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Preface

This book comprises a collection of research contributions toward high-dimensional
data analysis. In this data-centric world, we are often challenged with data sets
containing many predictors in the model at hand. In a host of situations, the number
of predictors may very well exceed the sample size. Truly, many modern scientific
investigations require the analysis of such data. There are a host of buzzwords
in today’s data-centric world, especially in digital and print media. We encounter
data in every walk of life, and for analytically and objectively minded people,
data is everything. However, making sense of the data and extracting meaningful
information from it may not be an easy task. Sometimes, we come across buzzwords
such as big data, high-dimensional data, data visualization, data science, and open
data without a proper definition of such words. The rapid growth in the size and
scope of data sets in a host of disciplines has created a need for innovative statistical
and computational strategies for analyzing such data. A variety of statistical and
computational tools are needed to deal with such type of data and to reveal the data
story.

This book focuses on variable selection, parameters estimation, and prediction
based on high-dimensional data (HDD). In classical regression context, we define
HDD where a number of predictors (d/ are larger than the sample size (n/. There
are situations when the number of predictors is in millions and sample size maybe
in hundreds. The modeling of HDD, where the sample size is much smaller than
the size of the data element associated with each observation, is an important
feature in a host of research fields such as social media, bioinformatics, medical,
environmental, engineering, and financial studies, among others. A number of the
classical techniques are available when d < n to tell the data story. However, the
existing classical strategies are not capable of yielding solutions for HDD. On the
other hand, the term “big data” is not very well defined, but its problems are real
and statisticians need to play a vital role in this data world. Generally speaking,
big data relates when data is very large and may not even be stored at one place.
However, the relationship between n and d may not be as crucial when comparing
with HDD. Further, in some cases, users are not able to make the distinction between
population and sampled data when dealing with big data. In any event, the big data
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vi Preface

or data science is an emerging field stemming equally from research enterprise
and public and private sectors. Undoubtedly, big data is the future of research in
a host of research fields, and transdisciplinary programs are required to develop the
skills for data scientists. For example, many private and public agencies are using
sophisticated number-crunching, data mining, or big data analytics to reveal patterns
based on collected information. Clearly, there is an increasing demand for efficient
prediction strategies for analyzing such data. Some examples of big data that have
prompted demand are gene expression arrays; social network modeling; clinical,
genetics, and phenotypic spatiotemporal data; and many others.

In the context of regression models, due to the trade-off between model pre-
diction and model complexity, the model selection is an extremely important and
challenging problem in the big data arena. Over the past two decades, many penal-
ized regularization approaches have been developed to perform variable selection
and estimation simultaneously. This book makes a seminal contribution in the arena
of big data analysis including HDD. For a smooth reading and understanding of the
contributions made in this book, it is divided in three parts as follows:

General High-dimensional theory and methods (chapters “Regularization
After Marginal Learning for Ultra-High Dimensional Regression Models”–
“Bias-Reduced Moment Estimators of Population Spectral Distribution and Their
Applications”)

Network analysis and big data (chapters “Statistical Process Control Charts
as a Tool for Analyzing Big Data”–“Nonparametric Testing for Heterogeneous
Correlation”)

Statistics learning and applications (chapters “Optimal Shrinkage Estimation
in Heteroscedastic Hierarchical Linear Models”–“A Mixture of Variance-Gamma
Factor Analyzers”)

We anticipate that the chapters published in this book will represent a meaningful
contribution to the development of new ideas in big data analysis and will
showcase interesting applications. In a sense, each chapter is self-contained. A brief
description of the contents of each of the eighteen chapters in this book is provided.

Chapter “Regularization After Marginal Learning for Ultra-High Dimensional
Regression Models” (Feng) introduces a general framework for variable selection
in ultrahigh-dimensional regression models. By combining the idea of marginal
screening and retention, the framework can achieve sign consistency and is
extremely fast to implement.

In chapter “Empirical Likelihood Test for High Dimensional Generalized Lin-
ear Models” (Zang et al.), the estimation and model selection aspects of high-
dimensional data analysis are considered. It focuses on the inference aspect, which
can provide complementary insights to the estimation studies, and has at least two
notable contributions. The first is the investigation of both full and partial tests,
and the second is the utilization of the empirical likelihood technique under high-
dimensional settings.

Abstract random projections are frequently used for dimension reduction in
many areas of machine learning as they enable us to do computations on a
more succinct representation of the data. Random projections can be applied row-
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and column-wise to the data, compressing samples and compressing features,
respectively. Chapter “Random Projections For Large-Scale Regression” (Thanei
et al.) discusses the properties of the latter column-wise compression, which turn
out to be very similar to the properties of ridge regression. It is pointed out that
further improvements in accuracy can be achieved by averaging over least squares
estimates generated by independent random projections.

Testing a hypothesis subsequent to model selection leads to test problems
in which nuisance parameters are present. Chapter “Testing in the Presence of
Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random
Critical Values” (Leeb and Pötscher) reviews and critically evaluates proposals that
have been suggested in the literature to deal with such problems. In particular,
the chapter reviews a procedure based on the worst-case critical value, a more
sophisticated proposal based on earlier work, and recent proposals from the econo-
metrics literature. It is furthermore discussed why intuitively appealing proposals,
for example, a parametric bootstrap procedure, as well as another recently suggested
procedure, do not lead to valid tests, not even asymptotically.

As opposed to extensive research of covariate measurement error, error in
response has received much less attention. In particular, systematic studies on
general clustered/longitudinal data with response error do not seem to be available.
Chapter “Analysis of Correlated Data with Error-Prone Response Under Gener-
alized Linear Mixed Models” (Yi et al.) considers this important problem and
investigates the asymptotic bias induced by the error in response. Valid inference
procedures are developed to account for response error effects under different
situations, and asymptotic results are appropriately established.

Statistical inference on large covariance matrices has become a fast growing
research area due to the wide availability of high-dimensional data, and spec-
tral distributions of large covariance matrices play an important role. Chapter
“Bias-Reduced Moment Estimators of Population Spectral Distribution and Their
Applications” (Qin and Li) derives bias-reduced moment estimators for the popula-
tion spectral distribution of large covariance matrices and presents consistency and
asymptotic normality of these estimators.

Big data often take the form of data streams with observations of a related
process being collected sequentially over time. Statistical process control (SPC)
charts provide a major statistical tool for monitoring the longitudinal performance of
the process by online detecting any distributional changes in the sequential process
observations. So, SPC charts could be a major statistical tool for analyzing big data.
Chapter “Statistical Process Control Charts as a Tool for Analyzing Big Data” (Qiu)
introduces some basic SPC concepts and methods and demonstrates the use of SPC
charts for analyzing certain real big data sets. This chapter also describes some
recent SPC methodologies that have a great potential for handling different big data
applications. These methods include disease dynamic screening system and some
recent profile monitoring methods for online monitoring of profile/image data that
is commonly used in modern manufacturing industries.

Chapter “Fast Community Detection in Complex Networks with a K-Depths
Classifier” (Tian and Gel) introduces a notion of data depth for recovery of
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community structures in large complex networks. The authors propose a new
data-driven algorithm, K-depths, for community detection using the L1 depth
in an unsupervised setting. Further, they evaluate finite sample properties of
the K-depths method using synthetic networks and illustrate its performance for
tracking communities in online social media platform Flickr. The new method
significantly outperforms the classical K-means and yields comparable results to
the regularized K-means. Being robust to low-degree vertices, the new K-depths
method is computationally efficient, requiring up to 400 times less CPU time than
the currently adopted regularization procedures based on optimizing the Davis-
Kahan bound.

Chapter “How Different are Estimated Genetic Networks of Cancer Subtypes?”
(Shojaie and Sedaghat) presents a comprehensive comparison of estimated networks
of cancer subtypes. Specifically, the networks estimated using six estimation
methods were compared based on various network descriptors characterizing both
local network structures, that is, edges, and global properties, such as energy
and symmetry. This investigation revealed two particularly interesting properties
of estimated gene networks across different cancer subtypes. First, the estimates
from the six network reconstruction methods can be grouped into two seemingly
unrelated clusters, with clusters that include methods based on linear and nonlinear
associations, as well as methods based on marginal and conditional associations.
Further, while the local structures of estimated networks are significantly different
across cancer subtypes, global properties of estimated networks are less distinct.
These findings can guide future research in computational and statistical methods
for differential network analysis.

Statistical analysis of big clustered time-to-event data presents daunting sta-
tistical challenges as well as exciting opportunities. One of the challenges in
working with big biomedical data is detecting the associations between disease
outcomes and risk factors that involve complex functional forms. Many existing
statistical methods fail in large-scale settings because of lack of computational
power, as, for example, the computation and inversion of the Hessian matrix of
the log-partial likelihood is very expensive and may exceed computation memory.
Chapter “A Computationally Efficient Approach for Modeling Complex and Big
Survival Data” (He et al.) handles problems with a large number of parameters
and propose a novel algorithm, which combines the strength of quasi-Newton,
MM algorithm, and coordinate descent. The proposed algorithm improves upon
the traditional semiparametric frailty models in several aspects. For instance, the
proposed algorithms avoid calculation of high-dimensional second derivatives of the
log-partial likelihood and, hence, are competitive in term of computation speed and
memory usage. Simplicity is obtained by separating the variables of the optimization
problem. The proposed methods also provide a useful tool for modeling complex
data structures such as time-varying effects.

Asymptotic inference for the concentration of directional data has attracted
much attention in the past decades. Most of the asymptotic results related to
concentration parameters have been obtained in the traditional large sample size
and fixed dimension case. Chapter “Tests of Concentration for Low-Dimensional
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and High-Dimensional Directional Data” (Cutting et al.) considers the extension of
existing testing procedures for concentration to the large n and large d case. In this
high-dimensional setup, the authors provide tests that remain valid in the sense that
they reach the correct asymptotic level within the class of rotationally symmetric
distributions.

“Nonparametric testing for heterogeneous correlation” covers the big data
problem of determining whether a weak overall monotone association between two
variables persists throughout the population or is driven by a strong association
that is limited to a subpopulation. The idea of homogeneous association rests
on the underlying copula of the distribution. In chapter “Nonparametric Testing
for Heterogeneous Correlation” (Bamattre et al.), two copulas are considered,
the Gaussian and the Frank, under which components of two respective ranking
measures, Spearman’s footrule and Kendall’s tau, are shown to have tractable
distributions that lead to practical tests.

Shrinkage estimators have profound impacts in statistics and in scientific and
engineering applications. Chapter “Optimal Shrinkage Estimation in Heteroscedas-
tic Hierarchical Linear Models” (Kou and Yang) considers shrinkage estimation
in the presence of linear predictors. Two heteroscedastic hierarchical regression
models are formulated, and the study of optimal shrinkage estimators in each
model is thoroughly presented. A class of shrinkage estimators, both parametric
and semiparametric, based on unbiased risk estimate is proposed and is shown
to be (asymptotically) optimal under mean squared error loss in each model. A
simulation study is conducted to compare the performance of the proposed methods
with existing shrinkage estimators. The authors also apply the method to real data
and obtain encouraging and interesting results.

Chapter “High Dimensional Data Analysis: Integrating Submodels” (Ahmed
and Yuzbasi) considers efficient prediction strategies in sparse high-dimensional
model. In high-dimensional data settings, many penalized regularization strategies
are suggested for simultaneous variable selection and estimation. However, different
strategies yield a different submodel with different predictors and number of
predictors. Some procedures may select a submodel with a relatively larger number
of predictors than others. Due to the trade-off between model complexity and
model prediction accuracy, the statistical inference of model selection is extremely
important and a challenging problem in high-dimensional data analysis. For this
reason, we suggest shrinkage and pretest post estimation strategies to improve the
prediction performance of two selected submodels. Such a pretest and shrinkage
strategy is constructed by shrinking an overfitted model estimator in the direction
of an underfitted model estimator. The numerical studies indicate that post selection
pretest and shrinkage strategies improved the prediction performance of selected
submodels. This chapter reveals many interesting results and opens doors for further
research in a host of research investigations.

Chapter “High-Dimensional Classification for Brain Decoding” (Croteau et al.)
discusses high-dimensional classification within the context of brain decoding
where spatiotemporal neuroimaging data are used to decode latent cognitive states.
The authors discuss several approaches for feature selection including persistent
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homology, robust functional principal components analysis, and mutual information
networks. These features are incorporated into a multinomial logistic classifier, and
model estimation is based on penalized likelihood using the elastic net penalty.
The approaches are illustrated in an application where the task is to infer, from
brain activity measured with magnetoencephalography (MEG), the type of video
stimulus shown to a subject.

Principal components analysis is a widely used technique for dimension reduc-
tion and characterization of variability in multivariate populations. In chapter
“Unsupervised Bump Hunting Using Principal Components” (A. D’{az-Pach’on et
al.), the authors interest lies in studying when and why the rotation to principal
components can be used effectively within a response-predictor set relationship in
the context of mode hunting. Specifically focusing on the Patient Rule Induction
Method (PRIM), the authors first develop a fast version of this algorithm (fastPRIM)
under normality which facilitates the theoretical studies to follow. Using basic geo-
metrical arguments, they then demonstrate how the principal components rotation of
the predictor space alone can in fact generate improved mode estimators. Simulation
results are used to illustrate findings.

The analysis of high-dimensional data is challenging in multiple aspects. One
aspect is interaction analysis, which is critical in biomedical and other studies.
Chapter “Identifying Gene-Environment Interactions Associated with Prognosis
Using Penalized Quantile Regression” (Wang et al.) studies high-dimensional
interactions using a robust approach. The effectiveness demonstrated in this study
opens doors for other robust methods under high-dimensional settings. This study
will also be practically useful by introducing a new way of analyzing genetic data.

In chapter “A Mixture of Variance-Gamma Factor Analyzers” (McNicholas et
al.), a mixture modeling approach for clustering high-dimensional data is developed.
This approach is based on a mixture of variance-gamma distributions, which
is interesting because the variance-gamma distribution has been underutilized in
multivariate statistics—certainly, it has received far less attention than the skew-t
distribution, which also parameterizes location, scale, concentration, and skewness.
Clustering is carried out using a mixture of variance-gamma factor analyzers
(MVGFA) model, which is an extension of the well-known mixture of factor
analyzers model that can accommodate clusters that are asymmetric and/or heavy
tailed. The formulation of the variance-gamma distribution used can be represented
as a normal mean variance mixture, a fact that is exploited in the development of
the associated factor analyzers.

In summary, several directions for innovative research in big data analysis were
highlighted in this book. I remain confident that this book conveys some of the
surprises, puzzles, and success stories in the arena of big data analysis. The research
in this arena is ongoing for a foreseeable future.

As an ending thought, I would like to thank all the authors who submitted their
papers for possible publication in this book as well as all the reviewers for their
valuable input and constructive comments on all submitted manuscripts. I would like
to express my special thanks to Veronika Rosteck at Springer for the encouragement
and generous support on this project and helping me to arrive at the finishing line.
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My special thanks go to Ulrike Stricker-Komba at Springer for outstanding technical
support for the production of this book. Last but not least, I am thankful to my family
for their support for the completion of this book.

Niagara-On-The-Lake, Ontario, Canada S. Ejaz Ahmed
August 2016
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Regularization After Marginal Learning
for Ultra-High Dimensional Regression Models

Yang Feng and Mengjia Yu

Abstract Regularization is a popular variable selection technique for high dimen-
sional regression models. However, under the ultra-high dimensional setting, a
direct application of the regularization methods tends to fail in terms of model
selection consistency due to the possible spurious correlations among predictors.
Motivated by the ideas of screening (Fan and Lv, J R Stat Soc Ser B Stat Methodol
70:849–911, 2008) and retention (Weng et al, Manuscript, 2013), we propose a
new two-step framework for variable selection, where in the first step, marginal
learning techniques are utilized to partition variables into different categories, and
the regularization methods can be applied afterwards. The technical conditions of
model selection consistency for this broad framework relax those for the one-step
regularization methods. Extensive simulations show the competitive performance of
the new method.

Keywords Independence screening • Lasso • Marginal learning • Retention •
Selection • Sign consistency

1 Introduction

With the booming of information and vast improvement for computation speed,
we are able to collect large amount of data in terms of a large collections of n
observations and p predictors, where p � n. Recently, model selection gains
increasing attention especially for ultra-high dimensional regression problems.
Theoretically, the accuracy and interpretability of selected model are crucial in
variable selection. Practically, algorithm feasibility and efficiency are vital in
applications.

A great variety of penalized methods have been proposed in recent years. The
regularization techniques for simultaneous variable selection and estimation are
particularly useful to obtain sparse models compared to simply apply traditional
criteria such as Akaike’s information criterion [1] and Bayesian information

Y. Feng (�) • M. Yu
Department of Statistics, Columbia University, New York, NY 10027, USA
e-mail: yangfeng@stat.columbia.edu

© Springer International Publishing AG 2017
S.E. Ahmed (ed.), Big and Complex Data Analysis, Contributions to Statistics,
DOI 10.1007/978-3-319-41573-4_1
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criterion [18]. The least absolute shrinkage and selection operator (Lasso) [19] have
been widely used as the l1 penalty shrinks most coefficients to 0 and fulfills the
task of variable selection. Many other regularization methods have been developed;
including bridge regression [13], the smoothly clipped absolute deviation method
[5], the elastic net [26], adaptive Lasso [25], LAMP [11], among others. Asymptotic
analysis for the sign consistency in model selection [20, 24] has been introduced
to provide theoretical support for various methods. Some other results such as
parameter estimation [17], prediction [15], and oracle properties [5] have been
introduced under different model contexts.

However, in ultra-high dimensional space where the dimension p D exp.na/
(where a > 0), the conditions for sign consistency are easily violated as a con-
sequence of large correlations among variables. To deal with such challenges, Fan
and Lv [6] proposed the sure independence screening (SIS) method which is based
on correlation learning to screen out irrelevant variables efficiently. Further analysis
and generalization can be found in Fan and Song [7] and Fan et al. [8]. From the
idea of retaining important variables rather than screening out irrelevant variables,
Weng et al. [21] proposed the regularization after retention (RAR) method. The
major differences between SIS and RAR can be summarized as follows. SIS makes
use of marginal correlations between variables and response to screen noises out,
while RAR tries to retain signals after acquiring these coefficients. Both of them
relax the irrepresentable-type conditions [20] and achieve sign consistency.

In this paper, we would like to introduce a general multi-step estimation
framework that integrates the idea of screening and retention in the first step to learn
the importance of the features using the marginal information during the first step,
and then impose regularization using corresponding weights. The main contribution
of the paper is two-fold. First, the new framework is able to utilize the marginal
information adaptively in two different directions, which will relax the conditions
for sign consistency. Second, the idea of the framework is very general and covers
the one-step regularization methods, the regularization after screening method, and
the regularization after retention method as special cases.

The rest of this paper is organized as follows. In Sect. 2, we introduce the model
setup and the relevant techniques. The new variable selection framework is elabo-
rated in Sect. 3 with connections to existing methods explained. Section 4 develops
the sign consistency result for the proposed estimators. Extensive simulations are
conducted in Sect. 5 to compare the performance of the new method with the
existing approaches. We conclude with a short discussion in Sect. 6. All the technical
proofs are relegated to the appendix.
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2 Model Setup and Several Methods in Variable Selection

2.1 Model Setup and Notations

Let .Xi;Yi/ be i.i.d. random pairs following the linear regression model:

Yi D Xiˇ C "i; i D 1; : : : ; n;

where Xi D .X1i ; : : : ;X
p
i /

T is pn-dimensional vector distributed as N.0;†/, ˇ D
.ˇ1; : : : ; ˇp/

T is the true coefficient vector, "1; : : : ; "n
i:i:d:� N.0; �2/; and fXigniD1 are

independent of f"igniD1. Note here, we sometimes use pn to emphasize the dimension
p is diverging with the sample size n. Denote the support index set of ˇ by S D f j W
ˇj ¤ 0g and the cardinality of S by sn, and †ScjS D †ScSc �†ScS.†SS/

�1†SSc : Both
pn and sn are allowed to increase as n increases. For conciseness, we sometimes use
signals and noises to represent relevant predictors S and irrelevant predictors Sc (or
their corresponding coefficients) respectively.

For any set A, let Ac be its complement set. For any k dimensional vector w
and any subset K � f1; : : : ; kg, wK denotes the subvector of w indexed by K, and
let kwk1 D Pk

iD1 jwij; kwk2 D .
Pk

iD1 w2i /1=2; kwk1 D maxiD1;:::;k jwij: For any
k1 � k2 matrix M, any subsets K1 � f1; : : : ; k1g, K2 � f1; : : : ; k2g, MK1K2 represents
the submatrix of M consisting of entries indexed by the Cartesian product K1 � K2.
Let MK2 be the columns of M indexed by K2 and Mj be the j-th column of M.
Denote kMk2 D fƒmax.MTM/g1=2 and kMk1 D maxiD1;:::;k

Pk
jD1 jMijj: When

k1 D k2 D k, let �.M/ D maxiD1;:::;k Mii, ƒmin.M/ and ƒmax.M/ be the minimum
and maximum eigenvalues of M, respectively.

2.2 Regularization Techniques

The Lasso [19] defined as

Ǒ D arg min
ˇ

(

.2n/�1
nX

iD1
.Yi � XT

i ˇ/
2 C �n

pnX

jD1
jˇjj

)

; �n � 0 (1)

is a popular variable selection method. Thanks to the invention of efficient algo-
rithms including LARS [4] and the coordinate descent algorithm [14], Lasso and its
variants are applied to a wide range of different scenarios in this big data era. There
is a large amount of research related to the theoretical properties of Lasso. Zhao and
Yu [24] proposed almost necessary and sufficient conditions for the sign consistency
for Lasso to select true model in the large pn setting as n increases. Considering the
sensitivity of tuning parameter �n and consistency for model selection, Wainwright
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[20] has identified precise conditions of achieving sparsity recovery with a family
of regularization parameters �n under deterministic design.

Another effective approach to the penalization problem is adaptive Lasso
(AdaLasso) [25], which uses an adaptively weighted l1-penalty term, defined as

Ǒ D arg min
ˇ

(

.2n/�1
nX

iD1
.Yi � XT

i ˇ/
2 C �n

pnX

jD1
!jjˇjj

)

; �n � 0: (2)

where !j D 1=j Ǒ
initj� for some � � 0, in which Ǒ

init is some initial estimator.
When signals are weakly correlated to noises, Huang et al. [16] proved AdaLasso
is sign consistent with !j D 1=j ǑM

j j � 1=j. QXj/TYj, where QX is the centered
and scaled data matrix. One potential issue of this weighting choice is that when
the correlations between some signals and response are too small, those signals
would be severely penalized and may be estimated as noises. We will use numeric
examples to demonstrate this point in the simulation section.

2.3 Sure Independence Screening

To reduce dimension from ultra-high to a moderate level, Fan and Lv [6] proposed
a sure independence screening (SIS) method, which makes use of marginal correla-
tions as a measure of importance in first step and then utilizes other operators such
as Lasso to fulfill the target of variable selection. In particular, first we calculate
the component-wise regression coefficients for each variable, i.e., ǑM

j D . QXj/T QY ,

j D 1; : : : ; pn, where QXj is the standardized j-th column of data X and QY is the
standardized response. Second, we define a sub-model with respect to the largest
coefficients

M� D f1 	 j 	 pn W j ǑM
j j is among the first b�nc of allg:

Predictors that are not in M� are regarded as noise and therefore discarded for
further analysis. SIS reduces the number of candidate covariates to a moderate level
for the subsequent analysis. Combining SIS and Lasso, Fan and Lv [6] introduced
SIS-Lasso estimator,

Ǒ D arg min
ˇ2M�

(

.2n/�1
nX

iD1
.Yi � XT

i ˇ/
2 C �n

X

j2M�

jˇjj
)

D arg min
ˇ

(

.2n/�1
nX

iD1
.Yi � XT

i ˇ/
2 C �n

X

j2M�

jˇjj C 1
X

j2Mc
�

jˇjj
)

: (3)
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Clearly, � should be chosen carefully to avoid screening out signals. To deal with
the issue that signals may be marginally uncorrelated with the response in some
cases, iterative-SIS was introduced [6] as a practical procedure but without rigorous
theoretical support for the sign consistency. As a result, solely relying on marginal
information is sometimes a bit too risky, or greedy, for model selection purpose.

3 Regularization After Marginal Learning

3.1 Algorithm

From Sect. 2, one potential drawback shared between AdaLasso and SIS-Lasso is
that they may miss important covariates that are marginally weakly correlated with
the response.

Now, we introduce a new algorithm, regularization after marginal (RAM)
learning, to solve the issue. It utilizes marginal correlation to divide all variables
into three candidate sets: a retention set, a noise set, and an undetermined set. Then
regularization is imposed to find signals in the uncertainty set as well as to identify
falsely retention signals and falsely screened noises.

A detailed description of the algorithm is as follows:

Step 0 (Marginal Learning) Calculate the marginal regression coefficients after
standardizing each predictor, i.e.,

ǑM
j D

nX

iD1

.Xj
i � NXj/

O�j Yi; 1 	 j 	 pn; (4)

where NXj D 1
n

Pn
iD1 X

j
i and O�2j D

qPn
iD1.X

j
i�NXj/2

n�1 .

Define a retention set by OR D f1 	 j 	 p W j ǑM
j j � �ng, for a positive constant

�n; a noise set by ON D f1 	 j 	 p W j ǑM
j j 	 Q�ng, for a positive constant Q�n < �n;

and an undetermined set by OU D . OR [ ON /c.
Step 1 (Regularization After Screening Noises Out) Search for signals in OU by
solving

Ǒ OR; OU1 D arg min
ˇ

ON D0

(

.2n/�1
nX

iD1

�
Yi �

X

j2 OU
Xijˇj �

X

k2 OR
Xikˇk

�2C�n
X

j2 OU
jˇjj

)

; (5)

where the index OU1 is denoted as the set of variables that are estimated as signals
in OU , namely OU1 D f j 2 OU j. Ǒ OR; OU1 /j ¤ 0g. After Step 1, the selected variable set is
OR [ OU1.
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Step 2 (Retrieve Falsely Discarded Signals) Reevaluate the set ON to check
whether it contains any signals. Solve

Ǒ OR; OU1; ON1
D arg min

ˇ
OU2D0

(

.2n/�1
nX

iD1

�
Yi �

X

j2 ON
Xijˇj �

X

k2 OR[ OU1
Xikˇk

�2 C �?n

X

j2 ON
jˇjj

)

;

(6)

where OU2 D OUn OU1.
This step is used to retrieve important variables which are weakly correlated to
response marginally. This step can be omitted if we are sure about the noise set
ON . The selected variable set is now OR [ OU1 [ ON1.

Step 3 (Remove Falsely Retained Signals) Inspect the retention set OR to check
whether it contains any noises. Solve

Ǒ OR1; OU1; ON1
D arg min

ˇ
OU2[ ON2

D0

(

.2n/�1
nX

iD1

�
Yi �

X

j2 OR
Xijˇj �

X

k2 OU1[ ON1

Xikˇk

�2 C �??n

X

j2 OR
jˇjj

)

;

(7)

where ON2 D ON n ON1.

This step is used to remove noises which are highly correlated with the response
marginally. This step can be omitted if we are sure about the retention set OR. The
final selected variable set is OR1 [ OU1 [ ON1.

The final estimator Ǒ OR1; OU1; ON1
is called the regularization after marginal (RAM)

learning estimator. Note that the optimization problem described Step 2 in the
RAM algorithm is of the same complexity as the original Lasso problem. A more
efficient version of the algorithm where we remove Step 2 is called RAM-2. The
corresponding selected variable set of RAM-2 is OR1 [ OU1 as ON1 D ;.

3.2 Connections to SIS and RAR

In the preparation Step 0 of RAM, marginal correlation provides us with a first
evaluation of the importance for all variables. Usually, we expect that the variables
with high marginal correlations are likely to be signals, while noises tend to have low
marginal correlations. The choice of the thresholds �n and Q�n are critical to ensure
the accuracy of the retention set and the noise set. We follow Weng et al. [21] to
select �n using a permutation-based approach. In particular, denote Y.1/; : : : ;Y.n/ as
randomly permuted responses. Let �n be the largest marginal regression coefficient
between permuted response and original data, i.e.,

�n D max
1�j�pn

(

jDjj
ˇ
ˇDj D

nX

iD1

.Xj
i � NXj/

O�j Y.i/

)

: (8)
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In practice, we may adjust the threshold to ensure at most dn1=2e variables are
included in the retention set, considering the root n consistency of classical least
square estimators as well as SIS-based models. For Q�n, we can set it as the n-th
largest coefficient in magnitude so that the cardinality of OR [ OU is n � 1.

RAM-2 is closely connected to SIS. Technically, it utilizes marginal information
to remove as many noises as possible. In addition, RAM-2 can be viewed as a greedy
implementation of RAR+ [21], which is summarized in the following.

– (Retention) Define a retention set OR which represents the coefficients strongly
correlated to response marginally.

– (Regularization) Apply penalization on ORc to recover signals

Ľ D arg min
ˇ

(

.2n/�1
nX

iD1
.Yi � XT

i ˇ/
2 C 0

X

j2OR
jˇjj C �n

X

j2ORc

jˇjj
)

: (9)

– (Redemption) Denote Q D f j 2 ORc W Ľ
j ¤ 0g, additional signals detected from

the second step. Calculate the following penalized least square problem:

Q̌ D arg min
ˇ.OR[Q/cD0

(

.2n/�1
nX

iD1

�
Yi�

X

j2OR
Xijˇj�

X

k2Q
Xikˇk

�2C��
n

X

j2OR
jˇjj

)

; (10)

where �?n is the penalty parameter and is in general different from �n in the
previous step.

The regularization step only imposes penalty to variables that are not in OR. When
all covariates in OR are signals, we need only to recover the sparsity in ORc. Although
RAR performs well when the retention set OR � S, it could fail to recover the true
sparsity pattern when OR contains noises. Hence, the redemption step is necessary to
rule out falsely selected noises.

As the intrinsic idea for RAR is retention, RAR+ can be regarded as a
bidirectional and self-corrected version of RAR. Motivated by SIS-Lasso (3) and
RAR+ (10), RAM first explores data by dividing variables into three sets in
which one contains signal-like variables, one contains noise-like variables, and one
contains the remaining undetermined variables. In Steps 1 and 3, RAM-2 combines
advantages of SIS and RAR: on one hand, in terms of computational efficiency, like
SIS, it is very efficient, thanks to the many noises screened out in the first step; on
the other hand, RAM-2 could relax the regularity condition for sign consistency due
to the retention set.
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3.3 From RAM-2 to RAM

Though RAM-2 takes advantages of both SIS and RAR+, it shares the same
drawback as SIS since signals that are marginally uncorrelated with the response
could be removed during Step 1. To avoid fully replying on marginal correlation,
RAM adds Step 2 to recover such signals.

Instead of re-examining OR immediately, the optional Step 2 is designed to
reexamine the “noise” set ON and find signals in it. Intuitively, the retention of signals
in OU1 [ OR gives “weak” signals in ON1 an opportunity to show their significance
in regression. Furthermore, noises in OR will also be weakly correlated with the
residues Y�XU1[N1ˇU1[N1 in Step 3. Thus, we do not start to eliminate unnecessary
variables in OR until all the other signals have been identified. Step 2 in RAM reduces
the risk of signal losses, and increases the reliability of the model selection process.

We provide a brief comparison in Table 1 to show the similarities as well as
differences among SIS-Lasso, RAR/RAR+, and RAM-2/RAM. The last row of
Table 1 shows the final variable selection result. Note that, though some of the
notations for different methods are same in Table 1, they are not necessarily identical
since different procedures may lead to different results. Among these methods,
RAM-2 and SIS-Lasso remove the variables in the noise set detected via marginal
learning; RAR retains all variables in R; RAM and RAR+ perform a recheck on all
the candidate sets.

Table 1 Differences among 5 regularization methods using marginal information

RAM-2 RAM SIS-Lasso RAR RAR+

R: Retention set N c: Candidates
R: Retention set

U : Undetermined set Rc: CandidatesN : Noise set N : Noise set

Retain R Retain R Check N c

Check U Check U Remove N
Remove N

Retain R [ U1 Retain R
Check N Check Rc

Retain U1 [ N1 Retain .Rc/1

Check R Check R
R1 [ U1 R1 [ U1 [ N1 .N c/1 R [ .Rc/1 R1 [ .Rc/1

The subscript 1 for each set denotes the signals recovered from the corresponding sets
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4 Asymptotic Analysis

4.1 Sure Independence Screening Property

Considering the linear regression model under the scaling log pn D O.na1 /, sn D
O.na2/; a1 > 0; a2 > 0; a1 C 2a2 < 1, which is also required for achieving Strong
Irrepresentable Condition in Zhao and Yu [24]. Under the conditions below, Fan
and Lv [6] showed that SIS asymptotically achieves to screen only noises out. This
result is necessary for the consistency in SIS-Lasso (3) as well as in RAM-2.

Condition 1 var.Y1/ D ˇT
S†SSˇS D O.1/.

Condition 2 ƒmax.†/ 	 Cn� for a sufficiently large C; � � 0.

Condition 3 minj2Sjcov.ˇ�1
j Y1;X

j
1/j � c for some positive constant c.

Corollary 1 Under Conditions 1–3, if minj2Sjˇjj � Cn�a3=2 for some a3 2 .0; 1 �
a1/, then there exists some � < 1 � a1 � a3 such that when � 
 n�� , we have

pr.S � M� / ! 1 as n ! 1:

Condition 1 implies that there cannot be too many variables that have marginal
regression coefficients exceeding certain thresholding level as in Fan and Song [7].
When Condition 2 fails, there is heavy collinearity in X, which leads to difficulty
for differentiating signals from linearly correlated noises. Condition 3 rules out the
situation that signals are jointly correlated with Y but their marginal correlations are
relatively weak.

4.2 Sign Consistency for RAM-2

Given the success of screening in the first step, the following conditions are
necessary to achieve sign consistency for RAM-2.

Condition 4 k†ˇk1 D O.n.1�2�/=8/, where 0 < � < 1
2
is a constant.

Condition 5 minj2Sjˇjj � Cn�ıCa2=2 for a sufficiently large C, where 0 < ı <

f1� max.a1; a2/g=2.
Condition 6 ƒmin.†S[Z;S[Z/ � Cmin > 0, where the strong noise set is defined
as Z D f j 2 Sc W jˇM

j j � �n � c1n��g with cardinality zn.
Condition 7 k†ZS†

�1
SS k1 	 1 � ˛, where ˛ > 0.

Condition 8 maxS�Q�S[Zkf†QcQ.†QQ/
�1gS\Rck1 	 1 � �1, where the strong

signal set is defined as R D f j 2 S W jˇM
j j > �n C c1n��g and �1 > 0.
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Theorem 1 If Conditions 1–8 are satisfied and � D Q�n holds for Corollary 1,
then when zn=sn ! 0; sn ! 1 and �n 
 n�ı; ���

n 
 n�ı, RAM-2 achieves sign
consistency

pr. Ǒ OR1; OU1; ON1
is unique and sign. Ǒ OR1; OU1; ON1

/ D sign.ˇ// ! 1; as n ! 1:

Under the scaling conditions described in Theorem 1, Conditions 1 and 4 are
required for establishing the uniform deviation results for marginal regression
coefficients. Condition 5, which is a similar condition as that in Corollary 1,
imposed a lower bound for magnitudes of the marginal regression coefficients.
When strong noises in Z are not highly correlated to the signals, the probability
of sign consistency converges to 1 as n ! 1. In fact, when Z is an empty set,
Conditions 6–8 are generalizations of some key conditions in Wainwright [20]. They
relax the irrepresentable condition in Zhao and Yu [24] and give a toleration level
on Z.

4.3 Sign Consistency for RAM

The key point for achieving sign consistency is the restriction for OU1 in Condition 8.
In Step 2, we require similar restrictions on ON1 to guarantee the sign consistency of
RAM. Different with RAM-2, we will take a second look on ON so that the success
of RAM does not heavily depend on the screening step. We still control the scale as
log pn D O.na1 /, sn D O.na2 /; a1 > 0; a2 > 0; a1 C 2a2 < 1.

Theorem 2 Under Conditions 4–8, when zn=sn ! 0; sn ! 1 and �n; ��
n ; �

��
n 


n�ı, RAM achieves sign consistency

pr. Ǒ OR1; OU1; ON1
is unique and sign. Ǒ OR1; OU1; ON1

/ D sign.ˇ// ! 1; as n ! 1:

5 Numerical Study

5.1 Tuning Parameter Selection

In Weng et al. [21], the reports of successes are with respect to the oracle
performance, namely the existence of an estimator that recovers the true model on
the solution path. When comes to practice, it is necessary to choose an effective
criterion for assessment of models under different tuning parameters �n. Chen and
Chen [3] proposed an extended Bayesian information criterion (EBIC),

BIC� D BIC C 2� log �.Sk/; 0 	 � 	 1; (11)
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where Sk is the collection of all models with k covariates, and �.Sk/ is the size
of Sk. Clearly, in our linear model, �.Sk/ D �pn

k

�
. EBIC (BIC� ) usually leads to a

model with smaller size than BIC, since the additional term penalizes heavily on the
model size. Therefore it is suitable for the ultra-high dimensional scenario we are
considering. Chen and Chen [3] also established EBIC’s consistency property. For
all the penalize solution path calculation in the numeric studies, we apply EBIC for
choosing the penalty parameter. Note that beside using a criterion function to select
tuning parameter, another popular way is to use cross-validation-based approaches
including Friedman et al. [14], Feng and Yu [12], and Yu and Feng [23].

5.2 Simulations

Note that in the RAM algorithm, we can replace the Lasso penalty with the adaptive
Lasso penalty for all regularization steps. We implement both versions and call
the corresponding estimators RAM-2-Lasso, RAM-2-AdaLasso, RAM-Lasso, and
RAM-AdaLasso.

We compare the performances of model selection and parameter estimation under
various ultra-high dimensional linear regression settings. The methods included for
comparison are Lasso, AdaLasso, SIS-Lasso, RAR, RAR+, RAM-2-Lasso, RAM-
2-AdaLasso, RAM-Lasso, and RAM-AdaLasso. We set n D 100, 200, 300, 400,
500, and pn D b100 exp.n0:2/c, where bkc is the largest integer not exceeding k. The
number of repetitions is 200 for each triplet .n; sn; pn/. We calculate the proportion
of exact sign recovery and compare the MSE of the coefficient estimates, i.e., k Ǒ �
ˇk22 . All the penalization steps are implemented by using the R package glmnet
[14] with corresponding weights. Note that other solution path calculation methods
can also be used, including LARS [4] and APPLE [22]. The following scenarios are
considered.

(1) The covariance matrix † is

† D
�
†11 0

0 I

�

; where†11 D

2

6
4

1 : : : r
:::
: : :

:::

r : : : 1

3

7
5

2sn�2sn

:

Set r D 0:6; � D 3:5; sn D 4; ˇS D .3;�2; 2;�2/T ; ˇ D .ˇT
S ; 0

T/T . After
calculation, the absolute value of correlations between response and predictors
are .0.390, 0.043, 0.304, 0.043, 0.130, 0.130, 0.130, 0.130, 0, 0, : : :/T .
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(2) The covariance matrix † is

† D
�
†11 0

0 I

�

; where†11 D

2

6
6
6
4

1 : : : r 0
:::
: : :

:::
:::

r : : : 1 0
0 : : : 0 1

3

7
7
7
5

.2sn�1/�.2sn�1/

:

(2a) Set r D 0:5; � D 2:5; sn D 5; ˇS D .3; 2; 1;�1; 0:75/T; ˇ D .0; 0; 0; 0;

ˇT
S ; 0

T/T . After calculation, the absolute value of correlations between
response and predictors are .0.483, 0.483, 0.483, 0.483, 0.772, 0.676,
0.579, 0.386; 0.145, 0, 0, : : :/T .

(2b) Set r D 0:5; � D 2; sn D 5; ˇS D .2:5; 2; 1;�1; 0:5/T ; ˇ D .0, 0, 0,
0, ˇT

S ; 0
T/T . After calculation, the absolute value of correlations between

response and predictors are .0:497, 0.497, 0.497, 0.497, 0.773, 0.718,
0.607, 0.387, 0.110, 0, 0, . . . /T .

For SIS-Lasso, we select the top n � 1 variables with largest absolute value of
marginal correlations for fair comparison with RAMs. For AdaLasso, the weights
are !j D 1=j ǑM

j j as shown in (4). According to Weng et al. [21], the threshold �n
for RAR/RAR+ is determined by one time permuted data,

�n D max
1�j�p

(

jD�
j jˇˇD�

j D
nX

iD1

.Xj
i � NXj/

Pn
iD1.X

j
i � NXj/2

Y.i/

)

:

For all penalized estimators, EBIC is used to select the tuning parameter. Tables 2
and 3 show the sign recovery proportion and MSE for each method.

In Scenario 1, only RAR+ and RAM-Lasso perform well especially when the
dimension pn becomes large. As the consequence of small marginal correlation
coefficients ˇ2 and ˇ4, the two corresponding signals are screened out at the
beginning, leading to the failure of SIS-Lasso and RAM-2. Their weak marginal
correlations also lead to heavy penalties in regularization, which leads to the low
sign recovery proportion and large MSE of AdaLasso as well as RAM-AdaLasso.
In this scenario, RAR+ and RAM-Lasso perform the best in terms of both sign
recovery proportion and the MSE.

In Scenario 2, an independent signal is included in both Scenario 2a and Scenario
2b, which leads to some interesting findings. For Scenario 2a, RAM-2-AdaLasso
has impressive high success rates as RAM-AdaLasso does. This emphasizes the
important role of marginal learning (RAM-AdaLasso v.s. AdaLasso) and the
advantage from screening (RAM-2-AdaLasso v.s. AdaLasso). Noteworthy, RAM-
2-Lasso is also comparable to RAR+ and RAM-Lasso, so it indicates that the
more efficient version RAM-2 is a worthwhile alternative for variable selection.
In Scenario 2b, with respect to the sign recovery proportion and the MSE criteria,
RAR+ takes the lead while RAM-Lasso and RAM-2-Lasso follow closely.
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Table 2 Sign recovery
proportion over 200
simulation rounds of each
method

n 100 200 300 400 500

Scenario 1

Lasso 0.000 0.000 0.045 0.235 0.450

SIS-Lasso 0.000 0.000 0.015 0.065 0.095

AdaLasso 0.000 0.000 0.010 0.025 0.035

RAR 0.015 0.245 0.370 0.320 0.360

RAR+ 0.025 0.515 0.870 0.900 0.935
RAM-2-Lasso 0.000 0.040 0.125 0.130 0.145

RAM-Lasso 0.090 0.630 0.890 0.880 0.870
RAM-2-AdaLasso 0.000 0.015 0.050 0.065 0.090

RAM-AdaLasso 0.000 0.050 0.190 0.290 0.330

Scenario 2a

Lasso 0.000 0.000 0.005 0.010 0.035

SIS-Lasso 0.000 0.000 0.000 0.005 0.030

AdaLasso 0.000 0.125 0.380 0.625 0.675

RAR 0.000 0.000 0.000 0.000 0.000

RAR+ 0.000 0.095 0.295 0.550 0.665

RAM-2-Lasso 0.000 0.080 0.300 0.530 0.675

RAM-Lasso 0.000 0.100 0.300 0.505 0.645

RAM-2-AdaLasso 0.000 0.105 0.420 0.680 0.835
RAM-AdaLasso 0.000 0.125 0.425 0.710 0.850
Scenario 2b

Lasso 0.000 0.000 0.005 0.105 0.300

SIS-Lasso 0.000 0.000 0.005 0.090 0.255

AdaLasso 0.000 0.075 0.200 0.335 0.390

RAR 0.000 0.000 0.000 0.000 0.000

RAR+ 0.000 0.160 0.330 0.560 0.720
RAM-2-Lasso 0.000 0.110 0.315 0.495 0.630
RAM-Lasso 0.005 0.125 0.350 0.535 0.680
RAM-2-AdaLasso 0.000 0.100 0.300 0.445 0.575

RAM-AdaLasso 0.000 0.120 0.315 0.470 0.645

Note: By setting pn D b100 exp.n0:2/c, the number of
variables are 1232, 1791, 2285, 2750, and 3199, respectively.
The bold values represent the best performing methods under
each scenario

6 Discussion

In this work, we propose a general framework for variable selection in ultra-
high dimensional linear regression model by incorporating marginal information
before regularization. It is shown to have sign consistency under a weaker condition
compared with the one-step procedure if the marginal information is helpful.

The framework is quite general and can be easily extended to the case of
generalized linear models as well as any other penalty form. Another important



16 Y. Feng and M. Yu

Table 3 Mean square error k Ǒ � ˇk22 over 200 simulation rounds of each method

n 100 200 300 400 500

Scenario 1

Lasso 4.0218 3.5174 2.3559 1.3320 0.8017

SIS-Lasso 4.0606 3.5962 3.1029 2.9109 2.7388

AdaLasso 3.9857 3.6522 3.2897 3.0739 2.7821

RAR 3.3556 1.6786 0.9485 0.7303 0.6733

RAR+ 3.4226 1.5673 0.7130 0.5413 0.4585
RAM-2-Lasso 3.9420 3.3433 2.9404 2.8482 2.7078

RAM-Lasso 3.0516 1.3942 0.7336 0.6030 0.5093
RAM-2-AdaLasso 3.9469 3.4311 3.0538 2.9292 2.7711

RAM-AdaLasso 3.7514 2.9639 2.0931 1.7351 1.5575

Scenario 2a

Lasso 1.7728 1.5525 1.3311 1.1789 1.0086

SIS-Lasso 1.7684 1.5488 1.3385 1.1724 0.9764

AdaLasso 1.7296 1.3663 0.8032 0.5767 0.4101

RAR 1.6421 0.9908 0.7189 0.6048 0.5104

RAR+ 1.8041 1.3893 0.9026 0.6154 0.4390

RAM-2-Lasso 1.8471 1.4442 1.0207 0.6850 0.5125

RAM-Lasso 1.8900 1.4271 1.0111 0.6608 0.4937

RAM-2-AdaLasso 1.8362 1.4144 0.8883 0.5946 0.4340
RAM-AdaLasso 1.8279 1.4105 0.8534 0.5873 0.4351
Scenario 2b

Lasso 1.5437 1.4189 1.2009 0.8720 0.5943

SIS-Lasso 1.5344 1.4152 1.1709 0.8118 0.5503

AdaLasso 1.5372 0.8574 0.5612 0.4743 0.4279

RAR 1.2475 0.7910 0.6334 0.5047 0.4399

RAR+ 1.5458 0.9677 0.6210 0.4027 0.3242
RAM-2-Lasso 1.5932 1.0729 0.6631 0.4806 0.4106
RAM-Lasso 1.6032 1.0598 0.6585 0.4759 0.3867
RAM-2-AdaLasso 1.5786 0.9240 0.5973 0.4957 0.4237

RAM-AdaLasso 1.5781 0.9262 0.5999 0.4880 0.4026

The bold values represent the best performing methods under each scenario

extension would be the high dimensional classification [9, 10]. How to develop the
parallel theory for those extensions would be an interesting future work.
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Appendix

Proof of Theorem 1 Denote the design matrix by X, response vector by Y, and error
vector by ". The scale condition is log pn D O.na1 /, sn D O.na2 /; a1 > 0; a2 >
0; a1 C 2a2 < 1.

Step I: Recall the index of variables with large coefficients

MQ�n D f1 	 j 	 p W j ǑM
j j is among the firstb Q�nc of all g D N c:

Under Corollary 1,

pr.S � MQ�n D N c D R [ U/ ! 1 as n ! 1:

Hence with high probability the set ON contains only noises.
Step II: Next we will show that RAM-2 succeeds in detecting signals in ON c . Let

S D f1 	 j 	 p W ˇj ¤ 0g. Denote the compositions S D OR1 [ OU1 and define the
set of noises left in ON c as . OR n OR1/ [ . OU n OU1/ PD OR2 [ OU2, where OR1 and OU1 are
signals from OR and OU , respectively.

Firstly, we would like to introduce an important technique in RAR+. Define the
set of true signals as S, and in an arbitrary regularization, define the set that is hold
without penalty as H while the set that needs to be checked with penalty as C. Let

Ľ D arg min
ˇ

(

.2n/�1kY � Xˇk22 C �nkˇCk1
)

; (12)

Ň D arg min
ˇ.S[H/cD0

(

.2n/�1kY � Xˇk22 C �nkˇC\Sk1
)

: (13)

Now we define Q D S[H which are the variables we would like to retain, and then
the variables that are supposed to be discarded are Qc D C n S.

By optimality conditions of convex problems [2], Ľ is a solution to (12) if and
only if

n�1XT.Y � X Ľ/ D �n@k Ľ
Ck; (14)

where @k Ľ
Ck is the subgradient of kˇCk1 at ˇ D Ľ. Namely, the ith (1 	 i 	 pn)

element of @k Ľ
Ck is

.@k Ľ
Ck/i D

8
ˆ̂
<

ˆ̂
:

0 if i 2 CI
sign. Ľ

i/ if i 2 Cc and Ľ
i ¤ 0I

t otherwise,
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where t can be any real number with jtj 	 1. Similarly, Ň is the unique solution
to (13) if and only if

Ň
Qc D 0; n�1XT

Q.Y � XQ
Ň
Q/ D �nsig. Ň

Q/; (15)

where sig. Ň
Q/, a vector of length card(Q), is the subgradient of kˇ NQck1 at ˇQ D Ň

Q.

Then it is not hard to see that the unique solution Ň is also a solution for (13) if

kn�1XT
Qc.Y � XQ

Ň
Q/k1 < �n; (16)

simply because (15) and (16) imply Ň satisfies (14). Solving the equation in (15)
gives

Ň
Q D .XT

QXQ/
�1 �XT

QY � n�nsig. Ň
Q/
	
: (17)

Using (17) and Y D XSˇS C ", (16) is equivalent to

kXT
QcXQ.X

T
QXQ/

�1sig. Ň
Q/

C .n�n/
�1XT

Qc.I � XQ.X
T
QXQ/

�1XT
Q/.XSˇS C "/k1 < 1 (18)

Since .I � XQ.XT
QXQ/

�1XT
Q/XQ D 0, (18) can be simplified as

kXT
QcXQ.X

T
QXQ/

�1sig. Ň
Q/C .n�n/

�1XT
Qc.I � XQ.X

T
QXQ/

�1XT
Q/"k1 < 1: (19)

Note that, if there is a unique solution for (12), say Ľ, and Ň satisfies (19), then Ň
is indeed the unique solution for (12). This is equivalent to Ľ

Qc D 0. Furthermore, if
minj2Q jˇjj > kˇj � Ň

jk1 also holds, we can conclude Ľ
Q ¤ 0. Thus (12) achieves

sign recovery. In the following, we will make use of this idea repeatedly.
Secondly, consider the Step 1 (5),

Ǒ OR; OU1 D arg min
ˇ

ON D0

(

.2n/�1
nX

iD1




Yi �
X

j2 OU
Xijˇj �

X

k2 OR
Xikˇk

�2
C �n

X

j2 OU
jˇjj

)

;

D arg min
ˇ

ON D0

(

.2n/�1kY � Xˇk22 C �nkˇ OUk1
)

: (20)

Here, denote Ľ D Ǒ OR; OU1 . After this step, the ideal result is that with high probability,

Ľ OU1 ¤ 0 and Ľ OUn OU1 D 0: (21)
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Therefore, define an oracle estimator of (20),

Ň D arg min
ˇ. OR[ OU1/cD0

(

.2n/�1kY � X OQˇ OQk22 C �nkˇ OU1k1
)

; (22)

where OQ D OR [ OU1 D S [ OR2. Now, we plug Ľ; Ň, and OQ back to (12), (13),
and (19), then it is sufficient to prove (20) has a unique solution and it achieves sign
consistency with Q D OQ.

Let

F D XT
OQc �† OQc OQ†

�1
OQ OQX

T
OQ;

K1 D † OQc OQ†
�1
OQ OQsig. Ň OQ/;

K2 D FX OQ.X
T
OQX OQ/

�1sig. Ň OQ/C .n�n/
�1FfI � X OQ.X

T
OQX OQ/

�1XT
OQg":

Then, (19) is equivalent to

kK1 C K2k1 < 1:

To be more clear that, since we have already screen ON out, OQc is in fact the
complement of OQ under the “universe” OR[ OU . We write OQc instead of . OR[ OU/n OQ D
OU2 to show a close connection with the analysis in first part above.

Now let

A D fR � OR1 � S; S � OQ � S [ Zg;
B D fS � OQ � S [ Zg;
TA D f.R1;Q/jR � R1 � S; S � Q � S [ Zg:

From Conditions 1 and 4, P.A/ ! 1 as a direct result of Proposition 2 in Weng et al.
[21]. Since Condition 8 implies

pr.kK1k1 	 1 � �1/ � pr.fkK1k1 	 1 � �1g \ A/ D pr.A/ ! 1 (23)

as given A

kK1k1 D k† OQc OQ†
�1
OQ OQsig. Ň OQ/k1 	 kf† OQc OQ†

�1
OQ OQg OU1k1

is always less than 1 � �1.
Denote K2.R1;Q/ as the analogy of K2 and Ň

Q as the analogy of Ň OQ by replacing
OR1 and OQ in (22) with R1 and Q. Since given XQ and ", the j-th element of
K2.R1;Q/, namely

F. j/XQ.X
T
QXQ/

�1sig. Ň
Q/C .n�n/

�1F. j/fI � XQ.X
T
QXQ/

�1XT
Qg"; (24)
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is normally distributed with mean 0 and variance Vj, where

Vj 	 .†QcjQ/jj
h
sig. Ň

Q/
T.XT

QXQ/
�1sig. Ň

Q/C .n�n/
�2"TfI � XQ.X

T
QXQ/

�1XT
Qg"

i

	 sig. Ň
Q/

T.XT
QXQ/

�1sig. Ň
Q/C .n�n/

�2k"k22:

Hence, we let

H D
[

.R1;Q/�TA

n
sig. Ň

Q/
T.XT

QXQ/
�1sig. Ň

Q/C .n�n/
�2k"k22

>
sn C zn
nCmin

.8.sn C zn/
1=2n�1=2 C 1/C .1C s1=2n n�1=2/=.n�2n/

o
:

Next, we want to show

pr
�
kK2k1 >

�1

2

�
	 pr

�n
kK2k1 >

�1

2

o
\ A

�
C pr.Ac/

	 pr
�n [

.R1;Q/�TA

kK2.R1;Q/k1 >
�1

2

o
\ A

�
C pr.Ac/

	 pr
� [

.R1;Q/�TA

kK2.R1;Q/k1 >
�1

2
j Hc

�
C pr.H/C pr.Ac/

�! 0: (25)

By the tail probability inequality of Gaussian distribution (inequality (48) in
Wainwright [20]), it is not hard to see that

pr
� [

.R1;Q/�TA

kK2.R1;Q/k1 >
�1

2
j Hc

�

	
X

.R1;Q/�TA

pr.kK2.R1;Q/k1 >
�1

2
j Hc/

	 2snCzn � max
.R1;Q/�TA

pr.kK2.R1;Q/k1 >
�1

2
j Hc/

	 2snCzn � 2. pn � sn/ exp.��21 =8V/; (26)

where V D .1 C s1=2n n�1=2/=.n�2n/ C snCzn
nCmin

.8.sn C zn/1=2n�1=2 C 1/ � Vj under

conditionHc. Since logŒ2snCznC1. pn�sn/	 D o.�21 =8V/ under our scaling, (26) ! 0.
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To bound pr.H/, note that

pr.H/ 	 pr
�[

.R1;Q/�TA

n
sig. Ň

Q/
T.XT

QXQ/
�1sig. Ň

Q/

>
sn C zn
nCmin

.8.sn C zn/
1=2n�1=2 C 1/

o�

C pr
�
.n�n/

�2k"k22 > .1C s1=2n n�1=2/=.n�2n/
�

(27)

Since k"k22 � 
2.n/, using the inequality of (54a) in Wainwright [20], we get

pr
�
.n�n/

�2k"k22 > .1C s1=2n n�1=2/=.n�2n/
�

	 pr
�
k"k22 � .1C s1=2n n�1=2/n

�

	 exp.� 3

16
sn/; (28)

whenever sn=n < 1=2. For any given Q that satisfying S � Q � S [ Z,

sig. Ň
Q/

T.XT
QXQ/

�1sig. Ň
Q/ 	 .sn C zn/k.XT

QXQ/
�1k2

	 .sn C zn/=n
�
k.XT

QXQ=n/
�1 �†�1

QQk2 C k†�1
QQk2

�

	 .sn C zn/=n
�
k.XT

QXQ=n/
�1 �†�1

QQk2 C 1=Cmin

�
:

holds for any R1 that satisfying R � R1 � S. Therefore, by the concentration
inequality of (58b) in Wainwright [20],

pr

 
[

.R1;Q/�TA

n
sig. ŇQ/T .XT

QXQ/
�1sig. ŇQ/ > sn C zn

nCmin

�
8.sn C zn/

1=2n�1=2 C 1
�o
!

	
X

S�Q�S[Z

pr

 
[

R�R1�S

n
sig. ŇQ/T.XT

QXQ/
�1sig. ŇQ/ > sn C zn

nCmin

�
8.sn C zn/1=2n�1=2 C 1

�o
!

	
X

S�Q�S[Z

pr
�
k.XT

QXQ=n/
�1 �†�1

QQk2 � 8

Cmin
.sn C zn/

1=2n�1=2�

	
X

S�Q�S[Z

pr
�
k.XT

QXQ=n/
�1 �†�1

QQk2 � 8

Cmin
.Card.Q//1=2n�1=2�

	 2znC1 exp
�
� sn
2

�
: (29)

Hence, (28) and (29) imply pr.H/ 	 2znC1 exp.� sn
2
/C exp.� 3

16
sn/ ! 0.
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Since P.Ac/ D 1 � P.A/ ! 0, the inequalities (26)–(29) imply (25) under the
scaling in Theorem 1. Thus kK1 CK2k1 < 1 achieves with high probability, which
also means Ľ OUn OU1 D 0 achieves asymptotically.

From our analysis in the first part, the following goal is the uniqueness of (20).
If there is another solution, let’s call it Ľ0. For any t such that 0 < t < 1, the linear
combination Ľ.t/ D t Ľ C .1 � t/ Ľ0 is also a solution to (20) as a consequence of
the convexity. Note that, the new solution point Ľ.t/ satisfies (16) and Ľ.t/Qc D 0,
hence it is a solution to (13). From the uniqueness of (13), we conclude that Ľ D Ľ0.

The last part of this step is to prove ŇU1 ¤ 0 with high probability. By (17) and
Y D XSˇS C " D X OQˇ OQ C ", we have

kˇ OQ � Ň OQk1 D k�n.XT
OQX OQ=n/

�1sig. Ň OQ/� .XT
OQX OQ/

�1XT
OQ"k1

	 �nk.XT
OQX OQ=n/

�1k1 C k.XT
OQX OQ/

�1XT
OQ"k1

	 �n.sn C zn/
1=2k.XT

OQX OQ=n/
�1k2 C k.XT

OQX OQ/
�1XT

OQ"k1

	 �n.sn C zn/
1=2.k.XT

OQX OQ=n/
�1 �†�1

OQ OQk2 C 1=Cmin/

Ck.XT
OQX OQ/

�1XT
OQ"k1 (30)

for any OQ satisfying S � OQ � S [ Z. In (29), we have already got

pr
�k.XT

OQX OQ=n/
�1 �†�1

OQ OQk2 � 8

Cmin
.sn C zn/

1=2n�1=2� 	 2 exp.� sn
2
/ (31)

Let G D
n
k.XT

OQX OQ/�1k2 > 9=.nCmin/
o
, by the inequality (60) in Wainwright [20],

pr.G/ 	 pr.k.XTX/�1k2 > 9=.nCmin// 	 2 exp.�n=2/:

Since .XT
OQX OQ/�1XT

OQ" j X OQ � N.0; .XT
OQX OQ/�1/, then when we condition on G and

achieve

pr
�
k.XT

OQX OQ/
�1XT

OQ"k1 >
.sn C zn/1=2

n1=2C1=2min

�

	 pr
�
k.XT

OQX OQ/
�1XT

OQ"k1 >
.sn C zn/1=2

n1=2C1=2min

j Gc
�

C pr.G/

	 2.sn C zn/e
�.snCzn/=18 C 2e�n=2; (32)

since under Gc, each component of .XT
OQX OQ/�1XT

OQ" j X OQ is normally distributed with

mean 0 and variance that is less than 9=.nCmin/.
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Hence (30)–(32) together imply that,

k Ň OQ�ˇ OQk1 	 Un PD�n.snCzn/
1=2
� 8

Cmin
.snCzn/

1=2n�1=2C1=Cmin

�
C .sn C zn/1=2

n1=2C1=2min

holds with probability larger than 2.sn C zn/e�.snCzn/=18 C 2e�n=2 C 2 exp�sn=2.
Therefore,

pr.k Ň OQ � ˇ OQk1 � Un/

	 pr
� [

S�Q�S[Z

fk Ň
Q � ˇQk1 � Ung \ B

�
C pr.Bc/

	 2zn
�
2.sn C zn/e

�.snCzn/=18 C 2e�n=2 C 2 exp�sn=2
�

C pr.Bc/ (33)

Under the scaling of Theorem 1, we have pr.B/ � pr.A/ ! 1 and 2zn.2.sn C
zn/e�.snCzn/=18 C 2e�n=2 C 2 exp�sn=2/ ! 0. From Condition 5, it is easy to verify
that

min
j2S jˇjj > Un;

for sufficiently large n. Thus with high probability minj2S jˇjj > k Ň OQ � ˇ OQk1 as n

increases, which also implies Ľ OQ ¤ 0 with high probability.

Finally, Ǒ OR; OU1 exactly recover signals with high probability as n ! 1.

Step III: We need to prove that RAM-2 succeeds in detecting signals via Step 3.
Similar to Step II, we need to define proper Ľ in (12) and Ň in (13). Since the
main idea is the same as the procedure above, we only describe the key steps in
the following proof. Recall the estimator (7),

Ǒ OR1; OU1; ON1
D arg min

ˇ
OU2[ ON2

D0

(

.2n/�1
nX

iD1

�
Yi �

X

j2 OR
Xijˇj �

X

k2 OU1[ ON1

Xikˇk

�2 C �??n

X

j2 OR
jˇjj

)

D arg min
ˇ

ON[ OUn OU1D0

(

.2n/�1kY � Xˇk22 C �??n kˇ ORk1
)

: (34)

This is a new “ Ľ” in (12), and we denote it as Q̌. After this step, the ideal result
is that with high probability,

Q̌ OR1
¤ 0 and Q̌ ORn OR1

D 0: (35)
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Therefore, define an oracle estimator of (34),

V̌ D arg min
ˇScD0

(

.2n/�1kY � XSˇSk22 C �??n kˇ OR1
k1
)

: (36)

Now, we plug Q̌ and V̌ back to (12), (13), and (18), then it is sufficient to
prove (34) has a unique solution and it achieves sign consistency with Q D S.
Let

F0 D XT
OR2

�† OR2S
†�1

S XT
S ;

K0
1 D † OR2S

†�1
SS sig. V̌

S/;

K0
2 D F0XS.X

T
S XS/

�1sig. V̌
S/C .n�??n /

�1F0fI � XS.X
T
S XS/

�1XT
S g":

Similarly,

pr
�
kK0

1k1 	 1 � ˛
�

� pr
�˚kK0

1k1 	 1 � ˛
� \ D

�
� pr.D/ � pr.A/ ! 1;

(37)

where D D f OR2 � Zg and it implies kK0
1k1 	 1 � ˛ under Condition 7. Let

H0 D
[

R�R2�S

n
sig. V̌

S/
T.XT

S XS/
�1sig. V̌

S/C .n�??n /
�2k"k22 >

sn
nCmin

�
8s1=2n n�1=2 C 1

�

C �
1C s1=2n n�1=2�=

�
n.�??n /

2
�o
:

Then,

pr
�
kK0

2k1 >
˛

2

�
	 pr

�˚kK0
2k1 >

˛

2

�\ A
�

C pr.Ac/

	 pr
� [

.R2;R1/
R2�Z

R�R1�S

n
k QK2.R2;R1/k1 >

˛

2

o�
C pr.Ac/

	 pr
�[

.R2;R1/
R2�Z

R�R1�S

n
k QK2.R2;R1/k1 >

˛

2

o
j QHc

�
C pr. QH/C pr.Ac/

	 2znCsnC1zne�˛2=8V0 C 2e� sn
2 C e� 3

16 sn C pr.Ac/

�! 0; (38)
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where the last step of (38) follows from (26), (28), and (29) in the proof of Step
II, and V 0 D sn

nCmin
.8s1=2n n�1=2 C 1/C .1C s1=2n n�1=2/=.n.�??n /2/.

Equations (37) and (38) indicate Q̌ ORn OR1
D 0. We skip the proof of uniqueness

and move to the next step of proving Q̌ OR1
¤ 0.

k V̌
S � ˇSk1 D k.XT

S XS/
�1.XT

S Y � n�??n sig. V̌
S// � ˇSk1

	 k.XT
S XS/

�1XT
S "k1 C k�??n .XT

S XS=n/
�1k1:

Let Wn D �??n s1=2n
�

8
Cmin

s1=2n n� 1
2 C 1

Cmin

� C s
1=2
n

n1=2C
1=2
min

D o.na2=2�ı/. In the same way,

we can show that as n ! 1

pr
�k V̌

S � ˇSk1 	 Wn
� ! 0

Hence, Condition 5 ensures that as n ! 1,

pr
�

min
j2S jˇjj > k V̌

S � ˇSk1
� ! 1; (39)

which is equivalent to Q̌ OR1
¤ 0.

Finally, combining Step I, Step II, and Step III, we conclude that

P
� Ǒ OR1; OU1; ON1

is unique and sign. Ǒ OR1; OU1; ON1
/ D sign.ˇ/

� ! 1; as n ! 1:

ut
Proof of Theorem 2 Denote the compositions S D OR1 [ OU1 [ ON1 and define the set
of noises left in OU c as . OR n OR1/ [ . ON n ON1/ PD OR2 [ ON2, where OR1, OU1, and ON1 are
signals from OR, OU , and ON , respectively.

Step I: Consider the Step 1 in (5), which is exactly the same as (20). Since there
is no difference from the Step II in the proof of Theorem 1, we skip the details
here.

Step II: Let’s consider the Step 2 in (6).

Ǒ OR; OU1; ON1
D arg min

ˇ
OUn OU1D0

(

.2n/�1
nX

iD1

�
Yi �

X

j2 ON
Xijˇj �

X

k2 OR[ OU1
Xikˇk

�2 C �?n

X

j2 ON
jˇjj

)

D arg min
ˇ

OUn OU1D0

(

.2n/�1kY � Xˇk22 C �?nkˇ ON k1
)

: (40)

Here, denote Ľ D Ǒ OR; OU1; ON1
. After this step, the ideal result is that with high

probability,

Ľ ON1
¤ 0 and Ľ ON n ON1

D 0: (41)
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Then, define an oracle estimator of (20),

Ň D arg min
ˇ. OR[ OU1[ ON1/

cD0

(

.2n/�1kY � X OQˇ OQk22 C �?nkˇ ON1
k1
)

; (42)

where OQ D . OR [ OU1/[ ON1 D S [ OR2. Similar to Step II in proof of Theorem 1,
let

F D XT
ON2

�† OQc OQ†
�1
OQ OQX

T
OQ;

K1 D † ON2 OQ†
�1
OQ OQsig. Ň OQ/;

K2 D FX OQ.X
T
OQX OQ/

�1sig. Ň OQ/C .n�n/
�1FfI � X OQ.X

T
OQX OQ/

�1XT
OQg";

and

A D fR � OL1 PD OR1 [ OU1 � S; S � OQ � S [ Zg;
B D fS � OQ � S [ Zg;
TA D f.L1;Q/jR � L1 � S; S � Q � S [ Zg:

Similarly, we get

pr.kK1k1 	 1 � �1/ � pr.fkK1k1 	 1 � �1g \ A/ � pr.A/ ! 1: (43)

To obtain pr.kK2k1 >
�1
2
/ ! 0, we define event H as

H D
[

.L1;Q/�TA

n
sig. Ň

Q/
T.XT

QXQ/
�1sig. Ň

Q/C .n�n/
�2k"k22

>
sn C zn
nCmin

�
8.sn C zn/

1=2n�1=2 C 1
�C �

1C s1=2n n�1=2�=.n�2n/
o
:

Then, following (25)–(29),

pr
�kK2k1 >

�1

2

� 	 pr
�˚kK2k1 >

�1

2

� \ A
�

C pr.Ac/

	 pr
� [

.L1;Q/�TA

kK2.L1;Q/k1 >
�1

2
j Hc

�
C pr.H/C pr.Ac/

	 2snCzn � 2. pn � sn/ exp.��21 =8V/C 2znC1 exp
� � sn

2

�

C exp
� � 3

16
sn
�

�! 0; (44)

where V D .1C s1=2n n�1=2/=.n.�?n/2/C snn�1C�1
min.8s

1=2
n n�1=2 C 1/.
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Again, we skip the uniqueness of Ľ and move to bound k Ň OQ � ˇ NQk1. By (30)–
(32) in the proof of Theorem 1, we have

pr
�k Ň OQ � ˇ OQk1 � Un

�

	 2zn
�
2.sn C zn/e

�.snCzn/=18 C 2e�n=2 C 2 exp�sn=2
�C pr.Bc/ ! 0;

where Un D �n.sn C zn/1=2
�

8
Cmin

.sn C zn/1=2n�1=2 C 1=Cmin

�
C .snCzn/1=2

n1=2C
1=2
min

. As

minj2S jˇjj � Un with sufficiently large n, we conclude that with high probability
minj2S jˇjj > k Ň OQ � ˇ OQk1 as n increases, which also implies Ľ OQ ¤ 0 with high
probability.

Therefore, Ǒ OR; OU1; ON1
successfully recover signals from ON with high probability

when n is large enough.

Step III: Following the same steps as in Step III in the proof of Theorem 1, we
have

P
� Ǒ OR1; OU1; ON1

is unique and sign. Ǒ OR1; OU1; ON1
/ D sign.ˇ/

� ! 1; as n ! 1:

ut
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Empirical Likelihood Test for High Dimensional
Generalized Linear Models

Yangguang Zang, Qingzhao Zhang, Sanguo Zhang, Qizhai Li,
and Shuangge Ma

Abstract Technological advances allow scientists to collect high dimensional data
sets in which the number of variables is much larger than the sample size. A
representative example is genomics. Consequently, due to their loss of accuracy
or power, many classic statistical methods are being challenged when analyzing
such data. In this chapter, we propose an empirical likelihood (EL) method to
test regression coefficients in high dimensional generalized linear models. The EL
test has an asymptotic chi-squared distribution with two degrees of freedom under
the null hypothesis, and this result is independent of the number of covariates.
Moreover, we extend the proposed method to test a part of the regression coefficients
in the presence of nuisance parameters. Simulation studies show that the EL tests
have a good control of the type-I error rate under moderate sample sizes and
are more powerful than the direct competitor under the alternative hypothesis
under most scenarios. The proposed tests are employed to analyze the association
between rheumatoid arthritis (RA) and single nucleotide polymorphisms (SNPs) on
chromosome 6. The resulted p-value is 0.019, indicating that chromosome 6 has an
influence on RA. With the partial test and logistic modeling, we also find that the
SNPs eliminated by the sure independence screening and Lasso methods have no
significant influence on RA.
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1 Introduction

High dimensional data are now routinely encountered in many scientific fields such
as genome-wide association studies (GWAS), DNA microarray analysis, and brain
imaging studies. With, for example, GWAS data, the number of SNPs (p) is in the
order of tens of thousands, whereas the sample size (n) is much smaller, usually at
most in the order of hundreds. This is the so-called large p, small n paradigm. The
analysis of high dimensional data poses many challenges for statisticians and calls
for new statistical methodologies and theories [10].

Generalized linear models (GLM), including the logistic, Poisson, and Negative
Binomial regression models, are widely employed statistical models in various
applications. In this chapter, we consider the problem of testing regression coef-
ficients for GLM under the “large p, small n” paradigm. Although the proposed
method has broad applicability, it has been partly motivated by the analysis of a
rheumatoid arthritis (RA) data with SNP measurements. See Sect. 5 for more details.
In this RA study, we are interested in testing whether a large number of SNPs on
chromosome 6 are associated with RA. Or equivalently, whether their regression
coefficients in a GLM are simultaneously equal to zero.

When p is fixed, there exist two popular multivariate tests: the likelihood ratio test
and the Wald test. However, when the dimension p becomes larger than the sample
size n, these two tests become invalid. That is because the two tests involve the
estimator of the inverse sample covariance matrix, which becomes problematic for
large p. To solve this problem, Geoman et al. [13] pioneered a score test statistic that
has a quadratic form of the residuals of the null model and derived the asymptotic
distribution in GLM with canonical link functions. Chen et al. [5] investigated the
test of [13] and discovered that the high dimensionality can adversely impact the
power of the test when the inverse of the link function in GLM is unbounded,
for instance, the log link in the Poisson or Negative Binomial regression. They
then proposed a U-statistic test which can avoid the adverse impact of the high
dimensionality. Zhong and Chen [28] proposed simultaneous tests for coefficients
in high dimensional linear regression models with factorial designs.

On the other hand, it is well known that the empirical likelihood (EL) ratio
test is a powerful nonparametric likelihood approach [19]. Many advantages of the
empirical likelihood method have been shown in the literature. In particular, the
empirical likelihood method does not involve any variance estimation, which saves
a lot of effort. For more details on empirical likelihood methods, we refer to [7, 21].
There are some publications on empirical likelihood tests for high dimensional data.
Wang et al. [26] proposed a jackknife empirical likelihood test method for testing
equality of two high dimensional means. Some empirical likelihood tests for testing
whether a covariance matrix equals a given one or has a banded structure were
investigated in [27]. Peng et al. [22] considered an empirical likelihood test for
coefficients in high dimensional linear models.

Motivated by the empirical likelihood tests [22] and U-statistic tests [5], we
develop an empirical likelihood test for testing regression coefficients in GLM. We
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show that the empirical likelihood test has an asymptotic chi-squared distribution
with two degrees of freedom under the null hypothesis, and this result is independent
of the number of covariates. The computational time of our proposed method is
shown to be much lower than that of the competing alternative. In addition, we
consider the partial test problem which is more useful in practice. Simulation results
show that the proposed test statistic has a good control of the type-I error rate under
moderate sample sizes, and that the proposed method is more powerful than those
in [5] under the alternative hypothesis.

The paper is organized as follows. Section 2 presents a new methodology to the
GLM’s global test, and Sect. 3 considers the situation with nuisance parameters. In
Sect. 4, we conduct simulations to evaluate the performance of proposed method.
Section 5 provides a real data example, and Sect. 6 gives some discussions. Some
technical details are provided in Appendix.

2 The Proposed Test

For i D 1; : : : ; n, Yi is a scalar response variable, which can be binary, categorical,
or continuous in the framework of GLM. Xi D .Xi1; : : : ;Xip/

> is a p-dimensional
random vector with ˙ D E.XiX>

i /. Xi can be seen as a group of predictors of
interest, such as p SNPs from a candidate gene or region. Consider the GLM

E.YjX/ D g.X>ˇ/ and var.YjX/ D Vfg.X>ˇ/g; (1)

where g.�/ is a given function, ˇ is the vector of regression coefficients, and V.�/
is a non-negative function. Note that g�1.�/ is called the link function, and “>”
denotes the matrix transpose. Our first aim is to test the significance of the regression
coefficients, that is,

H0 W ˇ D ˇ0 vs H1 W ˇ ¤ ˇ0 (2)

for a specific ˇ0 2 Rp under n < p.

Remark 1 In the existing high dimensional studies, much attention has been paid
to the estimation problem. To cope with the high dimensionality, usually special
data/model structures need to be assumed. A popular assumption is sparsity, which
has led to the family of penalization methods and others. For references, we
refer to [2, 12, 17]. Without making strong assumptions on, for example, the
sparsity structure, hypothesis testing provides an alternative way of analyzing high
dimensional data.
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Write  .Xi; ˇ0/ D g0.X>
i ˇ0/=Vfg.X>

i ˇ0/g, where g0.�/ is the first-order deriva-
tive of g.t/ with respect to t. To test (2), the statistic in [13] is

Sn D Œ
Pn

iD1.Yi � �0i/ .Xi; ˇ0/Xi	
>Œ
Pn

iD1.Yi � �0i/ .Xi; ˇ0/Xi	
Pn

iD1.Yi � �0i/2 2.Xi; ˇ0/X>
i Xi

;

where �0i D g.X>
i ˇ0/. Chen and Guo [5] noticed that Sn can be written in the form

Sn D 1C Un=An, where

An D 1

n

nX

iD1
.Yi � �0i/

2 2.Xi; ˇ0/X
>
i Xi

and

Un D 1

n

nX

i¤j

.Yi � �0i/.Yj � �0j/ .Xi; ˇ0/ .Xj; ˇ0/X
>
i Xj:

They also pointed out that the term An is redundant since it increases the variance
and decreases the power. Therefore, they only considered the term Un as the statistic
which can also avoid the adverse impact of high dimensionality. Notice that Un is
the estimate of .n � 1/�>̌

0;ˇ
�ˇ0;ˇ , where

�ˇ0;ˇ D E
˚
Œg.X>

i ˇ/ � g.X>
i ˇ0/	 .Xi; ˇ0/Xi

�
:

Motivated by this work, we build the statistic as

Ti D .Yi � �0i/.YiCm � �0iCm/ .Xi; ˇ0/ .XiCm; ˇ0/X
>
i XiCm; (3)

where i D 1; : : : ;m, m D bn=2c, the maximal integer less than n=2. The sample
splitting method has also been used in [22, 26, 27]. It is easy to see that the
expectation of Ti equals �>̌

0;ˇ
�ˇ0;ˇ . Since �>̌

0;ˇ
�ˇ0;ˇ is O.jjˇ � ˇ0jj22/, if we

assume that g0.�/ and  .�; �/ are finite, the power may decrease when jjˇ � ˇ0jj2
is smaller than 1, where jj � jj2 denotes the L2 norm. Therefore another statistic Si
with the order of O.jjˇ � ˇ0jj2/ is considered:

Si D .Yi � �0i/ .Xi; ˇ0/X
>
i ˛ C .YiCm � �0iCm/ .XiCm; ˇ0/X

>
iCm˛; (4)

where the vector ˛ 2 Rp can be chosen based on prior information or just simply set
as 1p D .1; : : : ; 1/> 2 Rp.

The EL technique has been applied to linear models [20], GLMs [15, 18],
confidential interval construction [19], quantiles [6], and others. Here we use it for
high dimensional testing. Set Zi D .Ti; Si/>. Based on [24], the EL test statistic is
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lm D �2 logLm, where Lm is defined as

Lm D sup

(
mY

iD1
.mwi/

ˇ
ˇ
ˇ
ˇ
ˇ
wi � 0;

mX

iD1
wi D 1;

mX

iD1
wiZi D 0

)

:

Using the Lagrange multiplier technique, we can obtain

lm D �2
mX

iD1
log.1C �>Zi/;

where � satisfies

1

m

mX

iD1

Zi
1C �>Zi

D 0:

Let " D Y � g.X>ˇ/. To establish the asymptotic properties of the empirical
likelihood test, we first make the following assumptions:

Condition 1. Let ˝ be the support of X. There exist positive constants ı and K

such that E
�
j"j2Cı jX D x

�
	 K for any x 2 ˝ .

Condition 2. g.�/ is continuously differentiable, V.�/ > 0 and is finite, and there
exist positive constants c1 and c2 such that c1 	  2.x; ˇ0/ 	 c2 for any x 2 ˝ .

Remark 2 Condition 1 postulates that the error term has a finite .2C ı/th moment,
which is common in the analysis of GLM [5].

The following theorem establishes the asymptotic properties of the EL test:

Theorem 1 Suppose that n ! 1, ˛>˙˛ > 0, Conditions 1–2 hold, and

EjX>
i XiCmj2Cı

Œtrf˙2g	.2Cı/=2 D o.m
ı
2 /; (5)

and

EjX>
i ˛ C X>

iCm˛j2Cı
Œ˛>˙˛	.2Cı/=2

D o.m
ı
2 /: (6)

Then, under H0, lm converges in distribution to a chi-squared distribution with two
degrees of freedom.

Based on this theorem, we reject H0 when lm > 
22;b, where 
22;b is the .1 � b/-
quantile of a chi-squared distribution with two degrees of freedom and b is the
significance level. Since conditions (5) and (6) are abstract, we introduce two
intuitive examples which satisfy these conditions, and we can see that p can be
very large in the two examples.
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Example 1 Let X be a Gaussian random vector with mean 0 and covariance matrix
˙ where ˙ is an arbitrary p by p positive definite matrix. Then (5) and (6) hold.

Example 2 Consider the factor model, which is illustrated in [1, 9, 26]. There exists
a s-variate random vector Fi D .Fi1; : : : ;Fis/

> for some s � p so that Xi D 
 Fi,
where 
 is a p� s matrix such that 
 
 > D ˙ , E.Fi/ D 0, and var.Fi/ D Is, where
Is is the s�s identity matrix. Each Fij has a finite 8th moment and E.F4ij/ D 3C� for
some constant �. For any integer lv � 0 with

Pq
vD1 lv D 8 and distinct j1; : : : ; jq,

E.Fl1
ij1
Fl2
ij2
: : :F

lq
ijq
/ D E.Fl1

ij1
/E.Fl2

ij2
/ : : :E.F

lq
ijq
/. Then (5) and (6) hold.

Theorem 2 Assume that n ! 1, and ˛>˙˛ is positive. Under Example 1
or Example 2 and Conditions 1–2, lm converges in distribution to a chi-squared
distribution with two degrees of freedom under H0.

Remark 3 The effects of data dimensionality on empirical likelihood have been
investigated [8]. The empirical likelihood ratio statistic does not asymptotically
converge to chi-squared distribution with p degrees of freedom under the null
hypothesis. We project the p-dimensional data onto a two-dimensional space.
Therefore, the EL test still enjoys the Wilks’ phenomenon.

3 The Partial Test with Nuisance Parameters

In this section, we extend the method developed in Sect. 2 to test part of the
regression coefficients with the presence of nuisance parameters. Such a test has
practical importance. For example, in a GWAS, we are also interested in a specific
region or specific genes, with the presence of other SNPs.

Without loss of generality, we partition Xi D .X.1/>i ;X.2/>i />, where the

dimensions of X.1/i and X.2/i are p1 and p2, respectively. Accordingly, the regression
coefficient vector can be partitioned as ˇ D .ˇ.1/>; ˇ.2/>/>. Consider the test

QH0 W ˇ.2/ D ˇ
.2/
0 vs QH1 W ˇ.2/ ¤ ˇ

.2/
0 : (7)

To test (7), we need to estimate ˇ.1/0 first. The quasi-likelihood score of ˇ.1/ is

q.ˇ.1/; ˇ.2// D @Qn.ˇ/

@̌ .1/
D

nX

iD1
fYi � �i.ˇ/g .Xi; ˇ/X

.1/
i ;

where �i.ˇ/ D g.X>
i ˇ/ and Qn.ˇ/ D Pn

iD1
R �i.ˇ/

Yi
Yi�t
V.t/ dt. The maximum quasi-

likelihood estimator ˇ.1/ can be obtained by solving the equation q.ˇ.1/; ˇ.2/0 / D 0,

which is denoted as Ǒ.1/
0 .
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Set Ǒ
0 D . Ǒ.1/>

0 ; ˇ
.2/>
0 /> and O�0i D �i. Ǒ

0/. Similar to Sect. 2, we consider the
statistic QZi D . QTi; QSi/>, where

QTi D .Yi � O�0i/.YiCm � O�0iCm/ .Xi; Ǒ
0/ .XiCm; Ǒ

0/X
.2/>
i X.2/iCm; (8)

QSi D .Yi � O�0i/ .Xi; Ǒ
0/X

.2/>
i Q̨ C .YiCm � O�0iCm/ .XiCm; Ǒ

0/X
.2/>
iCm Q̨ ; (9)

and Q̨ 2 Rp2 . By applying the empirical likelihood method, we have

Qlm D �2
mX

iD1
log.1C Q�> QZi/;

where Q� satisfies

1

m

mX

iD1

QZi
1C Q�> QZi

D 0:

Denote ˙X. j/ ; j D 1; 2 as the covariance matrices of X.1/ and X.2/, respectively.
To establish the asymptotic properties of Qlm, we need the following conditions:

Condition 3. As n ! 1, p1n�1=4 ! 0, and there exists a ˇ�.1/ 2 Rp1 such that
jj Ǒ.1/

0 � ˇ�.1/jj2 D Op. p1n�1=2/. In particular under QH0, we have ˇ�.1/ D ˇ
.1/
0 ,

where ˇ D .ˇ
.1/>
0 ; ˇ

.2/>
0 /> is the true parameter.

Condition 4. ˙X.1/ is a positive definite matrix, and its eigenvalues are bounded
away from zero and infinity.

Condition 5. g.�/ is first-order continuously differentiable. Define ˇ�
0 D

.ˇ
�.1/>
0 ; ˇ

.2/>
0 />, where ˇ�.1/

0 is defined in Condition 3. There exist positive
constants c1 and c2 such that c1 	  2.x; ˇ�

0 / 	 c2, Œ@ .x; ˇ�
0 /=@.x

>ˇ�
0 /	

2 	 c2
for any x 2 ˝ .

The main properties of the test can be summarized as follows:

Theorem 3 Suppose that n ! 1, Q̨>˙X.2/ Q̨ > 0, and Conditions 1, 3–5 hold.
Then if

EjX.2/>i X.2/iCmj2Cı
Œtrf˙2

X.2/
g	.2Cı/=2 D o.m

ı
2 / and

EjX.2/>i Q̨ C X.2/>iCm Q̨ j2Cı
Œ Q̨>˙X.2/ Q̨ 	.2Cı/=2

D o.m
ı
2 /

are satisfied, then under QH0, Qlm converges in distribution to a chi-squared distribu-
tion with two degrees of freedom.
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4 Simulation Study

In a published study [3], five popular methods have been compared, including
the multivariate score test [4], the Fisher’s method for combining p-values, the
minimum p-value approach, a Fourier transform method [25], and a Bayesian score
statistic [13]. It is found that the minimum p-value method and the Bayesian score
method outperform the others. Chen et al. [5] further showed that their method
performs better than the Bayesian score method. Thus in this section, we focus on
comparing the proposed method against that in [5] (denoted as CG).

SIMULATION I. The p�1 iid vectors fXigniD1 are generated from a moving average
model,

Xij D Zij C �Zi. jC1/ .i D 1; : : : ; n; j D 1; : : : ; p/; (10)

where for each i, fZijgpC1
jD1 are independently generated from a . p C 1/ standard

normal distribution N.0; IpC1/.

Following [5], we consider three GLMs: logistic, Poisson, and Negative Bino-
mial. In the logistic model, Yi � Bernoullif1; g.X>

i ˇ/g conditioning on Xi. In
the Poisson model, Yi � Poissonfg.X>

i ˇ/g. In the Negative Binomial model, the
conditional distribution of Y given X is NBfexp.X>ˇ/; 1=2g. We set � in (10) to be
1 in the logistic model and 0.5 in the Poisson and Negative Binomial models.

To examine performance under both the p < n and p > n situations, we set
the sample size n D 500 and the dimension p D 100; 300; 500; 800; 1000. For the
coefficient vector ˇ D .ˇ1; : : : ; ˇp/

>, ˇi equals c1 if i 	 Œc2p	, otherwise ˇi equals
zero. The parameter c2 controls the sparsity level of ˇ. We select c2 D 0:75 for the
dense case and 0:25 for the sparse case. In order to have a reasonable range for the
response variables, we restrict the value of expfX>ˇg between exp.�4/ and exp.4/
in the Logistic model and between exp.0/ D 1 and exp.4/ D 55 in the Poisson and
Negative Binomial models. The power is calculated by choosing c1 D 0:01, and the
type-I error rate is obtained with c1 D 0. We set ˛ D .1; : : : ; 1/> in the proposed
test.

Summary statistics based on 1000 replicates are shown in Table 1. We can see
that both methods have a good control of the type-I error rate. For example, under
the Logistic model with n D 500, p D 1000, and dense data, the sizes of the EL and
CG tests are 0.051 and 0.054, respectively. The EL test is more powerful than CG in
most cases. For example, under the same setting, the power of the EL and CG tests
are 0.998 and 0.318, respectively.

SIMULATION II. Here we consider different ˛ values. The data generating models
are the same as Simulation I. Notice that we set the first c2 proportion of ˇ to be
c1. Therefore we consider two cases of ˛: first, set ˛i D 1 if i 	 bc3dc; second,
set ˛i D 1 if i � p � bc3dc. We choose c3 from f0:25; 0:5; 0:75; 1g. Here we
provide results for the logistic model. Performance under the other two models
is similar.
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Table 2 Power of EL with
different ˛ values at
significance level 5% under
Simulation II

(n; p) c3 D 0:25 c3 D 0:5 c3 D 0:75 c3 D 1

˛i D 1 if i � bc3dc; (c1 D 0:01; c2 D 0:25)

(500, 100) 0.103 0.090 0.063 0.075

(500, 300) 0.225 0.143 0.111 0.093

(500, 500) 0.372 0.185 0.156 0.118

(500, 800) 0.546 0.292 0.220 0.153

(500, 1000) 0.669 0.380 0.255 0.176

˛i D 1 if i � p � bc3dc; (c1 D 0:01; c2 D 0:25)

(500, 100) 0.044 0.050 0.049 0.075

(500, 300) 0.058 0.057 0.054 0.093

(500, 500) 0.064 0.056 0.057 0.118

(500, 800) 0.049 0.050 0.058 0.153

(500, 1000) 0.042 0.055 0.061 0.176

Table 2 suggests that the power can increase if the data structure is known
beforehand. For example, under the Logistic model with n D 500; p D 1000, and
sparse data, we obtain the highest power by choosing the ˛ that represents the same
sparsity structure.

SIMULATION III. We conduct simulation for testing (7) in the presence of
nuisance parameters. Specifically, ˇ.1/ has p1 D 10 and is generated randomly
from U.0; 1/ in the Logistic model and from U.�0:5; 0:5/ in the Poisson and
Negative Binomial models. fXigniD1 are generated from a moving average model

Xij D �1Zij C �2Zi. jC1/ .i D 1; : : : ; n; j D 1; : : : ; p/; (11)

where for each i, fZijgpC1
jD1 are independently generated from a . p C p1 C 1/

standard normal distribution N.0; IpCp1C1/. We choose �1 and �2 randomly from
U.0; 1/. The other settings are similar to Simulation I. The results are shown in
Table 3.

In addition, in order to show that the proposed method behaves independently of
p and has a good control of type-I error when n is large, we also consider n D 1000,
p D 1000; 2000; 5000. The results are listed in Table 4. Note that as the CG method
encounters computational difficulty, we only apply the proposed method.

The observations in Table 3 are similar to those in the previous tables. That is,
both methods have a good control of the type-I error, and the proposed method is
more powerful under most simulation settings. Table 4 further suggests that, when n
is reasonably large, performance of the proposed method is insensitive to the value
of p.

In Figs. 1 and 2, we plot the cumulative distributions of EL test statistics under
the null in a logistic model for the tests developed in Sects. 2 and 3, respectively.
Comparing against the cumulative distribution of the chi-squared distribution with
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Table 4 Empirical type-I
error rate and power of EL
and CG at significance level
5% under Simulation III

.n; p/ Logistic Poisson Negative Binomial

(1000, 1000) 0.052 0.057 0.057

(1000, 2000) 0.048 0.050 0.058

(1000, 5000) 0.050 0.055 0.056
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Fig. 1 The EL test statistics under the null hypothesis without the presence of nuisance parameters
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Fig. 2 The EL test statistics in the partial test with nuisance parameters under the null hypothesis
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two degrees of freedom suggests the validity of the asymptotic distribution results
under various settings.

5 Data Analysis

We analyze data from the North American Rheumatoid Arthritis Consortium
(NARAC) provided by the GAW16. The initial batch consisted of 868 cases and
1194 controls genotyped with the 500k Illumina chip (545,080 SNPs). Detailed
descriptions of the data can be found in [23]. In the literature, it has been suggested
that RA is associated with genetic changes on chromosome 6 [11, 16]. We analyze
data to prove this.

Consider the logistic model

E.YijXi/ D exp.X>
i ˇ/

1C exp.X>
i ˇ/

;

where Yi D 0 or 1 indicates whether subject i is a control or a case, and Xi represents
the SNP measurements on chromosome 6 of the ith subject. There are a total of
35,574 SNPs measured. The genotype of each SNP is classified as aa, Aa, and AA
and denoted as 0, 1, and 2. We conduct the following processing: (1) remove SNPs
with a high missing rate; (2) remove SNPs that have a low minor allele frequency.
Specifically, set a D 2xCy

2z and b D z
2062

, where x; y represent the frequencies of
genotype 0 and 1, respectively, and z is the frequency of missing value. We select
35,429 SNPs with conditions 0:1 < min.a; 1 � a/ < 0:5 and b > 0:15. After this
processing, we impute the remaining missing values with sample medians. Applying
the proposed method, we obtain a p-value of 0.019, which suggests that SNPs on
chromosome 6 are associated with RA.

Multiple methods are applicable to identify important SNPs that are associated
with response. Two popular examples are the sure independence screening [12]
and the iterated lasso [14]. It is of interest to ask, after the important SNPs have
been identified by these methods, whether the remaining still have influence on the
response. To answer such a question, we first split the data into two parts randomly:
one part is used to identify the important SNPs and the other one is used to test.
Then we apply the sure independence screening method to reduce dimensionality.
Let ˇ� D .ˇ�

1 ; : : : ; ˇ
�
p /

> be a p-vector where ˇ�
j denotes the estimation of ˇj in the

model

E.YijXij/ D exp.a C X>
ij ˇj/

1C exp.a C X>
ij ˇj/

;
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p-value
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Fig. 3 The p-values of the partial test with the rheumatoid arthritis data

and a is the intercept term. Define

M D



1 	 j 	 p W jˇ�
j j is among the first

�
n

log.n/

�

largest of all

�

:

With this method, the resulted M has a size of 263. Further, we apply the iterated
lasso method with the tuning parameter chosen using fivefold cross validation.
Finally, based on our proposed empirical likelihood test method, we can test whether
the remaining SNPs have an effect on RA. We repeat this process 100 times and the
histogram of the p-values is showed in Fig. 3. From Fig. 3 we can see that most of
the p-values are larger than 0.05, which implies that the remaining SNPs likely have
no association with the response.

6 Discussion

High dimensional data are now commonly encountered in multiple scientific fields.
GLMs have been extensively used to model such data. The existing studies have
been mostly focused on the estimation aspect. In this article, we have considered
inference with the whole set of regression coefficients as well as a subset of
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coefficients. We have rigorously established the asymptotic properties of the
proposed tests. In simulation, it is found that the proposed method has a similar
control of the type-I error as the alternative but can have better power. The analysis
of a GWAS dataset demonstrates the applicability of proposed method. In addition,
it is also shown that the proposed method can be coupled with the existing estimation
methods and make the results more conclusive.

A limitation of the proposed method is that the statistics converge slower to
the limiting distribution compared to that in [5], since we split the data into two
parts. Therefore to control the type-I error rate, we usually need more samples.
In our limited numerical studies, we have found that usually the proposed method
behaves well when there are at least a few hundred samples. For computational
feasibility, the number of variables cannot be too large. The proposed method
may have problematic performance when there are �10 samples. Another practical
limitation is that ˇ0 may not be easy to specify. The “default” null with ˇ0 D 0

usually does not hold. With high dimensional data, our knowledge is often very
limited, and it is not easy to have an informative ˇ0. However, as shown in data
analysis, the proposed method can be coupled with the existing estimation methods
to pin down the unimportant variable set.
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Appendix

Recall that �0i D g.X>
i ˇ0/;  .Xi; ˇ0/ D g0.X>

i ˇ0/=Vfg.X>
i ˇ0/g, "i D Yi �

g.X>
i ˇ0/,

Ti D .Yi � �0i/.YiCm � �0iCm/ .Xi; ˇ0/ .XiCm; ˇ0/X
>
i XiCm

and

Si D .Yi � �0i/ .Xi; ˇ0/X
>
i ˛ C .YiCm � �0iCm/ .XiCm; ˇ0/X

>
iCm˛:

Without loss of generality, we assume �0i D 0. Now we prove Theorem 1.
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Proof According to Theorem 3.2 in [21], it suffices to prove that under the
assumptions of Theorem 1, Conditions 1–2, and the null hypothesis, we have that
as n ! 1,

1p
m

 
mX

iD1
Ti=�1;

mX

iD1
Si=�2

!>
d! N.0; I2/; (12)

and

Pm
iD1 T2i
m�21

p! 1;

Pm
iD1 S2i
m�22

p! 1;

Pm
iD1 TiSi
m�1�2

p! 0; (13)

where

�21 D tr
˚
ŒE.V.g.X>

1 ˇ0// 
2.X1; ˇ0/X1X

>
1 /	

2
�

and

�22 D 2E
�
V.g.X>

1 ˇ0// 
2.X1; ˇ0/˛

>X1X>
1 ˛
�
:

Notice that

E
ˇ
ˇX>

i XiCm .Xi; ˇ0/ .XiCm; ˇ0/"i"iCm

ˇ
ˇ2Cı

�
.2Cı/
1

D
E
n
E
ˇ
ˇX>

i XiCm .Xi; ˇ0/ .XiCm; ˇ0/"i"iCm

ˇ
ˇ2Cı j Xi D xi;XiCm D xiCm

o

�
.2Cı/
1

D
E
nˇ
ˇx>

i xiCm .xi; ˇ0/ .xiCm; ˇ0/
ˇ
ˇ2Cı

E.j"ij2Cı jXi D xi/E.j"iCmj2Cı jXiCm D xiCm/
o

�
.2Cı/
1

:

According to Conditions 1–2 and (5), we have

E
ˇ
ˇX>

i XiCm .Xi; ˇ0/ .XiCm; ˇ0/"i"iCm

ˇ
ˇ2Cı

�
.2Cı/
1

D o.m
ı
2 /:

Based on the Lyapunov central limit theorem, we can immediately get
Pm

iD1 Ti=
p
m�1

d! N.0; 1/. Similarly we can obtain
Pm

iD1 Si=
p
m�2

d! N.0; 1/. To
show (12), we still need to prove that for any constants a and b,

a

Pm
iD1 Tip
m�1

C b

Pm
iD1 Sip
m�2

d! N
�
0; a2 C b2

�
: (14)
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Notice that under the null hypothesis,

a

Pm
iD1 Tip
m�1

C b

Pm
iD1 Sip
m�2

D ap
m�1

mX

iD1
 .Xi; ˇ0/ .XiCm; ˇ0/X

>
i XiCm"i"iCm

C bp
m�2

mX

iD1
Œ .Xi; ˇ0/X

>
i "i C  .XiCm; ˇ0/X

>
iCm"iCm	:

Then it is easy to obtain that

E




a

Pm
iD1 Tip
m�1

C b

Pm
iD1 Sip
m�2

�

D 0; var




a

Pm
iD1 Tip
m�1

C b

Pm
iD1 Sip
m�2

�

D a2 C b2:

By the Lyapunov central limit theorem, we conclude that (14) holds. That is, we
prove (12).

To show the first result in (13), it is obviously that

Pm
iD1 T2i
m

D 1

m

mX

iD1
Œ .Xi; ˇ0/ .XiCm; ˇ0/X

>
i XiCm"i"iCm	

2
p! �21 :

Therefore the first result in (13) holds. Similarly, we can obtain the rest two results
in (13). ut

To prove Theorem 2, we first establish Lemma 1.

Lemma 1 For any ı > 0,

EjX>
1 X1Cmj2Cı 	 pı

0

@
pX

jD1
EjX1jj2Cı

1

A

2

(15)

and

Ej˛>.X1 C X1Cm/j2Cı 	 24Cıjj˛jj2Cıpı=2
pX

jD1
EjX1jj2Cı: (16)

Proof The proof of Lemma 1 is similar to that of Lemma 6 in [26]. ut
Proof [Proof of Theorem 2] It suffices to verify that (5) and (6) hold in The-
orem 1. Consider Example 1. Assume that Q1 D O˙�1=2X1, and Q1Cm D



46 Y. Zang et al.

O˙�1=2X1Cm, where O is an orthogonal matrix satisfying that O˙O> is diagonal.
Then X>

1 X1Cm D Q>
1 O˙O>Q1Cm D Pp

jD1 �jQ1jQ1Cm;j, where �j’s are the
eigenvalues of ˙ . Therefore

E
�
.X>

1 X1Cm/
4
	 D E

2

6
4

0

@
pX

jD1
�jQ1jQ1Cm;j

1

A

4
3

7
5 	 9

0

@
pX

jD1
�2j

1

A

2

D 9Œtrf˙2g	2:

Thus we obtain that EŒ.X>
1 X1Cm/	

4=Œtrf˙2g	2 D O.1/ is bounded uniformly for any
p, i.e., (5) holds. Equation (6) can be verified in the same way.

As for Example 2, we define ˙ 0 D 
 >
 D .� 0
i;j/1�i;j�m and ˛>
 D

.a1; : : : ; am/. Since Xi D 
 Fi,

X>
1 X1Cm D

sX

j;j0D1
� 0
j;j0F1jF.1Cm/j0;

where F.1Cm/j denotes the jth element of F1Cm, and

˛>.X1 C X1Cm/ D
mX

jD1
aj.F1j C F.1Cm/j/:

Denote ıj1;:::;j8 D E
�Q8

kD1 F1jk
�

. The other cases of
Pd

vD1 lv 	 8 can be proved in

the same way. Notice that

E.X>
1 X1Cm/

8 D
sX

j1;:::;j8D1

sX

j01;:::;j
0

8D1

8Y

kD1
� 0
jk ;j

0

k
ıj1;:::;j8ıj01;:::;j

0

8
:

ıj1;:::;j8 ¤ 0 only when fj1; : : : ; j8g form pairs of integers. Denote
P� as the

summation of the situations that ıj1;:::;j8 ıj01;:::;j08 ¤ 0. By Lemma 1 we have

E.X>
1 X1Cm/

8 D O

 �X 8Y

kD1
� 0
jk ;j

0

k

!

D O
�
trf˙ 08g� D O

�
Œtrf˙ 02g	4� :
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Similarly we have
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Then according to Theorem 1, we can prove Theorem 2. ut
Proof [Proof of Theorem 3] Similar to the proof of Theorem 1, we only need to
show that under Conditions 1, 3–5, and the null hypothesis, as n ! 1,

1p
m

 
mX

iD1
QTi= Q�1;

mX

iD1
QSi= Q�2

!>
d! N.0; I2/ (17)

Pm
iD1 QT2i
m Q�21

p! 1;

Pm
iD1 QS2i
m Q�22

p! 1;

Pm
iD1 QTi QSi
m Q�1 Q�2

p! 0; (18)

where

Q�21 D tr
n
ŒE.V.g.X>

1 ˇ0// 
2.X1; ˇ0/X

.2/
1 X.2/>1 /	2

o
;

and

Q�22 D 2E
�
V.g.X>

1 ˇ0// 
2.X1; ˇ0/˛

>X.2/1 X.2/>1 ˛
�
:

To prove (17), it suffices to prove the following three asymptotic results:

Pm
iD1 QTip
m Q�1

d! N.0; 1/;

Pm
iD1 QSip
m Q�2

d! N.0; 1/; and a

Pm
iD1 QTip
m Q�1 C b

Pm
iD1 QSip
m Q�2

d! N.0; a2 C b2/:
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Notice that under the null hypothesis QH0, we have

Pm
iD1 QTip
m Q�1 D 1p

m Q�1
mX

iD1
h1i. Ǒ

0/

D 1p
m Q�1

mX

iD1
h1i.ˇ0/C 1p

m Q�1
mX

iD1
.h1i. Ǒ

0/� h1i.ˇ0//;

where

h1i.ˇ/ D  .Xi; ˇ0/ .XiCm; ˇ0/X
.2/>
i X.2/iCm

�
yi � g.X>

i ˇ/
� �
yiCm � g.X>

iCmˇ/
�
:

Through proper calculation and according to Conditions 3–5, we have

E

 
1p
m Q�1

mX

iD1
.h1i. Ǒ

0/� h1i.ˇ0//

!2

D o.1/:

Then by applying the Markov equality, we have

1p
m Q�1

mX

iD1
.h1i. Ǒ

0/� h1i.ˇ0// D op.1/:

Therefore
Pm

iD1
QTip

mQ�1 can be written as the summation of independent statistics and

op.1/, namely

Pm
iD1 QTip
m Q�1 D 1p

m Q�1
mX

iD1
h1i.ˇ0/C op.1/:

Therefore similar to the proof of (12) in Theorem 1, we can prove (17).
To show the first result in (18), it is obvious that

1

m Q�21

mX

iD1
QT2i D 1

m Q�21

mX

iD1
h21i. Ǒ

0/ D 1

m Q�21

mX

iD1
h21i.ˇ0/C 1

m Q�21

mX

iD1
.h21i. Ǒ

0/� h21i.ˇ0//:

By applying Conditions 3–5 and with proper computation, we can obtain

E

 
1

m Q�21

mX

iD1
.h21i. Ǒ

0/� h21i.ˇ0//

!2

D o.1/:
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According to the Markov equality, we obtain 1

mQ�21
Pm

iD1.h21i. Ǒ
0/� h21i.ˇ0// D op.1/.

Therefore we have

Pm
iD1 QT2i
m Q�21

D 1

m Q�21

mX

iD1
h21i.ˇ0/C op.1/: (19)

By adopting the method similar to the proof of (13) in Theorem 1, we can obtain
the first result in (18). Similarly, we can prove the other two results in (18). ut
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Random Projections for Large-Scale Regression

Gian-Andrea Thanei, Christina Heinze, and Nicolai Meinshausen

Abstract Fitting linear regression models can be computationally very expensive
in large-scale data analysis tasks if the sample size and the number of variables are
very large. Random projections are extensively used as a dimension reduction tool in
machine learning and statistics. We discuss the applications of random projections in
linear regression problems, developed to decrease computational costs, and give an
overview of the theoretical guarantees of the generalization error. It can be shown
that the combination of random projections with least squares regression leads to
similar recovery as ridge regression and principal component regression. We also
discuss possible improvements when averaging over multiple random projections,
an approach that lends itself easily to parallel implementation.

1 Introduction

Assume we are given a data matrix X 2 R
n�p (n samples of a p-dimensional random

variable) and a response vector Y 2 R
n. We assume a linear model for the data

where Y D Xˇ C " for some regression coefficient ˇ 2 R
p and " i.i.d. mean-

zero noise. Fitting a regression model by standard least squares or ridge regression
requires O.np2/ or O. p3/ flops. In the situation of large-scale (n; p very large) or
high dimensional ( p � n) data these algorithms are not applicable without having
to pay a huge computational price.

Using a random projection, the data can be “compressed” either row- or column-
wise. Row-wise compression was proposed and discussed in [7, 15, 19]. These
approaches replace the least-squares estimator

argmin
�2Rp

kY � X�k22 with the estimator argmin
�2Rp

k Y �  X�k22; (1)

where the matrix  2 R
m�n (m 
 n) is a random projection matrix and has,

for example, i.i.d. N .0; 1/ entries. Other possibilities for the choice of  are

G.-A. Thanei • C. Heinze • N. Meinshausen (�)
ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
e-mail: thanei@stat.math.ethz.ch; heinze@stat.math.ethz.ch; meinshausen@stat.math.ethz.ch

© Springer International Publishing AG 2017
S.E. Ahmed (ed.), Big and Complex Data Analysis, Contributions to Statistics,
DOI 10.1007/978-3-319-41573-4_3

51

mailto:thanei@stat.math.ethz.ch
mailto:heinze@stat.math.ethz.ch
mailto:meinshausen@stat.math.ethz.ch


52 G.-A. Thanei et al.

discussed below. The high dimensional setting and `1-penalized regression are
considered in [19], where it is shown that a sparse linear model can be recovered
from the projected data under certain conditions. The optimization problem is still
p-dimensional, however, and computationally expensive if the number of variables
is very large.

Column-wise compression addresses this later issue by reducing the problem to
a d-dimensional optimization with d 
 p by replacing the least-squares estimator

argmin
�2Rp

kY � X�k22 with the estimator � argmin
�2Rd

kY � X��k22; (2)

where the random projection matrix is now � 2 R
p�d (with d 
 p). By right

multiplication to the data matrix X we transform the data matrix to X� and thereby
reduce the number of variables from p to d and thus reducing computational com-
plexity. The Johnson–Lindenstrauss Lemma [5, 8, 9] guarantees that the distance
between two transformed sample points is approximately preserved in the column-
wise compression.

Random projections have also been considered under the aspect of preserving
privacy [3]. By pre-multiplication with a random projection matrix as in (1) no
observation in the resulting matrix can be identified with one of the original data
points. Similarly, post-multiplication as in (2) produces new variables that do not
reveal the realized values of the original variables.

In many applications the random projection used in practice falls under the
class of Fast Johnson–Lindenstrauss Transforms (FJLT) [2]. One instance of such
a fast projection is the Subsampled Randomized Hadamard Transform (SRHT)
[17]. Due to its recursive definition, the matrix–vector product has a complexity of
O. p log. p//, reducing the cost of the projection to O.np log. p//. Other proposals
that lead to speedups compared to a Gaussian random projection matrix include
random sign or sparse random projection matrices [1]. Notably, if the data matrix
is sparse, using a sparse random projection can exploit sparse matrix operations.
Depending on the number of non-zero elements in X, one might prefer using a
sparse random projection over an FJLT that cannot exploit sparsity in the data.
Importantly, using X� instead of X in our regression algorithm of choice can be
disadvantageous if X is extremely sparse and d cannot be chosen to be much smaller
than p. (The projection dimension d can be chosen by cross validation.) As the
multiplication by � “densifies” the design matrix used in the learning algorithm the
potential computational benefit of sparse data is not preserved.

For OLS and row-wise compression as in (1), where n is very large and p < m <
n, the SRHT (and similar FJLTs) can be understood as a subsampling algorithm.
It preconditions the design matrix by rotating the observations to a basis where all
points have approximately uniform leverage [7]. This justifies uniform subsampling
in the projected space which is applied subsequent to the rotation in order to reduce
the computational costs of the OLS estimation. Related ideas can be found in the
way columns and rows of X are sampled in a CUR-matrix decomposition [12].
While the approach in [7] focuses on the concept of leverage, McWilliams et al.
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[15] propose an alternative scheme that allows for outliers in the data and makes use
of the concept of influence [4]. Here, random projections are used to approximate
the influence of each observation which is then used in the subsampling scheme to
determine which observations to include in the subsample.

Using random projections column-wise as in (2) as a dimensionality reduction
technique in conjunction with (`2 penalized) regression has been considered in [10,
11, 13]. The main advantage of these algorithms is the computational speedup while
preserving predictive accuracy. Typically, a variance reduction is traded off against
an increase in bias. In general, one disadvantage of reducing the dimensionality
of the data is that the coefficients in the projected space are not interpretable in
terms of the original variables. Naively, one could reverse the random projection
operation by projecting the coefficients estimated in the projected space back into
the original space as in (2). For prediction purposes this operation is irrelevant, but
it can be shown that this estimator does not approximate the optimal solution in
the original p-dimensional coefficient space well [18]. As a remedy, Zhang et al.
[18] propose to find the dual solution in the projected space to recover the optimal
solution in the original space. The proposed algorithm approximates the solution to
the original problem accurately if the design matrix is low-rank or can be sufficiently
well approximated by a low-rank matrix.

Lastly, random projections have been used as an auxiliary tool. As an example,
the goal of McWilliams et al. [16] is to distribute ridge regression across variables
with an algorithm called LOCO. The design matrix is split across variables and the
variables are distributed over processing units (workers). Random projections are
used to preserve the dependencies between all variables in that each worker uses a
randomly projected version of the variables residing on the other workers in addition
to the set of variables assigned to itself. It then solves a ridge regression using this
local design matrix. The solution is the concatenation of the coefficients found from
each worker and the solution vector lies in the original space so that the coefficients
are interpretable. Empirically, this scheme achieves large speedups while retaining
good predictive accuracy. Using some of the ideas and results outlined in the current
manuscript, one can show that the difference between the full solution and the
coefficients returned by LOCO is bounded.

Clearly, row- and column-wise compression can also be applied simultaneously
or column-wise compression can be used together with subsampling of the data
instead of row-wise compression. In the remaining sections, we will focus on
the column-wise compression as it poses more difficult challenges in terms of
statistical performance guarantees. While row-wise compression just reduces the
effective sample size and can be expected to work in general settings as long as
the compressed dimension m < n is not too small [19], column-wise compression
can only work well if certain conditions on the data are satisfied and we will give an
overview of these results. If not mentioned otherwise, we will refer with compressed
regression and random projections to the column-wise compression.

The structure of the manuscript is as follows: We will give an overview of bounds
on the estimation accuracy in the following Sect. 2, including both known results
and new contributions in the form of tighter bounds. In Sect. 3 we will discuss the
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possibility and properties of variance-reducing averaging schemes, where estimators
based on different realized random projections are aggregated. Finally, Sect. 4
concludes the manuscript with a short discussion.

2 Theoretical Results

We will discuss in the following the properties of the column-wise compressed
estimator as in (2), which is defined as

Ǒ�
d D � argmin

�2Rd

kY � X��k22; (3)

where we assume that � has i.i.d. N .0; 1=d/ entries. This estimator will be referred
to as the compressed least-squares estimator (CLSE) in the following. We will focus
on the unpenalized form as in (3) but note that similar results also apply to estimators
that put an additional penalty on the coefficients ˇ or � . Due to the isotropy of the
random projection, a ridge-type penalty as in [11, 16] is perhaps a natural choice. An
interesting summary of the bounds on random projections is, on the other hand, that
the random projection as in (3) already acts as a regularization and the theoretical
properties of (3) are very much related to the properties of a ridge-type estimator of
the coefficient vector in the absence of random projections.

We will restrict discussion of the properties mostly to the mean-squared error
(MSE)

E�

�
E".kXˇ � X Ǒ�

d k22/
	
: (4)

First results on compressed least squares have been given in [13] in a random design
setting. It was shown that the bias of the estimator (3) is of order O.log.n/=d/.
This proof used a modified version of the Johnson–Lindenstrauss Lemma. A recent
result [10] shows that the log.n/-term is not necessary for fixed design settings
where Y D Xˇ C " for some ˇ 2 R

p and " is i.i.d. noise, centred E"Œ"	 D 0 and
with the variance E"Œ""0	 D �2In�n. We will work with this setting in the following.

The following result of [10] gives a bound on the MSE for fixed design.

Theorem 1 ([10]) Assume fixed design and Rank.X/ � d. Then

E�

�
E".kXˇ � X Ǒ�

d k22/
	 	 �2d C kXˇk22

d
C trace.X0X/

kˇk22
d

: (5)

Proof See Appendix.

Compared with [13], the result removes an unnecessary O.log.n// term and
demonstrates the O.1=d/ behaviour of the bias. The result also illustrates the
tradeoffs when choosing a suitable dimension d for the projection. Increasing d
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will lead to a 1=d reduction in the bias terms but lead to a linear increase in the
estimation error (which is proportional to the dimension in which the least-squares
estimation is performed). An optimal bound can only be achieved with a value of d
that depends on the unknown signal and in practice one would typically use cross
validation to make the choice of the dimension of the projection.

One issue with the bound in Theorem 1 is that the bound on the bias term in the
noiseless case (Y D Xˇ)

E�

�
E".kXˇ � X Ǒ�

d k22/
	 	 kXˇk22

d
C trace.X0X/

kˇk22
d

(6)

is usually weaker than the trivial bound (by setting Ǒ�
d D 0) of

E�

�
E".kXˇ � X Ǒ�

d k22/
	 	 kXˇk22 (7)

for most values of d < p. By improving the bound, it is also possible to point out
the similarities between ridge regression and compressed least squares.

The improvement in the bound rests on a small modification in the original proof
in [10]. The idea is to bound the bias term of (4) by optimizing over the upper bound
given in the foregoing theorem. Specifically, one can use the inequality

E�ŒE"ŒkXˇ � X�.�0X0X�/�1�0X0Xˇk22		
	 min

Ǒ2Rp
E�ŒE"ŒkXˇ � X��0 Ǒk22		;

instead of

E�ŒE"ŒkXˇ � X�.�0X0X�/�1�0X0Xˇk22		
	 E�ŒE"ŒkXˇ � X��0ˇk22		:

To simplify the exposition we will from now on always assume we have rotated the
design matrix to an orthogonal design so that the Gram matrix is diagonal:

˙ D X0X D diag.�1; : : :; �p/: (8)

This can always be achieved for any design matrix and is thus not a restriction.
It implies, however, that the optimal regression coefficients ˇ are expressed in
the basis in which the Gram matrix is orthogonal, this is the basis of principal
components. This will turn out to be the natural choice for random projections and
allows for easier interpretation of the results.

Furthermore note that in Theorem 1 we have the assumption Rank.X/ � d,
which tells us that we can apply the CLSE in the high dimensional setting p � n as
long as we choose d small enough (smaller than Rank.X/, which is usually equal to
n) in order to have uniqueness.
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With the foregoing discussion on how to improve the bound in Theorem 1 we get
the following theorem:

Theorem 2 Assume Rank.X/ � d, then the MSE (4) can be bounded above by

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 	 �2d C

pX

iD1
ˇ2i �iwi (9)

where

wi D .1C 1=d/�2i C .1C 2=d/�i trace.˙/C trace.˙/2=d

.d C 2C 1=d/�2i C 2.1C 1=d/�i trace.˙/C trace.˙/2=d
: (10)

Proof See Appendix.

The wi are shrinkage factors. By defining the proportion of the total variance
observed in the direction of the ith principal component as

˛i D �i

trace.˙/
; (11)

we can rewrite the shrinkage factors in the foregoing theorem as

wi D .1C 1=d/˛2i C .1C 2=d/˛i C 1=d

.d C 2C 1=d/˛2i C 2.1C 1=d/˛i C 1=d
: (12)

Analyzing this term shows that the shrinkage is stronger in directions of high
variance compared to directions of low variance. To explain this relation in a bit
more detail we compare it to ridge regression. The MSE of ridge regression with
penalty term �kˇk22 is given by

E"ŒkXˇ � XˇRidgek22	 D �2
pX

iD1

� �i

�i C �

�2 C
pX

iD1
ˇ2i �i

� �

�C �i

�2
: (13)

Imagine that the signal lives on the space spanned by the first q principal directions,
that is ˇi D 0 for i > q. The best MSE we could then achieve is �2q by running
a regression on the first q first principal directions. For random projections, we can
see that we can indeed reduce the bias term to nearly zero by forcing wi � 0 for
i D 1; : : : ; q. This requires d � q as the bias factors will then vanish like 1=d. Ridge
regression, on the other hand, requires that the penalty � is smaller than the qth
largest eigenvalue �q (to reduce the bias on the first q directions) but large enough
to render the variance factor �i=.�i C �/ very small for i > q. The tradeoff in
choosing the penalty � in ridge regression and choosing the dimension d for random
projections is thus very similar. The number of directions for which the eigenvalue
�i is larger than the penalty � in ridge corresponds to the effective dimension and
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will yield the same variance bound as in random projections. The analogy between
the MSE bounds (9) for random projections and (13) for ridge regression illustrates
thus a close relationship between compressed least squares and ridge regression or
principal component regression, similar to Dhillon et al. [6].

Instead of an upper bound for the MSE of CLSE as in [10, 13], we will in the
following try to derive explicit expressions for the MSE, following the ideas in [10,
14] and we give a closed form MSE in the case of orthonormal predictors. The
derivation will make use of the following notation:

Definition 1 Let � 2 R
p�d be a random projection. We define the following

matrices:

�Xd D�.�0X0X�/�1�0 2 R
p�p and T�d D E�Œ�

X
d 	 D E�Œ�.�

0X0X�/�1�0	 2 R
p�p:

The next Lemma [14] summarizes the main properties of �X
d and T�d .

Lemma 1 Let � 2 R
p�d be a random projection. Then

.i/ .�X
d /

0 D �X
d (symmetric),

.ii/ �X
dX

0X�X
d D �X

d (projection),
.iii/ if ˙ D X0X is diagonal ) T�d is diagonal.

Proof See Marzetta et al. [14].

The important point of this lemma is that when we assume orthogonal design then
T�d is diagonal. We will denote this by

T�d D diag.1=�1; : : :; 1=�p/;

where the terms �i are well defined but without an explicit representation.
A quick calculation reveals the following theorem:

Theorem 3 Assume Rank.X/ � d, then the MSE (4) equals

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 D �2d C

pX

iD1
ˇ2i �i

�
1 � �i

�i

�
: (14)

Furthermore we have

pX

iD1

�i

�i
D d: (15)

Proof See Appendix.
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Fig. 1 Numerical simulations of the bounds in Theorems 2 and 3. Left: the exact factor .1��1=�1/
in the MSE is plotted versus the bound w1 as a function of the projection dimension d. Right: the
exact factor .1 � �p=�p/ in the MSE and the upper bound wp. Note that the upper bound works
especially well for small values of d and for the larger eigenvalues and is always below the trivial
bound 1

By comparing coefficients in Theorems 2 and 3, we obtain the following corollary,
which is illustrated in Fig 1:

Corollary 1 Assume Rank.X/ � d, then

8i 2 f1; : : :; pg W 1 � �i

�i
	 wi (16)

As already mentioned in general we cannot give a closed form expression for the
terms �i in general. However, for some special cases (26) can help us to get to an
exact form of the MSE of CLSE. If we assume orthonormal design (˙ D CIp�p),
then we have that �i=�i is a constant for all i and and thus, by (26), we have �i D
Cp=d. This gives

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 D �2d C C

pX

iD1
ˇ2i

�
1 � d

p

�
; (17)

and thus we end up with a closed form MSE for this special case.
Providing the exact mean-squared errors allows us to quantify the conserva-

tiveness of the upper bounds. The upper bound has been shown to give a good
approximation for small dimensions d of the projection and for the signal contained
in the larger eigenvalues.
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3 Averaged Compressed Least Squares

We have so far looked only into compressed least-squares estimator with one
single random projection. An issue in practice of the compressed least-squares
estimator is its variance due to the random projection as an additional source of
randomness. This variance can be reduced by averaging multiple compressed least-
squares estimates coming from different random projections. In this section we will
show some properties of the averaged compressed least-squares estimator (ACLSE)
and discuss its advantage over the CLSE.

Definition 2 (ACLSE) Let f�1; : : :;�Kg 2 R
p�d be independent random projec-

tions, and let Ǒ�i
d for all i 2 f1; : : :;Kg be the respective compressed least-squares

estimators. We define the averaged compressed least-squares estimator (ACLSE) as

ǑK
d WD 1

K

KX

iD1
Ǒ�i
d : (18)

One major advantage of this estimator is that it can be calculated in parallel with the
minimal number of two communications, one to send the data and one to receive the
result. This means that the asymptotic computational cost of ǑK

d is equal to the cost
of Ǒ�

d if calculations are done on K different processors. To investigate the MSE of
ǑK
d , we restrict ourselves for simplicity to the limit case

Ǒ
d D lim

K!1
ǑK
d (19)

and instead only investigate Ǒ
d. The reasoning being that for large enough values of

K (say K > 100) the behaviour of Ǒ
d is very similar to ǑK

d . The exact form of the
MSE in terms of the �i’s is given in [10]. Here we build on these results and give an
explicit upper bound for the MSE.

Theorem 4 Assume Rank.X/ � d. Define

� D
pX

iD1

��i

�i

�2
:

The MSE of Ǒ
d can be bounded from above by

E�ŒE"ŒkXˇ � X Ǒ
dk22		 	 �2� C

pX

iD1
ˇ2i �iw

2
i ;
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where the wi’s are given (as in Theorem 1) by

wi D .1C 1=d/�2i C .1C 2=d/�i trace.˙/C trace.˙/2=d

.d C 2C 1=d/�2i C 2.1C 1=d/�i trace.˙/C trace.˙/2=d
:

and

� 2 Œd2=p; d	:

Proof See Appendix.

Comparing averaging to the case where we only have one single estimator we see
that there are two differences: First the variance due to the model noise " turns into
�2� with � 2 Œd2=p; d	, thus � 	 d. Second the shrinkage factors wi in the bias are
now squared, which in total means that the MSE of Ǒ

d is always smaller or equal to
the MSE of a single estimator Ǒ�

d .
We investigate the behaviour of � as a function of d in three different situations

(Fig. 2). We first look at two extreme cases of covariance matrices for which the
respective upper and lower bounds Œd2=p; d	 for � are achieved. For the lower bound,
let ˙ D Ip�p be orthonormal. Then �i=�i D c for all i, as above. From

pX

iD1
�i=�i D d

we get �i=�i D d=p. This leads to

� D
pX

iD1
.�i=�i/

2 D p
d2

p2
D d2

p
;

which reproduces the lower bound.
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Fig. 2 MSE of averaged compressed least squares (circle) versus the MSE of the single estimator
(cross) with covariance matrix ˙i;i D 1=i. On the left with �2 D 0 (only bias), in the middle
�2 D 1=40 and on the right �2 D 1=20. One can clearly see the quadratic improvement in terms
of MSE as predicted by Theorem 4
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We will not be able to reproduce the upper bound exactly for all d 	 p. But
we can show that for any d there exists a covariance matrix ˙ , such that the upper
bound is reached. The idea is to consider a covariance matrix that has equal variance
in the first d direction and almost zero in the remaining p � d. Define the diagonal
covariance matrix

˙i;j D

8
ˆ̂
<

ˆ̂
:

1; if i D j and i 	 d

�; if i D j and i > d

0; if i ¤ j

: (20)

We show lim�!0 � D d. For this decompose ˚ into two matrices ˚d 2 R
d�d and

˚r 2 R
. p�d/�d:

˚ D


˚d

˚r

�

:

The same way we define ˇd, ˇr, Xd and Xr. Now we bound the approximation error
of Ǒ˚

d to extract information about �i=�i. Assume a squared data matrix (n D p)
X D p

˙ , then

E˚ Œargmin
�2Rd

kXˇ � X˚�k22	 	 E˚ ŒkXˇ � X˚˚�1
d ˇdk22	

D E˚ ŒkXrˇr � Xr˚r˚
�1
d ˇdk22	

D �E˚ Œkˇr �˚r˚
�1
d ˇdk22	

	 �.2kˇrk22 C 2kˇdk22E˚ Œk˚rk22	E˚ Œk˚�1
d k22	/

	 �C;

where C is independent of � and bounded since the expectation of the smallest
and largest singular values of a random projection is bounded. This means that the
approximation error decreases to zero as we let � ! 0. Applying this to the closed
form for the MSE of Ǒ˚

d we have that

pX

iD1
ˇ2i �i

�
1 � �i

�i

�
	

dX

iD1
ˇ2i

�
1 � �i

�i

�
C �

pX

iDdC1
ˇ2i

�
1 � �i

�i

�

has to go to zero as � ! 0, which in turn implies

lim
�!0

dX

iD1
ˇ2i

�
1 � �i

�i

�
D 0;
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Fig. 3 Simulations of the variance factor � (line) as a function of d for three different covariance
matrices and in lower bound (d2=p) and upper bound (d) (square, triangle). On the left (˙ D Ip�p)
� as proven reaches the lower bound. In the middle (˙i;i D 1=i) � reaches almost the lower
bound, indicating that in most practical examples � will be very close to the lower bound and thus
averaging improves MSE substantially compared to the single estimator. On the right the extreme
case example from (20) with d D 5, where � reaches the upper bound for d D 5

and thus lim�!0 �i=�i D 1 for all i 2 f1; : : :; dg. This finally yields a limit

lim
�!0

pX

iD1

�2i

�2i
D d:

This illustrates that the lower bound d2=p and upper bound d for the variance
factor � can both be attained. Simulations suggest that � is usually close to the
lower bound, where the variance of the estimator is reduced by a factor d=p
compared to a single iteration of a compressed least-squares estimator, which is
on top of the reduction in the bias error term. This shows, perhaps unsurprisingly,
that averaging over random projection estimators improves the mean-squared error
in a Rao–Blackwellization sense. We have quantified the improvement. In practice,
one would have to decide whether to run multiple versions of a compressed least-
squares regression in parallel or run a single random projection with a perhaps larger
embedding dimension. The computational effort and statistical error tradeoffs will
depend on the implementation but the bounds above will give a good basis for a
decision (Fig. 3).

4 Discussion

We discussed some known results about the properties of compressed least-squares
estimation and proposed possible tighter bounds and exact results for the mean-
squared error. While the exact results do not have an explicit representation, they
allow nevertheless to quantify the conservative nature of the upper bounds on
the error. Moreover, the shown results allow to show a strong similarity of the
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error of compressed least squares, ridge and principal component regression. We
also discussed the advantages of a form of Rao–Blackwellization, where multiple
compressed least-square estimators are averaged over multiple random projections.
The latter averaging procedure also allows to compute the estimator trivially in a
distributed way and is thus often better suited for large-scale regression analysis.
The averaging methodology also motivates the use of compressed least squares
in the high dimensional setting where it performs similar to ridge regression and
the use of multiple random projection will reduce the variance and result in a
non-random estimator in the limit, which presents a computationally attractive
alternative to ridge regression.

Appendix

In this section we give proofs of the statements from the section theoretical results.

Theorem 1 ([10]) Assume fixed design and Rank.X/ � d, then the AMSE 4 can be
bounded above by

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 	 �2d C kXˇk22

d
C trace.X0X/

kˇk22
d
: (21)

Proof (Sketch)

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 D E�ŒkXˇ � X�.�0X0X�/�1�0X0Xˇk22	C �2d

	 E�ŒkXˇ � X�.�0X0X�/�1�0X0X��0ˇk22	C �2d

D E�ŒkXˇ � X��0ˇk22	C �2d:

Finally a rather lengthy but straightforward calculation leads to

E�ŒkXˇ � X��0ˇk22	 D kXˇk22
d

C trace.X0X/
kˇk22
d

(22)

and thus proving the statement above. ut
Theorem 2 Assume Rank.X/ � d, then the AMSE (4) can be bounded above by

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 	 �2d C

pX

iD1
ˇ2i �iwi (23)
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where

wi D .1C 1=d/�2i C .1C 2=d/�i trace.˙/C trace.˙/2=d

.d C 2C 1=d/�2i C 2.1C 1=d/�i trace.˙/C trace.˙/2=d
: (24)

Proof We have for all v 2 R
p

E�Œmin
O�2Rd

kXˇ � X� O�k22	 	 E�ŒkXˇ � X��0vk22	:

Which we can minimize over the whole set Rp:

E�Œmin
O�2Rd

kXˇ � X� O�k22	 	 min
v2Rp

E�ŒkXˇ � X��0vk22	:

This last expression we can calculate following the same path as in Theorem 1:

E�ŒkXˇ � X��0vk22	 Dˇ0X0Xˇ � 2ˇ0X0XE�Œ��0	v

C v0
E�Œ��

0X0X��0	v

Dˇ0X0Xˇ � 2ˇ0X0Xv

C .1C 1=d/v0X0Xv C trace.˙/

d
kvk22;

where ˙ D X0X. Next we minimize the above expression w.r.t v. For this we take
the derivative w.r.t. v and then we zero the whole expression. This yields

2
�
1C 1

d

�
˙v C 2

trace.˙/

d
Ip�pv � 2˙ˇ D 0:

Hence we have

v D
��
1C 1

d

�
˙ C trace.˙/

d
Ip�p

��1
˙ˇ;

which is element wise equal to

vi D ˇi�i

.1C 1=d/�i C trace.˙/=d
:

Define the notation s D trace.˙/. We now plug this back into the original
expression and get

min
v2Rp

E�ŒkXˇ � X��0vk22	 Dˇ0˙ˇ � 2ˇ0˙v

C .1C 1=d/v0˙v C s

d
kvk22
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D
pX

iD1
ˇ2i �i � 2ˇivi�i C .1C 1=d/v2i �i C s=dv2i

D
pX

iD1

�
ˇ2i �i � 2ˇ2i �i

�i

.1C 1=d/�i C s=d

C ˇ2i �i.1C 1=d/
�2i

..1C 1=d/�i C s=d/2

C ˇ2i �i
s

d

�i

..1C 1=d/�i C s=d/2

�

D
pX

iD1
ˇ2i �iwi;

by combining the summands we get for wi the expression mentioned in the theorem.
ut

Theorem 3 Assume Rank.X/ � d, then the MSE (4) equals

E�ŒE"ŒkXˇ � X Ǒ�
d k22		 D �2d C

pX

iD1
ˇ2i �i

�
1 � �i

�i

�
: (25)

Furthermore we have

pX

iD1

�i

�i
D d: (26)

Proof Calculating the expectation yields

E�ŒE"ŒkXˇ � X Ǒ
dk22		 D ˇ0˙ˇ � 2ˇ0˙T�d ˙ˇ C E�ŒE"ŒY

0X�X
d X

0Y		:

Going through these terms we get:

ˇ0˙ˇ D
pX

iD1
ˇ2i �i

ˇ0˙T�d˙ˇ D
pX

iD1
ˇ2i
�2i
�i

E�ŒE"ŒY
0X�X

d X
0Y		 D ˇ0˙E�Œ�

X
d 	˙ˇ C E�ŒE"Œ"

0X�X
d X

0"		:
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The first term in the last line equals
Pp

iD1 ˇ2i �2i =�i. The second can be calculated in
two ways, both relying on the shuffling property of the trace operator:

E�ŒE"Œ"
0X�X

d X
0"		 D E"Œ"

0XTX
d X

0"		 D �2 trace.XTX
d X

0/

D �2 trace.˙TX
d / D

pX

iD1

�i

�i
:

E�ŒE"Œ"
0X�X

d X
0"		 D �2E�Œtrace.X�X

d X
0/	 D �2E�Œtrace.˙�X

d /	

D �2E�Œtrace.Id�d/	 D �2d:

Adding the first version to the expectation from above we get the exact expected
mean-squared error. Setting both versions equal we get the equation

d D
pX

iD1

�i

�i
:

ut
Theorem 4 Assume Rank.X/ � d, then there exists a real number � 2 Œd2=p; d	
such that the AMSE of Ǒ

d can be bounded from above by

E�ŒE"ŒkXˇ � X Ǒ
dk22		 	 �2� C

pX

iD1
ˇ2i �iw

2
i ;

where the wi’s are given as

wi D .1C 1=d/�2i C .1C 2=d/�i trace.˙/C trace.˙/2=d

.d C 2C 1=d/�2i C 2.1C 1=d/�i trace.˙/C trace.˙/2=d

and

� 2 Œd2=p; d	:

Proof First a simple calculation [10] using the closed form solution gives the
following equation:

E�ŒE"ŒkXˇ � X Ǒ
dk22		 D �2

pX

iD1

��i

�i

�2 C
pX

iD1
ˇ2i �i

�
1� �i

�i

�2
: (27)
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Now using the corollary from the last section we can bound the second term by the
following way:

�
1 � �i

�i

�2 	 w2i : (28)

For the first term we write

� D
pX

iD1

��i

�i

�2
: (29)

Now note that since �i=�i 	 1 we have

��i

�i

�2 	 �i

�i
(30)

and thus we get the upper bound by

pX

iD1

��i

�i

�2 	
pX

iD1

�i

�i
D d: (31)

For the lower bound of � we consider an optimization problem. Denote ti D �i
�i

, then
we want to find t 2 R

p such that

pX

iD1
t2i is minimal

under the restrictions that

pX

iD1
ti D d and 0 	 ti 	 1:

The problem is symmetric in each coordinate and thus ti D c. Plugging this into
the linear sum gives c D d=p and we calculate the quadratic term to give the result
claimed in the theorem. ut
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Testing in the Presence of Nuisance Parameters:
Some Comments on Tests Post-Model-Selection
and Random Critical Values

Hannes Leeb and Benedikt M. Pötscher

Abstract We point out that the ideas underlying some test procedures recently
proposed for testing post-model-selection (and for some other test problems) in the
econometrics literature have been around for quite some time in the statistics litera-
ture. We also sharpen some of these results in the statistics literature. Furthermore,
we show that some intuitively appealing testing procedures, that have found their
way into the econometrics literature, lead to tests that do not have desirable size
properties, not even asymptotically.

1 Introduction

Suppose we have a sequence of statistical experiments given by a family of
probability measures

˚
Pn;˛;ˇ W ˛ 2 A; ˇ 2 B

�
where ˛ is a “parameter of interest”,

and ˇ is a “nuisance-parameter”. Often, but not always, A and B will be subsets
of the Euclidean space. Suppose the researcher wants to test the null hypothesis
H0 W ˛ D ˛0 using the real-valued test-statistic Tn.˛0/, with large values of Tn.˛0/
being taken as indicative for violation of H0.1 Suppose further that the distribution
of Tn.˛0/ under H0 depends on the nuisance parameter ˇ. This leads to the key
question: How should the critical value then be chosen? [Of course, if another,
pivotal, test-statistic is available, this one could be used. However, we consider here
the case where a (non-trivial) pivotal test-statistic either does not exist or where
the researcher—for better or worse—insists on using Tn.˛0/.] In this situation a
standard way (see, e.g., [3, p.170]) to deal with this problem is to choose as critical

1This framework obviously allows for “one-sided” as well as for “two-sided” alternatives (when
these concepts make sense) by a proper definition of the test-statistic.
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value

cn;sup.ı/ D sup
ˇ2B

cn;ˇ.ı/; (1)

where 0 < ı < 1 and where cn;ˇ.ı/ satisfies Pn;˛0;ˇ
�
Tn.˛0/ > cn;ˇ.ı/

� D ı for
each ˇ 2 B, i.e., cn;ˇ.ı/ is a .1 � ı/-quantile of the distribution of Tn.˛0/ under
Pn;˛0;ˇ . [We assume here the existence of such a cn;ˇ.ı/, but we do not insist that it
is chosen as the smallest possible number satisfying the above condition, although
this will usually be the case.] In other words, cn;sup.ı/ is the “worst-case” critical
value. While the resulting test, which rejects H0 for

Tn.˛0/ > cn;sup.ı/; (2)

certainly is a level ı test (i.e., has size 	 ı), the conservatism caused by taking the
supremum in (1) will often result in poor power properties, especially for values
of ˇ for which cn;ˇ.ı/ is much smaller than cn;sup.ı/. The test obtained from (1)
and (2) above (more precisely, an asymptotic variant thereof) is what Andrews and
Guggenberger [1] call a “size-corrected fixed critical value” test.2

An alternative idea, which has some intuitive appeal and which is much less
conservative, is to use cn; Ǒn.ı/ as a random critical value, where Ǒ

n is an estimator
for ˇ (taking its values in B), and to reject H0 if

Tn.˛0/ > cn; Ǒn.ı/ (3)

obtains (measurability of cn; Ǒn.ı/ being assumed). This choice of critical value
can be viewed as a parametric bootstrap procedure. Versions of cn; Ǒn.ı/ have been
considered by Williams [14] or, more recently, by Liu [9]. However,

Pn;˛0;ˇ

�
Tn.˛0/ > cn; Ǒn.ı/

�
� Pn;˛0;ˇ

�
Tn.˛0/ > cn;sup.ı/

�

clearly holds for every ˇ, indicating that the test using the random critical value
cn; Ǒn.ı/ may not be a level ı test, but may have size larger than ı. This was
already noted by Loh [8]. A precise result in this direction, which is a variation
of Theorem 2.1 in [8], is as follows:

Proposition 1 Suppose that there exists a ˇmax
n D ˇmax

n .ı/ such that cn;ˇmax
n
.ı/ D

cn;sup.ı/. Then

Pn;˛0;ˇmax
n

�
cn; Ǒn.ı/ < Tn.˛0/ 	 cn;sup.ı/

�
> 0 (4)

2While Andrews and Guggenberger [1] do not consider a finite-sample framework but rather a
“moving-parameter” asymptotic framework, the underlying idea is nevertheless exactly the same.
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implies

sup
ˇ2B

Pn;˛0;ˇ

�
Tn.˛0/ > cn; Ǒn.ı/

�
> ı; (5)

i.e., the test using the random critical value cn; Ǒn.ı/ does not have level ı. More
generally, if Ocn is any random critical value satisfying Ocn 	 cn;ˇmax

n
.ı/.D cn;sup.ı//

with Pn;˛0;ˇmax
n

-probability 1, then (4) still implies (5) if in both expressions cn; Ǒn.ı/
is replaced by Ocn. [The result continues to hold if the random critical value Ocn also
depends on some additional randomization mechanism.]

Proof Observe that cn; Ǒn.ı/ 	 cn;sup.ı/ always holds. But then the l.h.s. of (5) is
bounded from below by

Pn;˛0;ˇmax
n

�
Tn.˛0/ > cn; Ǒn.ı/

�

D Pn;˛0;ˇmax
n

�
Tn.˛0/ > cn;sup.ı/

�C Pn;˛0;ˇmax
n

�
cn; Ǒn.ı/ < Tn.˛0/ 	 cn;sup.ı/

�

D Pn;˛0;ˇmax
n

�
Tn.˛0/ > cn;ˇmax

n
.ı/
�C Pn;˛0;ˇmax

n

�
cn; Ǒn.ı/ < Tn.˛0/ 	 cn;sup.ı/

�

D ı C Pn;˛0;ˇmax
n

�
cn; Ǒn.ı/ < Tn.˛0/ 	 cn;sup.ı/

�
> ı;

the last inequality holding in view of (4). The proof for the second claim is
completely analogous. �

To better appreciate condition (4) consider the case where cn;ˇ.ı/ is uniquely

maximized at ˇmax
n and Pn;˛0;ˇmax

n
. Ǒ

n ¤ ˇmax
n / is positive. Then

Pn;˛0;ˇmax
n
.cn; Ǒn.ı/ < cn;sup.ı// > 0

holds and therefore we can expect condition (4) to be satisfied, unless there exists
a quite strange dependence structure between Ǒ

n and Tn.˛0/. The same argument
applies in the more general situation where there are multiple maximizers ˇmax

n

of cn;ˇ.ı/ as soon as Pn;˛0;ˇmax
n
. Ǒ

n … arg max cn;ˇ.ı// > 0 holds for one of the
maximizers ˇmax

n .
In the same vein, it is also useful to note that Condition (4) can equiv-

alently be stated as follows: The conditional cumulative distribution function
Pn;˛0;ˇmax

n
.Tn.˛0/ 	 � j Ǒ

n/ of Tn.˛0/ given Ǒ
n puts positive mass on the interval

.cn; Ǒn.ı/; cn;sup.ı/	 for a set of Ǒ
n’s that has positive probability under Pn;˛0;ˇmax

n
.

[Also note that Condition (4) implies that cn; Ǒn.ı/ < cn;sup.ı/ must hold with
positive Pn;˛0;ˇmax

n
-probability.] A sufficient condition for this then clearly is that for

a set of Ǒ
n’s of positive Pn;˛0;ˇmax

n
-probability we have that (i) cn; Ǒn.ı/ < cn;sup.ı/,

and (ii) the conditional cumulative distribution function Pn;˛0;ˇmax
n
.Tn.˛0/ 	 � j Ǒ

n/

puts positive mass on every non-empty interval. The analogous result holds for the



72 H. Leeb and B.M. Pötscher

case where Ocn replaces cn; Ǒn.ı/ (and conditioning is w.r.t. Ocn), see Lemma 5 in the
Appendix for a formal statement.

The observation that the test (3) based on the random critical value cn; Ǒn.ı/
typically will not be a level ı test has led Loh [8] and subsequently Berger and Boos
[2] and Silvapulle [13] to consider the following procedure (or variants thereof)
which leads to a level ı test that is somewhat less “conservative” than the test given
by (2)3: Let In be a random set in B satisfying

inf
ˇ2B Pn;˛0;ˇ .ˇ 2 In/ � 1 � �n;

where 0 	 �n < ı. That is, In is a confidence set for the nuisance parameter ˇ
with infimal coverage probability not less than 1 � �n (provided ˛ D ˛0). Define a
random critical value via

cn;�n;Loh.ı/ D sup
ˇ2In

cn;ˇ.ı � �n/: (6)

Then we have

sup
ˇ2B

Pn;˛0;ˇ
�
Tn.˛0/ > cn;�n ;Loh.ı/

� 	 ı:

This can be seen as follows: For every ˇ 2 B

Pn;˛0;ˇ
�
Tn.˛0/ > cn;�n ;Loh.ı/

� D Pn;˛0;ˇ
�
Tn.˛0/ > cn;�n ;Loh.ı/; ˇ 2 In

�

CPn;˛0;ˇ
�
Tn.˛0/ > cn;�n;Loh.ı/; ˇ … In

�

	 Pn;˛0;ˇ
�
Tn.˛0/ > cn;ˇ.ı � �n/; ˇ 2 In

�C �n

	 Pn;˛0;ˇ
�
Tn.˛0/ > cn;ˇ.ı � �n/

�C �n

D ı � �n C �n D ı:

Hence, the random critical value cn;�n ;Loh.ı/ results in a test that is guaranteed to be
level ı. In fact, its size can also be lower bounded by ı � �n provided there exists
a ˇmax

n .ı � �n/ satisfying cn;ˇmax
n .ı��n/.ı � �n/ D supˇ2B cn;ˇ.ı � �n/: This follows

since

sup
ˇ2B

Pn;˛0;ˇ
�
Tn.˛0/ > cn;�n;Loh.ı/

�

� sup
ˇ2B

Pn;˛0;ˇ

 

Tn.˛0/ > sup
ˇ2B

cn;ˇ.ı � �n/
!

3 Loh [8] actually considers the random critical value cn;�n;Loh� .ı/ given by supˇ2In cn;ˇ.ı/,
which typically does not lead to a level ı test in finite samples in view of Proposition 1 (since
cn;�n;Loh� .ı/ � cn;sup.ı/). However, Loh [8] focuses on the case where �n ! 0 and shows that then
the size of the test converges to ı; that is, the test is asymptotically level ı if �n ! 0. See also
Remark 4.
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D sup
ˇ2B

Pn;˛0;ˇ
�
Tn.˛0/ > cn;ˇmax

n .ı��n/.ı � �n/
�

� Pn;˛0;ˇmax
n .ı��n/

�
Tn.˛0/ > cn;ˇmax

n .ı��n/.ı � �n/
�

D ı � �n: (7)

The critical value (6) (or asymptotic variants thereof) has also been used in
econometrics, e.g., by DiTraglia [4], McCloskey [10, 11], and Romano et al. [12].

The test based on the random critical value cn;�n ;Loh.ı/ may have size strictly
smaller than ı. This suggests that this test will not improve over the conservative
test based on cn;sup.ı/ for all values of ˇ: We can expect that the test based on (6)
will sacrifice some power when compared with the conservative test (2) when the
true ˇ is close to ˇmax

n .ı/ or ˇmax
n .ı � �n/; however, we can often expect a power

gain for values of ˇ that are “far away” from ˇmax
n .ı/ and ˇmax

n .ı � �n/, as we then
typically will have that cn;�n ;Loh.ı/ is smaller than cn;sup.ı/. Hence, each of the two
tests will typically have a power advantage over the other in certain parts of the
parameter space B.

It is thus tempting to try to construct a test that has the power advantages of both
these tests by choosing as a critical value the smaller one of the two critical values,
i.e., by choosing

Ocn;�n;min.ı/ D min
�
cn;sup.ı/; cn;�n;Loh.ı/

�
(8)

as the critical value. While both critical values cn;sup.ı/ and cn;�n;Loh.ı/ lead to level
ı tests, this is, however, unfortunately not the case in general for the test based on the
random critical value (8). To see why, note that by construction the critical value (8)
satisfies

Ocn;�n ;min.ı/ 	 cn;sup.ı/;

and hence can be expected to fall under the wrath of Proposition 1 given above. Thus
it can be expected to not deliver a test that has level ı, but has a size that exceeds ı.
So while the test based on the random critical value proposed in (8) will typically
reject more often than the tests based on (2) or on (6), it does so by violating the
size constraint. Hence it suffers from the same problems as the parametric bootstrap
test (3). [We make the trivial observation that the lower bound (7) also holds if
Ocn;�n;min.ı/ instead of cn;�n ;Loh.ı/ is used, since Ocn;�n ;min.ı/ 	 cn;�n;Loh.ı/ holds.] As
a point of interest we note that the construction (8) has actually been suggested in
the literature, see McCloskey [10].4 In fact, McCloskey [10] suggested a random
critical value Ocn;McC.ı/ which is the minimum of critical values of the form (8) with
�n running through a finite set of values; it is thus less than or equal to the individual
Ocn;�n;min’s, which exacerbates the size distortion problem even further.

4This construction is no longer suggested in [11].
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While Proposition 1 shows that tests based on random critical values like cn; Ǒn.ı/
or Ocn;�n ;min.ı/ will typically not have level ı, it leaves open the possibility that
the overshoot of the size over ı may converge to zero as sample size goes to
infinity, implying that the test would then be at least asymptotically of level ı. In
sufficiently “regular” testing problems this will indeed be the case. However, for
many testing problems where nuisance parameters are present such as testing post-
model- selection, it turns out that this is typically not the case: In the next section
we illustrate this by providing a prototypical example where the overshoot does not
converge to zero for the tests based on cn; Ǒn.ı/ or Ocn;�n;min.ı/, and hence these tests
are not level ı even asymptotically.

2 An Illustrative Example

In the following we shall—for the sake of exposition—use a very simple example
to illustrate the issues involved. Consider the linear regression model

yt D ˛xt1 C ˇxt2 C �t .1 	 t 	 n/ (9)

under the “textbook” assumptions that the errors �t are i.i.d. N.0; �2/, �2 > 0, and
the nonstochastic n�2 regressor matrixX has full rank (implying n > 1) and satisfies
X0X=n ! Q > 0 as n ! 1. The variables yt, xti, as well as the errors �t can be
allowed to depend on sample size n (in fact may be defined on a sample space that
itself depends on n), but we do not show this in the notation. For simplicity, we shall
also assume that the error variance �2 is known and equals 1. It will be convenient
to write the matrix .X0X=n/�1 as

.X0X=n/�1 D
 
�2˛;n �˛;ˇ;n

�˛;ˇ;n �2ˇ;n

!

:

The elements of the limit of this matrix will be denoted by �2˛;1, etc. It will prove
useful to define �n D �˛;ˇ;n=.�˛;n�ˇ;n/, i.e., �n is the correlation coefficient between
the least-squares estimators for ˛ and ˇ in model (9). Its limit will be denoted by
�1. Note that j�1j < 1 holds, since Q > 0 has been assumed.

As in [7] we shall consider two candidate models from which we select on the
basis of the data: The unrestricted model denoted by U which uses both regressors
xt1 and xt2, and the restricted model denoted by R which uses only the regressor
xt1 (and thus corresponds to imposing the restriction ˇ D 0). The least-squares
estimators for ˛ and ˇ in the unrestricted model will be denoted by Ǫn.U/ and
Ǒ
n.U/, respectively. The least-squares estimator for ˛ in the restricted model will

be denoted by Ǫn.R/, and we shall set Ǒ
n.R/ D 0. We shall decide between the

competing models U and R depending on whether jpn Ǒ.Un/=�ˇ;nj > c or not,
where c > 0 is a user-specified cut-off point independent of sample size (in line
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with the fact that we consider conservative model selection). That is, we select the
model OMn according to

OMn D
(
U if jpn Ǒ

n.U/=�ˇ;nj > c;
R otherwise.

We now want to test the hypothesis H0 W ˛ D ˛0 versus H1 W ˛ > ˛0 and we insist,
for better or worse, on using the test-statistic

Tn.˛0/ D
h
n1=2 . Ǫ .R/� ˛0/ =

�
�˛;n

�
1 � �2n

�1=2�i
1. OMn D R/

C �
n1=2 . Ǫ .U/� ˛0/ =�˛;n

	
1. OMn D U/:

That is, depending on which of the two models has been selected, we insist on using
the corresponding textbook test-statistic (for the known-variance case). While this
could perhaps be criticized as somewhat simple-minded, it describes how such a
test may be conducted in practice when model selection precedes the inference step.
It is well known that if one uses this test-statistic and naively compares it to the
usual normal-based quantiles acting as if the selected model were given a priori,
this results in a test with severe size distortions, see, e.g., [5] and the references
therein. Hence, while sticking with Tn.˛0/ as the test-statistic, we now look for
appropriate critical values in the spirit of the preceding section and discuss some of
the proposals from the literature. Note that the situation just described fits into the
framework of the preceding section with ˇ as the nuisance parameter and B D R.

Calculations similar to the ones in [7] show that the finite-sample distribution of
Tn.˛0/ under H0 has a density that is given by

hn;ˇ.u/ D �
�
n1=2ˇ=�ˇ;n; c

�
�
�
u C �n

�
1 � �2n

��1=2
n1=2ˇ=�ˇ;n

�

C
�
1 ��

��
1 � �2n

��1=2 �
n1=2ˇ=�ˇ;n C �nu

�
;
�
1 � �2n

��1=2
c
��
� .u/ ;

where �.a; b/ D ˆ.a C b/ � ˆ.a � b/ and where � and ˆ denote the density
and cdf, respectively, of a standard normal variate. Let Hn;ˇ denote the cumulative
distribution function (cdf) corresponding to hn;ˇ .

Now, for given significance level ı, 0 < ı < 1, let cn;ˇ.ı/ D H�1
n;ˇ.1� ı/ as in the

preceding section. Note that the inverse function exists, since Hn;ˇ is continuous and
is strictly increasing as its density hn;ˇ is positive everywhere. As in the preceding
section let

cn;sup.ı/ D sup
ˇ2R

cn;ˇ.ı/ (10)

denote the conservative critical value (the supremum is actually a maximum in
the interesting case ı 	 1=2 in view of Lemmata 6 and 7 in the Appendix).
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Let cn; Ǒn.U/.ı/ be the parametric bootstrap-based random critical value. With �
satisfying 0 < � < ı, we also consider the random critical value

cn;�;Loh.ı/ D sup
ˇ2In

cn;ˇ.ı � �/ (11)

where

In D
h Ǒ

n.U/˙ n�1=2�ˇ;nˆ�1.1 � .�=2//
i

is an 1� � confidence interval for ˇ. [Again the supremum is actually a maximum.]
We choose here � independent of n as in [4, 10, 11] and comment on sample size
dependent � below. Furthermore define

Ocn;�;min.ı/ D min
�
cn;sup.ı/; cn;�;Loh.ı/

�
: (12)

Recall from the discussion in Sect. 1 that these critical values have been used in the
literature in the contexts of testing post-model-selection, post-moment-selection, or
post-model-averaging. Among the critical values cn;sup.ı/, cn; Ǒn.U/.ı/, cn;�;Loh.ı/,
and Ocn;�;min.ı/, we already know that cn;sup.ı/ and cn;�;Loh.ı/ lead to tests that are
valid level ı tests. We next confirm—as suggested by the discussion in the preceding
section—that the random critical values cn; Ǒn.U/.ı/ and Ocn;�;min.ı/ (at least for some
choices of �) do not lead to tests that have level ı (i.e., their size is strictly larger
than ı). Moreover, we also show that the sizes of the tests based on cn; Ǒn.U/.ı/ or
Ocn;�;min.ı/ do not converge to ı as n ! 1, implying that the asymptotic sizes
of these tests exceed ı. These results a fortiori also apply to any random critical
value that does not exceed cn; Ǒn.U/.ı/ or Ocn;�;min.ı/ (such as Ocn;McC.ı/ in [10] or
cn;�;Loh�.ı/). In the subsequent theorem we consider for simplicity only the case
�n � �, but the result extends to the more general case where �n may depend on n.

Theorem 2 Suppose �n � � ¤ 0 and let 0 < ı 	 1=2 be arbitrary. Then

inf
n>1

sup
ˇ2R

Pn;˛0;ˇ

�
Tn.˛0/ > cn; Ǒn.U/.ı/

�
> ı: (13)

Furthermore, for each fixed �, 0 < � < ı, that is sufficiently small we have

inf
n>1

sup
ˇ2R

Pn;˛0;ˇ
�
Tn.˛0/ > Ocn;�;min.ı/

�
> ı: (14)

Proof We first prove (14). Introduce the abbreviation � D n1=2ˇ=�ˇ;n and define
O�.U/ D n1=2 Ǒ.U/=�ˇ;n. Observe that the density hn;ˇ (and hence the cdf Hn;ˇ)
depends on the nuisance parameter ˇ only via � , and otherwise is independent
of sample size n (since �n D � is assumed). Let Nh� be the density of Tn.˛0/
when expressed in the reparameterization � . As a consequence, the quantiles satisfy
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cn;ˇ.v/ D Nc� .v/ for every 0 < v < 1, where Nc� .v/ D NH�1
� .1 � v/ and NH�

denotes the cdf corresponding to Nh� . Furthermore, for 0 < � < ı, observe that
cn;�;Loh.ı/ D supˇ2In cn;ˇ.ı � �/ can be rewritten as

cn;�;Loh.ı/ D sup
�2Œ O�.U/˙ˆ�1.1�.�=2//	

Nc� .ı � �/:

Now define �max D �max.ı/ as a value of � such that Nc�max.ı/ D Ncsup.ı/ WD
sup�2R Nc� .ı/. That such a maximizer exists follows from Lemmata 6 and 7 in
the Appendix. Note that �max does not depend on n. Of course, �max is related to
ˇmax
n D ˇmax

n .ı/ via �max D n1=2ˇmax
n =�ˇ;n. Since Ncsup.ı/ D Nc�max.ı/ is strictly

larger than

lim
j� j!1

Nc� .ı/ D ˆ�1.1 � ı/

in view of Lemmata 6 and 7 in the Appendix, we have for all sufficiently small �,
0 < � < ı, that

lim
j� j!1

Nc� .ı � �/ D ˆ�1.1 � .ı � �// < Ncsup.ı/ D Nc�max.ı/: (15)

Fix such an �. Let now " > 0 satisfy " < Ncsup.ı/�ˆ�1.1� .ı��//. Because of the
limit relation in the preceding display, we see that there exists M D M."/ > 0 such
that for j� j > M we have Nc� .ı � �/ < Ncsup.ı/� ". Define the set

A D ˚
x 2 R W jxj > ˆ�1.1 � .�=2//C M

�
:

Then on the event f O�.U/ 2 Ag we have that Ocn;�;min.ı/ 	 Ncsup.ı/ � ". Furthermore,
noting that Pn;˛0;ˇmax

n

�
Tn.˛0/ > cn;sup.ı/

� D Pn;˛0;ˇmax
n

�
Tn.˛0/ > Ncsup.ı/

� D ı, we
have

sup
ˇ2R

Pn;˛0;ˇ
�
Tn.˛0/ > Ocn;�;min.ı/

� � Pn;˛0;ˇmax
n

�
Tn.˛0/ > Ocn;�;min.ı/

�

D Pn;˛0;ˇmax
n

�
Tn.˛0/ > Ncsup.ı/

�C Pn;˛0;ˇmax
n

�Ocn;�;min.ı/ < Tn.˛0/ 	 Ncsup.ı/
�

� ı C Pn;˛0;ˇmax
n

�Ocn;�;min.ı/ < Tn.˛0/ 	 Ncsup.ı/; O�.U/ 2 A
�

� ı C Pn;˛0;ˇmax
n

�Ncsup.ı/ � " < Tn.˛0/ 	 Ncsup.ı/; O�.U/ 2 A
�
:
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We are hence done if we can show that the probability in the last line is positive and
independent of n. But this probability can be written as follows:5

Pn;˛0;ˇmax
n

�Ncsup.ı/� " < Tn.˛0/ 	 Ncsup.ı/; O�.U/ 2 A
�

D Pn;˛0;ˇmax
n

�Ncsup.ı/� " < Tn.˛0/ 	 Ncsup.ı/; O�.U/ 2 A; j O�.U/j 	 c
�

CPn;˛0;ˇmax
n

�Ncsup.ı/ � " < Tn.˛0/ 	 Ncsup.ı/; O�.U/ 2 A; j O�.U/j > c
�

D Pn;˛0;ˇmax
n

�
Ncsup.ı/ � n1=2 . Ǫ .R/ � ˛0/ =

�
�˛;n

�
1 � �2�1=2

�

> Ncsup.ı/� "; O�.U/ 2 A; j O�.U/j 	 c
�

CPn;˛0;ˇmax
n

�Ncsup.ı/ � n1=2 . Ǫ .U/� ˛0/ =�˛;n
> Ncsup.ı/� "; O�.U/ 2 A; j O�.U/j > c

�

D
h
ˆ.Ncsup.ı/C �

�
1 � �2��1=2 �max/�ˆ.Ncsup.ı/C �

�
1 � �2

��1=2
�max � "/

i

� Pr .Z2 2 A; jZ2j 	 c/C Pr
�Ncsup.ı/ � Z1 > Ncsup.ı/ � ";Z2 2 A; jZ2j > c

�
;

where we have made use of independence of Ǫ .R/ and O�.U/, cf. Lemma A.1 in [6],
and of the fact that n1=2 . Ǫ .R/� ˛0/ is distributed as N.��˛;n��max; �2˛;n

�
1 � �2�/

under Pn;˛0;ˇmax
n

. Furthermore, we have used the fact that
�
n1=2 . Ǫ .U/� ˛0/ =�˛;n;

O�.U//0 is under Pn;˛0;ˇmax
n

distributed as .Z1;Z2/
0 where

.Z1;Z2/
0 � N




.0; �max/0;


1 �

� 1

��

;

which is a non-singular normal distribution, since j�j < 1. It is now obvious from
the final expression in the last but one display that the probability in question is
strictly positive and is independent of n. This proves (14).

We turn to the proof of (13). Observe that cn; Ǒn.U/.ı/ D Nc O�.U/.ı/ and that

Ncsup.ı/ D Nc�max.ı/ > lim
j� j!1

Nc� .ı/ D ˆ�1.1 � ı/

in view of Lemmata 6 and 7 in the Appendix. Choose " > 0 to satisfy " < Ncsup.ı/�
ˆ�1.1� ı/. Because of the limit relation in the preceding display, we see that there
exists M D M."/ > 0 such that for j� j > M we have Nc� .ı/ < Ncsup.ı/ � ". Define
the set

B D fx 2 R W jxj > Mg :

5The corresponding calculation in previous versions of this paper had erroneously omitted the

term �
�
1� �2

�
�1=2

�max from the expression on the far right-hand side of the subsequent display.
This is corrected here by accounting for this term. Alternatively, one could drop the probability
involving j O�.U/j � c altogether from the proof and work with the resulting lower bound.
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Then on the event f O�.U/ 2 Bg we have that cn; Ǒn.U/.ı/ D Nc O�.U/.ı/ 	 Ncsup.ı/ � ".
The rest of the proof is then completely analogous to the proof of (14) with the set
A replaced by B. �

Remark 3

(i) Inspection of the proof shows that (14) holds for every �, 0 < � < ı, that
satisfies (15).

(ii) It is not difficult to show that the suprema in (13) and (14) actually do not
depend on n.

Remark 4 If we allow � to depend on n, we may choose � D �n ! 0 as n ! 1.
Then the test based on Ocn;�n;min.ı/ still has a size that strictly overshoots ı for every
n, but the overshoot will go to zero as n ! 1. While this test then “approaches”
the conservative test that uses cn;sup.ı/, it does not respect the level for any finite-
sample size. [The same can be said for Loh’s [8] original proposal cn;�n;Loh�.ı/,
cf. footnote 3.] Contrast this with the test based on cn;�n;Loh.ı/ which holds the level
for each n, and also “approaches” the conservative test if �n ! 0. Hence, there
seems to be little reason for preferring Ocn;�n ;min.ı/ (or cn;�n;Loh�.ı/) to cn;�n ;Loh.ı/ in
this scenario where �n ! 0.

Appendix

Lemma 5 Suppose a random variable Ocn satisfies Pr .Ocn 	 c�/ D 1 for some real
number c� as well as Pr .Ocn < c�/ > 0. Let S be real-valued random variable. If for
every non-empty interval J in the real line

Pr .S 2 J j Ocn/ > 0 (16)

holds almost surely, then

Pr
�Ocn < S 	 c�� > 0:

The same conclusion holds if in (16) the conditioning variable Ocn is replaced by
some variable wn, say, provided that Ocn is a measurable function of wn.

Proof Clearly

Pr
�Ocn < S 	 c�

� D E
�
Pr
�
S 2 .Ocn; c�	 j Ocn

�	 D E
�
Pr
�
S 2 .Ocn; c�	 j Ocn

�
1
�Ocn < c�

�	
;

the last equality being true, since the first term in the product is zero on the event
Ocn D c�. Now note that the first factor in the expectation on the far right-hand side
of the above equality is positive almost surely by (16) on the event fOcn < c�g, and
that the event fOcn < c�g has positive probability by assumption. �

Recall that Nc� .v/ has been defined in the proof of Theorem 2.
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Lemma 6 Assume �n � � ¤ 0. Suppose 0 < v < 1. Then the map � ! Nc� .v/ is
continuous on R. Furthermore, lim�!1 Nc� .v/ D lim�!�1 Nc� .v/ D ˆ�1.1� v/.

Proof If �l ! � , then Nh�l converges to Nh� pointwise on R. By Scheffé’s Lemma, NH�l
then converges to NH� in total variation distance. Since NH� is strictly increasing on
R, convergence of the quantiles Nc�l.v/ to Nc� .v/ follows. The second claim follows
by the same argument observing that Nh� converges pointwise to a standard normal
density for � ! ˙1. �
Lemma 7 Assume �n � � ¤ 0.

(i) Suppose 0 < v 	 1=2. Then for some � 2 R we have that Nc� .v/ is larger than
ˆ�1.1 � v/.

(ii) Suppose 1=2 	 v < 1. Then for some � 2 R we have that Nc� .v/ is smaller than
ˆ�1.1 � v/.

Proof Standard regression theory gives

Ǫn.U/ D Ǫn.R/C ��˛;n Ǒ
n.U/=�ˇ;n;

with Ǫn.R/ and Ǒ
n.U/ being independent; for the latter cf., e.g., [6], Lemma A.1.

Consequently, it is easy to see that the distribution of Tn.˛0/ under Pn;˛0;ˇ is the
same as the distribution of

T 0 D T 0.�; �/ D
�p

1 � �2W C �Z
�
1 fjZ C � j > cg

C
 

W � � �
p
1 � �2

!

1 fjZ C � j 	 cg ;

where, as before, � D n1=2ˇ=�ˇ;n, and where W and Z are independent standard
normal random variables.

We now prove (i): Let q be shorthand for ˆ�1.1 � v/ and note that q � 0 holds
by the assumption on v. It suffices to show that Pr .T 0 	 q/ < ˆ.q/ for some � . We
can now write

Pr
�
T 0 	 q

� D Pr
�p

1 � �2W C �Z 	 q
�

� Pr

 

jZ C � j 	 c;W 	 q � �Z
p
1 � �2

!

C Pr

 

jZ C � j 	 c;W 	 q C ��
p
1 � �2

!

D ˆ.q/ � Pr.A/C Pr.B/:

Here, A and B are the events given in terms of W and Z. Picturing these two events
as subsets of the plane (with the horizontal axis corresponding to Z and the vertical
axis corresponding to W), we see that A corresponds to the vertical band where
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jZ C � j 	 c, truncated above the line where W D .q � �Z/=
p
1 � �2; similarly,

B corresponds to the same vertical band jZ C � j 	 c, truncated now above the
horizontal line where W D q C ��=

p
1 � �2.

We first consider the case where � > 0 and distinguish two cases:

Case 1: �c 	
�
1 �p

1 � �2
�
q.

In this case the set B is contained in A for every value of � , with AnB being a
set of positive Lebesgue measure. Consequently, Pr.A/ > Pr.B/ holds for every � ,
proving the claim.

Case 2: �c >
�
1 �p

1 � �2
�
q.

In this case choose � so that �� � c � 0, and, in addition, such that also .q �
�.�� � c//=

p
1 � �2 < 0, which is clearly possible. Recalling that � > 0, note

that the point where the line W D .q � �Z/=
p
1 � �2 intersects the horizontal line

W D q C ��=
p
1 � �2 has as its first coordinate Z D �� C .q=�/.1 �p

1 � �2/,
implying that the intersection occurs in the right half of the band where jZC� j 	 c.
As a consequence, Pr.B/� Pr.A/ can be written as follows:

Pr.B/� Pr.A/ D Pr.BnA/� Pr.AnB/

where

BnA D
n
�� C .q=�/.1�

p
1� �2/ 	 Z 	 �� C c;

.q � �Z/=
p
1 � �2 < W 	 q C ��=

p
1 � �2

o

and

AnB D
n
�� � c 	 Z 	 �� C .q=�/.1�

p
1 � �2/;

q C ��=
p
1 � �2 < W 	 .q � �Z/=

p
1 � �2

o
:

Picturing AnB and BnA as subsets of the plane as in the preceding paragraph, we
see that these events correspond to two triangles, where the triangle corresponding
to AnB is larger than or equal (in Lebesgue measure) to that corresponding to BnA.
Since � was chosen to satisfy �� � c � 0 and .q � �.�� � c//=

p
1 � �2 < 0, we

see that each point in the triangle corresponding to AnB is closer to the origin than
any point in the triangle corresponding to BnA. Because the joint Lebesgue density
of .Z;W/, i.e., the bivariate standard Gaussian density, is spherically symmetric and
radially monotone, it follows that Pr.BnA/� Pr.AnB/ < 0, as required.

The case � < 0 follows because T 0.�; �/ has the same distribution as T 0.��;��/.
Part (ii) follows, since T 0.�; �/ has the same distribution as �T 0.��; �/. �
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Remark 8 If �n � � ¤ 0 and v D 1=2, then Nc0.1=2/ D ˆ�1.1=2/ D 0, since Nh0 is
symmetric about zero.

Remark 9 If �n � � D 0, then Tn.˛0/ is standard normally distributed for every
value of ˇ, and hence Nc� .v/ D ˆ�1.1 � v/ holds for every � and v.
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Analysis of Correlated Data with Error-Prone
Response Under Generalized
Linear Mixed Models

Grace Y. Yi, Zhijian Chen, and Changbao Wu

Abstract Measurements of variables are often subject to error due to various
reasons. Measurement error in covariates has been discussed extensively in the
literature, while error in response has received much less attention. In this paper,
we consider generalized linear mixed models for clustered data where measurement
error is present in response variables. We investigate asymptotic bias induced by
nonlinear error in response variables if such error is ignored, and evaluate the
performance of an intuitively appealing approach for correction of response error
effects. We develop likelihood methods to correct for effects induced from response
error. Simulation studies are conducted to evaluate the performance of the proposed
methods, and a real data set is analyzed with the proposed methods.

1 Introduction

Generalized linear mixed models (GLMMs) have been broadly used to analyze
correlated data, such as clustered/familial data, longitudinal data, and multivariate
data. GLMMs provide flexible tools to accommodate normally or non-normally
distributed data through various link functions between the response mean and a
set of predictors. For longitudinal studies, in which repeated measurements of a
response variable are collected on the same subject over time, GLMMs can be used
as a convenient analytic tool to account for subject-specific variations [e.g., 5].

Standard statistical analysis with GLMMs is typically developed under the
assumption that all variables are precisely observed. However, this assumption
is commonly violated in applications. There has been much interest in statistical
inference pertaining to error-in-covariates, and a large body of methods have been
developed [e.g., 3, 17, 18]. Measurement error in response, however, has received
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much less attention, and this is partially attributed to a misbelief that ignoring
response error would still lead to valid inferences. Unfortunately, this is only true in
some special cases, e.g., the response variable follows a linear regression model
and is subject to additive measurement error. With nonlinear response models
or nonlinear error models, inference results can be seriously biased if response
error is ignored. Buonaccorsi [1] conducted numerical studies to illustrate induced
biases under linear models with nonlinear response measurement error. With binary
responses subject to error, several authors, such as Neuhaus [10] and Chen et al. [4],
demonstrated that naive analysis ignoring measurement error may lead to incorrect
inference results.

Although there is some research on this topic, systematic studies on general
clustered/longitudinal data with response error do not seem available. It is the goal
of this paper to investigate the asymptotic bias induced by the error in response
and to develop valid inference procedures to account for such biases. We formulate
the problem under flexible frameworks where GLMMs are used to feature various
response processes and nonlinear models are adopted to characterize response
measurement error.

Our research is partly motivated by the Framingham Heart Study, a large scale
longitudinal study concerning the development of cardiovascular disease. It is
well known that certain variables, such as blood pressure, are difficult to measure
accurately due to the biological variability and that their values are greatly affected
by the change of environment. There has been a large body of work on the
analysis of data from the Framingham Heart Study, accounting for measurement
error in covariates. For example, Carroll et al. [2] considered binary regression
models to relate the probability of developing heart disease to risk factors including
error-contaminated systolic blood pressure. Within the framework of longitudinal
analysis, the impact of covariate measurement error and missing data on model
parameters has been examined. Yi [16] and Yi et al. [19] proposed estimation
and inference methods that account for measurement error and missing response
observations. Other work can be found in [7, 20], among others. Relative to the
extensive analysis of data with covariate error, there is not much work on accounting
for measurement error in continuous responses using the data from the Framingham
Heart Study.

The remainder of the paper is organized as follows. In Sect. 2, we formulate
the response and the measurement error processes. In Sect. 3, we investigate the
estimation bias in two analyses: the naive analysis that completely ignores response
measurement error, and a partial-adjustment method that fits model to transformed
surrogate responses. In Sect. 4, we develop likelihood-based methods to cover
two useful situations: measurement error parameters are known, or measurement
error parameters are unknown. In Sect. 5, we evaluate the performances of various
approaches through simulation studies. In Sect. 6, we illustrate the proposed method
using a real data set from the Framingham Heart Study. Discussion and concluding
remarks are given in Sect. 7.
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2 Model Formulation

2.1 Response Model

Suppose data from a total of n independent clusters are collected. Let Yij denote the
response for the jth subject in cluster i, i D 1; : : : ; n, j D 1; : : : ;mi. Let Xij and
Zij be vectors of covariates for subject j and cluster i, respectively, and write Xi D
.XT

i1; : : : ;X
T
imi
/T and Zi D .ZT

i1; : : : ;Z
T
imi
/T. Here we use upper case letters and the

corresponding lower case letters to denote random variables and their realizations,
respectively.

Conditional on random effects bi and covariates fXi;Zig, the Yij. j D 1; : : : ;mi/

are assumed to be conditionally independent and follow a distribution from the
exponential family with the probability density or mass function

fyjx;z;b.yijjxij; zij;bi/ D expŒfyij˛ij � a1.˛ij/g=a2.�/C a3.yij; �/	; (1)

where functions a1.�/, a2.�/, and a3.�/ are user-specified, � is a dispersion parameter,
and ˛ij is the canonical parameter which links the conditional mean, �b

ij D
E.YijjXi;Zi;bi/, via the identity �b

ij D @a1.˛ij/=@˛ij.
A generalized linear mixed model (GLMM) relates �b

ij to the covariates and
random effects via a regression model

g.�b
ij/ D XT

ijˇ C ZT
ijbi; (2)

where ˇ is a vector of regression coefficients for the fixed effects, and g.�/ is a
link function. Random effects bi are assumed to have a distribution, say, fb.biI � b/,
with an unknown parameter vector � b. The link function g.�/ is monotone and
differentiable, and its form can be differently specified for individual applications.
For instance, for binary Yij, g.�/ can be chosen as a logit, probit, or complementary
log-log link, while for Poisson or Gamma variables Yij, g.�/ is often set as a log link.

A useful class of models belonging to GLMMs is linear mixed models (LMM)
where g.�/ in (2) is set to be the identity function, leading to

Yij D XT
ijˇ C ZT

ijbi C �ij (3)

where the error term �ij is often assumed to be normally distributed with mean 0 and
unknown variance �.

Let � D .ˇT; � T
b ; �/

T be the vector of model parameters. In the absence of
response error, estimation of � is based on the likelihood for the observed data:

L .�/ D
nY

iD1
Li.�/;
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where

Li.�/ D
Z miY

jD1
fyjx;z;b.yijjxij; zij;biI�/fb.biI � b/dbi (4)

is the marginal likelihood for cluster i, and fyjx;z;b.yijjxij; zij;biI�/ is determined
by (1) in combination with (2). Maximizing L .�/ with respect to � gives the
maximum likelihood estimator of � .

2.2 Measurement Error Models

When Yij is subject to measurement error, we observe a value that may differ from
the true value; let Sij denote such an observed measurement for Yij, and we call it
a surrogate variable. In this paper we consider the case where Yij is a continuous
variable only. Let fsjy;x;z.Sijjyi; xi; zi/ or fsjy;x;z.Sijjyij; xij; zij/ denote the conditional
probability density (or mass) function for Sij given fYi;Xi;Zig or fYij;Xij;Zijg,
respectively. It is often assumed that

fsjy;x;z.sijjyi; xi; zi/ D fsjy;x;z.sijjyij; xij; zij/:

This assumption says that given the true variables fYij;Xij;Zijg for each subject j in
a cluster i, the observed measurement Sij is independent of variables fYik;Xik;Zikg
of other subjects in the same cluster for k ¤ j.

Parametric modeling can be invoked to feature the relationship between the true
response variable Yij and its surrogate measurement Sij. One class of useful models
are specified as

Sij D h.Yij;Xij;ZijI� i/C eij; (5)

where the stochastic noise term eij has mean zero. Another class of models are given
by

Sij D h.Yij;Xij;ZijI� i/ � eij; (6)

where the stochastic term eij has mean 1. These models basically modulate the mean
structure of the surrogate variable Sij:

E.SijjYi;Xi;Zi/ D h.Yij;Xij;ZijI� i/; (7)

where the function form h.�/ can be chosen differently to facilitate various appli-
cations, and � i is a vector of error parameters for cluster i. For cases where the
measurement error process is homogeneous, e.g., same measuring system is used
across clusters, we replace � i with a common parameter vector � .
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Specification of h.�/ reflects the feature of the measurement error model. For
example, if h.�/ is set as a linear function, model (5) gives a linear relationship
between the response and surrogate measurements:

Sij D �0 C �1Yij C �T
2Xij C �T

3 Zij C eij;

where parameters �0, �1, �2, and �3 control the dependence of surrogate measure-
ment Sij on the response and covariate variables; in the instance where both �2 and �3
are zero vectors, surrogate measurement Sij is not affected by the measurements of
the covariates and depends on the true response variable Yij only. More complex
relationships can be delineated by employing nonlinear function forms for h.�/.
In our following simulation studies and data analysis, linear, exponential, and
logarithmic functions are considered for h.�/.

We call (5) additive error models, and (6) multiplicative error models to indicate
how noise terms eij act relative to the mean structure of Sij. Commonly, noise terms
eij are assumed to be independent of each other, of the true responses as well as
of the covariates. Let f .eijI � e/ denote the probability density function of eij, where
� e is an associated parameter vector. With model (5), the eij are often assumed to
be normally distributed, while for model (6), a log normal or a Gamma distribution
may be considered.

3 Asymptotic Bias Analysis

In this section we investigate asymptotic biases caused by response error under the
two situations: (1) response error is totally ignored in estimation procedures, and (2)
an intuitively compelling correction method is applied to adjust for measurement
error in response.

3.1 Naive Analysis of Ignoring Measurement Error

We consider a naive analysis which fits the GLMM (1) to the observed raw
data (hereafter referred to as NAI1), i.e., we assume that the Sij are linked with
covariates via the same random effects model. Let �� D .ˇ�T; � �T

b ; �
�/T denote

the corresponding parameter vector, and the corresponding working likelihood
contributed from cluster i is given by

L w
i .�

�/ D
Z mY

jD1
fyjx;z;b.sijjxij; zij;b�

i I��/fb.b�
i I � �

b /db
�
i :

Maximizing
Pn

iD1 logL w
i .�

�/ with respect to �� gives an estimator, say O��
, of ��.
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Adapting the arguments of White [14] it can be shown that under certain
regularity conditions, as n ! 1, O��

converges in probability to a limit that is
the solution to a set of estimating equations

Etrue

(
nX

iD1
@ logL w

i .�
�/=@��

)

D 0; (8)

where the expectation is taken with respect to the true joint distribution of the
associated random variables. The evaluation of (8) involves integration over the
nonlinear error functions which are often intractable.

To gain insights into the impact of ignoring error in response, we consider a
LMM

Yij D ˇ0 C .ˇ1 C bi/Xij C �ij; (9)

where ˇ0 and ˇ1 are regression parameters, the �ij are independent of each other
and of other variables, �ij � N.0; �/ with variance �, and bi � Normal.0; �2b / with
variance �2b . We consider the additive error model (5), where the eij are independent
of each other and of other variables, eij � N.0; �2e /, and the mean error structures
are, respectively, specified as one of the following two cases.

Case 1 Linear measurement error.

Commonly seen in epidemiologic studies, this structure specifies a linear form
for the measurement error

h.Yij;Xij;ZijI�/ D �0 C �1Yij;

where � D .�0; �1/, �0 represents a systematic error of the measuring device at
Yij D 0, and �1 is a scale factor. It can be easily shown that simple relationship
between the true and working parameters is

ˇ�
0 D �0 C �1ˇ0; ˇ

�
1 D �1ˇ1; �

�2
b D �21 �

2
b ;

and

�� D �21� C �2e :

These results suggest that estimation of fix effect ˇ1 and variance component �2b
is generally attenuated or inflated by factor �1, a factor which governs the difference
between the true response Yij and surrogate measurement Sij. When �1 equals 1, even
if there is systematic measurement error involved with measuring Yij (i.e., �0 ¤ 0),
disregarding error in Yij does not bias point estimates of fix effect ˇ1 and variance
component �2b , but may reduce estimation precision.
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Case 2 Exponential measurement error.

The second error structure specifies an exponential form for the measurement
error

h.Yij;Xij;ZijI �/ D exp.�Yij/;

which may be useful to feature transformed response variables that are not measured
precisely.

The bias in the naive estimator for fixed effect ˇ1 does not have an analytic
form when the response is subject to nonlinear measurement error. To illustrate
the induced bias in estimation of ˇ1 with response error ignored, we undertake
a numerical study. The covariates Xij are independently generated from a normal
distribution N.0; 1/. We fix the values of ˇ0 and � at �1 and 0:01, respectively, and
consider values of �2b to be 0:01, 0:25, and 1, respectively. The error parameters are,
respectively, specified as � D 0:5 and 1, and �2e D 0:01, 0:25, and 0:75.

As shown in Fig. 1, the relationship between the naive limit ˇ�
1 and the value of

ˇ1 is nonlinear. For instance, when � D 0:5, the naive estimate is attenuated for
small values of ˇ1 but is inflated for large values of ˇ1. In general, the direction and
magnitude of the bias induced by nonlinear response error depend on the function
form of h.�/ as well as the magnitude of the parameters in the measurement error
process.
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Fig. 1 Bias in ˇ�

1 from the completely naive approach induced by an exponential error model.
The dashed, two-dash, and dotted lines correspond to �2b D 0:01; 0:25, and 1, respectively
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3.2 Analysis of Transformed Data

With the response process modeled by an LMM, Buonaccorsi [1] considered an
intuitively tempting method to correct for response error in estimation. The idea is
to employ a two-step approach to correct for response error effects. In the first step,
keeping the covariates fixed, we use the mean function h.�/ of the measurement error
model and find its inverse function h�1.�/, and then calculate a pseudo-response

QYij D h�1.SijI�/:
In the second step, we perform standard statistical analysis with QYij taken as
a response variable. This approach (hereafter referred to as NAI2) is generally
preferred over NAI1, as it reduces a certain amount of bias induced by response
measurement error. However, this method does not completely remove the biases
induced from response error.

To evaluate the performance of using pseudo-response in estimation procedures,
we may follow the same spirit of Sect. 3.1 to conduct bias analysis. As it is difficult
to obtain analytic results for general models, here we perform empirical studies by
employing the same response model (9) and the measurement error model for Case 2
as in Sect. 3.1.

It is seen that as expected, the asymptotic bias, displayed in Fig. 2, is smaller
than that from the NAI1 analysis. This confirms that the NAI2 method outperforms
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Fig. 2 Bias in Q̌
1 from NAI2 analyses with response subject to exponential error. The dashed,

two-dash, and dotted lines are for �2b D 0:01, 0:25, and 1, respectively
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the NAI1 method. However, the NAI2 method does not completely remove the bias
induced in the response error. The asymptotic bias involved in the NAI2 method is
affected by the size of the covariate effect as well as the degree of response error.
The asymptotic bias increases as the size of ˇ1 increases. Furthermore, the values
of the error parameters � and �2e have significant impact on the bias; the size of the
bias tends to increase as �2e increases.

4 Inference Methods

The analytic and numerical results in Sect. 3 demonstrate that disregarding response
error may yield biased estimation results. To account for the response error effects,
in this section we develop valid inference methods for the response model parameter
vector � . Our development accommodates different scenarios pertaining to the
knowledge of response measurement error. Let � denote the parameter vector
associated with a parametric model of the response measurement error process.
Estimation of � may suffer from nonidentifiability issues in the presence of
measurement error in the variables. To circumvent this potential problem, we
consider three useful situations: (i) � is known, (ii) � is unknown but a validation
subsample is available, and (iii) � is unknown but replicates for the surrogates are
available.

The first situation highlights the idea of addressing the difference between the
surrogate measurements and the response variables without worrying about model
nonidentifiability issues. The second and third scenarios reflect useful practical
settings where error model parameter � is often unknown, but estimable from
additional data sources such as a validation subsample or replicated surrogate mea-
surements. For each of these three situations, we propose strategies for estimating
the response model parameters and derive the asymptotic properties of the resulting
estimators.

4.1 � Is Known

In some applications, the value of � is known to be �0, say, from a priori study, or
specified by the analyst for sensitivity analyses. Inference about � is then carried
out based on the marginal likelihood of the observed data:

L .�;�0/ D
nY

iD1
Li.�;�0/
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where

Li.� ;�/ D
Z (

miY

jD1

Z

fsjy;x;z.sijjyij; xij; zijI�/

� fyjx;z;b.yijjxij; zij;biI�/dyij
)

fb.biI � b/dbi;

which requires the conditional independence assumption

fsjy;x;z;b.sijjyij; xij; zij;biI�/ D fsjy;x;z.sijjyij; xij; zijI�/I (10)

fsjy;x;z;b.sijjyij; xij; zij;biI�/ and fsjy;x;z.sijjyij; xij; zijI�/ represent the conditional prob-
ability density function of Sij given fYij;Xij;Zij;big and fYij;Xij;Zijg, respectively.

Maximizing
Pn

iD1 logLi.�;�0/ with respect to the parameter � gives the
maximum likelihood estimator O� of � . Let Ui.�;�0/ D @ logLi.�;�0/=@� . From
standard likelihood theory, under regularity conditions, O� is a consistent estimator
for � . As n ! 1, n1=2. O� � �/ is asymptotically normally distributed with
mean 0 and variance I �1, where I D Ef�@Ui.�;�0/=@�

Tg. By the Bartlett
identity and the Law of Large Numbers, I can be consistently estimated by
n�1Pn

iD1Ui. O�;�0/UT
i .

O�;�0/.

4.2 � Is Estimated from Validation Data

In many applications, � is often unknown and must be estimated from additional
data sources, such as a validation subsample or replicates of measurements of Yij.
Here we consider the case that a validation subsample is available, and in the next
section we discuss the situation with replicated measurements.

Assume that the validation subsample is randomly selected, and let ıij D 1 if
Yij is available and ıij D 0 otherwise. Specifically, if ıij D 1, then measurements
fyij; sij; xij; zijg are available; when ıij D 0, measurements fsij; xij; zijg are available.
Let Nv D Pn

iD1
Pmi

jD1 ıij be the number of the measurements in the validation
subsample. The full marginal likelihood of the main data and the validation data
contributed from cluster i is given by

LFi.�;�/ D
Z "

miY

jD1

˚
fsjx;z;b.sijjxij; zij;biI� ;�/

�1�ıij

� ˚
fs;yjx;z;b.sij; yijjxij; zij;biI�;�/

�ıij
#

fb.biI � b/dbi; (11)

where fs;yjx;z;b.sij; yijjxij; zij;biI� ;�/ represents the conditional probability density
functions of fSij;Yijg, given the covariates fxij; zijg and random effects bi.
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Under the conditional independence assumption (10), we obtain

fsjx;z;b.sijjxij; zij;biI�;�/ D
Z

fsjy;x;z.sijjyij; xij; zijI�/fyjx;z;b.yijjxij; zij;biI�/dyij;

and

fs;yjx;z;b.sij; yijjxij; zij;biI�;�/ D fsjy;x;z.sijjyij; xij; zijI�/fyjx;z;b.yijjxij; zij;biI�/;

where fsjy;x;z.sijjyij; xij; zijI�/ is the conditional probability density function deter-
mined by the measurement error model such as (5) or (6), and fyjx;z;b.yijjxij; zij;biI�/
is the conditional probability density function specified by the GLMM (1) in
combination with (2).

Let

L� i.�;�/ D
Z "

miY

jD1

˚
fsjx;z;b.sijjxij; zij;biI�;�/

�1�ıij

� ˚
fyjx;z;b.yijjxij; zij;biI�/

�ıij
#

fb.biI � b/dbi;

and

L�i.�/ D
miY

jD1

˚
fsjy;x;z.sijjyij; xij; zijI�/

�ıij
;

then LFi.�;�/ D L� i.�;�/ L�i.�/.
Inference about f�;�g can, in principle, be conducted by maximizingQn
iD1LFi.�;�/, or

Pn
iD1 logLFi.�;�/, with respect to f�;�g. When the dimension

of f�;�g is large, direct maximization of
Pn

iD1 logLFi.�;�/ with respect to � and
� can be computationally demanding. We propose to use a two-stage estimation
procedure as an alternative to the joint maximization procedure.

Let U�
i .�;�/ D @ logL� i.�;�/=@� and Qi.�/ D @ logL�i.�/=@�. In the first

stage, estimator for �, denoted by O�, is obtained by solving

nX

iD1
Qi.�/ D 0:

In the second stage, replace � with O� and solve

nX

iD1
U�

i .�; O�/ D 0 (12)

for � . Let O�p denote the solution to (12).
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Assume that the size of the validation sample is increasing with the sample size
n on the same scale, i.e., as n ! 1 and Nv=n ! � for a positive constant �. Then
under regularity conditions,

p
n. O�p��/ is asymptotically normally distributed with

mean 0 and variance given by

˙� D ��Ef@U�
i .�;�/=@�

Tg	�1 C �
Ef@U�

i .�;�/=@�
Tg	�1 Ef@U�

i .�;�/=@�
Tg

� �
Ef@Qi.�/=@�

Tg	�1 �Ef@U�
i .� ;�/=@�

Tg	T �Ef@U�
i .�;�/=@�

Tg	�1 :

The proof is outlined in the Appendix. An estimate of ˙ � can be obtained by
replacing Ef@U�

i .�;�/=@�
Tg, Ef@U�

i .�;�/=@�
Tg, and Ef@Qi.�/=@�

Tg with their
empirical counterparts n�1Pn

iD1 @U�
i .

O�p; O�/=@�T, n�1Pn
iD1 @U�

i .
O�p; O�/=@�T, and

n�1Pn
iD1 @Qi. O�/=@�T, respectively.

4.3 Inference with Replicates

In this section we discuss inferential procedures for the setting with replicates of the
surrogate measurements for Yij. Suppose the response variable for each subject in
a cluster is measured repeatedly, and let Sijr denote the rth observed measurement
for subject j in cluster i, r D 1; : : : ; dij, where the replicate number dij can vary
from subject to subject. For r ¤ r0, Sijr and Sijr0 are assumed to be conditionally
independent, given fYi;Xi;Zi;big. The marginal likelihood contributed from cluster
i is given by

LRi.�;�/ D
Z

fb.biI � b/

miY

jD1


 Z

fyjx;z;b.yijjxij; zij;biI�/

�
dijY

rD1
fsjy;x;z;b.sijrjyij; xij; zij;biI�/dyij

�

dbi:

Unlike the two-stage estimation procedure for the case with validation data,
estimation for � and � generally cannot be separated from each other, because
information on the underlying true responses and the measurement process is mixed
together. A joint estimation procedure for f�;�g by maximizing

Qn
iD1LRi.�;�/ is

particularly required.
Specifically, let

Ui.� ;�/ D @ logLRi.�;�/=@�; and Qi.�;�/ D @ logLRi.�;�/=@�

be the score functions. Define

�Ri.�;�/ D
�

Qi.�;�/
Ui.�;�/

�
:
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The maximum likelihood estimators for � and � is obtained by solving

nX

iD1
�Ri.�;�/ D 0I

we let . O�R; O�R/ denote the solution.

Under suitable regularity conditions, n1=2
� O�R��

O�R��
�

is asymptotically normally

distributed with mean 0 and covariance matrix ŒEf�Ri.�;�/�
T
Ri.�;�/g	�1:

4.4 Numerical Approximation

To implement the proposed methods, numerical approximations are often needed
because integrals involved in the likelihood formulations do not have analytic forms
in general. With low dimensional integrals, Gaussian–Hermite quadratures may be
invoked to handle integrals without a closed form. For example, the integral with an
integrand of form exp.�u2/f .u/ is approximated by a sum

Z 1

�1
exp.�u2/f .u/du �

KX

kD1
wk f .tk/;

where f .�/ is a given function, K is the number of selected points, and tk and wk are
the value and the weight of the kth designated point, respectively. The approximation
accuracy relies on the order of the quadrature approximations. We found in our
simulation that a quadrature approximation with order 5 performs adequately
well for a single integral; as the number of random components increases, more
quadrature points are required in order to obtain a good approximation. When f .�/
is a symmetric or nearly symmetric function, the approximation is generally good,
even when the number of quadrature points is chosen to be small.

Computation quickly becomes infeasible as the number of nested random
components grows [9]. The convergence of an optimization procedure can be very
slow if the dimension of the random components is high. One approach to deal
with such integrals is to linearize the model with respect to the random effects, e.g.,
using a first-order population-averaged approximation to the marginal distribution
by expanding the conditional distribution about the average random effect [12].
Alternatively, Laplace’s approximation can be useful to obtain an approximate
likelihood function with a closed form [12, 15]. The basic form of linearization using
Laplace’s approximation is a second-order Taylor series expansion of the integrand

f .u/ and is given by
R
Rd f .u/du � .2�/d=2f .u0/

ˇ
ˇ�@2 log f .u0/=@u@uT

ˇ
ˇ�1=2 ;

where d is the dimension of u, and u0 is the mode of f .u/, i.e., the solution to
@ log f .u/=@u D 0. To construct Laplace’s approximation, the first two derivatives
of log f .u/ are basically required.
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5 Simulation Studies

We conduct simulation studies to assess the performance of the proposed likelihood-
based methods. We consider the setting with n D 100 and mi D 5 for i D 1; : : : ; n.
The covariates Xij are simulated from the standard normal distribution, and random
effects bi are generated from a normal distribution with mean 0 and variance �2b D
0:04. The response measurements are generated from the model

Yij D ˇ0 C ˇ1Xij C biXij C �ij;

where �ij � N.0; �/, and the parameter values are set as ˇ0 D �1, ˇ1 D log.0:5/,
and � D 0:04.

We consider two models for the measurement error process. That is, surrogate
measurements Sij are simulated from one of the two measurement error models:

(M1). Sij D exp.�Yij/C eij,
(M2). Sij D �0 C �1Yij C eij,

where eij is independent of Yi and Xi, and follows a normal distribution with mean
0 and variance �2e D 0:04. For error model (M1), the error parameters are specified
as � D 0:5. For error model (M2), the parameters are specified as �0 D 0:5 and
�1 D 0:5.

Let � denote the vector of associated parameters for the measurement error
model. Specifically, in error model (M1), � D .�; �2e /

T; while in error model (M2),
� D .�0; �1; �

2
e /

T. We evaluate the proposed methods under two scenarios regarding
the knowledge of �: (i) � is treated as known, and (ii) � is estimated from internal
validation data. For scenario (ii), we obtain a validation subsample by randomly
selecting one subject from each cluster. We use Gaussian quadrature of order 15
in the numerical approximation for the likelihood-based approaches. Two thousand
simulations are run for each parameter configuration.

We conduct three analyses for each simulated data set: the two naive approaches
described in Sects. 3.1 and 3.2 and the proposed methods described in Sect. 4.
We report the simulation results based on four measures: relative bias in percent
(Bias%), sample standard deviation of the estimates (SD), average of model-based
standard errors (ASE), and coverage probability of the 95% confidence interval
(CP%).

Table 1 reports the results for the exponential measurement error model (M1).
As expected, the NAI1 approach produces very biased (attenuated) estimates of the
fixed-effect parameter ˇ1, and the coverage rates of the 95% confidence interval are
close to 0. The NAI2 approach, which analyzes transformed surrogate responses,
produces slightly better estimates of ˇ1. The magnitude of the relative bias, although
smaller than that from NAI1, is still substantial. In contrast, the proposed likelihood
approaches give consistent estimates for ˇ1 in both scenarios, and the coverage rates
of its 95% confidence intervals are close to the nominal value.

Table 2 reports the results for the linear measurement error model (M2). Again
the estimates for ˇ1 from the NAI1 approach are biased, and the values are scaled



Mixed Models with Response Error 97

T
ab

le
1

Si
m

ul
at

io
n

re
su

lt
s

fo
r

ca
se

s
w

it
h

m
ea

su
re

m
en

t
er

ro
r

m
od

el
(M

1)
(2

00
0

si
m

ul
at

io
ns

)

N
A

I1
a

N
A

I2
b

Pr
op

os
ed

c

B
ia

s%
SD

A
SE

C
P%

B
ia

s%
SD

A
SE

C
P%

B
ia

s%
SD

A
SE

C
P%

Sc
en
ar
io

(i
):
�
is
kn
ow

n

ˇ
0

�1
6
4
:5

0
:0
1
1

0
:0
1
0

<
0
:1

1
6
:7

0
:0
5
1

0
:0
4
6

5
:0

�0
:5
6

0
:0
3
7

0
:0
3
5

9
4
:2

ˇ
1

�6
7
:7

0
:0
1
3

0
:0
1
4

<
0
:1

1
6
:0

0
:0
6
4

0
:0
6
0

5
2
:9

�0
:8
3

0
:0
4
0

0
:0
3
9

9
4
:9

�
2 b

�8
0
:3

0
:0
0
3

0
:1
8
4

1
0
0
:0

2
3
5
:8

0
:0
9
0

0
:2
5
3

9
4
:3

�2
:1
3

0
:0
1
6

0
:0
1
8

9
3
:8

�
1
7
:6

0
:0
0
3

0
:0
3
5

1
0
0
:0

2
4
3
9
:1

0
:2
3
4

0
:0
3
5

<
0
:1

3
:6
5

0
:0
2
2

0
:0
2
5

9
6
:0

Sc
en
ar
io

(i
i)
:
�
is
es
ti
m
at
ed

fr
om

in
te
rn
al

va
li
da
ti
on

da
ta

ˇ
0

–
–

–
–

1
3
:7

0
:0
7
2

0
:0
4
2

1
9
:8

�0
:0
4

0
:0
4
0

0
:0
4
2

9
4
:8

ˇ
1

–
–

–
–

1
3
:1

0
:0
6
7

0
:0
5
4

6
1
:0

0
:3
2

0
:0
5
3

0
:0
4
9

9
4
:6

�
2 b

–
–

–
–

1
8
3
:4

0
:0
7
9

0
:2
4
2

9
6
:4

4
:5
7

0
:0
2
4

0
:0
2
8

9
5
:7

�
–

–
–

–
1
9
7
5
:9

0
:2
2
0

0
:0
3
5

<
0
:1

�3
:1
4

0
:0
1
7

0
:0
1
4

9
3
:3

a N
A

I1
:n

ai
ve

L
M

M
an

al
ys

is
of

ob
se

rv
ed

da
ta

ig
no

ri
ng

m
ea

su
re

m
en

t
er

ro
r.

b
N

A
I2

:n
ai

ve
L

M
M

an
al

ys
is

of
th

e
co

ns
tr

uc
te

d
ps

eu
do

-r
es

po
ns

e
da

ta
.

c Pr
op

os
ed

:
th

e
pr

op
os

ed
li

ke
li

ho
od

m
et

ho
d

th
at

ac
co

un
ts

fo
r

m
ea

su
re

m
en

t
er

ro
r.



98 G.Y. Yi et al.

T
ab

le
2

Si
m

ul
at

io
n

re
su

lt
s

fo
r

ca
se

s
w

it
h

li
ne

ar
m

ea
su

re
m

en
t

er
ro

r
m

od
el

(M
2)

(2
00

0
si

m
ul

at
io

ns
)

N
A

I1
a

N
A

I2
b

Pr
op

os
ed

c

B
ia

s%
SD

A
SE

C
P%

B
ia

s%
SD

A
SE

C
P%

B
ia

s%
SD

A
SE

C
P%

Sc
en
ar
io

(i
):
�
is
kn
ow

n

ˇ
0

�1
0
0
:0

0
:0
1
0

0
:0
1
0

<
0
:1

�0
:0
4

0
:0
2
1

0
:0
2
1

9
5
:2

�0
:0
4

0
:0
2
1

0
:0
2
2

9
5
:8

ˇ
1

�5
0
:0

0
:0
1
5

0
:0
1
5

<
0
:1

0
:0
8

0
:0
3
0

0
:0
3
0

9
4
:3

0
:1
0

0
:0
3
0

0
:0
3
0

9
4
:8

�
2 b

�7
5
:0

0
:0
0
3

0
:1
6
2

1
0
0
:0

�0
:0
1

0
:0
1
2

0
:1
6
2

1
0
0
:0

�3
:2
8

0
:0
1
2

0
:0
1
3

9
4
:9

�
2
5
:0

0
:0
0
3

0
:0
3
5

1
0
0
:0

4
0
0
:1
2

0
:0
1
4

0
:0
3
5

<
0
:1

�0
:9
6

0
:0
1
4

0
:0
1
4

9
5
:1

Sc
en
ar
io

(i
i)
:
�
is
es
ti
m
at
ed

fr
om

in
te
rn
al

va
li
da
ti
on

da
ta

ˇ
0

–
–

–
–

�0
:1
3

0
:0
3
7

0
:0
2
1

7
5
:3

�0
:1
1

0
:0
3
1

0
:0
3
0

9
4
:3

ˇ
1

–
–

–
–

0
:4
4

0
:0
4
3

0
:0
3
0

8
4
:0

0
:2
2

0
:0
3
9

0
:0
4
1

9
5
:6

�
2 b

–
–

–
–

0
:9
6

0
:0
1
3

0
:1
6
1

1
0
0
:0

�2
:7
2

0
:0
1
7

0
:0
1
7

9
4
:8

�
–

–
–

–
4
0
6
:5
3

0
:0
2
5

0
:0
3
5

<
0
:1

�2
:0
2

0
:0
1
8

0
:0
2
2

9
5
:7

a N
A

I1
:n

ai
ve

L
M

M
an

al
ys

is
of

ob
se

rv
ed

da
ta

ig
no

ri
ng

m
ea

su
re

m
en

t
er

ro
r.

b
N

A
I2

:n
ai

ve
L

M
M

an
al

ys
is

of
th

e
co

ns
tr

uc
te

d
ps

eu
do

-r
es

po
ns

e
da

ta
.

c Pr
op

os
ed

:
th

e
pr

op
os

ed
li

ke
li

ho
od

m
et

ho
d

th
at

ac
co

un
ts

fo
r

m
ea

su
re

m
en

t
er

ro
r.



Mixed Models with Response Error 99

approximately by a factor of �1, which is in agreement with the analytical result
shown in Sect. 3. The NAI2 approach yields good estimates for ˇ0, ˇ1, and �2b
with small finite sample biases. The NAI2 estimates for �, however, are very
biased, resulting in coverage rates of corresponding confidence intervals far from
the nominal value of 95%. In contrast, the proposed likelihood-based approach
gives consistent estimators for the fixed-effect and variance component, and the
associated standard errors are similar to the empirical standard deviations. As a
result, the coverage rates of the 95% confidence intervals are close to the nominal
value.

6 Application

We illustrate our proposed methods by analyzing the data from the Framingham
Heart Study. The data set includes exams #2 and #3 for n D 1615 male subjects
aged 31–65 [3]. Two systolic blood pressure (SBP) readings were taken during each
exam. One of the clinical interests is to understand the relationship between SBP
and potential risk factors such as baseline smoking status and age [6, 8, 11]. The
risk factors, however, may not have linear effects on SBP directly.

Preliminary exploration shows that SBP measurements are skewed, and using
a square-root transformation to .Tij � 50/ is reasonably satisfactory for obtaining
a symmetric data distribution, where Tij represents the true SBP measurement for
subject i at time j, where j D 1 corresponds to exam #2, and j D 2 for exam #3,
and i D 1; : : : ; n. We now let Yij denote such a transformed variable, i.e., Yij Dp
Tij � 50. We assume that the Yij follow the model

Yij D ˇ0 C ˇageXij1 C ˇsmokeXij2 C ˇexamXij3 C bi C �ij; j D 1; 2; i D 1; : : : ; n;

where Xij1 is the baseline age of subject i at exam #2, Xij2 is the indicator variable for
baseline smoking status of subject i at exam #1, Xij3 is 1 if j D 2 and 0 otherwise,
and bi and �ij are assumed to be independently and normally distributed with means
0 and variances given by �2b and �, respectively.

Because a subject’s SBP changes over time, the two individual SBP readings at
each exam are regarded as replicated surrogates. Several measurement error models
for SBP reading have been proposed by different researchers [2, 7, 13]. Let T�

ijr be
the rth observed SBP reading for subject i at time j, i D 1; : : : ; n, j D 1; 2, r D 1; 2.
We consider an error model log.T�

ijr �50/ D log.Tij �50/Ceijr , suggested by Wang
et al. [13], where the eijr are assumed to be independent of each other and of other
variables, and are normally distributed with mean 0 and variance �2e . Let Sijr denote
log.T�

ijr � 50/, then the measurement error model is equivalently given by

Sijr D 2 log.Yij/C eijr:
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Table 3 Analysis of data from the Framingham Heart Study

NAI1a NAI2b Proposedc

Est. SE p-value Est. SE p-value Est. SE p-value

ˇ0 4:117 0.030 < 0:001 7:727 0.140 < 0:001 7:729 0.156 < 0:001

ˇage 0:006 0.001 < 0:001 0:029 0.003 < 0:001 0:027 0.003 < 0:001

ˇsmoke �0:027 0.012 0:031 �0:122 0.057 0:032 �0:120 0.061 0:048

ˇexam �0:020 0.004 < 0:001 �0:086 0.018 < 0:001 �0:087 0.017 < 0:001

�2b 0:036 0.021 0:083 0:782 0.020 < 0:001 0:754 0.040 < 0:001

� 0:013 0.018 0:474 0:248 0.018 < 0:001 0:120 0.007 < 0:001

aNAI1: naive LMM analysis of observed data ignoring measurement error.
bNAI2: naive LMM analysis of the constructed pseudo-response data.
cProposed: the proposed likelihood method that accounts for measurement error.

Table 3 reports results from analyses using the proposed method and the two
naive approaches. The estimated regression coefficients ˇage, ˇsmoke, and ˇexam

from the proposed method are 0.027, �0.120, and �0.087, respectively. At the 5%
significance level, age is significantly associated with increasing blood pressure.
The negative coefficient for smoking status may suggest an effect of smoking
on decreasing blood pressure. As expected, the results from the NAI2 approach
are similar to those from the proposed method due to the small value of the
measurement error variance. The NAI1 estimates, however, are not comparable to
those from the NAI2 and the proposed method, possibly in part due to a different
scale of the response variable.

7 Discussion

In this paper, we exploit analysis of response-error-contaminated clustered data
within the framework of generalized linear mixed models. Although in some
situations ignoring error in response does not alter point estimates of regression
parameters, ignoring error in response does affect inference results for general
circumstances. Error in response can produce seriously biased results.

In this paper we perform asymptotic bias analysis to assess the impact of
ignoring error in response. We investigate the performance of a partial-error-
correction method that was intuitively used in the literature [1]. To fully account for
error effects, we develop valid inferential procedures for various practical settings
which pertain to the information on response error. Simulation studies demonstrate
satisfactory performance of the proposed methods under various settings.
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Appendix

Let �i.�;�/ D
�

Qi.�/

U�

i .�;�/

�
. Because . O�p; O�/ is a solution to �i.�;�/ D 0, by first-

order Taylor series approximation, we have

n1=2
 O�� �

O�p � �

!

D �
 

E
˚
@Qi.�/=@�

T
�

0

E
˚
@U�

i .�;�/=@�
T
�

E
˚
@U�

i .� ;�/=@�
T�

!�1

� n�1=2
nX

iD1
�i.�;�/C op.1/:

It follows that n1=2. O�p � �/ equals

�n�1=2 �E
˚
@U�

i .�;�/=@�
T�	�1

(
nX

iD1
U�

i .�;�/ � E
˚
@U�

i .� ;�/=@�
T�

� �
E
˚
@Qi.�/=@�

T�	�1
nX

iD1
Qi.�/

)

C op.1/ D �n�1=2
 �1.�;�/

nX

iD1
˝i.�;�/C op.1/;

where ˝i.�;�/ D U�
i .�;�/ � Ef@U�

i .�;�/=@�
TgŒEf@Qi.�/=@�

Tg	�1Qi.�/, and

 .�;�/ D Ef@U�

i .�;�/=@�
Tg.

Applying the Central Limit Theorem, we can show that n1=2. O�p � �/ is
asymptotically normally distributed with mean 0 and asymptotic covariance matrix
given by 
 �1˙.
 �1/T, where ˙ D Ef˝i.�;�/˝

T
i .�;�/g. But under suitable

regularity conditions and correct model specification, EfU�
i .�;�/U

�T
i .�;�/g D

Ef�@U�
i .�;�/=@�

Tg, EfQi.�/QT
i .�/g D Ef�@Qi.�/=@�

Tg, and EfU�
i .�;�/Q

T
i .�/g

D Ef�@U�
i .�;�/=@�

Tg. Thus,

˙ D Ef�@U�
i .�;�/=@�

Tg C Ef@U�
i .�;�/=@�

Tg �Ef@Qi.�/=@�
Tg	�1

� �
Ef@U�

i .�;�/=@�
Tg	T :

Therefore, the asymptotic covariance matrix for n1=2. O�p � �/ is

˙� D �
Ef�@U�

i .�;�/=@�
Tg	�1 C �

Ef�@U�
i .�;�/=@�

Tg	�1 Ef@U�
i .� ;�/=@�

Tg
� �

Ef@Qi.�/=@�
Tg	�1 �Ef@U�

i .�;�/=@�
Tg	T �Ef�@U�

i .�;�/=@�
Tg	�1 :
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Bias-Reduced Moment Estimators of Population
Spectral Distribution and Their Applications

Yingli Qin and Weiming Li

Abstract In this paper, we propose a series of bias-reduced moment estimators
for the Population Spectral Distribution (PSD) of large covariance matrices, which
are fundamentally important for modern high-dimensional statistics. In addition,
we derive the limiting distributions of these moment estimators, which are then
adopted to test the order of PSDs. The simulation study demonstrates the desirable
performance of the order test in conjunction with the proposed moment estimators
for the PSD of large covariance matrices.

Keywords Asymptotically normal • Consistency • Covariance matrix • High-
dimension • Hypothesis testing • Moment estimator • Population spectral distri-
bution

1 Introduction

Statistical inference concerning large covariance matrices is developing rapidly,
due to the wide availability of high-dimensional data from a variety of scientific,
economic, and social studies. Some specific structural assumptions about covariance
matrices are often considered, e.g., sparsity in terms of population eigenvalues and
eigenvectors or sparsity in terms of the entries of covariance matrices. Johnstone
[11] proposes that there only exist a fixed number r of population eigenvalues
separated from the bulk. In an even more extreme case, Berthet and Rigollet [4]
assume r D 1 and the covariance matrix can be modeled as I C ���T , where �
is a unit length sparse vector and � 2 R

C. Birnbaum et al. [5] propose adaptive
estimation of r � 1 individual leading eigenvectors when the ordered entries of
each eigenvector decay rapidly.
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In high-dimensional framework, where the dimension p and the sample size n
are both large, estimating Population Spectral Distribution (PSD) Hp of covariance
matrix †p has attracted much attention recently, see [3, 9, 12, 14, 15, 19]. In [15],
the estimation is designed for discrete PSDs with finite support. In [9], the proposed
method is evaluated by three simple models considered in their simulation study:
†p D Ip, Hp D 0:5ı1 C 0:5ı2, and a Toeplitz covariance matrix. For the first model,
all population eigenvalues are equal to 1, which is a special case of order 1 discrete
PSDs, i.e., Hp D ı1, while the second model is of order 2 (with mass points 1 and
2) and the third is of order p (i.e., continuous PSD as p ! 1).

In this paper, our main contribution is to propose bias-reduced moment estima-
tors for the PSD of large covariance matrices. These moment estimators can be
proved to enjoy some desirable theoretical properties. We then adopt the test in [18]
in conjunction with the proposed moment estimators to test the order of PSDs.

Specifically, we assume that under the null hypothesis, there are k distinct pop-
ulation eigenvalues a1; : : : ; ak, and their multiplicities are p1; : : : ; pk, respectively.
Then the PSD Hp can be expressed as

Hp D w1ıa1 C � � � C wkıak ; (1)

where wi D pi=p and thus
Pk

iD1 wi D 1. This model has been considered in [3, 12,
14, 15, 19], where the estimation of Hp is developed by assuming the order k D k0
is known. This assumption does not cause any serious problem if the true order k is
smaller than k0, since the model with higher order contains the (smaller) true model.
But if k > k0, then any estimation based on k D k0 can surely lead to erroneous
result. Another closely related work is [7], in which the authors develop a cross-
validation type procedure to estimate the order k. However, their estimators cannot
be used to test the order of PSDs because of the lack of asymptotic distributions. Qin
and Li [18] consider the following hypotheses to find statistical evidence to support
that there are no more than k0 distinct mass points in Hp.

H0 W k 	 k0 v.s. H1 W k > k0; k0 2 N: (2)

The rest of the paper is organized as follows. In the next section, we discuss the
bias-reduced estimation of moments of PSDs. In Sect. 3, we reformulate the test
in [18] with our proposed moment estimators. Section 4 reports simulation results.
Concluding remarks are presented in Sect. 5 and proofs of the main theorems are
postponed to the last section.
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2 Moments of a PSD and Their Bias-Reduced Estimators

Let x1; : : : ; xn, xi 2 R
p, be a sequence of independent and identically distributed

zero mean random vectors with a common population covariance matrix †p. The
sample covariance matrix is

Sn D 1

n

nX

iD1
xix0

i:

Note that the population mean is assumed to be zero for simplicity, if not, one may
replace Sn with its centralized version.

Let Hp be the PSD of †p and Fn be the empirical spectral distribution (ESD) of
Sn. Integer moments of Hp and Fn are, respectively, defined as

�k WD
Z

tkdHp.t/ and Ǒ
k WD

Z

xkdFn.x/;

k D 0; 1; 2; : : : : Unbiased estimators of �k’s based on Ǒ
k’s under normality are

provided in [10, 21]. However, their results are limited to k 	 4. In [3, 12, 13], more
general moment estimators are introduced. However, their estimators are biased.
Moreover, their asymptotic means and variances have no explicit forms, and are
expressed through contour integrals only. In this paper, we present an explicit bias-
reduced version of the estimators in [3].

Our main assumptions are listed as follows. These three assumptions are
conventional conditions for the central limit theorem of linear spectral statistics,
see [1, 2].

Assumption (a) The sample size n and the dimension p both tend to infinity such
that cn WD p=n ! c 2 .0;1/.

Assumption (b) There is a doubly infinite array of i.i.d. random variables .wij/,
i; j � 1, satisfying

E.w11/ D 0; E.w211/ D 1; E.w411/ < 1;

such that for every given p; n pair, Wn D .wij/1�i�p;1�j�n. Hence, the observed data

vectors can be represented as xj D †
1=2
p w:j where w:j D .wij/1�i�p denotes the jth

column of Wn.

Assumption (c) The PSD Hp of †p weakly converges to a probability distribution
H, as p ! 1, and the sequence of spectral norms .jj†pjj/ is bounded.

Under the assumptions (a)–(c), the ESD Fn converges in distribution to a
determinate distribution Fc;H [20], called the limiting spectral distribution (LSD),
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and the moments �k and Ǒ
k also converge,

�k ! Q�k WD
Z

tkdH.t/ and Ǒ
k ! Q̌

k WD
Z

xkdFc;H.x/:

Moreover, these limiting moments Q�k’s and Q̌
k’s are linked through a series of

recursive formulas [16],

Q�1 D Q̌
1;

Q�2 D Q̌
2 � c Q�21 ;

Q�k D Q̌
k � 1

c

X
.c Q�1/i1 .c Q�2/i2 � � � .c Q�k�1/ik�1�.i1; : : : ; ik�1/; k � 2;

where the sum runs over the following partitions of k:

.i1; : : : ; ik�1/ W k D i1 C 2i2 C � � � C .k � 1/ik�1; il 2 N;

and the coefficient �.i1; : : : ; ik�1/ D kŠ=Œi1Š � � � ik�1Š.k C 1 � i1 � � � � ik�1/Š	:
Bai et al. [3] just plug Ǒ

k’s into these recursive formulas to get the estimators of
�k’s (also estimators of Q�k’s).

It’s obvious that the mapping from Q̌
k’s to Q�k’s,

g W . Q̌
1; : : : ; Q̌

k/
0 ! . Q�1; : : : ; Q�k/0; (3)

is one-to-one and its Jacobian matrix @g.ˇ/=@̌ is a lower-triangular matrix with unit
determinant. Therefore, the properties of the plug-in estimators are fully determined
by those of Ǒ

k’s which actually, as estimators of Q̌
k’s when Hp D H and cn D c, are

biased by the order of O.1=p/ [1]. In this paper, our main contribution is to correct
the bias and propose bias-reduced moment estimators.

Let qs;t be the coefficient of zt in the Taylor expansion of .1C z/�s at z D 0 and
define three power series P.z/, Q.z/, and R.z/ as

P.z/ D �1 � c
1X

lD1
Q�l.�z/l; (4)

Q.z/ D c
1X

lD0
q3;l Q�lC2zl; R.z/ D 1 � c

1X

lD0
q2;l Q�lC2zlC2: (5)

Let �k .k � 1/ be the coefficient of zk�2 in the Taylor expansion of function
Pk.z/Q.z/=R.z/ at z D 0. Apparently �1 D 0: When calculating �k for k � 2,
it’s enough to keep the terms of zl for l 	 k�2 in the series P;Q, and R since higher
order terms, after taking derivatives of order k � 2, are all zero at z D 0. Therefore,
�k is a function of c; Q�1; : : : ; Q�k, and thus a function of c; Q̌

1; : : : ; Q̌
k.
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It will be shown that�k=p is approximately the leading term of the bias contained
in Ǒ

k, and hence we modify this estimator to

Ǒ�
k D Ǒ

k � 1

p
O�k;

where O�k D �k.cn; Ǒ
1; : : : ; Ǒ

k/, k D 1; 2; : : : : The correction can be conducted
iteratively by updating O�k from Ǒ�

k ’s to reduce the bias to the order of o.1=p/. As a
consequence, we obtain bias-reduced estimators of the moments �k’s, referred to as
O�k’s,

. O�1; : : : ; O�k/0 D g. Ǒ�
1 ; : : : ;

Ǒ�
k /; (6)

k D 1; 2; : : : :

Theorem 1 Suppose that the assumptions (a)–(c) hold, then

(i) the estimator O�k .k � 1/ is strongly consistent, i.e.,

O�k � �k
a:s:��! 0:

(ii) If in addition E.w411/ D 3, then

p . O�1 � �1; : : : ; O�k � �k/
0 D�! Nk.0;‰.k//; (7)

where ‰.k/ D ABA0, A is the Jacobian matrix @g.ˇ/=@̌ at ˇ D . Q̌
k/, and

B D .bij/1�i;j�k with its entries

bij D 2

i�1X

lD0
.i � l/˛i;l˛j;iCj�l;

where ˛s;t is the coefficient of zt in the Taylor expansion of Ps.z/, the sth power
of P.z/ defined in (4) .

Theorem 1 establishes the consistency and asymptotic normality of the proposed
bias-reduced moment estimators O�k’s. Compared with the estimators in [3], our
proposed moment estimators have two main advantages: One is that the limiting
mean vector in (7) is zero, which implies that our estimators reduce biases to the
order of o.1=p/; The other is that the limiting covariance matrix in (7) is explicitly
formulated.
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3 Test Procedure

Define a .k C 1/ � .k C 1/ Hankel matrix �.G; k/ related to a distribution G,

�.G; k/ D

0

B
B
B
@

g0 g1 � � � gk
g1 g2 � � � gkC1
:::

:::
:::

gk gkC1 � � � g2k

1

C
C
C
A
;

where gj is the jth moment of G, j D 0; : : : ; 2k: Write D.k/ D det.�.Hp; k//
then, from Proposition 1 in [12], D.k0/ D 0 if the null hypothesis in (2) holds,
otherwise D.k0/ > 0. On the other hand, from Theorem 1, a plug-in estimator of
this determinant, denoted by bD.k0/, can be obtained by replacing �k in D.k0/ with
O�k, defined in (6), for k D 1; : : : ; 2k0, i.e.,

bD.k0/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

O�0 O�1 � � � O�k0
O�1 O�2 � � � O�k0C1
:::

:::
:::

O�k0 O�k0C1 � � � O�2k0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

We may thus reject the null hypothesis if bD.k0/ is significantly greater than zero.
Applying Theorem 1 and the main theorem in [18], we may immediately derive the
asymptotic distribution of bD.k0/.

Theorem 2 Suppose that the assumptions (a)–(c) hold, then the statistic bD.k0/ is
asymptotically normal, i.e.,

p
�
bD.k0/� D.k0/

�
D�! N.0; �2k0 /;

where �2k0 D ˛0V�V 0˛ with ˛ D vec.adj.�.H; k0///, the vectorization of the
adjugate matrix of �.H; k0/. The .2k0 C 1/ � .2k0 C 1/ matrix � consists of the
first row and column zero and the remaining submatrix ‰.2k0/ defined in (7), and
the .k0 C 1/2 � .2k0 C 1/ matrix V D .vij/ is a 0-1 matrix with only vi;ai D 1,
ai D i � b.i � 1/=.k0 C 1/ck0, i D 1; : : : ; .k0 C 1/2, where bxc denotes the greatest
integer not exceeding x.

To present the limiting null distribution and guarantee the consistency of the
order test, we need the following assumption:

Assumption (d) The order of Hp is consistent with the order of H, that is, they
simultaneously satisfy the null hypothesis or the alternative in (2).
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This assumption is a generalized version of the condition that the order of Hp

is equal to that of its limit H, which requires the weight parameters wi D pi=p of
Hp in (1) all converge to some positive constants, which, for example, excludes the
spike model Hp D .1� 1=p/ı1 C .1=p/ıa, for some a ¤ 1, see [11]. Notice that the
order of Hp for their spike model is always 2 but that of H is 1.

From Theorem 1, the unknown parameters involved in the limiting variance �2k0
are c; Q�1; : : : ; Q�4k0 . Under the null hypothesis and Assumption (d), Q�k for k � 2k0
is a function of Q�1; Q�2; : : : ; Q�2k0�1. A numerical algorithm for obtaining Q�k from
the lower moments is introduced in [12]. Therefore, under the null hypothesis, a
strongly consistent estimator of �2k0 is �2k0 .cn; O�1; : : : ; O�2k0�1/, denoted by O�2H0 .
Theorem 3 Suppose that the assumptions (a)–(d) hold then, under the null hypoth-
esis,

pbD.k0/

O�H0
D�! N.0; 1/;

where O�H0 is the square root of O�2H0 .
Theorem 4 Suppose that the assumptions (a)–(d) hold, then the asymptotic power
of the order test tends to 1, as .n; p/ ! 1.

4 Simulation

4.1 Case of Testing for Order Two PSDs

We report on simulations carried out to evaluate the performance of the order test.
Samples are drawn from zero mean multivariate normal population Np.0;†/. The
sample size is n D 100; 200; 300; 400; 500 and the dimension to sample size ratio is
c D 1; 3; 5; 7. The number of independent replications is 10,000.

We first examine empirical sizes of the test. The model under the null hypothesis
is

Hp D w1ıa1 C w2ıa2 ;

where the distinct mass points are fixed at .a1; a2/ D .1; 4/ and their weights
are .w1;w2/ D .0:95; 0:05/, .0:9; 0:1/, .0:8; 0:2/, and .0:5; 0:5/. Results collected
in Table 1 show that, when n D 100, the empirical sizes are a bit smaller than
the targeted nominal level 0.05; as the sample size increases, all empirical sizes
approach 0.05.
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Table 1 Empirical sizes in percentages of the test for PSDs of order two

Hp D 0:95ı1 C 0:05ı4 Hp D 0:9ı1 C 0:1ı4

n c D 1 c D 3 c D 5 c D 7 c D 1 c D 3 c D 5 c D 7

100 2.47 3.68 3.82 4.19 3.30 3.81 4.31 4.32

200 4.00 4.70 4.94 4.11 4.85 4.74 5.10 4.14

300 4.35 4.87 4.92 4.55 4.86 4.72 4.89 4.89

400 4.89 4.76 4.73 4.99 5.03 4.99 4.90 5.05

Hp D 0:8ı1 C 0:2ı4 Hp D 0:5ı1 C 0:5ı4

n c D 1 c D 3 c D 5 c D 7 c D 1 c D 3 c D 5 c D 7

100 3.52 4.30 4.44 4.56 4.57 4.36 4.34 4.25

200 4.92 4.59 4.55 5.02 5.25 4.90 4.68 4.86

300 5.27 5.07 4.51 5.15 4.95 5.33 4.97 5.06

400 5.12 5.50 4.91 4.46 5.12 4.92 4.71 5.18

The dimension to sample size ratio c D 1; 3; 5; 7. The nominal significant level is ˛ D 0:05 and
the number of independent replications is 10,000

We also observe that, for small p and n, the performance of the order test
in conjunction with the bias-reduced moment estimators varies slightly when the
mixture proportions of Hp change. This is due to the fact that our test statistic is
dependent upon the moment estimators of Hp, which are affected by the changing
mixture proportions.

Next, we examine the power of the order test. Four models under the alternative
hypothesis are employed:

Model 1: Hp D 0:8ı1 C 0:1ı4 C 0:1ı7;

Model 2: Hp D 0:8ı1 C 0:1ı3 C 0:05ı7 C 0:05ı10;

Model 3: Hp D 0:8ı1 C 0:2 � U.4; 10/;
Model 4: Hp D U.1; 25/;

where U.a; b/ stands for a uniform distribution on the interval .a; b/ � R
C. The

fist two models are discrete PSDs and their orders are, respectively, 3 and 4. Model
3 can be seen as a mixture of a discrete distribution and a continuous one, where
80 % of the population eigenvalues are 1 and the remaining 20 % are drawn from
U.4; 10/. The last model is completely continuous.

Notice that the test statistic is invariant to orthonormal transformation. Hence,
without loss of generality, we set †p to be diagonal. For discrete PSDs, we set
the diagonal entries of †p according to the mixture proportions and corresponding
distinct mass points, then use this (same) †p for all 10,000 replications; while for
continuous PSDs or PSDs with a continuous mixture component, for each of 10,000
replications, we generate a (different) set of diagonal entries for †p accordingly.

Figure 1 exhibits the empirical power for Models 1–4. The results exhibit a trend
that the power tends to 1 as the sample size increases, while the power deteriorates
as the ratio c increases. This demonstrates that the increased dimension makes the
order detection harder to achieve. The power for Model 2 is better than that for
Model 1, which can be attributed to the fact that, compared with Model 1, Model
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Fig. 1 Empirical powers of the test for Models 1–4 with the dimensional ratio c D 1; 3; 5; 7. The
nominal significant level is ˛ D 0:05 and the number of independent replications is 10,000

2 is further away from the null hypothesis due to the existence of the largest mass
point 10. Another phenomena is that the power for the pure continuous model grows
slowly compared with the others, although its true order is infinity in the limit, which
seems far away from the null hypothesis. A possible reason is that the moment
estimators of this continuous PSD have large fluctuations comparing to those of the
other discrete PSDs.

4.2 Case of Testing for Order Three PSDs

Qin and Li [18] do not provide simulation results on order three PSDs due to the
unavailability of higher order moment estimators. Given the proposed bias-reduced
moment estimators in this paper, we will be able to test for any order of PSDs. In this
section, we examine the performance of the test for order three hypothesis. Samples
are still drawn from zero mean multivariate normal population. The sample size is
taken as n D 300; 400; 500; 600 and the dimension to sample size ratio is set to be
c D 0:3; 0:6; 0:9; 1:2. The number of independent replications is 10,000.
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Table 2 Empirical sizes in percentages of the test for PSDs of order three

Hp D 0:4ı1 C 0:4ı4 C 0:2ı7 Hp D 0:4ı1 C 0:4ı5 C 0:2ı10

n c D 0:3 c D 0:6 c D 0:9 c D 1:2 c D 0:3 c D 0:6 c D 0:9 c D 1:2

300 2.78 4.00 4.77 4.09 3.18 4.36 4.94 4.65

400 4.13 4.82 5.00 5.32 4.24 4.91 5.18 5.92

500 4.96 5.52 5.53 5.38 4.59 5.11 5.77 5.79

600 4.92 5.39 5.51 5.82 4.83 5.65 5.51 6.00

Hp D 0:5ı1 C 0:3ı4 C 0:2ı7 Hp D 0:5ı1 C 0:3ı5 C 0:2ı10

n c D 0:3 c D 0:6 c D 0:9 c D 1:2 c D 0:3 c D 0:6 c D 0:9 c D 1:2

300 3.05 4.56 4.44 4.70 3.37 4.71 5.13 5.45

400 4.39 5.45 5.68 5.73 4.62 5.37 6.07 5.97

500 4.54 5.84 5.90 6.03 4.86 5.72 5.66 6.19

600 5.04 5.68 5.95 5.89 5.46 5.89 6.00 6.15

The dimension to sample size ratio c D 0:3; 0:6; 0:9; 1:2. The nominal significant level is ˛ D 0:05

and the number of independent replications is 10,000

The model under the null hypothesis is

Hp D w1ıa1 C w2ıa2 C w3ıa3 ;

where the distinct mass points are .a1; a2; a3/ D .1; 4; 7/; .1; 5; 10/ and their
weights are .w1;w2;w3/ D .0:4; 0:4; 0:2/; .0:5; 0:3; 0:2/. Results in Table 2 show
that the empirical sizes are all close to the nominal level, though their fluctuation is
a bit larger than that in the test of order two.

Next, we examine the power of the order test using four models under the
alternative.

Model 5: Hp D 0:4ı1 C 0:3ı5 C 0:2ı15 C 0:1ı25,
Model 6: Hp D 0:4ı1 C 0:3ı5 C 0:2ı15 C .1=15/ı25 C .1=30/ı30,
Model 7: Hp D 0:4ı1 C 0:4ı5 C 0:2U.10; 20/,
Model 8:Hp D 0:4ı1 C 0:3ı5 C 0:2ı15 C 0:1U.20; 30/.

The fist two models are discrete PSDs of orders 4 and 5, respectively, and the last
two models are mixture distributions of discrete and continuous. Figure 2 illustrates
the power curves for Models 5–8. It shows that this test is more difficult to gain
power than the order two test since we need to estimate higher order moments of
PSDs. However, we still can see that the power increases along with the increasing
.n; p/, which again demonstrates the consistency of the test.
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Fig. 2 Empirical powers of the test for Models 5–8 with the dimensional ratio c D
0:3; 0:6; 0:9; 1:2. The nominal significant level is ˛ D 0:05 and the number of independent
replications is 10,000

5 Conclusions and Remarks

In this paper we propose bias-reduced moment estimators of PSDs, which are
originally introduced in [3]. The proposed estimators successfully remove all
O.1=p/ terms in the biases such that the asymptotic normal distributions regain zero
mean. We adopt these bias-reduced estimators to a test procedure for the order of
PSDs, proposed by Qin and Li [18]. Asymptotic distributions of the test statistic are
presented under both the null and the alternative hypotheses as .n; p/ ! 1 with
their ratio p=n ! c 2 .0;1/. We have observed in the simulation study that the
order test maintains desired nominal level and its power tends to 1 as .n; p/ tend to
infinity.

Recall that unbiased estimators of the first fourth moments of the PSD are given
in [10, 21], referred to as O�.u/k ; k D 1; 2; 3; 4. Corresponding estimators in [3] are
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referred as to O�.b/k . Some elementary calculations reveal that

O�1 D O�.b/1 D O�.u/1 ; O�2 D O�.b/2



1 � 1

n

�

D O�.u/2



1 � 3

n2
C 2

n3

�

;

O�3 D O�.b/3



1 � 3

n

�

D O�.u/3



1 � 17

n2
C 12

n3
C 52

n4
� 48

n5

�

;

O�4 D O�.b/4 C Op



1

n

�

D O�.u/4 C Op



1

n2

�

;

from which we can clearly see that these estimators are all asymptotically equiva-
lent, while O�.b/k has a bias of order O.1=p/ and O�k keeps a bias of order O.1=p2/,
k D 2; 3; 4.

It is worth noticing that the central limiting theorems of all these estimators
heavily rely on the moment conditions, say E.w411/ D 3, of the underlying
distribution. If the fourth moment is not equal to 3, then there are two additional
terms appearing in the limiting mean and covariance matrix, see [17]. Moreover,
these two terms are functions of both eigenvalues and eigenvectors of †p (unless
†p is diagonal), which are currently hard to be estimated.

6 Proofs

6.1 Proof of Theorem 1

Suppose that the assumptions (a)–(c) hold, from [20], the ESD Fn converges
weakly to the LSD Fc;H, and moreover the Stieltjes transform sn.z/ of the ESD Fn

converges almost surely to s.z/, the Stieltjes transform of Fc;H . Let .ˇ1; : : : ; ˇk/0 D
g�1.�1; : : : ; �k/ then,

ˇj D
Z

tjdFcn;Hp.t/ ! Q̌
j WD

Z

tjdFc;H.t/; j � 1;

where Fcn;Hp is an LSD derived from Fc;H by replacing c and H with cn and Hp,
respectively.

When the support of H is bounded, the support of Fc;H is also bounded. Thus,
for any z 2 C with jzj large, the Stieltjes transform sn.z/ and s.z/ can be expanded
as Laurent series, and we have

sn.z/ D
Z

1

x � z
dFn.x/ D

1X

lD0

�1
zlC1

Ǒ
l

a:s:��! s.z/ D
1X

lD0

�1
zlC1

Q̌
l:
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From this we get Ǒ�
j � ˇj D Ǒ

j � O�j=p � ˇj
a:s:��! 0, and hence

O�j � �j a:s:��! 0; j D 1; 2; : : : ;

as .n; p/ ! 1; which is the first conclusion.
For the second conclusion, applying Theorem 1.1 in [1] with fj.z/ D zj, j D

1; : : : ; k; for real case, we obtain

p
� Ǒ

1 � ˇ1; : : : ; Ǒ
k � ˇk

�
D�! Nk.�;B/;

where the mean vector � D .�j/ with

�j D � 1

2�i

I

C1

czjs3.z/
R
t2.1C ts.z//�3dH.t/

.1 � c
R
s2.z/t2.1C ts.z//�2dH.t//2

dz; (8)

and the covariance B D .bij/ with its entries

bij D � 1

2�2

I

C2

I

C1

zi1z
j
2

.s.z1/� s.z2//2
s0.z1/s0.z2/dz1dz2; (9)

where

s.z/ D �1 � c

z
C cs.z/

is companion Stieltjes transform of Fc;H satisfying

z D � 1

s.z/
C c

Z
t

1C ts.z/
dH.t/: (10)

The contours C1 and C2 in (8) and (9) are simple, closed, non-overlapping, taken in
the positive direction in the complex plane, and each enclosing the support of Fc;H .
Then the second conclusion of this theorem follows from a standard application of
the Delta method, and the remaining works are to calculate the contour integrals
in (8) and (9).

Without loss of generality, let the contour C2 enclose C1 and both of them be
away from the support SF of Fc;H such that

max
t2SH ;z2Ci

jts.z/j < 1;
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where SH is the support of H. In such a situation, for any z 2 C1 [ C2,

P.s.z// D �1 � c
1X

lD1
.�s.z//l Q�l D �1C c

Z
ts.z/

1C ts.z/
dH.t/;

Q.s.z// D c
1X

lD0
q3;l Q�lC2sl.z/ D c

Z
t2

.1C ts.z//3
dH.t/;

R.s.z// D 1 � c
1X

lD0
q2;l Q�lC2slC2.z/ D 1 � c

Z
.zt/2

.1C tz/2
dH.t/;

and from (10) we also get P.s.z// D zs.z/, where the functions P;Q, and R are
defined in (4)–(5). On the other hand, denote the image of Ci under s.z/ be

s.Ci/ D fs.z/ W z 2 Cig; i D 1; 2:

Notice that s.z/ is a univalent analytic function on C n .SF [ f0g/, and thus Ci and
s.Ci/ are homeomorphic, which implies s.C1/ and s.C2/ are also simple, closed, and
non-overlapping. In addition, from the open mapping theorem and the fact s.z/ ! 0

as jzj ! 1, we may conclude that s.C2/ encloses s.C1/, and both of them have
negative direction and enclose zero.

Based on these knowledge and by the equality

s2.z/

s0.z/
D 1 � c

Z
t2s2.z/

.1C ts.z//2
dH.t/; (11)

the integral in (8) becomes

�j D � 1

2�i

I

C1

czjs.z/s0.z/
R
t2.1C ts.z//�3dH.t/

1 � c
R
s2.z/t2.1C ts.z//�2dH.t/

dz

D 1

2�i

I

s.C1/

Pj.s/Q.s/

sj�1R.s/
ds

D
(
0; j D 1;

1
. j�2/Š

�
Pj.z/Q.z/=R.z/

	. j�2/ ˇˇ
zD0; 2 	 j 	 k;

(12)

where the equality in (11) is obtained by taking the derivative of z on both sides of
the Eq. (10), and the results in (12) are from the Cauchy integral theorem.

Finally, the integral in (9) can be simplified as

bij D � 1

2�2

I

C2

I

C1

zi1z
j
2

.s.z1/ � s.z2//2
ds.z1/ds.z2/



Bias-Reduced Moment Estimators of Population Spectral Distribution and. . . 117

D � 1

2�2

I

s.C2/

I

s.C1/

Pi.s1/Pj.s2/

si1s
j
2.s1 � s2/

2
ds1ds2

D � 1

2�2

I

s.C2/

Pj.s2/

sj2


I

s.C1/

Pi.s1/

si1.s1 � s2/
2
ds1

�

ds2:

By the Cauchy integral theorem,

I

s.C1/

Pi.s1/

si1.s1 � s2/
2
ds1 D

i�1X

lD0

I

s.C1/

˛i;l

si�l
1 .s1 � s2/

2
ds1

D �2�i
i�1X

lD0

˛i;l.i � l/

si�lC1
2

:

From similar arguments, we get

bij D � 1

�i

i�1X

lD0
.i � l/˛i;l

I

s.C2/

Pj.s2/

siCj�lC1
2

ds2

D 2

i�1X

lD0
.i � l/˛i;l˛j;iCj�l;

i; j D 1; : : : ; k:

6.2 Proof of Theorem 4

Under the alternative hypothesis and the assumption of this theorem, we have
D.k0/ D det.�.Hp; k0// ! det.�.H; k0// > 0 and

O�2H0
a:s:��! �2H0 WD �2k0 .c; Q�1; : : : ; Q�2k0�1; ��

2k0 ; : : : ; �
�
4k0 / > 0;

as .n; p/ ! 1, where ��
k , 2k0 	 k 	 4k0, is the kth moment of a discrete random

variable with only k0 different masses, determined by its first 2k0 � 1 moments
Q�1; : : : ; Q�2k0�1. Therefore, for large p and n, O�H0 exists and is positive, and

P

 
bD.k0/

O�H0=p
> z˛

!

D P

 
bD.k0/ � D.k0/

�k0=p
> z˛

O�H0
�k0

� D.k0/

�k0=p

!

D 1 �ˆ




z˛
�H0
�k0

� det.�.H; k0//

�k0=p

�

C op.1/

! 1;
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as .n; p/ ! 1, where �k0 is the square root of �2k0 defined in Theorem 2 and z˛ is
the 1 � ˛ quantile of standard normal population.
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Part II
Network Analysis and Big Data



Statistical Process Control Charts as a Tool
for Analyzing Big Data

Peihua Qiu

Abstract Big data often take the form of data streams with observations of
certain processes collected sequentially over time. Among many different purposes,
one common task to collect and analyze big data is to monitor the longitudinal
performance/status of the related processes. To this end, statistical process control
(SPC) charts could be a useful tool, although conventional SPC charts need to
be modified properly in some cases. In this paper, we introduce some basic SPC
charts and some of their modifications, and describe how these charts can be used
for monitoring different types of processes. Among many potential applications,
dynamic disease screening and profile/image monitoring will be discussed in some
detail.

Keywords Curve data • Data stream • Images • Longitudinal data • Monitor-
ing • Profiles • Sequential process • Surveillance

1 Introduction

Recent advances in data acquisition technologies have led to massive amounts of
data being collected routinely in different scientific disciplines (e.g., [30, 45]). In
addition to volume, big data often have complicated structures. In applications,
they often take the form of data streams. Examples of big sets of data streams
include those obtained from complex engineering systems (e.g., production lines),
sequences of satellite images, climate data, website transaction logs, credit card
records, and so forth. In many such applications, one major goal to collect and
analyze big data is to monitor the longitudinal performance/status of the related
processes. For such big data applications, statistical process control (SPC) charts
could be a useful tool. This paper tries to build a connection between SPC and big
data analysis, by introducing some representative SPC charts and by describing their
(potential) use in various big data applications.
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SPC charts are widely used in manufacturing and other industries for monitoring
sequential processes (e.g., production lines, internet traffics, operation of medical
systems) to make sure that they work stably and satisfactorily (cf., [18, 36]). Since
the first control chart was proposed in 1931 by Walter A. Shewhart, many control
charts have been proposed in the past more than 80 years, including different
versions of the Shewhart chart, CUSUM chart, EWMA chart, and the chart based on
change-point detection (CPD). See, for instance, [8, 12, 13, 16, 19, 28, 31, 46, 48]
and [51]. Control charts discussed in these and many other relatively early papers
are based on the assumptions that the process distribution is normal and process
observations at different time points are independent. Some recent SPC charts are
more flexible in the sense that they can accommodate data autocorrelation and non-
normality (e.g., [3, 35, 37, 38]).

The conventional control charts mentioned above are designed mainly for mon-
itoring processes whose observations at individual time points are scalars/vectors
and whose observation distributions are unchanged when the processes run stably. In
applications, especially in those with big data involved, process observations could
be images or other types of profiles (see Sect. 4 for a detailed description). When
processes are stable, their observation distributions could change over time due to
seasonality and other reasons. To handle such applications properly, much research
effort has been made in the literature to extend/generalize the conventional control
charts. After some basic SPC concepts and control charts are discussed in Sect. 2,
these extended/generalized control charts will be discussed in Sects. 3 and 4. Some
remarks conclude the article in Sect. 5.

2 Conventional SPC Charts

In the past several decades, SPC charts were mainly used for monitoring production
lines in the manufacturing industry, although they also found many applications
in infectious disease surveillance, environment monitoring, and other areas. When
a production line is first installed, SPC charts can be used to check whether the
quality of a relatively small amount of products produced by the production line
meets the quality requirements. If some products are detected to be defective,
then the root causes need to be figured out and the production line is adjusted
accordingly. After the proper adjustment, a small amount of products is produced
again for quality inspection. This trial-and-adjustment process continues until all
assignable causes are believed to be removed and the production line works stably.
This stage of process control is often called phase-I SPC in the literature. At the
end of phase-I SPC, a clean dataset is collected under stable operating conditions
of the production line for estimating the distribution of the quality variables when
the process is in-control (IC). This dataset is called an IC dataset hereafter. The
estimated IC distribution can then be used for designing a control chart for online
monitoring of the production line operation. The online monitoring phase is called
phase-II SPC. Its major goal is to guarantee that the production line is IC, and give



Statistical Process Control Charts as a Tool for Analyzing Big Data 125

a signal as quickly as possible after the observed data provide a sufficient evident
that the production line has become out-of-control (OC). Most big data applications
with data streams involved concern phase-II SPC only because new observations
are collected in daily basis. However, the IC distribution of the quality variables
still needs to be properly estimated beforehand in a case-by-case basis. See related
discussions in Sects. 3 and 4 for some examples.

Next, we introduce some basic control charts for phase-II SPC. We start with
cases with only one quality variable X involved. Its distribution is assumed to be
normal, and its observations at different time points are assumed independent. When
the process is IC, the process mean and standard deviation are assumed to be �0
and �0, respectively. These parameters are assumed known in phase-II SPC. But,
they need to be estimated from an IC dataset in practice, as mentioned above. At
time n, for n � 1, assume that there is a batch of m observations of X, denoted as
Xn1;Xn2; : : : ;Xnm. Then, by the X Shewhart chart, the process has a mean shift if

jXn � �0j > Z1�˛=2
�0p
m
; (1)

where ˛ is a significance level and Z1�˛=2 is the .1�˛=2/-th quantile of the standard
normal distribution. In the SPC literature, the performance of a control chart is often
measured by the IC average run length (ARL), denoted as ARL0, and the OC ARL,
denoted as ARL1. ARL0 is the average number of observations from the beginning
of process monitoring to the signal time when the process is IC, and ARL1 is the
average number of observations from the occurrence of a shift to the signal time
after the process becomes OC. Usually, the value of ARL0 is pre-specified, and the
chart performs better for detecting a given shift if the value of ARL1 is smaller. For
the X chart (1), it is obvious that ARL0 D 1=˛. For instance, when ˛ is chosen
0.0027 (i.e., Z1�˛=2 D 3), ARL0 D 370.

The X chart (1) detects a mean shift at the current time n using the observed
data at that time point alone. This chart is good for detecting relatively large shifts.
Intuitively, when a shift is small, it should be better to use all available data by the
time point n, including those at time n and all previous time points. One such chart
is the cumulative sum (CUSUM) chart proposed by Page [31], which gives a signal
of mean shift when

CC
n > h or C�

n < �h; for n � 1; (2)

where h > 0 is a control limit,

CC

n D max




0;CC

n�1 C .Xn � �0/

p
m

�0
� k

�

; C�

n D min




0;C�

n�1 C .Xn � �0/

p
m

�0
C k

�

;

(3)

and k > 0 is an allowance constant. From the definition of CC
n and C�

n in (3), it can
be seen that (1) both of them use all available observations by the time n, and (2)
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a re-starting mechanism is introduced in their definitions so that CC
n (C�

n ) is reset
to 0 each time when there is little evidence of an upward (downward) mean shift.
For the CUSUM chart (2), the allowance constant k is often pre-specified, and its
control limit h is chosen such that a pre-specified ARL0 level is reached.

An alternative control chart using all available observations is the exponentially
weighted moving average (EWMA) chart originally proposed by Roberts [46]. This
chart gives a signal of mean shift if

jEnj > �E
r

�

2 � �; for n � 1; (4)

where �E > 0 is a parameter,

En D �.Xn � �0/

p
m

�0
C .1 � �/En�1; (5)

E0 D 0, and � 2 .0; 1	 is a weighting parameter. Obviously, En D �
Pn

iD1.1 �
�/n�i.Xn � �0/

p
m=�0 is a weighted average of f.Xi � �0/

p
m=�0; i 	 ng with the

weights decay exponentially fast when i moves away from n. In the chart (4), � is
usually pre-specified, and �E is chosen such that a given ARL0 level is reached.

All the charts (1), (2), and (4) assume that the IC parameters�0 and �0 have been
properly estimated beforehand. The CPD chart proposed by Hawkins et al. [19]
does not require this assumption. However, its computation is more demanding,
compared to that involved in the charts (1), (2), and (4), which makes it less feasible
for big data applications. For this reason, it is not introduced here.

Example 1 The data shown in Fig. 1a denote the Ethernet data lengths (in log scale)
of the one million Ethernet packets received by a computing facility. The x-axis
denotes the time (in seconds) since the start of the trace. The Ethernet data lengths
smaller than 64 or larger than 1518 were not included in the dataset. The data with
x 	 250 look unstable and they are excluded from this analysis. Then, the data with
250 < x 	 1000 are used as an IC dataset, from which �0 and �0 are estimated.
Their estimators are used for monitoring the data with x > 1000 (i.e., the phase-
II data). The blue vertical dashed line in Fig. 1a separates the IC dataset from the
phase-II data. In phase-II monitoring, we treat every five consecutive observations as
a batch of m D 5 observations, the means of their Ethernet data lengths and arrival
times are both computed, and the mean of the Ethernet data lengths is monitored.
We group the data in batches in this example to shrink the data size so that the
related plots can be better presented for the demonstration purpose. In practice, the
control charts can be applied to the original data with a single observation at each
time point. Figure 1b shows the X chart (1) with Z1�˛=2 D 3:09 (or, ˛ D 0:002),
where the dots are batch means of the Ethernet data lengths, and the horizontal blue
dotted lines are the control limits �0 ˙ Z1�˛=2 �0p

m
. The ARL0 value of this chart is

1=0:002 D 500. From Fig. 1b, it can be seen that no signal is given by the X chart.
The CUSUM chart (2) with k D 1 and with h chosen such that ARL0 D 500 is
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Fig. 1 (a) Original observations of the Ethernet data lengths, with the vertical blue dashed line
separating the IC dataset from the phase II observations. (b) X chart with ATS0 D 500 for
monitoring the mean of every five consecutive observations. (c) CUSUM chart with k D 1 and
ARL0 D 500. (d) First 1=50-th of the plot (c). (e) EWMA chart with � D 0:1 and ARL0 D 500.
(f) First 1=50-th of the plot (e). The horizontal blue dotted lines in plots (b)–(f) are control limits

shown in Fig. 1c, where the horizontal blue dotted lines are the control limits h and
�h. Because this chart is quite crowded, the first 1=50-th is shown in Fig. 1d. From
both plots, we can see that many signals are given by the CUSUM chart, and the
signals come and go, implying that the mean shifts are isolated instead of persistent.
The corresponding results of the EWMA chart (4) with � D 0:1 are shown in Fig. 1e
and f. If we compare the results from the CUSUM chart with those from the EWMA
chart, we can see some consistency in their patterns.
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In Example 1, parameter determination of the control charts (1), (2), and (4)
are based on the assumptions that the process observation distribution is normal
and the observations at different time points are independent. These assumptions
could be invalid. For instance, from Fig. 1a and b, it is obvious that the observation
distribution is skewed to the right. In cases when the normality and independence
assumptions are invalid, it has been demonstrated in the literature that the perfor-
mance of the related control charts is generally unreliable in the sense that their
actual ATS0 values could be substantially different from the assumed ATS0 value
(e.g., [3, 39]). In such cases, many nonparametric (or distribution-free) control
charts and control charts that can accommodate autocorrelation have been proposed.
See, for instance, [1, 2, 4, 6, 9, 17, 29, 47, 49, 55, 59]. More recent research on
nonparametric SPC can be found in Chaps. 8 and 9 of [36] and the special issue of
Quality and Reliability Engineering International that was edited by Chakraborti
et al. [7].

In applications, especially in those with big data involved, the number of quality
variables could be large. In such cases, many multivariate SPC charts have been
proposed (cf., [36, Chap. 7]). Most early ones are based on the normality assumption
(e.g., [16, 20, 28, 53]. Some recent ones are nonparametric or distribution-free
(e.g., [27, 35, 37, 38, 60]). There are also some multivariate SPC charts proposed
specifically for cases with a large number of quality variables, based on LASSO and
some other variable selection techniques (e.g., [5, 52, 58, 65]).

3 Dynamic Statistical Screening

The conventional SPC charts described in the previous section are mainly for
monitoring processes with a stable process distribution when the process is IC. In
many applications, however, the process distribution would change even when the
process is IC. For instance, in applications with infectious disease surveillance, the
incidence rate of an infectious disease would change over time even in time periods
without disease outbreaks, due mainly to seasonality and other reasons. For such
applications, the conventional SPC charts cannot be applied directly. Recently, [40]
proposed a new method called dynamic screening system (DySS) for handling these
applications, which is discussed in this section. A completely nonparametric version
is discussed recently in [26]. A multivariate DySS procedure is proposed in [41]. Its
applications for monitoring the incidence rates of the hand, foot, and mouth disease
in China and the AIDS epidemic in the USA are discussed in [56, 57].

The DySS method is a generalization of the conventional SPC charts for cases
when the IC mean and variance change over time. It can be used in the following
two different scenarios. First, it can be used for early detection of diseases based
on the longitudinal pattern of certain disease predictors. In this scenario, if each
person is regarded as a process, then many processes are involved. The IC (or
regular) longitudinal pattern of the disease predictors can be estimated from an
observed dataset of a group of people who do not have the disease in question. Then,
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we can sequentially monitor the disease predictors of a given person, and use the
cumulative difference between her/his longitudinal pattern of the disease predictors
and the estimated regular longitudinal pattern for disease early detection. The related
sequential monitoring problem in this scenario is called dynamic screening (DS)
in [36]. Of course, the DS problem exists in many other applications, including
performance monitoring of durable goods (e.g., airplanes, cars). For instance, we
are required to check many mechanical indices of an airplane each time when it
arrives a city, and some interventions should be made if the observed values of
the indices are significantly worse than those of a well-functioning airplane of the
same type and age. Second, the DySS method can also be used for monitoring a
single process whose IC distribution changes over time. For instance, suppose we
are interested in monitoring the incidence rate of an infectious disease in a region
over time. As mentioned in the previous paragraph, the incidence rate will change
over time even in years when no disease outbreaks occur. For such applications,
by the DySS method, we can first estimate the regular longitudinal pattern of the
disease incidence rate from observed data in time periods without disease outbreaks,
and the estimated regular longitudinal pattern can then be used for future disease
monitoring.

From the above brief description, the DySS method consists of three main steps
described below.

(1) Estimation of the regular longitudinal pattern of the quality variables from a
properly chosen IC dataset.

(2) Standardization of the longitudinal observations of a process in question for
sequential monitoring of its quality variables, using the estimated regular
longitudinal pattern obtained in step (1).

(3) Dynamic monitoring of the standardized observations of the process, and giving
a signal as soon as all available data suggest a significant shift in its longitudinal
pattern from the estimated regular pattern.

In the DySS method, step (1) tries to establish a standard for comparison purposes in
step (2). By standardizing the process observations, step (2) actually compares the
process in question cross-sectionally and longitudinally with other well-functioning
processes (in scenario 1) or with the same process during the time periods when it
is IC (in scenario 2). Step (3) tries to detect the significant difference between the
longitudinal pattern of the process in question and the regular longitudinal pattern
based on their cumulative difference. Therefore, the DySS method has made use of
the current data and all history data in its decision-making process. It should provide
an effective tool for solving the DS and other related problems.

Example 2 We demonstrate the DySS method using a dataset obtained from the
SHARe Framingham Heart Study of the National Heart Lung and Blood Institute
(cf., [14, 36]). Assume that we are interested in early detecting stroke based on the
longitudinal pattern of people’s total cholesterol level (in mg/100 ml). In the data,
there are 1028 non-stroke patients. Each of them was followed seven times, and
the total cholesterol level, denoted as y, was recorded at each time. The observation
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times of different patients are all different. So, by the DySS method, we first need to
estimate the regular longitudinal pattern of y based on this IC data. We assume that
the IC data follow the model

y.tij/ D �.tij/C ".tij/; for j D 1; 2; : : : ; Ji; i D 1; 2; : : : ;m; (6)

where tij is the jth observation time of the ith patient, y.tij/ is the observed value of y
at tij, �.tij/ is the mean of y.tij/, and ".tij/ is the error term. In the IC data, m D 1028,
Ji D 7, for all i, and tij take theirs values in the interval Œ9; 85	 years old. We further
assume that the error term ".t/, for any t 2 Œ9; 85	, consists of two independent
components, i.e., ".t/ D "0.t/ C "1.t/, where "0.�/ is a random process with mean
0 and covariance function V0.s; t/, for any s; t 2 Œ9; 85	, and "1.�/ is a noise process
satisfying the condition that "1.s/ and "1.t/ are independent for any s; t 2 Œ9; 85	.
In this decomposition, "1.t/ denotes the pure measurement error, and "0.t/ denotes
all possible covariates that may affect y but are not included in model (6). In such
cases, the covariance function of ".�/ is

V.s; t/ D Cov .".s/; ".t// D V0.s; t/C �21 .s/I.s D t/; for any s; t 2 Œ9; 85	;

where �21 .s/ D Var."1.s//, and I.s D t/ D 1 when s D t and 0 otherwise. In
model (6), observations of different individuals are assumed to be independent. By
the four-step procedure discussed in [36], we can obtain estimates of the IC mean
function �.t/ and the IC variance function �2y .t/ D V0.t; t/C �21 .t/, denoted asb�.t/
andb�2y.t/, respectively.

The estimated regular longitudinal pattern of y can then be described byb�.t/ and
b�2y.t/. For a new patient, assume that his/her y observations are fy.t�j /; j D 1; 2; : : :g,
and their standardized values are

b�.t�j / D y.t�j /�b�.t�j /
b� y.t�j /

; for j D 1; 2; : : : : (7)

Then, we can apply the upward version of the CUSUM chart (2) and (3) (i.e., it gives
a signal when CC

n > h) to the standardized data for detecting upward mean shifts.
The upward version of the CUSUM chart (2) and (3) is considered here because we
are mainly concerned about upward mean shift in the total cholesterol level in this
example. For the ten patients in the data who had atleast one stroke during the study,
their CUSUM charts are shown in Fig. 2. In each CUSUM chart, .k; h/ are chosen
to be .0:1; 0:927/. In such cases, the average time to signal is about 25 years for
a non-stroke patient. From the figure, it can be seen that the first patient does not
receive a signal, the second patient receives a signal at the second observation time,
and so forth. In this example, we only monitor ten patients for a demonstration. In
practice, the same method can be used for monitoring millions of patients in exactly
the same way.
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Fig. 2 The upward CUSUM chart with the charting statistic CC

n defined in (3) for the ten stroke
patients in a dataset from the SHARe Framingham Heart Study. In the chart, .k; h/ are chosen to
be .0:1; 0:927/

4 Profiles/Images Monitoring

In the previous two sections, process observations are assumed to be scalars (i.e.,
univariate SPC) or vectors (i.e., multivariate SPC). In some applications, product
quality is reflected in the relationship among two or more variables. In such cases,
one observes a set of data points (or called a profile) of these variables for each
sampled product. The major goal of SPC is to check the stability of the relationship
over time based on the observed profile data. This is the so-called profile monitoring
problem in the literature [36, Chap. 10].

The early research in profile monitoring is under the assumption that the
relationship among variables is linear, which is called linear profile monitoring
in the literature (e.g., [22, 24, 25, 61]). For a given product, assume that we are
concerned about the relationship between a response variable y and a predictor x.
For the i-th sampled product, the observed profile data are assumed to follow the
linear regression model

yij D ai C bixij C "ij; for j D 1; 2; : : : ; ni; i D 1; 2; : : : ; (8)

where ai and bi are coefficients, and f"ij; j D 1; 2; : : : ; nig are random errors. In
such cases, monitoring the stability of the relationship between x and y is equivalent
to monitoring the stability of f.ai; bi/; i D 1; 2; : : :g. Then, the IC values of ai and
bi can be estimated from an IC dataset, and the linear profile monitoring can be
accomplished by using a bivariate SPC chart.

In some applications, the linear regression model (8) is too restrictive to properly
describe the relationship between x and y. Instead, we can use a nonlinear model
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based on certain physical/chemical theory. In such cases, the linear model (8) can
be generalized to the nonlinear model

yij D f .xij;� i/C "ij; for j D 1; 2; : : : ; ni; i D 1; 2; : : : ; (9)

where f .x;�/ is a known parametric function with parameter vector � . For such a
nonlinear profile monitoring problem, we can estimate the IC value of � from an IC
dataset, and apply a conventional SPC chart to the sequence f� i; i D 1; 2; : : :g for
monitoring their stability (e.g., [10, 15, 21, 23, 62]).

In many applications, the linear profile model (8) is inappropriate and it is
difficult to specify the nonlinear profile model (9) either. For instance, Fig. 3 is about
a manufacturing process of aluminum electrolytic capacitors (AECs) considered in
[43]. This process transforms raw materials, such as anode aluminum foil, cathode
aluminum foil, and plastic tube, into AECs that are appropriate to use in low leakage
circuits and are well adapted to a wide range of environmental temperatures. The
quality of AECs is reflected in the relationship between the dissipation factor (DF)
and the environmental temperature. The figure shows three AEC profiles along with
an estimator of the IC profile function (see the related discussion below). In this
example, the profiles look nonlinear and a parametric function for describing their
pattern is unavailable. For such applications, a number of nonparametric profile
monitoring approaches have been proposed (e.g., [43, 44, 63, 64]). In [44], the
following nonparametric mixed-effects model is used for describing the relationship
between x and y:

yij D g.xij/C fi.xij/C "ij; for j D 1; 2; : : : ; ni; i D 1; 2; : : : ; (10)
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Fig. 3 Three AEC profiles (lines connecting points with three different symbols) and a nonpara-
metric estimator (solid curve) of the IC profile function



Statistical Process Control Charts as a Tool for Analyzing Big Data 133

where g is the population profile function (i.e., the fixed-effects term), fi is the
random-effects term describing the deviation of the i-th individual profile from
g, f.xij; yij/; i D 1; 2; : : : ; njg is the sample collected for the i-th profile, and
f"ij; j D 1; 2; : : : ; nig are i.i.d. random errors with mean 0 and variance �2. In
model (10), it is routinely assumed that the random-effects term fi and the random
errors "ij are independent of each other, and fi is a realization of a mean 0 process
with a common covariance function

�.x1; x2/ D EŒfi.x1/fi.x2/	; for any x1; x2:

Then, the IC functions of g.x/ and �.x1; x2/, denoted as g0.x/ and �0.x1; x2/, and
the IC value of �2, denoted as �20 , can be estimated from an IC dataset. At the
current time point t, we can estimate g by minimizing the following local weighted
negative-log likelihood:

WL.a; bI s; �; t/ D
tX

iD1

niX

jD1
Œyij � a � b.xij � s/	2Kh

�
xij � s

�
.1 � �/t�i=�2.xij/;

where � 2 .0; 1	 is a weighting parameter, and �2.x/ D �.x; x/C �2 is the variance
function of the response. Note that WL.a; bI s; �; t/ combines the local linear kernel
smoothing procedure (cf., Subsection 2.8.5, [36]) with the exponential weighting
scheme used in EWMA through the term .1 � �/t�i. At the same time, it takes into
account the heteroscedasticity of observations by using �2.xij/. Then, the local linear
kernel estimator of g.s/, defined as the solution to a of the minimization problem
mina;b WL.a; bI s; �; t/ and denoted as bgt;h;�, can be obtained. Process monitoring
can then be performed based on the charting statistic

Tt;h;� D
Z
Œbgs;h;� � g0.s/	2

�2.s/
�1.s/ds;

where �1 is some pre-specified density function.
In some applications, there are multiple response variables. For instance, Fig. 4

shows a forging machine with four strain gages. The strain gages can record the
tonnage force at the four dies located at the four corners of the machine during a
forging process, resulting in data with four profiles. For such examples, models (8)–
(10) can still be used for describing observed profile data, except that the response
variable and the related coefficients and mean function are vectors in the current
setup. Research on this multivariate profile monitoring problem just gets started.
See, for instance, [32, 33] for related discussions.

In modern industries and scientific research, image data become more and
more popular [34]. For instance, NASA’s satellites send us images about the earth
surface constantly for monitoring the earth surface resources. Magnetic resonance
imaging (MRI) has become a major tool for studying the brain functioning.
Manufacturing companies monitor the quality of certain products (e.g., metal) by
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Fig. 4 A forging machine with four strain gages

taking images of the products. A central task in all these applications involves image
processing and monitoring. In the literature, there has been some existing research
on effective image monitoring (cf., [11, 50]). Most existing methods construct their
control charts based on some summary statistics of the observed images or some
detected image features. Some important (spatial) structures of the image sequences,
however, have not been well accommodated yet in these methods, and no general
SPC methods and practical guidelines have been proposed/provided for image
monitoring. Therefore, in my opinion, the image monitoring area is still mostly
open. Next, I will use one example to address one important issue that has not been
taken into account in the existing research.

Example 3 The US Geological Survey and NASA have launched eight satellites
since 1972 to gather earth resource data and for monitoring changes in the earth’s
land surface and in the associated environment (http://landsat.gsfc.nasa.gov). The
most recent satellite Landsat-8 can give us images of different places in the entire
earth every 16 days. In about a year, we can get 23 images of a given place of
interest. These images have been widely used in studying agriculture, forestry and
range resources, land use and mapping, geology, hydrology, coastal resources, and
environmental monitoring. Figure 8 in [54] shows two satellite images of the San
Francisco bay area, taken in 1990 and 1999, respectively. Assume that we are
interested in detecting earth surface change over time in this area. To detect the earth
surface change in the bay area between 1990 and 1999, a simple and commonly used
method is to compute the difference of the two images, which is shown in the left
panel of Fig. 5. From this “difference” image, it seems that the bay area changed
quite dramatically from 1990 to 1999. But, if we check the two original images
and their “difference” image carefully, then we can find that much of the pattern
in the “difference” image is due to the geometric mis-alignment between the two
images caused by the fact that the relative position between the satellite camera and
earth at the two time points changed slightly. In the image processing literature, the
research area called image registration is specially for handling this problem (e.g.,
[42]). After the two original images are aligned using the image registration method
in [42], the “difference” image is shown in the right panel of Fig. 5. It can be seen
that the pattern in this image is much weaker than that in the image shown in the

http://landsat.gsfc.nasa.gov
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Fig. 5 The left panel is the difference of two satellite images of the San Francisco bay area taken in
1990 and 1999 (cf., [54, Fig. 8]). The right panel is their difference after a proper image registration

left panel. Therefore, when we sequentially monitor the satellite image sequence,
image registration should be taken into account. In the image monitoring literature,
however, this issue has not received much attention yet.

5 Concluding Remarks

Data stream is a common format of big data. In applications with data streams
involved, one common research goal is to monitor the data stream and detect
any longitudinal shifts and changes. For such applications, SPC charts would be
an efficient statistical tool, although not many people in the big data area are
familiar with this tool yet. In this paper, we have briefly introduced certain SPC
charts that are potentially useful for analyzing big data. However, much future
research is needed to make the existing SPC charts be more appropriate for big data
applications. In this regard, fast and efficient computation, dimension reduction, and
other topics about big data management and analysis are all relevant.
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Fast Community Detection in Complex
Networks with a K-Depths Classifier

Yahui Tian and Yulia R. Gel

Abstract We introduce a notion of data depth for recovery of community structures
in large complex networks. We propose a new data-driven algorithm, K-depths, for
community detection using the L1-depth in an unsupervised setting. We evaluate
finite sample properties of the K-depths method using synthetic networks and
illustrate its performance for tracking communities in online social media platform
Flickr. The new method significantly outperforms the classical K-means and yields
comparable results to the regularizedK-means. Being robust to low-degree vertices,
the new K-depths method is computationally efficient, requiring up to 400 times less
CPU time than the currently adopted regularization procedures based on optimizing
the Davis–Kahan bound.

1 Introduction

The explosive growth of online social networking and recent advances on modeling
of massive and complex data has led to a skyrocketing interest in analysis of graph-
structured data and, particularly, in discovering network communities. Indeed, many
real-world networks—from brain connectivity to ecosystems to gang formation and
money laundering—exhibit a phenomena where certain features tend to cluster
into local cohesive groups. Community detection has been extensively studied in
statistics, computer science, social sciences and domain knowledge disciplines and
nowadays still remains one of the most hottest research areas in network analysis
(for overview of algorithms, see, e.g., [5, 11, 13, 21, 22, 37, 42, 46, 50, 68], and the
references therein).

The current paper is motivated by three overarching questions. First, there
exists no unique and agreed upon definition of network community, typically a
community is thought of a cohesive set of vertices that have stronger or better
internal connections within the set than with external vertices [37, 44]. Second,
community discovery is further aggravated in a presence of (usually multiple)
outliers, and until recently the two tightly woven problems of outlier detection
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and network clustering have been studied as independent problems [5, 15, 48].
Third, vertices with a low degree (or the so-called parasitic outliers of the spectrum
[35]) tend to produce multiple zero eigenvalues of the graph Laplacian, which
results in a higher variability of spectral clustering and thus a reduced finite
sample performance in community detection. Fourth, most of the currently available
methods for community discovery within a spectral clustering framework are based
on the Euclidean distance as a measure of “cohesion” or “closeness” among vertices,
and thus do not explicably account for the underlying probabilistic geometry of the
graph.

We propose to address the above challenges by introducing a concept of data
depth into the network community detection that allows to integrate ideas on
cohesion, centrality, outliers, and community discovery under a one systematized
“roof.” Data depth is a nonparametric and inherently geometric tool to analyze,
classify, and visualize multivariate data without making prior assumptions about
underlying probability distributions. A new impetus has been recently given to data
depths due to their broad utility in high dimensional and functional data analysis
(for overview, see, e.g., [9, 26, 27, 34, 40, 47, 58, 73], and the references therein.).
Given a notion of data depth, we can measure the “depth” (or “outlyingness”) of
a given object or a set of objects with respect to an observed data cloud. A higher
value of a data depth implies a deeper location or higher centrality in the data cloud.
By plotting such a natural center-outward ordering of depth values that serves as a
topological map of the data, the presence of clusters, outliers, and anomalies can
be evaluated simultaneously in a quick and visual manner. A notion of data depth
is novel to network studies. The only relevant paper on the topic is due to [14]
who consider a random sample of graphs following the same probability model
on the space of all graphs of a given size. This probabilistic framework, however,
is not applicable to analysis of most real-world graph-structured data where the
available data consists only of a single network. In this paper we primarily focus
on utility of L1-depth as the main tool for unsupervised community detection in a
spectral setting. Although there exist numerous other depth alternatives, our choice
of a depth function is motivated by simplicity and tractability of L1-depth and the
fact that it can be computed using a fast and monotonically converging algorithm
[29, 30, 65]. This makes L1-depth particularly attractive for community discovery in
large complex networks.

The paper is organized as follows. Section 2 provides background on graphs,
spectral clustering, and K-means algorithm. We introduce the new K-depths method
based on the L1-depth and discuss its properties in Sect. 3. simulation studies are
presented in Sect. 4. Section 5 illustrates application of the K-depths method to
tracking communities in online social media platform Flickr.
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2 Preliminaries and Background

Graph Notations Consider an undirected and loopless graph G D .V ; E/, with a
vertex set V of cardinality n and an edge set E . We assume that G consists of K non-
overlapping communities and K is given. Let A be an n � n-symmetric empirical
adjacency matrix, i.e.,

A D
(
1; if .i; j/ 2 E
0; otherwise:

The population counterpart of A is denoted by P. Let D be a diagonal matrix of

degrees, i.e., Dii D
nP

jD1
Aij. Then, the graph Laplacian is defined as

L D D�1=2AD�1=2: (1)

Spectral Clustering For smaller networks, communities can be identified via
optimizing various goodness of partition measures, for instance, Ratio Cut [19],
Normalized Cut [60], and Modularity [45], which involve a search for optimal
split over all possible partitions of vertices. However, such discrete optimization
problems are typically NP-hard and thus are not feasible for larger networks. The
computational challenges can be circumvented using spectral clustering (SC) that
yields a continuous approximation to discrete optimization [67]. Hence, SC is
now one of the most widely popular procedures for tracking communities in large
complex networks [66].

The key idea of SC is to embed a graph G into a collection of multivariate sample
points. Given K communities, we identify orthogonal eigenvectors v�j; j D 1; : : : ;K
of the Laplacian L (or adjacency matrix A) that correspond to the largest K
eigenvalues, and construct the n � K-matrix V D Œv�1; : : : ; v:K 	. Each row of V ,
vi � vi�, provides a representation in R

K of a vertex in V . Given this embedding,
we can now employ any appropriate classifier to cluster this multivariate data set
into K communities, and the most conventional choice is a method of K-means
[1, 31, 36, 51].

Given a set of data points xi 2 R
d, for i D 1; : : : ; n, the method of K-means [41]

aims to group observations into K sets C D fC1; : : : ;CKg in such a way that the
within-cluster sum of squares is minimized, that is, we minimize

argmin
C

KX

kD1

X

x2Ck

jjx � �kjj2; (2)

where �k is the mean of points in Ck, jjx � �kjj2 is the squared Euclidean distance
between x and k-th group mean �k. The optimization (2) is highly computationally
intensive. As an alternative, we can employ the Lloyd’s algorithm (also known as
Voronoi iteration or relaxation) for (2) that is based on iterative refinement and that
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allows to quickly identify an optimum (see the outline of the K-means 1). In this
paper, the initial centers are chosen randomly from the data set.

Algorithm 1: The K-means algorithm
Input : a set of data points X D fx1; : : : ; xng, an initial set of K means m1; : : : ;mK .
Output: a partition of X.

1 do
2 	 Assign points to its nearest cluster in terms of squared Euclidean distance, for

k D 1; : : : ;K:

Ck D fxi W jjxi � mkjj2 � jjxi � mjjj2;8j; 1 � j � Kg
	 Update cluster centers as the mean of points in new clusters, for k D 1; : : : ;K:

mk D 1

jCkj
X

xi2Ck

xi:

3 until the assignment no longer change;

Regularization Low-degree vertices tend to produce multiple zero eigenvalues of a
Laplacian L, which in turns increases clustering variability and adversely impacts a
performance of the K-means algorithm. The problem is closely connected to the
concentration of L, that is, the study on how close a sample Laplacian L to its
expected value. Sparser networks tend to produce more low-degree vertices and do
not concentrate. The idea of regularization in this context is to somehow diminish
the impact of such vertices with low degrees, by viewing them as outliers and
shrinking them toward the center of spectrum. As a result, regularization leads to a
higher concentration. There are a number of regularization procedures ranging from
brute-force trimming of outliers to sophisticated methods that are closely connected
to regularization of covariance matrices (for more discussion and the most recent
literature review see [35]). One of the most popular approaches, by analogy with a
ridge regularization of covariance matrices, is to select some positive parameter �
and add �=n to all entries of the adjacency matrix A [1], that is

A� D A C �J;

where J D 1=n1, 1 is n � n-matrix with all elements 1. The resulting regularized
Laplacian then takes a form

L� D D�1=2
� A�D

�1=2
� ;

where Dii;� D
nP

jD1
Aij C � . The optimal regularizer � can then be selected by

minimizing the Davis–Kahan bound, i.e., the bound on the distance between the
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sample and population Laplacians (for study on properties of regularized spectral
clustering see, [31, 35], and the references therein). However, selecting an optimal
regularizer � is highly computationally expensive. In addition, the impact of small
and weak communities on performance of regularized spectral clustering is not
clear.

In this light, an interesting question arises on whether we can develop an alter-
native data-driven and computationally inexpensive method for taming “outliers”
with low degrees and bypass the optimization stage of the Davis–Kahan bound? It
seems natural to unitize here a statistical methodology that has been developed with
a particular focus on analysis of outliers, that is, a notion of data depth.

3 Community Detection Using L1 Data Depth

In this section, we propose a new unsupervised K-depths algorithm for network
community detection based on iterative refinement with L1 depth.

The L1 Data Depth In this paper we consider an L1-data depth of Vardi and
Zhang [65]. Consider N distinct observations x1; : : : ; xN in R

p which we need to
partition into K clusters, and let I.k/ be a set of labels for observations in the k-th
cluster. Let each observation xi be associated with a scalar �i, i D 1; : : : ;N, where
�i are viewed as weights or as “multiplicities” of xi, and �i D 1 if the data set has
no ties. The multivariate L1-median of a k-th cluster, y0.k/, is then defined as

y0.k/ D argminC.yjk/; (3)

where C.yjk/ is the weighted sum of distances between y and points xi in the k-th
cluster

C.yjk/ D
X

i2I.k/
�ijjxi � yjj 8k: (4)

Here jju � vjj, u; v 2 R
p, is the Euclidean distance in R

p. If x1; : : : ; xN are not mul-
ticollinear (which is the case of the considered spectral clustering framework), C.y/
is positive and strictly convex in R

p. If the set x1; : : : ; xN has ties, “multiplicities” �i
can be chosen in such a way that it preserves convexity of C.y/ (see [65], for further
discussion).

The L1 depth was proposed by Vardi and Zhang [65], based on the notion of a
multivariate L1-median (3), and the idea has been further extended to clustering and
classification in multivariate and functional settings by López-Pintado and Jörnsten
[39], Jörnsten [29]. Given a cluster assignment, the L1 depth of point x; x 2 R

K with
respect to a k-th cluster is defined as

LD.xjk/ D 1 � maxŒ0; jjNe.xjk/jj � f .xjk/	: (5)
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Here f .xjk/ D �.x/=
P

i2I.k/ �i with �.x/ D PN
iD1 �iI.x D xi/ and Ne.xjk/ is the

average of the unit vectors from a point x to all observations in the k-th cluster and
is defined as

Ne.xjk/ D
X

i2I.k/;xi¤x

�iei.x/=
X

j2I.k/
�j;

where ei.x/ D .xi � x/=jjxi � xjj.
The idea of 1 � LD.xjk/ is to quantify a minimal additional weight required to

assign x so that x becomes the multivariate L1-median of the k-th cluster x [ fxi; i 2
I.k/g [65]. Hence, L1 depths as a robust representation of a topological structure of
each cluster. Since L1 is non-zero outside the convex hull of the data cloud, it is a
feasible depth choice for comparing multiple clusters [29].

The K-Depths Method It is well known that K-means clustering algorithm is non-
robust to outliers [16, 59, 69]. This partially is due to the fact that the K-means
algorithm is based on a squared Euclidean norm as the measure of “distance” and
only captures the information between a pair of points, i.e., a candidate center
and another point (see Fig. 1a). Also to identify a cluster, the K-means algorithm
uses a presumptive cluster center defined by a cluster mean, which makes it
sensitive to anomalies and outliers. Although we update centers and clusters until
the assignments no longer change, there is no guarantee that the global optimum
for (2) can be found [49, 54].

Our idea is motivated by the two overarching questions. Is there an alternative
“cohesion” measure to a squared Euclidean norm? Does such a measure allow to

(a) (b)

(c)

Fig. 1 Comparing K-means and K-depths algorithms. Circles denote cluster centers. Each cluster
is identified by colors and border around points. (a) K-means. (b) K-depths. (c) Generalized K-
depths
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achieve a higher accuracy and stability by taking advantage of more information
between clusters and points?

Indeed, such a “cohesion” measure exists, and it can be based on a data depth
notion. As discussed earlier, a depth function evaluates how “deep” (or “central”) a
point is with respect to a group of data (i.e., a cluster). Hence, depth functions allow
for more informative and robust “cohesion” (or “distance”) measures than a squared
Euclidean norm (Fig. 1b).

Our proposed approach is then to use a data depth (particularly, the L1 depth)
to find “nearest” clusters as a part of iterative refinement, and we call the new
method “K-depths” clustering algorithm. That is, following the spectral clustering
setting, we embed a graph into a collection of multivariate sample points. Then,
given K communities, we identify orthogonal eigenvectors of the Laplacian L that
correspond to the K largest eigenvalues of L, and construct an n�K-matrix V that is
formed by eigenvectors of L. We view each row of V as a representation of a network
vertex in R

K , and thus, we get n sample points in K-dimensional space. Clustering
of these multivariate points using the K-depths yields a partition of networks into
K communities. (The K-depths method is outlined in Algorithm 2. Note that we
still use a squared Euclidean norm to initialize the K-depths iterative refinement.)
Note that instead of Laplacian spectral embedding, we can also consider adjacency
spectral embedding (see [36] and references therein).

Algorithm 2: Spectral clustering K-depths algorithm
Input : network G; number of communities K, depth function LD.
Output: a partition of G.

1 compute L using (1) ; // Spectral Clustering
2 construct V by combining the leading K eigenvectors of L;
3 view each row of V as a multivariate representation of each vertex in V ;
4 randomly select K points as initial centers m01;m

0
2; : : : ;m

0
K ; // K-depths

5 define initial clusters: C0k D fxi W jjxi � mkjj2 � jjxi � mjjj2;8j; 1 � j � Kg;
6 do
7 extract inner p percent vertices: Ik D fxi W LD.ijk/ � LD.:jk/.p�nk /g for

k D 1; : : : ;K update clusters: Ck D fxi W LD.xijk/ � LD.xijj/;8j; 1 � j � Kg;
8 until the assignment no longer change;

The K-depths algorithm presented above is closely related to the modified
Weiszfeld algorithm of [65]. The idea of the K-depths is to evaluate “centrality”
of any given point in respect to all points within a cluster (see Fig.1b), that is,
in respect to points located inside the cluster and points located close to a cluster
borderline. However, points that fall in-between clusters may provide redundant or
noisy information, which leads a higher variability of the clustering algorithm. We
therefore introduce the generalized K-depths measure which only accounts for the
inner parts of a cluster to calculate depth values (Fig. 1c). Given a contour plot of
a cluster, we compute L1 depth values using points which are within an arbitrary
percentage contour p 2 Œ0; 1	. For instance, Fig. 1b is a special case of Fig. 1c where
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the locality parameter p is 1, i.e., all 100 % of available data are used in the K-depths
algorithm. We can also view the locality parameter p as a trade-off of bias (i.e.,
detection accuracy) and variance (i.e., detection variability).

Remark The optimal choice of p, similarly to selection of optimal trimming,
largely depends on a definition of outlier, types of anomalous behavior, proportion
of contamination, and structure of the data. Conventionally, trimming and other
robustifying parameters are chosen using various types of resampling, including
V-fold crossvalidation, jackknife, and bootstrap (see [2, 24, 25]). Under the network
setting, the problem is further aggravated by the lack of an agreed-upon definition
of outliers and network anomalies and their dependence on the underlying network
model structure (for overviews, see [3–5, 17, 18]). For instance, [5] discuss at least
four kinds of outliers: mixed membership, hubs, small clusters, independent neutral
nodes. Although selecting p using crossvalidation is likely to be affected by the
presence of outliers in an observed network, we believe that one of the resampling
ideas such as crossvalidation or bootstrap [12, 63] is still arguably the most feasible
approach that allows to minimize parametric assumptions about the network model.

3.1 Properties of Spectral Clustering K-Depths Algorithm

Asymptotic properties of spectral clustering and, particularly, the K-means/ medians
algorithms have been widely studied both in probability and statistics (for the most
recent overviews, see, e.g., [28, 36, 52, 53], and the references therein). While most
of the results focus on denser networks, most recently [36] derive an upper error
bound for spectral clustering under moderately sparse stochastic block model with
a maximum expected degree of order log n or higher.

The key result behind deriving all asymptotic properties of the K-means/ medians
algorithms is to show that there exists a sequence �n; �n � 0 such that limn!1 �n D
0 and

zAk 	 .1C �n/z
�.G/; n 2 ZC (6)

where zAk.G/ is the approximate polynomial time solution from the K-
means/medians algorithms and z�.G/ is the optimal solution. If such a sequence �n
exists, then [10] define asymptotic optimality of the K-medians algorithm.

Defining z.G/ in (6) in terms of a Frobenius norm of a distance between the
K largest eigenvectors U1; : : : ;UK of a population adjacency matrix P and their
respective counterparts OU1; : : : ; OUK from an empirical adjacency matrix A, [33]
show that there exists an approximate polynomial time solution to the K-means
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algorithm with an error bound

jj O� OX � OUjj2F 	 .1C �/ min
�2Mn;K
X2RK�K

jjU � OUjj2F; OU; U 2 R
n�K ;

where U D ŒU1; : : : ;UK 	 and OU D Œ OU1; : : : ; OUK 	. Here � is a true membership
matrix such that �igi is 1 where gi 2 f1; : : : ;Kg is the community membership of
vertex i, and Mn;K is a collection of all n � K-matrices where each row has exactly
one 1 and the remaining K � 1 entries are 0. For discussion on analogous results
on existence of .1C �/-approximate solution for a k-medians algorithm in network
applications see, for instance, [36].

Since statistical properties of median and L1-depth are closed related (see [65]),
we state the following conjecture about the error bound of the K-depths algorithm
under the L1 depth and adjacency spectral embedding.

Conjecture 1 There exists an ˝-approximate polynomial time solution to the
K-depths method under adjacency spectral embedding which attains

jj O� OX � OUjj2F 	 ˝ min
�2Mn;K
X2RK�K

jjU � OUjj2F; (7)

where ˝ is a positive constant and . O�; OX/ 2 Mn;K � RK�K is the output of ˝-
approximate K-depths algorithm.

Armed with (7), an upper bound on network community detection error of the
K-depths algorithm 2 under adjacency spectral embedding can be derived for a
stochastic block model (SBM), following derivations of [36, 52, 65]. This error
bound for the K-depths increases with an increasing network sparsity and with
the growing number of communities. In addition, assuming existence of a ˙-
approximate solution to the K-depths algorithm, analogous error bounds can be
derived under Laplacian spectral embedding [52, 53].

4 Simulations

In this section we evaluate a finite sample performance of the unsupervised K-
depths classifier for detecting network communities and primarily focus on a case
of two communities. To measure a goodness of clustering, we employ such standard
criteria as misclassification rate and normalized mutual information (NMI). We
define misclassification rate as the total percentage of mislabeled vertices, i.e.,

� D 1

n

KX

iD1
jSij;

where jSij is the number of misclassified vertices in the i-th community.



148 Y. Tian and Y.R. Gel

Given the two sets of clusters with a total of n vertices: R D fr1; : : : ; rKg and
C D fc1; : : : ; cJg, the NMI is given by Manning et al. [43]:

NMI.R;C/ D I.RIC/
ŒH.R/C H.C/	=2

:

Here I is mutual information

I.RIC/ D
X

k

X

j

P.rk
\

cj/ log
P.rk

T
cj/

P.rk/P.cj//

D
X

k

X

j

jrkT cjj
n

log
njrkT cjj

jrkjjcjj

where P.rk/, P.cj/, and P.rk
T

cj/ are the probabilities of a vertex being in cluster
rk, cj and in the intersection of rk and cj, respectively, and H is entropy defined by

H.R/ D �
X

k

P.rk/ logP.rk/ D �
X jrkj

n
log

jrkj
n
:

NMI takes values between 0 and 1, and we prefer a clustering partition with a higher
NMI.

4.1 Network Clustering with Two Groups

Here we use a benchmark simulation framework based on a 2-block stochastic block
model (SBM)[61, 71]. SBM is a particular case of an inhomogeneous Erdös–Renyi
model in which edges are formed independently and probability of an edge between
two vertices is determined by group membership of vertices [23].

Following a simulation setting of Joseph and Yu [31], we generate 100 networks
of order 3000 from an SBM with a block probability matrix

B D
�
0:01 0:0025

0:0025 0:003

�

; (8)

and assume that the connections within the k-th community follow an independent
Bernoulli distribution with probability Bkk, k D 1; 2.

Table 1(a) summarizes clustering performance of the K-means and K-depths
algorithms in terms of misclassification rate and NMI. We find that the K-depths
method noticeably outperforms the K-means algorithm, delivering 36 % lower
misclassification rate and more than four times higher NMI, although with a
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Table 1 Performance of the
K-means and K-depths
algorithms in respect to
misclassification rate � and
NMI, with standard deviation
in (), under (a)

Method � NMI

(a)

K-means 0.44 0.05

(0.08) (0.09)

K-depths 0.28 0.23

(0.13) (0.19)

(b)

K-means 0.62 0.24

(0.21) (0.08)

K-depths 0.55 0.43

(0.25) (0.07)

SBM (8) and (b) Generalized
SBM (GSBM). The locality
parameter p for the K-depths
algorithm is 0.1
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Fig. 2 Boxplots of clustering performance of the K-means and K-depths in terms of misclassifi-
cation rate and NMI for the SBM (8)

somewhat higher variability. Remarkably, the boxplot for misclassification rate and
NMI (see the left panel of Fig. 2) indicates that despite a higher variability, the
lower quartile of the misclassification rates delivered by the K-depths algorithm
is smaller than the upper quartile of the misclassification rates yielded by the K-
means algorithm. A similar dynamics is also observed for NMI (see the right panel
of Fig. 2).

We find that regularization of both K-means and K-depths where an optimal
regularizer � is selected using optimizing the Davis–Kahan bound as per [31]
improves community discovery. That is, the regularized K-means outperforms the
regularized K-depths in terms of misclassification rates, i.e., 0.16 vs. 0.22; and
the regularized K-depths outperforms the regularized K-means in terms of NMI,
i.e., 0.44 vs. 0.40. However, regularization turns out to be highly computationally
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Fig. 3 Contour plots based on the L1-data depth and varying data proportions p, i.e., p is 0.1, 0.3,
0.5, and 0.7

expensive, that is, finding an optimal regularization for a single network of 3000
vertices under SBM (8) requires 1800 s (with 1 additional sec for the K-means
algorithm itself). In contrast, the unregularized K-depths algorithm takes only 4 s.
(The elapsed time is assessed in R on an OS X 64 bit laptop with 1.4 GHz Intel Core
i5 processor and 4 GB 1600 MHz DDR3 memory.)

Thus, being intrinsically robust to low-degree vertices, the new K-depths method
provides a simple and computationally efficient alternative to the currently adopted
regularization procedures based on optimizing the Davis–Kahan bound.

Choice of a Locality Parameter Let us explore the impact of a locality parameter
p, p 2 Œ0; 1	, on a clustering performance of the K-depths algorithm. Note that p
controls how many points are selected to form the “deepest” sub-clusters which
other points are compared with. Figure 3 visualizes sub-clusters and the respective
contour plots based on the L1-depth, corresponding to p D .0:1; 0:3; 0:5; 0:7/.
If p is 1, the whole data cloud is used, while lower values of p lead to a higher
concentration of points around the cluster center and aim to minimize the impact
of outlying points or noise. Hence, a locality parameter p can be viewed as a trade-
off between bias and variance. Figure 4 shows the performance of the K-depths
algorithm in respect to varying p and the SBM (8). We find that in general both
mean and variance of misclassification rates and NMI are stable and comparable for
p of less than 0.5. As expected, higher values of p lead to a better performance in
terms of average misclassification rates and NMI but also result in a substantially
higher variability. In general, an optimal p can be selected via crossvalidation, and
choice of p is likely to be linked with a sparsity of an observed network. However,
given the stability of the K-depths performance, as a rule of thumb we suggest to
use a p of 0.5 or less.
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Fig. 4 Boxplots of misclassification rates (a) NMI (b) with various choices of locality parameter p.
The dashed line connects medians for resulting misclassification rates and NMI for various locality
parameters p, in plots (a) and (b) respectively

4.2 Network Clustering with Outliers

Now we evaluate the performance of the K-depths algorithm in respect to a network
with outliers. In particular, we consider the so-called Generalized Stochastic Block
Model (GSBM) of Cai and Li [5] which is based on incorporating small and
weak communities (outliers) into a conventional SBM structure. More specifically,
consider an undirected and loopless graph G D .V ; E/ with N D n C m vertices,
where n is the number of “inliers” which follow the standard SBM framework
and m is the number of “outliers” which connect with other vertices in random.
Each inlier vertex is assigned to one of the two communities, while all outliers are
placed into the 3rd community. An example of GSBM is shown in Fig. 5, two strong
communities are colored by red and green within solid circles, the outliers (one weak
and small community) are colored by blue within a dashed circle.
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Fig. 5 Network with
outliers, or small and weak
community, under GSBM

In this section we consider a GSBM of Cai and Li [5] by adding 30 outliers (i.e.,
one small and weak community) into a standard 2-block SBM (8).

In particular, we set a probability of an edge between outliers to be of 0.01.
Connection between inliers and outliers is defined by an arbitrary .0; 1/-matrix Z,
Z 2 R

n�m, such that EZ D ˇ1T D Œˇ; : : : ;ˇ	 and the component of ˇ are 3000
i.i.d. copies of U2, where U is a uniform random variable on Œ0; 0:0025	.

Following [5], we define a misclassification rate based only on inliers in the
dominant 1st and 2nd communities, i.e.,

� D 1

n

2X

kD1
jSkj;

where jSkj is a number of misclassified vertices in the k-th community and k D 1; 2.
Similarly, NMI is defined calculated only on inliers and a number of clusters K are
set to 3 for both K-means and K-depths algorithms.

Table 1(b) summarizes the results for misclassification rates and NMI delivered
by the K-means and K-depths algorithms. In general, misclassification rates for
both methods under the GSBM model are noticeably higher than the analogous
rates under a standard SBM. However, the K-depths algorithm still outperforms
the K-means method, yielding a 10 % lower misclassification rate. In turn, NMI
delivered by the K-depths algorithm is almost twice higher than the corresponding
NMI of the K-means method, i.e., 0.43 vs. 0.24, respectively. Remarkably, under
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Fig. 6 Boxplots of clustering performance of the K-means and K-depths in terms of misclassifi-
cation rate and NMI under the GSBM

the GSBM variability of both methods is very similar, while the upper quartile of
NMI for the K-means algorithm is lower than almost all values of NMI delivered by
the K-depths algorithm (see Fig. 6).

5 Application to Flickr Communities

In this section, we illustrate the K-depths algorithm to tracking communities in
Flickr. Flickr is a popular website for users to share personal photographs and
also an online platform. This data set contains the information of 80,513 Flickr
bloggers, each blogger is viewed as a vertex, and the friendship between bloggers
is represented by undirected edges. The data is available from [70]. Bloggers are
divided into 195 groups depending on their interests. As discussed by Tang and Liu
[62], the network is very sparse and scale-free (i.e., its degree distribution follows a
power law).

In our study, we consider a subnetwork of Flickr by extracting vertices that
belong to the second and third communities and edges within and in-between of
these communities. Isolated vertices (vertices with no edges) are removed. The
resulting data represents an undirected graph with 216 vertices and 996 edges; the
second community contains 155 vertices and 753 edges, while the third community
contains 61 vertices and 19 edges.

We now apply the K-means and K-depths algorithms to identify clusters in the
Flickr subnetwork (see Table 2). We find that the K-depths algorithm delivers a mis-
classification rate of 0.35, which is more than 26 % lower than the misclassification
rate of 0.47 yielded by the K-means algorithm. In turn, NMI yielded by the K-depths
algorithm is comparable with NMI of the K-means algorithm.
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Table 2 Misclassification
rate (�) and Normalized
Mutual Information (NMI)
criteria for the K-means and
K-depths methods for the
Flickr subnetwork

Method � NMI

K-means 0.47 0.07

K-depths 0.35 0.07

The locality parameter p
for the K-depths algorithm
is 0.5

6 Conclusion and Future Work

In this paper, we introduce a new unsupervised approach to network community
detection based on a nonparametric concept of data depth within a spectral
clustering framework. In particular, we propose a data-driven K-depths algorithm
based on iterative refinement of the L1 depth. The new method is shown to
substantially outperform the classical K-means and to deliver comparable results
to the regularized K-means. The K-depths algorithm is simple and computationally
efficient, requiring up to 400 times less CPU time than the currently adopted
regularization procedures based on optimizing the Davis–Kahan bound. Moreover,
theK-depths algorithm is intrinsically robust to low-degree vertices and accounts for
the underlying geometrical structure of a graph, thus paving the way for using the
L1 depth and other depth functions as an alternative to computationally expensive
selection of optimal regularizers.

In addition to asymptotic analysis of the K-depths clustering, in the future we
plan to advance the K-depths approach to other types of depth functions, for exam-
ple, the classical ones: half-space depth, Mahalanobis depth, random projection
depth etc [38, 55–57, 72], and to the most recent such as Monge-Kantorovich depth
[6, 20] and to explore utility of the K-depths method as initialization algorithm (for
discussion, see [64] and the references therein). Another interesting direction is to
investigate the relationship between properties of the K-depths approach and the
trimmed K-means algorithms [7, 8, 32], both in networks and general multivariate
clustering contexts.
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How Different Are Estimated Genetic Networks
of Cancer Subtypes?

Ali Shojaie and Nafiseh Sedaghat

Abstract Genetic networks provide compact representations of interactions
between genes, and offer a systems perspective into biological processes and
cellular functions. Many algorithms have been developed to estimate such networks
based on steady-state gene expression profiles. However, the estimated networks
using different methods are often very different from each other. On the other
hand, it is not clear whether differences observed between estimated networks
in two different biological conditions are truly meaningful, or due to variability
in estimation procedures. In this paper, we aim to answer these questions by
conducting a comprehensive empirical study to compare networks obtained from
different estimation methods and for different subtypes of cancer. We evaluate
various network descriptors to assess complex properties of estimated networks,
beyond their local structures, and propose a simple permutation test for comparing
estimated networks. The results provide new insight into properties of estimated
networks using different reconstruction methods, as well as differences in estimated
networks in different biological conditions.

1 Introduction

Aberrations in biological networks have been associated with the onset and
progression of complex diseases [1, 2]. Examples include changes in transcription
regulation and cell signaling networks in cancer and cardiovascular diseases [3–
5], as well as alterations in functional brain connectivity in neurological disorders
[6, 7]. Over the past few years, biomedical researchers have thus started to develop
new experimental procedures [8] to study changes in biological networks associated
with complex diseases, and to move towards differential network biology [9–11].
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The increasing evidence on the association of changes in biological networks
with different diseases has sparked an interest in computational biology and bioin-
formatics to obtain estimates of biological network for different disease conditions
using high throughput biological data [12–18]. Such condition-specific network
estimates are then used to generate new hypotheses about changes in biological
networks associated with complex diseases [1–7]. In fact, given the cost of exper-
imental procedures for obtaining condition-specific network information—e.g.,
knockout experiments—and the heterogeneity of complex diseases, computational
methods are viable and efficient alternatives for studying how networks change in
disease conditions.

Graphical models [19, 20] are commonly used to model and analyze biological
networks [21, 22]. A graphical model defines a probability distribution P over a
graph G D .V;E/, with the node set V D f1; : : : ; pg and edge set E � V � V . In
the setting of genetic networks, the nodes of the graph represent random variables
X1; : : : ;Xp corresponding to, e.g., gene expression levels of p genes. The edge set
E then encodes some type of dependency between the nodes. Obtaining condition-
specific estimates of biological networks thus requires the estimation of E from n
observations of X1; : : : ;Xp in a given disease state or biological condition.

Over the past decade, significant advances have been made in development of
new methods for estimation of large biological networks from high throughput
measurements. In particular, a number of penalized estimation methods [13–18]
have been proposed for estimation of graphical models in high dimensions—when
p � n—imposing different assumptions on the probability distribution P . Consider,
for simplicity, the setting of two biological conditions, say, cases and controls.
A first step in differential analysis of biological networks is to obtain condition-
specific estimates of the edge sets Ecases and Econtrols. Penalized estimation methods
have been recently used for this task [15, 23]. However, the vast majority of existing
approaches do not quantify the uncertainty of estimated networks. In particular, it
is unclear whether differences observed among estimated networks are statistically
meaningful, or can be attributed to estimation variation. On the other hand, networks
encode a vast amount of information, beyond the presence/absence of edges. To
delineate the consequences of local differences in Ecases and Econtrols from a systems
perspective, it is therefore necessary to understand how network properties change
as edges are removed/added in the network.

Motivated by the previous studies comparing different network estimation
methods [24, 25], this paper aims to address the above questions through an
empirical comparison of estimated networks of estrogen-receptor-positive (ERC)
and estrogen-receptor-negative (ER�) subtypes of breast cancer, using data from
The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga). We start by
comparing the edge structures of ERC and ER� networks. We then compare a wide
range of network descriptors to better understand the differences between estimated
ERC and ER� networks. To determine whether the choice of network estimation
method affects the observed patterns of differences, we include various estimation
methods, ranging from simple to complex procedures.

https://tcga-data.nci.nih.gov/tcga
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The rest of the paper is organized as follows. In Sect. 2, we briefly describe
different estimation methods used in this analysis. Section 3 describes the summary
measures used for evaluating similarities among networks. Results of comparing
networks from different estimation methods are presented in Sect. 4, while Sect. 5
contains the results of comparing estimated networks of ERC and ER�. We
summarize our findings in Sect. 6, and comment on future research directions.

2 Network Reconstruction Methods

As pointed out in the Introduction, graphical models have been widely used
to reconstruct biological networks. This includes both directed and undirected
graphical models [21, 26–28]. Directed networks are often used to encode causal
relationships among variables [29], and provide valuable information on how
variables (e.g., genes) in a graphical model influence each other. Unfortunately,
estimation of such causal networks is in general an NP-complete problem [30].
More importantly, it is often not possible to estimate directed networks from
observational data, and data from perturbation screens [31, 32] and/or time-
course experiments [31, 33, 34] are needed to determine the direction of edges
in the network. Thus, even though directed networks are of main interest in many
applications, in this paper, we focus on undirected graphical models.

Undirected graphical models for estimation of biological networks can be
broadly categorized into two classes, based on whether they encode marginal
or conditional associations [22]. A marginal association graph is estimated by
calculating the marginal association between every two pairs of random variables
Xj and Xk corresponding to genes j and k. An edge is then drawn between nodes j
and k if the magnitude of marginal association exceeds some threshold. Different
measures of dependence—ranging from simple Pearson correlation [35] to mutual
information [36] to more complex measure of non-linear associations [37]—can
be used to quantify the degree of marginal association between two variables.
The widely used WGCNA [13] approach—described in Sect. 2.1—is based on the
Pearson correlations among pairs of nodes.

Despite their simplicity and computational advantages, marginal association
graphs suffer from a major shortcoming: if Xj and Xj0 are both highly associated
with a third variable Xk, they will also have a large marginal associations. For
instance, if two genes are co-regulated by the same transcription factor, they would
be most likely connected in an undirected network based on marginal associations,
even though their association is due to their joint connection to the transcription
factor. Recognizing this limitation, a number of approaches have been proposed
to remove the false positive edges corresponding to indirect associations; among
these ARACNE [38] uses the so-called data processing inequality and has been used
successfully in a number of applications [39]. The post-processing step of ARACNE
limits the number of possible edges in estimated networks [24]. Therefore, despite
its popularity, we do not consider ARACNE in our comparisons.
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In conditional association graphs an edge is drawn between j and k if the
magnitude of association between Xj and Xk, after adjusting for all other variables,
exceeds some threshold. Thus, conditional association graphs are deemed more
appropriate in biological settings, as they capture relevant dependencies. However,
compared to marginal association graphs, conditional association graphs are more
difficult to estimate, both computationally, and also in terms of the number of
samples required to estimate the conditional dependencies.

The computational complexity of estimating conditional independence graphs
becomes more amenable in the setting of multivariate normal distributions cor-
responding to Gaussian graphical models (GGM). This stems from the fact that
if .X1; : : : ;Xp/ � Np.0;†/, then Xj and Xk are conditionally independent, given
all other variables, if and only if †�1

jk D 0 [19]. Thus, in this case, conditional
associations can be obtained from partial correlations, by estimating the inverse
covariance, or concentration, matrix of .X1; : : : ;Xp/. Utilizing this connection,
a number of methods have been proposed over the past decade for penalized
estimation of high-dimensional GGMs [23, 40]. The graphical lasso (GLASSO) [15]
algorithm of Sect. 2.3 is one such method.

The neighborhood selection (NS) [14] and Sparse PArtial Correlation Estimation
(SPACE) [16] methods of Sects. 2.2 and 2.4 are alternatives to GLASSO, that
instead estimate the partial correlations using p penalized linear regressions.
Interestingly, under mild regularity conditions, assuming linear dependency among
variables is equivalent to multivariate normality [18], which is not expected to
hold in many application settings. Violations of this assumption can significantly
affect the accuracy of estimates for estimation of GGMs. A few of methods have
been recently proposed to address this shortcoming; the nonparanormal framework
(NPN) [41] and SPArse Conditional graph Estimation with Joint Additive Models
(SPACE JAM) [18] in Sects. 2.5 and 2.6 relax the normality assumption by
considering marginal (copula) transformations of the original variables and directly
estimating non-linear associations among variables, respectively.

In this paper, we consider various methods for estimation of undirected graphical
models, including both marginal and conditional associations, as well as methods
based on linear and non-linear dependencies, to provide a comprehensive assess-
ment of differences between genetic networks of ERC and ER� samples. In the
remainder of this section, we briefly describe each of the estimation methods
considered.

2.1 Weighted Gene Correlation Network Analysis

Weighted Gene Correlation Network Analysis (WGCNA) [13] determines the
presence of edges between pairs of edges based on the magnitude of their Pearson
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correlation sij, which is a marginal measure of linear associations. Pearson corre-
lation values are first transformed by applying a power adjacency function jsijjˇ,
where the exponent ˇ is selected to obtain a network with a scale-free topology
[42, 43], which is expected to better represent real-world biological networks.
The presence of an edge between a pair of genes i and j is then determined by
thresholding the value of jsijjˇ at a prespecified cutoff � . WGCNA also facilitates
identification of gene modules by converting co-expression values into the topology
overlap measure (TOM), which represents the relative interconnectedness of pair
of genes in the network. While the identification of gene modules is certainly of
interest, it is outside the scope of this paper.

WGCNA is implemented in an R-package with the same name, and an estimate
of the network is obtained using the function adjacency.:/. The output of this
function is the weighted adjacency matrix of the network; the number of edges in
the network can thus be controlled by applying different thresholds � to this matrix.

2.2 Neighborhood Selection

Neighborhood selection (NS) [14] is a simple approach for estimation of sparse
graphical models. In this approach, the neighborhood of node j is estimated using a
lasso-penalized regression of Xj on all other nodes, X�j. Specifically,

One�j D fk 2 V W O� j;�k ¤ 0g; (1)

where � is a penalty parameter, V D f1; : : : ; pg is the set of nodes in G, and

O� j;� D min
�2Rp�1

8
<

:
n�1kXj � X�j�k22 C �

X

k¤j

j�kj
9
=

;
; (2)

In (2),
P

k¤j j�kj � k�k1 denotes the `1 norm of the coefficient matrix and forces

some of the entries of the estimated O� j;� to be exactly zero. Larger values of the
tuning parameter � result in sparser estimates O� j;� and hence a smaller neighborhood
One�j .

The neighborhood selection estimation procedure in Eqs. (1) and (2) does not
make specific assumptions about the distribution of random variables Xj. However,
it turns out that assuming linear relationships among variables is (almost) equivalent
to assuming multivariate normality; see [18] for more details.

Under multivariate normality, X D .X1;X2; : : : ;Xp/ � Np.0;†/, �
j
k defines the

partial correlation between Xj and Xk. It can thus be shown that the neighborhood
One�j gives a consistent estimate of the set of variables that are conditionally

dependent on Xj, given all other nodes. However, the above equation strategy may
give asymmetric estimates of edge weights between two nodes. It may even happen
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that k 2 One�j but j … One�k . A symmetric estimate of the network can be obtained from
considering either the union or intersection of the estimated neighborhoods. The NS
approach is implemented in the R-package glasso; specifically, the gene network
can be estimated using the function glasso(.) with the option approx=TRUE.

2.3 Graphical Lasso

Graphical lasso (GLASSO) [15] builds on a basic property of multivariate normal
random variables, that two variables Xj and Xk are conditionally independent of each
other, given all other variables, if and only if their corresponding entry of the inverse
covariance, or concentration, matrix †�1 is zero. Thus, assuming multivariate
normality, the graph of conditional independence relations among the genes can be
estimated based on the nonzero elements of the estimated inverse covariance matrix.
To achieve this, GLASSO estimates a sparse concentration matrix by maximizing
the `1-penalized log-likelihood function for a p-dimensional multivariate normal
distribution, Np.0;†/ given by

log det.†�1/� tr.S†�1/� �k†�1k1; (3)

Here, tr.A/ denotes the trace of matrix A, S is the empirical covariance matrix, and
the `1 penalty k†�1k1 is the sum of absolute values of elements of†�1. This penalty
enforces sparsity in the estimate of †�1 by setting some of its entries to zero. The
tuning parameter � is a positive number controlling the degree of sparsity.

The above optimization problem is concave, and can hence be solved using an
iterative coordinate-descent algorithm. In each iteration of the algorithm, one row
of † is updated, given most recent estimates of the remaining rows. This algorithm
is implemented in the R-package glasso, and an estimate of the gene network
can be obtained based on the estimated inverse covariance matrix using the function
glasso(.) with the option approx=FALSE.

2.4 SPACE

Sparse PArtial Correlation Estimation (SPACE) [16] converts the estimation of
concentration matrix into a regression problem, based on the loss function

Ln.�; �;X/ D 1

2

0

@
pX

jD1
!jkXj �

X

k¤j

� jk

r
�kk

� jj
Xkk2
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A ; (4)
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where Xj D .X1j ; : : : ;X
n
j /

T ; j D 1; : : : ; p are vectors of n independent obser-
vations for the jth variable (gene) and .X1; : : : ;Xp/ � Np.0;†/. Here, � D
.�12; : : : ; �. p�1/p/T where �jk is the partial correlation between Xj and Xk. Finally,
� D f� jkg1�j;k�p are the diagonal entries of the concentration matrix, and w D
f!jgpjD1 are nonnegative weights.

To address the estimation of parameters in the high-dimensional, low-sample-
size setting (p � n), the authors consider minimizing the penalized loss function

Ln.�; �;Y/ D Ln.�; �;Y/C �k�k1 D �
X

1�j<k�p

j�ijj; (5)

where the `1 penalty k�k1 D �
P

1�j<k�pj�jkj encourages sparse estimates of � and
� > 0 is a tuning parameter.

In summary, SPACE minimizes a penalized loss function with symmetric con-
straint by performing joint lasso regressions of variables on the others. Numerical
experiments indicate that this approach may be preferred over competing methods,
in settings where the network includes “hub” nodes, i.e., genes connected to
many other genes. The algorithm for solving the above optimization problem is
implemented in the R-package space, where the function space.joint() can
be used to obtain an estimate of the concentration matrix. The tuning parameter �
controls the sparsity level, or the number of edges in the network.

2.5 Nonparanormal

The nonparanormal (NPN) [17, 41] is a penalized maximum likelihood estimation
method, which generalizes the estimation of sparse concentration matrices to
non-Gaussian distributions. In particular, nonparanormal distribution replaces the
original random variables X D .X1; : : : ;Xp/ by the transformed random variable
f .X/ D . f1.X1/; : : : ; fp.Xp//, and assume that f .X/ has a multivariate normal
distribution. The proposed semiparametric approach applies a Gaussian copula
transformation where variables are marginally transformed by smooth monotone
functions. The estimate of the gene network is obtained by solving the graphical
lasso optimization problem (3), for the transformed variables f1.X1/; : : : ; fp.Xp/.

More recently, it has been shown that the NPN estimate can be obtained by
using rank-based measures of association, i.e., Spearman correlation or Kendal’s
� , instead of the usual Pearson correlation in the graphical lasso problem [44, 45].
Using this observation, the NPN estimate is obtained by plugging in a (transformed
version of) the Kendal’s � correlation matrix in place of the empirical covariance
matrix S in (3). Both estimation procedures are implemented in the R-packagehuge
(High-dimensional Undirected Graph Estimation) [17], where function huge()
returns an adjacency matrix. As in graphical lasso, the sparsity level of the graph
is controlled through the tuning parameter � in (3).
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2.6 SPACE JAM

SPArse Conditional graph Estimation with Joint Additive Models (SPACE JAM)
[18] is a semiparametric approach that estimates conditional independence relation-
ships using joint additive models. This is achieved by estimating the conditional
means EXj.XjjfXk W .j; k/ 2 Eg/ using an additive model XjjfXk; k ¤ jg DP

k¤j fjk.Xk/C "j where "j is a mean-zero term.
To encourage sparsity in the conditional independence graph, the authors apply

a group lasso penalty [46, 47], by linking p individual sparse additive models, and
estimating fjk.:/ by solving the following optimization problem:

min
fjk;1�j;k�p

8
<

:

1

2n

pX

jD1
kXj �

X

k¤j

fjk.Xk/k22 C �
X

k>j

fkfjk.Xk/k22 C kfkj.Xj/k22g
1
2

9
=

;
: (6)

The optimization problem in (6) is convex and is solved using a block coordinate-
descent algorithm implemented in the R-package spacejam; the adjacency matrix
of the network is obtained using the function SJ(.), and the tuning parameter �
controls the sparsity level of the network.

3 Network Descriptors

An edge between two nodes in a network estimated using the procedures of Sect. 2
represents marginal or conditional independence relations among the corresponding
pairs of variables. The collection of these edges describes the global relationships of
variables in the network. Clearly, these complex relationships cannot be understood
from investigating the presence/absence of edges alone. Therefore, to understand the
global properties of estimated networks, and delineate similarities and differences
between them, we consider a wide range of network descriptors. These descriptors
explain different aspects of estimated networks, and provide insight into various
network properties. The network descriptors considered in this paper can be
categorized into the following five categories:

1. simple summary measures of the degree distribution;
2. descriptors of network connectedness, including the number of clusters, cluster

coefficients, centrality degree, Zagreb index, and graph energy;
3. descriptors of spread of information and node influence on networks, including

diameter, centrality betweenness and closeness, and graph vertex complexity;
4. descriptors of network symmetry, including Bertz index and the topological

information content;
5. various network motifs involving 3, 4, and 5 nodes (see Fig. 1).
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Fig. 1 Network motifs considered in the experiments

In addition to the above descriptors, we will also utilize the network structural
correlation to quantify the degree of similarity of two networks with each other.
Next, we briefly describe the network descriptors in each of the above categories.

3.1 Degree Distribution Summary Statistics

The degree distribution is often used as the first tool for obtaining insight into
network properties. We consider select simple summary measures of degree dis-
tribution, including the first quartile, median, third quartile, and maximum degree,
as well as the interquartile range (IQR). We also consider the number of nodes with
degree zero and one. Given the network estimates are set to have a fixed number



168 A. Shojaie and N. Sedaghat

of edges, we do not include the mean degree. We also do not include the minimum
degree, which is equal to zero for all estimated networks.

3.2 Descriptors of Network Connectedness

3.2.1 Graph Centralization Based on Degree

The centralization of a graph G measures the absolute deviation between the most
central node and the other nodes in graph; formally,

C.G/ D
X

i2V.G/
j max
v2V.G/C.v/ � C.i/j; (7)

where C.v/ is any centrality measures, including degree, betweenness, or closeness
[48].

A small centrality degree measure indicates that a majority of nodes have similar
degrees. On the other hand, a large centrality degree indicates that the graph includes
few nodes with degrees much larger than others. This often implies that there is at
least one hub node (node with high degree) in the network.

3.2.2 Zagreb Group Index

The Zagreb group index [49, 50] is also defined based on node degrees in the graph
and is given by

ZI.G/ D
X

.vi;vj/2E.G/
deg.vi/deg.vj/: (8)

In a graph with a large ZI value, high degree nodes are connected to each other. In
other words, in graphs with large ZI, many dense subgraphs exist in the network.
Such interaction patterns are not expected to be less common in biological networks,
where many genes are expected to be connected to hub genes, and each hub gene is
connected to very few other hub genes [51].

3.2.3 Graph Energy

The eigenvalues of a graph characterize the topological structure of the graph; for
instance, the first nonzero eigenvalue �1 takes a larger value in networks with higher
overall connectivity than sparse networks. On the other hand, graphs with a large
number of shared eigenvalues have more similar structures. Graph energy [52] is
a eigenvalue-based measures, defined as the sum of eigenvalues of the adjacency
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matrix

E.G/ D
pX

jD1
�j: (9)

3.2.4 Clustering Coefficient and Number of Clusters

Biological networks have a modular nature, i.e., many cellular processes are
governed by subsets of biomolecules that form an interaction module. The clustering
coefficient [53] measures the tendency of the network to be divided into clusters,
i.e., subset of highly connected vertices. As expected, biological networks have
a significantly higher average clustering coefficient compared to simple random
networks.

Suppose node j 2 V.G/ has degree deg.j/ D k and that there are e edges between
the k neighbors of j in G. The local clustering coefficient of j in G is then defined
as Cj D 2e

k.k�1/ . Thus, Cj measures the ratio of the number of edges between the

neighbors of j to the total possible number of such edges, k.k�1/
2

; clearly, 0 	 Cj 	 1.
The average clustering coefficient of the network Caverage is given by

Cavg D 1

p

pX

jD1
Cj; (10)

where p D jVj is the number of nodes. The closer the local clustering coefficient is
to 1, the more likely it is for the network to form clusters.

In contrast to the clustering coefficient, the number of clusters in the network
is simply the number of connected components in the graph, which provides less
information about the connectivity of each of the clusters.

3.2.5 Medium Articulation

Medium articulation (MAg) is a graph complexity measure proposed initially by
Wilhelm and Hollunder [54] for directed graphs. Kim and Wilhelm [55] extended
this measure to undirected graphs. MAg is a powerful discriminator between graphs
with equal number of nodes and edges in terms of the graph topology, and is
calculated as the product of redundancy MAR and mutual information MAI of the
graph G. Mutual information is zero in a minimally articulated graph, i.e., when
each node has inputs/outputs from/to other nodes, while redundancy is zero in a
maximally articulated graph, i.e., when each node has exactly one input and one
output, but network is still connected. The product of these two measures, MAg,
is thus zero in both extremes and gets the maximum value in between, i.e., graphs
with a medium number of edges; see [56] for more information aboutMAR andMAI .
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For instance, since the clique is a fully connected subgraph, it has high redundancy,
while its mutual information is lowest. On the other hand, a path has the lowest
redundancy and the highest mutual information. This is why cliques and paths are
the basic elements of defining MAg [55], which is given by

MAg.G/ D MAR.G/MAI.G/; (11)

where the redundancy MAR is defined as

MAR.G/ D 4



R.G/ � Rpath.G/

Rclique.G/ � Rpath.G/

�


1 � R.G/ � Rpath.G/

Rclique.G/ � Rpath.G/

�

(12)

R.G/ D 1

jEj
X

j;k<i

log.deg.j/deg.k// (13)

Rclique.G/ D 2 log. p � 1/; (14)

Rpath.G/ D 2



p � 2
p � 1

�

log 2; (15)

and the mutual information MAI is defined as

MAI.G/ D 4



I.G/ � Ipath.G/

Ipath.G/ � Iclique.G/

�


1 � I.G/� Ipath.G/

Ipath.G/� Iclique.G/

�

; (16)

I.G/ D 1

jEj
X

j;k<j

log



2jEj
didj

�

; (17)

Iclique.G/ D log



p

p � 1
�

; (18)

Ipath.G/ D log. p � 1/�


p � 3

p � 1

�

log 2: (19)

3.3 Descriptors Related to Spread of Information in Network

The spread of information in a network is one of its important properties. The
descriptors presented in this section measure the spread of the network in terms
of distances and lengths of shortest paths between nodes.
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3.3.1 Diameter

Diameter is one of the most popular descriptors in this category. It measures the
length of the longest shortest path between nodes in a connected graph or longest
shortest path in the connected components of a disconnected graph.

3.3.2 Graph Centrality Based on Closeness and Betweenness

The base formula for centrality closeness and betweenness is the same as centrality
based on degree in (7). In other words, centrality closeness and betweenness
measure the absolute deviation between the most central node and the other nodes
in graph. However, the “centrality” C.j/ is defined differently for each of these
measures. Betweenness centrality of a node measures how many times a node is in
the shortest paths between other nodes in the graph. In the other words, it indicates
to the importance of the node in terms of being on the shortest connection between
other nodes; a node with high centrality betweenness acts like a bridge in the
network. Closeness centrality, on the other hand, measures how close a node is to the
other nodes in the graph. Formally, it is calculated as the inverse of average distance
of the shortest path from the node to the other nodes. In other words, closeness
shows how efficient a node is in spreading the information to other nodes.

In networks with higher centrality closeness, there is a large difference between
the largest closeness and other nodes’ closeness. This large gap suggests that
there the network contains few efficient nodes that are well positioned to spread
information to the other nodes. In contrast, the other nodes are, in general, less
efficient [48, 57] in spreading information through the network. Such connectivity
patterns can be expected in real biological networks with many hubs.

3.3.3 Graph Vertex Complexity Index

Graph vertex complexity [58] is an information-theoretic measure that summarizes
the amount of information passed through k-neighbors of each node in the network;
k-neighbors of a node are those that are k steps away. The graph vertex complexity
for a graph with p nodes is defined as

IVC.G/ D 1

p

pX

iD1
vci ; (20)

where vci is the vertex complexity for node i given by

vci D �
�.vi/X

jD0

kij
p

log

 
kij
p

!

: (21)
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In this formula, �.vi/ is the eccentricity of vertex i—the maximum graph distance
between i and any other node in G—and kij is the number of nodes j steps way from
node i. Note that IVC does not take into account the magnitude of the distance and
only considers the number of nodes with a particular distance.

3.4 Descriptors of Network Symmetry

Real-world networks, including biological networks, are known to demonstrate
high levels of symmetry [59]. More symmetric graphs contain redundant structures
that renders them more robust against environmental perturbations. Symmetry
characterizes the extent to which the graph is invariant under various transforma-
tions. The most common such transformation is (vertex) automorphism [60]. An
automorphism of a graph is a permutation of its vertex set that preserves incidences
of vertices and edges. In this regard, the orbit of vertex j of a graph G is the set of
all vertices k 2 V.G/ such that for an automorphism � it holds that �.j/ D k [61].
Two commonly used measures of network symmetry are Bertz index, BI, and the
topological information content [62].

3.4.1 Bertz Index

The Bertz index [63], BI, uses the size of graph as well as orbits in the entropy
formulation and is defined as

BI.G/ D 2jZj log.jZj/�
mX

iD1
jZij log.jZij/:

where Z is an arbitrary graph invariant, such as vertices, edges, degrees, j:j denotes
the set cardinality and Zi is the ith orbit, corresponding to the invariant Z.

When graph vertices are considered as invariant Z, BI reduces to

BI.G/ D 2p log. p/�
mX

iD1
jNij log.jNij/; (22)

where p is the number of nodes in G and jNij is the number of nodes in the ith
orbit. The first term in (22) stands for the size of the graph, whereas the second
term accounts for graph symmetry [62, 64]. Smaller BI values correspond to more
symmetric networks.
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3.4.2 Topological Information Content

Topological information content [65], similar to BI, measures the symmetry of the
network using the entropy formulation and is defined as:

Iorb.G/ D �
mX

iD1

jNij
p

log


 jNij
p

�

; (23)

where jNij is the number of nodes in the ith orbit. Less symmetric graphs G have
relatively larger values of topological information content, as most of the orbits in G
tend to be singleton partitions. On the other hand, topological information content
of a highly symmetric graph with fewer partitions is relatively low.

3.5 Network Motifs

In complex networks, including biological networks, specific connectivity patterns
often occur at significantly higher rates than simple random networks. Network
motifs help uncover basic structural elements of the network. In particular, under-
standing biological units and their interactions is one of the important goals of
systems biology, which helps researchers determine the function of biological units
in a living cell [66, 67]. Abundance of various network motifs are important network
descriptors that can be used to classify network models [68] and predict interactions
among nodes [69]. However, counting general network motifs in large networks
is computationally challenging. Thus, in this paper we focus only on (undirected)
motifs consisting of 3, 4, or 5 nodes (see Fig. 1). Given the similarity in patterns of
the number of motifs with the same number of nodes, in Sects. 4 and 5, we present
the results for the first motif from each of the classes in Fig. 1, and include the results
for other motifs in the Supplementary Material.

3.6 Structural Correlation

The structural correlation coefficient measures the similarity between the structures
of two graphs G and H by maximizing the correspondence between their edge sets.
Specifically,

scor.G;HjLG;LH/ D max
LG;LH

cor. .G/;  .H//; (24)

where  .G/ is a permutation/relabeling of G,  .G/ 2 LG and LG is the support
of  , called accessible permutations of G; a relabeling/permutation of G is a
transformation of G which relabels its vertex set by  . Further, cor.G;H/ is the
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Pearson correlation between the adjacency matrices of the graphs, obtained by
vectorizing each of the adjacency matrices. The set of accessible permutations for
a given graph is determined by the theoretical exchangeability of its vertices; two
vertices are considered to be theoretically exchangeable if relabeling of the vertices
does not modify the structure of the graphs [70].

Because the set of accessible permutations is of order O. pŠ/, (p is the number of
vertices in graph), searching for maximum correlation in large networks is computa-
tionally expensive. So, many methods try to estimate the structural correlation using
random search algorithms, such as hill climbing and simulated annealing [71].

4 Comparison of Network Estimates From Different
Procedures

4.1 Data Preprocessing

We use gene expression profiles (level 3.0) from breast cancer tumor samples
available through The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/
tcga). The data contain expression levels of 17,814 genes over 530 breast cancer
samples. After removing three samples corresponding to metastatic tumors and
genes mapped to sex chromosomes, we retained a data set containing 17,296 genes
and 527 samples. Upon examination of the clinical data available for 520 samples,
we grouped the data into two classes: 403 ERC samples and 117 ER� samples.
Finally, given that we aim to study genetic interactions in cancer, we restricted
our analysis to genes in three main KEEG pathways associated with breast cancer,
namely the “p53 signaling pathway,” the “breast cancer pathway,” and “cancer
pathway.” The final data set consists of expression values for p D 358 genes and
n D 520 samples. We then imputed six missing expression values using a K-Nearest
Neighbor (KNN) imputation method with K D 10. Prior to estimating genetic
networks, we standardized the data so that the expression values for each gene have
mean 0 and standard deviation 1.

4.2 Results

To assess similarities and differences among networks estimated using procedures
of Sect. 2, here we focus on the ERC samples from TCGA. This choice is in
part due to availability of larger sample sizes in the ERC data, but also aims to
simplify the presentation of the results. Results for ER� samples are presented in
the Supplementary Material.

Figures 2, 3, 4, 5, 6 and 7 compare the values of various classes of descriptors for
networks estimated using the methods of Sect. 2 with the number of edges ranging

https://tcga-data.nci.nih.gov/tcga
https://tcga-data.nci.nih.gov/tcga
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Fig. 2 Selected degree distribution summary statistics for all estimated networks for the ERC

and ER� data. Rows 1–6 show first quartile, median, third quartile, maximum, interquartile range
(IQR) and the number of nodes with degree one in networks with different number of edges
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Fig. 2 (continued)

from 400 to 900. These figures show a number of interesting patterns, which we
briefly comment on next.

Overall, the results indicate that despite significant differences in formulation
and estimation procedures, the methods considered in this paper can be categorized
into those based on neighborhood selection—NS, SPACE, and SPACE JAM—and
those that are not based on neighborhood selection—WGCNA, GLASSO, and NPN.
Examining plots of different network descriptors, as well as patterns of structural
correlations in Fig. 7, verifies this observation.

The similarities among estimates from the above two classes of methods may
seem surprising. On the one hand, the neighborhood-based approaches include
methods based on linear and non-linear relationships. While the estimates from
the non-linear model in SPACE JAM seem to be somewhat distinct from NS and
SPACE, these differences are much less pronounced compared to the differences
between the two classes of estimators. On the other hand, non-neighborhood-based
methods differ both in terms of measure of association and the use of conditional
versus marginal associations. Nonetheless, our numerical results indicate that the



How Different Are Estimated Genetic Networks of Cancer Subtypes? 177

l

l

l
l

l

l

l

l l
l

l
l

l

l l
l l l

l

l
l

l

l

l

l

l
l

l l

l

l l

l
l l

l

0.10

0.15

0.20

400 500 600 700 800 900

Number of edges

C
lu

st
er

 C
oe

ffi
ec

ie
nt

ER+

l
l

l

l

l
l

l

l

l

l l

l

l l l

l l

l

l

l l

l

l
l

l

l

l

l l

l

l

l
l l

l
l

0.10

0.15

0.20

400 500 600 700 800 900

Number of edges

C
lu

st
er

 C
oe

ffi
ec

ie
nt

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l
50

100

150

200

250

400 500 600 700 800 900

Number of edges

N
um

 o
f C

lu
st

er
s

ER+

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l l0

50

100

150

200

400 500 600 700 800 900

Number of edges

N
um

 o
f C

lu
st

er
s

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

a

b

l

l

l

l

l

l

l
l l

l
l

l

l l l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l l l l
l

l

0e+00

1e+05

2e+05

3e+05

4e+05

400 500 600 700 800 900

Number of edges

Za
gr

eb
 In

de
x 

2

ER+

l

l

l

l

l

l

l
l

l
l

l
l

l l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l l l
l

l

0e+00

1e+05

2e+05

3e+05

400 500 600 700 800 900

Number of edges

Za
gr

eb
 In

de
x 

2

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

200

300

400

500

600

400 500 600 700 800 900

Number of edges

En
er

gy

ER+

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

300

400

500

600

400 500 600 700 800 900
Number of edges

En
er

gy

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

c

d

Fig. 3 Descriptors related to connectedness of the network for all estimated networks for the ERC

and ER� data. Rows 1–6 show cluster coefficient, number of clusters, Zagreb index, energy, degree
centrality and medium articulation of networks with different number of edges
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Fig. 3 (continued)

three methods in this class, i.e., WGCNA, GLASSO, and NPN, are more similar
to each other than neighborhood-based methods. The similarity of WGCNA and
GLASSO can be partially explained by recent results that establish a connec-
tion between GLASSO and simple thresholding of the sample covariance matrix
[72–74]. However, the high level of similarity between NPN estimates—which are
based on non-linear conditional dependencies—and WGCNA estimates—which are
based on marginal linear associations—seems rather surprising.

We next delve into the patterns of changes in network descriptors for estimates
from each of the above two classes of models, as the number of edges in the network
increases from 400 to 900. For brevity, we refer to the former class of estimators
as NB (neighborhood-based) methods and to the latter as NN (non-neighborhood)
methods.

Figure 2 shows that as the number of edges in estimated networks increases, the
first quantile of the degree distribution for NB methods increases, whereas it stays at
zero for the NN estimates. In other words, the proportion of nodes with zero degree
is not decreasing in the NN estimates. A somewhat similar pattern can be seen by
looking at the median degree. Further, the number of nodes with degree one stays



How Different Are Estimated Genetic Networks of Cancer Subtypes? 179

l l

l

l

l

ll

l

l

l

l l

l

l

l l

l l

l

l

l

l

l l

l

l

l

l l

l

l l

l

l

l l

7.5

10.0

12.5

15.0

400 500 600 700 800 900

Number of edges

D
ia

m
et

er
ER+

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l l

l

l

l

l

l l l

l

l l l

l l

l

l l

l l l

8

10

12

14

16

400 500 600 700 800 900

Number of edges

D
ia

m
et

er

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

l
l

l
l

l l

l

l

l
l l l

l

l

l l
l l

l

l

l

l
l

l

l
l

l

l

l

l

l

l
l l l l

0.5

1.0

1.5

2.0

400 500 600 700 800 900

Number of edges

G
ra

ph
 V

er
te

x 
C

om
pl

ex
ity

 In
de

x

ER+

l

l

l

l

l

l

l

l l l l l

l

l

l l l l

l
l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

0.5

1.0

1.5

2.0

2.5

400 500 600 700 800 900
Number of edges

G
ra

ph
 V

er
te

x 
C

om
pl

ex
ity

 In
de

x

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

a

b

l
l l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

ll

l

l

l

l

l

0.001

0.002

0.003

0.004

0.005

400 500 600 700 800 900
Number of edges

C
en

tra
lit

y_
C

lo
se

ne
ss

ER+

l l l l l ll
l l

l
l

l

l
l

l l l l

l l l l l l

l l
l l

l ll
l

l

l

l

l

0.005

0.010

0.015

0.020

400 500 600 700 800 900

Number of edges

C
en

tra
lit

y_
C

lo
se

ne
ss

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

l
l l l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l l
l

l

l

l l

l

l

l

l

l

l

l l
l

l

0.02

0.04

0.06

0.08

400 500 600 700 800 900
Number of edges

C
en

tra
lit

y_
Be

tw
en

ne
ss

ER+

l
l

l l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l l

l
l

l

l

l

l

l

l

l

l
l

l

0.05

0.10

400 500 600 700 800 900

Number of edges

C
en

tra
lit

y_
Be

tw
en

ne
ss

ER−

method
l

l

l

l

l

l

WGCNA

NS

SPACE

GLASSO

NPN

SPACEJAM

c

d

Fig. 4 Descriptors related to spread of information and node influence of the network for all
estimated networks for the ERC and ER� data. Rows 1–4 show diameter, graph vertex complexity
index, closeness centrality and betweenness centrality of in networks with different number of
edges
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Fig. 5 Descriptors related to network symmetry, among all estimated networks for the ERC and
ER� data. Rows 1 and 2 show topological information content and Bertz index of networks with
different number of edges

the same for NN estimates, but decreases for NB methods. On the other hand, the
estimates seem to be similar in terms of the third quantile of the degree distribution,
whereas the maximum degree of the NN estimates seem to increase more rapidly
with the number of edges than NB estimates.

The results in Fig. 2 suggest that as the number of edges in the networks
increases, NB estimates become overall more connected, in the sense that their
median degree grows as the graphs become denser but their maximum degree grows
slowly. From this perspective, NB estimates behave similar to Erdös–Rényi random
graphs [75]. On the other hand, NN estimates continue to have disconnected nodes
and few highly connected components. These findings corroborate with the plots
for most measures of connectedness in Fig. 3. In particular, the plots of clustering
coefficient and number of clusters together verify that NN estimates are comprised
of many highly connected components, whereas NB methods tend to produce
estimates in which more nodes are reachable from each other. The plots of the
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Fig. 6 Selected network motifs with 3, 4, and 5 nodes for all estimated networks for the ERC

and ER� data. Rows 1–3 show the number of motifs 3-1, 4-1 and 5-1 in networks with different
number of edges

Zagreb index and energy also match the categorization of estimated networks to NB
and NN. The only notable exceptions are the degree centrality plots, which suggest
that node degrees in SPACE JAM estimates are significantly more concentrated than
the other two NB methods. This may be due to the fact that SPACE JAM is the
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only method considered here which allows for truly non-linear relationships among
nodes, and is solving a more difficult estimation problem.

The plots of measures of symmetry in Fig. 5 show that the grouping of estimated
networks to NN and NB also holds in terms of network symmetry. The results also
suggest that NN estimates seem to be more symmetric. On the other hand, the
measures of network spread in Fig. 4 require a more careful interpretation. While
plots of graph vertex complexity index and closeness centrality are aligned with
our previous findings, the plots of diameter and betweenness centrality indicate
a different pattern. In particular, it seems that based on these two measures,
information spreads differently in NPN and WGCNA estimates than the other
four estimates. Further, the plot of betweenness centrality indicates that NPN and
WGCNA estimates with fewer edges have very low levels of betweenness, but
become more similar to GLASSO and SPACE JAM as the number of edges in
the network increases. On the other hand, NS and SPACE have higher values of
betweenness centrality.

Examining the plots of network motifs in Fig. 6 provides additional insight into
the local structure of estimated networks. In particular, noting that the three motifs
considered correspond to cliques with 3, 4, and 5 nodes, it is interesting that the
number of locally dense substructures seems to increase in WGCNA estimates as
the graphs become denser. On the other hand, while the grouping of estimation
methods into NN and NB is only clear in terms of the number of 3-node cliques—
triangles—in the graph, the NN and NB classification can still be observed in 4- and
5-node cliques. Specifically, NB methods do not contain any cliques consisting of 4
or 5 nodes, whereas these dense substructures do exist in NN estimates.

5 Assessing Differences Among Networks of ERC and ER�

5.1 Preliminaries

To assess the differences in network descriptors of ERC and ER� networks, we
compared the observed absolute values of differences in descriptors of ERC and
ER� networks with those obtained from B D 500 randomly generated pairs of data
sets by permuting the samples in ERC and ER�. To prevent any differences due
to sample sizes, all B D 500 pairs of samples were generated with npos D 403

and nneg D 117 samples in each of the two groups. Further, in each replication, the
tuning parameters for different estimation methods were chosen so that the networks
contained the same number of edges. The plots in Figs. 8, 9, 10, 11, 12 show the
distribution of absolute differences of network descriptors for randomly generated
ERC and ER� samples jdescERC � descER� j. The dot in each boxplot shows the
absolute difference of true values of the same descriptor in the original ERC and
ER� networks.
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Table 1 shows the p-values obtained by comparing the observed (absolute)
differences in network descriptors with the null distribution obtained from pairs of
networks with 500 edges based on randomly permuted samples. Formally,

p-value D 1

B

BX

kD1
jdescERC � descER�j 	 jdesckpos � descknegj: (25)

P-values for networks with other values of total number of edges are given in the
Supplementary Material.

5.2 Results

The plots in Figs. 8, 9, 10, 11, 12 and the p-values in Table 1 point to a number of
interesting findings. Most importantly, while the estimated ERC and ER� networks
seem to have significantly fewer common edges compared to pairs of networks
from random samples, more global properties of estimated networks do not seem
to be completely different from those based on random samples. This observation
can have two explanations. First, differences in estimated structures are local and
do not affect the global properties of the networks. This can be perhaps due to
the fact that significant changes in global structure of biological networks may
not be biologically viable. The second explanation is that unlike presence/absence
of edges, global properties of estimated networks are more representative of the
estimation procedure than the source of samples. In other words, while the local
structures of estimated ERC and ER� networks are different, both networks are
estimated using the same procedure; therefore, their global properties are not very
distinct.

The p-values in Table 1 also suggest that, compared to NB methods, ERC
and ER� estimates from WGCNA, NPN, and GLASSO have more different
descriptors. This difference is particularly pronounced for WGNCA and NPN
estimates. Examining the boxplots in Figs. 8, 9, 10, 11 and 12 suggests that this
difference is not due to differences in variability of descriptors in estimated networks
from NB and NN methods. The lower number of significant differences in structures
of NB estimates may be due to the fact that the node degrees are more evenly spread
in these estimates, and that the estimates contain fewer clusters of highly connected
components.
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Fig. 7 Structural correlation matrix for ERC (upper triangular part) and ER� (lower triangular
part) networks: (a) 400 edges, (b) 500 edges, (c) 600 edges, (d) 700 edges, (e) 800 edges, (f) 900
edges
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Fig. 10 Comparison of distribution of absolute differences of symmetry descriptors in estimated
ERC and ER� networks. Plots in (a) and (b) show the distribution of absolute differences of
topological information (a) and Bertz index (b) in networks with different number of edges
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Fig. 12 Comparison of distributions of absolute differences of number of network motifs in
estimated ERC and ER� networks: (a) Motif 3-1, (b) Motif 4-1, (c) Motif 5-1

6 Discussion

We conducted a comprehensive numerical study to compare estimated gene net-
works of different cancer subtypes using various estimation methods. To this end,
we considered a variety of network descriptors to gain insight into more complex
properties of estimated networks.

Our numerical investigation reveals a number of interesting properties of esti-
mated gene networks across two different populations. First, our results suggest that
the estimated networks from graphical lasso and its extension for handling non-
Gaussian random variables based on the nonparanormal distribution are similar
to simple (weighted) gene co-expression networks. The surprising aspect of this
finding is that network estimates from the two former methods encode conditional
dependencies, while the latter simply focuses on marginal dependencies. In theory,
these two types of dependencies are very different. However, these findings cor-
roborate with recent studies that have established interesting connections between
graphical lasso and co-expression networks, particularly in terms of the connected
components of the estimated networks. It seems that the nonparanormal estimation
procedure further signifies these relations.

The second surprising finding from our study is that while estimated networks of
different cancer subtypes have very different local structures—as measured by the
number of common edges between the two networks—their global properties are
less distinct. From a biological perspective, this is not very surprising. Biological
systems pose high levels of redundancy, which renders them robustness to changes
in the environment. This redundancy implies that changes in edges and local patterns
of connectivity are less likely to affect the global properties of the networks. How-
ever, this finding can also be explained by differences among network estimation
procedures. Specifically, one can argue that global properties of estimated networks
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Table 1 P-values for testing equality of various descriptors for estimated networks of ERC and
ER� networks with jEj D 500 edges

Network descriptor
Network estimation methods
WGCNA NS SPACE GLASSO NPN SPACEJAM

# Common edges 0 0 0 0 0 0
First quartile 1 0:164 0:338 1 1 0:998

Median 1 1 1 0:384 0:086 1

Third quartile 1 1 1 1 1 0:232

Max 0:26 1 0:882 0:914 0:252 0:558

IQR_deg 1 1 0:358 1 1 0:182

# deg one 0:02 0:53 0:284 0:202 0:002 0:036
Diameter 0:006 0:594 0:46 0:13 0:29 1

Cent.Degree 0:17 0:96 0:858 0:832 0:178 0:458

Cent.Betwenness 0:052 0:32 0:076 0:364 0:068 0:134

Cent.Closeness 0 0:106 0:426 0:112 0 0:504

Clusetr.Num 0:094 0:33 0:616 0:134 0:038 0:208

ZI 0:072 0:456 0:504 0:094 0:018 0:502

Topo_info 0:114 0:382 0:602 0:116 0:064 0:394

BI 0:114 0:382 0:602 0:116 0:064 0:394

GraphVertexComplexity 0:004 0:304 0:808 0:36 0:014 0:838

MA 0:742 0:502 0:678 0:214 0:13 0:328

Energy 0:076 0:904 0:822 0:224 0:05 0:368

Clust_coef 0:04 0:25 0:026 0:006 0:022 0:866

Motif.3_1 0:04 0:228 0:668 0:032 0:064 0:448

Motif.4_1 0:004 0:06 0:988 0:048 0:11 0:298

Motif.5_1 0:002 0:04 1 0:144 0:262 0:2

The p-values are calculated by comparing the observed values of descriptors with those obtained
from B D 500 pairs of networks generated from randomly sampled observations; see text for
details. P-values smaller than 0:1 are shown in bold.

are determined by the estimation procedure. In other words, while patterns of
(conditional or marginal) dependency across estimated networks of cancer subtypes
are clearly different, the global properties of these estimated networks seem to be
driven, to a large degree, by the estimation procedure used to obtain these estimates.
Our observations highlight the need for development of rigorous methodologies to
(1) identify changes in local structures of gene networks in different biological
conditions and (2) better understand the effect of these local changes on global
network properties that explain the behavior of biological systems.
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A Computationally Efficient Approach
for Modeling Complex and Big Survival Data

Kevin He, Yanming Li, Qingyi Wei, and Yi Li

Abstract Modern data collection techniques have resulted in an increasing number
of big clustered time-to-event data sets, wherein patients are often observed from a
large number of healthcare providers. Semiparametric frailty models are a flexible
and powerful tool for modeling clustered time-to-event data. In this manuscript,
we first provide a computationally efficient approach based on a minimization–
maximization algorithm to fit semiparametric frailty models in large-scale settings.
We then extend the proposed method to incorporate complex data structures such
as time-varying effects, for which many existing methods fail because of lack of
computational power. The finite-sample properties and the utility of the proposed
method are examined through an extensive simulation study and an analysis of the
national kidney transplant data.

1 Introduction

In recent years, advancing technology has resulted in an increasing number of big
time-to-event data sets, wherein patients are often observed from multiple clusters
(e.g., healthcare providers). For multi-clusters analysis, fixed effects model with
clusters as fixed effects is attractive if the sample sizes across clusters are large.
However, as is often seen in multi-cluster studies, there are many clusters with
relatively few patients. An alternative to a fixed effects approach is the random
effects or frailty model, in which clusters-specific effects are treated as random
samples from a specific probability distribution.

A wide variety of random effects models have been studied in survival analysis.
Among them, the gamma frailty model [1–3] and the log-normal frailty model [4–6]
are the most extensively studied approaches for time-to-event data. One reason for
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the popularity of the gamma frailty model is that it has a closed form Laplace
transformation for the survival function. Although the log-normal frailty model has
no explicit evaluation of the Laplace transform, it allows more flexibility and has
been commonly used to fit clustered frailty models [6].

Despite their popularity, the computational complexity of random effects models
have limited their use in big data. First, the numerical calculations may have
tremendous costs when the dimensionality of predictors is large [7]. Second,
when the number of subjects grows, the difficulty of model construction may also
increases dramatically. For instance, big time-to-event data are usually complex,
e.g., associations between disease outcomes and risk factors may involve complex
functional forms such as time-varying effects [8]. In the context of survival analysis,
time-varying effects have been studied for application with relatively small sample
sizes [9–14]. To estimate such a model, the data set is typically expanded in a
repeated measurement format (counting process style), e.g., the time is divided
into small time intervals where one single event occurs in each time interval.
The covariate values and outcome in the interval for each subject still under
observation are stacked into a large data set. Even with a moderate sample size,
such an expansion leads to a extremely large data which will be often infeasible
to handle with existing computational capability. As an example, data set with
5000 event (assuming no ties) will lead to an expanded data set with records
more than 12 millions, which easily out-powers a computer with 8G memory. To
avoid the expansion of large-scale data, an alternative approach based on Kronecker
product was suggested by Perperoglou et al. [15], with a Newton’s method applied
by iteratively updating the gradients and Hessian matrices. However, in large-
scale survival analyses with massive sample size and large number of predictors,
it is computationally expensive to calculate and invert the Hessian matrix. The
commonly used Newton-type method may converge slowly or even fail. Finally,
numerical problems may arise with skewed covariates (e.g., binary variables with
extreme proportion). Extremely small at-risk sets in certain groups may lead to
unstable estimations.

To improve the computation efficiency and fill the gap in the existing literature,
we first develop an computationally efficient algorithm for estimating the Cox
proportional hazards model in the presence of a large number of covariates. The
proposed approach combines the strength of the quasi-Newton and minimization–
maximization (MM) algorithm. To address the correlation due to clustering, we
then extend the proposed algorithm to semiparametric frailty models. Finally, the
proposed algorithm is generalized to estimate time-varying effects in complex and
big survival data. The proposed method has a connection with coordinate descent
which is widely used in high-dimensional data analysis. It should be noted, however,
that our general aim is to estimate each predictor’s effect instead of variable
selection. This is different than a typical constrained optimization approach. In the
latter approach, the dimensionality of the data is often much larger than the sample
size and the estimated covariate effects are shrunken via penalization.
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2 MM Algorithms for Cox Proportional Hazards Model

2.1 The Model

Let Di denote the time to death and Ci be the censoring time for patient i,
i D 1; : : : ; n. The observation time is denoted as Ti D minfDi;Cig, and the
death indicator is given by ıi D I.Di 	 Ci/. Let Xi D .Xi1; : : : ;Xip/

T be a p-
dimensional covariate vector for the ith patient. We assume that, conditional on Xi,
Di is independently censored by Ci. To model the death hazard, consider

�i.tjXi/ D lim
dt!0

1

dt
Pr.t 	 Di < t C dtjDi � t;Xi/;

which we model by �i.tjXi/ D �0.t/ exp.XT
i ˇ/, where �0.t/ is the baseline hazard

function and ˇ D .ˇ1; : : : ; ˇp/
T is a vector of parameters. The corresponding log-

partial likelihood is given by

l.ˇ/ D
nX

iD1
ıi

2

4XT
i ˇ � log

8
<

:

X

`2Ri

exp
�
XT
`ˇ
�

9
=

;

3

5 ; (1)

where Ri D f` W T` � Tig is the at-risk set. Let rl.ˇ/ denote the first derivative of
the log-partial likelihood with respect to ˇ. We have

rl.ˇ/ D
nX

iD1
ıi

(

Xi �
P

`2Ri
X` exp.XT

`ˇ/
P

`2Ri
exp.XT

`ˇ/

)

;

Let r2l.ˇ/ denote the second derivative of the log-partial likelihood with respect to
ˇ. We have

� r2l.ˇ/ D
nX

iD1
ıi

2

4

P
`2Ri

X˝2
` exp.XT

`ˇ/
P

`2Ri
exp.XT

`ˇ/
�
( P

`2Ri
X` exp.XT

`ˇ/
P

`2Ri
exp.XT

`ˇ/

)˝23

5 ;

where ˝ is the Kronecker product.

2.2 Proposed Method

The proposed method is based on MM algorithm. For some good review on MM
methods, the readers are referred to [16–19]. We first consider the Cox proportional
hazards model. In a minorization step, we minorize the log-partial likelihood by a
surrogate function, which is chosen to separate the parameters. We begin with the
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observation that the log-partial likelihood (1) is a concave function of ˇ. Given the

mth step estimate Ǒ.m/, an application of Jensen’s inequality leads to the following
minority surrogate function:

l.ˇ/ �
pX

jD1

nX

iD1
˛jıi

2

4
Xij

˛j
.ˇj � Ǒ.m/

j /C XT
i

Ǒ.m/ � log

8
<

:

X

`2Ri

exp



X`j
˛j
.ˇj � Ǒ.m/

j /

CXT
`

Ǒ.m/�oi D g.ˇj Ǒ.m// D
pX

jD1
g.ˇjj Ǒ.m//; (2)

where g.ˇjj Ǒ.m// is defined implicitly, all ˛j � 0,
P

j ˛j D 1 and ˛j > 0 whenever
Xij ¤ 0. A candidate for ˛j is

˛j D
Pn

iD1 jXijj
Pp

jD1
Pn

iD1 jXijj :

As we will show in the next paragraph, the choice of ˛j is not crucial.
In the maximization step, we maximize (or monotonically increase) the surrogate

function to produce the next iteration estimators. For instance, given the mth

iteration estimate b̌.m/, for j D 1; : : : ; p, consider g.ˇjj Ǒ.m// and update coordinate-
wise directions ˇj cyclically. Up to a constant, v > 0, such a procedure is equivalent
to the approach based on coordinate descent; e.g., for j D 1; : : : ; p,

Ǒ.mC1/
j D Ǒ.m/

j � ˛jfr2g.ˇjj Ǒ.m//g�1rg.ˇjj Ǒ.m///; (3)

where XT Ǒ.m/ is treated as an offset. The ˛j in (5) and (3) can be considered as part
of the step-size control. As long as the ascent property is achieved, the choice of ˛j
is not crucial.

2.3 Computational Issues

The proposed algorithm maximizes the original log-partial likelihood via the sur-
rogate functions. Simplicity is obtained by separating the variables of optimization
problem. That means, we replace the complicated objective functions with a sum
of simpler functions, g.ˇjjˇ.m//, each of which depends only on one component of
parameter space. The computational speed for optimizing the surrogate functions
is linear in p, which is much faster than O. p3/ from inverting the original Hessian
matrix. Furthermore, following the argument in Chap. 12 of [18], the ascent property
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in the MM algorithm depends only on increasing the surrogate function, not
on maximizing it. Therefore, one-step Newton estimators (with step-size control)
provide sufficient and rapid updates at each MM step, which further improves the
computational efficiency.

To accelerate the convergence of the MM algorithm, we consider a strategy
proposed by [18]. Denote the corresponding MM estimation in the .m C 1/th

iteration as M. Ǒ.m// and a composite function M.M.�// by M ı M.�/. Define vector

v D M ı M.b̌.m// � M.b̌.m//

and

u D M.b̌.m//� b̌.m/:

Compute the accelerated MM updates as

b̌.mC1/ D M.b̌.m// � V.UTU � UV/�1UTfb̌.m/ � M.b̌.m//g

Iterate b̌ until converge.

3 MM Algorithms for Penalized Partial Likelihood
Estimation of Semiparametric Frailty Model

3.1 The Model

One way to fit the log-normal frailty model is the penalized partial likelihood (PPL)
approach developed by McGilchrist and Aisbett [5]. For completeness of exposure,
we summarize the algorithm as follows. Let Thi and Chi represent the survival and
censoring times, respectively, for the ith patient in the hth cluster. Observation times
are denoted by Xhi D Thi ^ Chi. The observed death indicators are denoted by ıhi D
I.Thi 	 Chi/. Let H be the number of clusters, and the total number of subjects be
n D PH

hD1 nh, where nh is the number of subjects in cluster h.
We consider a hazard function

�h.tjXi/ D �0.t/ exp.XT
i ˇ C wh/;

where w D .w1; : : : ;wH/ is a vector of random effects with independent normal
distribution wh Ï N.0; �2/ for h D 1; : : : ;H. Considering the random effects as
another set of parameters, the logarithm of the penalized partial likelihood can be
written as the sum of the log-partial likelihood and the log of the density of the
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random effects

lppl.ˇ;w; �/ D l.ˇ;w/C lpen.w; �/;

where

l.ˇ;w/ D
HX

hD1

nhX

iD1
ıhi

2

4XT
hiˇ C wh � log

8
<

:

X

q`2Rhi

exp
�
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q`ˇ C wq
�
9
=

;

3

5 ; (4)

and

lpen.w; �/ D �1
2

HX

hD1



w2h
�2

C log.2��2/

�

;

where Rhi contains all patients still at risk at time Thi regardless the clusters.
The maximization of the penalized partial likelihood includes an inner and an

outer loop. The inner loop estimates ˇ and w by a Newton’s procedure to maximize
l.ˇ;w/ based on a provisional value of � (best linear unbiased predictor—BLUP).
The outer loop fits the restricted maximum likelihood estimator (REML) for �2

based on the BLUPs. Then the procedure is iterated until convergence. Specifically,

"
Ǒ.mC1/

bw.mC1/

#

D
"

Ǒ.m/
bw.m/

#

�˝
�
@lppl=@ˇ

@lppl=@w

�

ˇD Ǒ.m/; wDbw.m/

where

˝ D
�
˝11 ˝12

˝21 ˝22

�

is the inverse of the square . pCH/-dimensional Hessian matrix A with A given by

A D
�
A11 A12
A21 A22

�

D
�
@2lppl=@ˇ@ˇ

T @2lppl=@ˇ@wT

@2lppl=@ˇ@wT @2lppl=@w@wT

�

More details of this algorithm can be found in Duchateau and Janssen [20].

3.2 Proposed Method

When the number of clusters or the number of covariates is large, it may be
computationally expensive to evaluate or invert the square . p C H/-dimensional
Hessian matrix, prohibiting its application to big data settings. To address this issue,
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we extend the MM algorithm to the semiparametric frailty models. Specifically, for
a provisional value of � , we consider the following minority surrogate function:

lppl.ˇ;w/ �
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pX

jD1
g.ˇjj Ǒ.m/; Ow.m//C

HX

hD1
g.whj Ǒ.m/; Ow.m//;

where Zq`;h D 1 if q D h (i.e., the patient belongs to cluster h) and Zq`;h D 0

otherwise. In the inner loop, we treat Ow.m/h as offsets and update coordinate-wise
estimate of ˇj cyclically: for j D 1; : : : ; p

Ǒ.mC1/
j D Ǒ.m/

j � ˛
n
O2g. Ǒ.m/

j j Ǒ.m/; Ow.m//
o�1

Og. Ǒ.m/
j j Ǒ.m/; Ow.m//:

Similarly, we treat Ǒ.m/ as offsets and update coordinate-wise estimate of wh

cyclically: for h D 1; : : : ;H

Ow.mC1/
h D Ow.m/h � ˛

n
O2g. Ow.m/h j O� .m/; Ow.m//

o�1
Og. Ow.m/h j O� .m/; Ow.m//:

Follows the approach based on [4], an approximated REML estimate for �2 is
given by

. O�2/.mC1/ D
PH

hD1. Ow.m/h /2

H � r
;

where r D ˛
PH

hD1 O2g. Ow.m/h j Ǒ.m/; Ow.m//=. O�2/.m/.
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4 MM Algorithm for Semiparametric Frailty Model
with Time-Varying Effects

We now extend the MM algorithm to semiparametric frailty models with time-
varying effects. Let ˇ.t/ D .ˇ1.t/; : : : ; ˇp.t// be a p-dimensional vector of
potentially time-varying effects. We consider a hazard function

�h.tjXi/ D �0.t/ exp.XT
i ˇ.t/C wh/:

The corresponding log-partial likelihood (4) described in Sect. 3 is replaced by

l.ˇ;w/ D
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X

`2Ri

exp
�
XT

h`ˇ.Thi/C wh
�

9
=

;

3

5 ;

To estimate ˇ, a commonly applied approximation is to span ˇ.�/ by a set of B-
splines on a fixed grid of knots, usually taken to be equally spaced to cover the range
of time or equal number of events within each interval. For instance, each ˇj.�/ is an
expansion of the form

ˇj.t/ D �T
j B.t/ D

KX

kD1
�jkBk.t/; j D 1; : : : ; p;

where K is the dimension of the basis functions, the B.t/ D .B1.t/; : : : ;BK.t//T

form a basis for a finite-dimensional space, and � j D .�j1; : : : ; �jK/ is a vector of
coefficients with �jk as the corresponding coefficient for the kth component of the
jth covariate. Consider parameter vector � D vech.�/, the vectorization of � by
row, the log-partial likelihood function is
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We consider the following minority surrogate function:
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�
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pX

jD1

g.� jj O� .m/; Ow.m//C
HX

hD1

g.whj O� .m/; Ow.m//:

The remaining algorithms are the same as those in Sect. 3.

5 Convergence Properties

The numerical convergence of the MM algorithm can be described by the following
proposition:

Proposition 1 Any sequence of iterates ˇ.mC1/ D M.ˇ.m// generated by the
iteration map M.ˇ/ of the MM algorithm possesses a limit, and that limit is the
optimal point.

Proof of Proposition 1 The inequalities

l.ˇ.mC1// � g.ˇ.mC1/jˇ.m// � g.ˇ.m/jˇ.m// D l.ˇ.m//

follow from the choice of ˇ.mC1/ and the minorization condition (5) described
in Sect. 2.2. Given the fact that log-partial likelihood function is smooth, if the
parameter space is bounded, then all super-level sets fˇ W l.ˇ/ � cg, for a constant
c, are compact, and the maximum value of log-partial likelihood is attained (e.g.,
Weierstrass’s theorem). Note that such a bounded assumption is applicable in most
practical applications. Apply Proposition 12.4.4 of [18], then Proposition 1 follows.

6 Simulation Study

Finite-sample properties of the proposed method and their alternative were evalu-
ated under three models: Cox proportional hazards model, semiparametric frailty
models with time-independent effects or time-varying effects.
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6.1 Setting 1: Cox Proportional Hazards Model

Death times were generated from an exponential model, �.tjXi/ D 0:5 exp.XT
i ˇ/

for i D 1; : : : ; n. The sample size was n D 1000 and the number of covariates
was p D 100, generated from independent standard normal distributions. The first
five variables had coefficients 1; 1;�1;�1; 1, while the rest had zero coefficients.
Censoring times were generated from uniform distributions, with the percentage
of censored subjects being approximately 20–30 %. Each data configuration was
replicated 100 times. We compared the proposed MM algorithm described in
Sect. 2.1. (termed MM), its accelerated modification described in Sect. 2.3 (termed
MM2) and a “cocktail” algorithm proposed by Yang and Zou [21]. Specifically,

instead of iteratively update l00j . Ǒ.m// in formula (3) described in Sect. 2.2, the
“cocktail” algorithm used an upper bound for the second derivative which is fixed
across iteration

˝jj D
nX

iD1

ıi

4




max
`2Ri

.X`j/ � min
`2Ri

.X`j/

� 2
:

Table 1 reports average bias (average over p D 100 and 100 simulation replications),
average mean square error (MSE), empirical coverage probabilities (termed CP)
based on 100 bootstraps, median number of iterations until convergence (termed
Step), and average computation time (termed Time). Table 1 clearly indicates that
the proposed MM algorithms provide better estimation in terms of both convergence
speed and estimation accuracy. Moreover, the accelerated modification further
reduced the number of iterations.

6.2 Setting 2: Log-Normal Frailty Model

Death times were generated from the log-normal frailty model with constant
baseline hazards 0.5 and the random effects were generated from normal distribution
with mean 0 and standard deviation 0.4. We considered 100 clusters with sample
size within each cluster following a Poisson distribution with rate 50. The covariates
were generated from the same distribution as those in Setting 1. We compared the
proposed MM algorithm described in Sect. 3, its accelerated version (MM2) and the
PPL based on the Newton’s procedure (R package coxme). Table 2 reports average

Table 1 Setting 1: Cox
proportional hazards model

Method Bias MSE CP Step Time (s)

Coxtail 0:0410 0:0034 0:974 244:43 38:04

MM 0:0412 0:0028 0:967 18:03 2:69

MM2 0:0413 0:0028 0:967 9:01 2:07
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Table 2 Setting 2: log-normal frailty model

Method Bias of Ǒ MSE of Ǒ CP of Ǒ Bias of O� MSE of O� CP of O� Step Time (s)

PPL 0:0142 0:0003 0:952 0:0007 0:0008 0:735 NA 49:04

MM 0:0142 0:0003 0:952 0:0009 0:0008 0:735 39:38 42:41

MM2 0:0142 0:0003 0:952 0:0007 0:0008 0:735 21:94 39:89

bias, average mean square error (MSE) and empirical coverage probabilities (termed
CP) for Ǒ and O� , median number of iterations until convergence (termed Step), and
the average computation time (termed Time).

Note that the asymptotic variance for the estimates of the regression param-
eters and random effects variance estimate in PPL approach were provided by
McGilchrist and Aisbett [5] and McGilchrist [4]. This issue, however, requires
further investigation in our settings as the proposed method is an iterative profile
likelihood-type of algorithm. A useful tool might be bootstrap. Specifically, the
empirical coverage probabilities studied in this subsection were based on a nonpara-
metric bootstrap algorithm proposed by Therneau and Grambsch [22]: (1) choose H
clusters by sampling with replacement from the H clusters in the study; (2) let the
bootstrap sample be the subjects from the selected clusters; and (3) fit the proposed
procedure to this bootstrap sample. This procedure was repeated 100 times. The
estimates Ǒ? and O�? were stored for each bootstrap sample. The standard errors of
the estimators Ǒ and O� were calculated based on the variability of Ǒ? and O�?.

The proposed MM algorithm has comparable performances with the PPL in this
setting. For all methods studied, the CPs of Ǒ are closed to the nominal value,
0.95. However, the estimated standard error of the random effects variance estimate
underestimates the standard error, and the corresponding CPs are substantially
lower than the nominal value of 0.95. This corresponds to the conclusion drawn
by Morris [23] for linear mixed models, e.g., the variances of the BLUPs are
biased downwards. Due to this bias, bootstrapping BLUP’s results in underestimated
variation in the data. Further investigation of the properties will be necessary.

6.3 Setting 3: Log-Normal Frailty Model with Time-Varying
Effects

The number of clusters and the covariate distribution were the same as those in
setting 2. We let ˇ1 be a time-varying effect such that ˇ1.t/ D 3 sin.3�t=4/. Other
covariate effects were the same as previous settings. Ten basis functions were used
for implementing B-spline based methods. Each data configuration was replicated
100 times. The average bias of O� is 0:002 and the median number of iterations
until convergence is 33:9. Figure 1 depicts that the proposed MM estimators are
sufficiently accurate.
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Fig. 1 Estimated coefficients in simulations. (a) Time-varying effect. (b) Time-independent effect

7 Analysis

The motivating data were obtained from the Organ Procurement and Transplantation
Network (OPTN). The United Network for Organ Sharing (UNOS) administers
the OPTN under contract with the US Department of Health and Human Services
(HHS). The complete data set can be requested from the Organ Procurement
and Transplantation Network (https://optn.transplant.hrsa.gov/). Included in the
analysis were adult patients (� 18 years of age at transplant) who underwent
deceased-donor kidney transplantation between January 1990 and December 2008.
Adjustment covariates in this study included age, race, gender, donation after
cardiac death (DCD), expanded criteria donor (ECD), BMI, dialysis time, indicator
of previous kidney transplant, cold ischemic time, and comorbidity conditions (e.g.,
glomerulonephritis, polycystic kidney disease, diabetes, hypertension). Graft failure
was considered to occur when the transplanted kidney ceased to function. Failure
time (recorded in years) was defined as the time from transplantation to graft failure
or death, whichever occurred first. The final sample size was n D 146; 248 from
282 transplant centers.

The proposed MM algorithm described in Sect. 4 was employed to investigate the
potential time-varying effects. Figure 2 shows a fitted subset of the potential time-
varying coefficients with the approximate 95% point-wise confidence intervals.
These results suggested that the effect of diabetes and black race varies over time,
resulting in a strengthening of associations with death over time. However, the
results for glomerulonephritis, polycystic kidney disease, and hypertension should
be interpreted with caution. As shown in Fig. 2, their effects were minimal in the
early stage of the follow-up period, but were amplified in the late stage. This may
be due to the small at-risk sets at the late stage, resulting in very wide confidence
intervals.

https://optn.transplant.hrsa.gov/
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Fig. 2 Real data application: the data were obtained from the Organ Procurement and Transplan-
tation Network (OPTN). (a) Glomerulonephritis. (b) Polycystic kidney disease (c) Diabetes (d)
Hypertension (e) Race: Black (f) Race: Hispanic

8 Discussion

Statistical analysis of big clustered time-to-event data presents daunting statistical
challenges as well as exciting opportunities. The computation and inversion of the
Hessian matrix of the log-partial likelihood is very expensive and may exceed
computation memory. To handle problems with large numbers of parameters,
we propose a novel algorithm, which combines the strength of quasi-Newton,
MM algorithm, and coordinate descent. The proposed algorithm improves upon
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the traditional semiparametric frailty models in several aspects. For instance, the
proposed algorithms avoid calculation of high-dimensional second derivatives of the
log-partial likelihood, and hence, are competitive in term of computation speed and
memory usage. Simplicity is obtained by separating the variables of the optimization
problem. The proposed methods also provide a useful tool for modeling complex
data structures such as time-varying effects.

The overall C index [24] has been routinely used in the medical literature as
a natural extension of the ROC curve to survival analysis. A key component in
the assessment of model performance is its ability to distinguish subjects who
will develop an event from those who will not. In large-scale multi-cluster time-
to-event data, a within cluster strategy (e.g., only subjects within each cluster
are compared) can greatly reduce the number of calculations. This advantage is
especially important for large-scale data exemplified in our study. Risk prediction
in time-varying effects model, however, is challenging as it is more complex than
evaluating the performance of Cox proportional hazard models.

As suggested by the reviewer, the penalized partial likelihood (PPL) approach is
closely connected with the hierarchical likelihood (H-likelihood) method [25, 26].
By treating the frailties as parameters, these approaches avoid integration of unob-
served frailties over the frailty distribution. Instead, frailties are jointly estimated
with other parameters of interest. This property is particularly appealing when the
frailty distribution is not a conjugate prior. However, when the censoring rate is high,
parameter estimates may be biased and further bias correction can be helpful [26].
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Tests of Concentration for Low-Dimensional
and High-Dimensional Directional Data

Christine Cutting, Davy Paindaveine, and Thomas Verdebout

Abstract We consider asymptotic inference for the concentration of directional
data. More precisely, we propose tests for concentration (1) in the low-dimensional
case where the sample size n goes to infinity and the dimension p remains fixed,
and (2) in the high-dimensional case where both n and p become arbitrarily large.
To the best of our knowledge, the tests we provide are the first procedures for
concentration that are valid in the .n; p/-asymptotic framework. Throughout, we
consider parametric FvML tests, that are guaranteed to meet asymptotically the
nominal level constraint under FvML distributions only, as well as “pseudo-FvML”
versions of such tests, that meet asymptotically the nominal level constraint within
the whole class of rotationally symmetric distributions. We conduct a Monte-Carlo
study to check our asymptotic results and to investigate the finite-sample behavior
of the proposed tests.

1 Introduction

The present paper deals with directional data, that is multivariate data for which only
the directions (and not the magnitudes) are measured and which therefore belong to
the unit sphere S p�1 WD fx 2 R

p W kxk2 D x0x D 1g of Rp. Such data arise in many
different disciplines and in particular are often encountered in earth sciences such
as astrophysics [4] and meteorology [10]. Since the seminal paper of [9], they have
been extensively studied; we refer to [16] for a general overview of the topic.
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More and more applications involve data whose dimension can be large com-
pared to the sample size. This is also the case for directional data : high-dimensional
data can indeed be found in magnetic resonance (see [8]), gene-expression (see [2]),
or in text mining (see [3]). Such data cannot be analyzed via standard statistical
techniques and require developing new appropriate methods. In this vein, tests of
hypotheses for high-dimensional directional data have been recently proposed in [5–
7, 15] and [17]. While [5–7] and [17] focused on the null hypothesis of uniformity on
high-dimensional unit spheres, [15] tackled the high-dimensional spherical location
problem.

In this paper, we consider another testing problem in directional statistics,
namely the problem of testing the null hypothesis that the underlying concentration
is equal to some given value. A distributional setup where concentration has
been classically considered is related to the celebrated Fisher-von Mises-Langevin
(FvML) distributions, that have received a lot of attention in the literature; see, e.g.,
Sects. 10.4–10.6 in [16]. FvML distributions on S p�1 admit probability density
functions (with respect to the surface area measure) that are of the form

x ! f .x/ WD cp;� exp.� x0�/ ;

where cp;� .> 0/ is a normalization constant, � 2 S p�1 is a location parameter,
and �.> 0/ is a concentration parameter. The larger the value of �, the more
concentrated about � the distribution is. In the fixed-p case, the problem of
developing inferential procedures on � and/or � has been extensively studied in
the literature. When testing H0 W � D �0 against H1 W � ¤ �0, for instance, one
of the most classical tests is the score test from Watson [23]. This test was shown
in [18] to be locally and asymptotically optimal, and is furthermore robust to high-
dimensionality (see [15]).

Besides the tests described in [16], tests of hypotheses that specifically address
problems on the concentration parameter can mainly be found in [13, 20] and
[22]. These tests are fixed-p FvML likelihood ratio or score tests. Such tests are
asymptotically efficient in the FvML case, but are not robust to departures from
FvML distributions (as we explain in Sect. 2, concentration can be defined away
from the FvML case). Fixed-p robust procedures for concentration have therefore
been proposed by [11] and [12] in the one-sample case and recently by [21] in
the multi-sample case. In all cases, however, fixed-p tests for concentration fail to
be robust to high-dimensionality. The objective of the present paper is therefore to
provide high-dimensional tests for concentration.

The paper is organized as follows. In Sect. 2, we first define the problem
of testing for concentration. Then we propose a new robust fixed-p test and
investigate its asymptotic properties. In Sect. 3, we develop a high-dimensional
test for concentration and we study its (n; p)-asymptotic properties under the null
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hypothesis. Finally, in Sect. 4, we conduct low-dimensional and high-dimensional
Monte-Carlo simulations to confirm our theoretical results and investigate the finite-
sample properties of the proposed tests.

2 Testing for Concentration in Low Dimensions

Let X1; : : : ;Xn be independent random p-vectors sharing an FvML distribution
with location � and concentration �. We consider the problem of testing the null
hypothesis H0 W � D �0 against H1 W � ¤ �0, where �0 > 0 is fixed. Of course,
� is then the parameter of interest, while � plays the role of a nuisance parameter.
The null hypothesis H0 is clearly invariant with respect to the group of rotations, so
that the invariance principle leads to resorting to tests that are invariant under this
group. Since the group of rotations is actually generating the null hypothesis H0,
invariant tests are distribution-free under H0. All tests we will consider in this paper
are invariant, so that we may throughout, without any loss of generality, restrict to
the case where � coincides with the first vector of the canonical basis of Rp.

Denoting by I�.�/ the order-� modified Bessel function of the first kind, it is easy
to show that

e1 WD EŒX0
i�	 D hp.�/; i D 1; : : : ; n; (1)

where the mapping

hp W RC ! .0; 1/ (2)

z 7! Ip=2.z/

Ip=2�1.z/

is one-to-one. Consequently, concentration, for fixed-p, may equivalently be mea-
sured through e1, and one may rephrase the null hypothesis H0 W � D �0 as
H0 W e1 D e10, with e10 WD hp.�0/. In the sequel, we rather adopt the latter
formulation of the null hypothesis, since this formulation, unlike the former, makes
sense away from the FvML case.

As mentioned in the introduction, the tests for concentration available in the
literature are mainly of a likelihood ratio or score nature. The most classical test
for the null hypothesis H0 W e1 D e10 is the Watamori and Jupp [22] score test �.n/WJ
that rejects the null hypothesis at asymptotic level ˛ whenever

T.n/WJ WD n.k NXnk � e10/2

1 � p�1
�0

e10 � e210
> 
21;1�˛;
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where NXn WD n�1Pn
iD1Xi and 
2`;1�˛ stands for the ˛-upper quantile of the chi-

square distribution with ` degrees of freedom. This test is asymptotically equivalent
to the corresponding FvML likelihood ratio test, hence is locally and asymptotically
optimal in the FvML case; see [14]. Because of its parametric nature, however, �.n/WJ
relies crucially on the FvML assumption, in the sense that there is no guarantee that
it meets the asymptotic level constraint away from the FvML case.

In this section, we show that an appropriate robustification of �.n/WJ is valid under
the class of rotationally symmetric distributions. A random vector X, taking values
on the unit sphereS p�1 ofRp, is said to be rotationally symmetric about�.2 S p�1/
if and only if, for all orthogonal p � p matrices O satisfying O� D � , the random
vectors OX and X are equal in distribution. If, further, X is absolutely continuous
(still with respect to the surface area measure on S p�1), then the corresponding
density is of the form

x ! cp;f f .x0�/; (3)

where cp;f .> 0/ is a normalization constant and f W Œ�1; 1	 ! R is some
nonnegative function. In the general (possibly non-absolutely continuous) case,
rotationally symmetric distributions are characterized by the location parameter �
and the cumulative distribution functionF of X0�; such distributions are therefore of
a semiparametric nature. The rotationally symmetric distribution associated with �
and F will be denoted as Rp.�;F/. For identifiability purposes, it will be tacitly
assumed throughout that F belongs to the collection F of cumulative distribution
functions F W Œ�1; 1	 ! Œ0; 1	 such that e1 D EŒX0�	 > 0 (the assumption
that e1 ¤ 0 makes the pair f˙�g identifiable and imposing further that e1 > 0

makes � itself identifiable). When a null hypothesis of the form H W e1 D e10 is
considered, F0 will stand for the subset of F corresponding to the null hypothesis.

FvML distributions are (absolutely continuous) rotationally symmetric distribu-
tions, and correspond to f .t/ D exp.�t/, or, equivalently, to

Fp;�.t/ D cp;�

Z t

�1
.1 � s2/. p�3/=2 exp.�s/ ds .t 2 Œ�1; 1	/;

where cp;� is the same normalization constant as in the introduction. According to
the equivalence between � and e1 in (1) and (2), the FvML cumulative distribution
function Fp;� belongs to F (resp., to F0) if and only if � > 0 (resp., if and only
if � D �0 WD h�1

p .e10/).
Assume now that a random sample X1; : : : ;Xn from a rotationally symmetric

distribution is available. We then consider the robustified test �.n/WJm that rejects the
null hypothesis H0 W e1 D e10 at asymptotic level ˛ whenever

T.n/WJm WD n.k NXnk � e10/2

Oen2 � e210
> 
21;1�˛;
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where we let Oen2 WD NX0
nSn NXn=k NXnk2, with Sn WD n�1Pn

iD1XiX0
i. In the FvML

case, �.n/WJm is asymptotically equivalent to �.n/WJ under the null hypothesis (hence

also under sequences of contiguous alternatives), but �.n/WJm is further asymptotically
valid (in the sense that it meets asymptotically the nominal level constraint) under
any rotationally symmetric distribution. This is made precise in the following result
(see Appendix for a proof).

Theorem 1 Fix p 2 f2; 3; : : :g, � 2 S p�1, and F 2 F0, and denote by R
.n/
p .�;F/

the hypothesis under which the random p-vectors X1; : : : ;Xn are mutually indepen-
dent and share the distributionRp.�;F/. Then,

(i) underR.n/
p .�;F/, T.n/WJm converges weakly to the 
21 distribution as n ! 1;

(ii) underR.n/
p .�;Fp;�0 /, with �0 D h�1

p .e10/, T
.n/
WJm � T.n/WJ D oP.1/ as n ! 1, so

that �.n/WJm is locally and asymptotically optimal in the FvML case.

This result shows that the robustified test �.n/WJm enjoys nice properties. Like any
fixed-p test, however, it requires the sample size n to be large compared to the
dimension p. Figure 1 below indeed confirms that, parallel to the classical test �.n/WJ,

the robustified test �.n/WJm fails to maintain the proper null size in high dimensions. In
the next section, we therefore define high-dimensional tests for concentration.
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Fig. 1 For any p D 2; 3; : : : ; 100, the left panel reports null rejection frequencies of the fixed-p
FvML test �.n/WJ for H0 W � D p (at nominal level 5 %), obtained from M D 1500 independent
random samples of size n D 100 from the FvML distribution with a location � equal to the first
vector of the canonical basis of Rp. The right panel reports the corresponding rejection frequencies
of the robustified test �.n/WJm
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3 Testing for Concentration in High Dimensions

3.1 The FvML Case

We start with the high-dimensional FvML case. To this end, it is natural to consider
triangular arrays of observations Xni, i D 1; : : : ; n, n D 1; 2; : : : such that,
for any n, the FvML random vectors Xn1;Xn2; : : : ;Xnn are mutually independent
fromRpn.�n;Fpn;�/, where the sequence . pn/ goes to infinity with n and where �n 2
S pn�1 for any n (we will denote the resulting hypothesis as Rpn.�n;Fpn;�/).
In the present high-dimensional framework, however, considering a fixed, that
is p-independent, value of � is not appropriate. Indeed, for any fixed � > 0,
Proposition 1(i) below shows that X0

ni�n, under R
.n/
pn .�n;Fpn;�/, converges in

quadratic mean to zero. In other words, irrespective of the value of �, the sequence of
FvML distributions considered eventually puts mass on the “equator” fx 2 S pn�1 W
x0�n D 0g only, which leads to a common concentration scheme across �-values.
For p-independent �-values, the problem of testing H0 W � D �0 versus H1 W � ¤ �0
for a given �0 is therefore ill-posed in high dimensions.

We then rather consider null hypotheses of the form H0 W en1 D e10, where
we let en1 WD EŒX0

n1�n	 and where e10 2 .0; 1/ is fixed. Such hypotheses, in
the FvML case, are associated with triangular arrays as above but where the
concentration parameter � assumes a value that depends on n in an appropriate
way. The following result makes precise the delicate relation between the resulting
concentration sequence �n and the alternative concentration parameter e1n in the
high-dimensional case (see Appendix for a proof).

Proposition 1 Let . pn/ be a sequence of positive integers diverging to 1, .�n/

be an arbitrary sequence such that �n 2 S pn�1 for any n, and .�n/ be a
sequence in .0;1/. Under the resulting sequence of hypotheses R.n/

pn .�n;Fpn;�n/,
write en1 WD EŒX0

n1�n	 and Qen2 WD VarŒX0
n1�n	. Then we have the following (where

all convergences are as n ! 1) :

(i) �n=pn ! 0 , en1 ! 0;
(ii) �n=pn ! c 2 .0;1/ , en1 ! g1.c/, where g1 W .0;1/ ! .0; 1/ W x 7!

x=. 1
2

C .x2 C 1
4
/1=2/;

(iii) �n=pn ! 1 , en1 ! 1.

In cases (i) and (iii), Qen2 ! 0, whereas in case (ii), Qen2 ! g2.c/, for some
function g2 W .0;1/ ! .0; 1/.

Parts (i) and (iii) of this proposition are associated with the null hypotheses H0 W
en1 D 0 and H0 W en1 D 1, respectively. The former null hypothesis has already
been addressed in [7], while the latter is extremely pathological since it corresponds
to distributions that put mass on a single point on the sphere, namely �n. As already
announced above, we therefore focus throughout on the null hypothesis H0 W en1 D
e10, where e10 2 .0; 1/ is fixed. Part (ii) of Proposition 1 shows that, in the FvML
case, this can be obtained only when �n goes to infinity at the same rate as pn; more
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precisely, the null hypothesis H0 W en1 D e10 is associated with sequences .�n/ such
that �n=pn ! c0, with c0 D g�1

1 .e10/.

As shown in Fig. 1, the fixed-p tests �.n/WJ=�
.n/
WJm fail to be robust to high-

dimensionality, which calls for corresponding high-dimensional tests. The following
result, that is proved in Appendix, shows that, in the FvML case, such a high-
dimensional test is the test �.n/CPV that rejects H0 W en1 D e10 whenever

jQ.n/CPVj > z˛=2;

where

Q.n/CPV WD
p
pn
�
nk NXnk2 � 1 � .n � 1/e210

�

p
2
�
pn
�
1 � e10

c0
� e210

�2 C 2npne210
�
1 � e10

c0
� e210

�C �
e10
c0

�2�1=2 ;

with c0 D g�1
1 .e10/, and where zˇ stands for the ˇ-upper quantile of the standard

normal distribution.

Theorem 2 Let . pn/ be a sequence of positive integers diverging to 1, .�n/ be
an arbitrary sequence such that �n 2 S pn�1 for any n, and .�n/ be a sequence
in .0;1/ such that, for any n, en1 D e10 under R

.n/
pn .�n;Fpn;�n/. Then, under the

sequence of hypotheses R
.n/
pn .�n;Fpn;�n/, Q

.n/
CPV converges weakly to the standard

normal distribution as n ! 1.

As in the fixed-p case, the test �.n/CPV is a parametric test whose .n; p/-asymptotic
validity requires stringent FvML assumptions. In the next section, we therefore
propose a robustified version of this test, that is robust to both high-dimensionality
and departures from the FvML case.

3.2 The General Rotationally Symmetric Case

We intend to define a high-dimensional test for concentration that is valid in the
general rotationally symmetric case. To this end, consider triangular arrays of
observations Xni, i D 1; : : : ; n, n D 1; 2; : : : such that, for any n, the random
pn-vectors Xn1;Xn2; : : : ;Xnn are mutually independent and share a rotationally
symmetric distribution with location parameter �n and cumulative distribution Fn,
where the sequence . pn/ goes to infinity with n and where �n 2 S pn�1 for any n
(in line with Sect. 2, Fn is the cumulative distribution function of X0

n1�n). As above,

the corresponding hypothesis will be denoted as R.n/
pn .�n;Fn/.



216 C. Cutting et al.

As in the FvML case, we consider the problem of testing the null hypothesisH0 W
en1 D e10, where e10 2 .0; 1/ is fixed. In the present rotationally symmetric case,
we propose a robustified version of the test �.n/CPV above. This robustified test, �.n/CPVm
say, rejects the null hypothesis at asymptotic level ˛ whenever

jQ.n/CPVmj > z˛=2;

where

Q.n/CPVm WD
p
pn
�
nk NXnk2 � 1 � .n � 1/e210

�

p
2
�
pn
�Oen2 � k NXnk2

�2 C 2npne210
�Oen2 � k NXnk2

�C .1 � Oen2/2
�1=2 I

recall from Sect. 2 that Oen2 D NX0
nSn NXn=k NXnk2, with Sn WD n�1Pn

iD1XiX0
i. The

following result shows that, under mild assumptions, this test is asymptotically valid
in the general rotationally symmetric case (see Appendix for a proof).

Theorem 3 Let . pn/ be a sequence of positive integers diverging to 1, and .�n/

be an arbitrary sequence such that �n 2 S pn�1 for any n. Let .Fn/ be a sequence
of cumulative distribution functions over Œ�1; 1	 such that, underR.n/

pn .�n;Fn/, one
has en1 D e10 for any n, and

.i/ nQen2 ! 1; .ii/ min
�pnQe2n2

f 2n2
;

Qen2
n

�
D o.1/; .iii/ Qen4=Qe2n2 D o.n/;

and .iv/ fn4=f
2
n2 D o.n/; (4)

where we let Qen` WD EŒ.X0
ni�n � en1/`	 and fn` WD EŒ.1 � .X0

ni�n/
2/`=2	. Then, under

the sequence of hypotheses R.n/
pn .�n;Fn/, Q

.n/
CPVm converges weakly to the standard

normal distribution as n ! 1.

As explained in [7], Conditions (ii)–(iv) are extremely mild. In particular, they hold
in the FvML case, irrespective of the sequences .�n/ and . pn/ considered, provided,
of course, that pn ! 1 as n ! 1. Condition (i) is more restrictive. In the FvML
case, for instance, it imposes that pn=n D o.1/ as n ! 1. Such a restriction
originates in the need to estimate the quantity Qen2, which itself requires estimating �n

in an appropriate way.

4 Simulations

In this section, our objective is to study the small-sample behavior of the tests
proposed in this paper. More precisely, we investigate whether or not the asymptotic
critical values, for moderate-to-large sample sizes n (and dimensions p, in the high-
dimensional case), lead to null rejection frequencies that are close to the nominal
level.
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4.1 The Low-Dimensional Case

We first consider the low-dimensional case. For each combination of � 2
f1; 3g and p 2 f3; 4; 5g, we generated M D 2500 independent random
samples X1; : : : ;Xn of size n D 50 from the Purkayastha rotationally symmetric
distribution Rp.�;Gp;�/, based on

Gp;�.t/ D dp;�

Z t

�1
.1 � s2/. p�3/=2 exp.�� arccos.s// ds .t 2 Œ�1; 1	/;

where dp;� is a normalizing constant; for � , we took the first vector of the canonical
basis of Rp. In each case, we considered the testing problem H0 W e1 D e10 vs H1 W
e1 ¤ e10, where e10 is taken as the underlying value of EŒX0

1�	 (which depends on n

and p). On each sample generated above, we then performed (1) the FvML test �.n/WJ

and (2) its robustified version �.n/WJm, both at nominal level 5%. Figure 2 provides
the resulting empirical—by construction, null—rejection frequencies. Inspection of
this figure reveals that, unlike the FvML test �.n/WJ, the robustified test �.n/WJm meets
the level constraint in all cases.

4.2 The High-Dimensional Case

To investigate the behavior of the proposed high-dimensional tests, we performed
two simulations. In the first one, we generated, for every .n; p/ 2 C1�C1, with C1 D
f30; 100; 400g, M D 2500 independent random samples of size n from the FvML
distributions Rp.� ;Fp;�/, where � is the first vector of the canonical basis of Rp and
where we took � D p. In the second simulation, we generated, for every .n; p/ 2
C2 � C2, with C2 D f30; 100g, M D 2;500 independent random samples of size n
from the Purkayastha distributions Rp.�;Gp;� /, still with � D p and the same � as
above. The Purkayastha distribution is numerically hard to generate for dimensions
larger than 150, which is the only reason why the dimensions considered in this
second simulation are smaller than in the first one.

Parallel to the simulations conducted for fixed p, we considered the testing
problem H0 W e1 D e10 vs H1 W e1 ¤ e10, where e10 is the underlying
value of EŒX0

1�	. On all samples that were generated, we then performed the four

following tests at nominal level 5%: (1) the low-dimensional FvML test �.n/WJ, (2)

its robustified version �.n/WJm, (3) the high-dimensional FvML test �.n/CPV, and (4) its

robustified version �.n/CPVm. The resulting empirical (null) rejection frequencies are
provided in Figs. 3 and 4, for the FvML and Purkayastha cases, respectively. The
results show that

(a) the low-dimensional tests �.n/WJ and �
.n/
WJm clearly fail to be robust to high-

dimensionality;
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Fig. 2 Empirical null rejection frequencies of (1) the low-dimensional FvML test �.n/WJ and of (2)

its robustified version �.n/WJm, under various p-dimensional Purkayastha rotationally symmetric dis-
tributions involving two different concentrations �. Rejection frequencies are obtained from 2500

independent samples of size 50, and all tests are performed at asymptotic level 5%; see Sect. 4.1
for details

(b) at the FvML, �.n/CPV is asymptotically valid when n and p are moderate to large;

(c) away from the FvML, the high-dimensional test �.n/CPV is not valid, but its

robustified version Q.n/CPVm is when n � p.

In order to illustrate the asymptotic normality result in Theorems 2 and 3, we
computed, for each .n; p/ configuration and each distribution considered (FvML
or Purkayastha), kernel estimators for the densities of Q.n/CPV and Q.n/CPVm, based on
the various collections of 2500 values of these test statistics obtained above. In all
cases, we used Gaussian kernels with a bandwidth obtained from the “rule of thumb”
in [19]. The resulting kernel density estimators are plotted in Figs. 5 and 6, for FvML
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Fig. 3 Empirical null rejection frequencies, from 2500 independent samples, of (1) the low-
dimensional FvML test �.n/WJ, (2) its robustified version �.n/WJm, (3) the high-dimensional FvML

test �.n/CPV, and (4) its robustified version �.n/CPVm (all performed at asymptotic level 5%), under
p-dimensional FvML distributions for various dimensions p and sample sizes n; see Sect. 4.2 for
details

and Purkayastha distributions, respectively. Clearly, Fig. 5 supports the results that
both test statistics are asymptotically standard normal under the null hypothesis,
whereas Fig. 6 illustrates that this asymptotic behavior still holds for Q.n/CPVm (but not

for Q.n/CPV) away from the FvML case.
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Fig. 4 Empirical null rejection frequencies, from 2500 independent samples, of (1) the low-
dimensional FvML test �.n/WJ, (2) its robustified version �.n/WJm, (3) the high-dimensional FvML

test �.n/CPV, and (4) its robustified version �.n/CPVm (all performed at asymptotic level 5%), under
p-dimensional Purkayastha distributions for various dimensions p and sample sizes n; see Sect. 4.2
for details

Appendix

Proof of Theorem 1 (i) All expectations and variances when proving Part (i) of
the theorem are taken under R.n/

p .�;F/ and all stochastic convergences are taken
as n ! 1 under R.n/

p .�;F/. Since

n1=2. NXn � e10�/ D OP.1/; (5)

the delta method (applied to the mapping x 7! x=kxk) yields

n1=2.Yn � �/ D e�1
10 ŒIp � �� 0	n1=2. NXn � e10�/C oP.1/; (6)
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Fig. 5 Plots of kernel density estimators (based on Gaussian kernels and bandwidths resulting
from the “rule of thumb” in [19]) of the (null) densities of Q.n/CPV (thick solid line) and Q

.n/
CPVm (thick

dashed line) for various values of n and p, based on M D 2500 random samples of size n from the
p-dimensional FvML distribution with concentration � D p; see Sect. 4.2 for details. For the sake
of comparison, the standard normal density is also plotted (thin solid line)

where we wrote Yn WD NXn=k NXnk. This, and the fact that

Sn
P! EŒX1X0

1	 D EŒ.X0
1�/

2	�� 0 C 1 � EŒ.X0
1�/

2	

p � 1
.Ip � �� 0/;

where Ip denotes the p-dimensional identity matrix, readily implies that

O�2n WD
NX0
nSn NXn

k NXnk2
� e210 D Y0

nSnYn � e210
P! EŒ.X0

1�/
2	 � e210 D VarŒX0

1� 	: (7)



222 C. Cutting et al.

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p=
30

n=30

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n=100

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p=
10

0

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 6 Plots of kernel density estimators (based on Gaussian kernels and bandwidths resulting
from the “rule of thumb” in [19]) of the (null) densities of Q.n/CPV (thick solid line) and Q.n/CPVm (thick
dashed line) for various values of n and p, based on M D 2500 random samples of size n from the
p-dimensional Purkayastha distribution with concentration � D p; see Sect. 4.2 for details. For the
sake of comparison, the standard normal density is also plotted (thin solid line)

Now, write

n1=2.k NXnk � e10/

O�n D n1=2 NX0
n.Yn � �/
O�n C n1=2. NX0

n� � e10/

O�n DW S1n C S2n; (8)

say. It directly follows from (5) to (7) that S1n D oP.1/ as n ! 1. As for S2n, the
central limit theorem and Slutsky’s lemma yield that S2n is asymptotically standard
normal. This readily implies that

T.n/WJm D


n1=2.k NXnk � e10/

O�n
�2

L! 
21:
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(ii) In view of the derivations above, the continuous mapping theorem implies that,
for any � 2 S p�1 and F 2 F0,

T.n/WJm D n.k NXnk � e10/2

VarŒX0
1�	

C oP.1/

as n ! 1 under R.n/
p .�;F/. The result then follows from the fact that,

under R
.n/
p .�;Fp;�0 /, with �0 D h�1

p .e10/, VarŒX0
1�	 D 1 � p�1

�0
e10 � e210I see,

e.g., Lemma S.2.1 from [7]. �

Proof of Proposition 1 From Lemma S.2.1 in [7], we have that, under R
.n/
pn

.�n;Fpn;�n/,

en1 D Ipn=2.�n/

Ipn=2�1.�n/
and Qen2 D 1 � pn � 1

�n
en1 � e2n1:

The result then readily follows from

z

� C 1Cp
z2 C .� C 1/2

	 I�C1.z/
I�.z/

	 z

� C p
z2 C �2

(9)

for any �; z > 0; see (9) in [1]. �

Proof of Theorem 2 Writing en2 WD EŒ.X0
n1�n/

2	, Theorem 5.1 in [7] entails that,

under R.n/
pn .�n;Fpn;�n/, where .�n/ is an arbitrary sequence in .0;1/,

p
pn
�
nk NXnk2 � 1 � .n � 1/e2n1

�

p
2
�
pnQe2n2 C 2npne2n1 Qen2 C .1 � en2/2

�1=2

converges weakly to the standard normal distribution as n ! 1. The result then
follows from the fact that, under R.n/

pn .�n;Fpn;�n/, where the sequence .�n/ is such

that, for any n, en1 D e10 under R.n/
pn .�n;Fpn;�n/, one has

en2 D 1� pn � 1

�n
e10; Qen2 D 1� pn � 1

�n
e10�e210; and �n=pn ! c0 as n ! 1I

see Proposition 1(ii). �

The proof of Theorem 3 requires the three following preliminary results:

Lemma 1 Let Z be a random variable such that PŒjZj 	 1	 D 1. Then VarŒZ2	 	
4VarŒZ	.

Lemma 2 Let the assumptions of Theorem 3 hold. Write Oen1 D k NXnk and Oen2 WD
NX0
nSn NXn=k NXnk2. Then, as n ! 1 underR.n/

pn .�n;Fpn;�n/, (i) .Oe2n1�e210/=.en2�e210/ D
oP.1/ and (ii) .Oe2n � en2/=.en2 � e210/ D oP.1/.
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Lemma 3 Let the assumptions of Theorem 3 hold. Write �2n WD pn.en2 � e210/
2 C

2npne210.en2 � e210/ C .1 � en2/2 and O�2n WD pn.Oen2 � Oe2n1/2 C 2npne210.Oen2 � Oe2n1/ C
.1 � Oen2/2. Then . O�2n � �2n /=�

2
n D oP.1/ as n ! 1 underR.n/

pn .�n;Fpn;�n/.

Proof of Lemma 1 Let Za and Zb be mutually independent and identically dis-
tributed with the same distribution as Z. Since jx2 � y2j 	 2jx � yj for any x; y 2
Œ�1; 1	, we have that

VarŒZ2	 D 1

2
EŒ.Z2a � Z2b/

2	 	 2EŒ.Za � Zb/
2	 D 4VarŒZ	;

which proves the result. �

Proof of Lemma 2 All expectations and variances in this proof are taken under the
sequence of hypotheses R

.n/
pn .�n;Fn/ considered in the statement of Theorem 3,

and all stochastic convergences are taken as n ! 1 under the same sequence of
hypotheses. (i) Proposition 5.1 from [7] then yields

EŒOe2n1	 D EŒk NXnk2	 D n � 1
n

e210 C 1

n
(10)

and

VarŒOe2n1	 D VarŒk NXnk2	 D 2.n � 1/
n3

Qe22n C 4.n � 1/2
n3

e210 Qen2 C 2.n � 1/

n3. pn � 1/ .1� e2n2/
2

D 4

n
e210 Qen2 C O.n�2/

(11)

as n ! 1. In view of Condition (i) in Theorem 3, this readily implies

E
h� Oe2n1 � e210

Qen2
�2i D Var

h Oe2n1 � e210
Qen2

i
C
�

E
h Oe2n1 � e210

Qen2
i�2

D 4e210
nQen2 C O

� 1

n2Qe2n2
�

C
�1 � e210

nQen2
�2 D o.1/

as n ! 1, which establishes Part (i) of the result.
(ii) Write

Oen2 � en2
Qen2 D 1

Qen2

� 1

Oe2n1
� 1

e210

� NX0
nSn NXn C 1

e210
NX0
nSn NXn � en2

�

:

Part (i) of the result shows that .Oe2n1�e210/=Qen2 is oP.1/ as n ! 1. Since (10) and (11)
yield that Oen1 converges in probability to e10.¤ 0/, this implies that .Oe�2

n1 �e�2
10 /=Qen2 is
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oP.1/ as n ! 1. This, and the fact that NX0
nSn NXn D OP.1/ as n ! 1, readily yields

Oen2 � en2
Qen2 D 1

Qen2


1

e210
NX0
nSn NXn � en2

�

C oP.1/ (12)

as n ! 1. Since

1

e210
NX0
nSn NXn D 1

e210
. NXn � e10�/

0Sn. NXn � e10�/C 2

e10
. NXn � e10�/

0Sn� C � 0Sn�;

the result follows if we can prove that

An WD 1

Qen2 .
NXn � e10�/

0Sn. NXn � e10�/; Bn WD 1

Qen2 .
NXn � e10�/

0Sn�;

and Cn WD 1

Qen2 .�
0Sn� � en2/

all are oP.1/ as n ! 1.
Starting with An, (10) yields

EŒjAnj	 	 1

Qen2 EŒk NXn � e10�k2	 D 1

Qen2
�n � 1

n
e210 C 1

n
� e210

�
D 1 � e210

nQen2 D o.1/

(13)

as n ! 1. Since convergence in L1 is stronger than convergence in probability, this
implies that An D oP.1/ as n ! 1. Turning to Bn, the Cauchy–Schwarz inequality
and (13) provide

EŒjBnj	 	 1

Qen2 EŒk NXn � e10�k2	 D o.1/;

as n ! 1, so that Bn is indeed oP.1/ as n ! 1. Finally, it follows from Lemma 1
that

EŒC2n	 D 1

Qe2n2
EŒ.� 0Sn� � en2/

2	 D 1

nQe2n2
VarŒ.X0

n1�/
2	 	 4

nQen2 D o.1/

as n ! 1, so that Cn is also oP.1/ as n ! 1. This establishes the result. �

Proof of Lemma 3 As in the proof of Lemma 2, all expectations and variances in
this proof are taken under the sequence of hypotheses R.n/

pn .�n;Fn/ considered in
the statement of Theorem 3, and all stochastic convergences are taken as n ! 1
under the same sequence of hypotheses.

Let then Q�2n WD 2npne210.en2 � e210/. Since Condition (i) in Theorem 3 directly
entails that �2n = Q�2n ! 1 as n ! 1, it is sufficient to show that . O�2n ��2n /= Q�2n is oP.1/
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as n ! 1. To do so, write

O�2n � �2n D An C Bn C Cn; (14)

where

An WD pn
�
.Oen2 � Oe2n1/2 � .en2 � e210/

2
�
; Bn WD 2npne

2
10

�Oen2 � Oe2n1 � en2 C e210
�
;

and

Cn WD .1 � Oen2/2 � .1 � en2/
2:

Since

jAnj
Q�2n

	 pn
Q�2n

D 1

2ne210.en2 � e210/
and

jCnj
Q�2n

	 1

Q�2n
D 1

2npne210.en2 � e210/
;

almost surely, Condition (i) in Theorem 3 implies that An= Q�2n and Cn= Q�2n are oP.1/

as n ! 1. The result then follows from the fact that, in view of Lemma 2,

Bn

Q�2n
D .Oen2 � en2/� .Oe2n1 � e210/

en2 � e210

is also oP.1/ as n ! 1. �

Proof of Theorem 3 Decompose Q.n/CPVm into

Q.n/CPVm D �n

O�n �
p
pn
�
nk NXnk2 � 1 � .n � 1/e210

�

p
2 �n

DW �nO�n � Vn; (15)

say. Theorem 5.1 in [7] entails that, under the sequence of hypotheses R.n/
pn .�n;Fn/

considered in the statement of the theorem, Vn is asymptotically standard normal
as n ! 1. The result therefore follows from Lemma 3 and the Slutsky’s lemma. �
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Nonparametric Testing for Heterogeneous
Correlation

Stephen Bamattre, Rex Hu, and Joseph S. Verducci

Abstract In the presence of weak overall correlation, it may be useful to inves-
tigate if the correlation is significantly and substantially more pronounced over a
subpopulation. Two different testing procedures are compared. Both are based on
the rankings of the values of two variables from a data set with a large number n
of observations. The first maintains its level against Gaussian copulas; the second
adapts to general alternatives in the sense that the number of parameters used in the
test grows with n. An analysis of wine quality illustrates how the methods detect
heterogeneity of association between chemical properties of the wine, which are
attributable to a mix of different cultivars.

Keywords Absolute rank differences • Beta distribution • Frank copula • Gaus-
sian copula • Kendall’s tau • Mallows’ model • Multistage ranking model •
Permutations • Seriation

1 Introduction

The goal of this paper is to offer new methods for discovering association between
two variables that is supported only in a subpopulation. For example, while higher
counts of HDLs are generally associated with lower risk of myocardial infarction,
researchers [10, 18] have found subpopulations that do not adhere to this trend.
In marketing, subpopulations of designated marketing areas (DMAs) in the USA
respond differentially to TV advertising campaigns, and the identification of DMAs
that are sensitive to ad exposure enables efficient spending of ad dollars. In
preclinical screening of potential drugs, various subpopulations of chemicals elicit
concomitant responses from sets of hepatocyte genes, which can be used to discover
gene networks that breakdown classes of drugs, without having to pre-specify how
the classes are formed. The new methods thus lead to a whole new approach to
analysis of large data sets.
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When covariates are available, regression analysis classically attempts to identify
a supporting subpopulation via interaction effects, but these may be difficult
to interpret properly. In the presence of overall correlation, it may be useful
to investigate directly if the correlation is significantly and substantially more
pronounced over a subpopulation. This becomes feasible when representatives of
supporting subpopulations are embedded in large samples. The novel statistical tests
described in this paper are designed to probe large samples to ascertain if there is
such a subpopulation.

The general setting is this: A large number n of observations are sampled from a
bivariate continuous distribution. The basic assumption is that the population con-
sists of two subpopulations. In one, the two variables are positively (or negatively)
associated; in the other, the two variables are independent. While some distributional
assumptions are required even to define the notion of homogeneous association, the
underlying intent is to make the tests robust to assumptions about the distributions
governing both the null and alternative hypotheses.

Notation for the rest of the paper is as follows: Let X � F and Y � G have joint,
continuous distribution H. For any sample f.xi; yi/ j i D 1; : : : ; ng, the empirical
marginal distributions are defined by

OFn .x/ D 1

n

nX

iD1
1 fxi 	 xg and OGn .y/ D 1

n

nX

iD1
1 fyi 	 yg :

The ranking� of the sample fxi j i D 1; : : : ; ng is the function� W fxi j i D 1; : : : ; ng
! f1; : : : ; ng defined by

� .xi/ D
nX

jD1
1
˚
xi 	 xj

�
:

The corresponding ranking of fyi j i D 1; : : : ; ng is denoted by �. Spearman’s
footrule distance with a sample f.xi; yi/ j i D 1; : : : ; ng is defined through the sample
rankings as

dS D
nX

iD1
j� .xi/� � .yi/j :

The Kendall’s distance associated with the sample is defined as

DK .Œx1; : : : ; xn	 ; Œy1; : : : ; yn	/ D
X

i<j

1
˚�
xi � xj

� �
yi � yj

�
< 0

�

D
X

i<j

1
˚�
� .xi/� �

�
xj
�� �
� .yi/ � � �yj

��
< 0

�

D dK .�; �/
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which depends only on the rankings � and � of the sample fxig and fyig. Since H is
continuous, Kendall’s tau coefficient has the form

TK .Œx1; : : : ; xn	 ; Œy1; : : : ; yn	/ D 1 � 4DK .�; �/

n .n � 1/ :

Mallows (1957) model for rankings takes the form

P� .� j �/ D C .�/ e��dK .�;�/

where the normalizing constant C .�/ has a tractable form (Fligner and Verducci
1986) known as a Poincare polynomial [3]. Distributional forms for the data are in
terms of copulas:

CH .F .X/ ;G .Y// D H .X;Y/

which are distribution functions on the unit square, having uniform margins. Two
copulas play a fundamental role in motivating the tests: the Gaussian copula and
the Frank Copula. If .X;Y/ has a bivariate normal distribution H with standardized
margins and correlation �, then its corresponding copula is

C� .u; v/ D ˆ2
�
ˆ�1 .u/ ; ˆ�1 .v/ I ��

where ˆ is the standard normal CDF. The bivariate distributions C� and ˆ2 are
indexed solely by the underlying correlation �. The Frank copula [6, 7] has the form

C� .u; v/ D � 1
�

log

 

1C
�
e��u � 1� �e��v � 1�

�
e�� � 1

�

!

:

The next two sections describe two new tests for detecting subpopulations that
support association: the Components of Spearman’s Footrule (CSF) test and the
Components of Kendall’s Tau (CKT) test. The CSF test is scaled according to a
Gaussian copula and the CKT test is scaled according to a Frank copula. The CSF
test is computationally fast, and the CKT test adapts to a large variety of alternatives.
The following two sections cover their performance under simulations. Concluding
remarks are in last section.

2 Components of Spearman’s Footrule

While Spearman’s footrule [2] measures the overall disarray in a sample, the
distribution of individual absolute rank differences

di D j� .xi/ � � .yi/j
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proves to be very useful in detecting subsamples with distinctly less disarray than
would be expected under homogeneous association. Because the rankings depend
on the whole sample, the fdig are not independent. Nevertheless, we loosely define
their empirical distribution as

Sn .d/ D 1

n

nX

iD1
1 fdi 	 dg :

As a step toward determining asymptotic forms for this distribution, we offer the
following lemmas:

Lemma 1 For any sample f.Xi;Yi/ j i D 1; : : : ; ng, from a joint distribution H with
compact support, let (X,Y) be a newly, independent sampled observation. Then, for
rankings � and � for the extended sample of n C 1 observations,

�
� .X/

n C 1
;
� .Y/

n C 1

�

!
a:s:
ŒF .X/ ;G .Y/	

and its asymptotic distribution is the underlying copula CH ŒF .X/ ;G .Y/	 of H.

Lemma 2 Under independence, the asymptotic distribution of the scaled absolute
rank differences

Sn D
ˇ
ˇ
ˇ
ˇ
� .X/

n C 1
� � .Y/

n C 1

ˇ
ˇ
ˇ
ˇ

is Beta.1; 2/.

Proposition 3 Under a Gaussian(�) copula, Sn converges to a Beta.1; ˇ .�//
distribution.

Although we do not have a formal proof for this proposition, many simulations with
n D 1000 affirm the proposition and produce a smooth curve for ˇ .�/. See Fig. 1
for one such example.

The null hypothesis is that .X;Y/ have a Gaussian copula. The alternative is
that .X;Y/ come from a mixture of two subpopulations in which under one they
are independent, and under the other they are positively associated. To test for
negative association, simply replace Y by �Y. No particular form is assumed for
the positively associated subpopulation, but it is informative to examine the case
where this component is Gaussian. Figure 2 illustrates Sn and its histogram under
such a mixture.

Because the differences in distributions under the null and alternative are small,
large samples are required to distinguish the two. As noted from the histogram
in Fig. 2, most of the distinguishing information is contained at the low end of
the distribution. This makes sense because a subpopulation supporting positive
association should have a surplus of points where the ranks of X and Y closely agree.
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observations from a Gaussian(� D 0:2) copula. The right panel illustrates the ˛ .j/ curve for 0 <
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Fig. 2 (Standardized) distribution of rank differences under mixture of Gaussian(0.6) and inde-
pendent copulas with overall correlation 0.3 compared to beta(1,2.65)

Thus a test statistic based on absolute ranked differences should emphasize the lower
order statistics. Such statistics come under the heading of L-statistics. It is possible
to tailor a test toward alternative features of interest such as proportionate size of
the subpopulation and the strength of association within it. Exact distributions of
partial or weighted sums of absolute rank differences are quite complicated due to
dependencies [16], even under the null hypothesis of independence. A very simple
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general purpose test statistic is

TS D
nX

iD1
1


 j� .xi/� � .yi/j
n

< 0:2

�

:

Using the observed overall correlation r in place of �, the null distribution of TS
may be simulated under the Gaussian copula or approximated as a Binomial test
statistic using the probability from the Beta.1; ˇ/ as in Proposition 3. In the latter
case, ignoring weak dependencies, the 0.05 level test has power of 80 % of detecting
a Gaussian subpopulation of 25 % with r =0.8 for n D 1000.

3 Components of Kendall’s Tau

Although the CSF test is both simple and computationally efficient, it has a
conceptual shortcoming arising from the use of Spearman’s footrule distance to
characterize association in a subpopulation. The issue is that the components of
the footrule distance in the subpopulation depend on the encompassing population;
that is, when the sample is a full population, with associated subpopulation �, the
component set from the footrule from �

fdi j i 2 �g D fj� .xi/� � .yi/j j i 2 �g

depends heavily on the rankings � and � determined by the full population. In
contrast, the component set from Kendall’s distance depends only on the relative
rankings within�, which may be constructed from just on the original values in �.
That is,

˚
1
��
� .xi/� �

�
xj
�� �
� .yi/� �

�
yj
��
< 0

	 j i; j 2 ��

D ˚
1
��
xi � xj

� �
yi � yj

�
< 0

	 j i; j 2 ��

Thus the subpopulation discordances (components of Kendall’s distance) do not
depend upon the embedding population, whereas the subpopulation disarray (com-
ponents of Spearman’s footrule distance) do. This invariance has a number of
beneficial properties, such as allowing the CKT test to retain power in situations
where the ranges of the fXig and fYig values in the subpopulation are more restricted
than those in the full population.

The notion of homogeneous association based on Kendall’s distance differs from
that based on the Spearman’s footrule used for the CSF test. In this case the natural
null hypothesis should be a distribution depending only on Kendall’s distance.
Furthermore it should have the greatest entropy for a given value of Kendall’s
tau because this formulation would attribute as much variability as possible to the
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null distribution, making it a conservative (least favorable) test [11]. To construct a
distribution that has this structure, simply sample from an arbitrary copula, and then
reorder the Y-values according to a permutation � .Y/ sampled independently from
a Mallows model centered at the ranking � .X/ of the X-values. Quite remarkably,
any such process asymptotically leads to a Frank copula. Proposition 4, based on
[17], gives a precise statement.

Proposition 4 Let f.Xi;Yi/ j i D 1; : : : ; ng be independent samples from a distribu-
tion H with continuousmarginals F andG, and associated copulaC with continuous
partial derivatives. Let � .X/ be the ranking of � .X/ D ŒX1; : : : ;Xn	 and � .Y/ be
the ranking of � .Y/ D ŒY1; : : : ;Yn	 . Assume that for all n sufficiently large, the
conditional distribution of � .Y/ given � .X/ is Mallows, with center at � .X/ and
scale �n. If �n ! 0, and there exists � ¤ 0 such that

n
�
1 � e��n� ! �;

then C is the Frank Copula C� .

Proof First, we establish that if the conditional distribution of � .Y/ given � .X/
is a Mallows distribution, then the copula C is radially symmetric. The pseudo-
observations for each pair .Xi;Yi/ are defined as functions of the pair and the
empirical margins

� OUi; OVi

�
D n

n C 1

� OFn .Xi/ ; OGn .Yi/
�
:

These are functions of the rankings � .X/ and � .Y/ :

OUi D 1 � � .Xi/

n C 1
; OVi D 1 � � .Yi/

n C 1
:

By the symmetry of the Mallows model, the joint distribution of the pseudo-

observations
� OU1; OV1

�
; : : : ;

� OUn; OVn

�
is identical to the joint distribution of

�
1 � OU1; 1 � OV1

�
; : : : ;

�
1 � OUn; 1 � OVn

�
. Consider empirical distributions based

on these observations [9]:

OCn .u; v/ D 1

n

nX

iD1
1
n OUi 	 u; OVi 	 v

o

ODn .u; v/ D 1

n

nX

iD1
1
n
1 � OUi 	 u; 1 � OVi 	 v

o
:

Since H has continuous marginals and C has continuous partial derivatives, then [4]
established that OCn is a consistent estimator of the copula C, and likewise ODn is a
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consistent estimator of the survival copula NC, where

NC .u; v/ D u C v � 1C C .1 � u; 1 � v/ :

Hence, NC D C, which implies that the copula C is radially symmetric [13,
p. 37]. Since C is radially symmetric, an asymptotically equivalent definition of
the empirical copula is

QCn .u; v/ D 1

n

nX

iD1
1



� .Xi/

n
	 u;

� .Yi/

n
	 v

�

D 1

n

nX

iD1
ı.�.Xi/=n;�.Yi/=n/

which places mass of 1n on each random point
�
�.Xi/

n ; �
.Yi/
n

�
2 Œ0; 1	2. This empirical

copula is expressed by the following point process [17]: For n 2 N,

�n .B; !/ D 1

n

nX

iD1
1




� .Xi/

n
;
� .Yi/

n

�

2 B

�

for each bounded Borel set B � R
2.

By assumption, the regularity conditions on the Mallows scale are satisfied as
n ! 1:

�n ! 0; 9� 2 R= f0g 3 n
�
1 � e��n� ! �:

Under these conditions, the primary result of [17] is applied: As n ! 1, the random
measures �n .�; !/ weakly converge to the measure �� , defined by

d�� .u; v/ D .�=2/ sinh .�=2/
�
e�=4 cosh .� Œu � v	 =2/� e��=4 cosh .� Œu C v � 1	 =2/

�2

�IŒ0;1	2 .u; v/ @u@v:

Simply converting the trigonometric functions to exponential form and simplifying
yields

d�� .u; v/ D �
�
1 � e��� e��.uCv/

�
1 � e�� � �

1 � e��u� �1 � e��v��2 IŒ0;1	2 .u; v/ @u@v:

By recognition, the limiting measure d�� is that of the (Frank) Copula C� . Recall,
QCn is a consistent estimator of the underlying copula C, and converges weakly to
C� , so we conclude that C D C� . ut



Nonparametric Testing for Heterogeneous Correlation 237

Pursuing this result further allows for inspection of the adequacy of the asymp-
totic result for finite samples. A function � .�/ for matching the Mallows �
parameter to the Frank � parameter may be obtained by equating expressions for
�� and �� from these models. For any Archimedean copula, there is a relatively
simple formula � D 4E ŒC .U;V/� 1	 [8]; for the Frank copula, a specialized form
[13, p. 171], [7] is

�� D 1� 4

�
Œ1 � D .�/	 D 1 � 4

�

"

1 � 1

�

Z �

0

t

et � 1
@t

#

where the scaled integral D .�/ is known as the Debye-1 function, available in the
“gsl” (Gnu Scientific Library) package of R. For the Mallows model,

�� D 2

�
arctan .0:18n�/

Equating �� and �� leads to the relationship (Fig. 3)

� D 100

18n
tan

�
�

2




1 � 4

�
Œ1 � D .�/	

��

� 0:9694

n
�:

Empirical evidence for the applicability of Proposition 4 comes in two stages: (1)
The distribution of Kendall’s distance under Frank.�/ and under Mallows.� .�//
both converge to the same normal distribution; (2) As n gets large the product
density of the sample under Frank.�/ converges to an increasing function of the
Kendall’s distance between � .X/ and � .Y/ of the sample. Figure 4 illustrates
results from the following confirmatory experiment:

• Generate 1000 sets of 1000 points from a Frank.� D 3/ copula
• Compute the Kendall’s distance D and the Frank density d for each set
• Plot d vs D on a log-log scale.
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Note also that the Frank copula is radially symmetric, C .u; v/ D u C v �
1 C C .1 � u; 1 � v/, which is a necessary condition for the density of a sample to
depend only on its Kendall’s distance. With the assurance that there are copulas with
the conditional distribution of � .Y/ given � .X/ well approximated by a Mallows
model, this becomes the null hypothesis:

H0 W � .Y/ ı ��1 .X/ � Mallows .�/ ; for some � > 0:

In view of Proposition 4, for large samples, this is approximately the same as
assuming that (X,Y) are governed by a Frank copula, in which case, it matters little
if the roles of X and Y are exchanged. The general alternative against which we
would like a test to be sensitive is that there is a subpopulation with high association
with the remainder having (little or) no association. The test for heterogeneity should
maintain power over a wide variety of alternative distributions for the subpopulation
supporting strong association. With these considerations, the alternative hypothesis
is formulated as

HA W .F .X/ ;G .Y// � M

where M is a mixture of two homogeneous copulas: H1 on which .F .X/ ;G .Y//
have a common � D �1, and H2 under which .F .X/ ;G .Y// come from a mixture
of homogeneous copulas, all of which have � < �1.

To test against such a general alternative, the strategy is first to reorder the
sample so that the tau measure of association is decreasing; then test if the pattern
for the rate of decrease matches that under the null hypothesis. Specifically, an
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adaptive model encompassing the Mallows model is adopted, with the number
of free parameters in the model increasing with sample size. This component of
Kendall’s tau (CKT) test proceeds in four steps:

(1) Fit a Mallows model centered at � .X/ to � .Y/ and compute the likelihood.
(2) Reorder the data points f.Xi;Yi/ j i D 1; : : : ; ng, so that Kendall’s tau coefficient

is decreasing. Here we use the Fast BCS algorithm of [19], which has
computational complexity n3, but may be implemented [15] to perform in n2

time. Call the reordering � .
(3) Use moving average maximum average maximum likelihood estimators

to smoothly fit a multistage ranking model to the relative rankings of�
Y�.1/; : : : ;Y�.k/

	
to
�
X�.1/; : : : ;X�.k/

	
at each stage k. See [14]. Compute

the likelihood under this (encompassing) model.
(4) Use the (Generalized) Likelihood Ratio statistic to test H0.

Comments on the four steps:

(1) Since Kendall’s tau distance is invariant to reordering of observations, this is
the same as fitting a Mallows model, centered at ranking .�X/, to the ranking
.�Y/, where � is the taupath reordering.

(2) The idea of reordering is to put the points displaying the highest amount of
association earlier in the sequence in order to identify the subpopulation with
highest empirical association. The reordering is not unique. Yu et al. [19]
discuss various algorithms.

(3) The multistage ranking model decomposes the number of discordances [up to (n
choose 2)] between ranking .�Y/ and ranking .�X/, as a sum of n� 1 variables
fVkg with ranges f0; : : : ; kg, k D 1; : : : ; n � 1. The model has likelihood
L D c .�/ e�P

�kVk which reduces to the likelihood of Mallows model when
all component parameters are equal.

(4) The conditions needed to justify an asymptotic chi-square distribution for this
statistic do not hold in this setting. Currently, we simulate the distribution under
the Frank copula to get an appropriate reference. We are working to find a more
precise characterization of the LR in this setting.

The null distribution of this likelihood ratio appears to be close to normal, with its
mean decreasing with the common correlation � , and standard deviation constant.
See Fig. 5. Note that, for n D 1000, the variance of 2 � LLR � 2500 is clearly less
than its 2 � mean.2 � LLR/ theoretical value for a chi-square distribution, which is in
the range .3100; 3800/when � 2 .0:10; 0:30/.

Instead of fixed n and varying � , Fig. 5 depicts the relationship between LLR
and n with fixed � . The overall relationship between the moments of LLR and the
parameters � and n is not yet known, but using a practical additive approximation
in the range 0:1 < � < 0:3 and 500 < n < 3000, the basic asymptotic α-level CKT
test has the form: Reject H0 if

Z D LLR � .n C 20 � 797 O�/
0:02n C 7

> z1�˛;



240 S. Bamattre et al.

0.010

Kernel Density Estimate of Distribution of LLR for n=2000 Mean and SD of LLR vs τ for n =2000

0.1
2000

meanLLR sdLLR

LL
R

1900

0.10 0.15 0.20 0.25 0.30 0.10

34

36

38

0.15 0.20 0.25 0.30

0.15

0.2

0.25

0.3
0.005P

ro
ba

bi
lit

y 
D

en
si

ty

0.000

1800 1900 2000

LLR

2100 2200

τ

τ

Fig. 5 Simulation of log-likelihood ratio (LLR) statistic for CKT test under Frank copulas. Left:
Kernel density estimate of the distribution of LLR, based on 5000 simulations of size n D 2000,
for fixed � . Right: decreasing pattern of mean and constancy of standard deviation for LLR under
Frank copulas at different levels of � for n D 2000

where O� is Kendall’s correlation coefficient and z1�˛ is the .1 � ˛/ th quantile of the
standard normal.

4 Simulations for Robustness and Power

First, performance of the tests is checked by maintenance of levels under various
Gaussian and Frank copulas; subsequently power is examined. The CSF test is based
on the number of absolute rank differences less than 0.2. Figure 6 shows the null
distributions of p-values for the CSF test applied to samples of size n D 1000

generated 100,000 times under the Gaussian(�) models. These distributions start
to become stochastically smaller than uniform for � > 0:45. Otherwise the test is
conservative in the range 0 < � < 0:45 and 0 < ˛ < 0:05 as illustrated by the
observed number of type 1 errors at the ˛ D 0:05 level.

Under similar Gaussian copulas, the adjustment of the mean of the log-likelihood
for the estimated overall � makes the CKT test behave conservatively for large
values of �, but gives highly significant values for � values near 0. See Fig. 7,
in which, due to computational limitations, lowess-smoothed curves describe the
p-distribution based on only 100 simulations. In the presence of very low overall
correlation, it is advisable to use the CSF test as a screen for the CKT, which will
protect the CKT from finding uneven levels of � association when � association
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is homogeneous. Again, this tendency toward excess false positives happens only
when the overall � association is close to 0. In this case a special test [14] is available
for the null hypothesis of independence. Under a Frank copula, the CSF test behaves
properly near independence, but loses its level when τ gets large. See Fig. 7.

Several factors affect the power curves of both the CSF and CKT tests: sample
size (n is fixed at 500 or 1000); proportionate size of the subpopulation (fixed at
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40 %); strength of association in the subpopulation .�; � 2 f0:7; 0:8; 0:9g/; and,
most importantly, the form of the subpopulation. Against the null hypothesis of a
Gaussian copula, the alternative is a mixture of copulas, where the variables are
assumed to be independent in the complement of the subpopulation. Against the
null hypothesis of a Frank copula, the subpopulation is selected at random and its
conditional distribution is forced into a stronger Mallows model. This allows the
population margins to remain uniform while possibly restricting the range of the
subpopulation.

Figure 8 shows the distribution of p-values of both CSF and CKT tests against
40 % Gaussian with 0:12 	 � 	 0:13. For this range of overall correlation the
CKT test holds its level and is conservative for overall correlation � < 0:12, which
is the case here. Nevertheless, it achieves perfect power when the subpopulation
� � 0:125, even though its power quickly diminishes to 10 % for � D 0:12 in the
subpopulation. It also performs better than CSF in this range.

Under the Mallows alternative, n D 1000 points are generated from a uniform
distribution, 400 points are then sampled from a quantile range of x values and
the y values resorted according to a random draw from a Mallow.� .�// model.
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Values of � used are 0.4, 0.5, and 0.6. Figure 9 shows the distributions of p-values
from the ˛ D 0:05 level CSF and CKT tests over 100 simulations. The left panel
corresponds to the subpopulation being sampled from the full range, while the right
panel corresponds to samples between the 20th and 80th percentiles of x-values.
The CKT test performs much better than the CSF test against these alternatives.
The CKT has essentially perfect detection when the subpopulation spans the whole
range, and at least 70 % power in the 20–80 percentile range. The CSF has no power
in either scenario.

5 Example

Wine cultivars are varieties of grapes that have been cultivated through selective
breeding. Different varieties may be characterized by certain chemical properties
of the wine they produce. Early work in supervised learning has been used to
classify wine cultivars using chemical measurements of wine sample [1]. These
data, available at (http://archive.ics.uci.edu/ml/machine-learning-databases/wine),
are reanalyzed here using the CKT and CSF tests as unsupervised methods of
detecting different association structures that might help characterize different
cultivated varieties.

Figure 10 shows the relationship between flavonoids and phenols in the data
set consisting of 13 measurements from 178 wine samples derived from three
different cultivars. To the untrained eye, the overall plot looks typical of homo-
geneous association, but both the CKT (p D 0:0002) and CSF (p=0.027) indicate
heterogeneity. Identification of cultivars in the plot shows separation of cultivar 1

http://archive.ics.uci.edu/ml/machine-learning-databases/wine
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Fig. 10 Example: chemical analysis of flavonoids and phenols, for wines from three cultivars
(varieties)

and 3 samples from each other, with slightly negative association within each of
these groups; however, their positioning contributes a kind of ecological correlation
to the overall sample. In contrast, samples from cultivar 2 show a strong positive
association between flavonoid and phenol content. This suggests an underlying
genetic difference.

It is impressive that CKT can detect this heterogeneity of association from the
unlabelled data, which looks like an overall positive association, part of which is
ecological correlation. Although the CSF test does also indicate association, it is
not as sensitive at detecting it in this situation, and its p-value would not present a
strong case for heterogeneity if any correction is attempted for multiple comparisons
over the 13 choose 2 (78) pairs of variables available.
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6 Concluding Remarks

The ability to detect subpopulations that drive association has the potential of
changing the way statistics are used to unveil structures in “Big Data.” Instead of
employing extensive model searching with complex interaction, now methods with
fewer model assumptions are available to ascertain with precision is there is any
simple mixture that better explains monotone association between variables. The
CSF and CKT tests achieve this, either working together to screen and confirm or
separately to find different forms of the subpopulation that most strongly supports
the association.

These tests, however, are formally restricted to different forms of the meaning
of “homogeneous association.” Strict legitimacy of the CSF test depends on the
assumption of a Gaussian copula underlying the null distribution, whereas the CKT
test depends on the assumption of a Frank copula underlying the null distribution.
Although there is some evidence of limited robustness, much more work should be
done to explore the behavior of these tests under general conditions. For example,
both the Gaussian and Frank copulas are radially symmetric; it is unclear how
sensitive the tests would be to asymmetric notions of homogeneous association.

The computationally efficiency of the CSF test is important because the sample
size n needs to be in the thousands before there is much hope of reliably detecting
these subtle but important differences. In contrast with the CSF test, the justification
of CKT is a bit more compelling, based on intrinsic association within the
subpopulation. We have been using CSF at a liberal ˛ D 0:05 level as a screening
devise to reduce the number of pairs of variables to be tested at a more stringent
level.

Detecting heterogeneity of association is a difficult task. Such detection is
practical only when the overall association is not too strong, the association in the
subpopulation is strong, and the sample size is large. Nevertheless, such scenarios
abound. We believe that these new methods will make statistics ever more relevant
in making good sense from Big Data.

Acknowledgement We thank the referee for their thoughtful and helpful review.
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Optimal Shrinkage Estimation
in Heteroscedastic Hierarchical Linear Models

S.C. Kou and Justin J. Yang

Abstract Shrinkage estimators have profound impacts in statistics and in scientific
and engineering applications. In this article, we consider shrinkage estimation in
the presence of linear predictors. We formulate two heteroscedastic hierarchical
regression models and study optimal shrinkage estimators in each model. A class
of shrinkage estimators, both parametric and semiparametric, based on unbiased
risk estimate (URE) is proposed and is shown to be (asymptotically) optimal under
mean squared error loss in each model. Simulation study is conducted to compare
the performance of the proposed methods with existing shrinkage estimators. We
also apply the method to real data and obtain encouraging and interesting results.

1 Introduction

Shrinkage estimators, hierarchical models and empirical Bayes methods, dating
back to the groundbreaking works of [24] and [21], have profound impacts in
statistics and in scientific and engineering applications. They provide effective
tools to pool information from (scientifically) related populations for simultaneous
inference—the data on each population alone often do not lead to the most effective
estimation, but by pooling information from the related populations together (for
example, by shrinking toward their consensus “center”), one could often obtain
more accurate estimate for each individual population. Ever since the seminal works
of [24] and [10], an impressive list of articles has been devoted to the study of
shrinkage estimators in normal models, including [1, 2, 4–6, 8, 12, 14, 16, 22, 25],
among others.

In this article, we consider shrinkage estimation in the presence of linear
predictors. In particular, we study optimal shrinkage estimators for heteroscedastic
data under linear models. Our study is motivated by three main considerations. First,
in many practical problems, one often encounters heteroscedastic (unequal variance)
data; for example, the sample sizes for different groups are not all equal. Second,
in many statistical applications, in addition to the heteroscedastic response variable,
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one often has predictors. For example, the predictors could represent longitudinal
patterns [7, 9, 27], exam scores [22], characteristics of hospital patients [18], etc.
Third, in applying shrinkage estimators to real data, it is quite natural to ask for the
optimal way of shrinkage.

The (risk) optimality is not addressed by the conventional estimators, such as the
empirical Bayes ones. One might wonder if such an optimal shrinkage estimator
exists in the first place. We shall see shortly that in fact (asymptotically) optimal
shrinkage estimators do exist and that the optimal estimators are not empirical Bayes
ones but are characterized by an unbiased risk estimate (URE).

The study of optimal shrinkage estimators under the heteroscedastic normal
model was first considered in [29], where the (asymptotic) optimal shrinkage
estimator was identified for both the parametric and semiparametric cases. Xie et al.
[30] extends the (asymptotic) optimal shrinkage estimators to exponential families
and heteroscedastic location-scale families. The current article can be viewed as
an extension of the idea of optimal shrinkage estimators to heteroscedastic linear
models.

We want to emphasize that this article works on a theoretical setting somewhat
different from [30] but can still cover its main results. Our theoretical results show
that the optimality of the proposed URE shrinkage estimators does not rely on
normality nor on the tail behavior of the sampling distribution. What we require
here are the symmetry and the existence of the fourth moment for the standardized
variable.

This article is organized as follows. We first formulate the heteroscedastic linear
models in Sect. 2. Interestingly, there are two parallel ways to do so, and both
are natural extensions of the heteroscedastic normal model. After reviewing the
conventional empirical Bayes methods, we introduce the construction of our optimal
shrinkage estimators for heteroscedastic linear models in Sect. 3. The optimal
shrinkage estimators are based on an unbiased risk estimate (URE). We show in
Sect. 4 that the URE shrinkage estimators are asymptotically optimal in risk. In
Sect. 5 we extend the shrinkage estimators to a semiparametric family. Simulation
studies are conducted in Sect. 6. We apply the URE shrinkage estimators in Sect. 7
to the baseball data set of [2] and observe quite interesting and encouraging results.
We conclude in Sect. 8 with some discussion and extension. The appendix details
the proofs and derivations for the theoretical results.

2 Heteroscedastic Hierarchical Linear Models

Consider the heteroscedastic estimation problem

Yij� indep.� N .�i;Ai/ ; i D 1; : : : ; p; (1)
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where � D �
�1; : : : ; �p

�T
is the unknown mean vector, which is to be estimated,

and the variances Ai > 0 are unequal, which are assumed to be known. In many
statistical applications, in addition to the heteroscedastic Y D �

Y1; : : : ;Yp
�T

, one
often has predictors X. A natural question is to consider a heteroscedastic linear
model that incorporates these covariates. Notation-wise, let fYi;XigpiD1 denote the p
independent statistical units, where Yi is the response variable of the i-th unit, and
Xi D .X1i; : : : ;Xki/

T is a k-dimensional column vector that corresponds to the k
covariates of the i-th unit. The k � p matrix

X D �
X1j � � � jXp

	
; X1; ::;Xp 2 R

k;

where Xi is the i-th column of X, then contains the covariates for all the units.
Throughout this article we assume that X has full rank, i.e., rank.X/ D k.

To include the predictors, we note that, interestingly, there are two different
ways to build up a heteroscedastic hierarchical linear model, which lead to different
structure for shrinkage estimation.

Model I: Hierarchical linear model. On top of (1), the �i’s are �i
indep.�

N
�
XT
i ˇ; �

�
, where ˇ and � are both unknown hyper-parameters. Model I

has been suggested as early as [26]. See [16] and [17] for more discussions. The
special case of no covariates (i.e., k D 1 and X D Œ1j � � � j1	) is studied in depth
in [29].

Model II: Bayesian linear regression model. Together with (1), one assumes � D
XTˇ with ˇ following a conjugate prior distribution ˇ � Nk .ˇ0; �W/, where
W is a known k � k positive definite matrix and ˇ0 and � are unknown hyper-
parameters. Model II has been considered in [3, 15, 20] among others; it includes
ridge regression as a special case when ˇ0 D 0k and W D Ik.

Figure 1 illustrates these two hierarchical linear models. Under Model I, the
posterior mean of � is O��;ˇi D � .�C Ai/

�1 YiCAi .�C Ai/
�1 XT

i ˇ for i D 1; : : : ; p,
so the shrinkage estimation is formed by directly shrinking the raw observation
Yi toward a linear combination of the k covariates Xi. If we denote �i D XT

i ˇ,

Fig. 1 Graphical illustration of the two heteroscedastic hierarchical linear models
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and � D �
�1; : : : ; �p

�T 2 Lrow .X/, the row space of X, then we can rewrite the
posterior mean of � under Model I as

O��;� D �

�C Ai
Yi C Ai

�C Ai
�i; with � 2 Lrow .X/ : (2)

Under Model II, the posterior mean of � is

O��;ˇ0 D XT Ǒ�;ˇ0 ; with Ǒ�;ˇ0 D �W.�W C V/�1 ǑWLS C V .�W C V/�1 ˇ0;
(3)

where ǑWLS D �
XA�1XT

��1
XA�1Y is the weighted least squares estimate of

the regression coefficient, A is the diagonal matrix A D diag
�
A1; : : : ;Ap

�
, and

V D .XA�1XT/�1. Thus, the estimate for �i is linear in Xi, and the “shrinkage”
is achieved by shrinking the regression coefficient from the weighted least squares

estimate ǑWLS
toward the prior coefficient ˇ0.

As both Models I and II are natural generalizations of the heteroscedastic normal
model (1), we want to investigate if there is an optimal choice of the hyper-
parameters in each case. Specifically, we want to investigate the best empirical
choice of the hyper-parameters in each case under the mean squared error loss

lp.�; O�/ D 1

p

�
�
�� � O�

�
�
�
2 D 1

p

pX

iD1

�
�i � O�i

�2
(4)

with the associated risk of O� defined by

Rp.�; O�/ D EYj�
�
lp.�; O�/

�
;

where the expectation is taken with respect to Y given � .

Remark 1 Even though we start from the Bayesian setting to motivate the form of
shrinkage estimators, our discussion will be all based on the frequentist setting.
Hence all probabilities and expectations throughout this article are fixed at the
unknown true � , which is free in R

p for Model I and confined in Lrow .X/ for
Model II.

Remark 2 The diagonal assumption of A is quite important for Model I but not so
for Model II, as in Model II we can always apply some linear transformations to
obtain a diagonal covariance matrix. Without loss of generality, we will keep the
diagonal assumption for A in Model II.

For the ease of exposition, we will next overview the conventional empirical
Bayes estimates in a general two-level hierarchical model, which includes both
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Models I and II:

Yj� � Np.�;A/ and � � Np.�;B/; (5)

whereB is a non-negative definite symmetric matrix that is restricted in an allowable
set B, and � is in the row space Lrow.X/ of X.

Remark 3 Under Model I, � and B take the form of � D XTˇ and B 2 B D˚
�Ip W � > 0�, whereas under Model II, � and B take the form of � D XTˇ0 and
B 2 B D ˚

�XTWX W � > 0�. It is interesting to observe that in Model I, B is of full
rank, while in Model II, B is of rank k. As we shall see, this distinction will have
interesting theoretical implications for the optimal shrinkage estimators.

Lemma 1 Under the two-level hierarchical model (5), the posterior distribution is

�jY � Np
�
B.A C B/�1Y C A.A C B/�1�;A.A C B/�1B

�
;

and the marginal distribution of Y is Y � Np .�;A C B/.

For given values of B and �, the posterior mean of the parameter � leads to the
Bayes estimate

O�B;� D B.A C B/�1Y C A.A C B/�1�: (6)

To use the Bayes estimate in practice, one has to specify the hyper-parameters in
B and �. The conventional empirical Bayes method uses the marginal distribution
of Y to estimate the hyper-parameters. For instance, the empirical Bayes maximum

likelihood estimates (EBMLE) OBEBMLE
and O�EBMLE are obtained by maximizing the

marginal likelihood of Y:

� OBEBMLE
; O�EBMLE

�
D argmax

B2B
�2Lrow.X/

� .Y � �/T .A C B/�1 .Y ��/� log .det .A C B// :

Alternatively, the empirical Bayes method-of-moment estimates (EBMOM)
OBEBMOM

and O�EBMOM are obtained by solving the following moment equations
for B 2 B and � 2 Lrow .X/:

� D XT
�
X .A C B/�1 XT

��1
X .A C B/�1 Y;

B D .Y � �/ .Y � �/T � A:

If no solutions of B can be found in B, we then set OBEBMOM D 0p�p. Adjustment for
the loss of k degrees of freedom from the estimation of � might be applicable for
B D �C (C D Ip for Model I and XTWX for Model II): we can replace the second
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moment equation by

� D
 

p

p � k

kY ��k2
tr .C/

� tr .A/
tr .C/

!C
:

The corresponding empirical Bayes shrinkage estimator O�EBMLE
or O�EBMOM

is then

formed by plugging . OBEBMLE
; O�EBMLE

/ or . OBEBMOM
; O�EBMOM

/ into Eq. (6).

3 URE Estimates

The formulation of the empirical Bayes estimates raises a natural question: which

one is preferred O�EBMLE
or O�EBMOM

? More generally, is there an optimal way

to choose the hyper-parameters? It turns out that neither O�EBMLE
nor O�EBMOM

is
optimal. The (asymptotically) optimal estimate, instead of relying on the marginal
distribution of Y, is characterized by an unbiased risk estimate (URE). The idea
of forming a shrinkage estimate through URE for heteroscedastic models is first
suggested in [29]. We shall see that in our context of hierarchical linear models
(both Models I and II) the URE estimators that we are about to introduce have
(asymptotically) optimal risk properties.

The basic idea behind URE estimators is the following. Ideally we want to find
the hyper-parameters that give the smallest risk. However, since the risk function
depends on the unknown � , we cannot directly minimize the risk function in
practice. If we can find a good estimate of the risk function instead, then minimizing
this proxy of the risk will lead to a competitive estimator.

To formally introduce the URE estimators, we start from the observation that,

under the mean squared error loss (4), the risk of the Bayes estimator O�B;�
for fixed

B and � is

Rp.�; O�B;�
/ D 1

p

�
�
�A .A C B/�1 .� � �/

�
�
�
2 C 1

p
tr
�
B .A C B/�1 A .A C B/�1 B

�
;

(7)
which can be easily shown using the bias-variance decomposition of the mean
squared error. As the risk function involves the unknown � , we cannot directly
minimize it. However, an unbiased estimate of the risk is available:

URE .B;�/ D 1

p

�
�
�A .A C B/�1 .Y � �/

�
�
�
2 C 1

p
tr
�
A � 2A .A C B/�1 A

�
; (8)

which again can be easily shown using the bias-variance decomposition of the mean
squared error. Intuitively, if URE .B;�/ is a good approximation of the actual risk,
then we would expect the estimator obtained by minimizing the URE to have good
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properties. This leads to the URE estimator O�URE
, defined by

O�URE D OBURE
.A C OBURE

/�1Y C A.A C OBURE
/�1 O�URE

; (9)

where
� OBURE

; O�URE
�

D argmin
B2B; �2Lrow.X/

URE .B;�/ :

It is worth noting that the value of � that minimizes (8) for a given B is neither
the ordinary least squares (OLS) nor the weighted least squares (WLS) regression
estimate, echoing similar observation as in [29].

In the URE estimator (9), OBURE
and O�URE are jointly determined by minimizing

the URE. When the number of independent statistical units p is small or moderate,
joint minimization of B and the vector �, however, may be too ambitious. In this
setting, it might be beneficial to set � by a predetermined rule and only optimize
B, as it might reduce the variability of the resulting estimate. In particular, we can
consider shrinking toward a generalized least squares (GLS) regression estimate

O�M D XT
�
XMXT

��1
XMY D PM;XY;

where M is a prespecified symmetric positive definite matrix. This use of O�M gives

the shrinkage estimate O�B; O�M

D B.A C B/�1Y C A.A C B/�1 O�M, where one only
needs to determine B. We can construct another URE estimate for this purpose.

Similar to the previous construction, we note that O�B; O�M

has risk

Rp.�; O�B; O�M

/ D1

p

�
�
�A .A C B/�1

�
Ip � PM;X

�
�

�
�
�
2

C 1

p
tr
��

Ip � A .A C B/�1
�
Ip � PM;X

��
A

�
�
Ip � A .A C B/�1

�
Ip � PM;X

��T
�

: (10)

An unbiased risk estimate of it is

UREM .B/ D 1

p

�
�
�A .A C B/�1

�
Y � O�M

��
�
�
2 C 1

p
tr
�
A � 2A .A C B/�1

�
Ip � PM;X

�
A
�
:

(11)

Both (10) and (11) can be easily proved by the bias-variance decomposition of
mean squared error. Minimizing UREM .B/ over B gives the URE GLS shrinkage
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estimator (which shrinks toward O�M):

O�URE
M D OBURE

M

�
A C OBURE

M

��1
Y C A

�
A C OBURE

M

��1
O�M
; (12)

where

OBURE
M D argmin

B2B
UREM .B/ :

Remark 4 When M D Ip, clearly O�M D O�OLS, the ordinary least squares regression
estimate. When M D A�1, then O�M D O�WLS, the weighted least squares regression
estimate.

Remark 5 Tan [28] briefly discussed the URE minimization approach for Model I
without the covariates in [29] in relation to [11], where Model I is assumed but an
unbiased estimate of the mean prediction error (rather than the mean squared error)
is used to form a predictor (rather than an estimator).

Remark 6 In the homoscedastic case, (12) reduces to standard shrinkage toward a
subspace Lrow .X/, as discussed, for instance, in [23] and [19].

4 Theoretical Properties of URE Estimates

This section is devoted to the risk properties of the URE estimators. Our core
theoretical result is to show that the risk estimate URE is not only unbiased for the
risk but, more importantly, uniformly close to the actual loss. We therefore expect
that minimizing URE would lead to an estimate with competitive risk properties.

4.1 Uniform Convergence of URE

To present our theoretical result, we first define L to be a subset of Lrow .X/:

L D f� 2 Lrow .X/ W k�k 	 Mp� kYkg;

where M is a large and fixed constant and � 2 Œ0; 1=2/ is a constant. Next, we
introduce the following regularity conditions:

(A)
Pp

iD1 A2i D O .p/; (B)
Pp

iD1 Ai�
2
i D O .p/; (C)

Pp
iD1 �2i D O .p/;

(D) p�1XAXT ! ˝D; (E) p�1XXT ! ˝E > 0;
(F) p�1XA�1XT ! ˝F > 0; (G) p�1XA�2XT ! ˝G.
The theorem below shows that URE .B;�/ not only unbiasedly estimates the risk

but also is (asymptotically) uniformly close to the actual loss.
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Theorem 1 Assume conditions (A)–(E) for Model I or assume conditions (A) and
(D)–(G) for Model II. In either case, we have

sup
B2B; �2L

ˇ
ˇ
ˇURE .B;�/ � lp

�
�; O�B;��ˇˇ

ˇ ! 0 in L1; as p ! 1:

We want to remark here that the set L gives the allowable range of �: the norm
of � is up to an o

�
p1=2

�
multiple of the norm of Y. This choice of L does not

lead to any difficulty in practice because, given a large enough constant M, it will
cover the shrinkage location of any sensible shrinkage estimator. We note that it is
possible to define the range of sensible shrinkage locations in other ways (e.g., one
might want to define it by 1-norm in R

p), but we find our setting more theoretically
appealing and easy to work with. In particular, our assumption of the exponent � <
1=2 is flexible enough to cover most interesting cases, including O�OLS, the ordinary
least squares regression estimate, and O�WLS, the weighted least squares regression
estimate (as in Remark 4) as shown in the following lemma.

Lemma 2 (i) O�OLS 2 L . (ii) Assume .A/ and .A0/
Pp

iD1 A�2�ı
i D O .p/ for some

ı > 0; then O�WLS 2 L for � D 4�1 C .4C 2ı/�1 and a large enough M.

Remark 7 We want to mention here that Theorem 1 in the case of Model I covers
Theorem 5.1 of [29] (which is the special case of k D 1 and X D Œ1j1j : : : j1	)
because the restriction of j�j 	 max

1�i�p
jYij in [29] is contained in L as

max
1�i�p

jYij D .max
1�i�p

Y2i /
1=2 	 .

pX

iD1
Y2i /

1=2 D kYk :

Furthermore, we do not require the stronger assumption of
Pp

iD1 j�ij2Cı D O .p/
for some ı > 0 made in [29]. Note that in this case (k D 1 and X D Œ1j1j : : : j1	)
we do not even require conditions .D/ and .E/, as condition .A/ directly implies

tr.
�
XXT

��1
XAXT/ D O .1/, the result we need in the proof of Theorem 1 for Model

I.

Remark 8 In the proof of Theorem 1, the sampling distribution of Y is involved only
through the moment calculations, such as E.tr.YYT � A � ��T/2/ and E.kYk2/. It
is therefore straightforward to generalize Theorem 1 to the case of

Yi D �i Cp
AiZi;

where Zi follows any distribution with mean 0, variance 1,E
�
Z3i
� D 0, andE

�
Z4i
�
<

1. This is noteworthy as our result also covers that of [30] but the methodology we
employ here does not require to control the tail behavior of Zi as in [29, 30].
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4.2 Risk Optimality

In this section, we consider the risk properties of the URE estimators. We will show
that, under the hierarchical linear models, the URE estimators have (asymptotically)
optimal risk, whereas it is not necessarily so for other shrinkage estimators such as
the empirical Bayes ones.

A direct consequence of the uniform convergence of URE is that the URE
estimator has a loss/risk that is asymptotically no larger than that of any other
shrinkage estimators. Furthermore, the URE estimator is asymptotically as good

as the oracle loss estimator. To be precise, let Q�OL
be the oracle loss (OL) estimator

defined by plugging

� QBOL
; Q�OL

�
D argmin

B2B; �2L
lp
�
� ; O�B;��

D argmin
B2B; �2L

�
�B.A C B/�1Y C A.A C B/�1� � ���2

into (6). Of course, Q�OL
is not really an estimator, since it depends on the unknown

� (hence we use the notation Q�OL
rather than O�OL

). Although not obtainable in

practice, Q�OL
lays down the theoretical limit that one can ever hope to reach. The

next theorem shows that the URE estimator O�URE
is asymptotically as good as the

oracle loss estimator, and, consequently, it is asymptotically at least as good as any
other shrinkage estimator.

Theorem 2 Assume the conditions of Theorem 1 and that O�URE 2 L . Then

lim
p!1P

�
lp
�
� ; O�URE

�
� lp

�
�; Q�OL

�
C �

�
D 0 8� > 0;

lim sup
p!1

�
Rp

�
� ; O�URE

�
� Rp

�
� ; Q�OL

��
D 0:

Corollary 1 Assume the conditions of Theorem 1 and that O�URE 2 L . Then for

any estimator O� OBp; O�p D OBp

�
A C OBp

��1
Y C A

�
A C OBp

��1 O�p with OBp 2 B and

O�p 2 L , we always have

lim
p!1P




lp
�
� ; O�URE

�
� lp




�; O� OBp; O�p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
� ; O�URE

�
� Rp




�; O� OBp; O�p

��

	 0:
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Corollary 1 tells us that the URE estimator in either Model I or II is asymptoti-
cally optimal: it has (asymptotically) the smallest loss and risk among all shrinkage
estimators of the form (6).

4.3 Shrinkage Toward the Generalized Least Squares Estimate

The risk optimality also holds when we consider the URE estimator O�URE
M that

shrinks toward the GLS regression estimate O�M D PM;XY as introduced in Sect. 3.

Theorem 3 Assume the conditions of Theorem 1, O�M 2 L , and

p�1XMXT ! ˝1 > 0; p�1XAMXT ! ˝2; p�1XMA2MXT ! ˝3; (13)

where only the first and third conditions above are assumed for Model I and only
the first and the second are assumed for Model II. Then we have

sup
B2B

ˇ
ˇ
ˇ
ˇUREM .B/� lp




�; O�B; O�M
�ˇ
ˇ
ˇ
ˇ ! 0 in L1 as p ! 1: (14)

As a corollary, for any estimator O� OBp; O�M

D OBp

�
A C OBp

��1
Y C A

�
A C OBp

��1 O�M

with OBp 2 B, we always have

lim
p!1P




lp
�
�; O�URE

M

�
� lp




�; O� OBp; O�M
�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
�; O�URE

M

�
� Rp




�; O� OBp; O�M
��

	 0:

Remark 9 For shrinking toward O�OLS, where M D Ip, we know from Lemma 2 that
O�OLS is automatically in L , so we only need one more condition p�1XA2XT ! ˝3

for Model I. For shrinking toward O�WLS, where M D A�1, (13) is the same as the
conditions (E) and (F) of Theorem 1, so additionally we only need to assume .A0/
of Lemma 2 and (F) for Model I.

5 Semiparametric URE Estimators

We have established the (asymptotic) optimality of the URE estimators O�URE
and

O�URE
M in the previous section. One limitation of the result is that the class over which

the URE estimators are optimal is specified by a parametric form:B D �C (0 	 � 	
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1) in Eq. (6), where C D Ip for Model I and C D XTWX for Model II. Aiming
to provide a more flexible and, at the same time, efficient estimation procedure,
we consider in this section a class of semiparametric shrinkage estimators. Our
consideration is inspired by Xie et al. [29].

5.1 Semiparametric URE Estimator Under Model I

To motivate the semiparametric shrinkage estimators, let us first revisit the Bayes

estimator O��;� under Model I, as given in (2). It is seen that the Bayes estimate
of each mean parameter �i is obtained by shrinking Yi toward the linear estimate
�i D XT

i ˇ, and that the amount of shrinkage is governed by Ai, the variance: the
larger the variance, the stronger is the shrinkage. This feature makes intuitive sense.

With this observation in mind, we consider the following shrinkage estimators
under Model I:

O�b;�i D .1 � bi/ Yi C bi�i; with � 2 Lrow .X/ ;

where b satisfies the monotonic constraint

MON .A/ W bi 2 Œ0; 1	 ; bi 	 bj whenever Ai 	 Aj:

MON .A/ asks the estimator to shrink more for an observation with a larger variance.
Since other than this intuitive requirement, we do not post any parametric restriction
on bi, this class of estimators is semiparametric in nature.

Following the optimality result for the parametric case, we want to investigate,

for such a general estimator O�b;�
with b 2 MON .A/ and � 2 Lrow .X/, whether

there exists an optimal choice of b and �. In fact, we will see shortly that such an
optimal choice exists, and this asymptotically optimal choice is again characterized

by an unbiased risk estimate (URE). For a general estimator O�b;�
with fixed b and

� 2 Lrow .X/, an unbiased estimate of its risk Rp.�; O�b;�
/ is

URESP .b;�/ D 1

p
kdiag .b/ .Y � �/k2 C 1

p
tr .A � 2diag .b/A/ ;

which can be easily seen by taking B D A.diag .b/�1 � Ip/ in (8). Note that we use
the superscript “SP” (semiparametric) to denote it. Minimizing over b and � leads

to the semiparametric URE estimator O�URE
SP , defined by

O�URE
SP D .Ip � diag.ObURE

SP //Y C diag.ObURE
SP / O�URE

SP ; (15)
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where
�ObURE

SP ; O�URE
SP

�
D argmin

b2MON.A/; �2Lrow.X/
URESP .b;�/ :

Theorem 4 Assume conditions (A)–(E). Then under Model I we have

sup
b2MON.A/; �2L

ˇ
ˇ
ˇURESP .b;�/� lp

�
�; O�b;��ˇˇ

ˇ ! 0 in L1 as p ! 1:

As a corollary, for any estimator O� Obp; O�p D .Ip � diag.Obp//Y C diag.Obp/ O�p with
Obp 2 MON .A/ and O�p 2 L , we always have

lim
p!1P




lp
�
�; O�URE

SP

�
� lp




�; O� Obp; O�p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
�; O�URE

SP

�
� Rp




�; O� Obp; O�p

��

	 0:

The proof is the same as the proofs of Theorem 1 and Corollary 1 for the case of
Model I except that we replace each term of Ai=.�C Ai/ by bi.

5.2 Semiparametric URE Estimator Under Model II

We saw in Sect. 2 that, under Model II, shrinkage is achieved by shrinking the

regression coefficient from the weighted least squares estimate ǑWLS
toward the

prior coefficient ˇ0. This suggests us to formulate the semiparametric estimators
through the regression coefficient. The Bayes estimate of the regression coefficient
is

Ǒ�;ˇ0 D �W.�W C V/�1 ǑWLS C V .�W C V/�1 ˇ0; with V D .XA�1XT/�1

as shown in (3). Applying the spectral decomposition on W�1=2VW�1=2 gives
W�1=2VW�1=2 D U	UT , where 	 D diag .d1; : : : ; dk/ with d1 	 � � � 	 dk. Using
this decomposition, we can rewrite the regression coefficient as

Ǒ�;ˇ0 D �W1=2U .�Ik C	/�1UTW�1=2 ǑWLSCW1=2U	 .�Ik C	/�1UTW�1=2ˇ0:
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If we denote Z D UTW1=2X as the transformed covariate matrix, the estimate
O��;ˇ0 D XT Ǒ�;ˇ0 of � can be rewritten as

O��;ˇ0 D ZT
�
� .�Ik C	/�1 UTW�1=2 ǑWLS C	 .�Ik C	/�1UTW�1=2ˇ0

�
:

Now we see that � .�Ik C	/�1 D diag.�= .�C di// plays the role as the shrinkage
factor. The larger the value of di, the smaller �= .�C di/, i.e., the stronger the
shrinkage toward ˇ0. Thus, di can be viewed as the effective “variance” component
for the i-th regression coefficient (under the transformation). This observation
motivates us to consider semiparametric shrinkage estimators of the following form

O�b;ˇ0 D ZT
�
.Ik � diag .b//UTW�1=2 ǑWLS C diag .b/UTW�1=2ˇ0

�

D ZT
�
.Ik � diag .b//	ZA�1Y C diag .b/UTW�1=2ˇ0

�
; (16)

where b satisfies the following monotonic constraint

MON .D/ W bi 2 Œ0; 1	 ; bi 	 bj whenever di 	 dj:

This constraint captures the intuition that, the larger the effective variance, the
stronger is the shrinkage.

For fixed b and ˇ0, an unbiased estimate of the risk Rp.� ; O�b;ˇ0
/ is

URESP .b;ˇ0/ D 1

p

�
�
�ZT .Ik � diag .b//	ZA�1Y C ZTdiag .b/UTW�1=2ˇ0 � Y

�
�
�
2

C 1

p
tr
�
2ZT .Ik � diag .b//	Z � A

�
;

which can be shown using the bias-variance decomposition of the mean squared
error. Minimizing it gives the URE estimate of .b;ˇ0/:



ObURE
SP ;

� Ǒ
0

�URE

SP

�

D argmin
b2MON.D/; ˇ02Rk

URESP .b;ˇ0/ ;

which upon plugging into (16) yields the semiparametric URE estimator O�URE
SP under

Model II.

Theorem 5 Assume conditions (A), (D)–(G). Then under Model II we have

sup
b2MON.D/; XTˇ02L

ˇ
ˇ
ˇURESP .b;ˇ0/ � lp

�
�; O�b;ˇ0

�ˇ
ˇ
ˇ ! 0 in L1 as p ! 1:
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As a corollary, for any estimator O� Obp; Ǒ
0;p obtained from (16) with Obp 2 MON .D/

and XT Ǒ
0 2 L , we always have

lim
p!1P




lp
�
�; O�URE

SP

�
� lp




�; O� Obp; Ǒ
0;p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
�; O�URE

SP

�
� Rp




� ; O� Obp; Ǒ
0;p

��

	 0:

The proof of the theorem is essentially identical to those of Theorem 1 and
Corollary 1 for the case of Model II except that we replace each di=.�C di/ by bi.

6 Simulation Study

In this section, we conduct simulations to study the performance of the URE
estimators. For the sake of space, we will focus on Model I. The four URE

estimators are the parametric O�URE
of Eq. (9), the parametric O�URE

M of Eq. (12) that
shrinks toward the OLS estimate O�OLS (i.e., the matrix M D Ip), the semiparametric
O�URE
SP of Eq. (15), and the semiparametric O�URE;OLS

SP that shrinks toward O�OLS, which

is formed similarly to O�URE
M by replacing Ai=.�CAi/ with a sequence b 2 MON .A/.

The competitors here are the two empirical Bayes estimators O�EBMLE
and O�EBMOM

,

and the positive part James-Stein estimator O�JSC
as described in [2, 17]:

O� JSC
i D O�WLS

i C
 

1 � p � k � 2
Pp

iD1
�
Yi � O�WLS

i

�2
=Ai

!C
�
Yi � O�WLS

i

�
:

As a reference, we also compare these shrinkage estimators with Q�OR
, the

parametric oracle risk (OR) estimator, defined as plugging Q�ORIp and Q�OR into
Eq. (6), where

� Q�OR; Q�OR
�

D argmin
0���1; �2Lrow.X/

Rp

�
�; O��;�

�

and the expression of Rp.�; O��;�/ is given in (7) with B D �Ip. The oracle risk

estimator Q�OR
cannot be used without the knowledge of � , but it does provide a

sensible lower bound of the risk achievable by any shrinkage estimator with the
given parametric form.
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Fig. 2 Comparison of the risks of different shrinkage estimators for the two simulation examples

For each simulation, we draw .Ai; �i/ (i D 1; 2; : : : ; p) independently from a
distribution � .Ai; �ijXi;ˇ/ and then draw Yi given .Ai; �i/. The shrinkage estimators
are then applied to the generated data. This process is repeated 5000 times. The
sample size p is chosen to vary from 20 to 500 with an increment of length 20.
In the simulation, we fix a true but unknown ˇ D .�1:5; 4;�3/T and a known
covariates X, whose each element is randomly generated from Unif .�10; 10/. The
risk performance of the different shrinkage estimators is given in Fig. 2.

Example 1 The setting in this example is chosen in such a way that it reflects
grouping in the data:

Ai � 0:5 � 1fAiD0:1g C 0:5 � 1fAiD0:5gI
�ijAi � N

�
2 � 1fAiD0:1g C XT

i ˇ; 0:5
2
� I Yi � N .�i;Ai/ :

Here the normality for the sampling distribution of Yi’s is asserted. We can see that
the four URE estimators perform much better than the two empirical Bayes ones
and the James-Stein estimator. Also notice that both of the two (parametric and
semiparametric) URE estimators that shrink towards O�OLS is almost as good as the
other two with general data-driven shrinkage location—largely due to the existence
of covariate information. We note that this is quite different from the case of [29],
where without the covariate information the estimator that shrinks toward the grand
mean of the data performs significantly worse than the URE estimator with general
data-driven shrinkage location.

Example 2 In this example, we allow Yi to depart from the normal distribution
to illustrate that the performance of those URE estimators does not rely on the
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normality assumption:

Ai � Unif .0:1; 1/ I �i D Ai C XT
i ˇI

Yi � Unif.�i � p
3Ai; �i C p

3Ai/:

As expected, the four URE estimators perform better or at least as good as
the empirical Bayes estimators. The EBMLE estimator performs the worst due
to its sensitivity on the normality assumption. We notice that the EBMOM
estimator in this example has comparable performance with the two parametric
URE estimators, which makes sense as moment estimates are more robust to the
sampling distribution. An interesting feature that we find in this example is that
the positive part James-Stein estimator can beat the parametric oracle risk estimator
and perform better than all the other shrinkage estimators for small or moderate p,
even though the semiparametric URE estimators will eventually surpass the James-
Stein estimator, as dictated by the asymptotic theory for large p. This feature of
the James-Stein estimate is again quite different from the non-regression setting
discussed in [29], where the James-Stein estimate performs the worst throughout all
of their examples. In both of our examples only the semiparametric URE estimators
are robust to the different levels of heteroscedasticity.

We can conclude from these two simulation examples that the semiparametric
URE estimators give competitive performance and are robust to the misspecification
of the sampling distribution and the different levels of the heteroscedasticity. They
thus could be useful tools in analyzing large-scale data for applied researchers.

7 Empirical Analysis

In this section, we study the baseball data set of [2]. This data set consists of the
batting records for all the Major League Baseball players in the 2005 season. As
in [2] and [29], we build a given shrinkage estimator based on the data in the first
half season and use it to predict the second half season, which can then be checked
against the true record of the second half season. For each player, let the number
of at-bats be N and the successful number of batting be H, then we have Hij �
Binomial.Nij; pj/, where i D 1; 2 is the season indicator and j D 1; � � � ; p is the
player indicator. We use the following variance-stabilizing transformation [2] before
applying the shrinkage estimators

Yij D arcsin

s
Hij C 1=4

Nij C 1=2
;
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which gives Yij P�N.�j; .4Nij/
�1/, �j D arcsin

p
pj. We use

TSE. O�/ D
X

j

.Y2j � O�j/2 �
X

j

1

4N2j
:

as the error measurement for the prediction [2].

7.1 Shrinkage Estimation with Covariates

As indicated in [29], there exists a significant positive correlation between the
player’s batting ability and his total number of at-bats. Intuitively, a better player
will be called for batting more frequently; thus, the total number of at-bats will
serve as the main covariate in our analysis. The other covariate in the data set is the
categorical variable of a player being a pitcher or not.

Table 1 summarizes the result, where the shrinkage estimators are applied three
times—to all the players, the pitchers only, and the non-pitchers only. We use all the
covariate information (number of at-bats in the first half season and being a pitcher
or not) in the first analysis, whereas in the second and the third analyses we only use
the number of at-bats as the covariate. The values reported are ratios of the error of a
given estimator to that of the benchmark naive estimator, which simply uses the first
half season Y1j to predict the second half Y2j. Note that in Table 1, if no covariate
is involved (i.e., when X D Œ1j � � � j1	), the OLS reduces to the grand mean of the
training data as in [29].

Table 1 Prediction errors of batting averages using different shrinkage estimators

All Pitchers Non-pitchers

p for estimation 567 81 486

p for validation 499 64 435

Covariates? No Yes No Yes No Yes

Naive 1 NA 1 NA 1 NA

Ordinary least squares (OLS) 0.852 0.242 0.127 0.115 0.378 0.333

Weighted least squares (WLS) 1.074 0.219 0.127 0.087 0.468 0.290

Parametric EBMOM 0.593 0.194 0.129 0.117 0.387 0.256
Parametric EBMLE 0.902 0.207 0.117 0.096 0.398 0.277

James-Stein 0.525 0.184 0.164 0.142 0.359 0.262

Parametric URE toward OLS 0.505 0.203 0.123 0.124 0.278 0.300

Parametric URE toward WLS 0.629 0.188 0.127 0.112 0.385 0.268

Parametric URE 0.422 0.215 0.123 0.130 0.282 0.310

Semiparametric URE toward OLS 0.409 0.197 0.081 0.097 0.261 0.299

Semiparametric URE toward WLS 0.499 0.184 0.098 0.083 0.336 0.256
Semiparametric URE 0.419 0.201 0.077 0.126 0.278 0.314

Bold numbers highlight the best performance with covariate(s) in each case
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7.2 Discussion of the Numerical Result

There are several interesting observations from Table 1.

1. A quick glimpse shows that including the covariate information improves the
performance of essentially all shrinkage estimators. This suggests that in practice
incorporating good covariates would significantly improve the estimation and
prediction.

2. In general, shrinking towards WLS provides much better performance than
shrinking toward OLS or a general data-driven location. This indicates the
importance of a good choice of the shrinkage location in a practical problem.
An improperly chosen shrinkage location might even negatively impact the
performance. The reason that shrinking towards a general data-driven location
is not as good as shrinking toward WLS is probably due to that the sample size
is not large enough for the asymptotics to take effect.

3. Table 1 also shows the advantage of semiparametric URE estimates. For each
fixed shrinkage location type (toward OLS, WLS, or general), the semiparametric
URE estimator performs almost always better than their parametric counterparts.
The only one exception is in the non-pitchers only case with the general data-
driven location, but even there the performance difference is ignorable.

4. The best performance in all three cases (all the players, the pitchers only, and the
non-pitchers only) comes from the semiparametric URE estimator that shrinks
toward WLS.

5. The James-Stein estimator with covariates performs quite well except in the
pitchers only case, which is in sharp contrast with the performance of the
James-Stein estimator without covariates. This again highlights the importance
of covariate information. In the pitchers only case, the James-Stein performs the
worst no matter one includes the covariates or not. This can be attributed to the
fact that the covariate information (the total number of at-bats) is very weak for
the pitchers only case; in the case of weak covariate information, how to properly
estimate the shrinkage factors becomes the dominating issue, and the fact that
the James-Stein estimator has only one uniform shrinkage factor makes it not
competitive.

7.3 Shrinkage Factors

Figure 3 shows the shrinkage factors of all the shrinkage estimators with or without
the covariates for the all-players case of Table 1. We see that the shrinkage factors
are all reduced after including the covariates. This makes intuitive sense because
the shrinkage location now contains the covariate information, and each shrinkage
estimator uses this information by shrinking more toward it, resulting in smaller
shrinkage factors.
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Fig. 3 Plot of the shrinkage factors O�=
�O�C Ai

�
or 1 � Obi of all the shrinkage estimators for the

case of all players

8 Conclusion and Discussion

Inspired by the idea of unbiased risk estimate (URE) proposed in [29], we extend
the URE framework to multivariate heteroscedastic linear models, which are
more realistic in practical applications, especially for regression data that exhibits
heteroscedasticity. Several parallel URE shrinkage estimators in the regression case
are proposed, and these URE shrinkage estimators are all asymptotically optimal in
risk compared to other shrinkage estimators, including the classical empirical Bayes
ones. We also propose semiparametric estimators and conduct simulation to assess
their performance under both normal and non-normal data. For data sets that exhibit
a good linear relationship between the covariates and the response, a semiparametric
URE estimator is expected to provide good estimation result, as we saw in the
baseball data. It is also worth emphasizing that the risk optimality for the parametric
and semiparametric URE estimators does not depend on the normality assumption
of the sampling distribution of Yi. Possible future work includes extending this URE
minimization approach to simultaneous estimation in generalized linear models
(GLMs) with canonical or more general link functions.

We conclude this article by extending the main results to the case of weighted
mean squared error loss.

Weighted Mean Squared Error Loss One might want to consider the more
general weighted mean squared error as the loss function:

lp
�
�; O�I 

�
D 1

p

pX

iD1
 i

�
�i � O�i

�2
;



Optimal Shrinkage Estimation in Heteroscedastic Hierarchical Linear Models 269

where  i > 0 are known weights such that
Pp

iD1  i D p. The framework proposed
in this article is straightforward to generalize to this case.

For Model II, we only need to study the equivalent problem by the following
transformation

Yi ! p
 iYi; �i ! p

 i�i; Xi ! p
 iXi; Ai !  iAi; (17)

and restate the corresponding regularity conditions in Theorem 1 by the transformed
data and parameters. We then reduce the weighted mean square error problem back
to the same setting we study in this article under the classical loss function (4).

Model I is more sophisticated than Model II to generalize. In addition to the
transformation in Eq. (17), we also need � !  i� in every term related to the
individual unit i. Thus,

p
 i�ijX;ˇ; � indep.� N

�p
 iXT

i ˇ; � i

�
;

so these transformed parameters
p
 i�i are also heteroscedastic in the sense that

they have different weights, while the setting we study before assumes all the
weights on the �i are one. However, if we carefully examine the proof of Theorem 1
for the case of Model I, we can see that actually we do not much require the
equal weights on the �i’s. What is important in the proof is that the shrinkage
factor for unit i is always of the form Ai= .Ai C �/, which is invariant under the
transformation Ai !  iAi and � !  i�. Thus, after reformulating the regularity
conditions in Theorem 1 by the transformed data and parameters, we can still follow
the same proof to conclude the risk optimality of URE estimators (parametric or
semiparametric) even under the consideration of weighted mean squared error loss.

For completeness, here we state the most general result under the semiparametric
setting for Model I. Let

O�URE
SP; D

�
Ip � diag

�ObURE
 

��
Y C diag

�ObURE
 

�
O�URE
 ;

URE .b;�I / D 1

p

pX

iD1
 i

�
b2i .Yi � �i/

2 C .1 � 2bi/Ai

�
;

�ObURE
 ; O�URE

 

�
D argmin

b2MON.A/; �2Lrow.X/
URE .b;�I / :

Theorem 6 Assume the following five conditions . -A/
Pp

iD1  2i A2i D O .p/,
. -B/

Pp
iD1  2i Ai�

2
i D O .p/, . -C/

Pp
iD1  i�

2
i D O .p/, . -D/ p�1Pp

iD1  2i
AiXiXT

i converges, and . -E/ p�1Pp
iD1  iXiXT

i ! ˝ > 0. Then we have

sup
b2MON.A/; �2L 

ˇ
ˇ
ˇURE .b;�I / � lp

�
�; O�b;�I 

�ˇ
ˇ
ˇ !
p!1 0 in L1,
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where � 2 L if and only if � 2 Lrow .X/ and

pX

iD1
 i�

2
i 	 Mp�

pX

iD1
 iY

2
i

for a large and fixed constant M and a fixed exponent � 2 Œ0; 1=2/. As a corollary,

for any estimator O� Obp; O�p D .Ip � diag.Obp//Y C diag.Obp/ O�p with Obp 2 MON .A/ and
O�p 2 L , we have

lim
p!1P




lp
�
�; O�URE

SP; 

�
� lp




�; O� Obp; O�p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
� ; O�URE

SP; 

�
� Rp




�; O� Obp; O�p

��

	 0:
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Appendix: Proofs and Derivations

Proof of Lemma 1 We can write � D �CZ1 and Y D �CZ2, where Z1 � Np.0;B/

and Z2 � Np.0;A/ are independent. Jointly

 
Y
�

!

is still multivariate normal

with mean vector

 
�

�

!

and covariance matrix



A C B B
B B

�

. The result follows

immediately from the conditional distribution of a multivariate normal distribution.

Proof of Theorem 1 We start from decomposing the difference between the URE
and the actual loss as

URE .B;�/ � lp
�
�; O�B;��

DURE
�
B; 0p

� � lp
�
�; O�B;0p

�
� 2

p
tr
�
A .A C B/�1 � .Y � �/T

�
(18)

D1

p
tr
�
YYT � A � ��T

� � 2

p
tr
�
B .A C B/�1

�
YYT � Y�T � A

��

� 2

p
tr
�
A .A C B/�1� .Y � �/T

�
(19)

D .I/C .II/C .III/ :
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To verify the first equality (18), note that

URE .B;�/� URE
�
B; 0p

�

D 1

p

�
�
�A .A C B/�1 .Y ��/

�
�
�
2 � 1

p

�
�
�A .A C B/�1 Y

�
�
�
2

D �1
p

tr




�T
�
A .A C B/�1

�T
A .A C B/�1 .2Y ��/

�

;

lp
�
�; O�B;�

�
� lp

�
�; O�B;0p

�

D 1

p

�
�
�
�
Ip � A .A C B/�1

�
Y C A .A C B/�1� � �

�
�
�
2

� 1

p

�
�
�
�
Ip � A .A C B/�1

�
Y � �

�
�
�
2

D 1

p
tr



�T
�
A .A C B/�1

�T �
2
��

Ip � A .A C B/�1
�
Y � �

�
C A .A C B/�1�

��

:

Equation (18) then follows by rearranging the terms. To verify the second equal-
ity (19), note

URE
�
B; 0p

� � lp
�
�; O�B;0p

�

D 1

p

�
�
�A .A C B/�1 Y

�
�
�
2 � 1

p

�
�
�
�
Ip � A .A C B/�1

�
Y � �

�
�
�
2

C 1

p
tr
�
A � 2A .A C B/�1 A

�

D 1

p
tr


�
Y � 2

�
Ip � A .A C B/�1

�
Y C �

�T
.Y � �/

�

C 1

p
tr
�
A � 2A .A C B/�1 A

�

D 1

p
tr
�
YYT � A � ��T

� � 2

p
tr
�
B .A C B/�1

�
Y .Y � �/T � A

��
:

With the decomposition, we want to prove separately the uniform L1 convergence
of the three terms .I/, .II/, and .III/.

Proof for the case of Model I.
The uniform L2 convergence of .I/ and .II/ has been shown in Theorem 3.1 of

[29] under our assumptions .A/ and .B/, so we focus on .III/, i.e., we want to show
that sup

0���1; �2L
j.III/j ! 0 in L1 as p ! 1.
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Without loss of generality, let us assume A1 	 A2 	 � � � 	 Ap. We have

sup
0���1; �2L

j.III/j D 2

p
sup

0���1; �2L

ˇ
ˇ
ˇ
ˇ
ˇ

pX

iD1

Ai

Ai C �
�i .Yi � �i/

ˇ
ˇ
ˇ
ˇ
ˇ

	 2

p
sup
�2L

sup
0�c1�����cp�1

ˇ
ˇ
ˇ
ˇ
ˇ

pX

iD1
ci�i .Yi � �i/

ˇ
ˇ
ˇ
ˇ
ˇ

D 2

p
sup
�2L

max
1�j�p

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

pX

iDj

�i .Yi � �i/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

where the last equality follows from Lemma 2.1 of [13]. For a generic p-dimensional

vector v, we denote Œv	jWp D .0; : : : 0; vj; vjC1; : : : ; vp/. Let PX D XT
�
XXT

��1
X be

the projection matrix onto Lrow .X/. Then since L � Lrow .X/, we have

2

p
sup
�2L

max
1�j�p

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

pX

iDj

�i .Yi � �i/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 2

p
max
1�j�p

sup
�2L

ˇ
ˇ�T ŒY � �	jWp

ˇ
ˇ

D2

p
max
1�j�p

sup
�2L

ˇ
ˇ�TPXŒY � �	jWp

ˇ
ˇ 	 2

p
max
1�j�p

sup
�2L

k�k � ��PXŒY � � 	jWp
�
�

D2

p
max
1�j�p

Mp� kYk � ��PXŒY � �	jWp
�
� :

Cauchy-Schwarz inequality thus gives

E

 

sup
0���1;�2L

j.III/j
!

	 2Mp��1
r

E

�
kYk2

�
�
s

E




max
1�j�p

�
�PXŒY � � 	jWp

�
�2
�

:

(20)
It is straightforward to see that, by conditions (A) and (C),

r

E

�
kYk2

�
D
r

E.
Xp

iD1 Y
2
i / D

r
Xp

iD1
�
�2i C Ai

� D O
�
p1=2

�
:

For the second term on the right-hand side of (20), let PX D 
 D
 T denote the
spectral decomposition. Clearly,

D D diag

0

@1; : : : ; 1
„ ƒ‚ …
k copies

; 0; : : : ; 0
„ ƒ‚ …
p�k copies

1

A :
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It follows that

E




max
1�j�p

�
�PXŒY � �	jWp

�
�2
�

D E




max
1�j�p

ŒY � �	TjWpPXŒY � �	jWp
�

D E
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tr
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D
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D E
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For each l, M.l/
j D Pp

mDp�jC1
�

 T
	
lm
.Ym � �m/ forms a martingale, so by Doob’s

Lp maximum inequality,
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1�j�p

�
M.l/

j

�2
�

	 4E
�
M.l/

p

�2 D 4E

 
pX

mD1

�

 T
	
lm
.Ym � �m/

!2

D 4

pX

mD1

�

 T
	2
lm
Am D 4

�

 TA


	
ll
:

Therefore,

E




max
1�j�p

�
�PXŒY � � 	jWp

�
�2
�

	
kX

lD1
4
�

 TA


	
ll

D 4

pX

lD1
ŒD	ll

�

 TA


	
ll

D 4 tr
�
D
 TA


� D 4 tr .PXA/

D 4 tr
�
XT
�
XXT

��1
XA
�

D 4 tr
��
XXT

��1
XAXT

�
D O .1/ ;
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where the last equality uses conditions .D/ and .E/. We finally obtain

E

 

sup
0���1; �2L

j.III/j
!

	 o
�
p�1=2� � O

�
p1=2

� � O .1/ D o .1/ :

Proof for the case of Model II.
Under Model II, we know that

pX

iD1
Ai�

2
i D �TA� D ˇT.XAXT/ˇ D O .p/

by condition .D/. In other words, condition .D/ implies condition .B/. Therefore,
we know that the term .I/ ! 0 in L2 as shown in Theorem 3.1 of [29], and we only
need to show the uniform L1 convergence of the other two terms, .II/ and .III/.

Recall that B 2 B D ˚
�XTWX W � > 0� has only rank k under Model II. We

can reexpress .II/ and .III/ in terms of low rank matrices. Let V D �
XA�1XT

��1
.

Woodbury formula gives

.A C B/�1 D �
A C �XTWX

��1 D A�1 � A�1�XT
�
W�1 C �V�1��1 XA�1

D A�1 � A�1�XTW .�W C V/�1 VXA�1;

which tells us

B .A C B/�1 D Ip � A .A C B/�1 D �XTW .�W C V/�1 VXA�1:

Let U	UT be the spectral decomposition of W�1=2VW�1=2, i.e., W�1=2VW�1=2 D
U	UT , where 	 D diag .d1; : : : ; dk/ with d1 	 � � � 	 dk. Then .�W C V/�1 D
W�1=2

�
�Ik C W�1=2VW�1=2

��1
W�1=2 D W�1=2U .�Ik C	/�1UTW�1=2, from

which we obtain

B .A C B/�1 D �XTW .�W C V/�1 VXA�1 D �XTW1=2U .�Ik C	/�1	UTW1=2XA�1:

If we denote Z D UTW1=2X, i.e., Z is the transformed covariate matrix, then
B .A C B/�1 D �ZT .�Ik C	/�1	ZA�1. It follows that

.II/ D �2
p

tr
�
B .A C B/�1

�
YYT � Y�T � A

��

D �2
p

tr
�
�ZT .�Ik C	/�1	ZA�1 �YYT � Y�T � A

��

D �2
p

tr
�
� .�Ik C	/�1	ZA�1 �YYT � Y�T � A

�
ZT
�
;
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.III/ D �2
p

tr
�
A .A C B/�1� .Y � �/T

�

D �2
p

tr
��

Ip � �ZT .�Ik C	/�1	ZA�1�� .Y � �/T
�

D �2
p

tr
�
� .Y � �/T�C 2

p
tr
�
� .�Ik C	/�1	ZA�1� .Y � �/T ZT

�

D .III/1 C .III/2 :

We will next show that .II/, .III/1, and .III/2 all uniformly converge to zero in L1,
which will then complete our proof.

Let � D ZA�1 �YYT � Y�T � A
�
ZT . Then

sup
0���1

j.II/j D 2

p
sup

0���1

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1

�di
�C di

Œ� 	ii

ˇ
ˇ
ˇ
ˇ
ˇ

	 2

p
sup

0�c1�����ck�dk

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
ci Œ� 	ii

ˇ
ˇ
ˇ
ˇ
ˇ

D 2

p
max
1�j�k

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

iDj

dk Œ� 	ii

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

where the last equality follows as in Lemma 2.1 of [13]. As there are finite number
of terms in the summation and the maximization, it suffices to show that

dk Œ� 	ii =p ! 0 in L2 for all 1 	 i 	 k:

To establish this, we note that Œ� 	ii D Pp
nD1

Pp
mD1

�
A�1
n Yn .Ym � �m/ � ınm

�
ŒZ	in

ŒZ	im,

E

�
Œ� 	2ii

�
D

X

n;m;n0 ;m0

E
��
A�1
n Yn .Ym � �m/� ınm

� �
A�1
n0 Yn0 .Ym0 � �m0/� ın0m0

��

� ŒZ	in ŒZ	im ŒZ	in0 ŒZ	im0 :

Depending on n;m; n0;m0 taking the same or distinct values, we can break the
summation into 15 disjoint cases:

X

all distinct

C
X

three distinct, nDm

C
X

three distinct, nDn0

C
X

three distinct, nDm0

C
X

three distinct, mDn0

C
X

three distinct, mDm0

C
X

three distinct, n0Dm0

C
X

two distinct, nDm, n0Dm0
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C
X

two distinct, nDn0, mDm0

C
X

two distinct, nDm0, n0Dm

C
X

two distinct, nDmDn0

C
X

two distinct, nDmDm0

C
X

two distinct, nDn0Dm0

C
X

two distinct, mDn0Dm0

C
X

nDmDn0Dm0

:

Many terms are zero. Straightforward evaluation of each summation gives

E

�
Œ� 	

2
ii

�
D

pX

nD1

E

��
A�1
n Yn .Yn � �n/� 1

�2
�
ŒZ	4in

C
pX

nD1

X

m¤n

E

��
A�1
n Yn .Ym � �m/

�2
�
ŒZ	2in ŒZ	

2
im

C
pX

nD1

X

m¤n

E
��
A�1
n Yn .Ym � �m/

� �
A�1
m Ym .Yn � �n/

��
ŒZ	2in ŒZ	

2
im

C 2

pX

nD1

X

m¤n

E
��
A�1
n Yn .Yn � �n/� 1

� �
A�1
m Ym .Yn � �n/

��
ŒZ	3in ŒZ	im

C
pX

nD1

X

m¤n0;n0

¤n;m¤n

E
��
A�1
m Ym .Yn � �n/

� �
A�1
n0

Yn0 .Yn � �n/
��
ŒZ	2in ŒZ	im ŒZ	in0

D
pX

nD1

2An C �2n

An
ŒZ	4in C

pX

nD1

X

m¤n

AnAm C An�
2
m

A2m
ŒZ	2in ŒZ	

2
im C

pX

nD1

X

m¤n

ŒZ	2in ŒZ	
2
im

C 2

pX

nD1

X

m¤n

�n�m

Am
ŒZ	3in ŒZ	im C

pX

nD1

X

m¤n0 ;n0

¤n;m¤n

An�m�n0

AmAn0

ŒZ	2in ŒZ	im ŒZ	in0

D
pX

n;mD1

An

Am
ŒZ	2in ŒZ	

2
im C

pX

n;mD1

ŒZ	2in ŒZ	
2
im C

pX

n;m;n0

D1

An�m�n0

AmAn0

ŒZ	2in ŒZ	im ŒZ	in0 :

Using matrix notation, we can reexpress the above equation as

E

�
Œ� 	2ii

�
D �

ZAZT
	
ii

�
ZA�1ZT

	
ii

C �
ZZT

	2
ii

C �
ZAZT

	
ii

�
ZA�1�

	2
i

	 tr
�
ZAZT

�
tr
�
ZA�1ZT

�C tr
�
ZZT

�2 C tr
�
ZAZT

�
tr
�
�TA�1ZTZA�1�

�

D tr
�
WXAXT

�
tr
�
WXA�1XT

�C tr
�
WXXT

�2

C tr
�
WXAXT

�
tr
�
ˇT
�
XA�1XT

�
W
�
XA�1XT

�
ˇ
�
;
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which is O .p/O .p/CO .p/2 CO .p/O
�
p2
� D O

�
p3
�

by conditions .D/-.F/. Note
also that condition .F/ implies

dk 	
kX

iD1

di D tr
�
W�1=2VW�1=2

�
D tr

�
W�1V

� D tr
�
W�1.XA�1XT/�1

� D O
�
p�1

�
:

Therefore, we have

E

�
d2k Œ� 	

2
ii =p

2
�

D O
�
p�2�O

�
p3
�
=p2 D O

�
p�1� ! 0;

which proves

sup
0���1

j.II/j ! 0 in L2; as p ! 1:

To prove the uniform convergence of .III/1 to zero in L1, we note that

sup
�2L

j.III/1j D 2

p
sup
�2L

ˇ
ˇ�T .Y � �/ˇˇ D 2

p
sup
�2L

ˇ
ˇ�TPX .Y � �/ˇˇ

	 2

p
sup
�2L

k�k � kPX .Y � �/k D 2

p
Mp� kYk � kPX .Y � �/k ;

so by Cauchy-Schwarz inequality

E

 

sup
�2L

j.III/1j
!

	 2Mp��1
r

E

�
kYk2

�r

E

�
kPX .Y � �/k2

�
: (21)

Under Model II, � D XTˇ, so it follows that
Pp

iD1 �2i D k�k2 D tr
�
ˇˇTXXT

� D
O .p/ by condition .E/. Hence

r

E

�
kYk2

�
D
qPp

iD1
�
�2i C Ai

� D O
�
p1=2

�
. For

the second term on the right-hand side of (21), note that

E

�
kPX .Y � �/k2

�
D E

�
tr
�
PX .Y � �/ .Y � �/T��

D tr .PXA/ D tr
��
XXT

��1
XAXT

�
D O .1/

by conditions .D/ and .E/. Thus, in aggregate, we have

E

 

sup
�2L

j.III/1j
!

	 2Mp��1O
�
p1=2

�
O .1/ D o .1/ :
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We finally consider the .III/2 term. We have

sup
0���1; �2L

j.III/2j D 2

p
sup
�2L

sup
0���1

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1

�di
�C di

�
ZA�1� .Y � �/T ZT

	
ii

ˇ
ˇ
ˇ
ˇ
ˇ

	 2

p
sup
�2L

max
1�j�k

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

iDj

dk
�
ZA�1� .Y � �/T ZT

	
ii

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

	 2dk
p

sup
�2L

kX

iD1

ˇ
ˇ
�
ZA�1� .Y � �/T ZT

	
ii

ˇ
ˇ

D 2dk
p

sup
�2L

kX

iD1

ˇ
ˇ
�
ZA�1�

	
i ŒZ .Y � �/	i

ˇ
ˇ

	 2dk
p

sup
�2L

v
u
u
t

kX

iD1

�
ZA�1�

	2
i �

v
u
u
t

kX

iD1
ŒZ .Y � �/	2i :

Thus, by Cauchy-Schwarz inequality

E

 

sup
0���1; �2L

j.III/2j
!

	 2dk
p

v
u
u
t

E

 

sup
�2L

kX

iD1

�
ZA�1�

	2
i

!

�
v
u
u
t

E

 
kX

iD1
ŒZ .Y � �/	2i

!

:

Note that

sup
�2L

kX

iD1

�
ZA�1�

	2
i

D sup
�2L

kX

iD1

 
pX

mD1

�
ZA�1	

im
Œ�	m

!2

	 sup
�2L

kX

iD1

 
pX

mD1

�
ZA�1	2

im
�

pX

mD1
Œ�	2m

!

D sup
�2L

kX

iD1

��
ZA�2ZT

	
ii k�k2

�

D tr
�
ZA�2ZT

�
sup
�2L

k�k2 D tr
�
WXA�2XT

�
.Mp� kYk/2 D o

�
p2
� kYk2 ;

where the last equality uses condition .G/. Thus,

E

 

sup
�2L

kX

iD1

�
ZA�1�

	2
i

!

D o
�
p3
�
:
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Also note that

E

 
kX

iD1
ŒZ .Y � �/	2i

!

D E
�
tr
�
ZTZ .Y � �/ .Y � �/T��

D tr
�
ZTZA

� D tr
�
WXAXT

� D O .p/

by condition .D/. Recall that dk D O
�
p�1� by condition .F/. It follows that

E

 

sup
0���1; �2L

j.III/2j
!

	 2

p
O
�
p�1� o

�
p3=2

�
O
�
p1=2

� D o .1/ ;

which completes our proof.

Proof of Lemma 2 The fact that O�OLS 2 L is trivial as

O�OLS D XT
�
XXT

��1
XY D PXY;

while the projection matrix PX has induced matrix 2-norm kPXk2 D 1. Thus,�
�
� O�OLS

�
�
� 	 kPXk2 kYk D kYk. For O�WLS, note that

O�WLS D XT
�
XA�1XT

��1
XA�1Y

D A1=2
�
XA�1=2

�T



XA�1=2
�
XA�1=2

�T
��1 �

XA�1=2
�
A�1=2Y

D A1=2
�
PXA�1=2

�
A�1=2Y;

where PXA�1=2 is the ordinary projection matrix onto the row space of XA�1=2 and
has induced matrix 2-norm 1. It follows
�
�
� O�WLS

�
�
� 	

�
�
�A1=2

�
�
�
2

�
�PA�1=2X

�
�
2

�
�
�A�1=2

�
�
�
2

kYk D max
1�i�p

A1=2i � max
1�i�p

A�1=2
i � kYk :

Condition .A/ gives

max
1�i�p

A1=2i D .max
1�i�p

A2i /
1=4 	 .

pX

iD1
A2i /

1=4 D O
�
p1=4

�
:

Similarly, condition .A0/ gives

max
1�i�p

A�1=2
i D .max

1�i�p
A�2�ı
i /1=.4C2ı/ 	 .

pX

iD1
A�2�ı
i /1=.4C2ı/ D O

�
p1=.4C2ı/

�
:



280 S.C. Kou and J.J. Yang

We then have proved that

�
�
� O�WLS

�
�
� 	 O

�
p1=4

�
O
�
p1=.4C2ı/

�
kYk D O .p�/ kYk :

Proof of Theorem 2 To prove the first assertion, note that

URE
� OBURE

; O�URE
�

	 URE
� QBOL

; Q�OL
�

by the definition of OBURE
and O�URE, so Theorem 1 implies that

lp
�
�; O�URE

�
� lp

�
�; Q�OL

�

	 lp
�
�; O�URE

�
� URE

� OBURE
; O�URE

�
C URE

� QBOL
; Q�OL

�
� lp

�
�; Q�OL

�

	 2 sup
B2B; �2L

ˇ
ˇ
ˇURE .B;�/� lp

�
�; O�B;�

�ˇ
ˇ
ˇ !
p!1 0 in L1 and in probability,

(22)

where the second inequality uses the condition that O�URE 2 L . Thus, for any � > 0,

P

�
lp
�
�; O�URE

�
� lp

�
�; Q�OL

�
C �

�

	 P

 

2 sup
B2B; �2L

ˇ
ˇ
ˇURE .B;�/� lp

�
�; O�B;��ˇˇ

ˇ � �

!

! 0:

To prove the second assertion, note that

lp
�
�; Q�OL

�
	 lp

�
�; O�URE

�

by the definition of Q�OL
and the condition O�URE 2 L . Thus, taking expectations on

Eq. (22) easily gives the second assertion.

Proof of Corollary 1 Simply note that

lp
�
�; Q�OL

�
	 lp




�; O� OBp; O�p

�

by the definition of Q�OL
. Thus,

lp
�
�; O�URE

�
� lp




�; O� OBp; O�p

�

	 lp
�
�; O�URE

�
� lp

�
�; Q�OL

�
:

Then Theorem 2 clearly implies the desired result.
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Proof of Theorem 3 We observe that

UREM .B/ � lp




� ; O�B; O�M
�

DURE
�
B; O�M

�
� lp




�; O�B; O�M
�

C 2

p
tr
�
A .A C B/�1 PM;XA

�
:

Since

sup
B2B

ˇ
ˇ
ˇ
ˇURE

�
B; O�M

�
� lp




�; O�B; O�M
�ˇ
ˇ
ˇ
ˇ 	 sup

B2B; �2L

ˇ
ˇ
ˇURE .B;�/� lp

�
�; O�B;��ˇˇ

ˇ

! 0 in L1

by Theorem 1, we only need to show that

sup
B2B

ˇ
ˇ
ˇ
ˇ
1

p
tr
�
A .A C B/�1 PM;XA

�ˇˇ
ˇ
ˇ ! 0 as p ! 1:

Under Model I,

tr
�
A .A C B/�1 PM;XA

�
D

pX

iD1

Ai

Ai C �
ŒPM;XA	ii

	
 

pX

iD1
.

Ai

Ai C �
/2 �

pX

iD1
ŒPM;XA	2ii

!1=2

	
 

p �
pX

iD1
ŒPM;XA	

2
ii

!1=2

D p1=2
q

tr .PM;XA.PM;XA/T/; for all � � 0;

but tr
�
PM;XAAPT

M;X

� D tr
�
XT
�
XMXT

��1
XMA2MXT

�
XMXT

��1
X
�

D tr
��
XMXT

��1
.XMA2MXT/

�
XMXT

��1
.XXT/

�
D O.1/ by (13) and condi-

tion (E). Therefore,

sup
B2B

ˇ
ˇ
ˇ
ˇ
1

p
tr
�
A .A C B/�1 PM;XA

�ˇˇ
ˇ
ˇ D 1

p
O
�
p1=2

�
O.1/ D O. p�1=2/ ! 0:
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Under Model II, A .A C B/�1 D Ip � �ZT .�Ik C	/�1	ZA�1, where
W�1=2VW�1=2 D U	UT , 	 D diag .d1; : : : ; dk/ with d1 	 � � � 	 dk, and Z D

UTW1=2X as defined in the proof of Theorem 1. Thus,

tr
�
A .A C B/�1 PM;XA

�
D tr .PM;XA/� tr

�
�ZT .�Ik C	/�1	ZA�1PM;XA

�
:

We know that tr .PM;XA/ D tr
��
XMXT

��1
.XMAXT/

�
D O.1/ by the assump-

tion (13). tr
�
�ZT .�Ik C	/�1	ZA�1PM;XA

�
D tr

�
� .�Ik C	/�1	ZA�1 PM;X

AZT
� D tr

�
� .�Ik C	/�1	ZA�1XT

�
XMXT

��1
XMAZT

�
. The Cauchy-Schwarz

inequality for matrix trace gives

ˇ
ˇ
ˇtr
��
� .�Ik C	/�1	

� �
ZA�1XT

�
XMXT

��1
XMAZT

��ˇ
ˇ
ˇ

	 tr1=2
�
.� .�Ik C	/�1	/2

�

� tr1=2
�
ZA�1XT

�
XMXT

��1
XMAZTZAMXT

�
XMXT

��1
XA�1ZT

�
:

Since

tr
�
.� .�Ik C	/�1	/2

�
D

kX

iD1



�di
�C di

�2
	 kd2k D O

�
p�2� for all � � 0

as shown in the proof of Theorem 1 and

tr
�
ZA�1XT

�
XMXT

��1
XMAZTZAMXT

�
XMXT

��1
XA�1ZT

�

D tr
��
XMXT

��1
XMAZTZAMXT

�
XMXT

��1
XA�1ZTZA�1XT

�

D tr
��
XMXT

��1
.XMAXT/W.XAMXT/

�
XMXT

��1
.XA�1XT/W.XA�1XT/

�

D O. p2/

from (13) and condition (F), we have

sup
B2B

ˇ
ˇ
ˇ
ˇ
1

p
tr
�
A .A C B/�1 PM;XA

�ˇˇ
ˇ
ˇ D 1

p

�
O.1/C

p
O .p�2/ � O. p2/

�
D O. p�1/ ! 0:

This completes our proof of (14). With this established, the rest of the proof is
identical to that of Theorem 2 and Corollary 1.
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High Dimensional Data Analysis: Integrating
Submodels

Syed Ejaz Ahmed and Bahadır Yüzbaşı

Abstract We consider an efficient prediction in sparse high dimensional data. In
high dimensional data settings where d � n, many penalized regularization strate-
gies are suggested for simultaneous variable selection and estimation. However,
different strategies yield a different submodel with di < n, where di represents
the number of predictors included in ith submodel. Some procedures may select
a submodel with a larger number of predictors than others. Due to the trade-off
between model complexity and model prediction accuracy, the statistical inference
of model selection becomes extremely important and challenging in high dimen-
sional data analysis. For this reason we suggest shrinkage and pretest strategies to
improve the prediction performance of two selected submodels. Such a pretest and
shrinkage strategy is constructed by shrinking an overfitted model estimator in the
direction of an underfitted model estimator. The numerical studies indicate that our
post-selection pretest and shrinkage strategy improved the prediction performance
of selected submodels.

Keywords Monte Carlo simulation • Pretest, penalty and shrinkage strategies •
Sparse regression models

1 Introduction

There are a host of buzzwords in today’s data-centric world, and especially in digital
and print media. We encounter data in every walk of life, and for analytically
and objectively minded people, data is everything. However, making sense of the
data and extracting meaningful information from it may not be an easy task. We
come across buzzwords such as Big Data, high dimensional data, data visualization,
data science, and open data without a proper definition of such words. The rapid

S. Ejaz Ahmed (�)
Department of Mathematics and Statistics, Brock University, St. Catherines, Ontario, Canada
e-mail: sahmed5@brocku.ca

B. Yüzbaşı
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growth in the size and scope of data sets in a host of disciplines has created a need
for innovative statistical strategies analyzing such data. A variety of statistical and
computational tools are needed to overcome such types of the data and to reveal the
data story. However, in this paper, we focus on estimation of model parameters and
prediction based on high dimensional data (HDD). In classical regression context
we define HDD where number of predictors .d/ are larger than the sample size .n/.
More importantly, the number of predictors are in millions and sample size maybe in
hundreds. The modeling of HDD is an important feature in a host of research fields
such as social sciences, bio-informatics, medical, environmental, engineering, and
financial studies among others. A number of the classical techniques are available
when d < n to tell the data story. However, the existing classical strategies are not
capable of yielding solutions for HDD. On the other hand, the buzzword “Big Data”
is not very well defined, but its problems are real and statisticians need to play a vital
role in this data world. The Big Data or Data Science is an emerging field stemming
equally from research enterprise and public and private sectors. Undoubtedly, Big
Data is the future of research in a host fields, and trans-disciplinary programs are
required to develop the skills for Data Scientists. For example, many private and
public agencies are using sophisticated number-crunching, data mining, or Big Data
analytics to reveal patterns based on collected information. Clearly, there is an
increasing demand for efficient prediction strategies for analyzing such data. Some
examples of Big Data that have prompted demand are gene expression arrays, social
network modeling, clinical, genetics, and phenotypic data.

Due to the trade-off between model prediction and model complexity, the model
selection is an extremely important and challenging problem in high dimensional
data analysis (HDDA). Over the past two decades, many penalized regularization
approaches have been developed to perform variable selection and estimation
simultaneously. These techniques, which deal with HDDA, generally rely on various
L1 penalty regularizes. The least absolute shrinkage and selection operator (Lasso)
is one of the widely used approaches, Tibshirani [20]. It is a good strategy due to
its convexity and computation efficiency. The Lasso is based on squared error and
a penalty proportional to regression parameters. Schelldorfer et al. [19] provide a
comprehensive summary of the consistency properties of the Lasso. Efron et al.
[12] introduced the least angle regression algorithm which is a very fast way to
draw the entire regularization path for aLasso estimate of the regression parameters.
The penalized likelihood methods have been extensively studied in the literature,
see, for example, Tran [22], Huang et al. [15], Kim et al. [16], Wang and Leng
[23], Yuan and Lin [24], Leng et al. [17], and Tibshirani et al. [21]. Interestingly,
the penalized likelihood methods are closely connected to Bayesian procedures.
The Lasso estimate corresponds to a Bayes method that puts a Laplacian (double
exponential) prior on the regression coefficients. Armagan et al. [5], Bhattacharya
et al. [8], and Carvalho et al. [11] have shown that improvements can be achieved by
using priors with heavier tails than the double exponential prior in particular, priors
with polynomial tails.
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In this paper, we focus on the Lasso, the Elastic-Net, the adaptive Lasso
(aLasso), the minimax concave penalty (MCP), and the smoothly clipped absolute
deviation method (SCAD). We blend these methods with the decades old method
of “pretesting: variable section and post-estimation” to improve the prediction
accuracy of penalty methods. The important contribution here is to incorporate
the pretesting strategy after selecting the “overfitted (OF)” and “underfitted (UF)”
models. Generally speaking, both Lasso and Elastic-Net strategies select OF
models. On the other hand, aLasso, MCP, and SCAD produces yield UF models.
Our goal is to combine an OF model (OFM) with a UF model (UFM) via pretesting
to improve the model prediction and complexity simultaneously. We have the
estimation problem of regression parameters when the model is sparse that there
are many potential predictors in the model at-hand may not have any influence
on the response of interest. Further, some of the predictors may have strong
influence (strong signals), and some of them may have weak-moderate influence
(weak-moderate signals) on the response of interest, respectively. It is possible that
there may be extraneous predictors in the OFM. Consider if the main concern is
treatment effect, or the effect of biomarkers: extraneous nuisance variables may
be lab effects when several labs are involved, or the age and sex of patients. The
analysis will be more meaningful if “nuisance variables” can be deleted from the
OFM. Further, it is exceedingly important that we do not automatically remove
all the predictors with weak/moderate signals from the model. This may result in
selecting a biased UFM. A logical way to deal with this framework is to apply
a pretest strategy that tests whether the coefficients with weak/moderate effects
are zero and then estimates parameters in the model that include coefficients that
are rejected by the test. Another strategy is to use estimators based on Stein-rule,
where the estimated regression coefficient vector is shrunk in the direction of the
candidate subspace. This “soft threshold” modification of the pretest method has
been shown to be efficient in various frameworks. Ahmed et al. [4] and Ahmed
and Yüzbaşı [3], among others, have investigated the properties of shrinkage and
pretest methodologies for host models. In Sect. 2 we describe the model and review
some penalty strategies. In Sect. 3 we introduce pretest and shrinkage strategies. The
results of a simulation study are showcased in Sect. 4. Application to two real data
sets are given in Sect. 5. Finally, we offer concluding remarks in Sect. 6.

2 Model Section and Penalty Estimation

We consider a high dimensional linear regression sparse model:

Y D Xˇ C "; (1)

where Y D .y1; : : : ; yn/0 is a vector of responses, X D .x1; : : : ; xn/
0 an n � d fixed

design matrix, where xi D .xi1; : : : ; xid/
0, ˇ D .ˇ1; : : : ; ˇd/

0 is an unknown vector
of parameters, " D ."1; : : : ; "n/

0 is the vector of unobservable random errors, and
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the superscript (0) denotes the transpose of a vector or matrix. We do not make any
distributional assumption about the errors except that " has a cumulative distribution
function F.�/ with E."/ D 0, and E.""0/ D �2In, �2 < 1.

For n > d the least squares estimator (LSE) of ˇ is obtained by minimizing the
following function:

Ǒ LSE D .X0X/�1X0Y:

However, when n < d then .X0X/�1 will not exist and thus no solution. In this
situation, we can use ridge regression to achieve a solution. On the other hand, to
avoid the model complexity, penalized likelihood methods are popular nowadays.
These methods involve penalizing the regression coefficients, and shrinking a subset
of them towards zero. In other words, the penalized procedure produces a submodel
and subsequently estimates the submodel parameters, as seen in [2]. However, in
an effort to achieve meaningful estimation and selection properties, most penalized
strategies make the following assumptions:

• Most of regression coefficients are zeros except for a few ones
• All nonzero ˇj’s are larger than noise level, c�

p
.2=n/ log.d/ with c � 1=2.

Further, additional assumptions made regarding the designed covariates include
the adaptive irrepresentable condition and the restricted eigenvalue condition. We
refer to Zhao and Yu [27], Huang et al. [15], and Bickel et al. [9] for some insights.

Generally speaking, the Lasso and Elastic-Net (Enet) methods tend to select
OFM, we refer to Leng et al. [17]. In reviewed literature, several modifications
and methodologies have been suggested to improve the prediction accuracy for
the Lasso strategy. For example, the SCAD [13], adaptive Lasso [28], MCP [25],
and several others. Like Lasso, these methods select a submodel by shrinking a
number of regression coefficients to zero and provide shrinkage estimators of the
remaining coefficients. However, these methods may force the relatively a large
number of weaker coefficients towards zeros as compared to Lasso, resulting in
UFM, and are subject to a larger selection bias in the presence of a significant
number of weak/moderate signals. This leads to the consideration of two models:
the OFM that includes all predictors with strong signals and possible variables with
weak and moderate signals, and a UFM that includes the predictors with strong
signals while leaving out variables with weak signals. An appealing way to deal
with this uncertainty about regression parameters is to use a pretest strategy that test
whether the coefficients of the variables with weak/moderate signals are zero and
then estimate parameters in the model that include coefficients that are rejected by
the test.

Now, we briefly describe some penalized strategies. An important member of the
penalized least squares family is the L1 penalized least squares estimator, commonly
known as the Lasso.
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2.1 Lasso

This method was proposed by [20], it performs variable selection and parameter
estimation simultaneously. The Lasso estimator is obtained by

Ǒ Lasso D arg min
ˇ

8
<

:

nX

iD1
.yi �

dX

jD1
xijˇj/

2 C �

dX

jD1
jˇjj

9
=

;
: (2)

Originally, Lasso solutions were obtained via quadratic programming. Later, [12]
proposed Least Angle Regression (LARS), a type of stepwise regression, with which
the Lasso estimates can be obtained at the same computational cost as that of an
ordinary least squares estimation. Further, the Lasso estimator remains numerically
feasible for dimensions of d that are much higher than the sample size n. Usually,
Lasso will produce an OFM when there are many predictors with weak signals are
in the initial model.

2.2 Elastic-Net

The Elastic-Net was proposed by Zou and Hastie [29] to overcome the limitations
of the Lasso and Ridge methods.

Ǒ Enet D .1C�2

n
/arg min

ˇ

8
<

:

nX

iD1
.yi �

dX

jD1
xijˇj/

2 C �1

dX

jD1
jˇjj C �2

dX

jD1
ˇ2j

9
=

;
; (3)

where �2 is the ridge penalty parameter, penalizing the sum of the squared
regression coefficients and �1 is the Lasso penalty, penalizing the sum of the
absolute values of the regression coefficients, respectively.

2.3 SCAD

Fan and Li [13] proposed a non-concave penalty function referred to as SCAD. The
SCAD method is given by

Ǒ SCAD D arg min
ˇ

8
<

:

nX

iD1
.yi �

dX

jD1
xijˇj/

2 C �

dX

jD1
p˛;�jˇjj

9
=

;
:
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Here p˛;�.�/ is the smoothly clipped absolute deviation penalty. SCAD penalty is
a symmetric and a quadratic spline on Œ0;1/ with knots at � and ˛�, whose first
order derivative is given by

p˛;�.x/ D �




I.jxj 	 �/C .˛� � jxj/C
.˛ � 1/�

I.jxj > �/
�

; x � 0: (4)

Here � > 0 and ˛ > 2 are the tuning parameters. For ˛ D 1, the expression (4) is
equivalent to the L1 penalty.

2.4 Adaptive Lasso

Zou [28] modified the Lasso penalty by using adaptive weights on L1 penalties on
the regression coefficients.

The aLasso estimator is obtained by

Ǒ aLasso D arg min
ˇ

8
<

:

nX

iD1
.yi �

dX

jD1
xijˇj/

2 C �

dX

jD1
Owjjˇjj

9
=

;
; (5)

where the weight function is

Owj D 1

j Ǒ�
j j� I � > 0;

and Ǒ�
j is a root-n consistent estimator of ˇ. Equation (5) is a convex optimization

problem and its global minimizer can be efficiently solved by [28].

2.5 MCP

Zhang [25] suggested an MCP method which is given by

Ǒ MCP D arg min

8
<̂

:̂

nX

iD1

0

@yi �
dX

jD1
xijˇj

1

A

2

C
dX

jD1
��.jˇjj; �/

9
>=

>;
;

where ��.�/ is the MCP penalty given by

��.�/ D
Z t

0

.� � x=�/Cdx;

where � > 0 is a regularization parameter.
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These regularization techniques have been extensively used in a host of appli-
cations, and much research is still being conducted, making keeping track of all
relevant research a difficult task. It has been widely recognized that penalty esti-
mators are not efficient when the dimension d becomes extremely large compared
with sample size n. There are still remaining challenging problems when d grows
at a non-polynomial rate with n. Further, non-polynomial dimensionality brings
forward substantial computational challenges. The main objective of this paper is
about improving the estimation and/or prediction accuracy of the important set
of the regression parameters by combining overfitted and underfitted models. As
stated earlier, the Enet and Lasso produce an overfitted model as compared with
aLasso, SCAD, and MCP methods. By design, the Enet and Lasso strategy retains
some regression coefficients with weak effects in the resulted model. On the other
hand, aggressive variable selection strategies may force moderate and weak effects
coefficients towards zero, resulting in underfitted models with only variables of
strong effect. The idea here is to combine estimators from an underfitted model
with an overfitted model.

3 Integrating Overfitted and Underfitted Models

In this section we showcase how to combine two competing submodels to improve
the estimation and prediction accuracy on both models.

3.1 Working Model

Let us consider a high dimensional sparse regression model with all possible
predictors, including strong and weak-to-moderate signals.

Y D Xˇ C "; d > n (6)

where "’s are random errors distributed to be independent and identically dis-
tributed. Let us rewrite the model as follows:

Y D X1ˇ1 C X2ˇ2 C X3ˇ3 C "; d D d1 C d2 C d3 > n: (7)

Further, the model is sparse, so it is expected that d1 C d2 < n and d3 > n, where
d1 is the dimension of strong signals, d2 is for weak-moderate signals, and d3 is
associated with no signals. By assuming sparsity, the coefficients with no signals can
be discarded by existing variable selection approaches. However, it is possible that
some weak-moderate signals may be forced out from the model by an aggressive
variable selection method. It is possible that the method at hand may not be able to
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separate weak signals from sparse signals, we refer to Zhang and Zhang [26] and
others. Further, Hansen [14] has showed using simulation studies that post-selection
least squares estimate can do better than penalty estimators under such scenarios.
For some improved strategies, we refer to Belloni and Chernozhukov [7] and Liu
and Yu [18].

In the current investigation, we are interested in estimation and prediction
problems in a sparse model including weak-moderate signals. It is possible that
one less aggressive variable selection strategy may yield an overfitted model, in the
sense, that it is retaining predictors of strong and weak-moderate signals. On the
other hand, other aggressive methods may give an underfitted model keeping only
predictors of strong influence. Thus, the predictors with weak-moderate influence
should be subject to further scrutiny to improve the prediction error.

We partition the design matrix such that X D .X1jX2jX3/, where X1 is n � d1,
X2 is n � d2, and X3 is n � d3 sub-matrix of predictors, respectively. Here we make
the usual assumption that d1 	 d2 < n and d3 > n.

Thus, our sparse model can be rewritten as:

Y D X1ˇ1 C X2ˇ2 C X3ˇ3 C "; d > n; d1 C d2 < n: (8)

3.2 Overfitted Model

We apply a less aggressive variable selection method which keeps both strong and
weak-moderate signals in the resulting model as follows:

Y D X1ˇ1 C X2ˇ2 C "; d1 	 d2 < n; d1 C d2 < n: (9)

Generally speaking, both Enet and Lasso strategies which usually eliminate the
sparse signals and keep predictors with weak-moderate and strong signals in the
resulting model. For brevity sake, we characterize such models as an overfitted
model.

3.3 Underfitted Model

Suppose an aggressive variable selection method which keeps only predictors with
strong signals and removes all other predictors, we call it an underfitted model.
Thus, we have

Y D X1ˇ1 C "; d1 < n: (10)
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One can use aLasso, SCAD, or MCP strategy which usually keeps predictors only
with the strong signals, and may yield a lower dimensional model as compared with
Enet or Lasso.

Once again, we are interested in estimating ˇ1 when ˇ2 may be a null vector, but
we are not certain that this is the case. We suggest pretest and shrinkage strategies
for estimating ˇ1 when model is sparse and ˇ2 may be a null vector. It is natural
to combine estimates of the overfitted model with the estimates of an underfitted
model to improve the performance of an underfitted model.

3.4 Integrating Data

Now, we consider some shrinkage and pretest strategies to combine the information
from overfitted and underfitted models.

First, we define the Linear Shrinkage (LS) estimator of ˇ1 as follows:

ǑLS
1 D ! ǑUF

1 C .1 � !/ ǑOF
1 ; (11)

where ! 2 Œ0; 1	 denotes the shrinkage intensity. Ideally, the coefficient ! is chosen
to minimize the mean squared error.

The pretest estimator (PT) of ˇ1 defined by

ǑPT
1 D ǑUF

1 I
�
Wn < 


2
d2;˛

�C ǑOF
1 I

�
Wn � 
2d2;˛

�
;

or, equivalently,

ǑPT
1 D ǑOF

1 �
� ǑOF

1 � ǑUF
1

�
I
�
Wn < 


2
d2;˛

�
;

where the weight function Wn is defined by

Wn D n

O�2 .
ǑLSE
2 /0.X0

2M1X2/ ǑLSE
2 ;

and M1 D In � X1
�
X0
1X1

��1
X0
1, ǑLSE

2 D �
X0
2M1X2

��1
X0
2M1Y and

O�2 D 1

n � 1
.Y � X1 ǑUF

1 /
0.Y � X1 ǑUF

1 /:

The ǑUF
1 may be aLasso, SCAD, or MCP estimator and the ǑOF

1 may be Enet or
Lasso estimator.
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Ahmed [1] proposed a shrinkage pretest estimation (SPT) strategy replacing ǑUF
1

by ǑLS
1 in (11) as follows:

ǑSPT
1 D

�
! ǑUF

1 C .1 � !/ ǑOF
1

�
I
�
Wn < 


2
d2;˛

�C ǑOF
1 I

�
Wn � 
2d2;˛

�
;

or, equivalently,

ǑSPT
1 D ǑOF

1 � !
� ǑOF

1 � ǑUF
1

�
I
�
Wn < 


2
d2;˛

�
:

In the sprit of [2], the Stein-type shrinkage estimator of ˇ1 is defined by

combining overfitted model estimator ǑOF
1 with the underfitted ǑUF

1 as follows:

ǑS
1 D ǑUF

1 C
� ǑOF

1 � ǑUF
1

� �
1 � .d2 � 2/W�1

n

�
, d2 � 3;

In an effort to avoid the over-shrinking problem inherited by ǑS
1 we suggest using

the positive part of the shrinkage estimator of ˇ1 defined by

ǑS+
1 D ǑUF

1 C
� ǑOF

1 � ǑUF
1

� �
1 � .d2 � 2/W�1

n

�C
;

where zC D max.0; z/.

If we replace ǑOF
1 by ǑS+

1 in ǑPT
1 , we obtain the improved pretest estimator (IPT)

of ˇ1 defined by

ǑIPT1
1 D ǑS+

1 �
� ǑS+

1 � ǑUF
1

�
I
�
Wn < 


2
d2;˛

�
:

If we replace ǑUF
1 by ǑLS

1 in ǑS+
1 , we obtain the improved pretest estimator of ˇ1

defined by

ǑIPT2
1 D ǑLS

1 C
� ǑOF

1 � ǑLS
1

� �
1 � .d2 � 2/W�1

n

�C
:

In the following two sections we conduct numerical studies to appraise the
relative performance of the above listed estimators.

4 Simulation Study

We conduct Monte-Carlo simulation experiments to study the relative performances
of the proposed estimators under various practical settings.
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We focus on large d small n and data generated from a high dimensional sparse
linear model as follows:

yi D x1iˇ1 C x2iˇ2 C : : :C xdiˇd C "i ; i D 1; 2; : : : ; n; (12)

where "i’s are independent and identically distributed standard normal and xij D
.�1.ij//

2 C �2.ij/ with �1.ij/ � N .0; 1/ and �2.ij/ � N .0; 1/ for all i D 1; 2; : : : ; n,

j D 1; 2; : : : ; d. We consider ˇ D .ı
.1/
d1
; ı
.2/
d2
; ı
.3/
d3
/0, where ı.1/d1

is the vector of strong

signals, ı.2/d2
represents weak-moderate signals, and ı.3/d2

is the vector of no signals,

that is, ı.3/d3
D 00

d3
. We initially generate the data with ı.1/d1

D .1; 1; : : : ; 1
„ ƒ‚ …

d1

/0 and

ı
.2/
d2

D 00
d2 , ı

.3/
d3

D 00
d3 , then we gradually increase the weak signals to examine the

relative performance of the estimators in the presence of weak signals. Thus, we
define � D kˇ � ˇ0k2 � 0, where ˇ0 D .ı

.1/
d1
; ı
.2/
d2
; 0d3 /

0. Data were generated by
changing the values of ˇ2 from zero vector such that � > 0.

For brevity sake, we first examine the variable selection consistency for listed
strategies for .d1; d2; d3; n/ D .7; 30; 63; 50/ in Figs. 1 and 2. In Fig. 1 OFM is
defined based on Enet, and Lasso is an OFM in Fig. 2. The figures show that the
percentage of predictors selected for each methods, respectively. For example, if the
percentage of any one predictor is 100, then this predictor is selected always for
all simulation steps. Similarly, if the percentage of any one predictor is 0, then this
predictor is never selected in the simulation steps.

Figures 3 and 4 show that the number of selected coefficients via listed estimators
when � D 0. Figures 1, 2, 3, and 4 reveal that Enet and Lasso selected more
variables than aLasso, SCAD, and MCP. The IPT2 selects more variables than the
others after Enet and Lasso. On the other hand, PT and IPT1 select less predictors
than LS, SPT, and IPT.

The relative performance of estimators are evaluated by using relative mean

squared error (RMSE) criterion. The RMSE of an estimator ˇ�
1 with respect to ǑOF

1

is defined as follows:

RMSE
�
ˇ�
1

� D
MSE

� Ǒ OF
1

�

MSE
�
ˇ�
1

� ; (13)

where ˇ�
1 is one of the listed estimators. The results are reported in Tables 1 and 2.

In Table 1, we use Enet is an overfitted model. We observed that MCP yields a
much larger RMSE than both aLasso and SCAD at � D 0. However, as expected,
RMSE of all penalty estimators converge to zero for larger values of �. However,
the performance pretest and linear shrinkage estimators are relatively good. More
importantly, the RMSEs of the estimators based on pretest principle are bounded
in �. Also, linear shrinkage estimators outperform the penalty estimators for all
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Fig. 1 The percentage of times each predictor was selected when Enet is OFM estimator, � D 0

and .d1; d2; d3; n/ D .7; 30; 63; 50/. (a) Enet. (b) aLasso. (c) SCAD. (d) MCP

values �. The pretest estimator works well for small values of �. However, for
intermediate values of �, the RMSE of penalty estimators outperform the pretest
estimator. Table 2 also reveals similar results.
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Fig. 2 The percentage of times each predictor was selected when Lasso is OFM estimator,� D 0

and .d1; d2; d3; n/ D .7; 30; 63; 50/. (a) Lasso. (b) aLasso. (c) SCAD. (d) MCP

5 Real Data Analyses

Finally, in this section, we apply the proposed post-selection pretest and shrinkage
strategies to the two data sets, of which the data descriptions are given below.
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Fig. 3 The number of selected coefficients when Enet is OFM estimator and
� D 0. (a) .d1; d2; d3; n/ D .7; 30; 63; 50/. (b) .d1; d2; d3; n/ D .7; 93; 300; 150/.
(c) .d1; d2; d3; n/ D .7; 143; 600; 200/. (d) .d1; d2; d3; n/ D .7; 243; 1250; 300/. (e)
.d1; d2; d3; n/ D .7; 293; 2700; 350/. (f) .d1; d2; d3; n/ D .7; 343; 5650; 400/. (g)
.d1; d2; d3; n/ D .7; 443; 9550; 500/
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Fig. 4 The number of selected coefficients when Lasso is OFM estimator and
� D 0. (a) .d1; d2; d3; n/ D .7; 30; 63; 50/, (b) .d1; d2; d3; n/ D .7; 93; 300; 150/,
(c) .d1; d2; d3; n/ D .7; 143; 600; 200/, (d) .d1; d2; d3; n/ D .7; 243; 1250; 300/, (e)
.d1; d2; d3; n/ D .7; 293; 2700; 350/, (f) .d1; d2; d3; n/ D .7; 343; 5650; 400/, (g)
.d1; d2; d3; n/ D .7; 443; 9550; 500/
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Table 1 RMSE of the estimators when the OFM is Enet and .d1; d2; d3; n/ D .7; 443; 9550; 500/

UFM � ǑUF

1
ǑLS

1
ǑPT

1
ǑSPT

1
ǑIPT1

1
ǑIPT2

1

aLasso 0:0 13:305 3:115 13:305 3:115 13:305 1:497

0:1 11:366 2:973 11:366 2:973 11:366 1:502

0:2 7:059 2:774 5:231 2:555 6:958 1:451

0:6 1:359 1:819 1:000 1:000 1:823 1:322

0:7 0:910 1:476 1:000 1:000 1:382 1:304

2:0 0:127 0:382 1:000 1:000 0:855 1:081

4:0 0:031 0:107 1:000 1:000 0:853 1:024

8:0 0:006 0:022 1:000 1:000 0:866 1:004

SCAD 0:0 7:427 2:860 4:045 2:372 7:267 2:978

0:1 9:264 2:963 9:264 2:963 9:264 2:862

0:2 6:067 2:712 2:801 2:036 5:884 2:575

0:6 1:363 1:864 1:000 1:000 1:863 1:605

0:7 0:909 1:500 1:000 1:000 1:412 1:403

2:0 0:126 0:380 1:000 1:000 0:856 0:977

4:0 0:031 0:107 1:000 1:000 0:853 0:939

8:0 0:006 0:021 1:000 1:000 0:782 0:901

MCP 0:0 12:418 3:218 4:155 2:434 11:672 2:707

0:1 11:816 3:130 7:782 2:881 11:815 2:823

0:2 6:537 2:808 2:398 1:900 6:271 2:487

0:6 1:348 1:847 1:000 1:000 1:846 1:631

0:7 0:901 1:485 1:000 1:000 1:401 1:419

2:0 0:127 0:384 1:000 1:000 0:870 0:976

4:0 0:031 0:108 1:000 1:000 0:863 0:940

8:0 0:006 0:022 1:000 1:000 0:863 0:928

• Lung Adenocarcinoma (LA): This data set was first analyzed by Beer et al. [6]
using Affymetrix hu6800 microarrays. In this experiment there are d D 7129

gene expressions for n D 86, patients were collected from the University of
Michigan Hospital. For numerical purpose, we draw 250 bootstrap samples with
replacement from the corresponding data matrix. Further, we partitioned the data
into a training set of 65 patients and a test set of 21 patients, respectively.

• Acute Myeloid Leukemia (AML): This data of AML patients was analyzed
by Bullinger et al. [10]. For this data set, we have d D 6283 genes, and n D
116 patients. Again, we draw 250 bootstrap samples with replacement from the
corresponding data matrix, and partitioned it into a training set of 100 patients,
and a test set of 16 patients, respectively, to apply the suggested methods.

First, we obtain UFMs from three variable selection techniques: aLasso, SCAD,
and MCP, respectively. On the other hand, OFMs are selected based on Enet
and Lasso, respectively. Finally, we combine two selected submodels at a time to
construct the suggested shrinkage and pretest post-selection estimators.
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Table 2 RMSE of the estimators when the OFM is Lasso and .d1; d2; d3; n/ D .7; 443; 9550; 500/

UFM � ǑUF

1
ǑLS

1
ǑPT

1
ǑSPT

1
ǑIPT1

1
ǑIPT2

1

aLasso 0:0 6:145 6:264 6:145 6:325 6:145 6:149

0:1 5:861 5:938 5:861 5:971 5:861 5:826

0:2 3:168 3:239 3:168 3:260 3:168 3:221

0:6 0:634 1:114 1:000 1:000 0:911 1:136

0:7 0:490 1:101 1:000 1:000 0:839 1:108

2:0 0:063 1:008 1:000 1:000 0:631 1:001

4:0 0:015 1:002 1:000 1:000 0:747 1:000

8:0 0:004 1:000 1:000 1:000 0:858 1:000

SCAD 0:0 3:456 3:509 2:498 2:626 3:358 3:570

0:1 4:223 4:255 2:894 2:970 4:186 4:262

0:2 2:922 3:013 1:809 1:918 2:908 2:994

0:6 0:642 1:163 1:000 1:000 0:946 1:174

0:7 0:490 1:129 1:000 1:000 0:867 1:127

2:0 0:063 1:005 1:000 1:000 0:630 1:001

4:0 0:015 1:002 1:000 1:000 0:751 1:000

8:0 0:004 1:000 1:000 1:000 0:753 1:000

MCP 0:0 5:216 5:358 3:355 3:612 5:041 5:343

0:1 5:597 5:700 2:905 3:009 5:489 5:551

0:2 2:933 3:025 1:845 1:932 2:962 2:985

0:6 0:640 1:161 1:000 1:000 0:943 1:172

0:7 0:488 1:122 1:000 1:000 0:862 1:124

2:0 0:063 1:006 1:000 1:000 0:645 1:001

4:0 0:015 1:002 1:000 1:000 0:759 1:000

8:0 0:004 1:000 1:000 1:000 0:773 1:000

To asses the performance of the post-selection estimators, we calculate relative

prediction error (RPE) of an estimator ˇ�
# with respect to ǑOF

# as follows:

RPE
�
ˇ�
#

� D
P250

iD1
h
Y � X#ˇOF.i/

#

i0 h
Y � X#ˇOF.i/

#

i

P250
iD1

h
Y � X#ˇ�.i/

#

i0 h
Y � X#ˇ�.i/

#

i ;

where “.i/” indicates that the estimator is at ith sample of bootstrapping and “#” is
the index of the model selected by a given method.

First, we report the average number of selected predictors for both data sets in
Tables 3 and 4.

The values of RPE are reported in Tables 5 and 6.
The results which are given in Tables 3 and 4 are consistent with the findings of

our simulation study. Table 5 reports analysis of LA data. We observe that suggested
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Table 3 The average number of selected predictors by UFMs and OFMs

Data n d # of predictors Data n d # of predictors

LA 86 7129 Enet 58 AML 116 6283 Enet 75

Lasso 25 Lasso 32

aLasso 6 aLasso 20

SCAD 10 SCAD 14

MCP 5 MCP 7

Table 4 The average number of selected predictors by post-selection methods

Data OFM UFM LS PT SPT IPT1 IPT2

LA Enet aLasso 52 19 52 19 54

SCAD 44 10 44 10 41

MCP 40 5 40 5 47

Lasso aLasso 23 9 24 7 24

SCAD 22 12 20 12 20

MCP 20 9 22 8 22

AML Enet aLasso 70 57 70 57 70

SCAD 48 14 48 14 66

MCP 45 7 56 7 58

Lasso aLasso 27 26 28 26 28

SCAD 12 18 23 22 24

MCP 9 18 18 17 23

Table 5 RPE of estimators for LA

OFM UFM ǑUF

1
ǑLS

1
ǑPT

1
ǑSPT

1
ǑIPT1

1
ǑIPT2

1

Enet aLasso 1:1310 1:1622 1:0895 1:1061 1:1300 1:0850

SCAD 1:1365 1:1474 1:1365 1:1474 1:1365 1:1398

MCP 1:1592 1:1799 1:1592 1:1799 1:1592 1:1345

Lasso aLasso 1:0884 1:1185 1:0540 1:0540 1:0833 1:0871

SCAD 1:0937 1:1003 1:0752 1:0752 1:0916 1:0868

MCP 1:1155 1:1344 1:0752 1:0752 1:1184 1:1054

post-selection estimators outperform both OFMs and UFMs. Further, for this data
UFMs are relatively more efficient than OFMs. Table 6 provides analysis for AML
data. Interestingly, for this data, overfitted models Enet and Lasso estimators are
relatively efficient than underfitted estimators based on aLasso, SCAD, and MCP,
respectively. The results of AML data also demonstrate that the suggested post-
selection estimators are superior, with some exceptions.
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Table 6 RPE of estimators for AML

OFM UFM ǑUF

1
ǑLS

1
ǑPT

1
ǑSPT

1
ǑIPT1

1
ǑIPT2

1

Enet aLasso 0:7930 1:1713 0:8450 1:1484 0:8209 1:1423

SCAD 1:1599 1:1915 1:1599 1:1915 1:1599 1:1302

MCP 1:1798 1:2265 1:1798 1:2265 1:1798 1:1814

Lasso aLasso 0:7707 1:1251 0:9873 1:0944 0:8201 1:0993

SCAD 1:1260 1:1262 1:1428 1:1511 1:1412 1:1439

MCP 1:1453 1:1739 1:1408 1:1408 1:1755 1:0949

6 Conclusions and Outlooks

In this study, we suggested integrating two submodels by incorporating pretest and
shrinkage estimation strategies in high dimensional sparse models. Our suggested
post-selection estimators are constructed by integration with OFM, which may be
either Lasso or Enet variable selection methods with a UFM, which may based
on aLasso, SCAD, or MCP variable selection methods. Monte Carlo simulation
studies suggest that post-selection listed estimators perform better than usual
penalty estimators for both variable selection and prediction, in many instances.
The results of two HDD are consistent with the simulation study showing the
superior performance of suggested post-selection estimators. However, we fall short
in providing the theoretical justifications in this paper, which is an ongoing work and
will be communicated in a separate paper.

Further, for future work, one may consider the combining all the estimators
produced by overfitted and underfittted into a single estimator to improve the
overall prediction error. In another study it would be interesting to include penalty
estimators that correspond to Bayes procedures based on priors with polynomial
tails.
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High-Dimensional Classification for Brain
Decoding

Nicole Croteau, Farouk S. Nathoo, Jiguo Cao, and Ryan Budney

Abstract Brain decoding involves the determination of a subject’s cognitive state
or an associated stimulus from functional neuroimaging data measuring brain
activity. In this setting the cognitive state is typically characterized by an element
of a finite set, and the neuroimaging data comprise voluminous amounts of
spatiotemporal data measuring some aspect of the neural signal. The associated
statistical problem is one of the classifications from high-dimensional data. We
explore the use of functional principal component analysis, mutual information
networks, and persistent homology for examining the data through exploratory
analysis and for constructing features characterizing the neural signal for brain
decoding. We review each approach from this perspective, and we incorporate the
features into a classifier based on symmetric multinomial logistic regression with
elastic net regularization. The approaches are illustrated in an application where the
task is to infer, from brain activity measured with magnetoencephalography (MEG),
the type of video stimulus shown to a subject.

1 Introduction

Recent advances in techniques for measuring brain activity through neuroimaging
modalities such as functional magnetic resonance imaging (fMRI), electroen-
cephalography (EEG), and magnetoencephalography (MEG) have demonstrated
the possibility of decoding a person’s conscious experience based only on non-
invasive measurements of their brain signals [11]. Doing so involves uncovering the
relationship between the recorded signals and the conscious experience that may
then provide insight into the underlying mental process. Such decoding tasks arise
in a number of areas, for example, the area of brain–computer interfaces, where
humans can be trained to use their brain activity to control artificial devices. At the
heart of this task is a classification problem where the neuroimaging data comprise
voluminous amounts of spatiotemporal observations measuring some aspect of the
neural signal across an array of sensors outside the head (EEG, MEG) or voxels
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within the brain (fMRI). With neuroimaging data the classification problem can
be challenging as the recorded brain signals have a low signal-to-noise ratio and
the size of the data leads to a high-dimensional problem where it is easy to overfit
models to data when training a classifier. Overfitting will impact negatively on the
degree of generalization to new data and thus must be avoided in order for solutions
to be useful for practical application.

Neuroimaging classification problems have been studied extensively in recent
years primarily in efforts to develop biomarkers for neurodegenerative diseases
and other brain disorders. A variety of techniques have been applied in this
context, including support vector machines [4], Gaussian process classification [22],
regularized logistic regression [29], and neural networks [20, 23]. Decoding of brain
images using Bayesian approaches is discussed by Friston et al. [10]. While a variety
of individual classifiers or an ensemble of classifiers may be applied in any given
application, the development of general approaches to constructing features that
successfully characterize the signal in functional neuroimaging data is a key open
problem. In this article we explore the use of some recent approaches developed in
statistics and computational topology as potential solutions to this problem. More
specifically, we consider how the combination of functional principal component
analysis [27], persistent homology [3], and network measures of brain connectivity
[24] can be used to (1) explore large datasets of recorded brain activity and (2)
construct features for the brain decoding problem.

The objectives of this article are threefold. First, we wish to introduce the
brain decoding problem to researchers working in the area of high-dimensional
data analysis. This challenging problem serves as a rich arena for applying recent
advances in methodology. Moreover, the specific challenges associated with the
brain decoding problem (e.g., low signal-to-noise ratio; spatiotemporal data) can
help to further motivate the development of new methods. Our second objective
is to describe how functional principal component analysis (FPCA), persistent
homology, and network measures of brain connectivity can be used to explore such
data and construct features. To our knowledge, FPCA and persistent homology have
not been previously considered as approaches for constructing features for brain
decoding.

Our third and final objective is to illustrate these methods in a real application
involving MEG data, where the goal is to explore variability in the brain data and
to use the data to infer the type of video stimulus shown to a subject from a 1-s
recording obtained from 204 MEG sensors with the signal at each channel sampled
at a frequency of 200 Hz. Each sample thus yields 204�200D 40; 800 observations
of magnetic field measurements outside the head. The goal is to decode which of
the five possible video stimuli was shown to the subject during the recording from
these measurements. The data arising from a single sample are shown in Fig. 1,
where panel (a) depicts the brain signals recorded across all sensors during the 1-s
recording, and panel (b) depicts the variance of the signal at each location. From
panel (b) we see that in this particular sample the stimulus evoked activity in the
regions associated with the temporal and occipital lobes of the brain. The entire
dataset for the application includes a total of 1380 such samples (727 training; 653
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Fig. 1 A single sample from the training data: panel (a)—depicts the MEG (magnetic field)
signals Yli.t/ representing the evoked response collected at n D 204 sensors; panel (b)—depicts the
variance of the signal (after removal of linear trend) at 102 locations. The map is a two-dimensional
projection of the sensor array with the black dots representing the sensor locations. There are two
sensors at each location (each oriented differently) and the variance computed from each of the
sensors is averaged to obtain a single value (for the purpose of visual summary only)

test) obtained from the same subject which together yield a dataset of roughly 6 GB
in compressed format.

Functional principal component analysis (FPCA) is the extension of standard
finite-dimensional PCA to the setting where the response variables are functions, a
setting referred to as functional data. For clarity, we note here that the use of the
word “functional” in this context refers to functional data as just described, and
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is not to be confused with functional neuroimaging data which refers to imaging
data measuring the function of the brain. Given a sample of functional observations
(e.g., brain signals) with each signal assumed a realization of a square-integrable
stochastic process over a finite interval, FPCA involves the estimation of a set of
eigenvalue-eigenfunction pairs that describe the major vibrational components in
the data. These components can be used to define features for classification through
the projection of each signal onto a set of estimated eigenfunctions characterizing
most of the variability in the data. This approach has been used recently for
the classification of genetic data by Leng and Müller [17] who use FPCA in
combination with logistic regression to develop a classifier for temporal gene
expression data.

An alternative approach for exploring the patterns in brain signals is based on
viewing each signal obtained at a voxel or sensor as a point in high-dimensional
Euclidean space. The collection of signals across the brain then forms a point cloud
in this space, and the shape of this point cloud can be described using tools from
topological data analysis [3]. In this setting the data are assumed clustered around a
familiar object like a manifold, algebraic variety or cell complex and the objective
is to describe (estimate some aspect of) the topology of this object from the data.
The subject of persistent homology can be seen as a concrete manifestation of this
idea, and provides a novel method to discover nonlinear features in data. With
the same advances in modern computing technology that allow for the storage of
large datasets, persistent homology and its variants can be implemented. Features
derived from persistent homology have recently been found useful for classification
of hepatic lesions [1] and persistent homology has been applied for the analysis of
structural brain images [6, 21]. Outside the arena of medical applications, Sethares
and Budney [25] use persistent homology to study topological structures in musical
data. Recent work in Heo et al. [12] connects computational topology with the
traditional analysis of variance and combines these approaches for the analysis of
multivariate orthodontic landmark data derived from the maxillary complex. The
use of persistent homology for exploring structure of spatiotemporal functional
neuroimaging data does not appear to have been considered previously.

Another alternative for exploring patterns in the data is based on estimating and
summarizing the topology of an underlying network. Networks are commonly used
to explore patterns in both functional and structural neuroimaging data. With the
former, the nodes of the network correspond to the locations of sensors/voxels and
the links between nodes reflect some measure of dependence between the time series
collected at pairs of locations. To characterize dependence between time series, the
mutual information, a measure of shared information between two time series is
a useful quantity as it measures both linear and nonlinear dependence [30], the
latter being potentially important when characterizing dependence between brain
signals [28]. Given such a network, the corresponding topology can be summarized
with a small number of meaningful measures such as those representing the degree
of small-world organization [24]. These measures can then be explored to detect
differences in the network structure of brain activity across differing stimuli and can
be further used as features for brain decoding.
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The remainder of the paper is structured as follows. Section 2 describes the classi-
fier and discusses important considerations for defining features. Section 3 provides
a review of FPCA from the perspective of exploring functional neuroimaging data.
Sections 4 and 5 discuss persistent homology and mutual information networks,
respectively, as approaches for characterizing the interaction of brain signals and
defining nonlinear features for classification. Section 6 presents an application to
the decoding of visual stimuli from MEG data, and Sect. 7 concludes with a brief
discussion.

2 Decoding Cognitive States from Neuroimaging Data

Let us assume we have observed functional neuroimaging data Y D fyi.t/; i D
1; : : : ; nI t D 1; : : : ;Tg where yi.t/ denotes the signal of brain activity measured
at the ith sensor or voxel. We assume that there is a well-defined but unknown
cognitive state corresponding to these data that can be represented by the label C 2
f1; : : : ;Kg. The decoding problem is that of recovering C from Y. A solution to this
problem involves first summarizing Y through an m-dimensional vector of features
Yf D .Yf1 ; : : : ;Yfm/

0 and then applying a classification rule Rm ! f1; : : : ;Kg to
obtain the predicted state. A solution must specify how to construct the features
and define the classification rule, and we assume there exists a set of training
samples Yl D fyli.t/; i D 1; : : : ; nI t D 1; : : : ;Tg; l D 1; : : : ;L with known labels
Cl; l D 1; : : : ;L for doing this.

To define the classification rule we model the training labels with a multinomial
distribution where the class probabilities are related to features through a symmetric
multinomial logistic regression [9] having form

Pr.C D j/ D exp.ˇ0j C ˇ0
jYf /

PK
kD1 exp.ˇ0k C ˇ0

kYf /
; j D 1; : : : ;K (1)

with parameters � D .ˇ01;ˇ
0
1; : : : ; ˇ0K ;ˇ

0
K/

0. As the dimension of the feature vector
will be large relative to the number of training samples we estimate � from the
training data using regularized maximum likelihood. This involves maximizing a
penalized log-likelihood where the likelihood is defined by the symmetric multino-
mial logistic regression and we incorporate an elastic net penalty [32]. Optimization
is carried using cyclical coordinate descent as implemented in the glmnet package
[9] in R. The two tuning parameters weighting the l1 and l2 components of the elastic
net penalty are chosen using cross-validation over a grid of possible values. Given
O� the classification of a new sample with unknown label is based on computing
the estimated class probabilities from (1) and choosing the state with the highest
estimated value.

To define the feature vector Yf from Y we consider two aspects of the neural
signal that are likely important for discriminating cognitive states. The first aspect
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involves the shape and power of the signal at each location. These are local
features computed at each voxel or sensor irrespective of the signal observed at
other locations. The variance of the signal computed over all time points is one
such feature that will often be useful for discriminating states, as different states
may correspond to different locations of activation, and these locations will have
higher variability in the signal. The second aspect is the functional connectivity
representing how signals at different locations interact. Rather than being location
specific, such features are global and may help to resolve the cognitive state in
the case where states correspond to differing patterns of interdependence among
the signals across the brain. From this perspective we next briefly describe FPCA,
persistent homology, and mutual information networks as approaches for exploring
these aspects of functional neuroimaging data, and further how these approaches
can be used to define features for classification.

3 Functional Principal Component Analysis

Let us fix a particular location i of the brain or sensor array. At this specific
location we observe a sample of curves yli.t/, l D 1; : : : ;L where the size of
the sample corresponds to that of the training set. We assume that each curve is
an independent realization of a square-integrable stochastic process Yi.t/ on Œ0;T	
with mean EŒYi.t/	 D �i.t/ and covariance CovŒYi.t/;Yi.s/	 D Gi.s; t/. Mercer’s
Theorem states that the covariance function Gi.s; t/ can be represented as a linear
combination of orthonormal basis functions as follows:

Gi.s; t/ D
1X

mD1
�mi�mi.s/�mi.t/;

where f�mi.t/g is a set of orthogonal eigenfunctions and f�mig is the corresponding
set of eigenvalues with the order �1i � �2i � � � � and

P
m �mi < 1.

Then the stochastic process Yi.t/ can be written in terms of the Karhunen-Loève
representation [17]

Yi.t/ D �i.t/C
1X

mD1
�mi�mi.t/ (2)

where f�mi.t/g is referred to as the functional principal components (FPCs) with
corresponding coefficients

�mi D
Z T

0

.Yi.t/ � �i.t//�mi.t/dt (3)



High-Dimensional Brain Decoding 311

with EŒ�mi	 D 0, VarŒ�mi	 D �mi. The coefficients �mi are called the FPC scores. The
total variability of process realizations about �i.t/ is governed by the FPC scores
�mi and in particular by the corresponding variance �mi, with relatively higher values
corresponding to FPCs that contribute more to this total variability.

Given the L sample realizations, the estimates of �i.t/ and of the first few FPCs
can be used to explore the dominant modes of variability in the observed brain
signals at location i. The mean curve is estimated simply as O�i.t/ D 1

L

PL
lD1 yli.t/

and from this the covariance function Gi.s; t/ is estimated OGi D OCovŒYi.sk/;Yi.sl/	
using the empirical covariance over a grid of points s1; : : : ; sS 2 Œ0;T	. The
FPCs are then estimated through the spectral decomposition of OGi (see, e.g.,
[27]) with the eigenvectors yielding the estimated FPCs evaluated at the grid
points, O�mi D . O�mi.s1/; : : : ; O�mi.sS//0, and the corresponding eigenvalues being
the estimated variances O�mi for the coefficients �mi in (2). The fraction of the
sample variability explained by the first M estimated FPCs can then be expressed
as FVE.M/ D PM

mD1 O�mi=Pm
O�mi and this can be used to choose a nonnegative

integer Mi so that the predicted curves

Oyli.t/ D O�i.t/C
MiX

mD1
O�lmi O�mi.t/

explain a specified fraction of the total sample variability. We note that in producing
the predicted curve a separate realization of the coefficients �mi from (2) is estimated
from each observed signal using (3) and, for a given m, the estimated coefficients
O
mi D fO�lmi; l D 1; : : : ;Lg are referred to as the order-m FPC scores which represent
between subject variability in the particular mode of variation represented by O�mi.t/.
The scores are thus potentially useful as features for classification.

We compute the FPC scores O
mi; m D 1; : : : ;Mi separately at each location i D
1; : : : ; n. For a given location the number of FPCs, Mi, is chosen to be the smallest
integer such that the FVE.Mi/ � 0:9. Thus the number of FPCs, Mi, will vary across
locations but typically only a small number will be required. Locations requiring
a relatively greater number of FPCs will likely correspond to locations where the
signal is more complex. The total number of features introduced by our application
of FPCA for brain decoding is then

Pn
iD1Mi. The FPCs and the associated FPC

scores are computed using the fda package in R [27].

4 Persistent Homology

Let us now fix a particular sample l from the training set and consider the
collection of brain signals, yli.t/, observed over all locations i D 1; : : : ; n for
that sample. Each signal is observed over the same set of T equally spaced time
points Yli D .yli.1/; : : : ; yli.T//0 and is thus a point in RT . The sample of signals
across the brain/sensors then forms a point cloud in RT . For example, the single
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sample depicted in Fig. 1, panel (a), represents a cloud of n D 204 points in R200.
Using tools from topological data analysis we aim to identify topological structures
associated with this point cloud and to use these structures as features for brain
decoding.

Persistent homology is an algebraic method for discerning topological features
such as clusters, loops, and voids from data. We provide here only an informal
description of persistent homology that emphasizes basic concepts and intuition
for the construction of features for brain decoding. A more formal introduction
to persistent homology including the required definitions and some results from
simplicial homology theory and group theory is provided by Zhu [31]. The data
in this context consist of a discrete set of points with a metric that gives distances
between pairs of points. In our application where each point is a sensor signal we
require a metric that is a measure of statistical dependence that will collate both
correlated and anti-correlated signals. We therefore employ the absolute Pearson
correlation distance metric D.Yli;Ylj/ D 1 � �.Yli;Ylj/

2 where �.Yli;Ylj/ is the
sample correlation between signals at locations i and j.

While the topology of a discrete set of n points in RT is trivial, we consider
the points as being sampled from or clustered around a subspace with nontrivial
topology, and our interest lies in the topology of this subspace. We can create such
a space by connecting nearby points. More specifically, we consider a particular
distance scale � > 0, and we use the notion of a simplex to connect nearby
points and form a type of topological space known as a simplicial complex. The
components of a simplicial complex are simplices of differing dimensions, where
a p-simplex is the convex hull of p C 1 affinely independent points. For example,
a 0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-
simplex is a solid tetrahedron. A simplicial complex F� is a collection of simplices
of differing dimensions obeying certain rules for inclusion as well as for how the
individual simplices it contains should be glued together. For a given p-simplex
contained in F�, all of its lower dimensional faces should be contained in F� . Further,
the intersection of any two simplices in F� should be either the empty set or a shared
face of both simplices. For a given set of n data points and scale � we are able to
construct a simplicial complex from the data and determine what is known as the
homology of this simplicial complex.

Homology is a concept from algebraic topology that informally can be thought
of as a construction on a topological space that counts the number of connected
components, loops, voids, and higher-dimensional holes of that space. To construct
a simplicial complex from the data at a particular scale �, we surround each point
in the dataset with a ball of radius �=2 and connect pairs of points with an edge
whenever the intersection is non-empty, which occurs precisely when points are
separated by no more than distance �. The result is a graph with datapoints as
vertices. In addition to edges (1-simplices) between points, higher dimensional
simplices are added. A p-dimensional simplex is added whenever a subset of p C 1

points is pairwise connected. For example, if three points are connected to form
a triangle, the triangle is filled in and the corresponding 2-simplex added to the
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simplicial complex. Similarly, any four points that are pairwise connected are filled
in with a solid tetrahedron. The resulting simplicial complex is called the Vietoris-
Rips complex. The homology of such a complex can be computed using linear
algebra involving specially defined matrices (known as boundary matrices) and their
normal forms.

For a given scale � the homology of the corresponding simplicial complex F� can
be computed and is associated with the data at that particular scale. An important
quantity associated with F� is the pth Betti number, Bettip. Formally, Bettip is the
rank of a particular quotient group known as the pth homology group, the elements
of which represent classes of “interesting cycles” in the space, that is, those that
surround a hole in the space. Informally it can be thought of as representing the
number of p-dimensional holes, which for p D 0; 1; 2 corresponds to the number
of connected components, loops, and voids, respectively. If the dimension of the
topological space is d, then Bettip D 0 for p > d.

For values of � sufficiently small the homology is simply that of n connected
components with no higher dimensional holes. For � sufficiently large any two
points will be connected and the homology is simply that of a single connected
component with no higher dimensional holes. Rather than considering a single scale
based on a specific value of �, persistent homology uses a multi-scale construction
that tracks the homology of the simplicial complex F� as � � 0 varies between
the two extremes. As F�1 � F�2 whenever �1 < �2, varying � creates a nested
sequence of simplicial complexes, and this nested sequence is related to an algebraic
structure known as a persistence module. The varying homology can be computed
and tracked using specially designed computing algorithms. In this case, any given
hole (homology class) will be born at a particular scale �1 � 0 where it appears
in F�1 , and will die at another scale �2 > �1 where it disappears in F�2 . The
persistence of this homology class is then represented by the interval .�1; �2/.
Persistent features remain over a relatively long range of � values and are thus
considered as intrinsic the data. Features with short persistence are thought of as
arising from noise. A statistically rigorous division of homology classes into those
that have long persistence (signal) and short persistence (noise) is not trivial and
this issue seems to be mostly ignored in practice. Recent exceptions are the work
of Fasy et al. [7] where confidence sets for persistence diagrams are developed, and
Bobrowski et al. [2] where the authors study the persistent homology of random
simplicial complexes.

For our application the growing scale � corresponds to allowing signals with
smaller values of the squared-correlation to be linked together to form simplices in
the Vietoris-Rips complex. The nature of change in homology with respect to each
dimension p can be depicted graphically using a barcode plot, a plot that tracks the
birth and death of holes in each dimension as � varies. Features in the barcode that
are born and then quickly die are associated with noise, while features that persist
are considered indicative of topological signal in the data. If the barcode plot of
dimension p D 0 reveals signal and the higher-dimensional barcodes do not, the
data are clustered around a metric tree. If both the p D 0 and p D 1 barcodes reveal
signal and the p D 2 barcode plot does not, the data are clustered around a metric
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Fig. 2 Persistent homology computed for the single training sample depicted in Fig. 1. The first
column displays the barcodes for dimension p D 0; 1; 2 in each of the three rows, respectively, and
the second column displays the corresponding persistence diagrams

graph. A metric graph is indicative of multiple pathways for signals to get between
two sensors/voxels.

For the sample considered in Fig. 1, panel (a), the barcodes for each dimension
p D 0; 1; 2 are depicted in the first column of Fig. 2. For a given barcode plot, the
Betti number for fixed �, corresponding to the simplicial complex F�, is computed
as the number of bars above it. For p D 0 (Fig. 2, first row and first column),
Betti0 D 204 connected components are born at � D 0 corresponding to each
of the MEG sensors. Betti0 decreases rapidly as � increases and it appears that
between two to four connected components persist over a wide range of � values.
The barcode plot for dimension p D 1 (Fig. 2, second row and first column) also
appears to have features that are somewhat significant, but the p D 2 barcodes are
relatively short, likely indicating noise. Taken together this can be interpreted as
there being many loops in the point cloud. The data resemble a metric graph with
some noise added. An equivalent way to depict the persistence of features is through
a persistence diagram, which is a scatter plot comparing the birth and death � values
for each hole. The persistence diagrams corresponding to each barcode are depicted
in the second column of Fig. 2 and have the same interpretation as the barcodes. It
is interesting to note that the space of persistence diagrams can be endowed with a
metric, and while we will not make use of this fact here, in Sect. 7 we describe an
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alternative approach for constructing features that makes use of the distance between
persistence diagrams.

As for interpretation in the context of functional neuroimaging data, the number
of connected components (Betti0) represents a measure of the overall connectivity
or synchronization between sensors, with smaller values of Betti0 corresponding
to a greater degree of overall synchrony. We suspect that the number of loops
(Betti1) corresponds to the density of “information pathways” with higher values
corresponding to more complex structure having more pathways. The number of
voids (Betti2) may be related to the degree of segregation of the connections. If a
void was to persist through many values of �, then we may have a collection of
locations/sensors that are not communicating. Thus the larger the value of Betti2,
the more of these non-communicative spaces there may be.

For each value of p, p D 0; 1; 2, we construct features for classification
by extracting information from the corresponding barcode by considering the
persistence of each homology class appearing at some point in the barcode. This
is defined as the difference between the corresponding death and birth � values.
This yields a sample of persistence values for each barcode. Summary statistics
computed from this sample are then used as features. In particular, we compute the
total persistence, PMp, which is defined as one-half of the sum of all persistence
values, and we also compute the variance, skewness, and kurtosis of the sample
leading to additional features denoted as PVp, PSp, PKp, respectively. In total we
obtain 12 global features from persistent homology.

5 Mutual Information Networks

Let us again fix a particular sample l from the training set and consider the
collection of signals, yli.t/, observed over all locations i D 1; : : : ; n for the given
sample. For the moment we will suppress dependence on training sample l and
let Yi D .Yi.1/; : : : ;Yi.T//0 denote the time series recorded at location i. We next
consider a graph theoretic approach that aims to characterize the global connectivity
in the brain with a small number of neurobiologically meaningful measures. This
is achieved by estimating a weighted network from the time series where the
sensors/voxels correspond to the nodes of the network and the links Ow D . Owij/

represent the connectivity, where Owij is a measure of statistical dependence estimated
from Yi and Yj.

As a measure of dependence we consider the mutual information which quanti-
fies the shared information between two time series and measures both linear and
nonlinear dependence. The coherence between Yi and Yj at frequency� is a measure
of correlation in frequency and is defined as cohij.�/ D jfij.�/j2=.fi.�/ � fj.�//
where fij.�/ is the cross-spectral density between Yi and Yj and fi.�/, fj.�/ are the
corresponding spectral densities for each process (see, e.g., Shumway and Stoffer
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[26]). The mutual information within frequency band Œ�1; �2	 is then

ıij D � 1

2�

Z �2

�1

log.1 � cohij.�//d�

and the network weights are defined as wij D p
1 � exp.�2ıij/ which gives a

measure of dependence lying in the unit interval [14]. The estimates Ow are based
on values �1 D 0, �2 D 0:5, and computed using the MATLAB toolbox for
functional connectivity [30]). After computing the estimates of the network matrices
we retained only the top 20 % strongest connections and set the remaining weights
to Owij D 0.

We summarize the topology of the network obtained from each sample with
seven graph-theoretic measures, each of which can be expressed explicitly as a
function of Ow (see, e.g., Rubinov and Sporns [24]). In computing the measures,
the distance between any two nodes is taken as Ow�1

ij :

1. Characteristic path length: the average shortest path between all pairs of nodes.
2. Global efficiency: the average inverse shortest path length between all pairs of

nodes.
3. Local efficiency: global efficiency computed over node neighborhoods.
4. Clustering coefficient: an average measure of the prevalence of clustered connec-

tivity around individual nodes.
5. Transitivity: a robust variant of the clustering coefficient.
6. Modularity: degree to which the network may be subdivided into clearly

delineated and non-overlapping groups.
7. Assortativity coefficient: correlation coefficient between the degrees of all nodes

on two opposite ends of a link.

The seven measures are computed for each training sample and used as global
features for brain decoding.

6 Example Application: Brain Decoding from MEG

In 2011 the International Conference on Artificial Neural Networks (ICANN) held
an MEG mind reading contest sponsored by the PASCAL2 Challenge Programme.
The challenge task was to infer from brain activity, measured with MEG, the type
of a video stimulus shown to a subject. The experimental paradigm involved one
male subject who watched alternating video clips from five video types while MEG
signals were recorded at n D 204 sensor channels covering the scalp. The different
video types are:

1. Artificial: screen savers showing animated shapes or text.
2. Nature: clips from nature documentaries, showing natural scenery like mountains

or oceans.
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3. Football: clips taken from (European) football matches of Spanish La Liga.
4. Mr. Bean: clips from the episode Mind the Baby, Mr. Bean of the Mr. Bean

television series.
5. Chaplin: clips from the Modern Times feature film, starring Charlie Chaplin.

The experiment involved two separate recording sessions that took place on
consecutive days. The organizers released a series of 1-s MEG recordings in random
order which were downsampled to 200 Hz. A single recording is depicted in Fig. 1,
and the data comprise a total of 1380 such recordings. Of these, 677 recordings are
labelled training samples from the first day of the experiment and 653 are unlabelled
test samples from the second day of the experiment. Thus aside from the challenge
of decoding the stimulus associated with test samples an additional challenge arises
in that the training and test sets are from different days, leading to a potential domain
shift problem. To aid contestants with this problem the organizers released a small
additional set of 50 labelled training samples from day 2. The objective was to use
the 727 labelled training samples to build a classifier, and the submissions were
judged based on the overall accuracy rate for decoding the stimulus of the test
samples. The overall winning team obtained an accuracy rate of 68.0 %, which was
followed by 63.2 % for the second place entry, and the remaining scores ranged
from 62.8–24.2 %. Full details of the competition and results are available in Klami
et al. [15]. Following the competition, the labels for the 653 test samples were also
released. Our objective is to apply the techniques described in this article to the
ICANN MEG dataset and to compare the resulting decoding accuracy rates to those
obtained in the actual competition. All rules of the competition were followed and
the test data were only used to evaluate our approach, as in the competition.

Examination of the training data reveals the detrended variance of the signal at
each sensor to be an important feature for discriminating the stimuli. This is as
expected (see discussion in Sect. 2) and so all classifiers we consider include this
feature. Experimentation (using only the training data) with classifiers excluding
the detrended variance indicated that this is by far the most important feature and
the predicted accuracy rates we obtain from cross-validation drop significantly when
this feature is excluded. In Fig. 3 we illustrate the average spatial variation of this
feature for each of the five stimuli. Differing patterns are seen for each class.
For example, in the “Chaplin” class, the signal exhibits greatest power in sensors
representing the occipital and parietal lobes whereas, for the “Football” class we see
the greatest power in sensors representing the left and right frontal lobes. Including
the detrended variance at each sensor yields 204 features to be added to the classifier.

To derive additional features we applied FPCA to all of the training samples
separately at each sensor. Figure 4 shows the first three functional principal
components. The first FPC, depicted in panel (a), seems to capture the overall level
of the signal. The second FPC, depicted in panel (b), appears to represent an overall
trend and the third FPC, depicted in panel (c), is a mode of variation having a “U” or
an inverted “U” shape. At each sensor, we included as features the minimum number
of FPC scores required to explain 90 % of the variability at that sensor across the
training samples. The distribution of the number of scores used at each sensor is
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Fig. 3 Spatial variation of the detrended variance by stimulus class. Each map is a two-
dimensional projection of the sensor array with the black dots representing the sensors. At each
sensor we fit a linear regression on time point and compute the variance of the residuals as
the feature. There are two sensors (each oriented differently) at each of 102 locations. For the
purpose of visual summary, we average the two variance measures for each location and then
further average across all training samples within a given stimulus class. We then map the resulting
averaged measures across the scalp

depicted in Fig. 4, panel (d). At most sensors either Mi D 2 or Mi D 3 FPC scores
are used as features, and overall, FPCA introduces 452 features. Our cutoff of 90 %
was based on an examination of the FPCs for the training data, where it seemed that
the fifth and higher FPCs did not represent anything meaningful. It should be noted
that this exploratory approach for choosing the cutoff is by no means optimal, and
alternative choices could be considered. The spatial variability of the first FPC score
is depicted in Fig. 5. Differing spatial patterns across all of the stimuli are visible, in
particular for the “Chaplin” class, which tends to have elevated first FPC scores at
many sensors.

Persistent homology barcodes of dimension p D 0; 1; 2 were computed using
the TDA package in R [8] for all training samples and the 12 summary features
PMp;PVp;PSp;PKp, p D 0; 1; 2 were extracted from the barcodes. To determine
the potential usefulness for classification we compared the mean of each of these
features across the five stimuli classes using one-way analysis of variance. In most
cases the p-value corresponding to the null hypothesis of equality of the mean across
all groups was less than 0.05, with the exception of PK0 (p-value = 0.36) and PM1

(p-value = 0.34). Mutual information weighted networks were also computed for
each training sample and the seven graph theory measures discussed in Sect. 5 were
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Fig. 4 FPCA applied to the training data: panel (a)—the first FPC at each sensor; panel (b)—the
second FPC at each sensor; panel (c)—the third FPC at each sensor; (d)—the distribution of the
smallest number of FPCs required to explain at least 90 % of the variance at each sensor

calculated. Analysis of variance comparing the mean of each graph measure across
stimuli classes resulted in p-values less than 0.001 for all seven features. This initial
analysis indicates that both types of features, particularly the network features, may
be useful for discriminating the stimuli for these data.

We considered a total of seven classifiers based on the setup described in Sect. 2
each differing with respect to the features included. The features included in each
of the classifiers are indicated in Table 1. The simplest classifier included only
the detrended variance (204 features) and the most complex classifier included the
detrended variance, FPCA scores, persistent homology statistics, and graph theory
measures (675 features). As discussed in Sect. 2, the regression parameters � are
estimated by maximizing the log-likelihood of the symmetric multinomial logistic
regression subject to an elastic net penalty. The elastic net penalty is a mixture
of ridge and lasso penalties and has two tuning parameters, � � 0 a complexity
parameter, and 0 	 ˛ 	 1 a parameter balancing the ridge (˛ D 0) and lasso
(˛ D 1) components. We choose values for these tuning parameters using cross-
validation based on a nested cross-validation scheme similar to that proposed in
Huttunen et al. [13] that emphasizes the 50 labelled day 2 samples for obtaining
error estimates. We consider a sequence of possible values for ˛ lying in the set
f0; 0:1; 0:2; : : : ; 1:0g and fix ˛ at one such value. With the given value of ˛ fixed,
we perform a 200-fold cross-validation. In each fold, the training data consists of all
677 samples from day 1 and a random sample of 25 of the 50 labelled day 2 samples.
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Fig. 5 Spatial variation of the first FPC score by stimulus class. Each map is a two-dimensional
projection of the sensor array with the black dots representing the sensor locations. There are two
sensors (each oriented differently) at each of 102 locations. For the purpose of visual summary,
we average the absolute value of the two scores at each location and then further average across
all training samples within a given stimulus class. We then map the resulting averaged measures
across the scalp

The remaining labelled day 2 samples are set aside as a validation set for the given
fold. Within this fold, the 677 C 25 D 702 samples in the current training set are
subjected to another five-fold cross-validation over a sequence of � values to obtain
an optimal � value for the given ˛ and training set. The resulting model is then
used to classify the 25 validation samples resulting in a performance estimate �˛;j
corresponding to the jth fold, j D 1; : : : ; 200. The overall performance estimate for
a given ˛ is then obtained as the mean over the 200 folds �˛ D 1

200

P200
jD1 �˛;j. This

procedure is repeated for all ˛ in f0; 0:1; : : : ; 1:0g. The optimal value for the tuning
parameter ˛ is that which corresponds to the smallest error �˛ . Once the optimal
˛ value has been determined, the optimal value for � is again chosen by five-fold
cross-validation as done previously, but now using all of the 727 training samples
from both days.

Table 1 lists the cross-validation predicted accuracy rates for each of the seven
classifiers along with the test accuracy obtained from the 653 day 2 test samples.
Had we participated in the competition, our choice of classifier would have been
based on the cross-validation predicted accuracy rates. While all fairly close, the
classifier incorporating detrended variance, FPC scores, and network features would
have been chosen as our final model as this is one of two classifiers having the
highest predicted accuracy rate 61.68 % and the fewest number of features of the
two. The test accuracy from this classifier is 66.46 %, which is just short of 68.0 %



High-Dimensional Brain Decoding 321

Table 1 Results from the brain decoding competition dataset

Classifier CV predicted accuracy (%) Test accuracy (%)

Detrended variance 60.90 61.26

Detrended variance C FPCA 60.90 65.54

Detrended variance C Network
features

60.46 61.41

Detrended variance C PH 60.44 61.10

Detrended variance C FPCA C
Network features

61.68 66.46

Detrended variance C FPCA C PH 60.72 64.01

Detrended variance C FPCA C
Network features C PH

61.68 65.24

Baseline test accuracy is 23.0 % (chance level); competition winners achieved 68.0 % and second
place was 63.2 %. Note that “PH” refers to the 12 features derived using persistent homology
The bold values indicate the classifier with the highest test accuracy

Table 2 Confusion matrix summarizing the performance on the test data for the classifier
incorporating detrended variance, FPCA, and network features

True stimulus

Predicted stimulus Artificial Nature Football Mr. Bean Chaplin

Artificial 90 27 28 6 3

Nature 39 98 16 6 0

Football 14 12 54 12 4

Mr. Bean 5 11 4 76 2

Chaplin 2 3 0 25 116

obtained by the competition winners, but higher than 63.2 % accuracy rate obtained
by the first runner-up. Thus with our entry we would have finished in second place.
The confusion matrix for our classifier is presented in Table 2. Our classifier has
highest accuracy for predicting the “Chaplin” (92.8 %) video clips from the MEG
data, and lowest accuracy for predicting the “Football” (52.9 %) video clip.

With respect to interpretation of the results, the most important feature appears to
be the detrended variance. Figure 3 depicts maps showing the spatial variability of
this feature averaged across training samples within a particular stimuli class. The
maps depict regions of the scalp, which can be loosely associated with regions of
the brain, where the power of the signal is strongest for the different stimuli classes.
For example, for the “football” class the signals appear to have higher power in the
frontal regions, both left and right whereas, for the “artificial” class the power is
strongest in the right frontal and left temporal and occipital regions. The map for
the “Chaplin” class is interesting and seems rather different from the others in that
the value of the feature seems relatively more distributed across the scalp, though
with highest values in the parietal and occipital regions. Interestingly, this is the only
black and white clip. This is also the clip for which our classifier had the highest
accuracy.
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7 Discussion

We have reviewed the brain decoding problem in neuroscience and have discussed
approaches from statistics, computational topology, and graph theory for construct-
ing features for this high-dimensional classification problem. We have developed
classifiers combining FPCA, persistent homology, and graph theoretic measures
derived from mutual information networks. We have considered incorporating the
features within a classifier based on symmetric multinomial logistic regression
incorporating elastic net regularization and have applied our approach to a real brain
decoding competition dataset illustrating good performance.

Overall, examining the results in Table 1 we see that those classifiers incorporat-
ing FPC scores all perform quite well, with test accuracy scores being higher than
predicted accuracy scores. It is not clear to us what aspect of the FPC scores allows
for this increase and we are currently investigating this. This issue may be related to
the domain shift problem where all of the test samples were collected on day 2 of
the experiment, and all but 50 of the training samples were collected on day 1. The
test samples may thus reflect a learning mechanism. We have approached this issue
by emphasizing the 50 day 2 training samples when training our classifier. This
approach is by no means optimal and alternative techniques for handling domain
adaptation in brain decoding problems is of both practical and theoretical interest.
Given the positive results we have observed with the classifiers incorporating FPCA,
we are exploring the use of more general approaches based on nonlinear manifold
representations for functional data such as those recently proposed by Chen and
Müller [5]. Another aspect of FPCA we intend to explore is the incorporation of
spatial dependence. This is relevant for brain decoding as there will typically be a
high level of spatial dependence across sensors/voxels. In fact, very little research
has been conducted on this topic with the exception of the recent work of Liu et al.
[18].

Regarding the global features, there seems to be a small advantage gained in
incorporating the network features but nothing gained by incorporating persistent
homology based on our current implementation. We emphasize that this is only for
a single dataset and experimental paradigm. Performance on other brain decoding
datasets may yield different results in particular as the samples considered in our
application were based on fairly short 1-s recordings. When constructing functional
connectivity networks we chose to keep the edges having the 20 % strongest
connections. Other choices for the cutoff could be considered. An alternative
approach that was considered in exploratory work was the use of weighted graphs
with all edges between nodes included. Our investigation of this approach did not
reveal any advantage in separating the groups relative to the networks based on the
hard threshold of 20 %. An alternative approach to choosing this threshold could be
based on stability selection for structure estimation [19] and we plan to investigate
this.

We are currently exploring an alternative implementation of persistent homology
based on the recent work of Kramer et al. [16] where persistent homology is used
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to analyze spatiotemporal data of flow field patterns from numerical simulations of
fluid dynamics. In the setup of Kramer et al. [16], the data consist of a time series
of two-dimensional images, and persistent homology is used to characterize the
geometric features of each image. Letting ft W D ! R denote the image (a spatial
field) at time t, t D 1; : : : ;T, and D a topological space over which the image is
defined, persistent homology is applied to study the structure of the sub-level sets
C.ft; �/ D fx 2 Djft.x/ 	 �g as � varies from �1 to 1. The persistence diagrams
PD0.ft/ and PD1.ft/ capture, respectively, the number of connected components
and loops of C.ft; �/ as � varies. Computing the persistence diagram PDk.ft/ is
a mapping taking the image ft to a point in the space of persistence diagrams
of dimension k, Perk. This mapping is applied to each image in the time series
ft; t D 1; : : : ;T, resulting in a point cloud Xk D fPDk.ft/; t D 1; : : : ;Tg 2 Perk.
Kramer et al. [16] then use the fact that Perk is a metric space to summarize
features of this point cloud, for example, by computing the distance between
consecutive persistence diagrams. The latter summary produces a scalar time series
that captures the rate at which the geometry of images is changing over time. For
application to brain decoding, we have been investigating this approach where the
image at each time point is obtained by interpolating the MEG recordings between
sensors. Preliminary results based on this implementation of persistent homology
are encouraging and we hope to report on this in a future paper.

Acknowledgements This article is based on work from Nicole Croteau’s MSc thesis. F.S. Nathoo
is supported by an NSERC discovery grant and holds a Tier II Canada Research Chair in
Biostatistics for Spatial and High-Dimensional Data. The authors thank Rachel Levanger for useful
discussions on the implementation of persistent homology for space-time data.

References

1. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching
metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

2. Bobrowski, O., Kahle, M., Skraba, P.: Maximally persistent cycles in random geometric
complexes. arXiv preprint arXiv:1509.04347 (2015)

3. Carlsson, G. Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)
4. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image

classification. IEEE Trans. Neural Netw. 10, 1055–1064 (1999)
5. Chen, D., Müller, H.-G.: Nonlinear manifold representations for functional data. Ann. Stat. 40,

1–29 (2012)
6. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In:

Information Processing in Medical Imaging, pp. 386–397. Springer, Berlin/Heidelberg (2009)
7. Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA. arXiv preprint

arXiv:1411.1830 (2014)
8. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets

for persistence diagrams. Ann. Stat. 42(6), 2301–2339 (2014)
9. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via

coordinate descent. J. Stat. Softw. 33, 1–22 (2010)



324 N. Croteau et al.

10. Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., Ashburner, J.:
Bayesian decoding of brain images. Neuroimage 39, 181–205 (2008)

11. Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev.
Neurosci. 7, 523–534 (2006)

12. Heo, G., Gamble, J., Kim, P.T.: Topological analysis of variance and the maxillary complex. J.
Am. Stat. Assoc. 107, 477–492 (2012)

13. Huttunen, H., Manninen, T., Kauppi, J.P., Tohka, J.: Mind reading with regularized multinomial
logistic regression. Mach. Vis. Appl. 24, 1311–1325 (2013)

14. Joe, H.: Relative entropy measures of multivariate dependence. J. Am. Stat. Assoc. 84, 157–
164 (1989)

15. Klami, A., Ramkumar, P., Virtanen, S., Parkkonen, L., Hari, R., Kaski, S.: ICANN/PASCAL2
challenge: MEG mind reading—overview and results. In: Proceedings of ICANN/PASCAL2
Challenge: MEG Mind Reading (2011)

16. Kramar, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M., Mischaikow,
K.: Analysis of Kolmogorov flow and Rayleigh-Bénard convection using persistent homology.
arXiv preprint arXiv:1505.06168 (2015)

17. Leng, X., Muller, H.G.: Classification using functional data analysis for temporal gene
expression data. Bioinformatics 22, 68–76 (2006)

18. Liu, C., Ray, S., Hooker, G.: Functional principal components analysis of spatially correlated
data. arXiv:1411.4681 (2014)

19. Meinshausen, N., Buhlmann, P.: Stability selection. J. R. Stat. Soc. Ser. B 72(4), 417–473
(2010)

20. Neal, R.M., Zhang, J.: High dimensional classification with Bayesian neural networks and
Dirichlet diffusion trees. In: Feature Extraction. Springer, Berlin/Heidelberg, pp. 265–296
(2006)

21. Pachauri, D., Hinrichs, C., Chung, M.K., Johnson, S.C., Singh, V.: Topology-based kernels
with application to inference problems in Alzheimer’s disease. IEEE Trans. Med. Imaging 30,
1760–1770 (2011)

22. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced Lectures on Machine
Learning, pp. 63–71. Springer, Berlin/Heidelberg (2004)

23. Ripley, B.D.: Neural networks and related methods for classification. J. R. Stat. Soc. Ser. B
Methodol. 56, 409–456 (1994)

24. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpre-
tations. Neuroimage 52, 1059–1069 (2010)

25. Sethares, W.A., Budney, R.: Topology of musical data. J. Math. Music 8, 73–92 (2014)
26. Shumway, R.H., Stoffer, D.S.: Spectral analysis and filtering. In: Time Series Analysis and Its

Applications. Springer, New York (2011)
27. Silverman, B.W., Ramsay, J.O.: Functional Data Analysis. Springer, New York (2005)
28. Stam, C.J., Breakspear, M., van Walsum, A.M.V.C., van Dijk, B.W.: Nonlinear synchronization

in EEG and whole-head MEG recordings of healthy subjects. Hum. Brain Mapp. 19, 63–78
(2003)

29. Tomioka, R., Aihara, K., Muller, K.-R.: Logistic regression for single trial EEG classification.
Adv. Neural Inf. Process. Syst. 19, 1377–1384 (2007)

30. Zhou, D., Thompson, W.K., Siegle, G.: MATLAB toolbox for functional connectivity.
Neuroimage 47, 1590–1607 (2009)

31. Zhu, X.: Persistent homology: an introduction and a new text representation for natural
language processing. In: Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence. AAAI Press, Beijing (2013)

32. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
B Stat. Methodol. 67, 301–320 (2005)



Unsupervised Bump Hunting Using Principal
Components

Daniel A. Díaz-Pachón, Jean-Eudes Dazard, and J. Sunil Rao

Abstract Principal Components Analysis is a widely used technique for dimension
reduction and characterization of variability in multivariate populations. Our interest
lies in studying when and why the rotation to principal components can be used
effectively within a response-predictor set relationship in the context of mode
hunting. Specifically focusing on the Patient Rule Induction Method (PRIM), we
first develop a fast version of this algorithm (fastPRIM) under normality which
facilitates the theoretical studies to follow. Using basic geometrical arguments, we
then demonstrate how the Principal Components rotation of the predictor space
alone can in fact generate improved mode estimators. Simulation results are used
to illustrate our findings.

1 Introduction

The PRIM algorithm for bump hunting was first developed by Friedman and
Fisher [5]. It is an intuitively useful computational algorithm for the detection
of local maxima (or minima) on target functions. Roughly speaking, PRIM peels
the (conditional) distribution of a response from the outside in, leaving at the
end rectangular boxes which are supposed to contain a bump (see the formal
description in Algorithm 1) at page 328. However, some shortcomings against this
procedure have also appeared in the literature when several dimensions are under
consideration. For instance, as Polonik and Wang [10] explained it, the method
could fail when there are two or more modes in high-dimensional settings. Hirose
and Koga [7] also found some instances of superiority of the tree structure of a
genetic algorithm over PRIM.
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Almost at the same time, Dazard and Rao [2] proposed a supervised bump
hunting strategy, given that the use of PRIM is still “challenged in the context of
high-dimensional data.” The strategy, called Local Sparse Bump Hunting (LSBH) is
outlined in Algorithm 2 at page 327. Summarizing the algorithm, it uses a recursive
partitioning algorithm (CART) to identify subregions the whole space where at most
one mode is estimated to be present; then, a Sparse Principal Component Analysis
(SPCA) is performed separately on each local partition; and finally, the location
of the bump is determined via PRIM in the local, rotated and projected subspace
induced by the sparse principal components.

As an example, we show in Fig. 1 simulation results representing a multivariate
bimodal situation in the presence of noise, similarly to the simulation design used
by Dazard and Rao [2]. We simulated in a three-dimensional input space (p D 3)
for visualization purposes. The data consists of a mixture of two trivariate normal
distributions, taking on discrete binary response values (Z 2 f1; 2g), noised by a
trivariate uniform distribution with a null response (Z D 0), so that the the data can
be written by X � w � Np.0;˙/C .1 � w/ � Bp, where Bp � UpŒa; b	, w 2 Œ0; 1	 is
the mixing weight, and .a; b/ 2 R

2.
Notice how the data in the PC spaces determined by Partition #1 and #2 do align

with the PC coordinate axes Y11 and Y21, respectively (Fig. 1).
Our goal in this paper is to provide some theoretical basis for the use of PCs in

mode hunting using PRIM and a modified version of this algorithm that we called
“fastPRIM.” Although the original LSBH algorithm accepts more than one mode by
partition, we will restrict ourselves to the case in which there is at most one on each
partition, in order to get more workable developments and more understandable
results in this work.

In Sect. 2 we define the algorithms we are working with and set some useful
notation. Section 3 proposes a modification of PRIM (called fastPRIM) for the
particular case in which the bumps are modes in a setting of normal variables
that allows to compare the boxes in the original space and in the rotation induced
by principal components. The approach goes beyond normality and can be shown
to be true for every symmetric distributions with finite second moment, and it is
also an important reduction on the computational complexity since it is also useful
for samples when n � 0, via the central limit theorem (Sect. 3.3). In this section
we also present simulations which display the differences between considering the
original space or the PC rotation for PRIM and fastPRIM. Finally, Sect. 4 proves
Theorem 1, a result explaining why the (volume-standardized) output box mode
is higher in the PC rotation than in the original input space, a situation observed
computationally by Dazard and Rao [2] for which we give here a formal explanation.
Theorem 2 shows that in terms of bias and variance, fastPRIM does better than
PRIM. Finally, in Sect. 5 we show additional simulations relevant to the results
found in Sect. 4.
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Fig. 1 Illustration of the efficiency of the encapsulation process by LSBH of two target normal
distributions (red and green dots), in the presence of 10 % (w D 0:9) noise distribution (black dots)
in a three-dimensional input space (p D 3). We let the total sample size be n D 103. Top row: each
plot represents a projected view of the data in input subspace (X1, X2) with 95 % confidence ellipses
(dotted red and green contours—top left panel) and partitions vertices (top right panel). Only
those partitions encapsulating the target distributions are drawn. Bottom row: each plot represents
a projected view of the data in the PC subspace (Y11, Y13) of Partition #1 (bottom left), and (Y21,
Y23) of Partition #2 (bottom right)

2 Notation and Basic Concepts

We set here the concepts that will be useful throughout the paper to define the
algorithms and its modifications. Our notation on PRIM follows as a guideline the
one used by Polonik and Wang [10].

Let X be a p-dimensional real-valued random vector with distribution F. Let Z be
an integrable random variable. Let m.x/ WD EŒZjX D x	, x 2 R

p. Assume without
loss of generality that m.x/ � 0.
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Define I.A/ WD R
A m.x/dF.x/, for A � R

p. So when A D R
p, then I.A/ D EZ.

We are interested in a region C such that

ave.C/ WD I.C/

F.C/
> �; (1)

where � D ave.Rp/. Note then that ave.C/ is just a notational convenience for the
average of Z given X 2 C.

Given a box B whose sides are parallel to the coordinate axes of Rp, we peel
small pieces of B parallel to its sides and we stop peeling when what remains of the
box B becomes too small. Let the class of all these boxes be denoted by B. Given a
subset S.X/ D S � R

p and a parameter ˇ 2 .0; 1/, we define

B�̌ D arg max
B2Bfave.BjS/ W F.BjS/ D ˇg; (2)

where ave.BjS/ D I.BjS/=F.BjS/. In words, B�̌ is the box with maximum average
of Z among all the boxes whose F-measure, conditioned to the points in the box S,
is ˇ. The former definitions set the stage to define Algorithm 1 at page 328 below.

Some remarks are in order given Algorithm 1:

Algorithm 1: Patient Rule Induction Method
• (Peeling) Begin with B1 D S. For l D 1; : : : ; L � 1, where .1 � ˛/L D ˇ, and ˛ 2 .0; 1/,

remove a subbox contained in Bl, chosen among 2p candidates given by:

bj1 WD fx 2 B W xj < xj.˛/g;
bj2 WD fx 2 B W xj > xj.1�˛/g; (3)

where j D 1; : : : ; p. The subbox b�

l chosen for removal gives the largest expected value of Z
conditional on Bl n b�

l .X/. That is,

b�

l D arg min
˚
I
�
bjvjBl

� W j D 1; : : : ; p and v D 1; 2
�
: (4)

Then Bl is replaced by BlC1 D Bl n b�

l and the process is iterated as long as the current box Bl

be such that F.BljS/ � ˇ C ˛.
• (Pasting) Alongside the 2p boundaries of the resulting box B on the peeling part of the algorithm

we look for a box bC � S n B such that F.bCjS/ D ˛F.BjS/ and ave..B [ bC/ \ S/ >
ave.B \ S/. If there exists such a box bC, we replace B by .B [ bC/. If there exists more
than one box satisfying that condition, we replace B by the one that maximizes the average
ave..B [ bC/ \ S/. In words, pasting is an enlargement on the Lebesgue measure of the box
which is also an enlargement on the average ave..B [ bC/\ S/.

• (Covering) After the first application of the peeling-pasting process, we update S by S n B1,
where B1 is the box found after pasting, and iterate the peeling-pasting process replacing S D
S.1/ by S.2/ D S.1/ n B1, and so on, removing at each step k D 1; : : : ; t the optimal box of the
previous step: S.k/ D S.k�1/ n Bk�1, so that S.k/ D S.1/ n [1�b�k�1Bb. At the end of the PRIM
algorithm we are left with a region, shaped as a rectangular box:

R�. p; k/ D [

ave.BkjS.k//��

˚
BkjS.k/� : (5)
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Remark 1 The value ˛ is the second tuning parameter and xj.˛/ is the ˛-quantile of
Fj.�jBl/, the marginal conditional distribution function of Xj given the occurrence of
Bl. Thus, by construction,

˛ D Fj
�
bjvjBl

� D F
�
bjvjBl

�
: (6)

Remark 2 Conditioning on an event, say QA, is equivalent to conditioning on the
random variable 1fx 2 QAg; i.e., when this occurs, as in (2), we are conditioning on a
Bernoulli random variable.

Remark 3 When dealing with a sample, we define analogs of the terms used
previously and replace those terms in Algorithm 1 with:

In.C/ D 1

n

nX

iD1
Zi1fXi 2 Cg;

Fn.C/ D 1

n

nX

iD1
1fXi 2 Cg;

aven.C/ D In.C/

Fn.C/
;

where Fn is the empirical cumulative distribution of X1; : : : ;Xn.

Remark 4 Ignore the pasting stage, considering only peeling and covering. Let us
call ˇT the probability of the final region. Then

ˇT D PŒx 2 R�. p/	 D
tX

kD1
ˇ.1 � ˇ/k�1

D 1 � .1 � ˇ/t:

2.1 Principal Components

The theory about PCA is widely known, however we will outline it here for the
sake of completeness and to define notation. Among others, Mardia [9] presents a
thorough analysis.

If x is a random centered vector with covariance matrix˙ , we can define a linear
transformation T such that

Tx D y D 
 0x; (7)
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Algorithm 2: Local Sparse Bump Hunting
• Partition the input space into R partitions P1; : : : ;PR, using a tree-based algorithm like CART,

in such a way that there is at most one mode in each of the partitions.
• For r from 1 to Qr

– If Pr is elected for bump hunting (i.e.; if Gr , the number of class labels in Pr, is greater than
1)

· Run a local SPCA in the partition Pr , rotating and reducing the space to p0 .� p)
dimensions, and if possible, decorrelating the sparse principal components (SPC). Call
this resulting space T .Pr/.

· Estimate PRIM meta-parameters ˛ and ˇ in T .Pr/.
· Run a local and tuned PRIM-based bump hunting within T .Pr/ to get descriptive rules

of the bumps in the SPC space of the form R.r/� . p0/, as in (5), where r indicates the
partition being considered.

· Rotate the local rules R.r/ back into the input space to get rules in terms of the sparse
linear combinations.

– Actualize r to r C 1.

• Collect the rules from all partitions to get a global rule R D SR
rD1 R

.r/
� giving a full description

of the estimated bumps in the entire input space.

where 
 is a matrix such that its columns are the standardized eigenvectors of˙ WD

�
 0; � is a diagonal matrix with �1 � � � ��p � 0; and �j, j D 1; : : : ; p, are the
eigenvalues of ˙ . Then T is called the principal components transformation.

Let p0 	 p. We call X. p/ the original p-dimensional space where x lives, X0. p/
the rotated p-dimensional space where y lives, and X0. p0/ the rotated and projected
space on the p0 first PC’s.

As we will explain later, we are not advising on the reduction of dimensionality
in the context of regression or other learning settings. However, since it is relevant
to some features of our simulations, we consider the case X0. p0/ with p0 	 p.

3 fastPRIM: A More Efficient Approach to Mode Hunting

Despite successful applications in many fields, PRIM presents some shortcomings.
For instance, Friedman and Fisher [5], the proponents of the algorithm, show that in
the presence of high collinearity or high correlation PRIM is likely to behave poorly.
This is also true when there is significant background noise. Further, PRIM becomes
computationally expensive in simulations and real data sets in large dimensions. In
this section we propose a modified version of PRIM, called “fastPRIM,” aimed to
solve these two problems when we are hunting the mode. The high collinearity
problem can be solved via principal components. The computational problems can
be solved via the CLT and the geometric properties of the normal distribution, if we
can warrant n � 0.
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The following situations are variations from simple to complex of the input X
and the response Z being normally distributed N.0; ˙/ and N.0; �/, respectively.
We are interested on maximizing the density of Z given X. But there are several
ways to define the mode of a continuum distribution. So for simplicity, let us
define the mode of Z as the region C � R

p with PXŒx 2 C	 D ˇ that
maximizes

M.C/ WD
Z

C
fZ.x/dF.x/ (8)

(note the similarity of M.C/ with I.C/ in Eq. (1)). In terms of PRIM, we are
interested in the box B�̌ defined on Eq. (2). That is, B�̌ is a box such that
PXŒx 2 B�̌	 D ˇ, and inside it the mean density of the response Z is maximized.
Then, since the mean and the mode of the normal distribution coincide, finding
a box of size ˇ centered around the mean of X is equivalent to finding a box
that maximizes the mode of Z (since X and Z are both centered around the
origin).

Although it is good to have explicit knowledge of our final region of interest, on
what follows most of the results—with the exception of Theorem 1 below—can be
stated without direct reference to the mode of Z, taking into account that the mode
of Z is centered around the mean of X.

3.1 fastPRIM for Standard Normality

Let X � N.0; I/ with X living in the space S.X/. Let Z � N.0; 1/. Since the whole
input space is defined by symmetric uncorrelated variables, PRIM can be modified
in a very efficient way. (See below Algorithm 3.)

Algorithm 3: fastPRIM with Standard Normal Predictors
• (Peeling) Instead of peeling just one side of probability ˛, make 2p peels corresponding to each

side of the box, giving to each one a probability ˛.2p/�1 . Then, after L steps, the remaining box
has the same ˇ measure, it is still centered at the origin and its marginals will have probability
measure ˇ1=p.

• (Covering) Call BM.k/ the box found after the k-th step, k D 1; : : : ; t of this modified peeling
stage. Setting S.X/ D S.1/.X/, take the space S.k/.X/ WD S.1/.X/nS1�b�k�1 BM.b/ and repeat
on it the peeling stage.
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Several comments are worthy to mention related to this modification.

1. Given that the standard normal is spherical, the final box at the end of the peeling
algorithm is centered. It is also squared in that all its marginals have the same
Lebesgue measure and the same probability measure ˇ1=p. Then, instead of doing
the whole peeling stage, we can reduce it to select the central box whose vertices
are located at the coordinates corresponding to the quantiles 1

2
ˇ1=p and 1� 1

2
ˇ1=p

of each marginal.
2. Say we want to apply t steps of covering. Since the boxes chosen are centered

at the end of the t-th covering step, the final box will have probability measure
ˇT WD 1 � .1 � ˇ/t (which, by Remark 4, produces the same probability than
PRIM), each marginal has measure (ˇT/1=p, and the vertices of each marginal
are located at the coordinates corresponding to the quantiles 1

2
.ˇT/

1=p and 1 �
1
2
.ˇT/

1=p. It means that the whole fastPRIM is reduced to calculating this central
box of probability measure tˇ.

3. The only non-zero values outside the diagonal in the covariance matrix of .Z X/T

of size . pC 1/� . pC 1/ are possibly the non-diagonal terms in the first row and
the first column. Let us call them �ZX1 ; : : : ; �ZXp . From this we get that EŒZjX	 D
Pp

jD1 �ZXjXi and VŒZjX	 D 1 �Pp
jD1 �2ZXj

.
4. It does not make too much sense to have a pasting stage, since we will be adding

the same ˛ we just peeled in portions of ˛=.2p/ at each side. However, a possible
way to add this whole stage is to look for the dimension that maximizes the
conditional mean, once a portion of probability ˛=2 have been added to each
side of the selected dimension. All this, of course, provided that this maximal
conditional mean be higher than the one already found during the peeling stage.
If this stage is applied as described, the final region will be a rectangular centered
box.

Points 1, 2 and 3 can be stated as follows:

Lemma 1 Assume Z � N.0; 1/ and X � N.0; I/. Let us iterate t times Algorithm 3.
Then the whole algorithm can be reduced to a single stage of finding a centralized
box with vertices located at the coordinates corresponding to the quantiles 1

2
.ˇT/

1=p

and 1 � 1
2
.ˇT/

1=p of each of the p variables.

3.2 fastPRIM and Principal Components

Note that if Z � N.�; �2/ and X � N.0; ˙/, the same algorithm as in Sect. 3 can be
used. The only difference is that the final box will be a rectangular Lebesgue set, not
necessarily a square as before (although it continues being a square in probability).
Some comments are in order.

First, with each of the variables having possible different variances, we are
also peeling the random variables with lower variance. That is, we are peeling
precisely the variables that we do not want to touch. The whole idea behind PRIM,
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however, is to peel from the variables with high variance, leaving the ones with
lower variance as untouched as possible. The obvious solution is to use a PCA to
project on the variables with higher variance, peel on those variables, and after the
box is obtained to add the whole set of variables we chose not to touch. Adding
to the notation developed in Sect. 2.1 for PCA, call Y 0 the projection of Y to its
first p0 principal components, where 0 < p0 	 p. Algorithm 4 below makes this
explicit.

Algorithm 4: fastPRIM with Principal Components
• (PCA) Apply PCA to X to obtain the space X0. p0/.
• (Peeling) Make 2p0 peels corresponding to each side of the box, each one with probability
˛.2p0/�1. After L steps, the centered box has ˇ measure, and its marginals will have probability
ˇ1=p

0

each.
• (Covering) Call BM.k/ the box found after the k-th step, k D 1; : : : ; t, of this modified peeling

stage. Setting S.Y0/ D S.1/.Y0/, take the space S.k/.Y0/ WD S.1/.Y0/ n S1�b�k�1 BM.b/ and
repeat on it the peeling stage.

• (Completing) The final box will be given by ŒX0. p/ n X0. p0/	 [ S.t/.Y0/. That is, to the final
box we are adding the whole subspace which we chose not to peel.

In this way, we avoid to select for peeling the variables with lower variance.
Concededly, we are still peeling the same amount (we are getting squares, not
rectangles, in probability), but we are also getting an important simplification in
algorithmic complexity cost. Besides this fact, most of the comments in Sect. 3.1
are still valid but one clarification has to be made: The covariance matrix of .Z Y 0/
has size . p0 C 1/ � . p0 C 1/; as before, all the non-diagonal elements are zero,
except possibly the ones in the first row and the first column. Call �ZY0

1
; : : : ; �ZY0

p
.

Then EŒZjY 0	 D Pp0

jD1 �ZY0

j
��1
j Y 0

j and VarŒZjY 0	 D �2Z �Pp0

jD1 ��1
j �

2
ZY0

j
, where Y 0

j is

the j-th component of the random vector Y 0.
As before, we can state the following lemma:

Lemma 2 Assume Z � N.�; �2/ and X � N.0; ˙/. Iterate t times the covering
stage of Algorithm 4. Then the whole algorithm can be reduced to a two-stage
setting: First, to find a centralized box with vertices located at the coordinates
corresponding to the quantiles 1

2
.ˇT/

1=p0

and 1 � 1
2
.ˇT/

1=p0

of each of the p0
variables. Second, add the p � p0 dimensions left untouched to the final box.

Remark 5 Even though we have developed the algorithm with p0 	 p, it is not wise
to try to reduce the dimensions of the input. To be sure, the rotation of the input in
the direction of the principal components is a useful thing to do in learning settings,
as Díaz-Pachón et al. [4] have showed. However, Cox [1], Hadi and Ling [6], and
Joliffe [8], have warned against the reduction of dimensionality.
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3.3 fastPRIM and Data

The usefulness of the previous result can be more easily seen when, for relatively
large n, we consider the iid vectors X1; : : : ;Xn with finite second moment, since in
this way we can approximate to a normal distribution by the Multivariate Central
Limit Theorem:

Call X D ŒX1 � � �Xn	 and let us assume that n � 0. By the multivariate central
limit theorem, if the vectors of observations are iid, such that their distribution has
mean �X and variance˙X , we can approximate X� WD n1=2

�
X � �X

�
to a p-variate

normal distribution with parameters 0 and ˙X . That is, X can be approximated to
a distribution N.�; .1=n/˙X/. Now, Y� D X�G is the PC transformation of X�,
where G is the matrix of eigenvectors of S, the sample covariance matrix of X�; i.e.,
S D GLGT , and L is the diagonal matrix of eigenvalues of S, with lj0 � lj for all

j
0

< j.
As before, call Y 0 the projection of Y to its firsts p0 principal components. Apply

Algorithm 4.
Note that the use of the CLT is indeed well justified: since the asymptotic mean

of X� is 0, its asymptotic mode is also at 0 (or around 0).

3.4 Graphical Illustrations

In the following simulations, we first test PRIM and fastPRIM and illustrate
graphically how fastPRIM compares to PRIM either in the input space X. p/ or
in the PC space X0. p/. We generated a synthetic dataset derived from a simulation
setup similar to the one used in Sect. 1, although with a single target distribution
and a continuous normal response, without noise. Thus, the data X was simulated
as X � Np.0;˙/ with response Z � N.�; �2/. To control the amount of variance
for each input variable and their correlations, the sample covariance matrix ˙ was
constructed from a specified sample correlation matrix R and sample variance matrix
V such that ˙ WD V 1=2RV 1=2, after ensuring that the resulting matrix ˙ is symmetric
positive definite.

Simulations were carried out with a continuous normal response with parameters
� D 1 and � D 0:2, a fixed sample size n D 103, and no added noise (i.e., mixing
weight w D 1). Here, we limited ourselves to a low dimensional space (p D p0 D 2)
for graphical visualization purposes. Simulations were for a fixed peeling quantile ˛,
a fixed minimal box supportˇ, a fixed maximal coverage parameter t, and no pasting
for PRIM. Empirical results presented in Fig. 2 show the marked computational
efficiency of fastPRIM compared to PRIM. CPU times are plotted against PRIM
and fastPRIM coverage parameters k 2 f1; : : : ; tg and t 2 f1; : : : ; 20g, respectively,
in the original input space X.2/ and PC space X0.2/.

Further, empirical results presented in Fig. 3 show PRIM and fastPRIM box
coverage sequences as a function of PRIM and fastPRIM coverage parameters
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Fig. 2 Total CPU time as a function of coverage. For all plots, comparison of speed metrics
are reported against coverage parameter k 2 f1; : : : ; tg for PRIM and coverage parameter
t 2 f1; : : : ; 20g for fastPRIM, in the original input space X.2/ (left), and the PC space X0.2/

(right) for each algorithm. Total CPU time in seconds (s). Mean estimates and standard errors of
the means are reported after generating 128 Monte-Carlo replicates

k 2 f1; : : : ; tg and t 2 f1; : : : ; 20g, respectively. Notice the centering and nesting
of the series of fastPRIM boxes in contrast to the sequence of boxes induced by
PRIM (Fig. 3).

4 Comparison of the Algorithms in the Input and PC Spaces

The greatest theoretical advantage of fastPRIM is that, because of the centrality of
the boxes, it gives us a framework to compare the output mean in the original input
space and in the PC space, something that cannot be attained with the original PRIM
algorithm in which the behavior of the final region is unknown (see Fig. 2). Polonik
and Wang [10] explain how PRIM tries to approximate regression level curves, an
objective that the algorithm does not accomplish in general. With the idea of level
curves in mind, it is clear that the bump of a multivariate normal distribution can
be seen as the data inside the ellipsoids of concentration. This concept is the key to
prove the optimality of the box found on the PC space. By optimality here we mean
the box with minimal Lebesgue measure among all possible central boxes found by
fastPRIM with probability measure ˇ.

Lemma 3 Let E be a p-dimensional ellipsoid. The rectangular box that is cir-
cumscribing E (i.e., centered at the center of E, with sides parallel to the axes
of E, such that each of its edges is of length equal to the axis length of E in the
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Fig. 3 PRIM and fastPRIM box coverage sequences. Top row: PRIM complete sequence of
coverage boxes, each corresponding to a coverage step k 2 f1; : : : ; tg with a fixed peeling
quantile ˛ D 0:05, and a fixed maximal coverage parameter t D 20, corresponding to a fixed
minimal box support ˇ D 0:05. Bottom row: fastPRIM complete sequence of coverage boxes,
each corresponding to a fixed coverage parameter t 2 f1; : : : ; 20g, with a fixed ˇ D 0:05. Results
are given in the input space X.2/ (left) and in the PC space X0.2/ (right). The red to blue palette
corresponds to a range of box output means from the largest to the smallest, respectively

corresponding dimension) is the box with the minimal volume of all the rectangular
boxes containing E.

The proof of Lemma 3 is well known and is omitted here.

Proposition 1 Let X � N.0; ˙/. Assume that the true bump E of X has probability
measure ˇ0 > 0. Then, it is possible to find a rectangular box R by fastPRIM that
circumscribes E under the PC rotation with minimal Lebesgue measure over all
rectangular boxes containing E and the set of all possible rotations.
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Proof The true bump satisfies that PŒx 2 E	 D ˇ0. This bump, by definition
of normality, lives inside an ellipsoid of concentration E, of volume Vol.E/ D
�p
Q
1�j�p rj, where rj is the length of the semi axis of the dimension j and �p is

a constant that only depends on the dimension p. By Lemma 3 above, the box R
with sides parallel to the axes of E, and circumscribing E, has minimal volume over
all the boxes containing E and its volume is 2p

Q
1�j�p rj, and 2p > �p. Let us

assume that PŒx 2 R	 D ˇ (thus ˇ0 < ˇ).
Note now that R is parallel to the axes in the space of principal components

X0. p/ and it is centered at its origin. Therefore, provided an appropriate small ˛ (it
is possible that we need to adjust proportionally ˛ on each direction of the principal
components to obtain the box that circumscribes E), the minimal rectangular box
R containing the bump E can be approximated through fastPRIM and is in the
direction of the principal components. As such, then the box R has smaller Lebesgue
measure than any other approximation in every other rotation. ut
Remark 6 The box of size ˇ circumscribing the ellipsoid of concentration E is
identical to B�̌ in Eq. (2).

Proposition 1 allows us to compare box estimates in the PC space of PRIM
(Fig. 2, top-right) versus fastPRIM (Fig. 2, down-right). Remember from Eq. (5) that
R�. p; 1/ is the box obtained with PRIM after a single stage of coverage. We now
restrict ourselves to the case of R�. p; 1/ in the direction of the principal components
(i.e., its sides are parallel to the axes of X0. p/). We establish the following result:

Theorem 1 Assume X � N.0;˙/ and Z � N.0; �2/. Call R the final fastPRIM
box resulting from Algorithm 4 and assume p0 D p. As in (5), call also OR�. p; 1/ the
final box from Algorithm 1 after one stage of coverage. Assume that R and R�. p; 1/
contain the true bump. Then

M.R/

Vol.R/
>

M.R�. p; 1//

Vol.R�. p; 1//
; (9)

that is, the volume-adjusted box output mean of the mode of Z given R is bigger than
the volume-adjusted box output mean of the mode of Z given R�. p/.

Proof Note that by definition, the two boxes have sides parallel to the axes of X0. p/.
The proof is direct because of the assumptions. By Proposition 1, R is the minimal
box of measure ˇ that contains the true bump. Therefore, any other box R0 with
parallel sides to R that contains the bump also contains R. Since R is centered around
the mean of Z, every point z in the support of Z such that z 2 R0 nR have less density
than arg minz fZ.z/. Therefore M.R/ > M.R0/. From Proposition 1 we also get that
Vol.R/ < Vol.R0/.

Since R�. p; 1/ is but a particular case of a box R0, the result follows. ut
Not only R has better volume-adjusted output mean than R�. p; 1/. We conclude

showing the optimality of the latter over the former in terms of bias and variance.
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Theorem 2 Assume Z � N.�; �2/ and X � N.0; ˙/. Define E as the true bump,
and let us assume that both R and R�. p/ cover E. Then Var.ZjY 2 R/ < Var.ZjY 2
R�. p//, and R is unbiased while R�. p/ is not.

Proof Note that R and R�. p; 1/ are estimators of B�̌, as defined in Eq. (2).
Algorithm 4 is producing unbiased boxes since by construction it is centered around
the mean. In fact, R would be unbiased even if not taken in the direction of the
PC. On the other hand, OR�. p/ is almost surely biased, even in the direction of the
principal components, since it is producing boxes that are not centered around the
mean.

Now, the inequality Var.ZjY 2 R/ < Var.ZjY 2 R�. p// stems from the fact
that R is the box with minimal volume containing E. Since R is in the direction of
the principal components, every other box that contains E in the same direction also
contains R, in particular R � R�. p/. ut

5 Simulations

Next, we illustrate how the optimality of the box encapsulating the true bump is
improved in the PC space X0. p/ as compared to the input space X. p/. Empirical
results presented in Fig. 4 are for the same simulation design and the same fastPRIM
and PRIM parameters as described in Sect. 3.4, except that we now allow for higher
dimensionality since no graphical visualization is desired here ( p D 100).

Some of the theoretical results between the original input space and the PC
space are borne out based on the empirical conclusions plotted in Fig. 4. In sum,
for situations with no added noise, one observes for both algorithms that: (1) the
effect of PCA rotation dramatically decreases the box geometric volume; (2) the
box output (response) means are almost identical in the PC space and in the original
input space; and (3) the volume-adjusted box output (response) means are markedly
larger in the PC space than in the original input space—indicating a much more
concentrated determination of the true bump structure (Fig. 4).

Some additional comments:

1. As each algorithm covers the space (up to step k D t), the box support and the
box geometric volume are expected to increase monotonically (up to sampling
variability) for both algorithms.

2. The boxes are equivalent for the mean of Z and the mode of Z because Z
is normal, we expect the fastPRIM box being centered around the mean and
therefore the conditional mean of Z should be 1 (because in this simulation
the mean of Z is 1). While, the box for Z given PRIM must have a different
conditional expectation. This justifies the fact of looking at the mode of Z inside
the boxes, and not directly the mode of Z.

3. Since the the box output (response) mean is almost perfectly constant at 1 for
fastPRIM and close to 1 for PRIM, it is expected that the box volume-adjusted
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Fig. 4 Box statistics and performance metrics as a function of coverage. For all plots, results
are plotted against PRIM coverage parameter k 2 f1; : : : ; tg and fastPRIM coverage parameter
t 2 f1; : : : ; 20g in the original input space X.100/ (red) vs. the PC space X0.100/ (green), that is
for p D p0 D 100, for each algorithm: PRIM (top row) vs. fastPRIM (bottom row). First column:
box geometric volume (Log scale); second column: box output (response) mean; third column:
volume-adjusted box output (response) mean (Log scale). See simulation design for details and
metrics definitions. Mean estimates and standard errors of the means are reported after generating
128 Monte-Carlo replicates

output mean decreases monotonically at the rate of the box geometric volume for
both algorithms.

4. Also, as coverage k; t increases, the two boxes R and R�. p/ of each algorithm
converge to each other (covering most of the space), so it is expected that the
output (response) means inside the final boxes converge to each other as well
(i.e., towards the whole space mean response 1).

To illustrate the effect of increasing dimensionality, we plot in Fig. 5 the profiles
of gains in volume-adjusted box output (response) mean as a function of increasing
dimensionality p 2 f2; 3; : : : ; 8; 9; 10; 20; 30; : : : ; 180; 190; 200g. Here, the gain is
measured in terms of a ratio of the quantity of interest in the PC space X0. p0/
over that in the original input space X. p/. Empirical results presented are for the
same simulation design and the same fastPRIM and PRIM parameters as described
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Fig. 5 Gains profiles in volume-adjusted box output (response) mean as a function of dimen-
sionality p. For all plots, comparison of box statistics and performance metrics profiles are
reported as a ratio of the values obtained in the PC space X0. p0/ (denoted Y) over the original
input space X. p/ (denoted X). We show empirical results for varying dimensionality p 2
f2; 3; : : : ; 8; 9; 10; 20; 30; : : : ; 180; 190; 200g, a range of PRIM and fastPRIM coverage parameters
(k; t 2 f1; 5; 10; 15; 20g), and for both algorithms: PRIM (left) vs. fastPRIM (right). Both
coordinate axes are on the log scale

in Sect. 3.4. Notice the extremely fast increase in volume-adjusted box output
(response) mean ratio as a function of dimensionality p, that is, the marked larger
value of volume-adjusted box output (response) mean in the PC space as compared
to the one in the input space for both algorithms. Notice also the weak dependency
with respect to the coverage parameters (k; t).

Further, using the same simulation design and the same fastPRIM and PRIM
parameters as described in Sect. 3.4, we compared the efficiency of box estimates
generated by both algorithms in the PC space X0. p0/ as a function of dimension
p0 and coverage parameters k; t for PRIM or fastPRIM, respectively. Notice, the
reduced box geometric volume (Fig. 6) and increased box volume-adjusted output
(response) mean (Fig. 7) of fastPRIM as compared to PRIM.

Finally, in Figs. 8 and 9 below we compare variances of fastPRIM and PRIM
volume-adjusted box output (response) means in the PC space X0. p0/ as a function
of dimension p0 and coverage parameters k; t for PRIM or fastPRIM, respectively.
Empirical results are presented for the same simulation design and the same
fastPRIM and PRIM parameters as described in Sect. 3.4. Results show that the
variance of fastPRIM box geometric volume (Fig. 8) is reduced than its PRIM
counterparts for coverage t not too large (	 10�15), which is matched to a reduced
variance of fastPRIM volume-adjusted box output (response) mean for coverage t
not too small (	 10� 15).

Of note, the results in Figs. 6 and 7 below, and similarly in Figs. 8 and 9, are
for the sample size n D 1000 of this simulation design. In particular, efficiency
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Fig. 6 Comparative profiles of box geometric volumes in the PC space X0. p0/ as a function of
dimension p0 and coverage parameters k 2 f1; : : : ; tg or t 2 f1; : : : ; 20g for PRIM or fastPRIM,
respectively. We show results for a range of dimension p0 2 f10; 20; 100; 200g and a range of
PRIM and fastPRIM coverage parameters k 2 f1; : : : ; tg or t 2 f1; : : : ; 20g. The ‘y’ axes are on
the Log scale

results of fastPRIM versus PRIM box estimates show some dependency with respect
to coverage parameters k; t for large coverages and increasing dimensionality. As
discussed above, this reflects a finite sample-effect favoring PRIM box estimates in
these coverages and dimensionality.

Notice finally in Figs. 6 and 7 how the curves approach each other for the largest
coverage step k D t D 20, and similarly in Figs. 8 and 9 how the curves approach
the identity line. This is in line with the aforementioned convergence point of the
two boxes R and R�. p/ as coverage increases.
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Fig. 7 Comparative profiles of box volume-adjusted output (response) means in the PC space
X0. p0/ as a function of dimension p0 and coverage parameters k 2 f1; : : : ; tg or t 2 f1; : : : ; 20g for
PRIM or fastPRIM for PRIM and fastPRIM, respectively. We show results for a range of dimension
p0 2 f10; 20; 100; 200g and a range of PRIM and fastPRIM coverage parameters k 2 f1; : : : ; tg or
t 2 f1; : : : ; 20g. The ‘y’ axes are on the Log scale

6 Discussion

Our analysis here corroborates what Díaz-Pachón et al. [4] have showed on how
the rotation of the input space to one of the principal components is a reasonable
thing to do when modeling a response-predictor relationship. In fact, Dazard and
Rao [2] use a sparse PC rotation for improving bump hunting in the context of high
dimensional genomic predictors. And Dazard et al. [3] also show how this technique
can be applied to find additional heterogeneity in terms of survival outcomes for
colon cancer patients. The geometrical analysis we present here shows that as long
as the principal components are not being selected prior to modeling the response,
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Fig. 8 Comparative profiles of variances of box geometric volumes in the PC space X0. p0/ as
a function of dimensionality p0 and coverage parameters k 2 f1; : : : ; tg or t 2 f1; : : : ; 20g for
PRIM or fastPRIM, respectively. In all subplots, we show the variances of box geometric volumes
of both algorithms against each other for a range of PRIM and fastPRIM coverage parameters
(k; t 2 f1; 5; 10; 15; 16; 17; 18; 1920g) in four dimensions p0 2 f10; 20; 100; 200g. The identity
(doted) line is plotted. All axes are on the Log scale

then these improved variables can produce more accurate mode characterizations. In
order to elucidate this effect, we introduced the fastPRIM algorithm, starting with a
supervised learner and ending up with an unsupervised one. This analysis opens the
question on whether it is possible to go from supervised to unsupervised settings in
more general bump hunting situations, not only modes; and more generally, whether
is possible to go from unsupervised to supervised in other learning contexts beyond
bump hunting.
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Fig. 9 Comparative profiles of variances of box volume-adjusted output (response) means in the
PC space X0. p0/ as a function of dimensionality p0 and coverage parameters k 2 f1; : : : ; tg or
t 2 f1; : : : ; 20g for PRIM or fastPRIM, respectively. In all subplots, we show the variances of
the volume-adjusted box output (response) means of both algorithms against each other for a
range of PRIM and fastPRIM coverage parameters (k; t 2 f1; 5; 10; 15; 16; 17; 18; 1920g) in four
dimensions p0 2 f10; 20; 100; 200g. The identity (doted) line is plotted. All axes are on the Log
scale
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Identifying Gene–Environment Interactions
Associated with Prognosis Using Penalized
Quantile Regression

Guohua Wang, Yinjun Zhao, Qingzhao Zhang, Yangguang Zang,
Sanguo Zang, and Shuangge Ma

Abstract In the omics era, it has been well recognized that for complex traits
and outcomes, the interactions between genetic and environmental factors (i.e., the
G�E interactions) have important implications beyond the main effects. Most of
the existing interaction analyses have been focused on continuous and categorical
traits. Prognosis is of essential importance for complex diseases. However with
significantly more complexity, prognosis outcomes have been less studied. In the
existing interaction analysis on prognosis outcomes, the most common practice is
to fit marginal (semi)parametric models (for example, Cox) using likelihood-based
estimation and then identify important interactions based on significance level.
Such an approach has limitations. First data contamination is not uncommon. With
likelihood-based estimation, even a single contaminated observation can result in
severely biased estimation and misleading conclusions. Second, when sample size
is not large, the significance-based approach may not be reliable. To overcome these
limitations, in this study, we adopt the quantile-based estimation which is robust to
data contamination. Two techniques are adopted to accommodate right censoring.
For identifying important interactions, we adopt penalization as an alternative to
significance level. An efficient computational algorithm is developed. Simulation
shows that the proposed method can significantly outperform the alternative. We
analyze a lung cancer prognosis study with gene expression measurements.
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1 Introduction

In the omics era, significant effort has been devoted to searching for genetic markers
for disease traits and outcomes. It has been well recognized that, beyond the main
effects of genetic (G) and environmental (E) factors, their G�E interactions also
play an important role. Extensive data collection and analyses have been conducted.
There are multiple families of existing approaches. For comprehensive reviews, we
refer to [3, 4, 7, 16, 18] and others. In this study, we adopt the statistical modeling
approach, where the interactions are represented with product terms in statistical
models. Under this approach, there are two possibilities. The first is to conduct
marginal analysis and analyze one or a small number of G factors at a time [7, 18].
The second is to conduct joint analysis and describe the joint effects of a large
number of G factors in a single model [13]. Joint analysis, although may better
describe the underlying biology, often suffers high computational cost and lack of
stability. Thus, as of today, marginal analysis is still dominatingly popular and will
be considered in this study.

Most of the existing G�E studies have been focused on continuous and categor-
ical traits. For complex human diseases such as cancer and diabetes, prognosis is
of essential importance. Prognosis outcomes are often subject to censoring, making
the analysis significantly more complicated.

Denote T as the survival time of interest, Z D .Z1; : : : ;Zp/> 2 Rp�1 as the
p genes, and X D .X1; : : : ;Xq/

> 2 Rq�1 as the q clinical/environmental risk
factors. In the literature, the most common practice proceeds as follows: (a) For
gene k, consider the regression model T � �.˙

q
lD1˛klXl C �kZk C ˙

q
lD1ˇklXlZk/,

where � is the known function, ˛kl’s, �k, and ˇkl’s are the unknown regression
coefficients. Likelihood-based estimation is applied. The p-value of the estimate
of ˇkl, denoted by pkl, can be computed. (b) With the p � q p-values fpklg, apply a
multiple-comparison-adjustment approach such as the FDR (false discovery rate),
and identify important interactions. For more detailed discussions and applications,
see [7, 18].

Despite considerable successes, the approach described above has limitations.
The first is that data contamination is not uncommon, and under likelihood-
based estimation, even a single contaminated observation can lead to severely
biased estimation and false marker identification. In practice, contamination may
happen for multiple reasons. Take cancer studies as an example. Cancer is highly
heterogeneous, and different subtypes can have different prognosis patterns. Such
heterogeneity introduces contamination. For some patients, the cause of death may
be mis-classified, leading to contamination in cancer-specific survival. In addition,
the survival times extracted from death records are not always reliable. The second
limitation is that when sample size is not large, the significance level based marker
identification may not be reliable, as demonstrated in recent studies [17].

To accommodate possible data contamination, in this study, we adopt quantile
regression (QR) based estimation. QR is pioneered by Koenker [11] and has been a
popular tool in regression analysis. Under low-dimensional settings, the robustness
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properties of QR have been well studied [10]. Under high-dimensional settings,
QR has also been adopted. We refer to a recent review [20] for more discussions.
Two techniques, namely the weighted quantile regression and inverse probability
weighted quantile regression, have been adopted to accommodate right censoring.
Our literature review suggests that the application of QR to prognosis data and
interaction analysis is still very limited.

This study may differ from the existing literature in multiple aspects. First it
differs from most of the existing interaction analysis studies by adopting robust esti-
mation to better accommodate data heterogeneity. Second it adopts penalization for
identifying important interactions, which provides an alternative to the significance-
based approach and may lead to better numerical results. Third, it extends the
existing QR studies to high-dimensional prognosis data and interaction analysis.
The proposed approach can be effectively realized using existing software, and this
computational simplicity can be especially valuable for high-dimensional data and
interaction analysis. The rest of the article is organized as follows. The proposed
method is described in Sect. 2. Numerical study, including simulation in Sect. 3 and
data analysis in Sect. 4, demonstrates the effectiveness of proposed method. The
article concludes with discussions in Sect. 5.

2 Methods

2.1 Quantile Regression Based Estimation

The � th conditional quantile of T given X; Z for 0 < � < 1 is defined as Q� .T/ D
inf ft W P.T 	 tjX;Z/ D �g. For gene k.D 1; : : : ; p/, consider the model:

Q� .T/ D ak C˙
q
lD1˛klXl C �kZk C˙

q
lD1ˇklXlZk WD �>

k Uk; (1)

where ak is the intercept term, ˛k D .˛k1; : : : ; ˛kq/
> represents the main effects of

E factors, �k represents the main effect of gene k, ˇk D .ˇk1; : : : ; ˇkq/
> represents

the G�E interactions, and

�k D .ak; ˛
>
k ; �k; ˇ

>
k /

> 2 R.2qC2/�1;Uk D .1;X>;Zk;ZkX>/> 2 R.2qC2/�1:

First ignore censoring. Assume n observations fTi;X.i/;Z.i/gniD1, where
X.i/ D .X.i/1; : : : ;X.i/q/> and Z.i/ D .Z.i/1; : : : ;Z.i/p/>. Write U.i/k D
.1;X>

.i/;Z.i/k;Z.i/kX
>
.i//

>. The unknown regression coefficients can be estimated
as

O�k D arg min
nX

iD1
�� .Ti � �>

k U.i/k/;
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where �� .u/ D u f� � I.u < 0/g is the check loss function. Note that O�k is also a
solution to the following estimating equation:

Dn.�k/ D n�1
nX

iD1
U.i/kf� � 1.Ti � �>

k U.i/k 	 0/g D op.an/ (2)

where an ! 0 as n ! 1.
Practically encountered prognosis data are usually right censored. For the ith

observation, let Ci be the censoring time. Then we observe Yi D min.Ti;Ci/ and
ıi D 1.Ti 	 Ci/. We make the assumption of random censoring. Below we
consider two ways of accommodating right censoring in QR, which have been partly
motivated by existing studies [1, 19].

2.1.1 Weighted Quantile Regression

First consider the simplified scenario where F0.tjU.i/k/, the conditional cumulative
distribution function of the survival time Ti given U.i/k, is known. Then for gene
k.D 1; : : : ; p/ under model (1), the QR based objective function is

Ln.�kIF0/ D
nX

iD1

˚
wi.F0/�� .Yi � �>

k U.i/k/C .1 � wi.F0//�� .Y
C1 � �>

k U.i/k/
�
:

(3)
YC1 is a value sufficiently large and exceeds all �>

k U.i/k, and

wi.F0/ D
(
1; F0.CijU.i/k/ > � or Ti 	 CiI
��F0.CijU.i/k/
1�F0.CijU.i/k/ ; F0.CijU.i/k/ < � and Ti > Ci:

The intuition behind (3) is that the contribution of each observation to (2) only
depends on the sign of the residual Ti � �>

k U.i/k. If Ci > �>
k U.i/k or Ti 	 Ci, we

immediately know that Ti ��>
k U.i/k 	 0 and assign weight wi.F0/ D 1. For Ti > Ci

and �>
k U.i/k > Ci, we have

E
˚
1.Ti < �

>
k U.i/k/jTi > Ci

� D P.Ci < Ti < �>
k U.i/k/

P.Ti > Ci/
D � � F0.CijU.i/k/
1 � F0.CijU.i/k/ :

Therefore, we assign weight wi.F0/ D ��F0.CijU.i/k/
1�F0.CijU.i/k/ to the “pseudo observation” at

.U.i/k;Ci/ and redistribute the complimentary weight 1 � wi.F0/ at .U.i/k;YC1/
without altering the quantile fit. For related discussions, see Remark 1 in [19].
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Now consider the more flexible scenario where F0.tjU.i/k/ is unknown. The
strategy is to mimic the above development with assistance of the nonparametric
Kaplan-Meier estimate, which is

OF.t/ D 1 �
nY

iD1




1 � 1
Pn

lD1 1.Yl � Yi/

� �i.t/
(4)

where �i.t/ D I.Yi 	 t; ıi D 1/. With the KM estimate OF.t/, we are able to estimate
the weight function wi. OF/. Then plugging wi. OF/ into (3), we propose the following
objective function

Ln.�kI OF/ D
nX

iD1

n
wi. OF/�� .Yi � �>

k U.i/k/C .1 � wi. OF//�� .YC1 � �>
k U.i/k/

o
:

(5)

Remark 1 A similar approach has been considered in [19] for censored linear quan-
tile regression. Here we extend it to high-dimensional G�E interaction analysis.
Different from [19], we use the classic KM estimate as opposed to the local KM
estimate. The classic KM estimate is computationally very simple, whereas the local
KM estimate may encounter difficulty when the number of E factors is not small.
The classic KM estimate can be sufficient in this study as our goal is mainly on the
identification of G � E interactions.

2.1.2 Inverse Probability Weighted Quantile Regression

For gene k.D 1; : : : ; p/, the objective function is

Ln.�kI OG/ D
nX

iD1

ıi

OG.Ti/
�� .Yi � �>

k U.i/k/; (6)

where OG.�/ is the Kaplan-Meier estimate of the cumulative distribution function of
the censoring time [14] defined as

OG.t/ D
nY

iD1




1 � 1
Pn

lD1 1.Yl � Yi/

� I.Yi�t;ıiD0/
:

The inverse probability weighted approach is a classic technique in survival analysis.
It uses uncensored data only and assigns different weights depending on the event
times. Advancing from the published studies, here we apply it to high-dimensional
quantile regression and interaction analysis.
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2.2 Penalized Identification of Interactions

With a slight abuse of notation, we use Ln.�k/ to denote the objective function
in (5) and (6). One way to identify important interactions is to couple the QR
objective functions with the “classic” significance-based approach described in
Sect. 1. However the concern is that in most of the existing studies, significance
level is obtained based on asymptotic distributions. When the sample sizes are
small to moderate, the significance level so generated may not be reliable. This
gets especially problematic when a huge number of p-values are generated and
simultaneously compared.

Motivated by recent studies [17], we consider identifying interactions using
penalization. Specifically, for gene k, consider the penalized estimate

O�k D argmin

8
<

:
Ln.�k/C

2qC2X

jD1
'.�kj/;

9
=

;
(7)

where ' is the penalty function. Interactions with nonzero estimated coefficients are
identified as associated with prognosis.

In the literature, a large number of penalties have been developed and are
potentially applicable. Here we adopt the minimax concave penalty (MCP) [22].
Under simpler settings, this penalty has been shown to have satisfactory statistical
and numerical properties. Specifically, it enjoys the oracle consistency properties
under mild conditions. Compared to other penalties which are also consistent, it
can be preferred with its computational simplicity [15]. With MCP, '.uI�; �/ D
�
R juj
0
.1 � x

��
/Cdx, where � and � control the degrees of regularization and

concavity, respectively. In principle, we can have different tunings for different
main/interaction effects. To reduce computational cost, we apply the same tuning
to all effects.

With computational concerns, we apply the simple MCP penalty, which may not
respect the “main effects, interactions” hierarchy. That is, it is possible that a main
effect has a zero coefficient but its interactions have nonzero coefficients. As our
main interest lies in identifying interactions, this may not pose a serious problem.

2.3 Computation

The computational aspect is challenging as �� .�/ is not differentiable and MCP is
not convex. Here we resort to the majorize-minimization (MM) approach [6]. Below
we provide details for the weighted QR method. The inverse probability weighted
QR method can be solved in a similar manner.
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Rearrange data such that the first n0 observations are censored. For gene k.D
1; : : : ; p/, the proposed computational algorithm proceeds as follows:

Step 1. Take YC1 D 100maxfY1; : : : ;Yng. Appending n0 pseudo paired obser-
vations .U.1/k;YC1/; : : : ; .U.n0/k;YC1/ to the original data .U.i/k;Yi/niD1, we

obtain an augmented data set .U.i/k;Yi/; i D 1; : : : ; n C n0. Initialize �.1/k . In our
numerical study, the unpenalized estimate is used as the initial value.

Step 2. In the sth iteration, establish an approximation function Sn.� j�.s/k / of the
penalized objective function. Minimize or simply find a value that leads to a
smaller value of Sn.� j�.s/k /. Denote this estimate as �.sC1/k and move to iteration
s C 1.

Step 3. Repeat Step 2 until convergence. In our numerical study, we use the L2-
norm of the difference between two consecutive estimates less than 10�3 as the
convergence criterion. In data analysis, it is observed that the absolute values
of some estimated coefficients keep shrinking towards zero. If they fall below a
certain threshold (say, 10�4), the estimates are then set as zero.

The key is Step 2. For the weighted QR method, this step can be realized as
follows. Let r.i/k D Yi � �>

k U.i/k, i D 1; : : : ; n and r.nCi/k D YC1 � �>
k U.i/k,

i D 1; : : : ; n0 be the residual terms, and vi. OF/ D wi. OF/, i D 1; : : : ; n and viCn. OF/ D
1 � wi. OF/, i D 1; : : : ; n0 be the weights. Then (5) can be rewritten as

Ln.�kI OF/ D
nCn0X

iD1
vi. OF/�� .r.i/k/: (8)

Inspired by the majorize-minimization (MM) algorithm [8], at the sth iteration, we
introduce a quadratic function $".r.i/kjr.s/.i/k/ to approximate the quantile function
�� .r.i/k/. Specifically,

$".r.i/kjr.s/.i/k/ D 1

4

"
r2.i/k

"C jr.s/.i/kj
C .4� � 2/r.i/k C c

#

; (9)

where r.s/.i/k D Yi � �
.s/>
k U.i/k, c is a constant to ensure that $".r.i/kjr.s/.i/k/ is equal to

�� .r.i/k/ at r.s/.i/k. A small " D 10�3 is added to the denominator of the approximated
expression above to avoid dividing by zero.

As for the MCP, following the local quadratic approximation (LQA) approach
[5], we use a quadratic function to approximate it at the sth iteration. Specifically,

'.�kjI�; �/ � '.�
.s/
kj I�; �/C 1

2

' 0.j�.s/kj jI�; �/
"C j�.s/kj j

.�2kj � �
.s/2
kj /; (10)

where ' 0.jtjI�; �/ D � f1 � jtj=.��/gC is the derivative of '.tI�; �/.
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Combining (8), (9), with (10), in the sth iteration after removing the irrelevant
terms, we approximate the penalized objective function with

Sn.�kj�.s/k / D
nCn0X

iD1

(
vi. OF/
2

"
r2.i/k

"C jr.s/.i/kj
C .4� � 2/r.i/k

#)

C
2qC2X

jD1

' 0.j�.s/kj jI�; �/
"C j�.s/kj j

�2kj:

Note that Sn.�kj�.s/k / is a quadratic function, so it is easy to minimize. It is easy

to see that Sn.�
.sC1/
k j�.s/k / 	 Sn.�

.s/
k j�.s/k /. In our numerical study, we observe that

the proposed algorithm always converges. Our proposed MM approximation is built
on those developed in the literature. More specifically, in [8, 9], the convergence
properties have been established under mild regularity conditions. That is, the
limiting point of the minimizer sequence as " # 0 obtained by the MM algorithm is
a minimizer of the primal nondifferentiable objective function. Thus, it is reasonable
to expect that our MM algorithm also possesses the convergence property. For more
details on the approximations, see [8, 9].

The proposed estimate depends on the values of � and �. For � , published studies
[2, 22] suggest examining a small number of values or fixing its values. In our
experiments, the estimator is not too sensitive to � , and after some trials we set
� D 6, which has been adopted in published studies. There are multiple ways of
choosing�. One possibility is to choose its value in a way such that a pre-determined
number of effects are selected. In practical genetic studies, usually the investigators
have limited experimental resources and hence can only validate a fixed number
of (main or interaction) effects. Thus, tuning � to select a fixed number of effects
is practical. Another possibility is to use data-dependent approaches such as cross
validation.

3 Simulation

We conduct simulation to evaluate performance of the proposed method. We are
interested in comparing performance of the two proposed methods (referred to as
M1 and M2 in the tables). As the performance of penalized interaction identification
has been partly compared against that of significance-based elsewhere [17], here we
are more interested in the comparison against an unrobust objective function. In
particular, we consider the least squares (LS) objective function, which has the form

nX

iD1

ıi

OG.Ti/
.Yi � �>

k U.i/k/
2 C

2qC2X

jD1
'.�kjI�; �/;

where notations have similar implications as under the inverse probability weighted
method.
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The value of � affects the performance of different methods, in possibly different
ways. To better see the difference of different methods, we take a sequence of �
values, evaluate the interaction identification accuracy at each value, and compute
the AUC (area under the ROC curve) as the overall accuracy measure. This approach
has been adopted in multiple publications.

SIMULATION I For n D 200 samples, consider the linear regression model

Ti D X>
i ˛ C Z>

i ˇ C .Xi ˝ Zi/
>�C "i; i D 1; : : : ; n; (11)

where Xi, Zi, and Xi ˝ Zi represent the q environmental risk factors, p genes, and
p�qG � E interactions. ˛, ˇ, and � are the regression coefficients. The p genes have
a multivariate normal distribution with marginal means 0 and marginal variances 1,
which mimics gene expression data. Consider two types of correlation structures for
Zi. The first is the banded correlation. Further consider two scenarios. Under the first
scenario (Band 1), �jk D 0:33 if j j� kj D 1 and �jk D 0 otherwise. Under the second
scenario (Band 2), �jk D 0:6 if j j � kj D 1, �jk D 0:33 if j j � kj D 2, and �jk D 0

otherwise. The second correlation structure is the auto-regressive (AR) correlation
with �jk D �j j�kj. Consider two scenarios with �D 0:2 (AR(0.2)) and 0.8 (AR(0.8)).
The environmental factors also have a multivariate normal distribution. Set q D 5

and p D 500 and 1000. There are a total of 27 nonzero effects: 3 main effects of the
E factors, 4 main effects of the G factors, and 20 interactions. Their coefficients are
generated from Unif [0.2, 0.8]. Besides, consider three scenarios for the errors: (a)
Error 1 has a standard normal distribution, which represents the “standard” scenario
with no contamination. (b) Error 2 has a 0:7N.0; 1/C 0:3Cauchy.0; 1/ distribution,
which is partly contaminated. (c) Error 3 has a t-distribution with one degree of
freedom, which is heavy-tailed. The censoring times Ci’s are generated from two
uniform distributions:(1) Unif [0, 14], which results in about 10% censoring. (b)
Unif [0,1.25], which results in about 40% censoring.

Summary statistics on AUC based on 100 replicates are shown in Table 1. The
following observations can be made. The first is that under all simulation scenarios,
the proposed robust methods outperform the unrobust one. For example with Error
3, p D 1000, and 10% censoring, the mean AUCs are 0.783 (M1), 0.764 (M2),
and 0.599 (LS), respectively. When the error distribution is contaminated or heavy-
tailed, this is “as expected.” It is interesting to observe superior performance of
the robust methods under the normal error. With high-dimensional covariates and
a moderate sample size, the unrobust method may lead to unreliable estimates
when one or a small number of observations deviate from the center by chance.
The second observation is that the weighted QR method outperforms the inverse
probability weighted QR method. The difference can be large under some scenarios.
For example under Error 3, p D 1000, and 40% censoring, the mean AUCs are
0.738 (M1) and 0.598 (M2), respectively. This is intuitively reasonable, as the first
method can potentially extracts more information from data, whereas the latter
uses records with events only. In this study, we have focused on methodological
development. It will be interesting to rigorously examine the efficiency of different
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methods in future studies. In addition, performance of all methods depends on the
correlation structure and censoring rate. Similar observations have been made in the
literature.

Next we mimic SNP and other G measurements that have discrete distributions.
Specifically, for the Z values generated above, we dichotomize at �1 and 0.5
to create three levels, mimicking SNP data. The other settings are the same as
described above. Summary statistics based on 100 replicates are provided in Table 2.
We again observe that under data contamination and heavy-tailed errors, the robust
methods can significantly outperform the unrobust one. In addition, the weighted
QR method is superior to the inverse probability weighted QR method. We note

Table 2 Simulation I with discrete G measurements

Band1 Band2 AR(0.2) AR(0.8)

M1 M2 LS M1 M2 LS M1 M2 LS M1 M2 LS

p D 500; 10% censoring

Error 1 0:909 0:849 0:803 0:927 0:851 0:709 0:868 0:859 0:684 0:968 0:959 0:797

0:028 0:059 0:065 0:049 0:142 0:074 0:063 0:027 0:020 0:014 0:018 0:108

Error 2 0:856 0:827 0:601 0:939 0:937 0:748 0:885 0:832 0:664 0:902 0:897 0:826

0:038 0:019 0:136 0:028 0:020 0:078 0:026 0:012 0:077 0:013 0:030 0:039

Error 3 0:774 0:751 0:503 0:856 0:841 0:687 0:797 0:737 0:590 0:882 0:871 0:723

0:056 0:065 0:045 0:043 0:079 0:096 0:069 0:036 0:083 0:027 0:038 0:103

p D 1000; 10% censoring

Error 1 0:904 0:843 0:812 0:921 0:854 0:698 0:872 0:851 0:691 0:971 0:955 0:787

0:030 0:061 0:063 0:051 0:132 0:073 0:067 0:032 0:022 0:012 0:021 0:095

Error 2 0:854 0:819 0:602 0:937 0:934 0:739 0:882 0:840 0:665 0:905 0:899 0:817

0:041 0:023 0:138 0:031 0:022 0:082 0:027 0:015 0:074 0:015 0:032 0:036

Error 3 0:773 0:753 0:501 0:853 0:837 0:683 0:794 0:742 0:588 0:881 0:867 0:718

p D 500; 40% censoring

Error 1 0:861 0:653 0:703 0:856 0:697 0:723 0:751 0:667 0:592 0:909 0:822 0:713

0:070 0:062 0:051 0:048 0:011 0:046 0:048 0:126 0:089 0:014 0:015 0:079

Error 2 0:798 0:631 0:557 0:854 0:730 0:629 0:715 0:607 0:523 0:931 0:871 0:634

0:022 0:057 0:114 0:054 0:087 0:127 0:081 0:018 0:038 0:012 0:029 0:099

Error 3 0:654 0:652 0:497 0:796 0:669 0:507 0:694 0:575 0:506 0:884 0:728 0:598

0:069 0:076 0:012 0:022 0:088 0:026 0:057 0:069 0:080 0:036 0:070 0:074

p D 1000; 40% censoring

Error 1 0:858 0:649 0:695 0:853 0:692 0:714 0:748 0:662 0:588 0:919 0:878 0:809

0:065 0:043 0:048 0:059 0:025 0:041 0:046 0:087 0:075 0:022 0:025 0:033

Error 2 0:786 0:628 0:556 0:852 0:726 0:615 0:709 0:609 0:519 0:897 0:727 0:657

0:035 0:052 0:089 0:061 0:081 0:096 0:077 0:023 0:041 0:049 0:125 0:161

Error 3 0:632 0:628 0:476 0:772 0:659 0:503 0:688 0:565 0:501 0:871 0:701 0:674

0:071 0:074 0:013 0:052 0:079 0:032 0:053 0:071 0:083 0:043 0:011 0:107

In each cell, the first/second row is the mean value/stand deviation of AUC based on 100 replicates
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Table 3 Simulation I with continuous G measurements, Error 1, 40 % censoring, and different
sample size

Band1 Band2 AR(0.2) AR(0.8)

M1 M2 LS M1 M2 LS M1 M2 LS M1 M2 LS

p D 500

n D 50 0:812 0:692 0:603 0:733 0:728 0:602 0:693 0:624 0:571 0:826 0:828 0:701

0:043 0:057 0:073 0:036 0:076 0:032 0:052 0:059 0:039 0:073 0:058 0:064

n D 100 0:835 0:768 0:692 0:885 0:871 0:801 0:798 0:720 0:682 0:937 0:938 0:851

0:055 0:034 0:057 0:044 0:063 0:057 0:071 0:068 0:061 0:025 0:033 0:066

n D 200 0:837 0:772 0:700 0:890 0:874 0:807 0:805 0:725 0:690 0:938 0:940 0:860

0:056 0:079 0:071 0:040 0:058 0:067 0:045 0:071 0:069 0:028 0:034 0:080

n D 500 0:868 0:781 0:746 0:906 0:882 0:831 0:833 0:738 0:719 0:946 0:944 0:882

0:042 0:049 0:059 0:062 0:051 0:038 0:031 0:058 0:071 0:041 0:043 0:091

n D 800 0:881 0:792 0:767 0:913 0:894 0:853 0:847 0:746 0:751 0:953 0:952 0:909

0:074 0:063 0:089 0:057 0:088 0:056 0:043 0:082 0:075 0:038 0:042 0:063

p D 1000

n D 50 0:759 0:687 0:611 0:731 0:722 0:603 0:691 0:619 0:561 0:819 0:816 0:702

0:048 0:032 0:085 0:074 0:055 0:049 0:052 0:071 0:060 0:031 0:063 0:052

n D 100 0:808 0:757 0:703 0:893 0:865 0:808 0:777 0:735 0:683 0:928 0:933 0:859

0:035 0:048 0:067 0:032 0:069 0:069 0:053 0:055 0:066 0:057 0:083 0:072

n D 200 0:811 0:762 0:708 0:897 0:871 0:816 0:780 0:740 0:687 0:934 0:940 0:865

0:056 0:072 0:064 0:035 0:058 0:067 0:049 0:081 0:076 0:029 0:038 0:071

n D 500 0:832 0:783 0:731 0:913 0:885 0:836 0:793 0:751 0:712 0:948 0:951 0:892

0:059 0:082 0:041 0:054 0:047 0:082 0:027 0:064 0:043 0:029 0:037 0:051

n D 800 0:843 0:792 0:757 0:924 0:893 0:857 0:804 0:763 0:735 0:956 0:959 0:910

0:074 0:027 0:032 0:051 0:084 0:069 0:052 0:093 0:088 0:056 0:049 0:035

In each cell, the first/second row is the mean value/stand deviation of AUC based on 100 replicates

that in Table 2 under Error 2, performance of the inverse probability weighted QR
method can be slightly inferior to the unrobust method.

Moreover, we also take the scenario with continuous G measurements, Error 1,
and 40 % censoring as an example and examine performance with different sample
sizes. The results with n D 50; 100; 200; 500, and 800 are shown in Table 3. The
proposed robust approach has advantages with both large and small sample sizes.

SIMULATION II Under the first simulation setting, the random error and covariate
effects are independent. Here we consider the more complicated scenario where
they are correlated. Specifically, consider the model

Ti D Wi� C Wi�"i; i D 1; : : : ; n; (12)

where Wi D .X>
i ;Z

>
i ; .Xi ˝Zi/>/, � D .˛>; ˇ>; �>/>, and � is a .pC qC pq/� 1

vector. Xi, Zi, and Xi ˝ Zi have the same meanings as under Simulation I, and "i
has a standard normal distribution. Some components of � are set to be nonzero:
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one corresponds to an important E effect, four correspond to important G effects,
and twenty correspond to unimportant G�E interactions. That is, the errors are
correlated with five important effects and twenty unimportant effects. An advantage
of the QR-based methods is that we can examine different quantiles. For this specific
simulation setting, we consider � D 0:1; 0:25; 0:5; 0:75, and 0.9, under which the
nonzero elements of � equal to 0.5, 0.5, 0.5, �0:5, and �0:5, respectively. The
censoring rates are set as 20 % and 40 %. The rest of the settings are similar to those
under Simulation I.

Summary statistics are shown in Table 4. The observed patterns are similar to
those in Tables 1 and 2. A new observation is that the numerical results also depend
on the value of � . The proposed methods are built on quantile regression, which has
the appealing feature of being able to accommodate data heterogeneity, for example,
caused by heteroscedastic variance. For example, when the censoring rate is 40 %
and the correlation structure is AR(0.2), when � D 0:1, the mean AUCs are 0.752,
0.685, and 0.673, respectively. When � D 0:75, the mean AUCs are 0.861, 0.774,
and 0.639, respectively.

Table 4 Simulation II

Band1 Band2 AR(0.2) AR(0.8)

� M1 M2 LS M1 M2 LS M1 M2 LS M1 M2 LS

p D 1000; 20% censoring

0.1 0:840 0:832 0:761 0:941 0:895 0:762 0:888 0:837 0:713 0:931 0:911 0:772

0:025 0:031 0:046 0:026 0:048 0:087 0:040 0:059 0:087 0:012 0:029 0:064

0.25 0:865 0:859 0:731 0:936 0:888 0:763 0:882 0:828 0:709 0:927 0:906 0:762

0:116 0:092 0:081 0:028 0:048 0:074 0:045 0:060 0:086 0:031 0:042 0:071

0.5 0:886 0:887 0:769 0:933 0:892 0:747 0:897 0:832 0:704 0:969 0:942 0:778

0:010 0:027 0:056 0:033 0:050 0:082 0:042 0:058 0:077 0:011 0:021 0:073

0.75 0:812 0:805 0:704 0:929 0:897 0:756 0:873 0:825 0:708 0:933 0:932 0:765

0:120 0:093 0:086 0:030 0:049 0:075 0:038 0:055 0:071 0:021 0:029 0:069

0.9 0:697 0:671 0:513 0:950 0:896 0:758 0:894 0:838 0:706 0:724 0:691 0:526

0:071 0:072 0:063 0:029 0:044 0:085 0:040 0:050 0:075 0:018 0:029 0:067

p D 1000; 40% censoring

0.1 0:774 0:723 0:702 0:734 0:716 0:706 0:752 0:685 0:673 0:896 0:812 0:827

0:038 0:071 0:091 0:049 0:042 0:054 0:033 0:066 0:015 0:031 0:146 0:016

0.25 0:809 0:753 0:751 0:839 0:765 0:768 0:815 0:637 0:620 0:928 0:923 0:806

0:081 0:047 0:074 0:052 0:049 0:013 0:020 0:026 0:137 0:037 0:019 0:033

0.5 0:803 0:727 0:634 0:899 0:855 0:741 0:774 0:635 0:633 0:876 0:733 0:756

0:009 0:018 0:015 0:036 0:038 0:107 0:053 0:052 0:012 0:012 0:025 0:065

0.75 0:862 0:731 0:627 0:835 0:747 0:669 0:861 0:774 0:639 0:926 0:746 0:838

0:029 0:029 0:091 0:064 0:022 0:017 0:016 0:041 0:026 0:028 0:019 0:071

0.9 0:733 0:629 0:632 0:789 0:775 0:782 0:718 0:683 0:696 0:897 0:842 0:841

0:112 0:053 0:169 0:039 0:091 0:038 0:044 0:019 0:051 0:083 0:015 0:034

In each cell, the first/second row is the mean value/stand deviation of AUC based on 100 replicates
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Table 5 Simulation III

Correlation � D 1:8 � D 3 � D 6 � D 1
M1

Band1 0.910 (0.045) 0.914 (0.039) 0.919 (0.043) 0.843 (0.051)

Band2 0.946 (0.042) 0.948 (0.057) 0.951 (0.030) 0.881 (0.078)

AR(0.2) 0.889 (0.037) 0.894 (0.068) 0.897 (0.044) 0.832 (0.042)

AR(0.8) 0.985 (0.049) 0.988 (0.067) 0.996 (0.020) 0.924 (0.049)

M2

Band1 0.885 (0.037) 0.887 (0.053) 0.891 (0.047) 0.833 (0.055)

Band2 0.933 (0.046) 0.935 (0.069) 0.938 (0.035) 0.884 (0.082)

AR(0.2) 0.870 (0.058) 0.872 (0.061) 0.874 (0.045) 0.825 (0.057)

AR(0.8) 0.946 (0.045) 0.948 (0.053) 0.951 (0.022) 0.903(0.056)

LS

Band1 0.799 (0.035) 0.803 (0.074) 0.806 (0.060) 0.744 (0.053)

Band2 0.841 (0.063) 0.843 (0.047) 0.845 (0.066) 0.792 (0.036)

AR(0.2) 0.787 (0.076) 0.789 (0.046) 0.792 (0.061) 0.746 (0.049)

AR(0.8) 0.874 (0.047) 0.877 (0.061) 0.880 (0.054) 0.827 (0.052)

In each cell, mean AUC (standard deviation) based on 100 replicates. When � D 1, MCP
simplifies to Lasso

SIMULATION III We conduct sensitivity analysis and examine the impact of �
value on results. Specifically, consider the scenario with p D 500, 10% censoring,
and Error 1. The other settings are the same as in Simulation I. Consider � D 1.8, 3,
6 and 1, following [2, 12, 22]. Note that when � D 1, MCP simplifies to Lasso.
The summary results are shown in Table 5. We observe that although the value of �
has an impact, overall the results are not sensitive to this value. In addition, MCP is
observed to outperform Lasso, as expected.

4 Analysis of Lung Cancer Prognosis Data

Lung cancer poses a serious public health concern. Gene profiling studies have
been widely conducted, searching for genetic markers associated with lung cancer
prognosis. Most of the existing studies have been focused on the main effects. In this
section, we search for potentially important interactions. We follow [21] and analyze
data from four independent studies. The DFCI (Dana-Farber Cancer Institute) study
has a total of 78 patients, among whom 35 died during follow-up. The median
follow-up time was 51 months. The HLM (Moffitt Cancer Center) study has a total
of 76 patients, among whom 59 died during follow-up. The median follow-up time
was 39 months. The MI (University of Michigan Cancer Center) study has a total
of 92 patients, among whom 48 died during follow-up. The median follow-up time
was 55 months. The MSKCC (Memorial Sloan-Kettering Cancer Center) study has
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a total of 102 patients, among whom 38 died during follow-up. The median follow-
up time was 43.5 months. Data on 22,283 probe sets are available for analysis. Gene
expression normalization is conducted by a robust method. We refer to [21] for more
detailed experimental information.

Although the proposed methods can be straightforwardly applied, we conduct
the prescreening of genes to improve stability, following [23]. A total of 2605
genes are analyzed. There are five E factors: age, gender, smoke (smoking status),
chemotherapy treatment (denoted as “chemo”), and stage. Age is continuous;
Gender, smoke, and chemo are binary; Stage has three levels and is represented
using two binary variables.

Simulation suggests that the weighted QR method has dominatingly better
performance. Thus we only apply this method. For the tuning parameter �, we
select its value so that the main effects of twenty genes are identified. As shown
in Simulation II, results also depend on the value of � . First we consider � D 0:5,
which is the “default.” To achieve better comparability across genes, we also rescale
the estimates for different genes in a way that “Age” always has estimated coefficient
�1. The detailed results are shown in Table 6. The numbers of identified interactions
are 7 (with age), 7 (gender), 10 (smoking), 15 (chemo), and 22 (stage), respectively.

We also apply this method under � D 0:25 and 0.75. The same � value as
obtained above is applied. The results are shown in Tables 7 and 8, respectively.
A total of 25 and 27 genes are identified, respectively. We note that, for the main
effects, the three quantile values lead to large overlaps. However, the overlaps in
interactions are only moderate. Such an observation is not surprising and has also
been made under simpler settings.

5 Discussion

For complex diseases, prognosis is of essential importance. In this article, we have
focused on detecting important G�E interactions for prognosis, which has not
been extensively studied in the literature. Significantly advancing from the existing
studies, two quantile regression-based objective functions are adopted, which are
robust to contamination in the prognosis outcome. In addition, penalization is
adopted as an alternative way of marker selection. Simulation study under diverse
settings shows the superior performance of the weighted QR method. The analysis
of lung cancer prognosis data with gene expression measurements demonstrates the
practical applicability of proposed method.

Robust methods have been shown to be powerful under low-dimensional set-
tings. The development under high-dimensional settings is still relatively limited.
Although several high-dimensional QR methods have been developed, the analysis
of interactions is still limited. It will be of interest to more broadly extend low-
dimensional robust methods to high-dimensional interaction analysis. The proposed
methods are robust to data contamination. In the literature, there are also methods
that are robust to model mis-specification [17]. However, some other aspects of
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robustness, for example to contamination in covariates, remain to be more carefully
studied. In addition, it is also of interest to explore “combining” multiple aspects
of robustness. In this study, we have focused on methodological development.
The establishment of statistical properties will be postponed to future studies.
Specifically, it will be of interest to identify sufficient conditions under which the
proposed approach has the consistency properties. The relative efficiency of the two
quantile methods is also potentially interesting.
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AMixture of Variance-Gamma Factor
Analyzers

Sharon M. McNicholas, Paul D. McNicholas, and Ryan P. Browne

Abstract The mixture of factor analyzers model is extended to variance-gamma
mixtures to facilitate flexible clustering of high-dimensional data. The formation
of the variance-gamma distribution utilized is a special and limiting case of the
generalized hyperbolic distribution. Parameter estimation for these mixtures is
carried out via an alternating expectation-conditional maximization algorithm, and
relies on convenient expressions for expected values for the generalized inverse
Gaussian distribution. The Bayesian information criterion is used to select the
number of latent factors. The mixture of variance-gamma factor analyzers model
is illustrated on a well-known breast cancer data set. Finally, the place of variance-
gamma mixtures within the growing body of literature on non-Gaussian mixtures is
considered.

Keywords Clustering • Factor analysis • High-dimensional data • Mixture mod-
els • MVGFA • Variance-gamma distribution • Variance-gamma factor analyzers

1 Introduction

Finite mixture models treat a population as a convex combination of a finite
number of probability densities. Therefore, they represent a natural framework
for classification and clustering applications. A random vector X arises from a
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(parametric) finite mixture distribution if, for all x � X, its density can be written

f .x j #/ D
GX

gD1
�gfg.x j �g/;

where �g > 0 such that
PG

gD1 �g D 1 are the mixing proportions, fg.x j �g/ is the
gth component density, and # D .�;�1; : : : ;�G/ denotes the vector of parameters
with � D .�1; : : : ; �G/. The component densities f1.x j �1/; : : : ; fG.x j �G/ are
typically taken to be of the same type, most commonly multivariate Gaussian.

Multivariate Gaussian mixtures have become increasingly popular in clustering
and classification since they were first considered in this context over 60 years ago
(cf. [42, Sect. 2.1]). The Gaussian mixture density is

f .x j #/ D
GX

gD1
�g�.x j �g;˙ g/; (1)

where �.x j �g;˙ g/ is the multivariate Gaussian density with mean �g and
covariance matrix ˙ g. Suppose p-dimensional data x1; : : : ; xn are observed and no
component memberships are known, i.e., a clustering scenario. The likelihood for
the Gaussian mixture model in this case can be written

L .# j x/ D
nY

iD1

GX

gD1
�g�.xi j �g;˙ g/:

The term “model-based clustering” is usually taken to mean the application of mix-
ture models for clustering. The term “model-based classification” is used similarly
(e.g., [16, 41]) and is synonymous with “partial classification” (cf. [38, Sect. 2.7])—
both terms refer to a semi-supervised version of model-based clustering—while
model-based discriminant analysis is completely supervised (cf. [23]).

Over the past few years, there has been a marked increase in work on non-
Gaussian mixtures for clustering and classification. Initially, this work focused
on mixtures of multivariate t-distributions [2–5, 35, 49, 53], which represent a
straightforward departure from normality. More recently, work on the skew-normal
distribution [33] and the skew-t distribution [31, 34, 46, 47, 56, 57] has been
predominant, as well as work on other approaches (e.g., [13, 14, 26, 48]). Browne
and McNicholas [12] add to the richness of this pallet by introducing a mixture of
generalized hyperbolic distributions; many other approaches that have been tried are
special cases of this “superclass.” Herein, we consider an approach that extends the
mixture of factor analyzers model to a mixture of variance-gamma factor analyzers.
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2 A Mixture of Variance Gamma Distributions

2.1 Generalized Inverse Gaussian Distribution

The generalized inverse Gaussian (GIG) distribution was introduced by Good
[21] and further developed by Barndorff-Nielsen and Halgreen [6], Blæsild [9],
Halgreen [22], and Jørgensen [25]. Write Y v GIG. ; 
; �/ to indicate that a
random variable Y follows a generalized inverse Gaussian (GIG) distribution with
parameters . ; 
; �/ and density

p.y j  ; 
; �/ D . =
/�=2 y��1

2K�
�p
 

� exp




� y C 
=y

2

�

; (2)

for y > 0, where  ; 
 2 R
C, � 2 R, and K�.�/ is the modified Bessel function of

the third kind with index �.

2.2 Generalized Hyperbolic Distribution

McNeil et al. [40] give the density of a random variable X following the generalized
hyperbolic distribution,

f .x j �/ D
�

C ı .x;� j ˙ /
 C ˛0˙�1˛

� ��p=2
2

�
Œ =
	�=2K��p=2


q
Œ C ˛0˙�1˛	Œ
C ı.x;� j ˙ /	

�

.2�/p=2 j˙ j1=2 K�
�p

 

�
exp

˚
.�� x/0˙�1˛

� ;

(3)

where � is a location parameter, ˛ is a skewness parameter, ˙ is a scale matrix,

 and  are concentration parameters, � is an index parameter, ı .x;� j ˙ / D
.x ��/0˙�1 .x ��/ is the squared Mahalanobis distance between x and �, and
� D .�; 
;  ;�;�;˛/ is the vector of parameters. Herein, we use the notation
X v Gp .�; 
;  ;�;˙ ;˛/ to indicate that a p-dimensional random variable X has
the generalized hyperbolic density in (3). Note that some constraint needs to be
imposed on (3) to ensure identifiability; see [12] for details.

A generalized hyperbolic random variable X can be generated by combining a
random variable Y v GIG. ; 
; �/ and a multivariate Gaussian random variable
V v N .0;˙ / via the relationship

X D �C Y˛C p
YV; (4)



372 S.M. McNicholas et al.

and it follows that X j y v N .� C y˛; y˙ /. From Bayes’ theorem, we obtain
Y j x v GIG. C ˛0˙�1˛; 
C ı .x;� j ˙ / ; � � p=2/. See [12] for details.

2.3 A Mixture of Variance-Gamma Distributions

The variance-gamma distribution arises as a special, limiting case of the generalized
hyperbolic distribution (3) by setting � > 0 and 
 ! 0. Note that the variance-
gamma distribution is also known as the generalized or Bessel function distribution.
To obtain this representation of the variance-gamma distribution, we need to note
that for small, positive b:

Ka.b/ �
(

� log
�
b
2

� � " if a D 0;

 .a/
2

�
2
b

�a
if a > 0;

where Ka.b/ is the modified Bessel function of the third kind with index a and " is
the Euler-Mascheroni constant. Noting that � > 0, we have



 




��=2
1

K�.
p

 /

� 21��


 .�/
 � (5)

for small, positive 
. Using the result in (5), we obtain the following variance-
gamma density as a special, limiting case of (3):

v.x j �;˙ ;˛; �;  /

D
�
ı .x;� j ˙ /
 C ˛0˙�1˛

� ��p=2
2

21�� �K��p=2


q
. C ˛0˙�1˛/ı.x;� j ˙ /

�


 .�/ .2�/p=2 j˙ j1=2 exp
˚
.�� x/0˙�1˛

� ;

(6)

for � > 0 and with the same notation as before. The notation X v
Vp .�;˙ ;˛; �;  / is used to indicate that a p-dimensional random variable X
has the variance-gamma density in (6). By analogy with the generalized hyperbolic
case, a random variable X v Vp .�;˙ ;˛; �;  / can be generated by combining a
random variable Y v gamma.�;  =2/ and a multivariate Gaussian random variable
V v N .0;˙ / using the relationship

X D �C Y˛C p
YV: (7)
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Note that Y v gamma.�;  =2/ denotes a gamma random variable Y with the shape-
rate parameterization, i.e., with density

g.y j a; b/ D ba


 .a/
ya�1 exp f�byg ; (8)

for y > 0 and a; b 2 R
C.

From (7), we have X j y v N .�C y˛; y�/. Therefore, noting that

ı.x;�C y˛ j y˙ /
D ˛0˙�1˛y � .x ��/0˙�1˛ � ˛0˙�1.x � �/C ı.x;� j ˙ /=y;

Bayes’ theorem gives

f .y j x/ D �.x j y/g.y/
v.x/

D
"
 C ˛0˙�1˛

ı .x;� j ˙ /

# ��p=2
2 y��p=2�1 exp

˚� �y � C ˛0˙�1˛
�C y�1ı .x;� j ˙ /	 =2�

2K��p=2


q�
 C ˛0˙�1˛

�
ı .x;� j ˙ /

� ;

and so Y j x v GIG. C ˛0˙�1˛; ı .x;� j ˙ / ; � � p=2/.
There are several limiting and special cases of the variance-gamma distribution.

Most relevant to clustering applications is the special case called the asymmetric
Laplace distribution (cf. [29]), which arises upon setting � D 1 and D 2. With the
addition of a location parameter, the (shifted) asymmetric Laplace distribution was
used for mixture model-based clustering and classification by Franczak et al. [18].

Unfortunately, an identifiability issue will arise if we proceed with (6) as is. To
see why this is so, consider that (6) can be written

v.x j �;˙ ;˛; �;  /

D
"


1

 2

�
 ı .x;� j ˙ /
1C 1

 
˛0˙�1˛

# ��p=2
2

�
21�� �K��p=2

�q
.1C 1

 
˛0˙�1˛/ ı.x;� j ˙ /

�


 .�/ .2�/p=2 j˙ j1=2 exp
˚
.� � x/0˙�1˛

� ;

D
�
ı .x;� j ˙ �/
1C ˛0�˙�1� ˛�

� ��p=2
2

21��K��p=2


q
.1C ˛0�˙�1� ˛�/ı.x;� j ˙ �/

�


 .�/ .2�/p=2 j˙ �j1=2 exp
˚
.� � x/0˙�1� ˛�

� ;
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where

˛� D 1

 
˛ and ˙�1� D  ˙�1:

To overcome this problem, set EŒY	 D 1 in (7), i.e., impose the restriction � D  =2.
For notational clarity, define � WD � D  =2. Then, our variance-gamma density can
be written

v�.x j �;˙ ;˛; �/ D
�
ı .x;� j ˙ /
2� C ˛0˙�1˛

� ��p=2
2

�
2��K��p=2


q
.2� C ˛0˙�1˛/ı.x;� j ˙ /

�


 .�/ .2�/p=2 j˙ j1=2 exp
˚
.� � x/0˙�1˛

� ;

(9)

and Y j x v GIG.2� C ˛0˙�1˛; ı .x;� j ˙ / ; � � p=2/. Our mixture of variance-
gamma distributions has density

vmix.x j #/ D
GX

gD1
�gv�.x j �g;˙ g;˛g; �g/;

with the same notation as before.

3 A Mixture of Variance Gamma Factor Analyzers

3.1 Background

The number of free parameters in a p-dimensional, G-component mixture of
variance-gamma distributions can be prohibitively large for even relatively small
values of p. The scale matrices ˙ 1; : : : ;˙G contain Gp.p C 1/=2 free parameters,
i.e., a number that is quadratic in p. There are 2G.1Cp/�1 further free parameters,
i.e., a number that is linear in p. Accordingly, it is natural to first look to the
component scale matrices as a means of introducing parsimony. One approach is
to introduce lower dimensional latent variables.

Given p-dimensional data x1; : : : ; xn, factor analysis finds q-dimensional latent
factors u1; : : : ;un, with q < p, that explain a great deal of the variability in the data.
The factor analysis model can be written

Xi D �C	Ui C ei; (10)
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for i D 1; : : : ; n, where Ui � N .0; Iq/, with q < p, and ei � N .0;� /. Note that
U1; : : : ;Un are distributed independently, and independently of the errors e1; : : : ; en,
which are also distributed independently. The matrix 	 is a p � q matrix of factor
loadings, and� is a p�p diagonal matrix with strictly positive entries. The marginal
distribution of Xi from model (10) is N .�;		0 C � /.

Ghahramani and Hinton [20] and McLachlan and Peel [39] consider a mixture
of factor analyzers model, where

Xi D �g C	gUig C eig (11)

with probability �g, for i D 1; : : : ; n and g D 1; : : : ;G.

3.2 The Model

This model can be extended to the variance-gamma distribution by first noting thatV
in (7) can be decomposed using a factor analysis model, i.e.,

V D 	U C e;

where U � N .0; Iq/ and e � N .0;� /. Then, we can write

X D �C Y˛C p
Y.	U C e/; (12)

where Y v gamma.�; �/, and it follows that X j y � N .� C y˛; y.		0 C � //.
Then, similar to the mixture of skew-t factor analyzers (MSTFA) model of Murray
et al. [46] and the mixture of generalized hyperbolic factor analyzers (MGHFA)
model of Tortora et al. [55], we have a mixture of variance-gamma factor analyzers
(MVGFA) model with density

vmixfac.x j #/ D
GX

gD1
�gv�.x j �g;	g	

0
g C � g;˛g; �g/: (13)

3.3 Parameter Estimation

Let zig denote component membership, where zig D 1 if xi is in component g
and zig D 0 otherwise, for i D 1; : : : ; n and g D 1; : : : ;G. The alternating
expectation-conditional maximization (AECM) algorithm [45] can be useful when
there are multiple sources of unobserved data (missing data and/or latent variables)
and one wishes to find maximum likelihood estimates. The AECM algorithm is
a variant of the expectation-maximization (EM) algorithm [17] and, similar to the
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EM algorithm, is based on the complete-data log-likelihood. Note that the complete-
data likelihood is the likelihood of the observed data together with the unobserved
data. In our mixture of variance-gamma factor analyzers model, the complete-data
consist of the observed xi as well as the missing labels zig, the latent yig, and the
latent factors uig, for i D 1; : : : ; n and g D 1; : : : ;G. The AECM algorithm allows
specification of different complete-data at each stage of the algorithm.

In each E-step, the expected value of the complete-data log-likelihood is
computed. The conditional expected value of Zig is given by

EŒZig j xi	 D �gvmixfac.xi j #g/
PG

hD1 �hvmixfac.xi j #h/
DW Ozig:

Note that Yig j xi; zig D 1 v GIG.2�g C ˛0
g˙

�1
g ˛g; ı

�
xi;�g j ˙ g

�
; �g � p=2/ and

so we have convenient forms for the following expected values:

EŒYig j xi; zig D 1	 D
s

ı.xi;�gj˙ g/

2�g C ˛g0˙ g
�1˛g

�
K�g� p

2C1

q

Œ2�g C ˛g0˙ g
�1˛g	ı.xi;�gj˙ g/

�

K�g� p
2


q
Œ2�g C ˛g0˙ g

�1˛g	ı.xi;�gj˙ g/

� DW aig;

EŒ1=Yig j xi; zig D 1	 D � 2�g � p

ı.xi;�gj˙ g/

C
s
2�g C ˛g

0˙ g
�1˛g

ı.xi;�gj˙ g/

K�g� p
2C1


q
Œ2�g C ˛g0˙ g

�1˛g	ı.xi;�gj˙ g/

�

K�g� p
2


q
Œ2�g C ˛g0˙ g

�1˛g	ı.xi;�gj˙ g/

� DW big;

EŒlog Yig j xi; zig D 1	 D log

s
ı.xi;�gj˙ g/

2�g C ˛g0˙ g
�1˛g

C @

@t
log




Kt


q
Œ2�g C ˛g0˙ g

�1˛g	ı.xi;�gj˙ g/

�� ˇ
ˇ
ˇ
ˇ
tD�g� p

2

DW cig:

When the latent factors Uig are part of the complete-data, the following expectations
are also needed,

EŒUig j xi; zig D 1	 D ˇg.xi � �g � aig˛g/ DW E1ig;
EŒ.1=Yig/Uig j xi; zig D 1	 D ˇgŒbig.xi ��g/� ˛g	 DW E2ig;
EŒ.1=Yig/UigU0

ig j xi; zig D 1	 D bigŒIq � ˇg	g C ˇg.xi � �g/.xi � �g/
0ˇ0

g	

� ˇgŒ.xi ��g/˛
0
g C ˛g.xi � �g/

0	ˇ0
g C aigˇg˛g˛

0
gˇ

0
g DW E3ig;
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where ˇg D 	0
g.	g	

0
g C � g/

�1. As usual, all expectations are conditional on the
current parameter estimates.

At the first stage of the AECM algorithm, the complete-data comprise the
observed xi, the missing labels zig, and the latent yig, and we update the mixing
proportions �g, the component means �g, the skewness ˛g, and the concentration
parameter �g. The complete-data log-likelihood is

l1 D
nX

iD1

GX

gD1
zig
�

log�g C log�.xi j �g C yig˛g; yig.	g	
0
g C � g//

C log g.yig j �g; �g/
	
:

After forming the (conditional) expected value of l1, updates for �g, �g, and ˛g are:

O�g D ng
n
; O�g D

Pn
iD1 Ozigxi.Nagbig � 1/
Pn

iD1 Ozig.Nagbig � 1/
; and Ǫ g D

Pn
iD1 Ozigxi.big � Nbg/

Pn
iD1 Ozig.Nagbig � 1/ ;

respectively, where ng D Pn
iD1 Ozig, Nag D .1=ng/

Pn
iD1 Ozigaig, and Nbg D

.1=ng/
Pn

iD1 Ozigbig. The update for �g arises as the solution to the equation

'.�g/ � Ozig log �g D Ncg � Nag C 1;

where '.�/ is the digamma function and Ncg D .1=ng/
Pn

iD1 Ozigcig.
At the second stage, the complete-data comprise the observed xi, the missing

zig, the latent yig, and the latent uig. At this stage, 	g and � g are updated, and the
complete-data log-likelihood can be written

l2 D
nX

iD1

GX

gD1
zig
�

log�g C log�.xi j �g C yig˛g C	guig; yig� g/

C log�.uig j 0; yigIq/C log g.yig j�g; �g/
	
:

That is,

l2 D C � 1

2

nX

iD1

GX

gD1
zig

�

log j� gj C 1

yig
trf.xi ��g/.xi � �g/

0��1
g g

� 2 trf.xi � �g/˛
0
g�

�1
g g C yig trf˛g˛0

g�
�1
g g � 2

yig
trf.xi ��g/

0��1
g 	guigg

C 2 trf˛0
g�

�1
g 	guigg C 1

yig
trf	guigu0

ig	
0
g�

�1
g g
�

;
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where C is constant with respect to 	g and � g. Taking the (conditional) expected
value of l2 gives

Q2 D C � 1

2

nX

iD1

GX

gD1
Ozig
�

log j� gj C big trf.xi � O�g/.xi � O�g/
0��1

g g

� 2 trf.xi � O�g/ Ǫ 0
g�

�1
g g C aig trf Ǫ g Ǫ 0

g�
�1
g g � 2 trf.xi � O�g/

0��1
g 	gE2igg

C 2 trf Ǫ 0
g�

�1
g 	gE1igg C trf	gE3ig	0

g�
�1
g g
�

:

Differentiating Q2 with respect to 	g gives

S1.	g;� g/ D @Q2
@	g

D �1
2

nX

iD1
Ozig
��2��1

g .xi � O�g/E
0
2ig C 2��1

g Ǫ gE0
1ig C ��1

g 	g.E0
3ig C E3ig/

	
;

and solving S1. O	g; O� g/ D 0 gives the update

O	g D

 nX

iD1
Ozig
�
.xi � O�g/E

0
2ig � Ǫ gE0

1ig

	
�
 nX

iD1
OzigE3ig

��1
:

Differentiating Q2 with respect to ��1
g gives

S2.	g;� g/ D @Q2
@��1

g

D 1

2

nX

iD1
Ozig� g � 1

2

nX

iD1
Ozig
h
big.xi � O�g/.xi � O�g/

0

� 2 Ǫ g.xi � O�g/
0 C aig Ǫ g Ǫ 0

g � 2.xi � O�g/E
0
2ig	

0
g C 2 Ǫ gE0

1ig	
0
g C	gE3ig	0

g

i
;

and solving diagfS2. O	g; O� g/g D 0 we obtain

O� g D 1

ng
diag


 nX

iD1
Ozig
h
big.xi � O�g/.xi � O�g/

0 � 2 Ǫ g.xi � O�g/
0 C aig Ǫ g Ǫ 0

g

� 2.xi � O�g/E
0
2ig

O	0
g C 2 Ǫ gE0

1ig
O	0
g C O	gE3ig O	0

g

i�

:

Note that the direct inversion of the matrix 	g	
0
g C � g requires inversion of a

p � p matrix, which can be very slow for larger values of p. From the Woodbury
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identity [59], we have the formula

.	g	
0
g C� g/

�1 D ��1
g � ��1

g 	g.Iq C	0
g�

�1
g 	g/

�1	0
g�

�1
g ; (14)

which requires inversion of diagonal p � p matrices—which is trivial—and a q � q
matrix, resulting in a significant speed-up for q 
 p.

We determine convergence of our EM algorithms via the Aitken acceleration [1].
Specifically, the Aitken acceleration is used to estimate the asymptotic maximum of
the log-likelihood at each iteration and we consider the algorithm converged if this
estimate is sufficiently close to the current log-likelihood. The Aitken acceleration
at iteration k is

a.k/ D l.kC1/ � l.k/

l.k/ � l.k�1/
;

where l.k/ is the log-likelihood at iteration k. Böhning et al. [10] and Lindsay [36]
use an asymptotic estimate of the log-likelihood at iteration k C 1, i.e.,

l.kC1/1 D l.k/ C 1

1 � a.k/
.l.kC1/ � l.k//;

and the algorithm can be considered to have converged when

l.kC1/1 � l.k/ < e; (15)

for small e, provided this difference is positive (cf. [44]). The criterion in (15) is
used in the analyses in Sect. 4, with e D 0:1.

3.4 Model Selection

In model-based clustering applications, the Bayesian information criterion [BIC;
52] is often used to determine the number of components G (if unknown) as well as
the number of latent factors, if applicable. The BIC can be written

BIC D 2l. O�/ � � log n;

where l. O�/ is the maximized log-likelihood, O� is the maximum likelihood estimate
of the model parameters � , � is the number of free parameters in the model, and
n is the number of observations. The BIC has long been used for mixture model
selection and its use was motivated through Bayes factors [15, 27, 28]. While many
alternatives have been suggested (e.g., [8]) none have yet proved superior in general.
Lopes and West [37] illustrate that the BIC can be effective for choosing the number
of factors in a factor analysis model.
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It is worth noting, however, that the BIC can be unreliable for model selection
for larger values of p. In such cases, one approach is to fix G a priori, e.g., in their
MGHFA analysis of a 27-dimensional data set, Tortora et al. [55] fix G D 2 and use
the BIC to select the number of latent factors—an analogous approach is taken in
the analyses in Sect. 4. Other approaches are possible and include using a LASSO-
penalized approach (e.g., [7]), which will be discussed further in Sect. 5.

4 The Wisconsin Breast Cancer Data

The purpose of this illustration is to show that the MVGFA model is a useful
addition to the model-based clustering toolkit, i.e., that even though it is a special
and limiting case, the MVGFA is useful in addition to the MGHFA model.
The Wisconsin breast cancer data are available from the UCI Machine Learning
Repository [32] and comprise 30 quantitative features computed from digitized
images of 569 fine needle aspirates of breast masses, where 357 are benign and 212
are malignant. Bouveyron and Brunet-Saumard [11] use these data to illustrate the
performance of two Gaussian mixture approaches to clustering high-dimensional
data. Similarly, we fix G D 2 components in this analysis. The MVGFA model is
fitted to these data for q D 1; : : : ; 22 latent factors, k-means starting values are used,
and the best model (i.e., the number of latent factors) is selected using the BIC. For
comparison, the same procedure is taken for the MGHFA model. All code is written
in R [50].

Because we know whether each mass is benign or malignant, we can assess
the respective performance of the selected MVGFA and MGHFA models in terms
of classification accuracy, which can be measured using the adjusted Rand index
[ARI; 24, 51]. The ARI has expected value 0 under random classification and
takes the value 1 for perfect class agreement. Negative values of the ARI are also
possible, and indicate classification that is worse than one would expect under
random classification. The selected MVGFA model has q D 20 latent factors and
the associated predicted classifications misclassify just 47 of the 569 breast masses
(ARI D 0:695; Table 1). The selected MGHFA model has q D 19 latent factors
and gives slightly inferior classification performance, misclassifying 51 of the 569
masses (ARI D 0:672; Table 1).

Table 1 Cross-tabulation of the classifications (A, B) associated with the selected MVGFA and
MGHFA models, respectively, for the Wisconsin breast cancer data

MVGFA MGHFA

A B A B

Benign 326 31 319 38

Malignant 16 195 13 198
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Fig. 1 Plot of BIC value versus number of latent factors q for the MVGFA model fitted to the
Wisconsin breast cancer data

Considering a plot of the log-likelihood versus the number of factors for the
MVGFA model (Fig. 1), it is clear that the BIC prefers larger values of q for these
data—a plot focused on the region where q 2 Œ16; 20	 is given in the Appendix
(Fig. 3). The analogous plots for the MGHFA model are very similar. The superior
performance of the MVGFA model for these data is not intended to suggest that
the MVGFA model is better, in general, than the MGHFA model but rather to show
that it can outperform the MGHFA model in some cases. Accordingly, the MVGFA
model is a useful addition to the suite of non-Gaussian extensions of the mixture of
factor analyzers model.

Note that the number of latent factors is run from q D 1; : : : ; 22 latent factors
because q D 22 is the largest number of latent factors that leads to a reduction in
the number of free scale parameters. That is, q D 22 is the largest number of latent
factors such that

.30 � q/2 > 30C q:

This criterion follows from recalling that the reduction in free covariance parameters
under the factor analysis model is given by

1

2
p.p C 1/�

�

pq C p � 1

2
q.q � 1/

�

D 1

2

�
.p � q/2 � .p C q/

	

(cf. [30]) and noting that p D 30 for the Wisconsin breast cancer data.
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Fig. 2 Two distributions available as special and limiting cases of the generalized hyperbolic
distribution

5 Discussion

The mixture of factor analyzers model has been extended to variance-gamma
mixtures using a formulation of the variance-gamma distribution that arises as a
special (� D �;  D 2� ), limiting (
 ! 0), case of the generalized hyperbolic dis-
tribution. Updates are derived for parameter estimation within the AECM algorithm
framework, which is made feasible by exploitation of the relationship with the GIG
distribution. As illustrated in Fig. 2, there is a clear analogy between our formulation
of the variance-gamma distribution and the formulation of the skew-t distribution
used by Murray et al. [46, 47]. Future work will see an extensive comparison of
the MSTFA, MVGFA, and MGHFA models as well as other approaches that can be
viewed as extensions of the mixture of factor analyzers model.

Bhattacharya and McNicholas [7] illustrate that the BIC does not perform well
for selecting the number of components and the number of latent factors for the
mixture of factor analyzers model, and parsimonious versions thereof [43], when
p is large. To help circumvent this problem, Bhattacharya and McNicholas [7]
develop a LASSO-penalized BIC, and pursuing a similar approach for the MVGFA
model will be a topic of future work. Future work will also include consideration
of alternatives to the BIC for selecting the number of latent factors q, investigation
of alternatives to the AECM algorithm for parameter estimation, e.g., variational
Bayes approximations (cf. [54]), as well as the use of a mixture of variance-gamma
distributions and the MVGFA model within the fractionally supervised classification
framework [58]. Multiple scaled mixtures of variance-gamma distributions will also
be considered and can be viewed as an extension of the work of Franczak et al. [19].
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Appendix

See Fig. 3.

Fig. 3 Plot of BIC value
versus number of latent
factors q for the MVGFA
model fitted to the Wisconsin
breast cancer data, focusing
on q 2 Œ16; 22	
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