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1.1 Introductory remarks 
The formation and utilisation of water jets are not human discoveries. As with 
many other engineering discoveries, the principle was already known and utilised 
in nature. A process that is comparable with water jetting is the "spitting" of some 
fish species, namely Colisa chuna, Colisa lalia, and Toxotes jacularix. The latter 
species uses some type of discontinuous water jets for spitting for feeding. The other 
species show spit behaviour in case of nest building, fry tending, and owing to 
excitement. An example is shown in Fig. 1.1 a. Detailed investigations are provided 
by L/iling ( 1958, 1969) and Vierke (19 73). Another example of how water jets are 
utilised in nature is provided by the snapping shrimp. Snapping shrimps produce a 
fast, well focused water jet by rapid closure of their specialised snapper claw 
(Versluis et al., 2000). One of the effects of the snapping is to stun or kill pray 
animals. Main water jet velocity was measured to be 6.5 m/s (Herberholz and 
Schmitz, 1999). Illustrative images from a high-speed video are shown in Fig. 1. lb. 

Figure 1.1 Water jet utilisation in nature 
(a) Toxotes jacularix providing a train of water slugs (photograph: David Stone) 
(b) Snapping shrimp producing a high-speed water jet (photographs: Faculty of Appl. Physics, University of 

Twente) 



Introduction 3 

The purposeful use of waterjets is as old as human engineering. Reviews about 
early cases of water jet utilisation for material removal, namely for soil removal and 
hydraulic mining, are provided by ]eremic (1981), Summers (1995) and Wilson 
(1912). Figure 1.2 shows a so-called hydromonitor as used in the 19th century on 
mineral mining sites in the USA. In the 1920s, water jet were introduced into the 
steel producing industry for descaling, and into the foundry industry for cleaning 
castings. In those times the first systematic investigations into water jet formation 
and material removal optimisation were performed especially in Germany (see 
Rodehfiser, 1930). 

Figure 1.2 Early hydromonitor used for the removal of soil and rock debris from mineral mining sites 
(photograph: HAB Weimar) 

The first serious approach to use water jets for concrete hydrodemolition was 
probably that of McCurrich and Browne (19 72). They found that water jet cutting 
of concrete featured poor energy utilisation; estimated values varied between 400 
and 4,000 G]/m 3. The pump pressure applied for this study was 70 MPa. The most 
interesting results of the study were, from the point of view of engineering history, 
the following: 

(i) 

(ii) 

"The aggregate was impossible to cut at (an operating pressure of) 70 
MN/m2."; 

'~ practicable site cutting tool will require pressures of at least 380 
MN/m2. '' 

Today is known that both statements were wrong. The research community at 
that time did not know enough about material removal modes and the effects of 
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process parameters. However, the results were that discouraging that it took 10 
more years till an industrial institution finally developed and introduced the first 
commercial hydrodemolition unit. Modern hydrodemolition systems work at 
operating pressures of about 100 MPa, thus, only about 30% of the threshold 
suggested by McCurrich and Browne (1972). Since that, the technology was 
rapidly growing. Already in the 1980s, about 10% of all contractors involved in 
concrete rehabilitation in Austria, used water jets (Kloner, 1987). At present, this 
tool is widely used for cleaning, profiling, removal, drilling and demolition of 
concrete substrates and reinforced concrete structures (Momber, 1998a). 
Hydrodemolition is state-of-the-art in concrete technology and structural rehabili- 
tation. Major fields of application include the following: 

�9 bridge and parking deck repair; 
�9 construction joint cleaning; 
�9 decommissioning; 
�9 decontamination; 
�9 road maintenance; 
�9 tunnel rehabilitation. 

The automatic, remotely controlled hydrodemolition robot shown in Fig. 1.3 
probably best illustrates the high standard of the technique. 

Figure 1.3 Modern hydrodemolition robot (photograph: Aquajet A.B., Holsbybrunn) 
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1.2 Industrial applications 
1.2.1 Civil and construction engineering 

Water jet technology is a state-of-the-art technology not only in the area of surface 
engineering. It is one of the most flexible techniques available in industrial 
maintenance. In the industry, water jet technology is frequently used in the 
following areas: 

�9 building sanitation and rehabilitation; 
�9 concrete removal and cleaning = HYDRODEMOLITION; 
�9 decontamination and demilitarisation; 
�9 demolition of technical structures; 
�9 foundation engineering; 
�9 industrial cleaning; 
�9 jet cutting of ceramics, fibre-reinforced plastics, food, glasses, metals and rocks; 
�9 maintenance of technical structures and equipment; 
�9 mechanical processing of minerals; 
�9 medical applications; 
�9 mining and rock cutting; 
�9 paint and lacquer stripping; 
�9 rock fragmentation; 
�9 sewer channel and pipe cleaning; 
�9 surface preparation for protective coatings. 

Several of these applications as well as the corresponding major operational 
parameters are summarised in Fig. 1.4. 

Water jetting is state-of-the-art in civil engineering. A recent review, including 
an extensive database, is given by Momber (1998a). Several aspects of civil 
engineering use are also mentioned by Summers (1995). The applications include 
the following: 

�9 cleaning of concrete joints prior to concreting (Utsumi et al., 1999); 
�9 cleaning of concrete, stone, masonry and brick surfaces (Lee et al., 1999); 
�9 cleaning of soils (Sondermann, 1998); 
�9 cutting of soil (Atmatzidis and Ferrin, 1983); 
�9 cutting and drilling of natural rocks in quarries (Ciccu and Bortolussi, 

1998); 
�9 decontamination of industrial floors; 
�9 jet cutting of construction materials, such as tiles, natural rocks and glass 

(Momber and Kovacevic, 1998); 
�9 preparation of soil samples (Hennies et al., 2002); 
�9 removal of asphalt and bitumen from traffic constructions (Momber, 1993); 
�9 removal of rubber deposits from airport runways (Choo and Teck, 1990a,b); 
�9 removal of traffic marks from roadways; 
�9 selective concrete removal by hydrodemolition (Hilmersson 1998; Momber, 

1998b; Momber, 2003b; Momber et al., 1995); 
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Figure 1.4 Industrial applications of high-speed water jets 

�9 soil stabilisation and improvement by ]et Grouting (Yonekura et al., 1996; 
Gross and Wiesinger, 1998); 

�9 vibration-free demolition with abrasive water jets (Momber, 1998a; 
Momber et al., 2002c); 

�9 water jet assisted cable plowing (Reichman et al., 1983); 
�9 water jet assisted gravel winning (Rockwell, 1981); 
�9 water jet assisted pile driving (Horigushi and Kajihara, 1988). 

Several of these applications are illustrated in Fig. 1.5. 



Introduction 7 

Figure 1.5 Civil and construction engineering applications of water jets 
(a) surface deaning (WOMA GmbH, Duisburg); (b) rock drilling (BMGR, RWTH Aachen, Aachen); 
(c) floor decontamination (Hammelmann GmbH, Oelde); (d) soil stabilisazion (Keller Grundbau GmbH, 
Fallingbostel); (e) hydrodemolition (Aquajet Systems AB, Holsbybrunn); (f) building demolition (WOMA 
GmbH, Duisburg) 
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1.2.2 Industrial cleaning 

Industrial cleaning is the classical industrial application of the water jet technology. 
It reaches back as far as in the 1920's where it was used for cleaning of moulds and 
castings (Rodeh/iser, 1930). Later, in the late 1950s, as reliable high-pressure 
pumps have been developed, the water jet revolutionised the areas of sewer and 
pipe cleaning. Today, commercialised water jetting covers the following cleaning 
applications: 

�9 aircraft cleaning in the aviation industry: removal of paint, grease, dirt 
(Hofacker, 1993); 

�9 cement kiln and autoclave vessel cleaning in the construction materials 
industry: removal of cement lips, incrustations, lime, solidified dust (Wood, 
1996); 

�9 gridiron and body skid cleaning in the automotive industry: removal of 
non-hardened, sprayed lacquer (Halbartschlager, 1985); 

�9 pipe cleaning in the municipal and chemical industry: removal of worn 
protective coatings, incrustations, solidified materials, etc. (Momber, 199 7; 
Momber and Nielsen, 1998); 

�9 reactor, vessel, and container cleaning in the chemistry and oil industry: 
removal of production leftovers, especially resins, latex, adhesives, oils or 
plastics (Geskin, 1998); 

�9 roller drum cleaning in the printing industry: removal of ink; 
�9 semiconductor flame cleaning in the electronic industry: removal of excess 

resin (Yasui et al., 1993); 
�9 sewer cleaning in the municipal industry: removal of deposits (Lenz and 

Wielenberg, 1998); 
�9 ship cleaning in the maritime industry: removal of marine growth, loosen 

paint, dirt and rust (Momber, 2003c); 
�9 sieve and filter cleaning in the process engineering industry: removal of 

production leftovers, especially solidified agglomerates (Jung and Drucks, 
1996); 

�9 steel cleaning in steel mills: removal of weld slag, water scale, mill scale and 
rust (Raudensky et al., 1999); 

�9 tube bundle cleaning in the process engineering and oil industry: removal of 
incrustations and residues, especially calcium carbonate, from internal and 
external tube surfaces (Momber, 2000c). 

Some of these applications are shown in Fig. 1.6. 

1.2.3 Environmental engineering and other applications 

The introduction of the water jet technology into environmental engineering is one 
of the most recent developments in that technique. Water jets, due to their 
capability to selectively remove materials, and due to their heat-free performance, 
are ideally suited for separation processes. A review about typical applications is given 
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Figure 1.6 Industrial cleaning applications of water jets 
(a) aircraft cleaning (WOMA GmbH, Duisburg); (b) cement kiln cleaning (WOMA GmbH, Duisburg); (c) pipe 
cleaning (WOMA GmbH, Duisburg); (d) sewer cleaning (WOMA GmbH, Duisburg); (e) tube bundle cleaning 
(WOMA GmbH, Duisburg); (f) coating removal with UHPAB for steel surface protection (M~hlhan Equipment 
Services GmbH, Hamburg) 



10 Hydrodemolition of concrete surfaces and reinforced concrete structures 

by Momber (1995a). More recent developments are summarised in Momber's 
(2000b) book. The technique is, among others, used to solve the following problems: 

�9 aggregate liberation from cement-based composites (Isobe, 2003; Momber, 
2004d); 

�9 comminution of concrete (Momber, 2005); 
�9 decoating of compact discs (Witzel, 1998); 
�9 decontamination and decommissioning of nuclear power equipment (Bond 

and Makai, 1996; Lelaidier and Spitz, 1978); 
�9 decontamination of soils (Sondermann, 1998; Heimhardt, 1998); 
�9 demolition of mercury-contaminated constructions; 
�9 dismantling of nuclear power plants (Alba et al., 1999); 
�9 encapsulation of contaminated ground and hazardous waste sites (Carter, 

1998); 
�9 exposure of land mines (Denier et al., 1998); 
�9 preparation of secondary fiber stock (Galecki et al., 1991); 
�9 removal of explosives from shells (Fossey et al., 199 7); 
�9 removal of propellants from rocket motors (Foldyna, 1998); 
�9 removal of PCB-contaminants (Crine, 1988); 
�9 repair of oil wells (Flak, 1992); 
�9 selective carpet recycling (Momber et al., 2000; Weil~ and Momber, 1998; 

Weig et al., 2003, 2004); 
�9 selective separation of automotive interior compounds (Weig and Momber, 

2003). 

Some of these applications are shown in Fig. 1.7. 
Other industrial applications being either under practical consideration or in the 

laboratory stage only include the following: 

�9 processing (cutting) of meet (Alitavoli and McGeough, 1998); 
�9 various medical applications (Siegert et al., 2000); 
�9 spunlancing of non-wovens (Watzl, 2001). 

1.3 Subdivision of water jets 

1.3.1 Definitions and pressure ranges 

A subdivision of different types of liquid jets is provided in Table 1.1. The tool of any 
hydrodemolition process is a high-speed water jet. Although the speed of the jet 
is its fundamental physical property, the pressure generated by the pump unit 
that produces the jet is the most important evaluation parameter in practice. 
Fundamentals of jet generation are provided in Chapter 3. 

According to the Water Jet Technology Association, St. Louis, water jet 
applications can be distinguished according to the level of the applied operational 
pressure (W]TA, 1994) as follows: 
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Figure 1.7 Environmental applications of water jets 
(a) soil decontamination (Keller Grundbau GmbH); (b) removal of PCB-contaminated piaster (DSW GmbH, 
Duisburg); (c) carpet separation (Weifl et al., 2003); (d) textile compound separation (Weifl and Momber, 
2003); (e) recycling of used oxygen lances (WOMA GmbH, Duisburg); (f) "soft" selective demolition of 
buildings (Andrea and Partner, Stuttgart) 
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Table I .I  Subdivision of liquid jets 

Liquid jet 

Pressure range Loading dynamics Fluid medium 

High pressure 

Ultra-high pressure 

Continuous liquid jets 

Discontinuous liquid jets 

Plain liquid jets 

Liquid jets with abrasives (not dissolving) 

Liquid jets with additives (dissolving) 

�9 Pressure cleaning: 
The use of pressurised water, with or without the addition of other liquids 
or solid particles, to remove unwanted matter from various surfaces, and 
where the pump pressure is below 340 bar (34 MPa). 

�9 High-pressure water cleaning: 
The use of high-pressure water, with or without the addition of other 
liquids or solid particles, to remove unwanted matter from various surfaces, 
and where the pump pressure is between 340 bar (34 MPa) and 2,000 bar 
(200 MPa). 

�9 Ultra high-pressure water cleaning: 
The use of pressurised water, with or without the addition of other liquids 
or solid particles, to remove unwanted matter from various surfaces, and 
where the pump pressure exceeds 2,000 bar (200 MPa). 

From these definitions, three different modes of hydrodemolition can be 
distinguished: 

�9 mode (i): heavy mechanised hydrodemolition (see Fig. 1.8a) at the high- 

pressure level; 
�9 mode (ii): surface preparation with hand held tools (see Fig. 1.8b) at the 

ultra high-pressure level; 
�9 mode (iii): abrasive waterjet cutting (see Fig. 1.8c) at the ultra high-pressure 

level. 

Applications of these hydrodemolition modes are discussed in Chapters 4 to 6. 

1.3.2 Fluid medium and loading regime 

According to the fluid medium, there can generally be distinguished between the 
following modifications: 

�9 plain water jets; 
�9 additive water jets: water jets with soluble additives (Howells, 1998); 
�9 abrasive water jets: water jets with non-soluble additives (Momber and 

Kovacevic, 1998). 
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Figure1.8 Hydrodemolition modes 
(a) Heavy hydrodemolition application (photograph: Aquajet Systems AB, Holsbybrunn); (b) Hand-held tool 
application (photograph: WOMA Aparatebau GmbH, Duisburg); (c) Abrasive water jet application 
(photograph: WOMA Aparatebau GmbH, Duisburg) 

Other liquid media than water were used frequently in the laboratory stage, but 
could not find their way into site practice. These liquids include, among others, the 
following: 

liquid metals (Oshina and Yamane, 1988); 
liquefied carbon dioxide (Dunsky and Hashish, 1995; Kolle and Marvin, 
2000); 
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�9 liquefied nitrogen (Dunsky and Hashish, 1995); 
�9 liquefied ammonia (Hashish and Miller, 2000). 

Abrasive water jets divide further according to their generation and phase 
composition into the following types: 

�9 injection-abrasive water jets; 
�9 suspension-abrasive water jets. 

An injection-abrasive water jet consists of water, air, and abrasives, and is 
considered to be a three-phase jet. In contrast, a suspension-abrasive water jet does 
not contain air and, therefore, is a two-phase jet. Formation, behaviour and 
applications of abrasive water jets are in detail discussed by Momber and Kovacevic 
(1998) and Summers (1995). 

Regarding the loading regime, there can be generally distinguished between the 
two following types: 

�9 continuous jets; 
�9 discontinuous jets (Vijay, 1998a). 

Wiedemeier (1981) defined a jet as discontinuous, if it generates a dis- 
continuous load at the impact site. But as Momber (1993) pointed out, every water 
jet internally contains discontinuous phases resulting from pressure fluctuations, 
jet vibrations and droplet formation. He suggested that 'discontinuous jets' are 
formed artificially by external mechanisms, whereas 'continuous jets' are not 
influenced by external mechanisms. Reviews about the formation, properties, and 
applications of discontinuous water jets were given by Labus (1991), Momber 
(1993), and Vijay (1998a). 

1.4 Failure behaviour of cementitious materials 

1.4.1 Structure and properties of cementitious materials 

Concrete can be modelled to consist of cement paste, pore water and inserts. The 
inserts may include aggregate particles or fillers, and reinforcements. Interfaces 
between these phases largely affect mechanical properties and the behaviour of 
concrete under load. Generally, the interface between cement and aggregate is the 
weak link in concrete. As will be shown in Section 2, these interfaces significantly 
determine the material response to water jet impingement. Therefore, they are of 
particular interest. Figure 1.9 is a schematic drawing of the structure of a matrix- 
aggregate interface. Properties of a typical matrix-aggregate interface are 
illustrated in Fig. 1.10. Porosity at the interface is relatively high and decreases 
toward the bulk paste; this is shown in Fig. 1.10a. Attempts have been made to 
characterise the mechanical properties of the interface. Microhardness tests 
around interfaces, using the Vickers indentation technique, showed that the 
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Figure 1.9 Schematic representation of matrix-aggregate interface in concrete 
(Mehta, 1986) 
1 -aggregate, 2 -  Ca(OH)2, 3 -  C-S-H, 4-ettringite 

hardness of the interfacial zone was lower than that of the bulk matrix; see Fig. 
1.10b for an example. These results are of special importance because wear and 
erosion processes are particularly sensitive to material hardness. More information 
about paste-aggregate interfaces in cementitious composites are provided by 
Aquino et al. (1995), Larbi (1993) and Mitsui et al. (1994). Mechanical and 
fracture parameters of concrete vary for the individual structural components. 
Typical values for cement pastes, aggregates and interfaces are listed in Tables 1.2 
and 1.3. Values for interfaces are low compared to values for bulk cement pastes, 
and this is one reason that failure in concrete usually occurs in these interfacial 
zones. 

Concrete is a porous and permeable material. The following types of pores can be 

distinguished: 

�9 closed pores; 
�9 open pores; 
�9 bottleneck pores. 

Figure 1.11 shows a typical closed pore in a mortar; this originally closed pore 
was formed during the concrete casting process, and was then opened during water 
jet erosion. Hardened cement paste contains mainly gel pores and capillary pores. 
Their dimensions are listed in Table 1.4. Capillary pores are shown in Fig. 1.12. 
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Distance from aggregate surface in IJm 

Figure 1.10 Effect of distance from aggregate on paste properties 
(a) Porosity as function of distance from interface (Mitsui et al., 1994) 
(b) Hardness as function of distance from interface (Lyubimova and Pinus, 1968) 

Pores and pore distributions are much often assessed through the mercury intrusion 
method. A typical pore distribution diagram, based on such a measurement, is plotted 
Fig. 1.13. The peak appearing at about 50 nm is characteristic for the capillary pore 
system. Porosity depends largely on the water-cement ratio of the concrete mix, 
which is illustrated in Fig. 1.14. Permeability is another important physical property 
because it affects the flow conditions in the structure if entered by a liquid. 
Permeability is measured by different methods which deliver different physical units; 
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Table 1.2 Energy values for concrete compounds (Hilsdorf and Ziegeldorf, 1981; 
Tschegg et al., 199~)  

Material Surface energy in ] /m 2 Fracture energy in N/m 

Interface cement paste - limestone O. 6 6 
Interface cement paste - quartz 0.8 
Cement mortar 21 -24  
Cement paste 7 80 

Table 1.3 Hardness values of some concrete structural materials 

Material Vickers-hardness in MPa Reference 

Cement paste (W / C=O. 4) 3 7 0 - 4 2 0  
Cement paste (W/C=0.5) 250 
Calcit 1,200 
Feldspar 8 ,700-9 ,000  
Quartz 11,000 

Glinicki and Zielinski (2004) 
Glinicki and Zielinski (2004) 
Grabko et al. (2002) 
Grabko et al. (2002) 
Grabko et al. (2002) 

Figure 1.11 Air pore in hardened cement paste, opened after water jet erosion 
(photograph: author) 

Table 1.4 Pore and crack dimensions in cement  paste (Schneider and Herbst, 1989)  

Pore/crack class Radius in nm 

Gel pores < 10 
Capillary pores 10 -100  
Microcracks 100-1 ,000  
Cracks > 1,000 
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Figure 1.12 Capillary pores in hardened cement paste 
(photograph: author) 

Figure 1.13 Pore distribution in concrete (Momber 
and Kovacevic, 1994); results from mercury 
intrusion measurements 

Figure 1.14 Effect of water-cement ratio on 
porosity of concrete (Odler and K6ster, 1983) 

e.g. [m/s] and [m2]. Some typical values are listed in Table 1.5. Structural pro- 
perties of concrete are different for the core region and the near-surface region. 
This is shown in Fig. 1.15 - permeability increases in the near-surface region. The 
same trend applies to porosity (Wilson, 2002). This aspect is of decisive importance 
because hydrodemolition is essentially a surface preparation method. 
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Table 1.5 Permeability values for cementitious composites 

Material Permeability in m/s Reference 

Concrete (Oc= 100,3 MPa) 
Concrete (Oc=39,4 MPa, fly ash) 
Concrete (Oc=51,5 MPa) 
Concrete (Oc=60,6 MPa) 
Cement paste (W/C =0.3) 
Cement paste (W/C =0.4) 
Cement paste (W/C =0.5) 
Cement paste (W/C =0.6) 
Cement paste (W/C =0.7) 

0.02.10 -11 
12.68.10 -11 
9.87.10 -11 
1.91.10 -11 
3.56.10-15 
3.60.10 -14 
7.64.10-13 
2.30.10-12 
2.58.10 -11 

Bamforth (1991) 
Bamforth (1991) 
Bamforth (1991) 
Bamforth (1991) 
Odler und K6ster (1983) 
Odler und K6ster (1983) 
Odler und KSster (1983) 
Mehta und Manmohan (1980) 
Odler und KSster (1983) 

Figure 1.15 Effect of distance from concrete surface on 
permeability in concrete (Calogovic and Bjegovic, 1996) 

1.4.2 Fracture behaviour of cementitious materials 

Cementitious composites are characterised by a fracture process zone. The fracture 
process zone is a zone characterised by progressive softening, for which the stress 
decreases at increasing deformation. It is surrounded by a non-softening zone. 
Together, these two zones form a non-l inear zone. Depending on the relative size of 
these zones and of the structure, three basic types of fracture can be distinguished 
as illustrated in Fig. 1.16. In the first fracture type, the non-l inear zone is small 
compared to the structural  size, and the entire fracture process takes place almost 
at the crack tip. This type of fracture approximates materials that  usually are called 
brittle, like glass, brittle ceramics, and hardened cement  paste. In the second 
fracture type, most of the non-l inear zone consists of elasto-plastic hardening,  or 
yielding. The actual softening zone (process zone) is comparatively small compared 
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Figure 1.16 Basic types of fracture (Bazant and Planas, 1998) 

with the zones occupied by hardening or yielding. Materials that are usually called 
ductile, such as many metals, fall into this category. The third fracture t y p e -  
considered in this b o o k -  is characterised by a comparatively large fracture process 
zone, or softening. A typical fracture process zone for a brittle, tension-softening 
material is illustrated in Fig. 1.17. Reasons for the establishment of a fracture 
process zone may be microcrack shielding, inclusion bridging, crack rim friction, 
transgranular fracture, crack branching, etc. (Shah and Ouyang, 1993). Basic 
mechanisms are illustrated in Fig. 1.18. In contrast to the so-called ductile fracture, 
hardening or yielding can usually be neglected. This type of fracture, called quasi- 

brittle, covers materials such as concrete, mortar, rocks, fibre-reinforced composites, 
or refractory ceramics. For more brittle-behaving materials, such as cement paste, 
the fracture process zone is short. This is illustrated by the values listed in Table 1.6. 
The major mechanisms responsible for the formation of a fracture process zone are 

Figure 1.17 Fracture process zone for a brittle, tension-softening 
material 
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Figure 1.18 Basic energy dissipative processes in the fracture process zone 

Table 1.6 Quasi-brittle fracture properties of  cementi t ious  materials 

Material Characteristic Brittleness Fracture 
length energy 
in mm in mm-1 in j/m2 

Reference 

Asphalt concrete 
Mass concrete 

113-1,290 
1,413 

Micro-concrete 531 
Cement paste 10 
Mortar + steel fibres 600 
Concrete (normal) 200 

0.004-0.0004 744-1,158 Tschegg et al. (1995) 
0.00035 201 Br/ihwiler and Saouma 

(1995) 
0.0009 108 Bache (1989) 
0.05 20 Bache (1989) 
0.0008 16,000 Bache (1989) 
0.0025 - Bache (1989) 

grain bridging and crack-rim friction behind the actual crack tip, and microcracking 
in front of the crack tip. This is illustrated in Fig. 1.17. Another parameter that judges 
fracture behaviour is the characteristic length which is linearly related to the fracture 
process zone and which can be measured by special arrangements. Values for the 
characteristic lengths of relevant materials are listed in Table 1.6. Characteristic 
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length is small for rather brittle-responding materials, such as hardened cement 
paste, and long for reinforced materials. Certain approaches for modelling the non- 
linear behaviour of brittle materials are known, namely the fictitious crack model, 
the crack-band model, the two-parameter model, and the size-effect model. Detailed 
information about these models is provided by Karihaloo (1995). The characteristic 
length can be estimated (Hillerborg et al. 19 76): 

EM "OF (1 1) 
L c - -  2 

o T 

Here, E M is Young's modulus, G F is the fracture energy, and o T is the tensile 
strength. Physically, the characteristic length can be interpreted as the brittleness 
of a material. The standard equation for the elastic strain energy absorbed during 
the tensile test is (see Fig. 1.17): 

2 
O T 

E~L = (1.2) 
2"EM 

If the elastic strain energy is related to the energy absorbed in the fracture process 
zone, the following relationship for the brittleness results from Eqs. (1.1) and (1.2): 

EEL 1 
- B M  - ( 1 . 3 )  

O F 2"L c 

For materials with a very high amount of elastically absorbed energy: EEL-->~176 
BM---~. In contrast, for materials with a very high amount of tension softening: 
GF--~oo, BM--~O. Typical brittleness-values for several brittle materials showing a 
tension-softening behaviour are listed in Table 1.6. Brittleness is high for brittle 
behaving materials, such as hardened cement paste, and low for toughened 
materials, such as the fibre reinforced concrete. The fracture energy, G F, which is 
usually considered to be the energy absorbed in the fracture process zone during 
fracture is given from the load-displacement-curve shown in Fig. 1.17 (Hillerborg 
et al. 1976): 

O F =;w~ o(w) dw (1.4) 

Methods how to experimentally estimate the fracture energy are recommended 
in RILEM (1985). An alternative method that allows the use of drilling core testing, 
which is important for the evaluation of concrete structures to be refurbished, is 
suggested by Linsbauer (1991). 
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2.1 Properties and structure of high-speed water jets 
2.1.1 Kinematics of high-speed water jets 

Propert ies of water  are listed in Table 2.1. Numerous  properties, namely  density, 
viscosity or compressibility depend on pressure and temperature .  Other properties, 
such  as speed of sound, are dependent  of the condit ions on the contact  be tween 
water  and  solid. The acceleration of a given volume of pressurised water  in a nozzle 
generates  a high-speed water  jet. For tha t  case, Bernoulli 's  law delivers: 

,• 2 �9 PA + "vo +Pw g'H~ = p + P w  2 2 "vN +Pw "g'H2 (2.1) 

With HI=H 2, PA<<P, and Vo>>V N, the approximate theoretical jet exit velocity is: 

1/2 

(2.2) 

Considering friction losses in the nozzle, the real water jet velocity is: 

1/2 1/2 

= ( 2"p ' (1 -pV/p) )pW (2.3) 

With [1 - (pv/p)] 1/2 - ~t, neglecting the compressibility of the water, and applying 
p in MPa, one obtains: 

Table 2.1 Typical water properties (temperature: 20~ 

Property Unit Value 

Dynamic viscosity Pa.s 0.001 
Kinematic viscosity 10 -6 m2/s 1.004 
Density kg/m 3 99 7.3 
Speed of sound m/s 1,460 (15~ 
Coefficient of extension 1/K 0.00018 
Specific heat cal/g.K 1.0 
Melting temperature ~ 0 
Specific melting heat kcal/kg 79.7 
Vaporization heat kcal/kg 539.1 
Surface tension N/m 0,071 
Prandtl-number - 13.31 
Heat conductivity W/m.K 5.68 
Vapour pressure kPa 2.4 
Temperature of ebullation ~ 99.63 
Young's modulus MPa 4,070 



2p) v j  = 

1/2 

2 
E j  = 1 / 2 " r h  w "v j  "t  E 

p"  44.71 i p 1/2 

Table 2 .2  Values for the  nozzle  ef f ic iency parameter  

(2.4) 

Reference Pump pressure ~t-value 

Neusen et al. (1992) 69-241 MPa 0.92 
Himmelreich and Riess (1991) 100 MPa 0.92 
Chen and Geskin (1991) 90-350 MPa 0.85-0.90 
Neusen et al. (1994) 69-310 MPa 0.93-0.98 

In that equation, v I is in m/s. For Pv=O, ~t=l" the theoretical velocity will be 
reached. For pv=p, bt=O: the entire pump pressure is absorbed, which delivers vl=O. 
The certain value of the parameter bt depends on nozzle design, pump pressure and 
nozzle diameter. Typical values for commercial sapphire nozzles are between 
0.9<bt<0.95 (Momber and Kovacevic, 1998).  Some results obtained from direct 
velocity measurements are listed in Table 2.2. The exit velocity of a water jet 
generated at a pressure of p=140  MPa in a typical sapphire nozzle (~t=0.95) is 
v l - 5 0 3  m/s. Results of Eq. (2.4) are plotted in Fig. 2.1. It is important to note that 
the jet velocity does not depend on nozzle diameter. As the water jet exits the nozzle, 
its kinetic energy is: 

(2.5) 
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The actual water mass flow rate is: 

m w  = QA "Pw = AN-v j  "Pw = a , ' ( = / 4 ) ' d ~  " v j  "Pw (2.6) 

In that equation, ct is a nozzle discharge parameter that considers the reduction 
in the volumetric flow rate due to the sudden changes in the fluid conditions in a 
nozzle with a sharp orifice. The parameter depends on nozzle geometry and nozzle 
diameter; some relationships are shown in Fig. 2.2. The relationship to the pump 
pressure is very weak and can be neglected (Wulf, 1986). For diamond orifices, 
values of 0 .65<a<0.75  (Momber, 2001; Momber and Kovacevic, 1998) can be 
assumed, and for steady nozzles a value of c~=0.9 (Werner, 1991a; Wulf, 1986) 
can be assumed. 

L 

�9 , 0.9 .,,11-1, 

E 
L _  

Q .  

L _  
~ 0.8 
e- 
u 

o,~ 

N 
N 
O 
z 0.7 

0.6 

continuous nozzle (steel orifice) 

m 

discontinuous nozzle (sapphire inlet) 

, , I , , I , 

0 0.6 1 2 1 8 

Nozzle diameter in mm 

Figure 2.2 Parameter effects on nozzle discharge parameter 

For a nozzle diameter of dN=3.0 mm, a pump pressure of p=140 MPa and 
ct=0.8, Eq. (2.6) delivers a mass flow rate of =2.27 kg/s. With Eqs. (2.4), (2.6) and 
an exposure time of tE=dN/V T, the kinetic jet energy is: 

~.~.~3 .p3/2 "d~ 
Ej= (2 7) 23/2 _1/2 

" P W  "VT 

H e r e ,  v T is the traverse speed of the nozzle. If the nozzle is fixed at a rotating nozzle 
carrier (see Fig. 3.17), the traverse speed is: 

VT = ( D  T "rT (2.8) 
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H e r e ,  co T is the rotational speed, and r w is the distance between nozzle and rotational 
centre. For the water jet mentioned with rw=120 mm and COT=150 min -1 (these two 
values are from a hydrodemolition tool 'Orbiter', WOMA Apparatebau GmbH, 
Duisburg), the traverse speed is 0.3 m/s, and the exposure time is tE=O.O1 S. All 
these conditions are typical for a hydrodemolition application. The kinetic energy of 
this water jet is Ej=2.87-103 Nm (Ws). The power density, which is the power acting 
over a certain time increment on a certain circular cross section, is 

4"P 
PD-  J (29) ~,d~ 

Note that the power density at the nozzle exit is independent on nozzle diameter. 
Any increase in nozzle diameter will rise impinged cross section as well as 
volumetric flow rate in a quadratic relationship. For the assumed conditions, the 
power density is PD=5.1 MW/cm 2. For comparison, a typical value for a laser used 
to efficiently strip paint from airplanes is about 5 MW/cm 2 (US Air Force, 1999) .  

Equations (2.7) and (2.9) are valid only for the conditions immediately after the 
nozzle exit. For the specific conditions in a high-speed water jet, some values, such 
as pressure and water density, must be varied. Also, d N must be replaced by d]. 
Specific power (or energy) is not evenly distributed over the surface; its distribution 
depends on nozzle configuration and nozzle carrier movement. This is shown in Fig. 
2.3. The energy distribution can be smooth down if a high overlap ratio between 
the individual cleaning steps is realised. Models how to estimate power distributions 
of rotating hydrodemolition tools are provided by Blades (1994) and Kfifer (1999) .  

Figure 2.3 Energy distribution for a rotating nozzle carrier (Momber et al., 2000) 
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2.1.2 Structure of high-speed water jets 

The structure of high-speed water jets escaping into air is described by Thikomirov 
et al. ( 19 9 2) and Momber and Kovacevic ( 19 9 8). However, a few relationships may 
be mentioned here. The general structure of a water jet is shown in Fig. 2.4. In the 
axial (x-) direction, the jet typically divides into three zones: A core zone, a 
transition zone, and a final zone. In the cone-shaped core zone, the flow properties, 
such as stagnation pressure and flow velocity, are constant along the jet axis. 
Usually, the length of this zone, x c, is related to the nozzle diameter. For low 
Reynolds numbers (Re<4.105) the following relationship applies (Nikonov, 19 71): 

x c 

dN 
= A *  - B *  �9 R e  ( 2 . 1 0 )  

Figure 2.4 Structure of a high-speed water jet; photograph: BGMR, RWTH Aachen (for scaling: nozzle exit 
diameter: 0.8 ram)" jet scheme: Zou et al. (1985) 

The parameters A* and B* depend on the Reynolds number of the jet flow, and 
on nozzle geometry and quality. For larger Reynolds numbers (Re>4.105), the ratio 
xc/d N is a constant value that depends on nozzle finish quality. More detailed 
information is provided in Table 2.3. An average from values published in the 
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Reynolds number  Parameter Nozzle finish 

Poor Good 

< 4"10 s A* 84 112 
< 4-10 s B* 68"106 68"106 

> 4-10 s xc/d N 5 0 - 6 0  8 5 - 9 0  

literature is xc/dN=100 (see Momber and Kovacevic, 1998). An approximation for 
the core-zone length as a function of the pump pressure can be established based 
on measurements from Neusen et al. (1994). Their results fit very well into a 
negative power relation 

Xc = 1958"p -~ (2.11) 
dN 

In that equation, p is given in MPa. For the above assumed pressure of p= 140 
MPa and the nozzle diameter of dN=3 mm, the length of the core zone is Xc=236 
mm. As illustrated in Table 2.3, the ratio xc/d N can be utilised to evaluate nozzle 
quality; it is high for 'good' orifices, and low for rather 'bad' orifices. Thus, jet 
quality can characterise nozzle condition as well, and it can be used to monitor the 
condition of nozzles. In the transition zone, the flow velocity is a function of the jet 
radius, vj=f(r]). This radial velocity profile has a typical bell shape that can 
mathematically be described by exponential functions. Several examples are 
published by Momber and Kovacevic (1998). Additionally, the axial flow velocity 
drops in that region. The length of the transition zone, XTR, relates to the core zone 
as follows: 

XTR -- B ( 2 . 1 2 )  

x c 

A typical value for the constant is B=5.33 (Yanaida, 1974). Figure 2.4 shows a 
notable increase in jet diameter with increasing jet length. A quantitative 
relationship is shown in Fig. 2.5. A mathematical relationship is (Yanaida, 19 74): 

d j  
- 0.42"x t]2 (2.13) 

dN 

Himmelreich (1992), Himmelreich and Riel~ (1991a,b), and Neusen et al. 
(1991) performed investigations of the structure of plain high-speed water jets. 
Figure 2.6a shows some results from measurements of the velocity distribution of 
the water in a jet. It can be seen that the velocity has high values at the centre of 
the jet and decreases as it approximates the rim of the jet. Figure 2.6b illustrates the 
turbulence of a water jet, which is defined as: 
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T u = ( S v , / ~ j ) ' 1 0 0  (2.14) 

The turbulence is about 6% with higher values in radial direction. Therefore, 
water jets have a notable radial velocity component which causes jet disintegration, 
liquid slug formation and air entrainment. It is evident from Fig. 2.6 that 
t u rbu lence  is also the reason  for the  decrease in the  axial velocity of the fluid 
particles at the  r im of the jet. 
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Figure 2.6 Distributions of velocity and turbulence in a water jet (Himmelreich and RieJ~, 199 la) 
a -  velocity 
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2.1.3 Water drop formation 

In the transition zone, water drop formation occurs in the jet due to external friction, 
air entrainment and internal turbulence. These drops add a highly dynamic 
component to the jet. The average drop diameter can be approximated by the 
following equation known from liquid atomisation (Schmidt and Walzel, 1984): 

-1/4 a+ 3Ohwo,,  
The diameter dDs is the 'sauter mean diameter'; this is the diameter of a drop 

that has the same ratio of volume to surface area as the ratio of total volume to 
total surface area in a distribution of drops. In Eq. (2.15), Oh is the Ohnesorge 
number (in Ohnesorge's (1936) original work notated 'Z'); it balances viscous force 
and surface tension force and inertia force: 

Oh = f (Re )=  We 1/2/Re (2.16) 

For friction less fluids: Oh=O. The parameter We is the Weber number: 

2 
W e =  P v ' d N ' v D  

O F 

and Re is the Reynolds number: 

(2.17) 

v D �9 d N 
(2.18) 

From Eqs. (2.15) to (2.18) follows: 

d D oc vj  1 (2.19) 

The higher jet velocity, the smaller the average drop diameter. The maximum 
(stable) drop diameter in a disintegrated liquid jet can be approximated according to 
a relationship derived by Troesch (1954): 

1/12 

f- .  �9 1+10 �9 , �9 1 - 0 . 5  "pL 
pv'vD " d D ~  or "Pr " d D ~  PF 

The maximum drop diameter can be calculated by an iterative calculation 
procedure. Fig. 2.7 shows some results from Eq. (2.15) for typical pressure and 
nozzle diameter ranges. For rather high pump pressures, average and maximum 
drop diameter are equal. Liquid atomisation consumes a certain amount of energy 
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210 

that is not available for the hydrodemolition process. This energy loss can be 
approximated: 

E D = N D "o F "= 'd~ (2.21) 

If the sauter mean diameter is used for d D (see Fig. 2.7), the energy consumed by 
drop formation in a water jet with the conditions mentioned above is about 
ED=2.23"10 -6 Nm. 

2.2 Material loading due to stationary jets 
2.2.1 General loading modes 

If the jet hits a solid surface, a stagnation pressure profile forms at that surface. The 
profile shape was measured by several authors, and approximate equations were 
derived (Momber and Kovacevic, 1998). Such profiles are shown in Fig. 2.8 as functions 
of relative jet length. In the centre (r=O) the pressure equals the stagnation pressure: 

Ps = "vj (2.22) 

The stagnation pressure depends on jet length (stand-off distance, respectively) 
according to the following function (Nikonov, 1971; Shavlovsky, 1972)" 
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K *  

ps(O) 
(2.23) 

for x<3"Xc: K*=O.27+O.O75"(X/Xc)2. 
forx>3"Xc: K*=0.3. 

The loading duration is given through the exposure time which is for a moving jet: 

d N 
t E = (2.24) 

v T 

The difference between the stagnation pressure at the surface and the pressure 
inside the target material forces a certain volume of water to penetrate the 
structure. This volume is 

Qs =~J* "QA "tE (2.25) 

where o~*=0 is the limiting case for a completely non-permeable material, and 
co*= 1 is the limiting case when the whole volume delivered by the nozzle penetrates 
into the material. For co*>O, the following three cases can be distinguished: 
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(i) 

(ii) 
(iii) 

the water flows into a crack and creates a corresponding stress at the 
crack tip; 
the water flows into a capillary which results in pressure amplification; 
the water flows through an open pore system and creates friction forces 
to the structural elements (e.g. grains). 

Case (i) was experimentally investigated by Mazurkiewicz et al. (1986) whose 
results are illustrated in Fig. 2.9. Although the experiments were restricted to 
comparatively low water pressures, a linear relationship between pump pressure 
and pressure developed at the crack tip could be noted. If jet velocity is considered 
instead of pump pressure, the following relationship is valid: 

2 (2.26) PR = C1 "vj 
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Figure 2.9 Water flow into a crack (Mazurkiewicz et al., 1986) 

The constant was found to be C 1=0.22 which corresponded closely to values 
estimated by Momber and Kovacevic (1995) who found 0.19<C1<0.21 based on 
an LEFM-model. Lin et al. (1996) used a finite element code to investigate the 
influence of the water jet velocity on principal stresses as well as stress intensity at 
the crack tip. Some of their results are shown in Fig. 2.10. The calculated points 
(filled circles) can be approximated by a square-root relationships which verifies Eq. 
(2.25). The open circles in Fig. 2.10 are experimental points estimated by Witzel 
(1998) on rocks. However, the calculated points in Fig. 2.10 can be approximated 
by an almost linear function in the range of low jet velocities up to 300 m/s. A 



Fundamentals of Hydrodemolition 3 5 

Figure 2.10 Relationship between jet velocity and stress intensity 
(Linet al., 1996) 

mercury intrusion study performed by Momber (1992) on cementitious composites 
showed clearly that the fracture started in the interfacial zone between cement matrix 
and aggregate which is known to be the weakest link in conventional concrete. 
Moreover, fracture propagation was mainly affected by aggregate size and distri- 
bution. A detailed microscopic study on crack-aggregate interactions in concrete 
samples eroded by water jets were made by Momber (2003b) who found clear 
evidence of crack deflection, crack stopping, crack tip bluntness, but also of crack 
bridging and crack face friction. Some of these features are illustrated in Fig. 2.11. 

Case (ii) corresponds to capillary-like micropores. A model for pressure 
intensification in "blind", air filled tubes was developed by Evers et al. (1982). A 

Figure 2.11 Microscopic features of concrete eroded by high-speed water jets (Momber, 2003b) 
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Figure 2.12 Pressure amplification in a pore subjected by a water jet 
(Evers et al., 1982) 

liquid jet, that strikes a pore opening, transports liquid into this capillary and 
displaces the air. A force balance as shown in Fig. 2.12 delivers the following: 

Pl "Ac = T s ' P r ' x + P 2  "Ac (2.27) 

Thus, pressure intensification depends on shear stress, pore geometry and 
perimeter of the liquid column. The approach was later modified by Evers and 
Eddingfield (1984) by considering compressibility effects. The capillary model was 
verified experimentally for rather large pores and low pressures. For a pore with a 
diameter of 0.2 mm and a length of 38 mm where a water jet with a velocity of 71 
m/s traversed over with a speed of 6.0 m/s (corresponding exposure time would be 
3.3.10 -s s), a pressure intensification of 3.5 was estimated. 

Case (iii) was in detail investigated by Rehbinder (19 77) for porous solids. Based 
on a known pressure gradient, the speed, the liquid penetrates the pore system at, 
can be estimated with Darcy's Law: 

kp 
vF - - "gradps (2.28) 

~w 

The frictional force acting on an individual grain due to the liquid flow can be 
approximated for low Reynolds numbers and spherical particles as follows: 
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Fr = C ' d  M "l~w "vF (2.29) 

Further treatment - especially the replacement of the constant C - delivers the 
following relationship (Rehbinder, 19 77): 

V M 
FF = ~ ' g r a d p s  (2.30) 

1 - P  M 

If this frictional force exceeds the cohesion force to neighbouring grains, the 
grain in question will be removed. 

2.2.2 Material response 

Important information about the response of concrete to water jet loading is stored 
in the structure of fracture faces. Depending on loading regime and material 
structure, two general types of macroscopic failure can be distinguished: 

�9 type I: sections without brittle fracture features; 
�9 type II: sections with dominant brittle fracture features. 

Both types, that were probably first distinguished by Nikonov (1971) for coal 
cutting with water jets, are illustrated in Fig. 2.13. It can be noted that type-II 
failure occurred always near larger aggregate particles. Investigations on rock 
materials have shown that the transition from type-I to type-II failure depended on 
jet velocity and exposure time. The transition jet velocity was a function of the 

Figure 2.13 Failure types in 
concrete during hydrodemolition 
(Momber, 2004a) 
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Figure 2.14 Effect of jet velocity on kerr width variation in concrete 
(Momber and Kovacevic, 19 9 5) 

Figure 2.15 Fracture surface of a cement sample cut with a high-speed 
water jet (Momber and Kovacevic, 1994) 
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tensile strength, whereas the transition exposure time followed a more complex 
relationship (Sugawara et al., 1998). Momber and Kovacevic (1995) have 
investigated the influence of jet velocity on the fracture statistics of concrete 
surfaces. The results illustrated in Fig. 2.14 show that the standard deviation of the 
kerr width started to drop at a certain)et velocity (at about 300 m/s). If this velocity 
was exceeded the failure process was more homogeneous. Effects due to the 
microstructure (e.g. microcrack distribution) were eliminated, and a macroscopic 
material property, lets say tensile strength, determined the material response. The 
average kerf width was always larger for a plain matrix material (cement matrix) 
than for a composite (mortar or concrete) due to the rather unrestrained fracture 
propagation in the matrix. This is illustrated in Fig. 2.15 showing the very smooth 
fracture face in a cement matrix. It may, however, be noted that the roughness of 
the surface increased as the fracture propagated (from top to bottom). Such effects 
are known from other brittle material as well (Hull, 1999; SchSnert, 19 72) and is 
considered to be a result of crack acceleration. If two concrete materials were 
compared, a water jet formed wider kerfs in the material with the coarser 
aggregates (Momber, 1998b; Werner, 1991a). 

2.2 .J  Material resistance parameters 

Conventional properties of concrete, namely strength parameters, can not 
characterise the resistance against water jet erosion. This was found in very 
detailed studies performed by Kauw (1996) and Werner (1991a); an illustrative 
example is shown in Fig. 2.16. Figure 2.17 shows the situation if the compressive 
strength in Fig. 2.16 is replaced by the characteristic length. The characteristic 
length is a fracture parameter originating from a fracture model introduced for 
concrete by Hillerborg et al. (1976); see Section 1.4.2. The relationship between 
volumetric erosion rate and characteristic length is: 

VM oc LCh = CM dA " 0 3  (2.31) 
o c 

whereby the very right term expresses an empirical relationship between aggregate 
size, compressive strength, and characteristic length (Hilsdorf and Brameshuber, 
1991). It was shown that Eq. (2.31) also holds for other impact situations, namely 
for the comminution of concrete in a jaw breaker (Momber, 2002b). The sup- 
porting effect of coarse aggregates on concrete hydrodemolition, as expressed in Eq. 
(2.31), was verified by Werner (1991a). The proportionality coefficient C M is 
considered to be a machine parameter. 

Rehbinder (19 78) defined a so-called 'specific erodability' to evaluate the 
resistance of porous solids against water jet erosion. This parameter is defined as 
follows: 

kp AhM 1 
RE - ~ - " (2.32) 

~w "dM Ap tE 
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The higher specific erodability, the lower the resistance. The physical unit of this 
parameter is [m3/N.s]. The right term of Eq. (2.32) allows the experimental 
estimation of R E, whereby AhM/A p is simply the progress of an erosion depth- 
pressure function. Specific erodability increases as grain size or viscosity decreases, 
and as permeability increases. It was in fact shown by Kolle and Marvin (2000) 
that the resistance of rock materials was higher for water as a liquid compared to 
liquefied carbon dioxide (having a lower viscosity). If, however, viscosity is a 
constant value, erosion resistance depend only on pore structure (Rehbinder, 
1980): 

2 
1 

RE ~  M " (2.33) 

Thus, resistance is proportional to pore slenderness and it decreases if - for a given 
pore slenderness - grain size decreases. These results are partly in agreement with 
experimental results obtained by Evers et al. (1982) on rocks. 

2.3 Process parameter effects on material removal 

2.3.1 Parameterdefinitions 

Basic target parameters include thickness of removed layers (hM), volume removal 
(VM), volumetric removal rate (VM), and removal width (WM). They are illustrated in 
Fig. 2.18. For the erosion with a stationary water jet, these parameters are related 
through the following approximation: 

2 .  h 
"WM M 

V M = (2.34) 
4 

For a given removal width, a certain concrete volume must be removed to 
completely erode a layer of given thickness. A maximum volume removal is desired. 
The energy efficiency of the demolition process is given by the specific energy: 

Es = Ej 
VM (2.35) 

This parameter should be as low as possible; its physical unit is [kJ/m3]. The 
volumetric removal rate is the mass removed in a given period of time: 

"~rM = VM 
tE (2.36) 
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Figure 2.18 Target and process parameters for hydrodemolition 

Volumetric removal rate should also be maximum; its physical unit is [m3/h]. 
Other target parameters that may focus on the surface quality, such as roughness 
or cleanliness, are not considered in this paragraph. Hydrodemolition process 
parameters are summarised in Fig. 2.18. They can be subdivided into hydraulic 
parameters and performance parameters. Hydraulic parameters characterise the 
pump-nozzle-system; they include the following: 

�9 operating pressure (p); 
�9 volumetric flow rate (QA); 
�9 nozzle diameter (dN). 

Typical relationships between these parameters are described in Chapter 3. 
Performance parameters are more related to the process and include the following: 

�9 stand-off distance (x); 
�9 traverse rate (VT); 
�9 traverse increment (y); 
�9 impact angle (~); 
�9 nozzle guidance. 

The traverse rate covers additional parameters, such as the number of cleaning 
steps, n s, and the exposure time t E. 
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Figure 2.19 Effect of pump pressure on material removal rate (Werner, 
1991a) 

2.3.2 Pump pressure effects 

Figure 2.19 shows the relationship between pump pressure and concrete mass loss 
which can be described mathematically as follows: 

P~PT" Vu =0 

P > P T :  VM =A: " ( p - p T )  B: 

(2.37) 

This function features three parameters: A threshold pressure PT, a progress 
parameter A 1, and a power exponent B 1. The threshold pressure appeared in 
several experimental studies (Momber, 1992; Werner, 1 9 9  la). The meaning of this 
parameter is illustrated in Figs. 2.20 and 2.21. Figure 2.20 shows high-speed 
camera images taken during the removal of a latex-coating from a fibrous 
substrate. Note from the left image the complete reflection of the impinging jet from 
the coating surface; no material was removed. This situation counts for P<PT" In the 
right image material erosion occurred; the jet completely removed the coating and 
penetrated the fibrous substrate. This situation counts for P>PT" Figure 2.21 
illustrates the situation for concrete. It can be seen that part of the concrete 
structure, denoted "U", remains undamaged; this situation counts for P<PT" Other 
parts of the structure are removed due to water jet erosion; this corresponds to the 
case P>PT" According to Eq. (2.2), the critical pressure actually characterises a 
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Figure 2.20 Threshold conditions for a latex layer (Weifl and Momber, 2003) 
left: P<PT; right: P>PT; scale: 5 ram; fibrous substrate 

Figure 2.21 Threshold situation in a hydrodemolished concrete substrate (photograph: Aquajet 
Systems AB, Holsbybrunn) 
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Figure 2.22 Effect of fracture toughness on threshold velocity; 
values taken from Wiedemeier (1981) and Witzel (1998) 

critical velocity of the impinging jet. Wiedemeier (1981) and Witzel (1998) 
performed measurements on rock materials in order to install relationships 
between threshold velocity and material properties. Their results are summarised in 
Fig. 2.22, and the following relationship can be noted: 

vT = CT �9 K~0 (2.38) 

These experimental results agree with a statistical fracture model developed by 
Momber and Kovacvic (1995) for multiphase materials. Calculation results based 
on this model are shown in Fig. 2.23. The material phase owing the lowest fracture 
toughness (interfacial zone between matrix and aggregate) shows the highest 
failure probability and, therefore, the lowest threshold value. The power exponent 
B 1 in Eq. (2.3 7) depends mainly on nozzle diameter and on target material. It can 
be seen from Fig. 2.19 that B 1 increases if nozzle diameter increases. For nozzle 
sizes applied in hydrodemolition, B 1 may always be larger than unity; for dN= 1.4 
mm: B1-2. Therefore, a very high pump pressure leads to an extraordinarily high 
volumetric removal rate. If B 1 is between 1 and 2, the pressure for minimum 
energy consumption (dEj/dV M =Min) delivers p=~. For B 1-1, however, which was 
found by Werner (1991a) for small nozzle diameters (between 0.2 and 0.6 mm), 
the solution for minimum energy consumption delivers p=3"PT. Therefore, 
optimum operating pressure depends on nozzle configuration. If small nozzles are 
used, pressures less than 100 MPa are more efficient from the point of view of 
energy exploitation. 
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Figure 2.23 Effect of structural elements in concrete on erosion 
probability (Momber and Kovacevic, 1995) 

2.3.3 Nozzle diameter effects 

The relation between nozzle diameter and mass loss is shown in Fig. 2.24a. A good 
approximation to the experimental results is a quadratic function: 

VM =A2 "(dN -d3") 2 (2.39) 

which again features a threshold parameter. This threshold diameter is usually less 
then dN=O.1 mm. Energy considerations deliver an optimum nozzle diameter for 
dEj/dVM=O at dN=l.5.dT; this relationship is shown in Fig. 2.24b. It can be seen 
that any nozzle diameter in excess of 1.5.d T is associated with low specific energy 
values, whereas nozzle diameters smaller than 1.5.d T are very inefficient in terms of 
specific energy. Considering Rehbinder's (1977) theory, a critical nozzle diameter 
could be related to material properties as follows: 

dx >> (2.40) 
2" k v "(p "PF)lz2 

Thus, threshold diameter depends on target material permeability and on pump 
pressure. Werner (1991a) found a tendency, that lower pump pressures require 
higher values for the threshold nozzle diameter. The quadratic relationship for the 
nozzle diameter points to a linear effect of the volumetric flow rate on the 
volumetric removal rate [see Eq.(3.25)]. This suggestion is verified in Fig. 2.25 
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Figure 2.25 Effect of volumetric flow rate on removal rate in concrete (Osanai et al., 1998) 

showing such a linear relationship as well as the presence of a threshold volumetric 
flow rate. Thus, a minimum water volume must be available during the erosion in 
order to remove material. Interestingly, an equal observation was made if concrete 
samples were subjected to pulsating water jets. It was shown by Yie et al. (19 78) 
that a certain pulse length (which characterises water volume) was required to 
visibly damage concrete panels. If the pulse length was shorter than this critical 
value, no material removal occurred. If, for a given operating pressure, volumetric 
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flow rate increases up to a certain value, the removal rate could be expected to drop. 
The reason is that only a certain water volume can penetrate the structure of a 
concrete in a given period of time. Values for such a critical volumetric flow rate 
have not been estimated yet, and it seems that they are beyond 100 1/min. This 
aspect, however, leads to the conclusion that volumetric flow rate and traverse rate 
(exposure time, respectively) should be related to each other in order to optimise 
hydrodemolition processes. It may also be mentioned that kerr width and surface 
roughness of eroded concrete both linearly increase if nozzle diameter increases 
(Werner, 199 la). 

2.3.4 Stand-off distance effects 

The effects of stand-off distance on hydrodemolition is investigated by numerous 
authors, namely Hamada et al. (1974), Labus (1984), Momber (1992), 
Norsworthy et al. (1974), and Werner (1991a). The results of these investigations 
can be summarised by the following approximation: 

h u = A  3 "x B~ -exp(C 3 -x) (2.41) 

with C3<0. As shown in Table 2.4, the exponent B 3 depends on the operating 
pressure; it has positive values for rather low pressures, and negative values for 
high pressures. One consequence of B3>O is that an optimum exists for Eq. (2.41) 
at Xo=-B3/C3; this is shown in Fig. 2.26. This trend can be explained with 
arguments delivered in the previous sections. It was mentioned that a liquid jet 
disintegrates at a certain length, loading the target material in a mixed mode 
consisting of a static component, given by Eq. (2.22), and a dynamic component, 
given by Eq. (7.1). The dynamic component is in particular required if the 
stagnation pressure is rather low. More information about this issue is given by 
Momber (2000d). If high operating pressures (p>200 MPa) are applied, stand-off 
distance should be as short as possible. This is especially recommended if small 
nozzle diameters are applied. An increase in stand-off distance of 200% for a 0.3- 
mm nozzle deteriorates efficiency down to 70%, and an increase in stand-off 
distance of 500% deteriorates efficiency down to 50% (Werner, 1991a). 

Table 2.4 Effect of pump pressure on stand-off distance parameters (values from 
Momber, 1993)  

Pump pressure in MPa Constant B 3 in Eq. (2.42) Ratio xo/dy 

40 > 0 19-34 
50 > 0 17-23 
50 >0 20 
207-483 < 0 ---, 0 
551 <0 --*0 
274 <0 ~ 0  
300 < 0 ~ 0  
200 < 0 ~ 0  
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Figure 2.26 Effect of stand-off distance on mass removal for low 
pump pressures (Momber, 1992) 

Unfortunately, there is a gap in the literature for typical hydrodemolition pressures 
(between 90 and 140 MPa), but it can be assumed that optimum stand-off 
distances exist in this pressure range. These optimum values are in the order of 

xo/dN=20. 

2.3.5 Traverse rate effects 

A typical relationship between volumetric removal rate and traverse rate is shown 
in Fig. 2.2 7. Removal rate increases as traverse rate increases. Therefore, a high 
traverse rate should be aspired. The relation follows a simple power law: 

VM = A4 "v~' (2.42) 

with 0<B 4< 1. It is, however, one requirement for any hydrodemolition process that 
mass removal approaches zero at an extremely high traverse rate. Traverse rate 
actually expresses the local exposure time. A plot of local exposure time versus 
mass loss is shown in Fig. 2.28; the results were recalculated with Eq. (2.24). Mass 
loss increases dramatically at low exposure time; if the local exposure time 
increases further, efficiency (in terms of the slope of the curve) drops. From this 
point of view, short local exposure times (high traverse rates) are recommended, 
and this is the explanation for the trend visible in Fig. 2.2 7. A threshold exposure 
time can also be noted - it is about 0.01 s for the given operational conditions. After 
a time of about 0.01 s, a further increase in the exposure time reduces the progress 
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Traverse rate in cmls 

Figure 2.27 Effect of traverse rate on volumetric removal rate 
(Werner, 199 la) 

Exposure time in s 

Figure 2.28 Effect of exposure time on mass loss in concrete 

of the mass loss function. If this optimum exposure time, t o, is known, a strategy 
for multi-pass hydrodemolition can be developed. This strategy simply introduces 
the optimum exposure time several times into the duration that corresponds to the 
desired mass loss rate. Thus: 
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t = n s "t o (2.43) 

or, respectively, 

t m M 
ns - - ~ ;  ns= 1,2,3 (2.44) 

to mM(t_-to) 

An example may be calculated based on Fig. 2.28. If a mass loss of mc=5,000 
mg is required, a local exposure time of tE=O.05 s is requested. The optimum 
exposure time for dmM/dtE=max is to=O.O15 s which gives mc(t=to) = 1,000 mg. The 
theoretical step number calculated from Eq. (2.44) is ns=3.33 In practice, ns=3. 
The entire exposure time required to remove the desired mass is thus tE=O.045 S 
which is about 90% of the time for a one-step-removal. The gain in efficiency is, 
therefore, 10%. 

2.3.6 Traverse increment effects 

The effect of the traverse increment is illustrated in Fig. 2.29. It is shown that an 
optimum increment exists for maximum efficiency. If the increment is too wide, 
unbroken ribs remain between the eroded kerfs as shown in Fig. 2.30a. These ribs 
must be broken away by additional jackhammering (Fehlemann, 1986). Is, on the 
contrary, the increment too narrow, surface regions are treated tw ice -  a process 
that absorbs unnecessary energy. An empirical relationship for a rough 
approximation is: 

Yo --- lO'dN (2.45) 

It is, however, demonstrated by Momber (1998b) that optimum values depend 
on the concrete structure. It is rather narrow for fine-grained concrete with high 
water-cement ratio (low structural homogeneity), and wide for concrete with low 
water-cement ratio containing coarse broken aggregate (high structural 
homogeneity). These relationships are shown in Fig. 2.30. Experimental results 
obtained by Kauw (1996) and Werner (1991a) verify these trends. A fracture 
mechanics model developed by Momber (1995c) delivers the following solution to 
an optimum increment: 

(2.46) 

Here, the constants depend on material properties. They have rather lower 
values for soft and fine-grained concrete (see Fig. 2.30). 
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Figure 2.29 Effect of traverse increment on specific energy (Hamada et al., 1974)  

Figure 2 .30  Effect of concrete structure on traverse increment optimisation (Momber, 1998b) 
(a) -fine-grained concrete mixture; (b) - coarse concrete mixture 



2.3.7 Impact angle effects 

20 

The relationship between impact angle and volumetric removal rate is illustrated in 
Fig. 2.31. In that graph, percentage changes in the removal rate are plotted against 
the impact angle. It can be seen that the intensity of angle effects depends on nozzle 
diameter. If rather large nozzles are applied, changes in impact angle affect removal 
rate notably. A jet, inclined in traverse direction, improves hydrodemolition 
processes. The gain in efficiency is up to 8% at an angle of 30 ~ which would be the 
optimum angle. If, however, the jet is directed against the traverse direction, 
efficiency drops. This drop (down to 25%) is much more intense than the gain in 
efficiency. A jet directed into traverse direction closes the kerf behind the erosion 
site thus preventing the water from leaving the kerr. The water is partly trapped in 
the eroded cavity and creates additional stresses at the surrounding walls. This 
effect may lead to a more intense material stressing. Different results are reported 
by Kauw (1996) who found positive effects either the water jet was inclined into or 
against traverse direction. This author could also prove that reinforcement has an 
additional effect on impact angle variations (see Section 2.4.6). 
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Figure 2.31 Effect of impact angle on removal rate (Werner, 1991a) 

2.3.8 Nozzle movement effects 

Hydrodemolition nozzles are mounted to nozzle carriers; see Section 3.5 for further 
information. Nozzle carriers allow to move the nozzles in different ways as 
illustrated in Fig. 2.32; the most common are: traversal, rotation, oscillation. 
Comparative investigations about these types of movements are performed by 
Kauw (1996) and Werner (1991a). These authors could demonstrate that 
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Figure 2.32 Types of nozzle movement (Werner, 199 la) 

Operating pressure in MPa 

Figure 2.33 Effect of nozzle oscillation on removal rate (Werner, 1991a) 
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Figure 2.34 Effect of nozzle movement on removal rate (Kauw, 
2996) 

oscillating and rotating nozzle carriers work more effective than simple traverse 
mechanisms. Some results of tests with oscillating jets are summarised in Fig. 2.33. 
For a typical hydrodemolition pump pressure of 125 MPa, the removal rate can be 
doubled by oscillating the jet perpendicular to the traverse direction. It can be seen 
that the gain in efficiency is due to the increase in kerf width, whereas removal 
depth is unaffected. Also, oscillation is more effective for high operating pressures. 
Figure 2.34 contains results from comparative tests with traversing, oscillating and 
rotating nozzle carriers. It can be noted that a rotating device is the most effective 
configuration for hydrodemolition processes; volumetric removal rate increases up 
to 300% compared to a traversing carrier, and up to 120% compared to an 
oscillating carrier. In contrast to an oscillating movement, a rotation of the nozzle 
carrier increases both removal depth and kerf width, and that may be the reason 
for the higher efficiency. The effects described in this section can be explained 
further by extending Eq. (2.24): 

V T 
fN = n s "  (2.47) 

dN 

Here, fN is the nozzle oscillation frequency. If, as outlined in Section 2.3.5, an 
optimum number of traverse steps exists, this number can be transferred into a 
corresponding oscillation frequency. 
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2.4 Concrete parameter effects on material removal 

2.4.1 Material failure types 

Compressive strength is the standard strength parameter of concrete that can be 
evaluated under site conditions as well. The most common method is to use 
cylinder cores drilled off the structure. Momber (1998b) was probably the first to 
suggest to use the way how a cylinder fails during the compression test as a 
criterion of the material behaviour during hydrodemolition. The studies showed 
that two general types of failure, type I and type II as listed in Table 2.5, can be 
distinguished during the compression testing (see Momber (200Of) for more 
information about the testing of testing of concrete cores). If the failure type I is 
observed, the following features can be expected for the hydrodemolition process 
(compare Fig. 2.30a): 

�9 the predominant material removal mode is intergranular erosion of the 
cement matrix; the aggregates are completely exposed; 

�9 the eroded surface is cleaved and uneven; 
�9 a comparatively large number of small, regular debris is generated; 
�9 the generated kerfs are deep but small; 

Table 2.5 Failure types during cylinder core compression testing of concrete 
(Momber, 1998b, 20001) 

Feature Type I Type II 

Failure mode 
Primary debris 
Secondary debris 
Debris surface 

Slow crumbling 
Two; symmetric 
Many small debris; round 
Aggregates exposed, undamaged 

Rapid crushing 
More than two; asymmetric 
Several larger debris; irregular 
Aggregates fractured 

If the failure type II is observed, the following features can be expected for the 
hydrodemolition process (compare Fig. 2.30b): 

�9 the predominant material removal mode is transgranular spalling of the 
concrete structure; 

�9 the eroded surface is even; just a few gaps appear; 
�9 the eroded surface preferably contains broken aggregate grains; 
�9 a comparatively low number of large, irregular debris is generated; 
�9 the generated kerfs are shallow but wide. 

Type II-response could be observed usually with concrete mixtures containing 
large, irregular (broken) aggregate. It is assumed that the transition criterion, 
derived in Section 7.1.2 is partly responsible for this behaviour. Rather hard 
materials, such as many aggregates, respond elastic, whereas softer materials, such 
as cement matrix, show plastic response (see Table 1.3 for typical hardness values). 
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2.4.2 Compressive strength effects 

The influence of the compressive strength on the relative erosion rate is already 
illustrated in Fig. 2.16. There is no general trend between both parameters and it 
seems that standard compressive strength is not a useful parameter to evaluate 
concrete resistance. An equal trend was reported by Kauw (1996). However, the 
figure changes if maximum aggregate diameter is considered as done in the graph 
in Fig. 2.35. Under this circumstances compressive strength can characterise the 
efficiency of hydrodemolition processes. For large aggregate diameters (16 mm) 
removal rate increases if compressive strength increases, whereas the opposite 
trend can be observed for small aggregate diameters (4 mm). For a given 
compressive strength, removal rate is always higher for a concrete made with 
coarse aggregates. The reasons for this behaviour are already outlined in Section 
2.2.2. A strong and coarse concrete enables the formation of rather large radial 
fractures in the structure. Based on fracture mechanics arguments, Momber 
(2003b) introduced the following semi-empirical relationship: 

d A 
9 M o: -~'3 (2.48) 

o c 

Note the agreement with the trends in Fig. 2.35 at least for the medium-grained 
and fine-grained concrete mixtures. 

Figure 2.35 Effects of compressive strength and aggregate size on 
removal rate (Werner, 199 la) 
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2.4.3 Aggregate fineness effects 

Aspects of aggregate fineness are already illustrated in Fig. 2.35 showing that 
concrete mixtures with fine aggregates are more resistant against water jet erosion. 
A design parameter that characterises aggregate fineness is the k-number (graining 
number). The larger the k-number the higher the amount of coarse particles. In 
Fig. 2.36, the relative removal rate is plotted against the k-numbers for certain sieve 
lines. A linear relationship, that proves the results obtained in Section 2.4.2, can be 
noted between both parameters. The coarser the mixture the higher the hydro- 
demolition efficiency. Another design parameter for concrete manufacture is the 
flour particle content which is the sum of cement and very fine aggregate particles. 
It was proven by Werner (1991a) that this parameter did not affect removal rate 
notably. 
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Figure 2.36 Effect of aggregate fineness on removal rate (Werner, 
1991a) 

2.4.4 Aggregate sort effects 

Two basic types of aggregates can be distinguished in concrete. The first type is fine 
aggregate which is often referred to as 'sand' only. In fact, fine aggregate consists 
usually of rounded river (quartz) sand. The second type is coarse aggregate which 
is often referred to as 'gravel'. Coarse aggregate material include in fact gravel 
(rounded river gravel), but also broken rocks, namely basalt or limestone. It is 
known that the sort of coarse aggregate affects the response of concrete to 
hydrodemolition. This includes not only the resistance of the material but also its 
failure behaviour. Figure 2.3 7 shows the effects of coarse aggregate sort and sieve 
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line on the relative removal rate. Notably effects can be noted. The difference 
between maximum and minimum removal rate is about 470%. Removal rate is 
maximum for a limestone-based concrete under all circumstances, followed by the 
gravel-based concrete. The basalt-based concrete has the highest hydrodemolition 
resistance. It also seems that the effects of aggregate sort become more important 
for the coarser mixtures. The corresponding eroded surfaces are rather even and 
characterised by always broken aggregates in case of limestone, whereas they are 
very uneven and characterised by mainly (but not exclusively) broken aggregates in 
case of basalt. In case of river gravel the amount of broken aggregate was less than 
30% (Werner, 1991a). Numerous aspects cause the different behaviours of the 
materials, among them morphology and surface energy of the aggregates and the 
compositions and properties of the aggregate-matrix interfaces. 

Figure 2.3 7 Effect of aggregate type on removal rate (Werner, 
1991a) 

2.4.5 Porosity effects 

The influence of cement paste porosity on the relative removal rate are illustrated 
in Fig. 2.38. The tendencies visible in that graph also apply to the relationship 
between capillary porosity and removal rate (Werner, 199 l a). Porosity parameters 
alone can not characterise the response of concrete but only if they are combined 
with another parameter, namely the aggregate size. For coarser concrete mixtures 
removal rates decrease slightly if porosity increases. The opposite trend is valid for 
fine concrete mixtures. However, the effects of aggregate size are much more 
pronounced than those of porosity. 
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Figure 2.38 Effect of cement paste porosity on removal rate 
(Werner, 199 la) 

2.4.6 Steel bar reinforcement effects 

Many practical hydrodemolition applications include reinforced concrete 
structures. Effects of steel bar reinforcement on volumetric removal rate are shown 
in Fig. 2.39a where the influence of the depth of reinforcement is illustrated as 
well. A distinct drop in efficiency can be noted if the depth of reinforcement exceeds 
a value of 100 mm, which applies to a plain non-reinforced concrete. Thus, 
reinforcement supports the removal process. The thickness of the concrete layer 
that covers the reinforcement does, however, not play any role. The same 
relationship is valid for the removal depth (Kauw, 1996). The reason for the 
increase in hydrodemolition efficiency due to reinforcement is the installation of 
weak zones in the interface between concrete and reinforcement bars (Balaguru 
and Shah, 1992). If a single steel bar is replaced by a bar bundle, as shown in Fig. 
2.39b, removal rate drops slightly. However, if a dense reinforcement bar net exists, 
the concrete removal process is disturbed and 'shadows zones' form at the lower 
surface of the steel bars. A typical practical example is shown in Fig. 2.40. These 
'shadow zones' can be avoided by using complex nozzle guiding systems that 
include angled jets. The effect of reinforcement becomes stronger if the structure is 
damaged through chlorides. In that case rust grows at the corroded steel and the 
stresses generated due to volume expansion form cracks in the surrounding 
concrete. These cracks are exploited by the water jet. An increase in efficiency of 
about 15% was estimated if chloride-corroded reinforced concrete was treated 
instead of non-corroded reinforced concrete (Kauw, 1996). 
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Figure 2.39 Effect of steel bar reinforcement on removal rate (Kauw, 1996) 
a -  single reinforcement bar 
b -  bar bundle 

Figure 2.40 Shadow zones, formed under reinforcement bars 
during hydrodemolition (Rosa, 1991) 
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2.4.7 Steel fibre reinforcement effects 

Hydrodemolition of steel fibre reinforced concrete plays a role if industrial floors or, 
respectively, hydraulic structures are maintained. Effects of steel fibre reinforce- 
ment on hydrodemolition processes are investigated by Hu et al. (2004) who 
pointed out that impact angle determines the influence of reinforcing fibres. At low 
impact angles (15 ~ ) the fibres form 'shadow zones', as illustrated in Fig. 2.41, that 
prevent the concrete behind the fibres from being eroded. For this reason, removal 
rate drops. However, the addition of fibres to a concrete also adds weak interfacial 
zones between matrix and fibres (Balaguru and Shah, 1992). The pressurised water 
penetrates these zones and causes a separation of the fibres. Therefore, these zones 
deteriorate the erosion resistance especially if the material is impinged by jets at 
vertical angles. Under such conditions, a steel fibre reinforced concrete can even 
more efficiently be removed by water jets than a corresponding plain concrete; this 
conclusion is proven in Fig. 2.42. 

Figure 2.41 Shadow zones, formed behind reinforcement fibres during water jet erosion (Hu et al., 2004) 
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Figure 2.42 Effect of steel fibre reinforcement on mass removal (Hu 
et al., 2004) 

2.5 Hydrodemolition model 
Labus (1984) developed models for estimating depth of cut as well as material 
removal rate for hydrodemolition applications. The model for calculating depth of 
cut is based on non-dimensional terms; it has the following structure: 

0.5 K1 

dN ~ ~-c-c "~T (2.49) 

Figure 2.43 shows a plot of this relationship as applied to experimentally 
estimated data. The correlation fits the data quite well with a correlation coefficient 
of 0.88, and the constants in Eq. (2.49) can be estimated to Ko=9.515, and 
K1=0.355. The model was expanded to a rotating nozzle carrier; structure and 
geometry are illustrated in Fig. 2.44. The final model reads as follows: 

~ =~ ~ ~o ~o~ ~+~ '~n~ [(~1 C ~ ~~ 

[(v~ -oT.b~. sin oTt ~.) ~ +(%.b~. cOsort~, f ] ~ 

(2.50) 
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Figure 2.43 Verification of Labus' (1984) hydrodemolition model 

Figure 2.44 Parameters used in Eq. (2.50) 
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In contrast to the depth of cut, volumetric material removal rate is a function of 
time, since the relationship is an instantaneous rate. By integrating over the time, it 
takes for one revolution of the nozzle carrier head, the average volumetric material 
removal rate can be estimated. Calculations based on the model showed some good 
agreements with trends from experimental results; this applies in particular to 
nozzle diameter, pump pressure, and stand-off distance. However, from the results 
discussed in the previous Sections, it is clear that the model simplifies the effects of 
material parameters. Compressive strength alone can not determine the resistance 
of concrete to hydrodemolition. Aggregate type and size are more important, and 
at least one of these parameters must be included into Eq. (2.50). 
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3.1 High-pressure water jet machines 
3.1.1 General structure 

For on-site applications, high-pressure water jet machines are established. 
According to the DIN EN 1829 (2004), high-pressure water jet machines are 
defined correctly as follows: "Machines with nozzles or other speed-increasing 
openings which allow water - also with admixtures - to emerge as a free jet." High- 
pressure water jet machines consist of the following major parts: 

�9 drive; 
�9 pressure generator; 
�9 hose lines; 
�9 spraying devices; 
�9 safety mechanisms; 
�9 control and measurement devices. 

Mobile high-pressure water jet machines are mobile-readily transportable 
machines which are designed to be used at various sites, and for this purpose are 
generally fitted with their own undergear or are vehicle mounted. All necessary 
supply lines being flexible and readily disconnectable. Stationary high-pressure 
water jet machines are machines designed to be used at one site for a certain period 
of time but capable of being moved to another site with suitable equipment. They 
are generally skid or base flame mounted with supply lines capable of being 
disconnected. Major parts of a high-pressure water jet machine utilised for 
hydrodemolition applications are shown in Fig. 3. la .  They include base flame, fuel 
tank, driving engine, couplings, high-pressure plunger pump, filter, header tank, 
booster pump, valves. Figure 3. lb  shows a containerised hydrodemolition device. 

The type of drive depends on the conditions of use. For hydrodemolition 
applications, drives are basically combustion engines. Under outdoor conditions, 
diesel combustion engines are most commonly used. Typical power ratings are 
between 250 kW and 500 kW. These engines drive the high-pressure pumps as well 
as any auxiliary energy consumers, such as required centrifugal pumps, 
compressors or high-pressure tools. Many of the engines connected to plunger 
pumps will run at a fixed speed. However, gear boxes, placed between drive and 
pump drive shaft, vary the speed of the crank-shaft. 

3.1.2 Water supply 

For running high-pressure plunger pumps reliably and for achieving a maximum 
service life, pump manufacturers recommend potable water quality. More detailed 
requirements are listed in Table 3.1. But if suitable filter and cleaning arrange- 
ments are applied, even river water or sea water could be used. The use of sea water 
may require mobile desalination plants; an example is shown in Fig. 3.2. Recom- 
mended filter size depends on sealing system as well as on operating pressure. 
Typical sizes are listed in Table 3.2. All water filter arrangements are dependent 
upon the supply water conditions, and they shall be checked at regular intervals, 
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Figure 3.1 High-pressure unit for hydrodemolition applications 
a -  general structure (WOMA Apparatebau GmbH, Duisburg) 
b-  containerised unit (photograph: Aquajet Systems AB, Holsbybrunn) 

usually not exceeding 8 hours. For high-power pumps as used for hydrodemolition 
applications, the inlet water must enter the pump under a certain required inlet 
pressure. Typical values for the inlet pressure are between 0.3 MPa and 0.5 MPa. 
The inlet pressure is usually generated by centrifugal booster pumps that are part of 
commercial systems (see Fig. 3.1 a). 

3.2 High-pressure plunger pumps 
3.2.1 Structure of high-pressure plunger pumps 

High-pressure pumps generate the operating pressure and supply water to the 
spraying device. Generally, they can be divided into positive displacement pumps 
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Table 3.1 Recommended water quality for plunger pumps and drinking water quality 
(WOMA Apparatebau GmbH, Duisburg) 

Parameter / element Permissible value Drinking water analysis* 

Temperature 35 o(] 10-14 o(] 

pH-value Depends on carbon hardness 7.45-7.7 

Hardness 3 ~ to 30 ~ D.H.** 22.5~ 7.5 ~ D.H.** 
Fe 0.2 rag/1 0.2 mg/1 
Mn 0.05 mg/1 0.02 mg/1 
C1 100 mg/1 48-58 mg/1 

KMn04 12 mg/1 - 
S04 100 mg/1 140-205 mg/1 

(]12 0.5 mg/1 - 
Dissolved oxygen min. 5 mg/1 - 
Abrasive particles 5 mg/1 - 
Conductivity 1,000 ~S/cm 700-900 pS/cm 

* Water works Duisburg; ** D.H. = German hardness 

Figure 3.2 Mobile water treatment unit for jetting applications (photograph: Miihlhan Surface 
Protection International GmbH, Hamburg) 

Table 3.2 Recommended water filter sizes (Kauw, 1992) 

Operating pressure Recommended filter size 

< 100 MPa 
100 to 200 MPa 
> 200 MPa 

100 pm 
10 ~m 
manufacturer recommendation 
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Figure 3.3 Structure of a high-pressure plunger triplex pump (photograph: WOMA Apparatebau GmbH, 
Duisburg) 

and hydraulic intensifiers. Positive displacement pumps are standard for hydro- 
demolition applications. In Germany, as an example, almost 90% of all on-site 
devices are driven by positive displacement pumps. The most common form is a triplex 
(three plunger) pump as shown in Fig. 3.3. Major parts of a positive displacement 
pump are: 

�9 crank-shaft; 
�9 pump head with low-pressure inlet valves and high-pressure outlet valves; 
�9 high-pressure plunger conversion set; 
�9 pressure regulator valves; 
�9 switch valves; 
�9 safety devices. 

Life times of pump components depend on many parameters, namely water 
quality (see Table 3.1), maintenance regime, and operating pressure (see Table 3.3). 
Most critical to wear and life time is the solid amount in water; this is illustrated in 
Fig. 3.4. If solid content increases (e.g. due to an insufficient water filter system) 
cost for replacement parts (valve seats, seals, plungers) increases. Temperature is 
another critical parameter for pump operation. An increase in temperature 
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Table 3.3 Typical life time values for plunger pump components  (Xue et al., 1996) 

Pressure in MPa < 30 20 ~- 3 1 . 5  31.5-50 50-70 70-100 

Component Life time in hours 

Plunger 2500 2000 1500 1000 800 
Seal 1500 1000 750 600 520 
Valve 3000 2500 2000 1500 1000 
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Figure 3.4 Solid content in water and maintenance 
cost for plunger pumps (source: Reliance Hydrotec 
Ltd., UK) 

Figure 3.5 Relationship between water temperature 
and mineral precipitation (Zentrale fi~r 
Unterrichtsmedien, TSbingen) 

increases the probability of mineral precipitation as well as of cavitation. The first 
aspect is illustrated in Fig. 3.5; a pump part eroded due to cavitation is shown in 
Fig. 3.6. Both processes are highly erosive to pump components, and temperature 
control devices, coupled to shut-off mechanisms, should be part of any pump unit. 

The pump head hosts the water inlet and water outlet valve arrangements. It 
consists regularly of corrosive-resistant forged steel, partly also of coated 
spheriodal graphite cast iron. Typical plunger diameters for on-site high-pressure 
plunger pumps utilised for hydrodemolition applications are between 2 5 mm and 

Figure 3. O Damage to a bearing due to cavitation erosion 
(photograph: Neale Cons. Engr, Ltd., Dogmersfield) 
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40 mm. The plungers are made from coated steel alloys, hard metals or ceramics 
(the latter material is limited to rather low operating pressures). 

Safety and control devices include safety devices and pressure-measuring 
devices. Safety devices prevent the permissible pressure from being exceeded by 
more than 2.0 MPa, or 15%. These devices include pressure relief valves or burst 
disks, respectively. Automatic pressure regulating valves limit the pressure at which 
the pump operates by releasing a present proportion of the generated volumetric 
flow rate back to the pump suction chamber or to waste. It should be used to 
regulate the water pressure from the pump and is individually set for each operator. 
Pressure-measuring devices directly measure and display the actual operating 
pressure. 

3.2.2 Performance charts and efficiency 

Plunger pumps can be characterised by performance charts. Pump manufacturers 
publish performance tables for any commercial pump type. Table 3.4 is a typical 
performance table. The corresponding chart is plotted in Fig. 3.7. In such charts, 
the most important technical parameters of the pumps, such as power rating, 
operation pressure, volumetric flow rate, plunger diameter, and crank-shaft speed, 
are related to each other. The theoretical hydraulic power consumed by a plunger 
pump is: 

PT = 0"0166"(~N "P (3.1) 

Here, p is the operating pressure in MPa, and (~ is the nominal volumetric flow rate 
in 1/min; the power PT is given in kW. For a given hydraulic power, Eq. (3.1) is a 
hyperbolic function (y=a/x), and each hyperbola can be considered as a line of 
constant power. This is shown in Fig. 3.7 for different crank-shaft speeds. For a 
plunger diameter of dp= 35 mm, a pressure of p= 130 MPa, and a crank-shaft speed 
of nc=456 min -1, the hydraulic power of the pump would be PT=371 kW. In 
practice, however, the consumed power exceeds this theoretical value because of 
losses due to leakage, pulsation, water compression, and other mechanisms. Thus, 
the hydraulic efficiency is introduced to assess the efficiency of plunger pumps. This 
hydraulic efficiency is: 

TIH = PT/PM (3.2) 

Values for TIH depend on pump type and operating pressure: they increase if 
operating pressure increases. Typically, values between ~IH=0.8 and ~lH=0.95 can 
be considered for the pressure range between 200 MPa and 380 MPa. The overall 
efficiency of a high-pressure plunger pump can be estimated as follows: 

T]O -- T]H "TIM "TIT (3.3) 

where TIM is the mechanical efficiency (internal frictional losses) and TIT is the 
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Table 3.4 Performance table of a commercial high-pressure plunger pump utilised for 
hydrodemolition (WOMA Apparatebau GmbH, Duisburg) 

Gear ratio Crank- 
Plunger shaft Required Volumetric Permissible 
diameter Drive speed in min -1 speed drive flow rate pressure 
in mm in min -1 in kW in 1/min in MPa 

1,500 1,800 2,100 

30 4.60 456 319 126 140 
3.96 454 318 125 
4.60 391 273 108 

3.30 454 318 125 
3.96 378 265 104 
4.60 326 228 90 

35 4.60 456 405 172 130 
3.96 454 403 171 
4.60 391 347 147 

3.30 454 403 171 
3.96 378 337 143 
4.60 326 289 123 

40 4.60 456 415 228 100 
3.96 454 412 227 
4.60 391 355 196 

3.30 454 412 227 
3.96 378 344 190 
4.60 326 296 163 

45 4.60 456 426 292 80 
3.96 454 424 291 
4.60 391 365 250 

3.30 454 424 291 
3.96 378 353 242 
4.60 326 304 209 

50 4.60 456 429 364 65 
3.96 454 427 362 
4.60 391 368 312 

3.30 454 427 362 
3.96 378 356 302 
4.60 326 306 260 

eff ic iency of e n e r g y  t r a n s m i s s i o n  b e t w e e n  drive a n d  p u m p .  Resul ts  of 

m e a s u r e m e n t s  a re  s h o w n  in Fig. 3 .8.  T h e  overal l  eff ic iency r a n g e s  f r o m  6 0 %  to 

a b o u t  8 5 %  a n d  inc reases  if o p e r a t i n g  p r e s s u r e  inc reases .  C o m p a r e d  to overa l l  

eff ic iency v a l u e s  of 60% to 70% for h y d r a u l i c a l l y  d r iven  in tens i f ie r  p u m p s ,  t hese  

v a l u e s  a re  h igher .  

S t a t e - o f - t h e - a r t  h i g h - p r e s s u r e  p l u n g e r  p u m p s  a re  capab le  of g e n e r a t i n g  

o p e r a t i n g  p r e s s u r e s  up  to p = 3 0 0  MPa.  T h e  m a x i m u m  permiss ib le  o p e r a t i n g  

p r e s s u r e  of a c e r t a i n  p u m p  type  d e p e n d s  on  the  p e r m i t t e d  rod  force as follows: 
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Figure 3.7 Flow chart of a high-pressure plunger 
pump (based on Table 3.4; Hp=95 mm, np=3) 

Figure 3.8 Overall efficiency of high-pressure 
plunger pumps (Veenhuizen, 2000) 

Fp = ( n / 4 ) ' d ~ - p  (3.4) 

with Fp being the rod force. Plunger diameter that enters the equation in a 
quadratic relationship, is the critical parameter. The rod force for a plunger 
diameter of dp=35 mm operated at a pressure of p=130 MPa would be Fp=125 kN. 
An increase in the plunger diameter to dp=40 mm (14% increase) would generate a 
rod force of Fp=163 kN (30% increase). 

3.2.3 Nominal volumetric flow rate 

The nominal volumetric flow rate delivered by a plunger pump can be 
approximated as follows: 

QN - ~v QP (3.5) 

The loss-free volumetric flow rate is given from geometry assumptions: 

2 

Qp _ nc . dp -Z~.H S "Np (3.6) 
4 

Here, n c is the crank-shaft speed, dp is the plunger diameter, H s is the stroke, and Np 
is the number of plungers. Typical values for these parameters are listed in Table 
3.5. Assuming typical values for a hydrodemolition unit (nc=456 min -1, dp=3.5 
mm, Hs=140 mm, Np=3) the corresponding nominal volumetric flow rate is Qp 
=184 1/min. The crank-shaft speed of a pump drive depends on the stroke. The 
acceleration of the plunger (of the liquid volume, respectively) should not exceed a 
critical value. For most pumps, the following criterion holds (Vauck and Mfiller, 
1994)" 
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Table 3.5 Values  for  t y p i c a l  pump parameters for hydrodemolition applications 

Parameter  Unit Range 

Crank-shaft  speed min -1 3 0 0 - 5 0 0  

Plunger  diameter  mm 3 0 - 4 0  

Number  of plungers - 3 -5  

Stroke mm 1 0 0 - 1 4 0  

~ "H = 1 2 m / s  2 nc s ... (3.7) 

Eq. (3.6) is partly graphically illustrated in Fig. 3.7. State-of-the-art plunger 
pumps are capable of generating nominal volumetric flow rates up to about 1,000 
1/min. However, typical volumetric flow rates for hydrodemolition applications are 
between 1001/min and 2801/min. The volumetric efficiency parameter in Eq. (3.5) 
can be subdivided into two parts: 

fly = tic "rig (3.8) 

whereby ric is considered to be an elasticity parameter which mainly involves 
compressibility effects (Fritsch, 1991). An approximation is: 

tic _= 1-  ig c (3.9) 

The parameter ~c is the water compressibility which becomes important if 
operating pressure increases. Compressibility can be assessed by applying the 
volume-elasticity model: 

aQ 
Ap = - E w  " - -  (3.10) 

Qo 

whereby the modulus of elasticity of water is Ew=1,962 MPa (Oertel, 2001). For 
an operating pressure of p=130 MPa, the compressibility factor would be 6.6% 
(~c=O.066). It can be seen in Fig. 3.9 that Eq. (3.10) can be applied to consider 
compressibility effects in the pressure range between 80 and 150 MPa that is 
usually utilised for hydrodemolition. The parameter rig is a volumetric rating factor 
considering losses due to leakage. For oscillating plunger pumps, this parameter is 
often be neglected, and values close to unity can be assumed (Fritsch, 1991). 
Therefore: 

2 dp "a, 
ON ~ ( 1 - ~ c ) ' n c  " "H s "Np (3.11) 

4 

Generally, the volumetric flow rate of a plunger pump is not a constant value. It 
rather oscillates according to a sinus-function: 
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Figure 3.9 Compressibility of water (measurements: Bosch-Rexroth 
AG, Lohr) 

(~N = Ap "v c "sin a c (3.12) 

Here, Ap is the plunger cross section, v c is the circumferential velocity and o~ c is the 
angle of the crack-shaft. This relationship is illustrated in Fig. 3.10. The water 
volume is first accelerated an then decelerated. It can be seen from Eq. (3.12) that 
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Figure 3.10 Volumetric flow rate oscillation in a triplex plunger pump (adapted from De Santis, 1985) 
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the unsteady volumetric flow rate is basically a result of the unsteady circum- 
ferential velocity of the crank-shaft. The average plunger speed (which is about the 
average liquid flow velocity in the pump) is simply given as follows: 

vp = 2 " H  s "n c (3.13) 

See De Santis (1995), Nakaya et al. (1983) and Summers (1995) for further details. 

3.3 High-pressure hoses and fittings 
3.3.1 Performance parameters of hoses and fittings 

The transport of the high-pressure water to the spraying devices occurs through 
high-pressure lines. For on-site applications, these are flexible hose-lines. Hose lines 
are actually flexible hoses operationally connected by suitable hose fittings (see Fig. 
3.11). Hose fittings are component parts or sub-assemblies of a hose line to 
functionally connect hoses with a line system or with each other (see Fig. 3.12). 
High-pressure hoses are flexible, tubular semi-finished products designed of one or 
several layers and inserts. They consist of an outer cover (polyamide, nylon), a 
pressure support (specially treated high-tensile steel wire), and an inner core (POM, 
polyamide, nylon). Any hose must be tested for bursting; the permissible operating 
pressure of hoses should not exceed 40% of the estimated burst pressure. Hoses 

Figure 3.11 High-pressure hoses, fittings and armatures (photograph: WOMA Apparatebau GmbH, 
Duisburg) 
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Figure 3.12 High-pressure hose fitting (WOMA Apparatebau GmbH, Duisburg) 

M36x2 

capable of use for pressures equal to or higher than the maximum operating 
pressure of the pressure generating unit must be selected. Typical nominal lengths 
of high-pressure hoses are between 1H=3 m and 1H=120 m. Table 3.6 contains 
typical technical parameters for hoses used in hydrodemolition operations. 

Table 3.6 Technica l  data of high-pressure hoses for hydrodemofition operations 

Nominal Maximum Maximum Specific 

diameter operating pressure delivery length weight  

in mm in MPa in m in kg/m 

Minimum 

bend radius 

in mm 

12 110 40* 1.22 200 

12 140 40* 1.71 200 

20 90 40* 1.64 280 

20 100 40* 2.10 280 

* Delivery length above 40 m up to 100 m upon request 

3.3.2 Pressure losses in hose lines 

A permanent  problem with high-pressure hoses is the pressure loss in the hose- 
lines. An approach for estimating the pressure loss is: 

2 1H (3.14) 
A p = g  F �9 "v F "dH 

Here, ~F is a friction number, PF is the water density, v F is the flow velocity, 1 H is the 
hose length, and d H is the hose diameter. The flow velocity of the water inside a 
hose can be estimated from flow rate conservation conditions: 

4 "QN 
V F = " - - - - ~  (3.15) 

�9 d H 
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Figure 3.13 Selection of suitable hose diameters 

For a hose diameter of dH=20 mm and a volumetric flow rate of QN=180 1/min, 
the corresponding flow velocity in the hose would be vF=9.5 m/s. Recom- 
mendations for suitable hose diameters are given in Fig. 3.13. The friction number 
depends on the Reynolds-Number, Re, and on the ratio between hose diameter and 
relative internal wall roughness, k: 

~F = f(Re, k)  (3.16a) 

This number can be estimated from the so-called Nikuradse-Chart which can be found 
in standard books on fluid mechanics (e.g. Oertel, 2001). An empirical relationship is: 

18._____2_7 2.k) 
~z2 = 1 .74 - 2 "lg Re- ~z2 + dH (3.16b) 

The Reynolds-number of the flow through a hose is given as follows: 

Re - v~ "d M (3.17a) 
"v F 

With Eq. (3.15)and VF-10 -6 m2/s (Table 2.1), Eq. (3.17a)reduces to: 

Re - 2.12-104 .ON 
dM 

(3.17b) 
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Here, ON is given in 1/min, and d H is given in mm. For a typical combination ON- 180 
1/min and dn=20 mm, the Reynolds number is Re=l.91.10 s. For a Reynold 
number range between 1.105 and 2.105, a friction number of ~F=0.038 can be 
assumed. Eqs. (3.14) to (3.17) deliver: 

-s (3 18) Apocd H 

This equation illuminates the overwhelming influence of the hose diameter on the 
pressure loss. To substitute these pressure losses, a certain amount of additional 
power 

AP = Ap "Qt4 (3.19) 

must be generated by the high-pressure pump. Considering Eqs. (3.18) and (3.19), 
additional power consumption has a reverse 5th-power relationship to the hose 
diameter. Manufacturers of hydrodemolition equipment publish pressure-loss 
charts or pressure-loss tables which can be used for estimating real pressure losses 
in hoses (see Fig. 3.14 for an example). An empirical rule for selecting the proper 
hose diameter is: the flow velocity in the hose should not exceed the value of VF=8 
m/s. Based on Eq. (3.15), the corresponding minimum hose diameter is: 

dH - 1.63"0~ 2 (3.20) 

In that equation, the volumetric flow rate is in 1/min, and the hose diameter is in 
mm. If no standard diameter is available for the calculated value, the next larger 
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Figure 3.14 Pressure losses in high-pressure hoses (WOMA Apparatebau GmbH, Duisburg) 
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diameter should be selected. As an example: for a volumetric flow rate of 180 
1/min, Eq. (3.20) delivers 21.9 mm; the recommended internal hose diameter is 
da=25 mm. Equation (3.20) is graphically illustrated in Fig. 3.13; this graph allows 
a quick assessment of suitable hose diameters. 

The correct pressure losses in hose fittings should be measured for any individual 
fitting. However, such values are not available in most cases. The following 
empirical approximation can be performed: the pressure loss in a single fitting is 
equal to the pressure loss in a hose of equal diameter with a length of 3 m. If, for 
example, a volumetric flow rate of 180 1/min and a hose diameter of 25 mm are 
used, the relative pressure loss estimated from Fig. 3.14 is Pv=0.5 bar/m. Thus, the 
absolute pressure loss in the fitting is pv=O.15 MPa. This corresponds to a power 
loss of EL=O.153 kW. For hydrodemolition tools and valves, special pressure loss- 
diagrams are available. 

3.3.3 Service life of high-pressure hoses 

Factors that affect service life of high-pressure hoses include the following (Webster 
and Johns, 2003): 

�9 hose fitting stress; 
�9 abrasion; 
�9 kinks and crushes; 
�9 impulse and flex fatigue; 
�9 flex lance damage. 

Life time of high-pressure hoses depends on the operating pressure; this is shown in 
Fig. 3.15. The most common type of damage is at the fittings because this is the 
weakest point of the hose assembly. To reduce damage, stiffeners can be installed on 
the hose assembly that reduce the bending moment directly behind the fitting. A 
general rule of thumb is to keep the hose supported and straight directly behind the 
fitting for a minimum length of three times the hose diameter. Abrasion occurs to 
the outer cover and underlying reinforcement. It is caused by rubbing of the hoses 
against rough surfaces. When the outer cover is abraded to an extent that the 
reinforcement is visible, the environment causes further degradation. Kinks and 
crushes are due to mishandling and improper installation. Dragging the hose 
around a sharp corner or pulling the hose when it is in a coil state and not letting 
the hose naturally un-twist may cause the hose to kink. Crushes may occur if 
heavy equipment is dropped on the hose assembly. Both kinks and crushes will 
significantly reduce service life, or may even lead to immediate failure when 
pressurised. The main reasons that cause hose fatigue are pressure cycling and, to a 
lesser extend, hose flexing. Results of some corresponding tests are listed in Table 
3.7. Practical experience, however, has shown that service life mainly depends on 
hose handling. Proper hose handling, even if it is sometimes time consuming, 
increases service live and reduces cost for repair and replacement. 
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Figure 3.15 Operating pressure and hose life time (JISHA, 1992) 

Table 3.7 Results of high-pressure hose tests (Webster and Johns, 2003)  

Test Test results 

Torsion test 

Bent fitting test 

Compressive/tensile test 

10% reduction in impulse life with 1 O-degree twist. 

63% reduction in impulse life when bent at minumum bend radius 
without keeping hose straight behind fitting. 

52% reduction in impulse life with 60 lb. continuous axial 
compressive or tensile load. 

3.4 Hydrodemolition tools 
3.4.1 General structure and subdivision 

Hydrodemolition tools can be subdivided according to Fig. 3.16. Hand-held tools 
can be used as far as the jet reaction force does not exceed a value of FR=2 50 N. For 
reaction force levels 150 N<FR<250 N, hand-held guns can only be used with 
additional body support. The classical tool for manua l  applications is the high- 
pressure gun as illustrated in Fig. 3.17. It consists of hand  grip, pressure housing, 
trigger, control units, and nozzle pipe. The guns can be equipped with different 
nozzle carriers. Any tool can be run  with mechanic  (valve), electric or pneumatic  
control, respectively. According to the valve-type, hand-held tools can further be 
subdivided into dry shut-off safety valve, and dump safety control valve. Dry shut- 
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Figure 3.16 Subdivision of hydrodemolition tools 

Figure 3.17 High-pressure gun (WOMA Apparatebau GmbH, Duisburg) 

off valves, normally hand-controlled, automatically shut off flow to the gun when 
released by the operator, but retain the operating pressure within the supply line 
when so shut off. Damp safety control valves automatically terminate significant 
water flow to the gun when released by the operator, thus relieving the operating 
pressure within the whole system by diverting the flow rate produced by the pump 
to atmosphere through an orifice and dump line, which must be of sufficient size. A 
special hand-held tool for emission-flee surface preparation applications is shown 
in Fig. 3.18. These tools are equipped with sealing systems consisting of brushes or, 
in case of very high sealing demands, of sealing lips. Typical technical parameters 
for two tool types - for floor cleaning and for wall cleaning- are listed in Table 3.8. 

A basic part of any rotating nozzle carrier is a lead-through. An example is 
shown in Fig. 3.19a. This construction enables the flow of high-pressure water 
through rotating parts. The permissible rotational speed can be as high as several 
thousands revolutions per minute. An operational problem with rotating nozzle 
carriers is the water volume loss as the high-pressure water passes the lead- 
through. This loss depends on the operating pressure and can be approximated 
with the following equation: 
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Figure 3.18 Emission-free performing hydroblasting tool (WOMA Apparatebau 
GmbH, Duisburg) 

Table 3.8 Technical parameters  of emission-free performing concrete  cleaning tools 

Parameter  Water jetting tool 

ETRC* 1) Vacuj et* Lizard* 

max. operating pressure 210  MPa 250 MPa 200  MPa 

max. volumetric flow rate 201/min  20 l /min 40 l /min 
max. rotat ional  speed 2 ,500  min -1 2 ,500  min -1 2 ,500  min -1 

weight 9.2 kg ca. 36 kg ca. 55 kg 
working width 180 mm ca. 225 mm ca. 380 mm 

number  of nozzles up to 4 up to 8 up to 10 

* trade names  WOMA Appara tebau GmbH, Duisburg 1) see Fig. 3.18 

= .p l /2  QL ~L (3.21) 

Here, the volumetric flow rate is in 1/min, and the operating pressure is in MPa. The 
constant has an approximate value of ~L=0.47 for operating pressures up to 120 
MPa. The loss in volumetric flow rate for a rotating tool operating at a pressure of 
p=120 MPa and a volumetric flow rate of 0N=180 1/min would be QL=5 1/min, or 
about 3%. The rate the water jet traverses at over the surface is a function of the 
rotational speed of the nozzle carrier: 

V T ---- (DT " r T  (3.22) 

Here, ~o N is the rotational speed, and r T is the radial distance between rotational centre 
and nozzle location. Typical values for rotational speeds are listed in Table 3.8. 
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Figure 3.19 High-pressure gun with different nozzle carriers (photographs: WOMA Apparatebau 
GmbH, Duisburg) 
a -  pneumatically driven multiple nozzle head with rotating lead-trough 
b-  single nozzle 
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Self-propelling rotating nozzle carrier heads (Fig. 3.17) are usually applied for 
hand-held jetting guns. The driving force is supplied by a radial component of the 
jet reaction force. 

F~ = cosO R "F R (3.23) 

According to Eq. (3.24) the driving force - and thus the rotational speed- is related 
linearly tothe volumetric flow rate, and has a square-root relationship to the operating 
pressure. Eq. (3.24) shows also that rotational speed- and thus the exposure time of 
the exiting water jet - can not be varied independently on volumetric flow rate (nozzle 
diameter, respectively) and operational pressure. Therefore, the performance of self- 
propelling rotating nozzle carrier heads can hardly be optimised. On the other hand, no 
additional energy and no additional lines or hoses are required for driving them. Self- 
propelling carriers can be utilised for a selective coating removal from concrete surface. 
Their performance is often more gentle than that of externally driven carriers. 

Externally driven rotating nozzle carrier heads are driven by separate 
mechanisms. Hydraulic and mechanic drives can be found usually in mechanised 
tools or in stationary systems fed by plunger pumps with comparatively high values 
of hydraulic power. They are very efficient for driving hydrodemolition robots. 
Pneumatic drives are used for hand-held cleaning tools as well as for on-site 
abrasive water jet cutting systems. A typical pneumatic drive device is shown in Fig. 
3.19a. For externally driven nozzle carrier heads, rotational speed, operational 
pressure and volumetric flow rate can be varied independently from each other. 
Additional power is required to drive external nozzle carriers; a typical value for a 
pneumatically driven carrier is 0.09 kW which is a negligible part of the complete 
hydraulic power. Externally driven carriers usually perform more powerful than 
self-propelling carriers. They can be utilised for the roughening and profiling of 
concrete surfaces, and for the removal of resistant coatings. 

The flow of the high-pressure water through the gun causes pressure losses. These 
losses can be estimated from pressure loss graphs provided by manufacturers. 

3.4.2 Hydrodemolition robots 

Mechanised tools are applied for large-scale applications, namely for bridges, 
parking decks, and tunnels. Most of these tools are also equipped with sealing 
systems and perform emission-flee. Mechanised tools are very flexible. The 
structure of a commercial hydrodemolition robot is illustrated in Fig. 3.20. Figure 
3.21 shows how such a robot can be utilised for various jobs, namely floor 
decontamination, overhead demolition, and vertical concrete removal. Table 3.9 
lists typical performance parameters. 

3.4.3 Jet reaction force 

The border between hand-held and mechanized tools is set by the permissible 
reaction force generated by a water jet. At least in Europe exist regulations that 
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Figure 3.20 Structure of a hydrodemolition robot (photograph: Aquajet Systems AB, Holsbybrunn) 

Figure 3.21 Utilisation of a hydrodemolition robot (Aquajet Systems AB, Holsbybrunn) 

forbid the application of hand-held devices if the axial component of the reaction 
force exceeds the critical value of FR=250 N (corresponding to a weight of 25 kg). 
In the range between FR= 150 N and FR=250 N, hand-held guns are allowed, but 
they need to be reinforced by body support or by a second hand grip. These 
relationships are illustrated in Fig. 3.22 which also shows critical combinations of 
operating pressure and volumetric flow rate. An average rule says that an operator 
may be capable of holding about one-third of his body weight (Summers, 1991). 
For example: an operator with a body weight of 75 kg could resist a reaction force 
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Table 3.9 P e r f o r m a n c e  p a r a m e t e r s  o f  c o n c r e t e  h y d r o d e m o l i t i o n  r o b o t s  

Parameter Type (Manufacturer) 

Robot 432D (Conjet AB) HD 6000 (Aquajet AB) 

Length in mm 3,500 2 ,480-2 ,730 
Width in mm 2,660 2,000 
Cutting/working width in mm 2,200 up to 2,000 
Height in mm 1,500 1,250 
Weight in kg 2,500 1,600 
Power source Diesel engine Diesel engine 
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Figure 3.22 Critical conditions for hand-held gun operation; 
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300 

of FR=250 N. The reaction force of a water jet can be estimated through impulse 
flow conservation: 

Ij = ~h w "vj = 0.743"QN .p112 = FR (3.24) 

Here, II is the jet impulse flow, fla w is the water mass flow rate, and v I is the jet 
velocity. In the right term of Eq. (3.24), p is in MPa, ON is in 1/min, and F R is in N. It 
can be seen that the reaction force is critically related to the volumetric flow rate 
(and thus to the nozzle orifice cross section). A robot working at an operating 
pressure of p=130 MPa and a volumetric flow rate of QN = 180 1/min generates a 
reaction force of FR= 1.51 kN, a value much too high for any hand-held application. 
It is partly for this reason that efficient hydrodemolition can be performed with 
robotic units only. More results from Eq. (3.24) are plotted in Fig. 3.22. 
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3.5 Nozzles and orifices 

3.5.1 Nozzle types and nozzle wear 

The fluid jet nozzle (sometimes called orifice) is an extremely important component 
of any hydrodemolition machine. In the nozzle, the potential energy of the 
incoming pressurized water is transformed into the kinetic energy of the exiting 
high-speed water jet. Various nozzle types are known, usually designed for certain 
applications; this includes the following types: 

�9 pipe cleaning nozzles for operating pressures up to 250 MPa with several 
orifices, directed sidewards or backwards, for tube bundle cleaning; 

�9 pipe cleaning nozzles for operating pressures up to 140 MPa for cleaning 
large-diameter pipes; 

�9 whirl jet nozzles for operating pressures up to 75 MPa for cleaning partially 
or fully blocked tube bundles; 

�9 round jet nozzles with continuous flow channel for operating pressures up 
to 200 MPa; 

�9 round jet nozzles with sapphire inserts for operating pressures up to 350 
MPa; 

�9 fan jet nozzles for operating pressures up to 200 MPa; 
�9 injection nozzles for operating pressures up to 400 bar for the formation of 

hydro-abrasive water jets. 

According to the nozzle design, there can be distinguished between continuous 
nozzles and discontinuous nozzles. In the operational pressure range up to p - 1 0 0  
MPa, continuous nozzles are most commonly used. They are conically designed and 
made from hardened steel. For ultra-high pressure applications, because of the 
comparatively low volumetric flow rates, the discontinuous nozzles become 
increasingly used. They are characterised by a sapphire-made insert. Typical 
examples for each type are shown in Fig. 3.23. Nozzle performance strongly 
depends on upstream conditions. This is illustrated in Fig. 3.24. Depending on the 
volumetric flow rate supplied by the pump, efficiency decreases down to 50% if 
poor upstream conditions apply. Table 3.10 lists recommendations for the selection 
of nozzle materials as functions of the operation conditions. 

Nozzle wear may be divided into the following two cases: 

�9 breakage of nozzle body (see Fig. 3.25a); 
�9 steady decrease in nozzle exit diameter (see Fig. 3.2 5b). 

The wear of the nozzles depends on several parameters, among others operating 
pressure, water quality, nozzle design and material. As Fig. 3.2 6 shows, three stages 
can be distinguished during the performance of a discontinuous nozzle: (i) an 
introduction stage, (ii) a continuous stage, and (iii) a wear stage. It is interesting to 
note that the flow conditions improve in the introduction state. The reason is that 
sharp corners inside the nozzle are worn away by the high-speed water flow. The 



Hydrodemolition Equipment 91 

Figure 3.23 Nozzle types (WOMA Apparatebau GmbH, Duisburg) 
a - continuous nozzle 
b -  discontinuous nozzle with sapphire insert 

improved flow conditions lead to the increasing material removal capability of the 
jet as illustrated in Fig. 3.26. General statements about nozzle lifetime can not be 
made as the wear characteristics of a nozzle depends too much on the operational 
conditions. It was however, shown that binder content is the most important 
influence parameter for carbide nozzles; the higher binder content, the less is nozzle 
wear (Wright et al., 2003). The strong effect of water quality on nozzle wear is 
highlighted in Tables 3.11 and 3.12. 
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Figure 3.24 Influence of upstream conditions on nozzle 
performance (measurements: Wright et al., 1999) 

Table 3 .10  R e c o m m e n d e d  nozzle m a t e r i a l s  depending on operation conditions (Wright et 
al., 2003) 

Recommended material Operation conditions 

Carbide 

Steel 

Sapphire 

Dirty, unfiltered water; pressures below 140 MPa 

Water filtered to 65 ~tm or better; pressures below 140 MPa 

Water filtered to 25 jam; pressures above 140 MPa 

Figure 3.25 Damages to water jet orifices 
a -  broken nozzle (photograph: BGMR, RWTA Aachen) 
b -  eroded nozzle (photograph: Miihlhan Equipment Services GmbH, Hamburg) 
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Table 3.11 Water quality effects on nozzle lifetime (Flow Europe GmbH, Darmstadt)  

Water treatment Nozzle lifetime in h 

Tap water 34 
Ion exchange (softened water) 78 
Reverse osmosis 200 
Mixed bed deionised water > 200 

Table 3 .12 Water filter size effects on nozzle lifetime (Wright et al., 2 0 0 3 )  

Filter size in gm Nozzle lifetime in h 

10 80 
50 50 
100 20 

3.5.2 Optimisation of nozzle arrangements 

The velocity of the water  jet as it leaves the nozzle can be approximated with Eq. 

(2.4). The nozzle diameter  (exactly spoken: the cross section of the nozzle 

a r rangement )  determines the actual  volumetric flow rate as well as the actual 

reaction force of a jet. The actual volumetric flow rate is approximately: 

1 / 2  

2 / \ 2"p (~A =NN "c~'--'dN "~"~i -a'QN (3.25) 
4 
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Here, N N is the number of nozzles. The parameter tx is often called the discharge 
coefficient considering losses due to nozzle flow. A very typical value is cz=O.7 for 
discontinuous sapphire nozzles (see Fig. 2.2). Graphs for typically applied nozzle 
diameters in hydrodemolition are contained in Fig. 3.2 7. 
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Figure 3.27 Nozzle arrangements for 
hydrodemolition applications 

The parameter e is the ratio between real volumetric flow rate and nominal 
volumetric flow rate: 

a = QA - ct" �9 P "(2"p)1/~ "o~/~ 
. . . . . .  (3.26) nc .i-i  

flow i 'a te-  ia~. o o-oss section-ratio velocity-~tio 

The product nc.H s is half the plunger velocity given by Eq. (3.13). Compressibility 
effects are neglected. For a given pump configuration, Equation (3.26) links 
operating pressure and nominal volumetric flow rate to the nozzle arrangement. 
The use of e for system optimisation is in detail discussed by Momber (2000a). The 
following relationship can be derived from Eq. (3.26): 

d N oc p -1/4 ( 3 . 2  7) 

This relationship can be used to control nozzle wear. If nozzle diameter increases 
due to wear, operating pressure in the pump drops. This is shown in Fig. 3.28, 
whereby nozzle wear is replaced by exposure time. Because operating pressure can 
be measured easily on-line, it is a suitable control parameter. If losses in pump, hose 
line and tool are neglected and the entire cross section is optimally distributed over 
several orifices or nozzles, the ideal case e= 1 occurs. The optimum cross section is 
then: 
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Figure 3.28 Pressure drop due to nozzle wear 
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~ 'dN -0 .265"  N AN = NN" 1/2 
4 p 

(3.28a) 

In that equation, ON is in 1/min, p is in MPa, and A N is in mm 2. The optimum nozzle 
diameter is: 

d~ = ( 4 " A .  

i ~'N.) 
1 t 2  

(3.28b) 

Here, d* N is in mm. However, the case e -1  is rather unusual in practice. The 
following, more realistic cases can be distinguished: 

(i) e>l" dN>d* N, this case could happen for a broken (see Fig. 3.25a) or 
worn nozzle (Fig. 3.25b). In a system without response, operating 
pressure drops according to: 

(1) 
Ap = p.  -~T- 1 (3.29) 

(ii) e< 1, dN<d*N; this case could happen due to nozzle clogging. In a system 
without response, a safety valve opens and bypasses a certain amount of 
the volumetric flow rate given by: 

A(~N = (1--U)'(~N (3.30) 

(iii) e* 1" this is due to the restriction of commercially available nozzle diameters. 
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Many operators are practicing the case (ii) because they assume that the initial 
wear of the nozzle, that increases the nozzle diameter step-by-step, will later 
guarantee optimum performance conditions (~=1). Table 3.13 lists results of 
comparative calculations for a typical hydrodemolition system. Note the increase in 
hydraulic efficiency if an equipment with response is used. The situation improves 
further if systems with direct on-line control of the crank-shaft speed are used. 
These systems vary the crank-shaft speed according to the following equation: 

n c = ~ ' n  c (3.31) 

Table 3.13 Optimisation of  a hydrodemolition system (see Momber ,  2 0 0 0 a )  

nc=398 min -1, Hs=95 ram,  Np=3, d p = 1 6  m m ,  p = 2 0 0  M P a  

Parameter  e < 1 e > 1 

without  response with response without  response with response 

e 0 .785 0.943 1.129 1.055 

Ap in MPa +124.5  +25 -43 .1  - 2 0  

AQ in l /min  4.3 1.2 - - 

AP H in % 21.5 6.0 21.5 10 

An example of how a decrease in volumetric flow rate is compensated by 
variable crack-shaft speeds is shown in Fig. 3.29. The gain in power rating is 
particularly high in the range between 20% and 50%, and it can be more than 20 
kW in that certain case. The control parameter is usually the operating pressure 
measured with pressure gauges directly at the pump [see Eq. (3.27)]. If Eq. (3.26) 
is set to e= 1, any change in the operating pressure can be compensated through 
Eq. (3.31). 
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Figure 3.29 Power savings due to on-line crank-shaft 
control (K6hler et al., 2000) 
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3.5.3 Performance ranges 

Equation (3.25) suggests a hyperbolic relationship between orifice diameter and 
orifice number. In a diagram for a hand-held gun, each hyperbola is a line of constant 
orifice cross section (or constant volumetric flow rate, or constant hydraulic power, 
respectively). The resulting performance ranges are of great practical importance. If a 
typical job performed with a hand-held gun with p=200 MPa and 0N=20 1/min is 
considered, the following situation appears. In the case NN= 1 (which gives dN=0.85 
mm), the entire hydraulic power delivered by the pump is focused in one jet that owns 
a high power of PN=42 kW (if nozzle losses are considered). This case, shown in Fig. 
3.19b, is very favourable for performing heavy material removal work, such as 
exposing reinforcement bars. However, this variant is not suitable for selective paint 
stripping as there is a risk that the underlying material layer will be damaged. 
Therefore, the hydraulic power can be divided into several portions by using various 
nozzles or orifices. In the case NN=6 (dN=0.34 mm), six jets having a notably lower 
power of PN = 7 kW each, are formed that work very gently and do not damage any 
underlying material. Examples are shown in Figs. 3.19a and 3.19b. 

3.6 Waste water treatment systems 

Vacuuming and water treatment systems will soon become a standard requirement 
for an ecologically successful application of hydrodemolition systems. However, 
commercial systems are already developed. Figure 3.30 shows a vacuuming unit 

Figure 3.30 Vacuuming device for concrete cleaning applications (Hammelman GmbH, Oelde) 
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designed for waterjet tools that perform at an operating pressure up to 200 MPa 
and volumetric flow rates between 10 and 40 1/min. A typical unit consists of a 
drive (usually electric), a vacuum pump (liquid-ring-pump) and a 2 m3-vessel with 
level control for contaminated water. At a pressure of 5 bar, the maximum vacuum 
is about 50%. The unit requires a drive of 29 kW. It is containerised and can directly 
be connected to water treatment systems. A general waste material treatment cycle 
for hydrodemolition applications is shown in Fig. 4.8, whereas Fig. 3.31 shows a 
technical solution for the site treatment of process water from hydrodemolition jobs 
with rather low volumetric flow rates. 

Figure 3.31 Modular water treatment system (photograph: WOMA Apparatebau GmbH, Duisburg) 

3.7 Abrasive water jet cutting equipment 
3.7.1 Abrasive water jet cutting devices 

Major parts of a typical on-site abrasive water jet cutting system are shown in Fig. 
3.32. These parts include in particular the following: 

�9 driving device; 
�9 guiding device; 
�9 abrasive hopper; 
�9 abrasive line; 
�9 mixing and acceleration head. 
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Figure 3.32 On-site abrasive water jet cutting system (WOMA Apparatebau GmbH, Duisburg) 
a - principal structure of a linear cutting system 
b - cutting systems for concrete floor and, respectively, concrete pipe cutting 

Driving devices are usually pneumatic air motors. Traverse speed can be fixed 
with a high accuracy due to the adjustment of air flow rate or, respectively, air 
pressure. In contrast to mechanical or hydraulic drives, pneumatic motors are 
small and lightweight. Guiding devices may feature rails and chains. Rails are 
usually utilised for straight cutting (see Fig. 3.32a), whereas chains are more 
appropriate for curved cutting (e.g. cutting of pipes). The abrasive hopper stores the 
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abrasive material. However, most hoppers are not only storage devices, but contain 
control and metering mechanisms for abrasive mass flow rate and traverse speed. 
Abrasive lines serve to transport the abrasive materials from the hopper to the 
cutting head. They are often made from abrasion resistant plastics, and they are 
usually transparent so that the feeding process can be observed on-line. 

3.7.2 Abrasive water jet cutting heads 

The majority of on-site cutting heads works according to the injection principle. A 
typical on-line abrasive water jet cutting head is shown in Fig. 3.33. It consists of a 
water inlet, an abrasive inlet, a mixing chamber, and an acceleration focus. The 
quickly flowing water jet forms a vacuum in the mixing chamber and the resulting 
pressure difference allows for the flow of an air stream that in turn transports the 
abrasive particles to the mixing chamber. The processes of mixing and acceleration 
are in detail described by Momber (2001) and Momber and Kovacevic (1998). 
Table 3.14 lists performance parameters of the cutting head shown in Fig. 3.32. 
More information is provided in Chapter 6. 

Figure 3.33 Abrasive water jet cutting head (photograph: 
WOMA Apparatebau GmbH, Duisburg) 



Hydrodemolit ion Equipment 101 

Table 3 .14  Performance parameters  of the on-site abrasive water jet cutt ing system shown 
in Fig. 3.3 2 

Parameter Value 

Maximum operating pressure 
Volumetric water flow rate 
Maximum air consumption 
Weight cutting head 
Weight chain 
Total weight 
Driving speed 
Length rail system 
Recommended abrasive material 

300 MPa 
18 to 201/min 
400 l/min (at 0.6 MPa) 
1.2 kg 
2.5 kg 
123 kg 
25 to 100 mm/min 
approx. 1,650 mm 
garnet; size 0.5 to 1.0 mm 

Figure 3.34 shows the drawing of a nozzle type developed to accelerate explosive 
pellets by high-speed water jets (Becker et al., 1999). The pellets are being 
accelerated to a high speed and are brought to detonation if they hit the material to 
be cut. The principle of mixing is comparable to that used for the formation of 
hydro-abrasive water jets. 

Figure 3 . 3 4  Nozzle arrangement for accelerating explosive pellets with a high speed water jet (Becker et al., 

1999) 
1 - annular water jet 

2 - explosive pellets 

3 - area exposed to explosion 

4 - concrete surface 

5 -  high-pressure nozzle 

6 - pellet feeding inlet 

7 - h o u s i n g  

8 - centering segment 

9 - liquid medium (water) 

1 0 -  second medium (optional) 

11 - third medium (optional) 

12 - distribution segments 

13 - demp  f i t t ing 

1 4 -  sealing 

15 - thread joint (rear side) 

16 - flange 

Abrasive particles are the actual cutting tool in abrasive water jet cutting. 
Basically, metallic and non-metallic abrasive materials can be distinguished. They 
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are defined and described in ISO 11118 and 1119. However, for on-site concrete 
cutting jobs, non-metallic abrasive materials, such as garnet or aluminium oxide, 
are preferred. Important abrasive properties include the following: 

�9 hardness; 
�9 density; 
�9 average grain size; 
�9 grain size distribution; 
�9 grain shape. 

A typical abrasive material utilised for on-site concrete cutting jobs is shown in 
Fig. 3.35. Table 3.15 lists the corresponding physical, chemical and mechanical 
properties. 

Figure 3.35 Abrasive material (photograph: Barton Mines Corp., North Creek) 



Hydrodemolition Equipment 103 

Table 3.15 Physical properties of a typical abrasive material (Medenec Mine, Czech 
Republic) 

Property Value 

Melting point 
Specific gravity 
Solubility in water 
Moisture absorption 
Volatile 
Evaporation rate 
Appearance and odor 
Susceptibility to acids 
Crystal system 
Cell parameters 
Granularity characteristics 
Mohs' hardness 
Microhardness (VHN) 
Fracture 
Cleavage 
Durability 
Colour 
Luster 
Optical character 
Young's modulus 

1,320 ~ 
4,114kg/m 3 
not soluble 
less than 0.2% by weight 
0 
solid matter 
odorless 
non, very stable 
cubic 
11.547A 
anisometric grains 
7.5 
13,045-15,053 N/mm 2 
irregular, sub-conchoidal 
none 
very good 
red 
vitreous 
isotropic 
241 GPa 
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4.1 Surface preparation methods 
Surface preparation processes affect performance and life time of coating systems 
and of concrete replacement systems significantly. Surface preparation is defined in 
RILI (2001) as "the generation of a suitable surface of a concrete substrate for 
concrete replacement or, respectively, surface protection." Surface preparation is an 
important part of any concrete corrosion protection and rehabilitation strategy. 
Basically, the following eight principal surface preparation methods can be 
distinguished (RILI, 2001): 

~ 

~ 

3. 
4. 
5. 
6. 
7. 

~ 

chipping (hammer and chisel, electric or pneumatic hammer, needle 
gun); 
brushing (rotating steel brush); 
milling (milling machines); 
grinding (grinder); 
Flame cleaning (thermally operating devices); 
Low-dust blasting (vacuum blasting, shot blasting); 
Blasting (air pressure blasting, wet blasting, high-pressure waterjetting 

> 60 MPa); 
Cleaning (suction devices, steam jetting, hot-water jetting). 

Typical operations performed with these methods are listed in Table 4.1. 
Hydrodemolition is designated high-pressure waterjetting in that table. It can be 
applied to horizontal and vertical surfaces for the following processes: 

�9 removal of deteriorated coatings as well as of near-surface contaminants; 
�9 removal of cement lime and low-strength layers; 
�9 removal of damaged (deteriorated) concrete/concrete replacement as well 

as reinforcement exposure; 
�9 removal of rust from exposed reinforcement and from other metal parts; 
�9 removal of water, dust and loosely adhering particles from the substrate. 

4.2 Efficiency of hydrodemolition processes 
4.2.1 Cleaning and roughening of concrete substrates 

Cleaning of concrete substrates include decontamination, laitance removal, 
construction joint cleaning, and the removal of deteriorated coatings. These 
applications are illustrated in Fig. 4.1. Materials to be removed include oil, soot, 
organic growth, road markings, paint and linings. Water jets are state-of-the-art 
tools for these applications. The subdivision of a typical rehabilitation project that 
contains a certain amount of cleaning is listed in Tables 4.2 and 4.3. The amount 
of cleaning work is surprisingly high in both cases. For the situation listed in Table 
4.3, the amount of cleaning is about 90% in terms of the total area to be treated. It 
is standard to use hand-held tools driven by very high pressures and rather low 
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Table 4.1 M e t h o d s  of  c o n c r e t e  surface  t r e a t m e n t  (RILl, 2001)  

Method Tool / Material Application Application range 

1 2 3 4 5 

Chiseling Hammer and chisel x x x Local; for smaller areas a) 

Chisel (electric, x a) 
pneumatic) 

Local; for smaller areas a) 

Needle gun x x (x) g) Local; for smaller areas a) 

Brushing Rotating steel brush x x (x) g) Depends on tool being used 

Milling Milling machine x x i) x i) j) Large-scale removal on 
horizontal areas 

Large-scale removal x x i) x i) j) Large-scale removal on 
to desired depth horizontal areas 

Grinding Grinder x x Local; for smaller areas 

Flame cleaning Device for thermal and x x Horizontal and vertical 
mechanical treatment b) surfaces 

Low-dust Blasting with abrasives x x (x) c) x Depending on device; on 
blasting with simultaneous horizontal and/or vertical 

vacuuming; surfaces 
shot blasting 

Blasting Blasting with abrasives x x (x) c) x Horizontal and vertical 
surfaces 

Fog blasting; x x (x) c) (x) h) Horizontal and vertical 
Wet blasting with surfaces 
abrasives 

High-pressure water x x (x) e) (x) h) Horizontal and vertical 
jetting >60 MPa surfaces 

Cleaning Blow-off with 
compressed air 

Preferably for non- 
horizontal surfaces a) 

Vacuuming with 
industrial vacuum 
cleaners 

Basic method for large, 
horizontal surfaces 

Water blasting; 
Steam jetting; 
Hot-water jetting 

Removal of atmospheric 
contaminants from 
concrete substares 

Applications: 
1 removal of deteriorated coatings as well as of near-surface contaminants; 
2 removal of cement lime and low-strength layers; 
3 removal of damaged (deteriorated) concrete/concrete replacement as well as reinforcement 

exposure; 
4 removal of rust from exposed reinforcement and from other metal parts; 
5 removal of water, dust and loosely adhering particles from the substrate. 

continued 
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Table 4.1 continued 

Legend: 
a) In-depth damage to concrete possible. 
b) Thermally damaged zones in concrete need to be removed. 
c) Degree of concrete removal depends upon pressure and abrasive mass flow rate. 
d) Oil-flee: Compressor to be used must feature an oil separator with an efficiency of ~0.01 ppm 

residual oil. 
e) Degree of concrete removal depends upon pressure. 
f) Remaining coatings can not always be removed. 
g) Not for reinforcement to be coated and other metallic parts. 
h) Dry grit blasting if necessary. 
i) Maximum removal depth of <5 mm must not be exceeded. For deeper removal, an in-depth 

damage to the concrete is probable. 
j) Not for reinforcement exposure. 

Table 4.2 lobs performed at the rehabilitation projects Litti-bridge and Lissibach-bridge, 
Baar, Switzerland (Walser, 1999) 

Task Tool Area / volume 

Cleaning with 75 MPa 
Cleaning with 240 MPa 
Concrete removal; horizontal 
Concrete removal; removal depth 540 mm 
Concrete removal of consoles 
Concrete removal 

- 6,200 m 2 
hand-held 300 m 2 
robot 20 m 3 
robot 23 m 3 
robot 1 O0 m 3 
hand-held 25 m 3 

Table 4.3 lobs performed at the rehabilitation project avalanche gallery Willerplangen, 
Switzerland (Schweizerischer Fachverband fiir Hydrodynamik am Bau, 1997) 

Task Tool Area / volume 

Laitance removal 
Removal of contaminants 
Concrete removal; depth: 0-50 mm; no 

exposure of reinforcement 
Concrete removal; depth: 20-80 mm; 

exposure of reinforcement 

hand-held 25,000 m 2 
hand-held 8,000 m 2 

robot 900 m 2 

robot 1,1 O0 m3 

v o l u m e t r i c  flow ra tes  for c l e a n i n g  ope ra t ions .  The  p r o b l e m s  as soc ia t ed  w i t h  these  

app l i ca t ions  a re  in detai l  d i scussed  by M o m b e r  ( 2 0 0 3 c ) .  

A widely  used  app l i ca t ion  is the  r e m o v a l  of r u b b e r  f rom a i rpo r t  r u n w a y s .  The  

p r o b l e m  is i l lus t ra ted  in Fig. 4 .2  s h o w i n g  the  f o r m a t i o n  of a s m o o t h  r u b b e r  layer  on  

c o n c r e t e  subs t r a t e s  w i t h i n  the  c o u r s e  of a few weeks  due  to r u b b e r  par t ic les  p u s h e d  

in to  t he  c o n c r e t e  sur face  d u r i n g  the  take-off  a n d  l a n d i n g  of a i rp lanes .  To c l ean  the  

conc re te ,  mobi l e  w a t e r  jet m a c h i n e s ,  u sua l l y  cons i s t ing  of a t r u c k  based  chass i s  

a n d  a r o t a t i n g  nozzle ca r r i e r  device,  a re  uti l ised. A n  e x a m p l e  is s h o w n  in Fig. 4 .3 .  

A c c e p t a n c e  cr i te r ia  for a successfu l  r u b b e r  r e m o v a l  f rom r u n w a y  c o n c r e t e  

s u b s t r a t e s  a re  the  fol lowing (Choo a n d  Tek, 1 9 9 0 a ) :  
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Figure 4.1 Applications of water jets to concrete substrates (photographs: WOMA Apparatebau GmbH, 
Duisburg) 
a -  removal of paint b -  removal of coatings c -  roughening 
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Figure 4.2 Rubber formation on airport runways and 
cleaning results (Choo and Teck, 1990b) 

Figure 4.3 Unit for runway cleaning (photograph: WOMA Apparatebau GmbH, 
Duisburg) 

�9 friction value at any point along the cleaned area must be less than 0.5; 
�9 removal rate must be between 150 to 300 m2/h; 
�9 proportion of aggregates (fines) and bitumen being removed must not exceed 

40% of the residues collected; 
�9 macro-textural depth of cleaned areas must not be less than 0.25 mm. 
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The effect of water jet cleaning on friction values is shown in Fig. 4.4. Friction 
notably increases after the cleaning. Efficiency of the process varies notably, 
depending on rubber thickness, operating parameters, and on site organisation. 
However, efficiency values up to 1 ,500 ma/h are reported (WOMA Aparatebau 
GmbH, Duisburg). Table 4.4 lists the composition of residues collected during a 
cleaning of a runway with water jets. It can be seen that the total of fine aggregates 
and bitumen is less than 40%. Further results of glue removal tests on runways are 
provided in Table 4.5. 
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Figure 4.4 Effect of cleaning on friction values of runway 
substrates (Choo and Teck, 1990b) 

Table 4 .4  Composi t ion of  residues after rubber removal from a runway (Choo and Teck, 
1990a)  

Part Material Percentage 

External deposit Rubber 65.5 

Pavement Fine aggregates 22.7 

Bitumen 11.8 

Total 1 O0 

Roughening of concrete substrates basically includes the removal of a top 
laintance layer in order to expose aggregate surfaces. This is shown in Fig. 4.5. It 
was shown by Schulz (1984) that adhesion to concrete substrates increases if the 
amount of aggregates visible at the surface increases. Results of a large dam project 
realised with an automatic removal system are reported by Ohta et al. (1991). 
Some results are listed in Table 4.6. Efficiency values are rather high and vary 
between 121 and 155 m2/h. Further examples are listed in Table 4.7. 
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Table 4.5 Results  of  runway  glue removal  tests  (Xue et el., 2001) ;  rotat ional  speed  nozzle  
carrier: 8 0 0  min  -1 

Runway type Pump pressure Cleaner speed Cleaning effect 
in MPa in m/min 

Concrete 
runway 

20 3.0 
30 3.0 
40 3.5 
40 5.0 

45 5.0 
> 45 5.0 

Not clean. 
Basically clean. Thick glue can not be removed. 
All cleaned. 
Basically clean. Thick glue can only be cleaned 
partially. 
All cleaned. 
Damage appears. 

Bitumen 45 5.0 
runway 50 3.0 

65 3.0 

65 1.0 

Partly cleaned. No damage to runway surface. 
Better than above. No damage to runway 
surface. 
Most glue layer removed. Little damage to 
runway surface. Sand and aggregate can be 
seen. 
Nearly all glue removed. Obvious sand and 
aggregate can be seen. Medium degree damage 
to runway surface. 

Figure 4.5 Laitance removal with water jets (photographs: WOMA Apparatebau GmbH, Duisburg); 
pressure: 200 MPa 
a -  before cleaning b -  after cleaning 
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Table 4 .6  Results of  la intance  removal from green concrete  (Ohta et al., 1991)  

Compressive strength Pump pressure Traverse rate Efficiency 

in MPa in MPa in m/min  in m 2/h 

2.8 4 0 - 8 0  14 155 

6.4 6 0 - 8 0  13 144 

7.5 7 0 - 9 0  12 132 

9.4 8 0 - 1 0 0  11 121 

10.5 8 0 - 1 0 0  11 121 

11.3 8 0 - 1 0 0  11 121 

Table 4 .7  Efficiency values  for concrete  substrate  profiling (Momber, 1993)  

Problem Tool Pump pressure Area in m 2 

in MPa 

Efficiency 
in m 2/h 

Wall area Robot 80 2 ,500  125 

Cooling tower internal area Robot 35 17 ,000  62 

Profiling depth: 2 -3  mm Hand-held gun 70 - 30 

Profiling depth: 1-3  mm Robot 45 - 44 

Reinforced concrete wall Abrasive-gun 75 - 240 

4.2.2 Efficiency of hydrodemolition 

Table 4.8 lists examples for typical quantities (area, volume) of hydrodemolition 
jobs. Efficiency values listed in Table 4.9 illustrate that efficiency of hydro- 
demolition processes varies depending upon location, concrete quality, site 
organisation, equipment and process parameters. A more rigid subdivision of 
affecting parameters is shown in Fig. 4.6. A measure of hydrodemolition efficiency 
is either the area efficiency, defined as: 

a H E H - (4.1) 
tB 

which is usually applied to cleaning or roughening jobs, or the volumetric 
efficiency, defined as: 

V M 
E v - - E H "h M (4.2) 

tB 

which is usually applied to heavy demolition jobs. Both equations are coupled via 
the removal depth. Area efficiency depends strongly on the size of the area to be 
treated and on removal depth. These relationships are illustrated in Fig. 4.7. 

Dinglinger (1998) distinguished between three typical efficiency rates or, 
respectively, performance rates: 

�9 basic output, EB; 
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T a b l e  4 . 8  Q u a n t i t i e s  o f  t y p i c a l  h y d r o d e m o l i t i o n  j o b s  ( R e f e r e n c e  l i s t :  W a n n e n w e t s c h  

G m b H ,  M e i n i n g e n )  

Total  a r e a  in  m 2 Total  v o l u m e  in m 3 R e m o v a l  d e p t h  in  m m  

P a r k i n g  decks  

1 0 , 0 0 0  9 0 0  

2 5 , 0 0 0  

- 1 4 5  

5 , 0 0 0  

1 , 4 0 0  6 0  

3 0 0  

- 3 0  

- 1 6 0  

6 0 0  

- 70 

1 , 0 0 0  

3 , 5 0 0  2 5 0  

2 , 6 0 0  

1 5 , 0 0 0  

2,O0O 

1 5 0  

6 0 0  

30  

Var ious  d e p t h s  

4 0  

1 5 0  

1 5 0  

1 5 0  

70  

70  

70  

Var ious  d e p t h s  

2 0 0  

50  

T u n n e l s  

- 1 , 5 0 0  

2 , 0 0 0  

2 , 4 0 0  

6 0 0  

- 1 , 7 0 0  

3 0 0  

35 

35 

30  

2 5 0  

Br idges  

1 0 , 0 0 0  1 0 0  2 5 0  

1 3 , 0 0 0  1 , 1 5 0  9 0  

6 , 0 0 0  - 4 0  

2 , 0 0 0  4 0 0  1 5 0  

- - 1 2 0  

8 0 0  - 5 0 0  

- - 4 0 0  

- 3 6 0  3 5 0  

- 42  1 , 1 0 0  

- 4 0  1 0 0  

1 , 7 0 0  - 30  

- 6 0  25O 

- - 2 0 0  

- 2 0  4 5 0  

- 1 0 0  2 5 0  

1 , 0 0 0  - 2 5 0  

1 , 0 0 0  - 2 7 0  

- - 1 , 2 0 0  

1 , 0 0 0  lfm - 35O 
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Table  4 . 8  continued 

Special constructions 

- 600 800 
600,000 - - 
2,500 - - 

- 30 150 
- 50 520 
- 4 0  1,1 O0 
- 80 200 
- 500 Various depths 
- - 1 , 0 0 0  

3,500 - - 
- 40 450 
- 20 200 
- 15 1,000 

Table  4 . 9  C o n c r e t e  h y d r o d e m o l i t i o n  e f f i c i e n c y  v a l u e s  ( H i l m e r s s o n ,  1 9 9 8 )  

O p e r a t i n g  p r e s s u r e :  1 0 0  MPa,  v o l u m e t r i c  w a t e r  f l o w  rate:  1 9 3  l / m i n ,  r o b o t  type:  H V D - 6 0 0 0  

Object Completed area Removal depth Efficiency Efficiency 
in m 2 in mm in m2/h in m3/h 

Bridge 210 30 14 0.42 
Bridge 45 30 13 0.39 
Bridge 40 30 15 0.45 
Harbour structure 1,550 30 20 O. 60 
Harbour structure 210 30 15 0.45 
Harbour structure 85 200 2 0.40 
Bridge 140 60 12 O. 72 
Bridge 700 120 8 0.96 
Floor 300 80 6 0.48 
Facade 1OO 80 5 0.40 
Bridge 75 30-60 11 O. 33-0.66 
Pillar (round) 185 50-80 2 O. 10-0.16 
Power station 85 30 10 O. 30 
Bridge (overhead) 80 30 8 0.24 
Bridge 12,000 10 40 0.40 
Tunnel (overhead) 200 30 11 0.33 
Bridge 1,500 60-90 9 O. 54-0.81 

�9 m a x i m u m  effective o u t p u t ,  EEM; 

�9 ave rage  effective o u t p u t ,  EEA. 

The  basic  o u t p u t ,  E B, is o b t a i n e d  d u r i n g  the  r e m o v a l  of a specific c o n c r e t e  

q u a l i t y  by a specific h y d r o d e m o l i t i o n  e q u i p m e n t .  Site a n d  e q u i p m e n t  s ta tus ,  

o r g a n i s a t i o n a l  s t r u c t u r e  a n d  site o r g a n i s a t i o n  as well  as c l ima te  co n d i t i o n s  are  n o t  

t a k e n  in to  a c c o u n t .  The  m a x i m u m  effective o u t p u t  is o b t a i n e d  over  a r a t h e r  s h o r t  

per iod  of t ime. As for the  average  effective o u t p u t ,  site a n d  e q u i p m e n t  s ta tus ,  

o r g a n i s a t i o n a l  s t r u c t u r e  a n d  site o r g a n i s a t i o n  as well  as c l ima te  cond i t i ons  are  n o t  

t a k e n  in to  a c c o u n t .  The  ave rage  effective o u t p u t  is def ined to be the  average  
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Figure 4.6 Parameters affecting hydrodemolition efficiency (Vorster et al., 1992) 

performance continuously obtained over a prolonged period of time. Start-up 
times, allowances and recovery times are taken into account. The average effective 
output is of basic interest for efficiency and cost calculations. It is given as follows: 

l-I = fl (4.3) 
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Figure 4.7 Area efficiency for hydrodemolition 
(based on Table 4.9) 

The degradation parameters are defined as follows: 

�9 fl - p l an t  employment factor, which includes: 
- fl-]: relocation times, 
- fl-2: operational idle times; 

�9 f2 - machine factor, which includes: 
- f 2 _ 1 :  maintenance time, 
- f2-2: repair time; 

�9 f3-  human performance factor; 
�9 f4 - removal factor; 
�9 f5- weather factor. 

The maximum efficiency output is reduced down to the average effective output by 
considering a time influence factor, which delivers the following relationship: 

E ~  =EEM'fr  =EE~ "f~ "fT (4.4) 

The time influence factor takes into account the following time consuming 
processes" 

�9 relocation times; 
�9 operational breaks for mechanical reasons; 
�9 performance losses due to start-up and phasing-out times; 
�9 idle times caused by operating personnel. 
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Table 4 .10 lists typical values obtained from practice hydrodemolition jobs. If 
the basic efficiency is divided by the theoretical efficiency, a factor of influence f* 
can be obtained. This factor is directly related to the changes in concrete quality 
parameters  (e.g. compressive strength). Values for ff are listed in Table 4.11. 

Table 4.10 Efficiency reduction factors for hydrodemolition sites (Dinglinger, 1998) 

Factor Hydrodemolition site 

1 2 3 4 5 6 

f1-1 0.86 0.57 0.84 0.86 0.49 0.83 
fl-2 0.97 1.00 0.76 0.88 0.80 0.97 
f2-1 0.94 0.54 0.91 0.85 0.87 0.97 
f2-2 0.73 1.00 0.98 0.69 1.00 0.92 

Table 4.11 Basic output parameters for different hydrodemolition sites (Dinglinger, 1998) 

Parameter Hydrodemolition site 

1 2 3 4 5 6 

A n in m 2 420.0 59.3 55.7 31.1 71.5 304.0 
EAG in m2/h 47.5 67.1 63.8 58.2 31.2 25.5 
EvG in m3/h 3.7 5.3 5.3 5.6 2.6 2.1 
h M in mm 79 80 84 80 84 81 
f* 0.77 1.10 1.05 0.96 0.51 0.42 

4.3 Disposal of solid and liquid waste 
4.3.1 General disposal problems 

Waste can result from a variety of activities related to concrete refurbishment.  
Hydrodemolition, in particular, can produce a considerable amount  of waste, 
mainly eroded concrete material and removed coatings. A flow chart  of how to deal 
with this residue is shown in Fig. 4.8. Especially older paint systems contain 
hazardous materials, such as heavy metals, dioxine, PCBs, etc. Typical examples for 
hazardous substances contained in paint systems are listed in Table 4.12. Most of 
these substances are not degradable; their health (and disposal) risk is essential. A 
major problem with the removal of these paint types is the contaminat ion of air 
and soil. 

A duty of care that  addresses waste generation, control and disposal, which is a 
s tatutory duty that  applies to producers, holders, carriers of waste, and those who 
treat waste, has four major aims (Abrams, 1999): 

to prevent any other person from depositing, disposing of, or recovering 
controlled waste (residential, commercial, industrial) without  a waste 
managemen t  license or in a manne r  likely to cause environmental  pollution 
or ha rm to health; 
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Figure 4.8 Flow chart for hydrodemolition waste treatment (Kauw, 1992) 

�9 to ensure that waste is safely and securely contained, both in storage and in 
transport, in such a way that it cannot escape; 

�9 to ensure that if waste is transferred that it only goes to an authorised 
person; 

�9 to ensure that when waste is transferred there is a clear, written description 
of it so the person receiving the waste can handle it properly and safely 
without committing any offence. 

The following steps are helpful to meet the obligations mentioned above: 

Identification of all types of activity involved in the project (e.g. paint 
removal; storage of chemicals, fuels, and paints; application of paint). 
Identification of all sources of waste in terms of 'waste streams' (e.g. dry 
removed paint, blasting water, abrasive and its packaging, dust, chemicals 
and their packaging, wet paints, fuel), and the estimation of the quantities 
of waste from each process step prior to the job start. 
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Table 4 . 1 2  H a z a r d o u s  s u b s t a n c e  ana lys i s  o f  pa in t  s y s t e m s  

Substance Content in paint (%) Reference 

Cadmium 0.014* Dupuy et al. (2001) 
Cadmium 0.003-0.01 Marshall (2001) 

Chromium 0.86* Dupuy et al. (2001) 
Chromium 1.65 Holle ( 2000) 
Chromium 2.99 Holle (2000) 
Chromium 0.093-0.21 Marshall (2001) 

Lead 0.31-13.5 Dupuy et al. (2001) 
Lead 0.132-0.710 Marshall (2001) 
Lead 6.14 Holle (2000) 
Lead 11.11 Holle (2000) 
Lead 14-20 Mickelsen and Johnston ( 1995) 

PCB 0.12 Holle (2000) 
PCB 0.16 Holle (2000) 

Zinc ** 80-85 Tinklenberg and Doezema (1998) 

* Maximum values; ** Zinc rich paint 

Determination of a means  of handling and storing waste in order to control 
and minimise pollution risks. This could include the following: 
- minimising the amoun t  of abrasives or contaminated water which can 

be done by some type of conta inment  with extraction if necessary; 
- storage of contaminated waste in a properly bunded area; 
- examination of transfer methods from the storage area to the waste 

contractor to minimise risk of spillage. 

4.3.2 Waste water treatment 

The water consumption during hydrodemolition basically equals the volumetric 
flow rate generated by the pump. Typical volumetric flow rates for heavy 
hydrodemolition jobs are between 150 and 250  1/min. This is a conservative 
approach because it is the actual volumetric flow rate of the nozzle system that  
must  be considered. It is important  to know that  operating pressure and volumetric 
flow rate can not be varied independently if a certain pump power is given (see Fig. 
3.7). A rule of thumb is: the higher the pressure for a given pump power, the lower 
the volumetric flow rate. Dorner (1996) performed a study into the amount  and 
composition of waste water collected during hydrodemolition jobs. Table 4.13 lists 
values of corresponding absolute volumetric waste water flow rates. It can be seen 
that  values range from 0.75 m3/h to 15 m3/h which is a deviation factor of 20. 
Sometimes, if different jobs are being compared, the relative water consumption 
which relates the volumetric flow rate to hydrodemolition efficiency, is a more 
appropriate parameter. Relative water consumption is given as follows: 

w = (4 .5 )  
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Table 4.13 Typical waste water streams from hydrodemolition sites (Dorner, 1996) 

Construction Area (m 2) Operating pressure Waste water flow rate 
(MPa) (m3/h) 

Fa~;ade ca. 2,800 100 O. 75 
Bridge ca. 300 100-200 9 
Parking deck ca. 1,50 200 1 
Tunnel ceiling ca. 1,500 100 15 
Fa~;ade 2,500 55 5 
Parking deck 2,500 50 1 

This parameter is given in 1/m 2 for cleaning processes, and in 1/m 3 for heavy 
hydrodemolition. Table 4.14 lists typical values for hydrodemolition. Specific water 
consumption depends on type and condition of the material being removed, on site 
conditions, on performance parameters of the jetting system, and on the tools 
being used. Basically, automated equipment will consume less water per square 
meter than hand-held equipment. It must, however, be taken into account that 
about 30% of the water evaporates (Anonymus, 1997), mainly due to heat 
generation during the blasting process. 

Table 4.14 Specific water consumption of heavy hydrodemolition jobs (based on Table 4.9) 

Object Completed area Water consumption Water consumption 
in m 2 in 1/m 2 in 1/m 3 

Bridge 210 82 7 2 7, 570 
Bridge 45 890 29,690 
Bridge 40 772 25,730 
Harbour structure 1,550 580 19,300 
Harbour structure 210 772 25,730 
Harbour structure 85 5,790 28,950 
Bridge 140 965 16,080 
Bridge 700 1,44 7 12,060 
Floor 300 1,930 24,125 
Facade 100 2,316 28,950 
Bridge 75 1,503 17,540-23,100 
Pillar (round) 185 5,790 72,370-115,800 
Power station 85 1,158 38,600 
Bridge (overhead) 80 1,44 7 48,250 
Bridge 12,000 290 28,950 
Tunnel (overhead) 200 1,053 35,090 
Bridge 1,500 1,287 14,300-21,440 

There are regulatory limits of waste water pollutants. These limits may differ 
from country to country. Table 4.15 lists regulatory limits for the acceptance by a 
municipal sewer system of two German cities. Therefore, any waste water from 
hydrodemolition jobs must be treated appropriately in order to meet these and 
other regulatory limits. Dorner (1996) performed an extensive study into the 
chemical compositions of waste water collected from hydrodemolition sites. Some 
results are listed in Table 4.16 for plain concrete removal jobs, and in Table 4.17 for 
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the cleaning of dirty concrete surfaces. Neither grease nor oil fractions could be 

detected. Detergents, fluorides and nitrides could also not been found. The result for 

sulphides points to concrete s tructures manufac tu red  from Port land cement.  

Comparisons between Tables 4.15 to 4 .17 show that, with the exceptions of the 

pH-values of two sites, all measured  values are below the regulatory limits for 

the discharge of sewage. The ra ther  low pH-value for the bridge site in Table 4 .16 

is a result of neutral isat ion with diluted hydrochloric acid. A uni t  for the 

neutral isat ion of waste water  as used on-site is shown in Fig. 4.9. Heavy metal  

con tamina t ion  of the waste water  was mainly due to chromium,  copper, lead, 

nickel and zinc. The composition of sludge after hydrodemolit ion is provided in 

Table 4.18. 

Table 4 .15  Regulatory limits for water inlet  in municipal  sewers 

Parameter Limit 

City of Frankfurt City of Munich 

Temperature 3 5 ~ 
pH-value 6.0-9.5 

Element Limit in mg/1 

Arsenic (Ar) O. 1 O. 1 
Cadmium (Cd) 0.5 0.2 
Chromium (Cr) 2.0 0.5 
Copper (Cu) 2.0 0.5 
Cyanide (CN) 5.0 - 
Iron (Fe) 20.0 - 
Lead (Pb) 2.0 0.5 
Mercury (Hg) 0.05 0.05 
Mineral oil and grease 20.0 
Nickel (Ni) 3.0 0.5 
Organic oil and grease 50.0 - 
Phenols 20.0 - 
Selenium (Se) 1.0 - 
Silver (Ag) 2.0 1.0 
Solvents, halogenated hydrocarbons 5.0 - 
Solvents, organic 10.0 
Sulfates (SO 4) 400 400 
Tin (Sn) 3.0 2.0 
Zinc (Zn) 5.0 2.0 
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Table 4 .16  Composition of waste water from hydrodemolition sites (Dorner, 1996)  

P a r a m e t e r  Site 

Facade Bridge Park ing  deck T u n n e l  ceiling 

pH-value  12 9 12 12 

Salts (mg/1) 

Chloride 57 265  85 8 

Sulpha te  190  18 172 14 

Elements  (~tg/l) 

Arsenic  < 50 < 50 < 5 < 5 

C a d m i u m  < 10 < 10 < 10 < 2 

C h r o m i u m  23 14 45 22 

Cobalt  < 10 < 10 < 10 < 2 

Copper 26 < 10 < 10 < 1 

Lead < 50 < 50 < 50 14 

Mercury  < 10 < 10 < 10 < 5 

Nickel 52 < 50 < 10 < 10 

Silver < 10 < 10 < 10 < 2 

Tin < 50 < 10 < 10 < 10 

Zinc < 10 < 10 < 50 < 4 

Table 4 .17  Composition of waste water from water jet cleaning sites (Dorner, 1996); only 
an external dirt layer was removed 

P a r a m e t e r  Facade Park ing  deck Limits mun ic ipa l  sewer 

sys tem M u n i c h  

pH-va lue  8 8 6 - 1 1  

Salts in mg/1 

Chloride 75 36 No limit 

Sulpha te  2 70 119 4 0 0  

Elements  in ~g/1 

Arsenic  < 2 < 2 1 O0 

C a d m i u m  < 2 < 2 2 0 0  

Chromate  - - 1 O0 

C h r o m i u m  16 8 500  

Cobalt  < 10 < 10 1 ,000  

Copper 15 < 2 500  

Lead < 20 < 20  500  

Mercury  < 0.5 < 0.5 50 

Nickel 13 < 10 500  

Silver < 10 < 10 1 ,000  

Tin < 10 < 10 2 , 0 0 0  

Zinc < 10 42 2 , 0 0 0  
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Figure 4.9 On-site neutralisation unit of hydrodemolition waste water (photograph: WOMA Apparatebau 
GmbH, Duisburg) 

Table 4.18 Composition of sludge after hydrodemolition (Werner et al., 1995) 

Unit Sedimented substances Excess water 

Dry substance % 38 
Loss due to burning % 10.0 of dry substance 
pH-value - 12.4 
Electric conductivity ~tS/cm 3,310 
Cadmium ppm 0.8 < 0.01 
Chloride ppm 70 
Chromium (total) ppm 20.2 < 0.02 
Chromium VI ppm < 0.02 
Copper ppm 36.4 < 0.03 
CSB ppm 37 
EOX without POX ppm 1.25 
Hydrocarbons ppm 2.74 
Lead ppm 42.5 < 0.02 
Nickel ppm 23.7 < 0.02 
Sulphate ppm < 10 
Zinc ppm 195 < 0.02 

4.4 Submerged hydrodemolition 
H y d r o d e m o l i t i o n  c a n  be u s e d  to e f f ic ien t ly  r e m o v e  c o n c r e t e  f r o m  s u b m e r g e d  

s t r u c t u r e s  o r  to  c l e a n  s u b m e r g e d  c o n c r e t e  c o n s t r u c t i o n s  e v e n  in  g r e a t  d e p t h s .  A n  

e x a m p l e  is s h o w n  in  Fig. 4 . 1 0 .  A t  w a t e r  d e p t h s  b e t w e e n  1 5 0  m a n d  3 0 0  m,  a 
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Figure 4.10 Submerged cleaning of a concrete column (photograph: WOMA Appamtebau GmbH, Duisburg) 

concrete layer with a thickness of 100 mm could be removed with efficiencies at 
about 1.2 m/h. If water depth increases, efficiency decreases. For depths greater 
than 300 m, for example, efficiency dropped down to 0.7 m/h. In all cases, rein- 
forcement bars were completely exposed (Conjet, 1999). Submerged waterjets 
perform equal to waterjets on air as far as a certain length is not exceeded. This 
critical length is given as follows (Cheung and Hurlburt, 19 76): 

x L = "ln 0.113" (4.6) 
4 "v E v E 

The parameter V E is the velocity of entrained water; a typical value may be VE= 15 
m/s (Cheung and Hurlburt, 1976). For standard hydrodemolition parameters 
(v]=500 m/s; dN=2 mm), Eq. (4.6) provides Xc=22 mm. This distance may be 
considered an optimum stand-off distance for submerged concrete removal. For 
very large nozzles (several mm in diameter), Kondo et al. (1974) developed a 
method that allows for the estimation of a maximum compressive strength where 
mortar can still be cut under water by water jets. These threshold conditions 
depend on Poisson's ratio of the mortar specimens, as shown in Fig. 4.11. 

Parameter studies about the effects of process parameters, namely pump 
pressure, impinging angle, exposure time, stand-off distance, and traverse rate, are 
performed by Cheung and Hurlburt (1976), Hocheng and Weng (2002) and Klich 
and Kalukiewicz (1991) .  Results of these studies are provided in Fig. 4.12. 
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4.5 Health and safety features of hydrodemolition 
4.5.1 General safety aspects 

High-speed water jets can damage skin, tissue, and - if abrasives are involved - even 
bones (see, e.g., Axmann et al., 1998). Moreover, a notable amount  of energy is 
stored in the high pressure parts of hydrodemolition equipment; this is illustrated 
in Fig. 4.13. Endangering due to hydrodemolition technique includes the following 
(DIN/EN 1329, 2003): 

�9 mechanical hazards; 
�9 hazards during transport and machine movement; 
�9 electric hazards; 
�9 thermal hazards; 
�9 hazards due to noise; 
�9 hazards with program-controlled machines; 
�9 hazards due to sudden start; 
�9 hazards during shut-off. 
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Figure 4.13 Specific energy stored in high-pressure parts of 
hydrodemolition equipment (Krfiner et al., 1982) 

General sources of danger to operators include the following (BGV, 1999): 

�9 reactive forces generated by the exiting water jets (see 3.4.3); 
�9 cutting capability of the high-speed jets' 
�9 hose movements (especially during switch on of the pump); 
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�9 working in areas of electric devices; 
�9 uncontrolled escape of pressurised water; 
�9 damaged parts being under pressure; 
�9 dust and aerosol formation; 
�9 sound emitted from equipment and water jet; 
�9 impact from rebounding debris from the jet impact point. 

To protect operators and those not directly engaged in the blasting operation, the 
area around a work site that will be required for the hydrodemolition operation 
must be defined. The boundary of this area shall be clearly marked by the operating 
team, providing both a visible and a physical barrier to entry by unauthorised 
personnel. A typical example is shown in Fig. 4.14. The immediate removal site, 
where the actual tool is in operation, should be encapsulated for several reasons; 
mainly in order to hold back flying debris and to reduce noise. An example how this 
problem can be solved under site conditions is provided in Fig. 4.15. 

Figure 4.14 Warning sign for a hydrodemolition site 

A pre-service and operational check list for hydrodemolition operations is 
recommended. This list should answer the following questions (WJTA, 1999): 

Date: ... 
Location: ... 
Unit being cleaned ... 

Is the area, including the other end of the unit being cleaned, adequately 
barricaded, with proper warning signs posted (see Fig. 4.14 for an example)? 
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Figure 4.15 Encapsulation of the operating water jet tool (photograph: Aquajet AB, Holsbybrunn) 

�9 Have precautions been taken to protect all electrical equipment? 
�9 Is there any hazard to personnel from possible damage to equipment, such 

as release of corrosive chemicals, flammable liquids, or gases? 
�9 Are all fittings of the correct pressure rating in accordance with 

regulations? 
�9 Are all hoses of the correct pressure rating in accordance with regulations? 
�9 Are all hoses in good operating condition? 
�9 Are all fittings in good operating condition? 
�9 Are all nozzles free from plugging and in good operating condition? 
�9 Is the filter on the pump suction clean and in good operating condition? 
�9 Is there an adequate water supply? 
�9 Have precautions been taken against freezing? 
�9 Do all personnel have the proper equipment for this job? 
�9 Do all the personnel have the proper training for this job? 
�9 Are all personnel qualified to perform this work? 
�9 Has the complete hook-up been flushed and air removed from the system 

before installing the nozzle? 
�9 Has hook-up, including pipes, hoses, and connections, been pressure tested 

with water at the maximum operating pressure? 
�9 Is the dump system operating properly (will it dump when released)? 
�9 Are all control systems operational? 
�9 Is the location of first aid equipment and an emergency medical centre 

known? 
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�9 Has the job site been examined to determine if confined space entry 
requirements apply? 

�9 Has the job been examined for environmental considerations, with action as 
appropriate? 

It is also recommended to carry out a risk assessment of the actual environment 
where a hydrodemolition job will be done before starting the job. This risk 
assessment may include the following questions (French, 1998): 

�9 How access is to be gained? 
�9 Is there a need for scaffolding? 
�9 Is there confined space? 
�9 What is the surface like where the operators will have to stand? 
�9 the availability of day light or artificial light; 
�9 the presence of electrical supplies / equipment; 
�9 water source and drainage of it; 
�9 nature of contaminate: Is it toxic? Is it a pathogen? Is it asbestos based? Is it 

harmful or corrosive? 
�9 general layout that will allow visual contact between of the working team; 
�9 permit requirements; 
�9 safety of access (e.g. working on motorways or hazardous areas such as 

refinery where flameproof equipment and earthing to avoid static electricity 
may be required); 

�9 Who or what will be affected by flying debris? 
�9 Is noise a problem? 
�9 Will containment be necessary? 
�9 Where will the effluent go? 

Statistics of incidents has shown that the average experience of operators 
affected their involvement in incidents. These relationships are presented in Fig. 
4.16. It can be seen that the risk of incidents reduces if average experience 
increases. Operators who have worked with hydrodemolition equipment less than 
12 months, were involved in 55% of all incidents. In that context, ISO 12944-4 
(1999) states the following: "Personnel carrying out surface preparation work 
shall have suitable equipment and sufficient technical knowledge of the processes 
involved." 

Hand-held tools require special attention (see DIN/EN, 1829, 2004). The reaction 
forces acting on the operator along the jet axis must not exceed the value 250 N. If 
reaction forces are larger than 150 N, an additional body support must be used (see 
Fig. 4 .27a for an example). Reaction forces cane be calculated with Eq. (3.24). The 
length of a hand-held gun must exceed the value of 75 cm. If the gun is shorter 
than this critical length, the gun must be equipped with a two-hand control as 
shown in Figs 3.17 and, respectively, Fig. 4.2 7a. The tool must work only if both 
parts of the control system are activated simultaneously. If the hand grip of a 
hand-held water jet tool is released, one of the following arrangements must act 
(DIN 1219, 2003): 
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3 

Figure 4.16 Percentage of operators involved in incidents 
(reference: AUS]ET News, August 2000) 

Operator's experience: 
1 - 60 months 
2 -  3 months 
3 - 24 to 60 months 
4 -  12 to 24 months 
5 -  12 months 

�9 no liquid must exit the nozzle; 
�9 if liquid exits the nozzle, the reaction force generated by the liquid must not 

be larger than the weight force of the tool (for electrically, pneumatically or 
hydraulically controlled devices); 

�9 pressure generator (pump) must be shut-off. This must occur also in case of 
damage to, or short-circuits in, electric signal lines. 

4.5.2 Emission of air noise 

There are four major sources of air sound generated during hydrodemolition 
operations: 

�9 sound emitted from the pressure generating unit (pump, engine, power 
transmission); 

�9 sound emitted from the high-speed water jet travelling through the air; 
�9 sound emitted from the erosion site; 
�9 sound emitted from companying trades. 
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State-of-the-art high-pressure plunger systems are regularly equipped with 
sound insolating hoods or even placed in containers. Thus, the air sound emission 
is limited up to 70-75 dB(A). More critical is the air sound emitted by the water jet. 
This noise is generated due to friction between the high-speed jet and the 
surrounding air as well as due to turbulences. Thus, the sound level depends on the 
relative velocity between jet and air, and on the surface exposed to friction. 
Consequently, air sound level increases as pump pressure, nozzle diameter, and 
standoff distance increase. Some results of direct measurements shown in Fig. 4.17 
and in Fig. 4.18 verify these general trends. However, as shown in Fig. 4.19, the 
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Figure 4.18 Effect of distance from noise source on noise level during hydrodemolition (Katakum, 2000) 
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Frequency in kHz 

Figure 4.19 Plot of noise measurements during concrete roughening with rotating hand-held tools 
(Freitag, 1991) 

frequency of the sound generated plays an additional role. For rotating nozzle 
carriers, the very quick radial movement generates turbulences and flow 
interruptions further contributing to the noise. If a nozzle carrier comprises several 
small-diameter nozzles instead of one large-diameter nozzle, the total jet area 
increases and so the noise level does. That is why rotating devices usually generate 
rather high noise levels. It was reported (Barker et al., 1982) that high amplitudes 
occurred in the frequency range between fL=l-8 kHz, and at rather low impact 
angles (<30~ However, this seemed to be true for small stand-off distances only. 

Fig. 4.20 contains results of measurements performed at different rehabilitation 
sites. Examples for jackhammering, wet blasting and waterjetting are shown. The 
actual surface treatment processes generate the highest noise levels among all 
trades. Jackhammering and wet blasting are comparatively silent. Noise generated 
during waterjetting can notably be reduced if shrouded or sealed tools are used. 
Such a construction is shown in Fig. 4,21. Commercial hydrodemolition robots 
work with covered nozzles and their noise levels are, therefore, lower than those 
from open hand-held tools. The permissible air noise level depends on the exposure 
time. This is illustrated in Fig. 4.22 based on regulatory limits stated in BGV B3 
(2001). It can actually be concluded from that graph that ear protection equipment 
must be worn by any personally involved operator (see Section 4.5.6). 
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Figure 4.20 Noise measurements from concrete rehabilitation sites (Knipfer and Funke, 1997) 
a-jackhammering b-  wet blasting c-  waterjeting d-waterjeting 

4.5.3 Body sound and vibrations 

Body sound characterizes waves carrying noise and travelling through solid 
materials. Therefore, even if windows, doors etc. are properly closed to lock out 
airborne noise, persons may anyway experience certain noise levels. This noise is 
generated due to small vibrations; they occur during the tool impact and depend 
on the acoustic properties, especially on the sound velocity and the acoustic 
impedance, of both the material to be subjected and the preparation tool. 
The evaluation parameters of the sound waves are their amplitude and velocity 
(frequency). 

There are some measurements available from concrete facades treated with 
different preparation tools. Examples are plotted in Fig. 4.23a. It clearly illustrates 
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Figure 4.21 Sealed water jet tool for emission-free concrete 
treatment (photograph: WOMA Apparatebau GmbH, Duisburg) 
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Figure 4.23 Body sound generated on concrete surfaces (Werner and Kauw, 1991, Werner, 199 lc) 
a -  effect of treatment method 
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the extremely low body sound generated if water jets are used. Figure 4.23b shows 
that frequency and velocity of the vibrations are at a more or less constant level for 
water jet applications, even if the distance form the vibration source significantly 
varies. Vibrations generated over a longer period of time in the arms of operators 
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Figure 4.24 Limits for exposure of the hand per day to 
vibrations (solid line according to Siebel and Mosher (1984); 
points from different sources) 

may cause so called 'white fingers'. The vibration generated by the tool is 
transmitted through the operator's hand where is does damage to the blood vessels 
in the fingers (VDI, 1987). Therefore, regulations state minimum working hours 
depending on the intensity of the vibrations. The intensity is usually given by an 
acceleration value a v. Results of measurements obtained from different surface 
preparation tools (including hydroblasting tools) are show in Fig. 4.24. Note from 
this figure that any point above the solid line is critical to health. Exposure time is 
the total time vibrations enter the hand per day, whether continuously or inter- 
mittently. Acceleration values for water jet tools are lower than those measured for 
mechanical tools. However, for hand-arm-vibrations the EC-machine guide 
requires the following: 

any value in excess of av>2.5 m/s2: the measured acceleration value must 
be stated in the tool manual (e.g. av=3.17 m/s 2 for monroe nozzle); 
any value equal to or lower than av=2.5 m/s2: it must be stated in the tool 
manual that av~2.5 m/s 2 (e.g. for the turbo nozzle, pneumatic carrier and 
rotating cleaner). 

Heavy hydrodemolition machines may generate larger vibrations to constructive 
parts of buildings and constructions. As shown in Fig. 4.25, the velocities of the 
vibrations generated during hydrodemolition are below the permissible limits. 
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Location 

Figure 4.25 Vibrations to concrete structural parts caused by 
water jets (Temme, 1986) 

4.5.4 Emission of aerosols and micro-fibres 

A mist of water, vapour and solid particles is generated during hydrodemolition in 
the immediate environment of the operator. Unfortunately, this mist is difficult to 
control. The only way to prevent it is the use of shrouded tools (see Table 3.7 and 
Fig. 4.21). Another way to protect the operator is the application of mechanically 
guided tools or robotic machinery. A major problem are aerosols that contain 
microscopically small particles from the removed coating. Many old coatings 
contain lead; there is a critical situation as the lead may enrich the operator's blood 
due to breathing the aerosol. There are the following two critical levels: 

�9 Action Level (AL= 30 ~g/m3); if an operator work in an area that at or above 
that level, the employer must give medical surveillance and training in the 
hazards of working with lead. 

�9 Permissible Exposure Limit (PEL=50 ~tg/m3); This limit is for the average 
amount of lead in the air over an 8-hour day. 

Extensive studies have shown that airborne lead concentration does not depend 
on the main lead concentration in coating systems to be removed. The correlation 
between these parameters was as low as 0.22 (DHHS, 1997). It is, therefore, the 
surface preparation method that determines airborne lead. Air monitoring tests 
carried out by the Houston Harbour Authorities (Marshall, 1996) and the US Navy 
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(Anonymus, 1997) have shown that the lead concentrations in aerosols generated 
during waterjetting are below the regulatory levels. Some results are displayed in 
Table 4.19. Note the low levels for the water jet applications. The blood of operators 
was controlled during several lead paint stripping jobs; some results of pre-job and 
post-job blood lead level tests are listed in Table 4.20. Although the lead level 
increased during the blasting job, the regulatory limit was significantly undercut. 
Systematic lead concentration measurements were performed during the 
refurbishment of an old power plant for the first ten days (Dupuy, 2001). Fifteen 
samples were taken with only one above the 'no detection' level. The detected 
sample was 40 pg/m 3. Interestingly, the project management decided to remove 
any respirator requirements initially enforced during the job and to implement a 
random sampling as necessary to insure personnel safety. 

Table 4 .19  Measured airborne lead levels for different preparation methods  

Object / condition Lead level in pg/m 3 Reference 

Water jetting 

Galvanized communication towers 
Structural steel construction 
Dock side container crane 
Dock side container crane 
Dock side container crane 

1.5-29 Holle (2000) 
2-12 Dupuy (2001) 
2.2* Marshall (2001) 
0.79* 1) Marshall (1996) 
< 0.99 *2) Marshall (1996) 

Slurry blasting 

Highway overpass structure 10.4-34.4 Anonymus (1998) 
Steel bridge 45.7-305 2) Frenzel (1997) 
Steel bridge 40.1-52.7 31 Frenzel (1997) 

Vacuum blasting 

Steel bridge 27-76 2) Mickelsen and Johnston (1995) 

Grit blasting 

Blast room 1-100,000 
Steel bridge (blaster) 36-4401 
Steel bridge (sweeper) 12-3548 
Steel bridge (foreman) 12-3423 
Steel bridge (equipment operator) 39-1900 
Steel bridge (helper) 22-501 
Steel bridge (operator) 50-450* 
Petrochemical tank 3.31"2) 

Adley and Trimber (1999) 
Conroy et al., 1996) 
Conroy et al., 1996) 
Conroy et al., 1996) 
Conroy et al., 1996) 
Conroy et al., 1996) 
Randall et al. (1998) 
Frenzel (1997) 

Ice blasting 

Steel bridge 175 Snyder (1999) 

* TWA 8 hours, 1) downwind, 2) gun operator, 3) outside containment 

Many old linings contain asbestos. Asbestos fibres are known to be responsible 
for lung cancer. Results of asbestos emission during the preparation of steel 
substrates are shown in Fig. 4.26 and listed in Table 4.21. It can be seen that all 
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preparation methods that contain a liquid phase (wet blasting, waterjetting) 
generate rather low asbestos concentrations. Tar epoxy coatings contain polycyclic 
agents, namely polycyclic aromatic hydrocarbons. Results of measurements of 
hydrocarbon exposure during decoating jobs with different treatment methods are 
also listed in Table 4.21. 

Table 4 .20  Results of blood level monitor ing  during waterjett ing (Frenzel, 1997); 
exposure  duration: 892  hours  

Condition Blood lead level in ~g/dl 

Prejob level 4.77 
Post-job level 6.76 
Permissible level (OSHA) 40.0 
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Figure 4.26 Asbestos emissions during coating removal from steel substrates 
(SchrSder, 2000) 

1 - dry grit blasting 
2 - wet blasting 
3 - wet blasting 
4 - abrasive water jetting (85 MPa) 
5 - water jetting (200 MPa) 
6 -abrasive water jetting (120 MPa) 

7 -  water jetting + dry grit blasting 
8 -  wet blasting 
9 -  water jetting (240 MPa) 

1 0 -  wet blasting (copper slag) 
11 - water jetting (13 MPa) 
1 2 - w a t e r  jetting (15 MPa) 
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Table 4.21 Asbestos and PAK emissions during the coating removal from steel substrates 
(Schr~der, 2000) 

Method Number of Number of f i b r e s  PAK1)-value 
measurements per m 3 in ~tg/m 3 

Flame cutter 8 881 

Needle hammer 1 
Needle hammer 1 
Needle hammer 1 
Burner 7 
Hand-held grinder 1 
Water jet (13 MPa) 1 

Grinding 2 
Scraping 2 

Flame cutter 2 

< 5,845 
14,933 
281,000 
30,000-165,000 
25,000 
5,000-10,000 

20,000-45,000 
< 5,000 

Up to 38,000 

Flex sawing (150 ~ 1 98,074 
Water jet 1 < 4,045 
Plane grinding 2 20,000-45,000 

Regulatory limit 2) 
exceeded 

80-130 
14-48 
50-152 
Regulatory limit 
undercut 

Regulatory limit 
undercut 
Regulatory limit 
exceeded 

Regulatory limit 
exceeded 

11Polycyclic Aromatic Hydrocarbons; 21 Limit: 2 ~tg/m 3 

4.5.5 Risk of explosion 

Some source of explosion during water jet application can be electric discharge 
sparks. Safety hazard analyses identified that  static electric charges occur in the 
following four circumstances (Miller, 1999): 

�9 liquids flowing through piping at rates (velocity) greater than I m/s; 
�9 liquids passing through fine filters or orifices; 
�9 liquids being sprayed; 
�9 liquids impacting fixed parts. 

These conditions essentially describe the formation and use of high-speed water jets 
for hydrodemolition. Charge generation is proportional to the square of the jet 
velocity and inversely proportional to the square of the liquid conductivity. If electric 
conductivity of a liquid exceeds the value of 10 -8 S/m, the risk of dangerous electric 
charges is very low (BGR 132, 2003). From this point of view, water can be 
considered a low-risk liquid (Table 4.22). However, this criterion cannot  be applied 
to water sprays that  are usually formed during hydrodemolition applications. Even 
if water itself has a rather high electric conductivity, carrier concentrations of 
droplet clouds can reach critical values. Serious investigations about the explosion 
risk of water jets included tests with rather low operating pressures up to 50 MPa. 
It could be shown that  density of volume charge of a water droplet cloud increased 
steeply with rising pressures up to a pressure level of 10 MPa. If this value was 
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exceeded, density of volume charge remained on a saturation level of about 240 
nC/m 3 for pressures up to 50 MPa (Post et al., 1983). 

Table 4.22 Physical properties of liquids (BGR 132, 2003) 

Liquid Electric conductivity in S/m Dielectric constant (20 ~ 

Diesel oil 10 -13 2 
Gasoline 10 -13 2 
Water (distilled in air) 10 -3 2.45 
Water (clean) 5.10 -3 2.45 

If the following requirements are met for tank cleaning applications, 
waterjetting is considered uncritical from the point of view of electrostatics (Post et 
al., 1983): 

�9 metallic tanks; tank volume not larger than 30 m 3 (or tank diameter not 
higher than 3 m for conventional heights); 

�9 max imum operating pressure of 50 MPa; 
�9 max imum volumetric flow rate of 3001/min; 
�9 all parts must be connected to ground. 

However, these criteria basically apply to low-pressure cleaning jobs and not to the 
hydrodemolition applications covered by this book. 

Results of spark generation tests performed during the cutting with hydro- 
abrasive water jets are listed in Table 4.23. Xie (1998) found that  risk of spark 
formation during hydro-abrasive cutting of metals depended upon operating 
pressure and abrasive mass flow rate. No sparking occurred if both parameters 
were kept at low levels. High volumetric water flow rates reduced the probability of 
spark formation. Safe mass ratios of abrasive to water were reported to be about 
7%. Sparking was more severe if hard materials (stainless steel) were cut ,  and less 
severe if soft metals (aluminium) were cut (Xie, 1998). 

Table 4.23 Results of spark generation test with hydro-abrasive water jets. Materials being 
cut: steel and sandstone (Leeming, 1981) 

Tests Gas mixture 

Hydrogen/air Methane/air Total 

Total number of tests 46 
Number of tests with ignitable gas left after cutting 41 

33 79 
30 71 

4.5.6 Personnel protective equipment 

Required personnel protective equipment for hydrodemolition operators includes 
the following items (AHPW]C, 1995; JISHA, 1992; W]TA, 1999): 
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�9 Head protection (helmet): All operators shall be supplied with a safety 
helmet which shall be worn at all times while at the worksite. Where 
necessary the helmet should incorporate face protection (see Fig. 4.2 7b). 

�9 Eye protection (goggles, face shield): Suitable eye protection (adequate for 
the purpose and, of adequate fit on the person) shall be provided to, and 
worn by, all operators. 

�9 Hearing protection (foam earplugs, earmuffs, strap with plastic earplugs): 
Suitable hearing protection shall be worn while in the working area; (see 
Section 4.5.2). 

�9 Body protection (wet suit, reinforced safety suits): All operators shall be 
supplied with suitable waterproof protective clothing, having regard to the 
type of hazards in relation to the work being undertaken (see Fig. 4.28). 
This must be used where there is a risk to health or a risk of injury. 

�9 Hand protection (rubber gloves, reinforced gloves): Hand protection shall be 
supplied to all team members and shall be worn where there is a risk of 
injury or contamination to the hands. 
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Figure 4.28 Special body protection for waterjetting operators 
(photograph: WOMA Appatatebau GmbH, Duisburg) 

Figure 4.29 First aid card for water jet operators (WOMA Appatatebau 
GmbH, Duisburg) 

Foot protection (steel-toed boots): All operators shall be supplied with 
suitable boots or Wellingtons with steel toe caps, and where necessary 
additional strap-on protective shields. These shall be worn when there is a 
risk of injury. 
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Respiratory protection (sometimes with supplied air. Where necessary 
suitable respiratory protection, that  is either type approved or conform to an 
approved standard shall be worn. 

Operators should carry a First Aid Card as shown in Fig. 4.29 that, in case of an 
accident, delivers basic information to helpers or medical personnel. Typical 
personnel protective clothing and equipment  for operators are shown in Figs 4.2 7 
and 4.28. Table 4 .24 lists results of direct water jet impact tests on the body 

protection worn by the operator in Fig. 4.28. Further  recommendat ions  are given 
by French (1998),  Momber (1993), Smith (2001), and Vijay (1998b).  

Table 4 .24 Results of resistance tests with body protection (Anonymus, 2002a)  

Operating Volumetric N o z z l e  Dis t ance  Traverse Exposure 
pressure flow rate diameter in m speed time* 
in MPa in 1/min in mm in m/s in s 

Result 

18 13.0 1.2 7.5 0.5 0.0024 
50 19.7 1.2 7.5 0.5 0.0024 
100 19.3 1.0 7.5 0.5 0.0020 
150 15.0 0.8 7.5 0.5 0.0016 
200 17.0 0.8 7.5 0.5 0.0016 

no penetration 
no penetration 
no penetration 
no penetration 
no penetration 

* calculated with dN/V T 

4.6 Cost aspects 

A general cost structure may include the following positions: 

�9 investment high-pressure unit; 
�9 investment high-pressure tools; 
�9 investment nozzle carrier heads; 
�9 investment water t reatment  system; 
�9 nozzle wear; 
�9 fuel (or electricity, respectively); 
�9 flesh water and sewage; 
�9 operators'  wages. 

Table 4.25 lists costs for different concrete treatment jobs performed with water jets. 
These costs are, however, valid for hand-held tools only utilised for decontamination 
and cleaning jobs. Costs for heavy hydrodemolition applications are usually com- 
paratively high for small areas. If larger areas are treated, costs reduce and finally rest 
at a constant level. This is illustrated in Fig. 4.30. Thus, there may be job size limits for 
the economic use of hydrodemolition. Wallace (1985) found an lower limit of about 
1,000 m 2 which corresponds to the values shown in Fig. 4.30. Andreou (1989) who 
considered the demolition of reinforced concrete structures found a volumetric limit of 
about 22 m 3 for a cost-efficient use of a hydrodemolition robot. 



Table 4 .25  Cost s tructures  of  water  jet applications (Sindt et al., 1997)  

Application Cost in % 

Wages 1 Investments Water Diesel + 
lubrication 

Cleaning of fire damaged concrete 5 5.8 
Removal of glue from concrete floors 5 5.5 
Removal of mineral coating 5 5.5 
Removal of dispersion/latex paint from concrete 5 5.7 
Removal of dispersion/latex paint from lime-sandstone 5 5.9 
Removal of dispersion/latex paint from plaster walls 5 5.8 
Concrete removal (5 mm) 5 5.9 

27.9 
27.8 
27.8 
27.9 
27.9 
27.9 
28.0 

1.4 
1.4 
1,8 
1.9 
1.7 
1.5 
1.3 

2.8 
2.8 
2.8 
2.5 
2.5 
2.6 
2.7 

1 Two operators 

2 Includes pump and nozzles as well as filters, activated carbon and sand of water treatment system 

Wear 2 

12.1 
12.4 
12.1 
12.0 
12.0 
12.2 
12.1 

Total 

100 
100 
100 
100 
100 
100 
100 

g a .  

a: 

e . .  

% 

e . .  
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Figure 4.30 Hydrodemolition site size effect on cost (Vorster, 1992) 
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5.1 Surface quality features 
Very typical demands on concrete surfaces prepared to carry protective coatings 
and, respectively, concrete replacement systems are as follows (RILI, 2001): 

(i) 

(ii) 

(iii) 
(iv) 

(v) 

surface should be free of loose and deteriorated parts (e.g. low-strength 
crack rims), and free of easy-to-peel layers (e.g. cement lime); 
surface should be free of cracks or detachments running parallel to the 
surface, and free of cracks or detachments in the near-surface range; 
surface should be free of burrs; 
surface should feature a roughness according to the demands of the 
overlay materials; 
surface should be free of foreign matter (e.g. rubber deposits, separation 
agents, unsuitable old coatings, oil, growth, etc.). 

Numerous standards are issued to define these factors, and testing methods are 
available to quantify them. Hydrodemolished surfaces show some distinct features, 
and numerous experimental studies were performed to address this special point, 
sometimes in direct comparison to other surface preparation methods. 

5.2 Surface texture 

5.2.1 Role and assessment of concrete substrate texture 

Substrate profile parameters are very affective to the bond between substrate and 
overlay. High roughness, for example, provides a good mechanical bond. But other 
properties, namely wettability, depend on surface texture as well. Sakoda et al. 
(1998) and Reinecke (2002) correlated roughness values of profiled concrete 
substrates to strengths values of concrete joints. Results of these studies are 
provided in Fig. 5.1. It can be seen that joint shear strength grows as roughness 
increases. 

The macro-topography of the surfaces, defined as 'profile' can be evaluated by 
mechanical 3D-profilometers. The surface is scanned by a tip. As the tip toughs the 
surface, a signal is sent to and stored into a signal processing unit. The resulting 
surface profile is calculated by an appropriate software. Examples, taken from grit 
blasted concrete surfaces, are shown in Fig. 5.2. Surface profile can also be evalu- 
ated with the 'Sand-Section Test' according to Kaufmann (19 71) as recommended 
in RILI (2001). A given volume of finely-grained garnet is applied to the specimen 
surface and uniformly distributed over the treated surface. The actual evaluation 
parameter 'roughness depth', R t, is calculated as follows: 

40 "V 
R t n ' D  2 (5 1) 
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Figure 5.1 Effect of substrate surface roughness on joint shear 
strength (Reinecke, 2002) 

Here, R t is in mm, V is the garnet volume in cm 3, and D the diameter of the 
garnet disc formed on the surface in cm. The higher the value for R t, the higher the 
surface roughness. A more advanced method is laser profilometry as recently 
introduced by Maerz et al. (2001). The surface is illuminated with thin slits of a red 
laser light at an angle of 45 ~ and the surface is observed at 90 ~ The projected slit 
of light appears as a straight line if the surface is flat, and as a progressively more 
undulating line as the roughness of the surface increases. Examples are shown in 
Fig. 5.3. This method was used to evaluate concrete substrates after hydro- 
demolition by Galecki et al. (2 O01 ). 

Micro-topography and adhesion properties of concrete surfaces can be estimated 
by contact angle measurements, such as by using the Captive Drop Technique 
(CDT). The apparatus used for this procedure consists of a modified video 
microscope with an attachment for mounting a micrometer syringe. The specimen 
upon a contact angle measurement is made is placed in a thermostatted sample cell 
on a movable platform at a constant temperature. The cell is then filled with water 
and a liquid drop is formed at the end of the syringe and allowed to equilibrate. The 
contact angle is directly calculated from an image of the drop taken with a video 
camera. Exemplary photographs obtained by this method are shown in Figure 5.4. 
This method can be used to evaluate the degree of contamination of concrete 
surfaces with oil, grease, etc. (Gelfant, 1995). The examples listed in Table 5.1 show 
that contact angle to surfaces increases (wettability decreases, respectively) if 
degree of contamination rises. Similar results are reported by Fiebrich (1994). 
Grease, motor oil and silicone deteriorate wettability to a high degree. 
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Figure 5.2 Concrete surface topography, estimated with 3D-profilometry (Momber, 2002a) 
a -  concrete; b -  mortar 

Figure 5.3 Concrete surface profile 
estimation with laser profilometry 
(Galecki et al., 2001) 
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Figure 5.4 Contact angles to profiled concrete substrates (Momber, 2002a) 
a -  Cement paste; grit blasted 
b -  Concrete surface; grit blasted; 
c -  Aggregate in concrete; grit blasted 
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Table 5.1 Contact angles to concrete surfaces (Gelfant, 1995) 

Contaminant Contact angle in o 

Contaminated After waterjetting 

Laitance 0-20 0-20 
Milk 30-70 0-20 
Vegetable oil 30-60 20-40 
Oleic acid 30-40 20-30 
Silicone 90-100 90-100 
Motor oil 60-80 20-30 
Grease 40-70 20-30 
Hydraulic fluid 20-30 0 
Na2SiO 3 0 0 
NaC1 0-20 0 
NaOH 0 0 
H2SO 4 0 0 

5.2.2 Profile and roughness of hydrodemolished concrete substrates 

RILI ( 2 0 0 1 )  s tates  the  following: "Subs t ra te  r o u g h n e s s  m u s t  be sui table  for the  

over lay  ma te r i a l  to be applied." A typical  profile of a hydrodemol i shed  subs t ra te  is 

s h o w n  in Fig. 5.5. A large va r i a t ion  in the  e ros ion  dep th  can  be seen. The  ex tend  in 

profile va r i a t ion  is a func t ion  of several  process  p a r a m e t e r s  ( Ingvar s son  and  

pneumatic hammer 

dW grit blasting 
- ~ - ~ ~ ' - - ~  _ 

I scale: 10 mm 

I I I I 

0 100 200 300 400 500 

L e n g t h  s c a l e  in m m  

Figure 5.5 Profiles of a concrete substrate prepared with 
different methods (Silfwerbrand, 1990) 
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Figure 5.6 Effect of operating pressure on profile depth variation 
(Ingversson and Eriksson, 1988) 

Eriksson, 1988). Figure 5.6 illustrates the effect of operating pressure; high 
pressure guarantees a more homogeneous texture. This trend is also found by 
Sakoda et al. (1998). However, a geometrically desired profile cannot be generated 
with hydrodemolition because of the selective operation mode. Local depth of 
removal depends on local concrete strength; depth will always be higher in the 
weaker section. Therefore, a concrete with a homogeneous strength distribution is 
beneficial to a rather smooth surface profile. If compressive strength increases, 
roughness values drop (Sakoda et al., 1998). A systematic study about the 
influence of hydrodemolition parameters on surface roughness, performed by 
Galecki et al. (2001), showed that roughness increases if rotational speed of the 
nozzle holder decrease and if operating pressure rises. These relationships are 
illustrated in Fig. 5.7. Randl and Wicke (2000) applied the Sand Section Test to 
hydrodemolished substrates and found a value of Rt=2.7 mm. For comparison, grit 
blasted surfaces have values between 0.2 and 0.8 mm (Momber, 2002a, Randl and 
Wicke, 2000), and a formworked concrete has a value of 0.1 ram. 

Profiling of a surface promotes an increase in the total surface area. This 
parameter is to some extend more appropriate to describe the capability of 
substrates to carry overlays. With regard to hydrodemolition, it is proved that this 
parameter is critically related to operating pressure and nozzle movement 
(Yasumatsu et al., 1999). Some relationships are shown in Fig. 5.8. 
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5.3 Adhesion strength 
5.3.1 Definitions and assessment of adhesion 

The ability to adhere to the substrate throughout the desired life of the coatings is one 
of the basic requirements of a surface coating or, respectively, a concrete replacement 
system. Adhesion bases on adhesive forces that operate across the interface between 
substrate and applied system to hold the systems to the substrate. The magnitude of 
these forces (thus, the adhesion strength) depends on the nature of the surface and 
the type of applied system. Factors that affect the bond between concrete substrate 
and applied overlay system include the following (Silfwerbrand, 1990): 

(i) old concrete: 
�9 compressive strength; 
�9 aggregate type and gradation; 
�9 salt content; 
�9 age. 

(ii) concrete removal technique: 
�9 interface condition; 
�9 microcracks; 
�9 roughness; 
�9 surface preparation; 
�9 pre-wetting; 
�9 other treatment (bonding agents, etc.); 
�9 surface moisture. 

(iii) overlay condition: 
�9 water-cement ratio; 
�9 cement type and content; 
�9 aggregate type and gradation; 
�9 fibre content; 
�9 admixtures; 
�9 slump; 
�9 thickness; 
�9 compaction method and time; 
�9 curing; 
�9 time since placement. 

(iv) weather conditions: 
�9 temperature and humidity after concrete removal. 

In the mechanical interlocking mechanism, the macroscopic substrate rough- 
ness provides mechanical locking and a large surface area for bonding; the overlay 
is mechanically linked with the substrate. Adhesive bonding forces could be 
categorised as primary valency forces and secondary valency forces. Adhesion 
between substrate and coating can be evaluated by different methods, including the 
pull-off testing. Numerous regulations state minimum requirements for the pull-off 
strength of concrete substrates. Examples are listed in Table 5.2. The pull-off test 
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delivers quantitative information about the adhesion (usually given in N/mm 2 or 
MPa), while the picture of the rupture provides information about the weakest part 
of the system. Typical failure types to be observed are either adhesion failure 
(substrate-coating) or cohesion failure (internal coating failure). The percentage of 
failure type must be estimated with an accuracy of 10% (RILI, 2 O01). 

Table 5.2 Required pull-off strength values for concrete substrates (RILl, 2001)  

Overlay type Minimum required pull-off strength in MPa 

Average value Minimum individual value 

Mortar and concrete 1.5 
Polymer dispersion / polyurethane 0.8 
Polymer dispersion / polymer-cement-mixture 1.0 
Polymer dispersion / polymer-cement-mixture / 

polyurethane / epoxy resin 1.3 
Polyurethane / epoxy resin 1.5 

1.0 
0.5 
0.6 

0.8 
1.0 

5.3.2 Adhesion to hydrodemolished concrete substrates 

Only a few studies were performed to estimate the adhesion of coating systems or, 
respectively, concrete replacement systems to concrete substrates prepared by 
hydrodemolition. Kauw (1996) could prove that hyrodemolished substrates 
provide suitable adhesion to concrete replacement concrete systems. In many 
cases, pull-off strengths of hydrodemolished substrates exceed those of untreated 
surfaces. Equal observations are made by Obladen (1987) and by Cleland and 
Basheer (1999). Results of these studies are shown in Figs. 5.9 and 5.10. Tschegg 
and Stenzl (1991) measured the fracture energies of joints between old and new 
concretes as functions of surface quality and found rather high values for concrete 
substrates prepared with water jets (Fig. 5.11). Similar trends are delivered by a 
study of Toutan and Ortiz (2001) who measured the forces required to separate 
fibre-reinforced sheets applied to concrete surfaces. As can be seen in Fig. 5.12, 
waterjetted surfaces exhibit force values much higher than estimated for grit 
blasted surfaces. Sakada et al. (1998) found that construction joints profiled with 
waterjets owned high flexural strength, but the strength values depended upon 
operating pressure and water-cement ratio of the concrete mixtures. In most cases, 
flexural strength increased as operating pressure increased; this is illustrated in Fig. 
5.13. Randl and Wicke (2000) performed a study into the shear stress transfer 
capability of reinforced concrete joints. Results of this study are displayed in Fig. 
5.14. It can be seen that substrates treated with water jets have a notably higher 
stress transfer capability. Shear stress transfer capacity of a steel reinforced 
concrete joint can be approximated as follows (Randl and Wicke, 2000): 

TS = A1 "Cs + Its "(A2 "Ks "A3) + as "A4 
mt ~lock friction dowel action 
cohesion 

(5.2) 
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Figure 5.9 Comparative pull-off strengths of concrete substrates 
(Kauw, 1996) 
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Preparation method 

Figure 5.10 Effects of surface preparation methods on adhesion strength 
a -  Cleland and Basheer (1999) 
b-  Obladen (1987) 

Here, A 1 to A 4 are constants. The dependence of the other parameters on the 
surface quality or, respectively, surface preparation method, is listed in Table 5.3. 
From these results, it can be concluded that hydrodemolition contributes mainly to 
interlock cohesion (Cs) due to the high roughness of the generated profile. 

The type of failure occurring during adhesion testing is a further evaluation 
parameter. The bond between substrate and applied system is usually considered 
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Treatment method 

Figure 5.11 Effects of surface preparation methods 
on interfacial fracture energy (Tschegg and Stenzl, 
1991) 

Sheet fibre material 

Figure 5.12 Effects of surface preparation methods 
and sheet fibre material on bonding between concrete 
substmte and applied sheets (Toutan and Ortiz, 2001) 

Operating pressure in MPa 

Figure 5.13 Effects of operating pressure and 
water-cement ratio on flexuml strengths of 
construction joints prepared with water jets (Sakada 
etal., 1998) 

Joint reinforcement degree in % 

Figure 5.14 Effects of surface preparation methods 
on ultimate strengths of reinforced concrete joints 
(Randl and Wicke, 2000) 

Table 5.3 Values for the parameters in Eq. (5.2); Randl and Wicke (2000)  

Condition Roughness c s ~c Ks Ors 

Hydrodemolition 3.0 mm 0.4 0 .8-1 .0  0.5 0.4 
Grit biasing 0.5 mm 0 0.7 0.5 0.3 
Smooth - 0 0.5 0 0.2 
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high if cohesive failure occurs either in the substrate or in the applied system. In 
contrast, adhesive failure in the intermediate zone between substrate and applied 
system points to rather bad bond or, respectively, to a damaged substrate surface. 
Silfwerbrand (1990) compared the pull-off behaviour of concrete overlays applied 
to concrete substrates prepared with hydrodemolition, jack hammering,  and grit 
blasting. The results of the study proved that water jets generated a surface that 
forced cohesive failure. Percentage of adhesive (interface) failure was 7% for water 
jets, 31% for jack hammering,  and 38% for grit blasting. Some results are displayed 
in Fig. 5.15. 

Test number Test number 

Figure 5.15 Failure type frequency during pull-off strength testing of concrete substrates (Silfwerbrand, 
1990) 
a-  jack hammering; b-  hydrodemolition 

Talbot et al. (1994) provided a study into the adhesion of shotcrete overlays to 
concrete substrates. The authors could show that the pull-off strengths exceed the 
critical value of 1.5 MPa. Some results are listed in Table 5.4. 

Table 5.4 Pull-off strengths of shotcrete applied to hydrodemolished concrete substrates 
(Talbot et al., 1994)  

Shotcrete mixture Pull-off strength in MPa 

After 2 months After 6 months 

Conventional (dry) 1.57 1.56 
With silica fume (dry) 1.49 1.67 
With 48 kg/m 3 steel fibres (dry) 2.08 1.86 
With 12% latex (dry) 1.50 1.58 
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5.4 Water content of substrates 

Moisture in the near-surface region of concrete substrates affects the adhesion of 
overlays. If replacement mortars are applied to wet concrete surfaces, adhesive 
failure occurs with a much higher probability; this is shown in Fig. 5.16. It is 
frequently argued if the near-surface range of concrete contains critical amounts of 
moisture after hydrodemolition. Results of a comparative study performed by 
Werner (1988) are listed in Table 5.5. It must, however, be taken into account that 
the hydrodemolition unit utilised for the tests was equipped with a suction device in 
order to remove water and eroded concrete debris from the surface. The amount of 
water that penetrated the structure during the jetting was comparable to the 
amount found after a heavy striking rain. Depth of water penetration during 
hydrodemolition can be approximated as follows (Rehbinder, 1980): 

1/2 
hi =(2"kPvF .p.tE) (5.3) 

Here, p is in Pa, t E is in s, and kp is in m 2 (see Table 1.5 for corresponding values). 
An interpretation of this equation is performed in Fig. 5.17a, and it can be seen 
that the depth of penetration is just a fraction of a millimetre. The situation 
becomes critical if the water is not removed from the surface after the jetting and 
penetrates the structure further. This is illustrated in Fig. 5.18. The reason is 
infiltration by capillary forces, and this mechanism may apply especially to 
horizontal surfaces where the water cannot leave the concrete surface. If the 
operating pressure in Eq. (5.3) is replaced by the capillary pressure (about 1 MPa), 
the depth of water penetration can be estimated for the period that follows the 
jetting process (Fig. 5.17b). A much deeper penetration depth can be noted 
compared to Fig. 5.17a. In case of need, drying is, therefore, required. 

Sample (system) number 

Figure 5.16 Effects of substrate moisture content on failure 
type during pull-off testing of concrete (Sasse, 1987) 
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Table 5.5 Water p e n e t r a t i o n  in to  c o n c r e t e  u n d e r  di f ferent  c o n d i t i o n s  (Werner,  1 9 8 8 )  
Operat ing  pressure:  2 0 0  MPa; vo lumetr i c  f l ow rate: 12 l /min;  
nozzle  a r r a n g e m e n t :  4 x 0 .4  m m  

Condition Water penetration in mass percent 

Average Standard deviation 

After waterjetting 
After simulated rainfall (2 minutes) 
After simulated rainfall (10 minutes) 
After storage in water (48 hours) 

0.69 0.05 
0.63 0.05 
0.75 0.06 
4.08 0.41 

a 0.6 

E 
E 
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Figure 5.17 Depth of water penetration into concrete structures according to Eq. (5.3) 
a -  during hydrodemolition (high pressure; short exposure time) 
b -  after hydrodemolition (capillary pressure, long exposure time) 

Figure 5.18 'Standing water' during a hydrodemolition job (Photograph: Aquajet AB, Holsbybrunn) 
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5.5 Chloride content of substrates 
This problem is related to the problems raised in Section 5.4, and the same 
arguments can, therefore, be applied. It is very unlikely that dissolved chlorides are 
washed into the concrete structure during hydrodemolition because of the short 
exposure times. It rather seems that chlorides are removed off the structure and are 
flushed away with the process water. Again, this issue becomes acute only if water 
is standing at the concrete surface for a long period of time. Lukas and Kusterle 
(1991) performed comparative potential measurements on chloride contaminated 
concrete bridges and found that chloride concentration reduced after water jet 
erosion. Similar results are reported by Hunkeler (1998); examples are presented 
in Fig. 5.19. It can be seen that the chloride concentration is highest in the 
untreated sections (0-10 mm) and reduces if the concrete is removed through 
hydrodemolition. 
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Figure 5.19 Chloride contents in hydrodemolished concrete 
substrates (Hunkeler, 1998) 

5.6 Integrity of (microcracking in) substrates 
Although no systematic investigations were available in the early years of 
hydrodemolition, 'microcrack flee' performance was always a rigid argument to 
use water jets for concrete removal. This argument remained an issue of 
controversy till today. A totally crack free concrete surface can not be guaranteed 
due to the fundamental erosion mechanism that bases on the extension and 
intersection of microcracks. Figure 5.20 illustrates this issue. The question is rather 
if additional cracks are introduced to the surface during the water jet erosion 
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Figure 5.20 Concrete removal by waterjets due to intersecting 
microcracks (Hu et al., 2004) 

process. Hindo (1990) and Werner (1991) who investigated thin-ground sections 
noted that the number of microcracks in concrete reduced after water jet erosion. A 
systematic, but restricted, study was performed by Kauw (1996) whose results are 
summarised in Table 5.6. Typical lengths of cracks were in the range of several 
millimetres, with a maximum of 20 mm. The widths of cracks were mainly in the 
range of O. 1 mm. About 70% of all cracks ran partly parallel to the surface. Most of 
the cracks with rather large widths (> 0.1 mm) could be identified at material 
projections. Probably, these projections were already damaged but not swept away 
by the water flow. This situation occurs if operational parameters, namely pressure 
and traverse rate, are adjusted close to their threshold values (see Section 2.3). 
Thus, the probability of additional microcracking is high if the jet operates in the 
threshold range. Evidence to this interpretation is given in Fig. 2.11. Hydro- 
demolition experience shows that microcracking becomes acute if thick concrete 
layers are removed with high-energy hydrodemolition machines (Badzong, 1990). 
This is especially true for concrete construction with low- rigidity values (Wolfseher 
and Hess, 1994). In contrast, if concrete is removed with hand-held tools, the 
tendency to microcracking is very low (Werner, 1991). 
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Table 5.6 Results of microcrack testings after hydrodemolition (Kauw, 1996) 

Sample Compressive Maximum Operating 
strength aggregate size pressure 

in MPa in mm in MPa 

Crack number 

Total 

Parallel to 

surface 

1 40 16 0 0 0 

2 16 105 1 1 

3 16 195 0 0 

4 45 16 0 0 0 
5 16 105 0 0 

6 16 195 1 1 

7 42 16 0 0 0 
8 16 105 0 0 

9 16 195 2 2 

10 47 16 0 0 0 
11 16 105 4 2 

12 16 195 1 1 

13 47 32 0 0 0 

14 32 105 1 0 

15 32 195 1 1 

16 49 16 0 0 0 

17 16 105 2 2 

18 16 195 3 2 

19 54 16 0 0 0 
20 16 105 1 0 

21 16 195 1 1 

5.7 Mechanical properties of substrates 
To maintain mechanical properties of the substrate material is of primary 
importance for a reliable function of rehabilitated concrete structures. This aspect 
was in particular paid attention to during some rehabilitation projects in 
Switzerland, and the results of corresponding investigations were published by 
Rechsteiner and Wolfseher (1998) and by Wolfseher and Hess (1994). Figures 5.21 
and 5.22 show results of comparative measurements of dynamic Young's modulus 
and, respectively, tensile strength. These properties were measured prior to any 
treatment and, respectively, after hydrodemolition. As evidenced in Fig. 5.21, 
dynamic Young's modulus remains almost unaltered after hydrodemolition, no 
matter if hand-held tools or mechanical devices are applied. The same conclusion 
can be drawn for the porosity of the near-surface of the substrate (Wolfseher and 
Hess, 1994). Figure 5.22 shows that tensile strength is not affected negatively, no 
matter if manual or mechanical operation is performed. Tensile strength even 
increases after hydrodemolition. This at the first view surprising result can, 
however, be explained due to the selective operation mode of water jets. Weak zones 
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Preparation status 

Figure 5.21 Effect of preparation status on dynamic Young's modulus of concrete structures (Wolfseher and 
Hess, 1994) 
1 - untreated; 2 -  roughening; hydrodemolition robot; 3 -  roughening; robot-followed by hand-held tooI; 
4-concrete removal 30 ram; hydrodemolition robot; 5 -  concrete removal 30 ram; robot-followed by hand- 
held tool; 6 - concrete removal 30 ram; hand-held tool; 7 - concrete removal 80 ram; hydrodemolition robot; 
8 - concrete removal 80 ram; robot -foIIowed by hand-held tool; 9 - concrete removal 80 ram; hand-held tool 

Figure 5.22 Effect of preparation status on tensile strengths of concrete structures (Rechsteiner and 
Wolfseher, 1998) 
a -  Utilisation of hand-held waterjetting tools (operating pressure: 150 to 240 MPa; volumetric flow rate: 9 to 

481~rain) 
1 - Suburb bridge, Zug; 2-  Europa bridge, Zurich; 3 -  Fiirstenland bridge, St. Gallen; 4 -  Concrete facade, BirrfeId 

b -  Utilisation of hydrodemolition robots (operating pressure: 81 to 1 O0 MPa; volumetric flow rate: 5 7 to 180 
1~rain) 

1 - Suburb bridge, Zug, 2 - Europa bridge, Zurich; 3 - Fiirstenland bridge, St. Gallen 
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existing in the virgin material were removed during hydrodemolition and regions of 
a given strength only remain. 

5.8 Status of reinforcement in substrates 

Status of reinforcement bars includes bar damage, bond to the surrounding matrix, 
and bar cleanliness. Site experience shows that even fine wires that connect 
individual reinforcement bars remain undamaged. Examples are shown in Fig. 
5.23. It is also reported that tensioning ropes in pre-stressed reinforced concrete 

Figure 5.23 Reinforcement status after hydrodemolition (Photographs: Hydrojet AG, Basel) 
a -  closely spaced reinforcement bars and connecting wires; b -  reinforcement bars, hooks and pre-stressing pipes 
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structures are not affected (Zehr, 1998). Figure 5.24 compares the condition of a 
reinforcement arrangement after hydrodemolition (Fig. 5.24a) and after mechanical 
milling (Fig. 5.24b). Severe deformation and dislocation of individual bars can be 
noted after mechanical milling. Additionally, rather large concrete debris is jammed 
between the layers of the reinforcing net. Hydrodemolition, in contrast, leaves an 
almost unaffected reinforcement arrangement. 

Microscopic inspections verified that no debonding occurs between reinforce- 
ment bars and surrounding concrete matrix due to hydrodemolition (Rechsteiner 
and Wolfseher, 1998). A respective microphotograph is shown in Fig. 5.25. This is 

Figure 5.24 Reinforcement condition after concrete demolition 
(Photographs: Aquajet AB, Holsbybrunn) 
A -  After hydrodemolition- unaffected bars 
B - after mechanical milling- damaged and deformed bars 
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Figure 5.25 Interfacial zone between concrete and reinforcement bar after hydrodemolition (Rechsteiner and 
Wolfseher, 1998) 

mainly due to the gentle, low-vibration performance of hydrodemolition tools. 
However, some care must be taken if very slim reinforced constructions are going to 
be treated with heavy hydrodemolition machines. In such cases, a structural 
engineer should be consulted. 

If reinforced concrete is corroded as a result of chloride intrusion, regulations in 
Germany prescribe the use of high-speed water jets for bar cleaning. The reason is 
the typical appearance of chloride-corroded bars which show typical 'rust scares'. 
Mechanical cleaning tools, including grit blasting, can not penetrate these very 
tiny depressions, but water jets can. The water flow involved in the preparation 
process enters pores, pits, pockets, etc., and sweeps the salts away. This mechanism 
is verified by results of SEM-inspections of waterjetted surfaces (Trotter, 2001). 
From the area of steel corrosion protection is known that water jets remove any 
type of solved salts from steel substrates with the highest reliability (see Momber, 
2003c, for a detailed review). Tables 5.7 and 5.8 list corresponding results. RILI 
(2001) states that the quality of derusting of steel bars corresponds to the surface 
standard St 2 according to ISO 8501 even if the appearance of the surface is 
different from the visual reference photographs (RILI, 2001). 

A study that consider other types of salts (sulphates, phosphates, nitrates) was 
performed by Howlett and Dupuy (1993). This study showed the same trends as for 
the chlorides (see Table 5.8). It was further found that grit blasting did not remove 
chlorides to safe levels 50% of the time. Conductivity readings (which characterise 
not only chloride content, but all dissolved salts) from hydroblasted surfaces were 
reported by Kuljian and Melhuish (1999). In most cases, conductivity levels 
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dropped significantly after hydroblasting; 
~tS/cm, and 95% were under 40 pS/cm. 

75% of all readings were under 20 

Table 5.7 Chloride levels of steel measured after different pre-treatment methods 
(Forsgren and Applegren, 2000) 

Method Chloride level in ~tg/cm 2 

Bresle (10 min) SSM (10 s) SSM (10 min) 

No pre-treatment 44.8 
No pre-treatment 54.8 
No pre-treatment 15.2 
No pre-treatment 24.8 

47.5 61.3 
72.8 96.3 

Wet blasting 1.6 1.4 2.7 
Wet blasting 1.6 0.7 2.0 
Wet blasting 0 1.7 3.1 
Wet blasting 3.2 1.5 4.1 

Water jetting 
Water jetting 
Water jetting 
Water jetting 
Water jetting 
Water jetting 
Water jetting 

1.6 15.2 - 
0.8 1.8 4.2 
0 2.4 4.6 
1.2 0.1 2.1 
2.4 4.8 10.3 
1.2 0 1.0 
0 0 0.8 

Wire brushing 28.8 63.5 - 
Wire brushing 16.0 32.6 58.9 
Wire brushing 23.2 15.2 25.0 
Wire brushing 17.6 18.1 30.3 

Needle gunning 27.6 19.9 42.6 
Needle gunning 21.2 20.9 35.0 
Needle gunning 26.8 41.3 96.1 
Needle gunning 29.6 20.6 31.5 

Dry grit blasting 4.4 8.3 14.8 
Dry grit blasting 6.8 10.8 16.5 

* no measurements 
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Table 5.8 Surface contaminant results from different preparation methods (Howlett and 
Dupuy, 1993)  

Substrate Contaminant Salt level in pg/cm 2 

Surface preparation method 

Uncleaned Grit Water 
blasting jetting 

Hydro-abrasive 
blasting 

A-36 steel with 
mill scale 

Sulfates 40 3 0 4 
Phosphates 0 0 0 3 
Chlorides 2 2 1 0 
Nitrates 0 6 0 6 

A-285 Grade 3 
steel with mill 
scale 

Sulfates 5 5 0 1 
Phosphates 0 1 0 6 
Chlorides 4 3 1 1 
Nitrates 0 11 1 3 

Rusted water 
service pipe 

Sulfates 5 2 1 2 
Phosphates 1 2 0 6 
Chlorides 28 32 1 0 
Nitrates 6 1 1 8 

Intact coating 
on water 
service pipe 

Sulfates 8 4 0 0 
Phosphates 0 2 0 3 
Chlorides 6 1 1 0 
Nitrates 4 2 1 5 

H2S scrubber 
plate 

Sulfates 39 7 0 3 
Phosphates 0 0 0 2 
Chlorides 12 8 0 1 
Nitrates 0 1 0 3 

Heat exchanger 
shell 

Sulfates 7 4 0 0 
Phosphates 0 0 0 7 
Chlorides 17 31 0 0 
Nitrates 0 3 0 6 
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6.1 Material loading due to solid particle impingement 
6.1.1 Stresses due to particle impingement 

Tensile stress generated by an impinging spherical particle are maximum at the 
surface of the edge of contact according to Hertz's (1882) theory for elastic 
contact: 

(1 -  2"~,M)'F c 
OT = 2 (6.1) 

2 " n ' a  

Here, a is the contact radius, and F c is the contact force. The contact radius is given 
through: 

I13 

a = (6.2) 
8 

The contact force generated by an impinging spherical solid particle is derived by 
Knight et al. (1977)" 

F C = ~- n ' p s  �9 "k "v S (6.3) 

The parameter k balances the elastic properties of particle and target material as 
follows: 

2 l _ v 2  1 - v p  M 
k - + ~ (6.4) 

Ep E M 

Eqs. (6.1) to (6.4) deliver the following relationship between maximum tensile 
stress and particle velocity: 

~/s (6.5) OT oc VS 

Figure 6.1 shows tensile stresses, calculated for typical elastic properties of a 
concrete material. 

6.1.2 Material response to particle impingement 

Depending on the contact situation, materials respond either elastic or plastic to 
solid particle impingement. Examples are shown in Fig. 6.2. The critical particle 
velocity for plastic flow during particle impact is (Johnson, 1985): 
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Figure 6.1 
(concrete) 

Particle velocity in mls 

Effect of impact velocity on tensile stress 
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2 26"(of /EM) 4 "of 
VpL = (6.6) 

Ps 

The threshold particle velocity for Hertzian crack formation can be derived from Eq. 
(6.3) in combination with Auerbach's law (Pu=A.ds). This procedure delivers: 

I/3 -1/2 

Here, A is the Auerbach-constant, and r s is the radius of the impinging sphere. For 
VH=vpL and of=H i ,  Eqs. (6.6) and (6.7) deliver the following condition for elastic- 
plastic transition: 

rz. oc H~  (6.8) 

This relationship is illustrated in Fig. 6.3. 

.Z3 
"E3 

.o_ 

0 

log (target material hardness) 

Figure 6.3 Elastic-plastic transition for solid particle 
impact on rocks and cementitious composites (Momber, 
2004f) 

6.1.3 Formation of radial and lateral cracks 

Radial cracks form in the intermediate surface region of brittle materials if a 
certain stress level (particle velocity) is exceeded. An example is shown in Fig. 6.4. 
Radial cracks do not lead to material removal, but they reduce strength in the near- 
surface region. The length of these cracks depend on process parameters as follows 
(Anderson et al., 1993): 
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Figure 6.4 Radial cracks in limestone (Momber, 2004g) 

4/3 
d s "v s 

Lp, oc (6.9) 
2/3 

Kic 

Number and distribution of radial cracks depend upon particle velocity, and the 
relationship between number of cracks and impact velocity is (Kirchner and 
Gruver, 19 78)" 

N R oc v6/Ss (6.10) 

Lateral cracks are critical to material removal processes. They grow from the 
bottom of the permanent depression during the unloading phase of the contact. 
They grow into the direction of the surface, and if they meet the surface, material is 
removed. This process is shown in Fig. 6.5. The following two threshold criteria for 
the formation of radial cracks were derived by Hutchings (1992): 

2 

"('Is OC . M 

~HM) H1/4M "PM '/' 

- / 2  "vs 1 " (6.11a) 

this criterion holds for spherical particles. 

2 

ds~ HM ) 
E I/2 M 

Hi/6 i/3 
M "~M 

-2/3 . 
�9 vs , (6.11b) 
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Figure 6.5 Lateral cracks in geomaterials (photographs: Author) 
a -  limestone b -  concrete 

this criterion holds for irregular particles. The ratio KIc/H M - sometimes referred to 
as 'brittleness' - plays a dominating role. Graphical solutions to Eqs. (6.1 la,b) are 
provided in Fig. 6.6. If the depth, a lateral crack is formed at, is assumed to be equal 
to the depth of the permanent depression, it can be approximated as follows (Lange 
and Evans, 1979; Evans et al., 1978): 

1/4 
hi. = - ~ ' ~  "vs (6.12) 

I ~ ange of Iateral orac ki ng I 

P artioleirre''gujar ~ - ~ [  

range of pl a~i c flow 

log (particle velocity) 

Figure 6.6 Threshold criteria for lateral cracking 
(Hutchings, ] 992); see Eqs. (6. ] ]a,b) 



Demolition with hydro-abrasive water jets 179 

It can be seen from Fig. 6.5a, that length of a radial crack (Eq. 6.9) and depth of 
a lateral crack (Eq. 6.12) can be used to approximate the volume of the material 
being removed from the surface: 

2 
VM -- (~L "-:-'LR "hL 

4 
(6.13) 

The geometry parameter is O<aL~l; in Fig. 6.5a, it is about ~L=0.5. Equation 
(6.13) is the basic approach for the modelling of material removal processes due to 
solid particle impingement in the elastic-plastic response range. More information 
is provided by Momber (2004f, 2004g). 

6.2 Types and formation of hydro-abrasive water jets 
6.2.1 Formation of hydro-abrasive water jets 

A comprehensive review about hydro-abrasive jets is given by Momber and 
Kovacevic (1998). From the point of view of jet generation, the following two types 
of hydro-abrasive jets can be distinguished: 

�9 injection jets; 
�9 suspension jets. 

A hydro-abrasive injection jet is formed by accelerating small solid particles (garnet, 
aluminium oxide, silica carbide) through contact with one or more high-speed 
water jets. The high-speed water jets are formed in orifices placed on top of the 
mixing-and-acceleration head. The solid particles are dragged into the mixing-and- 
acceleration head through a separate inlet due to the vacuum created by the water 
jet in the mixing chamber. The mixing between the solid particles, water jet and air 
takes place in the mixing chamber, and the acceleration process occurs in a 
focusing tube. A typical design for an on-site mixing-and-acceleration devices is 
illustrated in Fig. 6.7. After the mixing-and-acceleration process, a high-speed 
three-phase suspension leaves this tube at velocities of several hundred meters per 
second. This suspension is the actual tool for hydro-abrasive applications. The 
entire mixing-and-acceleration process is in detail described by Momber and 
Kovacevic (1998). 

The velocity of the abrasive particles can be approximated by the following 
equation, based on momentum balance: 

V 3 
v s =or ,  �9 (6.14) 

1 + ( rh , /~h  w ) 

Here, a A is a momentum transfer parameter; a typical value is aA=0.7 (Momber 
and Kovacevic, 1998). The mass flow rate ratio is frequently called the mixing 
ratio: 
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Figure 6.7 Mixing and acceleration head for on-site applications (WOMA 
Apparatebau GmbH, Duisburg) 

rn A/Ihw = RM (6.15) 

Equation (6.14) is solved for different mixing ratios; the results are shown in Fig. 
6.8. For simplicity it is assumed that abrasive particles and water phase in the 
hydro-abrasive jet have equal velocities (in reality exists a slip of about 10%). The 
kinetic energy of a hydro-abrasive water jet is: 

m w  2 
NSEsi + "V s EA = i ~  . 2 

, ,  r 

abrasive particle waterphas e 
(6.16) 

The number of particles, N s, depends on abrasive particle size and mass flow rate. 
The left term of Eq. (6.16) is the energy delivered by the abrasive particles to the 
erosion site. This portion, denoted 'abrasive particle' is about 10% of the total 
kinetic energy of a hydro-abrasive jet (Momber, 2001); the remaining 90% are 
carried by the water phase of the jet (denoted 'water phase'). These relationships 
are illustrated in Fig. 6.9. 

6.2.2 Structure and properties of hydro-abrasive water jets 

The structure of a hydro-abrasive jet consisting of solid particles, water, and air is 
shown in Fig. 6.10. Detailed information about the structure of hydro-abrasive 
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Figure 6.8 Abrasive particle velocities for typical site conditions 
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Figure 6.9 Energy history of the abrasive-water let-mixing process 
(Momber, 2001) 
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ratio jet length/focus diameter 

Figure 6.10 Structure of a hydro-abrasive water jet (photograph: Shimizu, Univ. of Hiroshima) 
a -  coarse abrasives, b -  fine abrasives 

Figure 6.11 Phase distributions in a hydro-abrasive water jet (Momber and Kovacevic, 1998) 
a -  mass related, b -  volume related 

water jets is provided by Momber and Kovacevic (1998). The portions of the three 
phases (solid, liquid, gas) in a hydro-abrasive jet are shown in Fig. 6.11. The solid 
particles occupy about 23% of the mass in the jet, whereas they occupy 0.2% of the 
jet volume only. If the cross section of a jet is considered, abrasive particles are not 
distributed evenly. Particle concentration has a maximum outside the core region 
of the jet, which is a sign of insufficient mixing processes. This is illustrated in Fig. 
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6.12a. Figure 6.12b shows the velocity distribution in the cross section of a jet. The 
velocity of the solid particles is at a more or less constant level over the jet radius, 
whereas the water velocity drops at locations away from the jet centre. This latter 
behaviour is, however, known from plain water jets. 
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Figure 6.12 Radial mass~velocity distributions in a hydro-abrasive water jet 
a -  solid particle mass distribution (Simpson, 1990) 
b -  velocity distributions (Himmelreich, 1992) 

6.3 Process optimisation 
6.3.1 Process and target parameters 

The hydro-abrasive cutting processes are characterised by a large number of pro- 
cess parameters that determine efficiency, economy, and quality of the whole 
process. Therefore, optimisation of the process is a primary requirement for a 
successful application. Generally, process parameters in the abrasive water-jet 
cutting can be subdivided as shown in Fig. 6.13. 

6.3.2 Pump pressure effects 

Effects of pump pressure on hydraulic and water jet parameters are already 
mentioned in Section 2.3.2. However, pump pressure (water jet velocity, 
respectively) also affects the mixing-and-acceleration process during the formation 
of hydro-abrasive jets. As Eq. (6.14) illustrates, abrasive particle velocity increases 
linearly with an increase in jet velocity. The momentum transfer parameter 
depends upon pump pressure as well. These relationships are discussed in more 
detail by Momber and Kovacevic (1998). Figure 6.14: shows the relationship 
between depth of cut and pump pressure; a linear relationship can be noted: 
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Figure 6.13 Process parameters for hydro-abrasive 
jet cutting 

Operating pressure in MPa 

Figue 6.14 Effect of pump pressure on depth of cut in 
concrete (Nakaya et al., 1984) 

h M = A1 -(p - PT) (6.17) 

where PT is a threshold pump pressure similar to that discussed in Section 2.3.2. 
From Fig. 6.14, threshold pressure depends on abrasive type, whereas the progress 
parameter A 1 is independent of the abrasive type. Assuming a purely elastic 
material response, the threshold pressure can be approximated as follows: 

PT OC K 1~ Ic (6 .18)  

From the point of view of energy exploitation, a minimum in the specific cutting 
energy, dEl/dhi=O, exists at: 

Po =3"PT (6.19) 

Therefore, energetically optimum cutting can be realised with pump pressures in 
the range of 150 MPa. 

6.3.3 Nozzle diameter effects 

There does not exist a serious study about the effect of nozzle diameter variations 
on the cutting process for concrete. However, Hegling (1988) performed a 
systematic study into the cutting of rocks. Some results are plotted in Fig. 6.15. The 
curve can be approximated with the following function: 
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Figure 6.15 Orifice diameter effect on depth of cut 
(HeJdling, 1988) 

h M = A 2 "(dN - d T )  B~ (6.20) 

with 0<B2<1. The threshold diameter can be interpreted in terms of particle 
acceleration. A certain momentum that is characterised by the volumetric water 
flow rate is required to accelerate the solid particles to a certain velocity that may 
be characterised by the particle threshold velocity. As far as this velocity is not 
reached, no erosion occurs. Similar arguments hold for an upper critical nozzle 
diameter. The denominator of Eq. (6.14) approaches unity if the water mass flow 
rate (ocd 2) becomes very high. Therefore, if a certain water mass flow rate (nozzle 
diameter, respectively) is exceeded, a further increase in mass flow rate does not 
contribute much to the value of the denominator. For this reason, particle velocity 
rests at a more or less constant level, and depth of cut does not increase notably. 

6.3.4 Abrasive mass flow rate effects 

A typical relationship between abrasive mass flow rate and depth of cut is shown in 
Fig. 6.16. After a primarily linear increase in depth of cut, a maximum occurs at an 
optimum mass flow rate. For given pump pressure and nozzle diameter, this 
optimum can be interpreted as an optimum mass flow ratio; values for this 
parameter are listed in Table 6.1. It can be seen that typical values are in the range 
of mA/mw=0.3. If the maximum possible depth of cut is the major target 
parameter, this value should be kept. To interpret the maximum in the function, 
mixing-and-acceleration as well as material removal processes must be considered. 
Firstly, a balance exist between abrasive mass flow rate and water mass flow rate in 
terms of an optimum acceleration process. This aspect is already discussed in the 
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Figure 6.16 Abrasive mass flow rate effect on depth of 
cut in concrete (Nakaya et al., 1984) 

Table 6.1 Typical values for optimum abrasive mass f low rates 

Pressure Traverse rate Abrasive Optimum Target 
in MPa in m/s type ratio R o parameter 

Reference 

241 3.8 garnet 0.25-0.3 depth of cut Hashish (1982) 
196 3.3 steel slag 0.25-0.35 depth of cut Nakaya et al. (1984) 
100 2.7 garnet 0.28 depth of cut Yie (1984) 
241 1.7 garnet 0.16 mass removal Hashish and Echert (1989) 

previous section. If the abrasive mass flow rate is too large, the impulse delivered by 
the water jet is not sufficient to efficiently accelerate all solid particles. Experimental 
evidence is delivered by Chen and Geskin (1991), Miller and Archibald (1991), and 
Riel~ and Himmelreich (1991). Secondly, abrasive mass flow rate balances intensity 
and frequency of material loading. An assumed relationship that illustrates this 
issue may be the following: 

Vs "Ns oc Cp (6.21) 

Here, N s is the number of individual particles per time period, and v s is the average 
velocity of an individual particle. Eq. (6.21) is illustrated in Fig. 6.17. If the number 
of particles (impact frequency) increases because of a higher abrasive mass flow 
rate, individual particle velocity (impact intensity) drops. Each certain concrete 
material can be characterised by a fixed point on the curve in Fig. 6.17 for which a 
decided balance between frequency and intensity of impact exists. Figure 6.16 
illustrates a further interesting effect: material is still removed in the case ran=0. 
Thus, concrete can be cut without any abrasive addition, although at low 
efficiency, and the water phase in the hydro-abrasive jet may contribute actively to 
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Figure 6.17 Relationships between abrasive particle size 
and abrasive particle number 

the cutting process. More details about this issue are delivered by Momber (2004c). 
From the point of view of abrasive material exploitation, lower rates are 
recommended because the function dhg/dm A has maximum values in the range of 
low abrasive mass flow rates. A detailed discussion of these aspects in provided by 
Momber (1995b). 

6.3.5 Stand-off distance effects 

The influence of stand-off distance on depth of cut is shown in Fig. 6.18. Depth of 
cut decreases continuously if stand-off distance increases, but the decrease is only 
marginal. The major reason may be the deceleration of abrasive particles due to air 
friction, and it was in fact shown by Khan and Geskin (1995) and Neusen et al. 
(1994) that abrasive and water drop velocity slightly decrease if stand-off distance 
becomes longer. In order to achieve a maximum depth of cut, stand-off distance 
should, therefore, be as short as possible. 

6.3.6 Traverse rate effects 

As illustrated in Fig. 6.19, traverse rate variations affect depth of cut notably. The 
relationships can be expressed by a formula of the following type (Hashish, 1983): 

h M = h o �9 1 -  exp (6.22) 
V T - - V  0 

where v o is the traverse rate below which no increase in depth of cut occurs, and h o 
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Figure 6.18 Stand-off effect on depth of cut in 
concrete (Konno, 1988) 

operating pressure: 100 MPa 

abrasive mass flow rate: 0.84 kglmin 
abrasive material: # 36 garnet 
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Figure 6.19 Traverse rate effect on depth of cut in 
concrete (Yie, 1984) 

is the maximum possible depth of cut achieved for VT=V o. Experience shows, 
however, that a second critical traverse rate, v c, exists. If this traverse rate is 
exceeded, no material removal occurs. In the first place this threshold parameter 
characterises the local exposure time according to Eq. (3.24), whereby the jet 
diameter may be replaced through the focus diameter: 

t E -- d F  

VT (6.23) 

During the time period t E a certain number of abrasive particles impinge the 
concrete surface; this number can be approximated as follows: 

ITI A 
Ns ~: (6.24) 

V T  

The right term has the unit [kg/m], and it is frequently called particle distribution 
density (Hu et al., 1991). A critical number of impinging particles is required to 
introduce measurable removal of material, and this critical number determines the 
value of the threshold traverse rate. The constant A 3 in Eq. (6.22) covers effects of 
abrasive mass flow rate. For very high traverse rates, changes in A 3 do not affect the 
depth of cut significantly which means that the addition of abrasive particles 
becomes inefficient in case of very high traverse rate. Based on Eq. (6.22), 
maximum depth of cut is a given parameter in case of cutting the material in one 
pass. A strategy to form cuts deeper than h o is multi-pass cutting as illustrated in 
Fig. 6.20. In the example shown in Fig. 6.20b, hM= 150 mm is the maximum depth 
of cut for one cutting pass. However, to achieve a depth of cut of, lets say, 175 mm, 
several combinations of traverse rate and number of passes can be used. As shown 
in Fig. 6.20b, multi-pass cutting at high traverse rates becomes inefficient if a 
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Figure 6.20 Multipass cutting of concrete 
a -  Effect of number of passes (Yie, 1984) 
b -  Optimisation strategy (Nakaya et al., 1984) 

certain number of passes is exceeded. Reasons are friction between kerf wall and 
cutting suspension as well as damping of the abrasive particles due to interactions 
between water, abrasives and concrete debris in deep and narrow kerfs. An 
evaluation criterion for multi-pass cutting is the ratio between traverse rate and 
number of passes: 

V T 
X = (6.25) 

n S 

A curve that connects equal x-values has always a maximum as can be noted from 
the trend of the lower curve in Fig. 6.20b. This maximum characterises the 
maximum depth of cut achievable at a given level of jet energy. The lower X, the 
higher is the number of passes required to obtain the maximum depth of cut. 

Figure 6.21 illustrates the effect of varying traverse rate on cutting rate. In 
contrast to Fig. 6.19, a maximum exists at high traverse rate values. Therefore, if 
not maximum depth of cut but maximum length of cut for a desired depth is a 
primary requirement, rather high traverse rates should be used. 

6.3.7 Impact angle effects 

It is known from solid particle erosion that variations in impact angle modify the 
erosion mode. Shallow angles promote micro-machining and chipping, whereas 
rectangular impacts form microcracks. Cutting tests on concrete could not verify 
any effect of angle variations for horizontal cutting (Arasawa et al., 1996). If 
erosion rate is considered, rectangular impact is more efficient, and this advantage 
articulates at higher pressures (Hu et al., 2002). 
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Figure6.21 Traverse rate effect on cutting rate in concrete (Yie, 19 84); values taken from Fig. 6.19 

6.3.8 Focus geometry effects 

Focus geometry is given through focus length and focus diameter. The effect of 
focus length is shown in Fig. 6.22; an optimum range, where depth of cut is on its 
maximum, can be noted. This behaviour is closely related to the acceleration 
process in the focus. Any solid particle requires a certain distance for an optimum 
impulse exchange. Below this distance (focus length, respectively) momentum 
exchange is inefficient and the velocity of the solid particles may be low. If, on the 
other hand, the focus in too long, friction effects come in front leading to a 
deceleration of the solid particles. The location of the optimum visible in Fig. 6.22 
depends, among others, upon abrasive size, density and shape. These complex 
relationships are discussed in more detail by Momber and Kovacevic (1998). 
Results of direct measurements of abrasive particle velocities (Blickwedel, 1990, 
Himmelreich and Riel~, 199 lb) deliver the following relationship: 

,6 6, 

Effects of focus diameter variations on depth of cut are displayed in Fig. 6.23. 
However, target param6ter is the removal rate, which increases as focus diameter 
increases. It can certainly be noted that the progress of the function drops at larger 
focus diameters. Experimental results obtained on rocks show in fact that an 
optimum focus diameter exists, which is in the following way linked to the abrasive 
particle diameter (Hegling, 1988): 
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operating pressure: 150 MPa 

material: sandstone 
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Figure 6.22 Focus length effect on depth of cut in 
sandstone (HeJ~ling, 1988) 
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Figure 6.23 Focus diameter effect on material 
removal rate in concrete (Hashish and Echert, 1989) 
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Focus diameter must also be adapted to the water nozzle diameter. An empirical 
relationship is (Blickwedel, 1990): 

opt 

Smaller focus diameters guarantee a denser air-water flow in the focus; thus, 
increasing the drag force acting on the particles during the acceleration. However, 
small loci increase the probability of wall-particle and particle-particle contacts. 

6.3.9 Abrasive particle size effects 

Abrasive particle size is usually evaluated via an average diameter of a particle 
sample. Some results of particle size effects on depth of cut are shown in Fig. 6.24. 
Optimum conditions can again be noted. Results obtained by Kokaji et al. (1988) 
also verify the existence of an optimum particle diameter, especially at rather high 
traverse rates, in the range of medium particle sizes (about Mesh 40). The 
corresponding relationships are rather complex and include mixing, acceleration 
[Eq. (6.14)], breakage behaviour (Matsumoto et al., 1988), and material removal 
mode. For a given abrasive mass flow rate, larger particles are associated with a 
decrease in particle number, 
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Figure 6.24 Abrasive particle diameter effect on depth of 
cut in concrete (Nakamura et al., 1989) 
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and the balance between frequency and intensity of particle impact becomes an 
issue again and determines the location of the optimum. (This argument applies to 
changes in the abrasive material density as well.) For concrete, a rather intense, but 
low-frequent loading is useful, and this is one reason for the low depth of cut in the 
range of small abrasive particles. The decrease in efficiency if large particles are 
utilised may be caused by the mixing-and acceleration process. Under given physical 
and geometrical conditions, larger (heavier) particles require a larger acceleration 
distance for impulse exchange. If this requirement is not met, the particles do not 
reach their final velocity and travel with a speed lower than those of smaller 
particles. 

6.3.10 Abrasive particle shape and hardness effects 

Aspects of abrasive shape are already discussed in Section 6.1, and they apply to 
this section as well. Unfortunately, no systematic investigation is known that covers 
shape effects during the cutting of concrete. It could, however, be assumed that 
because of the small particles and of the high speed of impingement elastic material 
response does not occur. Another aspect is the fragmentation of the original abrasive 
grains during the mixing-and-acceleration process, which forms rather irregularly 
shaped particles. 

From traditional tribological arguments, the hardness of the abrasives should at 
least equal, or better exceeds, the hardness of the target material. Based on Table 
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Figure 6.2_5 Abrasive hardness effect on depth of cut in concrete (Nakaya et al., 1984) 
a - Abrasive hardness; b - abrasive hardness and density 

1.3, suitable abrasive materials can be selected in dependence of the hardness of 
the concrete ingredients. Experimental results are plotted in Fig. 6.25a. No general 
trend can be found if all abrasive materials are considered. However, if steel 
abrasive and, respectively, mineral abrasives are separated, an almost linear 
increase in depth of cut with an increase in abrasive material hardness can be 
noted. Interesting results are displayed in Fig. 6.25b where the depth of cut is 
plotted against the product of hardness and density. This purely empirical approach 
delivers a general trend for all abrasive materials used for the experiments. 

Abrasive material affects mixing nozzle wear. Very hard abrasives, namely 
aluminium oxide, are by far more aggressive to nozzle materials than softer 
abrasives, say steel grit. This relationship is illustrated in Fig. 6.26. Increase in wear 
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Figure 6.26 Effect of abrasive type on focus wear in hydro- 
abrasive cutting of reinforced concrete (Nakaya et al., 1984) 
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Figure 6.27 Demolition of reinforced concrete with hydro-abrasive jets (WOMA Apparatebau GmbH, 
Duisburg) 
a -  Separation of a concrete wall 
b -  Structure of a heavily reinforced concrete column cut with a hydro-abrasive jet 
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is progressive in case of aluminium oxide, whereas a slightly decreasing trend can 
be noted for iron grit. Gain in cutting speed is therefore, to the expenses of nozzle 
costs. This applied especially to long operation times. 

6.4 Demolition of concrete and reinforced concrete 
structures 

6.4.1 General demolition process 

Hydro-abrasive cutting offers certain advantages over other demolition tools. An 
assessment scheme for different demolition methods is provided in Table 6.2. The 
capability of hydro-abrasive jets to cut heavily reinforced concrete members is 
illustrated in Fig. 6.2 7b. The depth of cut is as deep as 850 mm despite the massive 
steel bar reinforcement. Further examples are listed in Tables 6.3 and 6.4. The 
fundamental cutting process occurring during the demolition with hydro-abrasive 
water jets is in great detail discussed by Momber and Kovacevic (1998).  From the 
point of view of surface quality, two cutting regions could be distinguished, as 
illustrated in Fig. 6.28: 

�9 an upper smooth, striation-free region; 
�9 a lower wavy region, characterised by striation formation. 

Table 6.2 A s s e s s m e n t  s c h e m e  for demol i t i on  m e t h o d s  for re inforced c o n c r e t e  (Matsushira,  
1 9 8 8 )  

Method 

Hand breaker 
Cutter drum 
Core-drilling 
Hydro-abrasive jet 
Flame jet 

A - excellent 
B - good 
C - less desirable 
D -  undesirable 

Environment Workability 
~D 

N .,.., 

o .,.., 

Performance 

o 

o ~ 
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Table 6.3 Performance parameters for on-site cutting of constructive materials; 
references: WOMA Apparatebau GmbH, Duisburg 

Material Pump Power Abrasive mass Cutting 
(reinforcement) pressure flow rate rate 

(MPa) (kW) (kg/min) (m/h) 

Depth / 
Thickness 
(mm) 

Concrete 
(heavily reinforced) 130 80 3.6 1.0 40 
Concrete 
(heavily reinforcement) 130 80 3.6 2.4 25 
Concrete column * 
(heavily reinforced) 200 144 2.0 0.5 85 
Concrete 
(steel 6 x Q6 mm) 200 70 2.6 5.4 14 
Concrete 
(steel 8 x 025 mm) 200 70 2.6 1.2 40 
Concrete 
(steel 8 x 020  mm) 200 70 2.5 1.3 33 
Concrete 
(steel 2 x 06  mm) 125 80 2.2 2.2 33 
Concrete 
(steel 10 x Q30 mm) 200 75 2.5 1.2 40 
Construction steel 
St 35 200 80 1.5 6.0 1.4 

* See Fig. 6.23 

Table 6.4 Performance parameters for on-site cutting of reinforced concrete members; 
abrasive material: quartz sand (Vasek et al., 1991)  

Concrete Reinforcement Member Pump Abrasive mass Cutting 
(diameter / thickness) thickness pressure flow rate rate 

(cm) (MPa) (kg/min) (m2/h) 

Concrete Bars (28 mm) 30 220 1.59 0.29 
Concrete Bars ( 14 mm) 15 235 0.54 0.20 
Monolithic concrete No reinforcement 30 220 1.98 1.35 
Monolithic concrete No reinforcement 15 220 1.98 2.34 
Shotcrete Metallic mesh (6 mm) 30 220 1.50 0.59 
Shotcrete Metallic mesh (6 mm) 15 207 1.93 0.84 
Shotcrete No reinforcement 30 220 1.50 0.82 
Shotcrete No reinforcement 15 207 1.93 1.26 
Monolithic concrete Wood boards (20 mm) 30 220 1.50 1.67 
Monolithic concrete Wood boards (20 mm ) 15 207 1.93 2.32 
Monolithic concrete Cut wires (0.4 mm) 30 207 1.93 0.78 
Monolithic concrete Cut wires (0.4 mm) 15 207 1.93 0.66 

T h e  c o r r e s p o n d i n g  e ros ion  m e c h a n i s m s  a re  desc r ibed  by M o m b e r  a n d  

Kovacev ic  ( 1 9 9 8 ) ;  see also Sec t ion  6.1.  M o m b e r  et al. ( 1 9 9 9 ,  2 0 0 2 c )  p e r f o r m e d  

acous t i c  emi s s ion  s tudies  a n d  f o u n d  t h a t  t he  e ro s ion  m o d e s  involved in c o n c r e t e  

c u t t i n g  d e p e n d e d  m a i n l y  u p o n  a g g r e g a t e  size a n d  d i s t r ibu t ion .  F i n e - g r a i n e d  

c o n c r e t e s  w i t h  a h i g h  a m o u n t  of sphe r i ca l  s a n d  par t i c les  fail by i n t e r g r a n u l a r  

e r o s i o n  as i l lus t ra ted  in Fig. 6 . 2 9 a ,  w h e r e a s  r a t h e r  c o a r s e  c o n c r e t e s  w i t h  a h i g h  
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Figure 6.28 Structure of a cut area in reinforced concrete formed during hydro-abrasive cutting 
(Momber, 1998) 

Figure 6.29 Failure modes in concrete samples cut with hydro-abrasive jetting (Momber et al., 2002c) 
a - intergranular erosion in fine-grained concrete, b - transgranularfracture in coarse-grained concrete 
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amount of broken coarse aggregates fail in a transgranular mode (Fig. 6.29b). For 
equal depths of cut, a transgranular mode produces acoustic emission signals with 
a high amplitude probably caused by the sudden energy release during aggregate 
fracture. Time domain acoustic emission signals of concrete with larger aggregates 
is characterised by typical burst emissions; finely grained concrete, in contrast, 
produces rather homogeneous signals. Examples are provided in Fig. 6.30. A basic 
property that determined the failure type, is structural homogeneity- very similar 
to the situation discussed in Section 2.4.1. 

> 
c_ 
0 

:3 

E 
m 

(n 

Exposure time in ms 

Figure 6.30 Acoustic emission signals acquired during hydro-abrasive cutting of concrete 
(Momber et al., 1999)" upper graph: fine-grained concrete; lower graph: coarse-grained 
concrete; corresponding failure modes are shown in Fig. 3.29 

Effects of concrete material parameters on depth of cut are investigated by 
Momber and Kovacevic (199 7). A statistical analysis of these results showed that 
crack velocity in the concrete is the governing parameter that determines the 
resistance against hydro-abrasive cutting. Results of this study are listed in Table 
6.5. Specific cutting energy also depends strongly on crack velocity (Agus et al., 
1993). A relationship that characterises the resistance of brittle materials against 
hydro-abrasive cutting is as follows (Matsui et al., 1991): 

-1.97 

2.EM (6.30) 
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Table 6.5 Effects of concrete  parameters on depth of cut in abrasive water jet cutt ing 
(Momber and Kovacevic, 1997) 

Material parameter Correlation regression 

Elastic strain energy density 0.939 
Young's modulus O. 977 
Compressive strength O. 959 
Crack velocity 0.078 

It is, however, found that rock materials, namely granite and marble, do not fit 
that relationship (Matsui et al., 1991). An explanation is delivered by Momber 
(2004a) who argued that the term (OT/2"EM), which is actually the elastic strain 
energy density, may be replaced by the true strain energy density for quasi-brittle 
materials. Zeng et al. (1992) introduced a so called "machinability number" to 
describe the resistance of materials against hydro-abrasive cutting: 

d M "of C 2 
N M =C: " ~ +  (6.31) 

7M "EM Of 

The lower the value for N M the higher the material resistance. This parameter has 
to be estimated by reference experiments. Values for concretes and related materials 
are listed in Table 6.6. Using relationships from linear-elastic fracture mechanics, 
Eq. (6.31) can be simplified as follows" 

NM oc K-2ic (6.32) 

Table 6.6 Machinability numbers  of engineering materials (Momber and Kovacevic, 1998)  

Material Machinability number 

Alumina Ceramic AD 85 17 
Asphalt Concrete 461 
Concrete (medium strength) 516 
Concrete (high strength) 468 
Glass 596 
Granite 322 
Graphite 875 
Mortar 858 
PMMA 690 
Refractory bauxite 106 
Sintered Magnesia 408 
White Marble 535 

Figure 3.34 shows the drawing of a nozzle type developed to accelerate explosive 
pellets by high-speed water jets (Becker et al., 1999). The pellets are being 
accelerated to a high speed and are brought to detonation if they hit the material to 
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Figure 6.31 Rock sample crushed with the explosive pellet impingement technique 
(Becker et al., 1999) 

be cut. The principle of mixing is comparable to that used for the formation of hydro- 
abrasive water jets.. Tests on concrete and rocks with pellet speeds between 60 and 80 
m/s have shown that effective stand-off distances as high as 6 m can be realised. A 
rock sample cut with this method is shown in Fig. 6.31. A 1 O-fold increase in cutting 
speed compared to conventional techniques is expected (Becker et al., 1999). Further 
increase in efficiency may be possible if miniaturised shaped charged are used instead 
of pellets, and if the surface hit by the explosives is pre-cut with water jets. 

lO ~ 

101 reinforcement bar 
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Figure 6.32 Relationships between traverse rate, depth of 
cut and target material (Momber, 1998) 



Demolition with hydro-abrasive water jets 201 

6.4.2 Effects of reinforcement on cutting performance 

Certain investigations have shown that type and density of steel bar reinforcement 
affect efficiency of cutting as well as the final depth of cut. The simplest way to 
assess effects of reinforcement is to consider the steel reinforcement as the part of 
the structure that governs depth of cut. This approach is illustrated in Fig. 6.32. 
The minimum thickness of the reinforced concrete member than can be cut is 
assumed to be equal to the diameter of the reinforcement bar. From this assump- 
tion, the corresponding traverse rate can be selected. The maximum thickness to be 
cut depends to a large amount upon number and distribution of reinforcement 
bars. In Fig. 6.33, the location of the reinforcement bars determines depth of cut. If 
bars are present, depth of cut decreases. Whereas the first row of reinforcement 
bars could be cut under the given conditions, the second row could not be cut, and 
depth of cut varies extremely between 20 cm and 37 cm, which is a deviation of 
about 80%. 

Figure 6.33 Effect of reinforcement bars on cutting depth in reinforced concrete members (Konno, 1988) 

In certain cases, damage to any steel inclusion (bars, pipes, tubes) needs to be 
avoided. An example is shown in Fig. 6.34. Here, all performance parameters are 

selected in a way that concrete covers are cut, whereas pipes buried in the concrete 
structure are undamaged. An approximation for the maximum depth of cut in a 
steel-bar reinforced concrete is as follows (Momber et al., 2004): 

b ET) 
= --+ 2 -- + hT i ' :  ~t 1 4 . a  1 a 1 al "E A 

(6.33) 

The constants a 1 to c 1 must be estimated experimentally. The parameter E w is a 
threshold energy level for the steel bar material. As far as this value is reached, no 
further cutting occurs. An empirical relationship for the reduction in cutting speed 
due to steel reinforcement is derived by Arasawa et al. (1986): 
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Figure 6.34 Damage-free cutting of concrete with embedded steel 
pipes (Kokaji et al., 1986) 

46.37 - 15.2"lnvT 
m 

XR - 78 .66 -  20.1"lnvT 
(6.34) 

For a traverse rate of 2 cm/min (1.2 m/h), Eq. (6.34) delivers XR=0.55. This result 
agrees with experience that, for a wall thickness up to 500 mm, reinforcement bars 
reduce the cutting speed down to about 50% (Sugiyama and Tabata, 1988). 
Because of the pronounced influence of the reinforcement bars, the on-line 
monitoring of reinforcement bars during the cutting process is a major problem 
from the point of view of site applications. This problem applies especially to 
remotely controlled cutting jobs, such as submerged cutting, cutting in hazardous 
environment, demolition of nuclear power plants. Methods that can be utilised 
include noise signals (Hashish and Echert, 1989), vibration acceleration 
(Sugiyama and Tabara, 1988) and impact voltage signals (Yamada et al., 1988). 
Results of impact noise measurements are shown Fig. 6.35a. A notable drop in 
signal amplitude occurs when the hydro-abrasive jet hits and cuts a reinforcement 
bar. However, due to the curved jet trajectory, the signal is being displayed with a 
slight delay. Similar is the situation in Fig. 6 . 3 5 b -  a sudden increase in signal 
amplitude can be seen if a steel bar is cut (note the very similar structure of the 
acoustic emission signals displayed in Fig. 6.30). Vibration level acquired during 
cutting can also be used to distinguish between complete cutting and incomplete 
cutting: if a reinforced concrete member is completely cut through, vibration level 
increases (Sashida et al., 1988). 

The effect of steel-fibre reinforcement on efficiency of hydro-abrasive jet cutting 
is illustrated in Fig. 6.36. Erosion rate usually decreases if concrete is reinforced 
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Figure 6.35 On-line monitoring of reinforced bars during hydro-abrasive cutting of reinforced concrete 
a -  impact noise measurements (Yamada et al., 1988); b-filtered noise signals (Hashish and Echert, 1989) 

Figure 6.36 Effects of steel-fibre reinforcement on efficiency of 
hydro-abrasive cutting of concrete (Hu et al., 2002) 



204 Hydrodemolition of concrete surfaces and reinforced concrete structures 

with steel fibres. However, the influence of the fibre reinforcement is more 
pronounced for lower impact angles. This is due the energy absorbed by the fibres 
while they are cut by the abrasive particles in case of shallow impact angle (Hu et 
al., 2002). A steel fibre completely cut during hydro-abrasive erosion is shown in 
Fig. 6.3 7. In some cases, especially at perpendicular jet impingement, reinforce- 
ment can reduce material resistance. This is caused by the additional weak 
interfaces between matrix and fibres introduced by the fibres. It is, therefore, 
recommended to incline the nozzle if fibre reinforced concrete is being cut with 
hydro-abrasive jets. 

Figure 6.37 Steel-fibre in reinforced concrete cut during hydro-abrasive 
erosion (Hu et al., 2002) 

6.4.3 Vibrations and noise levels 

Vibrations to structural elements in the neighbourhood of a demolition site are 
critical to the acceptance of the method. This applies especially to jobs performed in 
sensitive areas, say hospitals, hotels, cultural utilities, office buildings. Investigations 
have shown that hydro-abrasive cutting is a rather smooth demolition method in 
terms of vibrations. Some results are listed in Table 6.7. The peak vibration 
acceleration level at a distance of 4 to 5 m from the tool was highest for the air 
breaker (82 dB) and lowest for a hydro-abrasive jet cutting device (68 dB). The 
propagation of the vibrations through the walls of a 10-floor reinforced concrete 
building is shown in Fig. 6.38. The lowest level at all floors is associated with hydro- 
abrasive cutting. Differences in vibration are low in regions far away from the 
demolition site ( lst  and 2nd floor, 10th floor). The relationships between floor 
number and acceleration level are complex. Acceleration for hydro-abrasive 
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cutting, for example, first drops for the floors 5 and 4, but it increases for the floors 
3 to 1 which are further away from the demolition site. 

Table 6.7 Vibration and noise  values  for different demol i t ion tools (Mugikura et al., 1990)  

Tool / method Vibration level in dB Noise level in dB(A) 

Air breaker 82 94 
Air chipper 74 85-86 
Electric drill 72 80 
Electric hammer 76 85-86 
Hand crusher 78 77-78 
Hydro-abrasive water jet 68-69 77-  78 
Wall cutter 68-69 77-78 

Figure 6.38 Vibration acceleration levels of different demolition 
tools (Mugikura et al., 1990) 

Noise levels are listed in Table 6.7. The peak sound level is maximum for the air 
breaker, and lowest for wall cutter, hand crusher and hydro-abrasive jet. Notable 
differences are noted in the frequency ranges of the demolition tools. The main 
noise components for the air breaker are in the range between 12.5 to 500 Hz, 
while noise from the hydro-abrasive jet shows a similar tendency than the 
background noise. Only in the frequency range between 500 Hz and 2 kHz, noise 
from hydro-abrasive jetting exceeds the background noise (Mugikura et al., 1990). 
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7.1 Material loading due to water drop impingement 
7.1. I stresses due to drop impingement 

Liquid drop impingement consists of three predominant stages" 

(i) 
(ii) 
(iii) 

compressible impact stage" 
jetting stage; 
stagnation pressure stage. 

Stages (i) and (ii) are illustrated in Figure 7.1. Recent reviews about the phenomena 
associated with these phases were given by de Botton (1998), Field (1999) and 
Lesser (1995) who also reported details of loading intensity and duration. As seen 
in Image 1 of Figure 7.1, the liquid at the edge of the drop is trapped behind a 
compressive wave that propagates into the drop. The corresponding high stresses 
can be approximated by the so-called 'water hammer equation': 

Figure 7.1 Stages of drop impingement on a solid surface (Camus, 1976) 

~ = PF "cF "v D (7.1) 

Here, c F is the speed of sound in the liquid. For water with CF=I,5OO m/s, and 
VD--503 m/s from the example in Section 2.1.1, the generated stress is OD-7.54"108 
N/m 2 (754 MPa). A more rigid solution to the stress problem delivers the following 
equation that considers the properties of the target material: 

PF "CF " VD 
OD = (7.2) 

l+(PF "OF/pM "CM) 

The product p.c is the acoustic impedance. See Table 7.1 for corresponding values. 
It can be noted that materials with high acoustic impedance experience lower 
stresses. Using typical material properties of concrete, Eq. (7.2) delivers a peak 
stress of OD=8.66"108 N/m 2 (866 MPa) for VD=503 m/s. For target materials with 
very high acoustic impedance, Eq. (7.2) approximates Eq. (7.1). 
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Table 7.1 Drop  impact parameters for VD=800 m/s,  rD= 1 m m  (Momber,  2 0 0 4 b )  

Material v s in m/s c in m/s c.p in kg/m2.s PD in MPa PB in MPa r c in mm tp in gs 

Water 1,460 3,060 1.5.106 . . . .  
Concrete 1 4,311 5,567 8.6.106 1,918 320 0.26 0.13 
Concrete 2 4,220 5,484 9.2.106 1,951 320 0.26 0.13 
Granite 4 ,580 5,820 11.4.106 2,021 320 0.26 0.13 
Limestone 5,730 6,906 14.3'106 2,083 320 0.26 0.13 
Rhyolite 4,082 5,354 11.0.106 2,022 320 0.26 0.13 

The duration of the compressible stage can be estimated from geometrical 
considerations (Erdmann-Jesnitzer and Laschimke, 1966; Lesser and Field, 1983). 
It is given through the following equation: 

d D "v D 
tp = -"---T-  (7.3a) 

4"c~ 

The duration is dependent of impact velocity and drop diameter. This argument 
applies only to curved liquid slugs. If cylindrical slugs with a plane front are 
applied, the duration of the compressible stage is given by the following equation: 

d D 
tp - (7.3b) 

2"% 

and it does not depend upon impact velocity. (d D is the diameter of the cylinder in 
that case.) In Eqs. (7.1) to (7.3), c F is sometimes replaced by the shock wave speed in 
the liquid given through the following relationship (Heymann, 1968): 

c w = cF + 2 "v D (7.4) 

For a drop diameter of 6 gm (for VD=503 m/s), Eq. (7.3) delivers tp=4.5.10-1~ s. 
Stresses measured by Daniel (19 76) in concrete samples during the impinge- 

ment of water slugs with velocities of 2,300 m/s were as high as 122 MPa 
(compressive) and 36 MPa (tensile), whereas strains were estimated to 4,420 ge 
(compressive) and 1,300 ge (tensile). 

7.1.2 Material response to drop impingement 

In brittle materials, high-speed water drop impingement forms an undamaged core 
zone surrounded by an array of microcracks formed due to propagating Rayleigh 
surface waves. The corresponding mechanisms are in detail described by Bowden and 
Field (1964). The diameter of the undamaged core increases linearly with an increase 
in drop impact speed (Momber, 2004b). Crack nets are very pronounced in hard 
concrete components (aggregates); this is illustrated in Figure 7.2a for granite and in 
Figure 7.2b for quartz. In rather soft material components, crack nets become 
somewhat obliterated; this is shown in Figure 7.3 for a soft and porous limestone and 
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Figure 7.2 Ring of discrete cracks in hard materials formed due to water drop impingement 
a -  granite b -  quartz aggregate in concrete 

Figure 7.3 Permanent deformations in soft rocks due to water drop impingement 
a -  limestone b -  schist 
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a very soft schist. In concrete, a mixed mode can be observed. An example is shown 
in Figure 7.2b. Here, the hard quartz inclusion shows clear features of network 
cracking, whereas the surrounding matrix is removed to a large extent. Examples of 
lateral jetting are provided in Figure 7.4a for a granite and in Figure 7.4b for a 
rhyolite. The severity of this damage increases with an increase in the distance from 
the impact centre. Cracking is always directed into flow (jetting) direction. 

Figure 7.4 Crack extension due to lateral jetting 
a -  granite b -  rhyolite 

Drop impact experiments performed by Momber (2004a) delivered evidence that 
material hardness predominates the failure mode and that a transition stage exists 
similar to that known for solid impact. The threshold for micro crack extension in 
rocks due to liquid drop impact can be estimated based on a dynamic failure 
criterion (Steverding and Lehnigk, 19 76): 

2 n'YM "EM 
Op "tp = (7.5) 

c M 

Combining equations (7.1) and (7.3a) with linear-elastic fracture mechanics, this 
criterion delivers the following threshold condition for drop impact: 

2 
3 0_ 6 G "E M K:~ vR = 2.1"1 . :r oc (7.6) 

c M "d D c M 

Fracture toughness is the primary material parameter in that case, and the 
corresponding 2/3-power-relationship between threshold velocity and fracture 
toughness is verified for brittle materials through experimental results (Coad et al., 
1996). A simple yield criterion (Tabor, 1951): 

a M 
o y -  1.1 (7.7) 

combined with Eq. (7.1), delivers a threshold impact velocity for the onset of plastic 
flow: 
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H M 
(7.8) 

v ~  = 1.1"cw "Pw 

If Eqs. (7.6) and (7.8) are equalised, and the result is solved for d D, the following 
transition condition appears: 

2 
Kic 

r c oc (7.9) 
H 3 

M 

Hardness values for some relevant materials are listed in Table 1.3. For many rocks 
and rocklike materials, hardness and compressive strength show a linear 
relationship (Szwedzicki, 1998). Therefore: 

2 Kic 
r c oc 3 (7.10) 

o c 

This relationship is shown in Figure 7.5 with Kic2/Oc3=X. Materials left from the 
separation line (mainly hard aggregate materials) respond elastic, whereas 
materials situated right from the separation line (e.g. cement mortar) show features 
of plastic flow. For a given material, Eq. (7.10) determines that plastic flow is more 
probable if the material is impinged by drops with rather small diameters. 
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Figure 7.5 Elastic-plastic transition criterion for water drop 
impact (Momber, 2004b) 

Comparative mercury intrusion experiments could verify that failure in concrete 
starts at the interface between aggregate and matrix. It can be seen in Figure 7.6 
that flaws of lc< 1 gm in size predominantly grow under water slug loading. In the 
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Figure 7.6 Mercury intrusion tests on concrete loaded with 
continuous water jet and, respectively, pulsating jet (Momber, 
2000d) 

flaw range lc> 1 pm, however, not much difference exists between stationary water 
jet and water slug. These results illustrate clearly that a static component is 
required to widen the cracks activated due to the water slug impact further. 

7.1.3 Parameter effects and resistance parameters 

The major process parameter is the velocity of the impinging drops. Drop velocity 
influences the parameters of the microcrack net formed during elastic impact. 
Erosion rate depends on impact velocity as follows: 

VM ~ (VT - VD) ~ (7.11) 

H e r e ,  v T is the threshold velocity according to Eq. (7.6). The velocity exponent n 
depends on material type; it is comparative high for porous rocks and lower for 
rather dense materials. If the erosion process is introduced, two principal erosion 
modes, a type-I-mode and a type-II-mode, can be distinguished as already known 
from continuous water jet erosion. These types are illustrated in Figure 7.7. A type- 
I-mode, comparable to a drilling process, was observed in limestone, sandstone and 
mortar; the eroded cavities were rather deep, narrow and regular (Momber, 2004a, 
2004b). This is illustrated in Figure 7.7a for a fine-grained sandstone. Type-II- 
mode, found for example in cement matrix, marble or dolomite, corresponded to 
crushing; the cavities were shallow but wide; erosion debris were large and 
irregular. This is illustrated in Figure 7.7b for a hardened cement paste. Both modes 
correspond to those shown in Figure 2.13 for continuous water jet erosion, and 
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Figure 7.7 Modes of material response (Momber, 2004b) 
a-~pe-I: fine-grained sandstone b -  ~pe-II: hardened cement paste 
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Figure 7.8 Effect of target material sound impedance on 
mass removal (unpublished results of the author) 

they are balanced mainly by exposure time and material structure. Type-I-mode 
dominates at long exposure time (large drop diameter) and in soft porous materials, 
whereas type-II-mode is typically found at shorter exposure time (smaller drops) 
and in rather brittle and dense rocks. 

Drop impact is a highly dynamic process and, therefore, acoustic properties can 
be assumed to be important. Some results are shown in Figure 7.8, illustrating that 
sound impedance: 

SM = r "PM (7.12) 

is a good indication for erosion resistance: materials with a low sound impedance 
have a lower resistance against drop impact erosion. Fracture parameters do also 
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Figure 7. 9 Effect of fracture toughness on mass removal 
(unpublished results of the author) 

affect the erosion resistance. The results of the fracture toughness influence are 
plotted in Figure 7.9 showing a hyperbolic relationship: 

- 1 2 2  

m M ~ KIc (7.13) 

For the conditions in Figure 7.9, m=1.42. An interesting detail is that the 
experimental point for the hardened cement matrix is located in a notable distance 
above the regression curve. Compared to the other materials, hardened cement 
paste can be considered as very brittle. It cannot absorb energy by non-linear 
fracture processes, and fails in a brittle fashion as shown in Figure 7.7b. This aspect 
was also observed during other erosion modes (Momber and Kovacevic, 1994). The 
coarse concrete in Figure 7.9 with a comparative (even lower) fracture toughness 
shows a higher erosion resistance which may be mainly due to crack-aggregate 
interactions. Examples for such interactions as well as a preliminary explanation 
for the exceptional behaviour of the cement paste are presented by Momber 
(2004e). However, more systematic studies are required to verify this hypothesis. 

7.1.4 Multiple drop impingement 

The number of impinging water drops is critical to the material removal process. 
The situation can be generalised by the relationship shown in Figure 7.10. This 
function can sufficiently be described by: 

VM =a~ "(N D - N D )  b' (7.14) 
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The following three regions can be distinguished in Figure 7.1 O" 

(i) 

(ii) 

(iii) 

region I (ND<N*D): for very small numbers of impinging drops, no 
material removal occurs; the number of drops is not sufficient to visibly 
damage the material. The critical drop number N* D can be considered to 
be an incubation number. 
region II (ND<N* D, b1=1): a linear relationship with a progress of a 1 
exists between drop number and removed material. Any additional drop 
impact removes an equivalent mass of material. 
region III (ND<N* D, 0<b1<1): the progress of the function drops, and 
al=f(ND). The erosion efficiency declines which can be explained by drop 
break-up due to the roughened surface; also, the impact is no longer 
normal to the whole of the surface. 

7.2 Material loading due to cavitation 

7.2.1 Fundamentals of cavitation 

Cavitation can be observed during the impact of liquids to solid and liquid surfaces. 
One example is illustrated in Figure 7.1 where Image 2 shows cavitation occurring 
in the contact area between drop and target (denoted 'B'). This aspect is in more 
detail described by Engel (1954). Cavitation erosion may, therefore, play a role 
during hydrodemolition processes. Cavitation is the growth and implosion of gas- 
filled bubbles in a liquid. Basically, flow cavitation and acoustically induced 
cavitation can be distinguished, whereas the first type is more common in practice. 
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Detailed descriptions of cavitation phenomena are provided in the standard literature 
(Hammitt, 1980, Brennen, 2000, Lecoffre, 1999). Cavitation can damage and erode 
materials by the following mechanisms: 

(i) 
(ii) 

(iii) 

(iv) 

generation of shock waves due to symmetric bubble implosion; 
formation of micro-jets due to non-symmetric bubble implosion in the 
neighbourhood of solid surfaces (Lauterborn and Bolle, 19 75, Pilipp and 
Lauterborn, 1998); see Figure 7.11a; 
formation of micro-jets due to shock-induced bubble collapse (Bourne 
and Field, 1992); 
collapse of bubble clusters (Dear and Field, 1988); see Figure 7.11b. 

Figure 7.11 Types of loading from cavitation bubble implosion 
a -  Micro-jet formation during non-symmetric bubble implosion (photograph: Lauterborn, Univ. G6ttingen) 
b-  Shock wave emission (photograph: Fracture Group, Cavendish Laboratory, Cambridge University) 
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However, a superposition of several individual mechanisms is very likely, and if 
either mechanism (i) or mechanism (ii) is dominating depends mainly on the 
distance between bubble wall and solid surface. The pressure generated during the 
implosion and collapse of cavitation bubbles is typically in the range of several 102 
MPa. Of particular interest is the formation of micro-jets (ii) which is illustrated in 
Figure 7.11a. The diameter of a micro-jet formed during the implosion of a gas- 
filled bubble can be approximated as follows (Plesset and Chapman, 19 71): 

dj _ 0.1" R o (7.15) 

where R o is the radius of the bubble before the collapse. Assuming a cylindrical 
geometry of the micro-jet, the duration of the stress pulse can be estimated with Eq. 
(7.3b). The stress generated at the surface of a rigid material impinged by a micro- 
jet can be calculated with Eq. (7.1). The velocity of the micro-jet depends on the 
implosion situation. For shock-induced micro-jet formation during the collapse of 
3-mm-bubbles, jet speeds up to 4000 m/s were estimated (Bourne and Field, 
1992). Collapse of laser-produced bubbles generated jet velocities of about 150 m/s 
(Philipp and Lauterborn, 1998). Dear and Field (1988) measured jet velocities of 
about 400 m/s during the collapse of arrays of cavities. Conn (19 72) provided an 
analysis of the collapse pressure of vapor bubbles cavitating in the region where a 
liquid jet impacts a material surface. This pressure is given by: 

pj = Ps . e x p ( 2 / 3 . c t o )  (7.16) 
6.35 

The equation illustrates how the gas content in the jet affects the collapse pressure. 
A graphical solution to Eq. (7.16) for different gas content is provided in Figure 
7.12 (the stagnation pressure is replaced by the jet velocity). This graph shows also 
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Figure 7.12 Collapse pressures in cavitating water ;lets 
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that collapse pressures exceed even the impact pressure developed during the 
impact of a fluid slug by an order of magnitude. A pressure ratio, Rp*, can be 
defined to evaluate the effectiveness of cavitating water jets" 

R p -  pJ - v ~ J  "exp(1/r (7.17) 
PD 12.7 "c F 

Values for the pressure ratio can be as high as Rp*=16 as shown in Figure 7.12. 
However, exact values depend on gas content and bubble size (Houlston and 
Vickers, 19 7 8). 

7.2.2 Material response to cavitation 

The response of relevant materials to cavitation erosion is illustrated in Figure 
7.13. The individual pits eroded in the material are usually one order of magnitude 
larger than the corresponding diameter of the micro-jets formed during bubble 
implosion. A simple calculation of an expected crack length in rocks showed that 
the crack length measured in rock and concrete after cavitation erosion is two orders 
of magnitude smaller than the pit diameter (Momber, 2003a). Therefore, multiplying 
mechanisms are required to form the pits. In materials with pronounced interfaces 
between inclusions and matrix, such as concrete, intergranular material removal 
along the interfaces can be observed in general. Intergranular erosion occurs always 
if concrete contains rounded aggregate particles; cement matrix is removed, and the 
aggregates are exposed completely. An example is shown in Figure 7.14. This 
mechanism can be utilised for selective aggregate liberation from concrete (Momber, 
2004d). If concrete aggregate material is considered, mineral content and 
composition are important parameters. In granite, for example, feldspar is broken 
into very small pieces, whereas platelets of mica are separated and broken away by 
basal cleavage (Momber, 2003a). 

Figure 7.13 Pit formation due to micro-jet impingement (Momber, 2003a) 
a -  glass b -  concrete 
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Figure 7.14 Intergranular cavitation erosion of concrete (Momber, 
2004d) 

7.2.3 Parameter effects and resistance parameters 

The most important parameter in cavitation erosion is the exposure time. 
Microscopic inspections and quantitative surface profiling showed that threshold 
exposure times were shorter than 30 seconds for numerous rocks, and shorter than 
10 seconds for concrete (Momber 2000, 2003a). Figure 7.15 shows a profile plot 
(3-axis co-ordinate measurement machine) taken from an eroded concrete surface; 
a notable surface modification can be seen in the right section at an exposure time 
as low as 5 seconds. Compressive strength and density alone can not determine 
cavitation erosion resistance of concrete materials and rocks quantitatively. Density 
influence is illustrated in Figure 7.16, and it can be seen from this figure that 

Figure 7.15 Surface plot of a eroded concrete surface; exposure time: 5 seconds 
(Momber, 2000g) 
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Figure 7.16 Effect of target material density on cavitation 
erosion (Momber, 2003a) 

materials with a low degree of pre-existing flaws, namely high-strength silica 
mortar and glass, are extremely resistant. This type of relationship was also 
observed by Lin et al. (1997) and Preece and Hansson (1986). Erosion rates for 
cementitious composites are notably higher than those for rocks due to the 
pronounced interfaces formed during aggregate addition. 

A preliminary model for the cavitation erosion of rocks and concrete materials 
delivers the following relationship (Momber, 2003a): 

dM "EM "PM 
m M oc (7.18) Kin~ 

The reverse exponential relationship between erosion rate and fracture toughness 
is verified in Figure 7.17. The exponent m may depend on the R-curve behaviour of 
the materials. For materials with a nearly constant fracture toughness (such as 
brittle ceramics), values of m=1.8 were estimated (Waldherr, 1991), which 
corresponded to linear elastic fracture behaviour (m=2). For materials with 
pronounced R-curve behaviour (rocks, concrete, toughened ceramics), however, 
the exponent is rather high (m=3.4 from Figure 7.17). It can, therefore, be 
assumed that m is a function of the R-curve behaviour of the materials. The 
following relationship between m and �9 is assumed (Momber, 2003a, 2004a): 

m = f(cD) = 2 "~ :12 + 2 (7.19) 

For linear-elastic materials with ~=0,  Eq. (7.19) delivers m=2. For materials with 
pronounced R-curve behaviour with ~=0.3 to 0.5, Eq. (7.19) delivers m=3.1 to 
3.4 which corresponds to Figure 7.17. The influence of the grain size is correctly 
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Figure 7.17 Effect of fracture toughness on cavitation erosion 
(Momber, 2003a) 

derived in Eq. (7.18): if other parameters are of comparative order, erosion 
resistance decreases with grain size. The influence of the density is already 
mentioned. For materials with comparative fracture toughness (in Figure 7.17: 
silica mortar and concrete 5 5; glass and concrete 3 5) the material with the higher 
bulk density (lower flaw density) is more resistant. 

7.3 Types and formation of pulsed jets 
7.3.1 Types of pulsed jets 

It has been shown in the previous Section that any impinging water jet exhibits two 
pressure levels: an impact pressure in the very early stage of jet impact (PD), and a 
stagnation pressure (Psi) that is established after the impact period. The impact 
pressure is given through Eq. (7.1), the stagnation pressure can be estimated based 
on Bernoulli's law: 

2 
PS = ( P w / 2 ) ' V J  (7.20) 

The ratio between these pressure levels depends on the jet velocity and can be 
estimated from ps=PD as follows: 

PD 2 "C F 
Rp - ~ -  (7.21) 

Ps vj 



o. 

0 

L 
:3 

L 

0. 

500 

100 

1 
10 

_ speed of sound in water 

100 1,000 5,000 

Pulsed liquid jets for hydrodemolition 223 

Jet  velocity in mls 

Figure 7.18 Pressure ratio during jet impact 

This relationship is illustrated in Figure 7.18 in terms of jet/drop velocity. The 
pressure ratio equals the value Rp=l for vj=2.c F. The corresponding operation 
pressure would be p--4.103 MPa. This high value can not be realised by commercial 
plunger pumps or pressure intensifiers. For a rather low pressure, say 30 MPa, the 
pressure ratio is about Rp= 11. This relationship challenges the use of mechanisms 
able to produce high-speed fluid slugs. Basically, the following two types of pulsed 
water jets can be distinguished (see Figure 7.19): 

�9 low-frequency water jets; 
�9 high-frequency water jets (fp>l kHz). 

I pulsed fluid jets 

I 
I low frequency I 

I 
high frequency 

~ cavitating jets I 

~ self-resonating jets I 

~ modulated jets I 
Figure 7.19 Subdivision of pulsating jets 
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Both techniques involve the modulation of continuous high-speed water jets. 
The difference to 'naturally pulsed jets' (formed due to aero-dynamic drag, see 
Figure 2.4:) is that the jets are artificially interrupted. Pulsed jets can be produced in 
several ways using different driving energy sources. 

Only a few technical solutions, although much more were successfully applied 
under laboratory conditions, can currently be used under site conditions; they 
include the following: 

�9 water cannons; 
�9 ultrasonically modulated jets; 
�9 self-resonating jets; 
�9 pressure and volume modulation; 
�9 cavitating jets. 

The two most important parameters of pulsed liquid jets are loading intensity and 
loading frequency. For some pulsed liquid jet concepts, water jet velocity and pulse 
frequency can not be varied independently on each other. Both parameters must be 
selected according to the material to be eroded. Materials usually called ductile may 
require high-frequency loading, whereas materials usually considered brittle may 
be more sensitive to a longer loading period. Loading intensity is basically a 
function of jet velocity. Frequency, however, depends on the mechanism used to 
form the pulsating jet. The formation of stable, geometrically identical water slugs 
is a demanding challenge. Figure 7.2 7 shows two examples of pulsating jets formed 
during volume modulation in a special nozzle. Whereas the slugs look rather 
regular in Figure 7.27a, their structure is heavily disturbed in Figure 7.27b 
(although the same nozzle was utilised in both cases). 

7.3.2 Water cannons and impulse cannons 

Water cannons have first been utilised as rock fragmentation tools in the mining 
and quarrying industry. The fundamental principle of water cannons is the rapid 
acceleration of a given water volume, which is an energy or momentum exchange 
process. The energy required to accelerate the liquid can be supplied from expanding 
gases or compressed air. Three basic water cannon designs are known: 

�9 free piston devices; 
�9 pressure extrusion devices; 
�9 hydraulic pulse generators. 

Typical performance parameters of these methods are listed in Table 7.2. In free 
piston devices, a piston is rapidly accelerated by using an external momentum, 
provided by explosives, bullets, or compressed gases. The nozzle geometry is of 
primary importance because it determines jet exit velocity and energy, and pulse 
duration. Information about structure and aerodynamics of jets generated by this 
method can be found by Pianthong et al. (2002) and Shi and Sato (2003). 
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Numerous nozzle designs are reported, among them exponential, hyperbolic and 
parabolic shapes. Maurer (1980) and Summers (1993) provide further 
information. The design of a free piston water cannon is shown in Figure 7.2Oa, 
whereas Figure 7.21 illustrates water slugs produced with the this device. Pressure 
extrusion devices are essentially snap acting intensifiers which produce a pulsed jet 
by using compressed air (or other gas) to drive a piston to extrude the liquid 
through a nozzle. A typical design is illustrated in Figure 7.20b. In hydraulic pulse 
generators, the energy required to produce the pulse is stored in the liquid itself by 
compressing it in a vessel to high pressures. Release of a fast acting valve results in 
the formation of a high-speed slug of water with high energy content. A technical 
configuration is shown in Figure 7.20c. Pressure history of a hydraulic pulse 
generator utilised for concrete fragmentation is plotted in Figure 7.22. Pressures as 
high as 450 MPa can be generated in a time scale of about 0.01 seconds. 
Parameter studies performed by Vallve et al. (1980) and Yie et al. (1978) clarified 
the effect of certain design parameters on the fragmentation of concrete: depth of 
cut increases if liquid volume, water chamber pressure, and nozzle diameter 
increase. Increase in stand-off distance, however, reduces depth of cut. 

Table 7.2 Comparison between culmination and extrusion cannons (DaZong et al., 1985; 
Puchala and Vijay, 1984; Labus, 1991) 

Parameter Method 

Culmination Extrusion 

Maximum pressure high (up to 4,000 MPa) moderate (ca. 1,2OO MPa) 
Pressure limit due to impulse energy due to material strength 
Geometric efficiency 7% of chamber volume 90 to 95% of chamber volume 
Pulse duration short long (1 O0 to 300 ~ts) 
Efficiency up to 56% > 56% 
Segment diameter large small 
Segment length / diameter low (< 1 ,O00) high ( 1 ,OO0-5,OO0) 
Pulse characteristics steep flat 

7.3.3 Ultrasonically modulated water jets 

Ultrasonic waves generated within a nozzle can be employed to modulate a 
continuous stream of water to produce either pulsed or cavitating jets (see Vijay et 
al., 1993; Sitek et al., 2003). The structure of a water jet modulated by this 
technique is illustrated in Figure 7.23. The vibrations required to modulate the jet 
are produced by an ultrasonic system consisting of a pulsed electric power supply, a 
converter, and a horn with replaceable velocity transformers. An on-site device 
basically consists of a pump, an ultrasonic power generator with a converter, a 
high-pressure dump gun, a high-pressure hose and numerous accessories. The 
pump delivers a volumetric flow rate of 22.7 1/min at a maximum operating 
pressure of 4:1.4 MPa. The ultrasonic power generator has a capacity of 1.5 kW of 
output at a resonant frequency of fp=20 kHz. 
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Figure 7.20 Types of water cannons 
a - Free-piston device (Watson et al., 1984) 
c -  Hydraulic pulse device (Kolle, 1994) 

b -  Pressure extrusion device (Gnirk and Grams, 1972) 
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Figure 7.21 Flash-X-ray radiographs of water slugs 
formed in a free-piston device (Watson et al., 1984) 

Figure 7.22 Pressure history of a hydraulic pulse device for concrete 
fragmentation (Kolle and Hashish, 1989 

Figure 7.23 Structure of an ultrasonically modulated water jet (photograph: VLN 
Advanced Technologies Inc.) 
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7.3.4 Self-resonating water jets 

Self-resonating pulsating jets (sometimes referred to as passively modulated jets) 
are formed by letting a water volume flow through a specially designed nozzle; 
acoustic resonance effects force the vibration and disintegration of the jet. A 
boundary shear layer is exited to separate from the nozzle wall, and forms vortex 
rings. This principle was first noted with air jets (Crow and Champagne, 1971). 
Several self-resonating nozzle system concepts can be distinguished; see Figure 7 . 2 4  

for an example. They are in detail described in the original literature (Chahine et al., 
1985; Johnson et al., 1984). A non-dimensional parameter which defines the 
periodic characteristic of self-resonating jets is the Strouhal number, given through: 

Sd_ fp "d~ (7.22) 
v I 

This number combines acoustic and aerodynamic parameters. It is known that 
optimum performance of pulsating water jets occurs for Strouhal numbers 
between 0.3 and 1.2. However, mechanically interrupted jets usually operate at 
frequencies which produce Strouhal numbers well below the optimum range. 
Acoustically resonated jets, however, meet the requirements of optimum Strouhal 
numbers. The discontinuous appearance of a resonating water jet is illustrated in 
Figure 7.25. Structural elements of self-resonating water jets, formed in different 
nozzles, are shown in Figure 7.26. 

Figure 7.24 Nozzle designs for forming self-resonating jets by 
acoustic enhancement (Johnson et al., 1984) 
a - organ pipe design b -  pulser design c -  pulser fed design 

7.3.5 Percussive water jets 

'Percussive jet' is rather a commercial designation and does not tell anything about 
the basic mechanism of jet formation. A percussive jet consists of a series of large 
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Figure 7.25 Appearance of self-resonating water jets; fn=4.6 kHz 
(photograph: Dynaflow | Inc., ]essup ) 
a -  v1=94.5 re~s; b -  v1=89.9 re~s; c -  v1=83.8 m/s 
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pulses (up to ten times the nozzle diameter) which are obtained by modulating a 
continuous flow rate of water through the jet discharge nozzle, e.g., by cycling the 
rate of discharge over and under its average value with some regular amplitude, 
frequency, and waveform. Modulated jet discharge has the particular property that 
the slow and fast portions of each discharge cycle tend to flow together or bunch in 
the free stream. This property is shown in Figure 7.27. Experimental percussive jets 
were produced at pump pressures up to 57 MPa, nozzle diameter of 1.5 mm, and 
modulation frequencies between 2 to 5 kHz (Nebeker and Rodriguez, 1976). 

Figure 7.27 Structure of 'percussive jets' (Nebeker, 1984) 
a -  good-quality jet b -  bad-quality jet 

Figure 7.28 illustrates another case. Here, the slugs were produced by an 
ultrasonic horn that vibrated the nozzle in axial direction. Again, the slow 
(decelerated) and fast (accelerated) portions of the jet tend to meet at a certain 
distance and bunch. The different appearance of the individual slugs can clearly be 
seen. 

Figure 7.28 Structure of a water jet modulated by ultrasonically induced axial nozzle 
vibrations (Mazurkiewicz, 1984). Operating pressure: 0.4 MPa 
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7.3.6 Cavitating water jets 

Techniques for producing cavities in liquid jets are shown in Figure 7.29. The first 
system (Figure 7.29a) uses turning vanes to impart a swirling action to the fluid 
entering the nozzle, while the second system (Figure 7.29b) uses a cylindrical 
center body in the nozzle to produce cavitation. Electro-discharge technique is also 
known to generate cavitation bubbles based on plasma channel formation 
(Hawrylewicz et al., 1986). 

Figure 7.29 Cavitating nozzle designs (Johnson et al., 1972) 
a -  rotating vane b -  center body 

7.4 Practical applications 
Cavitating water jets are applied to concrete drilling. Figure 7.30 shows some results. 
Of particular interest is the difference in the drilling rates between conventional jets 
and cavitating jets. Whereas the specific energy of a cavitating jet is raised up to 
160%, its drilling capability increases up to 280%. Cavitating jets are also utilised to 
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city street pavements cut open, to allow repairs or maintenance  of either the pavement 

or one of the many  services buried below (Conn et al., 1987). The unit performed at an 

operating pressure of 69 MPa, and it achieved cutting rates between 20 and 23 cm 

/min in pavement  consisting of 5 cm of asphalt over 15 cm concrete. A piece cut off by 

this method is shown in Figure 7.31. Operating conditions and parameters  are listed in 
Table 7.3. Cutting costs - if compared to mechanical  methods - were about one-half 
with the cavitation method; this is illustrated in Table 7.4. Cavitating jets were also 

used for the secondary fragmentation of reinforced concrete members  from demolition 

sites, and for the separation of reinforcement bars. Examples are shown in Figure 7.32. 

The process parameters  are listed in Table 7.5. Members with a thiclmess of 30 cm 

could be cut th rough entirely in 48 seconds. In those cases, costs could be reduced 

down to 50% compared to conventional methods (Connet  al., 1984). 

Figure 7.31 Pavement element cut with cavitating water jets (photograph: 
Dynaflow, Inc., ]essup) 

Table 7.3 Summary of Cavijet pavement cutting results Conn et al. (1987) 

Parameter Value 

Pavement thickness 
- Asphalt 5.1 cm 
- Concrete 15.2 cm 

Cut diameter 56 cm 
Nozzle diameter 3.6 mm 
Pump pressure 69 MPa 
Volumetric flow rate 114 l/min 
Stand-off distance 15.2 mm 
Traverse rate 23 cm/s 
Impingement angle 90 ~ 
Time to initial cut-through 6 min 
Total cutting time 8 min 
Cutting rate 22 cm/min 
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Table 7.4 Cost comparison of pavement cutting techniques (Conn et al., 1987)  

Method Operating pressure Relative costs (%) 

Mechanical tools 190 to 300 
Abrasive water jets 241 MPa 188 
Cavitating jet 69 MPa 100 

Figure 7. 32 37-years old reinforced concrete samples, cut with cavitating water jets (photograph: 
Dynaflow, Inc., Jessup) 

Table 7.5 Parameters for cutting reinforced concrete with cavitating water jets 
(Conn et al., 1987)  

Parameter Value 

Operating pressure 69 MPa 
Nozzle diameter 2.7 mm 
Nozzle type Center body 
Traverse rate 20 cm/s 
Volumetric flow rate 72 1/min 
Pump power 79 kW 

Self-resonating jets were successfully applied to erode fibre reinforced cement 
samples in the laboratory stage (Kalumuck et al., 1999). Results are shown in 
Figure 7.33, and the superiority of discontinuous jets is obvious. At larger stand-off 
distances, the larger footprint of the self-resonating jets, due to the generation of 
discrete water slugs, resulted in a volume removal three to five times that of the 
conventional jets. Promising experience is collected with self-resonating jets during 
the removal of asbestos with operating pressures up to 69 MPa; the efficiency 
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Figure 7.33 Cutting of fibre-reinforced cement samples 
with self-resonating water jets (Kalumuk et al., 1999) 

150 

reported is between 23 and 28 m2/h (Conn, 1989). Problems of handling, safety 
and training in relation with the on-site use of self-resonating water jets are 
discussed by Conn (1991). 

Ultrasonically modulated jets and conventional water jets were applied to 
concrete cutting under laboratory conditions by Sitek et al. (2003), and under site 
conditions by Yan et al. (2004). Both types of jets formed rather irregular slots. 
Material was always removed by breaking cement matrix from the interface to the 
aggregates. However, kerfs formed with modulated jets were more regular, 
especially at higher traverse rates. In all cases, average depth of cut obtained with 
modulated jets was about 1.5 times that of conventional jet cutting (see Figure 
7.34). The operational conditions are listed in Table 7.6. First experience collected 
under site conditions show an efficiency of about 11 m2/h for concrete cleaning, 
and about 0.14 m3/h for volumetric concrete removal (Yan et al., 2004). As shown 
in Table 7.7,  ultrasonically modulated jets, although operating at much lower 
pump pressure, perform more energy efficient than conventional water jets. 

Percussive jets and conventional water jets were applied to fragment concrete 
samples by Nebeker (1984). Whereas conventional jets could not damage 
aggregate grains and removed the matrix only, percussive jets were able to 
simultaneously cut aggregate and cement matrix. It was shown that a percussive 
jet with an operating pressure of 14 MPa could generate cracks in a concrete block, 
which was located 18 meters away from the nozzle. 

The operation of a hydraulic pulse water cannon is shown in Figure 7.35. In 
that test, a water cannon pulse with an pulse energy of 1 O0 kJ was discharged into 
a 39 mm bore hole to fragment a 1 tonne basalt boulder. Atanov (1991) reported 
about the use of a gas-driven impulse cannon to demolish a reinforced concrete 
wall with a thickness of 600 mm, and to destroy a concrete diversion cut of a 
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Figure 7.34 Concrete cutting with conventional and 
ultrasonically modulated water jets (Sitek et al., 2003) 

Table 7.6 Parameters for concrete cutting with ultrasonically modulated water jets 
(Sitek et al., 2003) 

Parameter Value 

Pressure in MPa 40 
Nozzle diameter in mm 1.98 
Stand-off distance in mm 20-140 
Traverse rate in m/min 5.0 
Ultrasonic power in W 600 

Table 7.7 Comparison of concrete removal with regular and pulsed water jets 
(Yan et al., 2004)  

Parameter Pulsed water jet Regular water jet 

Volumetric removal rate in m3/h 
Pump pressure in MPa 
Volumetric water flow rate in 1/min 
Hydraulic power in kW 
Specific energy in kWh/m 3 

0.14 0.50 
69 138 
32.6 197 
37.3 452 
266 904 

power  s ta t ion.  Resul ts  of these  appl ica t ions  are  i l lus t ra ted  in F igure  7.36.  The  un i t  

was  loaded  1 0 0 , 0 0 0  t imes w i t h o u t  any  severe in t e r rup t ions .  Table 7.8 lists the  

c o r r e s p o n d i n g  p e r f o r m a n c e  p a r a m e t e r s .  F igure  7 .37  shows  fu r the r  examples  for 

conc re t e  m e m b e r s  of 20  cm in th ickness  f rac tu red  by single wa t e r  pulse  impacts .  

A very  special  d e v e l o p m e n t  is the  use  of s h o r t - t e r m  wa te r  pulses  for directed soft 

spli t t ing of p la in  and  re inforced concre te .  This m e t h o d  is i l lus t ra ted  in F igure  7.38 

- it consists  of the  fol lowing steps: 
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Figure 7.35 Fragmentation of a basalt boulder with a hydraulic pulse 
water cannon (Kolle, 1998); pulse energy: 100 k] 

Figure 7.36 Demolition of a steel-reinforced concrete wall with an 
impulse cannon (Atanov, 1998) 
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Table 7.8 Concrete demolit ion with a gas-driven water cannon (Atanov, 1991);  
see Figure 7 . ] 6  

Parameter  Value 

Total uni t  mass 20 ,000  kg 

Cannon mass 2 ,600 kg 

Gas pressure 4 MPa 

Water pressure 450  MPa 

Nozzle diameter 10.5 m m  

Water mass flow rate 2 to 3 m3/h  

Frequency 12 shots per min  

Power 160 kW 

Efficiency 

- Concrete wall 1.5 m3/h  

- Diversion cut 0.5 to 0.6 m3/h  

Figure 7.37 Concrete members fractured by a single liquid shot 
a -failure structure (Watson et al., 1984) b-fractured concrete sample (photograph: New Jersey Institute of 
Technology, Newark) 
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Figure 7.38 Performance steps of directed soft splitting (Witzel, 1998) 

�9 step 1: drilling; 
�9 step 2: directional kerfing; 
�9 step 3: blasting (splitting). 

The holes can be drilled with conventional mechanical drills but also with water 
jets. Directional kerfing occurs with a water jet exiting a nozzle bit in radial 
direction. The direction of the kerf can be selected; it depends on the desired shape 
of the fragmentation front (see Figure 7.39) .  A device for soft splitting basically 
consists of a high-pressure pump (typical operating pressures are between 100 and 
200 MPa), a high-pressure water accumulator and a power breaker. Commercial 
flexible high-pressure hoses or commercial pressure storage vessels can be used as 
accumulators. Power breakers can be valves or burst disks, whereby the latter 
method is more often used. If the breaker is turned off, the water volume, stored in 
the accumulator, abruptly flows into the hole being drilled into the material. Tests 
on reinforced concrete members are reported by Witzel (1998). Some results are 
listed in Table 7.9. Steel bars could be ruptured due to the stresses generated by the 

Figure 7.39 Concrete sample separated with the directed soft splitting 
technique (photograph: BGMR, RWTH Aachen) 
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a c c e l e r a t e d  c o n c r e t e  mass .  T h e  l imit  for r e i n f o r c e m e n t  r u p t u r e  d e p e n d e d  u p o n  the  

c a p a c i t y  of t h e  s t o r age  vessel; it w a s  at  a to ta l  steel  b a r  cross  sec t ion  of a b o u t  2 c m  2. 

Cri t ical  w a s  t h e  pos i t ion  of t he  i m p u l s e  i n t r o d u c t i o n  s y s t e m  in r e l a t i o n  to t he  

a r r a n g e m e n t  of t he  r e i n f o r c e m e n t .  

Table 7.9 Properties and separation areas of reinforced concrete samples separated with 
the soft splitting technique (Witzel, 1998) 

Separated area Reinforcement Number of Steel bar Total steel 
(cm 2) steel bars diameter cross section 

(mm) (cm 2) 

1,600 Steel bar 1 6 0.283 
1,600 Steel bar 1 8 0.503 
1,600 Steel bar 1 10 0.785 
1,600 Steel bar 4 6 1.131 
1,600 Steel bar 4 8 2.011 
3,600 Steel wire mesh 4 8 2.011 
3,600 Steel wire mesh 4 5 O. 785 
6,000 Steel wire mesh 6 5 1.178 
3,600 Steel wire mesh 4 6 1.131 
6,000 Steel wire mesh 6 6 1.414 
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