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PREFACE

PREFACE TO THE SECOND EDITION

This book has now been in print for almost 10 years and has seen several printings.
During this period, the field of quantitative finance has experienced abrupt changes,
some for better and some for worse. But it has been very gratifying to us to have
heard from many readers that this book has been helpful to them in dealing with the
ever-changing financial landscape. It appears that to some extent at least the original
objectives set out in the first edition have been realized. This book can be used either
as an introductory text to simulations at the senior undergraduate or as a Master’s
level course. It can also be used as a complimentary source to the more specialized
treatise by Chan and Wong (2013) entitled Handbook of Financial Risk Management:
Simulations and Case Studies.

This second edition has been thoroughly revised and enhanced. Many of these
changes were results of teaching different courses in simulation for financial risk
managers over the years. In addition to cleaning up as many errors and misprints as
possible, the following specific changes have been incorporated in this revision.

• Many readers suggested more exercises with worked solutions. As a result, we
enlarge the problems and answers section in light of these requests.

• Because the use of VBA in Excel has been common in the financial industry, the
current edition incorporates this suggestion. We have now replaced all S-Plus
codes with VBA codes.

• Due to the advent in IT technology, a new website has been set up for readers
to download the VBA computer codes.
http://www.sta.cuhk.edu.hk/Book/SRMS/

http://www.sta.cuhk.edu.hk/Book/SRMS/
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As long as the website is available, we no longer print computer codes, so that
more space can be used for expanded topics.

• Likewise, suggested solutions to exercises at the end of each chapter are now
available via online supplementary materials.

• To make the book self-contained, two new chapters, Chapters 1 and 2, have
been added. Chapter 1 introduces basic concepts of Excel VBA, and Chapter 2
introduces basic concepts of derivatives.

• Corresponding to Chapter 9 in the first edition, Chapter 11 of this edition is
expanded to discuss in detail a one-factor interest rate model and the calibration
to yield curves.

• More examples have been added to illustrate the concept of MCMC, in partic-
ular the Metropolis–Hastings algorithm.

Finally, we would like to thank colleagues and students alike, who have been giv-
ing us suggestions and ideas throughout the years. In particular, we would like to
thank the editorial assistance of Dr. Warwick Yuen and Mr. Tom Ng of CUHK and
Ms. Sari Friedman and Mr. Jon Gurstelle of Wiley. We also want to express our grat-
itude to the Research Grants Council of HKSAR for support at various stages of our
work on this revision.

Ngai Hang Chan and Hoi Ying Wong

Shatin, Hong Kong
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PREFACE TO THE FIRST EDITION

Risk management is an important subject in finance. Despite its popularity, risk man-
agement has a broad and diverse definition that varies from individual to individual.
One fact remains, however. Every modern risk management method comprises a
significant amount of computations. To assess the success of a risk management
procedure, one has to rely heavily on simulation methods. A typical example is the
pricing and hedging of exotic options in the derivative market. These over-the-counter
options experience very thin trading volume, and yet their nonlinear features forbid
the use of analytical techniques. As a result, one has to rely on simulations in order
to examine their properties. It is therefore not surprising that simulation has become
an indispensable tool in the financial and risk management industry today.

Although simulation as a subject has a long history by itself, the same cannot be
said about risk management. To fully appreciate the power and usefulness of risk
management, one has to acquire a considerable amount of background knowledge
across several disciplines: finance, statistics, mathematics, and computer science. It
is the synergy of various concepts across these different fields that marks the success
of modern risk management. Although many excellent books have been written on
the subject of simulation, none has been written from a risk management perspective.
It is therefore timely and important to have a text that readily introduces the modern
techniques of simulation and risk management to the financial world.

This text aims at introducing simulation techniques for practitioners in the finan-
cial and risk management industry at an intermediate level. The only prerequisite is
a standard undergraduate course in probability at the level of Hogg and Tanis (2006),
say, and some rudimentary exposure to finance. The present volume stems from a
set of lecture notes used at the Chinese University of Hong Kong. It aims at strik-
ing a balance between theory and applications of risk management and simulations,
particularly along the financial sector. The book comprises three parts.

• Part one consists of the first three chapters. After introducing the motivations
of simulation in Chapter 1, basic ideas of Wiener processes and Itô’s calculus
are introduced in Chapters 2 and 3. The reason for this inclusion is that many
students have experienced difficulties in this area because they lack the under-
standing of the theoretical underpinnings of these topics. We try to introduce
these topics at an operational level so that readers can immediately appreciate
the complexity and importance of stochastic calculus and its relationship with
simulations. This will pave the way for a smooth transition to option pricing and
Greeks in later chapters. For readers familiar with these topics, this part can be
used as a review.

• Chapters 4–6 comprise the second part of the book. This part constitutes the
main core of an introductory course in risk management. It covers standard top-
ics in a traditional course in simulation, but at a much higher and succinct level.
Technical details are left in the references, but important ideas are explained in
a conceptual manner. Examples are also given throughout to illustrate the use of
these techniques in risk management. By introducing simulations this way, both
students with strong theoretical background and students with strong practical
motivations get excited about the subject early on.
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• The remaining Chapters 7–10 constitute part 3 of the book. In this part, more
advanced and exotic topics of simulations in financial engineering and risk man-
agement are introduced. One distinctive feature in these chapters is the inclusion
of case studies. Many of these cases have strong practical bearings such as pric-
ing of exotic options, simulations of Greeks in hedging, and the use of Bayesian
ideas to assess the impact of jumps. By means of these examples, it is hoped that
readers can acquire a first-hand knowledge about the importance of simulations
and apply them to their work.

Throughout the book, examples from finance and risk management have been
incorporated as much as possible. This is done throughout the text, starting at the
early chapter that discusses VaR of Dow to pricing of basket options in a multiasset
setting. Almost all of the examples and cases are illustrated with Splus and some with
Visual Basics. Readers would be able to reproduce the analysis and learn about either
Splus or Visual Basics by replicating some of the empirical work.

Many recent developments in both simulations and risk management, such as
Gibbs sampling, the use of heavy-tailed distributions in VaR calculation, and princi-
pal components in multiasset settings are discussed and illustrated in detail. Although
many of these developments have found applications in the academic literature, they
are less understood among practitioners. Inclusion of these topics narrows the gap
between academic developments and practical applications.

In summary, this text fills a vacuum in the market of simulations and risk manage-
ment. By giving both conceptual and practical illustrations, this text not only provides
an efficient vehicle for practitioners to apply simulation techniques, but also demon-
strates a synergy of these techniques. The examples and discussions in later chapters
make recent developments in simulations and risk management more accessible to a
larger audience.

Several versions of these lecture notes have been used in a simulation course given
at the Chinese University of Hong Kong. We are grateful for many suggestions, com-
ments, and questions from both students and colleagues. In particular, the first author
is indebted to Professor John Lehoczky at Carnegie Mellon University, from whom
he learned the essence of simulations in computational finance. Part 2 of this book
reflects many of the ideas of John and is a reminiscence of his lecture notes at Carnegie
Mellon. We would also like to thank Yu-Fung Lam and Ka-Yung Lau for their help in
carrying out some of the computational tasks in the examples and for producing the
figures in LaTeX, and to Mr. Steve Quigley and Ms. Susanne Steitz, both from Wiley,
for their patience and professional assistance in guiding the preparation and produc-
tion of this book. Financial support from the Research Grant Council of Hong Kong
throughout this project is gratefully acknowledged. Last, but not least, we would like
to thank our families for their understanding and encouragement in writing this book.
Any remaining errors are, of course, our sole responsibility.

Ngai Hang Chan and Hoi Ying Wong

Shatin, Hong Kong



1
PRELIMINARIES OF VBA

1.1 INTRODUCTION

This chapter introduces the elementary programming skills in Visual Basic for Appli-
cations (VBA) that we use for numerical computation of the examples in the book.
Experienced readers can read this chapter as a quick review.

1.2 BASIS EXCEL VBA

Microsoft Excel is widely used in the financial industry for performing financial
calculations. VBA is a common programming language linked to Excel and other
Microsoft Office software that was developed to automatically control and perform
repetitive actions. In this section, we guide readers on how to start a VBA in Microsoft
Excel and give some popular algorithms for performing repetitions. In most cases,
simple algorithms will be sufficient to perform the computations in the examples and
exercises. We provide the illustrations in Excel 2010, although other versions can be
set up in a similar way. For a comprehensive reference, readers are referred to other
books.

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



2 PRELIMINARIES OF VBA

1.2.1 Developer Mode and Security Level

For first-time users of VBA in Excel, it is more convenient to switch on the devel-
oper mode, where many of the VBA functions can be easily accessed. To open the
developer mode, follow the following steps:

Click [File] → [Options] (Fig. 1.1) → [Customize Ribbon] (Fig. 1.2) →
[Developer].

Figure 1.3 shows the ribbons at the top of Excel after switching on the developer
mode. Macros refer to the codes executed in the VBA language. To execute the macros
promptly, users are recommended to turn down the security level as follows:

Click [Macro Security] (Fig. 1.3) → Macro Settings [Enable all macros] (Fig. 1.4).

1.2.2 Visual Basic Editor

To edit the VBA codes, Microsoft provides a Visual Basic editor (VBE) in Excel
for editing the macros. Macros are created, edited, and debugged in the VBE before
being executed. A macro is usually created as a Sub or Function procedure that can
perform automatic tasks, while a module consists of one or more macros. Similarly,
a project has one or more modules. Sub and Function are reserved keywords in VBA.
Users need to avoid using keywords when defining new variables. The codes in the

Figure 1.1 Excel [Options].
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Figure 1.2 Developer mode selection.

Figure 1.3 Excel in developer mode.

VBE are saved together with the Excel worksheet. In Excel 2010, these worksheets
can be saved as .xlsm as an Excel Macro-Enabled Workbook file. To open and edit
macros in VBE, follow the following procedure:

1. Open VBE: click the [Visual Basic] button under the developer mode (Fig. 1.3)
or press ALT+F11.

2. Insert module: in the project window of the VBE, right-click on one of the
worksheets, and select [Insert] → [Module] (Fig. 1.5).

3. Edit in VBE: type the codes in the panel on the right.
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Figure 1.4 Macro security.

Figure 1.5 Visual basic editor.
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4. Execute the program: in the VBE, select the module, and click the “Play” ribbon
or press F5. In the Excel worksheet (Fig. 1.3), click the [Macros] button, choose
the macro to be run, and click [Run]. A command button for a specific macro
can be inserted in the Excel worksheet to facilitate the execution. See Section
1.2.4 for details.

1.2.3 The Macro Recorder

The macro recorder can record the actions that you perform in the Excel worksheet,
such as building a chart or typing words, and transfer the actions into the macros in the
VBE. This will be useful when you do not know how to code the actions and need to
repeat them later. However, the macro recorder cannot handle codes that involve using
the For loop or other repetitive loops and assigning variables. Different environments
in Excel may generate different codes for the same task. Nevertheless, it can be a
handy tool for learning new VBA codes. To record a macro, do the following:

1. Open the macro recorder: in the developer mode (Fig. 1.3), click [Record
Macro].

2. Type the name to be used for the macro and a description of it so that you can
recognize the macro next time (Fig. 1.6), then click [OK]. Note that the name
should begin with a letter and contain no spaces or special characters.

3. Perform the tasks to be recorded; for example, type “Hello World” in cell A1.

4. Stop the macro recorder: click the [Stop Recording] button.

5. Go to the VBE to see the codes generated by the computer (Fig. 1.7).

Figure 1.6 The macro recorder.
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Figure 1.7 The recorded codes.

The recorder creates a new Sub module in the VBE (Fig. 1.7). To run this macro,
just click [Macro] at the top ribbon in Excel and select the macro you want to run.
In the recorded codes, the words following the symbol ′ are not executed and serve
only as comments. These comments are added to the codes to increase the readability
for other users. It is a good programming habit to provide comments inside the codes
to explain the details of the algorithm or define the variables. Comments can also be
added by putting the keyword Rem at the beginning of the line.

1.2.4 Setting Up a Command Button

To run a specific macro in the Excel spreadsheet without selecting the macro proce-
dure list, it is more convenient to designate a command button for each frequently
used macro. To run the macro, the user just needs to press the command button. To
insert a command button, follow the following procedure:

1. Click the [Insert] icon in the developer mode ribbon, and click the Command
Button under [Form Controls] (Fig. 1.8).

2. Drag the mouse over a rectangle in the spreadsheet and release, then select the
macro for the button.

3. To edit the button, left-click the name of the command button to change the
name. Right-click the command button and select [Assign Macros] (Fig. 1.9)
to change the macro.

4. Click on the command button to run the macro.

With this command button, users can quickly execute a macro.
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Figure 1.8 Creating command button.

Figure 1.9 Assigning a macro to a command button.
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1.3 VBA PROGRAMMING FUNDAMENTALS

1.3.1 Declaration of Variables

A variable in programming is the name of a place in the computer’s memory where
some values or objects can be stored. To declare a variable in VBA, we use the
following statement:

Dim varname [As vartype],

where 𝑣arname is the variable name and 𝑣artype is the variable type. A variable
name must begin with a letter and contain only numeric and letter characters and
underscores. The name should not be the same as a VBA reserved word, such as Sub,
Function, End, For, Optional, New, Next, Nothing, Integer, and String. However, VBA
does not distinguish between cases.

For the [As vartype] part, it is optional to specify the type of variable. This is differ-
ent from other programming languages, which require the programmer to explicitly
define the data type of each variable used. However, if you do not specify the data
type explicitly, VBA will be slower to execute and use memory less efficiently.

1.3.2 Types of Variables

Every variable can be classified into one of four basic types: string data, date data,
numeric data, and variant data. The string data type is used to store a sequence of
characters. The date data type can hold dates and times separately and simultane-
ously. The types used most frequently in this book are numeric data and variant
data.

There are several numeric data types in VBA, and the details of each type are
listed in Table 1.1. In general, it is more efficient to use the data type that uses the
smallest number of bytes. This can significantly reduce the computational time for
simulations.

The variant data type is the most flexible because it can store both numeric and
non-numeric values. VBA will try to convert a variant variable to the data type that
can hold the input data. Defining [As 𝑣artype] is optional part, so an undeclared type
of variable will be stored as Variant by default.

A variant type variable can also hold three special types of value: error code, Empty
(indicating that the variable is empty and is not equal to 0, False, an empty string, or
other value), and Null (the variable has not been assigned to memory and is not equal
to 0, False, an empty string, Empty, or other value).

The following codes show some examples of variable declaration statements:

Dim x As integer
Dim z As string
z = "This is a string"
Dim Today As Date
Today = #1/9/2014# ’defined using month/day/year format
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TABLE 1.1 Numeric Data Type

Type Short Hand Range Description

Byte 0 to 255 Unsigned, integer number
Boolean True(−1) or False(0) Truth value
Integer % −32, 768 to 32,767 Signed integer number
Long & −2, 147, 483, 648 to Signed integer number

2,147,483,647
Single ! ±3.402823E38 to Signed single-precision

±1.401298E−45 floating-point number
Double # ±1.79769313486231E308 to Signed double-precision

±4.94065645841247E−324 floating-point number
Decimal ±7.922819251426433759E28 Cannot be directly declared

with no decimal point and in VBA; requires the use of
±7.922816251426433759354 a Variant data type
with 28 digits behind the
decimal point

1.3.3 Declaration of Multivariable

We use the following statement to declare several variables:

Dim x As Integer, y As Integer, z As Integer

However, the declaration that

Dim x, y, z As Integer

denotes z as the Integer type only, while x and y are declared as variant types. We can
use shorthand (Table 1.1) to improve the cleanness and readability of the program:

Dim x#, y#, z As Double

1.3.4 Declaration of Constants

Constants are declared in a Const Statement as follows:

Const interest_rate as Double = 0.02
Const dividend_yield = 0.02 ’without declaring the constant type
Const option_type as String = "Put"

1.3.5 Operators

This section introduces the assignment operator, mathematical operators, compara-
tive operators, and logical operators. The equal sign (=) is an assignment operator that
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TABLE 1.2 VBA Logical Operators

Operator Uses

Not Performs a logical negation on an expression
And Performs a logical conjunction on two expressions
Or Performs a logical disjunction on two expressions
Xor Performs a logical exclusion on two expressions
Eqv Performs a logical equivalence on two expressions
Imp Performs a logical implication on two expressions

is used to assign the value of an expression to a variable or constant. An expression
is a combination of keywords, operators, variables, and constants that yields a string,
number, or object.

For example,

y = 3 * 2
y = y * 6

Then y is evaluated as 36.
Other common mathematical operators include addition (+), multiplication (∗),

di𝑣ision (∕), subtraction (−), and exponentiation (ˆ).
VBA also supports the same comparative operators used in Excel formulas: equal

to (=), greater than (>), less than (<), greater than or equal to (>=), less than or equal
to (<=), and not equal to (<>).

Table 1.2 lists the logical operators and their functions in VBA.

1.3.6 User-Defined Data Types

VBA provides the Type statement to allow users to create a more complex custom
data type or user-defined data types (UDTs). The syntax for creating a UDT is as
follows:

[Private | Public] Type typename
[element_name As vartype]
[element_name As vartype]
...

End Type

[Pri𝑣ate|Public]: (optional) this is Public by default. If it is declared as Pri𝑣ate,
the UDT can only be declared in the same module as the UDT.

typename: (required) this is the name of the UDT, and it follows the standard vari-
able naming conventions.

element_name: (required) this is the name of the elements within a UDT, and it
follows the standard variable naming conventions.
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𝑣artype: (required) unlike declaring ordinary variables, the elements within a UDT
must be assigned a data type, which can be any variable type (including Variant)
or a UDT.

UDT can be defined at the top of the module before any procedures. To refer to the
subelements within the UDT, use the period (.) operator. See the following example
for illustration.

Example 1.1 The following code defines a nested UDT, which stores the name and
coordinates of a point.

Type Coordinate
x As Double
y As Double

End Type

Type Point
name As String
z As Coordinate

End Type

Sub UDTEx1()
’Declare p1 as UDT Point
Dim p1 as Point

’Assigning the values
p1.name = "A"
p1.z.x = 3.5
p1.z.y = 3.1

’Print out the values to spreadsheet
Cells(1, 1) = p1.name
Cells(2, 1) = p1.z.x
Cells(3, 1) = p1.z.y

End Sub

1.3.7 Arrays and Matrices

An array is a collection of variables of the same type that have a common name. The
index numbering makes it easy for users to perform looping in repetitive tasks.

The following statement declares a one-dimensional (1D) array:

Dim varname(LowerIndex to UpperIndex) As vartype.

In this way, users can access the variables with varname(LowerIndex), var-
name(LowerIndex +1), …, varname(UpperIndex).

If only the upper index is specified, that is,

Dim varname(UpperIndex) As vartype ,
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VBA will assume that 0 is the lower index.
A multidimensional array can be declared as:

Dim varname(LowerIndex1 to UpperIndex1, LowerIndex2 to _
UpperIndex2,...,LowerIndexN to UpperIndexN) As vartype .

Note that both the lower index and the upper index must be a constant or a number.
A dynamic array should be used for the variable index, which does not have a preset
number of elements. The following statement declares a dynamic array.

Dim varname() As vartype

Before the dynamic array is used, a ReDim statement should be inserted to specify
the number of elements in the array. For example,

ReDim varname(LowerIndex to UpperIndex) .

To declare a matrix of size m × n containing real numbers, use the following state-
ment.

Dim matrixmn() As Double
ReDim matrixmn(1 To m, 1 To n)

1.3.8 Data Input and Output

One advantage of using Excel VBA is that it can link the VBE and worksheet so
that users can read in and print out data in the worksheet and execute the programs
written in VBE. The following statements are usually used for input and output data,
respectively.

’Read in data
Var = Cells(i, j)

’Print out data
Cells(i, j) = Var ,

where i and j denote the row number and the column number of a cell, respectively.

1.3.9 Conditional Statements

Conditional statements allow users to perform different tasks subject to differ-
ent conditions. The two main conditional statements in VBA are If-then-else
and Select-Case statements. There are two forms of the If-then-else statement:
single-lined and multi-lined. Only one statement is allowed in the single-lined form,
whereas many statements can be inserted in the multi-lined form. The syntax of the
If-then-else statements is as follows:
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’the Else clause is optional
If [condition] Then [statement] (Else [elseStatement])
’... represents other more statements can be included
’these Else clauses are also optional
If [condition] Then

[statement]
...

ElseIf [elseif condition1] Then
[Statement]
...

ElseIf [elseif condition2] Then
[Statement]
...

Else
[Statement]
...

End If

In the conditional part of the statement, the user needs to specify an expression that
can be evaluated as True or False. The comparative operators and logical operators
in Table 1.2 can help to express more complex conditions.

The Select-Case statement is useful for choosing among three or more options and
is a good alternative to the If-Then-Else statement. The syntax for Select-Case is as
follows:

Select Case [testexpression]
Case expressionlist-n

[instructions-n]
...

Case expressionlist-n
[instructions-n]
...

Case Else
[default_instructions]
...

End Select

1.3.10 Loops

The use of the loops algorithm allows users to perform certain tasks several times.
For-Next loops and Do loops are widely used in VBA programming. In particular,
For-Next loops are frequently used in simulations. The syntax for a For-Next loop is
as follows:

For counter = startValue To endValue [Step nStep]
[statements]
[Exit For]
[statements]

Next counter
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If the Step nStep part is omitted, the counter will increase by 1 each time. We can set
nStep to be n, and the counter will then increase by n each time.

For a Do Loop, the syntax is as follows:

Do [do_condition]
[statements]
[Exit Do]
[statements]

Loop [loop_condition]

Although both the do_condition and the loop_condition are optional, only one of them
can be used for a Do Loop. If both are omitted, then the user must specify a condition
and call Exit Do to end the loop. Otherwise, the program will not terminate. The
syntax is the same for do_condition and loop_condition.

While|Until condition

For While, the loop will continue as long as condition is True. For Until, the loop
breaks once condition becomes True. Whether to use While or Until depends solely
on the programmer’s preference, as the same task can be performed by either loop.
However, whether to put the condition after Do or Loop depends on the situation,
because if it is put after Loop, then the loop is repeated at least once. The following
example illustrates the uses of different loops to perform the same task.

Example 1.2 Use five different methods to print out 1 to 10 to cells A1 to A10.

’For Loop
For i = 1 to 10

Cells(i, 1) = i
Next i

’Do Loop Method 1
i = 1
Do while i <= 10

Cells(i, 1) = i
i = i + 1

Loop

’Do Loop Method 2
i = 1
Do Until i > 10

Cells(i, 1) = i
i = i + 1

Loop

’Do Loop Method 3
i = 1
Do

Cells(i , 1) = i
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i = i + 1
Loop while i <= 10

’Do Loop Method 4
i = 1
Do

Cells(i, 1) = i
i = i + 1

Loop until i > 10

1.3.11 Sub Procedures and Function Procedures

Large programs often need to be divided into smaller pieces for easier management
and maintenance. In VBA, a procedure is basically a set of computer codes that
performs certain tasks. There are two types of procedures: a Sub procedure and a
Function procedure. A Sub procedure performs tasks but does not return values, while
a Function procedure returns a value at the end of the procedure.

The syntax that defines a Sub procedure is as follows:

[Private|Public] [Static] Sub name ([arglist])
[statements]

End Sub

Pri𝑣ate|Public: (optional) the Sub is Public by default if Public or Pri𝑣ate is omit-
ted. Public indicates that the Sub is accessible by other Subs or Functions in
all modules. Pri𝑣ate indicates that the Sub is accessible only to the Subs and
Functions in the same modules.

Static: (optional) static indicates that all local variables in the Sub are preserved
at the end of the Sub. If Static is omitted, the values of the local variables will
be reset each time the Sub ends.

name: (required) this is the identifier of the Sub. It follows the standard variable
naming conventions and must be unique and cannot be the same as the identifier
of other Subs, Functions, classes etc.

arglist: (optional) this is a list of variables representing the parameters that are
passed to the sub when it is called. Multiple variables are separated by commas.
If the procedure uses no arguments, a set of empty parentheses is required.

statements: (optional) this refers to any group of statements to be executed within
the Sub.

Example 1.3 The following procedure, SubEx2, calculates 𝑣ar1+𝑣ar2 and outputs
the result in cell A1:

Sub SubEx2(var1, var2)
Cells(1, 1) = var1 + var2

End Sub
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To call the Sub, use one of the following two statements where x, y can also be
replaced by other constants or variables.

Call SubEx2(x, y)
SubEx2 x, y

Instead of just specifying the name of the parameters, each parameter in arglist
can be specified with the following syntax:

[Optional] [ByRef|ByVal] varname [As vartype] [= defaultvalue]

Optional: (optional) this indicates that this parameter is optional and will take the
defaultvalue as its value if it is omitted when the Sub is called.

ByRef |ByVal: (optional) the parameter is passed ByRef by default. ByRef and
ByVal indicate whether the parameter is passed by value or by address. When
calling with ByRef , the memory address of the parameter is passed to the pro-
cedure and any change in the parameter value in the procedure will change the
original parameter. For ByVal, a copy of the value of the parameter is passed so
the original parameter will not be affected.

𝑣arname: (required) this is the identifier of the parameters.

𝑣artype: (optional) the variable type is Variant by default. It is the variable type
of the parameter passed, which can be any of the variable types or a UDT.
If the variable that is passed when calling the Sub does not match, an error
“ByRef/ByVal argument type mismatch” is shown.

default𝑣alue: (optional) this is the value that the parameter will take when the
parameter is not specified and the Sub is called.

Example 1.4 The following codes demonstrate the difference between ByRef and
ByVal:

Sub SubEx3_Run()
Dim x as integer, y as integer
x = 1
y = 1
Call SubEx3(x, y)
Cells(1, 1) = x
Cells(2, 1) = y

End Sub

Sub SubEx3(ByRef var1 as integer, ByVal var2 as integer)
var1 = var1 + 1
var2 = var2 + 1

End Sub

Cell A1 shows that 2, as the change in the value of 𝑣ar1 in SubEx3, actually
changes the value of x. Cell A2 shows that 1, as the change of the value of 𝑣ar2
in SubEx3, does not affect the value of y.
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VBA also allows the user to create a Sub that takes an arbitrary number of parame-
ters using ParamArray. When using ParamArray, the parameters can be passed only
by reference and declared as the Variant type. They are stored in an array with the
parameter’s name. To declare such a Sub, use

Sub SubEx4(ParamArray var())
[statements]

End Sub

Unlike a Sub module, a Function can be used in an Excel spreadsheet as a
user-defined function. The syntax that defines a Function is as follows:

[Private|Public] [Static] Function name ([arglist, ...]) [as vartype]
[statements]

End Sub

For Pri𝑣ate|Public, Static, name, and arglist, a Function is identical to a Sub. The
only difference between the declaration of Function and Sub is that when defining
Function, the user may want to define the return type 𝑣artype. Otherwise, the return
type is Variant by default. To return a value for a Function, the user just needs to store
that value in a variable with the same name as the function name. To call a Function,
use one of the following statements:

Call FuncName(x, y)
FuncName x, y
z = FuncName(x, y)

Note that the first two statements are identical to those used for Sub, so one can treat
Function as Sub if the return value does not matter. For the third statement, the return
value will be stored in z.

As Sub cannot return a value, to accomplish certain tasks, it may be necessary to
use global variables or pass the variables by reference. Example 1.5 calculates 𝑣ar1
+ 𝑣ar2 and outputs the result into cell A1, which is analogous to Example 1.3 using
Function.

Example 1.5 The following code calculates 3 + 4 by calling Function FuncEx4 and
outputs the sum of the two numbers, 5, into cell A1.

Sub SubEx4()
Cells(1, 1) = FuncEx4(3, 4)

End Sub

Function FuncEx4(var1 as integer, var2 as integer) as integer
FuncEx4 = var1 + var2

End Function
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TABLE 1.3 Common Built-In Math Functions in VBA

Function Return Value Math Expression

Abs(x) Absolute value of the x |x|
Atn(x) Arc-tangent of x in radians tan−1 x
Cos(x) Cosine of x cos x
Exp(x) Exponential of x ex

Int(x) The integral part of x [x]
Log(x) Natural logarithm of x, ln x
Round(x[, dp]) x rounded to dp decimal place

dp is 0 by default if omitted
Sgn(x) Number indicates the sign of x |x|∕x

−1 for x < 0, 0 for x = 0, 1 for x > 0
Sin(x) Sine of x sin x
Sqr(x) Square root of x

√
x

Tan(x) Tangent of x tan x

1.3.12 VBA’s Built-In Functions

VBA has a variety of built-in functions that can simplify calculations and operations.
For a complete list of functions, please refer to the VBA Help System. In the VBE,
you can type “VBA” to display a list of VBA functions. Table 1.3 shows some of the
commonly used built-in mathematical functions and their return values in descriptive
and mathematical forms.

Remarks: If the input number is negative, then the function Int returns the first
negative integer that is less than or equal to the number and the Fix function returns
the first negative integer greater than or equal to the number. For example, Int(−8.3)
returns −9, whereas Fix(−8.3) gives −8.

Excel VBA also allows users to use Excel worksheet functions such as A𝑣erage,
Stde𝑣. To call the worksheet functions, use one of the following commands:

Application.FunctionName([arglist])
WorksheetFunction.FunctionName([arglist])
Application.WorksheetFunction.FunctionName([arglist])

For example, to calculate sin−1 0.5, which is not provided in VBA’s built-in function
library but is included in Excel, one can use

x = Application.Asin(0.5).

This returns the value 0.5236 (≈ 𝜋∕6) and is stored in x. Note that not all Excel work-
sheet functions can be used in VBA. In particular, worksheet functions that have an
equivalent VBA function, such as sqrt and sin, cannot be used. For a complete list of
Excel worksheet functions, please refer to the Excel help pages.



2
BASIC PROPERTIES OF FUTURES
AND OPTIONS

2.1 INTRODUCTION

A financial derivative is a security whose value depends on the values of other more
elementary securities, such as equities, bonds, and commodities. Forward contracts
and futures contracts are two typical derivatives trading in the financial market. The
primary use of forward and futures contracts is to hedge against portfolio risk, but they
also offer speculative opportunities to investors. Before introducing the properties of
these contracts, we present some fundamental concepts in derivative pricing.

2.1.1 Arbitrage and Hedging

An arbitrage opportunity is a situation whereby an investor is able to enter into a trade,
usually involving two or more markets, in which he/she can lock in a position with a
positive probability of profit and a zero probability of loss. An arbitrage opportunity
usually lasts for a very short time in an efficient market. In pricing derivatives, we
want to make sure that the fair prices of the derivatives will not lead to any arbitrage
opportunities.

As mentioned, forwards and futures are used to hedge against risk, which means
they can be used to transfer the risk of unfavorable price fluctuations to other market
participants. For example, assume that you are holding a share of a stock currently
worth $45, and you have a deal with a counterparty that you will exchange that share
with him for $50 one month later. One month later, you are sure to get $50 if your

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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counterparty honors the deal. In this way, you hedge the market risk of the stock price
for a fixed return. The existence of derivatives markets facilitates hedging and also
possible speculation with large leveraging.

Another important concept is risk-neutral pricing, which states that the price of
derivatives determined as “risk-neutral” totally agrees with the price obtained in the
real world. In the risk-neutral world, every security generates the same expected
rate of return, which is the risk-free interest rate. An investor can only earn exces-
sive returns because of “pure luck.” Modern derivative pricing theory argues that no
arbitrage is associated with the existence of a risk-neutral world for the valuation of
derivatives.

2.1.2 Forward Contracts

A forward contract is usually an over-the-counter (OTC) agreement between the
buyer and the seller, whereby the buyer agrees to buy an asset (long position) from
the seller (short position) at a certain future time (maturity) for a prespecified price
(delivery price). The contract is usually traded between two financial institutions or
between a financial institution and one of its corporate clients, but it is not traded on
an exchange.

At the time of initiation of the contract, the delivery price is chosen so that the
value of holding the forward contract is zero for both parties. At maturity, the holder
of the short position delivers the asset to the holder of the long position in return for
a cash amount equal to the delivery price. At the time the contract is entered into, the
delivery price equals the forward price. As time passes, the delivery price is fixed, but
the new forward price for the same underlying asset with the same maturity changes
from time to time. These forward prices make the contract zero value at each time
point. Therefore, the forward price generally does not equal the delivery price except
at the beginning of the contract.

In the following, we determine the fair price of a forward contract. Let St be the
price of the underlying asset at current time t, K be the delivery price, T be the matu-
rity time of the contract, Ft be the forward price at time t, ft be the value of the forward
contract at time t, and r be the continuously compounded risk-free interest rate, which
is assumed to be a constant. For simplicity, we assume there is no transaction cost in
the market, the borrowing and lending rate are the same, and the trading profits have
the same tax rate. At the initial time t = 0, the forward price equals the delivery price:

F0 = K and f0 = 0.

For a continuously compounding interest rate r, a zero-coupon bond paying $1 at
future time T is worth e−r(T−t) at time t ≤ T . To determine the forward price, we
construct two portfolios with the same payoff at maturity T under all scenarios. Then,
these two portfolios should have the same price at current time t. This concept is
referred to as the law of one price. No arbitrage implies that the prices of the two
portfolios must be the same. We consider two cases of the underlying asset.
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1. No intermediate income from the underlying asset.
This kind of asset includes non-dividend-paying stocks and zero coupon bonds.
Consider two portfolios at time t:

A. Long a forward contract with delivery price K and invest Ke−r(T−t) in the
bank for a risk-free interest rate r.

B. Long one unit of the underlying asset St.

Both portfolios will pay the holder one unit of the asset at time T; therefore,
their current prices should be the same. Otherwise, investors can always long
the cheaper portfolio and short the other one to gain a risk-less profit at maturity
T . Hence, if there is no arbitrage, then

ft + Ke−r(T−t) = St.

The forward price Ft is the delivery price such that the forward contract has
zero value at current time t. Therefore, we have

0 + Fte
−r(T−t) = St,

⇒ Ft = Ste
r(T−t). (2.1)

Example 2.1 Consider a 6-month forward contract on a stock worth $13.50 per
share at maturity. Assuming the current stock price is $12.00, the risk-free rate is
5.25%, and there is no dividend in the next 6 months. The forward price can be deter-
mined as

F0 = 12e0.0525(0.5−0)

= 12.32.

If the forward price is cheaper than the delivery price, it is possible to obtain arbitrage
by shorting the forward contract and borrowing $12 from the bank at a rate of 5.25%
to buy one share of the stock now. The investor does not need to put any money in
this portfolio at its initiation, and this is called a self-financing portfolio. Six months
later, the investor can deliver the share of stock for $13.50 and pay back $12.32 to
the bank. He will be sure to earn $13.50-$12.32=$1.18 after 6 months.

2. With a known cash income.
Let I be the present value of the income to be received from the underlying asset
during the life of the forward. Again, we construct two portfolios as follows:

C. Long a forward contract with delivery price K and invest
Ke−r(T−t) in the bank for a risk-free interest rate r.

D. Long one unit of the underlying asset St and borrow an amount, I, from the
bank at the risk-free interest rate r.
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In portfolio D, the cash income I from holding the stock is paid back to the
bank. These two portfolios give both holders a share of the stock at maturity;
thus their current prices must be the same to avoid arbitrage. We have

ft + Ke−r(T−t) = St − I.

The forward price is the delivery price that ensures the forward has a zero value
at the time of initiation. Therefore,

0 + Fte
−r(T−t) = St − I,

⇒ Ft = (St − I)er(T−t). (2.2)

Example 2.2 Consider a 6-month forward contract on a stock worth $11.50 per
share at maturity. Assuming the current stock price is $13.00 and the risk-free rate
for 6-month maturity is 5.25%, there will be a $1.20 dividend to be paid 3 months
from now. The 3-month interest rate is 5.1%. The forward price can be determined as

F0 =
(
13 − 1.2e−0.051(0.25−0)) e0.0525(0.5−0)

= 12.13.

If the investor longs one unit of the forward contract, shorts one share of the stock,
and invests $(13 − 1.2e−0.051(0.25)) in the bank at a rate of 5.25% for 6 months and
$1.2e−0.051(0.25) at a rate of 5.1% for 3 months, he will have a risk-less profit after 6
months. This is a self-finance strategy. After 3 months, the 3-month deposit of $1.20
is paid out as a dividend. At maturity, the investor can have one share of stock for
$11.50 and re-pay the loaned stock. Therefore, he will gain $12.13-$11.50=$0.63
without any risk.

If the dividend is paid out continuously at an annual rate q, then q is called
the dividend yield and the forward price can be determined using similar argu-
ments. Specifically, we keep the portfolio A and revise the portfolio B to long
e−q(T−t) units of the stock, so that we will have exactly one share of the stock
at maturity. The present value of holding the forward contract is

ft = Ste
−q(T−t) − Ke−r(T−t).

The forward price is given such that the value of the forward equals zero, so
we have

Ft = Ste
(r−q)(T−t). (2.3)
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Example 2.3 Consider a 6-month forward contract on a stock worth $14 per share
at maturity. Assuming the current stock price is $13.40 and the risk-free rate for
6-month maturity is 5.2%, the dividend yield is 2%. The forward price can be deter-
mined as

F0 = 13.4e(0.052−0.02)(0.5−0)

= 13.62.

If the investor shorts one unit of the forward contract, borrows
$(13e−0.02(0.5)) from the bank at a rate of 5.2% to buy e−0.02(0.5) shares of stock with
the dividends being reinvested in the stock after 6 months, he will have a risk-less
profit of $

(
14 − 13.4e(0.052−0.02)(0.5)) = $0.38.

The value of the forward contract changes with time. For example, assume that you
are holding a 6-month forward contract with a delivery price of $10 for a share of the
stock. However, after 3 months, suppose the delivery price of a new 3-month forward
contract is $12, then your original forward contract is now worth (12 − 10)e−r(0.5−0.25)

dollars because you can short a new contract for $12 and your position will be closed
out 3 months later. In general, the value of a forward contract is given by the formula

ft = (Ft − F0)e−r(T−t). (2.4)

2.1.3 Futures Contracts

A futures contract is an agreement between two parties to buy or sell an asset at a
certain time at the future price. Unlike forward contracts, futures are normally traded
on an exchange, and this can eliminate the default risk of the counterparty. However,
the values of futures contracts are also marked-to-market, meaning that the values are
determined each day according to the market price. Therefore, investors in futures can
be subject to a margin call.

The exact delivery date of futures is not usually specified, in contrast to forward
contracts. A futures contract is referred to by its delivery month, and the exchange
center specifies the period during the month when the delivery must be made. Nowa-
days, a lot of futures are settled by cash instead of actual delivery of the assets. When
the interest rate is constant (even deterministic), the theoretical prices of forward and
futures contracts with the same delivery date are the same. To show this, we denote
Ft as the futures price and F̃t as the forward price. Now consider two different trading
strategies with futures and forward contracts, respectively, as follows:

Strategy A. Long er units of futures on day 1, close out the futures on day 2 and
long e2r units of futures on day 2, close out on day 3, and so on, according to
Table 2.1, and invest F0 in a risk-free asset.

Strategy B. Long erT units of forward contracts with the forward price F̃0 and
invest F̃0 in a risk-free asset.
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TABLE 2.1 Strategy A for Longing Futures Contracts

Day 0 1 2 · · · T − 1 T

Future price F0 F1 F2 · · · FT−1 FT

Future positions er e2r e3r · · · eTr 0
Gain/loss 0 (F1 − F0)er (F2 − F1)e2r · · · · · · (FT − FT−1)erT

Gain/loss
at time T 0 (F1 − F0)erT (F2 − F1)erT · · · · · · (FT − FT−1)erT

Total gain/loss 0 + (F1 − F0)erT + (F2 − F1)erT + · · · + (FT − FT−1)erT

at time T = (FT − F0)erT = (ST − F0)erT

At maturity date T , the payoff of strategy A is (ST − F0)erT + F0erT = ST erT ,
whereas the payoff of strategy B is (ST − F̃0)erT + F̃0erT = ST erT . According to
the no-arbitrage argument, these two strategies should yield the same value at any
moment before time T . Therefore, we have

F0 = F̃0. (2.5)

The variance of a portfolio can represent the risk level it exposes the investor to.
Suppose that you need to sell NA units of stock in the future, at time t, how many units
of futures should you short now so that the variance of your portfolio is minimized?
To answer this question, let NF be the units of futures you should short, with a hedge
ratio of h = NF∕NA. This is called a static hedge, as the hedge is carried out only once
at time 0 and will not need to be adjusted later. In contrast, a dynamic hedge requires
continuous re-balancing of the portfolio weights. More examples of dynamic hedging
are introduced in later chapters. The payoff Yt of the futures portfolio at maturity is
given by

Yt = NASt − NF(Ft − F0)e−r(t−t)

= NASt − NF(Ft − F0)

= NAS0 − NA(St − S0) − NF(Ft − F0)

= NAS0 − NAΔSt − NFΔFt

= NAS0 − NA(ΔSt − hΔFt).

Let 𝜎2
S be the variance of the stock price, 𝜎2

F be the variance of the futures price, and 𝜌

be the correlation of the stock price and the futures price. The variance of the portfolio
can be evaluated as:

Var (Yt) = N2
A Var(ΔSt − hΔFt)

= N2
A(𝜎

2
S + h2𝜎2

F − 2h𝜌𝜎S𝜎F).
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To minimize the variance with respect to the choice of h, we take the derivative of
Var(Yt) with respect to h and set it to zero as follows:

d Var(Yt)
d h

= N2
A(2h𝜎2

F − 2𝜌𝜎S𝜎F) = 0

⇒ h∗ = 𝜌
𝜎S

𝜎F
. (2.6)

From the minimum-variance hedge ratio formula, we can also derive the hedging
effectiveness as follows:

Var(unhedged port.) − Var(hedged port.)

Var(unhedged port.)
=

Var(NASt) − Var(Yt)
Var(NASt)

=
𝜎2

S − (1 − 𝜌2)𝜎2
S

𝜎2
S

= 𝜌2. (2.7)

Example 2.4 Suppose we have a set of data on the stock and futures prices, as
shown in Table 2.2, we can calculate the optimum hedge ratio as

h∗ = (0.0928 × 0.00262)∕0.00313

= 0.786

If we want to sell, say, 50,000 units of the stock at time t, we can calculate NF as

N∗
F = h∗ × NA

= 0.786 × 50, 000

= 39, 300.

Therefore, if there are 1,000 units per futures contract, the portfolio will have the
minimum variance if we short approximately 39 futures contracts.

TABLE 2.2 Data on Stock and Futures Prices

Month ΔF ΔS

1 0.021 0.029
2 0.035 0.020
⋮ ⋮ ⋮
15 −0.027 −0.032

Mean −0.013 0.0138
𝜎 0.00313 0.00262
𝜌 0.928
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2.2 OPTIONS

Options were first traded on an organized exchange in 1973. Since then, the option
markets have experienced a dramatic growth. There are two basic types of options,
namely call and put options. A call (put) option gives the holder the right, but not
the obligation, to buy (sell) the underlying asset for a prespecified price (strike price
K) at some future time. In contrast to forward and futures contracts, options will be
exercised only if exercising is favorable to the holders.

Options can be further divided into American or European types. American
options can be exercised at any time up to maturity T , while European options can
only be exercised on the maturity date T . As the option holder will not lose anything
in the worst situation (the option is just not exercised), a premium has to be paid
in exchange for this privilege. The premium that must be paid to the seller is the
fair value of the option. Derivative pricing theory studies methods of finding fair
premiums for different kinds of financial derivatives.

We can either long or short an option, so there are four kinds of payoffs in general,
as summarized in Table 2.3. Figure 2.1 shows the graphs of the payoff functions. The
payoff functions reveal some interesting properties of the options related to underly-
ing asset. Let CA be the American call price with maturity T and strike K, CE be the
corresponding European call, and PA and PE be the American put and European put,
respectively. Some option properties can be derived from the following.

K KST ST

K KST ST

Payoff Payoff

Payoff Payoff

Long put Short put

Long call Short call

Figure 2.1 Payoffs of option positions.
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TABLE 2.3 Payoffs of Different Options with Strike Price K

Type Call Put

Long max(ST − K, 0) max(K − ST , 0)
Short −max(ST − K, 0) −max(K − ST , 0)

1. Upper bounds.
Whatever the price of an underlying asset, the value of a call option (with payoff
max(S − K, 0)) can never be worth more than the stock, and an American call
is always worth more than its European counterpart because it can be exercised
at any time, including at maturity, so we have

CE ≤ CA ≤ S.

For put options, no matter how low the stock price becomes, the put can never
be worth more than the strike price:

PE ≤ K and PA ≤ K.

Furthermore, for a European put, the option will not be worth more than K at
maturity, so the current value of the put cannot be larger than the present value
of the strike:

PE ≤ Ke−r(T−t).

2. Lower bounds.
The lower bounds for call options can be derived as follows:

max
(
S − Ke−r(T−t), 0

)
≤ CE ≤ CA.

To prove the aforementioned inequality, we consider two portfolios:

A. Hold one unit of European call and K units of zero coupon bonds.

B. Long one share of the stock.

By comparing the stock price with the strike price on the maturity date, we can
find the values of the two portfolios, as shown in Table 2.4.
From the table, the value of portfolio A should be larger than that of portfolio
B at any time. Otherwise, it is always possible to long portfolio A and short
portfolio B to gain arbitrage. Together with the positive nature of options prices,
we can deduce that

S ≤ CE + Ke−r(T−t) and 0 ≤ CE,

⇒ max(S − Ke−r(T−t), 0) ≤ CE.



28 BASIC PROPERTIES OF FUTURES AND OPTIONS

TABLE 2.4 Payoffs of Portfolios A and B

S > K S ≤ K

Portfolio A S K

Portfolio B S S

Similarly, we can obtain the inequality for put options:

max(Ke−r(T−t) − S, 0) ≤ PE ≤ PA.

This inequality can also be shown by applying the put-call parity to call options.

3. Put-call parity.
The prices of European call and put options with the same strike and maturity
are related by the following put-call parity formula:

CE + Ke−r(T−t) = PE + S. (2.8)

To prove this by the no-arbitrage principle, we construct two portfolios:

C. Long a call option and K units of zero coupon bonds.

D. Long a put option and one share of stock.

At maturity, both portfolios have the same values (Table 2.5) regardless of the
stock price, so these two portfolios should have the same present values accord-
ing to the no-arbitrage principle. Note that the put-call parity relation only holds
for European options. However, we can derive some inequality relations for
American options. For non-dividend-paying assets, we have

PA ≥ PE and CA = CE. (2.9)

It is never optimal to early exercise a non-dividend-paying American call
option, because doing so will gain max (S − K, 0), but the lower bound for the
call option is

S − K < S − Ke−r(T−t),

⇒ max (S − K, 0) ≤ max
(
S − Ke−r(T−t), 0

)
≤ CA.

TABLE 2.5 Payoffs of Portfolios C and D

S > K S ≤ K

Portfolio C S K

Portfolio D S K
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Therefore, holding the call contract is actually worth more than exercising the
contract. This also proves Equation 2.9. The following example provides some
observations on the Hong Kong Hang Seng Index options market due to the
put-call parity.

Example 2.5 When the interest rate is very close to zero, the put-call parity
relation gives

CE + K ≈ PE + S.

If there is no arbitrage opportunity in the market, the aforementioned condition
needs to be satisfied. In the case where the underlying asset value is unknown
to us, we can also check the relation by using call and put prices with the same
maturity for two strike prices, K1 and K2. Let CE(K1) be the call price with the
strike price K1 and denote a similar notation for PE(K1); then we have

CE(K1) + K1 ≈ PE(K1) + S,

CE(K2) + K2 ≈ PE(K2) + S,

⇒
(
CE(K1) − CE(K2)

)
−
(
PE(K1) − PE(K2)

)
≈ K2 − K1.

To verify this claim, we check the prices of the Hang Seng Index options on
September 12, 2014 (Fig. 2.2) with three different maturities. Both sides of the
aforementioned formula are evaluated in the Excel worksheet. The results show
that the market prices closely match the put-call parity relation.

4. Differences between American call and put prices.
For a non-dividend-paying asset, we can further deduce the boundaries of the
difference between the prices of American call and put options. According to
the put-call parity,

PA ≥ PE

= CE + Ke−r(T−t) − S

= CA + Ke−r(T−t) − S ,

⇒ CA − PA ≤ S − Ke−r(T−t) .

To obtain the lower bound of the difference, consider the following two port-
folios with the same maturity and same strike on the options:

E. Long a European call and hold K units of cash.

F. Long an American put and one unit of the asset.
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Figure 2.2 The prices of Hang Seng Index options on September 12, 2014.

When the American put is not exercised prematurely, portfolio F is worth
max(K − ST , 0) + ST = max(ST ,K) at maturity T . The value of portfolio E at
maturity T is given by

max(ST − K, 0) + Ker(T−t) = max(ST ,K) + K
(
er(T−t) − 1

)
.

The value of portfolio E is larger than that of portfolio F if neither is exercised
early. If the American put option is exercised prematurely at time 𝜏 < T , the
value of portfolio F at time 𝜏 is K while portfolio E is worth CE + Ker(T−𝜏),
which is greater than the value of portfolio F. The payoffs of these two portfo-
lios are summarized in Table 2.6.
Portfolio E is worth more than portfolio F under all circumstances, so the
present value of portfolio E should be larger than that of portfolio F:

CE + K ≥ PA + S.

Note that CA = CE for non-dividend-paying assets. By rearranging the afore-
mentioned inequality, we obtain the boundaries as follows:

S − K ≤ CA − PA ≤ S − Ke−r(T−t). (2.10)
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TABLE 2.6 Payoffs of Portfolios E and F

No Early Exercise Early Exercise
of American put at 𝜏

(Value at Maturity T) (Value at Exercising Time 𝜏)

Portfolio E max(ST ,K) + K
(
er(T−t) − 1

)
CE + Ker(T−𝜏)

Portfolio F max(ST ,K) K

TABLE 2.7 Properties of Stock Options

CE PE CA PA

Stock price + − + −
Strike − + − +
Maturity +∕− +∕− + +
Volatility + + + +
Risk-free rate + − + −
Dividends − + − +

The “+” sign indicates that the option is rising in value with an increase in the
parameters; the “−” sign represents a decrease in value; and “+∕−” represents an
unclear influence on the price.

The aforementioned inequality also shows that when the interest rate r ∼ 0,
S − K ≈ CA − PA. The put-call parity also implies that CA + K ≈ PE + S for
non-dividend-paying assets. Therefore, we can deduce that

CA − PA ≈ S − K ≈ CA − PE

⇒ PA ≈ PE

for a near-zero interest rate. To price an option, a model of the stock price usually has
to be specified except that the option can be perfectly replicated by other securities
in the market. The next few chapters are devoted to the Black–Scholes model. Some
qualitative properties related to the option parameters are summarized in Table 2.7.

2.3 EXERCISES

1. Assume today to be March 3, 2014, and the continuously compounding inter-
est rate is 0.4% per annum. It is known that the interest rate will increase lin-
early over time to 1.2% until March 7, 2013. Consider a 1-year futures contract,
a 1-year European call option, and a 1-year equity swap (ES) contract on a
non-dividend-paying stock with a current price of $40. The ES with four trans-
action dates on June 2, 2014; September 2, 2014; December 2, 2014; and March
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2, 2015 will deliver one unit of the underlying stock to the holder while receiving
a constant amount of cash on each transaction date.

(a) What is the no-arbitrage forward price of a 1-year forward contract? Is it the
same as the no-arbitrage futures price? Explain briefly.

(b) What is the ES price (the constant cash amount paid to the exchange for the
stock on each transaction date)?

2. A 3-month European-style derivative with the following payoff is selling at $2:

Payoff = min [max(33 − ST , 0),max(ST − 27, 0)].

At the moment, the underlying stock price is $30 and the European call prices
with strikes, $27, $30, $33, are traded at $3.2193, $1.20, $0.2874, in order.
Assume that the risk-free interest rate is 10% per annum for all maturities. What
arbitrage opportunity does this create from this exotic derivative? Construct an
arbitrage strategy in detail.

3. An out-range option has the same payoff as an ordinary option, except that it
cannot be exercised if the terminal asset price falls within a predetermined range.
A range-digital option pays the holder $1 if the terminal asset price falls into the
prespecified range; otherwise, the holder receives nothing. Other things being
equal, we introduce the following notations:

• Out-range put = PR(K,L,U), where K is the strike price and [L,U] is the range.

• European put = PE(K), where K is the strike price.

• European call = CE(K), where K is the strike price.

• Range-digital option = D(L,U), where [L,U] is the range.

Suppose K > U > L. Show the Range-Digital-European (RDE) parity relation:

PR(K,L,U) + (K − L)D(L,U) + (U − L)[e−rT − D(0,U)]

= PE(K) + CE(L) − CE(U).

4. A 4-month European call option on a dividend-paying stock is currently selling
for $5. The stock price is $64, the strike price is $60, and a dividend of $0.80 is
expected in 1 month. The risk-free interest rate is 12% per annum for all maturi-
ties. What opportunities are there for an arbitrageur?

5. Assume that the risk-free interest rate is 4% per annum with continuous com-
pounding and that the dividend yield on a stock index varies throughout the year.
In February, May, August, and November, the dividend yield is 6% per annum,
and in other months it is 3% per annum. Suppose that the value of the index on
July 31, 2010 is 300. What is the futures price for a contract that is deliverable
on December 31, 2010?

6. A 1-year-long forward contract on a non-dividend-paying stock is entered into
when the stock price is $40 and the risk-free interest rate is 5% per annum with
continuous compounding.



EXERCISES 33

(a) What are the forward price and the initial value of the forward contract?

(b) Six months later, the stock price is $45 and the risk-free interest rate is still
5%. What are the forward price and the forward value of the contract?

7. A company enters into a forward contract with a bank to sell a foreign currency
for K1 at time T1. The exchange rate at time T1 proves to be S1(> K1). The com-
pany asks the bank if it can roll the contract forward under T2(> T1) rather than
settle at time T1. The bank agrees to a new delivery price, K2. Explain how K2
should be calculated.

8. An ES is a contract that generalizes a forward contract. For a two-tenor ES, the
long position will pay the short position $K at each time point T1 and T2, where
T1 < T2, while the short position will deliver one unit of the underlying asset S
at both T1 and T2. Let f (t, S) be the value of ES and Ft be the ES price, which
makes the ES value zero at time t < T2.

(a) What are the no-arbitrage pricing formulas for f (t, S) and Ft?

(b) Consider that T1 is 3 months from today and T2 is 1 year from today. Sup-
pose that the continuously compounded interest rate is a constant of 3%,
and the underlying non-dividend-paying share is currently $10. What is the
no-arbitrage value of K?

(c) What is the no-arbitrage price for an n-tenor ES? The n-tenor ES has n trans-
action dates at T1 < T2 < · · · < Tn.

9. A minimum put option, Pmin, gives the holder the right to sell the less expensive
stock between S1 and S2 with a strike price of K on maturity.

(a) What is the payoff function of this option?

(b) Alternatively, a minimum call option, Cmin, gives the holder the right to buy
the less expensive stock between S1 and S2 with a strike price of K on the
maturity date. Given that the payoff of an exchange option, CX , is max(S2 −
S1, 0), use the no-arbitrage principle to show that

Pmin(t,T) − Cmin(t,T) = CX(t,T) + Ke−r(T−t) − S2(t).

10. In Figure 2.2, we can see that the prices of the options on the Hang Seng Index
that mature in June 2015 match the put-call parity relation, and the difference in
the prices from the put-call relation for options that mature in December 2014 is
small, which is reasonable due to the transaction cost. For the options that mature
in November 2014, the discrepancy in the prices from the put-call parity is not
small. What portfolio can you construct for an arbitrage opportunity?

11. Example 2.4 computes the minimum-variance hedge ratio for a specific data set.
Now use the Hang Seng Index to compute the minimum-variance hedge ratio in
an Excel worksheet, as in Table 2.2. Use the nearest 3-month daily mid-closing
prices of the futures and the Hang Seng Index. The Excel functions AVERAGE,
STDEV, and CORREL may be helpful in the computation.

The solutions and/or additional exercises are available online at http://www.sta.cuhk
.edu.hk/Book/SRMS/.

http://www.sta.cuhk




3
INTRODUCTION TO SIMULATION

3.1 QUESTIONS

In this introductory chapter, we are faced with three basic questions as follows:

• What is simulation?

• Why does one need to learn simulation?

• What has simulation to do with risk management and, in particular, financial
risk management?

3.2 SIMULATION

When faced with uncertainties, one tries to build a probability model. In other words,
risks and uncertainties can be handled (managed) by means of stochastic models.
However, in real life, building a full-blown stochastic model to account for every
possible uncertainty is futile. One needs to compromise between choosing a model
that is a realistic replica of the actual situation and choosing one whose mathematical
(statistical) analysis is tractable.

However even equipped with the best insight and powerful mathematical
knowledge, solving a model analytically is an exception rather than a rule. In most
situations, one relies on an approximated model and learns about this model with
approximated solutions. It is in this context that simulation comes into the picture.

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Loosely speaking, one can think of simulations as computer experiments. It plays the
role of the experimental part in physics. When one studies a physical phenomenon,
one relies on physical theories and experimental verifications. When one tries to
model a random phenomenon, one relies on building an approximated model (or an
idealized model) and simulations (computer experiments).

Through simulations, one learns about different characteristics of the model,
behaviors of the phenomenon, and features of the approximated solutions. Ulti-
mately, simulations offer practitioners the ability to replicate the underlying scenario
via computer experiments. It helps us to visualize the model, to study the model, and
to improve the model.

In this book, we learn some of the features of simulations. We see that simulation is
a powerful tool for analyzing complex situations. We also study different techniques
in simulations and their applications in risk management.

3.3 EXAMPLES

Practical implementation of risk management methods usually requires substantial
computations. The computational requirement comes from calculating summaries,
such as value-at-risk, hedging ratio, market 𝛽, and so on. In other words, summariz-
ing data in complex situations is a routine job for a risk manager, but the same can
be said for a statistician. Therefore, many of the simulation techniques developed
by statisticians for summarizing data are equally applicable in the risk management
context. In this section, we study some typical examples.

3.3.1 Quadrature

Numerical integration, also known as quadrature, is probably one of the earliest tech-
niques that requires simulation. Consider a one-dimensional integral

I =
∫

b

a
f (x) dx, (3.1)

where f is a given function. Quadrature approximates I by calculating f at a number of
points x1, x2,… , xn and applying some formula to the resulting values f (x1),… , f (xn).
The simplest form is a weighted average

Î =
n∑

i=1

𝑤i f (xi),

where 𝑤1,… , 𝑤n are some given weights. Different quadrature rules are distin-
guished by using different sets of design points x1,… , xn and different sets of
weights 𝑤1,… , 𝑤n. As an example, the simplest quadrature rule divides the interval



EXAMPLES 37

[a, b] into n equal parts, evaluates f (x) at the midpoint of each subinterval, and then
applies equal weights. In this case,

Î = b − a
n

n∑
i=1

f (a + (2i − 1)(b − a)∕(2n)).

This rule approximates the integral by the sum of the area of rectangles with base
(b − a)∕n and height equal to the value of f (x) at the midpoint of the base. For n
large, we have a sum of many tiny rectangles whose area closely approximates I in
exactly the same way that integrals are introduced in elementary calculus.

Why do we care about evaluating Equation 3.1? For one, we may want to calcu-
late the expected value of a random quantity X with p.d.f. (probability distribution
function) f (x). In this case, we calculate

E(X) =
∫

xf (x) dx,

and quadrature techniques may become handy if this integral cannot be solved analyt-
ically. Improvements over the simple quadrature have been developed, for example,
Simpson’s rule and the Gaussian rule. We will not pursue the details in this case,
but interested readers may consult Conte and de Boor (1980). Clearly, generalizing
this idea to higher dimensions is highly nontrivial. Many of the numerical integration
techniques break down for evaluating high dimensional integrals. (Why?)

3.3.2 Monte Carlo

Monte Carlo integration is a different approach to evaluating an integral of f . It eval-
uates f (x) at random points. Suppose that a series of points x1,… , xn are drawn
independently from the distribution with density g(x). Now

I =
∫

f (x) dx =
∫

[f (x)∕g(x)]g(x) dx = Eg

{
f (x)
g(x)

}
, (3.2)

where Eg denotes expectation with respect to the distribution g. Now, the sample of
points x1,… , xn drawn independently from g gives a sample of values f (xi)∕g(xi) of
the function f (x)∕g(x). We estimate the integral (Eq. 3.2) by the sample mean

Î = 1
n

n∑
i=1

f (xi)
g(xi)

.

According to classical statistics, Î is an unbiased estimate of I with variance

Var(Î) = 1
n
Varg

f (x)
g(x)

.
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As n increases, Î becomes a more and more accurate estimate of I. The variance
(verify) can be estimated by its sample version, namely,

1
n2

n∑
i=1

f 2(xi)
g2(xi)

− Î2

n
. (3.3)

Besides the Monte Carlo method, we should also mention that the idea of the
quasi-Monte Carlo method has also enjoyed considerable attention recently. Further
discussions on this method are beyond the scope of this book. Interested readers may
consult the survey article by Hickernell, Lemieux, and Owen (2005).

3.4 STOCHASTIC SIMULATIONS

In risk management, one often encounters stochastic processes such as Brownian
motions, geometric Brownian motion, and lognormal distributions. Although some of
these entities may be understood analytically, quantities derived from them are often
less tractable. For example, how can one evaluate integrals such as ∫

1
0 W(t) dW(t)

numerically? More importantly, can we use simulation techniques to help us under-
stand features and behaviors of geometric Brownian motions or lognormal distribu-
tions? To illustrate the idea, we begin with the lognormal distribution.

As the lognormal distribution plays such an important role in modeling the stock
returns, we discuss some properties of the lognormal distribution in this section.
Firstly, recall that if X ∼ N(𝜇, 𝜎2), then the random variable Y = eX is lognormally
distributed, that is, log Y = X is normally distributed with mean 𝜇 and variance 𝜎2.
Thus, the distribution of Y is given by

G(y) = P(Y ≤ y) = P(X ≤ log y)

= P((X − 𝜇)∕𝜎 ≤ (log y − 𝜇)∕𝜎)

= Φ((log y − 𝜇)∕𝜎),

where Φ(⋅) denotes the distribution function of a standard normal random variable.
Differentiating G(y) with respect to y gives rise to the p.d.f. of Y . To calculate EY ,
we can integrate it directly with respect to the p.d.f. of Y or we can make use of the
normal distribution properties of X. Recall that the moment-generating function of X
is given by

MX(t) = E(etX) = e𝜇t+ 1
2
𝜎2t2

.

Thus,
EY = E(eX) = MX(1) = e𝜇+

1
2
𝜎2
.

By a similar argument, we can calculate the second moment of Y and deduce that

Var(Y) = e2𝜇+𝜎2 (e𝜎2 − 1).
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To produce the densities of lognormal random variables and generate 1,000 lognormal
random variables in Visual Basic for Applications with 𝜇 = 0 and 𝜎2 = 1, that is,
EY = e0.5 and Var(Y) = e(e − 1), go to the Online Supplementary and download the
files Chapter 3 Generate the PDF of Lognormal Random Variables and Chapter 3
Generate Lognormal Random Variables.

It can be seen from Figure 3.1 that a lognormal density can never be negative.
Furthermore, it is skewed to the right and has a much thicker tail than a normal random
variable.

Before concluding this chapter, we would like to bring the readers’ attentions to
some existing books written on this subject. In the statistical community, many excel-
lent texts have been written on this subject of simulations, see, for example, Ross
(2002) and the references therein. These texts mainly discuss traditional simulation
techniques without too much emphasis on finance and risk management. They are
more suitable for a traditional audience in statistics.

In finance, there are several closely related texts. A comprehensive treatise on
simulations in finance is given in the book by Glasserman (2003). A more succinct
treatise on simulations in finance is given by Jaeckel (2002). Both of these books
assume a considerable amount of financial background from the readers. They are
intended for readers at a more advanced level. A book on simulation based on MAT-
LAB is Brandimarte (2006). The survey article by Broadie and Glasserman (1998)
offers a succinct account of the essence of simulations in finance. For readers inter-
ested in knowing more about the background of risk management, the two special
volumes of Alexander (1998), the encyclopedic treatise of Crouchy, Galai, and Mark
(2000), and the special volume of Dempster (2002) are excellent sources. The recent
monograph of McNeil, Frey, and Embrechts (2005) offers an up-to-date account on
topics of quantitative risk management.

The present text can be considered as a synergy between Ross (2002) and Glasser-
man (2003), but at an intermediate level. We hope that readers with some (but not
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Figure 3.1 Densities of a lognormal distribution with mean e0.5 and variance e(e − 1), that
is, 𝜇 = 0 and 𝜎2 = 1 and a standard normal distribution.
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highly technical) background in either statistics or finance can benefit from reading
this book.

3.5 EXERCISES

1. Verify Equation 3.3.

2. Explain the possible difficulties in implementing quadrature methods to evaluate
high dimensional numerical integrations.

3. Using either Splus or Visual Basic, simulate 1,000 observations from a lognor-
mal distribution with a mean e2 and variance e4(e2 − 1). Calculate the sample
mean and sample variance for these observations and compare their values with
the theoretical values.

4. Let a stock have price S at time 0. At time 1, the stock price may rise to Su with
probability p or fall to Sd with probability (1 − p). Let RS = (S1 − S)∕S denote the
return of the stock at the end of period 1.

(a) Calculate mS = E(RS).
(b) Calculate 𝑣S =

√
Var(RS).

(c) Let C be the price of a European call option of the stock at time 0 and C1 be the
price of this option at time 1. Suppose that C1 = Cu when the stock price rises
to Su and C1 = Cd when the stock price falls to Sd. Correspondingly, define the
return of the call option at the end of period 1 as RC = (C1 − C)∕C. Calculate
mC = E(RC).

(d) Show that 𝑣C =
√
Var(RC) =

√
p(1 − p)(Cu − Cd)∕C.

(e) Let Ω = (Cu−Cd)
C

∕ (Su−Sd)
S

, the so-called elasticity of the option. Show that
𝑣C = Ω𝑣S.

The solutions and/or additional exercises are available online at http://www.sta.cuhk
.edu.hk/Book/SRMS/.

http://www.sta.cuhk


4
BROWNIAN MOTIONS AND ITÔ’S
RULE

4.1 INTRODUCTION

In this chapter, we learn about the notion of Brownian motion and geometric Brown-
ian motion (GBM), the latter being one of the most popular models in financial theory.
In addition, the issue of Itô’s calculus is also introduced. The key element of this last
concept is to develop an operational understanding of Itô’s calculus so that readers
will be able to do simple stochastic integration such as ∫ 1

0 W2(t) dW(t). Finally, we
learn how to simulate these processes and study their corresponding features.

4.2 WIENER AND ITÔ’S PROCESSES

Consider the model defined by

W(tk+1) = W(tk) + 𝜖tk

√
Δt, (4.1)

where tk+1 − tk = Δt, and k = 0,… ,N with t0 = 0. In this equation, 𝜖tk
∼ N(0, 1) are

identical and independent distributed (i.i.d.) random variables. Furthermore, assume
that W(t0) = 0. This is known as the random walk model (except for the factor

√
Δt,

this equation matches with the familiar random walk model introduced in elementary

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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courses). Note that from this model, for j < k,

W(tk) − W(tj) =
k−1∑
i=j

𝜖ti

√
Δt.

There are a number of consequences as follows:

1. As the right-hand side is a sum of normal random variables, it means that
W(tk) − W(tj) is also normally distributed.

2. By taking expectations, we have

E(W(tk) − W(tj)) = 0,

Var(W(tk) − W(tj)) = E[
k−1∑
i=j

𝜖ti

√
Δt]2 = (k − j)Δt = tk − tj.

3. For t1 < t2 ≤ t3 < t4,

W(t4) − W(t3) is uncorrelated with W(t2) − W(t1).

Equation 4.1 provides a way to simulate a standard Brownian motion (Wiener pro-
cess). To see how, consider partitioning [0, 1] into n subintervals each with length 1

n
.

For each number t in [0, 1], let [nt] denote the greatest integer part of it. For example,
if n = 10 and t = 1

3
, then [nt] = [ 10

3
] = 3. Now define a stochastic process in [0, 1] as

follows. For each t in [0, 1], define

S[nt] =
1√
n

[nt]∑
i=1

𝜖i, (4.2)

where 𝜖i are i.i.d. standard normal random variables. Clearly,

S[nt] = S[nt]−1 + 𝜖[nt]
1√
n
, (4.3)

which is a special form of Equation 4.1 with Δt = 1
n

and W(t) = S[nt]. Furthermore,
we know that at t = 1,

S[nt] = Sn = 1√
n

n∑
i=1

𝜖i,

has a standard normal distribution. Also, by the Central Limit Theorem, we know
that Sn tends to a standard normal random variable in distribution even if the 𝜖i are
only i.i.d. but not necessarily normally distributed. The idea is that by taking the limit
as n tends to ∞, the process S[nt] would tend to a Wiener process in distribution.
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Figure 4.1 Sample paths of the process S[nt] for different n and the same sequence of 𝜖i.

Consequently, to simulate a sample path of a Wiener process, all we need to do is to
iterate Equation 4.3. Figure 4.1 shows the simulations on the basis of Equation 4.3.

To generate Figure 4.1 in Visual Basic for Applications, go to the Online Sup-
plementary and download the file Chapter 4 Generate Brownian Motion Paths with
different n.

To generate Figure 4.2 in Visual Basic for Applications, go to the Online Sup-
plementary and download the file Chapter 4 Sample paths of Brownian Motion on
[0,1].

In other words, by taking limit as Δt tends to zero, we get a Wiener process
(Brownian motion), that is,

dW(t) = 𝜖(t)
√

dt,

where 𝜖(t) are uncorrelated standard normal random variables. We can interpret this
equation as a continuous-time approximation of the random walk model (Eq. 4.1);
see Chan (2010). Of course, such an approximation can be dubious because we do
not know if this limiting operation is well defined. In more advanced courses in prob-
ability, see Billingsley (1999), for example, it is shown that this limiting operation
is well defined, and, indeed, we obtain a Wiener process as a limit of the aforemen-
tioned operation. Formally, we define a Wiener process W(t) as a stochastic process
as follows.

Definition 4.1 A Wiener process W(t) is a stochastic process that satisfies the
following properties:

• For s < t, W(t) − W(s) is a normally distributed random variable with mean 0
and variance t − s.

• For 0 ≤ t1 < t2 ≤ t3 < t4, W(t4) − W(t3) is uncorrelated with W(t2) − W(t1).
This is known as the independent increment property.

• W(t0) = 0 with probability one.
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Figure 4.2 Sample paths of Brownian motions on [0,1].
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From this definition, we can deduce a number of properties.

1. For t < s, E(W(s)|W(t)) = E(W(s) − W(t) + W(t)|W(t)) = W(t). This is known
as the martingale property of the Brownian motion.

2. The process W(t) is nowhere differentiable. Consider

E

((
W(s) − W(t)

s − t

)2
)

= 1
s − t

.

This term tends to ∞ as s − t tends to 0. Hence, the process cannot be differ-
entiable, and we cannot give a precise mathematical meaning to the process
dW(t)∕dt.

3. If we formally represent 𝜉(t) = dW(t)
dt

and call it the white noise process, we can
use it only as a symbol, and its mathematical meaning has to be interpreted in
terms of an integration in the context of a stochastic differential equation.

The idea of Wiener process can be generalized as follows. Consider a process X(t)
satisfying the following equation:

dX(t) = 𝜇 dt + 𝜎 dW(t), (4.4)

where 𝜇 and 𝜎 are constants, and W(t) is a Wiener process defined previously. If we
integrate Equation 4.4 over [0, t], we get

X(t) = X(0) + 𝜇t + 𝜎W(t),

that is, the process X(t) satisfies the integral equation

∫
dX(t) = 𝜇

∫
dt + 𝜎

∫
dW(t).

The process X(t) is also known as a diffusion process or a generalized Wiener pro-
cess. In this case, the solution X(t) can be written down analytically in terms of the
parameters 𝜇 and 𝜎 and the Wiener process W(t). To extend this idea further, we can
let the parameters 𝜇 and 𝜎 depend on the process X(t) as well. In that case, we have
what is known as a general diffusion process or an Itô’s process.

Definition 4.2 An Itô’s process is a stochastic process that is the solution to the
following stochastic differential equation (SDE):

dX(t) = 𝜇(x, t) dt + 𝜎(x, t) dW(t). (4.5)

In this equation, 𝜇(x, t) is known as the drift function, and 𝜎(x, t) is known as the
volatility function of the underlying process. Of course, we need conditions for 𝜇(x, t)
and 𝜎(x, t) to ensure Equation 4.5 has a solution. We do not discuss these technical
details in this chapter; further details can be found in Karatzas and Shreve (1997)
or Dana and Jeanblanc (2002). We will just assume that the drift and the volatility
are “nice” enough functions so that the existence of a stochastic process {X(t)} that
satisfies Equation 4.5 is guaranteed. Again, this equation has to be interpreted through
integration.
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4.3 STOCK PRICE

Recall the multiplicative model

log S(k + 1) = log S(k) +𝑤(k).

The continuous-time version of this equation is

d log S(t) = 𝜈 dt + 𝜎 dW(t).

The right-hand side of this equation is normally distributed with mean 𝜈dt and vari-
ance 𝜎2dt. Solving this equation by integration,

log S(t) = log S(0) + 𝜈t + 𝜎W(t).

Then, E log S(t) = log S(0) + 𝜈t. As the expected log price grows linearly with t, just
as in a continuous compound interest formula, the process S(t) is known as a GBM.
Formally, we define

Definition 4.3 Let X(t) be a Brownian motion with drift 𝜈 and variance 𝜎2, that is,

dX(t) = 𝜈 dt + 𝜎 dW(t).

The process S(t) = eX(t) is called a GBM with drift parameter 𝜇, where 𝜇 = 𝜈 + 1
2
𝜎2.

In particular, S(t) satisfies

dS(t) = 𝜇S(t) dt + 𝜎S(t) dW(t),

and

d log S(t) =
(
𝜇 − 1

2
𝜎2
)

dt + 𝜎 dW(t). (4.6)

To simulate 1,000 GBMs in Visual Basic for Applications with 𝜇 = 0.03 and 𝜎2 =
0.04, go to the Online Supplementary and download the file Chapter 4 Sample path
of Geometric Brownian Motion on [0,1]. A sample path is plotted in Figure 4.3.

Equivalently, S(t) is a GBM starting at S(0) = z if

S(t) = zeX(t) = ze𝜈t+𝜎W(t) = ze(𝜇−
1
2
𝜎2)t+𝜎W(t)

.

Using this definition, we see that for t0 < t1 < · · · < tn, the successive ratios

S(t1)
S(t0)

,
S(t2)
S(t1)

,… ,
S(tn)

S(tn−1)

are independent random variables by virtue of the independent increment property of
the Wiener process. The mean and variance of a geometric Brownian motion can be
computed as in the lognormal distribution. Notice that because a Brownian motion is
normally distributed, we conclude the following:
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Figure 4.3 Geometric Brownian motion.

1. log S(t) = X(t) ∼ N(log S(0) + 𝜈t, 𝜎2t).
2. As S(t) = S(0)eX(t),

E(S(t)) = E(E(S(t)|S(0) = z)) = E(E(ze(𝜈t+𝜎W(t))|S(0) = z))

= ze(𝜇−
1
2
𝜎2)tE(e𝜎W(t))

= ze(𝜇−
1
2
𝜎2)tE(e𝜎

√
t𝜉) (𝜉 = W(t)∕

√
t ∼ N(0, 1))

= ze(𝜇−
1
2
𝜎2)te

1
2
𝜎2t

= ze𝜇t = S(0)e𝜇t.

This equation has an interesting economic implication in the case where 𝜇 is
positive but small relative to 𝜎2. On one hand, if 𝜇 > 0, then the mean value
E(S(t)) tends to ∞ as t tends to ∞. On the other hand, if 0 < 𝜇 <

1
2
𝜎2, then

the process X(t) = X(0) + (𝜇 − 1
2
𝜎2)t + 𝜎W(t) has a negative drift, that is, it

is drifting in the negative direction as t tends to ∞. It is intuitively clear that
(which can be shown mathematically) X(t) tends to −∞. As a consequence,
the original price S(t) = S(0)eX(t) tends to 0. The GBM S(t) is drifting closer
to zero as time goes on, yet its mean value E(S(t)) is continuously increasing.
This example demonstrates the fact that the mean function sometimes can be
misleading in describing the process.

3. Similarly, we can show that

Var(S(t)) = S(0)2e2𝜈t+𝜎2t(e𝜎2t − 1) = S(0)2e2𝜇t(e𝜎2t − 1).

4.4 ITÔ’S FORMULA

In the preceding section, we define S(t) in terms of log S(t) as a Brownian motion.
Although such a definition facilitates many of the calculations, it may sometimes be
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desirable to examine the behavior of the original price process S(t) directly. To see
how this can be done, first recall from calculus that

d log S(t) = dS(t)
S(t)

.

We might be tempted to substitute this elementary fact into Equation 4.6 to get

dS(t)
S(t)

= 𝜈 dt + 𝜎 dW(t).

However, this computation is NOT exactly correct because it involves the differential
dW(t). A rule of thumb is that whenever we need to substitute quantities regarding
dW(t), there is a correction term that needs to be accounted for. We shall provide an
argument of this correction term later. For the time being, the correct expression of
the previous equation should be

dS(t)
S(t)

= (𝜈 + 1
2
𝜎2) dt + 𝜎 dW(t)

= 𝜇 dt + 𝜎 dW(t), (4.7)

as 𝜈 = 𝜇 − 1
2
𝜎2. The correction term required when transforming log S(t) to S(t) is

known as the Itô’s lemma. We discuss this in the next theorem. Before doing that,
there are a number of remarks.

Remarks

1. The term dS(t)∕S(t) can be thought of as the differential return of a stock, and
Equation 4.7 says that the differential return possesses a simple form 𝜇 dt +
𝜎 dW(t).

2. Note that in Equation 4.7, it is an equation about the ratio dS(t)∕S(t). This term
can also be thought of as the instantaneous return of the stock. Hence Equation
4.7 is describing the dynamics of the instantaneous return process.

3. In the case of a deterministic dynamics, that is, without the stochastic com-
ponent dW(t) in Equation 4.7, this equation reduces to the familiar form of a
compound return. For example, let P(t) denote the price of a bond that pays $1
at time t = T . Assume that the interest rate r is constant over time and there are
no other payments before maturity; the price of the bond satisfies

dP(t)
P(t)

= r dt.

In other words, P(t) = P(0)ert = er(t−T), after taking the boundary condition
P(T) = 1 into account.
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4. Note that Equation 4.7 provides a way to simulate the price process S(t). Sup-
pose we start at t0 and let tk = t0 + kΔt. According to Equation 4.7, the simu-
lation equation is

S(tk+1) − S(tk) = 𝜇S(tk)Δt + 𝜎S(tk)𝜖(tk)
√
Δt,

where 𝜖(tk) are i.i.d. standard normal random variables. Iterating this equation
we get

S(tk+1) = [1 + 𝜇Δt + 𝜎𝜖tk
√
Δt]S(tk), (4.8)

which is a multiplicative model, but the coefficient is normal rather than log-
normal. So this equation does not generate the lognormal price distribution.
However, when Δt is sufficiently small, the differences may be negligible.

5. Instead of using Equation 4.7, we can use Equation 4.6 for the log prices and
get

log S(tk+1) − log S(tk) = 𝜈Δt + 𝜎𝜖(tk)
√
Δt.

This equation leads to

S(tk+1) = e𝜈Δt+𝜎𝜖(tk)
√
ΔtS(tk), (4.9)

which is also a multiplicative model, but now the random coefficient is log-
normal. In general, we can use either Equation 4.8 or Equation 4.9 to simulate
stock prices.

With these backgrounds, we are now ready to state the celebrated Itô’s lemma,
which accounts for the correction term.

Theorem 4.1 Suppose the random process x(t) satisfies the diffusion equation

dx(t) = a(x, t) dt + b(x, t) dW(t),

where W(t) is a standard Brownian motion. Let the process y(t) = F(x, t) for some
function F. Then the process y(t) satisfies the Itô’s equation

dy(t) =
(
𝜕F
𝜕x

a + 𝜕F
𝜕t

+ 1
2
𝜕2F
𝜕x2

b2

)
dt + 𝜕F

𝜕x
b dW(t). (4.10)

Proof. Observe that if the process is deterministic, ordinary calculus shows that for
a function of two variables such as y(t) = F(x, t), the total differential dy is given by

dy = 𝜕F
𝜕x

dx + 𝜕F
𝜕t

dt

= 𝜕F
𝜕x

(a dt + b dW) + 𝜕F
𝜕t

dt.
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Comparing this expression with Equation 4.10, we see that there is an extra correction
term 1

2
𝜕2F
𝜕x2 b2 in front of dt. To see how this term arises, consider expanding the func-

tion F in a Taylor’s expansion up to terms of first order in Δt. Note that as ΔW and
hence Δx are of order

√
Δt, such an expansion would lead to terms with the second

order in Δx. In this case,

y + Δy = F(x, t) + 𝜕F
𝜕x

Δx + 𝜕F
𝜕t

Δt + 1
2
𝜕2F
𝜕x2

(Δx)2

= F(x, t) + 𝜕F
𝜕x

(aΔt + bΔW) + 𝜕F
𝜕t

Δt + 1
2
𝜕2F
𝜕x2

(aΔt + bΔW)2.

Now focus at the quadratic expression of the last term. When expanded, it becomes

a2(Δt)2 + 2ab(Δt)(ΔW) + b2(ΔW)2.

The first two terms of the aforementioned expression are of orders higher than Δt,
so they can be dropped as we only want terms up to the order of Δt. The last term
b2(ΔW)2 is all that remains. Recalling that ΔW ∼ N(0,Δt) (recall the earlier fact that
dW(t) = 𝜖(t)

√
dt), it can be shown that (ΔW)2 → Δt. In other words, we have the

following approximation

dW(t)2 ≅ dt or dW(t) ≅
√

dt.

Substituting this into the expansion, we have

y + Δy = F(x, t) +
(
𝜕F
𝜕x

a + 𝜕F
𝜕t

+ 1
2
𝜕2F
𝜕x2

b2

)
Δt + 𝜕F

𝜕x
bΔW.

Taking limit as Δt → 0 and noting y(t) = F(x, t) complete the proof. ◽

Example 4.1 Suppose S(t) satisfies the geometric Brownian motion equation

dS(t) = 𝜇S(t) dt + 𝜎S(t) dW(t).

Now use Itô’s formula to find the equation governing the process F(S(t)) = log S(t).
Using Equation 4.10, we identify a = 𝜇S and b = 𝜎S. Furthermore, we know that
𝜕F∕𝜕S = 1∕S and 𝜕2F∕𝜕S2 = −1∕S2. According to Equation 4.10, we get

d log S =
(

a
S
− 1

2
b2

S2

)
dt + b

S
dW = (𝜇 − 1

2
𝜎2) dt + 𝜎 dW,

which agrees with the earlier discussion.

Example 4.2 Evaluate

∫

t

0
s dW(s).
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To evaluate this integral, let us first guess the answer to be the one given by the clas-
sical integration by parts formula. That is, we might guess tW(t) − ∫

t
0 W(s) ds to be

the answer. To verify it, we need to differentiate this quantity to see if it matches the
answer. To do this, use the following steps:

1. Let X(t) = W(t), then dX(t) = dW(t) and we identify a = 0 and b = 1 in
Equation 4.10.

2. Let Y(t) = F(W(t)) = tW(t). Then 𝜕F∕𝜕W = t, 𝜕2F∕𝜕W2 = 0, and 𝜕F∕𝜕t =
W(t).

3. Substitute these expressions into Itô’s Lemma, we have dY(t) = t dW(t) +
W(t) dt.

4. Integrating the preceding equation, we have

Y(t) =
∫

t

0
s dW(s) +

∫

t

0
W(s) ds,

that is,

∫

t

0
s dW(s) = tW(t) −

∫

t

0
W(s) ds,

as required.

Example 4.3 Evaluate

∫

t

0
W(s) dW(s).

First guess an answer, W2(t)∕2, say. Is this answer correct? To check, we differentiate
again and apply Itô’s Lemma. Using the recipe,

1. Let X(t) = W(t), then dX(t) = dW(t), and we identify a = 0 and b = 1 in
Equation 4.10.

2. Let Y(t) = F(W(t)) = W2(t)∕2. Then 𝜕F∕𝜕W = W, 𝜕2F∕𝜕W2 = 1, and
𝜕F∕𝜕t = 0.

3. Recite Itô’s Lemma:

dY(t) =
[
𝜕F
𝜕X

a + 𝜕F
𝜕t

+ 1
2
𝜕2F
𝜕X2

b2

]
dt + 𝜕F

𝜕X
b dW(t),

so that
dY(t) = 1

2
dt + W(t) dW(t).

4. Integrating the preceding equation, we get

W2(t)∕2 = Y(t) = t
2
+
∫

t

0
W(s) dW(s).
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In other words,

∫

t

0
W(s) dW(s) = W2(t)

2
− t

2
!!!

5. This time, our initial guess was not correct. We need the extra correction term
t
2

from Itô’s Lemma.

Example 4.4 Let Wt be a standard Brownian motion and let Yt = W3
t . Evaluate dYt.

Let Xt = Wt and F(X, t) = X3
t . Then the diffusion is dXt = dWt with a = 0 and

b = 1. Further
𝜕F
𝜕X

= 3X2,
𝜕2F
𝜕X2

= 6X,
𝜕F
𝜕t

= 0.

Using Itô’s lemma, we have

dYt = 3Wt dt + 3W2
t dWt.

Integrating both sides of this equation, we get

∫

t

0
dYs =

∫

t

0
3Ws ds +

∫

t

0
3W2

s dWs,

Yt = W3
t = 3

∫

t

0
Ws ds + 3

∫

t

0
W2

s dWs,

In other words,

∫

t

0
W2

s dWs =
W3

t

3
−
∫

t

0
Ws ds.

In general, one gets

∫

t

0
Wm

s dWs =
Wm+1

t

m + 1
− m

2 ∫

t

0
Wm−1

s ds, m = 0, 1, 2,… . (4.11)

Example 4.5 Let

dXt =
1
2

Xt dt + Xt dWt. (4.12)

Evaluate d log Xt.

From the given diffusion, we have a = Xt

2
and b = Xt. Let Yt = F(X, t) = log Xt.

Then
𝜕F
𝜕X

= 1
X
,

𝜕2F
𝜕X2

= − 1
X2

,
𝜕F
𝜕t

= 0.

Using Itô’s lemma, we get dYt = d log Xt = dWt. That is, Yt = Wt Therefore, Xt = eWt

is a solution to Equation 4.12.
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Example 4.6 Let the diffusion be

dXt =
1
2

dt + dWt. (4.13)

Evaluate d eXt .

From the given diffusion, we have again a = 1
2

and b = 1. Let Yt = F(X, t) = eXt .
Then

𝜕F
𝜕X

= eXt ,
𝜕2F
𝜕X2

= eXt ,
𝜕F
𝜕t

= 0.

Using Itô’s lemma, we get dYt = eXt dt + eXt dWt so that

dYt = Yt dt + Yt dWt.

Example 4.7 Find the solution to the stochastic differential equation

dXt = Xt dt + dWt, X0 = 0.

Multiplying the integrating factor e−t to both sides of the SDE, we have

e−t dXt = e−tXt dt + e−t dWt.

Let Yt = e−tXt. Then Y0 = 0 and by means of Itô’s lemma, we have

dYt = e−t dWt.

Integrating both sides of this equation,

Yt − Y0 =
∫

t

0
e−s dWs,

so that

Xt = etYt =
∫

t

0
e(t−s) dWs.

More generally, if we are given the SDE

dXt = 𝜇Xt dt + 𝜎 dWt,

then using the same method by considering the process Yt = e−𝜇tXt, it can be easily
shown that the solution to this SDE is given by the process

Xt = 𝜎
∫

t

0
e𝜇(t−s) dWs + X0.

Such a process is known as the Ornstein–Uhlenbeck process, which is often used in
modeling bond prices.
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4.5 EXERCISES

1. Let Wt be a Wiener process. Now is at time t0. Find the mean and variance of Xt
if

(a) Xt = 𝜎1

(
Wt − Wt2

)
− 𝜎2

(
Wt1

− Wt0

)
, t > t2 > t1 > t0.

(b) Xt = 𝜎1

(
Wt − Wt2

)
− 𝜎2

(
Wt1

− Wt0

)
, t > t1 > t2 > t0.

(c) Xt =
∑n

j=1 f (Wtj−1
)
(

Wtj
− Wtj−1

)
, t0 < t1 < · · · tn = t.

(d) Use (c) to show that

E
[
∫

t

0
f (W𝜏 , 𝜏) dW𝜏

]
= 0

and

E
[
∫

t

0
f (W𝜏 , 𝜏) dW𝜏

]2

=
∫

t

0
Ef (W𝜏 , 𝜏)2d𝜏.

Notice that the aforementioned two identities are known as Itô’s identities.

2. Let Xt satisfy the stochastic differential equation

dXt = −1
3

dt + 1
2

dWt,

where X0 = 0 and Wt is a standard Brownian motion process. Define St = eXt so
that S0 = 1.

(a) Find the stochastic differential equation that governs St.

(b) Simulate 10 independent paths of St for t = 1,… , 30. Call these paths Si
t, i =

1,… , 10 and plot them on the same graph.

(c) What can you conclude about St for t large?

(d) With n = 10, evaluate

S30 = 1
n

n∑
i=1

Si
30 (4.14)

at t = 30.

(e) Simulate 100 independent paths and calculate Equation 4.14 with n = 100.
What can you conclude about S1000 when n tends to infinity?

3. A stock price is governed by

dS(t) = aS(t) dt + bS(t) dW(t),

where a and b are given constants and W(t) is a standard Brownian motion pro-
cess. Find the stochastic differential equation that governs

G(t) =
√

S(t).
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4. Consider a stock price S governed by the geometric Brownian motion process

dS(t)
S(t)

= 0.10 dt + 0.30 dW(t),

where W(t) is a standard Brownian motion process.

(a) Using Δt = 1∕12 and S(0) = 1, simulate 5,000 years of the process log S(t)
and evaluate

1
t

log S(t) (4.15)

as a function of t. Note that Equation 4.15 tends to a limit p. What is the
theoretical value of p? Does your simulation match with this value?

(b) Evaluate
1
t
{log S(t) − pt}2 (4.16)

as a function of t. Does this tend to a limit?

5. Simulate a standard Brownian motion process W(t) at grids 0 <
1
n
<

2
n
< · · · <

n−1
n

< 1 with n = 10, 000. Let Wi = W
(

i
n

)
for i = 0,… , n with W(0) = 0.

Suppose you want to evaluate the integral

∫

1

0
W(s) dW(s) (4.17)

via the approximating sum

S𝜖 =
n−1∑
i=0

{(1 − 𝜖)Wi + 𝜖Wi+1}{Wi+1 − Wi}. (4.18)

(a) On the basis of simulated values of Wi, use Equation 4.18 to evaluate
Equation 4.17 with 𝜖 = 0. Does your result match with the one obtained
from Itô’s formula?

(b) On the basis of simulated values of Wi, use Equation 4.18 to evaluate
Equation 4.17 with 𝜖 = 1

2
. This is known as the Stratonovich integral. Using

your calculated results, can you guess the difference between Itô’s integral
and the Stratonovich integral?

6. Let Wt denote a standard Brownian motion process.

(a) Let Yt = F(Wt) = eWt . Write down the diffusion equation that governs Yt.

(b) Evaluate ∫
t

0 eWs dWs.

7. Denote Xt as the Brownian motion with drift 𝜇 and volatility 𝜎.

(a) Find df and dg where f (t,X) = tXt and g(t,X) = tX2
t .
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(b) Financial market practitioners usually consider the time average of the
underlying asset price when making investment decision. If the asset evolves
as a Brownian motion Xt, then the time average line can be viewed as a
stochastic variable

At =
1
t ∫

t

0
X𝜏 d𝜏.

What is the distribution for At?

(c) Suppose X0 = 70, 𝜇 = 0.5, and 𝜎 = 0.4. Simulate X1 and A1 with Δt = 0.01.
What are the sample means and variances for X1 and A1 for 1,000 simu-
lations? What is the covariance between the two random variables, X1 and
A1?

(d) Comment on your simulation result.

The solutions and/or additional exercises are available online at http://www.sta.cuhk
.edu.hk/Book/SRMS/.

http://www.sta.cuhk


5
BLACK–SCHOLES MODEL AND
OPTION PRICING

5.1 INTRODUCTION

In this chapter, we apply Itô’s Lemma to derive the celebrated option pricing for-
mula by Black and Scholes (1973) in the early 1970s. This formula has far-reaching
consequences and plays a fundamental role in modern option pricing theory. Imme-
diately after Black and Scholes, Merton (1973) strengthened and improved the option
pricing theory in several ways. To recognize their contributions, Merton and Scholes
were awarded the Nobel prize in economics in 1997.

What is an option? An option is a financial derivative (contingent claim) that gives
the holder the right (but not the obligation) to buy or to sell an asset for a certain price
by a certain date. The option that gives the holder a purchasing right is termed a
call option, whereas the put option gives the holder the selling right. The price in
the contract is known as the exercise price or strike price (K); the date is known as
the expiration or maturity (T). American options can be exercised at any time up to
expiration. European options can be exercised only on the expiration date. As option
holders are given a right, they have to pay an option premium to enter the contract.
This premium is usually known as the option price.

Four basic option positions are possible:

1. A long position in a call option. Payoff = max(ST − K, 0).
2. A long position in a put option. Payoff = max(K − ST , 0).

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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3. A short position in a call option. Payoff = −max(ST − K, 0).
4. A short position in a put option. Payoff = −max(K − ST , 0).

Notice that the long position in a put option is different from the short position of a
call option. A long position in an option always has a non-negative payoff, whereas a
short position in an option always has a nonpositive payoff, but the option premium
is collected up front. Option pricing means determining the correct option premium.

To illustrate the Black–Scholes formula, we first discuss some fundamental con-
cepts in a one period binomial model from which a risk-neutral argument is intro-
duced.

5.2 ONE PERIOD BINOMIAL MODEL

Consider a binomial model in one period. Let S0 and f denote the initial price of one
share of a stock and an option on the stock. After one period, the price of the stock can
be either uS0 or dS0, where u > 1 designates an upward movement of the stock price
and d < 1 designates a downward movement of the stock price. Correspondingly, the
payoff of the option after one period can be either fu or fd depending on whether
the stock moves up or down. For instance, fu = max(Su − K, 0) and fd = max(Sd −
K, 0) for a call option. Schematically, the one period outcome can be represented by
Figure 5.1.

Now consider constructing a hedging portfolio as follows. Suppose that we long
(buy and hold) Δ shares of the stock and short (sell) one call option (European).
Suppose that the option lasts for one period T and, during the life of the option, the
stock can move either up from S0 to uS0 or down from S0 to dS0. Furthermore, suppose
that the risk-free rate in this period is denoted by r. The value of this hedging portfolio
in the next period is

ΔuS0 − fu, if stock moves up,

ΔdS0 − fd, if stock moves down.

This portfolio will be risk free if Δ is chosen so that the value of this portfolio is the
same at the end of one period regardless of the stock going up or down, that is,

ΔuS0 − fu = ΔdS0 − fd.

S0
f

uS0
fu

dS0
fd

Figure 5.1 One period binomial tree.
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Solving for Δ, we get

Δ =
fu − fd

uS0 − dS0
.

As this portfolio is risk free in the sense that it attains the same value regardless of the
outcome of the stock, it must earn the risk-free rate. Otherwise, one could take advan-
tage of an arbitrage opportunity. For example, if the return of this hedging portfolio
is larger than the risk-free rate, one could borrow money from the bank to purchase
this portfolio and lock in the fixed return. After one period, the proceeds from the
portfolio can be used to repay the loan and the arbitrageur pockets the difference.
Consequently, the present value of this portfolio must equal (ΔuS0 − fu)e−rT . If we
let f denote the value of the option at present, then the present value of the portfolio
is S0Δ − f , and according to the no arbitrage assumption,

S0Δ − f = (ΔuS0 − fu)e−rT .

Consequently,

f = S0Δ − (ΔuS0 − fu)e−rT

= S0Δ(1 − ue−rT ) + fue−rT

=
fu − fd
u − d

(1 − ue−rT ) + fue−rT

= e−rT

[
erT fu − fd

u − d
(1 − ue−rT ) + fu

]

= e−rT

(
erT fu − fd

u − d
− u

fu − fd
u − d

+ fu
u − d
u − d

)

= e−rT (fu
erT − d
u − d

+ fd
u − erT

u − d
)

= e−rT [p fu + (1 − p)fd],

where p = erT−d
u−d

. This identity has a very natural interpretation. If we let the value p,
just defined as the probability of the stock, move up in a risk-neutral world, then the
aforementioned formula simply states the fact that, in the risk-neutral world,

f = e−rT Ê(f ) = e−rT (p fu + (1 − p)fd),

that is, the expected value of the option in one period discounted by the risk-free rate
equals the present value of the option. Note that the expected value in this case is
denoted by Ê, which is the expectation taken under the new probability measure p.



60 BLACK–SCHOLES MODEL AND OPTION PRICING

For this reason, p is known as the risk-neutral probability. The same reasoning can
be used to evaluate the stock itself. Note that

Ê(S1) = puS0 + (1 − p)dS0

= pS0(u − d) + dS0

= erT − d
u − d

S0(u − d) + dS0

= erT S0.

In other words, the stock grows as a risk-free rate under the risk-neutral probability (in
the risk-neutral world). Therefore, setting the probability of the stock price moving
up to be p is tantamount to assuming that the return of the stock grows as the risk-free
rate in a risk-neutral world. In a risk-neutral world, all individuals are indifferent to
risk and require no compensation for risk. The expected return of all securities is the
risk-free interest rate. It is for this reason that such a computation is usually known
as the risk-neutral valuation, and it is equivalent to the no arbitrage assumption in
general.

Example 5.1 Suppose the current price of one share of a stock is $20 and in a period
of 3 months, the price will be either $22 or $18. Suppose we sold a European call
option with a strike price of $21 in 3 months. Let the annual risk-free rate be 12% and
let p denote the probability that the stock moves up in 3 months in the risk-neutral
world. Note that the payoff of the option is either fu = $1 if the stock moves up or
fd = $0 if the stock moves down. How much is the option, f , worth today? To find f ,
we can use the risk-neutral valuation method. Recall that from the aforementioned
discussion,

22p + 18(1 − p) = 20e0.12∕4,

so that p = 0.6523. Using the expected payoff of the option, we get

Ê(f ) = pfu + (1 − p)fd = p + (1 − p)0 = p = 0.6523.

Therefore, the value of the option for today is

f = e−rT Ê(f ) = e−0.12∕4(pfu + (1 − p)fd) = 0.633.

Alternatively, we can try to solve the same problem using the arbitrage-free argu-
ment.

Example 5.2 With the same parameters as in the preceding example, consider solv-
ing for Δ. Firstly, as we want a risk-free profit for the hedging portfolio, we want to
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purchase Δ shares of the stock and short one European call option expiring in 3
months. After 3 months, the value of the portfolio can be either

22Δ − 1, if the stock price moves to $22,

or

18Δ, if the stock price moves to $18.

This portfolio is risk free if Δ is chosen so that the value of the portfolio remains the
same for both alternatives, that is,

22Δ − 1 = 18Δ 𝑤hich means Δ = 0.25.

The value of the portfolio in 3 months becomes

22 × 0.25 − 1 = 4.5 = 18 × 0.25.

By the no arbitrage consideration, this risk-free profit must earn the risk-free interest
rate. In other words, the value of the portfolio today must equal the present value of
$4.5, that is, 4.5e−0.12∕4 = 4.367. If the value of the option today is denoted by f , then
the present value of the portfolio equals

20 × 0.25 − f = 4.5e−0.12∕4 = 4.367.

Solving for f gives
f = 0.633,

which matches with the answer of the preceding example.

In general, this principle can be applied to a multiperiod binomial tree. We do not
go into the analysis of a multiperiod model and refer the readers to Chapter 11 of
Hull (2006) for further details. For a comprehensive discussion on the discrete-time
approach, see Pliska (1997). Although these two examples are illustrated with a call
option, by the same token, the same principle can be used to price a put option; again
details can be found in Hull (2006).

5.3 THE BLACK–SCHOLES–MERTON EQUATION

The Black–Scholes option pricing equation has initiated modern theory of finance.
Its development has triggered an enormous amount of research and revolutionized the
practice of finance. The equation was developed under the assumption that the price
fluctuation of the underlying security can be described by a diffusion process studied
earlier. The logic behind the equation is conceptually identical to the binomial lattice:
at each moment two available securities are combined to construct a portfolio that
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reproduces the local behavior of a contingent claim. Historically, the Black–Scholes
theory predates the binomial lattice.

To begin, let S denote the price of an underlying security (stock) governed by a
geometric Brownian motion over a time interval [0,T] by

dS = 𝜇S dt + 𝜎S dW, (5.1)

where W is a standard Brownian motion process. Assume further that there is also a
risk-free asset (bond) carrying an interest rate r over the time interval [0,T] such that

dB = rB dt. (5.2)

Consider a contingent claim that is a derivative (call option) of S. The price of this
derivative is a function of S and t, that is, let f (S, t) be the price of the claim at time t
when the stock price is S. Our goal is to find an equation that models the behavior of
f (S, t). This goal is attained by the celebrated Black–Scholes–Merton equation.

Theorem 5.1 Using the notation just defined, and assuming that the price and the
bond are described by the geometric Brownian motion (Eq. 5.1) and the compound
interest rate model (Eq. 5.2), respectively, the price of the derivative of this security
satisfies

𝜕f

𝜕t
+

𝜕f

𝜕S
rS + 1

2
𝜕2f

𝜕S2
𝜎2S2 = rf . (5.3)

Proof. The idea of this proof is the same as the binomial lattice. In deriving the
binomial model, we form a portfolio with portions of the stock and the bond so
that the portfolio exactly matches the return characteristics of the derivative in a
period-by-period manner. In the continuous-time framework, the matching is done
at each instant. Specifically, by Itô’s lemma, recall that

df =
(
𝜕f

𝜕S
𝜇S +

𝜕f

𝜕t
+ 1

2
𝜕2f

𝜕S2
𝜎2S2

)
dt +

𝜕f

𝜕S
𝜎S dW. (5.4)

This is also a diffusion process for f with drift ( 𝜕f
𝜕S

𝜇S + 𝜕f
𝜕t
+ 1

2
𝜕2f
𝜕S2 𝜎

2S2) and diffusion

coefficient 𝜕f
𝜕S

𝜎S.
Construct a portfolio of S and B that replicates the behavior of the derivative. At

each time t, we select an amount xt of the stock and an amount yt of the bond, giving a
total portfolio value of G(t) = xtS(t) + ytB(t). We wish to select xt and yt so that G(t)
replicates the derivative value f (S, t). The instantaneous gain in value of this portfolio
due to changes in security prices is

dG = xt dS + yt dB

= xt(𝜇S dt + 𝜎S dW) + ytrB dt

= (xt𝜇S + ytrB) dt + xt𝜎S dW. (5.5)
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As we want the portfolio gain of G(t) to behave similarly to the gain of f , we match
the coefficients of dt and dW in Equation 5.5 to those of Equation 5.4. Firstly, we
match the coefficient of dW in these two equations and we get

xt =
𝜕f

𝜕S
.

Secondly, as G(t) = xtS(t) + ytB(t), we get

yt =
1

B(t)
(G(t) − xtS(t)).

Thirdly, remember we want G = f , therefore,

yt =
1

B(t)

(
f (S, t) −

𝜕f

𝜕S
S(t)

)
.

Substituting this expression into Equation 5.5 and matching the coefficient of dt in
Equation 5.4, we have

𝜕f

𝜕S
𝜇S + 1

B(t)

(
f (S, t) −

𝜕f

𝜕S
S(t)

)
rB(t) =

𝜕f

𝜕S
𝜇S +

𝜕f

𝜕t
+ 1

2
𝜕2f

𝜕S2
𝜎2S2.

Consequently,
𝜕f

𝜕t
+

𝜕f

𝜕S
rS + 1

2
𝜕2f

𝜕S2
𝜎2S2 = rf .

◽

Remarks

1. If f (S, t) = S, then 𝜕f
𝜕t

= 0, 𝜕f
𝜕S

= 1, and 𝜕2f
𝜕S2 = 0 and Equation 5.3 reduces to rS =

rS so that f (S, t) = S is a solution to Equation 5.3.

2. As another simple example, consider a bond where f (S, t) = ert. This is a trivial
derivative of S, and it can be easily shown that this f satisfies Equation 5.3.

3. In general, Equation 5.3 provides a way to price a derivative by using the appro-
priate boundary conditions. Consider a European call option with strike price
K and maturity T . Let the price be C(S, t). Clearly, this derivative must satisfy

C(0, t) = 0,

C(S,T) = max(S − K, 0).

For a European put option, the boundary conditions are

P(∞, t) = 0,

P(S,T) = max(K − S, 0).
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Other derivatives may have different boundary conditions. For a knock-out
option that will be canceled if the underlying asset breaches a prespecified bar-
rier level (H), in addition to the aforementioned conditions, we have an extra
boundary condition

f (S = H, t) = 0.

4. With these boundary conditions, one can try to solve for the function f from
the Black–Scholes equation. One problem is that this is a partial differential
equation (PDE), and there is no guarantee that an analytical solution exists.
Except in the simple case of a European option, one cannot find an analytic
formula for the function f . In practice, either simulation or numerical methods
have to be used to find an approximate solution.

5. Alternatively, we can derive Equation 5.3 as follows. Construct a portfolio that
consists of shorting one derivative and longing 𝜕f

𝜕S
shares of the stock. Let the

value of this portfolio be Π and let the value of the derivative be f (S, t). Then

Π = −f +
𝜕f

𝜕S
S. (5.6)

The change ΔΠ in the value of this portfolio in the time interval Δt is given by

ΔΠ = −Δf +
𝜕f

𝜕S
ΔS. (5.7)

Recall that S follows a geometric Brownian motion so that

ΔS = 𝜇SΔt + 𝜎SΔW.

In addition, from Equation 5.4, the discrete version of df is

Δf =
(
𝜕f

𝜕S
𝜇S +

𝜕f

𝜕t
+ 1

2
𝜕2f

𝜕S2
𝜎2S2

)
Δt +

𝜕f

𝜕S
𝜎SΔW.

Substituting these two expressions into Equation 5.7, we get

ΔΠ =
(
−
𝜕f

𝜕t
− 1

2
𝜕2f

𝜕S2
𝜎2S2

)
Δt. (5.8)

Note that by holding such a portfolio, the random component ΔW has been
eliminated completely. Because this equation does not involve ΔW, this port-
folio must equal to the risk-free rate during the time Δt. Consequently,

ΔΠ = rΠΔt,
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where r is the risk-free rate. In other words, using Equation 5.8 and Equation
5.6, we obtain

(
𝜕f

𝜕t
+ 1

2
𝜕2f

𝜕S2
𝜎2S2

)
Δt = r(f −

𝜕f

𝜕S
S) Δt.

Therefore,
𝜕f

𝜕t
+

𝜕f

𝜕S
rS + 1

2
𝜕2f

𝜕S2
𝜎2S2 = rf .

It should be noted that the portfolio used in deriving Equation 5.3 is not perma-
nently risk free. It is risk free only for an infinitesimally short period of time. As S
and t change, 𝜕f

𝜕S
also changes. To keep the portfolio risk free, we have to change the

relative proportions of the derivative and the stock in the portfolio continuously.

Example 5.3 Let f denote the price of a forward contract on a non-dividend-paying
stock with delivery price K and delivery date T. Its price at time t is given by

f (S, t) = S − Ke−r(T−t). (5.9)

Hence,
𝜕f

𝜕t
= −rKe−r(T−t),

𝜕f

𝜕S
= 1, and

𝜕2f

𝜕S2
= 0.

Substituting these into Equation 5.3, we get

−rKe−r(T−t) + rS = rf .

Thus, the price formula of f given by Equation 5.9 is a solution of the Black–Scholes
equation, indicating that Equation 5.9 is the correct formula.

The Black–Scholes equation generates two important insights. The first one is the
concept of risk-neutral pricing. As the Black–Scholes equation does not involve the
drift, 𝜇, of the underlying asset price, the option pricing formula should be indepen-
dent of the drift. Therefore, individual preferences toward the performance or the
trend of a particular asset price does not affect the current price of the option on that
asset. The second insight is that one would be able to derive a price representation of
a European option with any payoff function from the equation. It is summarized in
the following theorem.

Theorem 5.2 Consider a European option with payoff F(S) and expiration time
T. Suppose that the continuous compounding interest rate is r. Then, the current
European option price is determined by

f (S, 0) = e−rT Ê[F(ST )], (5.10)
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where Ê denotes the expectation under the risk-neutral probability that is derived
from the risk-neutral process

dS
S

= r dt + 𝜎 dW(t). (5.11)

Proof. Notice that the current price of the option f (S, 0) is a deterministic function
of time t = 0 and the current asset price S. Consider a stochastic process {Xt} that
satisfies

X0 = S and
dXt

Xt
= r dt + 𝜎 dW(t).

Then, f (S, 0) = f (X, 0). Consider the process f (X, t) derived from the stochastic pro-
cess of {Xt}. By Itô’s lemma, the differential form of f is

df =
(
𝜕f

𝜕t
+ rX

𝜕f

𝜕X
+ 1

2
𝜎2X2 𝜕

2f

𝜕X2

)
dt + 𝜎X

𝜕f

𝜕X
dW.

The Black–Scholes equation says that the coefficient of dt is identical to the term rf ;
see Theorem 5.1. The total differential for the pricing function is simplified as

df = rf dt + 𝜎X
𝜕f

𝜕X
dW,

which implies

df − rf dt = 𝜎X
𝜕f

𝜕X
dW.

The left-hand side of the aforementioned equation can be combined with the product
rule of differentiation to yield

ert d
[
e−rtf (X, t)

]
= 𝜎X

𝜕f

𝜕X
dW.

This expression has an equivalent integration form,

e−rT f (XT ,T) − f (X, 0) = 𝜎
∫

T

0
e−rtX

𝜕f

𝜕X
dW.

The right-hand side is a sum of Gaussian processes so that it has an expected value
of zero. After taking expectation on both sides,

Ê
[
e−rT f (XT ,T) − f (X, 0)

]
= 0.

This implies
f (X, 0) = e−rT Ê[f (XT ,T)].
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By the terminal condition specified in the Black–Scholes equation, f (XT ,T) = F(XT ),
the payoff of the option contract. Hence, we have

f (S, 0) = e−rT Ê[F(XT )],

where the expectation with respect to the random variable XT is called the risk-neutral
expectation, and the process {Xt} is called the risk-neutral asset dynamics. To avoid
confusion, financial economists always use the term “asset price process in the
risk-neutral world (St)” to represent the Xt in this proof. It establishes Equations 5.10
and 5.11 and completes the proof. ◽

5.4 BLACK–SCHOLES FORMULA

We are now ready to state the pricing formula of a European call option. A corre-
sponding formula can also be deduced for a European put option. We first establish
a key fact about lognormal random variables.

Lemma 5.1 Let S be a lognormally distributed random variable such that
log S ∼ N(m, 𝜈2) and let K > 0 be a given constant. Then

E(max{S − K, 0}) = E(S)Φ(d1) − KΦ(d2), (5.12)

where Φ(⋅) denotes the distribution function of a standard normal random variable
and

d1 =
1
𝜈
(− log K + m + 𝜈2) = 1

𝜈

(
logE

( S
K

)
+ 𝜈2

2

)
,

d2 =
− log K + m

𝜈
= 1

𝜈

(
logE

( S
K

)
− 𝜈2

2

)
.

Proof. Let g(s) denote the p.d.f. (probability distribution function) of the random
variable S. Then

E(max(S − K, 0)) =
∫

∞

0
max(s − K, 0)g(s) ds =

∫

∞

K
(s − K)g(s) ds.

By definition, as log S ∼ N(m, 𝜈2),

E(S) = e(m+ 1
2
𝜈2) so that logE(S) = m + 1

2
𝜈2.

Define the variable Q as

Q =
log S − m

𝜈
so that Q ∼ N(0, 1).
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The p.d.f. of Q is given by 𝜙(q) = 1√
2𝜋

e−
q2

2 , the p.d.f. of a standard normal random

variable. Since q = log s−m
𝜈

, s = em+q𝜈 so that dq = ds
s𝜈

. Therefore,

E(max(S − K, 0)) =
∫

∞

K
max(s − K, 0)g(s) ds

=
∫

∞

1
𝜈
(log K−m)

(em+q𝜈 − K)g(em+q𝜈)s𝜈 dq

=
∫

∞

1
𝜈
(log K−m)

(em+q𝜈 − K)𝜙(q) dq

=
∫

∞

1
𝜈
(log K−m)

em+q𝜈𝜙(q) dq − K
∫

∞

1
𝜈
(log K−m)

𝜙(q) dq

= I − II. (5.13)

Note that the third equality follows from the fact that the p.d.f. g of a lognormal
random variable S has the form

g(s) = 𝜙

(
log s − m

𝜈

)
1
s𝜈

, so that g(em+q𝜈)s𝜈 = 𝜙(q). (5.14)

We now analyze each of the terms I and II in Equation 5.13. Consider the first term,

I = em+ 𝜈2

2
∫

∞

1
𝜈
(log K−m)−𝜈

𝜙(q − 𝜈) d(q − 𝜈)

= em+ 𝜈2

2

(
1 − Φ

(
log K − m

𝜈
− 𝜈

))

= em+ 𝜈2

2 Φ
(
− log K + m

𝜈
+ 𝜈

)
.

For the second term, we have

II = K
∫

∞

1
𝜈
(log K−m)

𝜙(q) dq = KΦ
(
− log K + m

𝜈

)
.

Substituting these two expressions into Equation 5.13, we have

E(max(S − K, 0)) = em+ 𝜈2

2 Φ
(
− log K + m

𝜈
+ 𝜈

)
− KΦ

(
− log K + m

𝜈

)
.
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Observe that because logE(S∕K) = − log K + m + 𝜈2

2
,

− log K + m

𝜈
+ 𝜈 =

− log K + m + 𝜈2

𝜈

= 1
𝜈

(
logE(S∕K) + 𝜈2

2

)

= d1.

Similarly, it can be easily shown that

d2 =
− log K + m

𝜈
.

This completes the proof of the lemma. ◽

Using this lemma, we are now ready to state the Black–Scholes pricing formula.

Theorem 5.3 Consider a European call option with strike price K and expiration
time T. If the underlying stock pays no dividends during the time [0,T] and if there
is a continuously compounded risk-free rate r, then the price of this contract at time
0, f (S, 0) = C(S, 0), is given by

C(S, 0) = SΦ(d1) − Ke−rTΦ(d2), (5.15)

whereΦ(x) denotes the cumulative distribution function of a standard normal random
variable evaluated at the point x,

d1 = [log(S∕K) + (r + 𝜎2∕2)T] 1

𝜎
√

T
,

d2 = [log(S∕K) + (r − 𝜎2∕2)T] 1

𝜎
√

T

= d1 − 𝜎
√

T .

Proof. The proof of this result relies on the risk-neutral valuation. By Theorem 5.2,
we have

C(S) = e−rT Ê(max{ST − K, 0}), (5.16)

where ST denotes the stock price at time T , Ê denotes the risk-neutral expectation,
and

dS = rS dt + 𝜎S dŴ, (5.17)

In this case, we have
EST = S0erT . (5.18)
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From the preceding lemma, we get

Ê(max{ST − K, 0}) = Ê(ST )Φ(d1) − KΦ(d2).

The remaining job is to identify d1, d2, and Ê(ST). By construction, ÊST = S0erT .
Recalling from Equation 5.17, we can easily deduce from Itô’s lemma that

d log St = 𝛾 dt + 𝜎 dŴt, with 𝛾 = r − 1
2
𝜎2. (5.19)

Consequently,

m = Ê(log ST ) = log S0 + rT − 1
2
𝜎2T ,

𝜈2 = V̂ar(log ST) = 𝜎2T .

According to the lemma,

d1 =
− log K + m + 𝜈2

𝜈

= 1

𝜎
√

T

[
− log K + log S0 +

(
r − 1

2
𝜎2
)

T + 𝜎2T
]

= 1

𝜎
√

T

[
log

(
S0

K

)
+
(

r + 1
2
𝜎2
)

T

]
.

By similar substitutions, it can be easily shown that

d2 = [log(S∕K) + (r − 𝜎2∕2)(T)] 1

𝜎
√

T
= d1 − 𝜎

√
T .

This completes the proof of the Black–Scholes formula (Eq. 5.15). ◽

Example 5.4 Consider a 5-month European call option on an underlying stock with
a current price of $62, strike price $60, annual risk-free rate 10%, and the volatility of
this stock is 20% per year. In this case, S = 62,K = 60, r = 0.1, 𝜎 = 0.2, and T = 5

12
.

Applying Equation 5.15, we get

d1 =
1

0.2
√

5∕12

[
log

(62
60

)
+
(

0.1 + 0.22

2

)
5
12

]

= 0.641287,

d2 = d1 − 0.2
√

5∕12 = 0.512188.

From the normal table, we get Φ(d1) = 0.739332 and Φ(d2) = 0.695740. Conse-
quently,

C = (62)(0.739332) − (60)e−(0.1)(5∕12)(0.695740) = 5.798.
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Remarks

1. Note that the Black–Scholes pricing formula is derived using a risk-neutral
valuation argument in this case. Alternatively, for a given derivative such as a
European call option, we can try to solve the PDE given by the Black–Scholes
Equation 5.3 subject to the explicit boundary conditions given in Remark 3 in
Section 5.3. This was the original idea of Black and Scholes, and it is commonly
known as the PDE approach. Although feasible, due to the complexity of the
PDE of the Black–Scholes equation, the risk-neutral valuation argument offers
a more intuitive approach on the basis of the arbitrage-free argument.

2. For a European put option, the corresponding pricing formula is given by

P = Ke−rTΦ(−d2) − S0Φ(−d1),

where r,K, d1, and d2 are defined as in Equation 5.15.

3. To interpret the Black–Scholes formula, look at what happens to d1 and d2 as
T → 0. If S0 > K, they both tend to∞ so thatΦ(d1) = Φ(d2) = 1 andΦ(−d1) =
Φ(−d2) = 0. This means that

C = S0 − K and P = 0.

On the other hand, if S0 < K, the reverse argument shows d1 and d2 tend to −∞
as T → 0 so that

C = 0 and P = K − S0.

Is this reasonable? When S0 > K, and when T = 0, the call option should be
worth S0 − K and the put option is of course worthless. On the other hand, if
S0 < K and T = 0, the put option should be worth K − S0 and the call option
becomes worthless. Thus, the Black–Scholes formula offers the price that is
consistent with the boundary condition.

4. What happens when T → ∞? In this case, d1 = d2 = ∞ and C = S0,P = 0.
This is known as the perpetual call. If we own the call for a long time, the
stock value will almost certainly increase to a very large value so that the strike
price K is irrelevant. Hence, if we own the call we could obtain the stock later
for essentially nothing, duplicating the position we would have if we initially
bought the stock. Thus, C = S0.

5. The Black–Scholes formula is derived for a European call option under the
situation where the stock pays no dividends. When the underlying stock does
pay dividends at a specific time during the life of the option, a similar formula
to price the option can also be deduced. Again, we refer the interested readers
to Hull (2006) for further details.

6. For an American option where early exercise is allowed, one can no longer find
an exact analytic formula such as Equation 5.15 for the price of a call. Instead,
a range of possible values can be deduced, and details are given in Hull (2006).
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7. In using the Black–Scholes formula, one important quantity required is the
value of 𝜎, the volatility or the risk of the underlying stock. To use the for-
mula, we can estimate 𝜎 from the historical data and put this estimate into the
Black–Scholes equation. Such an approach is known as the historical volatility
approach. On the other hand, one can also use the Black–Scholes formula to
imply the value of 𝜎, known as the implied volatility. In this latter approach,
we substitute the observed price of the derivative as the real price into the
Black–Scholes formula to solve for 𝜎, giving it the name of implied volatility.
This quantity can be used to monitor the market’s opinion about the volatility
of a particular stock. Analysts often calculate implied volatilities from actively
traded options on a certain stock and use them to calculate the price of a less
actively traded option on the same stock.

5.5 EXERCISES

1. A company’s share price is now $60. Six month from now, it will be either $75
with risk-neutral probability 0.7 or $50 with risk-neutral probability 0.3. A call
option exists on the stock that can be exercised only at the end of 6 months with
exercise price of $65.

(a) If you wish to establish a perfectly hedged position, what would you do?

(b) Under each of the two possibilities, what will be the value of your hedged
position?

(c) What is the expected value of option price at the end of the period?

(d) What is the reasonable option price today?

2. Consider the binomial model of Section 5.2.

(a) Show that the European call option price of the two period model is given by

c2 =
[
p2cuu + 2p(1 − p)cud + (1 − p)2cdd

]
e−rT ,

where T is the option maturity and

cuu = max(Su2 − K, 0)
cud = max(Sud − K, 0)
cdd = max(Sd2 − K, 0).

(b) Show by induction that the n-period call price is given by

cn = e−rT
n∑

j=0

{
nCjq

j(1 − q)n−j max
(
Sujdn−j − K, 0

)}
.

(c) Cox, Ross, and Rubinstein (CRR, 1979) propose that u = e𝜎
√
Δt and

d = e−𝜎
√
Δt , where 𝜎 is the annualized asset volatility, are respectively
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appropriate choices for the upward and downward factors in implementing
the binomial model. Show that

lim
n→∞

cn = SΦ(d1) − Ke−rTΦ(d2),

the Black–Scholes call price, if the CRR proposal is adopted.

3. By Theorem 5.2, show the put-call parity relation

p + S = c + Ke−rT .

4. A fixed strike geometric Asian call option has the payoff function max(GT − K, 0)
where

GT = exp

(
1
T ∫

T

0
log St dt

)
.

By Theorem 5.2 and Lemma 5.1, determine the analytical solution for the fixed
strike geometric Asian call option. (Hints: 1. Apply the result of question 7(b) of
Chapter 4, 2. You can find the answer in Chapter 9.)

5. Consider the PDE:

𝜕f

𝜕t
+ 1

2
𝜎2(t, x)

𝜕2f

𝜕x2
+ 𝜇(t, x)

𝜕f

𝜕x
+ a(t, x)f = 0,

f (T , x) = F(x).

By modifying the proof of Theorem 5.2, show that

f (t, x) = E
[
e∫

T
t a(𝜏) d𝜏F(XT)

]
,

where XT is the solution to the SDE:

dX = 𝜇(𝜏,X) d𝜏 + 𝜎(𝜏,X) dW𝜏 , Xt = x.

This result is called the Feynman–Kac formula.

6. Suppose the risk-free interest rate and the volatility of an asset are deterministic
functions of time. That means,

r = r(t) and 𝜎 = 𝜎(t).

(a) Show that the Black–Scholes equation governing European option prices,
f (t, S), is given by

𝜕f

𝜕t
+ 1

2
𝜎2(t)S2 𝜕

2f

𝜕S2
+ r(t)S

𝜕f

𝜕S
− r(t)f = 0.
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(b) Show that the European call option price satisfies:

f (t, S) = e− ∫
T

t r(𝜏) d𝜏 Ê[max(ST − K, 0)],

where
dS𝜏 = r(𝜏)S𝜏 d𝜏 + 𝜎(𝜏)S𝜏 dW𝜏 , 𝜏 > t, and St = S.

Hint: Use the result of question 5.

(c) Hence, show that
f (t, S) = CBS(t, S; r = r, 𝜎 = 𝜎),

where CBS is the Black–Scholes formula for call option with constant param-
eters,

r = 1
T − t ∫

T

t
r(𝜏) d𝜏 and 𝜎 =

√
1

T − t ∫

T

t
𝜎2(𝜏) d𝜏.

7. A stochastic process X(t) is said to be a martingale under a probability measure 
if E [X(t)|X(s), s < 𝜏] = X(𝜏), with probability one.

(a) Consider the asset price dynamics under the risk-neutral measure:

dS = rS dt + 𝜎S dW.

Show that X(t) = S(t) e−rt is a martingale.

(b) Denote C(t, S;T) as the Black–Scholes formula for a European call option
with maturity T . Show that Cer(T−t) is a martingale.

The solutions and/or additional exercises are available online at http://www.sta.cuhk
.edu.hk/Book/SRMS/.

http://www.sta.cuhk


6
GENERATING RANDOM VARIABLES

6.1 INTRODUCTION

The first stage of simulation is the generation of random numbers. Random
numbers serve as the building block of simulation. The second stage of simu-
lation is the generation of random variables on the basis of random numbers.
This includes generating both discrete and continuous random variables of
known distributions. In this chapter, we study techniques for generating random
variables.

6.2 RANDOM NUMBERS

Random numbers can be generated in a number of ways. For example, they were gen-
erated manually or mechanically by spinning wheels or rolling dice in the old days.
Of course, the notion of randomness may be a subjective judgment. Things that look
apparently random may not be random according to the strict definition. The mod-
ern approach is to use a computer to generate pseudo-random numbers successively.
These pseudo-random numbers, although deterministically generated, constitute a
sequence of values having the appearance of uniformly (0, 1) distributed random vari-
ables.

One of the most popular devices to generate uniform random numbers is the con-
gruential generator. Starting with an initial value x0, called the seed, the computer

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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successively calculates the values xn, n ≥ 1 via

xn = axn−1 + c modulo m, (6.1)

where a, c, and m are given positive integers, and the equality means that the value
axn−1 + c is divided by m and the remainder is taken as the value of xn. Each xn is
either 0, 1,… ,m − 1, and the quantity xn

m
is taken as an approximation to the values

of a uniform (0, 1) random variable. As each of the numbers xn assumes one of the
values of 0, 1,… ,m − 1, it follows that after some finite number of generated values,
a value must repeat itself. For example, if we take a = c = 1 and m = 16, then

xn = xn−1 + 1 modulo 16.

With x0 = 1, then the range of xn is the set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0,…}.

When a = 5, c = 1, and m = 16, then the range of xn becomes

{0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0,…}.

We usually want to choose a and m such that for any given seed x0, the number of
variables that can be generated before repetition occurs is large. In practice, one may
choose m = 231 − 1 and a = 75, where the number 31 corresponds to the bit size of
the machine.

Any set of pseudo-random numbers will by definition fail on some problems. It is
therefore desirable to have a second generator available for comparison. In this case,
it may be useful to compare results for a fundamentally different generator.

From now on, we will assume that we can generate a sequence of random numbers
that can be taken as an approximation to the values of a sequence of independent
uniform (0, 1) random variables. We do not explore the technical details about the
construction of good generators; interested reader may consult L’Ecuyer (1994) for
a survey of random number generators.

6.3 DISCRETE RANDOM VARIABLES

A discrete random variable X is specified by its probability mass function given by

P(X = xj) = pj, j = 0, 1,… ,
∑

j

pj = 1. (6.2)
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To generate X, generate a random number U, which is uniformly distributed in (0, 1)
and set

X =

⎧
⎪⎪⎨⎪⎪⎩

x0 if U < p0,

x1 if p0 ≤ U < p0 + p1,

⋮
xj if

∑j−1
i=0 pi ≤ U <

∑j
i=0 pi,

⋮

Recall that for 0 < a < b < 1, P(a < U < b) = b − a. Thus,

P(X = xj) = P

(
j−1∑
i=0

pi ≤ U <

j∑
i=0

pi

)
= pj, (6.3)

so that X has the desired distribution. Note that if the xi are ordered so that x0 < x1 <

· · · and if F denotes the distribution function of X, then F(xk) =
∑k

i=0 pi and so

X equals to xj if xj−1 ≤ F−1(U) < xj.

That is, after generating U, we determine the value of X by finding the interval
[F(xj−1),F(xj)) in which U lies. This also means that we want to find the inverse
of F(U) and thus the name of inverse transform.

Example 6.1 Suppose that we want to generate a binomial random variable X with
parameters n and p.

The probability mass function of X is given by

pi = P(X = i) = n!
i!(n − i)!

pi(1 − p)n−i, i = 0, 1,… , n.

From this probability mass function, we see that

pi+1 = n − i
i + 1

p

1 − p
pi.

The algorithm goes as follows:

1. Generate U.

2. If U < p0, set X = 0 and stop.

3. If p0 < U < p0 + p1, set X = 1 and stop.

⋮
4. If p0 + · · · + pn−1 < U < p0 + · · · + pn, set X = n and stop.

Recursively, by letting i be the current value of X, pr = pi = P(X = i), and F = F(i) =
P(X ≤ i), the probability that X is less than or equal to i, the aforementioned algorithm
can be succinctly written as:
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Step 1: Generate U.

Step 2: c = p∕(1 − p), i = 0, pr = (1 − p)n, F = pr.

Step 3: If U < F, set X = i and stop.

Step 4: pr = [c(n − i)∕(i + 1)]pr, F = F + pr, i = i + 1.

Step 5: Go to Step 3.

To generate binomial random variables X with parameters n = 10 and p = 0.7 in
Visual Basic for Applications (VBA), go to the Online Supplementary and download
the file Chapter 6 Generate Binomial Random Variables Bin(10,7).

6.4 ACCEPTANCE-REJECTION METHOD

In the preceding example, we see how the inverse transform can be used to generate
a known discrete distribution. For most of the standard distributions, we can simulate
their values easily by means of standard built-in routines available in standard pack-
ages. However, when we move away from standard distributions, simulating values
become more involved. One of the most useful methods is the acceptance-rejection
algorithm.

Suppose that we have an efficient method, for example, a computer package, to
simulate a random variable Y having probability mass function {qj, j ≥ 0}. We can use
this as a basis for simulating a distribution X having probability mass function {pj, j ≥
0} by first simulating Y and then accepting this simulated value with a probability
proportional to pY∕qY . Specifically, let c be a constant such that

pj

qj
≤ c for all j such that pj > 0.

Then we can simulate the values of X having probability mass function pj = P(X = j)
as follows:

Step 1: Simulate the value of Y from qj.

Step 2: Generate a uniform random number U.

Step 3: If U <
pY

cqY
, set X = Y and stop. Otherwise, go to Step 1.

Theorem 6.1 The acceptance-rejection algorithm generates a random variable X
such that

P(X = j) = pj, j = 0, 1,… .

In addition, the number of iterations of the algorithm needed to obtain X is a geomet-
ric random variable with mean c.
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Proof. First consider the probability that a single iteration produces the accepted
value j. Note that

P(Y = j, it is accepted) = P(Y = j)P(accepted|Y = j)

= qjP(U ≤ pj∕(cqj))

= qjpj∕(cqj)

= pj∕c.

Summing over j, we get the probability that a generated random variable is
accepted as

P(accepted) =
∑

j

pj∕c = 1∕c.

As each iteration independently results in an accepted value with probability 1∕c, the
number of iterations needed is geometric with mean c. Finally,

P(X = j) =
∑

n

P(j accepted on iteration n)

=
∑

n

(1 − 1∕c)n−1pj∕c = pj. ◽

Example 6.2 Suppose that we want to simulate a random variable X taking values
in {1, 2,… , 10} with probabilities as follows:

i 1 2 3 4 5 6 7 8 9 10

P(X = i) 0.11 0.12 0.09 0.08 0.12 0.1 0.09 0.11 0.07 0.11

Using the acceptance-rejection method, first generate discrete uniform random vari-
ables over the integers {1,… , 10}. That is, P(Y = j) = qj = 1∕10 for j = 1,… , 10.

Firstly, compute the number c by setting c = max
pj

qj
= 1.2. Now generate a discrete

uniform random variable Y by letting Y = [10U1] + 1, where U1 ∼ U(0, 1). Then
generate another U2 ∼ U(0, 1) and compare if U2 ≤ pY∕(cqY ). If this condition is
satisfied, then X = Y is the simulated value. Otherwise, repeat the steps again.
To generate the random variables and see the code in VBA, go to the Online Supple-
mentary and download the file Chapter 6 Example 6.2 Generate a RV with Support
{1, 2, ..., 10}.

6.5 CONTINUOUS RANDOM VARIABLES

Generating continuous random variables is very similar to generating discrete random
variables. It again relies on two main approaches using uniform random numbers: the
inverse transform and the acceptance-rejection method.



80 GENERATING RANDOM VARIABLES

6.5.1 Inverse Transform

Theorem 6.2 Let U be a uniform (0, 1) random variable. For any continuous dis-
tribution function F, the random variable X defined by X = F−1(U) has distribution
F. In this case,

F−1(u) = inf{x ∶ F(x) ≥ u}.

Proof. Let FX denote the distribution of X = F−1(U). Then

FX(x) = P(X ≤ x)

= P(F−1(U) ≤ x)

= P(U ≤ F(x))

= F(x). ◽

Example 6.3 Let X be an exponential distribution with rate 1. Then its distribution
function is given by F(x) = 1 − e−x. Let x = F−1(u), then u = F(x) = 1 − e−x, so that
x = − log(1 − u). Thus, we can generate X by generating U and setting X = − log(1 −
U). Moreover, because (1 − U) has the same distribution as U, which is uniform (0, 1),
we can simply set X = − log U. Finally, it can be seen easily that if Y ∼ exp(𝜆), then
E(Y) = 1∕𝜆 and Y = X∕𝜆, where X ∼ exp(1). In this case, we can simulate Y by first
simulating U and setting Y = − 1

𝜆
log U.

The previous example illustrates how to apply the inverse transform method when
the inverse of F can be written down easily. The following example demonstrates the
case when the inverse of F is not readily available.

Example 6.4 Let X ∼ Γ(n, 𝜆). Then it has distribution function

FX(x) =
∫

x

0

𝜆e−𝜆y(𝜆y)n−1

(n − 1)!
dy.

Clearly, finding the inverse of FX is not feasible. But recall that X =
∑n

i=1 Yi, where
Yi ∼ Γ(1, 𝜆) are i.i.d. (identical and independent distributed). Furthermore, each Yi
has distribution function

FY(y) =
∫

y

0
𝜆e−𝜆s ds,

which is the distribution function of an exponential distribution with rate 𝜆. Therefore,
we can generate X via

X = −1
𝜆

log U1 − · · · − 1
𝜆

log Un = −1
𝜆

log(U1 · · ·Un).
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To generate a random variable X that follows a gamma distribution with parameters
n = 5 and 𝜆 = 10 in VBA, go to the Online Supplementary and download the file
Chapter 6 Generate Gamma Random Variables.

The message from these two examples is that, although the inverse transform
method is simple, we may need to conduct certain simplifications before applying
the method.

6.5.2 The Rejection Method

Suppose that we can simulate from a density g easily. We can use this as a basis
to simulate from a density f (x) by first generating Y from g and then accepting the
generated value with probability proportional to f (Y)∕g(Y). Specifically, let c be such
that

f (y)
g(y)

≤ c for all y.

Then we generate from f via the following algorithm:

Step 1: Generate Y from a density g.

Step 2: Generate a uniform random number U.

Step 3: If U ≤
f (y)

cg(y) ∶= h(y) set X = Y , else go to Step 1.

This is exactly the same acceptance-rejection method as in the discrete case. Corre-
spondingly, we have the following result whose proof is almost the same as in the
discrete case.

Theorem 6.3 The random variable X generated by the rejection method has density
f . Moreover, the number of iterations that this algorithm needs is a geometric random
variable with mean c.

Proof. Let f (x) = cg(x)h(x), where c ≥ 1 is a constant, g(x) is also a p.d.f. (probability
distribution function) and 0 < h(x) ≤ 1. Let Y have p.d.f. g and U ∼ U(0, 1). Consider

fY(x|U ≤ h(Y)) =
P(U ≤ h(Y)|Y = x)g(x)

P(U ≤ h(Y))
.

For the first part in the numerator, we have

P(U ≤ h(Y)|Y = x) = P(U ≤ h(x)) = h(x).
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For the denominator, consider

P(U ≤ h(Y)) =
∫

P(U ≤ h(Y|Y = x))g(x) dx

=
∫

h(x)g(x) dx

=
∫

1
c

f (x) dx

= 1
c
.

Therefore, fY (x|U ≤ h(Y)) = h(x)g(x)c = f (x). ◽

One of the difficulties in using the rejection method is determining the constant c.
Our goal is to find the function cg(x) so that cg(x) ≥ f (x) and sample easily from the
density g(x). This can be achieved using trial-by-error or, in certain circumstances,
by simple analysis, as illustrated in the following example.

Example 6.5 Suppose that we want to simulate from the density

f (x) = 20x(1 − x)3, 0 < x < 1.

First note that f is defined only on the interval (0,1). We may try g that can be sim-
ulated easily over the same interval, uniform (0, 1), say, that is, g(x) = 1, 0 < x < 1.
To determine the smallest number c such that f (x)∕g(x) ≤ c for all 0 < x < 1, we
first find the maximum value of the ratio f (x)∕g(x) = 20x(1 − x)3. Using calculus,
differentiating, and setting to zero,

d
dx

(
f (x)
g(x)

)
= 0,

we solve x = 1∕4 to be the maximum of f∕g. Thus,

f (x)
g(x)

≤ 20(1∕4)(3∕4)3 = 135∕64 = c.

Therefore,
f (x)

cg(x)
= 20(64)∕(135)x(1 − x)3.

The algorithm becomes:

Step 1: Generate random numbers U1 and U2.

Step 2: If U2 ≤
256
27

U1(1 − U1)3, stop and set X = U1. Else go to Step 1.
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To simulate from this distribution in VBA, go to the Online Supplementary and down-
load the file Chapter 6 Example 6.5 Generate Random Variables using Acceptance
Rejection Method.

6.5.3 Multivariate Normal

An important application of simulation is to handle high dimensional problems. High
dimensional problems are usually related to multivariate normal distributions (Gaus-
sian distribution). However, most software packages do not provide algorithms for
generating multivariate normal random variables. This section studies algorithms for
generating multivariate normal random variables.
A random vector X is said to follow a multivariate normal distribution if all of its
elements are normal random variables. The distribution of X is then described as

X ∼ N(m,Σ), (6.4)

where m = E[X] is the mean vector and Σ = Var[X] is the variance-covariance
matrix. Consider a vector X = (X1,… ,Xn)T with Xi ∼ N(𝜇i, 𝜎

2
i ). In this case,

the mean vector m = (𝜇1,… , 𝜇n)T and the n × n matrix Σ =
[
Cov(Xi,Xj)

]
, i, j =

1,… , n.
There is a convenient way to generate a normal random vector X when Σ = I. Σ = I
indicates that the elements of X are independent random variables. Therefore, we can
generate Xi independently and then stack them up to form the vector X. For a normal
random vector with dependent components, that is, Σ ≠ I, decomposition methods
are useful.

6.5.3.1 Cholesky Decomposition The first method is the Cholesky decomposition.
Consider two correlated standard normal random variables X1 and X2 with correlation
coefficient 𝜌, written as,

X =
[

X1
X2

]
∼ N

([
0
0

]
,

[
1 𝜌

𝜌 1

])
.

Theorem 6.4 Correlated random variables X1 and X2 can be decomposed into two
uncorrelated random variables Z1 and Z2 through the linear transformation:

Z1 = X1

Z2 =
X2 − 𝜌X1√

1 − 𝜌2
.

In other words,

X =
(

1 0

𝜌
√

1 − 𝜌2

)
Z, (6.5)
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where

Z ∼ N
([

0
0

]
,

[
1 0
0 1

])
.

Proof. As X1 and X2 are linear combinations of normal random variables, they are
also normally distributed. Furthermore,

E(X1) = E(X2) = 0,
Var(X1) = 1, Var(X2) = (1 − 𝜌2) Var(Z2) + 𝜌2 Var(Z1) = 1,

Cov(X1,X2) = Cov(Z1,Z2

√
1 − 𝜌2 + 𝜌Z1) = 𝜌.

Thus, X1 and X2 have the desired distribution. ◽

The linear transformation of Equation 6.5 is called the Cholesky decomposition. It
enables us to generate (X1,X2) by the following procedures.

Step 1: Generate Z1,Z2 ∼ N(0, 1) i.i.d..

Step 2: Set X1 = Z1 and X2 = Z2

√
1 − 𝜌2 + 𝜌Z1.

In fact, there is a Cholesky decomposition for N(m,Σ). AsΣ is a semi-positive definite
matrix, that is, 𝒗TΣ𝒗 > 0 for all vector 𝒗, there exists a lower triangular matrix L
such that Σ = LLT . The Cholesky decomposition is an algorithm to obtain this lower
triangular matrix L.
For n × n matrices Σ = [aij] and L = [lij], the Cholesky decomposition algorithm
works as follows.

Step 1: Set l11 =
√

a11.

Step 2: For j = 2,… , n set lj1 = aj1∕l11.

Step 3: For i = 2,… , n − 1 conduct Step 4 and Step 5.

Step 4: Set lii =
[
aii −

∑i−1
k=1 l2ik

]1∕2
.

Step 5: For j = i + 1,… , n, set lji =
1
lii

[
aji −

∑i−1
k=1 ljklik

]
.

Step 6: Set lnn =
[
ann −

∑n−1
k=1 l2nk

]1∕2
.

Given the matrix L, a random vector X ∼ N(m,Σ) is generated by

X = m + LZ, Z ∼ N(𝟎, I). (6.6)

To perform Cholesky decomposition and generate multivariate normal random vari-
ables in VBA, go to the Online Supplementary and download the file Chapter 6
Cholesky Decomposition.

Theorem 6.5 The X obtained in Equation 6.6 follows N(m,Σ).
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Proof. The random vector X has a Gaussian distribution as it is a linear combination
of Gaussian random variables. Therefore, it suffices to check the mean and variance
of X. For the mean,

E[X] = m + E[LZ] = m.

For the variance,

Var[X] = Var[LZ] = L (Var[Z])LT = LLT = Σ.

◽
Example 6.6 Consider a portfolio of three assets: P(t) = S1(t) + 2S2(t) + 3S3(t).
The current assets values are S1(0) = 100, S2(0) = 60, and S3(0) = 30. Suppose that
the rate of returns of three assets follows a multivariate normal distribution. Specifi-
cally, we let

Ri(t) =
Si(t + Δt) − Si(t)

Si(t)
and R(t) = (R1(t),R2(t),R3(t))T ,

where

R(t) =
⎡
⎢⎢⎢⎣

0.1Δt + 0.2
√
ΔtX1

−0.03Δt + 0.4
√
ΔtX2

0.2Δt + 0.25
√
ΔtX3

⎤
⎥⎥⎥⎦
,

⎡
⎢⎢⎣

X1
X2
X3

⎤
⎥⎥⎦
∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
0
0

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

1 −0.1 0.2
−0.1 1 0.1
0.2 0.1 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠
.

Simulate 10 sample paths of the portfolio with Δt = 1∕100.

To see the simulation of 10 sample paths of the portfolio in VBA, go to the Online
Supplementary and download the file Chapter 6 Example 6.6 Simulating 10 paths of
the portfolio.
Two graphs are produced by the programme. Figure 6.1 plots 10 portfolio sample
paths against time. Figure 6.2 plots one sample path for each individual assets and
one sample path of the portfolio. Asset and the portfolio can be identified by their
initial values.

6.5.3.2 Eigenvalue Decomposition The second method is the eigenvalue decom-
position. Given an n × n matrix Σ, if a constant value 𝜆 and a nonzero vector 𝒗 satisfy:

Σ𝒗 = 𝜆𝒗, (6.7)

then 𝜆 is called an eigenvalue of the matrix Σ and 𝒗 is the corresponding eigenvector.
In principle, there are n eigenvalues for an n × n matrix. For the variance-covariance
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Figure 6.1 Sample paths of the portfolio.
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Figure 6.2 Sample paths of the assets and the portfolio.

matrix Σ, we know that all eigenvalues are non-negative and eigenvectors are orthog-
onal because Σ is semipositive definite.
In multivariate analysis, eigenvalues of a variance-covariance matrix Σ are arranged
in descending order as 𝜆1 > 𝜆2 > · · · > 𝜆n and the corresponding eigenvectors are
chosen to have unit length. This means ||𝒗i|| = 1 for i = 1, 2,… , n. Under these
specifications, 𝒗1 is called the first principle component, 𝒗2 is the second principle
component, and so on. More importantly, the matrix Σ can be decomposed into a
product of three square matrices:

Σ = PDPT , (6.8)
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where P = [𝒗1, 𝒗2,… , 𝒗n] and D = diag(𝜆1, 𝜆2,… , 𝜆n) is a diagonal matrix. In
Splus, eigenvalues and eigenvectors are easily obtained with the subroutine
“eigen()”.

Theorem 6.6 If Z ∼ N(0, I), then X = m + P
√

DZ ∼ N(m,Σ).

Proof. Again, it suffices to check the mean and variance of X. For the mean,

E[X] = m + E[P
√

DZ] = m.

For the variance,

Var[X] = Var[P
√

DZ] = P
√

D (Var[Z]) [P
√

D]T = PDPT = Σ.

◽

Remarks VBA users may worry about matrix operations used in the aforemen-
tioned algorithms. Fortunately, there are free downloads available on the Web
that provide necessary subroutines under the platform of Excel. For instance, the
PoPTools, from http://www.cse.csiro.au/poptools/index.htm, includes routines of
Cholesky and eigenvalue decompositions.

6.6 EXERCISES

1. Using the inverse transform method to generate a random variable X with the
probability mass function.

(a) P(X = j) = 1
j(j+1) , j = 1, 2, ....

(b) P(X = j) = (n+j−1)Cj(1 − p)jpn, j = 0, 1, 2..., where n and p are given
parameters.

2. We simulate X, Y , Z from an inverse transform algorithm. Suppose that
U ∼ U(0, 1). Determine the distributions of the following random variables:

(a) X = int(10U(1 − U)).
(b) Y = int(1∕U).
(c) Z = (B − 3)2, B ∼ Bin(5, 0.5).

3. Determine the p.d.f. of

(a) X = −10 log U + 5.

(b) X = 2 tan(𝜋U) + 10.

(c) W = nU − int(nU). Show that it is independent of I = int(nU). (Hint: Show
that P(W ≤ 𝑤, I = i) = 𝑤∕n.)

http://www.cse.csiro.au/poptools/index.htm
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4. Let X have probability mass function

i 1 2 3 4 5 6 7

P(X = i) 0.3 0.12 0.09 0.12 0.1 0.17 0.1

(a) Use the acceptance-rejection algorithm and simulate 1,000 data points from
this distribution. You may use a discrete uniform as your g.

(b) Plot out the histogram of your simulation.

(c) What is the expected number of acceptance for this distribution? Does that
match your simulation results?

5. Suppose that we want to simulate from the density

f (x) = x + 1∕2, 0 < x < 1.

(a) Using the inverse transformation method, simulate 1,000 values from f .

(b) Using the acceptance-rejection method, simulate another 1,000 values from
f . Which algorithm is more efficient?

6. Suppose that we want to simulate |Z|, where Z ∼ N(0, 1). That is, the absolute
value of a standard normal random variable. First note that the p.d.f. of |Z| is
given by

f (x) = 2√
2𝜋

e−x2∕2, 0 < x < ∞.

Suppose you want to use the acceptance-rejection algorithm to simulate |Z|. Take
g to be the exponential distribution,

g(x) = e−x, 0 < x < ∞.

(a) Determine the value c such that c = max f (x)
g(x) .

(b) Use the acceptance-rejection method, simulate 1,000 values of |Z|.
(c) Suppose that you want to recover Z from the simulated values of |Z|. One way

to do it is to generate a random number U and set

Z =
{ |Z| if U > 1∕2,

−|Z| if U ≤ 1∕2.

Using this method, obtain 1,000 values of Z and plot its density.

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

http://www.sta


7
STANDARD SIMULATIONS IN RISK
MANAGEMENT

7.1 INTRODUCTION

Risk management applications require simulation experiments. In this chapter, we
introduce some standard simulation techniques and discuss their applications in risk
management.

7.2 SCENARIO ANALYSIS

Scenario analysis of risk management refers to simulating possible scenarios to ana-
lyze the risk of a decision and consequences. The ultimate goal of a scenario analysis
may be to reach a decision, to verify a model, or to validate a certain conjecture.

Suppose that a newspaper boy buys a newspaper from an agent for $4 each and
sells it for $6. His problem is to decide how many newspapers to buy each morning.
In other words, what would be a prudent purchasing strategy?

To analyze the situation, he examines the sales record for the past 100 days given
in Table 7.1. After reviewing the data in Table 7.1, he comes up with the following
strategies:

1. Each day, purchase the same number of papers sold the day before.

2. Each day, purchase a fixed number of papers, say 23.

To test each of these two strategies, one could simulate the scenarios using inverse
transform. Firstly, convert the information in Table 7.1 into the empirical probability
mass function (p.m.f.) (Table 7.2).

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 7.1 Sales Record

Number of Newspapers Days Occurring

21 15
22 20
23 30
24 21
25 14

TABLE 7.2 Probability Mass Function

Number of Newspapers p.m.f. Cumulative Distribution

21 0.15 0.15
22 0.20 0.35
23 0.30 0.65
24 0.21 0.86
25 0.14 1.00

TABLE 7.3 Policy Simulation and Evaluation

u ∼ U(0, 1) Number of Newspapers Profit of 1 Profit of 2

Day 1 0.5828 23 $46 $46
Day 2 0.0235 21 $34 $34
Day 3 0.5155 23 $42 $46
Day 4 0.3340 22 $40 $40
Day 5 0.4329 23 $44 $46
Day 6 0.2259 22 $40 $40
Day 7 0.5798 23 $44 $46
Day 8 0.7604 24 $46 $46
Day 9 0.8298 24 $48 $46
Day 10 0.6405 23 $42 $46

Total profit = $426 $436

Now simulate 10 future days and compare the two policies following the p.m.f.
given in Table 7.2. The simulation draws a standard uniform random variables u. The
demands of newspaper are generated according to where the random variables fall.
For instance, if u = 0.17, which belongs to the range of 0.15–0.35, then the corre-
sponding demand is 22. To have a fair comparison, assume that the newspaper boy
orders 23 papers on Day 1. Table 7.3 lists the results of the simulation. The interval
[0, 1] is partitioned according to the cumulative frequency in Table 7.2. According to
Table 7.3, policy 2 is better than policy 1. One can repeat the simulation for many
times to see if this phenomenon is consistent.
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The newspaper boy example illustrates several important elements in scenario
analysis. Decision makers identify possible scenarios on the basis of empirical data
or experience. In this example, scenarios correspond to the daily demand of newspa-
pers. Simulation is then developed to replicate future possibilities. We use the inverse
transform with the empirical density function in this example. After generating sce-
narios, a risk manager analyzes consequences corresponding to each scenario. If the
first policy is adopted, then the number of newspapers purchased equals the number
sold the previous day; otherwise, 23 papers are purchased. Finally, evaluation and
comparison can be conducted using the simulated results.

7.2.1 Value at Risk

In finance, risk scenario analysis is usually conducted for evaluating value-at-risk
(VaR), a widely adopted risk measure.

Definition 7.1 VaR summarizes the worst loss of a portfolio over a target horizon
with a given level of confidence.

Statistically speaking, VaR describes the specified quantile or percentile of the pro-
jected distribution of profits and losses over the target horizon. Let Rt be the return of
a portfolio for a horizon t. Then, the c% confidence VaR of the portfolio is measured
through the expression:

P(Rt < −VaR) = (1 − c)% ∶= 𝛼. (7.1)

Hence, VaR is the negative of the 𝛼-th percentile of the probability distribution of
profits and losses. The larger the VaR, the higher the risk of the portfolio. An advan-
tage of VaR is that it allows the user to specify the confidence level to reflect individual
risk-averseness. For more details, see Jorion (2000).

VaR is indispensable for market risk analysis because it is the number that splits
future possible asset returns into two scenarios: risky and nonrisky. Returns less than
the negative of VaR belong to the class of risky scenario. Decision makers can evalu-
ate their policies by examining consequences under the risky scenario. For instance,
a bank may check if it maintains enough money for an extremely risky situation.

A conventional way to measure VaR often assumes portfolio returns to follow
a normal distribution. VaR obtained in this way is called normal VaR. A typical
model is

Rt = 𝜇 + 𝜎Z, Z ∼ N(0, 1). (7.2)

In such a parametric model, it is easy to derive that

VaR𝛼(t) = −z𝛼𝜎 − 𝜇, (7.3)

where z𝛼 is the 𝛼-quantile of the standard normal distribution, 𝜇 is the drift, and 𝜎 is
the standard deviation of the return Rt over the horizon t.
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Although one can prove Equation 7.3 mathematically, we would like to verify it
by simulation. The algorithm is given as follows.

Step 1: Generate n independent standard normal random variables, namely
Zj ∼ N(0, 1) i.i.d. (identical and independent distributed), j = 1, 2,… , n.

Step 2: Set Rj = 𝜇 + 𝜎Zj.

Step 3: Rank {R1,R2, · · · ,Rn} in ascending order as {R∗
1,R

∗
2, · · · ,R

∗
n}.

Step 4: Set VaR = −R∗
k , where k = int(𝛼 × n).

Example 7.1 Let 𝜇 = 0.003, 𝜎 = 0.23, 𝛼 = 5%, and n = 10, 000. Then, the 95%
VaR corresponds to the 500th smallest return generated from the simulation. Our
simulation shows that the VaR = 0.3783, which is close to the value, 0.3753, obtained
by Equation 7.3. To see the code in Visual Basic for Applications, go to the Online
Supplementary and download the file Chapter 7 Example 7.1.

7.2.2 Heavy-Tailed Distribution

In reality, returns of market prices may not follow a normal distribution but a
heavy-tailed distribution. This means that the two tails of the empirical density decay
less rapidly than the normal density. Because closed form solution for the VaR of a
heavy-tailed distribution is not readily available, a feasible alternative is to generate
random variables according to a heavy-tailed distribution.

One commonly used form for heavy-tailed distribution is the generalized error dis-
tribution (GED). The p.d.f. (probability distribution function) of GED with parameter
𝜉 is given by

f (z) =
𝜉 exp

(
− 1

2
|z∕𝜆|𝜉

)

𝜆21+1∕𝜉Γ(1∕𝜉)
, (7.4)

𝜆 =
[

2−2∕𝜉Γ(1∕𝜉)
Γ(3∕𝜉)

]1∕2

,

where Γ(⋅) denotes the Gamma function. Figure 7.1 plots the p.d.f. of GED, and
Figure 7.2 zooms in at the left-tail of the density function. It is seen that the smaller
the 𝜉 is, the heavier the left-tail of the density function will be.

The key to simulate VaR is to generate random variables following the desired
distribution. In this case, we apply the rejection method introduced in Chapter 6 using
an exponential distribution for g. The algorithm goes as follows.

Step 1: Generate Y ∼ Exp(1).
Step 2: Generate U ∼ U(0, 1).
Step 3: If U ≤ 2f (Y)eY∕a, then Z = Y; else go to Step 1.

Step 4: Generate V ∼ U(0, 1). If V < 1∕2, then Z = −Y .
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Step 5: Repeat Steps 1–4 for n times to get {Z1,Z2,… ,Zn}.

Step 6: Set Ri = 𝜇 + 𝜎Zi.

Step 7: Sort the returns in ascending order as {R∗
1,R

∗
2,… ,R∗

n}.

Step 8: Set VaR = −R∗
k where k = int(𝛼 × n).
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Remarks

1. In Step 3, a is a constant no less than maxy{2f (y)ey}.

2. As the exponential distribution is defined with a domain of positive real num-
bers, Steps 1–3 of the algorithm generate positive GED. Step 4 converts a
positive GED random variable into a GED random variable.

7.2.3 Case Study: VaR of Dow Jones

We demonstrate the use of GED-VaR by considering 10-year daily closing prices of
Dow Jones Industrial Index (DJI) in the period of August 8, 1995, to August 7, 2004.
Data downloaded from http://finance.yahoo.com consists of 2,265 prices. The prices
are converted into 2,264 daily returns by the formula:

Rt =
St − St−1

St−1
.

Sample mean and standard deviation of the returns are 0.04% and 1.16% in a daily
scale, respectively. From Equation 7.3, the 95% and 99% normal VaR from the sample
are 1.87% and 2.66%, respectively.

To access the quality of normal VaR, one has to test the normality assumption
or, more precisely, the distributional assumption used in the VaR computation. Here,
we introduce a simple but valuable tool, known as the quantile–quantile (QQ) plot.
The idea is to plot the quantiles of the sample returns against the quantiles of the
distribution used. If the returns truly follow the target distribution, then the graph
should look similar to a straight line. For testing normality, the target distribution is
the normal distribution. Systematic deviations from the line signal that the returns are
not well described by the normal distribution.

Figure 7.3 shows a QQ plot of our sample against the normal distribution. Large
deviations are observed by the two tails of the empirical data. Specifically, the empir-
ical quantile is less than the normal quantile in the left tail but larger than the normal
quantile in the right tail. The deviations strongly suggest heavy-tailed distribution
from the empirical data.

We use GED to reduce the deviation from the QQ plot. Returns are first standard-
ized by the sample mean and standard deviation as

SRt =
Rt − 0.04%

1.16%
,

where SRt denotes the standardized return at time t. We conjecture that
SRt ∼ GED(𝜉), identically and independently. The parameter 𝜉 is estimated
from the SR using maximum likelihood estimation (MLE). Our estimation shows
that 𝜉 = 1.21 (Appendix). Then, GED-VaR is estimated from the eight-step algo-
rithm in Section 7.2.1, where the constant a is required in Step 3. The value of a can
be deduced from the plot of 2f (y)ey against y, where f (y) is the p.d.f. of GED(1.21).

http://finance.yahoo.com
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Figure 7.4 shows that the maximum function value is bounded above by 1.2 so that
we set a = 1.2.

To simulate GED-VaR in Visual Basic for Applications, go to the Online Supple-
mentary and download the file Chapter 7 Simulating GED-VaR.



96 STANDARD SIMULATIONS IN RISK MANAGEMENT

0

2

4

6

–0.08 –0.06 –0.04 –0.02 0 0.02 0.04 0.06 0.08
–8

–6

–4

–2

DJ returns quantiles

S
im

ul
at

ed
 G

E
D

(1
.2

1)
 q

ua
nt

ile
s

Figure 7.5 QQ plot GED(1.21) quantiles against Dow Jones return quantiles.

The program estimates 95% and 99% VaR by generating 10,000 GED(1.21)
random variables. For the confidence intervals, it repeats the process 1,000 times to
get 1,000 VaR estimates. After arranging the simulated VaRs in ascending order, the
95% two-tailed confidence interval (CI) is the range between the 25th VaR and the
975th VaR.

To check the performance of GED-VaR, we use the QQ-plot of Figure 7.5 on the
basis of one simulation. It is seen that deviations from the straight line have been
substantially reduced. From this exercise, we see that GED(1.21) is appropriate for
modeling the sample of Dow Jones returns. The average 95% VaR and 99% VaR from
the 1,000 simulation are 1.87% and 3.02%, respectively. Therefore, 95% GED-VaR
and 95% normal VaR give similar values, whereas 99% GED-VaR is 10% more than
the 99% normal VaR.

These findings may be useful for a risk manager. As normal VaR is commonly
used in the financial industry, it is essential for a risk manager to understand the
limitation of the normal VaR. The rationale of this empirical study is that normal
VaR is a good estimate for potential losses of a portfolio under “normal, nonextreme”
scenarios. However, it underestimates potential losses when “extreme events” hap-
pen, especially for those happening with probability less than 1%. To measure VaR
with higher confidence level, for example, 99% VaR, the risk manager may consider
GED-VaR. For further discussion about extreme values, see Embrechts, Klüppelberg,
and Mikosch (1997) and the themed volume of Finkenstädt and Rootzén (2004).

7.3 STANDARD MONTE CARLO

In the preceding chapters, we studied the idea of simulating random variables. One of
the main reasons to simulate random variables is to estimate quantities such as E(X),
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which is related to the evaluation of definite integrals. Suppose we have already gener-
ated n values of a random variable X, it would be very natural to estimate the quantity
𝜃 = E(X) by Xn = 1

n

∑n
i=1 Xi. We study some standard statistical techniques to assess

the accuracy of such an estimate, which are based on the law of large numbers and the
central limit theorem. Whenever we estimate quantities such as E(X) on the basis of
standard applications of simulations, we refer these methods as standard Monte Carlo
simulations. We study other more sophisticated simulation methods in later chapters.

7.3.1 Mean, Variance, and Interval Estimation

Suppose that X is a given random variable with mean 𝜃 and variance 𝜎2. A natural
way to evaluate 𝜃 = E(X) using simulations is to generate random values X1,… ,Xn
and calculate the quantity

Xn = 1
n

n∑
i=1

Xi,

which is called the sample mean of {X1,… ,Xn}. It is easy to see that

E(Xn) = E(X) = 𝜃, unbiasedness property, (7.5)

Var(Xn) =
𝜎2

n
. (7.6)

To assess the accuracy of Xn as an estimate of 𝜃, we rely on two important results.
The first one is the law of large numbers, which asserts that as the number of simula-
tions n gets bigger, the closer is Xn to 𝜃, see, for example, Casella and Berger (2001).
Specifically,

Theorem 7.1 Let X1,… ,Xn be i.i.d. random variables with mean 𝜃 and variance
𝜎2. Then for any given 𝜖 > 0,

P(|Xn − 𝜃| > 𝜖) → 0 as n → ∞.

This result is sometimes written as Xn → 𝜃 in probability.
The second one is the central limit theorem, which asserts that as n tends to infinity,

the distribution of the random variable Xn behaves as a normal distribution approxi-
mately.

Theorem 7.2 Let X1,… ,Xn be i.i.d. random variables with mean 𝜃 and variance
𝜎2 > 0. Then as n tends to infinity

P(
√

n
(Xn − 𝜃)

𝜎
≤ z) → Φ(z),

where Φ(z) denotes the c.d.f. (cumulative distribution function) of a standard normal
distribution evaluated at the point z.
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A equivalent definition of this result is that the random variable
√

n(Xn − 𝜃)∕𝜎 con-
verges in distribution to Z, written as

√
n
(Xn − 𝜃)

𝜎
→ Z,

where Z ∼ N(0, 1). The proof of these two results can be found in standard text books
in probability; see Billingsley (1999) for example. One immediate application of the
central limit theorem is to construct approximate confidence intervals for 𝜃. Accord-
ing to Theorem 7.2,

P(|Xn − 𝜃| > 𝜎√
n

c) ∼ P(|Z| ≥ c) = 2(1 − Φ(c)).

As a result, if we let c = 1.96, then the probability of Xn differs from 𝜃 by more than
1.96𝜎∕

√
n would be approximately equal to 0.05. In other words, we are relatively

confident (95%) that our estimate is within two standard errors (1.96𝜎∕
√

n) from
𝜃. To make use of this result, we have to have knowledge about the value 𝜎, which
is usually unavailable. A simple fix is to estimate it from the simulated values. The
sample variance, which is defined as

S2 = 1
n − 1

n∑
i=1

(Xi − Xn)2,

constitutes an estimate of 𝜎2. It can be easily shown that

E(S2) = 𝜎2, unbiasedness property, (7.7)

S2
j+1 = (1 − 1∕j)S2

j + (j + 1)(Xj+1 − Xj)2. (7.8)

One frequently asked question in simulations is that after simulating X and evalu-
ating Xn, when should we stop? The answer to this question is given by the following
scheme:

1. Choose an appropriate value d for the standard deviation of the estimation. That
is, d represents the margin of error we can tolerate using simulations.

2. Generate at least 100 values of X.

3. Continue generating X and stopping when we have k values of X such that
S∕

√
k < d.

4. The desired estimate is given by Xk.

Finally, we can form an interval estimation for 𝜃 by using the notion of confidence
intervals.
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Definition 7.2 If Xn = x, S = s, then the interval

(
x − z𝛼∕2

s√
n
, x + z𝛼∕2

s√
n

)

is an approximate 100(1 − 𝛼)% confidence interval for 𝜃.

In particular, when 𝛼 = 0.05, z𝛼∕2 = 1.96 and (x ± 1.96s∕
√

n) is an approximate
95% confidence interval for 𝜃 and thus giving rise to the rule of “two sigma.”

7.3.2 Simulating Option Prices

To illustrate the ideas of standard simulations in risk management, consider first sim-
ulating stock prices. Let S denote the price of a stock. Recall that we usually assume
that S follows a geometric Brownian motion

dS = 𝜇S dt + 𝜎S dW.

Equivalently,
d log S = 𝜈 dt + 𝜎 dW,

where 𝜈 = 𝜇 − 𝜎2∕2. Using the last equation and letting 𝜖 to denote a standard normal
random variable, we can generate S according to the formula

S(t + dt) = S(t) exp(𝜈 dt + 𝜎𝜖
√

dt).

In particular, ST = S0eXT , where XT = 𝜈T + 𝜎WT ∼ N(𝜈T , 𝜎2T) (Section 4.3), so we
have

S(T) = S(0) exp(𝜈T + 𝜎𝜖
√

T). (7.9)

Notice that according to the risk neutral valuation principle, we usually take 𝜇 = r,
the risk-free rate.

Example 7.2 Let S0 = 10, 𝜇 = r = 0.03, 𝜎 = 0.4, and dt = 1∕52. We want to sim-
ulate weekly prices of the stock Si, i = 1,… , 52 for a 1-year period. Then 𝜈 = 𝜇 −
𝜎2∕2 = −0.05 and the results are given in Table 7.4. To see the code in Visual Basic
for Applications, go to the Online Supplementary and download the file Chapter 7
Example 7.2 Simulating weekly prices of the stock.

Suppose that we want to calculate the price of a European call option maturing in
1 year with strike price K = 12. We can use the Black–Scholes formula to obtain the
call price C as

C(S, t) = SΦ(d1) − Ke−r(T−t)Φ(d2),
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TABLE 7.4 Simulated Prices of
the First and the Last 10 Weeks

Week Price

0 10.000000
1 10.38419
2 10.37402
3 10.67406
4 11.65342
5 11.89871
6 11.28296
7 11.15327
8 10.33483
9 11.16090
10 12.14546
⋮ ⋮
43 14.39009
44 13.78038
45 14.01125
46 12.72393
47 13.44627
48 13.05377
49 12.00424
50 12.74416
51 12.16204
52 12.15517

where d1 = 1

𝜎
√

T−t
(log(S∕K) + (r + 𝜎2∕2)(T − t)) and d2 = d1 − 𝜎

√
T − t. Substitut-

ing the values of r = 0.03,K = 12,T = 1, t = 0, 𝜎 = 0.4, and S0 = 10, we get

d1 = 1

0.4
√

1
(log(10∕12) + (0.03 + 0.08)(1)) = −0.1808, d2 = d1 − 0.4 = −0.5808.

Using the Splus command pnorm(z) to evaluate Φ(z), we get Φ(d1) = 0.4283 and
Φ(d2) = 0.2807. Hence,

C = 10(0.4283) − 12e−0.03(0.2807) = 1.013918.

On the other hand, we can evaluate C = e−rT Ê(ST − K)+.

Example 7.3 The price of the European call option can now be computed using
simulations.

1. First generate n independent values of S1(T),… , Sn(T) according to Equation
7.9.
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2. Compute simulated discounted call prices Ci = e−rT max{(Si(T) − K), 0}, i =
1,… , n.

3. Compute C = 1
n

∑n
i=1 Ci. C is an estimate of the discounted payoff Ê(ST − K)+.

4. Construct a 95% confidence interval for C from

C ± 1.96S∕
√

n,

where

S =

√√√√ 1
n − 1

n∑
i=1

(Ci − C)2,

is the sample standard deviation of the simulated call prices Ci.

To simulate 100 paths of stock price to compute call option price and its confi-
dence interval in Visual Basic for Applications, go to the Online Supplementary and
download the file Chapter 7 Example 7.3 Computing European call option price by
simulation.

Outputs of the simulated Cis are given in Table 7.5. The result of a 100-path simu-
lation shows that the 95% confidence interval for C is (0.37, 1.83). Figure 7.6 shows
that when the number of runs increases, the value of C converges to the limit of 1.01.

TABLE 7.5 The Discounted Call
Prices for the First 20 Paths

Path Ci

1 0.0000000
2 0.0000000
3 0.0000000
4 5.9331955
5 1.1971242
6 0.0000000
7 2.2395878
8 0.0000000
9 0.0000000
10 4.0065595
11 0.0000000
12 1.3006804
13 0.0000000
14 0.0000000
15 0.0000000
16 0.0000000
17 6.0970236
18 0.0000000
19 0.0000000
20 0.1768191
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Figure 7.6 Simulations of the call price against the size.

7.3.3 Simulating Option Delta

In risk management, hedging an option is sometimes more important than valuing
the option. When a bank issues structured financial products to enhance sales, the
embedded option risk would be of great concern. Hedging is a useful device to man-
age such a risk. For a standard call option, the hedge ratio refers to the delta of the
option, the partial derivative of the option price with respect to the underlying asset
price. Under the Black–Scholes assumption, the delta of a call is defined as

delta = 𝜕c
𝜕S

= Φ(d1). (7.10)

We use simulation to calculate the hedge ratio, delta, for general European options.
The risk-neutral valuation asserts that an option with payoff F(ST ) can be valued

as e−rT Ê[F(ST )|S0 = S]. Therefore, delta equals

delta = e−rT 𝜕

𝜕S
Ê[F(ST )|S0 = S]. (7.11)

In order to compute delta under the Black–Scholes dynamics, the following
theorem is established.

Theorem 7.3 The delta of a European option with payoff F(ST ) is given by

delta = e−rT Ê
[

F(ST)
WT

S𝜎T

]
, (7.12)

where WT is the standard Brownian motion driving ST.
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Proof. Ignoring the discount factor, the definition of delta in Equation 7.11 is

𝜕

𝜕S ∫

∞

−∞
F(ex)𝜙(x| log S) dx =

∫

∞

−∞
F(ex)1

S

𝜕𝜙(x| log S)
𝜕 log S

dx,

where

𝜙(x|y) = 1

𝜎
√

2𝜋T
exp

[
−
(x − y − 𝜈T)2

2𝜎2T

]
.

Standard differentiation shows that

𝜕𝜙(x|y)
𝜕y

= 𝜙(x|y)x − y − 𝜈T

𝜎2T
.

Hence, we have

delta = e−rT

∫

∞

−∞
F(ex)

x − log S − 𝜈T

S𝜎2T
𝜙(x| log S) dx.

Recall that x = log ST ,

x − log S − 𝜈T = log ST − log S − 𝜈T = 𝜎WT .

This completes the proof. ◽

Theorem 7.3 enables us to simulate option delta (or even gamma) as follows.

Step 1: Generate Z1,Z2,… ,Zn ∼ N(0, 1) i.i.d.

Step 2: Set Yj = F
(

Se(r−𝜎
2∕2)T+𝜎Zj

√
T
)

Zj

S𝜎
√

T
.

Step 3: Set delta = 1
n

∑n
j=1 Yj.

The theorem can be extended to the case of path-dependent options. However, the
derivation requires some knowledge of Malliavin calculus, which is beyond of the
scope of the book. For details of this generalization, we refer to the article of Fournie
et al. (1999, 2000).

Example 7.4 The current price is $10, interest rate 5%, and volatility 40%. Simu-
late the price and delta of a call option with strike price $12 and maturity 1 year by
generating 10,000 terminal asset prices.

An algorithm can be constructed as follows:

Step 1: Generate 10,000 terminal asset prices by the formula

Sj
T = S0 exp

[
(r − 𝜎2∕2)T + 𝜎

√
TZj

]
, Zj ∼ N(0, 1).
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Step 2: For j = 1 to 10,000, Compute

Cj = max(Sj
T − K) ∗ exp(−rT) and Delj = Cj ∗ Zj∕(𝜎

√
TS0).

Step 3: Compute call price = mean(Cj) and delta = mean(Delj).

To simulate call option price and its delta in Visual Basic for Applications, go to
the Online Supplementary and download the file Chapter 7 Example 7.4 Simulating
price and delta of a call option.

With a CPU time of 0.9 s, our simulation finds that the call price is 1.06 and the
delta is 0.44. The Black–Scholes call price and the delta are 1.08 and 0.448, respec-
tively. This demonstrates the efficiency and accuracy of the simulation algorithm.

One thing we have to stress is that Theorem 7.3 is very useful for simulating deltas
of single asset European options, with arbitrary payoff F(ST ). However, it may not
be applicable for path-dependent options and multiasset options. Therefore, we intro-
duce alternative methods in later chapters.

7.4 EXERCISES

1. Write the VBA code for the newspaper boy example of Section 7.2.

2. Suppose that the asset return follows the t-distribution with two degrees of free-
dom. Write a VBA code to simulate the 95% confidence VaR with parameters
given in Example 7.1. Compare your result with the one obtained by normal VaR.

3. Implement the rejection method for generating GED when 𝜈 = 1.4.

4. Verify Equations 7.5 and 7.6.

5. Verify Equations 7.7 and 7.8.

6. Let S0 = 100, 𝜇 = r = 0.05, 𝜎 = 0.3. Use the geometric Brownian motion method
to simulate 20 daily prices of the stock Si, i = 1,… , 20.

(a) Suppose that you want to determine the price of a European put option matur-
ing in 20 days with a strike price K = 100. Use simulation techniques to
estimate this price.

(b) Compare your result with the one obtained from the Black–Scholes formula.
Are they similar?

7. The gamma of an option is defined as

𝜕(delta)
𝜕S

.

(a) What is the financial interpretation of the gamma?
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(b) By modifying the proof of Theorem 7.3, show that

gamma = e−rT Ê

[
F(ST )

1
S2𝜎T

(
W2

T

𝜎T
− WT − 1

𝜎

)]
.

(c) Construct and implement a simulation algorithm to compute the call option
gamma with a Splus code or VBA code.

(d) Suppose that S = 10,K = 12, r = 0.1, 𝜎 = 0.3, and T = 0.8. Compare your
simulation result with the closed form solution:

gamma = 1

S𝜎
√

2𝜋T
exp

⎡
⎢⎢⎢⎣
−

(
ln S

K
+ (r + 𝜎2∕2)T

)2

2𝜎2T

⎤
⎥⎥⎥⎦
.

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

7.5 APPENDIX

The data comprise 2,264 daily rates of returns. These data are transformed into stan-
dardized returns by using the sample mean and standard derivation. We assume that
standardized returns follow a GED distribution with parameter 𝜉. Our goal is to esti-
mate 𝜉. The density function of the GED distribution is given in Equation 7.4. Hence,
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Figure 7.7 The log likelihood against 𝜉.
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the likelihood function is

L (𝜉) =
2,264∏
i=1

𝜉 exp
(
− 1

2
||Zi∕𝜆||𝜉

)

𝜆21+1∕𝜉Γ(1∕𝜉)
,

𝜆 =
[

2−2∕𝜉Γ(1∕𝜉)
Γ(3∕𝜉)

]1∕2

,

where Z1,… ,Z2,264 are standardized returns. Instead of deriving the MLE theoret-
ically, we search the maximum point of the likelihood function with a numerical
method. To confine the target point in a small interval, we plot the likelihood func-
tion against the parameter 𝜉. In Figure 7.7, we recognize that a unique maximum
appears for 𝜉 ∈ (1, 1.3). The plot is given after this section. We then use the bisec-
tion method to search for the solution. Specifically, we compare L(1) and L(1.3) and
discard the smaller one. The next step compares the remaining one with L(1.15), the
functional value at the mid-point of 1 and 1.3. We discard the point with a smaller
value in L and repeat the procedure until a sufficiently accurate solution is obtained.
Ultimately, 𝜉 = 1.21, which has been input to generate GED-VaR in Section 7.2.3.



8
VARIANCE REDUCTION TECHNIQUES

8.1 INTRODUCTION

In standard Monte Carlo, we estimate the unknown quantity 𝜃 = EX by generating
random numbers X1,… ,Xn and use Xn to estimate 𝜃. Recall that in the preceding
chapter, the standard error for Xn is 𝜎∕

√
n, where 𝜎2 is the variance of X. There

are two sources of contributions to the standard error of estimation. One is the factor
1∕

√
n, which is intrinsic to the Monte Carlo method, and not much can be done about

it. The other one is the standard error 𝜎 of the output X, which by some techniques,
can be improved upon. There are usually four standard methods to reduce 𝜎:

1. Antithetic variables

2. Control variates

3. Stratification

4. Importance sampling

We discuss each of these methods in the subsequent sections.

8.2 ANTITHETIC VARIABLES

The idea of antithetic variables can best be illustrated by considering a special
example. Suppose that we want to estimate 𝜃 = EX by generating two outputs X1

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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and X2 such that EX1 = EX2 = 𝜃 and VarX1 = VarX2 = 𝜎2. Then

Var(1
2
(X1 + X2)) =

1
4
(VarX1 + VarX2 + 2Cov(X1,X2))

= 𝜎2

2
+ 1

2
Cov(X1,X2)

≤
𝜎2

2
, if Cov(X1,X2) ≤ 0.

Note that when X1 and X2 are independent, then Var((X1 + X2)∕2) = 𝜎2∕2. Thus, the
aforementioned inequality asserts that if X1 and X2 are negatively correlated, then the
variance of the mean of the two would be less than the case when X1 and X2 were
independent.

How do we generate negatively correlated random numbers? Suppose that we sim-
ulate U1,… ,Um, which are uniform random numbers. Then V1 = 1 − U1,… ,Vm =
1 − Um would also be uniform random numbers with the property that (Ui,Vi) being
negatively correlated (exercise). If X1 = h(U1,… ,Um), then X2 = h(V1,… ,Vm)must
have the same distribution as X1. It turns out that if h is a monotone function (either
increasing or decreasing) in each of its arguments, then X1 and X2 are negatively cor-
related. This result is proved later at the end of this section. Thus, after generating
U1,… ,Um to compute X1, instead of generating another new independent set of Us
to compute X2, we compute X2 by

X2 = h(V1,… ,Vm) = h(1 − U1,… , 1 − Um).

Accordingly, (X1 + X2)∕2 should have smaller variance.
In general, we may generate Xi = F−1(Ui) using the inverse transform method. Let

Yi = F−1(Vi). As F is monotone, so is F−1 and, hence, Xi and Yi will be negatively
correlated. Both X1,… ,Xn and Y1,… ,Yn generated in this way are i.i.d. (identical
and independent distributed) sequences with c.d.f. (cumulative distribution function)
F, but negatively correlated.

Definition 8.1 The Yi sequence is called the sequence of antithetic variables.

For normal distributions, generating antithetic variables is straightforward. Sup-
pose that Xi ∼ N(𝜇, 𝜎2), then Yi = 2𝜇 − Xi also has a normal distribution with mean
𝜇 and variance 𝜎2 and Xi and Yi are negatively correlated.

More generally, if we want to compute E(H(X)) for some function H, standard
Monte Carlo suggests using 1

n

∑n
i=1 H(Xi). Then an antithetic estimator of E(H(X)) is

ĤAN = 1
2n

n∑
i=1

(H(Xi) + H(Yi)),

where Yi is a sequence of antithetic variables. To see how variance reduc-
tion is achieved by using this antithetic estimator, let Var(H(X)) = 𝜎2 and
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Corr(H(X),H(Y)) = 𝜌. Consider

Var(ĤAN) =
1

4n2

n∑
i=1

{VarH(Xi) + VarH(Yi) + 2Cov(H(Xi),H(Yi))}

= 1
4n2

(2n𝜎2 + 2n𝜌𝜎2)

= 𝜎2

2n
(1 + 𝜌).

Note that when H(X) and H(Y) are uncorrelated (𝜌 = 0), then the variance would be
reduced by a factor of 2, which is equivalent to doubling the simulation size. On the
other hand, if 𝜌 = −1, then the variance would be reduced to zero. As long as 𝜌 is
negative, some form of variance reduction can be achieved. An obvious question is
that in view of this observation, why not choose Y so that 𝜌 = −1? Such Ys may be
difficult to construct, as 𝜌 represents the correlation between H(X) and H(Y). In the
case H(X) = X, then ĤAN reduces to a constant, which is the perfect scenario. In view
of these caveats, we usually choose the antithetic variables Y so that 𝜌 is negative, not
necessarily −1. When H is linear, such as the case H(X) = X, the antithetic variable
works best. In general, the more linear the H is, the more effective the antithetic
variable will be.

Example 8.1 Let 𝜃 = E(eU) = ∫
1

0 ex dx.

We know that 𝜃 = e − 1. Consider the antithetic variable V = 1 − U. Recall that the
moment-generating function of U equals E(etU) = (et − 1)∕t. Now

Cov(eU , eV ) = E(eUeV ) − E(eU)E(eV)

= E(eUe1−U) − E(eU)E(e1−U)

= e − (e − 1)2 = −0.2342.

Furthermore,

Var(eU) = E(e2U) − (E(eU))2 = (e2 − 1)∕2 − (e − 1)2 = 0.242.

Thus, for U1 and U2 to be independent uniform (0, 1) random variables,

Var[(eU1 + eU2 )∕2] = Var(eU)∕2 = 0.121.

But

Var[(eU + eV )∕2] = Var(eU)∕2 + Cov(eU , eV)∕2 = 0.121 − 0.2342∕2 = 0.0039,

achieving a substantial variance reduction of 96.7%.
We are now ready to justify the argument used in advocating antithetic variables.
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Theorem 8.1 Let X1,… ,Xn be independent, then for any increasing functions f
and g of n variables,

E(f (X)g(X)) ≥ Ef (X)Eg(X),

where X = (X1,… ,Xn).

Proof. By mathematical induction. Consider n = 1, then

(f (x) − f (y))(g(x) − g(y)) ≥ 0, for all x and y,

as both factors are either non-negative (x ≥ y) or nonpositive (x ≤ y). Thus, for any
random variables X and Y ,

(f (X) − f (Y))(g(X) − g(Y)) ≥ 0 implying E((f (X) − f (Y))(g(X) − g(Y))) ≥ 0.

In other words,

E(f (X)g(X)) + E(f (Y)g(Y)) ≥ E(f (X)g(Y)) + E(f (Y)g(X)).

If X and Y are independent and identically distributed, then

E(f (X)g(X)) = E(f (Y)g(Y))

and
E(f (X)g(Y)) = E(f (Y)g(X)) = E(f (Y))E(g(X)) = E(f (X))E(g(X))

so that
E(f (X)g(X)) ≥ E(f (X))E(g(X)),

proving the result for the case n = 1. Assume the result for n − 1. Suppose X1,… ,Xn
are independent and let f and g be increasing functions. Then

E(f (X)g(X)|Xn = xn) = E(f (X1,… ,Xn−1, xn)g(X1,… ,Xn−1, xn)|Xn = xn)

= E(f (X1,… ,Xn−1, xn)g(X1,… ,Xn−1, xn))

(because of independence)

≥ E(f (X1,… ,Xn−1, xn))E(g(X1,… ,Xn−1, xn))

(by induction hypothesis)

= E(f (X)|Xn = xn)E(g(X)|Xn = xn).

Hence,
E(f (X)g(X)|Xn) ≥ E(f (X)|Xn)E(g(X)|Xn).
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On taking expectation on both sides of this equation, we have

E(f (X)g(X)) ≥ E[E(f (X)|Xn)E(g(X)|Xn)].

Observe that E(f (X)|Xn) and E(g(X)|Xn) are increasing functions of Xn so that by the
result of n = 1, we have

E[E(f (X)|Xn)E(g(X)|Xn)] ≥ E[E(f (X|Xn))]E[E(g(X|Xn))]

= E(f (X))E(g(X)).

This completes the proof for the case of n. ◽

Corollary 8.1 If h(X1,… ,Xn) is a monotone function of each of its arguments, then
for a set U1,… ,Un of independent random numbers,

Cov[h(U1,… ,Un), h(1 − U1,… , 1 − Un)] ≤ 0.

Proof. Without loss of generality, by redefining h, we may assume that h is increasing
in its first r arguments and decreasing in its remaining n − r arguments. Let

f (x1,… , xn) = h(x1,… , xr, 1 − xr+1,… , 1 − xn),

g(x1,… , xn) = −h(1 − x1,… , 1 − xr, xr+1,… , xn).

It follows that both f and g are increasing functions. By the preceding theorem,

Cov[f (U1,… ,Un), g(U1,… ,Un)] ≥ 0.

That is,

Cov[h(U1,… ,Ur,Vr+1,… ,Vn), h(V1,… ,Vr,Ur+1,… ,Un)] ≤ 0, (8.1)

where Vi = 1 − Ui. Observe that as (h(U1,… ,Un), h(V1,… ,Vn)) has the same joint
distribution as (h(U1,… ,Ur,Vr+1,… ,Vn), h(V1,… ,Vr,Ur+1,… ,Un)), it follows
from Equation 8.1 that

Cov[h(U1,… ,Un), h(V1,… ,Vn)] ≤ 0,

proving the corollary. ◽

When is antithetic variable effective? The following are some guidelines:

• Antithetic variables will result in a lower variance estimate than independent
simulations only if the values computed from a path and its antithetic variables
are negatively correlated.
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• If H is monotone in each of its arguments, then antithetic variables reduce vari-
ance in estimating E(H(Z1,… ,Zn)).

• If H is linear, then an antithetic estimate of E(H(Z1,… ,Zn)) has zero variance.

• If H is symmetric, that is, H(−Z) = H(Z), then an antithetic estimate of sample
size 2n has the same variance as an independent sample of size n.

Example 8.2 To illustrate some of these points, consider the simulations of payoff
of options using antithetic variables. The function H in this case maps

z → max{0, S0 exp([r − 𝜎2∕2]T + 𝜎
√

Tz) − K}.

In Figure 8.1, the vertical axis is the payoff and the horizontal axis is the value
of z, the input standard normal. All cases have r = 0.05%, K = 50, and T = 0.5.
The top three cases have 𝜎 = 0.3 and S0=40, 50, and 60; the second three cases
have S0 = 50 and 𝜎 = 0.10, 0.20, 0.30. The top three graphs correspond to the
function H for options that are out-of-money (S0 = 40), at-the-money (S0 = 50), and
in-the-money (S0 = 60), respectively; the bottom three graphs correspond to low,
intermediate, and high volatility for an at-the-money option. (The precise parameter
values are given in the caption of the figure.) As one would expect, increasing
moneyness and decreasing volatility both increase the degree of linearity. For the
values indicated in the figure, we find numerically that antithetics reduce variance by
14%, 42%, and 80% in the top three cases and by 65%, 49%, and 42% in the bottom
three, respectively. Clearly, the more linear the function H is, the more effective the
antithetic variable technique will be.

Example 8.3 Figure 8.2 plots the payoff of |ST − K| on a straddle as a function of
z. The parameter values are given in the caption. The graph shows a high degree of
symmetry around zero, suggesting that antithetic variables may not be as effective as
in the other cases. Numerical results here indicate that an antithetic estimate based
on m pairs of antithetic variables has higher variance than an estimate based on 2m
independent samples.

Please see the online material for the VBA codes.

8.3 STRATIFIED SAMPLING

The idea of stratification is often used in sample surveys (Barnett, 1991). The idea lies
in the observation that the population may be heterogeneous and consists of various
homogeneous subgroups (such as gender, race, and social–economic status). If we
wish to learn about the whole population (such as whether people in Hong Kong
would like to have universal suffrage in 2007), we can take a random sample from
the whole population to estimate that quantity. On the other hand, it would be more
efficient to take small samples from each subgroup and combine the estimates in each
subgroup according to the fraction of the population that subgroup represents. As
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Figure 8.1 Illustration of payoffs for antithetic comparisons.
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Figure 8.2 Payoff on a straddle as a function of input normal Z based on the parameters
S0 = K = 50, 𝜎 = 0.30, T = 1, and r = 0.05.

we can learn about the opinion of a homogeneous subgroup with a relatively small
sample size, this stratified sampling procedure would be more efficient.

In general, if we want to estimate EX, where X depends on a random variable
S that takes on one of the values in {1,… , k} with known probabilities, then the
technique of stratification runs into k groups, with the ith group having S = i.
Let Xi be the average values of X in those runs having S = i, and then estimate
EX =

∑k
i=1 E(X|S = i)P(S = i) by

k∑
i=1

XiP(S = i).

This is known as stratified sampling.
To illustrate this idea, suppose that we want to estimateE(g(U)) = ∫

1
0 g(x)dx. Con-

sider two estimators on the basis of a sample of 2n runs. The first one is the standard
method,

ĝ = 1
2n

2n∑
i=1

g(Ui).

Note that E(ĝ) = E(g(U)) and

Var(ĝ) = 1
4n2

2n∑
i=1

Var(g(Ui)) =
1
2n

[

∫

1

0
g2(x) dx −

(
∫

1

0
g(x) dx

)2]
.
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On the other hand, we can write

E(g(U)) =
∫

1∕2

0
g(x) dx +

∫

1

1∕2
g(x) dx.

Instead of selecting Us from [0, 1], we can select the first n Us from [0, 1∕2] and the
remaining n Us from [1∕2, 1] to construct a new estimator

ĝs =
1
2n

[
n∑

i=1

g(Ui∕2) +
2n∑

i=n+1

g((Ui + 1)∕2)

]
.

It can be easily seen that if U ∼ U(0, 1), then V = a + (b − a)U is distributed as uni-
form (a, b). In particular, U∕2 ∼ U(0, 1∕2) and (U + 1)∕2 ∼ U(1∕2, 1). To compute
the variance of the new estimator, consider

Var(ĝs) =
1

4n2

{
n∑

i=1

Var(g(Ui∕2)) +
2n∑

i=n+1

Var(g((Ui + 1)∕2))

}
.

Direct computations show that if Ui ∼ U(0, 1), then

Var
(

g

(
Ui

2

))
= 2

∫

1∕2

0
g2(x) dx − 4m2

1,

Var
(

g

(
Ui + 1

2

))
= 2

∫

1

1∕2
g2(x) dx − 4m2

2,

where m1 = ∫
1∕2

0 g(x) dx and m2 = ∫
1

1∕2 g(x) dx. Now

Var
(

g

(
Ui

2

))
+ Var

(
g

(
Ui + 1

2

))
= 2

∫

1

0
g2(x) dx − 4(m2

1 + m2
2).

Consequently,

Var(ĝs) =
1
2n

{
∫

1

0
g2(x) dx − 2(m2

1 + m2
2)
}

.

Note that
(m1 + m2)2 + (m1 − m2)2 = 2(m2

1 + m2
2).

Therefore,

Var(ĝs) =
1

2n

{
∫

1

0
g2(x) dx − (m1 + m2)2 − (m1 − m2)2

}

= Var(ĝ) − 1
2n

(m1 − m2)2.
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Because this second term is always non-negative, stratification reduces the variance
by an amount of this second term. The bigger the difference in m1 and m2, the greater
the reduction in variance. In general, if more strata are introduced, more reduction
will be achieved. One can generalize this result to the multistrata case, but we omit
the mathematical details here.

Example 8.4 Consider again 𝜃 = E(eU) = ∫
1

0 ex dx.

Recall that by standard Monte Carlo with n = 2,

ĝ = 1
2
(eU1 + eU2),

and Var(ĝ) = 0.121. On the other hand, using stratification, we have

ĝs =
1
2
(eU1∕2 + e(U2+1)∕2),

and Var(ĝs)= Var(ĝ) −(m1 − m2)2∕2, where m1 = ∫
1∕2

0 ex dx = e1∕2 − 1 and

m2 = ∫
1

1∕2 ex dx = e − e1∕2. Thus,

Var(ĝs) = 0.121 − (2e1∕2 − e − 1)2∕2 = 0.0325,

resulting a variance reduction of 73.13%.
Stratified sampling is also very useful to draw random samples from designated

ranges. For example, if we want to sample Z1,… ,Z100 from a standard normal dis-
tribution, the standard technique would partition the whole real line (−∞,∞) into a
number of bins and sample Zs from these bins randomly. In such a case, it is inevitable
that some bins may have more samples, while other bins, particularly those near the
tails, may have no sample at all. Therefore, a random sample drawn this way would
under-represent the tails. Although this may not be a serious issue in general, it may
have severe effect when the tail is the quantity of interest, such as the case in the sim-
ulation of VaR. To ensure that the bins are regularly represented, we may generate
the Zs as follows. Let

Vi =
1

100
(Ui + (i − 1)), i = 1,… , 100,

where Ui ∼ U(0, 1) i.i.d.. By the property of uniform distribution, Vi ∼ U( i−1
100

,
i

100
).

Now let Zi = Φ−1(Vi). Then Zi falls between the i − 1 and i percentiles of the standard
normal distribution. For example, if i = 1, then V = U∕100 ∼ U(0, 1∕100) so that
Z = Φ−1(V) falls between Φ−1(0) = −∞ and Φ−1(0.01), that is, the 0th and the 1st
percentile of a standard normal distribution.

This method gives equal weight to each of the 100 equiprobable strata. Of course,
the number 100 can be replaced by any number that is desirable. The price we pay
in stratification is the loss of independence of the Zs. This complicates statistical
inference for simulation results.
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Example 8.5 As an illustration of stratification, consider simulating standard nor-
mal random numbers via standard method and stratification method, respectively.
As can be clearly seen from Figures 8.3 and 8.4, stratified sampling generates sam-
ples much more uniformly over the range than standard Monte Carlo. Please see the
online material for the VBA codes.

Example 8.6 As a second illustration of stratification, consider the simulation of a
European call option of Example 7.2 again.

X1
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20
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30

Figure 8.3 Simulations of 500 standard normal random numbers by standard Monte Carlo.

X2

–2 0 2

0

5

10

15

20

Figure 8.4 Simulations of 500 standard normal random numbers by stratified sampling.
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In Example 7.2, we simulate the terminal prices S1(T),… , Sn(T) according to
Equation 5.1 and then compute the estimate as

C = e−rT

n

n∑
i=1

max{Si(T) − K, 0}.

In this standard simulation, the random normals are samples arbitrarily over the whole
real line. We can improve the efficiency by introducing stratification.

1. Partition (−∞,∞) into B strata or bins.

2. Set Vi =
1
B
(Ui + (i − 1)), i = 0,… ,B and generate the desired number of ran-

dom samples (NB, say) of Vs in the ith bin.

3. Apply Φ−1(Vi) to get the desired normal random numbers from each bin and
calculate Ci from each bin.

4. Average the Ci over the total number of bins to get an overall estimate C.

5. Calculate the standard error as in the previous cases.

This numerical example uses S0 = 10, K = 12, r = 0.03, 𝜎 = 0.40, and T = 1. The
theoretical Black–Scholes price is 1.0139. We simulate the European option price
for different bin sizes with NB × B = 1, 000 in all cases. The effect of stratification
increases as we increase the number of bins. The results are shown in Table 8.1. Please
see the online material for the VBA codes.

Regular stratification puts equal weight on each of the B bins. Such an allocation
may not be ideal as one would like to have sample sizes directly related to the vari-
ability of the target function over that bin. To illustrate this point, consider the payoff
of a European call option again.

Example 8.7 Stratified sampling for a European call with the same parameter val-
ues as in Example 8.6.

TABLE 8.1 Effects of Stratification for Simulated
Option Prices with Different Bin Sizes

Bins (B) NB Mean (C) Std. Err.

1 1000 0.9744 0.0758
2 500 1.0503 0.0736
5 200 1.0375 0.0505

10 100 0.9960 0.0389
20 50 0.9874 0.0229
50 20 1.0168 0.0146

100 10 0.9957 0.0092
200 5 1.0208 0.0094
500 2 1.0151 0.0062

1000 1 1.0091 NA
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We know that if ST < K, then the payoff of the call is zero. Recall that

ST = S0e[r−𝜎
2∕2]T+𝜎

√
TZ .

Therefore, ST < K if S0e[r−𝜎
2∕2]T+𝜎

√
TZ < K. That is,

Z < [log(K∕S0) − (r − 𝜎2∕2)T]∕(𝜎
√

T) ∶= L.

Every simulated Z < L is being wasted as it just returns the value 0. We should only
be concentrating on the interval [L,∞). How can we achieve this goal?

1. Find out the c.d.f. of a normal distribution Y restricted on [L,∞). It can be
shown that Y has c.d.f.

F(y) =
Φ(y) − Φ(L)

1 − Φ(L)
.

2. Use the inverse transform method to generate Y . Consider the inverse transfor-
mation of F, that is, solve for y such that y = F−1(x). Writing it out, we have
x = F(y) = Φ(y)−Φ(L)

1−Φ(L) so that

y = Φ−1(x(1 − Φ(L)) + Φ(L)).

Now generate U from uniform (0, 1) and evaluate

Y = Φ−1(U(1 − Φ(L)) + Φ(L)).

3. Plug in the generated Y into the simulation step of the payoff of the call and
complete the analysis. Note that when evaluating the new estimator for the
payoff, we need to multiply the factor 1 − Φ(L). That is,

C∗ = (1 − Φ(L))C,

where C is the average of the simulated payoffs using the truncated normal
random variables.

In general, we would like to apply the stratification technique to bins in which the
variability of the integrand is largest. In this case, we just focus the entire sample on
the case ST > K.

The results are given in Table 8.2. Please see the online material for the VBA
codes.
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TABLE 8.2 Effects of Stratification for Simulated Option Prices with Restricted
Normal

Bins (B) NB Mean (C) Std. Err. Adj. Mean SE

1 1000 0.9744 0.0758 0.9842 0.1102
2 500 1.0503 0.0736 1.0303 0.0823
5 200 1.0375 0.0505 1.0235 0.0524

10 100 0.9960 0.0389 1.0101 0.0404
20 50 0.9874 0.0229 1.0058 0.0238
50 20 1.0168 0.0146 1.0147 0.0153

100 10 0.9957 0.0092 1.0089 0.0095
200 5 1.0208 0.0094 1.0160 0.0099
500 2 1.0151 0.0062 1.0143 0.0066

1000 1 1.0091 NA 1.0125 NA

8.4 CONTROL VARIATES

The idea of control variates is very simple. Suppose that we want to estimate 𝜃 = EX
from the simulated data. Suppose that for some other variable Y , the mean 𝜇Y = EY
is known. Then for any given constant c, the quantity

XCV = X + c(Y − 𝜇Y )

is also an unbiased estimate of 𝜃, as E(XCV ) = 𝜃. Presumably, if we choose the con-
stant c cleverly, some form of variance reduction can be achieved. How can we do
this? In other words, what would be a good choice of c? To answer this question, first
consider the variance of the new estimator XCV , call it 𝜎2

CV .

𝜎2
CV = Var(X + c(Y − 𝜇Y)) = VarX + c2VarY + 2cCov(X,Y).

We would like to find c such that 𝜎2
CV is minimized. Differentiate the preceding

expression with respect to c and set it equal to zero, we have

2cVarY + 2Cov(X,Y) = 0.

Solving for such a c, we get, c∗ = −Cov(X,Y)∕VarY as the value of c that minimizes
𝜎2

CV . For such a c∗,

𝜎2
c∗ = VarX − Cov2(X,Y)

VarY
.

The variable Y used in this way is known as a control variate for the simulation esti-
mator X. Recall that Corr(X,Y) = Cov(X,Y)∕(VarXVarY)1∕2. Therefore,

𝜎2
c∗ = VarX(1 − Corr2(X,Y)).
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Hence, as long as Corr(X,Y) ≠ 0, some form of variance reduction is achieved. In
practice, quantities such as 𝜎2

Y = VarY and Cov(X,Y) are usually not available; they
have to be estimated from the simulations on the basis of sample values. For example,
let X =

∑n
i=1 Xi∕n and Y =

∑n
i=1 Yi∕n. Then

̂Cov(X,Y) = 1
n − 1

n∑
i=1

(Xi − X)(Yi − Y),

�̂�2
Y = 1

n − 1

n∑
i=1

(Yi − Y)2,

ĉ∗ = −
̂Cov(X,Y)
�̂�2

Y

.

Suppose that we use X from simulation to estimate 𝜃. Then the control variate
would be Y , and the control variate estimator is

X + c∗(Y − 𝜇Y),

with variance equaling to

1
n
(VarX − Cov2(X,Y)

VarY
) =

𝜎2
X

n
(1 − 𝜌2).

Equivalently, one can use the simple linear regression equation

X = a + bY + e, e ∼ i.i.d. (0, 𝜎2), (8.2)

to estimate c∗. In fact, it can be easily shown that the least squares estimates of b,
b̂ = −ĉ∗, see Weisberg (1985). In such a case, the control variate estimator is given by

X + c∗(Y − 𝜇Y) = X − b̂(Y − 𝜇Y ) = â + b̂𝜇Y , (8.3)

where â = X − b̂Y is the least squares estimate of a in Equation 8.2. That is, the
control variate estimate is equal to the estimated regression equation evaluated at
the point 𝜇Y .

Notice that there is a very simple geometric interpretation using Equation 8.2.
Firstly, observe that the estimated regression line

X̂ = â + b̂Y

= X + b̂(Y − Y).

Thus, this line passes through the point (Y ,X). Secondly, from Equation 8.3,

X̂CV = â + b̂𝜇Y = X − b̂(Y − 𝜇Y).
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Suppose that Y < 𝜇Y , that is, the simulation run underestimates 𝜇Y and suppose that X
and Y are positively correlated. Then it is likely that X would underestimate E(X) = 𝜃.
We therefore need to adjust the estimator upward, and this is indicated by the fact that
b̂ = −ĉ∗ > 0. The extra amount that needs to be adjusted upward equals −b̂(Y − 𝜇Y ),
which is governed by the linear Equation 8.3.

Finally, �̂�2, the regression estimate of 𝜎2, is the estimate of Var(X − b̂Y) =
Var(X + ĉ∗Y). To see this, recall from regression that

�̂�2 = 1
n

n∑
i=1

ê2
i

= 1
n

n∑
i=1

(Xi − â − b̂Yi)2

= 1
n

n∑
i=1

(Xi − (X − b̂Y) − b̂Yi)2

= 1
n

n∑
i=1

((Xi − X) − b̂(Yi − Y))2

= 1
n

n∑
i=1

((Xi − X)2 − b̂2(Yi − Y)2)

= V̂ar(X) − b̂2V̂ar(Y)

= V̂ar(X − b̂Y).

The last equality follows from a standard expansion of the variance estimate (see
exercise 8.2). It follows that the estimated variance of the control variate estimator
X + ĉ∗(Y − 𝜇Y ) is 𝜎2∕n.

Example 8.8 Consider the problem 𝜃 = E(eU) again.

Clearly, the control variate is U itself. Now

Cov(eU ,U) = E(UeU) − E(U)E(eU)

=
∫

1

0
xex dx − (e − 1)∕2

= 1 − (e − 1)∕2 = 0.14086.

The second last equality makes use of the facts from the previous examples that
E(U) = 1∕2,VarU = 1∕12, and Var(eU) = 0.242. It follows that the control variate
estimate has variance

Var(eU + c∗(U − 1∕2)) = Var(eU)(1 − 12(0.14086)2∕0.242) = 0.0039,
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resulting in a variance reduction of (0.242 − 0.0039)∕0.242 × 100% = 98.4%.
In general, if we want to have more than one control variate, we can make use of

outputs from the multiple linear regression model given by

X = a +
k∑

i=1

biYi + e, e ∼ i.i.d. (0, 𝜎2).

In this case, the least squares estimates of a and bis, â and b̂is can be easily shown to
satisfy ĉ∗i = −b̂i, i = 1,… , k. Furthermore, the control variate estimate is given by

X +
k∑

i=1

(Yi − 𝜇i) = â +
k∑

i=1

b̂i𝜇i,

where E(Yi) = 𝜇i, i = 1,… , k. In other words, the control variate estimate is equal to
the estimated multiple regression line evaluated at the point (𝜇1,… , 𝜇k). By the same
token, the variance of the control variate estimate is given by 𝜎2∕n, where �̂�2 is the
regression estimate of 𝜎2.

Example 8.9 Plunging along the same line, consider simulating the vanilla Euro-
pean call option as in Example 8.6, using the terminal value ST as the control variate.

The control variate estimator is given by

CCV = C + c∗(ST − E(ST )).

Recalling that ST = S0e(𝜈T+𝜎
√

TZ), it can be easily deduced that

E(ST ) = S0erT , (8.4)

Var(ST ) = S2
0e2rT (e𝜎2T − 1). (8.5)

The algorithm goes as follows:

1. For i = 1,… ,N1, simulate a pilot of N1 independent paths to get

ST(i) = S0e𝜈T+𝜎
√

TZi ,

C(i) = e−rT max{0, ST (i) − K}.

2. Compute E(ST ) as S0erT or estimate it by
∑N1

i=1 ST (i)∕N1. Compute Var(ST )
as S2

0e2rT (e𝜎2T − 1) or estimate it by 1
N1−1

∑N1
i=1(ST (i) − ST )2. Now estimate

covariance by

̂Cov(ST ,C) = 1
N1 − 1

N1∑
i=1

(ST(i) − ST)(C(i) − C),

where C =
∑N1

i=1 C(i)∕N1 and ST =
∑N1

i=1 ST(i)∕N1.
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3. Repeat the simulations of ST and C by means of control variate. For
i = 1,… ,N2, independently simulate

ST (i) = S0e𝜈T+𝜎
√

TZi ,

C(i) = e−rT max{0, ST (i) − K},

CCV (i) = C(i) + c∗(ST (i) − E(ST (i))),

where c∗ = − ̂Cov(ST ,C)∕V̂arST is computed from the preceding step.

4. Calculate the control variate estimator by

CCV = 1
N2

N2∑
i=1

CCV (i).

Complete the simulation by evaluating the standard error of CCV and construct
confidence intervals.

Please see the online material for the VBA codes.
For N1 = 500 and N2 = 50, 000, we have a 95% confidence interval for CCV of

[1.0023 1.0247]. In this case, the estimated call price is 1.0135 with standard error
0.0057.

In using control variates, there are a number of features that should be considered.

• What should constitute the appropriate control? We have seen that in simple
cases, the underlying asset prices may be appropriate. In more complicated sit-
uation, we may use some easily computed quantities that are highly correlated
with the object of interest as control variates. For example, standard calls and
puts frequently provide convenient source of control variates for pricing exotic
options, and so does the underlying asset itself.

• The control variate estimator is usually unbiased by construction. In addition,
we can separate the estimation of the coefficients (ĉ∗i ) from the estimation of
prices.

• The flexibility of choosing the cis suggests that we can sometimes make opti-
mal use of information. In any event, we should exploit the specific feature
of the problem under consideration, rather than generic applications of routine
methods.

• Because of its close relationship with linear regression, control variates are eas-
ily computed and explained.

• We have only covered linear control. In practice, one can consider using non-
linear control variates, for example, X Y∕𝜇Y . Statistical inference for nonlinear
control may be tricky though.
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8.5 IMPORTANCE SAMPLING

After studying three variance reduction methods, we pursue one last method, namely,
importance sampling. This method is similar in idea to the acceptance–rejection
method that was discussed in Chapter 6. Its main idea lies in approximating at
places where the quantity of interest carries the most information, hence the name
importance sampling. This chapter then concludes with examples illustrating the
different methods of variance reduction in risk management.

Suppose that we are interested in estimating

𝜃 = E[h(X)] =
∫

h(x)f (x) dx,

where X = (X1,… ,Xn) denotes an n-dimensional random vector having a joint p.d.f.
f (x) = f (x1,… , xn). Suppose that a direct simulation of the random vector X is ineffi-
cient so that computing h(x) is infeasible. This inefficiency may be due to difficulties
encountered in simulating X, or the variance of h(x) being too large, or a combination
of both.

Suppose that there exists another density g(x), which is easy to simulate and sat-
isfies the condition that f (x) = 0 whenever g(x) = 0. Then 𝜃 can be estimated by

𝜃 = E[h(x)]

=
∫

h(x)f (x)
g(x)

g(x) dx

= Eg

[
h(x)f (x)

g(x)

]
,

where the notation Eg denotes the expectation of the random vector X taken under
the density g, that is, X has joint p.d.f. g(x). It follows from this identity that 𝜃 can be
estimated by generating X with density g and then using as the estimator the average
of the values of h(X)f (X)∕g(X). In other words, we could construct a Monte Carlo
estimator of 𝜃 = E(h(X)) by first computing i.i.d. random vectors Xi with p.d.f. g(X),
then using the estimator

�̂� = 1
n

n∑
i=1

h(Xi)f (Xi)
g(Xi)

.

If a density g(x) can be chosen so that the random variable h(X)f (X)∕g(X) has
a small variance, then this approach is known as the importance sampling approach
and can result in an efficient estimator of 𝜃.

To see how it works, note that the ratio f (X)∕g(X) represents the likelihood ratio of
obtaining X with respective densities f and g. If X is distributed according to g, then
f (X) would be small relative to g(X), and therefore when X is simulated according
to g, the likelihood ratio f (X)∕g(X) will usually be small in comparison to 1. On the
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other hand, it can be seen that

Eg

[
f (X)
g(X)

]
=
∫

f (x)
g(x)

g(x) dx =
∫

f (x) dx = 1.

Thus, although the likelihood ratio f (X)∕g(X) is smaller than 1, its mean is equal to
1, suggesting that it occasionally takes large values and results in a large variance.

To make the variance of h(X)f (X)∕g(X) small, we arrange for a density g such
that those values of X for which f (X)∕g(X) is large are precisely the values for which
h(X) is small, thus making the ratio h(X)f (X)∕g(X) stay small. Because importance
sampling requires h to be small sometimes, it works best when estimating a small
probability. Further discussions on importance sampling and likelihood method are
given in Glasserman (2003).

Example 8.10 Consider the problem 𝜃 = E(U5).

Suppose that we use the standard method �̂� = 1
n

∑n
i=1 U5

i , then we oversample the
data near the origin and undersample the data near 1. It is easy to compute that

Var(�̂�) = 1
n
{EU10 − (EU5)2} = 1

n
( 1
11

− 1
36

) = 0.0631
n

.

Now, suppose we use the importance sampling, putting more weights near 1. Let
g(x) = 5x4 for 0 < x < 1. Then

𝜃I = Eg

(
X5 ⋅ 1
5X4

)
=

EgX

5
.

The variance of this method is

Var(𝜃I) =
1

25n
{EgX2 − (EgX)2}

= 1
25n

{

∫

1

0
x2(5x4) dx −

(
∫

1

0
x(5x4) dx

)2}

= 1
25n

{
5
∫

1

0
x6 dx − (5

∫

1

0
x5 dx)2

}

= 1
25n

{5
7
− (5

6
)2
}

= 0.00794
n

,

resulting a variance reduction of 98.74%.
How do we choose g in general? This requires the notion of the so-called tilted den-

sity. Recall that the notation M(t) = E(etX) represents the moment-generating func-
tion (m.g.f.) of the random variable X with density f .
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Definition 8.2 A density function

ft(x) =
etxf (x)
M(t)

is called a tilted density of a given f , −∞ < t < ∞.

Note that from this definition, a random variable with density ft tends to be larger
than the one with density f when t > 0, and tends to be smaller when t < 0.

Example 8.11 Let f be a Bernoulli density with parameter p. Then f (x) = px(1 −
p)1−x, x = 0, 1. In this case, the m.g.f. is M(t) = E(etX) = pet + (1 − p) so that

ft(x) =
1

M(t)
etxf (x)

= 1
M(t)

(pet)x(1 − p)1−x

=
(

pet

pet + 1 − p

)x ( 1 − p

pet + 1 − p

)1−x

.

Thus, the tilted density ft is a Bernoulli density with parameter pt = pet∕(pet + 1 − p).

In many instances, we are interested in sums of independent random variables. In
these cases, the joint density f (x) of x = (x1,… , xn) can be written as the product of
the marginals fi of xi so that

f (x) = f1(x1) · · · fn(xn).

In this situation, it is often useful to generate the Xi according to their tilted densities
with a common t.

Example 8.12 Let X1,… ,Xn be independent with marginal densities fi. Suppose
that we are interested in estimating the quantity

𝜃 = P(S ≥ a),

where S =
∑n

i=1 Xi and a >
∑n

i=1 E(Xi) is a given constant. We can apply tilted den-
sities to estimate 𝜃. Let I{S ≥ a} equal 1 if S ≥ a and 0 otherwise. Then

𝜃 = E(I{S ≥ a}),

where the expectation is taken with respect to the joint density. Suppose that we sim-
ulate Xi according to the tilted density function ft,i, where the value of t > 0 is to be
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specified. To construct the importance sampling estimator, note that h(X) = I{S ≥ a},
f (X) =

∏
fi(Xi), and g(X) =

∏
ft,i(Xi). The importance sampling estimator would be

�̂� = I{S ≥ a}
∏

i

fi(Xi)
ft,i(Xi)

.

Now fi(Xi)∕ft,i(Xi) = Mi(t)e−tXi , therefore,

�̂� = I{S ≥ a}
∏

i

Mi(t)e−tXi

= I{S ≥ a}M(t)e−tS, (M(t) =
∏

i

Mi(t)).

As it is assumed that t > 0, S ≥ a iff e−tS ≤ e−ta and

I{S ≥ a}e−tS
≤ e−ta,

so that
�̂� ≤ M(t)e−ta.

We now find t > 0 such that the right-hand side of the aforementioned inequality is
minimized. In that case, we obtain an estimator that lies between 0 and mint M(t)e−ta.
It can be shown that such t can be found by solving the equation

Et(S) = a.

After solving for t, it can be used in the simulation. To be specific, suppose X1,… ,Xn
are i.i.d. Bernoulli trials with p = pi = 0.4. Let n = 20 and a = 16. Then

�̂� = I{S ≥ a}e−tS
∏

i

(pet + 1 − p).

Recall from the preceding example that the tilted density ft,i is the p.d.f. of a Bernoulli
trial with parameter p∗ = pet∕(pet + 1 − p). It follows that

Et(S) = 20p∗ =
20∑
i=1

pet

pet + 1 − p
.

Plugging in n = 20, p = 0.4, a = 16, we have

20
0.4et

0.4et + 0.6
= 16,
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which leads to et∗ = 6. Therefore, we should generate Bernoulli trials with parameter
0.4et∗∕(0.4et∗ + 0.6) = 0.8 as the g and evaluate M(t∗) = (0.4et∗ + 0.6)20 and e−t∗S =
(1∕6)S. The importance sampling estimator is now

�̂� = I{S ≥ 16}M(t∗)e−t∗S = I{S ≥ 16}320(1∕6)S.

Furthermore, we know that

�̂� ≤ M(t∗)e−t∗a = 320(1∕6)16 = 0.001236.

Thus, in each iteration, the value of the importance sampling estimator lies between
0 and 0.001236.

On the other hand, we can also evaluate 𝜃 = P(S ≥ 16) exactly, which equals to
the probability that a Binomial random variable with parameters 20 and 0.4 be at
least as big as 16. This value turns out to be 0.000317. Recall the function h(X) =
I{S ≥ 16}. This is a Bernoulli trial with parameter 𝜃 = 0.000317. Therefore, if we
simulate directly from Xs, the standard estimator �̂�S has variance

Var(�̂�S) = 𝜃(1 − 𝜃) = 3.169 × 10−4.

As 0 ≤ �̂� ≤ 0.001236, it can be shown that

Var(�̂�) ≤ (0.001236)2∕4 = 3.819 × 10−7,

which is much smaller than the variance of the standard estimator �̂�S.

Another application of importance sampling is to estimate tail probabilities (recall
at the beginning we mentioned that importance sampling works best in small prob-
ability). Suppose that we are interested in estimating P(X > a), where X has p.d.f. f
and a is a given constant. Let I(X > a) = 1 if X > a and 0 otherwise. Then

P(X > a) = Ef (I(X > a))

= Eg

[
I(X > a)

f (X)
g(X)

]

= Eg

[
I(X > a)

f (X)
g(X)

|X > a

]
Pg(X > a)

+Eg

[
I(X > a)

f (X)
g(X)

|X ≤ a

]
Pg(X ≤ a)

= Eg

[
f (X)
g(X)

|X > a

]
Pg(X > a).
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Take g(x) = 𝜆e−𝜆x, x > 0, an exponential density with parameter 𝜆. Then the afore-
mentioned derivation shows

P(X > a) = Eg[e𝜆Xf (X)|X > a]e−𝜆a∕𝜆.

Using the so-called “memoryless property,” that is, P(X > s + t|X > s) = P(X > t),
of an exponential distribution, it can be easily seen that the conditional distribution
of an exponential distribution conditioned on {X > a} has the same distribution as
a + X. Therefore,

P(X > a) = e−𝜆a

𝜆
Eg[e𝜆(X+a)f (X + a)]

= 1
𝜆
Eg[e𝜆Xf (X + a)].

We can now estimate 𝜃 by generating X1,… ,Xn according to an exponential distri-
bution with parameter 𝜆 and using

�̂� = 1
𝜆

1
n

n∑
i=1

e𝜆Xi f (Xi + a).

Example 8.13 Suppose that we are interested in 𝜃 = P(X > a), where X is standard
normal. Then f is the normal density. Let g be an exponential density with 𝜆 = a. Then

P(X > a) = 1
a
Eg[eaXf (X + a)]

= 1

a
√

2𝜋
Eg[eaX−(X+a)2∕2].

We can therefore estimate 𝜃 by generating X, an exponential distribution with rate a,
and then using

�̂� = e−a2∕2

a
√

2𝜋

1
n

n∑
i=1

e−X2
i
∕2

to estimate 𝜃. To compute the variance of �̂�, we need to compute quantities Eg[e−X2∕2]
and Eg[e−X2 ]. These can be computed numerically and can be shown to be

Eg[e−X2∕2] = aea2∕2
√

2𝜋(1 − Φ(a)), Eg[e−X2 ] = aea2∕4
√
𝜋(1 − Φ(a∕

√
2)).

For example, if a = 3 and n = 1, then Var(e−X2∕2) = 0.0201 and Var(�̂�) = ( e−4.5

3
√

2𝜋
)2 ×

0.0201 ∼ 4.38 × 10−8. On the other hand, a standard estimator has variance 𝜃(1 −
𝜃) = 0.00134.

Consider simulating a vanilla European call option price again, using the impor-
tance sampling technique. Suppose that we evaluate the value of a deep out-of-money
(S0 ≪ K) European call option with a short maturity T . Many sampling paths result
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ST ≤ K and give zero-values. Thus, these samples are wasted. One possible way to
deal with this problem is to increase the values of Zis by sampling them from a dis-
tribution with large mean and large variance. Sample Z̃i from N( m

𝜎
√

T
, s2) so that

𝜎
√

TZ̃i ∼ N(m, 𝜎2Ts2).

Note that Z̃i can be written as

Z̃i =
m

𝜎
√

T
+ sZi, Zi ∼ N(0, 1).

The importance sampling estimator is then given by

CI = e−rT 1
N

N∑
i=1

max{S0e(r−𝜎
2∕2)T+𝜎

√
TZ̃i − K, 0}R(Z̃i),

where

R(Z̃i) =

1√
2𝜋
exp(−Z̃i

2∕2)

1√
2𝜋s

exp(− 1
2s2 (Z̃i −

m

𝜎
√

T
)2)

= s exp(
Z2

i

2
−

Z̃i
2

2
).

Thus, CI can be expressed as

CI = se−rT 1
N

N∑
i=1

max{S0e(r−𝜎
2∕2)T+m+s𝜎

√
TZi − K, 0}exp

⎛
⎜⎜⎝

Z2
i

2
−

( m

𝜎
√

T
+ sZi)2

2

⎞
⎟⎟⎠
.

Example 8.14 Let S0 = 100, K = 140, r = 0.05, 𝜎 = 0.3, and T = 1. We simulate
the value of this deep out-of-money European call option, using the importance sam-
pling technique and compare it with the result of standard method. See the online
material for the VBA codes.

For N = 10, 000, we have CI = 3.1202 with standard error 0.0264 using impor-
tance sampling while getting C = 3.0166 with standard error 0.1090 using standard
method. The result shows that the importance sampling technique gives a more pre-
cise estimate of the price of the option, which has a theoretical Black–Scholes price
3.1187.

8.6 EXERCISES

1. Let U ∼ U(0, 1) and let a and b be two given constants with a < b. Show that
Y = a + (b − a)U is distributed as a U(a, b) random variable.
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2. Let b̂ be the least squares estimate of b in the simple linear regression model X =
a + bY + e, e ∼ (0, 𝜎2) i.i.d.. Show that

Var(X − b̂Y) = Var(X) − b̂2Var(Y).

3. Suppose that you want to estimate 𝜃 = ∫
1

0 ex2
dx. Show that generating a ran-

dom number U and then using the antithetic estimator (eU2 (1 + e1−2U))∕2 is better
than generating two random numbers U1 and U2 and using the standard estimator
(eU2

1 + eU2
2 )∕2.

4. Consider estimating 𝜃 = ∫
1

0 4x3 dx.

(a) Using standard simulation technique, estimate 𝜃.

(b) Using antithetic variable technique, construct an improved estimate of 𝜃.

(c) Using stratification, construct another estimate of 𝜃.

(d) Construct a control variate estimate of 𝜃.

(e) Compare the performance of these different estimates.

(f) Can you combine the aforementioned methods to improve the result?

5. Consider 𝜃 = ∫
∞

2 (x − 2)e−x dx.

(a) It is known that 𝜃 = E[f (X)] where X ∼Exp(1). What is f (X)?
(b) Provide an algorithm to sample X from the interval [2,∞).
(c) Provide an algorithm to stratify X in the interval [2,∞) with equal probability

1/4 for each stratified interval.

(d) Provide a Monte Carlo algorithm using (X − 2) as the control variable.

6. Redo Examples 8.6, 8.7, and 8.9 using S0 = K = 100, r = 0.05, 𝜎 = 0.1, and T =
1. Calculate the theoretical Black–Scholes price as well.

7. Verify Equations 8.4 and 8.5.

8. Consider a truncated payoff vanilla call option with maturity T and strike price K.
The payoff function is given by

h(ST ) =
{

ST − K if K ≤ ST ≤ Sb,

0 otherwise .

The given constant Sb acts as a barrier, canceling the option whenever ST > Sb.
Assuming that the stock price follows a geometric Brownian motion with 𝜈 =
r − 𝜎2∕2, where the risk-free rate r and the volatility 𝜎 are known. Using the idea
of antithetic variables, write a variance reduction algorithm to estimate the payoff
function.

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

http://www.sta


9
PATH DEPENDENT OPTIONS

9.1 INTRODUCTION

Contingent claims other than standard call and put options are known as exotic
options. The most common type of exotic options is path dependent options. As
indicated by the name, the payoff of a path dependent option depends on the entire
path of the underlying asset prices, not just the terminal asset price alone. According
to this definition, American options are path dependent options because the option
holder has to determine whether the options are worth to exercise at each time
point. The path-dependent feature of an option usually complicates the analytical
tractability of valuation. Simulation would be the most useful alternative.

Owing to the need to value exotic options, this chapter studies simulation tech-
niques for European and American style path dependent options. Some of the options
considered in this chapter have no analytical solutions.

9.2 BARRIER OPTION

Barrier options have become increasingly popular nowadays. A barrier option is very
much similar to a “vanilla” option, which becomes alive when the barrier is crossed.
Let K be the strike price, T be the time to maturity, and V be the value of the barrier.
A down-and-in barrier option becomes alive only if the stock price (usually count-
ing only closing prices) goes below V before T . A down-and-out barrier option is

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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killed if the stock price goes below V before T . A down-and-in barrier call option is
a cheaper tool to hedge against the upside risk. From the definition, it can be easily
seen that holding both a down-and-in and down-and-out options with the same strike
price K and maturity T is the same as holding a “vanilla” option. Let Cdi and Cdo
be the option value of the down-and-in call and the down-and-out call, respectively.
Then

Cdi + Cdo = C,

where C is the vanilla call price. Let

Smin = min
0<t≤T

S(t) and I{Smin < V} =
{

1 Smin < V ,
0 Smin ≥ V ,

be the realized minimum asset price and the indicator of the down-and-in option,
respectively. Then, the value of the option can be written as

Cdi = e−rT Ê{I{Smin < V}(S(T) − K)+},

where Ê denotes the risk-neutral expectation. The other types of barrier options can
be evaluated analogously.

To simulate the value of a down-and-in call option, the algorithm goes as follows:

1. Generate the daily stock price S(t1), S(t2),… , S(tn = T). If mini S(ti) < V , then
set

C = e−rT max(S(T) − K, 0),

else set C = 0.

2. Repeat Step 1 N times to obtain C1,… ,CN . The value of the down-and-in call
option is given by

C = 1
N

N∑
i=1

Ci,

and the standard error of the estimator is given by

√√√√ 1
N(N − 1)

N∑
i=1

(Ci − C)2.

Example 9.1 Let S0 = 10, r = 0.23, 𝜎 = 0.4, and dt = 1∕250. Compute the value
of a down-and-in call option with strike price K = 12, maturity T = 1, and barrier
V = 9. Please see the online material for the VBA codes.

For N = 10, 000, we get C = 1.0273, and the standard error of C is 0.02048. The
95% confidence interval for C is [0.9872,1.0675].
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9.3 LOOKBACK OPTION

The payoffs of lookback options depend on the maximum or the minimum stock price
during the life of the option. Denote the maximum (minimum) of the stock price over
the time period [0,T] by Smax(T) (Smin(T)). Four popular lookback options are as
follows:

1. Floating strike lookback call (cfl): payoff = ST − Smin(T);
2. Floating strike lookback put (pfl): payoff = Smax(T) − ST ;

3. Fixed strike lookback call (cfix): payoff = max(Smax(T) − K, 0);
4. Fixed strike lookback put (pfix): payoff = max(K − Smin(T), 0).

There are lookback put-call parities connecting the floating strike lookback call
(put) to the fixed strike lookback put (call). Specifically, four put-call parities of look-
back options are as follows:

1. cfl

(
t, S, Smin(t)

)
= S − e−r(T−t)Smin(t) + pfix

(
t, S, Smin(t);K = Smin(t)

)
;

2. pfl

(
t, S, Smax(t)

)
= e−r(T−t)Smax(t) − S + cfix

(
t, S, Smax(t);K = Smax(t)

)
;

3. cfix

(
t, S, Smax(t);K

)
= S − e−r(T−t)K + pfl

(
t, S,max(Smax(t),K)

)
;

4. pfix

(
t, S, Smin(t);K

)
= e−r(T−t)K − S + cfl

(
t, S,min(Smin(t),K)

)
.

These four put-call parities are model independent, meaning that they are applicable
to any asset dynamics. For a proof, we refer to the article of Wong and Kwok (2003).

Pricing lookback options with simulation is very similar to that of the bar-
rier option. Consider the floating strike lookback call option. The VBA code of
Example 9.1 can be modified to obtain the lookback option price. We just compute

e−rT

N

N∑
i=1

[
Si(T) − min

j
Si(tj)

]
.

Other lookback options are valued in the same manner.
It is interesting to notice that simulating fixed strike lookback options requires

less storage than simulating the floating ones. The reason is that payoffs of fixed
strike lookback options do not depend on the terminal asset price, ST . Therefore,
after generating a sample path, only the maximum or minimum price of the path
is required. With this observation and the lookback put-call parities, a storage-saving
approach to simulating floating strike lookback options can be developed. For valuing
a floating strike lookback call, a fixed strike lookback put with strike price equaling
to the realized minimum asset value is simulated. Then, the floating strike call price
is extracted from the first put-call parity.
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9.4 ASIAN OPTION

Asian options payoffs depend on the average of the underlying asset prices during the
option life. Asian options are popular in the financial industry because they cost less
than their vanilla counterparts and are less sensitive to the change in underlying asset
prices. The common forms of averaging in option contracts can be either geometric
average or arithmetic average of the underlying variables. Denote the geometric aver-
age and arithmetic average of the underlying asset in the period [0,T] by GT and AT ,
respectively. Then,

GT = lim
n→∞

[
n∏

i=1

S(ti)

] 1
n

= exp

[
1
T ∫

T

0
log S(t) dt

]
, (9.1)

AT = lim
m→∞

1
n

n∑
i=1

S(ti) =
1
T ∫

T

0
S(t) dt.

For geometric Asian options, analytical pricing formulas are available in the liter-
ature; see for example Wong and Cheung (2004). However, almost all Asian options
are traded with arithmetic average. For instance, two frequently traded Asian options
are as follows:

1. Floating strike Asian call. Payoff = max(ST − AT , 0);
2. Fixed strike Asian call. Payoff = max(AT − K, 0).

In practice, the geometric Asian option prices are used as a control variate in simu-
lating their arithmetic counterparts.

Let us illustrate the procedure by considering a fixed strike Asian call. The geo-
metric version of the option has the payoff max(GT − K, 0). Denote XT by log GT ,
that is,

XT = 1
T ∫

T

0
log S(𝜏) d𝜏.

By Itô’s lemma,

log S𝜏 = log St + 𝜈(𝜏 − t) + 𝜎(W(𝜏) − W(t)) (Recall: 𝜈 = r − 𝜎2∕2),

which implies

XT = Xt
t
T
+ 1

T ∫

T

t
log S(𝜏) d𝜏

= Xt
t
T
+ T − t

T
log St + 𝜈

(T − t)2

2T
+ 𝜎

T

[
∫

T

t
W(𝜏) d𝜏 − (T − t)Wt

]
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= Xt
t
T
+ T − t

T
log St + 𝜈

(T − t)2

2T
+ 𝜎

T

[
T(WT − Wt) −

∫

T

t
𝜏 dW𝜏

]

= Xt
t
T
+ T − t

T
log St + 𝜈

(T − t)2

2T
+ 𝜎

T ∫

T

t
(T − 𝜏) dW𝜏 ,

where the second last line uses the integration by parts formula; see Example (4.2).
By Itô’s identities, see Exercise 1(d) in Chapter 4, we have

E
∫

T

t
(T − 𝜏) dW(𝜏) = 0 and

Var
[
∫

T

t
(T − 𝜏) dW(𝜏)

]
=
∫

T

t
(T − 𝜏)2 d𝜏 = (T − t)3

3
.

Therefore,

XT ∼ N

(
t
T

Xt +
T − t

T
log St + 𝜈

(T − t)2

2T
, 𝜎2 (T − t)3

3T2

)
. (9.2)

Risk-neutral valuation asserts that

Cfix
G (t, S,Gt) = e−r(T−t)Ê

[
max(eXT − K, 0)

]
.

Applying Lemma 5.1, we obtain the closed form solution as

Cfix
G (t, S,Gt) = S

(
Gt

S

) t
T

eR(t,T)Φ(d̂1) − Ke−r(T−t)Φ(d̂2), (9.3)

where

d̂1 =
T log S

K
+ t log Gt

S
+ (r − 𝜎2

2
) (T−t)2

2
+ 𝜎2 (T−t)3

3T√
𝜎2 (T−t)3

3

, (9.4)

d̂2 = d̂1 −
√

𝜎2 (T − t)3
3T2

,

R(t;T) =
(

r − 𝜎2

2

)
(T − t)2

2T
+ 𝜎2 (T − t)3

6T2
− r(T − t).

With the analytical solution of the geometric Asian call (GAC), we simulate the
arithmetic Asian price via control variate. The algorithm is presented as follows.

Step 1: Generate daily stock prices S(t1), S(t2),… , S(tn).
Step 2: Set

Gj =

[
n∏

i=1

S(ti)

] 1
n

, Cj
G = e−r(T−t) max(Gj − K, 0),
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Aj =
1
n

n∑
i=1

S(ti), Cj
A = e−r(T−t) max(Aj − K, 0).

Step 3: Repeat Steps 1 and 2 N times.

Step 4: Compute the regression coefficients a and b by fitting

Cj
A = a + b Cj

G, j = 1, 2,… ,N.

Step 5: Cfix
A = a + b Cfix

G (t, S,Gt) with formula (9.3) applied.

Example 9.2 Consider the parameter values: St = 10, r = 0.03, 𝜎 = 0.4, t =
0.2,T = 1, and the realized arithmetic average At = 10.5. Simulate the arithmetic
Asian call option with a fixed strike price of $12. Please see the online material for
the VBA implementation.

This simulation gives the arithmetic Asian call (AAC) price to be 0.1698. The
analytical price for the GAC is computed as 0.1318. The AAC is a bit more expensive
than the GAC because the arithmetic mean always dominates the geometric mean.
The computational time is about 10 s.

9.5 AMERICAN OPTION

American options allow the holder to exercise before maturity. This early exercise
feature exists in major financial markets. The valuation and optimal exercise of Amer-
ican options is one of the most challenging problems in derivatives finance, especially
when more than one factor is involved in the option contract.

Although simulation techniques can be used to generate future scenarios, the for-
ward looking feature of simulation complicates the valuation of American option,
where optimal exercising policy have to be constructed via backward reduction. When
an American put option is valued with binomial tree, one has to determine if it is opti-
mal to exercise the option at each node in a backward manner. A practical approach
to valuing American options with simulation is proposed by Longstaff and Schwartz
(2001). This section presents the idea of American option pricing using this approach.

9.5.1 Simulation: Least Squares Approach

The best way to illustrate the least squares approach of Longstaff and Schwartz (2001)
is by means of a concrete example. In the following numerical example, we introduce
the algorithm in detail first and explain the concepts later.

Example 9.3 Let S(0) = 10, r = 0.03, 𝜎 = 0.4. Compute the value of an American
put option with strike price K = 12 and maturity T = 1. For simplicity, assume that
the option can be exercised at t = 1∕3, 2∕3, and 1.
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TABLE 9.1 Sample Paths

Path t = 1∕3 t = 2∕3 t = 1 Y3

= max(K − S(1), 0)

1 8.3826 9.9528 6.7581 5.2419
2 11.9899 13.8988 14.5060 0
3 13.1381 17.4061 13.4123 0
4 6.8064 7.8115 10.6520 1.3480
5 7.0508 9.1293 7.4551 4.5449
6 11.2214 8.3600 9.2896 2.7104
7 8.9672 8.7787 9.0822 2.9178
8 11.5336 10.9398 8.6958 3.3042

TABLE 9.2 Regression at t = 2∕3

Path Y3e−rΔt S(2∕3) Exercise in-the-Money?

1 5.1898 9.9528 Yes
2 — 13.8988 No
3 — 17.4061 No
4 1.3346 7.8115 Yes
5 4.4997 9.1293 Yes
6 2.6834 8.3600 Yes
7 2.8888 8.7787 Yes
8 3.2714 10.9398 Yes

We use the formula S(t + Δt) = S(t) exp[(r − 𝜎2∕2)Δt + 𝜎ΔWt] to generate asset
prices at exercise time points: t = 1∕3, 2∕3, and 1. Table 9.1 gives eight sample paths.
Terminal payoffs corresponding to each path, Y3, are given by the last column of the
table. Discounting the sample mean of the terminal payoffs estimates the European
put price to be $2.4343. This is a lower bound for the American put option.

At time t = 2∕3, the option holder must decide whether to exercise the option
immediately or to continue the option when the option is in-the-money. To make
the decision, the holder should compare the cash flows of immediate exercise with
the expected payoff of continuation given the asset price at time 2/3. Therefore, it
is essential to estimate the conditional expected payoff. To do this, we collect the
response variable Y3e−rΔt and the explanatory variable S(2∕3) for in-the-money paths
in Table 9.2, where Δt = 1∕3. We model the expected payoff from continuation at
time t = 2∕3 as a quadratic polynomials, f2(St), of asset values at time t = 2∕3. Coef-
ficients of the polynomials are estimated from the data in Table 9.2 by the least squares
method. Therefore, we estimate â0, â1 and â2 from the regression line:

Y3e−rΔt = â0 + â1[S(2∕3)] + â2[S(2∕3)]2 + 𝜖.
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The resulting formula is

E[Y3e−rΔt|S(2∕3)] = −82.5347 + 17.7788[S(2∕3)] − 0.9063[S(2∕3)]2 ∶= f2(S).

With this conditional expectation function, f2(S), we are able to compare the value
of immediate exercise, K − S(2∕3), and compute payoffs, Y2, for each path at t = 2∕3.
The value of Y2 is obtained by the formula,

Y2 =
{

K − S(2∕3), if K − S(2∕3) ≥ f2(S(2∕3)),
e−ΔtY3, otherwise.

This formula asserts that the payoff at time t = 2∕3 is K − S if exercising the option
is worth more than the expected payoff from holding it; otherwise, the payoff at time
2/3 becomes the discounted cash flow in the next exercise time. The last column of
Table 9.3 gives the expected payoffs, Y2, for each sample path.

Next, we repeat the procedure for t = 1∕3. In Table 9.4, all sample paths are
in-the-money except path 3. Then, the least squares estimation corresponding to
in-the-money paths gives

E[Y2e−rΔt|S(1∕3)] = −8.9488 + 3.3104S(1∕3) − 0.2036[S(1∕3)]2 ∶= f1(S).

This regression function determines the exercising policy at t = 1∕3.

TABLE 9.3 Optimal Decision at t = 2∕3

Path Exercise Continuation e−rΔtY3 Y2

K − S(2∕3) f2(S(2∕3))

1 2.0472 4.6380 5.1898 5.1898
2 — — 0 0
3 — — 0 0
4 4.1885 1.0428 1.3346 4.1885
5 2.8707 4.2388 4.4997 4.4997
6 3.6400 2.7554 2.6834 3.6400
7 3.2213 3.6959 2.8888 2.8888
8 1.0602 3.4968 3.2714 3.2714

TABLE 9.4 Regression at t = 1∕3

Path Y2e−rΔt S(1∕3) Exercise in-the-Money?

1 5.1381 8.3826 Yes
2 0 11.9899 Yes
3 0 13.1381 No
4 4.1468 6.8064 Yes
5 4.4549 7.0508 Yes
6 3.6038 11.2214 Yes
7 2.8600 8.9672 Yes
8 3.2388 11.5336 Yes
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TABLE 9.5 Optimal Decision at t = 1∕3

Path Exercise Continuation e−rΔtY2 Y1

K − S(1∕3) f1(S(1∕3))

1 3.6174 4.4921 5.1381 5.1381
2 0.0101 1.4689 0 0
3 — — 0 0
4 5.1936 4.1494 4.1468 5.1936
5 4.9492 4.2688 4.4549 4.9492
6 0.7786 2.5572 3.6038 3.6038
7 3.0328 4.3620 2.8600 2.8600
8 0.4664 2.1440 3.2388 3.2388

Once again, the Y1 in Table 9.5 is computed according to the optimal decision by
the rule,

Y1 =
{

K − S(1∕3), if K − S(1∕3) ≥ f1(S(1∕3)),
e−ΔtY2, otherwise.

Finally, the current price of the American option is estimated by the average of
e−rΔtY1, that is, $3.0919, which is higher than the European option price $2.4343.

9.5.2 Analyzing the Least Squares Approach

Consider an American put option with exercise rights at t1 < · · · < tn = T . To sim-
plify matters, we assume tj+1 − tj = Δt for j = 1, 2,… , n − 1. Given a sample path of
the underlying asset price, {S(t1), S(t2),… , S(tn)}, we study possible payoffs received
by the option holder at each of the exercise time points. Clearly, if the option is
not exercised prematurely, then the holder receives the terminal payoff, denoted as
Yn = max(K − S(tn), 0). At time t = tn−1, the corresponding payoff, Yn−1, depends on
the holder’s decision of exercising the option. Therefore,

Yn−1 =
{

K − S(tn−1), exercise,
e−rΔtYn, continue.

This formula indicates that the option holder receives K − S(tn−1) if the optimal deci-
sion is to exercise the option. Otherwise, the holder will receive a cash flow of Yn at
the next time step. The present value of this cash flow is obtained through multiplying
a discounted factor e−rΔt. Inductively, the payoff Yj at time tj can be described as

Yj =
{

K − S(tj), exercise,
e−rΔtYj+1, continue.

(9.5)

This iterative process stops until Y1 is obtained. As the option holder has no exercise
right in the time period [0, t1), the American put option can be viewed as a European
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option that expires at t1 with payoff Y1. Risk-neutral valuation allows us to value the
American put, PA(0, S), as

PA(0, S) = Ê
[
e−rt1 Y1|S0 = S

]
.

Therefore, a typical simulation algorithm generates N sample paths; each follows the
algorithm to obtain {Y (1)

1 ,… ,Y (N)
1 }. The American put is estimated by

PA(0, S) =
1
N

N∑
i=1

e−rt1 Y (i)
1 . (9.6)

The aforementioned simulation is incomplete, however. To simulate the American
put, the payoff, Y1, at time t1 should be obtained via simulation. This requires the
simulation algorithm to detect optimal exercise at each time point successively. In
other words, we have to clarify the condition of exercising the option in Equation
9.5. It is crucial that the optimal decision should not be made by simply comparing
the values of K − S(tj) and e−rΔtYj+1 in Equation 9.5. The reason is that the decision
at time tj should be based on the information up to tj. However, the value Yj+1 depends
on the asset value at tj+1. The correct approach is to compare the immediate exercise
cash flow K − S(tj) with the expectation on the discounted cash flow conditional on
the asset price S(tj). This leads (Eq. 9.5) to

Yj =
{

K − S(tj), if K − S(tj) ≥ fj(S(tj)),
e−rΔtYj+1, if K − S(tj) < fj(S(tj)),

(9.7)

where fj(S(tj)) is the conditional expectation function at tj, that is,

fj(S(tj)) = Ê
[
e−rΔtYj+1|S(tj)

]
. (9.8)

The key to the Longstaff and Schwartz (2001) approach is the use of least squares
to estimate the function, fj(S). Under certain technical conditions, it can be shown that
the function fj(S(tj)) can be approximated by a polynomial of S(tj). In other words,

fj(S(tj)) =
∞∑

k=0

ak[S(tj)]k,

where {ak} converges to zero rapidly. Therefore, one way to approximate fj(S) is by
truncating the polynomial of infinite order to a finite order polynomial. Coefficients
of the finite order polynomials are estimated through the least squares method.

In Example 9.3, we use a polynomials of degree 2 to approximate fj(S). The sim-
ulation starts by generating N asset price paths, {Si(t1),… , Si(tn)} for i = 1, 2,… ,N.
When t = tn, it is clear that Y (i)

n = max[K − Si(tn), 0] for the path i. We go one step
back to the time point t = tn−1, where N possible asset prices have been generated.
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Then, the coefficients a0, a1, and a2 are obtained by taking least squares estimation
to the regression line:

fn−1(S) = Ê
[
e−rΔtYn|S

]
= a0 + a1[S(tn−1)] + a2[S(tn−1)]2. (9.9)

The estimation is based on the sample {(Si(tn−1),Y
(i)
n )|K > Si(tn−1), i = 1,… ,N},

that is, in-the-money paths. Then, payoffs at tn−1 are calculated via the rule in
Equation 9.7. Having a sample of payoffs {Y (i)

n−1|i = 1, 2,… ,N} at tn−1, we go one
step back to the time point tn−2 and repeat the process. Eventually, we obtain N
possible payoffs,{Yi

1|i = 1, 2,… ,N}, at t1. Monte Carlo simulation estimates the
current option price by the average in Equation 9.6.

Remarks

1. In the regression Equation 9.9, only in-the-money paths are used in the least
squares estimation, as these paths are sensitive to immediate exercise. Remem-
ber that the option holder will exercise the option only when it is in-the-money.

2. An obvious way to improve the accuracy is to increase the number of terms
in Equation 9.9. However, one has to strike a balance between increasing the
number of terms and the quality of estimates. Numerical experiments show that
polynomials of degree 3 are a reasonable choice.

3. Instead of using ordinary monomials as basis functions in Equation 9.9, one
may consider other basis functions, such as Hermite, Laguerre, Legendre,
Chebyshev, Gegenbauer, and Jacobi polynomials. Numerical tests of Moreno
and Navas (2003) show that the least squares approach is quite robust to
the choice of basis functions. For more complex derivatives, this choice can
slightly affect option prices.

4. The recent analysis of Stentoft (2004) indicates that a modified specification
using ordinary monomials is preferred over the specification based on Laguerre
polynomials used in Longstaff and Schwartz (2001). Furthermore, the least
squares method is computationally more efficient than other numerical meth-
ods, such as finite difference, especially when high dimensional problems are
concerned.

5. The article by Longstaff and Schwartz (2001) points out that the R2 values of
the regressions are often low. This means that the volatility of unexpected cash
flows is large relative to the expected cash flows. However, because the least
squares simulation is based on conditional first moments rather than higher
moments, the R2’s of the regression should have little impact on estimated
American option price.

6. If the user is really concerned about the R2, it may be more efficient to use other
techniques such as weight least squares and generalized method of moments
(GMM) in estimating the conditional expectation function.
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Figure 9.1 The exercising region of the American put option.

Example 9.4 Using the parameters in the preceding example, simulate the
American put price with continuous exercise rights and hence determine the optimal
exercise policy. The simulation is based on 10,000 sample paths with Δt = 1∕100.
The online materials provide the VBA codes for the simulation.

By using quadratic conditional expectation functions, our simulation estimates the
American put price as 2.739 within 15 s, which is consistent with the binomial model
of Hull (2006). For the early exercise policy, we collect the maximum asset value
that belongs to the exercising region at each time. For t ≥ 0.2, Figure 9.1 plots the
exercise policy against time. The option is optimal to exercise if the stock price falls
into the shaded region. It is seen that the early exercise boundary looks similar to
an increasing function of calendar time and hence a decreasing function of option
maturity. For t < 0.2, our simulation has no path in the exercising region so that we
are unable to graph the exercising boundary.

9.5.3 American Style Path Dependent Options

The examples considered so far are relevant to pricing American put options; the least
squares approach is applicable to any early exercisable contingent claims. Denote
the terminal payoff function of a path dependent option by F(ST , 𝜉T ) where 𝜉 is an
exogenous variable. For instance, 𝜉T = Smin(T) for a barrier option or a lookback
option and 𝜉T = AT for an Asian option. The American style path dependent option
with payoff F(ST , 𝜉T ) can be simulated as follows.

Step 1: Generate asset price paths {Si(t1), Si(t2),… , Si(tn)} for i = 1, 2,… ,N. Set
j = n − 1 and Yi

n = F(Si(tn), 𝜉i(tn)).
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Step 2: Use least squares to estimate coefficients of a polynomials of degree m,
m(Si(tj), 𝜉i(tj)) from:

e−rΔtYi
j+1 = m(Si(tj), 𝜉i(tj)),

for in-the-money paths.

Step 3: If F(Si(tj), 𝜉i(tj)) ≥ m(Si(tj), 𝜉i(tj)), then set Yi
j = F(Si(tj), 𝜉i(tj)); otherwise,

set Yi
j = e−rΔtYi

j+1.

Step 4: If j > 1, then set j = j − 1 and go to Step 2.

Step 5: The American option price = 1
N

∑N
i=1 e−rΔtYi

1.

Example 9.5 Suppose that S0 = 10, r = 0.03, 𝜎 = 0.4, and T = 7∕12 (7 months).
Simulate the American style floating strike arithmetic Asian put option and plot the
optimal exercise regions for t = 0.2, 0.4, 0.6, and 0.8. The simulation is based on
10,000 sample paths with Δt = 1∕100.

We approximate the conditional expectation function, fj(S,A), by a two-variable
quadratic polynomials, that is,

fj(S,A) = a00 + a10S + a20S2 + a11SA + a01A + a02A2.

Our simulation estimates the option price to be 9.783. This number is consistent
with the one obtained by the finite difference method (FDM) in Hansen and Jorgensen
(2000). The CPU (central processing unit) time is about 17 s for the computation.
Figure 9.2 plots the exercise boundaries at time 0.2, 0.4, 0.6, and 0.8. The boundaries
are the interfaces between shaded and nonshaded regions. The shaded regions are
those of the continuation regions. For t = 0.2, there are less points falling into the
exercising region. Thus, the simulation is only able to graph the exercise boundary
for underlying asset prices in the range of 7–11 at t = 0.2.

9.6 GREEK LETTERS

As pointed out in Chapter 7, hedging is sometimes more important than pricing in
risk management. Option hedging requires risk managers to compute option Greeks,
such as delta, gamma, vega, and theta. We refer interested readers to Hull (2006) for
the application of Greeks in hedging and Joshi (2003) for discrete tree approximation.
The Greek letters are actually representing partial differentiations of the option pric-
ing formula with respect to different parameters. Because most options, especially
path dependent options, do not have closed form pricing formulas, Greeks should
be obtained by means of simulation. For single asset path-independent options, the
simulation can be constructed via Theorem 7.3. However, it is inapplicable for path
dependent options. Thus, we introduce an alternative practical approach to simulating
Greeks.
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Figure 9.2 Exercise regions of the American style Asian option.

Let V denote the pricing formula of an option. The option Greeks are defined as
follows.

Delta = 𝜕V
𝜕S

;

Gamma = 𝜕2V
𝜕S2

;

Vega = 𝜕V
𝜕𝜎

;

Theta = 𝜕V
𝜕t

;

Rho = 𝜕V
𝜕r

,

where S is the underlying asset price, 𝜎 is the volatility, t is the time variable, and r is
the spot interest rate. Hence, the Greeks can be obtained by standard differentiation
techniques or approximated by the numerical FDM if the option pricing formula is
available. The FDM computes numerical differentiation by approximating the first
principle in differentiation. For instance, suppose that we are interested in the Delta
of an option. Then, the FDM approximates the value by

Delta ≃ V(S + h) − V(S)
h

, (9.10)

where h is an arbitrarily chosen small number and other parameters are fixed.
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The approach introduced here combines simulation with FDM together. Suppose
that we need the Delta of an option. Then we proceed as follows. Firstly, the option
price is simulated as usual with the current realized asset price S. Secondly, we
re-simulate the option price again with a “perturbed” asset price S + h. Finally, the
Delta is approximated by Equation 9.10. However, the stability of this approach
would be of great concerns because there are two sources of errors: simulation
error and FDM error. The most critical one is the simulation error, which makes
the numerator of Equation 9.10 nonzero even when h tends to zero. To circumvent
this difficulty, it is very common for market practitioners to use the same set of
random numbers in the first and the second steps. We illustrate these ideas with the
down-and-out call option in the following example.

Example 9.6 Suppose that S(0) = 100, r = 0.05, 𝜎 = 0.4, and T = 1 (1 year). Esti-
mate the delta of down-and-out call option with a strike price of 95 and provision on
a downside barrier of 80.

We base our simulation on 100,000 sample paths, each of which is divided into 100
equally spaced intervals. Therefore, this simulation requires 10 million independent
normal random variables, namely 𝜖ij with i = 1, 2,… , 100 and j = 1, 2,… , 100, 000.
Using the set of {𝜖ij}, we produce the sample paths as {Sj(ti),… , Sj(t100)} using the
Black–Scholes dynamics of asset price with Sj(0) = 100 for all j. Therefore, we get
the Cdo price as in Section 9.2. To obtain delta, we repeat the aforementioned proce-
dure by assuming Sj(0) = 100 + h, where h = 0.01, to estimate the option price again.
It is important to recall that we must use the same set of 𝜖ij. After that, the delta is
approximated by the FDM. Our simulation estimates the delta of the down-and-out
call option to be 0.863. Figure 9.3 shows the distribution of the delta estimates over
100 simulations. Please see the online material for the VBA codes.
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Figure 9.3 The strike against the delta of a down-and-out call option.
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Other Greek letters can be obtained in a similar manner. For instance, the Gamma
is the second order partial differentiation of the option pricing formula with respect
to the underlying asset price. To estimate its value, we can approximate the second
order differentiation by central finite differencing such that

Gamma ≃ V(S + h) − 2V(S) + V(S − h)
h2

.

Therefore, we are required to compute V(S − h) on top of V(S) and V(S + h).

Example 9.7 Using the input parameters in Example 9.6, plot the gamma of
down-and-out call option against strike price, where the strike price varies from 93
to 110. Please see the online material for the VBA codes.

9.7 EXERCISES

1. Verify Equations 9.1 and 9.3.

2. By modifying Example 9.1, simulate the price of down-and-out call, which will
be knocked out if the underlying asset price goes below $8.

3. By modifying Example 9.1, simulate prices of a fixed lookback put option and
a floating lookback call if the fixed strike price and the realized minimum asset
prices are both $8. Verify the lookback put-call parities of these options.

4. Show that American call option price equals to that of its European counterpart
if the underlying asset pays no dividends. In other words, American call option is
never optimal to exercise before maturity if the underlying asset pays no dividends.

5. By modifying Example 9.4, simulate the price of an American call option with
strike of $12 and a dividend yield 𝛿 of 4%. Hint: The risk-neutral dynamics of an
asset paying continuous dividend yield is given by

dS
S

= (r − 𝛿) dt + 𝜎 dW.

What is the optimal exercising policy from your simulation? Plot the critical asset
prices against time.

6. Forward start option is a path dependent option that the strike price will be set as
the underlying asset price in the future. For instance, the forward start call option
payoff is

max(ST − St1
, 0),

where 0 < t1 < T .

(a) Suppose S0 = $10, 𝜎 = 0.4, r = 0.1, 𝛿 = 0.5, T = 0.5 and t1 = 0.3. Construct
and implement an algorithm for the forward start call option with 1,000 sample
paths.
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(b) Denote CBS(S, t;K,T) by the Black–Scholes formula for the standard call
option. On the basis of financial insights, a risk analyst speculates that the
forward start call option is the discounted standard call price. That is

Current forward start call price = e−rt1 CBS(S0, t1; S0,T).

Verify this conjecture by your simulation.

(c) Suppose that the option has a continuous early exercise right after t = t1.
Determine the option price by the least squares simulation with 10,000 sample
paths.

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

http://www.sta




10
MULTIASSET OPTIONS

10.1 INTRODUCTION

Multiasset options are exotic options whose payoffs depend on values of multiple
assets. Multiasset options abound in the financial market. An obvious example is
index options, where the underlying variable, the financial index, can be thought of
as a portfolio of multiple assets. Challenges of valuing multiasset options are the
curse of dimensionality and the lack of analytical tractability. These problems can be
circumvented by simulations.

Some examples of multiasset options traded in the financial market are first intro-
duced. Let S1, S2,… , Sn denote the prices of n different assets.

1. Exchange Options. The right to exchange an asset for another. Thus, the option
payoff is max(S1 − cS2, 0), where c is a constant multiplicative factor. This
option is useful, for example, when a U.S. investor wants to buy Japanese yen
with eurodollars.

2. Quanto Options. Options on stocks in a foreign country, that is, involving the
exchange rate. If we treat S1 as the exchange rate and S2 as the underlying asset
in the foreign country, then there are a number of possible quanto option pay-
offs, such as S1 max(S2 − K, 0), max(S1S2 − K, 0), max(S1,C),max(S2 − K, 0),
and C max(S2 − K, 0), where C is a fixed constant. The last payoff function
appears to be of a single asset option. However, the volatility of the exchange
rate, S1, does contribute to the option price if S1 and S2 are correlated.

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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3. Basket Options. Options S on a portfolio. The payoff of a call on a portfolio is
max(Π − K, 0), where Π =

∑n
i=1 aiSi.

4. Extreme Options. Options on the extrema of different assets. The maximum
call option has the payoff: max

[
max(S1, S2,… , Sn) − K, 0

]
.

All multiasset options can be traded with European or American style. Complex mul-
tiasset options, or structured products, may even involve path-dependent features. In
such cases, simulations are indispensable.

10.2 SIMULATING EUROPEAN MULTIASSET OPTIONS

Consider an option on two assets with payoff F(S1(T), S2(T)). In the risk-neutral
world, assets are assumed to follow the dynamics of

dSi

Si
= r dt + 𝜎i dWi, i = 1, 2, (10.1)

where

Ê(dW1dW2) = 𝜌 dt, (10.2)

and Ê denotes the risk-neutral expectation. Then, the option can be simulated via the
Cholesky decomposition (Theorem 6.4).

Example 10.1 Suppose that S1(0) = S2(0) = 10, 𝜎1 = 0.3, 𝜎2 = 0.4, 𝜌 = 0.2, and
r = 0.05. Simulate the price of an exchange option with maturity of 6 months.

By Itô’s lemma, we derive the terminal asset prices as

S1(T) = S1(0)e
(r−𝜎2

1
∕2)T+𝜎1X1

√
T and S2(T) = S2(0)e

(r−𝜎2
2
∕2)T+𝜎2X2

√
T
, (10.3)

where
[

X1
X2

]
∼ N

([
0
0

]
,

[
1 𝜌

𝜌 1

])
.

The option price, CX , can be determined by evaluating the expectation:

CX = e−rT Ê
[
max(S1(T) − S2(T), 0)

]
.

We estimate the option price by the following simulation algorithm.

Step 1: For i = 1 to N, perform Steps 2–4 as follows:

Step 2: Generate Z1,Z2 ∼ N(0,1) i.i.d. (identical and independent distributed)
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Figure 10.1 The distribution of simulated price.

Step 3: Set X1 = Z1 and X2 = 𝜌Z1 +
√

1 − 𝜌2Z2.

Step 4: Compute S(i)1 (T) and S(i)2 (T) by Equation 10.3.

Step 5: Set CX = e−rT

N

∑N
i=1 max(S(i)1 (T) − S(i)2 (T), 0).

Figure 10.1 plots the distribution of the estimated price over 100 simulations. We
obtain the estimated option price to be 0.962.

10.3 CASE STUDY: ON ESTIMATING BASKET OPTIONS

In practice, basket options are often valued by assuming that the value of the port-
folio of assets comprising the basket follows the Black–Scholes dynamics jointly
rather than that each asset follows the Black–Scholes dynamics individually. After
estimating the portfolio volatility from the portfolio return, the basket call option is
valued by substituting the portfolio volatility into the Black–Scholes formula. This
approach offers a quick solution to traders. However, the risk manager needs to under-
stand the risk of this simplifying assumption. We examine this approach by means of
simulation.

Consider a basket call option with three underlying assets, S1, S2, and S3. The
payoff of this option is max(S1 + S2 + S3 − K, 0). In other words, the holder of the
option has the right to purchase the portfolio as a sum of the three assets for a fixed
value of K. Suppose that the current time is t = 1, and we observe the prices of three
assets since t = 0. Figure 10.2 depicts the paths of the three simulated asset prices.

At t = 1, the asset prices are S1 = 142.69, S2 = 89.23, and S3 = 49.73. The current
portfolio value is the sum of three assets and equals 281.65. On the basis of the three
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Figure 10.2 The historical price of shocks.

asset price paths, the portfolio volatility is estimated to be 0.280. Consider the basket
option with a strike price of 250, maturity of half a year, and interest rate of 5%. The
naive application of the Black–Scholes formula produces a value for the option as
44.81.

On the other hand, we can use MC (Monte Carlo) simulation to estimate the option
price by assuming individual asset follows the Black–Scholes dynamics. By exam-
ining the asset price paths, we estimate the variance–covariance matrix for assets
returns as

⎛
⎜⎜⎝

0.172 0.050 0.043
0.050 0.088 0.038
0.043 0.038 0.123

⎞
⎟⎟⎠
.

Then, we simulate asset prices at t = 1.5 using the Cholesky decomposition for
10,000 times. Figure 10.3 illustrates the idea of generating asset values at t = 1.5,
the maturity of the option. Terminal values of individual assets are simulated on the
basis of an approach similar to Equation 10.3 with three assets. The option price
is then evaluated by discounting the sample mean of the option payoff using the
interest rate of 5%. The simulated option price is 51.35, which is larger than the
naive approach of 44.81.

We are also interested in the contribution of the error in estimating parameters of
the option. We perform a control experiment assuming that the variance–covariance
matrix can be estimated without error. Input the variance–covariance matrix as

⎛
⎜⎜⎝

0.1600 0.0360 0.0420
0.0360 0.0900 0.0315
0.0420 0.0315 0.1225

⎞
⎟⎟⎠
.
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Figure 10.3 Simulating terminal asset prices.

Using the same set of independent normal random numbers, we obtain the option
price as 50.71. It appears that the error of estimating the variance–covariance matrix
does not contribute too much to basket option values. Therefore, the MC and the
naive approach to valuing basket options can produce significantly different results,
irrespective of the estimation error.

In practice, banks and financial institutions usually have a lot of derivatives posi-
tions in their portfolio. Risk managers are responsible to check for the consistency
of models that are used to value individual derivatives in the portfolio. Imagine a
situation that a bank buys and sells options on individual assets and a basket of
assets everyday. When individual assets are assumed to follow the Black–Scholes
dynamics, it is crucial for the risk manager to realize what kind of assumptions have
been imposed. The simulation shows that it is not appropriate to assume the port-
folio constituting the basket to follow Black–Scholes dynamics jointly because this
assumption is not consistent with the assumption on individual assets. In such a case,
the value of basket options can be significantly underestimated.

10.4 DIMENSION REDUCTION

For an n-asset option, simulation can be constructed by using the Cholesky decom-
position (Eq. 6.6). However, this requires generating n independent normal random
variables for each scenario. To reduce the computational burden, we can use the prin-
ciple component analysis (PCA) to approximate the n factors by a smaller number of
factors, usually less than 10 in practice.
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Suppose that we have an n dimensional random vector X ∼ N(0,Σ) where Σ is an
n × n variance–covariance matrix. PCA for normal random variables is to approxi-
mate X by Y, which follows a distribution similar to that of X but is easier to simulate.

PCA uses the eigenvalue decomposition in Chapter 6 to approximate the ran-
dom vector X. Let 𝜆1, 𝜆2,… , 𝜆n be eigenvalues of Σ and 𝒗1, 𝒗2,… , 𝒗n be the cor-
responding eigenvectors. As variance–covariance matrices are positive definite, their
eigenvalues are all positive real numbers so that the corresponding squared roots are
positive real numbers. Theorem 6.6 asserts that the random vector

X =
√
𝜆1𝒗1Z1 +

√
𝜆2𝒗2Z2 + · · · +

√
𝜆n𝒗nZn, (10.4)

where Z1,Z2,… ,Zn are i.i.d. standard normal random variables. The equality (Eq.
10.4) is defined in the sense of distribution. In PCA, we arrange eigenvalues in
descending order such that 𝜆1 > 𝜆2 > · · · > 𝜆n. From Equation 10.4, we see that the
contribution of the term

√
𝜆i𝒗iZi to the value of X decreases with the index i. The

eigenvector 𝒗i is called the ith principle component (PC). To approximate X, we
truncate the sum in Equation 10.4 such that

X ≃
√
𝜆1𝒗1Z1 +

√
𝜆2𝒗2Z2 + · · · +

√
𝜆m𝒗mZm,

where m < n. If we are comfortable with this approximation, we then simulate m
independent standard normal random variables Zi and calculate everything on the
basis of this approximation.

An important topic in PCA is to determine the value m. The number of terms
used in the approximation depends on the accuracy of the outcome required by the
modeler. If the user requires 100% accuracy besides simulation error, then he should
use formula of Equation 10.4. PCA is useful when the user requires an accuracy that
is less than 100%. Suppose he requires an accuracy of at least 99%. Then, m is the
minimum integer such that ∑m

i=1 𝜆i∑n
i=1 𝜆i

≥ 99%.

A proof of this result can be found in standard texts in multivariate analysis, for
example Anderson (2003).

Let us apply PCA in multiasset option pricing. Consider an option with 10 under-
lying assets. Each asset follows the Black–Scholes dynamics such that

dSi = 𝜇iSi dt + 𝜎iSi dWi, i = 1, 2,… , 10,

where Si is the value of the ith asset. The W1,W2,… ,W10 are correlated Brownian
motions with correlation matrix:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.74 0.34 −0.08 0.05 −0.74 0.04 −0.12 0.81 0.82
0.74 1.00 0.81 −0.04 −0.57 −0.25 0.06 0.47 0.89 0.92
0.34 0.81 1.00 −0.17 −0.83 0.20 −0.09 0.78 0.65 0.72

−0.08 −0.04 −0.17 1.00 0.01 −0.05 0.94 −0.04 −0.09 −0.05
0.05 −0.57 −0.83 0.01 1.00 −0.55 0.00 −0.94 −0.41 −0.45

−0.74 −0.25 0.20 −0.05 −0.55 1.00 −0.16 0.65 −0.40 −0.40
0.04 0.06 −0.09 0.94 0.00 −0.16 1.00 −0.06 0.04 0.06

−0.12 0.47 0.78 −0.04 −0.94 0.65 −0.06 1.00 0.31 0.34
0.81 0.89 0.65 −0.09 −0.41 −0.40 0.04 0.31 1.00 0.91
0.82 0.92 0.72 −0.05 −0.45 −0.40 0.06 0.34 0.91 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A discrete approximation to the asset price dynamics is

ΔSi = rSi Δt + Si

√
Δt 𝜖i,

where 𝜖i are risk factors such that [𝜖i] = X ∼ N(0,Σ), and Σ is the correlation matrix
given previously.

For the given correlation matrix, eigenvalues are obtained as 4.719, 2.843, 1.931,
0.147, 0.104, 0.079, 0.062, 0.056, 0.038, 0.022. Summing up all the eigenvalues
gives a value of 10. When we divide the sum of the first three eigenvalues by the
total sum, the ratio is close to 95%. Therefore, if we accept an error of 5%, the first
three PCs provide sufficient accuracy. Eigenvectors corresponding to the first three
PCs are found to be:

𝒗1 ∶ 0.31 0.44 0.41 −0.05 −0.31 −0.07 −0.00 0.27 0.42 0.43
𝒗2 ∶ 0.41 0.08 −0.22 0.09 0.41 −0.57 0.14 −0.45 0.18 0.16
𝒗3 ∶ 0.09 −0.03 0.01 −0.70 0.12 −0.05 −0.69 −0.10 0.02 −0.00

On the basis of the first three PCs, we generate three independent standard normal
random variables, namely Z1, Z2, and Z3, and approximate the n risk factors by

[𝜖i] ≃ Z1

√
𝜆1 𝒗1 + Z2

√
𝜆2 𝒗2 + Z3

√
𝜆3 𝒗3.

The 10 risk factors 𝜖1, 𝜖2,… , 𝜖10 are reduced to only three independent factors.
Hence, we reduce a 10-dimensional problem to a three-dimensional problem.

Example 10.2 Value a maximum option on 10 assets with a strike price of $95 and
a maturity of half a year. All asset values are currently $100 with volatilities of 30%
for all assets. The correlation matrix of risk factors is given previously. The interest
rate is 4%. We accept a maximum error of 5%.

The option payoff is max[max(S1, S2,… , S10) − 95, 0]. As the option is traded
in European style, it is efficient to simulate terminal asset values directly. By Itô’s
lemma, we know that the terminal value of the ith asset is given by

Si(T) = Si(0) exp
[
(r − 𝜎2

i ∕2)T + 𝜎iWi(T)
]

= Si(0) exp
[
(r − 𝜎2

i ∕2)T + 𝜎i

√
T 𝜖i

]
, (10.5)
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where the vector [𝜖i] ∼ N(0,Σ). Our simulation obtains the option price to be 49.12.
See the online material for the VBA codes.

10.5 EXERCISES

1. Suppose that x(t) and y(t) are two correlated Itô’s processes such that

dx = a(t, x) dt + b(t, x) dW1,

dy = 𝛼(t, y) dt + 𝛽(t, y) dW2,

E(dW1dW2) = 𝜌 dt.

Consider a function, f (t, x, y), which depends on both stochastic variables of
x(t) and y(t). By modifying the proof of Theorem 4.1, show that the dynamic of
f (t, x, y) is

df =
(
𝜕f

𝜕t
+ a

𝜕f

𝜕x
+ 𝛼

𝜕f

𝜕y
+ b2

2
𝜕2f

𝜕x2
+ 𝛽2

2
𝜕2f

𝜕y2
+ 𝜌b𝛽

𝜕2f

𝜕x𝜕y

)
dt

+ b
𝜕f

𝜕x
dW1 + 𝛽

𝜕f

𝜕y
dW2. (10.6)

This formula is known as the Itô’s lemma for two variables.

2. Answer the following questions by considering the property of martingales
defined in Question 7 of Chapter 5.

(a) Consider a pair of asset price dynamics under the risk-neutral measure:

dS1 = rS1 dt + 𝜎1S1 dW1,

dS2 = rS2 dt + 𝜎2S2 dW2,

E(dW1dW2) = 𝜌 dt.

Show that the stochastic process X(t) = S1(t)∕S2(t) is a martingale under the
Brownian motions W∗

1 (t) and W∗
2 (t) where

W∗
1 (t) = W1(t) − 𝜌𝜎2t and W∗

2 (t) = W2(t) − 𝜎2t.

(b) Under (a), show that X(t) has the dynamics:

dX
X

= 𝜎 dW∗,

where W∗ is a Brownian motion and

𝜎2 = 𝜎2
1 − 2𝜌𝜎1𝜎2 + 𝜎2

2 .
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(c) Consider a function of S1 and S2, V(t, S1, S2), which has the property that

V(t, S1, S2) = S2 U(t, S1∕S2) = S2 U(t,X).

Show that U(t,X) is a martingale under Brownian motions W∗
1 (t) and W∗

2 (t).

3. Consider the exchange option with payoff max(S1(T) − S2(T), 0). Denote the
option pricing formula for this option as Vex(t, S1, S2). By using the no-arbitrage
argument, one derives that the exchange option has the properties:

• There exists a function U such that Vex(t, S1, S2) = S2 U(t, S1∕S2).
• There exists a probability measure  such that X(t) = S1(t)∕S2(t) is a martin-

gale.

On the basis of these properties and the results obtained in Question 2, show that

Vex = S1Φ(d∗
1) − S2Φ(d∗

2),

where

d∗
1 =

log(S1∕S2) + 𝜎2(T − t)∕2

𝜎
√

T − t
,

d∗
2 = d∗

1 − 𝜎
√

T − t,

𝜎2 = 𝜎2
1 − 𝜌𝜎1𝜎2 + 𝜎2

2 .

Herein, 𝜎1 and 𝜎2 are volatilities of S1 and S2, respectively, and 𝜌 is the correlation
coefficient between the returns of two assets. This formula was first derived in
Margrabe (1978).

4. Run the simulation program for pricing exchange option and compare the numer-
ical result with the analytical one.

5. The so-called geometric basket option has the payoff function

max

⎧
⎪⎨⎪⎩

(
n∏

i=1

Si(T)

)1∕n

− K, 0

⎫
⎪⎬⎪⎭
.

(a) Show that this option has a value less than the usual basket option with payoff

max

{
1
n

n∑
i=1

Si(T) − K, 0

}
.

(b) Suppose that individual assets follow the Black–Scholes dynamics. Derive the
analytical pricing formula for the geometric basket option.
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(c) By regarding the price of the geometric basket option as a control variate,
simulate the price of the usual basket option that depends on four assets with
the following correlation matrix:

⎛
⎜⎜⎜⎝

1.0000 0 0.3000 0.3000
0 1.0000 0.4000 0.2000

0.3000 0.4000 1.0000 0.3000
0.3000 0.2000 0.3000 1.0000

⎞
⎟⎟⎟⎠
.

We assume all assets sharing the same volatility of 30%, and each asset indi-
vidually follows the Black–Scholes dynamics.

6. Use simulation to determine the value and early exercise policy of American style
exchange options. We assume the interest rate of 5%, S1 = 100, S2 = 95, T = 1
year, and the variance–covariance matrix of asset returns:

(
0.016 0.006
0.006 0.09

)
.

Hint: you may use the Least Squares model and a quadratic polynomial of S1 and
S2 in your regression.

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

http://www.sta


11
INTEREST RATE MODELS

11.1 INTRODUCTION

Fixed income securities are concerned with the valuation of promised payments at a
future date. For example, a zero coupon bond promises to pay a single payment on the
maturity day. A straight U.S. Treasury bond promises to make payments, the amount
and date of which are determined by the face value, maturity date, and coupon rate
of the bond. Because cash flows are certain, we are not concerned with the risk of the
volatility of the amount of cash. Instead, we are interested in the following question:
How much would a rational individual be willing to pay today for a promised payment
in the future? The answer to this question is related to the movement of the interest
rate, which leads to the next question: What is the best way to manage the interest
rate risk? Simulation can serve as a useful tool in answering these questions.

11.2 DISCOUNT FACTOR AND BOND PRICES

Consider the simplest case in which a zero coupon bond (zero) will pay $1 a year
from now. What is the maximum that one should be willing to pay for this contract
today? Purchasing this bond should be worth at least as much as putting the money
in the bank. Let P be the payment at the current moment. Then,

P(1 + R) = 1,

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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where R is the current annual interest paid by a bank (R is supposed to be a constant).
That is,

P = 1
1 + R

.

P and 1
1+R

are known as the zero price and the discount factor, respectively.
Now we define P(t,T) as the zero coupon bond price at time t with maturity at time

T . A typical bond will pay coupons at semiannual intervals and a principle payment
at maturity. Figure 11.1 illustrates the cash flow of a 3-year coupon bond. The key
to evaluating such bond is to view the amounts promised at different future dates
as separate zero coupon bonds. We then value each payment at each date using the
discount factor for that date and sum up the values. Let P̃(t,T) be the corresponding
coupon-bearing bond price with a coupon rate C(ti) paid at each coupon payment date
ti, i = 1,… ,N. Then, P̃(t,T) can be valued by the formula:

P̃(0,T) =
N∑

i=1

C(ti)P(0, ti). (11.1)

For example, the value of a bond paying a semiannual coupon is given by

P̃(0,T) =
C(1∕2)
1 + R∕2

+ C(1)
(1 + R∕2)2

+ · · · + C(N) + 1

(1 + R∕2)2N
.

To simplify the mathematics, we define r as the continuously compounded interest
rate. Its relationship with the annual interest rate R is given by the formula

1
1 + R

= e−r.

In reality, interest rates are not constants but change over time. From now on, we
assume that the continuously compounding interest rate r is a function of time t, that
is, r = rt, and we call it the instantaneous interest rate. Suppose that we invest $1 in
the money market account B(0) today with the interest rate rt, then the interest will

C C C C C

C

1

32.521.510.50

Figure 11.1 Cash flow of a 3-year coupon bond.
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rollover continuously at every instant by B(t)rt dt. At any time t, the money market
account B(t) satisfies

dB(t) = B(t)rt dt.

Solving the aforementioned differential equation, with the initial condition B(0) = 1,
we obtain

B(t) = e∫
t

0 rs ds. (11.2)

Conversely, if a bond pays the holder $1 at future time t, the bond is worth 1∕B(t) =
e− ∫

t
0 rsds dollars at time 0, and we will use it as the discount factor for future cash

flow. So, for a deterministic interest rate rt, the time t zero coupon bond price P(t,T)
with maturity at T is given by

P(t,T) = e− ∫
T

t rs ds. (11.3)

Clearly, P(T ,T) = 1. In the following section, we extend the interest rates to be
stochastic. Practically, the zero coupon bond price is expressed in terms of the
continuous yield to maturity R(t,T) by

P(t,T) = e−R(t,T)(T−t). (11.4)

This yield to maturity corresponds to the constant interest rate of the continuously
compounded interest rate from time t to T and can serve as an indicator of the price
of the bond. If we are given the zero coupon bond prices from the market, the yield
can be recovered by

R(t,T) = −
log P(t,T)

T − t
. (11.5)

Similarly, for a coupon-bearing bond, P̃(0,T) and R(0,T) are related by

P̃(0,T) = C(t1)e−R(0,t1)t1 + C(t2)e−R(0,t2)t2 + · · · + (C(tN) + 1)e−R(0,tN )tN ,

where C(ti) is the coupon paid at time ti, i = 1,… ,N.
Bond markets usually quote the yield in place of the interest rate rt. Bond prices are

available only for some discrete times to maturity Ti, i = 1,… ,N, such as 1-, 3-, and
5-year, so it is more convenient if we parametrize R(t,T) as a piecewise continuous
function and interpolate all of the discrete points to obtain a continuum of R(t,T) for
all T ≥ 0.

For example, R(0,T) can be parametrized by a piecewise smooth cubic function
as follows:

R(0,T) =
{

a0 + b0T + c0T2 + d0T3, for T ∈ [0,T0],
a1 + b1T + c1T2 + d1T3, for T ∈ [T0,T1].

(11.6)
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We can then use interpolation methods, such as cubic spline, to find the coefficients
by putting the market bond data into formula 11.5. Further discussions about yields
and interest rate models can be found in Jarrow (2002).

Example 11.1 Suppose R(0,T) is parametrized as

R(0,T) =
{

0.005 − 0.001T − 0.0001T2 + 0.0005T3, for T ∈ [0, 2],
0.0078 − 0.0052T + 0.002T2 + 0.00015T3, for T ∈ [2, 3],

then it is first-order continuous. Figure 11.2 shows the graph of R(0,T) in Excel for
0 ≤ T ≤ 3. The corresponding discount curve P(0,T) can also be obtained easily
from Figure 11.3.

For a 3-year coupon bond with a notional value of $100 and with a coupon rate of
6% paid semiannually, the price is given by

P̃(0, 3) = 100
[
0.03e−R(0,0.5)0.5 + 0.03e−R(0,1)1 + · · · + (0.03 + 1)e−R(0,3)3]

= 113.537 .

This Excel file can be downloaded online.

Figure 11.2 Yield to maturity R(0,T).
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Figure 11.3 Discount curve P(0,T).

11.3 STOCHASTIC INTEREST RATE MODELS AND THEIR
SIMULATIONS

Deterministic interest rate models are inadequate for capturing interest rate move-
ments, as the future interest rates cannot be known for certain. A better approach is to
incorporate the stochastic feature of the interest rates. A stochastic interest rate model
should match Equation 11.3 when the stochastic component is absent. A natural way
is to consider

P(t,T) = E
[
e− ∫

T
t r(s,Ws) ds|||t

]
, (11.7)

where Ws is a vector of stochastic factors, andt is the filtration generated by {Ws, t ≥
s ≥ 0}. Intuitively, t consists of all of the information available up to time t. Given
that at current time t, the future interest rates from time t to T are all random, we need
to take the expectation conditional on the current information. If stochastic factors are
absent, the function inside the expectation becomes deterministic and the expectation
is equal to the function itself.

For pricing derivatives with stochastic interest rates, the future cash flows are dis-
counted using the zero coupon bond price from Equation 11.7 under the risk neutral
expectation. There are many ways to model the interest rate movement. In this case,
we consider the short rate models, in which the instantaneous interest rate rt is spec-
ified by a stochastic differential equation (SDE).
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From a simulation perspective, expression 11.7 offers a means to conduct Monte
Carlo simulations. Once an appropriate stochastic interest rate model, such as the
Vasicek model of Vasicek (1977), the CIR model of Cox, Ingersoll and Ross (1985),
the Ho–Lee model of Ho and Lee (1986), and the Hull–White model of Hull and
White (1988), is formulated, simulations can be conducted.

To illustrate this idea, consider a short rate model that follows

drt = 𝜇(t, rt) dt + 𝛽(t, rt) dWt, (11.8)

where rt is the current continuously compounded interest rate and Wt is a Wiener
process. For example, the Vasicek model assumes that 𝜇(t, r) = a(b − r) and 𝛽(t, r) =
𝜎, whereas the CIR model uses the same 𝜇(t, r) with 𝛽(t, r) = 𝜎

√
r. Sample paths

for short rate models in the form of Equation 11.8 can be generated by the following
steps:

Step 1: Set ri = r0 to be the current market rate.

Step 2: Generate 𝜖 ∼ N(0, 1).
Step 3: Set ri+1 = ri + 𝜇(ti, ri) Δt + 𝛽(ti, ri) 𝜖

√
Δt.

Step 4: Go to Step 2.

Let r(j) = {r(j)(t) ∶ t = 0, 1
n
,

2
n
,… ,T} be the j-th interest rate path out of M sample

paths generated by the preceding algorithm with Δt = 1
n
. By means of quadrature, we

can make the following approximation:

∫

t2

t1

r(j)(t) dt ≃ 1
n

∑
t∈[t1,t2]

r(j)(t). (11.9)

If we take Δt = 1
280

, the zero coupon bond price P(0, 1) can approximated by

P(0, 1) ≃ E

{
exp

(
− 1

280

280∑
i=0

r(j)
( i

280

))}

≃ 1
M

M∑
j=1

exp

(
− 1

280

280∑
i=0

r(j)
( i

280

))
.

In general, we write

P(t,T) ≃ 1
M

M∑
j=1

exp

(
−1

n

∑
ti∈[t,T]

r(j)(ti)

)

= 1
M

M∑
j=1

exp
(
−Avgti∈[t,T]r

(j)(ti) × (T − t)
)
. (11.10)
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11.4 HULL–WHITE MODEL

Although many short rate models have been proposed to model the dynamics of inter-
est rates, we illustrate the pricing of zero coupon bonds and calibration of the model
parameters under the Hull and White (1994) model. This model admits the analyt-
ical bond price formula and can therefore simplify the pricing of other exotic fixed
income derivatives. The instantaneous interest rate rt is assumed to follow the SDE,
as follows:

drt = [𝜃(t) − art)] dt + 𝜎 dWt, (11.11)

where 𝜃(t) is a deterministic function of time, a and 𝜎 are constants, and Wt is a
Wiener process. Applying Itô’s lemma to eatrt, we have

d(eatrt) = 𝜃(t)eat dt + eat𝜎 dWt.

Rewriting the aforementioned equation into the integral form with some simplifica-
tions yields the following representation of r:

rT = rte
−a(T−t) +

∫

T

t
𝜃(𝜏)e−a(T−𝜏) d𝜏 + 𝜎

∫

T

t
e−a(T−𝜏) dW𝜏 . (11.12)

The following fact is useful in interest rate modeling. For a deterministic function
y(t), let

I(t) =
∫

t

0
y(s) dWs,

then I(t) is a normal random variate with a mean of 0 and variance ∫
t

0 y2(s) ds. The
proof is in Exercise 1. Therefore the interest rate r is normally distributed. By Itô’s
identities, see Exercise 1(d) in Chapter 4, the conditional expectation and variance of
rT given at time t are

E[rT |rt] = rte
−a(T−t) +

∫

T

t
𝜃(𝜏)e−a(T−𝜏) d𝜏, (11.13)

and

Var(rT |rt) = E

[(
𝜎
∫

T

t
e−a(T−𝜏) dW𝜏

)2]

= 𝜎2

∫

T

t
e−2a(T−𝜏) d𝜏

= 𝜎2

2a
[1 − e−2a(T−t)]. (11.14)
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To derive the analytical formula for a zero coupon bond, we need to evaluate ∫ T
t r𝜏d𝜏.

By changing the order of integration,

∫

T

t
r𝜏 d𝜏 =

∫

T

t
rte

−a(u−t) du +
∫

T

t ∫

u

t
𝜃(𝜏)e−a(u−𝜏) d𝜏 du

+
∫

T

t ∫

u

t
e−a(u−𝜏) dW𝜏 du

= rt

(
1 − e−a(T−t)

a

)
+
∫

T

t ∫

T

𝜏

𝜃(𝜏)e−a(u−𝜏) du d𝜏

+
∫

T

t ∫

T

𝜏

e−a(u−𝜏) du dW𝜏 .

= rt

(
1 − e−a(T−t)

a

)
+
∫

T

t
𝜃(𝜏)

(
1 − e−a(T−𝜏)

a

)
d𝜏

+
∫

T

t

𝜎

a
[1 − e−a(T−𝜏)] dW𝜏 . (11.15)

Therefore, ∫ T
t r𝜏 d𝜏 is still normally distributed with the mean and variance given as

E

[
∫

T

t
r𝜏 d𝜏

||||rt

]
= rt

(
1 − e−a(T−t)

a

)
+
∫

T

t
𝜃(𝜏)

(
1 − e−a(T−𝜏)

a

)
d𝜏 (11.16)

and

Var

(
∫

T

t
r𝜏 d𝜏

||||rt

)
=
∫

T

t

𝜎2

a2
[1 − e−a(T−𝜏)]2 d𝜏

= 𝜎2

2a3

[
2a(T − t) − 3 + 4e−a(T−t) − e−2a(T−t)

]
. (11.17)

The moment-generating function of a normal random variable X is given by

E[euX] = exp

{
uE[X] + u2

2
Var(X)

}
.

The zero coupon price is

P(t,T) = E

[
e− ∫

T
t r𝜏 d𝜏

||||t

]

= exp
{

C(t,T) − D(t,T)rt

}
, (11.18)
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where

D(t,T) =
(

1 − e−a(T−t)

a

)
,

C(t,T) = −
∫

T

t
𝜃(𝜏)

(
1 − e−a(T−𝜏)

a

)
d𝜏

+ 𝜎2

4a3

[
2a(T − t) − 3 + 4e−a(T−t) − e−2a(T−t)

]
.

Another method of deriving the solution by the PDE approach is provided in the
exercise. Now we assume that a and 𝜎 are known. If we want to use the model, then we
have to calibrate 𝜃(t) to the current market zero coupon bond prices. In other words,
given P(t,T) from the market data for different maturities T , we need to express 𝜃(t)
in terms of P(t,T), which is more complicated. Therefore, it is more convenient to
decompose rt by

rt = 𝛼(t) + xt, (11.19)

and xt follows
dxt = −axt dt + 𝜎 dWt.

𝛼(t) is a deterministic function that incorporates the information in 𝜃(t), and xt cor-
responds to the random component driven by Wt. We take x0 = 0 and 𝛼(0) = r0. To
simulate rt, we just need to perform the simulation on xt and add the corresponding
𝛼(t) at each step. Figure 11.4 plots the graph of a simulated path of xt and Figure 11.5
shows an example of 𝛼(t). Their sum leads to the sample path of rt in Figure 11.6.

Note that xt actually follows a degenerate Hull–White model; in fact, it is an
Ornstein–Uhlenbeck process, where 𝜃(t) ≡ 0 for all t. This property will be useful

0 0.2 0.4 0.6 0.8 1
–0.03

–0.02

–0.01

0

0.01

0.02

t

x t

Figure 11.4 Simulated sample path of xt.
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Figure 11.5 𝛼(t).
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Figure 11.6 rt.

for evaluating a similar expectation to that in Equation 11.18 in terms of xt. Denote
P0(t,T) and C0(t,T) as the corresponding P(t,T) and C(t,T) in Equation 11.18 when
𝜃(t) ≡ 0, respectively. To express 𝛼(t) in terms of P(t,T), we evaluate

P(t,T) = E

[
e− ∫

T
t (𝛼(𝜏)+x𝜏 ) d𝜏

||||t

]

= e− ∫
T

t 𝛼(𝜏)d𝜏E

[
e− ∫

T
t x𝜏 d𝜏

||||t

]

= e− ∫
T

t 𝛼(𝜏) d𝜏P0(t,T). (11.20)
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Taking the natural logarithm on both side yields

∫

T

t
𝛼(𝜏) d𝜏 = − log

P(t,T)
P0(t,T)

.

Assume that t = 0, and differentiate both sides with respect to T , then we have

𝛼(T) = − 𝜕

𝜕T
log

P(0,T)
P0(0,T)

. (11.21)

Example 11.2 When R(0,T) is estimated from the market data using the parametric
form given in Equation 11.6, 𝛼(T) can be computed explicitly.

Substitute R(0,T) into formula 11.21 gives

𝛼(T)

= − 𝜕

𝜕T
log

[
e−R(0,T)T−C0(0,T)+D(0,T)x0

]

=
⎧
⎪⎨⎪⎩

a0 + 2b0T + 3c0T2 + 4d0T3 + 𝜎2

2a2
(1 − 2e−aT + e−2aT ), for T ∈ [0,T0],

a1 + 2b1T + 3c1T2 + 4d1T3 + 𝜎2

2a2
(1 − 2e−aT + e−2aT ), for T ∈ [T0,T1].

Knowing 𝛼(T) in closed form, the sample paths in the Hull–White model can be
generated by the following steps:

Step 1: Set ri = r0 be the current market rate and x0 = 0.

Step 2: Generate 𝜖 ∼ N(0, 1).
Step 3: Set xi+1 = xi − axiΔt + 𝜎𝜖

√
Δt.

Step 4: Set ri+1 = 𝛼(ti+1) + xi+1.

Step 5: Go to Step 2.

11.5 FIXED INCOME DERIVATIVES PRICING

For standard European options, introducing a stochastic interest rate into the
Black-Scholes model has a minimal effect on prices, so interest rates are usually
taken to be constant for vanilla stock options. However, for interest-rate-sensitive
instruments, such as options on bond and range accrual notes, stochastic interest
rates should be used in the model.

Consider a coupon bond selling at time T , assuming now is time 0, with a coupon
payments ci at Ti, i = 1, 2,… , n and the principal and last coupon payment will be
paid back at maturity Tn. An option on this coupon bond with maturity T and strike
K can be priced by applying the simulation method in the previous section together
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with the analytical bond price formula. All of the future cash flow of the coupon bond
discounted back to time T is

n∑
i=1

ciP(T ,Ti) + P(T ,Tn).

By the risk neutral pricing principle and applying formula 11.20, the price of the
option is given by

E

[
e− ∫

T
0 r𝜏 d𝜏max

( n∑
i=1

ĉiP(T ,Ti) − K, 0

)]

= E

[
e− ∫

T
0 r𝜏 d𝜏max

( n∑
i=1

ĉie
− ∫

Ti
T

𝛼(𝜏) d𝜏eC0(T ,Ti)−D(T ,Ti)xT − K, 0

)]
, (11.22)

where ĉi = ci for i = 1, 2,… , n − 1 and ĉn = cn + 1. The fair price of the bond option
can be found by taking the following steps:

Step 1: Simulate a path of rt for 0 ≤ t ≤ T according to the algorithm in Example
11.2.

Step 2: Calculate the discount factor e− ∫
T

0 r𝜏 d𝜏 by Equation 11.9.

Step 3: Evaluate the payoff function in Equation 11.22.

Step 4: Repeat Step 1 M times.

Although we only deal with European style bond options in this section, there are
also American and Bermudan bond options in the market. American bond options
can be exercised at any time within the maturity period, whereas Bermudan options
only allow the holder to exercise at some discrete and prespecified dates. In terms of
pricing, there are other methods, such as trinomial tree, that can price European style
options. American and Bermudan options are more difficult to price due to the path
dependency. Simulation thus offers a simple way to price path-dependent derivatives.

Example 11.3 Suppose the yield to maturity is parametrized as in Example 11.1
and a = 10%, 𝜎 = 1%, r0 = 0.002. Now consider an option on a 3-year coupon bond
with a notional value of $100 and option maturity of 1 year. The coupon rate is 6%
and will be paid semiannually. The strike of the option is taken to be $100.

The fair price can be found by

E

[
e− ∫

1
0 r𝜏 d𝜏max

(
100

6∑
i=1

0.03e− ∫
0.5i+1

1 𝛼(𝜏) d𝜏eC0(1,0.5i+1)−D(1,0.5i+1)x1

+ 100e− ∫
4

1 𝛼(𝜏) d𝜏eC0(1,4)−D(1,4)x1 − 100, 0

)]

= 6.87

Please see the online material for the VBA codes.
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Apart from using the Euler scheme to discretize the SDE of xt in Example 11.2,
we can also use the exact simulation by solving the SDE explicitly:

xt = xse
a(s−t) + 𝜎e−at

∫

t

s
ea𝜏 dW𝜏 . (11.23)

This implies that we can replace Step 3 in Example 11.2 by

Step 3’: Set xi+1 = xie
−aΔt +

√
𝜎2(1−e−2aΔt)

2a
𝜖.

Readers can compare the performance of these two methods in the exercise.
A range accrual is a type of structured product in which the payoff is conditional

on a certain index falling within a predetermined range. The number of coupons the
holder can obtain is proportional to the ratio of the observed index in the range and
the number of observation dates. Buyers of range accrual products usually anticipate
a steady movement of the index for it to be profitable.

Consider a simple range accrual note with principal P, which depends on the
3-month yield to maturity R(t, t + Δt), where Δt = 0.25. For simplicity, the note is
assumed to have only one coupon payment g at maturity T . Cases for quarterly or
semiannually coupon rates can be extended easily. Let N be the number of observa-
tion dates, and [h1, h2] be the preset range. After 𝛼(𝜏) is calibrated to market data, we
can price the note by simulation. The fair price of the range accrual note is given by

E

[
e− ∫

T
0 r𝜏 d𝜏P

(
1 +

g

N

N∑
i=1

1{R(ti,ti+Δt)∈[h1,h2]}

)]
. (11.24)

As R(ti, ti + Δt) is the yield to maturity that will be available only at the future time
ti, we need to evaluate it from the sample paths of rti

. Express R(ti, ti + Δt) in terms
of rti

, and 𝛼(𝜏) as

R(ti, ti + Δt) = −
log P(ti, ti + Δt)

Δt

= 1
Δt

(
∫

ti+Δt

ti

𝛼(𝜏) d𝜏 − C0(ti, ti + Δt) + D(ti, ti + Δt)xti

)
.

Then, for each future observation date ti, we will be able to determine whether
R(ti, ti + Δ) falls in the range. The simulation procedure can be summarized as
follows:

Step 1: Generate a sample path of rt for t = 0 to t = T .

Step 2: Calculate the discount factor e− ∫
T

0 r𝜏 d𝜏 by Equation 11.9.

Step 3: Determine the number of R(ti, ti + Δt) that fall in the range.

Step 4: Evaluate the payoff.

Step 5: Repeat Step 1 for M times.
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Example 11.4 For a 1-year range accrual note with a principal of $100 and a
coupon payment of 8% that depends on the 3-month yield to maturity R(t, t + 0.25),
assume there are 52 observation dates and the coupon is accumulated within the
range of [0.002,0.008] for R(t, t + 0.25), and a = 10%, 𝜎 = 1%, r0 = 0.002.

The fair price of this accrual note is given by

E

[
e− ∫

1
0 r𝜏 d𝜏100

(
1 + 0.08

52

52∑
i=1

1{R(i∕52,i∕52+0.25)∈[0.002,0.008]}

)]
= 102.7 .

11.6 EXERCISES

1. Let y(s) be a deterministic function and Ws be a Brownian motion; consider

I(t) =
∫

t

0
𝛿s dWs.

(a) Using Itô’s lemma on euIt and Itô’s identities on Exercise 1(d) in Chapter 4,
show that

E[euI(t)] = 1 + 1
2

u2

∫

t

0
𝛿2

s E
[
euI(s)] ds.

(b) Let y = E
[
euI(t)], the moment-generating function of I(t). By differentiating

the aforementioned equation, derive and solve the following ordinary differ-
ential equation (ODE):

dy

dt
= 1

2
u2𝛿ty.

Show that for each t, I(t) is a normal random variable with a mean of 0 and
variance of ∫ t

0 𝛿2
s ds by the uniqueness of the moment-generating function.

2. Under the Hull–White model, the zero coupon bond price has the form

P(t,T) = e𝛼(t,T)+𝛽(t,T)rt .

(a) Using the Feynman–Kac formula in Exercise 5 of Chapter 5, show that 𝛼(t,T)
and 𝛽(t,T) satisfy the following system of ODE:

𝜕𝛼(t,T)
𝜕t

= −𝛽(t,T)𝜃(t) − 1
2
𝛽2(t,T)𝜎2,

𝛼(T ,T) = 0,

𝜕𝛽(t,T)
𝜕t

= −a𝛽(t,T) + 1,

𝛽(T ,T) = 0.
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(b) Solve the system of ODE in part (a) and compare the result with the formula
11.18.

3. Suppose the yield to maturity R(t,T) is parametrized as

R(t,T) =
⎧
⎪⎨⎪⎩

a0 + b0T + c0T2 + d0T3 + e0T4, for T ∈ [0,T0],
a1 + b1T + c1T2 + d1T3 + e1T4, for T ∈ [T0,T1],
a2 + b2T + c2T2 + d2T3 + e2T4, for T ∈ [T1,T2].

Find 𝛼(T) for T ∈ [0,T2] in the Hull–White model.

4. Consider the CIR model:

dr = 0.1(0.05 − r) dt + 0.3
√

r dW and r0 = 0.052.

(a) Construct and implement a standard Monte Carlo simulation to compute the
discount factor.

(b) Use the Vasicek discount factor, which corresponds to formula 11.18 for
𝜃(t) ≡ c, where c is a constant, as a control variate to improve the simulation
in (a). (Hint: you may use 𝜎Vasicek = 𝜎CIR

√
r0.)

(c) Compare the difference between two prices on the basis of 1,000 simulated
prices.

5. Consider the Ho–Lee interest rate movement:

dr = 𝜃(t) dt + 𝜎 dW, (∗)

where 𝜃(t) = a + e−bt, 𝜎 =constant and W is the standard Brownian motion.

(a) Provide an algorithm to compute B(0, t) by discretizing (*).

(b) To price a 5-year bond paying semiannual coupons, you adopted Δt = 1∕250
to calculate the integration, and M = 1, 000 to estimate each discount factor.
What is the minimum size for the random sample used to compute the bond
price with simulations in (a)?

(c) Express rt in terms of a, b, 𝜎, h and r0 based on the algorithm in (b), where
h = Δt. Hence, show that

rt = r0 + at + 1 − e−bt

b
+ 𝜖𝜎

√
t, when h → 0,

where 𝜖 ∼ N(0, 1).
(d) Modify the approach in Section 11.4 to derive a closed form solution for the

discount factor under the Ho–Lee model.

6. The dynamic of xt is given by

dxt = −axt dt + 𝜎 dWt. (11.25)
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(a) Using Itô’s lemma on eatxt, derive Equation 11.23, then justify the equation
in Step 3’.

(b) Apply the revised algorithm (using Step 3’ to simulate xt) in Example 11.3,
and compare the result with the original algorithm.

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

http://www.sta


12
MARKOV CHAIN MONTE CARLO
METHODS

12.1 INTRODUCTION

Bayesian inference is an important area in statistics and has also found applications in
various disciplines. One of the main ingredients of Bayesian inference is the incorpo-
ration of prior information via the specification of prior distributions. As information
flows freely in financial markets, incorporating prior information with Bayesian ideas
constitutes a natural approach. In this final chapter, we briefly introduce the essence
of Bayesian statistics with reference to risk management. In particular, we discuss
the celebrated Markov Chain Monte Carlo (MCMC) method in detail and illustrate
its uses via a case study.

12.2 BAYESIAN INFERENCE

The essence of the Bayesian approach is to incorporate uncertainties for the
unknown parameters. Predictive inference is conducted via the joint probability
distribution of the parameters 𝜃 = (𝜃1, 𝜃2,… , 𝜃r), conditional on the observable data
x = (x1,… , xn). The joint distribution is deduced from the distribution of observable
quantities via Baye’s theorem. Many excellent texts have been written about the
Bayesian paradigm; see, for example, DeGroot (1970), Box and Tiao (1973), Berger
(1985), O’Hagan (1994), Bernardo and Smith (2000), Lee (2004), and Robert
(2001), to name just a few. Tsay (2010) provides succinct introduction to Bayesian
inference for time series.

Simulation Techniques in Financial Risk Management, Second Edition. Ngai Hang Chan and Hoi Ying Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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The observational (or sampling) distribution f (x|𝜃) is the likelihood function.
Under the Bayesian framework, a prior distribution p(𝜃) is specified for the param-
eter 𝜃. Inferences are conducted on the basis of the posterior distribution 𝜋(𝜃|x)
according to the following identity:

𝜋(𝜃|x) = f (x|𝜃)p(𝜃)
f (x)

,

where f (x) is the marginal density such that

f (x) =
∫

f (x|𝜃)p(𝜃) d𝜃. (12.1)

The probability density function 𝜋(𝜃|x) is known as the posterior density function.
Because x is observed, the marginal density in Equation 12.1 is a constant. It is more
convenient to express Equation 12.1 as

𝜋(𝜃|x) ∝ L(𝜃)p(𝜃), (12.2)

where L(𝜃) = f (x|𝜃) is the likelihood function. One way to estimate 𝜃 is to compute
the posterior mean of 𝜃, that is,

�̂� =
∫

𝜃𝜋(𝜃|x) d𝜃. (12.3)

The prior and posterior are relative to the observables. A posterior distribution
conditional on x can be used as a prior for a new observation y. This process can be
iterated and eventually leads to a new posterior via Baye’s theorem. We illustrate this
idea with a concrete example.

Example 12.1 Suppose that we observe x1,… , xn independent random variables
each N(𝜇, 𝜎2) with 𝜇 unknown and 𝜎2 known. Estimate 𝜇 in a Bayesian setting.

The likelihood function is

L(𝜇) = 1
(2𝜋𝜎)n∕2

exp

[
− 1

2𝜎2

n∑
i=1

(xi − 𝜇)2
]
∝ exp

[
− n

2𝜎2
(x − 𝜇)2

]
,

where x is the sample mean of the observation. It appears natural to assume that 𝜇
follows a normal distribution by specifying the prior p(𝜇) ∼ N(m, 𝜏2), where m and
𝜏2 are known as hyperparameters. Substituting this prior into Equation 12.2, we have

𝜋(𝜇|x) ∝ exp

[
−(x − 𝜇)2

2𝜎2∕n

]
exp

[
−(𝜇 − m)2

2𝜏2

]

∝ exp

[
−
(𝜇 − m1)2

2𝜏2
1

]
,
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TABLE 12.1 Conjugate Priors

Likelihood L(𝜃) Conjugate Prior p(𝜃)

Poisson 𝜃 = 𝜆 G(𝛼, 𝛽)
Binomial 𝜃 = p Be(𝛼, 𝛽)
Normal 𝜃 = 𝜇, 𝜎2 known N(m, 𝜏2)
Normal 𝜃 = 𝜎2, 𝜇 known IG(𝛼, 𝛽)

where

m1 =
𝜏2x + m𝜎2∕n

𝜏2 + 𝜎2∕n
and 𝜏2

1 = 𝜏2𝜎2

n𝜏2 + 𝜎2
,

equivalently,
𝜇 ∼ N(m1, 𝜏

2
1 ).

The posterior mean �̂� = E(𝜇) = m1 is an estimate of 𝜇 given x. Note that m1 tends
to the sample mean x and 𝜏2

1 tends to zero as the number of observations increases.
In most cases, the prior distribution plays a lesser role when the sample size is large.
Another interesting observation is that the prior contains less information as 𝜏2

increases. When 𝜏2 → ∞, p(𝜇) ∝ constant, and 𝜋(𝜇|x) = N(x, 𝜎2∕n). Such a prior is
known as a noninformative prior, as it provides no information about the distribution
of 𝜇.

There are many ways to specify a prior distribution in the Bayesian setting. Some
prefer noninformative priors, and others prefer priors that are analytically tractable.
Conjugate priors are adopted to address the latter concern.

Given a likelihood function, the conjugate prior distribution is a prior distribution
such that the posterior distribution belongs to the same class of distributions as the
prior. Conjugate priors and posterior distributions are differed through hyperparam-
eters. Example 12.1 serves as a good example. Conjugate priors facilitate statistical
inferences because the posterior distributions belong to the same family as the prior
distributions, which are usually in familiar forms. Moreover, updating posterior distri-
butions with new information becomes straightforward, as only the hyperparameters
have to be updated.

In the one-dimensional case, deriving conjugate priors is relatively simple when
the likelihood belongs to the exponential family. Conjugacy within the exponential
family is discussed in Lee (2004). Table 12.1 summarizes some of the commonly
used conjugate families. Herein, Be denotes the Beta distribution, G the Gamma dis-
tribution, IG the inverse Gamma distribution, and N the Normal distribution.

12.3 SIMULATING POSTERIORS

Bayesian inference makes use of simulation techniques to estimate the parameters
naturally. As shown in Equation 12.3, calculating a posterior mean is tantamount to
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numerically evaluating an integral. It is not surprising, therefore, that Monte Carlo
simulation plays an important role. The integration in Equation 12.3 is usually an
improper integral (integration over an unbounded region), which renders standard
numerical techniques useless. Although numerical quadrature can be used to bypass
such a difficulty in the one-dimensional case, applying quadrature in higher dimen-
sions is far from simple. Financial modeling usually involves higher dimensions.

Monte Carlo simulation with importance sampling simplifies the computation of
Equation 12.3. As it may be difficult to generate random variables from the posterior
distribution 𝜋(𝜃|x) directly, we may take advantage of the fact that importance sam-
pling enables us to compute integrations with a conveniently chosen density. Consider

�̂� =
∫

𝜃𝜋(𝜃|x) d𝜃 =
∫

𝜃𝜋(𝜃|x)
q(𝜃)

q(𝜃) d𝜃, (12.4)

where q(𝜃) is a prior specified density function that can be generated easily. Drawing
n random samples 𝜃i from q(𝜃), we approximate the posterior mean by

�̂� = 1
n

n∑
i=1

𝜃i𝜋(𝜃i|x)
q(𝜃i)

.

Note that the importance sampling is not used as a variance reduction device in this
case; rather, it is applied to facilitate the computation of the posterior mean. The
variance of the computation can be large in some cases.

12.4 MARKOV CHAIN MONTE CARLO

One desirable feature of combining Markov chain simulation with Bayesian ideas is
that the resulting method can handle high-dimensional problems efficiently. Another
desirable feature is to draw random samples from the posterior distribution directly.
The MCMC methods are developed with these two features in mind.

12.4.1 Gibbs Sampling

Gibbs sampling is probably one of the most commonly used MCMC methods. It
is simple, intuitive, easily implemented, and designed to handle multidimensional
problems. The basic limit theorem of Markov chain serves as the theoretical build-
ing block to guarantee that draws from a Gibbs sampling agree with the posterior
asymptotically.

Although conjugate priors are useful in Bayesian inference, it is difficult to con-
struct a joint conjugate prior for several parameters. For a normal distribution with
both mean and variance unknown, deriving the corresponding conjugate prior can be
challenging. However, conditional conjugate priors can be obtained relatively eas-
ily; see, for example, Gilks, Richardson, and Spiegelhalter (1995). Conditioning on
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other parameters, a conditional conjugate prior is one dimensional and has the same
distributional structure as the conditional posterior.

Gibbs sampling takes advantage of this fact and offers a way to reduce a multi-
dimensional problem to an iteration of low-dimensional problems. Specifically, let
x = (x1,… , xn) be the data and let the distribution of each xi be governed by r param-
eters, 𝜃 = (𝜃1, 𝜃2,… , 𝜃r). For each j = 1,… , r, specify the one-dimensional condi-
tional conjugate prior p(𝜃j) and construct the conditional posterior by means of Baye’s
theorem. Then iterate the Gibbs procedure as follows.

Set an initial parameter vector (𝜃(0)2 ,… , 𝜃
(0)
r ). Update the parameters by the fol-

lowing procedure:

• Sample 𝜃
(1)
1 ∼ p(𝜃1|𝜃(0)2 ,… , 𝜃

(0)
r , x);

• Sample 𝜃
(1)
2 ∼ p(𝜃2|𝜃(1)1 , 𝜃

(0)
3 ,… , 𝜃

(0)
r , x);

⋮ ⋮
• Sample 𝜃

(1)
r ∼ p(𝜃r|𝜃(1)1 , 𝜃

(1)
2 ,… , 𝜃

(1)
r−1, x).

This completes one Gibbs iteration, and the parameters are updated to
(𝜃(1)1 ,… , 𝜃

(1)
r ). Using these new parameters as starting values, repeat the iteration and

obtain a new set of parameters (𝜃(2)1 ,… , 𝜃
(2)
r ). Repeating these iterations M times,

we get a sequence of parameter vectors 𝜃(1),… , 𝜃(M), where 𝜃(i) = (𝜃(i)1 ,… , 𝜃
(i)
r ), for

i = 1,… ,M. By virtue of the basic limit theorem of Markov chain, it can be shown
that the Markov chain {𝜃(M)} has a limiting distribution converging to the joint
posterior p(𝜃1, 𝜃2,… , 𝜃r|x) when M is sufficiently large; see Tierney (1994). The
number M is called the burn-in period. After simulating {𝜃(M+1), 𝜃(M+2),… , 𝜃(M+n)}
from the Gibbs sampling, Bayesian inference can be conducted easily. For example,
to compute the posterior mean, we evaluate

�̂�i =
1
n

n∑
i=1

𝜃
(M+i)
i .

To acquire a clearer understanding of Gibbs sampling, consider the following
example:

Example 12.2 One of the main uses of Gibbs sampling is to generate multivariate
distributions that are usually hard to simulate by standard methods. We present a
simple example to generate two correlated bivariate normal random variables 𝜃1
and 𝜃2, where [

𝜃1
𝜃2

]
∼ N
([

0
0

]
,

[
1 𝜌

𝜌 1

])
.

To use the Gibbs sampling method, we construct a Markov chain {𝜃(M)} that has a lim-
iting distribution converging to the bivariate normal distribution p(𝜃1, 𝜃2). The next
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step is to find the marginal distribution of 𝜃1 given the value of 𝜃2. By the conditional
distribution formula, we have

p(𝜃1|𝜃2) =
p(𝜃1, 𝜃2)

p(𝜃2)

=

1

2𝜋
√

1−𝜌2
exp

(
−

𝜃2
1
−2𝜌𝜃1𝜃2+𝜃2

2
2(1−𝜌2)

)

1√
2𝜋

exp

(
−

𝜃2
2

2

)

= 1√
2𝜋
√

1 − 𝜌2
exp

(
−

(𝜃1 − 𝜌𝜃2)2

2(1 − 𝜌2)

)
.

From the above-mentioned functional form of the distribution function, we can
conclude that, given 𝜃2,

𝜃1
||𝜃2

∼ N(𝜌𝜃2, 1 − 𝜌2).

Similarly, for 𝜃1, we have

𝜃2
||𝜃1

∼ N(𝜌𝜃1, 1 − 𝜌2).

By taking the initial guess of 𝜃(0)2 to be the mean 0, the normal random variables are
generated by the following steps:

Step 1: Set i = 1 and 𝜃
(0)
2 = 0.

Step 2: Generate Z1 ∼ N(0, 1) and set 𝜃(i)1 = 𝜌 𝜃
(i−1)
2 +

√
1 − 𝜌2Z1.

Step 3: Generate Z2 ∼ N(0, 1) and set 𝜃(i)2 = 𝜌 𝜃
(i)
1 +
√

1 − 𝜌2Z2.

Step 4: Set i = i + 1.

Step 5: Go to Step 2 until i equals a prespecified integer M

Note that 𝜃(i)2 in Step 3 is updated with the new 𝜃
(i)
1 generated in Step 2.

We demonstrated how to generate these random variables using the Cholesky
decomposition in Chapter 6. In this example, using Cholesky is more convenient
than using Gibbs sampling. Furthermore, to generate a sequence of independent
bivariate normals, we would have to perform the whole procedure from the begin-
ning again. This shows that although Gibbs sampling is powerful for dealing with
high-dimensional problems, it may not be the most efficient method.

Example 12.3 Let x1,… , xn be independent N(𝜇, 𝜎2) random variables with both
𝜇 and 𝜎2 unknown. Estimate 𝜇 and 𝜎2 via Gibbs sampling.

Recall that the conjugate prior of 𝜇 is normal for a given 𝜎2 and that the conjugate
prior of 𝜎2 is inverse gamma for a given 𝜇. Let 𝜇0 ∼ N(m0, 𝜏

2
0 ) and 𝜎2

0 ∼ IG(𝛼0, 𝛽0) be
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random variables drawn from the initial priors. Define 𝜇i and 𝜎2
i to be random vari-

ables generated in the ith iteration of the Gibbs sampling procedure. The conditional
posterior for 𝜇i can be obtained by mimicking Example 12.1. We have

𝜇i|𝜎2
i−1

∼ N(mi, 𝜏
2
i ),

where

mi =
𝜏2

i−1x + mi−1𝜎
2
i−1∕n

𝜏2
i−1 + 𝜎2

i−1∕n
and 𝜏2

i =
𝜏2

i−1𝜎
2
i−1

n𝜏2
i−1 + 𝜎2

i−1

. (12.5)

In Question 1 at the end of this chapter, the conditional posterior for 𝜎2
i is found to

be 𝜎2
i |𝜇i

∼ IG(𝛼i, 𝛽i), where

𝛼i = n∕2 + 𝛼i−1 and 𝛽i = 𝛽i−1 +
1
2

n∑
j=1

(
xj − 𝜇i

)2
. (12.6)

Hence, Gibbs sampling is implemented as follows:

Step 1: Set i = 1 and initial values of m0, 𝜏2
0 , 𝛼0, 𝛽0, and 𝜎2

0 .

Step 2: Sample 𝜇i|𝜎2
i−1

∼ N(mi, 𝜏
2
i ) and update 𝛼i and 𝛽i by Equation 12.6.

Step 3: Sample 𝜎2
i |𝜇i

∼ IG(𝛼i, 𝛽i) and update mi+1 and 𝜏2
i+1 by Equation 12.5.

Step 4: Set i = i + 1.

Step 5: Go to Step 2 until i equals a prespecified integer M + k.

We keep the last k pairs of random variables for indices M + 1 to M + k. The
estimation is achieved by taking the sample means:

𝜇 = 1
k

k∑
j=1

𝜇M+j,

𝜎2 = 1
k

k∑
j=1

𝜎2
M+j.

12.4.2 Case Study: The Effect of Jumps on Dow Jones

To appreciate the usefulness of Gibbs sampling, we use it to estimate the parameters
of a jump-diffusion model and examine the effect of jumps on major financial indices.
Note that maximum likelihood estimation does not work for this model (Redner and
Walker, 1984).

In the jump-diffusion model of Merton (1976), the dynamics of asset returns are
assumed to be

d log S = 𝜇 dt + 𝜎 dWt + Y dNt, (12.7)



184 MARKOV CHAIN MONTE CARLO METHODS

where S is the equity price, Wt is the standard Brownian motion, Nt follows a Poisson
process with an intensity 𝜆, and Y is a normal random variable with a mean of k and
variance of s2. We assume that dWt, dNt, and Y are independent random variables
at each time point t. This model requires the estimation of 𝜇, 𝜎, 𝜆, k, and s based on
observations {S1,… , Sn, Sn+1}, where Si represents the equity price observed at time
ti. These prices produce n independent log-returns, which are denoted by {X1,… ,Xn}
where Xi = log Si+1 − log Si. With a fixed Δt, a discrete approximation to the dynam-
ics Equation 12.7 is

Δ log S = 𝜇Δt + 𝜎ΔWt + Y ΔNt. (12.8)

When Δt is sufficiently small, ΔNt is either 1, with a probability of 𝜆Δt, or 0, with a
probability of 1 − 𝜆Δt (Fig. 12.1).

Example 12.4 Simulate 100 sample paths from the asset price dynamics of
Equation 12.7 with the parameters 𝜇 = 0.08, 𝜎 = 0.4, 𝜆 = 3.5, s = 0.3, and k = 0.
Each sample path replicates the daily log-returns of a stock over a 1-year horizon.
On the basis of these 100 paths, estimate the values of 𝜇, 𝜎, 𝜆, s, and k with Gibbs
sampling. Compare the results with the input values.

Simulating paths Sample paths are simulated by assuming n = 250 trading days a
year, so the discretization (Eq. 12.8) has Δt = 1∕250. On each path, the log-asset
price at each time point is generated as follows:

log Si+1 − log Si =

{
𝜇Δt + 𝜎

√
Δt 𝜖, if U > 𝜆Δt

𝜇Δt + k +
√
𝜎2Δt + s2 𝜖, if U ≤ 𝜆Δt

,

Time
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Figure 12.1 A sample path of the jump-diffusion model.
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where 𝜖 ∼ N(0, 1) and U ∼ U(0, 1) are independent random variables. To simplify the
notations, we denote xi = log Si+1 − log Si. A graph of three sample paths is given in
Figure 12.1.

Gibbs sampling There are five parameters in the model, so we have to develop five
conditional conjugate priors from their conditional likelihood functions. Let us pro-
ceed step by step.

1. Conditional prior and posterior for 𝜇.
Other things being fixed, the likelihood function of 𝜇 happens to be propor-
tional to a normal density. Specifically,

L(𝜇) ∝
n∏

i=1

exp

[
−
(xi − 𝜇Δt − YiΔNi)2

2𝜎2Δt

]

∝ exp

⎧
⎪⎨⎪⎩
− 1

2𝜎2

[
𝜇 −

n∑
i=1

(xi − YiΔNi)

]2⎫⎪⎬⎪⎭
.

Therefore, a normal distribution N(m, 𝜏2) is suitable for 𝜇 as a conditional con-
jugate prior. The posterior distribution can be immediately obtained as

N

(
𝜏2∑n

i=1(xi − YiΔNi) + m𝜎2∕n

𝜏2 + 𝜎2∕n
,

𝜏2𝜎2

n𝜏2 + 𝜎2

)
. (12.9)

2. Conditional prior and posterior for 𝜎2.
The conditional likelihood function of 𝜎2 is

L(𝜎2) ∝
(
𝜎2)−n∕2

exp

[
− 1

2𝜎2Δt

n∑
i=1

(
xi − 𝜇Δt − YiΔNi

)2
]
.

We select IG(𝛼, 𝛽) as the conditional prior for 𝜎2. Then, the posterior distribu-
tion becomes

IG

(
𝛼 + n∕2, 𝛽 +

∑n
i=1

(
xi − 𝜇Δt − YiΔNi

)2
2Δt

)
. (12.10)

3. Conditional prior and posterior for 𝜆.
The conditional likelihood of 𝜆 is

L(𝜆) ∝ (𝜆Δt)N(1 − 𝜆Δt)n−N ,
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where N is the total number of jumps in the horizon. From Table 12.1, we find
that the appropriate conjugate prior is Be(a, b). Simple computation shows that
the posterior distribution is

Be (a + N, b + n − N) . (12.11)

4. Conditional prior and posterior for k.
As k is the mean of the normal jump size, its prior and posterior are obtained in
the same manner as 𝜇. We state the result without proof. The prior is N(mY , 𝜏

2
Y ),

and the posterior is given by

N

(
𝜏2

Y

∑N
j=1 Yj∕N + mYs2∕N

𝜏2
Y + s2∕N

,
𝜏2

Ys2

N𝜏2
Y + s2

)
. (12.12)

5. Conditional prior and posterior for s2.
As s2 is the variance of the normal jump size, its prior and posterior are obtained
in the same manner as 𝜎2. The prior is IG(𝛼Y , 𝛽Y ), and the posterior is given by

IG

(
𝛼Y + N∕2, 𝛽Y +

∑N
i=1

(
Yi − k

)2
2

)
. (12.13)

The aforementioned priors and posteriors are distributions conditional on values of Yi
and ΔNi. This complicates the Gibbs sampling procedure because only xi is observ-
able for all i. Therefore, at each time point ti, Yi, and ΔNi should be simulated from
the distributions conditional on the observed value of xi before substituting them into
the priors or posteriors. We need the following facts:

xi|ΔNi = 0 ∼ N(𝜇Δt, 𝜎2Δt);
xi|ΔNi = 1 ∼ N(𝜇Δt + k, 𝜎2Δt + s2),

which together with Baye’s theorem show that

P(ΔNi = 1|xi) =
P(xi|ΔNi = 1)𝜆Δt

P(xi|ΔNi = 1)𝜆Δt + P(xi|ΔNi = 0)(1 − 𝜆Δt)
,

P(ΔNi = 0|xi) = 1 − P(ΔNi = 1|xi). (12.14)

The jump size Yi is necessary only when ΔNi = 1. Under such a situation, we recog-
nize that the conditional density function of Yi is

f (Yi|xi) = f (xi|Yi)p(Yi) ∝ exp

[
−
(xi − Yi − 𝜇Δt)2

2𝜎2Δt

]
exp

[
−
(Yi − k)2

2s2

]
,
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which implies

Yi|xi ∼ N

(
(xi − 𝜇Δt)∕𝜎2Δt + k∕s2

1∕𝜎2Δt + 1∕s2
,

1
1∕𝜎2Δt + 1∕s2

)
. (12.15)

With all of the ingredients ready, the Gibbs sampling starts by choosing the ini-
tial values of 𝜇0, 𝜎2

0 , k0, 𝜆0, and s2
0. We also need initial values for Y (0)

i and ΔN(0)
i ,

both of which can be obtained by a simulation with the initial parameters. The Gibbs
sampling runs as follows:

Step 1: Sample 𝜇j ∼ p(𝜇j|𝜎2
j−1, kj−1, s

2
j−1, 𝜆j−1), as given in Equation 12.9.

Step 2: Sample 𝜎j ∼ p(𝜎2
j |𝜇j, kj−1, s

2
j−1, 𝜆j−1), as given in Equation 12.10.

Step 3: Sample 𝜆j ∼ p(𝜆j|𝜇j, 𝜎
2
j , kj−1, s

2
j−1), as given in Equation 12.11.

Step 4: Sample kj ∼ p(kj|𝜇j, 𝜎
2
j , s

2
j−1, 𝜆j), as given in Equation 12.12.

Step 5: Sample s2
j ∼ p(s2

j |𝜇j, 𝜎
2
j , kj, 𝜆j), as given in Equation 12.13.

Step 6: Sample ΔN(j)
i ∼ p(ΔN(j)

i |𝜇j, 𝜎
2
j , kj, s

2
j ) as given in Equation 12.14 for all i =

1, 2,… , n.

Step 7: Sample Y (j)
i ∼ p(Y (j)

i |𝜇j, 𝜎
2
j , kj, s

2
j ), as given in Equation 12.15 for the time

point ti where ΔNi = 1.

Step 8: Set j = j + 1 and go to Step 1. Repeat until j = M′ + M.

Inference is drawn by taking the sample means of the values of the last M simulated
parameters. The VBA code is available online in the supplementary document.

Results and comparisons Table 12.2 shows our estimation results. We report the
averaged posterior means over the 100 sample paths and the variances. As the table
shows, the estimates are close to the true values, and the variances are small. Gibbs
sampling does a good job of estimating the parameters for jump-diffusion models.

Example 12.4 shows the usefulness of Gibbs sampling in estimating the
jump-diffusion model. In practice, this application can be crucial for a risk manager
to assess how much risk is due to jumps. To examine the jump risk empirically,
we estimate the effect of jumps on the Dow Jones Industrial Index. Our estimation
is based on daily closing prices over the 1995-2004 period. The parameters are
estimated on an annual basis.

TABLE 12.2 Performance of the Gibbs Sampling

𝜇 𝜎2 𝜆 k s2

True value 0.08 0.4 3.5 0 0.3
Mean 0.0769 0.3986 3.8600 0.0163 0.2868
Variance 0.0233 6.5×10−5 0.8895 0.0039 0.0015



188 MARKOV CHAIN MONTE CARLO METHODS

TABLE 12.3 Jump-Diffusion Estimation for Dow Jones

Year 𝜇 𝜎2 𝜆 k s2

1995 0.2871 0.0901 1.9035 0.0627 0.2608
1996 0.2483 0.1172 2.818 −0.0337 0.235
1997 0.2384 0.1684 3.6587 −0.0256 0.2087
1998 0.1776 0.1752 5.5127 −0.0123 0.1782
1999 0.2177 0.1624 1.7968 −0.0176 0.2627
2000 −0.0162 0.1971 3.3364 −0.0235 0.2157
2001 0.015 0.1951 4.1797 −0.0383 0.2008
2002 −0.2188 0.2484 2.7072 0.0106 0.239
2003 0.1891 0.1626 2.0479 0.0661 0.2463
2004 0.0351 0.1111 1.7561 0.0004 0.2788

In Table 12.3, the number of jumps per year, 𝜆, ranges from 1.75 to 5.5. Therefore,
we can have 5–6 jumps in a particular year. The effect of jumps is significant, as
almost all of the s2 values are bigger than 0.2. The variances 𝜎2 associated with the
Brownian motion part of the model are about 0.2 but should be divided by 250 to
produce the daily variance. When a jump arrives, additional daily variance of 0.2 is
added to the index return variance : 𝜎2∕250 + s2. The additional variance due to a
jump is relatively large. Jump risk cannot be ignored! This information is useful for
risk managers to construct scenarios for stress testing.

12.5 METROPOLIS–HASTINGS ALGORITHM

In this section, we explain why random draws using Gibbs sampling approxi-
mate the posterior distribution. To obtain a general result, we first introduce the
Metropolis–Hastings algorithm in which the Gibbs sampling is a special case. We
then show that the Metropolis–Hastings algorithm constructs a Markov chain with a
limiting distribution following the posterior distribution. Further details are given in
Casella and George (1992), Chib and Greenberg (1995), and Lee (2004).

Consider a Markov chain {𝜃(n)}with a finite state space {1, 2,… ,m} and transition
probabilities pij. Given the transition probabilities, the limiting distribution of the
chain can be found by solving the following equation:

𝜋(j) =
m∑

i=1

𝜋(i)pij.

When the state space is continuous, the sum is replaced by an integral (Bhattacharya
and Waymire, 1990).

In MCMC, we work with a reverse problem. Given a posterior distribution 𝜋(j),
we want to construct a Markov chain whose transition probabilities converge to the
posterior distribution. If the transition probabilities satisfy the time reversibility with
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respect to 𝜋(j), then its limiting distribution is guaranteed to be equal to 𝜋(j). To
explain time reversibility, write the transition probabilities pij as

pij = p∗ij + ri𝛿ij,

𝛿ii = 1 and 𝛿ij = 0 for i ≠ j,

where p∗ii = 0, p∗ij = pij for i ≠ j, and ri = pii.
If the equation

𝜋(i)p∗ij = 𝜋(j)p∗ji (12.16)

is satisfied for all i, then the probabilities pij are time reversible. This condition asserts
that the probability of starting at i and ending at j when the initial probability is given
by 𝜋(i) is the same as that of starting at j and ending at i. By simple computation, we
check that

∑
i

𝜋(i)pij =
∑

i

𝜋(i)p∗ij +
∑

i

𝜋(i)ri𝛿ij

=
∑

i

𝜋(j)p∗ji + 𝜋(j)rj

= 𝜋(j)(1 − rj) + 𝜋(j)rj
= 𝜋(j).

Therefore, 𝜋(j) is the limiting distribution of the chain.
In other words, a Markov chain whose limiting distribution is the posterior dis-

tribution can be constructed by finding a time-reversible Markov chain. We start
this process by specifying the transition probabilities qij. If the probabilities qij have
already satisfied the time reversibility, then the corresponding Markov chain is the
one we want. Otherwise, suppose that

𝜋(i)qij > 𝜋(j)qji.

Then, it has a higher probability of moving from i to j than from j to i. Therefore, we
introduce a probability 𝛼ij to reduce the moves from i to j. We would like to have

𝜋(i)qij𝛼ij = 𝜋(j)qji, (12.17)

so that

𝛼ij =
𝜋(j)qji

𝜋(i)qij
.

As we do not want to reduce the likelihood of moving from j to i, we set 𝛼ji = 1.
Therefore, the general formula is

𝛼ij = min

[
𝜋(j)qji

𝜋(i)qij
, 1

]
. (12.18)
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From Equations 12.17 and 12.18, we see that the transition probabilities

pij = qij𝛼ij, for i ≠ j,

pii = 1 −
∑

j

qij𝛼ij, (12.19)

are time reversible with respect to 𝜋(i) and hence define a Markov chain whose lim-
iting distribution is the required one. This method is called the Metropolis–Hastings
algorithm.

Example 12.5 Consider a random walk Markov chain:

A ⇌ B ⇌ C ⇌ D

All transition probabilities are 0.5, except that the transitions “from A to B” and
“from D to C” are 1. The transition matrix of the chain is given by

A B C D
A 0 1 0 0
B 0.5 0 0.5 0
C 0 0.5 0 0.5
D 0 0 1 0

On the basis of the Metropolis–Hastings algorithm, construct a Markov chain whose
limiting distribution is

( 1
4
,

1
4
,

1
4
,

1
4

)
.

A simple calculation shows that the limiting distribution of the original Markov
chain is

( 1
6
,

1
3
,

1
3
,

1
6

)
. To construct the desired Markov chain, we need to compute

probabilities 𝛼ij. For instance,

𝛼AB = min

(
1,

𝜋(B) P(A|B)
𝜋(A) P(B|A)

)
= min

(
1,

( 1
4

)( 1
2

)
( 1

4

)
(1)

)
= 1

2
.

This means that the transition probability “from A to B” is reduced from 1 to
1 × 1

2
= 1

2
. For node “A,” the remaining transition probabilities correspond to the

event that no transition occurs. Transition probabilities for the other nodes are
obtained in the same manner. The final transition matrix becomes

A B C D
A 0.5 0.5 0 0
B 0.5 0 0.5 0
C 0 0.5 0 0.5
D 0 0 0.5 0.5

It is easy to verify that the limiting distribution of this Markov chain is
( 1

4
,

1
4
,

1
4
,

1
4

)
.
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To apply the Metropolis–Hastings algorithm for simulating a random variable 𝜃

with the distribution 𝜋(𝜃), we begin with any Markov chain Xk whose transition den-
sity q(Xk|Xk−1) is easy to simulate and with a range similar to that of 𝜃. For this
Markov chain to have the desired limiting distribution 𝜋(𝜃), we need to adjust the
transition density q(Xk|Xk−1) at each step k of the algorithm according to the updating
criteria in Equation 12.19 so that it is time reversible. That is, if the transition proba-
bility from state Xk−1 to state Xk is too high, we reduce its probability by 𝛼 amount,
then the new transition probability p(Xk|Xk−1) will form a time-reversible Markov
chain with a stationary distribution of 𝜋(𝜃). The algorithm can be summarized as
follows:

Step 1: Choose a transition probability q to construct the Markov chain Xk.

Step 2: Pick an initial value for 𝜃0 and X0 and set k = 1.

Step 3: Simulate Xk according to the probability law of q(Xk|Xk−1).

Step 4: If 𝛼 =
q(Xk−1|Xk)𝜋(Xk)

q(Xk|Xk−1)𝜋(Xk−1)
≥ 1, set 𝜃k = Xk and go to Step 6.

Step 5: Otherwise, generate W ∼ U[0, 1]. If W ≤ 𝛼, set 𝜃k = Xk, otherwise set 𝜃k =
𝜃k−1 and Xk = Xk−1.

Step 6: Set k = k + 1 and repeat Step 2 until k is equal to a prespecified integer M.

Example 12.6 In the previous chapter, we showed how to generate a normal
random variable, using the acceptance-rejection method, for example. In this
section, we demonstrate how a normal random variable can be generated by the
Metropolis–Hastings algorithm. Let 𝜃 ∼ N(0, 1). We need to construct a Markov
chain that has a limiting distribution equal to a normal distribution.

Let Xk be a stochastic process such that for each k = 0, 1, 2,…, Xt is a double
exponential random variable; that is Xk ∼ DoubleExp(1) with pdf, as follows:

p(xk) =
1
2

e−|xk|.

Given the memoryless property of the double exponential,

P(Xk+1|Xk) = P(Xk+1),

it can be considered as a subclass of a Markov chain because the current state is
independent of all previous states. It takes a value from negative infinity to posi-
tive infinity, making it a good candidate to approximate the normal random variable.
The Xk is constructed as the initial distribution, and the transition probability will
be adjusted according to the Metropolis–Hastings algorithm to transform it to a time
reversible Markov chain as follows:

Step 1: Set k = 1, X0 = 0 and 𝜃0 = 0.

Step 2: Generate U,V ∼ U[0, 1].
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Step 3: If V ≥
1
2
, set Xk = − ln U, otherwise set X = ln U.

Step 4: If 𝛼 = e−
X2

k
2 ⋅ e−|Xk−1|

e−
X2

k−1
2 ⋅ e−|Xk|

≥ 1, set 𝜃k = Xk and go to Step 6.

Step 5: Otherwise, generate W ∼ U[0, 1]. If W ≤ 𝛼, set 𝜃k = Xk, else set 𝜃k = 𝜃k−1
and Xk = Xk−1.

Step 6: Set k = k + 1 and repeat Step 2 until k equals a prespecified integer M.

The VBA code is available online on the book’s website. The following
theorem justifies that the Gibbs sampling algorithm is a special case of the
Metropolis–Hastings algorithm.

Theorem 12.1 Gibbs sampling is a special case of the Metropolis–Hastings algo-
rithm in which every jump is accepted with 𝛼 ≡ 1.

Proof. Suppose that there are r parameters, that is, 𝜃 = (𝜃1,… , 𝜃r), in the model.
We want to generate 𝜃 ∼ 𝜋(𝜃) for a given 𝜋(⋅). Let 𝜃(0) be the initial state of 𝜃. We
generate a sequence of vectors by Gibbs sampling:

𝜃(0) → 𝜃(1) → 𝜃(2) → 𝜃(3) → … → 𝜃(n) → 𝜃(n+1) → … ,

where 𝜃(n) and 𝜃(n+1) only differ in one component. This sequence of vectors evolves
according to the conditional density given by the Gibbs sampling algorithm. For
example, the transition density from 𝜃(k) to 𝜃(k+1), where k ≤ r, is governed by
the conditional density p(𝜃k|𝜃1, 𝜃2,… , 𝜃k−1, 𝜃k+1,… , 𝜃r). This is a Markov chain
because the conditional density depends only on the previous state; in fact, only on
r − 1 components, (𝜃1, 𝜃2,… , 𝜃k−1, 𝜃k+1,… , 𝜃r), of the previous state. Now suppose
that 𝜃(n) and 𝜃(n+1) differ in the first component:

𝜃(n) =
(
𝜃
(n)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

)
,

𝜃(n+1) =
(
𝜃
(n+1)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

)
,

where 𝜃
(n+1)
1 is drawn given

(
𝜃
(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

)
. The transition density from 𝜃(n) to

𝜃(n+1) is given by the conditional probability density of 𝜋(⋅), given 𝜃(n) in the Gibbs
sampling:

q
(
𝜃(n+1)|𝜃(n)) = q

(
(𝜃(n+1)

1 , 𝜃
(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r )|
(
𝜃
(n+1)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

))

= p
(
𝜃1 = 𝜃

(n+1)
1 |𝜃2 = 𝜃

(n)
2 , 𝜃3 = 𝜃

(n)
3 ,… , 𝜃r = 𝜃

(n)
r

)
.

The second equality arises because the transition density from 𝜃(n) to 𝜃(n+1) does not
depend on the first component. The Metropolis–Hastings algorithm multiplies the
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transition density q by 𝛼, where

𝛼 = min

{
𝜋
(
𝜃(n+1)) q

(
𝜃(n)|𝜃(n+1))

𝜋
(
𝜃(n)
)

q
(
𝜃(n+1)|𝜃(n)) , 1

}
,

and modifies the original Markov chain to become a time-reversible one. We can
prove that this Markov chain is time reversible by showing that 𝛼 = 1. Now, by con-
ditioning on (𝜃2, 𝜃3,… , 𝜃r) with the marginal probability density p1(⋅) of 𝜋(⋅), we
expand 𝜋

(
𝜃(n+1)) and 𝜋

(
𝜃(n)
)

as follows:

𝜋
(
𝜃(n)
)
= 𝜋

(
𝜃
(n)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

)

= p
(
𝜃1 = 𝜃

(n)
1 |𝜃2 = 𝜃

(n)
2 , 𝜃3 = 𝜃

(n)
3 ,… , 𝜃r = 𝜃

(n)
r

)

× p1

(
𝜃2 = 𝜃

(n)
2 , 𝜃3 = 𝜃

(n)
3 ,… , 𝜃r = 𝜃

(n)
r

)

and

𝜋
(
𝜃(n+1)) = 𝜋

(
𝜃
(n+1)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

)

= p
(
𝜃1 = 𝜃

(n+1)
1 |𝜃2 = 𝜃

(n)
2 , 𝜃3 = 𝜃

(n)
3 ,… , 𝜃r = 𝜃

(n)
r

)

× p1

(
𝜃2 = 𝜃

(n)
2 , 𝜃3 = 𝜃

(n)
3 ,… , 𝜃r = 𝜃

(n)
r

)
.

Similarly, we have

q
(
𝜃(n)|𝜃(n+1)) = q

((
𝜃
(n)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

)
|
(
𝜃
(n+1)
1 , 𝜃

(n)
2 , 𝜃

(n)
3 ,… , 𝜃

(n)
r

))

= p
(
𝜃1 = 𝜃

(n)
1 |𝜃2 = 𝜃

(n)
2 , 𝜃3 = 𝜃

(n)
3 ,… , 𝜃r = 𝜃

(n)
r

)
.

The second equality is still due to the fact that from 𝜃(n+1) to 𝜃(n), the only compo-
nent that differs is the first component, so the transition density is again given by the
conditional density of 𝜋(⋅) given (𝜃2, 𝜃3,… , 𝜃r). Comparing the aforementioned four
equations gives

𝜋
(
𝜃(n+1)) q

(
𝜃(n)|𝜃(n+1)) = 𝜋

(
𝜃(n)
)

q
(
𝜃(n+1)|𝜃(n)) ,

so that 𝛼 = 1. This simply means that the probability of going from the nth state to the
(n + 1)th state is equivalent to that of going from the (n + 1)th state to the nth state.
Similarly, we can show that 𝛼 = 1 from any 𝜃(n) to 𝜃(n+1), with the kth component as
the differing component. This shows that the Gibbs algorithm is indeed a particular
case of Metropolis–Hastings with every jump accepted. ◽
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When the conditional distribution of some parameters is not known explicitly,
we cannot use Gibbs sampling to update the parameters, but we can still use the
Metropolis–Hastings algorithm to estimate them. The following example demon-
strates the use of Metropolis–Hastings in a discrete stochastic volatility model.

Example 12.7 In the following example, we present a case study on a simple dis-
crete stochastic volatility (SV) model by using MCMC technique to estimate the model
parameters.

Let yt = log St − St−1 be the difference of the log-return of stock price between
time t − 1 and t, ht be the log-volatility at time t, and t = 1, 2,… , n, where n is
the number of observation. Denote y = (y1, y2,… , yn) and h = (h1, h2,… , hn). We
assume the model follows:

yt =
√

eht 𝜖t, (12.20)

ht+1 = 𝜇 + 𝜏𝜂t, (12.21)

where h1 ∼ N(𝜇, 𝜏2). 𝜖t and 𝜂t are assumed to be independent and follow normal
distribution with mean 0 and variance 1 as follows

[
𝜖t
𝜂t

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
,

for all t ∈ ℕ.
To sample the parameters, one of the possible ways is to perform the Gibbs sam-

pling algorithm as follows:

Step 1: Initialize h(0), 𝜏2
0 and 𝜇0 and set i = 1.

Step 2: For t = 1,… , n, sample h(i)t ∼ p
(

h(i)t |𝜇i−1, 𝜏
2
i−1, y, h

(i−1)
>t , h(i)<t

)
, where h(i−1)

>t =
h(i−1)

t+1 ,… , h(i−1)
n and h(i)<t = h(i)1 ,… , h(i)

t−1.

Step 3: Sample 𝜇i ∼ p
(
𝜇i|𝜏2

i−1, y, h
(i)).

Step 4: Sample 𝜏2
i ∼ p

(
𝜏2

i |𝜇i, y, h
(i)).

Step 5: Repeat Step 2 by setting i = i + 1 for M times.

By Baye’s rule, we can derive the conditional posteriors as follows

p(𝜇|𝜏2, y, h) ∝ p(y|h) p(h|𝜇, 𝜏2) p(𝜇) and

p(𝜏2|𝜇, y, h, ) ∝ p(y|h) p(h|𝜇, 𝜏2) p(𝜏2),

where p(𝜇) and p(𝜏2) are independent priors. In this case, we take p(𝜇) ∼ N(𝛼𝜇, 𝛽𝜇)
and p(𝜏2) ∼ IG(𝛼𝜏 , 𝛽𝜏 ), where IG(⋅, ⋅) denotes the inverse gamma distribution, 𝛼(⋅)
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and 𝛽(⋅) are hyperparameters specified by users. To obtain the conditional posterior
distribution for 𝜇, we apply Baye’s rule as follows

p(𝜇|𝜏2, y, h) ∝ p(h|𝜇, 𝜏2) p(𝜇)

∝
n∏

t=1

p(ht|𝜇, 𝜏2)N(𝛼𝜇, 𝛽𝜇)

∝ exp

{
− 1

2𝜏2

[
n∑

t=1

(ht − 𝜇)2
]}

exp

{
−
(𝜇 − 𝛼𝜇)2

2𝛽2
𝜇

}

∝ exp

{
−
(𝜇 − �̂�𝜇)2

2𝛽2
𝜇

}
,

where

�̂�𝜇 =
h𝛽2

𝜇 + 𝛼𝜇𝜏
2∕n

𝛽2
𝜇 + 𝜏2∕n

, 𝛽𝜇 =
𝛽2
𝜇𝜏

2

n𝛽𝜇 + 𝜏2
, and h = 1

n

n∑
t=1

ht.

Similarly, the conditional posterior distribution for 𝜏2 can be obtained as follows

p(𝜏2|𝜇, y, h, ) ∝ p(h|𝜇, 𝜏2) p(𝜏2)

∝
( 1
𝜏2

)n∕2 n∏
t=1

p(ht|𝜇, 𝜏2)IG(𝛼𝜏 , 𝛽𝜏 )

∝
( 1
𝜏2

)n∕2
exp

{
− 1

2𝜏2

[
n∑

t=1

(ht − 𝜇)2
]}

(𝛽𝜏)𝛼𝜏 e−𝛽𝜏∕𝜏
2

Γ(𝛼𝜏 )(𝜏2)𝛼𝜏+1

∝ exp

{
− 1
𝜏2

[
𝛽𝜏 +

1
2

n∑
t=1

(ht − 𝜇)2
]}( 1

𝜏2

)(𝛼𝜏+n∕2)+1

∝ IG(�̂�𝜏 , 𝛽𝜏 ),

where

�̂�𝜏 = 𝛼𝜏 +
n
2

and 𝛽𝜏 = 𝛽𝜏 +
1
2

n∑
t=1

(ht − 𝜇)2.

To sample ht from p(ht|𝜇, 𝜏, y, h−t), we first derive its conditional posterior distribu-
tion as follows

p(ht|𝜇, 𝜏, y, h−t) ∝ p(yt|𝜇, 𝜏2, ht) p(ht|𝜇, 𝜏2, h−t)

∝ 1√
2𝜋eht

exp

{
−

y2
t

2eht

}
exp

{
−
(ht − 𝜇)2

2𝜏2

}
.
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This density function is not easy to sample directly. One can use the acceptance-rejec-
tion method in Chapter 6 by finding a density q(ht) and a constant c such
that p(ht) ≤ cq(ht) for simulating the conditional posterior distribution. The
Metropolis–Hastings algorithm provides an alternative way to sample this density
easily. Let Xt be a Markov chain with transition density as the normal density
q(xt) ∝ exp{−(xt − 𝛼h)2∕2𝛽h} so that it does not depend on any of the previous
states. Specifically, simulate a random variable xt from q(x), accept xt as h(i)t with
probability

min

⎛
⎜⎜⎜⎝

p(xt|𝜇, 𝜏, y, h−t) q
(

h(i−1)
t

)

p
(

h(i−1)
t |𝜇, 𝜏, y, h−t

)
q(xt)

, 1

⎞
⎟⎟⎟⎠
.

Otherwise, set h(i)t = h(i−1)
t and move to sample h(i)t+1.

Different choices of q(x) can lead to different efficiency of the algorithm. Interested
readers may refer to Jacquier et al. (1994) for details. In practice, the log-return can be
adjusted to have a mean of zero if we minus each of yt by the mean u =

(∑n
t=1 yt

)
∕n.

Then, the mean-corrected returns ŷt = yt − u can be applied directly in this simple
SV model. Some software packages, such as WINBUS, can perform the sampling
conveniently for users.

12.6 EXERCISES

1. Suppose that X1,… ,Xn are independent observations that follow N(𝜇, 𝜎2), where
𝜇 is a known quantity.

(a) Show that the likelihood function L(𝜎2) satisfies

L(𝜎2) ∝ (𝜎2)−n∕2 exp

{
−1

2

n∑
i=1

(Xi − 𝜇)2
}

.

(b) Suppose further that 𝜎2 ∼ IG(𝛼, 𝛽). What is the conditional distribution of
𝜎2|X1,… ,Xn?
Hint: Denote p(𝜙) as the density of the inverse Gamma distribution. Then we
have

p(𝜙) ∝ 𝜙−𝛼+1e−𝛽∕𝜙.

2. A density function with a single parameter, p(x|𝜃), is said to be of the exponential
family if it takes the form

p(x|𝜃) = g(x)h(𝜃) exp
[∑

t(x)𝜓(𝜃)
]
.

Show that a normal mean with a known variance, normal variance with a know
mean, a Poisson distribution, and a binomial distribution are of the exponential
family.
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3. Show that if the likelihood function is from the exponential family and the prior
distribution is from the exponential family, then the posterior distribution also
belongs to the exponential family.

4. Simulate the daily jump-diffusion VaR (value-at-risk) of the Dow Jones Industrial
Index on the basis of the data used in Section 7.2.3. Compare your value with the
GED-VaR (generalized error distribution–value-at-risk) defined in Chapter 7.

5. Suppose that x|p ∼ Bin(n, p) and p|x ∼ Be(x + 𝛼, n − x + 𝛽), where n is a Poisson
variable of mean 𝜆. Use Gibbs sampling to find the unconditional distribution of
n where 𝜆 = 16, 𝛼 = 2 and 𝛽 = 4.

6. Consider the normal distribution with an unknown mean 𝜇 and a known variance.

(a) Assume that the prior of 𝜇 is a discrete mixture of two normal densities. Show
that this prior is still conjugate.

(b) Assume that the prior of 𝜇 is a discrete mixture of k normal densities. Is the
prior still conjugate?

7. Consider the following transition matrix of a Markov chain:

1 2 3 4
1 1∕6 0 1∕2 1∕3
2 0 1∕3 1∕3 1∕3
3 0 1∕2 0 1∕2
4 1∕4 1∕4 1∕4 1∕4

Use the Metropolis–Hastings algorithm to construct a Markov chain whose limit-
ing distribution is (1∕6, 1∕6, 1∕3, 1∕3) based on the aforementioned matrix.

8. Consider the transition matrix of another Markov chain:

1 2 3 4
1 1∕2 0 1∕2 0
2 2∕3 0 1∕6 1∕6
3 0 1∕3 0 2∕3
4 1∕4 1∕4 1∕4 1∕4

Use the Metropolis–Hastings algorithm to construct a Markov chain whose limit-
ing distribution is (1∕10, 2∕10, 3∕10, 4∕10) based on the aforementioned matrix.

9. Modify the online VBA supplementary codes from Example 12.6 to generate the
GED (see Section 7.2.2 for the details of this distribution). By choosing 𝜉 = 1.6,
compare the shape of the generated distribution to that of the standard normal
distribution (which corresponds to 𝜉 = 2 in the GED distribution) and the double
exponential distribution (which corresponds to 𝜉 = 1 in the GED distribution).

The solutions and/or additional exercises are available online at http://www.sta.
cuhk.edu.hk/Book/SRMS/.

http://www.sta
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