) < Gl2,

hence (i) follows. •

By (11.5.5) we observe that

G12 ~ 21+2+8+4.(Sym5 x Sym4), G2 ~ 22+l+4+*.(Sym5 x Sym4).

Now we are going to make use of the T-subgeometries in <S. From
Lemma 7.1.7 in [Iv99] and the paragraph before that lemma we can
deduce the following.

Proposition 11.5.6 The geometry & under consideration contains a family

of T-subgeometries of rank 3, such that

(i) the element X3 is contained in a unique subgeometry Sf from the family
and res^(x3) = res^(x3);

(ii) the stabilizer S of £f in G acts on £f flag-transitively;
(iii) the residue res^(xi) belongs to the family of^{i-S^(2))-subgeometries

in res»(xi) S 3(3 • M12). D

By (11.5.6) {xi,X2,X3} is a maximal flag in Sf and {S,- = S(x,) | 1 < i <
3} is the amalgam of maximal parabolics associated with the action of S
on £f (we will see below that the action is not faithful).

Lemma 11.5.7 The following assertions hold:

(i) S3 = G3 ~ [218].L3(2);
(ii) Si ~ 21+6+6.3.24.S>'m6.

Proof, (i) follows from (11.5.6 (i)) while (ii) follows from (11.5.6 (iii)). D

Lemma 11.5.8 Let Ks be the kernel of the action of S on S? and S = S/Ks-
Then Ks is of order 2n and & S <${M2A) or SP = $(He).

Proof. By the classification of the rank 3 T-geometries $f is isomorphic
to

or ^ (3 7 • S6(2)).
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Suppose that Sf is isomorphic to the latter of the geometries and S =
37 • Se(2) (the only flag-transitive automorphism group of ^(3 7 • Se(2))).
Then S{/Ks = 3 • 24.Sym6 and it is easy to deduce from (11.5.7) that if
X is a Sylow 3-subgroup of 02,3(^1) then X acts faithfully on K$. By
considering the action of Se(2) on the set of hyperplanes of 37 it is easy
to see that the smallest faithful GF(2)-representation of S has dimension
56. D

Thus Ks is of order 2 U, Si/Ks = 26 : 3 • Sym(, and hence (compare
(11.5.7 (ii))) Li = L(xi) is contained in K$. Let cp$ be the restriction to
y of the mapping as in (11.5.3). Then Imcps < Ks and (Im<ps,<ps) is
an S-admissible presentation of Sf. Clearly a quotient of Im q>s over its
commutator subgroup supports a non-trivial abelian representation of $P.
By (4.6.1) every /fe-admissible representation of^(He) has dimension at
least 51 and by (4.3.1) the only M24-admissible representation of ^§{Mu) is
supported by the 11-dimensional Todd module, so we have the following.

Proposition 11.5.9 The following assertions hold:

(i) 5 ^

(ii) S^

(iii) Ks=%u (the irreducible Todd module). •

Now we are in a position to identify the subgroup T = (Gi2,G2).

Lemma 11.5.10 Let V be as in (11.5.2 (iv)). Then

(i) NS{V) contains Ks and NS(V)/KS = 26 : (Sym3 x L3(2)) is the sta-
bilizer of a trio in S = M24;

(ii) Gn = (Gn n S)C and G2 = (G2 n S)C;
(iii) T = 2i+l2.(Sym5xL3(2));

(iv) let y) : T -^T = T/C = L3(2) be the natural homomorphism and x
be an involution from T, then \p~{(r) contains an involution.

Proof. It is easy to notice that V is contained in Ks so that (i) follows
from the basic properties of the irreducible Todd module Ks =^\\- Since
Ns(V) induces L3(2) on V, each of G12 n S and G2 n S induces Sym4, so
(ii) follows from (11.5.5 (iii)). Finally (iii) is by (ii) and (11.5.5 (iii)).

In order to prove (iv), notice that K\ n C is the orthogonal complement
to V with respect to the bilinear form induced by the commutator map
on K\. Hence \p{K\) is an elementary abelian subgroup of order 22.
Since all involutions in T are conjugate, we can assume that f G w(Ki).
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Since Ki is extraspecial, it is easy to see (compare (4.4.7)) that there is
an involution in K\ \ {K{ n C). •

Let us take a closer look at the subgroup Si = G\ <~\S as in (11.5.7 (ii)).
On the one hand, Ki < Si and Si/Ki = 24 : 3 • Sym6 is the stabilizer in
Gi = 3 • AutM22 of a 0(3 • S4(2))-subgeometry in res»(xi) S 0(3 • M22).
On the other hand, Ks < Si and Si/Ks = 26 : 3 • Sym6 is the stabilizer
in S = M24 of xi considered as a point of y.

Lemma 11.5.11 The following assertions hold, where X is a Sylow 3-
subgroup of O2,i(Si) :

(i) if A = Ns^X) ~ [25].3 • Sym^, then Oi{A) is the indecomposable
extension of a l-dimensional module by the natural symplectic module

(ii) ifB = NGl{X) ~ 2.3 • AutM22, then B' has index 2 in B, so B does
not split over Lt = O2(B);

(iii) B' = 6M22 is the unique covering group o/M2 2 with centre of order
6;

(iv) G\ splits over G\;
(v) G\ is isomorphic to the point-stabilizer of J4 acting on ^(JA);

(vi) A splits over O2(/4);
(vii) S splits over Ks = O2(S);

(viii) S is isomorphic to the stabilizer in J4 of a <&(M24)-subgeometry in

Proof. Since 02{A) < Ks, (i) follows from Lemma 3.8.5 in [Iv99]. Since
O2(>4) < G\ (ii) follows from (i). The Schur multiplier of M22 is cyclic of
order 12 [Maz79], and since Gi does not split over its O3, (iii) follows
from (ii). In order to prove (iv) we need to show that G\ \ G\ contains
an involution. We follow notation as in (11.5.10 (iv)). By (11.5.5 (ii)) the
images of (G\ O T) and (G\ n T) in T are isomorphic to Sym4 and Alu,
respectively. Hence the existence of the involution in G\ \ G\ follows
from (11.5.10 (iv)). Since G\/L\ = 212 : 3 • AutM22 is the semidirect
product of the universal representation module of the extended system
of 0(3 • M22) and the automorphism group of this geometry, G\/L\ is
uniquely determined up to isomorphism. Hence (v) follows from (iii) and
(iv). Since A is contained in Gi, (v) implies (vi).

Let us prove (vii). Let <&\ be the 0(3 • S4(2))-subgeometry in res^(xi)
such that Si is the stabilizer of 3)\ in G\. Then $)\ is the set of elements in

) fixed by O2(Si)//Ci = 24, in particular 9)\ is uniquely determined.
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Let cp be the map from the point-set of res^(xi) which turns K\/L\ into
the representation module of the geometry. Then Ks C\K\ (of order 27)
is the preimage in K\ of (p(@i). Furthermore, Ks OK\ is the centralizer
of 02(A) in K\. Let U\ = [X,K$ C\K\]. Then U\ is a complement to L\
in Ks n Ki and it is a hexacode module for a complement F = 3 • Sywi6
to O2(^) in A, which exists by (vi). Let 3>2 be another 0(3 • S4(2))-
subgeometry in res»(xi) such that the hexads in the Steiner system
S(3,6,22) (cf. Lemmas 3.4.4 and 3.5.8 in [Iv99]) corresponding to $)\
and Q>2 are disjoint. Then the joint stabilizer F of 3>\ and < 2̂ in G\ is
a complement to 02{Si)/Ki in Si/Ki = 24 : 3 • Sym6. Without loss of
generality we can assume that F = FK\/K\ where F is the complement
to Oi{A) in ^ as above. Then F normalizes the subgroup U2 in K\
defined for 2>2 in the same way as U\ was defined for 3)\. Since F acts
irreducibly on U\ and C/i ^ Ui (since ^ i ^ ®2) we have U\ n C/2 = 1.
Now C/2^ — 26 : 3 • Ŝ W6 is a complement to Ks in Si. Since Si contains
a Sylow 2-subgroup of S Gaschutz' theorem (8.2.8) gives (vii). Finally
(viii) is immediate from (vii) and (11.5.9 (ii) and (hi)). •

By (11.5.11) and the paragraph before that lemma the type of the
amalgam S = {Gi,S} is uniquely determined. Now we are going to
identify it up to isomorphism.

Lemma 11.5.12

(i) Out Si is of order 2;

(ii) 8 = {Gi,S} is isomorphic to the analogous amalgam in J4.

Proof. We follow the notation introduced in (11.5.11), so that F S
3 • Sym6 is a complement to O2(Si). Since O2(S)) possesses the following
chief series:

1 < L, < O2(A) < 02{A)V{ < O2(A)U{U2 = O2(Sl),

the chief factors of F inside O2(Si) are known. Since HX(F, I/,-) is trivial
for i = 1,2 while Hi(F,O2{A)) is 1-dimensional (remember that O2(A) is
indecomposable) we conclude that there are two classes of complements
to O2(Si) in Si. Hence in order to prove (i) it is sufficient to show that
every automorphism a of Si which normalizes F is inner. Since O2(Si)
does not involve the module dual to U\, a induces an inner automorphism
of F and hence we can assume that a centralizes F. Notice that

Ks = CSl(O2(A)), where A = NSl{O3(F)),
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and hence a normalizes Ks and commutes with the action of F on
Ks- Since Ks = Oi{A) © JJ\ (as a module for F), it is easy to see
that a must centralize Ks. Similarly a must centralize the complement
I/2 to Ks in 02(Si). Thus (i) is proved. In order to prove (ii) we apply
Goldschmidt's theorem (8.3.2). Since H1(M2A,^U) is non-trivial (cf. Table
VI in Section 8.2), S possesses an outer automorphism. In fact it is easy
to see that AutS = #12 : M24 and the centralizer of Si in AutS is trivial.
Hence 8 is uniquely determined up to isomorphism and (ii) follows. •

Lemma 11.5.13 The amalgam !F = {G\,S, T} is uniquely determined up
to isomorphism.

Proof. By (11.5.12), S = {Gi,S} is uniquely determined. Hence all we
have to show is that the kernel KT of the homomorphism onto T of the
universal completion UT of the amalgam {Ti,T$} is uniquely specified,
where

Tx = T n d S 2i+n.(Sym5 x Sym4),

TS = TDS^ 2i+n.(Sym3 x 2 x L3(2)).

Clearly Q = Oi{T) is contained and normal in both T\ and T$. Hence
KT is a complement to V = Z(Q) in the centralizer of Q in UT- In order
to apply (8.4.3) all we have to show is that 23 : (Syms x L3(2)) is not a
completion of the amalgam {Ti/Q, Ts/Q} = {Sym5 x Sym^Sym^ x 2 x
Lz{2)}, but this is quite obvious. D

Proposition 11.5.14 All the amalgams of J^-shape are isomorphic to
j / (J4, ^(^4)) and the universal completion of such an amalgam is isomor-
phic to J4.

Proof. Since G2 < T and G3 <, S, the amalgam {Gi,G2)G3} is
contained in #" and hence it is uniquely determined by (11.5.13). Hence
the uniqueness of the amalgam follows by the standard remark that
res#(x4) is simply connected. The geometry ^(J^) is simply connected,
as has been proved in [Iv92b], [ASeg91], [IMe99], which implies the
conclusion about the universal completion. •

11.6 Truncated J4-shape

In this section ^ is a rank 5 P -geometry with the diagram

P
2 2 2 2 1 '

such that res^(xi) s ^(J4), Gx ^ J4, and G5 = 21O.L5(2).



234 Amalgams for P -geometries

We will show that such a geometry does not exist by considering
possible T-subgeometries. By Lemma 7.1.7 in [Iv99] (compare (11.5.6))
X4 is contained in a unique subgeometry y which is a T-geometry
of rank 4. Since G4 ~ [216].L,i(2) and the rank 3 T-subgeometry in
res»(xi) = <§{Jt) is (S(M2t), the classification of the flag-transitive T-
geometries of rank 4 shows that Sf = &(Coi) and S (the stabilizer of Sf
in G) is Co\.

Now consider the stabilizer Si of xi in S. Since S = Co\ we have
Si = 2n.M24 and C>2(Si) is the irreducible Golay code module # n
(compare Section 12.6). On the other hand, Si is the stabilizer in G\ = J4
of a ^(M24)-subgeometry from ^(J4), so Si = 2n.M24, but from this point
of view 02(Si) must be the irreducible Todd module < n̂ by (11.5.9). This
is a contradiction and hence we have proved the following.

Proposition 11.6.1 There is no P -geometry $ of rank 5 possessing a flag-
transitive automorphism group G such that J / ( G , ^ ) is of truncated J4-shape
(that is with point stabilizer isomorphic to J4). •

Notice that J = J4 itself contains a subgroup L = 210 : L5(2). The
action of J on the cosets of L preserves a graph S of valency 31 which
is locally projective. There is a family of Petersen subgraphs and a
family of subgraphs isomorphic to the derived graph of 0(M22), which
are geometrical subgraphs of valency 3 and 7, respectively, but there is
no family of geometrical subgraphs of valency 15. So this graph gives
only a truncated version of P -geometry.

11.7 BM-shape

In this section <$ is a rank 5 P-geometry with the diagram

P
o o 0 0 0
2 2 2 2 1

the residue res^(xi) is isomorphic to ^(Co2) or ^(32 3 Coi) and Gi = C02
or 323 • C02, respectively; furthermore L\ is of order 2 and K\/L\ is the
22-dimensional representation module of res^(xi) isomorphic to the C02-
section yv of the Leech lattice taken modulo 2. Since the arguments for
the two cases are basically identical, we assume that res^(xi)
and Gi = C02. We start with the following

Lemma 11.7.1 The group K\ is extraspecial of plus type, so that

2l
+

+22.Co2.
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Proof. Arguing as in the proof of (11.5.1) it is easy to show that K\ is
non-abelian. Since Coi acts irreducibly on K\/L\ = A and \L\\ = 2,
we have that Ki is extraspecial. Since the action of C02 on A is
absolutely irreducible (8.2.9), it preserves at most one non-zero quadratic
form. The restriction to A of the form 6 on A (the Leech lattice
taken modulo 2) as in (5.1.1) is a Co2-invariant quadratic form of plus
type. Hence the proof follows. D

In this section 0 will also denote the unique non-zero Co2-invariant
quadratic form on Kx/Li S A*22). Put Gx = G\/U (so that G\ ~ 222.Co2)
and apply the tilde convention for subgroups in G\. Then K\ = Oi{G\)
is isomorphic to A

Lemma 11.7.2 G\ is determined uniquely up to isomorphism.

Proof. Since L\ is the centre of Gy, G\ is the image of G\ in A :=
Aut/Ci = 222.0^(2). Since C02 preserves a unique non-zero quadratic
form on A , 0^(2) contains a unique conjugacy class of subgroups
isomorphic to C02, such that the action on the natural module of 0^(2)
is isomorphic to that on A . Hence G\ is specified as the full preimage
of such a subgroup with respect to the homomorphism A —• A/02(A). •

Since G\ is a perfect central extension of G\ the next logical step is to
calculate the Schur multiplier of G\.

Lemma 11.7.3 The Schur multiplier of G\ is elementary abelian of order
four.

Proof. First we show that the Schur multiplier of Gi has order at least
4. Let C\ = 2++24.Coi be the stabilizer in the Monster M of a point of
^(M) and let D ^ 2^+24.Co2 be the preimage of a Co2-subgroup in Cox

with respect to the homomorphism C\ -* C\/C>2{C{) = Co\.

We know that A , considered as a module for C02, is uniserial with
the composition series

(A) < A<23) < A<24),

where X is the unique non-zero vector in A stabilized by C02, Â  is
the orthogonal complement of (A) and Â  = A /(A). This shows that
the commutator subgroup D' of D has index 2 in D, it is perfect and the
centre of D' is of order four.

Now we establish an upper bound on the Schur multiplier of G\. Let
G\ be the largest perfect central extension of Gi and Z be the centre of
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Gi. We apply the hat convention for subgroups in G\. The commutator
map on K[ defines a bilinear map

Since the Co2-module K\ = A*22' is absolutely irreducible (8.2.9), the
image Z\ := |Xi,Ki] of the commutator map is of order at most two.
On the other hand, K\/Z\ is abelian and it is rather easy to see that in fact
it must be an elementary abelian 2-group, and since G\ is perfect it must
be indecomposable as a module for G{/K\ = Co2. Since Hl(Co2,A )
is 1-dimensional by (8.2.7 (ii)), the dimension of K\/Z\ is at most 23.
Finally, G\/K\ is a perfect central extension of Co2. Since the Schur
multiplier of Co2 is trivial by [Gri74], the proof follows. •

Lemma 11.7.4 The isomorphism type of G\ is uniquely determined.

Proof. As a direct consequence of the proof of (11.7.3) we observe
that the universal perfect central extension G\ of G\ is isomorphic to
the subgroup D' = 2l+1+22.Co2 of C\ = 2l^2A.Co\. In terms of the proof
of (11.7.3) let Z\, Z2 and Z3 be the three subgroups of order two from
Z = Z{G{). Then both Gi/Z2 and G1/Z3 have extraspecial normal
subgroups, and they are the only candidates for the isomorphism type
of G\. On the other hand, since O2(D) is extraspecial an element from
D\D' conjugates Z2 onto Z3 and hence Gi/Z2 = G1/Z3. •

The subgroup Gi2 is clearly the preimage in G\ of the stabilizer S in
Gi = Co2 of the point x2 of res#(xi) = ^{Co2), where S = 210 : AutM22.
We know that O2(S) is the irreducible Golay code module #10 for
S/O2(S) = Aut M22. By (5.2.3), A*22), as a module for S, is uniserial with
the composition series

where K'1' and A /V^ are 1-dimensional, V^ is a maximal isotropic
subspace with respect to the invariant quadratic form 6,
and VM/VM s < 1̂0 (as modules for S/O2(S) S AutM22). So

G1 2~21 + 1 + 1 0 + 1 0 + 1 + 1 0 .AutM2 2.

Let K[° be the full preimage of K(l) in Kh

Lemma 11.7.5 We have

G2 ~ 22+10+20.(AutM22 x Symi).
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Furthermore, if{x\,yi,z\} is the set of points incident to X2, then

(i) K{3) = Ki n K2 has index 2 in Ki;

(ii) K{2) = Li and K2/L2 is the tensor product of the 10-dimensional
Golay code module #10 for K2/K2 = Aut M22 and the 2-dimensional
module for K2

+/K2 = Sym^;
(iii) L2 is a maximal abelian subgroup of K\ (of order 212);
(iv) Z2 := K\' = (L(xi), L(yi), L(zi)) is a normal subgroup of order 4 in

G2, L2/Z2 is the 10-dimensional Todd module %w and Z2 = Z(K2).

Proof. Since K\ induces an action of order 2 on the point set {xi, y\, z\}
of X2 and K\ ' is the only subgroup of index 2 in K\ which is normal in
G12, we obtain (i). Now (ii) follows from (9.4.1). Finally (iii) and (iv) are
immediate from the paragraph preceding the lemma. •

By (11.7.5 (iv)) there is a natural bijection between the point set
{x\,y\,zi} of X2 and the set of involutions in Z2, which implies the
equality

K2" = CGl2(Z2).

We follow the direct strategy, so our nearest goal is to calculate the
automorphism group of K^.

Lemma 11.7.6 Kj splits over K2 = 02(^2").

Proof. Let Y be a Sylow 3-subgroup of 6)2,3(^2) (which is also a Sylow
3-subgroup of K2

+) and X = CGl(Y). Then by (11.7.5) and the Frattini
argument

and (as a module for X/02,i(X) = AutM22) 020^0 is isomorphic to #10.
By Table VI in Section 8.2 the group i/2(AutM22,^io) is trivial, which
completes the proof. •

As a consequence to the proof of (11.7.6) we have the following.

Corollary 11.7.7 The group Kj contains a subgroup D = AutM22 which
centralizes Z2. •

Lemma 11.7.8 Out/C^T = Sym4.

Proof. By (11.7.5 (ii)) every subgroup of order 210 in K2/L2 normalized
by K2 coincides with (K(a.) n K2)/L2 for a = xi, y\ or z\ and the
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commutator subgroup of K(a.) n K2 is exactly L(a). Since G2 induces
on {x\,yi,zi}, we conclude that OutK^ induces Sym^ on

Let T be the kernel of the action of OutK^r on 3T. By the above
discussion T centralizes Z2 and normalizes every /^-invariant subgroup
in K2/L2. Let % be an automorphism of K2~ which projects onto a
non-trivial element of T. Since K2/K2 = AutM22 is complete, we can
assume (modulo inner automorphisms) that x commutes with K2/K2.
Every chief factor of K̂~ inside K2/Z2 is isomorphic either to #10 or
to #10, in particular, it is an absolutely irreducible G£(2)-module for
K2/K2. Furthermore, T stabilizes the series

Z2 < L2 < K2 < K2

and L2/Z2 = ^10 is not involved in K2/L2 = #10 © #io- Hence x
centralizes K2.

Let D be a complement to JC2 in Kf as in (11.7.7). Then Dx ± D (since
otherwise T would be trivial) and (D,DZ) nK2 < Z2 = Z{K2) (since x acts
trivially on K2 and so Z)T acts on K2 exactly as D does). Hence

Dx < NK-(O2(D)) = Z2xD=*22x AutM22.

Now it is easy to see that x must coincide with the automorphism T(<X),

which centralizes O2(D) and multiplies every d € D\ O2(D) by the only
non-identity element of L(p), where a € {x\,yi,z\} is a point on X2. It is
straightforward that T(OC) is indeed an automorphism of K2 of order 2
and

Thus T is elementary abelian of order 22 and its non-identity elements
are the images in OutK^ of the automorphisms x{a) for a e {x\,y\,z{\.
Now the proof is clear. •

Lemma 11.7.9 The isomorphism type 0/G2 is uniquely determined.

Proof. Since K\ is extraspecial and Ki C\K2 — CKl{Z2), there is an
involution a € K\ \ K2 . Let F be a Sylow 3-subgroup of 02,3(62),
normalized by a (such a subgroup exists by Sylow's theorem) and £ =
(y, a). Then £ = Sym-i, £ is a complement to K2 in G2, which means that
£ maps isomorphically onto its image in Out K̂~ and this image coincides
with the image of the whole of G2. On the other hand, OutK^~ = Sym4
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by (11.7.8) and hence the action of E on K^ is determined uniquely up
to conjugation in AutX^", hence the proof. •

Let Y and a as above denote also their images in AutK^. Then it is
easy to deduce from the proofs of (11.7.8) and (11.7.9) that

is isomorphic to Sym^ and maps isomorphically onto OutK^. Let G2

denote the semidirect product of K̂ ~ and F with respect to the natural
action. Then G2 contains Gi with index 4.

Now we consider the possibilities for the isomorphism type of 38 =
{GuG2}.

Lemma 11.7.10 The following assertions hold:

(i) each of the groups G\ and G2 is complete;
(ii) N

(iii) AutG12 = JV~ (Gn)/Li and |OutGi2| = 2;
(iv) there are exactly two possibilities for the isomorphism type of 38 =

{GhG2}.

Proof. First of all by Goldschmidt's theorem (8.3.2), the assertion (iv)
is immediate from (i), (ii) and (iii). The group Gi is complete, since
G\/K\ = Co2 is complete (cf. [CCNPW]), the action of G\/K\ on
Ki/Li S A*22) is absolutely irreducible and O2(Gi) = G\. Since Sym3

is self-normalized in Sym* and the centre of Gj is trivial, it is easy to
deduce from the proof of (11.7.8) that Gi is complete, so (i) follows. Since
S = 210.AutM22 is self-normalized (in fact maximal) in G\, we obtain (ii)
for 7 = 1 ((ii) is completely obvious when j = 2). By (11.7.8)

N ~ (

contains Gn with index 2. Thus in order to prove (iii) we only have
to consider automorphisms of G12 which centralize K2. We know that
Gu = K2K1 and Ki nK^ = CK\Z2). Since K\ is extraspecial, the only
non-trivial automorphism of K\ which centralizes CKt(Z2) is the inner
automorphism induced by conjugation by an element from Z2\L\. •

Next we are going to show that at most one of the possible amalgams
38 = {Gi,G2} extends to an amalgam # = {Gi,G2, G3} of correct shape.
First let us look closer at the structure of G3.
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Lemma 11.7.11 Let Zj denote the subgroup in G3 generated by the sub-
groups L(tx) taken for all the seven points a. incident to X3. Then

(i) G3/K3 S Sym5 x L3(2);
(ii) X3/L3 is the tensor product of the 5-dimensional module Us for

Ky /KT, = Sym$ which contains a codimension 1 submodule U4 and
of the 3-dimensional natural module Vi for Kf/K.3 = 1.3(2);

(iii) Z3 is elementary abelian of order 23, which is the natural module for
K+/K3 S L3(2), Z3 <, L3 and Z3 = Z(K3).

Proof. The assertion (i) is immediate from the flag-transitivity of G3
on res#(x3), while (ii) is by (9.4.1). It is easy to see that Z3 is contained
in K\ and since the latter is extraspecial, (iii) follows. •

Lemma 11.7.12 Let <5(xi,X2) denote the restriction to K^ of the automor-
phism T(XI) ofK^, defined in the proofof"(11.7'.8). Let *P be the set of the
21 similar automorphisms <5(<x,/J) taken for all the maximal flags {a, /?} in
res^(x3) and A be the subgroup in AutlCj" generated by the automorphisms
from *P. Then A is elementary abelian of order 2s and A, as a module for
GT,/KJ = 1.3(2), is isomorphic to the Steinberg module.

Proof. Recall that T(XJ) centralizes O2(K^") and multiples every element
from K2 \ O2(X^") by the unique non-identity element of L(xi) = Z(Gi).
Notice also that O2(K2~~) = K2O

2{D), where D s AutM22 is the com-
plement to K2 in K2 as in (11.7.7). Let F = (K^ n K^)K2/K2 and
H = (O2(K2) n Ki)K2/K2. Then F ^ 25 : Sym5, H = 24 : Sym5, and
O2(F) and O2(H) map onto the modules I/5 and C/4 as in (11.7.11 (ii)),
respectively.

Let Ri be the preimage in K3 of the submodule I/4 ® F3 in K3/L3 as
in (11.7.11 (ii)). Then K3/P3 = K 3 S Z 3 (as modules for G3/X3- S L3(2))
and by the above R3 is centralized by 5(xi,x2). Furthermore, if we put
IT, = Kj/RT,, then IT, = 23 x Syms and 5(xi,X2) centralizes a complement
to O2(/3) = K3/K3 in ^3- Put

h = f l CK3-(^-

Since R3 is normal in G3 and centralized by d(xi,x2), we conclude that
i?3 is contained in J3. We claim that J3/R3 = Sym5, even more precisely,
that the automorphisms in *P centralize a common complement to 02^3)
in 73. We have seen that <5(xi,X2) centralizes such a complement. In
total there are exactly eight complements and 21 automorphisms in y¥,
transitively permuted by GT,/KJ = 1^(2), hence the claim follows.
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Thus we have shown that K^/J^ s K3 = Z3 (as modules for G3/KJ" s
£3(2)); an automorphism <5(oc, /?) from *P centralizes the preimage of the
hyper-plane in K3/J3 which corresponds to the line /? and multiplies
every element of Kj" outside this preimage by the unique non-identity
element of L(a). The latter elements taken for all points a incident to X3
form the set of non-identity elements in the centre Z3 of K^as in (11.7.11
(ii)). Now the result is immediate from the definition of the Steinberg
module. •

Lemma 11.7.13 Let {G^.G^} and {Gf,Gf} be the possible amalgams
@ as in (11.7.10 (iv)). For j = 1 and 2 let P[J) and P2

0) be the images
in Out/C3~ of G^ and G^l respectively (so that P,o> S P2

0) S Sym4).
Suppose that P^ and P?' generate L3(2). Then P}2) and Pf ' generate
28 : L3(2) (the semidirect product of L}(2) and the Steinberg module).

Proof. By the proof of (11.7.10) we can assume that G^ and G^
have the same image in OutiCf, while the images of G^ and G^ are
conjugate by the image of the automorphism 8(xi,X2) as in (11.7.12).
Now the proof follows from (11.7.12) and (8.5.4). •

By (11.7.13) at most one of the possible amalgams 88 extends to a rank
3 amalgam of the correct shape. Clearly the amalgam associated with
the action of BM on ^{BM) extends. Hence by (8.6.1) we obtain the
final result of the section.

Proposition 11.7.14 An amalgam si of BM-shape is isomorphic to either

tf(BM,$(BM)) or ^ ( 3 4 3 7 1 • BM,^(34371 • BM))

and the universal completion of si is BM or 34371 • BM, respectively. •



12
Amalgams for T-geometries

In this chapter we consider the amalgams of maximal parabolics of
flag-transitive actions on T-geometries with shapes given in Table Vlllb.
It is an elementary exercise to show that up to isomorphism there is a
unique amalgam of 4/t7-shape and we know (cf. Section 6.11 in [Iv99])
that it does not possess a faithful completion. In Section 12.2 we show
that there is a unique isomorphism type of amalgams of S6(2)-shape and
in Section 12.3 that there are two types of M24-shape. In Section 12.4
we show that there is a unique amalgam s/f of truncated M24-shape
and in Section 12.5 that the universal completion of s/f is isomorphic
to M24 and it is not faithful. In Section 12.6 we show that there is a
unique amalgam of Coi-shape while in Section 12.7 we formulate the
characterization of the Monster amalgam achieved in Section 5.13 of
[Iv99]. In the final section of this chapter we classify the amalgams
of symplectic shape with rank n > 4 (the classification was originally
proved in [ShSt94]). Thus we have three amalgams for rank 3, two
for ranks 4 and 5 and only one (of symplectic shape) for rank n > 6.
These numbers coincide with the numbers of amalgams coming from the
known examples in Table II, which proves Theorem 3 for T-geometries
and by Proposition 4 and Theorem 2 completes the proof of Theorem 1
for T-geometries (see the Preface).

12.1 /1/fv-shape

Let ^ be a T-geometry of rank 3 with the diagram

2 2 2'

G be a flag-transitive automorphism group of ^, such that G\ = 3 •
Altt, G3 S L-$(2). It is an easy exercise to check that in this case G2

242
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must be isomorphic to (Sym-i x Sym4)
e (the stabilizer of a 3-element

subsets in Altn). Then by Lemma 6.11.3 in [Iv99] the amalgam sis =
{Gi,G2,G3} is determined uniquely up to isomorphism. Let (U(sfs,(p) be
the universal completion of sts. The computer calculations performed
with the generators and relations for U($tfs) given in Section 6.11 in
[Iv99] show the following lemma.

Proposition 12.1.1 The following assertions hold:

(i) U(s/s)*Ahr.
(ii) the restriction of (p to G\ has kernel of order 3.

In particular there exists no pairs {$,G) such that the amalgam $#{G,$) is
of AltTshape (this means that & is a rank 3 T-geometry and G is a flag-
transitive automorphism group of IS with Gi = 3 • Altf,, G3 = L3(2),). •

12.2 S6(2)-shape

In this section <$ is a T-geometry of rank 3 with the diagram

2 2 2'

where Gx ~ 25.3 • Sym6, G3 ~ 23+3.L3(2), and

(a) Ni = 1 and L\ = Z{G\) is of order 2;
(b) K\ = 02(Gi) and K\/L\ is the 4-dimensional symplectic module for

Gi /OyfGOSS^) ;
(c) L3 is the natural module for G3 = G3/K3 = L3(2) and K3/L3 is the

dual of the natural module.

Lemma 12.2.1 K3 is elementary abelian and as a module for G3 = L3(2)
it is the even half of the GF(2)-permutation module for G3 on the set 2P of
points in res#(x3).

Proof. For a point p incident to x3 (a quint containing x3) let zp be
the unique involution in L{p) = Z(G(p)) (compare (a)). If p = x1; then zp

is centralized by Gi3 ~ 25.(2 x Sym4), which shows that zp G K3. On the
other hand, L3 is the dual natural module for G3 while zp is centralized
by a point stabilizer in G3, hence zp ^ L3. If the involutions zp taken
for p e 3P generate the whole K3 then the proof follows, since K3 < G13
and Z(G\) is in the centre of Gi3. Otherwise the involutions generate a
G3-invariant complement to L3 in X3 and K3 is the direct sum of the
natural module of G3 and the module dual to the natural one. We suggest



244 Amalgams for T-geometries

that the reader rule out this possibility by looking at the structure of Gi
or otherwise. •

Lemma 12.2.2 G\ splits over K\.

Proof. Put K = Oi(Gn/Ki), which is elementary abelian of order 22.
Then R coincides with the image of K\ in G3. Since K\ is elementary
abelian, there is a subgroup R in G13 which maps isomorphically onto
K and K{ < CGl3(R). In terms of (12.2.1), R has four orbits on & (one
of length 1 and three of length 2), hence dim CK3(R) = 3 and since R is
self-centralized in G3 = L3(2), we conclude that

K, = CGn(R).

Let X be a Sylow 3-subgroup in Gn- Then

where by (12.2.1) the centralizer and the commutator are 2- and 4-
dimensional, respectively. Since all the involutions in G3 = L3(2) are
conjugate and K3R splits over K$, there is an involution a in G13
which inverts X. Since a stabilizes every Z-orbit on the point-set 2P of
res#(x3), it centralizes CK}(X). Furthermore, since CK^X) n CK,(X) is
1-dimensional, there is 1-subspace W in CK3(X) which is centralized by
(X, a) = Sym^. The commutator [^,^3] carries a 2-dimensional GF(4)-
vector space structure and the set ST of 22-subgroups in the commutator
normalized by X is of size 5. Only one of these subgroups is in K\ and a
induces on 2T a transposition. Hence there is a subgroup T £ f which
is not in K\ and which is normalized by (X,a). Thus

is a complement to Ki in G13 and the proof is by Gaschiitz' theorem
(8.2.8). D

Lemma 12.2.3 G3 splits over X3.

Proof. By (12.2.2) G13 is the semidirect product of K\ and a group
S = 2 x Symt. Furthermore, if Q = {1,2,3,4,5,6} is a set of size 6 then
K\ can be treated as the even half of the power space of fi and S as the
stabilizer in Sym(Q) = Sym^ of a partition of Q into three pairs, say

Q = {1,2}U{3,4}U{5,6}.
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Without loss of generality we assume that K\K3 = K\O2(S), so that
K3 = CG1 3(02(S)) a n d ^1 ("1.K3 is 3-dimensional generated by the subsets
{1,2}, {3,4} and {5,6}. Let P = Sym3 be a complement to O2(S) in
S (say P = (x,a), where T = (1,3,5)(2,4,6), a = (3,5)(4,6)). Then the
2-subspace T in K\ containing {1,3}, {3,5}, {1,5} and the empty set
generate together with P a complement to K3 in G13. As usual now the
proof is by Gaschiitz' theorem (8.2.8). D

Lemma 12.2.4 The amalgam {G2, G3} is determined uniquely up to isomor-
phism.

Proof. By (12.2.1) and (12.2.3) G3 is the semidirect product of K3

and a group L = L3(2). Furthermore, K3 is the even half of the
GF(2)-permutation module of G3 on the set & of points incident to x3.
This means that G23 is the semidirect product of K3 and the stabilizer
S = Sym4 of the line x2 in L. The subgroup Xj" has index 2 in G23 and
it is normal in G2 with Gi/Kj = Sym3. So our strategy is to identify K^
in G23 and to calculate its automorphism group.

We identify x2 with the 3-element subset of & formed by the points
incident to x2. Then the subgroup R := 02(623) is the semidirect product
of K3 and O2(S), so that |R| = 28 and G23 := G23/R = Sym3. If
Ro = Z(R), then Ro is elementary abelian of order 23 and as a module
for G23 we have

where ^ is 1-dimensional generated by ^\xi and R^ is 2-dimensional
irreducible generated by the 2-subsets of x2. If it easy to see that there is
a unique subgroup R\ of index 2 in R which is normal in G23, namely, the
one generated by 02(S) and the subsets of 9 which intersect x2 evenly.
Furthermore, R^ = [i?i,i?i], the quotient R\ :— R\IR^ is elementary
abelian and a Sylow 3-subgroup X of G23 acts fixed-point freely on that
quotient. This shows that as a module for G23 we have

If /?{3) is the preimage of Kx in R\ then R^ is extraspecial of plus
type with centre R^\ Since K2 = 02{G2) and G2/K2 S Sym3 x Sym3,
we observe that K2 = Ri- Let Y be a Sylow 3-subgroup of K^. Then
7 permutes transitively the points incident to x2, normalizes R\ and
commutes with X modulo R\, and Y is inverted by elements from
R\R\. In view of the above described structure of R it is an elementary
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exercise to check that {G2, G3} is indeed determined uniquely up to
isomorphism. D

Now applying the standard strategy (compare the proof of (12.8.16)
we prove uniqueness of si = {G\,Gi,G3}. The universal completion of
this amalgam was proved to be isomorphic to 37 • Se{2) independently in
[Hei91] and in an unpublished work of the authors.

Proposition 12.2.5 All the amalgams of S(,{2)-shape are isomorphic to

and 37 • $6(2) is the universal completion of such an amalgam. •

12.3 M24-shape

In this section <3 is a T-geometry of rank 3 with the diagram

G is a flag-transitive automorphism group of ^ , such that G\ ~ 26.3-Syme,
where K\ = 02(Gi) is the hexacode module for G\ = 3 • Sym^ and G3 ~
2.23.23.L3(2). Our goal is to show that jaf = {Gi,G2,G3} is isomorphic
either to the amalgam associated with the action of M24 on ^(M24) or to
the amalgam associated with the action of He on ^(He).

Immediately by (8.2.4) we obtain

Lemma 12.3.1 G\ splits over K\, in particular, G\ is determined uniquely
up to isomorphism.

By (9.4.2) the subgroup G12 is specified in G\ up to conjugation as the
full preimage of a parabolic subgroup Sym* x 2 in G\ which stabilizes
a hyperplane in Ky. Thus by (12.3.1) G12 is determined uniquely up to
isomorphism and hence it is isomorphic to the corresponding subgroup
in M24 or He. Calculating in either of these groups or otherwise we
obtain the following (we consider it easiest to calculate in M24 where G12
is contained in the stabilizer of a trio).

Lemma 12.3.2 Let Do = O2(Gi2), U = O2(D0) and let X be a Sylow
3-subgroup in Gn- Then

(i) U is elementary abelian of order 26;
(ii) X acts fixed-point freely on U;

(iii) G12 is the semidirect product of U and NG12(X) = D% X Sym^. •
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Observe that Gi normalizes Do. Indeed, Gi normalizes the subgroup
Kj which has index 2 in Gn, hence

A) = O2(Gn) = O2(K2).

Lemma 12.3.3 The subgroup Do has a trivial centralizer in G2. In partic-
ular, G2 is isomorphic to a subgroup o/AutDo containing Inn Do.

Proof. Suppose R := CG2(DO) =£ 1. Since CGI2(DO) = 1, we must then
have that R = 3 and G2 = RG\i. On the other hand, since K\ ± L\, we
have that G2 induces Sym^ x Sym^ on the residue of the link x2. Clearly,
R, being normal in G2, maps into one of the direct factors Symj. This
means that either R < G3, or R < G\. The first option contradicts the
fact that R £ G\2. The second option also leads to a contradiction with
the structure of G3. D

We identify Do with the subgroup InnD0 of AutD0. By (12.3.2 (ii))
we conclude that AutDo is the semidirect product of U = 26 and
FL(3,4) = NGL{U)(X)- The latter group contains a normal subgroup
SL(3,4) and the corresponding factor-group is isomorphic to D$. Since
G2 has a quotient Symj x Symi and since G2 contains the scalar subgroup
X, the image of G2 in D6 = rL3(4)/SL3(4) is of order two. Hence G2 is
a subgroup of 26 : ZL(3,4).

Lemma 12.3.4 The group G2 is a semidirect product of U and SymtxSymi.
It is uniquely determined up to isomorphism.

Proof. By (12.3.2 (iii)), Gn is a semidirect product of U with NGl2(X) S
D8 x Sym3 (and X is the group of scalars in IL(3,4)). If G2/U ^
Sym* x Symi then the Sylow 3-subgroup of G2/U is normal. This,
however, contradicts the structure of G3 (just check the number of 2-
dimensional factors in G23). Thus, G2/U = Synn x Symj, and clearly,
since X acts on U fixed-point freely, G2 is the semidirect product as
claimed.

To prove the second sentence, consider an involution a e Nc2(X) in
the direct factor Symj. Then a inverts X and hence it maps onto an outer
involution (field automorphism) in £L(3,4). We have that the centralizer
in IL(3,4) of the subgroup 5ym3 generated by the image of (X,a) is
isomorphic to L3(2). Since in G2 we already have a subgroup Dg from this
L3(2), there are exactly two ways to extend that D% to a Sym^ (maximal
parabolics in L3(2)). We claim that only one of the resulting subgroups
can be our G2. Indeed, by our original assumption Z(G3) is of order 2,
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hence the unique involution t in Z(G$) is central in the subgroup G23
which has index 3 in G2. Since CG2(t) contains a Sylow 2-subgroup of
G2, it is clear that t e U. Thus the subgroup Sym* which extends G12 to
G2 must centralize a vector in U, which uniquely specifies it. D

From (12.3.1) and (12.3.3) it is easy to deduce that the type of the
amalgam 8& = {Gj,G2} is uniquely determined. The next lemma shows
that there are at most two possibilities for the isomorphism type of £8.

Lemma 12.3.5 The order o /OutGn is at most 2.

Proof. Let T be an automorphism of G12. Since Do — 26 : 3 is
characteristic in G12 and X is a Sylow 3-subgroup of G12, T normalizes
DQ and without loss of generality we may assume that it normalizes X.
Then x normalizes N := NGn(X) = Sym^ x D8 which is a complement to
U in G12. Let S,D < N, such that S = Sym3, D = Ds and N = S x D.
Then the centralizer of S in AutZ)0 = 26 : IL3(4) is isomorphic to L3(2)
in which D is self-normalized. Notice that S is generated by X and an
involution a which is in the centre of a Sylow 2-subgroup of N and
inverts x, while D = CN(S). This immediately shows that there are at
most two direct product decompositions of N and the proof follows. •

Proposition 12.3.6 An amalgam of M24-shape is isomorphic to either
ja?(M24,^(M24)) or s^{He,^{He)) and its universal completion is isomor-
phic to M24 or He, respectively.

Proof. Since ^{M^) and ^(He) are simply connected [Hei91], M24
and He are the universal completions of j / ( 1 ) and jaf(2), respectively.
In particular, the latter two amalgams are not isomorphic and it only
remains to show that there are at most two possibilities for the isomor-
phism type of si. By (12.3.5) and the remark before that lemma, there are
at most two possibilities for the isomorphism type of $8. We claim that
the isomorphism type of 38 uniquely determines that of si. Indeed by
the proof of (12.3.4) Z3 = Z{Gi) is determined in G12 up to conjugation.
Hence Gl3 = CGi{Zi) for i = 1 and 2. Thus the hypothesis of (8.5.2) holds
and the claim follows. •

12.4 Truncated M24-shape

In this section ^ is a T-geometry of rank 4 with the diagram
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G is a flag-transitive automorphism group of ^ such that G\ is isomorphic
to M24 or He and G4 ~ 24.L4(2). By (10.3.5 (i)) G4 splits over K4 (which is
the natural module for G4 = L4(2).) In the present section we prove that
the imposed conditions specify the amalgam $4^ = {G,-,\ 1 < i < 4} up to
isomorphism (the index / means 'fake') and in the next section we show
that $4] has no faithful completions, which implies the non-existence of
the geometry with the stated properties.

We apply the dual strategy and start with the following

Lemma 12.4.1 The parabolic G3 is the semidirect product 0/G3 = L3(2) x
Sym-} and K3 which is the tensor product of the natural (2-dimensional)
module ofK^/Kj = Sym} and the dual of the natural module ofKf/K-j =
L3(2), so that G3 S 26 : (L3(2) x Syro3).

Proof. Clearly G34 ~ 24 : 23 : L3(2) is the preimage in G4 of the
stabilizer 23 : L3(2) of the plane x3 in the residual projective space
res#(x4). Then Kf is the kernel of the action of G34 on the vertex-set
of the link x3. Moreover Kf is the only index 2 subgroup in G34, in
particular, /C3 is of order 26. Since G4 acts faithfully on the set of vertices
adjacent to x4 in the derived graph, we conclude that L3 = 1. Hence by
(9.4.1), K3 possesses the tensor product structure as stated in the lemma.
Since a Sylow 3-subgroup of O2,3(G3) acts fixed-point freely on K3, it is
easy to see that G3 splits over /C3. •

Lemma 12.4.2 Let SC = {G4,G}}. Then

(i) OutG34 has order two;
(ii) 3£ is isomorphic to one of two particular amalgams S"(1* and #"(2).

Proof. Consider K+ = 23+3 : L3(2), which is the commutator subgroup
of G34. A complement F S L3(2) to K3 = O2(/C3

+) in X3
+ acts on K3

as it does on the direct sum of two copies of the dual natural module.
By the Three Subgroup Lemma, for an automorphism T of G34 which
centralizes Kf we have

[ G 3 4 , T ] < C G M ( K 3
+ ) = 1,

and hence whenever an automorphism of G34 acts trivially on Kf, it is
trivial. So Aut G34 is a subgroup of Aut K+, more precisely

Aut G34 = NAutK+(Inn G34).

By (8.2.5 (ii)), H'(L3(2),23) is 1-dimensional, hence Kf contains exactly
four classes of complements to K3. Since K3 is abelian, Kf can be
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presented as a semidirect product of X3 and any such complement F
with respect to the same action. Hence Out ^3" acts transitively on
the set of classes of complements. To calculate the order of OutKf,
suppose that T G AutKj" stabilizes the class of complements containing
F. Then (adjusting x by an inner automorphism) we may assume that x
normalizes F. Since K3 involves only the dual natural module of F, x
induces an inner automorphism of F and again adjusting x by an inner
automorphism (induced by conjugation by an element of F), we can
assume that x centralizes F. In this case

T € CGUKi)(F) SS L2(2),

which shows that OutKf has order at most 24. We claim that OutKf
acts faithfully on the classes of complements. Suppose x G AutK3

+ leaves
invariant every class of complements. For each pair <€\ and #2 of such
classes, there is a unique 3-dimensional submodule U in K3, such that
%>i and #2 merge modulo U. Since x stabilizes each of the four classes
of complements, x normalizes all the three submodules U. Now if we
adjust T by an inner automorphism, we can assume that it centralizes a
particular complement F. Then x centralizes each U and hence x is the
identity.

Thus, OutKf = Sym4 and the image of G34 in OutKf is a subgroup
T of order two. We claim that T is generated by a transposition. Indeed,
since G34 contains a subgroup 2 x 1.3(2), some involution from G34 \Kf
commutes with a complement L3(2) from Kf. Therefore the involution
generating T fixes one of the four points. Since \NOutK+(T) : T\ = 2, (i)
follows.

Since G34 is the normalizer in G4 of a hyperplane from K4 = 02 (G4)
and G34 is the unique (up to conjugation) subgroup of index 3 in G3,
the type of X is uniquely specified. Since H1 (64,^4) is trivial by (8.2.5)
and Hl(Gi,Ki) is trivial because of the fixed-point free action of a
subgroup of order 3, both Out G3 and Out G4 are trivial. Since G34 is
self-normalized in G3 and G4, (ii) follows from (i) and Goldschmidt's
theorem (8.3.2). •

Let G(1) ^ M24, G^ be the stabilizer in G<1} of an octad B and G(
3
U

be the stabilizer of a trio containing B. Let G(2) = L5(2), G^ be the
stabilizer in G(2) of a 1-subspace U from the natural module and G32' be
the stabilizer of a 2-subspace containing U.

Lemma 12.4.3 In the above terms (up to a reordering) we have
{G4°,G(3°}/ori=l and 2.
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Proof. The fact that {G4'', G3''} possesses the imposed conditions is an
elementary exercise when i = 2 and it follows from the basic properties
of the action of M24 on the Steiner system S(5,8,24) when i = 1. Hence
it only remains to show that 3^ and 2E^ are not isomorphic.

For a faithful completion H of an amalgam SC(i) = {G^^G^1}, where
1 = 1 or 2 define a graph Affl'\H), whose vertices are the cosets of G4''
in H and two such cosets are adjacent if their intersection is a coset of
G31' fiG4 . If 2fl') is a subamalgam in the amalgam of maximal parabolics
associated with a flag-transitive action of a T-geometry <S, then A($"w, G)
is the derived graph of ^ . Furthermore A(£"'1), G*1') is the octad graph
and A(#"'2), G'2') is the complete graph on 31 vertices.

Let G(I> be the universal completion of 3E®. Then A<" = A(^(i), G(l>)
is of valency 30, every vertex is in 15 triangles and the vertices-triangles
incidence graph is a tree. For a vertex v € A'1' there is a projective space
structure II on the set of triangles containing v. For every line / of n
there is a geometrical subgraph Z(l* of valency 6.

Let G2° be the stabilizer of I ( l ) in G(\K.f be the kernel of the action
of G(

2° on Z« and GJ? be the image of Gf in Out/cf, so that

Then the structures of K^ and G^ are determined solely by that of the
amalgam #"(l) but it is easier to calculate them in a finite completion of
the amalgam.

Let S(l' be the image of £*'* with respect to the covering

Then S'1' is the subgraph in the octad graph induced by the octads refined
by a sextet (isomorphic to the collinearity graph of ^{S^{2))) while Z(2) is
a complete subgraph on 7 vertices, induced by the 1-subspaces contained
in a 3-space. This shows that

K{
2
1] s 26 : 3, G[l) S Sym6,

K f > S 26, G2
2) S L3(2) x Sym3.

In particular, a"(1) and dC(1) are not isomorphic. D

Let us turn back to the amalgam stf = {G,> \ 1 < i < 4} of maximal
parabolics associated with the action on a rank 4 T-geometry as in the
beginning of the section.



252 Amalgams for T-geometries

Lemma 12.4.4 The amalgam SC = {G4, G3} is isomorphic to

Proof. Arguing as in the proof of (12.4.3) we produce a covering

X : A(i)

of the graph A'1' associated with the universal completion of 3E® onto
the derived graph A(^) of <&. If 9C = #"(2) then we can easily deduce from
the proof of (12.4.3) that Gj possesses L3(2) x Symj, as a factor group,
which is impossible. •

Notice that since G, = (G,3, G^) for i = 1,2, the above lemma implies
that the universal completion of si possesses a homomorphism onto

M24.

Lemma 12.4.5 The amalgam {G4, G3, G2} is uniquely determined up to iso-
morphism.

Proof. Let G2 be the universal completion of the amalgam {G23, G24}.
Then K2 (which is the largest subgroup normal in both G23 and G24) is of
the form 26 : 3. We can check in M24 (which is a completion of {G4,G3})
that a 3-element from K2 acts fixed-point freely on 02(^2), which means
that Z(K2) = 1. In order to prove the lemma we have to show that the
kernel of the homomorphism <p : G2 -* G2 is uniquely determined. The
kernel is contained in C^ {K2) while by the proof of (12.4.3)

G2/{C^{K2)K2) S Sym6.

Since G2/K2 = 3 • Sym^ the kernel is an index 3 subgroup in C^ (K2).
Suppose there are two such subgroups and let T be their intersection.
Then G2 = G2/TK2 = 32.Sym6. Since the 3-part of the Schur multiplier
of Alt(, is of order 3, G2 has a factor-group isomorphic to Alts or Syrri}. On
the other hand, G2 is a completion of the amalgam {G23//C2,G24//C2}. It
is an easy exercise to check that this is impossible (compare (8.5.3 (i))). •

Now we are in a position to establish the main result of the section.

Proposition 12.4.6 All the amalgams sdj of truncated M-^-shape are iso-
morphic and

Gi S M24, G2 = 26 : (3 • Alt6 x 3).2,

G3 3 26 : (L3(2) x Symi), G4 3 24 : L4(2).
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Proof. Since res^(xj) is simply connected the uniqueness of s4f follows
directly from (12.4.5). We know that G\ is either M24 or He and by the
paragraph before (12.4.5) the universal completion of si'f possesses a
homomorphism onto M24. Since He is not a subgroup in M24 by the
order consideration, G\ = M24. •

12.5 The completion of stff

In this section we show that the amalgam s/f as in (12.4.6) does not
possess a faithful completion. More precisely we prove the following.

Proposition 12.5.1 Let stff be the unique amalgam of truncated Misshape
as in (12.4.6) and (U(s?f),(p) be the universal completion ofsij. Then

(i) l/(i/)SM24;
(ii) the restriction of q> to G2 has kernel of order 3 ;

(iii)

We are going to show that starting with a tilde geometry ^ of rank
at least 4 which possesses a flag-transitive automorphism group G and
in which the residual rank 3 tilde geometries are isomorphic to ^{M^),
we can construct a geometry tf with a locally truncated diagram. This
construction generalizes the constructions of J^{Co\) and 3^(M) from
^S{Co\) and ^(M). The group G also acts flag-transitively on the geometry
2f? and we achieve a contradiction in the case of the amalgam stff when
reconstructing one of the parabolics associated with the action on Jf.

Thus let <& be a T-geometry of rank n such that either n = 3 and
1} = ^(M24) or n > 4 and every rank 3 residual T-geometry in IS is
isomorphic to 0(M24). Let G be a flag-transitive automorphism group
of ^ (recall that M24 is the only flag-transitive automorphism group of

Let A = A(^) be the derived graph of ^ where as usual for an element
y of ^ by Z[y] we denote the subgraph in A induced by the vertices
(elements of type n in 'S) incident to y. If y is of type n — 2 then T,\y] is
the collinearity graph Q of res^y) = ^(3 • S4(2)) which is an antipodal
distance-transitive graph with the intersection diagram

1 3 1

n2(»)
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There is an equivalence relation on ft with classes of the form {v} U
iU(v) (the antipodal classes). These classes are exactly the fibers of the
morphism from Q onto the collinearity graph of ^§{Sn{2)) which commutes
with the action of the automorphism group.

Define a graph ¥ on the vertex set of A by the following rule: two
distinct vertices are adjacent in *P if they are contained in a subgraph
Z[y] for an element y of type n — 2 and if they are antipodal in this
subgraph. By the same letter *F we denote a connected component of *P
containing xn. We start by the following

Lemma 12.5.2 If^S — ^(Mu) then *P is a complete graph on 15 vertices.

Proof. Let <p be the morphism of A onto the octad graph which
commutes with the action of M24. The vertices of A are the central
involutions in M24 and q> sends such an involution T onto the octad
formed by the elements of S(5,8,24) fixed by t. Then *F is a fiber of cp
(compare Section 3.3 in [Iv99]) and the stabilizer of *P in M24 induces
on ¥ the doubly transitive action of the octad stabilizer A = 24 : £4(2)
on the cosets of Q ( T ) = 21+3+3.L3(2) where x is an involution from
O2(A). •

Lemma 12.5.3 Let H be the stabilizer of^V in G. Then

(i) H acts transitively on the vertex-set of^V;
(ii) the valency of *¥ is 2 • [!J]2 and H{xn) = G{xn) acts transitively on

Proof, (i) follows from the flag-transitivity of G. Every element y of
type n — 2 incident to xn corresponds to a pair {zm{y),z(1\y)} of vertices
adjacent to xn in *P (here {xn,z

(1)(_y),z(2)(y)} is the antipodal block of £[3/]
containing xn). By (9.2.3), Gn acts primitively on the set of such elements
y and hence it is easy to deduce from (12.5.2) that z(l'(y) = z^(y') if and
only if i = j and y = y', which gives (ii). •

For 1 < i < n — 2 we associate a subgraph *P[y,] which is the connected
component containing xn of the subgraph in *F induced by the intersection
¥ n S[y,] with an element yt of type i in ^ incident to xn. We associate
the subgraph ^LVn-i] induced by the union of the subgraphs *P[z] taken
for all the elements z of type n — 2 (the quints) incident to yn-\ with an
element yn-\ of type n — 1 in IS incident to xn (a link containing xn).

Lemma 12.5.4 The following assertions hold:

(i) the valency 0/¥[>>,•] is 2 • [ "~ ' ] 2 f°
r i=£n-l;
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(ii) for 1 < i < j < n — 2 we have ^[yil £ *¥\yj] if and only if y,- and yj
are incident in &;

(iii) 4'[};n_2] is a triangle in *P;
(iv) xP[);n_3] is a complete graph on 15 vertices;
(v) *P[jn_i] is a complete graph on (2"+1 + 1) vertices. D

Proof, (i) follows from (12.5.3 (ii)) while (ii) and (iii) are by the
definition. Since r e s J O ^ ) ^ ^(M24), (iv) follows from (12.5.2). By (iii),
^[yn-i] is the union of 2" — 1 triangles with xn being the intersection
of any two of them. Let z\ and z2 be elements of type n — 2 incident
to yn-\. Then, since res^(yn_i) is a projective space, there is an element
of type n — 3 incident to each of yn-\, z\ and z2. Hence by (iv) the
union ^[zj] u T f o ] induces a complete subgraph (on 5 vertices) and (v)
follows. D

Let 3) be a subgeometry of rank n in 0 whose elements of type n are
the vertices of * and the elements of type i for 1 < i < n—1 are subgraphs
*P[Vi] defined as above, where y,- is of type i in ^ incident to a vertex of
x¥. If z, and zy- are elements of type i and j in ^ with i=f=n—\j=j, then
z, and zy- are incident in 3) if and only if z, c z; or zy- c: z,. An element
^LVn-i] of type n — 1 in 2 is incident to all the vertices it contains and
to all the elements ^[yj] of type j for 1 < j < n — 2 defined with respect
to elements yj incident to yn-\ in <§. It is easy to check that *P[yn_i] and
*¥[)>]]> 1 < ; < n - 2, are incident in 3) if and only if ^LVn-i] n ^[yj] is
ofsize2"--'+1 + l.

Proposition 12.5.5 The geometry 3> belongs to the diagram
n - l

1 2 n - 3 n-l

Dn{2): o o •••
2 2

and the stabilizer U of 3) in G induces on 3) a flag-transitive action.

Proof. We proceed by induction on n. If n = 3 then the result follows
from (12.5.2) in view of the Klein correspondence. Thus we may assume
that the residue in 3J of an element of type 1 belongs to the diagram
Dn_i(2). On the other hand, it is straightforward by the definition that
the residues of xn in ^ and 3) are isomorphic. Hence it only remains
for us to show that the {l,n}-edge on the diagram is empty. But this is
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clear since the incidence in the residue of an element of type n — 1 is via
inclusion. •

In view of the classification of the spherical buildings [Ti74], [Ti82]
and the description of their flag-transitive automorphism groups [Sei73],
(12.5.5) implies the following.

Lemma 12.5.6 In terms of (12.5.5) we have the following:

(i) the action E of H on 3 is isomorphic to ^2n{2);
(ii) the image 7 of G(xn) in H is of the form 2n("-^2 : Ln(2), where O2(7)

is the exterior square of the natural module of 7/(02(7)) = Ln(2). •

Proof of Proposition (12.5.1). Since G4 = 24 : L,»(2) does not possess
26 : Ln{2) as a factor-group, (12.5.6) shows that si'/ has no faithful
completions. Since we already know that M24 is a completion of J / / the
proof follows. •

12.6 Coi-shape

In this section ^ is a rank 4 T-geometry with the diagram

G\ ~ 2n.M24 with Ki = Oi{G\) being the irreducible Golay code module
#11 for Gi = G1/K1 *z M24. Since tf2(M24,#n) = 1, G\ splits over
K\ and we can choose a complement N\ = M24 to K\ in G\ so that
G\ is the semidirect product of K\ and JVi with respect to the natural
action. Since H1(M24,#n) = 1 all such complements N\ are conjugate
in Gi. We follow the direct strategy, so our first goal is to determine the
isomorphism type of the amalgam 38 = {Gi,G2} (to be more precise we
are going to show that $) is isomorphic to the similar amalgam associated
with the action of Co\ on the T-geometry "S(Coi).)

The subgroup G12 is the preimage in G\ of the stabilizer S = 26 :
3 • Sym& in Gi of a point of res^(xi) = g(Mw). Since G\ is a semidirect
product, G12 is the semidirect product of K\ and a subgroup S in N\
which maps isomorphically onto S.

By Lemma 3.8.3 in [Iv99] Ku as a module for S, is uniserial with the
composition series

1 < K{2) < K[x) < Ku

where Kp ' = C K , ( 0 2 ( S ) ) is the natural 4-dimensional symplectic module
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for S/O2,3(S) = S4(2), K\i] = [KUO2{S)] has codimension 1 in Kx and
KJ'V-Kp* is the hexacode module for S/O2(S) = 3 • Sym6. Hence

Gn ~ 24.26.2.26.3 • Sym6.

We need to identify the subgroup /Cj" which is the kernel of the action
of G2 on the point-set of the line x2. Towards this end we classify the
subgroups of index 2 in Gn (since Xj" is one of them).

Lemma 12.6.1 The group G\2 contains exactly three subgroups Y^l\ 7( 2 )

and y(3) of index two. If X is a Sylow 3-subgroup of O2T,{G\2) and N(l) =
NYw(X)/X then up to reordering the following holds

(i) 7( 1 ) is the semidirect product ofKx and S' = 26 : 3 -Alt6 with Nm ^
25 :Alt6;

(ii) Y(2) is the semidirect product ofK.[l) and S with N(2) ^ 24 : Sym6;
(iii) Y^ is the 'diagonal' subgroup with N^ = 24 • Sym^ (the non-split

extension).

Proof. A subgroup of index 2 in G\2, certainly contains the commutator
subgroup G'12 of Gi2. It is easy to see that G'12 is the semidirect product
of K\l) and S' = 26 : 3 • Alt6. Thus G\2/G'n = 22 and there are three
subgroups of index 2 in G\2. The result is clear in view of the fact that
CK, (X) is an indecomposable extension of the natural symplectic module
Kf] for NS(X)/X S S4(2) by a trivial 1-dimensional module. D

Since K\ induces a non-trivial action on the point-set of x2, K2 does
not contain the whole of K\, so Kj ^ Y^l\ but at this stage we are
still left with two possibilities for Kj. In order to choose between the
possibilities let us have a closer look at the possible structure of G2. As
usual let L2 be the kernel of the action of G2 on the set of elements y2

of type 2 such that {xi,y2,xi,xt} is a flag. Let S be the set of subgroups
K(u) nK2 taken for all the points incident to x2 (so that $ consists of
three subgroups).

Lemma 12.6.2

G2 ~ 24+12.(3 • Sym6 x Sym3),

and furthermore

(i) Kx DK2 = K[i] has index 2 in K{;
(ii) K2 = O2(G2) and K2/L2 is the tensor product of the hexacode module

for K^/K2 = 3 -Symf, and of the 2-dimensional module for K
Sym3;
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(iii) L2 = K, = C\£€gE and L2 = 24 is the natural symplectic module for

(iv) if E is an elementary abelian subgroup of order 210 in K2 which is
normal in K̂ ~ then E G $.

Proof. Since K[ acts trivially on res^(jc2) and induces on res^(x2) an
action of order 2, (i) follows. Now (ii) follows from (9.4.1) and implies
(iii). Since the action of the group 3 • Sym& on the hexacode module is
absolutely irreducible by (8.2.9), (iii) implies (iv). •

Before identifying K ~̂, let us explain a minor difficulty we experience
at this stage. What we know for sure, is that K2 contains G'12 ~
24+6+6 3 . Aft6 T h e a c t j o n o f 3 . Ait6 o n ^ hexacode module H is not

absolutely irreducible (it preserves a GF(4)-vector space structure). By
(12.6.2 (ii)), Ki = K2/L1 is the direct sum of two copies of the hexacode
module. Hence there are exactly five (the number of 1-subspaces in a
2-dimensional GF(4)-space) G'12/.K2-submodules in K2, isomorphic to the
hexacode module. Thus we cannot reconstruct S as in (12.6.2 (iv)) just
looking at the action of G'12 on K2, since a priori the preimage in K2 of
any of the five hexacode submodules could be a subgroup from S. But
in fact at most three of the preimages are elementary abelian.

Lemma 12.6.3 Let E be an elementary abelian subgroup of order 210 in
K2 which is normal in G'12. Then E S S.

Proof. Since the second cohomology group of every chief factor of G'i2
inside K2 is trivial, G'12 splits over K2. Let T = 3 • Alt(, be a complement
so that X = Oi{T). If S = {£i ,£2 ,£3} then, (treating £, as a module for
T) we have

Ei = L 2 © vj;\

L2 = CEi(X) and V^ = [Et,X] is the hexacode module for T.
Since G'12 is isomorphic to the corresponding subgroup associated

with the action of Co\ on ^(Co\), we know that K2 must contain the
subgroups Et as above. Notice that the centralizer in T of a non-zero
vector from V^ for i = 1 or 2 centralizes a unique non-zero vector in L2.
Thus there is a unique surjective mapping

A : Vil) - L2,

which commutes with the action of T. Notice that we can treat the
non-zero vectors in V^ and L2 as points of 0(3 • S4(2)) and
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respectively. Then X is the morphism of the geometries, which commutes
with the action of the automorphism group.

Since K2 = V^V^Li, it is easy to see that

i f > = {hcp(h)l(h) | h e Pf >},

where l(h) e L2 and q> : v[ ' —• v[ ' is an isomorphism. Let T(h) = Syrri4
be the stabilizer of h in T. Since V^ is the hexacode module for T,
h<p{h)l(h) must be centralized by T(h), which means that

(a) either l(h) is the identity for of all h € V{
h
1] or l{h) = X(h) for all

(b) <p(/i) is contained in the 1-dimensional GF(4)-subspace in V^ cen-
tralized by T(h).

By reducing the product of h(p(h)l(h) and h'q>(h')l(h') to the canonical
form hh'(p{hh')l(hh'), we deduce the following equality:

(c)

Since the mapping (h\,li2) •-» [/ii,^] for /ii G FA
(1), h2 e FA

(2) is non-
trivial, in view of (a) we conclude that l(h) = k(h) for all h € H.
This shows that [h,<p(h)] = X{h)2 = 1, which is consistent with the
assumption that V^ is an elementary abelian 2-group. We claim that
the isomorphism q> is uniquely determined. Indeed, let {fci = h,h2,hi} be
the line in V^ centralized by T(h) and {k{ = (p(h),k2,ki} be the line in
V^ centralized by T(h) (we may assume that /c,- = <p(/i,) for i = 2 and 3).
Then

[h,k2] = [h,<p(h2)] = A(^)A(^2)A(^2) = 1(/J)3 ^ 1

and the proof follows. •

Lemma 12.6.4 K2" = 7(2).

Proof. By (12.6.1) and the paragraph after the proof of (12.6.1) it
remains to show that X2" ± Y&. By (12.6.2 (iv)) and (12.6.3) Kf is
the kernel of the action of G\2 on the well-defined collection S. Since
G12 = 7( 2 )y ( 3 ) induces on i an action of order 2, K^ is characterized
among Y(T> and Y(3) as that which normalizes at least two elementary
abelian subgroups of order 210 in K2, normalized by G\2. Clearly both
K[l) and L2O2(S) are contained in $ and each of them is normalized by
r( 2 ) . Hence the proof. D

Lemma 12.6.5 OutKf S Sym3 x 2.
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Proof. By (12.6.2 (iii)), OutK^ acts on $ and since Kj is isomorphic
to the corresponding subgroup associated with the action of Coi on
^(Coi), we know that OutK^ induces Sym-} on S. Let B be the
subgroup in AutKj" which acts trivially on S (notice that B contains
all the inner automorphisms). We claim that B/lnnK^ has order 2.
Let T G B. Since X is a Sylow 3-subgroup in O^K^) we can adjust x
by an inner automorphism so that x normalizes X. Then x normalizes
N := NK-(X) ^ (3 x 24) • Sym6. We know by (12.6.1 (ii)) that JV splits
over O2(N). Since Hl(N/0v(N),02(N)) is 1-dimensional (cf. Table VI
in Section 8.2), there are two classes of complements to 02{N) in N.
In order to complete the proof it is sufficient to show that whenever x
normalizes a complement T = 3 • Sym^ to O2(N) in N, T is inner. Since
N/02j{N) S Sym6 is self-normalized in OutO2(N) S L4(2), T induces an
inner automorphism of T and hence we may assume that x centralizes
T. Recall that x normalizes each £, e S and by the above the action of
x commutes with the action of f. As a module for f the subgroup £,
possesses the direct sum decomposition

Ei = L2® F<°

where L2 and F ^ are non-isomorphic and absolutely irreducible by
(8.2.9). This means that x centralizes £, and hence must be the identity au-
tomorphism. Now it remains to mention that since O2(N) = L2 = Z(K2),
an automorphism of N which permutes the classes of complements to
O2(N) can be extended to an automorphism of K^. •

Since the centre of K^ is trivial, (12.6.5) implies that G2 is the preimage
of a Symj,-subgroup in OntK^. By (12.6.5) there are exactly two Sym3-
subgroups in OutK;r and by the proof of (12.6.5) one of them, say D\, is
the kernel of the action on the classes of complements to K2. We know
that Ki is contained in G2 and that the image of K\ in Out ICT has order
2. Furthermore, C^iX) is indecomposable and hence an element from
Ki permutes the classes of complements to K2. Thus G2 is the preimage
in Aut/C^" of the Sym^-subgroup in OutK^ other than D\.

By the above paragraph the type of 8$ = {G\,G2} is uniquely deter-
mined. Also it is easy to deduce from the proof of (12.6.5) that every
automorphism of G\2 can be extended to an automorphism of G2. In
view of Goldschmidt's theorem (8.3.2) we obtain the following.

Lemma 12.6.6 In the considered situation the amalgam 38 = {G\,G2} is
isomorphic to the analogous amalgam associated with the action of Co\ on
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Now applying (8.6.1) we obtain the main result of the section.

Proposition 12.6.7 All the amalgams of Coi-shape are isomorphic to
jtf(Coi,y(Coi)) and the universal completion of such an amalgam is iso-
morphic to Co\. •

In terms of generators and relations the amalgam of maximal parabol-
ics associated with the action of Co\ on 0(Coi) was characterized in
[FS98].

12.7 M-shape

In this section <§ is a T-geometry of rank 5 with the diagram

2 2 2 2

the residue of a point is isomorphic to ^{Co\

Gx ~ 2.224.Coi,

where L\ is of order 2 and K\/L\ is the universal representation module
of y(Coi), isomorphic to the Leech lattice A taken modulo 2. Arguing
as in the proof of (11.5.1) we obtain the following.

Lemma 12.7.1 K\ = C>2(Gi) is extraspecial of plus type and Gi ~ 2++24.Coi.
•

Since j / = {G,- | 1 < i < 5} is the amalgam of maximal parabolics
associated with an action on a T-geometry with resj(x2) = ^(M24), it is
immediate that the conditions in Definition 5.1.1 of [Iv99] are satisfied,
which means that <# = {Gi, Gi, G3} is a Monster amalgam , in particular,

G2 ~ 22+11+22.(Sym3 x M24), G3 ~ 23+6+12+18.(L3(2) x 3 • Sym6).

By Proposition 5.13.5 in [Iv99] all the Monster amalgams are isomor-
phic, which means that # is isomorphic to the corresponding amalgam
associated with the action of M on

12.8 S2n(2)-shape, n > 4

In this section <§ is a T-geometry of rank n > 4 with the diagram
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in which the residue of a point is isomorphic to 0(3[2~'l2 • S2n-2(2)), G is
a flag-transitive automorphism group of ^ , such that

d ~ 2.22"-2.3G"']2 . 52n_2(2),

so that Z\ = Z(Gi) is of order 2 and K\IZ\ is the natural symplectic

module for Gi/O3(Gi) = S2n_2(2);

Gn ~ 2"("-1)/2.2".Ln(2),

so that Ln is the exterior square of the natural module of Gn = Ln(2)
and Kn := Kn/Ln is the natural module for Gn. Our goal is to show
that the amalgam sd = {G,< \ 1 < i < n) is isomorphic to the amalgam
j / ° = {G° I 1 < i < n} associated with the action of

G° S 3["b • 52n(2)

on its T-geometry
Let

H-.G°^G = G0/O3(G0) S S2n(2)

be the natural homomorphism and let G,- = /J(G?) for 1 < i < n. Then
G, s G?/O3(G?) and

^ := {G,- | 1 < i < n}

is the amalgam of maximal parabolics associated with the action of
G = S2n(2) on its symplectic polar space 0(S2n(2)) (where G,- is the
stabilizer of the i-dimensional totally isotropic subspace from a fixed
maximal flag). From this and the well-known properties of the parabolics
in S2n(2) we make the following observation.

Lemma 12.8.1 G? splits over 02{G\) and G°n splits over O2(G°n).

In the next lemma we follow notation from (3.2.7). The proof is similar
to that of (12.2.1) and therefore is not given here.

Lemma 12.8.2 The subgroup Kn is an elementary abelian 2-group and as a
module for Gn = Ln(2) it is isomorphic to the quotient ^ / £ " (2 ) of the even
half of the GF(2)-permutation module of Ln{2) on the set of l-subspaces
in the natural module. •

Let us consider Kn as a module for

Gm •= Gln/Kn S 2"-1 :Ln_,(2).
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The following result can be checked directly using the structure of Kn

specified in (12.8.2).

Lemma 12.8.3 The following assertions hold:

(i) Ln, as a module for G\n, contains a unique submodule Lj,1', which
is isomorphic to the natural module of G\n/O2(G\n) = Ln_i(2) and

(ii) Kn, as a module for G\n, contains a unique submodule K^ which is
l-dimensional and Kn/K^ is isomorphic to the dual of Lj,". •

Let us now allocate K\ inside Oi(G\n). Recall that in terms of the
action of G on the derived graph the subgroup K\ is the vertexwise
stabilizer of the subgraph Z =

Lemma 12.8.4 The following assertions hold:

(i) K

(iii) KxKn = O2(Gln).

Proof. The elementwise stabilizer of £i(xn) in G\ induces on l.2{xn)
an action of order ^"-'X"-2)/2, hence (12.8.3 (i)) gives (i). Since K{ r\Kn

fixes every vertex in £i(xn), it induces on Ai(xn) an action of order 2,
which gives (ii). Finally (iii) is by the order consideration. •

Lemma 12.8.5 The following assertions hold:

(i) Ki is elementary abelian;
(ii) K\, as a module for Gi/O3(Gi) = S2n_2(2) = Q2n-i(2), is isomorphic

to the natural orthogonal module.

Proof. Since G\ acts irreducibly on Ki/Z\ (isomorphic to the natural
symplectic module), K\ is either abelian or extraspecial and since G\
does not preserve non-zero quadratic forms on the quotient, Ki cannot
be extraspecial and (i) follows. In view of (8.2.6), in order to prove (ii) it
is sufficient to show that K\ is indecomposable, which is easy to deduce
from (12.8.4) and the structure of Kn as that in (12.8.3). a

Let us turn to the structure of Gi-

Lemma 12.8.6 The following assertions hold:

(i) [Ki :KlnK2]=2;
(ii) G2 induces Sym^ on the triple of points incident to x2;
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(iii) G2 induces on resj(x2) = ^(3E~2]2 • S2«-4(2)) the full automorphism of
the residue;

(iv) G2 S Symi x p E " ^ . S2n_4(2)).

Proof. Since K\ is contained in G2 and K[/Z\ is non-trivial, Ki induces
an action of order 2 on res^(x2) (clearly K\ fixes resj(x2) £ res#(xi)
elementwise). This gives (i) and (ii). The rest follows from the basic
properties of the T-geometries of symplectic type (cf. Chapter 6 in
[Iv99]). •

Lemma 12.8.7 Put X2~ = K^/K2 £ 3%~2h . S2n_4(2). Then

(0 1̂ 21 = 2;
(ii) K2/L2 is elementary abelian isomorphic to the tensor product of the

natural (2n — 3)-dimensional orthogonal module of K2/0}{K2~) =
Q2n_3(2) and the 2-dimensional module of Gi/K^ = Sym^;

(iii) ifX is a Sylow 3-subgroup o/K2
+ then CGl(X) ^XxD where L2 < D

and D/L2 = K2.

Proof, (ii) follows from (9.4.1) and implies (i) by the order reason.
Finally (iii) is by (12.8.6 (iv)). •

Lemma 12.8.8 In terms of (12.8.7) D splits over L2 i.e., D = L2 x Do,
where Do = K^.

Proof. It is known (cf. [CCNPW]) that the Schur multiplier of S2n_4(2)
is trivial unless 2n—4 < 6, thus we only have to handle the cases n = 4 and
n = 5. Suppose first that n = 5 and that Z)/O3(£>) = 2-S6(2) (the only non-
split extension). It is known that the preimage in 2-S6(2) of a transvection
of S(,(2) has order 4, in particular, O2(D n Gn) is not elementary abelian,
which is contradictory to (12.8.2), since O2(D n Gn) < Kn. Similarly, if
n = 4, then, independent of whether D involves a non-split double cover
of Alt(, or is a semidirect product of 3 • Alt(, with a cyclic group of order
4, 02(D n Gn) contains an element of order 4, which is not possible. •

Lemma 12.8.9 G\ splits over K\.

Proof. Let Do = 3T2k • S2n_4(2) be the direct factor as in (12.8.8).
It follows from (12.8.6 (i)) that, considered as a Do-module, Ki n K2 is
an extension of two 1-dimensional modules by the natural symplectic
module of the S2n_4(2)-factor of Do. By (8.2.6) this implies that Xi C\K2

is a direct sum of a 1-dimensional module and a module Y of dimension
In—3. Since {K\ C\K2)/L2 is indecomposable, we have K\ C\K2 = YLQ and
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hence K2 = (*M nK2)Y
x where x is a generator of the Sylow 3-subgroup

X of K2
+. Finally G12 = Ki(YxD0) splits over Ki. Since Gn contains a

Sylow 2-subgroup of Gi the proof follows by (8.2.8). •

Lemma 12.8.10 G\ = G°, in particular, G\ splits over K\.

Proof. In view of (12.8.9) it only remains to establish the module
structure of K\. By our original assumption K\ is an extension of
the trivial 1-dimensional module by the natural symplectic module for
S2n_2(2). It follows from (12.8.7 (ii)) that [KUK2] = L2, since [KUK2]
clearly contains L2 and [ x , ^ ] covers the image of K\ C\K2 in K2/L2.
In particular, [Ki,K2] has dimension In — 2 which excludes the possi-
bility that K\ is a direct sum. Finally by (8.2.6), Ki must be the only
indecomposable extension, namely the natural orthogonal module of
S2n_2(2) = n2n_2(2). •

Lemma 12.8.11 Gn = G°, in particular, Gn splits over Kn.

Proof. By Gaschiitz' theorem (8.2.8), Gn splits over Kn if and only
if G\n splits over Kn. Let \p : G° —> G\ be the isomorphism, whose
existence is guaranteed by (12.8.10) and Sf2 be a complement to O2(Gn)
in G°in < Gn (by (12.8.1) such a complement exists). Then wi^n) is a
complement in Gn = rp{Go

n) to Kn = \p(O2{G\2)) and the result follows.
Notice that G\2 is uniquely determined in G° up to conjugation as the
preimage of the stabilizer in G?/O2,3(G°) = S2n_2(2) of a maximal totally
isotropic subspace in the natural symplectic module. •

We follow the dual strategy and our nearest goal is to reconstruct up
to isomorphism the amalgam 9E = {Gn,Gn_i}. By (12.8.2) and (12.8.11)
the structure of Gn is known precisely. Then Gn_i>n is the full preimage
of the stabilizer in Gn of the hyperplane xn_i in the natural module of
Gn = Ln(2). We denote xn_i also by W and call it the natural module
for Gn_1>n/O2(Gn_,,n) S Ln_,(2).

Lemma 12.8.12 The following assertions hold:

(i) K^Li coincides with O2(Gn_i,n) and is the unique subgroup of index 2
in Gn-\,n'<

(ii) there is an elementary abelian subgroup To in Ln, which is in the centre
of O2(Gn-in) and as a module for Gn_i>n/O2(Gn_iin) it is isomorphic
to W;
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(iii) Gn-\,n contains within K^/To exactly three composition factors, each
isomorphic to /\2 W.

Proof. Everything follows directly from the structure of Gn and the
definition of Gn_i,n. In order to see (iii) we are using (9.2.4).

By (12.8.12) K^_l has a trivial centralizer in G«_i and therefore Gn-\
can be identified with a suitable subgroup in AutK^_x such that

(PI) Gn-i>n is a subgroup of index 2 in Gn_i;
(P2) Gn-i/K^ = Sym3.

Thus 3C is contained in the amalgam {Gn,AutX^l,}, which is deter-
mined uniquely up to isomorphism.

Lemma 12.8.13 Let T = O2(K+_X). Then Z(T) involves exactly two chief
factors ofK+_v namely To = /\2 W and Z{T)/T0 = W. Asa module for
K+_JT = Ln_i(2) the module Z{T) is indecomposable.

Proof. Clearly Z(T) contains the centre Z of the Borel subgroup B. It
is easy to deduce from (12.8.2) that Z is of order 4. Thus Z{T) involves
at least two chief factors. One of them is To as in (12.8.12 (iii)). On the
other hand, T covers the subgroup 02(Gn_i)n)/Kn of Gn/Kn which acts
non-trivially on Ln. Hence Z(T) < Kn and Z{T) DLn = To. Thus Z(T)
contains another chief factor, which is isomorphic to W.

It only remains to show that Z(T) is indecomposable. Suppose on the
contrary that

Z{T) = To 8 Ti and Tx ^ W.

For a point p of ^ incident to xn_i let z(p) be the unique non-zero element
in the centre of G(p). Since G(p) n Gn_ijn contains a Sylow 2-subgroup of
Gn_iin, we conclude that z(p) e Z(T). Since G(p)nGn_i>n does not stabilize
non-zero vectors in To = A2 W> w e m u s t n a v e Z(P) e ^i- Suppose now
that / is a line incident to xn-\ and {pi,P2,Pi} is the point set of /. Then,
because of the isomorphism T\ = W, we must have

which shows that Kn splits over Ln contrary to (12.8.2). •

Now let us turn to the outer automorphism group of K*_v By (12.8.11)
we have K+_y = TS for a subgroup S = Ln_i(2). First let us consider the
subgroup Ktl=K^_l
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Lemma 12.8.14 OutKn
+_, ^ Sym^ ifn>5 and OutXn

+_, S Synn ifn = 4.

Proof. The group Kn_x is a semidirect product of T and S = Ln_i(2).
Since by (12.8.11), Kn_t is isomorphic to the corresponding subgroup in
GQ

n_v it possesses an outer automorphism group Syrtij. As a consequence
we conclude that Kn+1 must be the direct sum of two copies of the
S-module isomorphic to W. Since by (8.2.5), Hl(S, W) is trivial if n > 5
and 1-dimensional if n = 4, the proof follows (compare the proof of
(12.4.1)). D

It remains for us to determine the image in OulK+_x of the subgroup

Lemma 12.8.15 The following assertions hold:

(i) if a G A then a acts trivially on T;

(ii) the image in OutK^_{ of the subgroup A is trivial ifn > 5 and it is a

normal subgroup of order 2 if n = 4 or 5.

Proof. As above, let S be a subgroup in K*_lt isomorphic to Ln_i(2).
Let fl e A. Notice first that if s e S then sa = s • za for some za eZ(T).
This means that a preserves the action of S on T. On the one hand, this
implies that a acts trivially on Z(T). On the other hand, the mapping

X : 11-+ [t, a]

from T/Z(T) to Z(T) must be linear, commuting with the action of S.
By (12.8.13), Z(T) contains no submodules isomorphic to W. Hence X
must be trivial, which gives (i).

Now as usual the question is reduced to the number of complements
to Z(T) in Z(T)S. By (12.8.13) we know that Z(T) involves two
factors isomorphic to W and /\2 W, respectively. Hence we only have
to consider the case when n = 4 (when both H^S, W) and Hl(S,/\2 W)
are non-trivial) and the case when n = 5 (when Hl(S, W) is trivial, but
Hl{S,tf W) is non-trivial). We do not present the relevant argument in
full here (cf. Lemma (5.4) in [ShSt94]). •

Lemma 12.8.16 The amalgam $C = {Gn, Gn_i} is determined uniquely up
to isomorphism.

Proof. It was mentioned before (12.8.13) that SC is a subamalgam in
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the uniquely determined amalgam {Gn,AutK^_[}. Suppose that n > 5.
Then by (12.8.14) and (12.8.15) we have

Aat K+^/K^ ^ Sym3 or Sym3 x 2,

in particular, Gn_i is uniquely specified in AutK+_x by the conditions
(PI) and (P2) stated before (12.8.13).

When n = 4 some further arguments are required, which we do not
reproduce here (cf. Lemmas (5.6) to (5.8) in [ShSt94]). •

Lemma 12.8.17 The amalgam {Gn, Gn_i,Gn_2} is determined uniquely up
to isomorphism.

Proof. By (12.8.16) 9C is isomorphic to #"° = {G°,G°_,} and since
03(Gn) = O3(G«-i) = 1, also t o f = {Gn,Gn_,}. Let Gn_2 be the
universal completion of the amalgam {Gn n Gn_2, Gn_i n Gn_2} (as usual
this amalgam is easily specified inside 2£). Then in order to prove the
lemma it is sufficient to show that the kernel N of the homomorphism
of Gn_2 onto Gn_2 is uniquely determined.

Let N be the kernel of the homomorphism of Gn_2 onto Gn_2- Since
\Oi(Gn-2)\ = 3 and in view of the existence of the homomorphism n, we
immediately conclude that N has index 3 in N. Suppose there are two
possible choices for N, say Ni and JV2, and consider

Gn_2 = Gn_2/(X+_2,iV1 n N2> = 32Sym6.

Since the 3-part of the Schur multiplier of Alt(, is of order 3, G,,_2
possesses a factor group F isomorphic to Syni} or AU3. On the other
hand, Gn_2 (and hence F as well) is a completion of the amalgam

/ = {(Gn n Gn_2)/X+_2,(Gn_i n Gn_2)/K,+_2} s {Symi x 2,Sym4 x 2}

(notice that $ is a subamalgam in Sym&). Now it is easy to check that
# could not possibly have F as a completion. •

Since resj(x,) is simply connected for 1 < i < n — 3 by the induction
hypothesis, we obtain the following.

Proposition 12.8.18 An amalgam of Sin{2)-shape for n > 4 is isomorphic
to the amalgam j / ° = ^ (G° , ^(G0)) and its universal completion is G°.
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Thus the exposition of the classification for the flag-transitive Petersen
and tilde geometries is complete. The classification was announced in
[ISh94b], while an outline of the history of the project along with the
names of many people who contributed to it can be found in Section 1.12
in [Iv99].

Let us emphasize that we never assumed that the finiteness of the Borel
subgroup and that our classification proof rely on results of computer
calculations in the following instances:

(a) the non-existence of a faithful completion of the amalgam of
shape (12.1.1);

(b) the simple connectedness of the rank 3 T-geometries
and 0(37-Se(2)) established (computationally) independently in [Hei91]
and in an unpublished work of the present authors;

(c) the universal representation module of &{He) (4.6.1);

(d) the universal representation group of the involution geometry of Alt-]
(6.2.1).

It would certainly be nice to achieve in due course a completely
computer-free classification, but at the moment it seems rather compli-
cated.

In our proof the construction, the simple connectedness proof and
the classification via the amalgam method come separately and indepen-
dently. One would like to see a uniform treatment, say of the Monster
group M (starting with a 2-local structure and leading to the existence
and uniqueness), based solely on the T-geometry ^(M), as it was treated
in [IMe99] for the fourth Janko group J4 using its P -geometry
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But, there is always a price to pay: we have to admit that some proofs
in [IMe99] are quite complicated.

Another possibility for improving and refining the classification is to
drop the flag-transitivity assumption. In Section 13.1 we report on the
latest progress towards this.



13
Further developments

In this chapter we discuss two projects which lie beyond the classification
of the flag-transitive P- and T-geometries. In Section 13.1 we report on
the latest progress in the attempt to classify the P- and T-geometries
when the flag-transitive assumption is dropped. In Section 13.2 we discuss
Trofimov's theorem for locally projective graphs. Recall (cf. Chapter 9
in [Iv99]) that a 2-arc transitive action of G on F is locally projective if

Uq) <1 G(xfM < PYLn{q),

where Ln{q) is considered as a doubly transitive permutation group
on the set of 1-subspaces in the associated n-dimensional GF(q)-space.
Trofimov's theorem shows in particular (cf. the following Table IX)
that the exceptional cases of locally projective actions with G2(x) =̂= 1 are
related to the actions of the automorphism groups of Petersen geometries
on the corresponding derived graphs. We would like to classify all the
amalgams sd = {G(x),G{x,y}} of vertex- and edge stabilizers coming
from locally projective actions. We believe that such a classification
would demonstrate once again the very special role of P -geometries
and their automorphism groups. Notice that the classification of the
amalgams j / as above is equivalent to the classification of the locally
projective actions on trees.

13.1 Group-free characterizations

Our classification of the flag-transitive P- and T-geometry is essentially
group-theoretical. So it is very far from being a purely geometrical theory.
From this point of view, it is desirable to develop methods to study P-and
T-geometries in a 'group-free' way. Ideally, the classification should be
reproduced under purely geometrical assumptions. However, this goal
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seems to be too ambitious at present. The principal complications is
that if the flag-transitivity assumption is dropped then the number of
examples increases astronomically. To illustrate this point, let us consider
the P-geometry ^(34 3 7 1 • BM). Factoring this geometry over the orbits of
any subgroup of O3(34371 • BM), we again always get a P-geometry.

One possible solution to the above problem would be to classify only
the 2-simply connected geometries. However, at present it is unclear how
that condition of 2-simple connectedness can be utilized, and so new
ideas are needed. Of course, even though a complete classification is
beyond our reach, we can try and characterize the particular examples
of P- and T geometries by some geometrical conditions.

The following result has been established in [HSOO].

Proposition 13.1.1 Suppose that $ is a rank three P-geometry such that

(i) any two lines intersect in at most one point and
(ii) any three pairwise collinear points belong to a plane

Then & is isomorphic either to ^(A/22) or to &(3 • Mn). •

If we drop the conditions (i) and (ii) in (13.1.1) then there is at least
one further example: a 63-point geometry (discovered by D.V. Pasechnik
and the second author) that is a quotient of ^(3 • M22) over the set of
orbits of an element of order 11 from 3 • M22 (which acts on ^(3 • M22)
fixed-point freely).

In [CS01] the rank 4 case has been considered.

Proposition 13.1.2 Suppose that $ is a rank four P-geometry such that

(i) any two lines intersect in at most one point,
(ii) any three pairwise collinear points belong to a plane, and

(iii) the residue of every point is isomorphic to y(M22)-

Then & is isomorphic to ^{Coi). •

In the above theorem the condition (iii) eliminates the geometry
0(32 3 • C02) and its numerous non-flag-transitive quotients and also the
flag-transitive geometry ^(Jt). The fourth (and last) example of flag-
transitive P-geometry of rank four, namely <&{M2i), is eliminated by the
condition (i).

In the final step of the proof of (13.1.2) the following result from [C94]
has played a crucial role. Let IT denote the orbital graph of valency 891
(on 2 300 vertices) of the action of C02 on the cosets of l/6(2).2.
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Proposition 13.1.3 Let £ be the collinearity graph of the dual polar space
04(3) of U6{2). Let A be the distance l-or-2 graph of I (i.e., A and I
have the same set of vertices and two vertices are adjacent in A if and only
if they are at distance I or 2 in I,) then II is the unique graph which is
locally A. •

The above proposition can be reformulated in geometrical terms as
follows.

Proposition 13.1.4 Let i be an extended dual polar space with the diagram

c
o o o o,
1 2 4 4

such that

(i) the residue of an element of type 1 is isomorphic to the dual polar
space 04(3)c>/ U6(2);

(ii) two elements of type 1 are incident to at most one common element of
type 2;

(iii) three elements of type 1 are pairwise incident to common elements of
type 2 if and only if they are incident to a common element of type 4.

Then $ is isomorphic to the geometry i(Coi) of the Conway group Coi. D

We pose the following.

Conjecture 13.1.5 Let ^ be a rank five P -geometry such that

(i) any two lines intersect in at most one point,
(ii) any three pairwise collinear points belong to a plane, and

(iii) the residue of every point is isomorphic to ^(Co-i).

Then <g is isomorphic to &(BM).

Recall that the Baby Monster graph is a graph Q on the set {3,4}-
transpositions in the Baby Monster group BM (the centralizer of such a
transposition is 2-2£g(2) : 2), two vertices are adjacent if their product is a
central involution in BM (with centralizer of the form 2++22.Co2). Locally
£2 is the commuting graph of the central involutions (in other terms root
involutions) in the group 2E(,(2). (This means that two involutions are
adjacent in the local graph if and only if they commute.) The suborbit
diagram of Q. is given in Proposition 5.10.22 in pv99]. A crucial role
in the simple connectedness proof for ^(BM) was played by the fact
that ft is triangulable (cf. Proposition 5.11.5 in [Iv99]). In [IPS01] we
have established the following group-free characterization of the Baby
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Monster graph. We believe that this result can be used in a proof of
Conjecture 13.1.5, in a similar way to the use of (13.1.3) in the proof of
(13.1.2).

Proposition 13.1.6 Let F be a graph which is locally the commuting graph
of the central involutions in 2E(,{2). Then T is isomorphic to the Baby
Monster graph. •

The maximal cliques in the Baby Monster graph Q are of size 120. Let
£{BM) be the geometry whose elements are the maximal cliques in Q
together with the non-empty intersections of two or more such cliques;
the incidence is via inclusion. Then £(BM) is of rank 5, its elements of
type 1, 2, 3, 4 and 5 are the complete subgraphs in £2 on 1, 2, 4, 8 and
120 vertices, respectively, and £{BM) belongs to the diagram.

4( ) . o o 2 °t °

for t = 4, so tha t £{BM) is a c-extension of the F4-building of the
group 2E(,(2). The geometry $(BM) was first ment ioned in [B85]. In the
geometrical terms (13.1.6) can be reformulated as follows.

Proposition 13.1.7 Let £ be a geometry with the diagram c.F4(4), such that

(i) any two elements of type 1 are incident to at most two elements of type

2;

(ii) three elements of type 1 are pairwise incident to common elements of
type 2 if and only if they are incident to a common element of type 5.

Then £ is isomorphic to £(BM). •

The geometry &(BM) contains subgeometries £{2E6(2)) and £(Fi22)
with diagrams c.F4(2) and c.F4(l). The stabilizers in BM of these sub-
geometries induce on them flag-transitive actions of 2E(,{2) : 2 and
Fi22 : 2, respectively. Three further cF4(2)-geometries £(3-2E6{2)),
£{E6(2)), £(226 : F4(2)) and one F4(l)-geometry <f(3 • Fi21) were con-
structed in [IPS01].

In [IW02] it was proved that every flag-transitive c.F4(l)-geometry
is isomorphic to either £{Fi22) or £{3 • Fi22). The suborbit diagrams
of the four known c.F4(2)-geometries are calculated in [IP00]. The
classification problem of the flag-transitive c..F4(2)-geometries is currently
under investigation by C. Wiedorn.
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13.2 Locally projective graphs
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In [Tr91a] V.I. Trofimov has announced that for a locally projective
action of a group G on a graph F (which can always be taken to be a
tree), the equality G(,{x) = 1 holds. The proof is given in the sequence
of papers [Tr92], [Tr95a], [Tr95b], [Tr98], [TrOO], [TrOl], [TrXX] (the
last one is still in preparation). The proof can be divided into the
consideration of five cases (i) to (v); in addition the cases p = 3, p = 2,
and 5 = 2 were considered separately. The case (v) for q = 2 seems to be
the most complicated one (the papers [TrOO], [TrOl], [TrXX] deal solely
with this situation). In some cases stronger bounds on the order of G(x)
were established, in fact it was claimed that G2&) = 1 except for the
cases given in Table IX (in this table Wn+\ denotes the direct product
of two copies of Ln+\(2) extended by a pair of commuting involutary
automorphisms). In [Tr91b] some information on the structure of G(x)
in the case Gi{x) = 1 is given (although this information does not specify
G(x) up to isomorphism in all the cases).

Table IX

L2(2")

L2(3")

L3(2")

1-3(3)

M2)

L3(2)

L4(2)

L4(2)

^5(2)

22"

32"

26n

33

2"

23

2 6

2 6

2io

v2

2"

32"

26«

33

2

2

24

24

2io

3"

23« 23n

2

2 4

25 25

K5 Examples

AutS4(2")

AutG2(3")

22" AutF4(2")

Aut 1̂*22

Wn+\

Aut M22

C02

J4

BM
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Thus Trofimov's theorem and its proof brings us very close to the
description of all possible vertex stabilizers in locally projective action.
Nevertheless (at least so far as the published results are concerned) a
considerable amount of work is still to be done to get the complete list.

In fact, a final step in the classification of the locally projective actions
would be the classification of all possible amalgams: si = {G(x), G{x,y}}.
Notice that the same G{x) might appear in different amalgams. An
example (not the smallest one) of such a case comes from the actions
of £2["O(2).2 on the corresponding dual polar space graph and of J4 on
the derived graph of the corresponding locally truncated P -geometry. In
both cases G(x) is the semidirect product Q : L where L = L$(2) and Q
is the exterior square of the natural module of L.

Thus it is very important to classify amalgams si of vertex and edge
stabilizers that come from locally projective actions. This is of course
equivalent to the classification of the locally projective actions on the
trees. Let us mention some further motivation for this classification
project.

In studying the locally projective actions, a very important role is
played by so-called geometrical subgraphs. When the original graph F
is a tree, a proper geometrical subgraph £ is also a tree (of a smaller
valency) and the setwise stabilizer G{L} induces on Z a locally projective
action. Proceeding by induction, we can assume that the action of G{I}
on £ is known, and in this case there is the possibility of simplifying the
proof of Trofimov's theorem (of course, Trofimov also uses geometrical
subgraphs, but only on the level of vertex stabilizers).

It is also useful to study the kernel K% of the action of G{Z} on Z.
This is a finite normal subgroup in G{E} and we can consider the natural
homomorphism q> of G{E} into the outer automorphism group of K%. If
Ox is the image of <p then the pair {Oz,Kz) is uniquely determined by
the amalgam si and by the type (valency) of the geometrical subgraph
I .

The pairs provide certain information on the possibilities of flag-
transitive diagram geometries whose residues are projective spaces. We
illustrate this statement in the case (v) (the collinearity case).

Let 0 be a geometry with the diagram

X
\ q q q q

Then (ignoring some degenerated case) the collinearity graph T of ^ is
locally projective with respect to the action of G and hence the amalgam
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{£1,62} where G\ is the stabilizer of a point and Gi is the stabilizer of a
line must be from the list. Furthermore we can deduce some restrictions
on the leftmost edge of the diagram (the residue Jf of a flag of cotype
{1,2}). Indeed, the residue ^f is the geometry of vertices and edges of
the geometrical subgraph £ of valency q + 1. Let £0 be the quotient
of the corresponding tree (which is the universal cover of Jf) over the
orbits of CG^(K^)Ki,. Then Jtf" is a covering of So-

As a continuation of the above example, we observe that when G(x) =
210 : Ls(2) the rank 2 residue Jif is either a covering of K^ or a covering
of the Petersen graph. We consider this as yet another justification of the
importance of the classification of the flag-transitive Petersen geometries.
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