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Preface to the Fourth Edition

When we began creating this fourth edition, several facts were clear: First, SAS soft-
ware continues to evolve and improve. Second, our programming techniques have
also improved. Third, several statistical techniques (such as logistic regression) have
become popular and required coverage in this edition.

We have met many readers of earlier editions at meetings and conferences and
were delighted to hear good things and constructive criticisms of the book. These we
have taken to heart and attempted to improve old material and add relevant new
topics. This fourth edition is the result of such reader reaction.

Most researchers are inherently more interested in the substance of their re-
search endeavors than in statistical analyses or computer programming. Yet, con-
ducting such analyses is an integral link in the research chain (all too frequently, the
weak link). This condition is particularly true when there is no resource for the ap-
plied researcher to refer to for assistance in running computer programs for statisti-
cal analyses. Applied Statistics and the SAS Programming Language is intended to
provide the applied researcher with the capacity to perform statistical analyses with
SAS software without wading through pages of technical documentation.

The reader is provided with the necessary SAS statements to run programs for
most commonly used statistics, explanations of the computer output, interpretations
of results, and examples of how to construct tables and write up results for reports
and journal articles. Examples have been selected from business, medicine, educa-
tion, psychology, and other disciplines.

SAS software is a combination of a statistical package, a data-base manage-
ment system, and a high-level programming language. Like SPSS, BMDP, Systat,
and other statistical packages, SAS software can be used to describe a collection
of data and produce a variety of statistical analyses. However, SAS software is
much more than just a statistical package. Many companies and educational insti-
tutions use SAS software as a high-level data-management system and program-
ming language. It can be used to organize and transform data and to create
reports of all kinds. Also, depending on which portions of the SAS system you
have installed in your computer (and what type of computer system you are run-
ning), you may be using the SAS system for interactive data entry or an on-line
system for order entry or retrieval.

This book concentrates on the use of the SAS system for the statistical analysis
of data and the programming capabilities of SAS software most often used in edu-
cational and research applications.

The SAS system is a collection of products, available from the SAS Institute in
Cary, North Carolina. The major products available from the SAS Institute are:
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Base SAS ®

SAS/STAT ®

SAS/GRAPH ®

SAS/FSP ®

SAS/AF ®

SAS/ETS ®

SAS/OR ®
SAS/QC®
SAS/IML ®

The main SAS module, which provides some data manipula-
tion and programming capability and some elementary de-
scriptive statistics

The SAS product that includes all the statistical programs ex-
cept the elementary ones supplied with the base package

A package that provides high-quality graphs and maps. Note
that “line graphics” (the graphs and charts that are produced
by normal character plots) are available in the base and
SAS/STAT packages. SAS/GRAPH adds the ability to pro-
duce high-quality camera-ready graphs, maps, and charts,
These initials stand for the Full Screen Product. This package
allows you to search, modify, or delete records directly from a
SAS data file. It also provides for data entry with sophisticated
data checking capabilities, Procedures available with Fse are
FSBROWSE, FSEDSIT, FSPRINT, FSLIST, and FSLETTER.

AF stands for the SAS Applications Facility. This product is
used by data processing professionals to create “turn key” or
menu systems for their users. It is also used to create instruc-
tional modules relating to the SAS system.

The Econometric and Time Series package. This package con-
tains specialized programs for the analysis of time series and
econometric data.

A series of operations research programs.

A series of programs for quality control.

The Interactive Matrix Language module. The facilities of
IML used to be included in proc MATRIX in the version 5 re-
leases. This very specialized package allows for convenient ma-
trix manipulation for the advanced statistician.

SAS, SAS/STAT, SAS/GRAPH, SAS/FSP, SAS/AF, SAS/ETS, SAS/OR,
SAS/QC, and SAS/IML are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries, ® indicates USA registration.

SAS software now runs on a variety of computers, from personal computers to
large multimillion dollar mainframes. The original version of the SAS system was
written as a combination of PL/1 and IBM assembly language. Today, SAS software
runs under Windows and Windows 95 on IBM compatible minicomputers, on most

SAS system to another computer or operating system, only a small system-dependent
portion of code needs to be rewritten. The result is that new versions of SAS software

Preface xv

are made available for all computers very quickly, and the versions of SAS systems
ne computer to another are much alike. ) )
ﬁ-OmL(::arning E)o program is a skill that is difficult to tcacr welllA Whnletio‘l;rz;llyit(:
i ” i ic to follow, learning
amples “reader-friendly” and their logic easy ] 1 . r
g:/rncxrogSams is another matter. Only through lots of practice will your p(;og;ar;\q
mx‘ngpskills develop. So, when you finish a chapter, pleaSe. spend the time doing as
i ramming.
roblems as you can. We wish you happy prog : )
man%vz ;)xpress our gratitude to two colleagues who reviewed the mal?us;npetfa?:
made many comments beneficial to this revision of the tde)‘(lt k:)ur ll;jln dz; lesrCthl,
Wood Johnson Medi .
1 n and Robert Hamer, at the Robert ¢ hnson Me .
‘Oousryslivriiel?er(i:anks also to Ann Heath, acquisitions editor for statistics atAPrenu]c_;
Hall, for her encouragement and support, and to Nicholas Romanelli for his supe

editing, patience, and good cheer.

Ron Coby
JEFFREY SMITH
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A. Introduction

For the novice, engaging in statistical analysis of data can seem as appealing as going
to the dentist. If that pretty much describes your situation, perhaps you can take
comfort in the fact that this is the fourth edition of this book—meaning that the first
three editions sold pretty well, and this time we may get it right. Our purpose for this
tutorial is to get you started using SAS software. The key objective is to get one pro-
gram to run successfully. If you can do that, you can branch out a little bit at a time.
Your expertise will grow.

The SAS System is a combination of programs originally designed to perform
statistical analysis of data. Other programs you may have heard of are SPSS,BMDP,
or SYSTAT. If you look at personal computer magazines, you might run across other
programs, primarily designed to'run on personal computers. Since its inception, the
SAS system has grown to where it can perform a fairly impressive array of nonsta-
tistical functions. We’ll get into a little of that in later chapters. For now, we want to
learn the most basic rudiments of the SAS system. If you skipped over it, the Preface
to the fourth edition contains some history of SAS software development and a
more complete overview of the capabilities of SAS software.

To begin, SAS software runs on a wide variety of computers and operating
systems (computer people call these platforms), and we don’t know which one
you have. You may have an IBM compatible personal computer running Windows
or, perhaps, Windows 95. You may have a Macintosh computer, or you may be
connected to a nietwork or a mainframe computer by way of a modem or network
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connection. You may only have a sophisticated VCR, which you think is a com-
puter. If you are unsure of what platform you are using or what version of SAS
software you are using, ask someone. As a matter of fact. right now would be a
good time to invite the best computer person you know to lunch. Have that per-
son arrive at your office about an hour before lunch so you can g0 over some
basic elements of your system. You need to find out what is necessary on your
computer to get the SAS system running. What we can teach you here is how to
use the SAS system, and how to adapt to your computer system.

If you are running on a mainframe, you may well be submitting what are called
“batch” jobs. When you run batch jobs, you send your program (across a phone
line or a network from your personal computer or terminal) to the computer. The
computer runs your program and holds it until you ask for it or prints out the re-
sults on a high-speed printer. You may even need to learn some Job Control Lan-
guage (which you have to get from your local computer folks), and then you can
proceed.

If you are running on a personal computer, or running in what is called interac-
tive mode on a minicomputer or mainframe, then you need to Jearn how to use the
SAS Display Manager. The look and feel of SAS once you are in the Display Man-
ager is pretty much the same whatever platform you are using. If you are un-
daunted, take a deep breath and plunge into the real content in the next section. If
you are already daunted, take a minute and get that lunch scheduled, then come
back to this.

B. Computing with SAS Software: An Illustrative Example

SAS programs communicate with the computer by SAS “statements.” There are
several kinds of SAS statements, but they share a common feature—they end in a
semicolon. A semicolon in a SAS program is like a period in English. Probably the
most common error found in SAS programs is the omission of the semicolon. This
omission causes the computer to read two statements as a run-on statement and in-
variably fouls things up.

SAS programs are comprised of SAS statements. Some of these statements
provide information to the system, such as how many lines to print on a page and
what title to print at the top of the page. Other statements act together to create
SAS data sets, while other SAS statements act together to run predefined statisti-
cal or other routines. Groups of SAS statements that define your data and create a
SAS data set are called a DATA step; SAS statements that request predefined rou-
tines are called a PROC (pronounced “prock”) step. DATA steps tell SAS pro-
grams about your data. They are used to indicate where the variables are on data
lines, what you want to call the variables, how to create new variables from exist-
ing variables, and several other functions we mention later. PROC (short for PRO-
CEDURE) steps indicate what kind of statistical analyses to perform and provide
specifications for those analyses. Let’s look at an example. Consider this simple
data set:
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HOMEWORK
sENDER v
;llfJB[\/'I'lEl?: (;M or F) EXAM1 EXAM2 GRADE

10 M 80 84 2

7 M 85 89 .

4 F 90 86 s
20 M 82 8s 5
25 F 94 94 A
14 F 88 84

“NDE IXAM 2,
We have five variables (SUBJECT NUMBER, QEND]:R, %AM'EB %Z(r{;lysis
and HOMEWORK GRADE) collected for each of six subjects. 1 e urgAs ﬁware,
i 1 ion in SAS terminology. SO
for this example, is called an ObSC]'\"allon in : :
E:;Ptlﬁe (t)errm “variabﬁ:” to represent each piece of information we collec} fbolr ena:‘l; :?o
i i SAS program, we need to assign a variable
servation. Before we can write our gram, st lable name 0
i i distinguish one variable from
each variable. We do this so thgt we can ¢ ne variable from anoer waen
i utations or requesting statistics. SAS variable ) '
?:vlvnsginclgrl];ﬁ'ules' They must start with a letter, be not more than glght cl}a;‘a;t::z C(tlcclfS
3 i in blanks or certain special ¢l
S als) in length, and cannot contain bl : c
tercsh(z:-s rclgﬁfrfas 3elmicolins, etc. (The underscore character (_) is a valid chzlirac;%r fm—'
SSl.l‘\.S variable na{mes and can be used to make variable namc;E r;(z;{rela’t’da?eel.l)m vZrlied
i “ BER,” or al
lumn headings of “SUBJECT NUM . / !
fS(Zeé j:;-ri:lfl: names. LoggiZal SAS variable names for this collection of data would be:

RADE
SUBJECT GENDER EXAM1 EXAM2 HWG]

It is prudent to pick variable names that help you ljeg:em\t;;rR W{hi\s‘i;;ms fﬁzs
i i jable. We could have named our five variables s 2, N
wtthnl:ivfxzs but we would then have to remember that VARI1 stands for

“ JECT NUMBER,” and so forth. ) )
SU?O begin, let’s say we are interested only in getting the class means for the two

. . fit
exams. In reality it’s hardly worth using a compuler to add up six nfurlxllb‘i:{ bgAls
does p.rovide a nice example. In order to do this, we could write the following

program:

DATA TEST;

CT 1-2 GENDER § 4 EXAMI 6-8 EXAM2 10-12 @




4 Chapter 1 / A SAS Tutorial

The first four lines make up the DATA step. In this example, the DATA step be-
gins with the word DATA and ends with the word DATALINES. Older versions of
SAS software used the term CARDS instead of DATALINES. Either term is still
valid. (If you don’t know what a computer card is, ask an old person.) Line @) tells
the program that we want to create a SAS data set called TEST. The next two lines
@ show an INPUT statement which gives the program two pieces of information:
what to call the variables and where to find them on the data line. Notice that this
single SAS statement occupies two lines. The SAS system understands this s a single
SAS statement because there is a single semicolon at the end of it. The first variable
is SUBJECT and can be found in columns 1 and 2 of the data line. The second vari-
able is GENDER and can be found in column 4. The dollar sign after GENDER
means that GENDER is a character (alphanumeric) variable, that is, a variable that
can have letters or numbers as data values, (More on this later.) EXAMTI is in
columns 6-8, etc. The DATALINES statement (3 says that the DATA statements are
done and the next thing the program should look for are the data themselves, The
next six lines are the actual data. In this example, we are including the data lines di-
rectly in the program. Later on in this book, we will show you how to read data from
external files.

Great latitude is possible when putting together the data lines. Using a few rules
will make life much simpler for you. These are not laws; they are just suggestions.
First, put cach new observation on a new line. Having more than one line per obser-
vation is often necessary (and no problem), but don’t put two observations on one
line (at least for now). Second, line up your variables. Don’t put EXAM1 in columns
6-8 on one line and in columns 911 on the next. SAS software can actually handle
some degree of sloppiness here, but sooner or later it’ll cost you. Third, right-justify
your numeric data values. If you have AGE as a variable, record the data as follows:

Correct Problematic
87 87
42 42
9 9
26 26
4 4
Right-justified Left-justified

Again, SAS software doesn’t care whether you right-justify numeric data or not,
but other statistical programs will, and right justification is standard. Fourth, use
character variables sparingly. Take HWGRADE, for example. We have HW-
GRADE recorded as a character value. But we could have recorded it as 0—4 O=F
1 =D, etc). As it stands, we cannot compute a mean grade. Had we coded HW-
GRADE numerically, we could get an average grade. Enough on how to code data
for now.

Back to our example. A SAS program knows that the data lines are completed
when it finds a SAS statement or a single semicolon. When you include your data
lines in the program, as in this example, we recommend placing a single semicolon
on the line directly below your last line of data. The next SAS statement @) is a
PROC statement. PROC says “Run a procedure” to the program. We specify which
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right after the word PROC. Here we are running a procgdurc called
iz%CAel;Ilchoﬁowing the procedure name (MEANS), \ive.place the option ]t)ATl.I\:
and specify that this procedure should compute statistics on the dz;lta se ‘Cz(ii ue;e
TEST. In this example, we could omit the option DATAz'TES_T, and tl eSPIfci;e e
would operate on the most recently created SAS data set, in this cas;,m “We red_
ommend that you include the DATA= option on every procedure since, mHmore aj
vanced SAS programs, you can have procedures that creaFe data se?ts aslwe a; msir:i
data sets “floating around.” By including tthAT.?: option, you can always be

is operating on the correct data set. )

Youtr[;l‘:;i%l:;s pfocedurge calculates the mean for any variables you specll)fy.‘ ’Il'he
RUN statement () is necessary only when SAS programs are run under the flsp‘ laz
Manager. The RUN statement tells SAS that there are no more statenlxlems oreral
preceding procedure and to go ahead and do the calculations. If we have sev
PROCs in a row, we only need a single RUN statement at the end of thf*, lfro%:ell)n;i
However, as a stylistic standard, we prefer to enq every procedure with a ~
statement and to separate procedures by a blank line to make the programs mo
reads;i; this program is executed, it produces something called the SAS LOG and
the SAS OUTPUT. The SAS LOG is an annotated copy of ygsxr original p}'ogrsn:
(without the data listed). It’s a lot like a phone boqk: Usually it’s pretty borm_gl,1 u
sometimes you need it. Any SAS error messages will be found there, glong with in-
formation about the data set that was created. The SAS LOG for this program is

shown below:

NOTE: Copyright (c) 1989-1995 by SAS Imstitute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.11 TS020 SCHOOL
Licensed to RON CODY/ROBERT WOOD JOHNSON MEDICAL v

NOTE: Release 6.11 of the SAS(R) System for Windows(R).

NOTE: AUTOEXEC processing completed.

DATA TEST; _
INPUT éUBJECT 1-2 GENDER § 4 EXAM1 6-8 EXAM2 10-12

HWGRADE $ 14;
DATALINES;

(L VRN

NOTE: The data set WORK.TEST has 6 observationms and 5 variables.
NOTE: The DATA statement used 0.27 second.

12 i
13 PROC MEANS DATA=TEST;
14 RUN;

NOTE: The PROCEDURE MEANS used 0.17 second.

L

- -

Site XXX.
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The more important part of the output is found in the OUTPUT window if you
are using the Display Manager. It contains the results of the computations and pro-

cedures requested by our PROC statements. This portion of the output from the
program above is shown next:

Variable Minimum Maximum

13.3333333
86.5000000
87.0000000

7.9916623
5.2057660
3.8987177

4.0000000
80.0000000
84.0000000

25.0000000
94.0000000
94.0000000

If you don’t specify which variables you want, SAS software will calculate the
mean and several other statistics for every numeric variable in the data set. Our pro-
gram calculated means for SUBJECT, EXAM1, and EXAM2. Since SUBJECT is
just an arbitrary ID number assigned to each student, we aren’t really interested in

its mean. We can avoid getting it (and using up extra CPU cycles) by adding a new
statement under PROC MEANS:

®

The indentation used is only a visual aid. The VAR statement ® specifies on
which variables to run PROC MEANS. PROC MEANS not only gives you
means, it gives you the number of observations used to compute the mean, the
standard deviation, the minimum score found, and the maximum score found.
PROCMEANS can compute many other statistics such as variance and standard

error. You can specify just which pieces you want in the PROC MEANS state-
ment. For example:

will get you only the number of observations with no missing values (N), mean
(MEAN), standard deviation (STD), and standard error (STDERR) for the vari-
ables EXAM1 and EXAM2. In addition, the statistics will be rounded to one deci-
mal place (because of the MAXDEC=1 option). Chapter 2 describes most of the
commonly requested options used with PROC MEANS.
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C. Enhancing the Program

The program as it is currently written provides some usefu'l i{)lft(l)rnt:aiion bdui;l]:\;:lt}llez:
i e “bells and whistles” on it. The bells an E
little more work, we can put some n histle
version below adds the following features: It computes a ﬁnaldgrzde‘, sll(:i:}tlh\; teﬁv:lgi
s; it assigns a letter grade base :
let be the average of the two exam scores; 1 € €
score; it lists the students in student number order, showing their exam SCOljeS,‘ﬂ::l‘lj'
final éradcs and homework grades; it computes the class average for ic Cﬁdm: Zts
final grade and a frequency count for gender and l}on}e_work grade; finally, it g
you a cup of coffee and tells you that you are a fine individual.

DATA EXAMPLE;
INPUT SUBJECT GENDER § EXAM1 EXAM2
HWGRADE §; .

FINAL = (EXAM1 + EXAM ; o

IF FINAL GE 0 AND FINAL LT 65 THEN GRADE='F'; @z—'c'-

(® ELSE IF FINAL GE 65 AND FINAL LT 75 THEN GRAD el
ELSE IF FINAL GE 75 AND FINAL LT 85 THEN GRADE='B';
ELSE IF FINAL GE 85 THEN GRADE='A';

DATALINES; ©
10M 80 842
7M 85 895 A
4F 90 86B
20M 82 85B
25 F 94 94 A
14F 88 84C

PROC SORT DATA=EXAMPLE; @
BY SUBJECT; ©
RUN; :

PROC PRINT DATA=EXAMPLE; @ .
TITLE 'Roster in Student Number Order';
ID SUBJECT; .
VAR EXAM1 EXAM2 FINAL HWGRADE GRADE;

RUN;

PROC_MEANS DATA=EXAMPLE N MEAN STD STDERR MAXDEC=1; @
: 'Descripéive Statistics';
XAM1 EXAM2 FINAL;

As before, the first four lines constitute our DATA step. L_mS E@ Xl; ;1\:[1 }:E%T?;{?
for the program to create a data set whose data set _namfs 1s' XAV me&.) Re-
member that data set names follow the same conventions as variable na o) Line
@ is an INPUT statement which is different from the one in the previous ple.
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We could have used the same INPUT statement as in the previous example but
wanted the opportunity to show youanother way that SAS programs can read data.
Notice that there are no column numbers following the variable names.

This form of an INPUT statement is called list input. To use this form of
INPUT, the data values must be separated by one or more blanks (or other separa-
tors which computer people call delimiters). If you use one of the other possible de-
limiters, you need to modify the program accordingly (see Chapter 12, Section C).
The order of the variable names in the list corresponds to the order of the values in
the line of data. In this example, the INPUT statement tells the program that the
first variable in each line of data represents SUBJECT values, the next variable is
GENDER, the third EXAM], and so forth. If your data conform to this “space-
between-each-variable” format, then you don’t have to specify column numbers for
each variable listed in the INPUT statement. You may want to anyway, but it isn’t
necessary. (You still have to follow character variable names with a dollar sign.) If
you are going to use “list input,” then every variable on your data lines must be
listed. Also, since the order of the data values is used to associate values with vari-
ables, we have to make special provisions for missing values. Suppose that subject
number 10 (the first subject in our example) did not take the first exam. If we listed
the data like this:

10 M 84 A

with the EXAMI score missing, the 84 would be read as the EXAMI1 score, the pro-
gram would read the letter “A” as a value for EXAM2 (which would cause an error
since the program was expecting a number), and, worst of all, the program would
look on the next line for a value of homework grade. You would get an error mes-
sage in the SAS LOG telling you that you had an invalid value for EXAM2 and that
SAS went to a new line when the INPUT statement reached past the end of a line.
You wouldn’t understand these error messages and might kick your dog.

To hold the place of a missing value when using a list INPUT statement, use a
period to represent the missing value. The period will be interpreted as a missing
value by the program and will keep the order of the data values intact. When we
specify columns as in the first example, we can use blanks as missing values. Using
periods as missing values when we have specified columns in our INPUT statement
is also OK, but not recommended. The correct way to represent this line of data, with
the EXAMI score missing, is:

10 M . 84 &

Since list input requires one or more blanks between data values, we need at
least one blank before and after the period. We may choose to add extra spaces in
our data to allow the data values to line up in columns.

Line @ is a statement assigning the average of EXAMI and EXAM? to a vari-
able called FINAL. The variable name “FINAL” must conform to the same naming
conventions as the other variable names in the INPUT statement. In this example,
FINAL is calculated by adding together the two exam scores and dividing by 2. No-
tice that we indicate addition with a + sign and division by a / sign. We need the
parentheses because, just the same as in handwritten algebraic expressions, SAS

-
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computations are performed according to a hierarchy. Mulliplipalion and division
are performed before addition and subtraction. Thus, had we written:

FINAL = EXAM1 + EXAM2 / 2;

the FINAL grade would have been the sum of the EXAMI score and half of
EXAM?2. The use of parentheses tells the program to add the [W(? exa:‘n scores lﬁrsl,
and then divide by 2. To indicate multiplication, we use an asterisk (*); to m'dlc.ate
subtraction, we use a - sign. Exponentiation, which is performed before ml}mpllca-
tion or division, is indicated by two asterisks. As an example, to compute A times the
square of B we write:

X = A * B*#2; .

The variable FINAL was computed from the values (}f EXAMI and EXAM2.
That does not, in any way, make it different from the variables whose values were
read in from the raw data. When the DATA step is ﬁ_nished,the SAS prgccdures that
follow will not treat variables such as FINAL any differently from variables such as

AM?2.
EX%II;n:t;E?mem @ and the ELSE IF statements ® are logical statements that
are used to compute a letter grade. They are fairly easy to ux_lderstand.When the con-
dition specified by the IF statement is true, the instructions f(?llowlng the wor?
THEN are executed. The logical comparison operators used in thls_example are GE
(greater than or equal to) and LT (less than). Sn?, if a FINAL score is greater than or
equal to 0,and less then 65, a letter grade of ‘F” is assigned. The EL$E statements a;e
only executed if a previous IF statement is not true. For example, if aAFINAL grade
is 73, the first IF statement &) is not true, so the ELSE IF statement ® 1s_tested. Since
this statement is true, a GRADE of ‘C’ is assigned, and all the following ELSE IF

statements are skipped. ) ) )
Other logical operators and their equivalent symbolic form are shown in the

table below:

Expressi Symbol M
EQ = Equal
LT < Less than
LE <= Less than or equal
GT > Greater than
GE >= Greater than or equal
NE A= Not equal
NOT ~ Negation

NotE: The symbols for NOT and NE may vary,
depending on your system.

The “DATALINES” statement ®) indicates that the DATA step is complete and

that the following lines contain data. ) ) )
Notice that each SAS statement ends with a semicolon. As mentlpned before,
the semicolon is the logical end of a SAS statement. We could have written the first

four lines like this:
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DATA EXAMPLE; INPUT SUBJECT GENDER $
EXAM1 EXAM2 HWGRADE $; FINAL =
(EXAM1 + EXAM2) / 2;

] AI‘he program would still run correctly. Using a semicolon as a statement delim-
1tler IS convenient since we can write long SAS statements on several lines and sim-
Ply put a semicolon at the end of the statement. However, if you omit a semicolon

tgram to fixe., 1t may result in a bizarre error message emanating from the SAS sys-
em. Omission of one or more semicolons is the most common programming error

We have used a RUN statement to end every procedure. Each RUN statement tells

the. system that we are finished with a section of the program and to do the compu-

:{l}i?s [JL;SI concluded. Remember, when using the Display Manager, only the last
Statement is absolutely necessa ; the others ar 1 ,

sramming Ty, are really only a matter of pro-

D. SAS Procedures

Ifnmé:dlately following the data is a series of PROCs. They perform various func-
tions z?nd computations on SAS data sets. Since we want a list of subjects and scores
in subject order, we first include a SORT PROCEDURE @. and @. Line @ indi-
cates that we plan to sort our data set; line ® indicates lha’lt tine sorting will be by
SUBJI?CI‘ number. Sorting can be multilevel if desired. For example, if we want sep-
arate lists of male and female students in subject number order, we v‘vrite: P

PROC SORT DATA=EXAMPLE;
BY GENDER SUBJECT;
RUN;

1 'I(;h;)s n;[xltilevcl sort indicates that we should first sort by GENDER (F’s fol-
owed by M’s—character variables are sorted alph betical i
order s GEmract phabetically), then in SUBJECT
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The PRINT procedure @ requests a listing of our data (which is now in
SUBJECT order). The PRINT procedure is used to list the data values in a SAS data
set. We have followed our PROC PRINT statement with three statements that sup-
ply information to the procedure. These are the TITLE, ID, and VAR statements. As
withmany SAS procedures. the supplementary statements following a PROC can be
placed in any order. Thus:

PROC PRINT DATA=EXAMPLE;
ID SUBJECT; .
TITLE 'Roster in Student Number Order';
VAR EXAM1 EXAM2 FINAL HWGRADE GRADE;

RUN;

is equivalent to

“PROC 'PRINT DATA=EXAMPLE;
TITLE 'Rogter inm Student Number Order‘y . --
ID SUBJECT; . SEELL i '
VAR EXAM1 EXAM2 FINAL HWGRADE GRADE;

RUN;

SAS programs recognize the keywords TITLE, ID, and VAR and interpret what
follows in the proper context. Notice that each statement ends with its own semi-
colon. The words following TITLE are placed in single (or double) quotes and will
be printed across the top of each of the SAS output pages. The ID variable, SUB-
JECT in this case, will cause the program to print the variable SUBJECT in the first
column of the report, omitting the column labeled OBS (observation number)
which the program will print when an ID variable is absent. The variables following
the keyword VAR indicate which variables, besides the ID variable, we want in our
report. The order of these variables in the list also controls the order in which they
appear in the report.

The MEANS procedure @ is the same as the one we used previously. Finally,
the FREQ procedure @ (you're right: pronounced “PROC FREAK”) requests a
frequency count for the variables GENDER, HWGRADE, and GRADE. That s,
what is the number of Males and Females, the number of A’s, B’s, etc., as well as the
percentages of each category. PROC FREQ will compute frequencies for the vari-
ables listed on the TABLES statement. The reason that SAS uses the keyword TA-
BLES instead of VAR for this list of variables is that PROC FREQ can also produce
n-way tables (suchas 2 X 3 tables).

Output from the complete program is shown below:
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Page 3 is the result of the PROC FREQ request. Notice that the title “Descrip-
tive Statistics” is still printed at the top of each page. Titles remain in effect until the
end of the current SAS session or if you change it to another title line. This portion
of the listing gives you frequencies (the number of observations with particular val-
ues) as well as percentages. The two columns labeled “Cumulative Frequency™ and
“Cumulative Percent” are not really useful in this example. In other cases, where a

Roster in Student Number Order
1
13:15 Wednesday, July 31, 1996

SUBJECT EXamM1 EXaM2 FINAL HWGRADE GRADE

; gg 86 88.0 B a
89 . . f . gt
10 80 84 g; 'g : a variable represents an ordinal quantity, the cumulative statistics may be more useful.
213 g: 84 86.0 c :
85 83.5 B i
25 94 92 st 0 3 : E. Overview of the SAS DATA Step
Descriptive Statistics 13:15 Wednesday, July 31, 1996 2 LeF’s §pend a moment exami.ning what happen§ when we execute a SAS program.
Variable N This discussion is a bit technical and can be skipped, but an understanding of how
Mean Std pev Std Error SAS software works will help when you are doing more advanced programming.

When the DATA statement is executed, SAS software allocates a portion of a disk
and names the data set “EXAMPLE,” our choice for a data set name. Before the
INPUT statement is executed, each of the character and numeric variables is as-
____________________________________________ signed a missing value. Next, the INPUT statement reads the first line of data and
substitutes the actual data values for the missing values. These data values are not

yet written to our SAS data set EXAMPLE but to a place called the Program Data
Vector (PDV). This is simply a “holding” area where data values are stored before
?I.ERDER Frequency Ppercent c‘;:::ﬁ:i:; cu::i::,::e they are transferred to the SAS data set. The computation of the final grade comes
------------------------------------- next @, and the result of this computation is added to the PDV. Depending on the
value of the final grade, a letter grade is assigned by the series of IF and ELSE IF

statements. The DATALINES line triggers the end of the DATA step, and the values
Cumulative Cumulati in the PDV are transferred to the SAS data set."l’he program then returns control
HWGRADE  Frequency Percent Frequency Pperc en:e back to the INPUT statement to read the next line of data, compute a final grade,
---------------------------------------------- and write the next observation to the SAS data set. This reading, processing, and
writing cycle continues until no more observations remain. Wasn’t that interesting?

13:15 Wednesday, July 31, 1996

100.0

E  Syntax of SAS Procedures

Cumulative Cumulative
GRADE Frequency Percent Frequency Percent

As we have seen above, SAS procedures can have options. Also, procedures often
have statements, like the VAR statement above, which supply information to the
procedure. Finally, statements can also have options. We will show you the general
syntax of SAS procedures and then illustrate it with some examples. The syntax for

all SAS procedures is:

The first part of the output (the i
: page number is shown at the ext i
fabCh page) is the re§ult of the PROC PRINT on the sorted data set, E:g}:n :a;::gl':i):l‘i)sf
: eled w1.th the variable name. Because we used an ID statement with SUBJECT as
the ID variable, the left-most column shows the SUBJECT number instead of the de-

ROC ‘PROCNAME options;
STATEMENTS / statement options;
. .

.
STATEMENTS / statement optioms;

produces the requeste i iati
q) d statistics (N, mean, standard deviation, and standard error) ROM3

all to the tenths place (because of the MAXDEC=1 option).
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First, all procedures start with the word PROC followed by the procedure name.
If there are any procedure options, they are placed, in any order, between the proce-
dure name and the semicolon, separated by spaces. If we refer to a SAS manual, under
PROC MEANS we will see a list of options to be used with the procedure. As men-
tioned, N MEAN, STD, STDERR, and MAXDEC= are some of the available options.
A valid PROC MEANS request for statistics from a data set called EXAMPLE, with
options for N, MEAN,and MAXDEC would be:

PROC MEANS DATA=EXAMPLE N MEAN MAXDEC=1;
RUN;

Next, most procedures need statements to supply more information about
which type of analysis to perform. An example would be the VAR statement used
with PROC MEANS. Statements follow the procedure, in any order. They each end
with a semicolon. So, to run the PROC MEANS statement above, on the variables
EXAM1 and EXAM2, and to supply a title, we would enter:

PROC MEANS DATA=EXAMPLE N MEAN STD MAXDEC=1;
TITLE 'Descriptive Statistics on Exam Scores';
VAR EXAM1 EXAM2;

RUN;

The order of the TITLE and VAR statements can be interchanged with no
change in the results. Finally, some procedure statements also have options. State-
ment options are placed between the statement keyword and the semicolon and sep-
arated from the statement by a slash. To illustrate, we need to choose a procedure
other than PROC MEANS. Let’s use PROC FREQ as an example. As we saw,
PROC FREQ will usually have one or more TABLES statements following it. There
are TABLES options that control which statistics can be placed in a table. For ex-
ample, if we do not want the cumulative statistics printed, the statement option
NOCUM is used. Since this is a statement option, it is placed between the TABLES
statement and the semicolon, separated by a slash. The PROC FREQ request in the
earlier example, modified to remove the cumulative statistics, would be:

PROC FREQ DATA=EXAMPLE;
TABLES GENDER HWGRADE.
RUN; :

To demonstrate a procedure with procedure options and statement options,
we use the ORDER= option with PROC FREQ. This useful option controls the
order that the values can be arranged in our frequency table. One option is

|
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ORDER=FREQ, which enables the frequency table to be arranged in freq}xency
order, from the highest frequency to the lowest. So, to rgq_uest frequencies in d«?-
scending order of frequency and to omit cumulative statistics from the output, we
write our PROC FREQ statements as follows:

PROC FREQ DATA=EXAMPLE ORDER=FREQ;
TABLES GENDER HWGRADE GRADE/ NOCUM;

RON;

G. Comment Statements

Before concluding this chapter, we introduce one of _the» most important SAS
statements—the comment statement. (Yes, we're not kidding!) A proper}y com(;
mented program indicates that a true profession:?l is at work. A comment, l;serte
in a program is one or more lines of text that are ignored by the progran;l—t ey 'fare
there only to help the programmer or researcher when he or she reads the program
e lfa}t.:::: two ways to insert comments into a SAS program. Ong is to write a
comment statement. Begin it with an asterisk (*) and end it with a semicolon. There
are many possible styles of comments using this method. For example:

*program to campute lielia]&ility Coefficlents

September 18, 1997
Program Name: FRED stored in directory C:\MYDATA

Contact Fred Cohen at 555-4567;

Notice the convenience of this conclusion. Just enter the * and type as many
lines as necessary, ending with the semicolon. Just make sure the comment statement
doesn’t contain a semicolon. Some programmers get fancy and make pretty boxes
for their comments, like this:
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Notice that the entire box is a SAS comment statement since it begins with an
asterisk and ends in a semicolon. Notice also that the box literally cries out, “I need
alife!”

You may also choose to comment individual lines by resorting to one of the fol-
lowing three ways:

QUES = 6 - QUES; *Transform QUES VAR;
X = LOG(X); *LOG Transform of X;

or

*Transform the QUES Variable;
QUES = 6 - QUES;

*Take the LOG of X;

X = LOG(X);

*True professonal at work;

or

*

*Transform the QUES Variable
*a

Q('JES = 6 ~ QUES;

*

*Take the LOG of X

*,

x'= LOG(X) ;

*

*True professonal at work
* .
H

The last example uses more than one asterisk to set off the comment, for visual
effect. Note however, that each group of three lines is a single comment statement
since it begins with an asterisk and ends with a semicolon.

An alternative commenting method begins a comment with a /* and ends with a
*/. This form of comment can be embedded within a SAS statement and can include
semicolons within the comment itself. It can oceur any place a blank can occur. A
few examples:

/* This is a comment line */

or
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i he slash star
This is a pretty comment box using t
method of commenting. Notice that it begins with
a slash star and ends with a star slash.

or

/* The data statement */

. /* EXAM1 is the first exam score */
gxmz /* EXAM2 is the second exam score */

- 5 g,
Exunsl EXAM2)/2; /* Compute a composite grade */

Let us show you one final, very useful trick using a comment statement, before
concluding this chapter. Suppose you have writte_n a program axju;l run several pro-
cedures. Now, you return to the program and wish to run additional procedures.
You could edit the program, remove the old procedur.es, an_d add the new ones. Qr,
you could “comment them out” by preceding the section with a /* and ending with
a */, making the entire section a comment. As an example, our commented pro-
gram could look like this:

The print procedure is not executed since it is treated as a comment; the corre-
lation procedure will be run.
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One final point: when running a batch program on IBM mainframes under
MVS, a /* in columns 1 and 2 causes the program to terminate.

A few extra minutes are needed to comment a SAS program, but that time is
well spent. You will be thankful that you added comments to a program when it
comes time to modify the program or if you expect other people to understand how
your program works. To repeat, comments in your program take a little time but are
usually worth it.

H. References

One of the advantages of using SAS software is the variety of procedures that can be
performed. We cannot describe them all here nor can we explain every option of the
procedures we do describe. You may, therefore, want to obtain one or more of the
following manuals available from the SAS Institute Inc., Book Sales Department,
SAS Campus Drive, Cary, NC 27513-2414. The SAS Institute also takes phone or-
ders. Call (919)677-8000 or (800)727-3228.

SAS Language and Procedures: Introduction, Version 6, First Edition (order
number #PS6074)
SAS Language and Procedures Usage, Version 6, First Edition (order number #P56075)

SAS Language and Procedures: Usage 2, Version 6, First Edition (order number
#P560078)

SAS Language: Reference, Version 6, First Edition (order number #P56076)
SAS Procedures Guide, Version 6, Third Edition (order number #P560080)

SAS/STAT User’s Guide, Version 6, Fourth Edition, Volumns 1 and 2 (order number
#P56045)

SAS/STAT Software: Changes and Enhancements through Release 6.11 (order number
#P55356)

SAS Programming by Example, by Ron Cody and Ray Pass (order number #P55126)
The SAS Workbook, by Ron Cody (order number #P55473)
The SAS Workbook: Solutions, by Ron Cody (order number #P55475)

The SAS Workbook and Solutions (both books sold together at a discount), by Ron
Cody (order number #55594)

Below are some statistics books that we recommend:

Statistical Principles in Experimental Design, by B. J. Winer (McGraw-Hill, New
York, 1991)

Staristical Methods, by Snedecor and Cochran (Iowa State University Press, Iowa, 1980)
Multiple Regression in Behavioral Research: Explanation and Prediction, by Elazar J.
Pedhazur (Holt, Rinehart and Winston, New York, 1982)

Experimental Design in Psychology Research, by Edwards (Harper & Row, New
York, 1975)
Multivariate Statistics in Behavioral Research, by R. Darrell Bock (McGraw, New
York, 1975)

Problems

1-1. We have collected the following data on five subjects:

Grade Point College Entrance

Average Exam Score

D AGE GENDER (GPA) (CSCORE)
1 18 M 37 650
2 18 F 20 490
3 19 F 33 580
4 23 M 2.8 530
5 21 M 35 640

(a) Write the SAS statements necessary to create a SAS data set.

i and
(b) Add the statement(s) necessary to compute the mean grade point average
mean college entrance exam score.

(c) We want to compute an index for each subject, as follows:

INDEX = GPA + 3 x CSCORE/500

Modify your program to compute this INDEX for each student and toprinta llxxs)t o(( ;K[li
dents in order of increasing INDEX. Include in your listing the student ID, GPA,

CSCORE, and INDEX.
1-2. Given the following set of data:

Social Security Annual

Number Salary Age Race
123874414 28,000 35 w
646239182 29,500 37 B
012437652 35,100 40 w
018451357 26,500 31 w

d
(a) Create a SAS data set using the data above. Compute the average annual salatg :‘r[l] 3
average age. NOTE: Since you don’t know yet how to read numeric values con!
commas, you may enter the values without commas. |
. . a
(b) If all subjects were in a 30% tax bracket, compute their taxes (ba}ed (l;n ag:zal
salary) and print out a list, in Social Security number order, showing the a
salary and the tax.
1-3. What's wrong with the following program?

19
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*1-4. A large corporation is interested in who is buying their product. What the CEO wants

is a profile of the “typical buyer.” The variables collected on a sample of buyers are:

the observations, and write a SAS Program to obtain a profile of the “typical buyer.”
NoTe: Slightly more difficult problems are preceded by an asterisk (*).

HINTS AND COMMENTS:

(1) For variables such as “homeowner,” it is easier to remember what you have if you
let negative responses be 0 and positive responses be 1.

(2) When grouping numerical variables into Categories, make sure your grouping suits
your needs and your data. For example, if your product is denture cream, a group-
ing of age,

1= <21 2=21-35 3=36-50 4=> 59

is virtually useless. You know such people are mostly over 50, You might use group-
ings such as

1= <50, 2=50-59 3=6069 4= >¢9,

1-5. Given, the data set:

ID RACE SBP DBP HR

001 w 130 80 60
002 B 140 9 70
003 w 120 70 64
004 w 150 90 76
005 B 124 86 72

(NOTE:SBP is systolic blood pressure, DBP is diastolic blood pressure, and HR is heart
rate.)

Write the SAS statements to produce a report as follows:

Race and Hemodynamic Variables
D RACE SBP DBP
003 w 120 70
005 B 124 86
001 w 130 80
002 B 140 1]
004 w 150 90

NotE: 1. To omit the default “OBS” column, use the PROC PRINT option NOOBS,
2. Data is in increasing order of SBP
3. The variable HR is not included in the report.
4. The report has a title.

Problems 21

1-6. Given the data set of problem 1-5, modify that program to compute the “average

blood pressure. (ABP) defined as a weighted average of the ctiliasto.lig [l;lo;:x;;r(;essstl;::
i i he heart spends more time in its r
and the systolic blood pressure. Since t ‘ n it relaved state
i i i is weighted two-thirds, and the systolic blood pres
(diastole), the diastolic pressure is weig o e compton by
i i -thi he average blood pressure co
is weighted one-third. Therefore, t! oa v computed by
iplyi i i by 2/3, and the systolic blood p Y
multiplying the diastolic blood pressure ) 0 L Tyl
i i Id be the diastolic pressure plu
nd adding the two. An equivalent expression would be ressut >
?hird of lhi difference between the systolic and diastolic pressures. Using either defini

tion, add APB to the data set.
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A. Introduction

Did

thinky:s ;:,02(0 tbhaec E;ol;lzms ;1 the end of Chapter 1 as we asked you? We didn’t
- So, nd do them now, and i l

Broadeastin s wiren, and then send in a check to your local Public

One of the first ste
) ps for any data analysis project i i

tive e of r analysis project is to generate simpl ip-

e :2\8,::;? :or all the continuous variables, Besides the traditional mea;:lzssssctl.ﬁ

nomaiat dp, )_r{:’)u may want to use histograms, stem-and-leaf plots, test fa
y istributions, and a variety of other descriptive measures. ‘ .

B. Describing Data

Even for complex statistical analysis,

e , YOu must be able to describe th i

o :;%l;:ic;r;v:;gﬁf)gto—comyrehend fashion. This is typically accomplisehci.jsl t;ll l:n:

most gty “.]a ¢ ;st way is through descriptive summary statistics. Probably the

peopl o Sm-ny lo e;crlbe a sample qf scores is by reporting: (1) the number of

LA primoufs e. (;a ed the sampl§ size and referred to by “n” in statistics books

S printo ); (2) the mean (arithmetic average) of the scores; and (3) th
leviation of the scores. The standard deviation is a measure o}' how (wi)del;:

22
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spread the scores are. Roughly speaking, if the scores form a “bell-shaped” (normal)
distribution, about 68% of the scores will fall within 1 standard deviation of the
mean (plus or minus) and 95% of the scores within 2 standard deviations.

Let’s create a SAS data set to introduce some concepts related to descriptive
statistics. Suppose we conducted a survey (albeit a very small one) where we record
the gender, height, and weight of seven subjects. We collect the following data:

GENDER HEIGHT WEIGHT

M 68.5 155
F 61.2 99

F 63.0 115
M 70.0 205
M 68.6 170
F 65.1 125
M 72.4 220

There may be several questions we want to ask about these data. Perhaps we
want to count how many males and females are in our sample. We might also want
means and standard deviations for the variables HEIGHT and WEIGHT. Finally,
we may want to see a histogram of our continuous variables and, perhaps, determine
if the data can be considered to have come from a normal distribution. These are
fairly simple tasks if only seven people are involved. However, we are rarely inter-
ested in such small samples. Once we begin to consider as many as 20-30 people, sta-
tistical analysis by hand becomes quite tedious. A SAS program to read these data
and to compute some descriptive statistics is shown next:

o2 BIWT; O ; -
NPUT SUBJECT GENDER § HEIGHT WEIGHT; @
INES; ©

MEANS ' DATA=HTWT; @ = - :
TTTLE 'Simple Descriptive Statistics'; ®

Once again, in this example, our data are placed “in-stream” directly into our
program. For small data sets, this is an appropriate method. For larger data sets, we
usually place our data in a separate file and instruct our SAS program where to
look to find the data (see Chapter 13, Section C). In this program, we have chosen
to use the list form of input where each data value is separated from the next by
one or more spaces. The first three lines define our DATA step. In (D, we indicate
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that we are creating a SAS data set called HTWT. As mentioned in the tutorial,
SAS data set names as well as SAS variable names are from one to eight charac-
ters in length. They must start with a letter or underscore(_). The other characters
in SAS data set names or SAS variable names can, in addition, include numerals.
Thus, our name HTWT meets these criteria and is a valid SAS data set name.

ing value. Again, in review, the $ following the variable name GENDER indicates
that we are using character values for GENDER (‘M’ and ‘F’). Statement @3,
DATALINES, indicates that the in-stream lines of data will follow and that the
DATA step is finished. Following the data is a lone semicolon (;), which is a con-
venient way to indicate there are no more data lines. Statement @ is our request
for descriptive statistics. Since we did not tell it to do otherwise, PROC MEANS
will give us the number of observations used to calculate the descriptive statistics
for each of our numeric variables, the mean, standard deviation, minimum, and
maximum. In a moment, we will show you how to request only those statistics that
you want rather than accepting the defaults. Let’s look at the results of running
this program:

Simple pescriptive Statistics

Variable N Mean

SUBJECT 7 4.0000000 2.1602469 1.0000000 7.0000000
HEIGHT 7 66.9714286 4.0044618 61.2000000 72.4000000
WEIGHT 7 155.5714286 45.7961321 99.0000000 220.0000000

For the variable of height in our sample, we see that there are seven people
(n = 7); that the shortest person is 61.2 inches tall and the tallest 72.4 inches (from

«

the “minimum value” and ‘maximum value” columns); their mean height is 66.971
(rounded off); that the standard deviation is 4.004. Notice that we also obtain statis-
tics on the variable called SUBJECT. The mean subject number is probably not
going to be of interest to us. We will show you, shortly, how to compute statistics only
for those variables of interest.
You can specify which statistics you want to compute by specifying options for
OCMEANS, Most SAS procedures have options which are placed between the
procedure name and the semicolon, Many of these options are listed in this text; a
complete list of options for all SAS procedures can be found in the manuals avail-
able from the SAS Institute. As mentioned in Chapter 1, the option MAXDEC=n
controls the number of decimal places for the printed statistics, N prints the num-
ber of (nonmissing) observations, and MEAN produces the MEAN. So, if you want

B
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. . ou
ly the N and MEAN and you want three places to the right of the decimal, yo
only
would write:
PROC MEANS DATA=HTWT N MEAN MAXDEC=3; , -
You may also wish to specify for which numeric \éarlatt‘v}es l;g:,‘:;sjif;;siics
ipti istic: v oid getting s
ute descriptive statistics (so we can avi ¢ 4 : AR
war:;;:;;:]\pr)ariables such as SUBJECT). We make this SPCCI‘ﬁca"Zl:ji‘:;gnaT VAR
oo ent. VAR (short for VARIABLES) is a statement that gives a nal infor
Slalf(l)‘:l lo.PROC MEANS (and many other proced}n’es as well). Th_e ts'y'r:: ax is the
"o ]dVAR followed by a list of variable names. So, if we want descr(ljp v Sratistic
WOII;J on HEIGHT and we want the sample size, the mean, and three decimal pl 3
on, (¢

we would write:

PROC MEANS DATA=HTWT N MEAN nxnziﬂi .
TITLE 'Simple Descriptive Statistics';

VAR HEIGHT;
RUN;

The order of the options is irrelevant. A list of the commonly requested options
for PROC MEANS is as follows:

Opti Description
tion Pt -
5 Number of observations for which the statistic was computed
:MXSS Number of observations with missing values for the
variable of interest
MEAN Arithmetic mean

STD Sample standard deviation

am B o i % fid interval (CI) for the mean
{ d upper two-sided 95% confidence ed,
en 5:'6:— Z:e»sir:lped 95% CI for the mean. If both LCLM and pCLM are ;cql:::v : |
e twg sided CI is computed; otherwise, this option gives ygu ac T;sldc 1;1“65[6&
L : i - h LCLM and U are re 3
-sided 95% CI for the mean. If botl | ) re req .
et vaszrs?d[::ds(lfl is computed; otherwise, this option gives you a one-sided interval
a two-
MIN Minimum: lowest score for the data
MAX Maximum: highest score for the data
SUM Sum
VAR Variance o
cv Coefficient of variation
SKEWNESS Skewness
T oSS gtl\l)r;zrs:ts's t-test, testing the null hypothesis that the populati:n n‘:ﬁal:l is z[t;lr:s,is
v ity of obtaini bsolute value of t under the null hypo
bability of obtaining a larger al 50! X ol
i"IIf\TXDEC—n mcre n si‘)cciﬁes the number of decimal places for printed statistics

i evia-
One further example. Suppose we want the sample size, meani standzr(ilndaddi—
tion, standard error, and a 95% confidence interval about the samplg me:xe .
’ ’ i é Tite:
tion, we want the statistics rounded to two decimal places. We would w:

LM;
PROC MEANS DATA=HTWT MAXDEC=2 N MEAN STD STDERR CLM;
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Output from this request would look as follows:

_—

Simple Descriptive Statistics

13:46 Monday, June 17, 1996 10
Variable

Variable Lower 95.0% CLM

HEIGHT

The standard error of the mean is used to indicate a “
the mean, which is useful when our SCores represent a sa
population. For example, if our seven subjects were a randos
niors in New Jersey, we could use the sample mean (66.97)
age height of all New Jersey high school juniors. The stand
us how far off this estimate might be. If our population is ro
the sample estimate of the mean (based on a random samp
dard error (1.51) of the actual, or “true,” mean 68
dard errors (3.02) of the mean 95% of the time. B
MEANS will print a 95% confidence interval about our sample mean. Looking at our
listing, we are 95% “confident” that the interval from 63.27 to 70.67 contains the true
population mean for height. For weight, this interval is from 11322 to 197.93. If you
were to compute a 95% confidence interval by hand, you would need to add and sub-
tract a t-value (based on the degrees of freedom) times the standard error of the mean.
As mentioned earlier in this chapter, PROC MEANS produces, by default, the
N, mean, minimum, maximum, and standard deviation. Suppose you want standard
error added to that list. If you request any statistic (MAXDEC= is not a statistic),
PROC MEANS will print only that statistic. Therefore, if you decide to override the
system defaults and request an additional statistic, you must specify them all. As an
example, to add standard error to the default Iist we would write:

confidence interval” about
mple of scores from some
m sample of high school ju-
as an estimate of the aver-
ard error of the mean tells
ughly normally distributed,
le) will fall within one stan-
% of the time and within two stan-
Y specifying the CLM option, PROC

PROC MEANS DATA=HTWT N MEAN STD MIN MAX STDERR;

C. More Descriptive Statistics

If you would like a more extensive list of statistics, including tests of normality, stem-

and-leaf plots, and box plots, PROC UN! IVARIATE is the way to go. This extremely
useful procedure can compute, among other things:

S
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1. The number of observations (nonmissing)
2. Mean )
3. Standard deviation
4. Variance
5. Skewness
6. Kurtosis
7. Uncorrected and corrected sum of squares
8. Coefficient of variation
. Standard error of the mean )
1(9) Ai—test comparing the variable’s value against zero
11. Maximum (largest value) .
12. Minimum (smallest value)
13. Range )
14. Median, 3rd, and 2nd quartiles
15. Interquartile range
16. Mode )
tiles
10th, 90th, 95th, and 99th percen )
1273 }I‘St:ésf‘ll\jé highest and five lowest values (useful for da}la f:életd:ng)
19' W or D statistic to test whether data are normally distribute:
20. Stem-and-leaf plot
g I%?)ffxlgltprobability plot, comparing your cumulative frequency distribution
. to a normal distribution

To run PROC UNIVARIATE for our variables HEIGHT and WEIGHT, we

would write:

lefauit, we ge € 118! items of the list of statistic: ve. To r est, ad-
By default t the first 18 t of statistics abo 0O reques

y get 1

dmonally, a test of nor [Ilallly, a stem-and-leaf Pk)l, and a box plOl, we would add the
options NORMAL and PLOT as follows

A portion of the output from the request above is shown next:




More Descriptive Statistics
Univariate Procedure
Variable=HEIGHT

Moments

N 7 Sum Wgts 7
Mean 66.97143 sum 468.8
Std Dev 4.004462 variance 16.03571
Skewness -0.23905 Rurtosis ~1.16132

uss 31492.42 cgg 96.21429
cv 5.979358 gtg Mean 1.513544
T:Mean=0 44.24808 pr >|T| 0.0001
Num 4= ¢ 7 Num >0 7
M(sign) 3.5 Prs= M 0.0156
Sgn Rank 14 pPrs=|g| 0.0156
W:Normal 0.954727 pr <W 0.7849

Quantiles (Def=5)

100% Max 72.4 99% 72.4
75% Q3 70 95% 72.4
50% Med 68.5 90% 72.4
25% Q1 63 10% 61.2

0% Min 61.2 5% 61.2
1% 61.2
Range 11.2
Q3-Q1 7

Mode 61.2

Extremes

Lowest Obs Highest Obs
61.2¢( 2) 65.1( 6)
63( 3) 68.5( 1)
65.1( 6) 68.6( 5)
68.5( 1) 70¢( 4)
68.6( 5) 72.4¢( 7)

More Descriptive Statistics
Univariate Procedure
Variable=HEIGHT

Stem Leaf # Boxplot
72 4 !
70 0
68 56
66
64 1
62 0

N

[Continued]

Normal Probability Plot

+* 44+
et *hatt
LS P
+Hedt
o7 +4+4+%4
+4+4*
o MO 4o megmmm—gommmgmmm—go—m =4
+—--—;—‘—-+--_:I-— ' ] +1 +2
More Descriptive Statistics
Univariate Procedure
variable=WEIGHT
Moments
7
7 Sum Wgts
* 1089
155.5714 Sum
gi;nDev 45.79613 Variance 2091632;
Skewness 0.278915 Kurtosis ;;és3 z
uss 182001 cCss 30531
cv 29.43737 Std Mean 170. o
T:Mean=0 8.987731 Pr > IT% . 2
um 4 7 Num >
Nu:i ')0 3.5 Pr>= Ml 0.015:
:( g:nk 14 Pr>=18l 0.0254
w?:ormal 0.941255 Pr<W 0.6
Quantiles (Def=5)
Max [}
100% 220 99: ggo
75% Q3 205 :3% ot
50% Med 155 o 2
25% Q1 115 15% bt
0% Min 99 by bt
Range 121
Q3-Q1 90
Mode 99
Extremes
Lowest Obs Highest Obs
99 ( 2) 125¢ 6)
115¢( 3) 155¢( ;;
125¢( 6) 170( o
155¢( 1) 205( "
170¢( 5) 220¢(
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_—

[Continued)

Mo:.re Descriptive Statistics
Univariate Procedure
Variable=WEIGHT

Stem Leaf
22 0
205
18
16 0
14 5

12 5

5
9

)

10

PR

B LD TR ST
Multiply Stem.Leaf by 10%**4+1

Normal Probability Plot
AR
LT T Y
+Ht+
+++¥4
+e4®
+44*

++e ¥

There is a lot of information in a PROC UNIVARIATE output. Under the titl
. itle

‘Moments” you will see a nu T of statis
y € a numbe; S. O < Xplaj
'b f statistics. Most them are self expl. natory.

;Ium Wes gﬁxsg?‘;’? nonnfissing observations

o} ol ue ég;:; [(lnf WEIGHT statement used)
Sum Sum of the scores

Std Dev Standard deviation

Variance Variance

Skewness

S
kewness (measure of the symmetry or asymmeltry of the distribution)

Kurtosi .
Usgtosm gurtosw (measure of the flatness or the distribution)

scncor_recled sum of squares (the sum of the scores squared—each
css C‘())re is squared and the squares are added together)

rrected sum of squares (sum of squares about the mean, usuall
o gore useful then USS) S
oefficient iati

St Mean of variation

Standard error of the mean (t jati ivi
dvare rout an (the standard deviation divided by the
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Student’s t-test for testing the hypothesis that the population mean is zero.

T:Mean=0

Prob>|T| The p-value for the t-statistic (two-tailed)

Sgn Rank The Wilcoxon signed rank sum (usually used for difference scores)
Prob>(S| The p-value for the Sign Rank test

Num*=0  Number of nonzero observations

W:Normal Shapiro-Wilk statistic for a test of normality (SAS

(D:Normal)  will produce the Kolomogorov D:Normal test when n is larger than 2000)
Prob<W P-value testing the null hypothesis that the

(Prob>D)  population is normally distributed (when the D:Normal test is done, the

statistic is Prob>D)

Looking further at the output, we find, under the heading “Quantiles(Def=5),”
two sets of useful information. The left-hand set lists quantiles, showing the highest
score (100%), the score at the third quartile (75%), the median (50%), the score at
the first quartile, and the lowest score (0%). We point out that this is the only place
we know of where you can compute a median. (Wouldn’t a median be a nice option
for PROC MEANS?) The “Def=5" in the heading indicates that SAS is using defin-
ition S listed in the SAS Procedures manual. This definition is described as an “em-
pirical distribution function with averaging.” We refer those interested in the subtle,
yet fascinating differences of the five available definitions, to consult the SAS Pro-
cedures manual under PROC UNIVARIATE. For the other 99.6% of our readers,
we recommend DEF=5.

The right-hand column lists other percentiles that are often of interest (99%,
95%, etc.).

Below these two columns you will find the range,
Q1), and the mode.

The list of Extremes, which comes next, is extremely useful (sorry, bad pun, but
an excellent mnemonic). This list also comes without our specifically asking for it. It
lists the five lowest and five highest values in the data set. We find this useful for data
checking. Obviously incorrect values can be spotted easily. Next to each extreme
value is the corresponding observation number. This can be made more useful if an
ID statement is used with PROC UNIVARIATE. The ID variable (usually a subject
number) is printed next to each extreme value, instead of the observation number.
That way, when a data error is spotted, it is easier to locate the incorrect value in the
data by referring to the ID variable. We can use our variable SUBJECT as an ID
variable to demonstrate this. Our complete PROC UNIVARIATE request would be:

the interquartile range (Q3-

The next portion of the output from PROC UNIVARIATE is a result of the
PLOT option we used. The left side of the page is a Tukey-style stem-and-leaf plot.
This can be thought of as a sideways histogram. However, instead of using X’s to rep-
resent the bars, the next digit of the number after the “stem” is used. For example,
the smallest height is 72.4. Next to the stem value of 72, we see a ‘4’, which tells us not
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only is there :
oy ]abe]::j ig]gly;be'tween 72 and 74 but that the actual value is 72.4. Look at th
vames o 6 ~'(,‘ . (zjt}ce that there were two scores between 68 and 76 The “I. ff
cqual g a6 S:r;léc:ftil:hit there is one height equal to 68.5 and an(;ther he?gaht
A .6. istogram” supplies us with additi i i
cerning the structure of values within a bar. In this small exa‘rtll(;l;: ltlhncf:tr:]r:t;m:i CIOHE
3 -and-leaf

one i
Statez:crl\:;r; (:ruar\ilzilll;l:;\yhe:i yci)u do this with PROC UNIVARIATE (using a BY
ment), ain side-by-side boxplots automati
BY variable or each combination of the BY variables if ;(;flallll:;io;'liﬁht;aluc ot
an one.

sample distributi i

san gl o & gt:&bl;%inw(:]elv?;ej of:;ltn ﬁth:l n‘i)rmal, the more the asterisks deviate from
th ! , , IInd the stem- - i
itive way to inspect the shape of the distributionand tent nd boxplots  more into-

D.  Descriptive Statistics Broken Down by Subgroups

Instead of computin, ipti isti

g descriptive statistics for ev ject i
- ng ¢ 2 ery subject in 5
ma ); ;v;:;ttilcl’?]es slatlstlgs for specific subgroups of your dat;. For ez:rzl;)fdea:: :}ft’dy Y
P an’d y‘(;lllE nI‘(]}ght want the number, the mean, and the standar;i devieatiPl .
this 0 ways Tt c:l{x;rsze{;?;atzly for males and females. We can accompli(s)}rll

y Tt the i

statemment i em MEARS, b 1-?1[: set by GENDER and then include a BY

ANS for each
: DATAGETRE o 1
BY GENDER) " *Thig .is t
VAR HEIGHT WE1GHT;
7

ROUN
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The resulting output is shown below:

GENDER=F

Variable N Mean std Dev
HEIGHT 3 63.10 1.95
WEIGHT 3 113.00 13.11
GENDER=M

variable N Mean Std Dev
HEIGHT 4 69.88 1.82
WEIGHT 4 187.50 30.14

Most SAS procedures allow you to include a BY statement that runs the proce-

dure for each level of the BY variable. Remember to always sort the data set first by
the same BY variable (or know in advance that the data set is already sorted). Some-
times in a long program, you ask for a data set to be sorted which you previously
sorted (because you sorted it earlier arid forgot that you did it). In SAS versions 6.08
and above, if you request a sort on a data set that has been previously sorted by SAS,
the sort will not be performed, and you will be notified in the SAS LOG that the data

set was already sorted in the order indicated.
An alternative to using a BY statement with PROC MEANS is the use of a

CLASS statement. If you use a CLASS statement instead of a BY statement, the
printed output will be similar, as you can see in the output below where a CLASS

statement is used:

Simple Descriptive Statistics

GENDER N Obs Variable N Mean std Dev

F 3 HEIGHT 3 63.10 1.85
WEIGHT 3 113.00 13.11

M 4 HEIGHT 4 69.88 1.82
WEIGHT 4 187.50 30.14

The advantage of using a CLASS statement is that you do not have to sort the data
set first. For large data sets, this can mean a large saving of processing time (and possi-
bly money). On the down side, use of a CLASS statement requires considerably more
memory than a BY statement, especially if there are several CLASS variables and
many levels of each. In general, try using a CLASS statement first, and resort to use of
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a BY sta ement only i itati
y if memory limitations force v pli iscussion
1 . S ou to. We ampli y the discuss
0 [USII'lg a CLASS statement with PROC MEANS in Section H of this chap €.
abou t ter.

E. Frequency Distributions

Let’s look at how to
; get SAS software to count hy
are in our sample. The following SAS progranrll do(;:trl?i:'n ¥ meles and femalesthere

DATA HTWT;
I

DATALNi::S;SUBJECT GENDER $§ HEIGHT WEIGHT;
1M 68.5 155
2 F 61.2 99
3 F 63.0 115
4 M 70.0 205
5 M 68.6 170
6 F 65.1 125
7 M 72.4 220

i
PROC FREQ DATA=HTWT; .
TITLE ‘Using PROC F G
TABLES GENDER; REQ to Compute Frequencies';
RUN; -

This time instead of PROC MEANS, we are using a procedure (F OC) called
> S
3 g R
FREQ. PROC FREQ is followed by arequest for a table of frequenm(es for ﬂ)'le vari-

QqueC nYe’)’(;'te:ble shows the output from PROCF REQ. The column labeled “F RE
PERCEN isi jsttlixc numtfer of peqple who are males or females; the column labelec;
§ the same information expressed as a percentage of the total number
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of people. The “CUM FREQ” and “CUM PERCENT” columns give us the cumula-
tive counts (the number and percentage respectively) for each category of gender.

Using PROC FREQ to compute frequencies

Cumulative Cumulative
GENDER Frequency Percent Frequency Percent
F 3 42.9 3 42.9
M 4 57.1 7 100.0

If you do not need (or want) the cumulative statistics that are automatically pro-
duced by a TABLES request, you may use the NOCUM statement option to omit
the cumulative statistics. To review, statement options follow a slash (/) after the ap-
propriate statement. Thus, to omit cumulative statistics, you would write:

TABLES GENDER / NOCUM;

To omit both cumulative statistics and percentages you would include the NO-
PERCENT TABLES option as well, like this:

TABLES GENDER / NOCUM NOPERCENT;

The order in which you place these options does not matter. The output from the

request above is shown next:

Using PROC FREQ to compute frequencies

GENDER Frequency
F 3
M 4

E  Bar Graphs

We have seen the statistics that are produced by running PROC MEANS and
PROC FREQ. It is an excellent way to get a summarization of our data. But then, a
picture is worth a thousand words (p=1000w) so let’s move on to presenting pictures
of our data. SAS software can generate a frequency bar chart showing the same in-
formation as PROC FREQ, using PROC CHART.

The statements:
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were used to generate the frequency bar chart shown below:

Frequency

‘* LR AKX
rwww

ke

E

3 *h LR
LR XX *kk ko

LA R RN LA R X

LA R R K ] * kk kK

2 ok P
LA R ER ok k ok

LR R R P

Haw YR

1 LA E R X LR R XE
LA R R 2 *hk ko

*kk ok ek w kR

LER R X LA R R ]

F M
L GENDER

The term HBAR in i
! place of VBAR will generate a chart wi i i
:::Cel\d gf the vertical bars obtained from VBAR. When HBAR isVYJI;:dhcf)rrézontal oo
pmashrggnts alie also presented alongside each bar (see below) Als,o tl‘}: ‘;_KIIEYACOUD'S
en allows for more groups to be presented as it takes l;p less’ space. Rar

FREQUENCY BAR CHART
GENDER FREQ CUM. PERCENT CUM.
M| % dhkkd hn ko ke ke ko ek bk * 4 7 57.14 100.00
1 2 3 44:_
FREQUENCY
e e—

NOW, what about the distribution of hei; hts or we 2] ? If we use PROCF REQ
2 ights?

o calculate requencies o Elgl’nS, 1t will ¢ € number of subjects for eve y

1 1 te f f h 1l ompute thy b f subjects f v
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value of height (how many people are 60 inches tall, how many are 61 inches tall,
etc.). If we use PROC CHART instead, it will automatically place the subjects into
height groups (unless we specified options to control how we wanted the data dis-
played). Since our sample is so small, a frequency distribution of heights or weights
will look silly, but we’ll show it to you anyway. The SAS statements below will gen-

erate a vertical bar chart:

PROC CHART DATA=HTWT;

" TITLE 'Distribution of Helghts':

. VBAR HEIGHT / LEVELS=6; .
~ .RUN;

~6 is an instruction to group the heights so that there will
riable HEIGHT. If we leave out any options
ble, PROC CHART will use its own group-
Is and the midpoints for the plot. The out-

The option LEVELS
be six equally spaced intervals for the vat
when we are charting a continuous varia
ing algorithm to select the number of level
put from the program above is:

pistribution of Heights
Frequency
2 L E
-k ok ok k
EHEEw
ErEEE
rew
1 * ok kk K "k ko k LR R R RS * ok k& * ok kkE * kR k
* ok k k& IR E R R * ok ok kE * ok kW PR R RN kR k
LR RN 2 ER R R R IR R XN IR R R X R R R PR AR
* ko LR RN ] * ok ok k ok EE R R R * ke kE LR X K]
* kWK * ok ok k& LR R R R4 * ok ok k Rk PR E R R * ok k kR
62 64 66 68 70 72
HEIGHT Midpoint

The VBAR and HBAR statements of PROC CHART have a variety of options.

The general form of the VBAR and HBAR statements is:

VBAR variable(s) / list of options ;

An alternative to the LEVELS= option provides the procedure with specified
midpoints. This is done with the MIDPOINTS option. The form is:

MIDPOINTS= lower_limit TO upper_1limit BY interval;
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An example would be:
VBAR HEIGHT / MIDPOINTS=50 TO 80 BY 10;

) The(e are times when we do not want PROC CHART to divide our numerical
var¥able into intervals. Suppose we had a variable called WEEK that was a numeric
variable and represented the day of the week (from 1 to 7). The statement:

VBAR WEEK;

would most likely produce a chart with mid
this and instruct PROC CHART to use the i

VBAR WEEK / DISCRETE;

should be used. (Remember that statement options are placed between the state-
ment and the semicolon, separated by a slash.)

Before leaving PROC CHART, we demonstrate a few of the other options
that are available. To do this, we have constructed another data set which contains
the variables DEPT (department), YEAR, QUARTER, and SALES. The state-
ment:

VBAR DEPT;

will produce a simple frequency bar graph as shown below:

Frequency

The statement:

VBAR SALES;

will produce a frequency distribution of SALES for all years and all departments.

L
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To see the sales distributions of cach department side-by-side, we can use the
GROUP option available with both VBAR and HBAR. The statement:

VBAR SALES / GROUP=DEPT;

will produce the side-by-side graph like the one below:
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Another way to display these data is to have the y-axis represent a sales sum,
rather than a frequency or count. This is done by using a SUMVAR option with
VBAR or HBAR. The keyword SUMVAR is followed by a variable whose sum we
want displayed on the y-axis. We also use the SUMVAR option to display a mean
value on the y-axis by adding the keyword TYPE=MEAN to the list of VBAR or
HBAR options. We will show you a chart using the SUMVAR and TYPE options.
Since we are displaying a sum of sales for each department, the TYPE= option is re-
dundant but is included to remind you that it is available to display other statistics
on the y-axis. The statement:

VBAR DEPT / GROUP=YEAR SUMVAR=SALES TYPE=SUM;

produces the graph below:

Other valid values for the TYPE= option are:

Option Result
TYPE=FREQ Frequency counts
TYPE=PCT Percentages
TYPE=CFREQ Cumulative frequencies
TYPE=CPCT Cumulative percentages
TYPE=SUM Totals

TYPE=MEAN Means

One final option used with VBAR and HBAR is SUBGROUP. The first charac-
ter of a SUBGROUP variable is used as the character making up the bars in the bar
graph. If we write:

VBAR SALES / SUBGROUP=DEPT;

the department values (A’s and B’s) will show us which departments are contribut-
ing to the sales frequencies. See the chart below for an example:
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it” ist showing you the fancy three-
Before we leave PROC CHART, it’s hard to resist s ¢ -
dimensional graphs produced by the BLOCK statement. The BLOCK \(arllablc dtch
fines the x-axis, the GROUP option defines the y-axis, and SUMVAR variables (wi
any of the TYPE= options) defines the z-axis, represented by the heights of the bars.
The block chart resulting from the statement:

BLOCK YEAR / GROUP=DEPT SUMVAR=SALES TYPE=SUM DISCRETE;

is shown below:

Sum of SALES by YEAR grouped by DEPT
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G. Plotting Data

W . . . .
lh:::g:vs ;l'llx":(s)t\l,iav:e bt{'le relanc;nshép between height and weight. Our intuition tells us
r1ables are related: The taller a person is, the heavier (i
best way to display this relationship i : e e The
pis to draw a graph of height versus weight. Wi
have our SAS program generate this graph by using PROC PLOT. The stagter;lerelt;an

PROC PLOT DATA=HTWT;
PLOT WEIGHT*HEIGHT;
RUN;

generate the graph that follows: (Note: This is a plot using the original data set of

seven people.)
Plot of WEIGHT*HEIGH :
ETGRE T. Legend: A = 1 obs, B = 2 obs, etc.
250
A
200 A
a
150 A
A
A
100{ a
60.0 62.5 65.0 67.5 70.0 72’75
HEIGHT
|

The general form of the plot procedure is:

v,
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Notice that SAS software automatically chooses appropriate scales for the x-
and y-axes. Unless you specify otherwise, PROC PLOT uses letters (A, B, C, etc.) as
plotting symbols. Since a computer line printer is restricted to printing characters in
discrete locations across or down the page, two data values that are very close to
each other would have to print in the same location. If two data points do occur at
one print position, the program prints the letter “B”; for three data points, the letter
“C,” and so forth.

Can we obtain a plot of height versus weight for males, and one for females? The
answer is “yes,” and it is quite easy to do. Just as we used a BY variable with PROC
MEANS earlier, we can use the same BY statement with PROC PLOT to create
separate plots for males and females. First, we need to have the SAS program sort
our data by GENDER. Once this is done, we can use PROC PLOT to produce the
desired graphs.

Our program will look as follows:

T GENDER § HEIGHT WEIGHT;

The result of this program will be a separate graph for males and another for fe-
males. If we omit a BY statement with PROC PLOT, the program will ignore the fact
that the data set is now sorted by GENDER.

We can generate another graph that displays the data for males and females on
a single graph but, instead of the usual plotting symbols of A, B, C, etc., we will use
F’s and M’s (for females and males). The statements:

i 3 5
+HETGHT=GENDER;
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;(I:i:gx;\[;l_i;:(e‘s‘ 1(1;;; Thc‘da,t,a set does not have to be sorted to use this form of PROC

o GEN])_ER NDER .after our plot request specifies that the first letter of each
values will be used as plotting symbols. In essence, this allows us to

look at three variables (hei i
] r ght, weight, and i
running this last procedure is shownielow: ) similtaneously. The result of

Plot of WEIGHT*HEIGHT.

Symbol is value of GENDER.

Since we are not using the standard i

1 ] 0 a plotting symbols (A, B, C, etc.), multi -
(s::lgzzg;oons at al smg(lie print location will not be shown on the graph z;xccpltpil: ?Ire

¢ nemale and one female, in which case the M and F will inti
option is setand you have an output device, such i et that can overorins,

d 1 ut d 3 asa lineprinter, that can overprint
;Il'lhe program will print a message indicating the number of “hidden” observatignn 4
e bottom of the graph in this case. s
If you would like to choose a i i
plotting symbol, instead of the SAS default fA

C, etc., you may follow the PLOT request by an equal sign and a plotting syn?bol.oBt:

your choice in single quotes. If you i i
ot o in sing regd: you wanted an asterisk as your plotting symbol, the

PLOT WEIGHT*HEIGHT='*';
As for the case of a variable name following the equal sign, choosing a plotting

symbol will not allow hidden observations to be dj
s : e displayed i
sage to that effect if there are any hidden observatio[ri:.1 ved andyouwilsee a mes-

Section H / Creating Summary Data Sets with PROC MEANS and PROC UNIVARIATE 45

H. Creating Summary Data Sets with PROC MEANS
and PROC UNIVARIATE

Besides providing a printed output of descriptive statistics, broken down by one or
more CLASS (or BY) variables, PROC MEANS and PROC UNIVARIATE can
produce new SAS data sets containing any of the statistics produced by these proce-
dures. This might be useful, for example, in educational research where the original
data were collected on individual students, but you want to use classroom means as
the unit of observation (to compare teachers), or in business (to compare sales from
various quarters when the original data are collected daily). In medicine, you may
have clinical data on patient visits, with a different number of visits for each patient,
and want to compute patient means for later analysis.

To demonstrate how this is done, suppose we have collected data on several stu-
dents. We have a student number, gender, the teacher’s name, the teacher’s age, and
two test scores (a pre-test and a posttest). We use the following data for our example:

SUBJECT GENDER TEACHER TAGE  PRETEST  POSTTEST
1 M JONES 35 67 81
2 F JONES 35 98 86
3 M JONES 35 52 92
4 M BLACK 2 41 74
5 F BLACK 2 46 76
6 M SMITH 68 38 80
7 M SMITH 68 49 7
8 F SMITH 68 38 63
9 M HAYES 23 7 7

10 F HAYES 23 46 92
11 M HAYES 23 70 %
12 F WONG a7 49 64
13 M WONG 47 50 63

Nores: (1) T_AGE is the teacher’s age. (2) In a “real” study, we would probably enter the
teacher’s name and age only once in a separate data set and combine that data set with the
student data later on, saving some typing. However, for this example, it is simpler to include
the teacher’s age for every observation.

As a first step, let’s see how we can compute the mean pre-test, post-test, and
gain scores for each teacher. Look at the following program:
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PR(;IBIIS\A program is straightfqrv‘vard. The DATA step computes a gain score, and
o E_ANS requests statistics for each teacher by including TEACHER as a
LASS variable. The LENGTH statement (@) is used to specify how many charact
are ngcded for the alphanumeric variables GENDER and TEACHER (land5 o
spectively). We include this because, with the space-between-the-values form of (i;eta:
entry, a default length of eight is used for all character variables, Here is the output:

Means Scores for Each Teacher
TEACHER N Obs Variable N Mean Std Dev
BLACK 2 PRETEST 2 ;;—;; __________ ;_;;
POSTTEST 2 75.00 1'41
GAIN 2 31.50 2.12
HAYES 3 PRETEST 3 62.33 14.15
POSTTEST 3 84.67 11.02
GAIN 3 22.33 22.59
JONES 3 PRETEST 3 72.33 23.46
POSTTEST 3 86.33 5.51
GAIN 3 14.00 26.00
SMITH 3 PRETEST 3 41.67 6.35
POSTTEST 3 71.33 8.50
GAIN 3 29.67 10.79
WONG 2 PRETEST 2 49.50 0.71
POSTTEST 2 63.50 0.71
_____________ GAIN 2 14.00 1.41

:lnstead of just printing out the results, what we want to do is to create a new data
set tl at has TEACHER as the unit of observation instead of SUBJECT. In our ex-
3?[1[}; l—e, »:fet: onllly have ﬁl:/edteachcrs, but we might have 100 and they might be using

ent teaching methods, be in different sch 2
o the follammn chools, etc. To create the new data set, we

Section H / Creating Summary Data Sets with PROC MEANS and PROC UNIVARIATE 47

The NOPRINT option on the first line @ tells the program not to print the re-
sults of this procedure (since we already have them from the last run—or, the list-
ing would be too large to want to look at). We want the computed statistics (means
in this case) in the new data set. To do this, we include an OUTPUT statement @
in PROC MEANS. The OUTPUT statement creates a new data set. We have to
give it a name of our choosing (by saying OUT=TEACHSUM), tell it what statis-
tics to put in it, and what names to give those statistics.

We can output any statistics available with PROC MEANS by using the
PROC MEANS options (N, MEAN, STD, etc.) as keywords in the OUTPUT state-
ment. These statistics will be computed for all the variables in the VAR list and
broken down by the CLASS variable. Since we want only the score means in this
new data set, we said “MEAN = M_PRE M_POST M_GAIN. These new vari-
ables represent the means of each of the variables listed in the VAR statement, in
the same order the variables are listed. Thus, M_PRE will represent the mean value
of PRETEST, M_POST will represent the mean value of POSTEST, and M_GAIN
will represent the mean value of GAIN. You could have named these new variables
MANNY, MOE, and JACK. SAS doesn’t care what you call them. We used
M_PRE, M_POST, and M_GAIN because it helps us remember that they repre-
sent Means of PREtest, POSTtest, and GAIN.

Finally, we need to explain the NWAY option in line @. This tells the procedure
to only give us results for each TEACHER (the CLASS variable) and not to include
the grand mean in the new data set. Don’t forget this. We will explain what happens
if you leave this out later. Your new data set (the listing from PROC PRINT) will

look like this:

]

Listing of Data Set TEACHSUM

OBS TEACHER _TYPE_ _FREQ_ M_PRE M_POST M_GAIN

43.5000 75.0000 31.5000

BLACK 1 2

HAYES 1 3 62.3333 84.6667 22.3333
JONES 1 3 72,3333 86.3333 14.0000
SMITH 1 3 41.6667 71.3333 29.6667
WONG 1 2 49.5000 63.5000 14.0000

Let’s leave the explanations of the "TYPE_ variable for our next example.
The variable _FREQ_ gives us the number of observations (missing or nonmiss-
ing) for each value of the CLASS variable. If you go back to the original data val-
ues, you will see that teacher BLACK had two students, HAYES three students,
and so forth.

What if you wanted the teacher’s age in this new data set (so you could compare
age to gain score, for example)? This is easily accomplished by including an ID state-
ment as part of PROC MEANS. So, to include the teacher’s age in this data set, you
would use the following code:
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PROC MEANS DATA=SCHOOL NOPRINT NWAY; 0]
CLASS TEACHER;
ID T_AGE;
VAR PRETEST POSTTEST GAIN;
OUTPUT OUT=TEACHSUM (9
MEAN=M_PRE M_POST M_GAIN;
RUN;

The resulting data set (TEACHSUM) will now contain the variable T_AGE.As
an alternative, you could have included both variables, TEACHER and T_AGE, as
CLASS variables with the same result.

We now turn to a more complex example where we create an output data set,
using PROCMEANS and a CLASS statement with more than one CLASS variable.
Yes folks, hold on to your hats, this gets tricky. First, the raw data:

SUBJ GENDER _ REGION  HEIGHT  WEIGHT

01 M North 70 200
02 M North 7] 220
03 M South 68 155
04 M South 74 210
05 F North 68 130
06 F North 63 110
07 F South 65 140
08 F South 64 108
09 F South . 220
10 F South 67 130

Next, we create a SAS data set as follows:

DATA DEMOG; )

LENGTH GENDER § 1 REGION § 5;

INPUT SUBJ GENDER § REGION § HEIGHT WEIGHT;
DATALINES; k

01 M North 70 200
02 M North 72 220
03 M South 68 155
04 M South 74 210
05 F North 68 130
06 F North 63 110
07 F  8outh 65, 1¢
08 F .South .64

09 F South .,

10 F South 67

H

To compute the number of subjects, the mean, and the standard deviation for
each combination of GENDER and REGION, include a CLASS statement with
PROC MEANS like this:
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PROC MEANS DATA=DEMOG N MEAN STD MAXDEC=2;
TITLE 'Output from PROC MEANS';
CLASS GENDER REGION;
VAR HEIGHT WEIGHT;

RUN;

Remember that you do not have to sort your data set when you use a glLA_SS
statment with PROC MEANS. In this example we have two CLASS variables in-
stead of one. The output from this procedure is shovcfn next:

output from PROC MEANS

GENDER REGION N Obs Variable N Mean Std Dev

T e G 12000 124
Rt o 145130 wlss

ot 21000 Wt
D 162 50 3389

Since we now have two CLASS variables, the requested statistics are computed
inati ON
for each combination of GENDER and REGI )
We first demonstrate what happens when we use PROC MEANS to create ;n
output data set with GENDER and REGION as CL.ASS variables. Here is the code:

Don’t be confused by the three asterisks in the comment §b0ve. Remember t}k:at
the first asterisk starts the comment, and the semicolon ends it. We added the other
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two asterisks to make the comment stand out better. (One of the programming chal-
lenged authots thought you might like to know this.)

As before, the NOPRINT option on the first line @ tells the procedure not to
print any output. Rather, you want these values in a SAS data set. To do this, you add
an OUTPUT statment @to PROC MEANS. The OUTPUT statement allows you to
create a new data set, to select which statistics to place in this data set,and what names
to give to each of the requested statistics. The name of the output data set is placed
after the OUT= keyword The request to output means is indicated by the keyword
MEAN= . The two variable names following the keyword MEAN= are names you
choose to represent the mean HEIGHT and WEIGHT, respectively. The order of the
names following MEAN=corresponds to the order of the variable names in the VAR
statement. In this example, the variable M_HEIGHT will represent the mean height
and the variable M_WEIGHT will represent the mean weight. Other keywords (cho-
sen from the list of statistics available with PROC MEANS earlier in this chapter) can
be used to output statistics such as standard deviation (STD=) or sums (SUM=).

Using a PROC PRINT with DATA=SUMMARY to see the contents of this new
data set, we obtain the listing below:

Listing of Data Set SUMMARY T
OBS GENDER REGION _TYPE_ _FREQ_ M_HEBIGHT M_WEIGHT
1 4] 10 67.8889 162.300
2 North 1 4 68.2500 165.000
3 South 1 6 67.6000 160.500
4 F 2 6 65.4000 139.667
5 M . 2 4 71.0000 196.250
6 F North 3 2 65.5000 120.000
7 F South 3 4 65.3333 149.500
8 M North 3 2 71.0000 210.000
9 M South 3 2 71.0000 182.500

Besides the mean for each combination of GENDER and REGION, we see there
are five additional observations and two addition variables, TYPE_ and _FREQ_.
Here’s what they’re all about. The first observation with a value of 0 for _TYPE_is the
mean of all nonmissing values (9 for HEIGHT and 10 for WEIGHT) and is called the
grand mean. The two observations with _TYPE_ equal to 1 are the mean HEIGHT
and WEIGHT for each REGION; the next two observations with _TYPE_ equal to
two are the mean HEIGHT and WEIGHT for each GENDER. Fi ally, the last four
observations with _TYPE_ equal to 3 are the means by GENDER and REGION
(sometimes called cell means). This is getting complicated! Relax, there is actually a
way to tell which _TYPE_ value corresponds to which breakdown of the data.

Let’s look carefully at our CLASS statement. It is written:

CLASS GENDER REGION;

First, we count in binary (remember, 0, 1, 10,11, 100, 101, etc.) and place the bi-
nary numbers below the CLASS variables like this:
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ER REGION; .
CLass G!i;i‘zw TYPE‘:_ Interpretation

Mean over all GENDERS and REGIONS

0 0
g 1 1 Mean for each value of REGIOE\J
1 0 2 Mean for each value of G‘ENDER
1 1 3 Mean for each combination of

GENDER and REGION (cell means)

i 1 he _TYPE_ value, written
e up with a simple rule. Whenever the _T-
i b'Naem’v;jeia;oioﬂ‘l”%eneath a CLASS variable, the stat%stlcs are broken d(;)wr;
gl li?atrzagriable If we look at _TYPE_ =1 we write thatin bmary (not tog ha; )tzlxl
Oil and realize that the _TYPE_ = 1 statistics represent each REGION and so forth.
i nfused? It’s OK, this is not easy. )
Sn“;‘gr muost applications, you don’t even need to look at the _"TYPE_ ‘:ria)lfule;.es‘ilr;cses
most applications call for cell means (the values brok;n downblb;yliz;co 2 of the class
i ill want the highest value of the _"TYPE_ variable. y

val;li?)l:ll?:w:‘l; :;1 the PROC MEANS statement, only cell means will be o;npu; Zz
?lfe new data set. So, if you only want the mean HEIGHT_anthl;i{GgéT N([)}r3 ; o
combination of GENDER and REGION, you would write the

statements like this:

'CLASS GENDER REGION;
VAR HEIGHT WEIGHT; )
. " OUTPUT OUT=SUMMAR .
T MEAN=M_HETGHT M WEIGHT;

" Proc MEANS DATA=DEMOG: NOPRINT ‘NWAY;

ROUN;

PROC "PRINT DATA=SUMMARY;
' pITLE 'Listing of ‘Data
RUN;

Set SUMMARY witl NWAY option';

The resulting data set (shown below) contains only the _TYPE_ = 3 values.

Listing of Data Set SUMMARY with NWAY Option
M_HEIGHT M_WEIGHT

OBS GENDER REGION _TYPE_ _FREQ_
2 65.5000 120.0
> r “ort: :3; 4 65.3333 149.5
: " So’“th 3 2 71.0000 210.0
: ¥ gg\izh 3 2 71.0000 182.5
4 M

i is the number of observations (missing or
alue of the variable _FREQ_ is t
nonx'fl]':sesi:xg) in each subgroup. For example, there were two females from t:e North
so _FREQ._ = 2 in observation 1 in the summary data set. If you need to

now the
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number of nonmissin
include a request for
code below:

g vialpes that were used in computing the requested statistics,
= 1n your output data set. Let’s demonstrate this with the

PROC MEANS DATA=DEMOG NO
=; PRINT NWAY;
CLASS GENDER REGION; !
VAR HEIGHT WEIGHT;
OUTPUT OUT=SUMMARY
N=N_HEIGHT N_WEIGHT

MEAN=M_HE
RO =M_HEIGHT M_WEIGHT;

PROC PRIHT DATA=SUMMARY;
TITLEL 'Listing of Data Set § Y.

TITLE2 * ! : ME
- with Requests for N= and MEAN

In this program, we have
) chosen the
N_WEIGHT to represent the number of no
output,_ shown below, makes the difference be
N= variable clear:

vgn'z_\ble names N_HEIGHT and
nmissing observations. The resulting
tween the value of _FREQ_ and the

Listing of pata Set § i
'UMMARY with NW; i
with Requests for N= and MEAN= A opcien

OBS GEI
NDER REGION _TYPE_ _FREQ N_HEIGHT N_WEIGHT M_HEIGHT M_WEIGHT
North 3
Soih 2 65.5000 120.0
oty 3 65.3333 143.5
goren ; 71.0000 210.0
71.0000 182.5

Valuggfse;v; }tih(gl til;e4v(atl;:r£or NﬁHE.ICfHT }l{jz 3 for females from the South, while the
-FREQ_ was a mussing HEIGHT for a female fi '
Finally, if you use the NWAY opti b ned £ o
> 1 ! option, there is not much
_TYPE_ variable in the out 0P dars oy Kecp the
YPE_ varj put data set. You can use a DROP= d i
omit this variable. The program, modified to do this, is shown bel()\:'[a et optionto
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Some lazy programmers sometimes omit the variable list following a request for
a statistic when only one statistic is requested. For example, if you only want means
for each combination of GENDER and REGION, you would write:

PROC MEANS DATA=DEMOG NOPRINT NWAY;
CLASS GENDER REGION;
VAR HEIGHT WEIGHT;
OUTPUT OUT=SUMMARY (DROP=_TYPE_)
: MEAN=;
RUN; -

Using this method, the variable names in the new summary data set will be the
same as listed on the VAR statement. That is, the variable name representing the
mean height will be HEIGHT, and the variable name representing the mean weight
will be WEIGHT. This is probably a bad idea since you may get confused and not
realize that a variable name represents a summary statistic and not the original
value. (Actually that other author would not even put in (DROP=_TYPE_)
since it takes up too much time and he doesn’t mind the extra variable in the
printout.)

L. Outputting Statistics Other Than Means

We saw that PROC MEANS can create an output data set, using an OUTPUT state-
ment, which contains means for each variable in the VAR list for each level of the
variables in the CLASS or BY statement. We used the keyword MEAN= to indicate
that we wanted to output means. Any of the options that are available to be used
with PROC MEANS (see Section B) can also be used to create variables in the data
set created by PROC MEANS. For example, if we wanted our new data set to con-
tain the mean, standard deviation, and maximum value, we would write:

PROC ‘MEANS DATA=DEMOG NOPRINT NWAY;
CLASS GENDER REGION;
° . VAR HEIGHT WEIGHT;
OUTPUT OUT =STATS

Notice that we MUST include a list of variable names after the keywords
MEAN=, STD=, and MAX= since we need to have a different variable name for
each of these statistics. The resulting data set (STATS) will include the variables
GENDER and REGION as well as the variables representing the mean, standard
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deviation, maximum, and the two variables _TYPE_ and _FREQ_ created by the
procedure.

J. Creating a Summary Data Set Containing a Median

Since PROC MEANS does not compute medians, you will need to use PROC UNI-
VARIATE if you want to construct a summary data set containing that statistic. The
statements to create an output data set using PROC UNIVARIATE are identical to
the ones you used with PROC MEANS except that you must use a BY statement
rather than a CLASS statement since PROC UNIVARIATE does not support a
CLASS statement (too bad).

The keywords used to output statistics when using PROC UNIVARIATE are
the same ones listed in Section C of this chapter. To output both means and medians
to a summary data set, you could write:

PROC ‘SORT DATA=DEMOG;
| " BY GENDER REGION; =

RON;

BY GENDER REGION; -
VAR 3

PROC UNIVARIATE DATA=DEMOG NOBRINT'

“DATA=SUM; ' .
Listing of Data Set S0M';

rriz -

The resulting output data set is listed below:

Listing of Data Set SuM

OBS GENDER REGION N_HT N_WT MEAN_HT MEAN WT MED_HT

North
South

2 65.5000 120.0
3 65.3333 149.5

North 2 71.0000 210.0
2

South 71.0000 182.5
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Problems

2-1. Add the necessary statements to compute the number of males and females in
problem 1-1. -
2-2. Given the data set from problem 1-2, use SAS softv_zarc to co_mpute the_ nur? t‘estics
' Whites (W) and Blacks (B). Use the appropriate option to omit cumulative stati
from the output. - -
2-3. Run the program below to create a SAS data set called PROB2_3, containing varial
X,Y,Z,and GROUP:

(a) Write the SAS statements to generate a frequency bar chart (histogram) for
o ith “Y” on the vertical
(b) Write the SAS statements to generate a plot of Y vs. X (with “Y” on
axis and “X” on the horizontal).
(c) Write the SAS statements to generate a separate plot of Y vs. X for each value of
the GROUP variables.
2-4. We have recorded the following data from an experiment:

SUBJECT DOSE REACT LIVER_WT SPLEEN

N 1 54 102 89
2 1 59 9.8 73
3 1 48 122 9.1
4 1 69 118 8.8
p 1 158 10.9 9.0
6 2 49 138 6.6
7 2 50 120 79
8 2 6.7 10.5 80
9 2 182 19 69
1 5 55 9.9 9.1

Use PROC UNIVARIATE to produce histograms, normal probabilily plots, 1:;1‘1/\ lzvo;c
plots, and test the distributions for normality. Do this for the variables LACT,
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1D TYPE SCORE

LIVER_WT, and SPLEEN. first for all subjects and then separately for each of the two

1 A 44

DOSES. h B 9

2-5. What's wrong with the following program? 1 C 2(5)3
2 A

2 B 7

2 C 188

DATA 123; 3 A 39

INPUT AGE STATUS PROGNOSIS DOCTOR GENDER STATUS2 3 B 9

STATUS3; 3 C 234

(data linesg)

;
PROC CHART DATA=12 3 BY GENDER;
VBAR STATUS
VBAR PROGNOSIS ;
RUN; ki

Write a program to read these data and produce means. (Hint: A CLASS or BY state-
ment might come in handy.)

“PROC’ PLOT DATA=123;
~ “DOCTOR BY PROGNOSIS;
~RUN;

2-6. Given the data set:

Target Number Number of Units
Salesperson company of visits phone calls sold
Brown American 3 12 28,000
Johnson VRW 6 14 33,000
Rivera Texam 2 6 8,000
Brown Standard 0 22 0
Brown Knowles 2 19 12,000
Rivera Metro 4 8 13,000
Rivera Uniman 8 7 27,000
Johnson Oldham 3 16 8,000
Johnson Rondo 2 14 2,000

(a) Write a SAS program to compare the sales records of the company’s three sales
people. (Compute the sum and mean for the number of visits, phone calls, and units
sold for each salesman.) Note that the values for “Units sold” contain commas,
Since you don’t know how to read data values with commas (you use a COMMA.
informat), omit the commas when You enter your data values,

(b) Plot the number of visits against the number of phone calls, Use the value of Sales-
person (the first character in the name) as the plotting symbol (instead of the usual
A,B,C,etc.).

(c) Makea frequency bar chart for each Salesperson for the sum of “units sold.”

*2-7. You have completed an experiment and recorded a subject ID, and values for variables
A, B, and C. You want to compute means for A, B, and C but, unfortunately, your lab
technician, who didn’t know SAS programming, arranged the data like this:
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A. Introduction

This chapter explains ways of analyzing categorical data as well as step-by-step in-
structions for analyzing questionnaires. Variables such as gender, sick or well, success
or failure, and age group represent categories rather than numerical values. We use
a number of statistical techniques such as tests of proportions and chi-square with
variables of this type.

You may notice a substantial enlargement of this topic from our previous edi-
tion. This is the result of expanded techniques from the SAS procedures used on cat-
egorical data and some techniques such as meta analysis that have become
increasingly popular in many fields.
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B. Questionnaire Design and Analysis

A cominon way to collect certain types of data is by qsing a questionna_lre. Ai;l;oc\:,g;ll-i

these can be designed in many ways, the accompanying Sample (iuestlox;nte; o oo

tains features that make it especially useful whe;’nl ltl:e cgllectzitaafe?nrg e
i t an approach based on

tered into a computer. We presen Y

entered into the computer, which is probably the most common approach for mo:

For office use only

SAMPLE QUESTIONNAIRE D l:‘ D D

I

1. Age in years

(Questions 2-4: Please check the appropriate category.)

2. Gender 1=Male
2=Female [
3. Race 1=White

2=African American
___ 3=Hispanic D
4=0Other

4. Marital Status:
1=Single
2=Married
3=Widowed \j
4=Divorced

5. Education Level:
1=High school or less
2=Two year college
" 3-Four year college (BA. or BS) -
4=Post graduate degree

For each of the following statements, please enter a HUMBEI:1 frfonl'n
the list below, on the line to the LEFT of each question. Use the fol-

lowing codes:
1=Strongly disagree 2=Disagree 3=Neutral
4=Agree 5=Strongly agree

6. The president of the U.S. has been doing a good job.

7. The arms budget should be increased.

o

8. There should be more federal aid to big cities.
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researchers. However, software is available that allows researchers to design ques-
tionnaires which are scannable on standard PC scanners. Researchers doing a lot of
work with questionnaires should investigate that possibility.

Notice that every response in this questionnaire is placed in a box by a coding
clerk, and that the boxes are all on the right side of the page. This will facilitate the
Jjob of transferring the data from the survey instrument to our computer. One should
be careful, however, not to ignore the person who is filling out the questionnaire. If
the questionnaire confuses the respondent, it will not matter how easy the data are
to enter. With this in mind, many experienced questionnaire designers would place
the choices for questions 6 through 8 below each of these items and have the re-
spondent check his choice.

The typical method of coding data from a questionnaire of this type is to enter
the data into a computer by using a wordprocessor, a specialized data entry pro-
gram, a spread sheet (such as Lotus ™ or Excel (™), or by using a data-base man-
agement program (such as Paradox ™, Access ™, or DBase (™) In the case of
the wordprocessor or data entry program, we would probably set aside certain
columns for each variable. Where a data base Mmanagement system is used, the data
can either be written to a text file or converted directly toa SAS system file if the ap-
propriate software is available. There are also key-to-tape systems for large com-
mercial applications. Another option is the use of an optical mark sense reader for
large volume data entry requirements. It is preferable to design the questionnaire so
that the data can be entered directly from the questionnaire, rather than having to
be transcribed first to a coding form.

We might decide to enter our questionnaire data as follows:

Column Description Variable Name
1-3 Subject ID D

4-5 Age in years AGE
6 Gender GENDER
7 Race RACE
8 Marital status MARITAL
9 Education level EDUC

10 President doing good job PRES

11 Arms budget increased ARMS

12 Federal aid to cities CITIES

Typical lines of data would look like:

001091111232
002452222422

Notice that we have not left any spaces between the values for each variable.
This is a common method of data entry since it saves space and extra typing. There-
fore, we must specify the column location for each variable. Our INPUT statement
for this questionnaire would be written:

INPUT ID 1-3 AGE 4-5 GENDER § 6 /'RACE § 7 MARITAL $ 8 EDUC § 9
PRES 10 ARMS 11 CITIES 12;
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Some programmers find it easier to read INPUT statements if written one vari-

able per line, thus:

CITIES 12;

Don’t forget the semicolon at the end of the INPUT statement if you use this
roach. ) ) )
owp Each variable name is followed by its column designation. We chose to store lt;iata
values for GENDER, RACE,MARITAL, and EDUC as characters, even though we
i y for doing thisis to save storage space on
¢ coding the values as numbers. One reason .
5:]11'5 compiter disk. Another reason is that we would be ugllkely to perform an})ll type
of arithmetic operation on a variable such as RACE. Storing these values as ¢ harac-
ters helps remind us that the numerical values are merely the names of categor;es.'

A common occurrence with questionnaires is that some rcsppndent5 do n;)t dkrll»
swer all the questions. With a list INPUT statement (one in Whl?h we list only 1t z
variable names and not the column designations) we use a period to rell)alresEnwe
missing value; with our column INPUT statement we leave the column(s) blan h e
can do this since it is the columns, not the order of the data, that determine whicl
variable is being read. ) ) ]

A completeg SAS program shown below, with some sample.lmes of datlia, calﬁu
lates the mean age of the respondents and compute frequencies for all the other

variables:
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[Continued]

PROC FREQ DATA=QUEST;
TITLE 'Frequency Counts for Categorical variables';

TABLES GENDER RACE MARITAL EDUC PRES ARMS CITIES;
RUN;

We have chosen to supply PROC MEANS with options to print statistics to two
decimal places and to compute N, the number of nonmissing observations, the mean,
and standard deviation.

We listed the variables GENDER, RACE, MARITAL, EDUC, PRES, ARMS,
and CITIES in our PROC FREQ TABLES statement. A shortcut method for spec-
ifying a list of variables in a SAS data or PROC step is the —— (two dashes together)
notation. The convention

variable_name_1 -- variable_name_2

means to include all the variables from variable_name_1 to variable_name_2 in the
order they exist in the SAS data set. A TABLES statement equivalent to the one
above, using this shortcut method, is:

TABLES GENDER -- CITIES;

The statement “in the order they exist in the SAS data set” is particularly im-
portant when using this particular short-cut method of specifying variable lists. In
this case, the order is the same as the order on the INPUT statement. As you will
see later, such SAS statements as LENGTH, ARRAY, and RETAIN can affect
this order.

While we are on the topic of variable list notation, ROOTn-ROOTm is used to
refer to all variables with the same alphabetic root, from the nth to the mth numeric
ending. For example, ABC1-ABCS is equivalent to: ABC1 ABC2 ABC3 ABC4
ABCS. It is convenient to name certain variables using the same root with a number
ending so we can use the single dash notation any time we want to refer to part or all
of the list. If we recorded the response to 50 multiple-choice questions in a test, con-
venient variable names would be QUES1, QUES2,. .. up to QUESS0. Then, if we
wanted frequencies on all 50 variables, the tables request:

TABLES QUES1-QUESS50;

would do the trick. It is not necessary for the variables to be in any particular order
in the data set when this notation is used.

In this questionnaire, we have not requested any statistics for the variable ID.
The ID number only serves as an identifier if we want to go back to the original ques-
tionnaire to check data values. This is a highly recommended procedure. Without an
ID variable of some sort, when we discover an error in the data, it is difficult to find
the original questionnaire to check on the correct value. Even if you did not include
an ID on the questionnaire, number the questionnaires as they are returned, and
enter this number in the computer along with the other responses.
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A sample of the output from PROC FREQ is shown below:

e

Frequency Counts for categorical Variables

cumulative Cumulative

nt
GENDER Frequency Percent Frequency ___{ff(_:?___
------------------- Teer 4 66.7
6.7
H ; §3 .3 6 100.0
2
cumulative Cumulatize

RACE Frequency Percent  Frequency -_ljt_efz-:ij_—
_____________________________________ :

1 3 50.0 3 :g 3

2 2 33.3 56 o000

1 16.7
3

cumulative Cumulative

rcent
MARITAL Frequency Percent Frequency Pe:

2 33.3 2 22..:5]
: 2 33.3 4 93.3
: 1 16.7 5 .o
p 1 16.7 6 100.

C. Adding Variable Labels
i cod-
output. First, we have to refer baclg to our
h 01: the variable names. Some vadné;);?lga;nées
ion; others like PRES an 0.
. and RACE need no explanation; o ] JES do.
1‘1;1(3 GEaNslsjo}iil:te a variable label with each variable name by using a I;:;Zi psr e
‘ Cax’ll'hese labels will be printed along with the variable name in i
;ﬂent such as PROC FREQ and PROC MEANS. The general form o
ures

statement is

‘We can improve considcral?ly on this
ing scheme to see the definition of eacl

= ‘'description’

» can contain up to 40 characters (each blank cou‘nts z;soaf
osed in single or double quotes (but not a mix ur o
BEL statement can be placed anywhere in
am, rewritten to include variable labels, follows:

The “description 1
character) and must be encl
both, e.g. “Description’). The LA

DATA step. Our progr
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DATA QUEST;

INPUT ID 1-3 AGE 4-5 GENDER § 6 RACE $
7 MARITAL 8 EDUC
PRES 10 ARMS 11 CITIES 12; s $2

LABEL MARITAL='Marital Statusg'
EDUC='Rducation Level'’
PRES='President Doing a Good Job'
ARMS='Arms Budget .Increase'
CITIES='Federal Aid to Cities';

DATALINES;
001091111232
002452222422

003351324442

1004271111121

005682132333

Notice that we did not supply variable labels for all our variables, The ones you
C}IOOSC ixile Ep to yc;)u‘ Now, when we run our program, the labels will be printed
along with the variable names in our PROC FREQ output. A sample of
from this program is shown below: P pie of the output

Frequency Counts for Categorical Variables

Cumulative Cumulative

GENDER F ncy P Pri cy Percent
1 4 66.7 4 66.7
2 2 33.3 6 100.0

Cumulative Cumulative
RACE Frequency Percent Frequency Percent
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[Continued]
Marital Status
Cumulative Cumulative
MARITAL Frequency Percent Frequepcy Percent
1 2 33.3 2 33.3
2 2 33.3 4 66.7
3 1 16.7 5 83.3
4 1 16.7 3 100.0
Education Level
cumulative Cumulative
EDUC Frequency Percent Frequency Percent
1 1 16.7 1 16.7
2 2 33.3 3 50.0
3 2 33.3 5 83.3
4 1 16.7 6 100.0
president Doing a Good Job
Cumulative Cumulative
PRES Frequency Percent Frequency Percent
1 1 16.7 1
2 1 16.7 2 33.3
3 1 16.7 3 50.0
4 3 50.0 6 100.0
Arms Budget Increase
cumulative Cumulative
ARMS Frequency Percent Frequency Percent
2 3 50.0 3 50.0
3 2 33.3 5 83.3
4 1 16.7 6 100.0
Federal Aid to Cities
cumulative Cumulative
CITIES Frequency Percent Frequency Percent
1 1 16.7 1 16.7
2 3 50.0 4 66.7
3 1 16.7 5 83.3
5 1 16.7 6 100.0

65
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D. Adding “Value Labels” (Formats)

We would like to improve the readability of the ou
maining problem is that the values for our variables (1=male 2=female etc.) are
printed on the output, not the names that we have assigned to these values, We
would like the output to show the number of males and females, for example, not the
number of 1’s and 2’s for the variable GENDER. We can supply the “value labels”
in two steps.

The first step is to define our code v:
1=Male, 2=Female will be used for our va
agree, 2=disagree, etc. will be used for th
SAS software calls these codes formats,
that name.

The second step, shown later, will be to associate a FORMAT with one or more
variable names. Below is an example of PROCFORMAT used for our questionnaire:

tput one step further. The re-

alues for each variable. For example,
riable GENDER. The codes 1=str dis-
ree variables: PRES, ARMS, and CITIES.
and we define the formats in a procedure by

PROC FORMAT;
VALUE $SEXFMT

] ‘1'='Male’
VALUE $RACE

'1'='White"
‘4'='Other’;
'1'='Single' '2'='Married’ '3'='Widowed "
'4'='Divorced’; ’
‘1'="High Sch or Less'

'2'="Two Yr. College'

‘3'='Four Yr. College'

'4'='Graduate Degr
d='Str Disagree'’

'2'='Female';
'2'='African Am.' '3'='Hispanic’

VALUE $0SCAR

VALUE $EDUC

',
i

. VALUE LIKERT:

='Disagree’.
3='Neutral®
4='Agree"

5='Str Agree';

' RUN;

The names $SEXFMT, $RACE, $OSCAR, $EDUC, and LIKERT are format
names. (An aside: We chose the name LIKERT since scales such as 1=strongly dis-
agree, 2=disagree, 3=neutral, etc. are called Likert scales by psychometricians.)
You may choose any name (consistent with naming conventions, with the excep-
tion that they cannot end in a number or be identical to a SAS supplied format) for
your formats. It is best to give names that help you remember what the format will
be used for. As a matter of fact, you can use the same name for a format and for a
variable without confusion. Notice the silly format name $OSCAR used to format
values of the variable called MARITAL. We did this just to emphasize the fact that
format names do not have to be related to the variables they will be used to for-
mat. Format values can be up to 40 characters long but should be restricted to 16

characters since this is the number of characters that will appear in a cross tabula-
tion or frequency table.
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i ith a $ sign. Notice the format

s nal\n/ji%s ;g:xlgga;ig;éiﬁ?;i;?;%ﬁgfxese formats will all} lt);: uie;ii tz

32?;: fillii(sl:for éharacter’ variables. Notice that the va!:;ltec; tIt;ey Li‘f: ?Orm;—v alﬁe
: in single quotes for character vari 3

i tilso o :ixrlldl(::i(ites, eiclgse it with double quotes. RACE. LIKERT.
O e we h %e defined a set of formats (such as $SEXFMT, $ N IKERY

e a' ssign the formats to the appropriate vanat_yles. Just because chave
oalyvsie dlb;gUC for example,does not mean that this formathas be l'lsz it
named.&formati. <a1,1ed EDUC. We need another SAS statement that in tnca:art
e maten 'lfll‘)]C l:sed or associated with which variables..Format S.tatemen‘ ls s o
o word B RIev[AT followed by a single variable or a hst.of vanal_)les, fo g\;/ <
e e FOL be u;ed with the preceding variables. The 11§t of varla_blelan X Z X
s conti Oe on as many lines as necessary and ends with a semicol ?r;ames
e ware k. coml?}:le Sdifference between our variable names and our forma
z;)nf;:/?;‘,’: ;1:1:2: Z period after each format name in l;):rT fgr::; s(t)itzzn;r;; cement in a

ithin a

e e Statemi\[:)tsscea:o l;fia[c)!caf)z?' ;Z)lr‘mlat statement in the DATA sle[é,) gxse tf}(:;t
e W?llcbe associated with the assigned variable(s) for all P}l bt
Bt It o plac format statement in a PROC step, the formatted values wi o
bt Plscf N ocedure. In this example we will place our format Stat?[‘“]‘)e‘;‘ n
tul?ed D(:]"i");\f(s):etp Thorofore, we will define our formats w;;lE };?F(I:/ICTFV(J)iEI\tAh/: Thetore

N ‘ \ i 1 mat

N DAEI\E S\ifeigk;‘:ﬁ:e“;;:r?:;(l’; 1:;3;,?:@ so forth. The variablesh PRE;::
ey $%?IES are all “sharing” the LIKERT format. If you loo_k at t f c:)ion
AlRtI:éSz’]i:SliSnnaire program below, the use of PROC FORMAT and its applical
ple

in other PROCs should become clear.

et ' '2'='Female’; .
VALUE §SEXFMT :im-xiie- \2v='African Am.’ '3'='Hispanic
.
12
$0SCaR 11323§§§§§e- 121='Married’ '3!'='Widowed’
VALUE

14'="Divorced';
*1'='High Sch.or
12'='Two Yr. Colle
'3'a'Pour ¥r. Coll
14'='Graduate Degr
1="8tr Disagree'
2=!Disagree’
3='Neutral'
4="Agree
S=18tr Agree';

n ACH TAL § © EDUC § 9
mu'r‘s;';) 1-3 AGE 4-5 GENDER § 6 RACE m}gmu $
PRES 10 ARMS 11 CITIES 12;
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[Continued]

LABEL MARITAL='Marital Status'
EDUC="'Education Level®'

President Doing a Good Job'
ARMS='Arms Budget Increase’
CITIES='Federal aid to Cities';

FORMAT GENDER $SEXFMT. RACE $RACE. MARITAL $0SCAR
EDUC $EDUC. PRES ARMS CITIES LIKERT.; ’

DATALINES;

001091111232

002452222422

003351324442

004271111121

005682132333

006651243425

i

PROC MEANS DATA=QUEST MAXDEC=2 N MEAN STD
TITLE: 'Questionnai. ' ’
kit ‘ re Analysis';

RUN;

PROC FREQ DATA=QUEST;
TITLE 'Frequency Counts for Categorical Vafiéﬁi'eé" :

TABLES GENDER N
o RACE MARITAL EDUC PRES ARMS CITIES; )

Output from this program is shown below:

(7 Questionnaire Analysis
Analysis Variable : AGE

N Mean Std Dev

Frequency Counts for Categorical Variables

Cumulative Cumulativ
GENDER Frequency Percent Frequency Percente

4 66.7
6 100.0
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{Continued}
Cumulative Cumulative
RACE Frequency Percent Frequency Percent
White 3 50.0 3 50.0
African Am. 2 33.3 5 83.3
Hispanic 1 16.7 6 100.0
Marital Status
Cumulative Cumulative
MARITAL Frequency Percent Frequency Percent
Single 2 33.3 2 33.3
Married 2 33.3 4 66.7
Widowed 1 16.7 5 83.3
Divorced 1 16.7 6 100.0
Education Level
Cumulative Cumulative
Frequency Percent Frequency Percent

High Sch or Less
Two Yr. College

Four Yr.

Graduate Degree

PRES Frequency Percent Frequency Percent
Str Disagree 1 16.7 1 16.7
Disagree 1 16.7 2 33.3
Neutral 1 16.7 3 50.0
Agree 3 50.0 6 100.0

Arms Budget Increase
Cumulative Cumulative

ARMS Frequency Percent Frequency Percent
Disagree 3 50.0 3 50.0
Neutral 2 33.3 5 83.3
Agree 1 16.7 6 100.0

1 16.7 1 16.7
2 33.3 3 50.0
College 2 33.3 5 83.3
1 16.7 6 100.0

President Doing a Good Job

Cumulative Cumulative

|
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[Continued]

Federal Aid to Cities

Cumulative Cumulative
Frequency Percent

CITIES Frequency Percent

Str Disagree
Disagree
Neutral

Str Agree

50.0
16.7
16.7

Notice how much easier it is to read t.

. " his listing com, i i
which did not contain labels or formats, g compared (o the earlier version

E. Recoding Data

In the previous questionnaire
I example, we coded the respondents’
ge(ars._ What if we war)u to look at the relationship between age and th
opinion questions)? It might be convenient to h i
age group rather than the Ve will ook st rua
plishing this.
Look at the following SAS statements:

actual age in
€ questions 6-

¢ \ t indicated an
person’s actual age. We will look at two ways of accom-

Section E / Recoding Data 71

{Continned]

EDUC $EDUC. PRES ARMS CITIES LIKERT.
AGEGRP AGEFMT.;

DATALINES;

(data lines)

PROC FREQ DATA=QUEST;
TABLES GENDER -- AGEGRP;
. RUN;

Several new features have been added to the program. The major additions are
the four IF statements following the INPUT. With the DATA statement, the pro-
gram begins to create a data set. When the INPUT step is reached, the program will
read a line of data according to the INPUT specifications. Next, each IF statement is
evaluated. If the condition is true, then the variable AGEGRP will be set to 1,2, 3,
or 4. Finally, when the DATALINES statement is reached, an observation is added
to the SAS data set. The variables in the data set will include all the variables listed
in the INPUT statement as well as the variable AGEGRP. The variable AGEGRP
may be used in any PROC just like any of the other variables. Be sure there are no
“cracks” in your recoding ranges. That is, make sure you code your IF statements so
that there isn’t a value of AGE that is not recoded. If that happens, the variable
AGEGREP for that person will have a missing value. Notice that the first IF state-
ment is written:

IF 0 <= AGE <= 20 THEN AGEGRP=1;
and not like this:
IF AGE <= 20 then AGEGRP=1;

The reason is subtle. SAS stores missing values as —0 raised to a power. You
don’t need to understand what this means but you do need to know that SAS pro-
grams treat missing values as negative infinity for ordering purposes. That is, a miss-
ing value will be considered lower than any numeric value. Thus, the above IF
statement will be true for missing values as well as the valid ages from 0 to 20. An-
other way of writing the statement:

IF 0 <= AGE <= 20 THEN AGEGRP=1;

IF AGE <=20 AND AGE NE . THEN AGEGRP=1;
or
IF AGE >= 0 AND AGE <= 20 THEN AGEGRP=1;

Feel free to choose whichever method makes most sense to you. The other IF
statments can also be written using an alternative syntax. For example, you could
write the IF statement for AGEGRP =2 as:

IF AGE > 20 AND AGE <= 40 THEN AGEGRP=2;
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A complete list of the SAS ¢ i
ist omparison of i . Ei
two-letter abbreviations or the symbolls may beplf::éors # shonn below: Bither the

Definition Symbol(s)

Equal to =

Greater than ; g: g?
Less than < or LT
Greater than or equal to >= or GE
Less than or equal to <= or LE
Not equal to A= or NE
(Note: ~=

is an alternative not equal symbol)

A better way to write multiple IF stateme: ts 1s to use an ELSE before all but
y iple IF statement t

/ELSE statements would then look like this:

IF 0 <= AGE <= 20 THEN AGEGRP=1;
ELSE IF 20 < AGE <= 40 THEN AGEGRP=2;
BLSE IF 40 < AGE <= 60 THEN AGEGRP=3,
ELSE IF AGE > 60 THEN AGEGRP=4; !

Th .

fonow; gef]gicg gfs E:f ELSE statem.ents is that when any IF statement is true. all the

(Sines spterr S ements are skipped. The advantage is to reduce comput’er time
0 not have to be tested) and to avoid the following type of prob-

lem. Caj you see what will ha wit| statemen EIOW’ ssume X can have
n ppen h the stat ts bel J(A X can hav

IF X=1 THEN X=5;
IF X=2 THEN X=4;
IF X=4 THEN X=2;
IF X=5 THEN X=1;

What h i
ava 2f 5215[)%:“5 when X is 17 The first IF statement is true. This causes X to have
X next two IF statements are false, but the last IF statement is true

X is back to 1! The ELSE statements, besides red Ci O ter time, prevent
nts,
Sl ucing computer prevent the

=4
=2;
ELSE IF X&5 THEN X=1;

One final note: If all we wanted to do w

_ n as recode X = =
3, 4=2, and 5= 1, the statement: fotatl=3 2=4
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X= 6-X;
would be the best way to recode the X values. Check it out.

Notice that we added a line to the LABEL section and to PROC FORMAT to
supply a variable label and a format for our new variable.

FE  Using a Format to Recode a Variable

There is another way of recoding our AGE variable without creating a new variable.
We use a “trick.” By defining a format and associating it with a variable, we can have
SAS software assign subjects to age categories. The formats can be associated with a
variable in the DATA step or directly in a PROC. If you include a format statement
in the DATA step, the format will remain associated with the variable for all follow-
ing procedures. If you include a format statement within a procedure, that association
remains only for that particular procedure. Also, remember that the actual “internal”
value of the original variable has not changed. So, if you place a format statement
within a DATA step and associate a format with a variable, all computations regard-
ing that variable still involve the original value. You can still compute means (with
PROC MEANS), for example, on AGE even though it has an associated format. Itis
only in such procedures as PROC FREQ or when used as a CLASS variable that the
associated format has an effect. So, to continue with our example, we write:

‘0-20'

21-40"

’'41-60"

“‘Greatér than 60';

As you can see, instead of single values to the left of the equals sign, we are sup-
plying a range of values. SAS software will not let us specify overlapping ranges
when defining formats. Thus, LOW- 20="Very Young’ and 15-30="Young’ are not al-
lowed. The special words HIGH and LOW are available to indicate the highest and
lowest values in the data set (not counting missing values) respectively. Thus, the
term LOW-20 refers to all values from the lowest value up to and including 20. Re-
member, the keyword LOW does not include missing values.

One additional keyword, OTHER, can be used to match any data value not in-
cluded in any of the other format ranges. Thus, you can use the form:

‘Greater than &
'Did Not Anewer®
'out of Range';

(RN
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ing vl;su);:.u would expect, the . = ‘format label’ allows you to supply a label to miss-
) Once we have defined a format, we can then associate it with a variable, either
in the DATA step or in the procedure itself. For example, we can write a TA’BLES
statement on the original variable (such as AGE). By supplying the format informa-
tion using the format AGROUP for the variable AGE, frequencies will be computed
for the new categories instead of the original AGE values. In this example, we place
tpe format statement in the appropriate PROC rather than in the DATA ;tatenlent
since we want to use the recoded values only for PROC FREQ.
Thus, the SAS statements:

PROC FREQ DATA=QUEST;
TABLES AGE;
FORMAT AGE AGROUP.;
RUN;

produce the following output:

Cumulative Cumulative

AGE Frequency Percent Frequency Percent
2-20 1 16.7 1 16:’;“
1-40 2 33.3 3 50.0
41-60 1 16.7 4 66.7
Greater than 60 2 33.3 6 100.0

While on the topic of creating formats, we mention a few other ways to rep-
resent format values. You can combine specific codes and code ranges in a single
format statement. Suppose we assigned the codes 1-3 to the colors ‘Red’, ‘White’
and ‘Blue’, and codes 0, and 4 through 9 to other colors. The codes 0, and 4’ througk;
9 are to be lumped together and called ‘Other Colors’, and any other y(:odcs are to be
labeled as ‘Out of Range’. The VALUE statement to create a SAS format called
COLOR, which meets these specifications, is shown below:

A series of values or ranges of values can be separated by commas. In this exam-
ple, either a 0 or any number from 4 through 9 will be formatted as ‘Other Colors’. A
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good application of this would be to regroup a large number of categories into a
smaller number of categories. Suppose we had coded our original questionnaire with
five levels of RACE:

1=WHITE 2=SPANISH AMERICAN 3=0QRIENTAL 4=AFRICAN AM. S5=0THER

Now, for a particular analysis, we want to have only three groups, WHITE,
AFRICAN AM., and OTHER. A quick and easy way to do this is to supply a format
like the following:

The advantage of this method of grouping values is that you don’t have to cre-
ate a new data set or make new variables. All that is necessary is to write the PROC
FORMAT statements to create a new format and add a format statement to the pro-
cedure where you want to use the new grouping.

G. Two-way Frequency Tables

Besides computing frequencies on individual variables, we may have occasion to
count occurrences of one variable at each level of another variable. An example will
make this clear. Suppose we took a poll of presidential preference and also recorded
the gender of the respondent. Sample data might look like this:

GENDER CANDIDATE

M DEWEY
F TRUMAN
M TRUMAN
M DEWEY
F TRUMAN

etc.

We would like to know (1) how many people were for Dewey and how many for
Truman, (2) how many males and females were in the sample, and (3) how many
males and females were for Dewey and Truman, respectively.

A previous example of PROC FREQ shows how to perform tasks (1) and (2).
For (3) we would like a table that looks like this:

GENDER
F M
DEWEY 70 40 110

TRUMAN 30 40 70

100 80 180
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If this were our table, it would show that females favored Dewey over Truman
70 to 30, while males were split evenly. A SAS program to solve all three tasks is:

DATA ELECT;
INPUT GENDER § CANDID § ;

DATALINES;

M DEWEY

F TRUMAN

M TRUMAN

M DEWEY

F TRUMAN

{more data lines)

;
PROC FREQ DATA=ELECT;
TABLES GENDER CANDID
CANDID*GENDER;
RUN;

Notice that since the variables GENDER and CANDID are coded as charac-
ter values (alphanumeric), we follow each variable name with a § in the INPUT
statement. Another fact that we have not mentioned thus far is that the VALUES
of our character variables also cannot be longer than eight letters in length when
using the “list” form of the INPUT statement, unless we modify our INPUT state-
ment to indicate this change. So, for the time being, we cannot use this program for
the Eisenhower/Stevenson election (without using nicknames).

The first two TABLES are one-way frequency tables, the same type we have
seen before; the TABLE specification, CANDID*GENDER is a request for a
two-way table.

What would a table like the one above tell us? If it were based on a random
sample of voters, we might conclude that gender affected voting patterns. Before we
conclude that this is true of the nation as a whole, it would be nice to see how likely
it was that these results were simply due to a quirky sample. A statistic called chi-
square will do just this.

Consider the table again. There were 180 people in our sample, 110 for Dewey
and 70 for Truman; 100 females and 80 males. If there were no gender bias, we would
expect the proportion of the population who wanted Dewey (110/180) to be the
same for the females and males. Therefore, since there were 100 females, we could
expect (110/180) of 100 (approximately 61) females to be for Dewey. Our expecta-
tions (in statistics called expected values) for all the other cells can be calculated in
the same manner. Once we have observed and expected frequencies for each cell
(each combination of gender and candidate), the chi-square statistic can be com-
puted. By adding an option for chi-square on our TABLES request, we can have our
program compute chi-square and the probability of obtaining a value as large or
larger by chance alone. Remembering that statement options follow a slash, the
request for chi-square is written as:

TABLES CANDID*GENDER / CHISQ;

Output from the request above is shown next:
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TABLE OF CANDID BY GENDER

CANDID GENDER
Frequency|
Percent |
Row Pct |
Ccol Pct |F IM | Total
————————— E Suliababaiaiabak S itk 4
DEWEY | 70 | 40 | 110
| 38.89 | 22.22 } 61.11
| 63.64 | 36.36 |
I 70.00 | 50.00 |
--------- fommmmm e
TRUMAN | 30 | 40 | 70
| 16.67 | 22.22 | 38.89
I 42.86 | 57.14 |
I 30.00 | 50.00 |
————————— R e iaiet el bt
Total 100 80 180

55.56 44.44 100.00

STATISTICS FOR TABLE OF CANDID BY GENDER

Statistic DF Value Prob
Chi-Square 1 7.481 0.006
Likelihood Ratio Chi-Square 1 7.493 0.006
Continuity Adj. Chi-Square 1 6.663 0.010
Mantel-Haenszel Chi-Square 1 7.439 0.006
Fisher's Exact Test (Left) 0.998
(Right) 4.91E-03
(2-Tail) 8.73E-03
Phi Coefficient 0.204
Contingency Coefficient 0.200
Cramer's V 0.204

Sample Size = 180

The key to the table is found in its upper left-hand corner. It tells you V{hat gll
the numbers in the cells are. By FREQUENCY, we mean the number of subjects in
the cell. For example, 70 females favored Dewey for president. ’rhe second number
in each cell shows the PERCENT of the total population. The third number, labeled
ROW PCT, gives the percent of each row. For example, of all the people for D.ewey
(row 1), 70/110 X 100, or 63.64%, were female. The last number, COL PCT, is the
column percent. Of all the females, 70% were for Dewey and 30% were for Truman.
In the TABLES request for a two-way cross tabulation, the vanable_ tl?at forms the
columns is placed second (e.g., CANDID*GENDER). In our statistical requests,
rows come first, then columns. o )

For our example, chi-square equals 7.48, and the probability of obtaining a chi-
square this large or larger by chance alone is .006. Therefore, we can say that, based

L T
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on our data, there appears to be a gender bias in presidential preference: There is a
tendency for females to show greater preference for Dewey than males do or, put
another way, for males to prefer Truman.

The number of degrees of freedom (df) in a chi-square statistic is equal to the
number of rows minus one multiplied by the number of columns minus one
((R - 1) X (C — 1)). Thus, our 2 x 2 chi-square has 1 df. Whenever a chi-square
table has 1 df and the expected value of any cell is less than 5,a“correction for con-
tinuity,” called Yates’ correction, is often applied. SAS software prints out a cor-
rected chi-square value and its associated probability beside the heading Continuity
Adj. Chi-square. Another alternative, when you have small expected values, is to use
Fisher’s exact test, which is included in the list of statistics for the table. Remember-
ing that the chi-square test is nondirectional, you will probably want to use the two-
tailed Fisher probability. When the degrees of freedom are greater than 1, it is
desirable that no more than 20% of the cells have expected values less than 5. The
program will print a warning when this condition occurs, This does not mean that
you have to throw your data out if you fall into this situation. This is a situation that
is complex and about which statisticians don’t always agree. Below, we will suggest
one alternative if your df are greater than 1. If you are in doubt, consult your friendly
statistician.

For larger tables (more than four cells) the usual alternative when faced with
small expected cell values is to combine, or collapse, cells. If we had four categories
of age:0-20,21-40,41-60, and over 60, we might combine 0-20 and 21-40 as one group,
and 41-60 and 60+ as another. Another example would be combining categories such
as “strongly disagree” and “disagree” on an opinion questionnaire. We can use either
method of recoding shown in the previous section to accomplish this.

H. A Short-cut Way to Request Multiple Tables

We can use the questionnaire program at the beginning of this chapter to see
another example of a two-way table. Suppose we wanted crosstabulations of
AGEGRP against the three variables PRES, ARMS, and CITIES. We could code:

TABLES (PRES ARMS CITIES)*AGEGRP;

This will generate three tables and is a short way of writing:

TABLES PRES*AGEGRP ARMS*AGEGRP CITIES*AGEGRP;

We can also have multiple-column variables in a TABLE request. Thus:
TABLES (PRES ARMS) * (AGEGRP Gender) ;

would produce four tables, PRES*AGEGRP, PRES*GENDER,ARMS*AGEGRP,
and ARMS*GENDER.

When you use this method, be sure to enclose the list of variables within
parentheses.

One of the tables generated from this program is shown next:
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TABLE OF PRES BY AGEGRP
PRES (President Doing a Good Job) AGEGRP
Frequency 1
Percent |
Row Pct |
Col Pct I 1] 21 31 4] Total
————————————— +————————+——~—————+———~————+—--———-—T .
0
Str Disagree | 0| 11 0|
[ 0.00 | 16.67 | 0.00 | 0.00 | 16.67
| 0.00 | 100.00 | 0.00 | 0.00 |
| 0.00 | 50.00 | 0.00 | 0.00 |
————————————— B it Tl e S .
01
Disagree | 11 01 0|
¢ | 16.67 | 0.00 | 0.00 | 0.00 | 16.67
{ 100.00 | 0.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 | 0.00 |
————————————— B e e e & )
11
Neutral | 0| 0| 01
! 0.00 | 0.00 | 0.00 | 16.67 | 16.67
i . | . | . | |
| | . | | |
+ + + +
1 | | |
1 | . | |
| | . | |
i | I |
16.67 33.33 16.67 33.33 100.00

1. Computing Chi-square from Frequency Counts

When you already have a contingency table and want to use SAS softvrlare to compute
a chi-square statistic, there is a WEIGHT statement that makes this task Possxble.
Suppose someone gave you the 2 X 2 table below and wanted to compute chi-square:

OUTCOME
Dead Alive
Control 20 80
GROUP
Drug 10 90

‘We could code this by reading in values for GROUP, OUTCOME, and the num-
ber of subjects, COUNT, in the appropriate cell. Thus, we would have:
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DATA CHISQ;
INPUT GROUP $ OUTCOME $ COUNT;
DATALINES;
CONTROL DEAD 20
CONTROL ALIVE 80
DRUG DEAD 10
DRUG ALIVE 90
PROC FREQ DATA=CHISQ;
TABLES GROUP*OUTCOME / CHISQ;
WEIGHT COUNT;
RUN;

The WEIGHT statement tells the procedure how many subjects there are for
each combination of OUTCOME and GROUP.

J. A Useful Program for Multiple Chi-square Tables

Even though it is a bit carly in this book to present more complicated programs, we
presentashort program that allows you to enter the counts for as many 2 X 2 tables
as you wish, and compute chi-square statistics for each table. You may copy the pro-
gram below “as is” and substitute your data lines in place of our sample lines. So,
here is the program without any detailed explanations of how it works:

-
| Program to compute Chi-square for any number of 2'x 2 tables |
| where the data lines consist of the cell frequencies. The |
| order of the cell counts is upper left, upper right, lower 1
| left, and lower right. To use this program, substitute your |
| cell frequencies for the sample data lines in this program, |
*

DATA CHISQ;
N + 1;
DO ROW = 1 TO 2;
DO COL = 1 TO 2;
INPUT COUNT @;
OUTPUT;
END;
END; .
DATALINES;
3586
10 20 30 40
i
PROC FREQ DATA=CHISQ; y
BY N; G
TABLES ROW*COL / CHISQ; - v
WEIGHT COUNT; :
RUN;

Tttt S *1
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K. McNemar’s Test for Paired Data

Suppose you want to determine the effe.ct of an ant.i—cigarette advertlselr:ir(;(t) one;;e(l)';
ple’s attitudes towards smoking. In this hypothetical gxample, we ash (hgm ?he
their attitude towards smoking (either positive{ or neg.auve).VWe th%rlxls ow th nthe
anti-cigarette advertisement and again a}sk d}eu smoking aml!.lda is expzl;;g;n al
design is called a paired or matched design since the same subjects aredrespt ¢ emeﬁ 5
a question under two different conditions (before and after an a Ver't:ﬁa suc};
Paired designs are also used when a specific person is match.ed onsome cr:1 COH;cted
as age and gender, to another person for purposes of analysis. .SUPPOSE yo

the data below in your cigarette study (P=Positive; N=Negative):

Subject Before After

001 P P
002 P N
003 N N
100 N P

A chi-square test of the type described in Section G is not appropriate here. In-
stead, a McNemar test for paired designs is needed instead. A SAS program to cre-
ate the data set and perform the McNemar test is shown next:

ogran Name: MCNEMAR.EAS in CiVAF it
P\rif:ose: To perform Mc'Nemars Chi-square test for !
! : paired samples

1
W
PROC FORMAT}
VALUE $OPINION 'P'='Positive’

'N'='Negative';

5
more data lines)
D0 N .

3 . 3 , ;
* PROC FREQ DATA=MCNEMAR; -
TITLE "McNemar's Test for Paired ample
TABLES BEFORE*AFTER / AGREE;
RUN;
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SO{ne comments about this program before we study the output. Notice the
LENGTH statement immediately before the INPUT statement. By setting the length
of the two variables BEFORE and AFTER to 1, we only need a single byte to store
the values. Without the LENGTH statement, the default 8 bytes would be used. To
make the output more readable, we created a format for the two variables BEFORE
and AFTER. Since the title contains a single quote, we used double quotes to sur-
round the title. Finally, the AGREE option on the TABLES statement produces both
McNen?ar‘s chi-square as well as a measure of agreement called Kappa. (Coefficient
Kappa is often used as a measure of interrater reliability.) Now for the output:

McNemar's Test for Paired Samples

TABLE OF BEFORE BY AFTER

BEFORE AFTER
Frequency |
Percent |
Row Pct | .
Col Pct |Negativel|Positive| Total
--------- B et LT EEE TP
Negative | 30 | 10 | 40
I 30.00 | 10.00 | 40.00
I 75.00 | 25.00 |
I 40.00 | 40.00 |
-------- R e e Al b T T
Positive | 45 | 15 | 60
| 45.00 | 15.00 | 60.00
I 75.00 | 25.00 |
| 60.00 | 60.00 |
--------- Rt e |
Total 75 25 100
75.00 25.00 100.00

STATISTICS FOR TABLE OF BEFORE BY AFTER

McNemar's Test

Statistic = 22.273 DF

"
[

Prob = 0.001

simple Rappa Coefficient

95% Confidence Bounds

Xappa = -0.000 ASE = 0.077 -0.151 0.151

Sample Bize = 100
This output shows us that the McNemar’s chi-square statistic is 22.273, with a

corresponfiing p-value of .001. We conclude that the anti-cigarette advertisement
was effective in changing people’s attitudes towards smoking.
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If you already had frequency counts for the 2 X 2 table and wa_nled SAS to
compute McNemar's chi-square. you could use the same technique as in Section L.

L. Odds Ratios

Suppose we want to determine if people with a rare brain tumor are more likely to
have been exposed to benzene than people without a brain tumor. One experimen-
tal design used to answer this question is called a case-control design. As the name
implies, you first start with cases, people with a disease or condition (in this example,
a brain tumor) and find people who are as similar as possible but who do not have
brain tumors. Those people are the controls. We provide some data below to demon-
strate some features of a case-control study:

OUTCOME
Case  Control

Yes 50 20 70

EXPOSURE |
No 100 130 230

150 150 300

Inspection of the table shows a higher percentage of Cases being exposed to
benzene than Controls. To test this, we can compute a chi-square statistic. The results of a
case-control study are frequently reported by an odds ratio and a 95% confidence inter-
val about the odds ratio. Briefly, the odds of a Case being exposed to benzene is 50/100.
The odds of a Contro} being exposed to benzene is 20/130. Therefore, the odds ratio is

07100 _ 5 555

20/130 155

If we run PROC FREQ with the CHISQ and CMH (Cochran-Mantel-Haenszel)
options, we obtain a chi-square statistic, the odds ratio,a 95% CI on the odds ratio,
and quite a few additional statistics. A program to analyze the table above and the
resulting output is shown next:

*Program to compute an Odds Ratio and the 95% CI;
DATA ODDS;

 INPUT OUTCOME § EXPOSURE $§ COUNT;
DATALINES;

SE 1-YES 50

2-NO 100

‘CONTROL 1-YES 20
CONTROL 2-NO 130

i

PROC FREQ DATA=0DDS; -
TITLE 'Program to Compute an 0dds Ratic';
TABLES EXPOSURE*OUTCOME / CHISQ CMH;
WEIGHT COUNT;

RUN;
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me‘:’ve used an e)fped’ient here to ensure that the ‘Yes’ row came before the ‘No’

. We want Fhe Yes’ group on top so that the odds ratio will be the odds that a
;ase (in tfw f{rst column) is more (or less) likely to be exposed (i.e., EXPO-
thUl?IIE = Y(-:ls )-Since SAS, by default, wi}l order the values ina frequency table by
! e a Phabetlcal order of character variables, by using the names ‘1-YES’ and
2-NO fqr Lhe‘ v’ariable EXPOSURE, we forced the program to place the ‘Yes’ row
;)n to.p (?nce 1’ comes before 27, t‘alphabetically"} Another useful trick is to use
ormats for the row or column variables, choosing values that result in the desired
;l}‘gg(ljng of rows and columns, and using the ORDER=FORMATTED option with
N [hjﬁfe%:]hz ::’pmlm causes PROC_ FREQ to use the formatted values rather
Drogtam fouows:va ues when ordering values for tables. The output from this

Program to compute an 0dds Ratio

TABLE OF EXPOSURE BY OUTCOME

EXPOSURE OUTCOME
Frequency|
Percent |
Row Pct |
Col Pct |CASE

ICONTROL | Total
———————— +

+

1-YES | 50 | 20 | 70
| 16.67 | 6.67 | 23.33
I 71.43 | 28.57 }

I 33.33 | 13.33 |
+ tommmm—- +
| ! 130 | 230
1 | 43.33 | 76.67
1 | 56.52 |
I I 86.67 |
Home——e o +
150 300

50.00 100.00

STATISTICS FOR TABLE OF EXPOSURE BY OUTCOME

?ffffffic DF value Prob
Chi-square ; ----------------------
16.770 0.
Likelihood Ratio Chi-Square 1 17.207 0 Oogi
Continuity Adj. Chi-Square 1 15.671 0 . 001
Mantel-Haenszel Chi-Square 1 16.714 0.001
Fisher's Exact Test (Left) 1'000
(Right) 3.12E-05
(2-Tail) 6.25E-05
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{Continued}
phi Coefficient 0.236
Contingency Coefficient 0.230

Cramer's V 0.236

gsample Size = 300
Program to compute an 0Odds Ratio

SUMMARY STATISTICS FOR EXPOSURE BY OUTCOME

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 16.714 0.001
2 Row Mean Scores Differ 1 16.714 0.001
3 General Association 1 16.714 0.001

Estimates of the Common Relative Risk (Rowl/Row2)
95%

Confidence Bounds

Type of Study Method Value

Case-Control Mantel-Haenszel 3.250 1.847 5.719
(0dds Ratio) Logit 3.250 1.819 5.807
Cohort Mantel-Haenszel 1.643 1.295 2.084
(Coll Risk) Logit 1.643 1.333 2.025
Cohort Mantel-Haenszel 0.505 0.364 0.701
(Col2 Risk) Logit 0.505 0.343 0.745

The confidence bounds for the M-H estimates are test-based.

Total Sample Size = 300

The chi-square value is 16.770, which is significant at the .001 level. As we cal-
culated earlier, the odds ratio is 3.25. To the right of this value is the 95% confi-
dence interval (1.847 to 5.719). We interpret this to mean that if we took many
similar samples from the given population, 95% of the computed confidence inter-
vals would contain the true population odds ratio. More practically, we can say that
we are 95% confident that the true population odds ratio is in the interval 1.847 to
5.719 (but don’t say it too loudly near a statistician). Also, since the interval does
not contain 1, we conclude that the odds ratio of 3.25 is significant at the .05 level.
(In this case we have a chi-square and p-value we can use.) For a case-control study,
the relative risks (labeled cohort) are not interpretable and should be ignored. For
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very low incidence rates, the odds ratio is an acceptable estimate of the relative
risk, discussed next.

M. Relative Risk

Just as an odds ratio is the appropriate statistic when dealing with case-control stud-
ies, relative risk is the appropriate statistic when dealing with cohort studies. As an
example, suppose we conducted a prospective cohort study to investigate the effect
of aspirin on heart attacks. A group of patients who are at risk for a heart attack are
randomly assigned to either a placebo (sugar pill) or aspirin. At the end of one year,
the number of patients suffering a heart attack (ML, or myocardial

infarction) is
recorded. Some fictitious data are presented below:

OUTCOME
Mi No Mi

GROUP
35 215 250

We see that out of 100 patients on placebo, 20 had an MI, giving us an incidence
rate of 20/100, or .20. For patients on aspirin, the incidence rate is 15/150, or .10, The
ratio of the incidence rates is called relative risk. In this example it is .20/.10 = 2.00.
We can say that the risk of a heart attack for people on placebo is twice that of peo-
ple on aspirin. Another approach would be to place the Aspirin group as the top row
and the Placebo group as the bottom row. The column ! risk (coll risk in the output)
would then represent the protective effect of using aspirin (giving a RR of .5) rather
than the increased risk for people who do not take aspirin. We can use basically the

same program as we used above to compute the odds ratio to compute the relative
risk. Here it is:

*Program to compute a Relative Risk and a 95% CI;
DATA RR;

RR; oo o
‘ogram to Compute a

-,

S

program to Compute a Relative Risk

TABLE OF GROUP BY OUTCOME

GROUP OUTCOME
Frequency |
Percent t
t
?g‘]t' izt :MI | NO-MI I Total
—————————— Lt il Skt 4 100
- 20 | 80 |
LFLACERO : 8.00 | 32.00 | 40.00
| 20.00 | 80.00 | N
| 57.14 | 37.21 |
—————————— B e 5
2-ASPIRIN | 15 | 135 | 150
] 6.00 | 54.00 | 60.00
| 10.00 | 90.00 |
1 42.86 | 62.79 |
—————————— dommmmmmmgm—— e ———
Total 35 215 250

14.00 86.00 100.00

Program to Compute a Relative Risk

SUMMARY STATISTICS FOR GROUP BY OUTCOME

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

i Prob
Statistic Alternative Hypothesis DF V?}\jf __________
“—:_L__ Nonzero Correlation 1 4.963 8322
2 Row Mean Scores Differ 1 4.963 o'ozs

3 General Association 1 4.963 -

Estimates of the Common Relative Risk (Rowl/Row2)

95%
Type of Study Method Value Confidence Bounds
------------------------------------------------- .592
Case-Control Mantel-Haenszel 2.250 itgg : 2:3
(0dds Ratio) Logit 2.250 . .
Cohort Mantel-Haenszel 2.000 18;32 g:ig
(Coll Risk) Logit 2.000 1. .
Cohort Mantel-Haenszel 0.889 0.32; g.ggz
(Col2 Risk) Logit 0.889 0. .

The confidence bounds for the M-H estimates are test-based.

Total Sample Size = 250

87
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We used the same labeling trick here with the groups to control the order of the rows
in the table. The columns were OK since ‘MI’ comes before ‘NO-MT” alphabetically. The
LENGTH statement assigned a length of 9 for the variable GROUP. Had we not done
this, the values of GROUP would have defaulted to 8 characters and the last letter of the
GROUP values would have been chopped off. An alternative approach is to provide an
INFORMAT statement or an INFORMAT on the INPUT statement like this:

INFORMAT GROUP $ 9.; /* Separate INFORMAT statement */
INPUT GROUP OUTCOME $ COUNT; /* $ after GROUP optional */

or

INPUT GROUP : $9. OUTCOME $§ COUNT; /* INFORMAT on INPUT line */

This time we include only the CMH option, so chi-square and associated statis-
tics are not computed. Since we want to see the “risk” of not using aspirin, we want
to look at the cohort (Coll Risk) results in the output. The Coll relative risk is how
much more or less likely you are to be in the column 1 category (in this case, MI) if

you are in the row 1 group (in this case, placebo). The computed relative risk is 2.00
with the 95% confidence interval of 1.087 to 3.680.

N. Chi-square Test for Trend

If the categoriesina2 X N table represent ordinal levels, you may want to compute
what is called a chi-square test for trend. That is, are the proportions in each of the N
levels increasing or decreasing in a linear fashion? Consider the table below:

GROUP
A B C D
Fail 10 15 l 14 25
TEST RESULT

Pass 90 85 l 86 75

100 100 100 100

Notice that the proportions of ‘Fail’
from group B to C). To test if there is a s
use the CHISQ option of PROC FRE
Haenszel chi-square.”
square test for trend is:

in groups A through D is increasing (except
ignificant linear trend in proportions, we can
Q and look at the statistic labeled “Mantel-
A program to enter the table values and compute the chi-

FAIL A 10 FAIL B 15 FAIL C 14
PASS A 90 PASS B 85 PASS C 8
i
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{Continued]

'A=TREND;
PROgI::zQ'ggz—square Test for Trend';
TABLES RESULT*GROUP / CHISQ;
WEIGHT COUNT;
L RON;

If you are not familiar with the double “at” sign (@@) notation, see Cal}zzgzr lli
for more information. Fortunately, the GROUP and RESULT value::l ‘arel area grm_
the proper alphabetical order so we don’t have to resort to any expedients.
put is shown below:

chi-square Test for Trend
TABLE OF RESULT BY GROUP

RESULT GROUP

Frequency |
percent |
Row Pct |
Col Pct |A

]
a

16.00

336
84.00

= —t ==

00 400
100 100 100 1
rotad 25.00 25.00 25.00 25.00 100.00

STATISTICS FOR TABLE OF RESULT BY GROUP

Statistic DF Value Prob
Chi-Square 3 9.077 g.g’;’g
Likelihood Ratio Chi-Square 3 s;;i 0:007
Mantel-Haenszel Chi-Square 1 0.151

phi Coefficient 9 . byt

Contingency Coefficient . . e

Cramer's V .

sample Size = 400
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From this output, you can see that the M-H chi-square test for trend is 7.184
(P = .007). There may be times when your table chi-square is not significant but,

since the test for trend is using more information (the order of the columns), it may
be significant.

O. Mantel-Haenszel Chi-square for Stratified Tables
and Meta Analysis

You may have a series of 2 X 2 tables for each level of another factor. This may be a
confounding factor such as age,oryoumay havea 2 X 2 table at each site in a multi-
site study. In any eévent, one way to analyze multiple 2 X 2 tables of this sort is to
compute a Mantel-Haenszel chi-square. This same technique can also be used to
combine results from several studies identified in a literature search on a specific
topic. Although the studies may have some minor differences, you may prefer to ig-
nore those differences and combine the results anyway. This technique is sometimes
referred to as meta-analysis and is becoming quite popular in medicine, education,
and psychology. There are lots of cautions concerning this technique, but this is nei-
ther the time nor the place to discuss them. The Mantel-Haenszel statistic is also
used frequently for item bias research.

It is actually easy to compute a chi-square for stratified tables using SAS soft-
ware. All that is necessary is to request a three-way table with PROC FREQ and to
include the option ALL.

As an example, suppose we have just two 2 X 2 tables. One for boys and the other
for girls. Each table represents the relationship between hours of sleep and the chance
of failing a test of physical ability. We want to investigate the risk factor (lack of sleep)
on the outcome (failing a test). The hours of sleep variable has been dichotomized as
‘LOW’ (less than 8 hours) and ‘HIGH’ (more than 8 hours). Here are the two tables:

Test Results, Boys Test Results, Girls
FAIL PASS FAIL PASS

ifie lysis
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[Continued]

BOYS PASS 2-HIGH 150
GIRLS FAIL 1-LOW 30

GIRLS FAIL 2-HIGH 25

GIRLS PASS 1-LOW 100

GIRLS PASS 2-HIGH 200

i3

“PROC FREQ DATA=ABILITY; )
i TITLE 'Mantel-Haenszel Chi-square Test';
TABLES GENDER*SLEEP*RESULTS / ALL;
WEIGHT COUNT;

91

i i it i ou the
Since the output from this program is voluminous, we edit it and show y

relevant portions:

Mantel-Haenszel Chi-square Test

TABLE 1 OF SLEEP BY RESULTS
CONTROLLING FOR GENDER=BOYS

Statistic

Chi-square
Estimates of the Relative Risk (Rowl/Row2)

95%

£ Study Value confidence Bounds
Type O

4.091
Case-Control 2.000 0.978

.980 3.431
Cohort (Coll Risk) 1.8:14.3 2.335 Y
Cohort (Col2 Risk) 0.9
TABLE 2 OF SLEEP BY RESULTS
CONTROLLING FOR GENDER=GIRLS
DF Value Prob

Statistic

Chi-Square
Estimates of the Relative Risk (Rowl/Row2)

95%
Confidence Bounds

Type of Study Val\_zf ____________________ :
------------------------- 1.340

Case-Control . 2.; gsg T s
S ore Soolz nien) 0.865 0.779 0.961

Cohort (Col2 Risk)

—
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[Continued]

SUMMARY STATISTICS FOR SLEEP BY RESULTS
CONTROLLING FOR GENDER

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 12.477 0.001
2 Row Mean Scores Differ 1 12.477 0.001
3 General Association 1 12.477 0.001

Estimates of the Common Relative Risk (Rowl/Row2)

95%

Type of Study Method Value
Case-Control Mantel-Haenszel 2.229

(0dds Ratio) Logit 2.232
Cohort Mantel-Haenszel 1.977

(Coll Risgk) Logit 1.982
Cohort Mantel -Haenszel 0.889

(Col2 Risk) Logit 0.894 0.833 0.958

The confidence bounds for the M-H estimates are test-based.
Breslow-Day Test for Homogeneity of the 0dds Ratios
Chi-Square = 0.150 DF = 1 Prob = 0.698
Total Sample 8ize = 640

As you can see, the results for boys gives us a chi-square of 3.701 (p = .054) with
arelative risk of 1.833 (95% CI 980, 3.431). (We choose the Coll Risk value since we
want the RR for failing the test, which is the value for column 1.) For girls, the results
are a chi-square of 9.011 (p = .003) and a relative risk of 2.077 (95% C11.279,3.373).

The results of combining the two tables is found under the heading “SUM-
MARY STATISTICS.” Looking at the Cohort Mantel-Haenszel statistics (coll
risk), we find a p-value of .001 and a relative risk of 1.977 (95% CI 1.355,2.887). No-
tice that p-value from the combined genders is lower than that for either the boys or
girls alone. The Breslow-Day test for homogeneity of the odds ratio is not significant
(p = .698), s0 we can be comfortable in combining these two tables.

E  “Check All That Apply” Questions

A common problem in questionnaire analysis is “check all that apply” questions. For
example, suppose we had a question asking respondents which course or courses
they were interested in taking. It might be written:
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Which course, or courses, would you like to see
offered next semester?

(Check ALL that apply)

1 Micro-computers 4. Job Control Language
2. Intro to SAS 5. FORTRAN
3. Advanced SAS 6. ITASCAL

Insofar as our analysis is concerned, this is not one que;tion w::;all?l)et: lsll:: :;:
but si i h course offering is treated as a v :
wers, but six yes/no questions. Eacl ¢ : hval
Txes of YES oryNO (coded as 1 or 0, for example). Our questionnaire would be eas
to analyze if it were arranged thus:

please indicate which of the following courses you
would like to see offered next semester:

For office
(1) yes (0) no use only

Micro-computers -— -

a
b) Intro to SAS _ -

c) Advanced SAS N —
d) Job Control Language - N N
e) FORTRAN _ N P
£) PASCAL _— P -

Our INPUT statement would have six variables (-COURSEI—C%)ISIESEE i’o; lﬁz
stance), each with a value of 1 or 0. A format matching 1=yesand 0 =
dability to the final analysis. ) o ) )
lcnd'Ir‘ljias :pproyach works well when there is a limited numberfof chf:;lcei.hl(;ligl
i i from a large number of possible ces,
ever, when we are choosing several items T oices,
is i ical since we need a variable for every poss :
this approach becomes impractical sin e o
i i | field would be the variable g
choice. A common example in the medica agnoss
i i list of hundreds or even thousands g
e s vt t mlgh? g i f two or three diagnoses for each
is codes and want to consider a maximum Ol .
n::il:nct Our approach in this case would be to ask fo; up to three diagnoses .plelx;
gatiem‘ using a diagnosis code from a list of standardized codes. Qur form mig

look like this:
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Enter up to 3 diagnosis codes for the patient.
Diagnosis 1 o ) D D D
Diagnosis 2
- (I3
Diagnosis 3 D [j
- ]

DATA DIAG2;
SET DIAGL;
DX=DX1;
IF DX NE . THEN OUTPUT;
DX=DX2;
IF DX NE . THEN OUTPUT;
DX=DX3;
IF DX NE . THEN OUTPUT;
KEEP ID DX;

RUN;

Our INPUT statement would be straightforward:

DATA DIAGI;

INPUT ID 1-3 . Each observation from our original data set (DIAG1) will create up to three ob-

servations in our new data set (DIAG2).The SET statement (line 2) reads an obser-

- DX1 20-22 DX2 23-25 DX3 26-28;
vation from our original data set (DIAG1). The first observation will contain:

Suppose we had the following data:

OBS 1D DXI  DX2 DX3 ID AGE GENDER DXl DX2 DX3

1 1 3 p 1 23 M 3 4
2 2 1
3 3 5

3 7
. X To these values, we add a new variable called DX, and set it equal to DX1. The
Program Data Vector now contains:

D AGE GENDER DXx1 DX2 DX3 DX
1 23 M 3 4 . 3

] Notice that one patient could have a ¢
sis whereas another patient mij
nosis. If we want a frequenc
could try this:

ertain diagnosis code as his first di
st diagno-
ght have the same code as his second or third (f'iag»

y distribution of diagnosis codes, what can we do? We
Since DX is not missing, we output (line 4) these values to the first observation

in data set DIAG? (for now, let’s ignore the KEEP statement in line 9). Next, DX is
set to DX2, and another observation is written to data set DIAG2:
PROC FREQ'DATA=DIAGL;

TABLES DX1-DX3;
RUN;

ID AGE GENDER DXl DX2 DX3 DX
1 23 M 3 4 . 3
1 23 M 3 4 4

The values for ID, AGE, GENDER, DX1,DX2,and DX3 are still the same, only
DX has changed. Finally, DX is set equal to DX3, but since DX3, and therefore DX,
is missing, no observation is written to DIAG2.

We are now at the bottom of the DATA step, and control is returned to the top
of the DATA step, where the SET statement will read another observation from
data set DIAG1. This routine continues until all the observations from DIAG1 have
been read. Since we had a KEEP statement in the program, only the variables ID

Usi .
comps::gﬂtl};lsfmethod, we would have to add the frequencies from three tables to
requency for each diagnosis code. A better approach would be to

Create a separate data set that i i
Sreatc 2 is structured differently. Our goal would be a data

; 11 3 and DX actually exist in data set DIAG2:
4
3 2 1 D
4 2 3 oBS I DX
5 2 7 1 1 3
6 3 5 2 1 zlt
3 2
4 2 3
The program statements to create the data set above are: 5 2 7
6 3 5
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We can now count the frequencies of DX codes using PROC FREQ with DX as
the TABLE variable.

This program can be made more compact by using an ARRAY and a DO loop.
(See Chapter 15 for a detailed explanation of ARRAYS, and Chapter 16, Section C,
for details on restructuring SAS data sets using arrays.)

DATA DIAG2;
SET DIAG1;
ARRAY D[*] DX1-DX3;
DO I «1T03;.
‘DX=D[I];
_IF DII] NE . THEN OUTPUT;
END;
KEEP ID DX;
RUN;

Problems

3-1. Suppose we have a variable called GROUP that has numeric values of 1,2, or 3. Group
1 s a control group, group 2 is given aspirin, and group 3 is given ibuprofen. Create a
format to be assigned to the GROUP variable.

3-2. A survey is conducted and data are collected and coded. The data layout is shown

below:
Variable Descripti Columns Coding Values
D - Subject identifier 1-3 o
GENDER 4 M=Male F=Female
PARTY Political party 5
‘2’=Democrat
‘3’=Not registered
VOTE Did you vote in the 6 0=No 1=Yes
last election?
FOREIGN Do you agree with the 7 0=No 1=Yes
government’s foreign
policy?
SPEND Should we increase 8 0=No 1=Yes

domestic spending?

Collected data are shown next:
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007M1110
013F2101
137F1001
117 1111
428M3110
017F3101
037M2101

(a) Create a SAS data set, complete with labels and formats for this questionnaire.

(b) Generate frequency counts for the variables GENDER, PARTY, VOTE, FOR-
EIGN, and SPEND. A
(c) Test if there is a relationship betweenl voting in the las} election ;_eﬁrsuz;egr(z;
ment with spending and foreign policy. (Have SAS complte chi-sq
these relationships.)
3-3. Run the program below to create a SAS data set called DEMOG:

JATA DEMOG;
'DAT;mu-r WEIGHT HEIGHT GENDER §;
DATALINES;
55.68° M
98 60 F
202 72 M
280 75 M
130 63 F
i

We want to recode WEIGHT and HEIGHT as follows. (Assume that WEIGHT
and HEIGHT are integer values only.):

WEIGHT 0-100
101-150
151-200
>200

- wn e

nouowon

HEIGHT 0-70
>70

[N

We then want to generate a table of WEIGHT categories (-m“is) t:y HEIGI;Ich?Z\;
egories (columns). Recode these variables in two ways: (1) with “IF” statements;
with formats. Then write the necessary statements to generate the table.
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3-4. A friend glves you some summary data on the relationship between socio-economic
status (SES) and asthma, as follows:

Asthma Yes No
Low SES 40 100

HighSES 30 139

Create a SAS data set from these data and compute chi-square.

3-5. A matched-pairs case-control study is conducted. Each case (a person with disease X)
is matched to a single control, based on age (plus or minus 2 years) and gender. Each
person is then asked if he/she used multivitamins regularly in the past year. The re-

sults are:
Case Use Matched Controls Use
__of Vitamins of Vitamins Count
Yes Yes 100
Yes No 50
No Yes 90
No No 200

Remembering that this is a matched study, compute a McNemar chi-square, Are
the subjects more or less likely to have used vitamins?

3-6. A researcher wants to determine if there is a relationship between use of computer ter-
minals (VDT—video display terminals) and miscarriages. An unpaired, case-control
study is conducted. Of the cases (women with miscarriages) there were 30 women who
used VDT’s and 50 who did not. Among the controls, there were 90 women who used
VDT’s and 200 who did not. Compute chi-square, the odds ratio, and a 95% confidence
interval for the OR.

3-7. A researcher wants to determine if sound-proofing a classroom leads to better behav-

, by computing the relative risk (of noisy classrooms) for pro-

ducing behavioral problems. Have SAS produce a 95% CI for the relative risk as well,

3-8. A school administrator believes that larger class sizes lead to more discipline prob-
lems. Four class sizes (small, medium, large, and gigantic) are tested. The table below
summarizes the problems recorded for each of the class sizes. Treating class size as an
ordinal variable, test if there is a linear increase in the proportion of class problems.
(Be careful to arrange the order of the class size columns so that they range from small
to gigantic, or your test for trend will not be valid.)

Class Size Small Medium Large Gigantic
Problem 3

6 17 80
No Problem 12 22 38 120
-—_—— = 8

Total 15 28 55 200

Problems 99

re an s tested for smokers
i 2 d head colds is test

relationship between office temperature a d f

he relat hip bet

. . . !
and nonsmokers. Since smoking is assumed to be a confounding factor in this rela-
.
3 g 1S as 0! fi . o
ionship, use a Mantel-Haenszel chi-square for stratified tables to analyze the
ions

39.

tables below:
SMOKERS NONSMOKE(E)R[Sd
IS
Colds No Colds Colds No Col

Poor
Temperature 30 50 n 100
Control

150
Good 20 55 35
Temperature
Control

-10. phys exam is given to a group of patients. Each patient 1s dia, nosed as having
bt g €] 2 s g
*3-10. A physical t tients. Each pat d d as h
none, one, two, or three problems from the code list below:

Code Problem Description
_Code @ TTOm e e —

1 Cold
2 Flu ]
3 Trouble sleeping
4 Chest pain
5 Muscle pain
6 Headaches
7 Overweight
8 High blood pressure
9 Hearing loss
The coding scheme is as follows:

Variable Descripti Column (s)
ariable p ;
SUBJ Subject number 122

PROBI Problem 1 ;‘
PROB2 Problem 2 :
PROB3 Problem 3 o
HR Heart rate o
SBP Systolic blood pressure b
DBP Diastolic blood pressure ~

Using the sample data below:
Columns 12345678901234

11127 78130 80
1787 82180110
031 62120 78
4261 68130 80
89 58120 76
9948 82178100

(a) Compute the mean HR, SBP, and DBP. . I
(b) Generate frequency counts for each of the nine medical pr X
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What’s wrong with this program?

DATA IGOOFED;
INPUT #1 ID 1-3 GENDER 4
AGE 5-6 RAC -
. 2 o (QUES11-QUES2e " (3 ', E 7 (QUES1-QUES10) (1.)
RMAT GENDER SEX. QUE
PATALTNGG RACE RACE. QUES1-QUES25 YESNO. ;
00112311010011101
1100111001101011
002244210111011100
0111011101111010

1

PROC FORMAT;
VALUE SEX 1='MALE' 2='FEMALE';
VALUE RACE 1='WHITE' 2='AFRICA
= 1IC; = .
VALUE YESNO 0='NO' 1e'vEgr ) - 3='HISPANIC';
RUN; i
PROC FREQ DATA=IGOOFED;
VAR GENDER RACE QUES1-
ROUN; Q QUES25 / CHISQ;
PROC MEANS ‘MAXDEC=2 N
BY RACE; VEAN £7D-MIN HAX,
VAR AGE;
RUN;

HINTs AND CoMMENTS: The INPU' i
: - T T statement is correct. The poi i
format lists (1.) are explained in Chapter 12. There are four err(f;(snmerS (@ sgns) and

CHAPTER

Working with Date
and
Longitudinal Data

A. Introduction

B. Processing Date Variables

C. Longitudinal Data

D. Most Recent (or Last) Visit per Patient

E. Computing Frequencies on Longitudinal Data Sets

A. Introduction

Working with dates is a task which some data analysts face frequently. SAS software
contains many powerful resources for working with dates. These include the ability
to read dates in almost any form, or to compute the number of days, months, or years

between any two dates.

Data collected for the same set of subjects at different times are sometimes
called longitudinal data. These data require specialized techniques for analysis. Let’s

begin by seeing how date values are handled with SAS software.

B. Processing Date Variables

Suppose you want to read the following information into a SAS data set:

Admitting Discharge

1D DOB Date Date DX Fee
001 102150 091090 09130 8 3000
002 050540 090190 09050 7 5000
We can arrange this data in columns, thus:
Variable Name Description Column(s)

ID Patient ID 1-3

DOB Date of Birth 5-10

ADMIT Date of Admissiou 12-17

DISCHRG Discharge Date 18-23

DX Diagnosis 25

FEE Hospital Fee 26-30

101
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You might be tempted to write an input statement like:
INPUT ID 1-3 DOB 5-10 ADMIT 12-17 DISCHRG 18-23 DX 25 FEE 26-30;

However, the six digits of the date values have no meaning when read as a six-
digit number. SAS software includes extensive provisions for working with date and
time variables. The first step in reading date values is to tell the program how the
date value is written. Common examples are:

Example Expl. i SAS INFORMAT
102150 Month - Day - 2 digit Year MMDDY Yé.
10211950 Month - Day - 4 digit Year MMDDYY8.
10/21/50 Month - Day - 2 digit Year MMDDYY8.
10/21/1950 Month - Day - 4 digit Year MMDDYY10.
211050 Day - Month - 2 digit Year DDMMYY6.
21101950 Day — Month - 4 digit Year DDMMYYS.
501021 2 digit Year —~ Month - Day YYMMDDS6.
19501021 4 digit Year - Month - Day YYMMDDS3.
210CT50 Day, 3 character Month, 2 digit Year DATE7.
210CT1950 Day, 3 character Month, 4 digit Year DATES9.
OCT50 Month and 4 digit Year only MONYYS.
OCT1950 Month and 4 digit Year only MONYY7.

SAS programs can read any of these dates, provided we instruct it which form of
date we are using. Once SAS knows it’s reading a date, that date is converted into
the number of days from a fixed point in time: January 1, 1960. It doesn’t matter if
your date comes before or after this date. Dates before January 1, 1960 will be nega-
tive numbers. Therefore we can subtract any two dates to find the number of days in
between. We can also convert the SAS internal date value back to any of the allow-
able SAS date formats for reporting purposes. As we saw in the last chapter, we can
associate formats with variables for printing. We can specify how to read values by
specifying an INFORMAT to give the program instructions on how to read a data
value. The SAS date informat MMDDYYS., for example, is used to read dates in
month-day-year order. The 6 in the informat refers to the number of columas occu-
pied by the date. Thus far, we have used space-between-the-numbers and column
specifications to instruct SAS how to read our data values.

To read date values, we can use pointers and informats. A column pointer (@)
first tells the program which column to start reading. We follow this with the variable
name and a specification of what type of data we are reading, called an informat. Two
very common informats are W.n and $W. W.n is a numeric informat which says to
read W columns of data and to place n digits to the right of the decimal point. For ex-
ample, the informat 6.1 says to read six columns and to place a decimal point before
the last digit. If you are not specifying a decimal point, you do not have to specify the
value to the right of the period. Thus, an informat of 6. is equivalent to 6.0 The $W.
informat is used to read W columns of character data. The informat MMDDYYS. is
used for dates in the form 10/21/50 or 10-21-50. Using our column assignments
above, a valid INPUT statement would be:

INPUT @1 ID 3. @5 DOB MMDDYY6. @12 ADMIT MMDDYY6.
@18 DISCHRG MMDDYY6. @25 DX 1. @26 FEE 5.5
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Or to make it more readable:

INPUT @1 ID 3.
@5 DOB MMDDYY6 .
@12 ADMIT MMDDYY6 .
@18 DISCHRG MMDDYY6.
@25 px 1.
@26 FEE 5.3

The @ signs, referred to as column pointers, tell the program at which col]L:l)rgnYt;),
start reading the next data value. Our three dates are all in t'he form MM oy
(month-day-year) and occupy six columns, so the MMDDYS_(G. mfnn*ln‘a't is uscl-:1 .h &
member that all of our formats and informats end with periods to distinguish t eS>
from variable names. All the column pointers in the progralm abolve z'alr; ‘:1(2112:‘2) .
ding in column 1 witho
. For example, the program would start rea !
Si:)ri}rlne;) Also siI:n:e the date of admission ends in column 17 and thg dnscharge da&i
Is)tarts in column 18, the pointer @18 is redundant. qud programming practice sulg2
gests that using a column pointer with every variable 1; a good idea. (See Chapter
i J t.
for more details on how to use the INPUT statement ) "
o L(et’s calculate two new variables from these data. First, we compute ou}r1 >ul?
ject’s age at the time of admission. Next, we compute the lf:ngxh of stay in the 08pi-
]tal All we have to do is subtract any two dates to obtain the number of days in
between. Therefore, our completed program looks like:

“DATA HOSPITAL;

INPUT @1 ID 3.
@5 DOB MMDDYY6 .
@12 ADMIT MMDDYY6 .
@18 DISCHRG MMDDYY6.
@25 DX 1.
@26 FEE 5.

LEN_STAY = DISCHRG - ADMIT + 1;
AGE = ADMIT - DOB;

DATALINES;

(data lines)

The calculation for length of stay (LEN_STAY) is relatively straightforward. W(i
subtract the admission date from the dischargeldate and add 1 (we want to coun
both the admission day and the discharge day in the length of stay computation).

o icated.
The age calculation is a little more complicate: o
eBi subtracting the date of birth from the admission .dale, we have th‘e.ngmbgr
of days between these two dates. We could convert this to years by dlvy;‘img 1211
365.25 (approximately correct since there is a leap year every 4 years). This wou

give us:

AGE = (ADMIT - DOB) '/ 365.25;
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We ma i
il s 183trhwsln;}:3 define age so that a person is not considered, say 18 years old.
irthday. That is. we want to omit any fractional portion of his"he;

age in years. A SAS functi s this i i i
dgo nction that does this is the INT (integer) function. We can

AGE = INT((ADMIT - DOB) / 365.25);

fu";igi INT function, like all SAS functions, has a pair of parentheses after the

unct us:?}?;el.{(l)f{}v;];vzfamed_ to round the age to the nearest tenth of a year, we
unction. This function has two ar; : ,

’ uncti S guments: the number to by

ounded and the roundoff unit. To round to the nearest tenth of a year, we use: ‘

AGE = ROUND (((ADMIT - DOB) / 365.25),.1);
To the nearest year, the function would be:
AGE = ROUND (((ADMIT - DOB) / 365.25),1);

ot 'Il‘o compute an AGE as of a specific date, say January 1,1997, you can use a SAS

]y?l\z]vl[tf‘:ral.A date literal is of the form ‘nnMMMyy’D where nn is a two-digit da;

M isa Fhrce-cha}rac{er month abbreviation, and yy is a two- or four-digit ea?
Is string is placed in single or double quotes and followed by an upper or lzwer.

case ‘D’.To compute the age of a subjeci
” t a irth i
Stored 1t the vt D o wmi : s of January 1, 1997, whose date of birth is

AGE = INT (('01JAN97'D - DOB) / 365.25);

“um{;elrs 1;p£ortant to remember that once SAS has converted our dates into the
Therefo;; ifav);s f;qm[{anuar}z 1,1960, it is stored just like any other numeric value.
,if we print it out (with PROC PRINT. for ill not
look Tike a date. e mr s R X example), the result will not
4 . supply SAS with a format to u: inti
dates. This format does not hav. o rendt the daer s U
¢ to be the same one we used to read th, i
e date
first place. Some useful date formats and their results are shown in the table l;(:.‘léiilvc

The Date 10/21/50 Printed with Different Date Formats:

Format Result
MMDDYYS6. 102150
MMDDYYS. 10/21/50
DATE7. 210CT50
DATE9. 210CT1950
WORDDATE. October 21,1950

You may also use any of i ier in thi
mats fon sy 210 U y of the INFORMATS listed earlier in this section as for-
In the age calculation above, what a,
3 ge would be computed for a person b.
iz;?‘llllary;, 189/9, who was admitted on January 1,19907 If we emeredrl)lis/h:r ;z::e(g;
o ag:zf lgﬂll 99, lAhe computer would assume birth in 1999, not 1899, and compute
—> years. A person born in 1880, admitted on the sa;'ne dai v i
y te, would b
as 10 years old. Clearly, we need a way to include century data for people bgrlrlxstng
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fore 1900. We can do this in several ways. First, we can use a four-digit year. We could
code the original date in a form such as:

01/01/1899 or 01011899

We could read the first date with the MMDDYY10. informat, and the second
with the MMDDY'Y8. informat. You may recall that MMDDYY8. is also used to

read a date such as:

10/21/50

However, the system is smart enough to realize that an eight-digit date without
slashes must be using a four-digit year.

Another method is to provide a variable that indicates the century, and include
it in our calculation. Suppose a variable called CENTURY has values of 18 or 19to
indicate if the subject was born in the 1800’s or the 1900’s. One way to compute the

person’s age would be:

AGE = (ADMIT - DOB) / 365.25;
IF CENTURY = 18 THEN AGE = AGE + 100;

A more compact equation would be:
AGE = (ADMIT - DOB) / 365.25 + 100 * (CENTURY=18);

Notice the expression (CENTURY=18). This is called a logical expression; it is
the first time we have combined a logical expression in a calculation. The result of
the logical expression (CENTURY=18) is evaluated. A true value equals 1, and a
false value equals 0. So, if a subject was born in the 1800’s, we would add 100 to their
age. This is a good place to point out that the two-line computation of age is perfectly
fine. Only a compulsive programmer (like one of the authors) would feel the need to
write a more elegant, one-line expression. There are times when more lengthy,
straightforward approaches are best. They are less likely to contain errors, are easier
for other people to understand and, finally, easier for the original programmer to
modify or debug at a later date.

If you know something about your data and know, for example, that there are no
subjects over 100 years old, you can simply check if any ages are negative (subjects
born before 1900) and add 100. However, if your data base could conceivably con-
tain 2 year olds and 102 year olds, you must include a four-digit year or a century
variable in your calculations.

A fairly recent addition to the SAS language is the YEARCUTOFF option. If
you are using two-digit dates, you can indicate what range of 100 years to assume
your date values represent. For example, if you include the statement:

OPTIONS YEARCUTOFF=1910;
in a SAS program, it assumes that any two-digit date falls within the range 1910 to
2010. So, the date 10/21/05 would be assumed to be 10/21/2005. The date 10/21/46
would be set to 10/21/1946. So, with a little care you don’t have to worry about the
dreaded year 2000 problem!

AR 1 |
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Chapter 17, Section D. contains a list of SAS functions that are useful when
working with dates. For example, month, day, and year values can be combined to
form a SAS date, or you can extract a month or year from a SAS date.

C. Longitudinal Data

There is a type of data, often referred to as longitudinal data, that needs special
attention. Longitudinal data are collected on a group of subjects over time. CAUTION:
This portion of the chapter is difficult and may be “hazardous to your health”!

To examine the special techniques needed to analyze longitudinal data, let’s fol-
low a simple example. Suppose we are collecting data on a group of patients. (The
same scheme would be applicable to periodic data in business or data in the social
sciences with repeated measures.) Each time the patients come in for a visit, we fill
out an encounter form. The data items we collect are:

PATIENT ID

DATE OF VISIT (Month Day Year)
HEART RATE

SYSTOLIC BLOOD PRESSURE
DIASTOLIC BLOOD PRESSURE
DIAGNOSIS CODE

DOCTOR FEE

LAB FEE

Now, suppose each patient’s visits are a maximum of four times a year. One way
to arrange our SAS data set is as follows (each visit to occupy a separate line):

DATA HOSP;
INPUT #1 ID1 1-3 DATEL MMDDYY6. HRL 10-12 SBPL 13-15 DBP1 16-18
DX1 19-21 DOCFEEl 22-25 LABFEE1 26-29
#2 ID2 1-3 DATE2 MMDDYY6. HR2 10-12 SBP2 13-15 DBP2 16-18
DX2 19-21 DOCFEE2 22-25 LABFEE2 26-29 .
#3 ID3 1-3 DATE3 MMDDYY6. HR3 10-12 SBP3 13-15 DBP3 16-18
DX3 19-21 DOCFEE3 22-25 LABFEE3 26-29
#4 ID4 1-3 DATE4 MMDDYY6. HR4 10-12 SBP4 13-15 DBP4 16-18
DX4 19-21 DOCFEE4 22-25 LABFEE4 26-29;
FORMAT DATE1-DATE4 MMDDYYS.;
DATALINES; S
00710218307012008001400400150
00712018307213009002000500200
007
007
00909038306611007013700300000
008

I SRR - C e
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[Continued]

009
009
00507058307414008201300900000
00501158208018009601402001500
00506188207017008401400800400
00507038306414008401400800200

i

The number signs (#) in the INPUT statement signify multiple lings per subject.
Since our date is in the form month-day-year, we use the MM[)DYY6A.mformaL No-
tice that we can combine pointers and informats with the other styl§ of column spec-
ification. We also included an output format for our dates wnh a FORMAT
statement. This FORMAT statement uses the same syntax as the earlier examples in
this chapter, where we created our own fgrmats. The output format MMDDYYS8.
specifies that the date variables be prinle_d in mgnth»day-year form. .

With this method of one line per patient visit, we would need to insert BLANK
lines of data for any patient who had less than four visits, to fill out four lines per
subject. This is not only clumsy but occupies a lot of space unnecessarily. If we wan?
to compute within-subject means, we continue (before the DATALINES statement):

\WVEHR = MEAN (OF HR1-HR4);
SBP = MEAN (OF SBP1-SBP4);
\VEDBP = MEAN (OF DBP1-DBP4);
etc.

“MEAN?” isone of the SAS built-in functions that will compute the mean of all the
variables listed within parentheses. (NotE:Ifany of the variables listed as arguments of
the MEAN function have missing values, the result will be the mean of the nonmissing
values. See Chapter 17,Section B for more details.) A much better a_pproach is to treat
each visit as a separate observation. Our program would then look like:

DATA PATIENTS;

INPUT @1 ID 3.
@4 DATE MMDDYY6.
@10 HR 3.
@13 SBP 3.
@16 DBP 3.
@19 DX 3.

@22 DOCFEE 4.

b @26 LABFEE 4. ;
FORMAT DATE MMDDYYS8.;

DATALINES;
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Now we need to include only as many lines of data as there are patient visits;
blank lines to fill out four lines per subject are not needed. Our variable names are
also simpler since we do not need to keep track of HR1, HR2, etc. How do we ana-
lyze on this data set?

A simple PROC MEANS on a variable such as HR,SBP, or DOCFEE will not
be particularly useful since we are averaging one to four values per patient together.
Perhaps the average of DOCFEE would be useful since it represents the average
doctor fee per PATIENT VISIT, but statistics for heart rate or blood pressure would
be a weighted average, the weight depending on how many visits we had for each pa-
tient. How do we compute the average heart rate or blood pressure per patient? The
key is to use ID as a CLASS or BY variable.

Here is our program (with sample data):

DATA PATIENTS;
INPUT @1 ID 3.

@4 DATE MMDDYY6.
@10 HR 3.
@13 sBp 3.

@16 DBP 3.
@19 Dx 3.
@22 DOCFEE 4.
©26 LABFEE4.;
FORMAT DATE MMDDYYS.,;
DATALINES;
00710218307012008001400‘00150
00712018307213009002000500200
00909035306611007013700300000
00507058307414008201300900000
00501158208018009601402001500
00506188207017005401400300400
00507038306414008401400800200
i
PROC MEANS DATA=PATIENTS NOPRINT NWAY;
CLASS ID;
VAR HR -- DBP DOCFEE LABFEE;
OUTPUT OUT=STATS MEAN=M_HR M_SBP M_DBP M_DOCFEE.M_LABFEE;
RUN;

The result is the mean HR, SBP, etc., per patient, which is placed in a new data
set STATS, with variable names M_HR, etc. (See Chapter 2, Sections H and I, for
more about using PROC MEANS to create output data sets.) Each variable listed
after “MEAN=" in the OUTPUT statement will be the mean of the variables
listed in the VAR statement, in the order they appear. Thus, M_HR in the data set
STATS is the mean HR in the data set PATIENTS. In this example, the data set

STATS would appear as follows (we can always test this with a PROC PRINT
statement):
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Listing of STATS data set

0BS ID TYPE_ _FREQ M _HR M _SBP M DBP M _DOCFEE M _LABFEE

112.5 525
5 1 4 72 157.5 86.5

; 7 1 2 71 125.0 85.0 45.0 175
3 9 1 1 66 110.0 70.0 30.0 0

This data set contains the mean HR, SBP, etc., per patient_. We gould analyze th{s
data set with additional SAS procedures to investigate relationships between vari-
ables or compute descriptive statistics where each data value corresponds to a single
value (the MEAN) from each patient.

D. Most Recent (or Last) Visit per Patient

‘What if we want to analyze the most recent visit for each patient in the da@a_ set PAG
TIENTS above? If we sort data set in patient-date order, the most recent v1§1t wou
be the last observation for each patient ID. We can extract these observations with
the following SAS program:
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Statement @ creates a new data set called RECENT. As we explained previously,
the SET statement (@ acts like an INPUTStalementexo&pl that observations are read
one by one from the SAS data set PATIENTS instead of our original raw data.

We are permitted to use a BY @ variable following our SET statement,
provided our data set has been previously sorted by the same variable (it has). The
effect of adding the BY statement permits the use of the special FIRST. and LAST.
internal SAS logical variables. Since ID is our BY variable, FIRST.ID will be a logi-
cal variable (i.e., true or false: 1 or 0) that will be part of each observation as it is
being processed but will not remain with the final data set RECENT. FIRST.ID will
be TRUE (or 1) whenever we are reading a new ID; LAST.ID will be TRUE when-
ever we are reading the last observation for a given ID. To clarify this, here are our

observations and the value of FIRST.ID and LASTID for each case:

DATE DOCFEE LABFEE FIRST.ID LAST.ID

01/15/82 1500
06/18/82 400
07/03/83 200
07/05/83 ]
10/21/83 150
12/01/83 200
09/03/83 0

By adding the IF statement @,we can select the last visit for each patient (in this
case, observations 4, 6, and 7). By the way, this IF statement may also look strange—
there is no logical expression following it. Since the value of FIRST. and LAST. vari-

ables are true (1) or false (0), they can be placed directly in an IF statement without
the more traditional form:

IF LAST.ID = 1;

You would normally expect to see a subsetting IF statement with the equals sign
included. We could also select the first visit for each patient with the statement:

IF FIRST.ID;
E. Computing Frequencies on Longitudinal Data Sets

To compute frequencies for our diagnoses, we use PROC FREQ on our original
data set (PATIENTS). We would write:

PROC FREQ DATA=PATIENTS ORDER
TITLE 'Diagnoses in Decre
TABLES DX;

RUN;

3 ;
g Frequency Order';
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Notice we use the DATA= option on the PROC FREQ statement to Take
sure we were counting frequencies from our origmgl d'ata set. The ORIE:)ERfl opl»
tion allows us to control the order of the categories in a PROC FR OORclajuE%lt
Normally, the diagnosis categories are listed in numerical order.‘The o —
FREQ option lists the diagnoses in frequenpy order from the most co};r;nﬁon tx.ag
nosis to the least. While we are on the subject, anqther useful ORDA 1_ Ep :in
is ORDER=FORMATTED. This will order the diagnoses a!phahetlcalc}l éES
diagnosis formats (if we had them). Remembgr that executing a PRO C F E
procedure on our original data set (the one w1th'mulugl§ visits per pat_lepft) as
the effect of counting the number of times each du}gnos@ is made.Thfit 15,31 a ;t)};:»
tient came in for three visits, each with the same diagnosis, we would add tg_. e
frequency count for that diagnosis. If, for.som.e reason, we want to counbl a m%;
nosis only once for a given patient, even if this diagnosis is made on sul ;equ:r;l
visits, we can sort our data set by ID and DX. We then have a data set such as the
following:

D DX FIRST.ID FIRSEDX

5 13 1 1
5 14 0 1
5 14 0 0
s 14 0 0
7 14 1 1
7 20 0 1
9 137 1 1

If we now use the logical FIRST.DX and FIRST.ID vari_ables, we can accomplish
our goal of counting a diagnosis only once for a given patlept. The !oglcal variable
FIRST.DX will be true each time a new ID-diagnosis combination is encoun.tercd.
The data set and procedure would look as follows (assume we have previously
sorted by ID and DX):

DATA DIAG;

i i i is code only once per pa-
We have accomplished our goal of counting a diagnosis co
tient. As you can see, the SAS internal variables FIRST. apd LAST. are extremely
useful. Think of using them anytime you need to do something special for the first or
last occurrence of another variable.
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Problems
4-1. We have collected data on a questionnaire as follows:
Starting
Variable Column Length Description

D 1 3 Subject ID

DOB 5 6 Date of Birth in
MMDDYY format

ST_DATE 11 6 Start Date in
MMDDYY format

END_DATE 17 6 Ending Date in
MMDDYY format

SALES 23 5 Total Sales

4-2.

Here is some sample data:

1 2 3
123456789012345678901234567890
001 10214611128012288887343
002 09135502028002049088123
005 06064003128103128550000
003 07054411158011139089544

Column Indicators

(a) Write a SAS program to read these data.

(b) Compute age (in years) at time work was started and length of time between
ST_DATE and END_DATE (also in years).

(c) Compute the sales per year of work.
(d) Print out a report showing;:

D DOB AGE LENGTH SALES_YR
where LENGTH is the time at work computedin (b)and SALES_YR isthe sales per

year computed in part (c). Use the MMDDYYS8. format to print the DOB.

(e) Modify the program to compute AGE as of the last birthday and sales per year
rounded to the nearest 10 doliars. Tiy using the DOLLARS. format for
SALES_YR.

For each of eight mice, the date of birth, date of disease, and date of death is recorded.

In addition, the mice are placed into one of two groups (A or B). Given the data below,

compute the time from birth to disease, the time from disease to death, and age at

death. All times can be in days. Compute the mean, standard deviation, and standard
error of these three times for each of the two groups. Here are the data:

L R % e s o

*4-3,

*4-4.

*4-5.
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RAT_NO DOB DISEASE DEATH GR;)UP

‘lA 23MAY%0 23JUNS0 28JUN90 A
2 21MAYS0 27JUNSO 05JUL90 N
3 23MAY%0 25JUNSO 01JUL90 A
4 2TMAY%0 07JULS0 15JUL90 s
5 22MAY%0 29JUN%0 ZZJUL‘)Q(:) 5
6 26MAY90 03JULS0 03AUG! 5
7 24MAY%0 01JULS0 29JULS0 5
8 29MAY90 15JULS0 18AUG%

i t to read
Arrange these data in any columns you wish. Hint: Use the DATE?. informa
dates in this form. - - N
ing the data set (PATIENTS) described in Section C of this chaptzra t(:5: g;e[apsm
Usmgwith sample data), write the necessary SA_S statements louc:rin e 2 dataset
gmmOB4 3) in which the first visit for each patient lsAomltted..Then, 3 hg b
o ute the mean HR, SBP, and DBP for each patient. (Patient 9 with only
comp , SBF,
will be eliminated.) 4 .
Write a program similar to problem 4-3 except that we Ivant to !]Sl.‘;lu“ all the
i tient that has had only one visit.
for each patient except for any pal : .
it a data set called BLOOD that contains from one tg ﬁ\ll)e %br‘ieﬁrva‘;;ré
€ . ! !
VZ; sﬁ;ject. Each observation contains the vanableshID, Gl}a;b,e T,
? hite blood cells), and RBC (red blood cells). Run the prog
w y
this data set.

i ch sub-
We want to create a data set that contains the.mean WBC l:gd RB\S Bf?:r ::d ey
ject. This new data set should contain the v?nagiess‘lllgjzeg leall’n,y ot CVam B
. ¢ : ,
and RBC are the mean values for ; pamt 10 ex
“;l;z?a‘g'Bsgbjects from this data set that have two or fewer observations in the orig
b P
inal data set (assume there are no missing values).
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4-6.
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HINT: We will want to use PR
bth ID and GROUP in the ne
ID statement (ID GROUP:

in the output dat

t a set. Also, remember th
ates. It will be useful for creating a data

OC MEANS with a CLASS sta

tem i
W data sor ent. Since we want

you can make them both CLASS variables
;) to cause the variable GROUP to be present
e _FREQ_ variable that PROC MEANS cre-

s 1 set iti
Subjects with g L0 € bt that meets the last condition of excluding

Modify the program in
RBC for each subject.

problem 4-5 to include the standard deviation of WBC and
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A. Introduction

A common statistic for indicating the strength of a linear relationship existing
between two continuous variables is called the Pearson correlation coefficient, or
correlation coefficient (there are other types of correlation coefficients). The corre-
lation coefficient is a number ranging from —1 to +1. A positive correlation means
that as values of one variable increase, values of the other variable also tend to in-
crease. A small or zero correlation coefficient tells us that the two variables are un-
related. Finally, a negative correlation coefficient shows an inverse relationship
between the variables: as one goes up, the other goes down. Before we discuss cor-
relation any further, let’s begin with a simple example.

B. Correlation
We have recorded the GENDER, HEIGHT, WEIGHT, and AGE of seven people

and want to compute the correlations between HEIGHT and WEIGHT, HEIGHT
and AGE, and WEIGHT and AGE. The program to accomplish this is as follows:

115
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DATA CORR_EG;
INPUT

DATALINES(;}ENDER $ HEIGHT WEIGHT AGE;
M 68 155 23

61 99 20

63 115 21

70 205 45

69 170 .

65 125 30

72 220 48

- ]

Y~

ROC CORR DATA=CORR_EG;

TITLE ‘Example of a Correlation Matrix';

VAR HEIGHT WEIGHT AGE
RUN; !

The output from this program is:

Example of a Correlation Matrix

Correlation Analysis

3 'VAR' Variables: HEIGHT WEIGHT

Simple Statistics

AGE

Variable N Mean Std Dev Sum Minimum
‘;l:;g:: ; 66.8571 3.9761 468.0 61.0000
s 155.6 45.7961 1089.0 99.0000

6 31.1667 12.4164 187.0 20.0000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0

/ Number of Observations

HEIGHT WEIGHT

HEIGHT 1.00000 0.97165

0.0 0.0003

7 7

WEIGHT 0.97165 1.00000
0.0003 0.0

7 7

AGE 0.86614 0.92496

0.0257 0.0082

6 6

AGE

0.86614
0.0257
6

0.92496
0.0082
6

1.00000
0.0
6

Maximum

72.0000
220.0
48.0000

]
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PROC CORR gives us some simple descriptive statistics on the variables in the
VAR list along with a correlation matrix. If you examine the intersection of any row
or column in this matrix, you will find the correlation coefficient (top number), the
p-value (the second number), and the number of data pairs used in computing the
correlation (third number). If the number of data pairs are the same for every com-
bination of variables, the third number in each group is not printed. Instead, this
number is printed at the top of the table.

In this listing, we see that the correlation between HEIGHT and WEIGHT is
97165, and the significance level is .0003; the correlation between HEIGHT and
AGE is .86614 (p = .0257); the correlation between WEIGHT and AGE is .92496
(p = -0082). Let’s concentrate for a moment on the HEIGHT and WEIGHT
correlation. The small p-value computed for this correlation indicates that it is
unlikely to have obtained a correlation this large, by chance, if the sample of
seven subjects were taken from a population whose correlation was zero.
Remember that this is just an example. Correlations thi§ large are quite rare in
social science data.

To generate a correlation matrix (correlations betweén every pairwise combi-
nation of the variables), use the following general syntax:

tiomss .
-of-variables;

The term “list-of-variables” should be replaced with a list of variable names,
separated by spaces. If no options are selected, a Pearson correlation coefficient is
computed, and simple descriptive statistics are computed. As we discuss later, sev-
eral nonparametric correlation coefficients are also available. The option SPEAR-
MAN will produce Spearman rank correlations, KENDALL will produce Kendall’s
tau-b coefficients, and HOEFFDING will produce Hoeffding’s D statistic. If you use
one of these options, SPEARMAN for example, you must use the PEARSON op-
tion as well, if you also want Pearson correlations to be computed. If you do not
want simple statistics, include the option NOSIMPLE in your list of options.

For example, if you wanted both Pearson and Spearman correlations and did
not want simple statistics to be printed, you would submit the following code:

The CORR procedure will compute correlation coefficients between all pairs of
variables in the VAR list. If the list of variables is large, this results in a very large
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number of coefficients, 1f you only want to see a limited number of correlation coef-
ficients (the ones with the highest absolute values), include the BEST=number op-
tion with PROC CORR. This results in these correlations listed in descending order.

If all you want is a number of correlations between one or more variables
against another set of variables, a WITH statement is available. PROC CORR will
then compute a correlation coefficient between every variable in the WITH list
against every variable in the VAR list. For example, suppose we had the variables [Q
and GPA (grade point average) in a data set called RESULTS. We also recorded a
student score on 10 tests (TESTI—TESTIO). If we only want to see the correlation
between the IQ and GPA versus each of the 10 tests, the syntax is:

PROC CORR DATA=RESULTS ;

VAR IQ GPaA;
WITH TEST1-TEST10;
RUN;

This notation can save considerable computation time.

C. Significance of a Correlation Coefficient

You may ask, “How large a correlation coefficient do I need to show that two variables
are correlated?” Each time PROC CORR prints a correlation coefficient, it also prints
a probability associated with the coefficient. That number gives the probability of ob-
taining a sample correlation coefficient as large as or larger than the one obtained by
chance alone (i.e., when the variables in question actually have zero correlation).

The significance of a correlation coefficient is a function of the magnitude of the
correlation and the sample size. With a large number of data points,even a small cor-
relation coefficient can be significant. For example, with 10 data points, a correlation
coefficient of .63 or larger is significant (at the .05 level); with 100 data points, a cor-
relation of .195 would be significant. Note that a negative correlation shows an
equally strong relationship as a positive correlation (although the relationship is in-
verse). A correlation of —.40 is as strong as one of +.40.

It is important to remember that correlation indicates only the strength of a
relationship—it does not imply causality. For example, we would probably find a
high positive correlation between the number of hospitals in each of the 50 states
versus the number of household pets in each state. Does this mean that pets make
people sick and therefore make more hospitals necessary? Doubtful. The most
plausible explanation is that both variables (number of pets and number of hospi-
tals) are related to population size.

Being SIGNIFICANT is not the same as being IMPORTANT or STRONG,.
That is, knowing the significance of the correlation coefficient does not tell us very
much. Once we know that our correlation coefficient is significantly different from
zero, we need to look further in interpreting the importance of that correlation, Let
us digress a moment to ask what we mean by the significance of a correlation coef-

i ici 19
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f x and y values in which the correlation is
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zero. We could imagine a plot of this po
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D. How to Interpret a Correlation Coefficient

i i i look at the
i 2 lation coefficient (r) is to t
est ways to interpret a correl 1 o Jook o e
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i i of the variables that can laine o I e

Of YagfncAcsl:no:;ample, our height/weight cgrrclatlon is .97. ;n}us,dr sq vaa e
::’na e.say that 94% of the variation in weights can be explained by

€ can
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height (or vice versa). Also, (1 ~ .94), or 6%, of the variance of weight, is due to fac-
tors other than height variation. With this interpretation in mind, if we examine a
correlation coefficient of 4, we see that only .16, 0r 16%, of the variance of one vari-
able is explained by variation in the other.

Another consideration in the interpretation of correlation coefficients is this: Be
sure tolook at a scatter plot of the data (using PROC PLOT). It often turns out that

(say blood pressure and heart rate) for each of the 20 subjects.We could then calculate
a correlation coefficient using 20 pairs of data points. Suppose instead that we made

want to remove. Using the CORR_EG data setfrom Section B, we can compute a par-
tial correlation between HEIGHT and WEIGHT with the effect of AGE removed as:

As youcan see in the listing below, the partial correlation between HEIGHT and
WEIGHT is now lower than before (.91934) although still significant (p = .0272).

Example of a partial Correlation
Correlation Analysis

1 'PARTIAL' Variables: AGE

2 'VAR' Variables: HEIGHT WEIGHT
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[Continned]

Pearson Partial Correlation CoefﬁcientaN e
/ Prob > |RI| under Ho: Partial Rho=0 / =

HEIGHT WEIGHT
1.00000 0.91934
HELGHT 0.0 0.0272
1.00000
IGHT 0.91934
e 0.0272 0.0

E Linear Regression

Given a person’s height, what would be their predicted welgl.xt? }{low :n t:vgggit, c‘l);
lationship between height and weight? By s_tudymg the grapl s

o T]f’; lationship is approximately linear. That is, we can imagine dra;

o 'thm it o the graph with most of the data points being only a.short distance

;rﬂ;:lgltl;(illll;: n'I'he \%ergcal distance from each data point to this line is called a

residual.

Legend: A = 1 obs, B = 2 obs, etc.

*HEIGHT N
Plot of WEIGHT*H Symbol used is P

Plot of PRED_WT*HEIGHT

WEIGHT

240 A
220 A
200

160 A
140
120 N
100+ A
80
60

63 64 65 66 67 68 69
HEIGHT

70 71 72
61 62
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How do we determine the “bes ight
the “best” strai, i i i
1 ght line to fit our helghtlwelght data? The

T casts used, which finds the li i

B 5 s the line (called the regr:

resi()jUalati:ltl:leméiz;Z ;2; surlr; (:f the squared residuals. An equivalent way to%:grslfz
ce betw ject” i

o een a subject’s predicted score and his/her actual

PROC REG (short for regression) has the general form:

PROC REG optionms;

MODEL dependen
. t ’variahle(s) = independent variable / options;

Using our height/weight pro,

. am, . .
cquation for the s o P" gram, we add the following PROC to give us the

The output from the procedure above is as follows:

Model: MODELL
Dependent Variable: WEIGHT

Analysis of Variance

Sum of
Source uare
DF Squares Square F Value Prob>F
Model
Eovor 1 11880.32724 11880.32724 84.451
bl 5 703.38705 140.67741 0-0003
otal 6 12583.71429
Root MSE 11.86075
. R-square
Dep Mean 155.57143 Adj R-sq g’:;:;
Cc.v. 7.62399 ’
Parameter Estimates
variable pr P;ramet:er Standard T for HO:
stimate Error Parameter=0 Prob > |TI
INTERCEP 1 -592.644578
. 81.54217462
HEI/ ol
GHT 1 11.191265 1.21780334 '9, igg ggggg
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Look first at the last two lines. There is an estimate for two parameters, INTER-
CEPT and HEIGHT. The general equation for a straight line can be written as:

y:a+bx

where a = intercept, b = slope.
We can write the equation for the “best” straight line defined by our
height/weight data as:

WEIGHT = —592.64 + 11.19 X HEIGHT

Given any height, we can now predict the weight. For example, the predicted
weight of a 70-inch-tall person is:

WEIGHT = —592.64 + 11.19 X 70 = 190.66 1b.

To the right of the parameter estimates, are columns labeled Standard Error,
T for Hy: Parameter = 0,and Prob > ITI. The T values and the associated proba-
bilities (Prob > IT) test the hypothesis that the parameter is actually zero. That
is, if the true slope and intercept were zero, what would the probability be of ob-
taining, by chance alone, a value as large as or larger than the one actually ob-
tained? The standard error can be thought of in much the same way as the
standard error of the mean. It reflects the accuracy with which we know the true
slope and intercept.

In our case, the slope is 11.19,and the standard error of the slope is 1.22. We can
therefore form a 95% confidence interval for the slope by taking two (approxi-
mately) standard errors above and below the mean. The 95% confidence interval
for our slope is 8.75 to 13.63. Actually, since the number of points in our example is
small (n = 7) we really should go to a t-table to find the number of standard errors
above and below the mean for a 95% confidence interval. (This is true when n is
less than 30.) Going to a t-table, we look under degrees of freedom (df) equal to
n — 2 and level of significance (two-tail) equal to .05. The value of t for df = 5 and
p = .05 is 2.57. Our 95% confidence interval is then 11.19 plus or minus
257 X 1.22 = 3.14.

Inspecting the indented portion of the output, we see values for Root MSE,
R-square, Dep Mean, Adj R-sq,and C.V.Root MSE is the square root of the error
variance. That is, it is the standard deviation of the residuals. R-square is the
square of the multiple correlation coefficient. Since we have only one indepen-
dent variable (HEIGHT), R-square is the square of the Pearson correlation coef-
ficient between HEIGHT and WEIGHT. As mentioned in the previous section,
the square of the correlation coefficient tells us how much variation in the de-
pendent variable can be accounted for by variation of the independent variable.
When there is more than one independent variable, R-square will reflect the vari-
ation in the dependent variable accounted for by a linear combination of all the
independent variables (see Chapter 9 for a more complete discussion). The Dep
Mean is the mean of the dependent variable: WEIGHT in this case. C.V.is the co-
efficient of variation. Finally, Adj R-sq is the squared correlation coefficient cor-
rected for the number of independent variables in the equation. This adjustment
has the effect of decreasing the value of R-squared. The difference is typically
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small but becomes larger and more important when dealing with multiple inde-
pendent variables (see Chapter 9).

G. Partitioning the Total Sum of Squares

The top portion of the printout of page 122 presents what is called the analysis of
variance table for the regression. It takes the variation in the dependent variable and
breaksit out into various sources. To understand this table, think about an individual
weight. That weight can be thought of as the mean weight for all individuals plus (or
minus) a certain amount because the individual is taller (or shorter) than average.
The regression tells us that taller people are heavier. Finally, there is a portion at-

residual). The analysis of variance table breaks these components apart and looks at
the contribution of each through the sum of squares.

The total sum of squares is the sum of squared deviations of each person’s
weight from the grand mean. This total sum of squares (SS) can be divided into the
two portions: the sum of squares due to regression (or model), and the sum of
squares error (sometimes called residual). One portion, called the Sum of Squares
(ERROR) in the output, reflects the deviation of each weight from the PRE-
DICTED weight. The other portion reflects deviations between the PREDICTED
values and the MEAN. This is called the Sum of Squares due to the MODEL in the
output. The column labeled Mean Square is the Sum of Squares divided by the de-
grees of freedom. In our case, there are seven data points. The total degrees of free-
domis equalton — 1,0r 6. The model here has 1 df The error degrees of freedom is
the total df minus the model df, which gives us 5. We can think of the Mean Square
as the respective variance (square of the standard deviation) of each of these two
portions of variation. Our intuition tells us that if the deviations about the regression
line are small (error mean square) compared to the deviation between the predicted
values and the mean (mean square model) then we have a good regression line. To
compare these mean squares, the ratio

F Mean square model
— —7can square model
Mean square error

is formed. The larger this ratio, the better the fit (for a given number of data points).
The program prints this F value and the probability of obtaining an F this large or
larger by chance alone. In the case where there is only one independent variable, the
probability of the F statistic is exactly the same as the probability associated with
testing for the significance of the correlation coefficient. If this probability is “large”
(over .05) then our linear model is not doing a good job of describing the relation-
ship between the variables.

Section H / Plotting the Points on the Regression Line 125

H. Plotting the Points on the Regression Line

To plot out height/weight data, we can use PROC PLOT as follows:

- “PROC PLOT DATA=CORR_EG;
. 'PLOT WEIGHT*HEIGHT;

i ion line by hand, using the slope
would have to draw in the regression °
d I"llltt’:::zg? ?r]Zm PROC REG. It is desirable to have SAS software 15}150(; lh]?o:s
alrlesslion line (actually, the regression predicted values) for us. PROC al
%he use of a PLOT statement. The form is:
PLOT y_variable * x_variable = symbol / options;

Y_variable and x_variable are the names of the variables to be Rlott.cd 1on thetz;
d -;xes, respective-ly‘ The symbol can be either a single characu'er in smé eP ?JJOOT)
21: a)ilariable name whose value is to be the plottigg syn:jbol_t(tzlisa 1;5§]9Statemem:
cial “variable names” that can be used wi L
’I[:;lzsgliin:;:ieames PREDICTED. and RESIDUAL. (the :enods ar(;:J I];))tz;r)tu (ii
' i d residual values. A common
keywords) are used to plot predicted an S
tOh\e/sli;R‘I?XIY wh)ich is used to plot more than one graph on ;1{ Sg%i{ s’;‘:tizf;iesl; ROC
ant to see a plot of WEIGHT versus > PR(
RE(?ZI;(I;?;;: Zb‘Zve. In addition, we want to see the points on the regresst:on 112:,-.
We want the plotting symbols for the WEIGHT v;-:rsus( I:EIGH:Sig;:l;;;S ' ; ;1: o
i i the regre:
i the symbols showing the predicted values :
;th(fe(r*?linqlh: p);ocedure, complete with the PLOT statement is shown next,

followed by the plot:
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L. Plotting Residuals and Confidence Limits

Before leaving this section, we mention that SAS software has the ability to PLOT
several computed values other than the PREDICTED value of the dependent vari-
able. The most useful statistics besides the predicted values are:

RESIDUAL.

L9s.
U9s.

LI5M.
U9sSM.

The residual (i.e., difference between actual and predicted values for
each observation).

The lower or upper 95% confidence limit for an individual

predicted value. (i.e., 95% of the dependent data values would be
expected to be between these two limits).

The lower or upper 95% confidence limit for the mean of the
dependent variable for a given value of the independent variable.

To demonstrate some of these options in action, we produce the following;
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(a) A plot of the original data, predicted vglues, and the upper and lower
95% confidence limits for the mean weight.

(b) A plot of residuals versus HEIGHT. No:nz: If this plot shows some sy:
tematic pattern (rather than random points}, one could try to improv
the original model.

Here is the program to accomplish the requests above:

. 'PROC. REG DATA = CORR_EG;

{ RUN;

The two graphs are shown below:
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In this graph, the *’s are the original data points, the P’s represent the predicted
values, the -’s the upper and lower 95% confidence intervals about the mean weight
for a given height. The question marks represent multiple observations (perhaps a

raw data value and a predicted value were very close together). The next graph is
discussed in the following section.

J. Adding a Quadratic Term to the Regression Equation

The plot of residuals, shown in the graph below, suggests that a second-order term
(height squared) might improve the model since the points do not seem random but,
rather, form a curve that could be fit by a second-order equation. Although this chap-

20]"
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R RESIDUAL
e
s ° °
i
El 0
u
a
1 o o
(o]
—20" {
61 62 63 64 65 66 67 68 69 70 71 72
HEIGHT

ter deals mostly with linear regression, let us show you quickly how you might explore
this possible quadratic relationship between height and weight. First, we need to add a
line in the original DATA step to compute a variable that represents the height
squared. After the INPUT statement, include a line such as the following:

HEIGHT2 = HEIGHT * HEIGHT;
or
HEIGHT2 = HEIGHT*+2;

Next, write your MODEL and PLOT statements:
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i ent

When you run this model, you will get an r—squarefl of i]9741:},S :jr:l ;Tglrgtvi: o

he .9441 obtained with the linear model. Studying the r o ot A
s tha he distribution of the residuals is more random than the earli¢ hp
i ot twe is in order here. First, remember that this is an example wit ahv‘fr'y
Sl data tWto axsld that the original correlation is quite high: Second, altho‘ug ; :s
smalilbtliea 13)5:150 enter cubic terms, etc., one should keep in mind that results nee
poss

be interpretable.
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RESIDUAL :
20
(o]
R
e 10
s
i (o]
a
u 0 o R
f o Q
1 o]
-10
61 62 63 64 65 66 67 68 69 70 71 72
HEIGHT

K. Transforming Data

nother regression example 1S pr vided her emonstrate some Jut 1Slep5
Anoth ovided here to demonstrate so additiona;
that may be necessary when doing regression. Shown below are data collected from

10 people:

Subject Drug Dose Heart Rate
1 2 60
2 2 58
3 4 63
4 4 62
5 8 67
6 8 65
7 16 70
8 16 70
9 32 74

10 32 73

Let’s write a SAS program to define this collection of data and plot drug dose by
heart rate.
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DATA HEART;
INPUT DOSE HR;

DATALINES;

2 60

32 73

PROC PLOT DATA=HEART;
PLOT HR*DOSE='o';

RON;

PROC REG DATA=HEART;

MODEL HR = DOSE;
RUN;

The resulting graph and the PROC REG output are shown below:

Plot of HR*DOSE.

Symbol used is ‘o',

[ele]
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[Continued]

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value
Model 1 233.48441 233.48441 49.006
Brror 8 38.11559 4.76445
C Total 9 271.60000

Root MSE 2.18276 R-square 0.8597

Dep Mean 66.20000 Adj R-sq 0.8421

Cc.v. 3.29722
parameter Estimates

Parameter Standard T for HO:

variable DF Estimate Error Parameter=0
INTERCEP 1 60.708333 1.04491764 58.099
DOSE 1 0.442876 0.06326447 7.000

Prob>F

0.0001

Prob > ITI

0.0001
0.0001

2
468101214161820222426283032

DOSE
NOTE: 1 obs hidden.

Regression Line for Height-Weight Data

Model: MODEL1
Dependent Variable: HR

Either by clinical judgment or by careful inspection of the graph, we decide that
the relationship is not linear. We see an approximately equal increase in heart rate
each time the dose is doubled. Therefore, if we plot log dose against heart rate we
can expect a linear relationship. SAS software has a number of built-in functions
such as logarithms and trigonometric functions, described in Chapter 17. We can
write mathematical equations to define new variables by placing these statements
between the INPUT and DATALINES statements. In SAS programs, we represent
addition, subtraction, multiplication, and division by the symbols +,— , *,and /, re-
spectively. Exponentiation is written as * +To create a new variable which is the log

of dose, we write:

LOG is a SAS function that yields the natural (base e) logarithm of whatever

value is within the parentheses.
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We can now
plot log dose versus heart rate and compute a new regression line

PROC PLOT DATA=HEART;
PLOT HR*LDOSE='o';
RUN;

PROC REG DATA=HEART H
MODEL HR=LDOSE;
ROUN;

Outpu .
transfonlixi; ﬁ’O:I_tiS statements above is shown on the following pages. Approach
formed oneg }\1’ rlla es with caution. Keep in mind that when a variable is trans
don’t réfer tos t}?uf} vot refer to the variable as in the untransformed state. That is
formed, Iﬂcomeesiz(;% fo dosage” as “dosage.” Some variables are frequentiy trans-

: > groups, and magnitudes of earth, i
sented as logs, or in some other transformation quakes are usually pre-

- W _-

Plot of HR*LDOSE. Symbol used is ‘o'

HR

o
N
[oXe}

0.6931 1.3863 2.0794 2.7726 3.4657
LDOSE

NOTE: 1 obs hidden.
Regression Line for Height-Weight Data

Model: MODEL1
L Dependent Variable: HR
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[Continued]
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 266.45000 266.45000 413.903 0.0001
Error 8 5.15000 0.64375
C Total 9 271.60000 N
Root MSE 0.80234 R-square 0.9810
Dep Mean 66.20000 Adj R-sq 0.9787
Cc.v. 1.21199
Parameter Estimates
Parameter Standard T for HO:
variable DF Estimate Brror Parameter=0 Prob > IT|
INTERCEP 1 55.250000 0.59503151 92.852 0.0001
LDOSE 1 5.265837 0.25883212 20.345 0.0001
L

Notice that the data points are now closer to the regression line. The
MEAN SQUARE ERROR term is smaller and r-square is larger, confirming
our conclusion that dose versus heart rate fits a logarithmic curve better than

a linear one.

L. Computing Within-subject Slopes

There are times when we need to compute slopes for each subject (on multiple mea-
surements) or slopes for a subset of an entire population. An example would be a
study where each subject is assigned to group A or group B. We then measure his or
her performance on a test three times, and the rateof learning (the slope of the score
versus time curve) is compared for the two groups. Prior to version 6, this was a dif-
ficult problem to solve. Thanks to the response of the SAS Institute to user requests,
we can now output a data set containing slopes with PROC REG.

The procedure option, OUTEST=data-set-name, will create a data set contain-
ing all variables in the BY statement as well as theslopes (coefficients) of each of the
independent variables in the model. To illustrate, here is a program to analyze the

study design just described:
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DATA TEST;

INPUT ID GROUP § TIME SCORE;
DATALINES;
1

BWW WD e
W Wy
WRNRWNRWNRWN R
WNoNvNO@OaRe a0 N

4
4
;
PROC SORT DATA=TEST;
BY ID;
RUN;
PROC REG OUTEST=SILOPES DATA=TEST;
BY ID;
ID GROUP; ***Note: This ID statement is used so that the

GROUP variable will be in the SLOPES data
8et. An alternative would be to include it
in the BY list.;
MODEL SCORE = TIME / NOPRINT;
RUN;

PROC PRINT DATA=SLOPES;
TITLE 'Listing of the Data Set SLOPES';
RUN;

PROC TTEST DATA=SLOPES ;
TITLE 'Comparing Slopes Between Groups"';
CLASS GROUP;
VAR TIME;

RUN;

The data set SLOPES, produced by PROC REG, and the results from the t-test
are shown next. (We are getting a bit ahead of ourseleves here. You can read about
how to compare means with PROC TTEST in the next chapter.) The variable TIME
represents the slope of the SCORE by TIME graph (i.e., the coefficient of TIME).
The reason that the GROUP variable is included in the ID statement is so that it will
be included in the output data set. One could also include other variables where
each subject can have only one value (such as GENDER). Since slope in this exam-
ple is a computation over observations for an individual, any other variable which
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pisting of the Data Set SLOPES
SCORE
S ID GROUP _MODEL TYPE_ _DEPVAR_ _RMSE_ INTERCEP TIME
OB - .
-1
1 A MODEL1 PARMS SCORE 0.40825 -Ogggg gg I
> 2 A MODEL1 PARMS S8CORE 0.40825 ;.3333 _3:0 a2
2 3 B MODEL1 PARMS SCORE 0.81650 11.0000 o I
i 4 B MODEL1 PARMS SCORE 1.22474 11. .
Comparing Slopes Between Groups
pTEST PROCEDURE
variable: TIME
N Mean Std Dev 8td Error
GroUP N Meam SR PEV Tl
_________________________ :
---------- 0E+00 0.00000E+0
2.50000000 0.0000 *
5 : -2.75000000 3.53553E-01 2.50000E-01
B
variances T DF Prob> |T|
[_Jx—:;qual 21.0000 1.0 gggg;
Equal 21.0000 2.0 .
NOTE: All values are the same for one CLASS level. J

i iable
could have different values for an individual cannot be used. The dependent varia
in each model is assigned a value of —1.

Problems

5-1. Given the following data:
X Y Y4
1 3 15
7 13 7
8 12 5
3 4 14
4 7 10

(a) Write a SAS program and compute the Pearson correlation coefficient between X
and Y: X and Z. What is the significance of each? ‘ ‘ A
(b) Change the correlation request to produce a correlation mal-nl))(l, that is,
tion coefficient between each variable versus every other variable.
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i . 2 issi lues for XY,
§2. Given the following data: 5.7. What's wrong with the following program? (NoTe: There may be missing va

AGE SBP
15 116
20 120
25 130
30 132
40 150
50 148

How much of the variance of SBP (systolic blood pressure) can be explained by the fact
that there is variability in AGE? (Use SAS to compute the correlation between SBP and
AGE))

5-3. From the data for X and Y in problem 5-1:

(a) Compute a regression line (Y onX).Y is the dependent variable, X the independent
variable.

(b) What is slope and intercept?
() Are they significantly different from zero?

5-4. Using the data of problem 5-1, compute three new variables LX, LY, and LZ which are
the natural logs of the original values. Compute a correlation matrix for the three new
variables. HINT: The function to compute a natural log is the LOG function (see Chapter
17 for details).

5-5. Generate:

(2) A plotof Y versus X (data from problem 5-1).
(b) A plot of the regression line and the original data on the same set of axes.

5-6. Given the data set:

COUNTY POP HOSPITAL FIRE_CO RURAL

1 35 1 2 YES
2 88 5 8 NO
3 5 0 1 YES
4 55 3 3 YES
5 75 4 5 NO
6 125 5 8 NO
7 225 7 9 YES
8 500 10 1 NO

(2) Write a SAS program to create a SAS data set of the data above.

(b) Run PROC UNIVARIATE to check the distributions for the variables POP, HOS-
PITAL, and FIRE_CO.

(c) Compute a correlation matrix for the variables POP, HOSPITAL, and FIRE_CO.
Produce both Pearson and Spearman correlations. Which is more appropriate?

(d) Recode POP, HOSPITAL, and FIRE_CO so that they each have two levels (use a

median cut or a value somewhere near the 50th percentile). Compute crosstabula-
tions between the variable RURAL and the recoded variables.




CHAPTER

T-tests
and
Nonparametric Comparisons

A. Introduction

B. T-test: Testing Differences between Two Means

C. Random Assignment of Subjects

D. Two Independent Samples: Distribution Free Tests
E. One-tailed versus Two-tailed Tests

E. Paired T-tests (Related Samples)

A. Introduction

Our first topic concerning hypothesis testing is the comparison of two groups. When
certain assumptions are met, the popular t-test is used to compare means. When
these assumptions are not met, there are several nonparametric methods that can be
used. This chapter shows you how to conduct all of these two group comparisons
using SAS software. In addition, we show you how to write a simple SAS program to
randomly assign subjects to two or more groups.

B. T-test: Testing Differences between Two Means

A common experimental design is to assign subjects randomly to a treatment or a
control group and then measure one or more variables that would be hypothesized
to be affected by the treatment. To determine whether the means of the treatment
and control groups are significantly different, we set up what is called a null hypoth-
esis (Hy). It states that the treatment and control groups would have the same méan
if we repeated the experiment a large (infinite) number of times and that the differ-
ences in any one trial are attributable to the “luck of the draw” in assigning subjects
to treatment and control groups. The alternative hypotheses (H,) to the null hy-
pothesis are that one particular mean will be greater than the other (called a one-
tailed test) or that the two means will be different, but the researcher cannot say a
priori which will be greater (called a two-tailed test). The researcher can specify
either of the two alternative hypotheses.
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Section 8 / T-est: Testing Differences between Two Means
- i d to de-
When the data have been collected, a procedure called tht‘s t tl;:s;rl\s“al‘\dsci:g 1o de-
ine the probability that the difference in the means that is obs: e réater o
tcrmﬂ; The lower the likelihood that the difference is duf: to chancg, trcaglmem the
dll(arlli;(;od that the difference is due to there being real differences in
like!

t-test.
trol. The following example demonstrates a SAS program that performs at-tes
. conl 3

. 1 . i T ( he times are
dminister Bd) Their response times to a stimulus is then measul ed. The t
18 a .

as follows:
Control Treatment
(response time in millisec) -
80 100
93 103
83 104
89 99
98 102

Do the treatment scores come from a population whose mean 1’? c[i{ffel;elr(ucgrlzlxi
the mean of the population from which the control g(éoges “;r}cl dra:;] .of \ }?:;e calen
1 group is 88.6, and the mx
i s that the mean of the control group ent
o f: ?:)Vl 6. You may recall the discussion in Chapter 2 about the litantdar(;i a;;rgnm
group ean Wh;m we use a sample to estimate the population mean, 4 ? s a:s d ermor
thfethm meén reflects how accurately we can esimate the population mz‘:)ra m{r u vl
(s)ee \:hen we write a SAS program to analyze this expenment,tthe sm;tan‘ ! 93e or of the
i f the treatment me: 93. b
is 3.26, and the standard error o he
CO:;?;:T? 8 units apart, even if each mean is severa? standa;d errors ;:31):3 l’from
n ulation mean, they would still be significantly different from ea.(; o 111.15 et
e p'I?lfere are some assumptions that should be met befotr)e we can‘hpg y s jest
i dent. This is ensured by our metho
i e two groups must be indepen t.Th | ndom
Flrs'[yx:rhnen‘: Sgecon[c)i the theoretical distribution of sgmplmg_ means shouladng Dot
35211% distri.buted (I;liS is ensured if the sample size is SUfﬁC‘en%}; }a;‘gi)glssumpﬁm{
?ille \?lariances of the two groups should be appmmmalglif’ e?;:lS.Asxss yﬁem o
i ime a t-test is computed by .
i d automatically each time a t-test is co SA
1tslce};t‘:cokl‘latput contains t-values and probabilities for both [tlhc <::1set ofL eqk:.::lhgr (hl;
; i We will see later how to test w
ijances and unequal group variances. W r ihe
;:;a;lrce normally ccilistributed. Finally, when the t-test assumptions ar¢ ngi;::l; o
other procedures that can be used; these are demonstrated later in chapier
e It’s (i:le now to write a program to describe our dgta and to request a e Th ¢
know which group each person belongs to and what his or her response time 1s.

program can thus be written as follows:

: A RESPONSE;
Dmmmrr GROUP § TIME;
' DATALINES;

c 80

c 93
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variances are unequal due to chance. If this probability is small (say less than .05)

[Continued] . . . .
then we are going to reject the hypothesis that the variances are equal. We then use
C 83 the t-value and probability labeled Unequal. If the PROB>F’ value is greater than
c 89 05, we use the t-value and probability for equal variances.
c 98 In this example, we look at the end, the t-test output, and see that the F ratio
710 (larger variance divided by the smaller variance) is 12.40. The probability of obtain-
T 104 ing, by chance alone, a ratio this large or larger is 0.0318. That is, if the two samples
T 99 came from populations with equal variance, there is a small probability (.0318) of
T 102 obtaining a ratio of our sample variances of 12.40 or larger by chance. We should

therefore use the t-value appropriate for groups with unequal variance. The rule of
thumb here is to use the t-value (df) and probability labeled unequal if the proba-
bility from the F-test is less then .05. We point out here that, as with most rules of
thumb, there is a weakness in the rule. That is, when the sample sizes are small, the
test of equal variances has low power and may fail to reject the null hypothesis of
equal variances. This is just the situation where the assumption is most important to
performing a proper t-test. Also, when the sample sizes are large (where the as-
sumptions of equal variance are less important to the t-test), the null hypothesis of
equal variances is frequently rejected.

PROC TTEST DATA=RESPONSE;
TITLE 'T-test Example';
CLASS GROUP;

VAR TIME;

RUN;

" PRQC TTEST uses a CLASS statement to identify the independent variable—
e variable that identifies the two groups of subjects. In our case, the variable
GROUP ha_s values of C (for the control group) and T (for the treatm,em group),
.The varfable or variable list that follows the word VAR identifies the de enlziént
variable(s), in our case, TIME. When more than one dependent variable isliisled
separate t-test is computed for each dependent variable in the list '
Look at the TTEST output below: .

C. Random Assignment of Subjects

In our discussion of t-tests, we said that we randomly assigned subjects to either a treat-
ment or control group. This is actually a very important step in our experiment and we
can use SAS software to provide us with a method for making the assignments.

We could take our volunteers one by one, flip a coin, and decide to place all the
“heads” in our treatment group and the “tails” in our control group. This is accept-
able, but we would prefer a method that ensures an equal number of subjects in each
group. One method would be to place all the subjects’ names in a hat, mix them up,
and pull out half the names for treatment subjects and the others for controls. This is
essentially what we will do in our SAS program. The key to the program is the SAS
random number function.

The function RANUNI(seed) will generate a pseudorandom number in the in-
terval from O to 1. The argument of this function, called a seed, can either be a zero
or a number of your choice. A zero seed specifies that the random number function
use the time clock to generate a random seed to initiate the random number se-
quence. If you use a zero seed, you will obtain a different series of random numbers
every time the program is run (unless you run the program at EXACTLY the same
time every day). You may want to supply your own seed instead. It can be any num-
ber you wish. Each time you run the program with your own seed, you will generate
the same series of random numbers, which is sometimes desirable. You will have to
decide whether to supply your own seed or use the time clock.

We will create a SAS data set with our subjects’ names (or we could use subject
numbers instead) and assign a random number to each subject. We can then split the
group in half (or in any number of subgroups) using a special feature of PROC
RANK. Here is the program:

T-test Example
TTEST PROCEDURE

Variable: TIME

88.60000000 7.30068430 3.26496554
101.60000000 2.07364414 0.92736185

Unequal -3.8302
Equal -3.8302

For HO: Variances are equal, F’ = 12.40 DF (4,4) Prob>F’ = 0.0318

) We see the mean value of TIME for the contri
with the standard deviation and standard €rror. Belgivattiist;f: lxznste%: f;‘[ﬁ;:;()ﬂg
degree_s of freedom, and probabilities. One is valid if we have equal variances, 1:;5’
other if we have unequal variances. You will usually find these values ve: (:Ylose
unless the variances differ widely. The bottom line gives us the probability gat th:

: _—_— _
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PROC FORMAT;

& VALUE GRPFMT 0='CONTROL' 1='TREATMENT':
UN; ’

DATA RANDOM;
INPUT SUBJ NAME $20.;
GROUP=RANUNI (0) ;
DATALINES;
1 coby
2 SMITH
3 HELM
4 GREGORY
(more data lines)

PROC RANK DATA=RANDOM GROU.

P8=2 OUT=
VAR GROUP; SPLIT;
RUN;

PROC SORT DATA=SPLIT;
BY NAME;
RUN;

PROC PRINT DATA=SPLIT;
TITLE ‘Subject Group Assignme; M
ID NAME; neets
VAR SUBJ GROUP;
FORMAT GROUP GRPFMT.;

RUN;

The key to this pro; i i i
gram is the RANUNI function, which assigns
:;x:bf; fro:; 0 to 1 to each subject. The GROUPS=2 option of PR(%CSI:;:E%T
S the subjects into two groups (0 and 1) dependin; the val \
variable GROUP. Values below the mediz o Those at o above the o
4 an become 0; those at or above th. i
;);g])qn}e" 1. The C;RPFMT format assigns the labels “CONTROL” a\rlld “?I‘E]eiil;;‘n
) using values of 0 and 1, respectively. We can use this i .
| s A program to ass
subjects to any number of groups by changing the “GROUPS:E option of %l[;guCr

RANK to indicate the desi i
i b e red number of groups. Sample output from this program

—
Subject Group Assignments
NAME 8UBJ GROUP
CoDY 1 CONTROL
GREGORY 4 CONTROL
HELM 3 TREATMENT
SMITH 2 TREATMENT
(more names and groups)
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Although this may seem like a lot of work just to make random assignments of
subjects, we recommend that this or an equivalent procedure be used for assigning
subjects to groups. Other methods such as assigning every other person to the treat-
ment group can result in unsuspected bias.

D. Two Independent Samples: Distribution Free Tests

There are times when the assumptions for using a t-test are not met. One common
problem is that the data are not normally distributed, and your sample size is small.
For example, suppose we collected the following numbers in a psychology experi-
ment that measured the response to a stimulus: )

06057694807 056600
A frequency distribution would look like this:

x
x

x x

x x

x AXX

X XAXXXX
0123456789

What we are seeing is probably due to a threshold effect. The response is either 0
(the stimulus is not detected) or, once the stimulus is detected, the average response is
about 6. Data of this sort would artificially inflate the standard deviation (and thus the
standard error) of the sample and make the t-test more conservative. However, we
would be safer to use a nonparametric test (a test that does not assume a normal dis-
tribution of data).

Another common problem is that the data values may only represent ordered
categories. Scales such as 1 = very mild,2 = mild, 3 = moderate, 4 =strong, 5 = severe
reflect the strength of a response, but we cannot say that a score of 4 (strong) is
worth twice the score of 2 (mild). Scales like these are referred to as ordinal scales.
(Most of the scales we have been using until now have been interval or ratio scales.)
We need a nonparametric test to analyze differences in central tendencies for ordi-
nal data. Finally, for very small samples, nonparametric tests are often more appro-
priate since assumptions concerning distributions are difficult to determine.

SAS software provides us with several nonparametric two-sample tests. Among
these are the Wilcoxon rank-sum test (equivalent to the Mann-Whitney U-test) for
two samples.

Consider the following experiment. We have twogroups,A and B.Group B has been
treated with a drug to prevent tumor formation. Both groups are exposed to a chemical
that encourages tumor growth. The masses (in grams) of tumors in groups A and B are

A: 3.1 2.21.7 2.7 2.5
B: 0.0 0.0 1.0 2.3
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Are there any differences in tumor mass between groups A and B? We will
choose a nonparametric test for this experiment because of the absence of a normal
distribution and the small sample sizes involved. The Wilcoxon test first puts all the
data (groups A and B) in increasing order (with special provisions for ties), retain-
ing the group identity. In our experiment we have

MASS 0.0 0.0 1.0 1.7 2.2 2.3 2.5 2.7 3.1
GROUP B B B A A B A A A
RANK 1.5 1.5 3 4 5 6 7 8 9

The sums of ranks for the A’s and B’s are then computed. We have

SUM RANKS A = 4+5+7+8+9 = 33
SUM RANKS B = 1.5+1.5+3+6 = 12

If there were smaller tumors in group B, we would expect the B’s to be at the
lower end of the rank ordering and therefore have a smaller sum of ranks than the
A’s. Is the sum of ranks for group A sufficiently larger than the sum of ranks for
group B so that the probability of the difference occurring by chance alone is small
(less than .05)? The Wilcoxon test gives us the probability that the difference in rank
sums that we obtained occurred by chance.

For even moderate sample sizes, the Wilcoxon test is almost as powerful as its
parametric equivalent, the t-test. Thus, if there is a question concerning distributions
or if the data are really ordinal, you should not hesitate to use the Wilcoxon test in-
stead of the t-test.

The program to analyze this experiment using the Wilcoxon test is shown below:

DATA TUMOR;

INPUT GROUP § MASS @@;
DATALINES;
A 3.1A2.221.722.7A2.5
B 0.0B 0.0B1.0B 2.3
P!

ROC NPARIWAY DATA=TUMOR WILCOXON; .
TITLE 'Nonparametric Test to Compare Tumor Masses';
CLASS GROUP; : s
VAR MASS;
EXACT WILCOXON;

RUN;

First, we have introduced a new feature on the INPUT statement. Normally,
when a SAS program has finished reading an observation, it goes to a new line of
data for the next observation. The two ‘@’ signs at the end of the INPUT statement
instruct the program to “hold the line” and not automatically go to a new line of data
for the next observation. This way, we can put data from several observations on one
line. By the way, a single @ sign will hold the line for another INPUT statement but
goes to the next line of data when the DATALINES statement is encountered. See
Chapter 12 for more details on the use of single and double trailing @ signs.
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PROC NPAR1WAY performs the nonparametric tests. The options WILCOXO:I

d MEDIAN request these particular tests. The CLASS and VAR statemertu:dad i

fr‘;emical to the CLASS and VAR statements of the t-test procedure. A ref:cep &

l(ion to the NPAR1IWAY procedure is the EXACT statementti..I_nclutslcix}ll of this ;1; ;C

2 te exact p-values (in addition to the asymp

ment causes the program to compu L o 1 e s ox.
imati lly computed) for the tests listed after .

D e requested o jons for the Wilcoxon Rank Sum Test.
we requested exact p-value computations :

%gépslﬁ’ggest tgat you include the EXACT statement when you have relatively small

le sizes. .
samg‘he output from the NPARTWAY procedure follows:

Nonparametric Test to Compare Tumor Masses
NPARIWAY PROCEDURE

Wilcoxon Scores (Rank Sums) for Variable MASS
Classified by Variable GROUP

Sum of Expected 8td Dev Me:n
GROUP N Scores Under HO Under HO Score
6.60000000
.0 25.0 4.06543697
; i i;o 20.0 4.06543697 3.00000000

Average Scores Were Used for Ties
Wilcoxon 2-Sample Test 8 = 12.0000
Exact P-Values
(One-sided) Prob <= 8§ = 0.02;;
(Two-sided) Prob >= |8 - Mean| = 0.0

Normal Approximation (with Continuity Correction of .5)
Z = -1.84482 Prob > [Z| = 0.0651

P-Test Approx. Significance = 0.1023

Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 3.8723 DF = 1 Prob > CHISQ = 0.0491

11 as their expected val-

The sum of ranks for groups A and B are shown, as well as -

ues. The exact two-tailed p-value for this test is .0635 which is quite close to the Nor
mal Approximation value of .0651.

E. One-tailed versus Two-tailed Tests
When we conduct an experiment like the tumor example of Section D, we have a

choice for stating the alternate hypothesis. In our example, the n'ull hypothes?s ?s tg::
the mass of tumors is the same for groups A and B.The alternative hypothesis is
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groups A and B are not the same, We would reject the null hypothesis if A > B or
B > A. This type of hypothesis requires a two-tailed test. If we were using a t-test,
we would have to consider absolute values of t greater than the critical value. If our
alpha level is .05, then we have .025 from each tail of the t-distribution.

In some research studies, the researcher has a reasonable expectation of the
results. If we are confirming the results of a previous positive drug study we may
have an expectation that the drug will perform better than a placebo. If we are
testing whether people prefer blue widgets to red widgets, then we probably do
not have an expectation either way. Whenever a directional alternative hypothesis
(e.g,B > A) can be justified from the substantive issues in the study, then a one-
tailed test can be used. With a one-tailed test, the 5% of the curve associated with
the .05 alpha level can all be located in one tail, which increases the power of the
study (i.e., makes it more likely of finding a significant difference if, in fdct, one ex-
ists). If our tumor example had been stated ags a one-tailed test, we could have di-
vided the p-value by 2, giving p=.0317 for the Wilcoxon test probability. The
decision to do a one-tailed test should be based on an understanding of the theo-
retical considerations of the study and not as a method of reducing the p-value
below the .05 level.

E  Paired T-tests (Related Samples)

Our t-test example in Section B had subjects randomly assigned to a control or
treatment group. Therefore, the groups could be considered to be independent.

Our regular t-test cannot be used here since the groups are no longer inde-
pendent. A variety of the t-test, referred to as a paired t-test, is used instead. The
differences between the treatment and control times are computed for each sub-
ject. If most of the differences are positive, we suspect that the drug lengthens
reaction time. If most are about zero, the drug has no effect. The paired t-test
computes a mean and standard error of the differences and determines the proba-
bility that the absolute value of the mean difference was greater than zero by
chance alone.

Before we program this problem, it should be mentioned that this would be a
very poor experiment. What if the response time increased because the subjects be-
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i i 1 8 (Repeated
r way to devise experiments to handle this problem in Chapter 8 (Rep
bette: A )
) s 1 j i ditions are
MLasure;]i?ne:ngts t)hat measure the same subject under dl{lfe:‘;nlthgo:mblem o
miyi(r[rjles called repeated measures experimen;[s. ’I‘l;i)érd;)f u?is e oo,
s i ffect the next. How s
: measurement might a . ‘ ! be controled,
sm‘[ed'f:he casier to show treatment effects with smaller samples p
it is m
e : t within the con-
reg“ll?zvle used two independent groups of people, we w?lljl.d ﬁmni trl;a; within the con-
up or the treatment group there would be variation 1 K gu;l))jed Jimes be-
o gmf iidividual differences. However, if we measure the samm;Sc ject under (o
caufie't(')ons, even if that person has much longer or shorter resp.mmc mes than the
0(1)]‘11&: slubjccls the difference between the score/shshould a[g:t(;;; nate the dfference
o ¢ j his/her own ¢
j S h subject acts as hi
r other subjects. Thus, eacl 1 su as his/
. Is some of the natural variation between ‘sub]ecl& it of PROCTTEST We
e sThe SAS system does not include a paired t-test asdp:lh R e ML ANS
: i res ourselves and the
i to compute the difference sco selves a . OC MEAN
Wl”:;;i[g the pﬁobability that the difference is significantly differen
toc

Our data are arranged like this:

Subject Control Value Treatment Value

1 90 95
2 87 92
3 100 104
4 80 89
5 95 101
6 90 105

The program is written as follows:

DATA PAIRED;
INPUT CTIME TTIME;
DIFF = TTIME - CTIME;

;ROC MEANS DATA=PAIRED N MEAN S'.'L'I.)‘ERR T PRT;
TITLE ‘Paired T-test Example';

; VAR DIFF;

‘. RUNj

The variabl es ( E and TTIME were chosen to represent the response
able names CTIM
J ICSPecmely For each observation, we
times in the control and treatment conditions
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are calculating the difference between t
a new variable called DIFF.

PROC MEANS is followed by a lis

he treatment and control times, by creating

t of options. N, MEAN, and STDERR Cause

Paired T-test Example

Analysis Variable : DIFF

Problems

6-1. The following table shows the time for subjects to feel relief from headache pain:

Aspirin Tylenol
(Relief time in minutes)
40 35
42 37
48 42
35 22
62 38
35 29

Write a SAS program to read these data and perform a t-
cantly faster than the other (at the .05 level)?

6-2. Using the same data as for problem 6-1, perform a Wilcoxon rank-sum test. Include a
request for an exact p-value.

test. Is either product signifi-

i

Problems 149

dicati B) works best for
i f two medications (A or
i jects are tested to see which of A e e oo
&3 Elgl‘;t stl::;c]é;ch subject tries each of the two drugs (for two dclgz:nwhm ot o
hlfj t?:\c span to pain relief is measured. Ignonnhg arl}?:geiaelow i,"e e ann
N : i is faster than the other?
ou use to test if one drug is ! r Bl
:jvotl;lc\iﬂyrite the SAS statements to run the appropriate analysis.
ata:

Subject DmgA  DrugB

1 20 18
2 40 36
3 30 30
4 45 46 -
5 19 i5
6 27 2
7 k7] 29
8 26 25

i tment groups.
ign 30 patients to one of three trea :
ts to randomly assign 30 p: ! . e nesion
R l‘eseali;{hef :]:sn a unique subject number (SUBJ). \'Nr‘ue a SAE_ pcrt(;gand a——
. subj'ects to a treatment group and produce a listing of subje:
these subjects ¢
subject order (ascending).

6-5. What's wrong with this program?

0031070156090
0042080140080
0052088180092
0062098178094

P

r’aoc . j@ARIWAY DATA= DRUGSTDY WILCOXON IFD
“"WITLE ‘MY DRUG STUDY': S
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A. Introduction

B. One-way Analysis of Variance

We h i i
moreatzz :xtlalyzed exp?enmcnts Wflh two groups using a t-test, Now, what if we have
Wo groups? Take the situation where we have three treatment groups: A

B,an - It was once the pr =
as practice t 1gn,
dC.1 th t O use t-tests with this des; gn, comparing A with B,
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difference by chance alone is .64.) The more comparisons that are made, the greater
the likelihood of finding a pair of means significantly different by chance alone.

The method used today for comparisons of three or more groups is called analy-
sis of variance (ANOVA). This method has the advantage of testing whether there
are any differences between the groups with a single probability associated with the
test. The hypothesis tested is that all groups have the same mean. Before we present
an example, note that there are several assumptions that should be met before an
analysis of variance is used.

Essentially, the same assumptions for a t-test need to be met when conducting
an ANOVA. That is, we must have independence between groups (unless a repeated
measures design is used); the sampling distributions of sample means must be nor-
mally distributed; and the groups should come from populations with equal vari-
ances (called homogeneity of variance).

The analysis of variance technique is said to be “robust,” a term used by statisti-
cians which means that the assumptions can be violated somewhat, but the tech-
nique can still be used. So, if the distributions are not perfectly normal or if the
variances are unequal, we may still use analysis of variance. The judgment of how se-
rious a violation to permit is subjective, and, if in doubt, see your local statistician.
(Winer has an excellent discussion of the effect of homogeneity of variance viola-
tions and the use of analysis of variance.) Balanced designs (those with the same
number of subjects under each of the experimental conditions) are preferred to un-
balanced designs, especially when the group variances are unequal.

Consider the following experiment:

We randomly assign 15 subjects to three treatment groups X,Y,and Z (with five
subjects per treatment). Each of the three groups has received a different method of
speed-reading instruction. A reading test is given, and the number of words per
minute is recorded for each subject. The following data are collected:

XY oz
700 480 500
850 460 550

820 500 480
640 570 600
920 580 610

The null hypothesis is that mean (X) = mean (Y) = mean (Z). The alternative
hypothesis is that the means are not all equal. The means of groups X, Y, and Z are
786, 518, and 548, respectively. How do we know if the means obtained are different
because of differences in the reading programs or because of random sampling
error? By chance, the five subjects we choose for group X might be faster readers
than those chosen for groups Y and Z.

In our example, the mean reading speed of all 15 subjects (called the GRAND
MEAN) is 617.33. Now, we normally think of a subject’s score as whatever it hap-
pens to be, 580 is 580. But we could also think of 580 as being 37.33 points lower than
the grand mean.

We might now ask the question, “What causes scores to vary from the grand
mean?” In this example, there are two possible sources of variation, the first source




is the training method (X.Y.or Z). 1f X is a far superior method, then we would
expect subjects in X to have higher scores, in general, than subjects in Y or Z, When
we say “higher scores in general” we mean something quite specific. We mean that
being a member of group X causes one’s score to increase by so many points.

The second source of variation is due to the fact that individuals are different.

Therefore, within each group there will be variation. We can think of a formula ¢
represent each person’s score:

The person’s score = The grand mean +  An addition or +  An addition or
subtraction from subtraction de-
the grand mean de- pending on the
pending on which individual’s
group the person variability,
isin,

Now that we have the ideas down, let’s return briefly to the mathematics,

It turns out that the mathematics are simplified if, instead of looking at differences
in scores from the grand mean, we look instead at the square of the differences. The
sum of all the squared deviations is called the total SUM OF SQUARES or, SS, total,

To be sure this is clear, we calculate the total SS in our example. Subtracting the
grand mean (617.33) from each score, squaring the differences (usually called devi-
ations), and adding up all the results, we have:

S8 total = (700 — 617.33 + (850 ~ 617.33)2 + - - - + (610 — 617.33)2,

As mentioned earlier, we can separate the total variation into two parts: one due
to differences in the reading methods (often called SUM OF SQUARES BE-
TWEEN (groups)) and the other due to the normal variations between subjects
(often called the SUM OF SQUARES ERROR). Note that the word ERROR here
is not the same as “mistake.” It simply means that there is variation in the scores that
Wwe cannot attribute to a specific variable. Some statisticians call this RESIDUAL in-
stead of ERROR.

Intuitively, we know that if there is no difference between the group means in
the populations then, on the average, the group means should differ from each other
about as much as the observations differ from each other. In fact, the logical argu-
ment that this is the case is straightforward, but it would take several Ppages to ex-
plain. If we take the “average” sum of squares due to group differences (MEAN
SQUARE between) divided by the “average” sum of squares due to subject differ-
ences (MEAN SQUARE error), the result is called an F ratio:

MS between  SS between/ k-1
F= 1 L\ ) = f
MS error SS error/ (N-k) ’ k = number o groups

If the variation between the groups is large compared to the variation within the
groups, this ratio will be larger than 1. If the null hypothesis is true, the expected
value for the two mean squares will be equal, and the F statistic will be equal to 1.00.
Just how far away from 1.00 is too far away Lo be attributable to chance is a function
of the number of groups and the number of subjects in each group. SAS analysis of
variance procedures will give us the F ratio and the probability of obtaining a value
of F this large or larger by chance alone, when the null hypothesis is true.

The following box contains a more detailed explanation of how an F ratio is
computed. (If you prefer, you may wish to skip the box for now.)
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. . .
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€ Nl !
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Between-group Variance
= Within-group Variance - _
i of .0005 of ob
11 be close to 1. In our example, F = 2700/75 = 36.0 with probability
ill be clos . .
:‘a’xlining a ratio this large or larger by chance alone.

e

i ing- ta):
write the following program (using our reading-speed data)

We can

ING; I

GROUP § WORDS @&; . .
Yeso x 820 X 640

! | ¥ 870
Y 460 Y 500, Y 57
Z 550 Z 480 z )600

=READING;
Aﬁg‘f;siﬂ of Reading Data
s GROUP; f
MODEL WORDS = GROUP;
MEANS GROUP;
RUN;
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Ifyou forgot what the doubie trajlj i
do.chenp o ra_llmg @signs at the end of t
et o z:l;:;e;) 1112 (g((ir Zl;\j %(E)}[ir.latl?n.ilhis style of arranging ?felg;:;} vTals;Ztc.mcm
iy » We're just saving space. One observation pii'slli];?c[
Now, look a i
R f[, rtsh[et ;ierfgalx; (\>Vf the program I{eginning with the statement “PR
(he indepenit variable o ant tolmd.lcate 1s which variable(s) is/are goin o
CLASSEg o var . We do this with a“CLASS” statement. (N g o
quivalent and may also be used.) We are using th;a vac;}:slzhrfatcng
me;

ues. Next, we want to specify what our MO i

i : DEL is for the analysi i

b hgc wordtlll\i gcgagzd?:g ancil independent variables are for {;llss aBna:l‘;siliyi?wﬁ -
Separated by speees w’},én :’r hependenl variable or a list of dependent var19 b0W>
analysis of sprieey ohen eIf ave more than one dependent variable, a se; e
one-way ANGUA ol be pteh ormed on each of them. For the simplcs; anafJ vioa
the indopendon. V,a o Yg e dependent variable(s) is an equal sign followysdls’ y
in- e spendent staleme.mqu must be sure to list any of the independént Vi 'ebby
MEANS GROUS e o ulsn[ ht:fn g;zvxo;.ls CLASS statement. In the nez(rtlalhll:‘
for ea;h level of GROUP, Output from l;?sl;)crgg:;(:se Ssgiint();ariable (WORDS),

ow:

Analysis of Reading Data

Analysis of Vari
ance Pro
Class Level Information cedure

Class Levels Values

GROUP 3 Xyz

Number of observations in data set =15

Analysis of Reading Data

Analysis of Variance Procedure

Dependent Variable: WORDS

Source DF aros raen
Hodes Squares Square
F
podel 2 215613.33 107806.67 ‘1,21‘719' S3003
Corvected 12 77080.00 6423 178 0-0003
ed Total 14 292693.33 -

R-Squar
quare c.v, Root MSE WORDS Mean

0.736653 12.98256 80.146 6
. 17.33
Source
DF Anova SSMean
Square F Value
GROUP o
2 215613.33 107806.67 16.78 0.0003
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—
[Continued]

Analysis of Reading Data

Analysis of Variance Procedure

Level of ------------ WORDS-----~-----~
GROUP N Mean SD
b4 5 786.000000 113.929803
E Y 5 518.000000 54.037024
Z 5 548.000000 58.051701 J
2 I—

The output begins by recapitulating the details of the analysis. This is particu-
larly helpful if you are running a number of ANOVA's at the same time. Pay atten-
tion to the levels of each CLASS variable to be sure that there are no data errors,

. resulting in extraneous levels of one or more CLASS variables. Then we are given

the number of cases (observations) in the data set and the name of the dependent
variable.
Next comes the stuff of the analysis. There are usually two sections here: an
analysis for the MODEL as a whole and a breakdown according to the contribution
of each independent variable. Where the ANOVA only has one independent vari-
able (a “one-way ANOVA”) these two sections are quite similar. Let’s look at the
top section first. We see the terms “Source,” “DF,” “Sum of Squares,”“Mean Square,”
“F Value,” and “Pr > F = .” Source tells us what aspect of the analysis we are con-
sidering. We have “Model,” “Error,” and “Corrected Total” as categories here. Model
means all of the independent variables and their interactions added together. Error
means the residual variation after the Model variation has been removed. In our
one-way ANOVA, we have only GROUP to consider. It has two degrees of freedom
(DF). The sum of squares is 215613.33. The mean square (SS/DF) is 107806.67. The
next row contains the same information for the error term. In the third line we see
the DF and SUM OF SQUARES for the CORRECTED TOTAL (which just means
the total sum of squares about the grand mean). To the right, we find the F statistic
and the probability of it having occurred by chance. Below this is the R-SQUARE
for the Model, the coefficient of variation (C.V.) and the mean and standard devia-

tion for the dependent variable.
The next section uses the same terms described above only now each indepen-

dent variable or interaction s listed separately. Since we only have one independent
variable, the results look identical to the ones above. In this example, we would
therefore reject the null hypothesis since our F (with 2 and 12 degrees of freedom)
is 16.78 and the p-value is .0003 and conclude that the reading instruction methods
were not all equivalent.

Now that we know the reading methods are different, we want to know what the
differences are. Is X better than Y or Z?2 Are the means of groups Y and Z so close
that we cannot consider them different? In general, methods used to find group dif-
ferences after the null hypothesis has been rejected are called post hoc, or multiple
comparison tests. SAS software provides us with a variety of these tests to investi-
gate differences between levels of our independent variable. These include Duncan’s
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multiple-range test, the Student-Newman-Keuls’ multiple-range test, least
significant-difference test, Tukey’s studentized range test, Scheffe’s multiple-com-
parison procedure, and others. To request a post hoc test, place the SAS option name
for the test you want, following a slash (/) on the MEANS statement. The SAS names
for the post hoc tests previously listed are DUNCAN, SNK, LSD, TUKEY, and
SCHEFFE, respectively. In practice, it is easier to include the request for a multiple-
comparison test at the same time we request the analysis of variance. If the analysis
of variance is not significant, WE SHOULD NOT LOOK FURTHER AT THE
POST HOCTEST RESULTS. (This is our advice. Some statisticians may not agree,
especially when certain post hoc tests are used.) Our examples will use Duncan’s
multiple-range test for post hoc comparisons. You may use any of the available meth-
ods in the same manner. Winer (see Chapter 1) is an excellent reference for analysis

of variance and experimental design. A discussion of most of these post hoc tests can
be found there.

For our example we have:
MEANS GROUP / DUNCAN;

Unless we specify otherwise, the differences between groups are evaluated at
the .05 level. Alpha levels of .1 or .01 may be specified by following the post hoc op-
tion name with ALPHA =.1 or ALPHA = 01. For example, to specify an alpha level
of .1 for a Scheffe test, we would have

MEANS GROUP / SCHEFFE ALPHA=.1;

Here is the output from the Duncan procedure in our example:

Analysis of Reading Data
Analysis of Variance Procedure
Duncan’s Multiple Range Test for variable: WORDS

NOTE: This test controls the type I comparisonwise error rate,
not the experimentwise error rate

Alpha= 0.05 df= 12 MSE= 6423.333
Number of Means 2 3
Critical Range 110.4 115.6

Means with the same letter are not significantly different.

Duncan Grouping Mean N GROUP
A 786.00 5 X
B 548.00 5 z
B
B 518.00 5 Y
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isti i hod to show group differences:
he listing above uses the following met . [

rIOnelhe rigght are the group identifications. The order is delcrmxfcd b},l thsz} groupf

means, from highest to lowest. At the far left is a column labeled ﬂ?um;;nhavr:?}?e
Lo . W
ing.” g hat are not significantly different from one another
i the s 1 le, the Y and Z groups both have
in the Grouping column. In our example, BrouF |
samf :fie‘grin the GRE)UgPING column and are therefprc not mgm{icamly dlffell'-
th(: ;he letter ‘B’ between GROUP Z and GROUP Y is .there for visual efflect.l t
enl- us realize that groups Y and Z are not significantly dlfferc'em'(at the .05_ evel).
’(l;:OPISIP X has an A in the grouping column and is therefore significantly different
T

(p < .05) from the Y and Z groups.

From this Duncan’s test we conclude that

1. Method X is superior to both methods Y and Z.
2. Methods Y and Z are not significantly different.

How would we describe the statistics used and the results of this experiment 12
a journal article? Although there is no “standard” format, we suggest one approac
here. The key is clarity. Here is our suggestion:

Method. We compared three reading methods: (1) SmitAh’s Speec!-Readmg
Course, (2) Standard Method, and (3) Evelyn Tree’s Institute. Fxft§en sub}ec.ts.were
randon;ly assigned to one of the three methods. At the conclusion of training, a

standard reading test (Cody Count the Words Test version 2.1) was administered.

Results. The mean reading speed for the three methods is

Method Reading Speed
(words per minute)

1. Smith’s 786

2. Standard 518

3. Tree’s 548

A one-way analysis of variance was performed. The F-value wasé&ﬁéd}i e—ch(;dI%;
p = .0003). A Duncan multiple-range test (p = .05) shows tha_; i e
significantly superior to either Tree’s or the Standard method. re% 5s lan |
dard method are not significantly different from each other. at the .| .cbvrij - ords
The results of the Duncan multiple-range test can readily be déscrl b : k‘m wsu!ts
when there are only three groups. With four or more groups, especna!ly if't Elise ol ;,
are complicated, we can use another method. Consider tAhe following res
Duncan test on an experiment with four treatment groups:

Grouping Mean N Group
A 8 10 1
A
AB 75 10 3
B
B 72 10 2
C 60 10 4
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L3 To begin, notice that the
»3,2, and 4. We see that groups 1 and 3 are not sj

Finally, group 4 is signi
can describe these resu

Group
1 3 2 4
Mean 80 75 72 60

Duncan multiple-range test example

Any two grou wi o1
ps with a comm underscore are i T
( < ) are not mgniﬁcantly different
A final pOSSibility is to sim

) : Iy put . -
eroup 4 5 Gitoremt o ply put the findings within the text of the article; e.g.,

»and 3; group 1 is different from group 2.’

C. Computing Contrasts

Now back to our reading example. Suppose

;xPerimem, that you want to make some 5|

% 1s anew method and methods Y and Z,
cide to compare
difference betw

you decide, before you i

¢ de, perform this
pecific comparisons. For example,if method
are more traditional methods, you may de-

method X to the mean of method Y and e Se €IS
nd method Z to see if ther a

parisons. Not ,
Moo erroreatsh;(t) ll};le use _Of CONTBASTS does not give you any protection against
r, € various multiple-comparison methods described earlierg "

orto ;;nalyze unbalanced designs (See Section G) pute contrasts
cre are the CONTRA. (i
cribog s ST statements for making the planned comparisons de-

For this one-wa

y design, th
CONTRAST o gn, the syntax of a CONTRAST statement is the word

wed by a label for this contrast (placed in quotes), the
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independent (CLASS) variable name and a set of k coefficients (where k is the
number of levels of the class variable).

The rules are simple: (1) The sum of the coefficients must add to zero. (2) The
order of the coefficients matches the alphanumeric order of the levels of the CLASS
variable if it is not formatted. If you associated a format with the CLASS variable,
the order is determined by the formatted values (you can override this by specifying
the PROC GLM option, ORDER=DATA, which will order the levels of the CLASS
variable by the data values, not the formatted values). (3) A zero coefficient means
that you do not want to include the corresponding level in the comparison. (4) Lev-
els with negative coefficients are compared to levels with positive coefficients.

The first CONTRAST statement in the prograni above gives you a comparison
of method X against the mean of methods Y and Z.The second CONTRAST state-
ment will only perform a comparison between methods Y and methods Z.

Here is a portion of the output showing the results of the comparisons requested:

Analysis of Reading Data - Planned Comparisons

Contrast DF Contrast SS F Value Pr>F
X VS. Y AND Z 1 213363.333333 33.22 0.0001

METHOD Y VS Z 1 2250.000000 0.35 0.5649

Notice that method X is shown to be significantly different from methods'Y and
Z combined, and there is no difference between methods Y and Z at the .05 level.

D. Analysis of Variance: Two Independent Variables

Suppose we ran the same experiment for comparing reading methods, but using
15 male and 15 female subjects. In addition to comparing reading-instruction meth-
ods, we could compare male versus female reading speeds. Finally, we might want
to see if the effects of the reading methods are the same for males and females.

This experimental design is called a two-way analysis of variance. The “two”
refers to the fact that we have two independent variables: GROUP and GENDER.
We can picture this experiment as follows:

GROuUP
X M z
700 480 500
850 460 550
Male 820 500 480
640 570 600
920 580 610
GENDER
900 590 520
880 540 660
Female 899 560 525
780 570 610
899 555 645
L 1
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This design shows that we have each of the three reading-instruction methods
(specified by the variable GROUP) for each level of GENDER (male/female). De-
signs of this sort are called factorial designs. The combination of GROUP and GEN-
DER is called a cell. For this example, males in group X constitute a cell. In general,
the number of cells in a factorial design would be the number of levels of cach of the
independent variables multiplied together. In this case, three levels of GROUP
times two levels of GENDER equals six cells.

The total sum of squares is now divided or partitioned into four components. We
have the sum of squares due to GROUP differences and the sum of squares due to
GENDER differences. The combination of GROUP and GENDER provides us with
another source of variation (called an interaction), and finally, the remaining sum of
squares is attributed to error. We discuss the interaction term later in this chapter.

Since there are the same number of subjects in each cell, the design is said to be
“balanced” (some statisticians call this “orthogonal”). When we have more than one
independent variable in our model, we cannot use PROC ANOVA if our design is
unbalanced. For unbalanced designs, PROC GLM (general linear model) is used in-
stead. The programming of our balanced design experiment is similar to the one-way
analysis of variance. Here is the program:

CLASS GROUP GENDER;
MODEL WORDS=qRobg [E DER;
... MBANS GROUP | GENDER . DUNCAN;
RUN; : e e

As before, following the word CLASS is a list of independent variables. The ver-
tical line between GROUP and GENDER in the MODEL and MEANS statements
indicates that we have a factorial design (also called a crossed design). If we don’t in-
clude the vertical line, none of the interaction terms will be estimated. Some com-

puter terminals may not have the “| ” symbol on the keyboard. In this case, the term
GROUP | GENDER can be written as

GROUP GENDER GROUP*GENDER

The “| ”symbol is especially useful when we have higher-order factorial designs
such as GROUP | GENDER | DOSE. Written the long way, this would be

GROUP GENDER DOSE GROUP*GENDER GROUP*DOSE
GENDER*DOSE GROUP*GENDER*DOSE

AN — o
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That is, each variable, and every two- and three-way interaction term has to be

fed. ‘
specgiect’s study the output of the previous example carefully to see what conclusions

we can draw about our experiment. The first portion of the output is shown below:

Analysis of Reading Data

Analysis of Variance Procedure
class Level Information

Class Levels Values
GROUP 3 XYZ
GENDER 2 FEMALE MALE

Number of observations in data set =30

Dependent Variable: WORDS

Source DF Sum of Squares F Value Pr>F
Model 5 531436.166667 23.92 0.0001
Error 24 106659.200000
Corrected Total 29 638095.366667
R-Square Cc.v. WORDS Mean
0.832848 10.31264 646.433333
Source DF Anova SS F Value Pr>F
T “ie0d.300000 572 0.02%0
gigggGENDER 2 2816.600000 0.32 0.7314

i ¢ ion” indicates our two independent
t rtion labeled “Class Level Infoﬂnatlor} n
va:ia}}ll:s :rlzdpt(;)e Jevels of each. The analysis of variance table shows. us the;h Su‘l;l;l lc:ef
squares and mean square for the entire model and the error. Note: Depem.img 0:111 }e= vae
of your LINESIZE option, the output may also iscludc mean]l a squaresmodel (,a'Is‘l:s‘:’)l:f; T eiing
il e
3.92) and the probability p = 0001 shows us how wel : \ y
E}Z)e 3ar)iation' aboulJ t the grand mean. This could be very important in certain types():;f i;t:::.
ies where we want to create a general, predictive model. In this casel,{ g&) ax:d m kA
e o o s (SR;)UP’ GF valll::eR;i'clldtlcl;e probability of ob.-
Each source of variation in the table has an b O vor
ini alue of F this large or larger.In our example, the
tzzlml'-lsg s?ynciz:::f:t‘.,(){)()l,and GENDER at .0250. Since there are only two leve]s.of
:E}EeI\;DEgR we do not need the Duncan test to claim that males and females are sig-
nificantly d,ifferent with respect to reading speed (p = .025).
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In a two-way analysis of variance, when we look at GROUP effects, we are com-
paring GROUP levels without regard to GENDER. That is, when the groups are
compared we combine the data from both genders. Conversely, when we compare
males to females, we combine data from the three treatment groups.

The term GROUP*GENDER is called an interaction term. If group differences
were not the same for males and females, we would have a significant interaction.
For example, if males did better with method A compared to method B, while fe-
males did better with B compared to A, we would expect a significant interaction. In
our example, the interaction between GROUP and GENDER was not significant
(p = .73). (Our next example shows a case where there is a significant interaction.)

The portion of the output resulting from the “MEANS GROUP | GENDER /
DUNCAN” request is shown next:

Analysis of Variance Procedure
Duncan’s Multiple Range Test for variable: WORDS

NOTE: This test controls the type I comparisonwise error rate,
not the experimentwise error rate

Alpha= 0.05 df=24 MSE=4444.133

Number of Means 2 3
Critical Range 61.53 64.63

Means with the same letter are not significantly different.

Duncan Grouping Mean N  GROUP
A 828.80 10 x
B 570.00 10 2z
B
B 540.50 10 v

Duncan’s Multiple Range Test for variable: WORDS

NOTE: This test controls the type I comparisonwise error rate,
not the experimentwise error rate

Alpha= 0.05 af= 24 MSE= 4444.133

Number of Means 2
Critical Range 50.24

Means with the same letter are not significantly different.

Duncan Grouping Mean N GENDER
A 675.53 15 FEMALE
B 617.33 15 MALE
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[Continued]

Level of Level of - -~WORDS---

GROUP GENDER N Mean SD

X FEMALE S 871.600000 51.887378
X MALE 5 786.000000 113.929803
Y FEMALE S 563.000000 18.574176
Y MALE S 518.000000 54.037024
Z FEMALE 5 592.000000 66.011363
Z MALE 5 548.000000 . 58.051701

The first comparison shows group X significantly different (p < .05) fromY and Z.
The second table shows that females have significantly higher reading speeds than
males. We already know this because GENDER is a significant main effect (p = .025),
and there are only two levels of GENDER. Following the two Duncan tests are the
mean reading speeds (and standard deviations) for each combination of GROUP and
GENDER . These values are the means of the six cells in our experimental design.

E. Interpreting Significant Interactions

Now, consider an example that has a significant interaction term. We have two
groups of children. One group is considered normal; the other, hyperactive. (Hyper-
activity is often referred to as attention-deficit hyperactivity disorder, or ADHD; we
simply use the term hyperactive.) Each group of children is randomly divided, with
one-half receiving a placebo and the other a drug called ritalin. A measure of activ-
ity is determined for each of the children, and the following data are collected:

PLACEBO RITALIN

50 67
45 60
NORMAL 55 58
52 65
70 st
HYPERACTIVE 7 57
68 48
75 55

We name the variables in this study GROUP (NORMAL or HYPER), DRUG
(PLACEBO or RITALIN), and ACTIVITY (activity score). Since the design is bal-
anced (same number of subjects per cell), we can use PROC ANOVA. The DATA
step and PROC statements are written like this:

DATA RITALIN;
DO GROUP = 'NORMAL', 'HYPER ';
DO DRUG = 'PLACEBO’, 'RITALIN';
DO SUBJ =1 TO 4;
INPUT ACTIVITY @;
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[Continuved]
OUTPUT;
END;
END;
END;
DATALINES;

50 45 55 52 67 60 58 65 70 72 68 75 51 57 48 55

i

PROC ANOVA DATA=RITALIN;
TITLE 'Activity Study';
CLASS GROUP DRUG;
MODEL ACTIVITY=GROUP | DRUG;
MEANS GROUP | DRUG;

RUN;

Before discussing the ANOVA results, let us precede that with a few words
about the DATA step above. One way to read the data values is a straightforward
INPUT DRUG $ GROUP $§ ACTIVITY; statement. Instead we use nested DO
loops, more as a demonstration of SAS programmming rather than to shorten the
program. Notice two things: One, you can write DO loops in a SAS DATA step with
character values for the loop variable. This is a very useful and powerful feature of
'Lhe language. Second, when we nest DO loops (place one inside the other) the rule
is to complete all the iterations of an inner loop before dropping back to an outer
loop. So, in the example above, we set the value of GROUP to ‘NORMAL’, the
value of DRUG to ‘PLACEBO?’, and then read in four values of ACTIVITY. If you
have trouble understanding this DATA step, you can always resort to the simpler
INPUT statement without loops.

This ANOVA design is another example of a two-way analysis of variance fac-
torial design. The vertical bar between GROUP and DRUG in the MODEL and
MEANS statements indicates that we have a factorial design and GROUP and
DRUG are crossed. Notice that we do not need to request a multiple-comparison
test since there are only two levels of each independent variable.

A portion of the output is shown below:

Activity Study

Analysis of Variance Procedure

Source DF Anova S§ F value Pr>F
GROUP 1 121.00000000 8.00 0.0152
DRUG 1 42.25000000 2.79 0.1205
GROUP*DRUG 1 930.25000000 61.50 0.0001

The first thing to notice is that there is a strong GROUP*DRUG interaction
term (p = .0001). When this occurs, we must be careful about interpreting any of the
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main effects (GROUP and DRUG in our example). That is, we must first understand
the nature of the interactions before we examine main effects.

By looking more closely at the interaction between GROUP and DRUG, we see
why the main effects shown in the analysis of variance table can be misleading. The
best way of explaining a two-way interaction is to take the cell means and plot them.
These means can be found in the portion of the output from the MEANS request.
The portion of the output containing the cell means is shown below:

Level of Level of = -------- ACTIVITY --—-----
GROUP DRUG N Mean SD

HYPER PLACEBO 4 71.2500000 2.98607881
HYPER RITALIN 4 52.7500000 4.03112887
NORMAL PLACEBO 4 50.5000000 4.20317340
NORMAL RITALIN 4 62.5000000 4.20317340

We can use this set of means to plot an interaction graph. We choose one of the
independent variables (we choose DRUG) to go on the x-axis and then plot means
for each level of the other independent variable (GROUP). We can either do this by
hand or have SAS plot it for us. To have SAS plot the interaction graph, we first have
to use PROC MEANS to create a data set containing the cell means. The SAS state-
ments to create a data set of cell means is shown next:

PROC MEANS DATA=RITALIN NWAY NOPRINT;
CLASS GROUP DRUG;
VAR ACTIVITY;
OUTPUT OUT=MEANS MEAN=;

RUN;

Notice that we use GROUP and DRUG as CLASS variables and the NWAY
option of PROC MEANS since this will restrict the output data set to the highest
order interaction (the cell means). Next, we use PROC PLOT to plot the interaction
graph. We can choose to place either of the independent variables on the x-axis and
plot a separate graph for each level of the other independent variable. We choose
DRUG to be the x-axis variable and plot a separate graph for each level of GROUP.
A shortcut, using the values of GROUP as the plotting symbol, make the SAS state-
ments simple. We write:

PROC PLOT DATA=MEANS;
PLOT ACTIVITY*DRUG=GROUP;
RUN;

The resulting graph is shown below:
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_
Plot of ACTIVITY*DRUG. Symbol is value of GROUP.

80

70

ACTIVITY

H

PLACEBO RITALIN
DRUG

To begin, most interaction plots would include straight lines connecting the nor-
mal groups and the hyperactive groups. However, unless we use more sophisticated
programs like SAS Graph®, we have to draw in the lines by hand.

) The graph shows that normal children increase their activity when given ritalin
whl.le hyperactive children are calmed by ritalin. In the analysis of variance, the com:
parison of placebo to ritalin values is done by combining the data from nc;rmal and
Qy;x:rac}twe children. Since these values tend to cancel each other the average ac-
_tlvny with _placebo and ritalin is about the same. What we have fouixd here is that it
is not poss'lb]e to understand the activity level of children just by knowing whether
th.ey had ritalin. One must also know whether they are hyperactive. This is why it is
critical to understand the interaction before looking at main effects. If we really
want 1o study the effect of ritalin, we should look separately at normal and hyperac-
tive children. For each of these groups we have two levels of the DRUG. We can
therefore do a t-test between placebo and ritalin within the normal and hyperactive
groups. As we know from Chapter 6, this is accomplished by first sorting the data set
by GROUP and then including a BY variable in the t-test request. We have:

Activity Study
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The output from these statements is shown below:

TTEST PROCEDURE

GROUP=HYPER* Ak k ke ke kk ke ke k ke ko ke h kA kA kR AR kAR b bk AR AR A Ak Ak k

variable: ACTIVITY

DRUG N Mean std Dev Std Error

PLACEBO 4 71.25000000 2.98607881 1.49303941
RITALIN 4 52.75000000 4.03112887 2.01556444

variances T DF Prob>| T |

Unequal 7.3755 5.5 0.0005
Equal 7.3755 6.0 0.0003

For HO: Variances are equal, F’ =1.82 DF = (3,3) Prob>F’ = 0.6343

GROUP=NORMAT* * %4 ¥k ks k ok ko bk ok d ok Ak Ak kR kR Rk Rk kAR Rk kR kb

Variable: ACTIVITY

DRUG N Mean Std Dev std Error

PLACEBO 4 50.50000000 4.20317340 2.10158670
RITALIN 4 62.50000000 4.20317340 2.10158670

Variances T DF Prob>| T |

Unequal -4.0376 6.0 0.0068
Equal -4.0376 6.0 0.0068

For HO: Variances are equal, F’=1.00 DF=(3,3) Prob>F’/=1.0000

Notice that in both groups the two drug means are significantly different
(p < .05). However, in the normal group, the ritalin mean is higher than the placebo
mean, while in the hyperactive group the reverse is true. So, watch out for those
interactions!

An alternative to the t-tests above is to break down the two-way ANOVA into
a one-way ANOVA by creating an independent (CLASS) variable that has a level
for each combination of the original independent variables. In our case, we create a
variable (let’s call it COND) that has a level for each combination of DRUG and
GROUP. Thus, we have NORMAL-PLACEBO, NORMAL-RITALIN,
HYPER-PLACEBO, and HYPER-RITALIN as levels of our COND variable. A
quick and easy way to create this variable is to concatenate (join) the two
original independent variables. This will be performed directly for character
variables. In the case of numeric variables, SAS software will convert them to
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zZ::‘;lcitsire :nqtie:}form the concatenation. In the SAS system, concatenation is ac-
Shed wi ¢ concatenation operator, | | . To create the COND vari
add a single line to our data step like this: | veriaple. we

COND = GROUP || DRUG;

This line creates a new variable (COND) which has four
TA?]CEBO, HYPER RITALIN, NORMAL )PLACEBO, and vlfllél)‘:{sh/gizpﬁ?
COMII;I). We can remove lhe' extra spaces between the words if we wish, using the
RESS or TRIM functions described in Chapter 18, but let’s leave it alone for
now. We simply have a one-way design with the single factor (COND) having four
levels. The SAS statements to produce the one-way ANOVA are: ¢

PROC ANOVA DATA=RITALIN;
TITLE 'One-way ANOVA Ritalin Study';
CLASS COND; v
MODEL ACTIVITY = COND;

MEANS COND / DUNCAN;

RUN;

The resuits of running this procedure are:

Class Level Information

Class Levels Values

COND 4 HYPER PLACEBO HYPER RITALIN
NORMAL PLACEBO NORMAL RITALIN

Number of observations in data set = 16

Dependent Variable: ACTIVITY

8¢
ource DF Sum of Squares F Value Pr>F

Model 3 1093.50000000 24.10 0.0001

Error 12 181.50000000

Corrected Total 15 1275.00000000

R-8quare C.vV. ACTIVITY Mean

0.857647 6.5638604 59.25000000

S
ource DF Anova SS F value Pr>F

COND 3 1093.50000000 24.10 0.0001
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[Continued]

Duncan’s Multiple Range Test for variable: ACTIVITY

NOTE: This test controls the type I comparisonwise error rate,
not the experimentwise error rate

Alpha= 0.05 daf= 12 MSE= 15.125

3 4

Number of Means 2
5.9802927 6.2645621 6.4545514

Critical Range

Means with the same letter are not significantly different.

Duncan Grouping Mean N COND
A 71.250 4 HYPER PLACEBO
B 62.500 4 NORMAL RITALIN
c 52.750 4 HYPER RITALIN
g 50.500 4 NORMAL PLACEBO

Notice that this analysis tells us more than the two t-tests. Besides verifying that
PLACEBO is different from RITALIN within each GROUP (NORMAL and
HYPER), we can also see the other pairwise comparisons.

There is another way of comparing the two drugs within each level of GROUP
without using either of the two methods just described. If we run PROC GLM
(general linear model) instead of PROC ANOVA, we can issue two CONTRAST
statements that will make the two within-group comparisons for us. This method is
considered more correct statistically than the two t-tests by some statisticians
since it uses all the data to estimate the error variance. It is, however, equivalent to
the one-way analysis above. We present it here without too much explanation. It is

difficult, and you will need to seek help beyond this book. First, the program:

* PROC GLM DATA=RITALIN;
crLas

The first contrast compares PLACEBO to RITALIN only for the hyperactive
children.The second, only for the normal children.The “real” methodology for writing
these CONTRAST statements is quite complicated. We present a simple algorithm
just for this simple two-way design. The order of the variables in the CLASS statement
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is very imp_onanl. You must also recognize that the order of the levels of each CLASS
variable will be determlped by the formatted values (if a format is provided) or by the
actual raw data values (if a format is not supplied). In this example we have:

GROUP (HYPER - NORMAL) and DRUG (PLACEBO - RITALIN)

Nofe ’that HYPER is listed before NORMAL because, alphabetically, ‘H’ comes
before ‘N’. For each level of GROUP, we list all the levels of DRUG like this:

HYPER-PLACEBO HYPER-RITALIN NORMAL-PLACEBO NORMAL-RITALIN

We pick the firstlevel of GROUP and then list all the levels of DRUG before going
to the next value of GROUP. Now,since we want to compare drugs, we first list DRUG
in the CONTRAST statement as 1 —1. Next, for the interaction term GROUP*
DRUG, we place our 1 and —1 in the locations that we want to compare. Thus, to com-
pare HYPER-PLACEBO to HYPER-RITALIN we code 1 -100.To éompare
NORMAL-PLACEBOto NORMAL-RITALIN we code 001 —1.0K, if this doesn’t
make any sense, go ahead and use one of the two methods we presented earlier or
consult your friendly statistician. Below is the result of running these two contrasts:

Contrast DF Contrast S8 Mean Square F Value brs ¥

Hyperactive only 1  684.5000000  684.5000000 45:26 00001
Normals only 1 288.0000000 288.0000000 15.04 0.0009

We could obtain the identical results if we used a CONTRAST statement in the
one-way model described above where we created a variable (COND) which had
four levels representing all combinations of GROUP and DRUG. We would use
PROC GLM instead of PROC ANOVA and add two CONTRAST statements fol-
lowing the MODEL statement, thus:

PROC GLM DATA=RITALIN;
TITLE ‘'One-way ANOVA Ritalin Study';
CLASS COND;
MODEL ACTIVITY = COND;.
CONTRAST 'Hyperactive Shal [ A T
. CONTRAST 'Normals only J 0 0. 4 w1
RUN; ’

This may be simpler and easier to understand than the CONTRAST statements
for two-way designs. Take your choice.

E  N-way Factorial Designs

The method we used to perform a two-way analysis of variance can be extended to
cover any number of independent variables. An example with three independent
variables (GROUP GENDER DOSE) is shown below (we didn’t actually create a
data set called THREEWAY):
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PROC ANOVA DATA=THREEWAY;
TITLE 'Three~way Analysis of Variance';
CLASS GROUP GENDER DOSE;
MODEL ACTIVITY = GROUP | GENDER | DOSE;
MEANS GROUP | GENDER | DOSE; o
RUN;

With three independent variables, we have three main effects (GROUP GEN-
DER DOSE), three two-way interactions (GROUP*GENDER GROUP*DOSE
GENDER*DOSE), and one three-way interaction (GROUP*GENDER*DOSE).
One usually hopes that the higher-order interactions are not significant since they
complicate the interpretation of the main effects and the lower-order interactions.
(See Winer for a more complete discussion of this topic.)

It clearly becomes difficult to perform factorial design experiments with a large
number of independent variables without expert assistance. The number of subjects
in the experiment also must be large so that there are a reasonable number of
subjects per cell.

G. Unbalanced Designs: PROC GLM

As we mentioned before, designs with an unequal number of subjects per cell are
called unbalanced designs. For all designs that are unbalanced (except for one-way
designs), we cannot use PROC ANOVA; PROC GLM (general linear model) is used
instead. CLASS, MEANS, and MODEL statements for PROC GLM are identical to
those used with PROC ANOVA. The only difference between the procedures is the
mathematical methods used for each and some additional information that is com-
puted when PROC GLM is used. The real differences come in interpreting results.

Here is an example of a two-way analysis of variance that is unbalanced:

A pudding company wants to test-market a new product. Three levels of sweet-
ness and two flavors are produced. Each subject is given a pudding to taste and is
asked to rate the taste on a scale from 1 to 10. The following data are collected:

eetness Level
2 3

© ~3 oo
= v

Vanilla

Sw

1

9

7

8

7

9
Chocolate 9
7
7
8

o N
PN TN

The SAS INPUT statement is written:
INPUT SWEET FLAVOR : $9. RATING;

Since the number of subjects in each cell is unequal, we use PROC GLM.
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PROC GLM DATA=PUDDING;
TITLE 'Pudding Taste Evaluation'® ;
TITLE3 'Two-way ANOVA - Unbalanced Design';
TITLES === oo e . ='7
CLASS SWEET FLAVOR;
MODEL RATING = SWEET | FLAVOR;
MEANS SWEET | FLAVOR;
LSMEANS SWEET | FLAVOR / PDIFF;
RUN;

Notice a new statement, LSMEANS. With unbalanced designs the MEANS
statement will give us unadjusted means, LSMEANS will produce least-square, ad-
justed means for main effects. We added the PDIFF option which computes proba-
bilities for all pairwise differences. These pairwise comparisons are essentially a
series of t-tests and have all the problems of running multiple t-tests.

Portions of the output are shown below-

Pudding Taste Evaluation

Two-way ANOVA - Unbalanced Design
General Linear Models Procedure
Dependent Variable: RATING
Source DF sSum of Squares F value Pr>F
Model 5 39.96666667 9.36 0.0002
Error 18 15.36666667
Corrected Total 23 55.33333333
R-Square C.v. RATING Mean
0.722289 13.52138 6.83333333
Source DF Type I SS F Value Pr>F
SWEET 2 35.85515873 21.00 0.0001
FLAVOR 1 1.33341530 1.56 0.2274
SWEET*FLAVOR 2 2.77809264 1.63 0.2241
Source DF Type III SS F Value Pr>F
SWEET 2 29.77706840 17.44 0.0001
FLAVOR 1 1.56666667 1.84 0.1923
SWEET*FLAVOR 2 2.77809264 1.63 0.2241
Level of = ----------- RATING™~~~~~~--~
SWEET N Mean SD
1 9 7.88888889 0.92796073
2 7 7.42857143 0.78679579

[Continued]

Level of RATING

FLAVOR N Mean sD

Chocolate 14  6.57142857 1.78516475

vanilla 10 7.20000000 1.13529242

Level of Level of RATING .

SWEET FLAVOR N Mean

1 Chocolate 5 §.00000000 1.00000000

1 Vanilla 4 7.75000000 0.95742711

2 Chocolate 4 7.25000000 0.95742711

2 Vanilla 3 7.66666667 0.57735027

3 Chocolate 5 4.60000000 0.89442719

3 Vanilla 3 6.00000000 1.00000000

General Linear Models Procedure

Least Squares Means

SWEET RATING Pr> | T | HO: LSMEAN (i)=LSMEAN(J)
LSMEAN i/3 1 2 3

1 7.87500000 1 . 0.3866 0.0001

2 7.45833333 2 0.3866 . 0.0003

3 5.30000000 3 0.0001 0.0003 .

NOTE: To ensure overall protection level, only probabilities
associated with pre-planned comparisons should be used.

FLAVOR RATING Pr> | T | HO:
LSMEAN LSMEAN1=LSMEAN2

Chocolate 6.61666667 0.1923
Vanilla 7.13888889
SWEET FLAVOR RATING LSMEAN
LSMEAN Number
1 Chocolate 8.00000000 1
1 vanilla 7.75000000 2
2 Chocolate 7.25000000 3
2 vanilla 7.66666667 4
3 Chocolate 4.60000000 S
3 Vanilla 6.00000000 6

Pr> | T | HO: LSMEAN(i)=LSMEAN(J)

/3 1 2 3 4 5 6
. 0.6914 0.2419 0.6273 0.0001 0.0083
0.6914 . 0.4540 0.9073 0.0001 0.0233
0.2419 0.4540 . 0.5622 0.0005 0.0934
0.6273 0.9073 0.5622 . 0.0003 0.0404
0.0001 0.0001 0.0005 0.0003 . 0.0526

3 8 5.12500000 1.12599163
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[Continued]

General Linear Models Procedure
Least Squares Means

Least Squares Means for effect SWEET*FLAVOR

Pr> | T | HO: LSMEAN (i) =LSMEAN(j)
Dependent Variable: RATING
i/3 1 2 3 4 5 6

6 0.0083 0.0233 0.0934 0.0404 0.0526

NOTE: To ensure overall protection level, only probabilities

L associated with pre-planned comparisons should be used.

Notice that there are two sets of values for SUM OF SQUARES, F VALUES,
and probabilities; one labeled TYPE I, the other labeled TYPE IIL. When designs do
not have equal cell sizes, the TYPE I and TYPE III sums of squares may not be equal
for all variables. The difference between TYPE I and TYPE III sum of squares is that
TYPE I lists the sums of squares for each variable as if it were entered one at a time
into the model, in the order they are specified in the MODEL statement. Hence they
can be thought of as incremental sums of squares. If there is any variance that is com-
mon to two or more variables, the variance will be attributed to the variable that is
entered first. This may or may not be desirable. The TYPE III sum of squares gives
the sum of squares that would be obtained for each variable if it were entered last
into the model. That is, the effect of each variable is evaluated after all other factors
have been accounted for. In any given situation, whether you want to look at TYPE |
or TYPE III, sum of squares will vary; however, for most analysis of variance appli-
cations, you will want to use TYPE III sum of squares.

Just to keep you on your toes, we have added to the program a new form of the
TITLE statement. As you probably can guess, TITLE3 provides a third title line;
TITLES, a fifth. Since TITLEZ and TITLE4 are missing, lines 2 and 4 will be blank.
In general, TITLEn will be the nth title line on the SAS output, where n is an inte-
ger. Note that TITLE is equivalent to TITLE1.

In our example, the sweetness factor was significant (p = .0001). The probabili-
ties for FLAVOR and the interaction between FLAVOR and SWEETNESS were
1923 and .2241, respectively.

H. Analysis of Covariance

If you have a variable, IQ for example, which may be correlated with your dependent
measure, you may want to adjust for possible differences due to the confounding
variable before analyzing your dependent variable. Consider the following data set:
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GROUP
A B
Math Score 1Q Math Score 1Q
260 105 325 126
325 115 440 135
300 22 | 45 142
400 125 ’ 500 140
390 138 600 160

We want to compare groups A and B on math scores. However, we notice that
there seems to be a relationship between math scores and IQ and that group B
seems to have higher IQ scores. We can test the relationship between mgth.score ar'nd
1Q by computing a correlation coefficient, and we can see if there is a significant dif-
ference in 1Q scores between groups A and B with a t-test. Here is a program that
does just that:

\TA 'COVAR;

LENGTH GROUP. $ 1;

INPUT GROUP MATH IQ €€;
S; |

105 A. 325 115

325 126 B 440 135

A 300 122 A 400 125 A 390 138
B 425 142 B 500 140 B 600 160

ROC ‘CORR DATA=COVAR NOSIMPLE;
E ‘Covariate Example';
VAR MATH 10;

_WTEST DATA=COVAR;

Notice that we requested a t-test for math scores as well (while we were at it).
Here are the results:

Covariate Example
Correlation Analysis

2 'VAR' Variables: MATH IQ

Pearson Correlation Coefficients / Prob > IRl under Ho: Rho=0

/ N=10
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[Continued]

MATH IQ

MATH 1.00000 0.92456

0.0 0.0001

I9 0.92456 1.00000
0.0001 0.0

Covariate Example

TTEST PROCEDURE

Variable: IQ

GROUP N Mean Std Dev Std Error
A S 121.00000000 12.22701926 5.46808925
B 5 140.60000000 12.48198702 5.58211429
Variances T DF Prob> |T|
Unequal -2.5083 8.0 0.0365
Equal -2.5083 8.0 0.0365
For HO0: Variances are equal, F’ = 1.04 DF = (4,4)

Prob>F’ = 0.9691
Variable: MATH
GROUP N Std Dev Std Error
A 5 335.00000000 59.58187644 26.64582519
B 5 458.00000000 101.27931674 45.29348739
Variances T DF Prob>|T|
Unequal -2.3406 0.0550
Equal -2.3406 0.0474

For HO: Variances are equal, F’ =2.89 DF = (4,4)
Prob>F’ =0.3286

We see that IQ and math scores are highly correlated (r = .92456,p = .0001)
and that there is a significant difference in 1Q (p = 0365) and math scores
(p = .0474) between groups. We want to cortect for the 1Q mismatch by running an
analysis of covariance.

The first step is to test an important assumption that must be verified before
running an analysis of covariance. That is, the slope of the covariate by indepen-
dent variable must be the same for all levels of the independent variable. We can

test for heterogeneity of slopes using the following MODEL statement with
PROC GLM:
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PROC GLM DATA=COVAR;

CLASS GROUP;

MODEL MATH=IQ GROUP IQ*GROUP;
RUN;

The term IQ*GROUP will test if there are different regression coefficients for
the two groups. Running this, we get (partial listing):

Covariate Example

Dependent Variable: MATH

Source DF Type I SS F Vvalue Pr>F
IQ 1 79541.5882838 49.73 0.000:11-
GROUP 1 96.5979265 0.06 0.51:4
IQ*GROUP 1 3816.9637225 2.39 0.17

i is igni difference in the MATH/IQ rela-

We see from this that there is no significant > 1 :
tionshfpSZs a function of GROUP (from the IQ*GROUP interaction tcrm:
F = 2.39,p = .1734). We can go ahead and run the analysis of covariance as follows:

. PROC GILM DATA=COVAR;

) CLASS GROUP; )
MODEL MATH=IQ GROUP;
LSMEANS GROUP;

RUN;

The results (below) show that when we adjust for 1Q, there are no longe]t'l an)f
differences between the groups on math scores. Notice the LSMEANS output shows
the math scores for the two groups adjusted for I1Q:

Covariate Example

Source DF Type III SS F Vvalue Pr>F
IQ 1 41815.6862103 21.82 0.0023
GROUP 1 96.5979265 0.05 0.8288
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[Continued]

Least Squares Means

GROUP MATH
LSMEAN
A 392.345889
B 400.654111
Problems

7-1. The next two questions were inspired by one of the authors (Cody) watching the

7-2.

French Open Tennis tournament while working on problem sets. (McEnroe versus
Lend (1984). Lend! won in five sets.)

Three brands of tennis shoes are tested to see how many months of playing would
wear out the soles. Eight pairs of brands A,N,and T are randomly assigned to a group
©of 24 volunteers. The table below shows the results of the study:

Brand A Brand N Brand T
— = randNX DrandT

8 4 12
10 7 8
Wear time, 9 5 10
in months 1t 5 10
10 6 1
10 7 9
8 6 9
12 4 12

Are the brands equal in wear quality? Write a SAS program to solve this problem,
using ANOVA.

Tennis balls are tested in a machine to see how many bounces they can withstand be-
fore they fail to bounce 30% of their dropping height. Two brands of balls (W and P)
are compared. In addition, the effect of shelf life on these brands is tested. Half of the
balls of each brand are 6 months old, the other half, fresh. Using a two-way analysis of
variance, what conclusions can you reach? The data are shown below:

Brand W Brand P

Age

o

7-3.

7-4.

7-5.

Problems 179

A taste test is conducted to rate consumer preference between brands C and P of a
popular soft drink. In addition, the age of the respondent is recorded (1 = Jess than 20,
2 = 20 or more). Preference data (on a scale of 1-10) is as follows:

Brand C Brand P
7 9
6 8
6 9
<20 5 9
6 8
Age

9 6
8 7
8 6
>=20 9 6
7 5

8

8

(a) Write a SAS program to analyze these data with a two-way analysis of vgrianc&
(Careful: Is the design balanced?) NoTE: Go ahead and treat these data as mterv_al
data even though some analysts would prefer that you use a nonparametric analysis.

(b) Use SAS software to plot an interaction graph.
(c) Follow up with a t-test comparing brand C to brand P for each age group separately.

A manufacturer wants to reanalyze the data of problem 7-1,omitting all data for brand N,
Run the appropriate analysis.

What’s wrong with this program?

DATA TREE;
INPUT TYPE § LOCATION § HEIGHT;

DATALINES;

PINE NORTH 35

PINE NORTH 37

PINE NORTH 41

PINE NORTH 41

MAPLE NORTH 44

MAPLE NORTH 41

PINE SOUTH 53

PINE SOUTH 55

MAPLE SOUTH 28

MAPLE SOUTH 33

MAPLE SOUTH 32

MAPLE SOUTH 22

H

PROC ANOVA DATA=TREE;
CLASS TYPE LOCATION;
MODEL HEIGHT = TYPE | LOCATION;
MEANS TYPE LOCATION TYPE*LOCATION;

RUN;

RN

oNaue
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*7-6. You want to determine if the mean score on a standardized math test is different
among lhree'groups of school children, ranging in age from 12 to 18. Although the test
covers only simple math topics, easily understood by a 12 year old, you want to perform
the analysis with and without an adjustment based on age. '

(a) Using the sample data below. first perform a one-way ANOVA comparing the
math scores and ages among the three groups.

(b) Test if the relations 1p between age and my € Mogeneous amon, e
b th ship b ath sco
21 re is homog g th

(c) Ifthe testin part B permits, perform an analysis of covariance, comparing the math
scores among the three groups, adjusted for age.

Math Scores and Ages for Groups A, B, and C

Group A Group B Group C
Math Score Age Math Score Age Math Score Age
90 16 92 18 97 18
88 15 88 13 92 17
e 12 76 12 88 16
82 14 78 14 92 17
65 12 90 17 99 17
74 13 68 12 82 14

CHAPTER

Repeated Measures Designs

A. Introduction

B. One-factor Experiments

C. Using the REPEATED Statement of PROC ANOVA

D. Two-factor Experiments with a Repeated Measure on One
Factor

E. Two-factor Experiments with Repeated Measures on Both
Factors

F. Three-factor Experiments with a Repeated Measure on the
Last Factor

G. Three-factor Experiments with Repeated Measures on Two
Factors

A. Introduction

This chapter covers the analysis of repeated measures designs. First, a few words
about terminology before we begin this topic. Our use of the term “repeated” is
based on a common use in the medical field and described in the text, Statistical Prin-
ciples in Experimental Design, Second Edition, by B.J. Winer (1991). We use the term
“repeated” in this chapter to mean any factor where each subject is measured at
every level for that factor. For example, if a runner is timed running on two different
types of track surfaces, we are considering “surface” as a repeated measure factor.
Other authors use the term “repeated” to refer only to factors that cannot be as-
signed in random order, such as time. When treatments are randomized, the inter-
pretation of a significant effect can be attributed to treatments and not to the order
of presentation. This is often referred to as a split-plot or within-subjects design. If
you use the latter meaning of “repeated,” feel free to substitute your design termi-
nology in the examples in this chapter. These designs often fall into the category that
statisticians call mixed designs, or designs with within-subjects factors.

Designs in this chapter involve a repeated measurement on the unit of analysis
(usually subjects) in one or more of the independent variables. For example, an ex-
periment where each subject receives each of four drugs or an experiment where
each subject is measured each hour for five hours would need a repeated measures
design. With the introduction of version 6 of SAS software, a REPEATED
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statement was added to the analysis of variance procedures (ANOVA and GLM)
which greatly simplified the coding of repeated measures designs. As you will see,
there are times when you will want to analyze your data using the REPEATED
statement, and there will be times when you will choose not to. For each of the re-
peated measures designs in this chapter, we demonstrate both methods of analysis,

B.  One-factor Experiments

Consider the following experiment. We have four drugs (1,2, 3, and 4) that relieve
pain. Each subject is given each of the four drugs. The subject’s pain tolerance is then
measured. Enough time is allowed to pass between successive drug administrations
so that we can be sure there is no residual effect from the previous drug. In clinical
terms, this is called a “wash-out” period.

The null hypothesis is

MEAN(1)=MEAN(2)=MEAN(3)=MEAN (4)

If the analysis of variance is significant at p < .05, we want to look at pairwise
comparisons of the drugs using Duncan’s multiple-range test or other post hoc tests,

Notice how this experiment differs from a one-way analysis of variance without
a repeated measure. With the designs we have discussed thus far, we would have
each subject receive only one of the four drugs. In this design, each subject is mea-
sured under each of the drug conditions. This has several important advantages.

First, each subject acts as his own control. That is, drug effects are calculated by
recording deviations between each drug score and the average drug score for each
subject. The normal subject-to-subject variation can thus be removed from the error
sum of squares. Let’s look at a table of data from the pain experiment:

SUBJECT DRUG 1 DRUG 2 DRUG 3 DRUG 4
1 5 9 6 11
2 7 12 8 9
3 1 12 10 14
4 3 8 5 8

To analyze this experiment, we consider the subject to be an independent vari-
able. We therefore have SUBJECT and DRUG as independent variables.

One way of arranging our data and writing our INPUT statement would be
like this:

DATA PAIN;
INPUT SUBJ DRUG PAIN;

DATALINES;

115

ok W N
NEoaw
[

1
1
1
2

(

more data lines)

l

B
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It is usually more convenient to arrange all the data for each subject on one line:

SUBJ DRUG 1 DRUG 2 DRUG3 DRUG 4
1 5 9 6 11
2 7 12 8 9
3 1t 12 10 14
4 3 8 5 8

We can read the data as arranged above, but restructure it to look as if we had
read it with the first program as follows:

' DATA PAIN; -
INPUT SUBT @; @
DO DRUG = 1 to 4; ®

INPUT PAIN @; @

The first INPUT statement @ reads the subject nun?ber. The “@” sign followull%
SUBIJ is an instruction to keep reading from the same line of data. (See Ch'aptelt'_
for a more detailed discussion of the trailing @ sign.)_Statement ® sta%s'an 1te1"atn;e
loop. The value of DRUG is first set to 1. Next, the input statement is t:xe(,u;I !
Again, if the “@” were omitted, the program would go to the next data tl:ne totr'e }
value (which we don’t want). The OUTPUT statement @ causes an observal 101‘;h(e)
be written to the SAS data set. Look at our first line of data. We would hiiv;e \a)ssrh
first observation in the SAS data set SUBJ = 1, DRUG = 1, and PAIN = 5. [e@n
the END statement ® is reached, the program flow returns to the DO stfi:efmen '
where DRUG is set to 2. A new PAIN value is then reac! fro_m the data (still :'\osnij te
first line because of the trailing @) and a new observation is added to the § N ;1 a
set. This continues until the value of DRUG = 4. Norm;lly, when a DAT. - eip
reaches the end, signalled by a DATALINES or BUN statement, an obs'ervauznin?
automatically written out to the SAS data set being cre.ated. However, since wi -
cluded an OUTPUT statement in the DATA step to write out our ObserYatIOHS, he
automatic writing out of an observation at the end'of the DATA step ioia nsqt 0::0t he.
(If it did, we would get a duplicate of the observation where DRUG = A)m:mz he
DO loop has completed, the program control returns to the top of'the l?d step
line @. The program will read the subject .number from the next line of data.

The general form of a DO statement is

DO variable = start TO end BY increment;
(SAs statements)
END;
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Where “start™ is the initi
. e initial value for “var; “ X
“incre " . ° variable,” “end” i
ment™is the increment. If “increment” is omitted irdlesfz:ﬁletsecn dl1ng value, and
y ol.

The first few observati i
. vations
listed below: in the SAS data set created from this program are

o
1%

SUBJ  DRUG  PAIN

CoNauvirwNnRE O

LAl U U W

FhAWNEAWD R
K]

etc.

We can make one small modific ation to the program and. l)y so doing, avoid
4 g
3 3

having to enter the sub;
ect nu i
followe: bj mbers on each line of data. The new program looks as

. 89"
11 12 10 1
3858
i

Statement @ crea i
tes a variable called SUB i
men{;d by 1 each time the statement is executed $ vch sarts a1 and s incre-
€ are ready to write our PROC :

. statements to anal i i
. I nalyze

gn there are several ways to write the MODEL slatemei’lt (;}::, (:vzt; 'i“;;lt(h d;lls o

L s like this:

. nu EA. BUBJ DRUG,
' MEANS DRUG/DUNCAN;
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Notice that we are not writing SUBJ| DRUG. We are indicating that SUBJ and
DRUG are each main effects and that there is no interaction term between them.
Once we have accounted for variations from the grand mean due to subjects and

the remaining deviations will be our source of error.

drugs,
output from the one-way repeated measures

Below is a portion of the
experiment:

oOne-way Repeated Measures ANOVA

Analysis of Variance Procedure
class Level Information

Class Levels Values

4 1234

SUBJ
DRUG 4 1234
Number of observations in data set = 16
One-way Repeated Measures ANOVA
Analysis of Variance Procedure
pependent Variable: PAIN
Sum of Mean
Source DF squares square F Value Pr > F
Model 6 120.50000 20.08333 13.64 0.0005
Error 9 13.25000 1.47222
Corrected Total 15 133.75000
R-SqQuare C.V. Root MSE PAIN Mean
0.900935 14.06785 1.2134 8.6250

DF Anova SS Mean Square F Value Pr > F

Source
SUBJ 3 70.250000 23.416667 15.91 0.0006
DRUG 3 50.250000 16.750000 11.38 0.0020

Duncan’s Multiple Range Test for variable: PAIN

NOTE: This test controls the type I comparisonwise error rate,

not the experimentwise error rate
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—
[Continued]

-

Alpha= 0.05 df= 9 MSE= 1.472222

Number of Means 2 3 4
Critical Range 1.941 2.026 2.075

Means with the same letter are not significantly different.

Duncan Grouping Mean N DRUG
A 10.5000 4 4
A
A 10.2500 4 2
B 7.2500 4 3
B

B 6.5000 4 1

What conclusions can we draw from these results? Looking at the very bottom
of the analysis of variance table, we find an F value of 11.38 with an associated prob-
ability of .0020. We can therefore reject the null hypothesis that the means are equal.
Another way of saying this is that the four drugs are not equally effective for reduc-

value and a probability associated with it. This merely tells us how much variability
there was from subject to subject. It is not really interpretable in the same fashion as
the drug factor. We include it as part of the model because we don’t want the varj-
ability associated with it to g0 into the ERROR sum of squares.

Now that we know that the drugs are not equally effective, we can look at the re-
sults of the Duncan Multiple-Range Test. This shows two drug groupings. Assuming
that a higher mean indicates greater pain, we can say that drugs 1 and 3 were more
effective in reducing pain than drugs 2 and 4. We cannot, at the .05 level, claim any
differences between drugs 1 and 3 or between drugs 2 and 4.

Looking at the error SS and the SS due to subjects, we see that SUBJECT SS
(70.25) is large compared to the ERROR SS (13.25). Had this same set of data been
the result of assigning 16 subjects to the four different drugs (instead of repeated
measures), the error SS would have been 83.5 (13.25 + 70.25).The resulting F and p
values for the DRUG effect would have been 2.41 and .1 18, respectively. (Note that
the degrees of freedom for the error term would be 12 instead of 9)

We see, therefore, that controlling for between-subject variability can greatly re-
duce the error term in our analysis of variance and allow us to identify smalil treat-
ment differences with relatively few subjects.

C. Using the REPEATED Statement of PROC ANOVA

This same design can be analyzed using the REPEATED option, first introduced
with version 6 of SAS software, When the REPEATED statement is used, we need
our data set in the form:

VA ments / i er-
; does not have a DRUG variable. The ANOVA statements to analyze this exp
set does

iment are:

NOVA 187
Section C / Using the REPEATED Statement of PROC A

€ - are the pain levels at each drug treatmen! otice that the data
PAIN1-PAIN4 h . d

N N p: g N
9¢ t

DATA REPEAT1;
INPUT PAIN1-PAIN4;
DATALINES;
59 6 11
7 12 8 9
11 12 10 14
3858
H
: DATA=REPEAT1; -
PRO:I'IA‘S;)V‘AOne-way ANOVA Using the REPEATED Statement';
MODEL PAIN1-PAIN4 = / NOUNI;
REPEATED DRUG 4 (1 2 3 4);
RUN;

5 t
Notice several details. First, there is no CLASS statement; our (_ia;;a Settodg: ;:)ﬁ
o ind dent variable. We specify the four deper}dent variables to he left
e 1ni595n i‘; the MODEL statement. Since there is no'CLASS \;;-m oe,u "
v, eqt‘:'d Sltin lace to the right of the equals sign. The option th)hU : lE;l e
ha‘{e o is pcst not to conduct a separate analysis for each of the o NN
varfatc) 8 a r?quwhen we have both repeated and nonrepeated factqrs Hi e
v_ar1abl?S~ Later, will be especially important. The repeated Slaleme.l‘ltA.ll'L(lilcd;C;-‘ie hat
e OP“?]II the repeated factor DRUG. The “4” [0”0W{Ilg the varial Z “the i
dic est t'o CIESRUG has four levels. This is optional. Had it been omitte b,l : .nplhe
e ol have a: S\ll’;lcd as many levels as there were depcndem variables i b the
%;szVé?ul?at:;inf The number of levels needs to be spe)cnﬁei ‘onlysv:k;linl ;;l; e
. ' as . Finally, “(1 2 3 4)” indicate:
want ‘h_aﬂ OHfC re];eczgelgv:ic:fb lll)rf(lf?(c}t.('){h]:labe%s a(lso act as spacings whe_n polytr;lc:;
W?:]‘ f;rl::xt':;s(:—r: requested. (See the SAS/STAT mar}:fjal for r(rilﬁ: dbfilltall‘:ilrln;how
topi i e output from running this proce s
;(z)[:(;.t))n\zce;g:rtpgea:g rlrel:gl\z the ditails of the output to the next model.

One-way ANOVA Using the REPEATED Statement

i Procedure
Analysis of Variance
Repeated Measures Analysis of V:;:iznce
Repeated Measures Level Informatiol

PAIN4
Dependent Variable PAIN1 PAIN2 PAIN3

2 3 4
Level of DRUG 1
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[Continned]

Univariate T
e8ts of Hypotheses for Within Subject Effects

Source: DRUG Adj Pr F
Anova SS Mean S re Value Pr F - H-F
aj qua. F Z
DF S > G G
3 50.2500000 16. 7500000 11.38 0.0020 0.0123 0.0020

Source: Error (DRUG)
DF  Anova $S Mean Square
9 13.2500000 1.4722222

Greenhouse-Geisgser i
Epsilon = 0.5998
Huynh-Feldt Epsilon = 1.4433

The F value and probabilities (F=1138
ooy I = 11.38,p = .002) are identi I
pA deSted(L .3:]1‘;; I:?ll;gz Ith;} twg additional p-values are included i::latll:ios :)}:J(:Siltn'g]le
the G. roprones abe :G Adj. Pr > F) .shown to the right are more consel:x)'va{ti y
the Hon e va]%, A (Scregnhouse-(}elsser correction, and the H-F represem"x,xe‘
Hore Io & oo va - c dwards for an explanation; reference in Ch; B
Planation: There are some assumptions in repeated measauz:tesrdlé)

adju‘s;;;lent being the Greenhouse-Geisser
enweu .
the repmon faf;‘: :i;{:elﬂ%:ji]l)ystatertnent,we cannotuseaMEANS statement with
! 3 way to compute pairwi i i
o repeat t pute pairwise com i
e keyword CONTRAST(n) with the REPEATED stat:’rz:ll:rsx(t’['}l's‘l':: ft(})] e
X rm is:

REPEATED factor_name CONTRAST (n) ;

where n is a number from 1 i
to k, with k being th.

P g the number of levels
ko, © lhls"é‘rlzﬁST(ll) compares the first level of the factor witlf ea?:;tgg tfpealtled
et arthe (fve Wwere a control value, for example, the CONTRAST 1e Sate,
e e con;)g:sare the sontrol to each of the other drugs. If we want :Sll) Sftatl}::-

, we need to write k — 1 G ex.
ample, where there are four levels of DRU(;evpveea\:fr?t:Fatemems i1 our DRUG ex-

PRO:I :I!:BOVA DATA-REPEATI;
‘One-way ANOVA Usi
MODEL PAIN1-PAING = / NOUNI
REPEATED DRUG 4 CONTRAST(1]
:::mmgn DRUG ¢ CONTRAST(
EATED B .
- TED DRUG 4 CONTRAST(3)

be Repeated Statement!;
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These three CONTRAST statements produce all the two-way comparisons.
(CONTRAST(1) gives us 1vs.2.3,4;CONTRAST(2) gives us 2vs.1,3,4;and CON-
TRAST(3) gives us 3 vs. 1,2, 4.) The contrasts are equivalent to multiple t-tests be-

tween the levels, and you may want to protect yourself against a type [ error with a
other method. There is no provision for making these

Bonferroni correction or some
at no multivari-

corrections using existing SAS procedures. The option NOM asks th
ate statistics be printed; the option SUMMARY requests analysis of variance tables

for each contrast defined by the repeated factor.

D. Two-factor Experiments with a Repeated Measure
on One Factor -

One very popular form of a repeated measures design is the following:

PRE POST
SUBJ
1
Control 2
R —
4
Treatment 5
6

Subjects are randomly assigned to a control or treatment group. Then, each sub-
ject is measured before and after treatment. Obviously, in this case, the TIME factor
(PRE and POST) cannot be randomized. The “treatment” for the control group can
either be a placebo or no treatment at all. The goal of an experiment of this sort isto
compare the pre/post changes of the control group to the pre/post changes of the
treatment group. This design has a definite advantage over a simple pre/post design

where one group of subjects is measured before and after a treatment (such as hav-
ing only a treatment group in our design). Simple pre/post designs suffer from the

we cannot be sure if it is our treatment that causes a change (e.g.,

problem that
we can compare the

TIME may have an effect). By adding a pre/post control group,
pre/post control scores to the pre/post treatment scores and thereby control for any

built-in, systematic, pre/post changes.
A simple way to analyze our design is to compute a difference score (post minus
pre) for each subject. We then have two groups of subjects with one score each (the
difference score). Then we use a t-test to look for significant differences between the
difference scores of the control and treatment groups. With more than two levels of
time, however, we will need to use analysis of variance.
Here are some sample data and a SAS program that calculates difference scores

and computes a t-test:

PRE POST
SUBJ

1 80 83

Control 2 85 86
3 83 88

4 82 94

Treatment 5 87 93
6 84 98




DATA PREPOST;
;gigT SUBJ GROUP § PRET!
= POSTEST-P. i
DATALINES; RETEST;
1¢C 80 83
2 ¢ 85 86
3 C 83 g8
4 T 82 94
5 T 87 93
6 T 84 98

EST POSTEST;

b
PROC TTEST DATA=PREPOST;

TITLE 'T-test o .
n
CLASS GROUP; Difference Scores';
VAR DIFF;
RUN;

Results of this anal

. sis sh .
different from the cont 3 ow the treatment mean di

rol mean difference (p=.045). Se fference to be significantly

e below:

T-test on Difference Scores

TTEST PROCEDURE

Variable: DIFF

3.00000000 2
.0000000
10.66666667 4.16333208

1.15470054
2.40370085

Prob> |T|

For HO: Variances are equal, F’
.

(2,2) Prob>r’ = 0.3750

We can alternativel i
y treat this desi

(GROUS o ke v esign as a two-way analysi i
tage of agatyons fe) with T‘IME as arepeated measure. "l"hisymetho)::lsia thfoflaHCC

We p Wri Signs with more than two levels on one or both fa ls o

f € a program using the REPEA’ AN

changes in the data set are necessary. The ANOVATSa[:eiflitr?tm e, ATOVA-No
s are:

pno:IAmva DATA=PREPOST;
TLE1 ‘Two-way ANOVA with a Re;

dted Measure on One Factor™;

MODEL PRETEST POS %

' TEST -

REPEATED TIME. 2 (0 1),== oave £
MEANS GROUP; :

RUN;
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TIME, it has two levels, and we want to label the levels 0 and 1.
Output from these procedure statements are shown below:

U

—

Two-way ANOVA with a Repeated Measure on One Factor

Analysis of Variance Procedure
class Level Information

Class Levels Values

GROUP 2 cT
Number of observations in data set = 6
Two-way ANOVA with a Repeated Measure on One Factor
Analysis of Variance Procedure
Repeated Measures Analysis of Variance
Repeated Measures Level Information
Dependent Variable PRETEST POSTEST
Level of TIME 0 1
Manova Test Criteria and Exact F Statistics for

the Hypothesis of no TIME Effect
H = Anova SS&CP Matrix for TIME

Roy’s Greatest Root

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no TIME*GROUP Effect
H = Anova SS&CP Matrix for TIME*GROUP

Roy's Greatest Root

One Factor 191

E = Error SS&CP Matrix

8=1 =-0.5 N=1

Statistic value F Num DF Den DF

Wilks’ Lambda 0.1321631 26.266 1 4

Pillai’'s Trace 0.8678369 26.266 1 4

Hotelling-Lawley Trace 6.5664063 26.266 1 4
6.5664063 26.266 1 4

S=1 =-0.5 N=1

Statistic Value F Num DF Den DF

Wilks’ Lambda 0.3261146 8.2656 1

Pillai’s Trace 0.6738854 8.2656 1

Hotelling-Lawley Trace 2.0664063 8.2656 1
2.0664063 8.2656 1

4
4
4
4

The REPEATED statement indicates that we want to call the repeated factor

—

Pr > F

0.0069
0.0069
0.0069
0.0069

E = Error SS&CP Matrix

Pr > F

0.0452
0.0452
0.0452
0.0452
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[Continued]

Two-way ANOV;
A with a R
o Y epeated M
Rep;z:;; ;f Variance Procedure casure on One ractor
€asureg Analysi
Tente co b Y818 of Varianc
ypotheses for Between Subjecets Eff
ects

Source DF Anova S§ F value Pr > F
GROUP 1 90.75000000 11.84 0.0263

nivariate Tests o lypothese, or C c
8 £ Within Sub: t fect
Ui f H T e Effectg

Source: TIME

DF  Anova ,
1 140 0833§S Mean Square F Value pr Adj Pr > F
. 3 140.083333 26.27 0 0;55 G-6 H-F

Source: TIME*GROUP

DF Anova S8
Mean S
1 44, quare F Val
083333 44.083333 s_;: ‘1’):0;5: G-6 H-F

Source: Error (TIME)

D)
:‘ Anova SS Mean Square
21.333333 5.333333

Level of
PRETEST
POSTEST

GROI
P N Mean sp
Mean
c Sp
3 82.6666667
T . 2.5166114
3 84, 8 85.666
3333333 2.51661148 95 ooogg:g 2-?:251143
' .64575131

Finally, it should b,
i . e noted that th
sis of covariance usi ese data can also be anal
part on the prezi;’;l:ithe pretest as a covariate. The chojce }(],Zf-": ﬁllroflgh an analy-
issue., ure of the question being asked. Bock (1:;53’5:18' depends in
We will discuss th iectsses this
€ output from PRO
method of a i ) ; C ANOVA af;
_nalyzmg this experiment. However, a p ortitsr: ‘:)’fe tsl:]eoz ?;n altet:native
utput above is
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Secti
nts a nice discussion of the options. Our

erences among the p-values, it doesn’t

1975; see Chapter 1 for references) prese
(1) Use

advice is: When there are only very small diff
really matter which one you use. If in doubt, we suggest two alternatives:

wilks’ Lamda. Itisa likelihood ratio test that is often appropriate, or (2) when there

are differences among the p-values, find a consultant.
factor analysis of variance

We now analyze the same experiment as a two-|
"ED statement of PROC ANOVA. We may want to do

without using the REPEA

this so that we can use the «puilt-in” multiple-comparison tests. (You also may not
want to do this if you feel you need the “protection” of the more conservative F-
values computed in the multivariate model.) To do this, we must first create a new
variable—say TIME—which will have two possible values: PRE or POST. Each
subject will then have two observations, one with TIME = PRE and one with

TIME = POST.
ated measures design, the method of creating several

As with our one-way, repe
observations from one is with the OUTPUT statement.
We can add the following SAS statements to the end of the previous program:

DATA TWOWAY;
. BET @

o, @
©  DROP PRETEST POSTEST pIFF; ®
‘RUN;

This section of the program creates a SAS data set called TWOWAY, which has
SCORE. The first few observations in this data

variables SUBJ GROUP TIME and

set are:
SUBJ GROUP TIME SCORE
1 C PRE 80
1 C POST 83
2 C PRE 85
2 C POST 86

Let’s follow this portion of the SAS program step by step to see exactly how the

new data set is created.
bservations to be read from the original data set,

The SET statement (D causes O
PREPOST. The first observation is
SUBJ=1 GROUP=C PRETEST=80 POSTEST=
a new variable called TIME and sets the value of TIME to
he ‘E’ in PRE. The reason is that the length
¢ value that is assigned to it. Had we coded

83 DIFF=3.

Statement @ creates
‘PRE . Note that there is a space after t

of the variable TIME is defined by the firs
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TIME = ‘PRE’, the length would be equal to three and the statement
TIME = ‘POST’ would have assigned the value ‘POS’ to TIME instead of ‘POST.
Statement @) creates a new variable, SCORE, which is equal to the PRETEST

value. When @) is executed, the first observation of the data set called TWOWAY
becomes:

SUBJ=1 GROUP=C PRETEST=80 POSTEST=83 DIFF=3 TIME=PRE SCORE=8(.

However, since we included a DROP statement in
data set TWOWAY only contains the variables SUBJ,
Next, ® sets TIME = ‘POST’, and @) sets the variable SCORE to the POSTEST
value. A new observation is added to the data set TWOWAY with the second OUT-
PUT statement (). The second observation has SUBJ=1 GROUP=CTIME= POST
SCORE=83.
The RUN statement ends
DATA step where a new obser
We are now ready to write

®, the first observation in
GROUP, TIME, and SCORE.

the DATA step and control returns to the top of the
vation is read from data set PREPOST.

our ANOVA statements. Unlike any of our previous
examples, we have to specify all the terms, including the sources of error, in the
MODEL statement. This is necessary because our main effects and interaction terms

are not tested by the same error term. Therefore, we need to specify each of these

, we have one group of subjects assigned to a control group and another
group assigned to a treatment group. Within each group, each subject is measured at
TIME=PRE and TIME=POST. In this design, the subjects are said to be nested
within the GROUP. In SAS programs, the term subjects nested within group is written:

SUBJ (GROUP)

Since the model statement defines ALL sources of varia
mean, the ERROR SUM OF SQUARES printed in the ANOVA table will be zero.
To specify which error term to be used to test each hypothesis in our design, we use
TEST statements following the MODEL specification. A T!

EST statement consists
of a hypothesis to be tested (H=) and the appropriate error term (E=).The entire
ANOVA procedure looks as follows:

tion about the grand

PROC ANOVA DATA=TWOWAY;
Tlm"‘rwo-wgy ANOVA with TIME

as a Repeated Measure' 7
J G TIME;

Notice that the error term for GROUP is SUBJ(GROUP) (subject nested

within group), and the error term for TIME and the GROUP*TIME interaction is
TIME*SUBJ| (GROUP).

Below are portions of the PROC ANOVA output:

way ANOVA with TIME as a Repeated Measure
TWO~

Analysis of Variance Procedure
Class Level Information

Class Levels values

SUBJ 6 123456
GROUP 2 cT

TIME 2 POST PRE

s s - 12
Number of observations in data set 1

pependent Variable: SCORE

DF sum of Squares F value Pr > F

Source
1 11 326.91666667
Mode
Error 0
26.91666667
Corrected Total 11 326
c.v SCORE Mean
R-Square V.
[ 0 86.9166667
1.00000
DF Anova 8S F Value Pr > F
Source
1 90.75000000
Soma P) 4 30.66666667
s 1 140.08333333
eROD IME 1 44.08333333
SoBger .33333333
SUBJ*TIME (GROUP) 4 21

for
Tests of Hypotheses using the Anova MS
SUBJ(GROUP) ag an error term

DF Anova S§ F value Pr > F
Source

1 90.75000000 11.84 0.0263
GROUP

i for
Tests of Hypotheses using the Anova MS
SUBJ*TIME (GROUP) as an error term

DF Anova SS F Value Pr > F
Source
9
1 140.08333333 26.27 8.32:2
aRoD 1 44.08333333 8.27 .
GROUP*TIME

R

195
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Sinc - .
um (;;l;gf:rz:l‘"ces of variation were included in the MODEL statement, the erro
The requesteci [‘5 fero, and the F value is undefined (it prints as a missing’value ¢ ’)r
anF = 11.84 ar:c:lspS —a—reoszlggw;l:/}];he ZOltOm e ing Group differences ha-vé

- ap = .0263. and GROUP*TII a -
8.27Ianc:1 Probabl}ltles of .0069 and .0452, respcctivelyME pave Frvalues of 2627 and
orim :r ; illsn e);;:rlmemal' d.esign‘ itAis the interaction of GROUP and TIME that is of
came for coletro?nacnec‘i?;: tl:]ter?Ctlg]'I term tells us if the pre/post changes were the
ent subjects. An i i i i
The output from the ME ANS roqu ert g ;1 v;;n;?g:?n graph will make this clear.

Level of
GROUP

6 84.1666667
6 89.6666667

2.78687400

c
T
6.28225013

Level of
TIME

;f:lf“' 6 90.3333333
6 83.5000000

5.60951572
2.42899156

Level of Level of

TIME

[o] P

S P::T g 85.6666667 2.51661148

: ol ; 82.6666667 2.51661148

T ki 3 95.0000000 2.64575131
84.3333333 2.51661148

imer\:::eﬁcoann gursaei) :;llast _sekt of means (interaction of GROUP and TIME) to plot the
‘e pick one of the independent variables (we wi
8ra will use TI
g: r&i):b::c( é ;X(I; l:;;z):l t:efn pl?t means for each of the levels of the other irfdepI::Anl::iLtn?
. A few lines of i i i
Plot Horm s )4 es of SAS code will produce the desired interaction
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The resulting graph is shown below:

Interaction Plot

Plot of SCORE*TIME. Symbol is value of GROUP

85 T
90
SCORE
[o}
85
T
[o}
80
POST PRE

TIME

A significant interaction term shows us that the two pre/post lines are not paral-
lel. This tells us that the change from pre to post was different, depending on which
GROUP a subject was in, which is precisely what we wanted to know. The treatment
group and control group were quite similar in terms of pain relief before the drug
was administered (mean = 84.33 and 82.67). After the drug was given (the POST
measure), the treatment group showed dramatic gains and the control group only
modest gains. The F-statistic for GROUP x TIME (8.27) and its p-value (.045) tell
us that this difference in improvement is greater than could be expected by chance
alone. The F-statistic for GROUP (F = 11.84,p = .0263) tells us that if we summed
over the pre and post tests, the groups were different. This isn’t of use to us since it
combines the pre measure (where we anticipated them being the same) with the
post measure (where we anticipated a difference). The same logic is true for TIME.
Here we are summing over the control and treatment groups. Finally, note that the
p-value for GROUP X TIME is the same as for the t-test of the difference scores,
because we are essentially making the same test in both analyses. Next, we move to

a somewhat more complex setting.

E. Two-factor Experiments with Repeated Measures
on Both Factors

This design is similar to the previous design except that each subject is measured

under all levels of both factors. An example follows:
A group of subjects is tested in the morning and afternoon of two different days.

On one of the days, the subjects receive a strong sleeping aid the night before the
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experiment is to be conducted; on the

. . other, c : s . .
astimulus is measured. A diagram of »a placebo. The subjects’ reaction time to

the experiment is shown below:

CONTRO TREAT
'ROL
DRUG
TIME ~SUBJ  REAC]
ACT SUBJ

AM. 1 65 . RE7AOCT

§ 7 2 78

— % 3 9
55 1
6

PM. 2 64 ) 62

} 8 3 85

We would Ij ce i
foct was th: SC; f;l;e [t; sttilc if the drug had any effect on the reaction time and if the ef.
control da © whole day. We can use the AM/PM measur. .
Sine y asha corppaqson for the AM/PM changes on the drug da ements on the
DRUG)Z;;‘?H;;EJCX Ivlf measured under all levels of treatmf%nt ()]i’LACEBO
MENT by TIME faC(lori a/lP;\::IS)., we I_cIam treat this experiment as a SUBJ by TREA?r
ign. . :
our hypotheses, gn. However, we must specify the error terms to test

To cr
eate our SAS data set, we could use the following statements:

AT § TIME § REACT;

The ANOVA statements can be written:
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Before we investigate the output from the program above, we would like to
show an alternative way of programming this problem. This method differs from the
one above only in the way that data are read; the PROC statements are exactly the
same. The purpose of the alternate programming method is to simplify data entry.
Please feel free to skip this discussion if you wish; it is useful only if you will be using
SAS software frequently with moderate to large amounts of data. In that case you
will save considerable time. Here is the program:

ALTERNATIVE PROGRAM FOR SLEEP STUDY
DATA SLEEP; o -
suBJ+1; @
DO TIME=1 to 2; @
DO TREAT=1 T0 2; @
INPUT REACT @; @

®

ROC. ANOVA 'DATA=SLEEP;
. CLASS SUBJ TREAT TIME; 3
MODEL REACT. = SUBJ | TREAT|TIME;
MEANS TREAT|TIME; ;

E=SUBJ*TREAT;
‘E=SUBJ*TIME;

TRST H=TREAT*TIME E=SUBJ*TREAT*TIME;
RUN;

This program allows us to place all the data for one subject on a single line.
We begin creating our data set with the DATA statement. Since we are not
explicitly entering a subject number, statement @ will provide us with a SUBJ
variable.

The reaction times for each subject are arranged as follows:

CONTROL: AM - DRUG AM - CONTROL PM - DRUG PM

We want to create four observations for each subject (one for each combination
of treatment and time). The outer loop @ sets the TIME values while the inner loop
® sets the TREAT values. Since we used a trailing @ sign @ the pointer does not
move to the next line of data until the first four data values have been read and four
observations have been written in line ®. At this point SUBJ is incremented, and
four more values of reaction time are read with the appropriate values of TIME and
TREAT.

A FORMAT statement to assign formats to the variables TREAT and TIME
would make output from the statistical procedures easier to read. The complete pro-
gram, modified to include formats, is shown next:
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PROC FORMAT;
VALUE FTREAT 1='Control' 2='Drug';
VALUE FTIME 1='AM' 2='PM';

RUN;

DATA SLEEP;
SUBJ+1;
DO TIME=1 TO 2;

m i 1y R
FORMAT TREAT FTREAT. TIME
DATALINES; : A
65 70 55 60
72 78 64 68
90 97 80 85

TEST H=TREAT
RUN; - :

Which method you choose to create the SAS data set will not affect the PROC
ANOVA statements. In any design where ALL factors are repeated, such as this one,
we can treat the SUBJ variable as being crossed by all other factors (as opposed to
nested). The MODEL statement is therefore the same as our factorial design. How-
ever, by including the SUBJ term in our model, the error term will be zero (as in our
previous example). Thus, our ANOVA table will not show F-values or probabilities.
These are obtained by specifying TEST statements following the MODEL state-
ment, as described previously.

The error terms to test each hypothesis are simple to remember: For factor X,
the error term is SUBJ*X. For example, the error term to test TREAT is SUBJ
*TREAT; the error term to test the interaction TREAT*TIME is SUBJ
*TREAT*TIME. To specify the correct error term for each main effect and
interaction, the three TEST statements following the MODEL statement were

added, each specifying a hypothesis to be tested and the error term to be used in
calculating the F-ratio.

Section E / Two-factor Experiments with Repeated Measures on Both Factors 201

A portion of the output from PROC ANOVA is shown below:

Analysis of Variance Procedure

Dependent Variable: REACT

Source DF Sum of Squares F Value Pr>F
Model i1 1750.66666667 . .
Error [ . )
Corrected Total 11 1750.66666667
R-Square Cc.V. REACT Mean
1.000000 0 73.6666667
Source DF Anova SS F Value Pr > F
2 1360.66666667 . .
SUBJ
TREAT 1 85.33333333 . .
SUBJ*TREAT 2 0.66666667 . .
TIME 1 300.00000000 . .
SUBJ*TIME 2 2.00000000 . .
TREAT*TIME 1 1.33333333 . .
SUBJ*TREAT*TIME 2 0.66666667 . .

Tests of Hypotheses using the Anova MS for
SUBJ*TREAT as an error term

Source DF Anova SS F Value Pr > F
TREAT 1 85.33333333 256.00 0.0039

Tests of Hypotheses using the Anova MS for
SUBJ*TIME as an error term

Source DF Anova SS F Value Pr > F
TIME 1 300.00000000 300.00 0.0033

Tests of Hypotheges using the Anova MS for
SUBJ*TREAT*TIME as an error term

Source DF Anova SS F Value Pr > F

TREAT*TIME 1 1.33333333 4.00 0.1835
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What conclusions can we draw?
P = .0039); (2) reaction time is lo

(F = 300.00,p = -0033);and (3) w
action time is related to the time o

(1) The drugincreases reaction time
nger in the morning compared to the afternoop
¢ cannot conclude that the effect of the drug on re.
f day (the interaction of TREAT and TIME ig not
significant F = 4.00, p = 0.1835).

Note that this study is not a pre/post study as in the
previous example. Even so,had the TREAT by TIME interaction igni

(F = 256,09,

TREATMENT and TIME in random order.

This design may also be analyzed using the REPEATED statements of PROC
ANOVA. If we read in the four reaction times for each subject in the order: AM
Control - AM Drug - PM Control - PM Drug, and name our variables REACT1-
REACT4, the SAS statements are:

DATA REPEAT2;
INPUT REACT1-REACT4;
DATALINES;
65 70 55 60
7278 64 68
90 97 80 85

; .
PROC ANOVA DATA=REPEAT2; Lo
MODEL, REACT1-REACT4 = / “NOUNI;

REPEATED TIME 2 , TREAT 2 / NOM;
RUN;

ciated with TREAT=control and REACT? associated with
now exhausted all levels of T|

TREAT=drug. We have
REAT and set TIME=PM; RE
both PM measurements.

ACT3 and REACTA4 are

E  Three-factor Experiments with a Repeated Measure
on the Last Factor

For this example, we consider a marketing experiment, Male and female subjects

t brands of coffee. Each brand is tasted twice; once

) other time after dinner (the order of presentation
is randomized for each subject). The preference of each brand is measured on a
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S / a Repeated Meas!

Tom = lowe: = i ign is shown
" f 1 to 10 (1 = lowest, 10 = highest). The experimental design i
' scale ,

: el BRAND (of coffee) .
i : r
A: Brkfst Dinner B: Brkfst Dinner C: Brkfst Dinnel
j subj
SUbl 8 5U7b5 4 6 13 8 9
1 . 3 5 14 6 9
" : . . o 15 5 8
ER 3 6 8 9 3 5
GEND
9
4 5 7 10 3 4 1(; g .
Femde 5 4 7 |11 4 .4 mose
6 4 6 12 2 3

d factors
In this experiment, the factors BRAFD handbj(e}gils)tik; Oafrfzec;gisrebwakfast
i i ated measure factor (each sul e oy
Whélgi?rigLSlisnzé zpseingle subject tastes only onedbra_x:g r(:f Bc;ff:; Ia)n:l I:il cG a ;DER
o ‘ is sai ted withi
jec is said to be nes| ‘ R
P gendeal;}.]lel;;lger\l(';)wggNDER)). We could arrange our dig' Egziiemi}st
(V_Vrllten . n, (e data so that we can take advantage 9f the REPI;:‘ e
F?Xi\lvg\?g %I‘(% do this, we place all data for each subject on one line. 3
;ram and data will look as follows:

'm;ngg:‘?giga BRAND § GENDER s_scoR’g,,ﬁ sgm

a
B
H
|
0
~

L LR R R
Mg EEEIMAIRRE A RRR
NaaumoaoNhWWLARAUNOANN
MOVWVWOVOWAANUAAN®I®

MODEL SCORE_B SCORE_D = BRAND|
REPEATED MEAL;
MEANS BRAND|GENDER;
RUN;
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Notice that BRAND and GENDER are crossed while MEAL is the repeated
measures factor. As before, the o

ption NOUNI on the MODEL statement indicates
that we do not want UNIvariate statistics for SCORE_B and SCORE_D.
Selected portions of the output from the above program are shown below:

Coffee Study

Analysis of Variance Procedure
Class Level Information

Class

Levels Values
BRAND 3 ABC
GENDER 2 F M

Number of observations in data set = 18

Analysis of Variance Procedure
Repeated Measures Analysis of Variance
Repeated Measures Level Information
Dependent Variable

SCORE_B SCORE_D

Level of MEAL 1 2

Analysis of Variance Procedure
Repeated Meagures Analysis of Variance

Tests of Hypotheses for

Source DF

Between Subjects Effects

Anova SS F Value Pr > F
BRAND 2 83.38888889 51.76 0.0001
GENDER 1 6.25000000 7.76 0.0165
BRAND*GENDER 2 3.50000000 2.17 0.1566
Error 12 9.66666667

Analysis of Variance Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source: MEAL

DF Anova SS Mean Square F Value
1 30.2500000 30.2500000 99.00

Source: MEAL*BRAND

DF Anova SS Mean Square F Value
2 1.5000000 0.7500000 2.45

Adj Pr > F
Pr >F G-G H - F
0.0001 .

Adj Pr > F
Pr >F G~-~G H-F
0.1278

[Continued]

Source: MEAL*GENDER adj Pr > F
DF Anova SS Mean Square F Value Pr > F G -G H-F
1 0.0277778 0.0277778 0.09 0.7682 B

Source: MEAL*BRAND*GENDER Adj Pr > F
DF Anova SS Mean Square F Value Pr > F G-GH-F
2 2.0555556 1.0277778 3.36 0.0692 . .

Source: Error(MEAL)
DF Anova SS Mean Square
12 3.6666667 0.3055556

Analysis of Variance Procedure

Level of = --------- SCORE_B ------- --------- SCORE_D—S;—-——

BRAND N Mean SD Mean

A 6 5.33333333 1.21106014 7.16666667 0.75277265

B 6 3.16666667 0.75277265 4.50000000 1.04880885

c 6 6.33333333 1.03279556 8.66666667 0.51639778

Level of  --------- SCORE_B------- **';‘—;—-SCORB_D;;) -----

GENDER N Mean SD e

F 9 4.55555556 1.58989867 6.33333333 2.2360679:

M 9 5.33333333 1.73205081 7.22222222 1.5634719

Level of Level of = -------=- SCORE_B -S-D— —————

BRAND GENDER N Mean

A F 3 4.33333333 0.57735027

A M 3 6.33333333 0.57735027

B F 3 3.00000000 1.00000000

B M 3 3.33333333 0.57735027

c F 3 6.33333333 0.57735027

[o] M 3 6.33333333 1.52752523

Level of Level of = --------- SCORE_D fS; 77777

BRAND GENDER N Mean

A F 3 6.66666667 0.57735027

A M 3 7.66666667 0.57735027

B F 3 3.66666667 0.57735027

B M 3 5.33333333 0.57735027

c F 3 8.66666667 0.57735027

c M 3 8.66666667 0.57735027
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We shall explain the results after the alternative program below:

An alternative program can be written that does not use the REPEATED state-
ment of PROC ANOVA. Although in some models this does not give you the protec.
tion of the more conservative multivariate model, you still may want to run such
model. To do so.itis more useful if the data is arranged with two observations per sub.
jectand a MEAL variable already in the data set. So, if the data is arranged like this;

SUBJ BRAND GENDER MEAL SCORE

! A M BRKFST 7

! A M DINNER 8

2 A M BRKFST 6
etc.

Your INPUT statement would look like this:

INPUT SUBJ BRAND § GENDER $ MEAL § SCORE;

The ANOVA statements are written:

PROC ANOVA DATA=COFFEE;
CLASS SUBJ BRAND GENDER MEAL; .
MODEL SCORE = BRAND GENDER BRAND*GENDER SUBJ (BRAND GENDER)
MEAL BRAND*MEAL GENDER*MEAL BRAND*GENDER *MEAT,
MEAL* SUBJ (BRAND.-GENDER) ;
MEANS BRAND|GENDER / DUNCAN E=SUBJ (BRAND -GENDER) ;
MEANS MEAL BRAND*MEAL ‘GENDER*MEAL BRAND*GENDER*MEAL ;
The following TEST /statement
correct F and p-values:
TEST H=BRAND GENDER BRAND*GENDER
E=SUBJ(BRAND GENDER) ;
TEST H=MEAL BRAND*MEAIL GENDER*MEAL BRAND*GENDER*MEAL

E=MRAL*SUBJ (BRAND GENDER) ;
RUN;

8-are needed to.obtain the

The first test statement will test each of the terms (BRAND GENDER and

BRAND*GENDER) with the error term SUBJ (BRAND GENDER). The effects
MEAL, BRAND*MEAL, GENDER*MEAL, and BRAND*GENDER*MEAL
will all be tested with the error term MEAL*SUBJ(BRAND GENDER). We have
also made a change in the way the MEANS statements were written. Included after
the DUNCAN option is an “E=" specification, This is done because the DUNCAN
procedure will use the residual mean square as the error term unless otherwise in-
structed. Since we have completely defined every source of variation in our model,
the residual mean square is zero. The “E=error term” option uses the same error
term as the “H="option of the corresponding TEST statement. Also, since different
©rTor terms are used to test different hypotheses, a separate MEANS statement is
required each time a different error term is used. Note that we did not need to per-
form a DUNCAN test for MEAL since this variable has only two levels.
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i i i /n below:
A portion of the results of running this alternative program are shown bels

ion
analysis of Variance Procedure Class Level Informat

coffee Study

Analysis of Variance Procedure
Cclass Level Information

Class Levels Values
11 12 13 14 15 16 17 18
18 123456782910
SUBJ
BRAND 3 ABC
GENDER 2 FM

MEAL 2 BRKFST DINNER

Number of observations in data set = 36
Analysis of Variance Procedure

Dependent Variable: SCORE

DF Sum of Squares F Value Pr > F
Source
Model 35 140.30555556 . .
ode
Error 0 .
56
Corrected Total 35 140.305555
R-Square C.v. SCORE Mean
1.000000 0 5.86111111
DF Anova SS F Value Pr > F
Source
RAND 2 83.38888889 . .
gENDER 1 6.25000000 . .
2 3.50000000 . .
BRAND*GENDER : :
SUBJ (BRAND*GENDER) 12 9.66666667
MEAL 1 30.25000000 . .
RAND*MEAL 2 1.50000000 . .
gENDERIfEMEAL 1 0.02777778 . .
BRAND*GENDER*MEAL 2 2.0555525: .
SUBJ*MEAL (BRAN*GEND) 12 3.6666666 .

i iable: SCORE
Duncan’s Multiple Range Test for variable

s s te
NOTE: This test controls the type I comparisonwise error rate,

not the experimentwise error rate




[Continued]

Alpha= 0.05 df=

Number of Means
Critical Range

12 MSE= 0.805556
2 3
.7983 .8356

Means with the same letter are not significantly different.

Duncan Grouping Mean N BRAND

A 7.5000 12 ¢

B 6.2500 12 &

[ef 3.8333 12 B
Level of Level of = -o__..____ SCORE ---~---~----
BRAND GENDER N Mean SD
A F 6 5.50000000 1.37840488
A M 6 7.00000000 0.89442719
B F 6 3.33333333 0.81649658
B M 6 4.33333333 1.21106014
c F 6 7.50000000 1.37840488
C M 6 7.50000000 1.64316767
Level of = - __ SCORE --=---==nu——-
MEAL N Mean sD
BRKFST 18 4.94444444 1.66175748
DINNER 18 6.77777778 1.92676369
Level of Level of = ---—---__. SCORE -------=----
BRAND MEAL N Mean SD
A BRKFST 6 5.33333333 1.21106014
A DINNER 6 7.16666667 0.75277265
B BRKFST 6 3.16666667 0.75277265
B DINNER 6 4.50000000 1.04880885
c BRKFST 6 6.33333333 1.03279556
c DINNER 6 8.66666667 0.51639778
Level of Level of = -—-oooo-eoo SCORE ------------
BRAND MEAL N Mean SD
F BRKPST 9 4.55555556 1.58989867
F DINNER 9 6.33333333 2.23606798
M BRKFST 9 5.33333333 1.73205081
M DINNER 9 7.22222222 1.56347192
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Level of Level of Level of SCORE __________
BRAND GENDER MEAL N Mean SD
A F BREFST 3 4.33333333 0.57735027
A F DINNER 3 6.66666667 0.57735027
A M BRKFST 3 6.33333333 0.57735027
A M DINNER 3 7.66666667 0.57735027
B F BRKFST 3 3.00000000 1.00000000
B F DINNER 3 3.66666667 0.57735027
B M BRKFST 3 3.33333333 0.57735027
B M DINNER 3 5.33333333 0.57735027
c F BRRFST 3 6.33333333 0.57735027
c F DINNER 3 8.66666667 0.57735027
c M BRKFST 3 6.33333333 1.52752523
c M DINNER 3 8.66666667 0.57735027
Dependent Variable: SCORE
Tests of Hypotheses using the Anova MS for
SUBJ (BRAND*GENDER) as an error term
Source DF Anova SS F Value Pr > F
BRAND 2 83.38888889 51.76 0.0001
GENDER 1 6.25000000 7.76 0.0165
BRAND*GENDER 2 3.50000000 2.17 0.1566
Tests of Hypotheses using the Anova MS for
SUBJ*MEAL (BRAN*GEND) as an error term
Source DF Anova S8 F Value Pr > F
MEAL 1 30.25000000 99.00 0.0001
BRAND*MEAL 2 1.50000000 2.45 0.1278
GENDER*MEAL 1 0.02777778 0.09 0.7682
BRAND*GENDER*MEAL 2 2.05555556 3.36 0.0692

‘What conclusions can we draw from these results? First, we notice that the vari-
ables BRAND, MEAL, and GENDER are all significant effects (BRAND and
MEAL at p = .0001, GENDER at p = .016). We see, from the Duncan test, that
brand C is the preferred brand, followed by A and B.The fact that MEAL (breakfast
or dinner) is significant and that BRAND*MEAL is not, tells us that all three
brands of coffee are preferred after dinner.

G. Three-factor Experiments with Repeated Measures
on Two Factors

As an example of a three-factor experiment with two repeated measures factors, we
have designed a hypothetical study involving reading comprehension and a concept
called slippage. It is well known that many students will do less well on a reading
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E(S)]mprehe,j\siop test in the early fall compared to the previous spring because of
h ippage durmg the summer vacation. As children grow older, the slippage should
ccriase. Alsol, sllppage [E:l:ldS to be smaller with high-SES (socio-economic status—
rSt;Eug IY speakmg, “wealthier”) children compared to low-SES children, since high-
S children typl'cally do more reading over the summer.
To test these xqeas, the following experiment was devised:
readﬁ, gg;(;;{) ofhhlgh- aqd low-SES children is selected for the experiment. Their
° prehension is tested each spring and fall for three co i
diagram of the design is shown below: . ree comseeutive years A

Reading Comprehension Scores
Years; 1 2 3

HOH sy SPRING  FALL | SPRING FALL | SPRING  FALL
SES 1 61 50 60 55 59 62
2 64 55 62 57 63 63
3 59 49 58 52 60 58
4 6 59 65 64 67 70
5 62 51 61 56 60 63
Low 6 57 42 56 46 54 50
SES 7 61 a7 58 48 59 55
8 55 40 55 46 57 52
9 59 4 61 50 63 60
10 58 4“4 56 49 55 49

Notice that each subject is measured each spri
! pring and fall and each year so that

Slgenva;iblesb SE{AS?N and YEAR are both repeated measures factors)., In this de-

each subject belongs to either the high-SES or the low-S
subjects are nested within SES. ¢ o (he lowSES group. Therefore,

We show three ways of writing a SAS i i i

) program to analyze thi

using the REPEATED statement of PROC ANOVA: g S Cxperiment First

DATA READ_1;
INPUT SUBJ SES § READ1-READS;
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[Continued]

9 LOW 59 44 61 50 63 60
10 LOW 58 44 56 49 55 49

PROC ANOVA DATA=READ_1;
TITLE 'Reading Comprehension Analysis';
CLASS SES;
MODEL READ1-READ6 = SES / NOUNI;
REPEATED YEAR 3, SEASON 2;
MEANS SES;

RUN;

Since the REPEATED statement is confusing when we have more than one re-
peated factor, we again show you how to determine the order of the factor names.
The variables listed on the MODEL statement are in the following order:

YEAR 1 YEAR 2 YEAR 3
SPRING FALL SPRING FALL SPRING FALL
1 2 3 4 5 6

There are three levels of YEAR and two levels of SEASON. The factors follow-
ing the keyword REPEATED are placed in order from the one that varies the slow-
est to the one that varies the fastest. For example, the first number (READ1) is from
YEAR 1 in the SPRING. The next number (READ2) is still YEAR 1 but in the
FALL. Thus, we say that SEASON is varying faster than YEAR. We must also be
sure to indicate the number of levels of each factor following the factor name on the

REPEATED statement.
REPEATED YEAR 3, SEASON 2;

This statement instructs the ANOVA procedure to choose the first level of
YEAR (1), then loop through two levels of SEASON (SPRING FALL), then return
to the next level of YEAR (2), followed by two levels of SEASON, etc. The product
of the two levels must equal the number of variables in the dependent variable list
of the MODEL statement. To check, 3 * 2 = 6 and we have READ1 to READ6 on

the MODEL statement.
Results of running this program are shown next (some sections omitted):

Reading Comprehension Analysis

Analysis of Variance Procedure
Class Level Information

Class Levels Values

SES 2 HIGH LOW




[Continued]
Number of observations in data set = 10

Repeated Measures Analysis of Variance
Repeated Measures Level Information

Dependent Variable READ1 READ2 READ3 READ4 READS5 READ6
Level of YEAR 1 1 2 2 3 3
Level of SEASON 1 2 1 2 1 2
Tests of Hypotheses for Between Subjects Effects
Source DF Anova SS F Value Pr > F
SES 1 680.0666667 13.54 0.0062
Error 8 401.6666667
Univariate Tests of Hypotheses for Within Subject Effects
Source: YEAR
adj Pr > F
DF Anova SS Mean Square F Value Pr > F G -G H-F
2 252.033333 126.016667 26.91 0.0001 0.0002 0.0001

Source: YEAR*SES

Adj Pr > F

DF Anova SS Mean Square F Value Pr > F G -G

2 1.033333 0.516667 0.11 0.8962 0.8186
Source: Error(YEAR)

DF Anova 88 Mean Square

16 74.933333 4.683333

Greenhouse-Geisser Epsilon = 0.6757
Huynh-Feldt Epsilon = 0.8658

Source: SEASON

H-F
0.8700

adj Pr > F

DF Anova SS Mean Square F Value Pr > F G -G H-F
1 680.066667 680.066667 224.82 0.0001 . .
Source: SEASON*SES
adj Pr > F
DF Anova 88 Mean Square F Value Pr > F G -G H-F

1 112.066667 112.066667 37.05 0.0003 .
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DF
2

[Continued]
Source: Error (SEASON)
DF Anova SS Mean Square
8 24.200000 3.025000
Source: YEAR*SEASON
Adj Pr > F
DF Anova SS Mean Square F Value Pr > F G - G H-F
2 265.433333 132.716667

112.95 0.0001 0.0001 0.0001

Univariate Tests of Hypotheses for Within Subject Effects

Source: YEAR*SEASON*SES

adj Pr>F
Anova SS Mean Square F Value Pr>F G -G H-F
0.433333 0.216667 0.18 0.8333 0.7592 0.8168

Source: Error (YEAR*SEASON)

DF Anova SS Mean Square
16 18.800000 1.175000
Greenhouse-Geisser Epsilon = 0.7073

Huynh-Feldt Epsilon = 0.9221

Level of READ1

SES N Mean SD
HIGH 5 61.8000000 1.92353841
LOW 5 58.0000000 2.23606798
Level of READ3

SES N Mean SD
HIGH 5 61.2000000 2.58843582
Low 5 57.2000000 2.38746728
Level of READ4

SES N Mean SD
HIGH 5 61.8000000 3.27108545
LOW 5 57.6000000 3.57770876

READ2
Mean SD
52.8000000 4.14728827
43.4000000 2.60768096
READ4
Mean SD
56.8000000 4.43846820
47.8000000 1.78885438
READS
Mean SD
63.2000000 4.32434966
53.2000000 4.43846820

212

presented.

We discuss the statistical results later, after two alternate programs have been

We now present the other two programs that analyze this experiment without use
of the REPEATED statement. Here is a second method: We have arranged our data
so that each line represents one cell of our design. In practice, this would be tedious,
but it will help you understand the last program for this problem in which all data for
a subject are read on one line and the data set is transformed to look like this one.



214 Chapter 8 / Repeated Measures Designs

DATA READ_2;
INPUT SUBJ SES $ YEAR SEAS :
DATALINES; o ¢ READ;

1 HIGH 1 SPRING 61
1 HIGH 1 FALL 50

1 HIGH 2 SPRING 60
1 HIGH 2 FALL 55

1 HIGH 3 SPRING 59
1 HIGH 3 FALL 62

2 HIGH 1 SPRING 64
(more data lines)

\ To simplify data entry (with the consequence of making the program more com-
E icated) we can place all the data for each subject on one line. As we have men-
nlloned lbf;fore, since there is an alternative easier method (above), you may skip the

ore elaborate program below an acri ing i : isti
Qerstandine prog d not sacrifice anything in the way of statistical un-

:it;;native Program for reading in the data for the
ading experiment
| adig with all the data for one subject on

DO SES = 'HIGH','LOW'; (D
SUBT = 0; @
DON=1T05; @
SUBJ + 1; @
DO YEAR = 1 TO 3; (®
DO SEASON = 'SPRING', 'FALL';
INPUT SCORE @;

OUTPUT;
END;
END;
END;
END;
DROP N; ©®
DATALINES;

61 50 60 55 59 62
64 55 62 57 63 63
59 49 58 52 60 58
63 59 65 64 67 70
62 51 61 56 60 63
57 42 56 46 54 50
61 47 58 48 59 55
55 40 55 46 57 52
59 44 61 50 63 60
58 44 56 49 55 49

H

(N(HE. € Indentation is not necess: Vi ) € €
Th di t: t ary. It is used as a o keep the D
) Ty. a visual aid t Y O

Lt
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This program is not as complicated as it may seem at first glance. Our data will
be arranged in the same order as they appear in the diagram of the experimental
design. All high-SES students will be read followed by the low-SES students. Each
student will have a spring/fall set of reading comprehension scores for each of the
three years.

The data are arranged with all the high-SES students followed by all the low-
SES students. The DO loop @ sets the values of SES appropriately. The use of char-
acter values in a DO loop may be new to you. This very useful feature of SAS
software saves you the trouble of using numbers in DO loops and then formatting
the numeric values to the character labels. Since there are five students in each SES
group, the DO loop @ goes from 1 to 5. The sum statement @ will generate a subject
number from 1 to 5 (it gets reset after all the data values for the HIGH-SES subjects
have been read, statement @). Since the order of the data for each subject is YEAR,
SEASON, the two DO loops ® and ® set the values of YEAR and SEASON before
reading in a score in line @. The trailing at sign (@) in @ is necessary to prevent the
pointer from going to a new line until all six scores have been read. The OUTPUT
statement @ will output an observation with the variables:

SES SUBJ YEAR SEASON READ

Note that the variable N is not included because of the DROP statement @. It
is not necessary to drop N; we simply don’t need it. We could leave it in the data set
and just not use it.

One final note: Be careful when using character values with DO loops because
if the length of the first value in the DO loop is shorter than the other levels, the pro-
gram will truncate the length of the character variable to the first length it encoun-
ters. To avoid this problem, either pad the first value with blanks to be equal to the
length of the longest value or use a LENGTH statement to define the length of the
character variable.

This ends the discussion of the alternative program.

Now, regardless of the SAS data statements you used, the ANOVA statements

will be the following:

PROC ANOVA DATA=READ.3; "
TITLE ‘'Read: lhg an:ptehgﬁﬁsion Analysis*;
CLASS SUBJ SES YEAR SEASON;

H=SEASON
H=YEAR*SE

TEST

-~ RUN;




Output from this procedure is shown next:

SOURCE

SES*YEAR
SES*SEASON
YEAR*SEASON
SES*YEAR* SEASON

Next are the means for each of the

interactions:

main effects and two-way

Level of = @ --------oo READ--------~-
SES N Mean sD
;. 30 59.6000000 4.92425384
30 52.8666667 6.23523543
Level of = ---------- READ--~-------
SEASON N Mean SD
; 30 59.6000000 3.22276386
30 52.8666667 7.26224689
Level of Level of = -------__- READ---==--~=-
SES YEAR N Mean SD
1
h ;. 10 57.3000000 5.63816361
1 2 10 59.0000000 4.13655788
: 3 10 62.5000000 3.68932394
z ; 10 50.7000000 8.02842174
2 2 10 52.5000000 5.33853913
10 55.4000000 4.45221543
Level of Level of = -----
----- READ---~-------
SES SEASON N Mean SD
i ; 15 61.6000000 2.47270817
: 2 15 57.6000000 5.96178305
2 ; 15 57.6000000 2.61315354
15 48.1333333 5.06904706
Level of Level of = = ---------o READ--------=~-
SEASON N Mean SD
i. ; 10 59.9000000 2.80673792
: 10 48.1000000 5.93389510
2 ; 10 59.2000000 3.15524255
2 10 52.3000000 5.71644800
3 1 10 59.7000000 3.91719855
2 10 58.2000000 6.69659947
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Problems 217

As before, we specify hypotheses and error terms with TEST statements follow-
ing our MODEL, and we include the appropriate error terms with the Duncan
rcquests.

Have our original ideas about “slippage” been confirmed by the data?

First, let us examine each of the main effects and their interactions:

What conclusions can we draw from these results?

1. High-SES students have higher reading comprehension scores than low-
SES students (F = 13.54, p = .0062).

2. Reading comprehension increases with each year (F = 26.91, p = .0001).
However, this increase is due partly to the-smaller “slippage” in the later
years [see (5) below].

3. Students had higher reading comprehension scores in the spring compared
to the following fall (F = 224.82, p = .0001).

4. The “slippage” was greater for the low-SES students (there was a significant
SES*SEASON interaction F = 37.05, p = .0003).

5. “Slippage” decreases as the students get older (YEAR*SEASON is signifi-

cant F = 112.95,p = .0001).

Repeated measures designs can be a powerful ally for the applied researcher.
They can also be a little bit tricky. For example, in our coffee study, even though we
randomized the order of first drinking the coffee with dinner or breakfast, there may
be an effect we’re overlooking. It may be that one (or all) of the brands take a little
“getting used to.” This could result in subjects preferring their second drinking of
the coffee (whether breakfast or dinner). We are ignoring this in our study and
maybe we shouldn’t be. Had we not randomized which drinking came first, we
would have confounded drinking order with MEAL. The best way to make sure that
you are getting what you want out of a repeated measures design is to consult a text
which deals solely with the design and statistical issues involved. (Winer does an ex-

cellent job of this.)

Problems

8-1. A marketing survey is conducted to determine sport shirt preference. A questionnaire
is presented to a panel of four judges. Each judge rates the three shirts presented, of

three brands (X, Y, and Z). The data entry form is shown below:

MARKETING SURVEY FORM

Judge ID D

1 1
2 Bramd(1=X, 2=Y, 3=2) [ ] 2
3. Colorrating 9=Best,1=Worst [__| 3
4. Workmanship rating 14
5. Overall preference [:l 5
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An index is computed as follows:

INDEX=(3*OVERALL PREFERE]
NCE + 2*WORKMAN:
COLOR RATING) / 6.0 e

The collected data follow:

11836
21747
31767
41846
12635
22534
32546
42436
13988
23877
33978
43887

!hreect(;:np;re the color rating, wotkmanship, overall preference, and index among the
- brands, using analysis of variance. (HiNT: This is a repeated measures desi
cach judge rates all three brands.) e e

g} tff\ie Fc?; is conducted to determine which city has the best-tasting tap water. A panel

ale i; ;uLiglf; :aslels ea‘d}; (1>f the samples from the four cities represented. The rating
1t scale with 1 = worst to 9 = .

ate shown below. tto 9 = best. Sample data and the coding scheme

COLUMN DESCRIPTION
13 Judge identification number
4 City code:
1 = New York, 2 = New Orleans
3 = Chicago, 4 = Denver
5 Taste rating, 1 = worst 9 = best

Data:

00118
00126
00138
00145
00215
00226
00235
00244
00317
00324
00336
00344
00417

00425

00437

00443
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Write a SAS program to describe these data and to perform an analysis of variance.
Treat the ratings as interval data. Remember that we have a repeated measures design.

+8-3. The same data as in problem 8-2 are to be analyzed. However, they are arranged so that
the four ratings from each judge are on one line. Thus, columns 1-3 are for the judge 1D.
column 4 is the rating for New York, column 5 for New Orleans. column 6 for Chicago.
and column 7 for Denver. OQur reformed data are shown below:

*§-4.

8-5.

0018685
0025654
0037464 3

0047573

Write the DATA statements to analyze this arrangement of the data. You will need to
create a variable for CITY and to have one observation per city. Also run these data using

the REPEATED statement of PROC ANOVA. How do the two solutions compare?

A study is conducted to test the area of nerve fibers in NORMAL and DIABETIC rats.
A sample from the DISTAL and PROXIMAL ends of each nerve fiber is measured for
each rat. Therefore, we have GROUP (Normal versus CONTROL) and LOCATION
(Distal versus proximal) as independent variables, with location as a repeated measure
(each rat nerve is measured at each end of the nerve fiber). The data are shown below:

RATNO DISTAL PROXIMAL
1 34 38
Normal 2 28 38
3 38 48
4 32 38
5 44 42
Diabetic 6 52 48
7 46 46
8 54 50

Write a SAS program to enter these data and run a two-way analysis of variance, treat-
ing the location as a repeated measure. Use the REPEATED option for the LOCA-
TION variable. Is there any difficulty in interpreting the main effects? Why?

What’s wrong with this program?

1 DATA FINDIT;
2 DO GROUP='CONTROL', 'DRUG' ;

3 DO TIME='BEFORE', 'AFTER’;
4 DO SUBJ=1 TO 3;

5 INPUT SCORE @;

6 END;

7 END;

8 END;

9 DATALINES;

10 13 15 20 (data for subject 1) Order is CONTROL TIME 1,
12 14 16 18 (data for subject 2) CONTROL TIME 2, DRUG TIME 1,
15 18 22 28 (data for subject 3) and DRUG TIME 2
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[Continued])

ig PROC ANOVA DATA=FINDIT;

TITLE 'ANALYSIS OF VARIANCE';
12 CLASS SUBJ GROUP TIME; )
i: MODEL SCORE = GROUP SUBJ(GROUP)
u TIME GROUP*TIME TIME*SUBJ(GROUP);
1 ::::TT H=GROUP E=SUBJ(GROUP) ;

H=TIME GROUP*TIME E=TIME* i

17 MEANS GROUP | TIME; Soma(GRoTEY
18 RUN;

Multiple-Regression Analysis

NoTE: The comments within parentheses are not part of the program.

A. Introduction

B. Designed Regression

C. Nonexperimental Regression

D. Stepwise and Other Variable Selection Methods
E. Creating and Using Dummy Variables

F. Logistic Regression

A. Introduction

Multiple-regression analysis is a method for relating two or more independent
variables to a dependent variable. While the dependent variable (the variable
you want to predict) must be a continuous variable (except with logistic regres-
sion), the independent variables may either be continuous or categorical vari-
ables such as “gender” or “type of medication.” In the case of categorical
independent variables, we need to create “dummy” variables rather than using
the actual character values (more on this later). If all of your independent vari-
ables are categorical (or most of them) you may be better off using analysis of
variance techniques.

There are two rather distinct uses of multiple regression, and they will be ad-
dressed separately. The first use is for studies where the levels of the independent
variables have been experimentally controlled (such as amount of medication and
number of days between dosages). This use will be referred to as “designed regres-
sion.” The second use involves settings where a sample of subjects have been ob-
served on a number of naturally occurring variables (age, income, level of anxiety,
etc.) which are then related to some outcome of interest. This use of regression will
be referred to as “nonexperimental regression.”

It is fairly easy to misuse regression. We will try to note some popular pitfalls,
but we cannot list them all. A rule of thumb is to use your common sense. If the re-
sults of an analysis don’t make any sense, get help. Ultimately, statistics is a tool em-
ployed to help us understand life. Although understanding life can be tricky, it is not
usually perverse. Before accepting conclusions which seem silly based on statistical
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analyses, consult with a veteran data analyst. Most truly revolutionary results from
data analyses are based on data entry errors.

B. Designed Regression

Imagine a researcher interested in the effects of scheduled exercise and the use of a
stimulant for weight loss. She constructs an experiment using 24 college sophomores
where four levels of stimulant and three levels of exercise are used. There are 24 sub-
jects in the experiment and each is randomly assigned to a level of exercise and stim-
ulant such that two students are in each of the 12 (3 X 4) possible combinations of
exercise and stimulant. After 3 weeks of participation, a measure of weight loss
(post — pre weight) is obtained for each subject. The data for the experiment might
look as shown below:

Data for Weight Loss Experiment

Subject Stimulant Exercise Weight Loss

(mg/day) (hr/week) (pounds)
1 100 0 4
2 100 0 0
3 100 5 7
4 100 5 %
5 100 10 -2
8 100 10 -14
7 200 0 S
8 200 0 2
9 200 5 =5
10 200 5 &
11 200 10 -9
12 200 10 9
13 300 0 1
14 300 0 0
15 300 5 3
16 300 5 3
17 300 10 -8
18 300 10 12
19 400 0 s
20 400 0 o
21 400 5 4
22 400 5 %
23 400 10 -9
4 400 10 -

These data can be analyzed either as a 3 X 4 analysis of variance, or as a two-
variable multiple regression. The regression approach typically assumes that the ef-
fects of exercise and medication increase linearly (i.e.,in a straight line); the ANOVA
model makes no such assumption. If we use the multiple-regression approach, the
following program will provide the desired results:
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DATA REGRESSN;
INPUT ID DOSAGE EXERCISE LOSS;

DATALINES;

1 100 0 -4
2 100 0 O
3 100 5 -7

(more data lines)
;ROC REG DATA=REGRESSN;
TITLE ‘Weight Loss Experiment
MODEL LOSS = DOSAGE EXERCISE / P R;
RUN;
QUIT;

- Regression Example';

1 ariety of
The first three lines create the data set. PRQC REG perforr‘rils a w:lde; :":lr;:i zble
regression models. The MODEL statement indicates that Fhe epende: nabe
(tt%e one to the left of the equals sign) is LOSS, a;xd _the)twc; 1]1;1((;}8):[18?; I(l(‘)ir gXER_
i i f the equals sign) ar ‘
tor) variables (the ones to the right o D o eciduals
ions “P” “R” ify that we want predicted valu
CISE. The options “P” and “R” specify e
t at the end of this pri
b uted. Note the use of a QUIT statemen! ' i ure.
;;)RSCC ‘;{HIIE% as well as PROC ANOVA and PROC GhLMt,)are coréi)lsz::iezoal;ed t1}11\‘2
ive” prc i a RUN statement has been en
teractive” procedures. That is, after a : at ol for ox.
¢ ditional statements (new
dure has executed, you may submit ad t 1 o
}:r?;lee)u'rhc top line of the SAS Display Manag_er will continue toUs?l(_)wt;}t]: “;:ergt "
dure “l.{unning” until a new procedure is submitted or \}ntll aQ s
submitted. The use of a QUIT statement is therefore, optional.
The output from this program is presented below:

Weight Loss Experiment - Regression Example

Model: MODEL1
Dependent Variable: LOSS

Analysis of Variance

Sum of Mean

Squares Square F Vvalue Prob>F

Source DF

.0005
Model 2 162.97083 81.48542 11.185 0.00

Error 21 152.98750 7.28512
C Total 23 315.95833

R-square 0.5158

Root MSE 2.69910 S
Dep Mean -5.45833 Adj R-8sq 0.4697
c.v. -49.44909
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Variable DF P:::?:::: s B anmet e
Error Par: te‘x‘
=0 Prob
INTERCEP 1 - e
Posnee h (2).262500 1.50884052 -1.698
EXemoreE 1 _0. 01167 0.00492785 0.237 0 s18
.637500 0.13495480 4.724 0 0001
-4. 0.0001
D :
obs :gs:ar Prsd;:ct Std Err Std Err Stud
alue Predict Resi Ldnas
Pl ) esidual Resi
3 003 _z::gs 1.142 -1.5542 Zd::; Res;d“al It
3 -7.0008 _5‘5335 1.142 2.4458 2.445 1'336 :
PRS0 _5‘5333 g;:z -1.3667 2.537 -O‘SBg * "
5 2 ou08 -3. . -0.3667 2.537 -0‘
6 15 0000 _agggg :Ji.142 6.8208 2.445 2'};2
7 -5.0000 -5 3200 .142 -5.1792 2.445 —2.11 T
s 39000 _2.3292 0.905 -2.6708 2.543 —1‘0 o e
o e ooes _5.515 0.905 0.3292 2.543 0.120 "
10 -8 0009 _5.5157 0.604 0.5167 2.631 0-199
11 s 0009 _3'7047 0.604 -2,4833 2.631 —0.9 : ’
12 -9 9000 _3.7042 0.905 -0.2958 2,543 -0.114.4
b 10000 —2.21 2 0.905 -0.2958 2.543 —0.116
b 0 -2‘212.;) 0.905 3.2125 2.543 1'266
15 -3.0000 -5.40 0.905 2.2125 2.543 0‘873 .
6 -3.0000 -5.4000 0.604 2.4000 2.631 0.910 .
17 -5 0o -3-5330 0.604 2.4000 2.631 0.915 .
18 -12 o900 _3.53 5 0.905 0.5875 2.543 0‘2 '
15 ~5.0000 _2.0925 0.905 -3.4125 2.543 -1.32;
20 -4 o000 -2.09 8 1.142 -2.9042 2.445 -1.1 -
21 _e.0000 _5.2858 1.142 -1.9042 2.445 -0. 79 N
22 60000 _5.2333 0.922 1.2833 2.537 0.229 '
22 90000 _3‘4703 gi:g -0.7167 2.537 -0'282 '
2 . . . -0.5292 .
7.0000 -8.4708 1.142 1.4708 2::2 -3'216
. .601
:u.m of Regiduals ’
'um of Squared Resid: .
luals
Predicted Resid SS (Press) ;igzggg

Note: The output i
: is t i
e p runcated somewhat so that it fits conveniently on the page
The output begi i
gins with an analysis of vari i
would variance table, which I 1
s mode? (s)t[z:?;r% I)A(NOVA. We can see that there are two deg‘:gg: :fl lflch ;S N
o mod f(;r ne & T ERCISE ar.1d one for DOSAGE. There is onll o r(eie o
able o fo  since the regression estimates a single straight li for each oart.
iy T than estimating a number of cell means rentline for cach varl
e su '
weight lossn‘ilso:t:gi\;ares for the model (162.971) tells us how much of the variation i
utable to EXERCISE and DOSAGE. The mean s al‘mft o the
. quare for the
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model (81.485) is the sum of squares (162.971) divided by the degrees of freedom for
the model (2). This mean square is then divided by the mean square error (7.285) to
produce the F-statistic for the regression (11.185). The p-value for this is reported as
10005.“C TOTAL” means «corrected total” and indicates the total degrees of free-
dom (23) and sum of squares (315.958) in the dependent variable. In regression, the
corrected total degrees of freedom is always one less than the total sample size since
one degree of freedom is used to estimate the grand mean. The ROOT MSE (2.699)
stands for the square root of the mean square error and represents, in standard de-
viation units, the variation in the system not attributable to EXERCISE or
DOSAGE. DEP Mean (~5.458) is simply the mean of the dependent variable

(LOSS). The R-SQUARE (.5158) is the square of the multiple correlation of
he proportion of variance in LOSS ex-

EXERCISE and DOSAGE with LOSS. Itist

plained by (attributable to) the independent variables. ADJ R-SQ (4697) is the ad-
justed R-square. The adjusted R-square takes into account how many variables were
used in the equation and slightly lowers the estimate of explained variance. CV.
(-49.449) stands for coefficient of variation and is calculated by dividing the ROOT
MSE by the mean, and multiplying by 100. The C.V. is sometimes useful when the
mean and standard deviation are related (such as in income data).

The bottom part of the output shows us, observation by observation, the actual
LOSS, the predicted value and the difference between the two (residual). In addition,
the column labeled “Student Residuals,” expresses the residual as a t-score and
Cook’s D is a distance measure that helps us determine how strongly a particular data
point affects the overall regression. Large absolute values of D (2 or more) indicate

possible problems with your model or data points that require some careful scrutiny.

Having explained the terms in the analysis of variance table for the regression,

Jet’s summarize what meaning we can infer. Basically, the table indicates that the in-
dependent variables were related to the dependent variable (since the F was signif-
icant at p=.0005). Furthermore, we find that about 50% of the variation in weight
loss is explained by the two experimental treatments. Many researchers are more in-
terested in the R-square statistic than in the p-value since the R-square represents
an estimate of how strongly related the variables were. The bottom half of the print-
out contains the estimates of the parameters of the regression equation. Three para-
meters are estimated: (1) the intercept, or constant, term (2) the coefficient for
DOSAGE, and (3) the coefficient for EXERCISE. Each parameter estimate was
based on one degree of freedom (always the case in regressions). For each parame-
ter estimate, a standard error was estimated along with a t-statistic and a p-value for
the t-statistic. The t-statisticis simply the parameter estimate divided by its standard
error, and it is based on the number of degrees of freedom for the error term (21 for

this example).

This half of the printout tells us that it was really EXERCISE that caused the
weight loss. The regression coefficient for DOSAGE is not statistically significantly
different from zero (p=.8151). The fact that the intercept was not significantly dif-

ly tells us where the regression

ferent from zero is irrelevant here.The intercept mere
the y-axis, and does not explain any variation.

line (or plane, in this case) crosses
ers would run a new regression with DOSAGE

At this point, many research
eliminated, to refine the estimate of EXERCISE. Since this was a designed experiment,
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we would recommend leavin for purposes of reporting. Drop-
ping DOSAGE won't affect the estimated impact of EXERCISE since DOSAGE
and EXERCISE are uncorrel i i

regression are uncorrelated, the estimates of the regression coef;
changed by adding or dropping independent variables, When the in.

ables are correlated, dropping or adding variables strongly affect
estimates and hypothesis tests.

g the regression as js

ficients are up.
dependent vari-
s the regression

C. Nonexperimental Regression

Many, if not most, regression analyses are conducted on data sets where the inde-
pendent variables show some degree of correlation, These data sets, resulting from
nonexperimental research, are common in all fields. Studies of factors affecting heart
disease or the incidence of cancer, studies relating student characteristics to student
achievement, and studies predicting economic trends all utilize nonexperimental

The Nature of the Data. There are man
imental and

ion in the dependent variable b:
far it sounds simple.

The problem is that correlation among the independent variables causes the re-
gression estimates to change depending on which independent variables are being
used. That is, the impact of B on A depends on whether C is in the equation or not.
With C omitted, B can look very influential. With C included, the impact of B can

disappear completely! The reason for this is as follows: A regression coefficient tells
us the unique contribution of an

is, the coefficient for B tells u

we add C,and if B and C are
be changed. Let’s see how th

The subjects are a rand
City School District. The fol

1. ACH6: Readin
2. ACHS: Readin,

correlated, then the unique co.
is works in an example.

om sample of sixth grade students from Metropolitan
lowing measures have been taken on the subjects:

ntribution of B on A will

g achievement at the end of sixth grade.
g achievement at the end of fiftl, grade.

e e e
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i in the fifth grade.
s re of verbal aptitude taken in : "
y APT:I/: :;::Ere of attitude toward school Faken m.ﬁf:i: g;e:ioenars ot year).
‘ II?\ITCLOME'A measure of parental income (in thousan
5. :

actual data.
Our data set is listed below. (NoTE: These are not actua )

E
ID  ACH6 ACHS APT  ATT [NCG(:M
T s 66 104 60 &
2 69 60 6 8 »
372 60 B & %
68 59 w0 74 u
5 6.7 6.1 114 55 b
6 66 63 108 2 n
7 71 52 03 8 1
8 65 44 2 x
o 72 49 B6 2
10 62 51 105 49 2
n6s 46 ® s s
2 58 43 o % »
B 67 48 100 ’ 0
l;‘ 55 42 98 4 x
15 53 43 o 2 3t
6 47 44 o4 »
7 49 39 % % 2
18 48 4l % X
B 47 38 106 47 x
0 46 36 g 8

g

purpose € study Is to unders and wha es the reading achievemen
The of the stud: t derst: hat underlies th dis hi t
of the students in the district. The following program was written to analyze the data:

i have spec-
By using the SELECTION=FORWARD «;\pctllc‘;g of tl:]l:(".i)ecpeRlﬁg,“wveaﬂa; ble,l::a °
hat ion is to be run with as \ oD
ACHS # Z;J’fl(")rxf;'rl“j l;tilg(;'eISNSlgr(l)lthg a: rindependent variables. Each variable will be
ACHS, APT, }
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tested, and the one that produces the largest F-value will be entered first (if the
p-value for entry is less than the specified or default value). Since we did not specify
a criteria for entry into the model, the default value of .50 is used. If we want to
change the p-value for entry into the model, we can include the MODEL option
SLENTRY = our p-value. Although we did not choose to show it, we could run a
stepwise regression (where variables that enter the model can also leave the mode]
later) where we can specify both entry level p-value (with SLENTRY = our p-value)
and a p-value for staying in the mode} (SLSTAY = our-p-value). For selection
method STEPWISE, the default entry and staying p-values are both .15.

We also want to run the model using the MAXR technique. Before examining
the output, we should discuss briefly stepwise regression and nonexperimental data.

D. Stepwise and Other Variable Selection Methods

As mentioned earlier, with nonexperimental data sets, the independent variables are
not truly “independent” in that they are usually correlated with one another. If these
correlations are moderate to high (say 0.50 and above), then the regression coeffi-
cients are greatly affected by that particular subset of independent variables that are
in the regression equation. If there are a number of independent variables to con-
sider, coming up with the best subset can be difficult. Variable selection methods, in-
cluding stepwise, were developed to assist researchers in arriving at this optimal
subset. Unfortunately, many of these methods are frequently misused. The problem
is that the solution from a purely statistical point of view is often not the best from a
substantive perspective. That is, a lot of variance is explained but the regression
doesn’t make much sense and isn’t very useful. We’ll discuss this more when we
examine the printout.

Stepwise regression examines a number of different regression equations. Basi-
cally, the goal of stepwise techniques is to take a set of independent variables and put
them into a regression one at a time in a specified manner until all variables have
been added or until a specified criterion has been met. The criterion is usually one of
statistical significance or the improvement in the explained variance.

SAS software allows for a number of variable selection techniques. Among
them are:

1. FORWARD: Starts with the best single regressor, then finds the best one to
add to what exists; the next best, etc.

2. BACKWARD: Starts with all variables in the equation, then drops the worst
one, then the next, etc,

3. STEPWISE: Similar to FORWARD except that there is an additional step
where all variables in each equation are checked again to see if they remain
significant after the new variable has been entered.

4. MAXR: A rather complicated procedure, but basically it tries to find the
one-variable regression with the highest r-square, then the two-variable re-
gression with the highest r-square, etc.

5. MINR: Very similar to the MAXR, except that the selection system is
slightly different.

Now, let’s examine the printout from the program:

Nonexperimental Design Example

CH6
Forward Selection Procedure for Dependent Variable A

=1.87549647
step 1 Variable ACH5 Entered R-square = 0.66909805 Cc(p) =1.87

Regression
Error
Total

Variable

INTERCEP
ACH5

DF sum of Squares Mean Square F
1 12.17624633 12.17624633 36.40
18 6.02175367 0.33454187
19 18.19800000
11
r Standard Type
P;::T:::e Error Sum of Squares F
2.17866266 6.51
1.83725236 0.71994457
0.86756297 0.14380353 12.17624633 36.40

Bounds on condition number:

Step 2 Variable APT Entered

Regression
Error
Total

Variable
INTERCEP

ACHS
APT

Prob>F

0.0001

Prob>F

0.0200
0.0001

76460424
Prob>F

0.0001

Prob>F

0.5501
0.0005
0.1497

L

_________________________________ ;:;;;;;e = 0.70817380 C(p) = 1.
DF Sum of Squares Mean Square F
2 12.88734675 6.44367337 20.63

17 5.31065325 0.31239137

19 18.19800000
P;::T::i: Sta;::zg Sum of ::E:r:z F
Ovairezer  0.deeiiess  5lsoassasi 10.38
g:zi:;izgi 0:01209548 0.71110042 2.28
1.463985, 5.855938

Bounds on condition number:

i el.
No other variable met the 0.5000 significance level for entry into the mod:

6
Summary of Forward Selection Procedure for Dependent Variable ACH

Variable Number Partial

Step Entered In R¥**2
1 ACHS5 1 0.6691

2 APT 2 0.0391

Model

R**2 c(p) F
0.6691 1.8755 36.3968
0.7082 1.7646 2.2763

Prob>F

0.0001
0.1497

229
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[Continued)
[Coutinued]

Maxim -
um R-square Improvement for Dependent variable ACH6

Step 1 vVariable ACH5 En
tered -
R-square - 066909805 () = 1.87545647 The above model is the best 3-variable model found.

DF Sum of
& Squares Mean Square F  Probs>F step 4 Variable INCOME Entered R-square = 0.72232775 C(p) =5.00000000
egression 1
12.17624633
Error 12.17624633 36,
Total i: 1:2;;75367 0 33454187 40 0.0001 DF Sum of Squares Mean Square F Prob>F
. 000
00 Regression 4 13.14492048 3.28623012 9.76 0.0004
Parameter Standa Error 15 5.05307952 0.33687197
Variabl i andard Type II
e Estimate Error Sum of Squares F  prob Total 19 18.19800000
rob>F
:g}'x‘i?kczp 1.83725236 0.71994457 2.17866266 Parameter Sstandard Type II
0.86756297 0.14380353 12.17624633 3:2; ggggo variable Estimate Error Sum of SqQuares F  Prob>F
. L0001
Bo
Bounde on condition number: 1, . INTERCEP  0.91164562 1.17841159 0.20161506  0.60  0.4512
The above medeq s e n T ACHS 0.71373964 0.18932981 4.78747493 14.21 0.0019
he above model is the best 1-variabl T APT 0.02393740 0.01419278 0.95826178 2.84 0.1124
Step 2 variabie Ap e model found. ATT -0.02115577 0.02680560 0.20983199 0.62 0.4423
T Entered R-square = 0.70817380 C(P) = 1.76460424 INCOME 0.00898581 0.01141792 0.20864378 0.62 0.4435
DF
Sum of Squares Mean Square F Probs>F Bounds on condition number: 2.431593, 31.79315
Regression 2 e
12.88
Error 17 : 734675 6.44367337 20.63 0.0001 The above model is the best 4-variable model found.
Total 19 18-1;235325 0.31239137
) 0000 No further improvement in R-square is possible.
Variable P;:t:im:sr Standard Type II
e Error Sum of Squa
INTERCEP 0.64269963 quares F  Prob>F Since a forward selection was requested first, that is what was run first. Instepl,
ACHS 0 72475303 lJ). 25397972 0.11615840 0.37  0.5501 the technique picked ACHS as the first regressor since it had the highest correlation
APT 0.01824901 0. ofgéggiﬁ 5.80435251  18.58  0.0005 with the dependent variable ACH6.The r-square (variance explained) is 0.669, which
e o 0.71110042 2.28  0.1497 is quite high. “C,” is a statistic used in determining how many variables to use in the
Boun n condition number: 1.463985, 5.855938 regression. You will need to consult one of the references in Chapter 1 or see your
friendly statistician for help in interpreting Mallow’s C, statistic. The remaining sta-

tistics are the same as for the PROC REG program run earlier. On step 2, the tech-
nique determined that adding APT would lead to the largest increase in r-square. We
notice however, that r-square has only moved from 0.669 to 0.708, a slight increase.
Furthermore, the regression coefficient for APT is nonsignificant (p=.1497).This in-

The above model is the best 2-variable model found
Step 3 i ;
p Variable ATT Entered R-square = 0.71086255 C(p) =3.61935632

DF Sum of Squares Mean Square P pro
Regression 3 12.93627670 o>F dicates that APT doesn’t tell us much more than we already knew from ACHS. Most
Error 16 261723 4.31209223  13.11 0.0001 researchers would drop it from the model and use the one-variable (ACHS) model
Total 19 . 30 0.32885771 P use the one-varia e (AC odel.
18.19800000 After step 2 has been run, the forward technique indicates that no other variable
Vartable ' mecimce standara Tyve 11 e e e o 05 akhoughn retevion analyoi 1 om0
e Error Sum of Squares F ) Lyreq - & & ySIS,
INTERCED 0.8001376 Probs>F uncommon to set the inclusion level at .10). ]
ACHS 0:“739933 ;.3586303 0.15758855 0.48  0.4987 _The MAXR approgch finds the best one-yanab!e model, 'then.the best two-
APT 0.01972808 0 ~01§§§:3§ 5.53198290  16.82  0.0008 variable model, etc., until the full model (all variables included) is estimated. As can
ATT ~0.00797735 0 202063119 2‘33521687 2.31  0.1483 be seen, with these data, both of these tec'hmques lead tq the same conclu51on§:
Bounds - 995 0.15  0.7048 ACHS is far an@ away the .best prednc?or; itis a strong predictor; and no other vari-
________ on condition number: 1.633564, 14.15998 ables would be included with the possible exception of APT.
""""""""""""""" - There is a problem here, however. Any sixth grade teacher could tell you that the
230 best predictor of sixth grade performance is fifth grade performance. But it doesn’t
———— - S
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?Slll\iéexirhso\:;rzén;{lgl} el;e. It might be more helpful to look at APT, ATT, and IN.
Inthe regression. Also, it could be useful t k , , A
pendent variable and have APT, ATT, and II\‘IC cors Of comen e
1 ! d | N N OME be regressors. Of cou his i
suggesting quite a bit in the way of re i i o techaigus
! At ¢ gressions. There is another regression techni
;};gb%:;aély f;xcnhltates looking at a large number of possibilities quickly. This i:i;::
[hé i rse; ection n}ethfod of PROC REG. The RSQUARE method will give us
-square value for every one, two, three, nwa inati
he P ¢ e one, 3 AN y combinations of th
v :;:F;les in thelmdepen dentvariable list. The following lines will generate all of t(:lc ree-
gressions mentioned so far as well as the model with ACHS as the dependent variable:

PROC REG DATA=NONEXP;
MODEL ACH6 = INCOME ATT APT ACHS / SELECTION=RSQUARE;

MODEL ACHS ING
RONT COME ATT APT / SELECTION=RSQUARE;

The output from PR i i
noxt p om PROC REG with RSQUARE the selection option is shown

N=20 Regression Models for Dependent Variable: ACH6
Number i ~8qua. i
er n R-8 re Variables in Model
1 0.66909805 ACHS5
1 0.38921828 APT
1 0.18113085 ATT
1 0.10173375 INCOME

2 0.70817380 APT ACHS
2 0.66964641 INCOME ACHS
2 0.66917572 ATT ACHS
2 0.45629702 INCOME APT
2 0.40687404 ATT APT
2 0.18564520 INCOME ATT

3 0.71086255 ATT APT ACHS

3 0.71079726 INCOME APT ACHS
3 0.66967022 INCOME ATT ACHS
3 0.45925077 INCOME ATT APT

__-_fl__;_-‘>_0_._7_2_2_32775 INCOME ATT APT ACH5
N=20 Regression Models for Dependent Variable: ACHS
Number in R-square Vari

mber ariables in Model

1 0.31693268 APT
1 0.26115761 ATT
1 0.13195687 INCOME
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2 0.41273318 INCOME APT
2 0.38784142 ATT APT
2 0.26422291 INCOME ATT

The top part contains all of the RSQUARE?s for every possible one-, two-,
three-, and four-variable regression with ACH6 as the outcome variable. It is possi-
ble to glean quickly, a lot of information from this table.

Let us say that you have just decided that you don’t want ACHS as a regressor.
You can see quickly from the one-variable regressions that APT is the next best re-
gressor (r-square=.389). The next question is, “What is the best two-variable regres-
sion?” and “Is the improvement large enough to be worthwhile?” Let’s look at the
two-variable regressions which have APT in them:

R-square for APT + ATT = .407
APT + INCOME = .456

(Remember, we're eliminating ACHS for now.)

APT and INCOME is best, and the gain is .067 (which is equal to 0.456 — 0.389).
Is a 6.7% increase in variance explained worth including? Probably it is, although it
may not be statistically significant with our small sample size. In explaining the re-
gressions using ACHS5 as an outcome variable, we can see that APT and INCOME
Jook like the best bet there also, In interpreting these data, we might conclude that ap-
titude combined with parental wealth are strong explanatory variables in reading
achievement. It is important to remember that statistical analyses must make substan-
tive sense. The question arises here as to how these two variables work to influence
reading scores. Some researchers would agree that APT is a psychological variable
and INCOME is a sociological variable and the two shouldn’t be mixed in a single re-
gression. It’s a bit beyond the scope of this book to speculate on this, but when running
nonexperimental Tegressions, it is best to be guided by these two principles:

1. Parsimony: Less is more in terms of regressors. Another regressor will al-
ways explain a little bit more, but it often confuses our understanding of life.

2. Common Sense: The regressors must bear a logical relationship to the de-
pendent variable in addition to a statistical one. (ACH6 would be a great
predictor of ACHS, but it is a logical impossibility.)

Finally, whenever regression analysis is used, the researcher should examine the
simple correlations among the variables. The statements below will generate a cor-
relation matrix among all the variables of interest:
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The output from running this procedure js:

Pearson Correlati.
yoarsen on Coefficients / prob » IRl under Ho: Rho=0

APT ATT ACHS ACH6 INCOME
APT 1.0
o.2000 o&‘g;;é 0.56297 0.62387 0.09811
. 0.0098 0.0033 0.6807
ATT 0.497
0.32;; 1608000 0.51104 0.42559 0.62638
. 0.0213 0.0614 0.0031
ACHS 0.56297 0.51
.51104 1.00000 0.817
0.0098 0.0213 0.0 0.00(935. 063:igj
ACHE 0.62387 0.425 '
. 59 0.81798 1.000
. 0
0.0033 0.0614 0.0001 0.0 ° o(‘)aigg:
INCOME 0.09811 0.6263
. 8 0.36326 0.3189
0.6807 0.0031 0.1154 0.170; 1608000

An inati i i
examination of the simple correlations often leads to a better understanding

related to INCOME (r = .626) an,
¢ . d also to APT (r = .497). Whateve lati ipi
had with ACH6 was redundfmt with APT and INCOME., Klso ncm’cerlll;(;ta Il;\??:s(l)lll\l’)l.g

a variable.

E. Creating and Using Dummy Variables

As we . . . . .
e lgfr:uoned in the mtroc!ucuon to this chapter, categorical variables such as
o ;rcse can be used as 1ndfapendent variables in a multiple regression pro-

y t create dummy variables. When a categorical variable has onl)j/ two

GENDER with values of ‘F’ ‘M’
following sty and ‘M’ you would create a dummy variable with the

IF GENDER = 'F' THEN DUMMY G =1;
. i

ELSE IF GENDER = 'M' THEN DUMMY_G = 0;

. H

DULv/[vhh/[eYn (t}his'“dllxlmmy variable is used in a regression, the coefficient of
-G will show how much to add or subtract (if the coefficient is negative)

SE————
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from the predicted value of the dependent variables if the subject is a female. The
reason for this is that we have chosen the 0 level for males which makes the males
the “referrence” level (anything times 0 is still 0). A compact SAS statement to
create DUMMY_G would be:

DUMMY_G = INPUT (TRANSLATE (GENDER,'01','MF'),1.);

See Chapter 17 for an explanation of the INPUT function and Chapter 18 for an
explanation of the TRANSLATE function. This statement is not preferrable to the
two lines above (we actually prefer the two-line method) but it is useful if you want
to impress your boss!

What do you do when your independent categorical variable has more than two
levels? You choose one of the levels as your “reference” and create k-1 dummy vari-
ables where k is the number of levels for your categorical variable. As an example,
suppose a variable RACE has levels of ‘WHITE’, ‘AFRICAN AM’, and ‘HIS-
PANIC’. Arbitrarily choosing WHITE as the referrence level, you would create two
dummy variables, one representing African American or not; the other representing
Hispanic or not. Here is one way to code this:

IF ]

This code assumes that if the value of RACE is missing, the dummy variables
will be set to 0. Instead, you may want to set the dummy variables to missing when
RACE is missing. To do this, modify the lines above like this:

IF RACE = 'AFRICAN AM' THEN AF AM=1;
ELSE IF RACE NE “THEN =90;

IF RACE = 'HISPAMIC' =
ELSE IF RACE NE

You may find it impractical to create dummy variables for categorical variables
with a large number of values.

F. Logistic Regression

When you have a dependent variable with only two levels (such as dead/alive;
sick/well), multiple-regression techniques are not appropriate. Suppose you coded
your dependent variable as a 1 for SICK and a 0 for WELL. You would like the
regression equation to predict a number between 0 and 1 which could be inter-
preted as the probability that the subject was sick or well. However, using the
multiple-regression methods described in the sections above, the prediction equa-
tion could result in negative values or values greater than 1. This would be difficult

to interpret.
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A regression method called logistic regression was developed to handle thjg
problem. Logistic regression uses a transformation (called a logit) which forces the
prediction equation to predict values between 0 and 1. A logistic regression equation
predicts the natural log of the odds for a subject being in one category or another. Ip
addition, the regression coefficients in a logistic regression equation can be used to
estimate odds ratios for each of the independent variables.

Although the details of logistic regression are beyond the scope of this book, we
will demonstrate several ways to run logistic regression with the following data set.

We have recorded the age, vision status, driver education status, and accident
status (did the subject have an accident in the past year?) of a number of individu.
als. The sample data, stored in a data set called C:\APPLIED\ACCIDENT.DTA is
listed below (0 = No,1 = Yes):

Accident Statistics Based on Age, Vision, and Driver’s Education:

Accident in Vision Driver
Past Year? Age Status Education
1 17 1
1 44 0
1 48 1
1 55 0
1 75 1
0 35 1]
0 42 1
0 57 0
0 28 0
0 20 0
0 38 1
0 45 0
0 47 1
0 52 0
0 55 0
1 68 1
1 18 1
1 68 0
1 48 1
1 1]
1 1
1 1
1 0
1 1
1 1
0 1
0 1
0 0
0 0
0 1
0 0
0 1]
0 0
0 1]
0 0

17
70
72
35
19
62
39
40
55
68
25
17
45
4
67
55

—-o._-_-ao»-o—-...oo»—no—-o_-ooo»—to_._.o_._DHHHOOO
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[Continued]
Vision Driver

Pt vear? Status Education

Past Year? Age
1 61 1 0

19 1 0
69 0
23 1
19 0
2 1
1

0

1

1

74
31
16
61

e e e
como—mO =

. . dict

im is to see if age, vision status, and driver edl'xcatmn can be us:;ﬁ: ;:)C pareS ,;, s

i Ourlf'l:clt had an accident in the past year. Be]ow is a pr'(j)grl:;m‘ll ;o create 2 S

s Sltl cJalled LOGISTIC which includes the variables ]lllstt()e al (21 'np] s e o

e OLD) which will be used 1 .
i OUP, YOUNG, and ) : > :
;;natt)lis rs:ffgsun a forward stepwise logistic regression are included:

e state

Program Name: LOGISTIC. SAS in C:\APPLIED

Purpose: To demonstrate logistic regression

0C FORMAT; cs
GROUF 0 = ' < =20 and <=
aTom AcE 1="'<20 or >65';

ALUE N 0 = 'No Problem’
v e 1 = 'Some Problem';

YES_NO 0= 'No'
VALTE 1= "'Yes';

RUN;
ISTIC: )
DMmms *C: \APPLIED\ACCIDENT.DTA' MISSOVER;
INPUT ACCIDENT AGE VISION DRIVE ED;
#*tNote: No missing ages; .
IF Aoaﬁ< 20 OR AGE > 65 THEN AGEGROUP = 1;
ELSE ‘AGEGROUP=0;
IF AGE < 20 THEN YOUNG =1;
ELSE YOUNG = 07

{dent in Last Year?'
of Driver’
- . A .

ON = 'Vision Problem? .
giwlm ED = ‘Driver Education?';
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[Continued)]

FORMAT ACCIDENT

DRIVE_ED

YOUNG

oLD YES_NO.
AGEGROUP AGEGROUP.
VISION VISION.;

RUN;

PROC LOGISTIC DATA=LOGISTIC DESCENDING;
TITLE 'Predicting Accidents Using Logistic Regression';
MODEL ACCIDENT = AGE VISION DRIVE_ED / ’
SELECTION = FORWARD
CTABLE PPROB = (0 to 1 by .1)
LACKFIT
RISKLIMITS;
RON;
QUIT;

The DATA Step statements are straightforward. Let’s explain the PROC
LOGISTIC statements. One somewhat peculiar “feature” of PROC LOGISTIC s
that the resulting equation predicts the log odds for the LOWER value of the
depcl}dem variable. So, if we follow tradition and code Yes as a 1 and No as a0, the
equation v.vould predict the log odds of NOT having an accident. Ope easy wa’ to
reverse this is to use the option DESCENDING. In our example, the use of this); -
tion will cause the program to predict the log odds of having an accident given a ce]:-
8;1 Ds;t of predictor or explanatory values. (Another way is to use the options
direcﬁol:,) FORMATTED and provide a format with values in the correct

) NexF, our MODEL statement looks just like the ones we used with PROC REG.
This logfsuc regression example includes several MODEL options: The Selection'
me.thod is chosen to be FORWARD (the same as for regular regression); a classifi-
cation table (CTABLE) is requested for all probabilities from 0 to 1 ’by 1; the
:(;;mer attli [remeshow Goodness-of-Fit test (LACKFIT); and the Odds Ratio’s for

variabie in the equation with their 95% imi
requested. Here are tl?e results: " confidence limits (RISKLIMXTS) e

Predicting Accidents Using Logistic Regression

The LOGISTIC Procedure

Data Set: WORK.LOGISTIC

Response Variable: ACCIDENT Accident in Last Year?
Response Levels: 2

Number of Observations: 45

Link Function: Logit

[Continued]

Response Profile (1)

ordered
Value ACCIDENT Count
1 Yes 25
2 No 20

Forward Selection Procedure @

Step 0. Intercept entered:

Residual chi-Square = 10.7057 with 3 DF (p=0.0134)
Step 1. Variable VISION entered:

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and
Criterion Only Covariates Chi-Square for Covariates
AIC 63.827 59.244 .
sc 65.633 62.857 B
-2 LOG L 61.827 55.244 6.583 with 1 DF (p=0.0103)
Score . 6.421 with 1 DF (p=0.0113)

Residual Chi-Square = 4.9818 with 2 DF (p=0.0828)
Predicting Accidents Using Logistic Regression
The LOGISTIC Procedure

Step 2. Variable DRIVE_ED entered:

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and
Criterion only Covariates Chi-Square for Covariates
AIC 63.827 56.287 .
scC 65.633 61.707 .
-2 LOG L 61.827 50.287 11.539 with 2 DF (p=0.0031)
Score . . 10.598 with 2 DF (p=0.0050)

Residual Chi-Square = 0.1293 with 1 DF (p=0.7191)

NOTE: No (additional) variables met the 0.05 significance
level for entry into the model.




[Continued]

Concordant = 67.2% Somers’ D= 0.532
Discordant = 14.0% Gamma = 0.655
Tied = 18.8% Tau-a = 0.269
(500 pairs) c = 0.766

Goodness-of-fit Statistic = 0.0756 with 2 DF (p=0.9629)

Summary of Forward Selection Procedure @

Variable Number Score Pr > Variable
Step Entered In Chi-Square Chi-Square Label
; DK;S];ON 1 6.4209 0.0113 Vision Problem?
._ED 2 4.8680 0.0274 Driver Education?

Analysis of Maximum Likelihood Estimates @

Parameter Standard Wald Pr > k)
tandardized
Variable DF Estimate Error Chi-Square Chi-Square Estimate
INTERCPT 1 0.1110 0.5457 0.0414 0.8388 .
XISION 1 1.7139 0.7049 5.9120 0.0150 0.477689
RIVE_ED 1 -1.5001 0.7037 4.5447 0.0330 -0.417273

Association of Predicted Probabilities and Observed Responses ®

Conditional 0dds Ratios and 95% Confidence Intervals ®
Wald
Confidence Limits
Odds
Variable Unit Ratio Lower Upper
VISION 1.0000 5.551 1.394 22.098
DRIVE_ED 1.0000 0.223 0.056 0.886
Hosmer and Lemeshow Goodness-of-Fit Test @
ACCIDENT = Yes ACCIDENT = No
Group Total Observed Expected Observed _;Z;c;)-e_c:e;
1 11 2 2.20 9 8.80
2 11 6 5.80 5 5.20
3 10 6 5.80 4 4.20
4 13 11 11.20 2 1.80
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[Continued}
Classification Table
Correct Incorrect Percentages
Prob Non- Non- Sensi- Speci- False False

Level Event Event Event Event Correct tivity ficity POS NEG

0.000 25 [ 20 ] 55.6 100.0 0.0 44.4 .
0.100 25 0 20 0 55.6 100.0 0.0 44.4 .
0.200 23 0 20 2 51.1 92.0 0.0 46.5 100.0
0.300 23 9 11 2 71.1 92.0 45.0 32.4 18.2
0.400 23 9 11 2 71.1 92.0 45.0 32.4 18.2
0.500 17 9 11 8 57.8 68.0 45.0 39.3 47.1
0.600 11 14 6 14 55.6 44.0 70.0 35.3 50.0
0.700 11 18 2 14 64.4 44.0 90.0 15.4 43.8
0.800 11 i8 2 14 64.4 44.0 90.0 15.4 43.8
0.900 0 18 2 25 40.0 0.0 90.0 100.0 58.1
1.000 0 20 0 25 44.4 0.0 100.0 . 55.6

L

Explanation of the Output. Let’s examine the salient sections of this output.
First is the “Response Profile” @ which lists the number of observations in each
category of the outcome variable (ACCIDENT). Pay careful attention to this,
especially the ordered value information. Because we used the DESCENDING
option on the PROC LOGISTIC statement, the value of 1 (formatted as ‘Yes’) is
first in the list of ordered values. As we mentioned before, this means that this
logistic model will be predicting the odds and probabilities of having an accident
based on the explanatory variables.

The next section shows the order that the independent or explanatory variables
entered the model @. We see VISION entered first, with several criteria for assess-
ing the importance of this variable in predicting accidents. The two criteria “-2 LOG
L” and “Score” are both used to test whether the independent variable(s) is signifi-
cant, based on a chi-squared distribution. We see that VISION is a significant ex-
planatory variable using either of these two criteria (p approximately .01). The other
two criteria, “AIC” (Akaike Information Criterion) and “SC” (Schwartz Criterion)
serve a similar purpose except they adjust for the number of explanatory variables
and the number of observations used in the model. These statistics are useful for
comparing different models; lower values of these statistics indicate a better-fitting
model.

Looking farther down the output, we see that DRIVE_ED (driver education)
entered next. The overall model improved (based on a lower AIC and SC and a
smaller p-value for -2 LOG L). Since no other variables met the default entry level
significance of .05, the model building stopped at this point.

The “Summary” section @ is printed only for stepwise (FORWARD, BACK-
WARD, or STEPWISE) selection methods. It summarizes the order in which the
explanatory variables entered the model and the chi-square and p-value for each
variable.
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Section @ give: r T es T T .
s us the Parameter est £ tic re
1 €ssion model
] mates for the logls 8! In

log (odds of having an accident) = 1110 + 1.7139 x VISION

-1.5001 x DRIVE_ED
fwe substitu e values for an
I (l) titut for VISION

hms) to this power. To co

an accident bases mr vt PO o mpute the probability thata person will have

dUCatl()ll, Yyou can use the relations| hlp that:
Odds = — ]_ - h P
dds where P is the pr obablhty

Solving for P, we get:

Odds
1+ Odds *

Let’s use this equation to i
] v predict the odds and th
Ing an accident for given values of V., v
vision problem (VISION=0) e —d DRI
(DRIVE_ED =0), the calcula

probability of a person hay-
VE_ED. For a per: i
o IoN > person with no
o i be:ever took a driver education course
log (odds) = .1110 + 1.7139 x 0-1.5001 X 0 = 1110
Therefore, the odds of having an accident for this person are:
Odds (of having an accident) = exp(.1110) = 1.1174
And the probability of having an accident is:
p (having an accident) = _Liza
1+ 11174 = 5277
Taking a similar
) person, except i isi
again compute odds and probabilitliaes:o e with & vision problem (VISION=D, we
log (odds) = 1110 + 1.7139 x 1-1.5001 X 0 = 1.8249
Odds (of having an accid ent) = exp(1.8249) = 6.2022

p (having an accident) = 8222
) =1y 62022 ~ 8612

You can see that the od. i
ds of havin, i i
L g an accident i i
1174 to 6.2022) when a person has a vision proble; V:’lcrease foamaically (from
these odds, m. We often look at the ratio of

62022
11174 = 53506,
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to describe the effect of an explanatory variable on the odds for an event. This ratio
is called the odds ratio and is shown in a later section of the output.

The section labeled “Association of Predicted Probabilities” ® is somewhat
complicated. It works this way: Take all possible pairs of observations in which the
outcomes are not the same. In this example, there are 500 pairs where one unit of the
pair had an accident and the other did not. Then compute the probability of each unit
of the pair having an accident. If the unit with the higher computed probability is the
one that actually experienced the event in question (an accident), this pair is labeled
«Concordant.” When a pair is in the “wrong” order, it is labeled “Discordant.” If both
units of the pair have the same probability, the pair is labeled “Tied.” It is desirable
to have a high concordant percentage and a low discordant percentage.

The “Conditional Odds Ratios and 95% Confidence Intervals” ® is the result of
the RISKLIMITS option. For each variable, it lists the odds ratio and the 95% con-
fidence interval for this ratio. Notice that the odds ratio for VISION is 5.551, which
is the same as we computed earlier (if we round our result). Since the 95% confi-
dence interval does not contain one, we have additional confirmation that vision is a
significant explanatory variable in our model.

The fact that the odds ratio for DRIVE_ED is less than 1 tells us that driver ed-
ucation helps reduce accidents.

The “Hosmer and Lemeshow Goodness-of-Fit” statistics @ is a chi-square
based test to assess goodness of fit. Since you probably do not want to reject the null
hypothesis that your data fit the specified model, you would like a high p-value for
this test. In this example, the chi-square value of .0756 with two degrees of freedom
gives us a p-value of .9629, which means that we do not reject the null hypothesis
that these data fit this model.

We finally get to the “Classification Table” ®, which gives us the sensitivity,
specificity, false positive rate, and false negative rate for several levels of probability.
Suppose, for example, if you decide that any predicted probability greater than .3
should be considered a “positive diagnosis” for having an accident. In other words,
you want to be somewhat conservative and consider a person an accident risk even
though the probability of having an accident is less than .5. Based on the classifica-
tion table, this cutoff for a “positive diagnosis” would have a high sensitivity (92%)
and a relatively low specificity (45%). “Sensitivity,” for those not familiar with the
term, is the proportion of people who have the event in question (an accident) and
are predicted to have one (p > .3 in this case). Specificity would be the proportion
of people who did not have an accident and who had a probability less than .3. Look-
ing at this table, you can decide what a convenient cutoff for a “positive diagnosis”
might be, depending on your desired sensitivity and specificity. We will discuss a
graphical way of looking at this later in this section, when we show you how to pro-
duce a receiver operator characteristic curve (ROC).

Creating a Categorical Variable from AGE. Either by inspection of the data or
by experience, you may be surprised to find that age did not enter into the equation.
To investigate this further, let’s look at the age distributions for those who had
accidents and those who did not. A simple PROC CHART can quickly do this for us.
Here is the code:
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OPTIONS PS=30;
PROC CHART DATA=LOGISTIC;

TITLE 'Distribution
of Ages A !
VBAR AGE / MIDPOINTS=10 TO S:YBYC;;dent Seacuats
GROUP=ACCIDENT; i

RUN;

Here is the resulting output:

Distribution of Ages by Accident Status

Frequency

1234
0000 AGE Midpoint

[-W'S

89
00000

R
Yes ACCIDENT

Notice i

the dispne. :E;t é?; :I}:eihnonac'cxdent group, there are more subjects in the center of

ane oo e but i Be accident .group,.there seems to be an excess of very youn,

GROUD) whh w']lz ased on this finding, we can create a new variable (AGEg-

a value of 1 otherwlise. ;‘;ietl? ;’::::i;;:) ‘izr:ll::i?‘s bethexLZO e ) and

data set. We can therefore use the néw variabl ) AGEGROUD mapned o orginal

datas t v v e AGEGROUP inste

e omt;l:( x:agt;e:?‘onhl‘-iﬁre is the m_odlﬁed program with the added :Sﬁ?)fn‘At‘c? 5:;:

five rai) which will contain d}e sensitivity and 1-specificity (the false posi-
e can plot an ROC (receiver operator characteristic curve) later gf‘:l

variable DF Estimate Error
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PROC LOGISTIC DATA = LOGISTIC DESCENDING;
TITLE '‘Predicting Accidents Using Logistic Regression';
MODEL ACCIDENT = AGEGROUP VISION DRIVE_ED /

SELECTION = FORWARD

CTABLE_PPROB =(0 to 1 by .1)

The PROC LOGISTIC statements are basically the same as before except that
we substituted AGEGROUP for AGE and included the MODEL option OUT-
ROC= to create an output data set (ROC) with the data necessary to plot an ROC
curve. We then used PROC PLOT to plot the ROC curve. For a nicer looking graph,
PROC GPLOT, part of the SAS Graph® package, could be used. Here are some
edited portions of the output from running the procedures above:

Predicting Accidents Using Logistic Regression

The LOGISTIC Procedure

Summary of Forward Selection Procedure

Variable Number Score Pr > Variable
Step Entered In Chi-Square Chi-Square Label
1 AGEGROUP 1 9.3750 0.0022
2 VISION 2 5.3447 0.0208 Vision Problem?

Analysis of Maximum Likelihood Estimates

Parameter Standard wald Pr > Standardized
Cchi-Square Chi-Square Estimate

INTERCPT 1 ~-1.3334 0.5854 5.1886 0.0227 .
AGEGROUP 1 2.1611 0.8014 7.2712 0.0070 0.590289
VISION 1 1.6258 0.7325 4.9265 0.0264 0.453130
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[Continued)

Conditi i
onditional Odds Ratios and 95% Confidence Intervals

Wald
Confidence Limits

. Odds
Variable Unit Ratio Lower Upper
AGEGROUP 1.0000
. 8.680 1.805 4
VISION 1.00¢00 5.083 1.209 2]1:'37::

ROC Curve

Plot of _SENSI‘:L*?IMSPEC_. Symbol used is ‘o

o
©

Ko drotmnpen

0.4 0.6 . 1.0
1-Specificity

NOTE: 2 obs hidden.

What a dj
how im;for:aﬁltfiffir:?ﬁé ;;1(?: AdGECéROUP enters first, followed by VISION. See
and uj umDing i 1
foot ane running procedurc.. nderstand your data before Jumping in with both
The ROC curve is a traditio
1he nal method for showi i i
(S)T::Sl];ltvgy and the false positive rate, The variables ‘Sgglsglgleaf;at;ﬁ;};’lgge EWCGH
posFﬁVe :at )Siz S(RO_C) represent t'he sensitivity and one mi;us the speciﬂcit_ ?fl T’e
o ) pectl\{el)'/. As mentioned earlier, we can arbitrarily decide wh A valne
greateralgosmve prediction—it doesn’t have to be 5, You could deClarew vl
(anyone w;l; i{ tonbe a posni\{e prediction. This would increase your g\};i‘t"avl}:e
creas your to vally l'fad an accident would likely be predicted to be positive) by lt in,
o i/o o : S€ positive rate (many who did not have accidents would also b, pre.
positive vt ? V\Z}f){.n?;byou can see, one minus the specificity gives us theefglr:;
'€ rate. N € you can’t see it. i
often, i s very casy to oo Cgfnfuse(i') e it. Unless you work with these definitions

VOB e ek e
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Creating Two Dummy Variables from AGE. For our final trick, let’s create two
dummy variables from AGE, one called YOUNG, which will be true (1) for anyone
less than 20 years old, and false (0) otherwise. In a similar manner, the variable OLD
will be defined as true for people over 65, and false otherwise. The code to create
these two additional variables is included in the original DATA Step. The PROC
LOGISTIC statements to run an analysis based on the use of these new variables are:

PROC LOGISTIC DATA = LOGISTIC DESCENDING;
TITLE 'Predicting Acéidents Using Logistic Regression';
TITLE 'Using Two Dummy ables (YOONG and OLD) £0r AGE';
MODEL ACCIDENT = ON  DRIVE_ED /

RWARD

{0 to 1 by 1)

Unfortunately, because of the fairly small sample size, there aren’t enough sub-
jects in the young and old age groups so that these two variables are not included in
the model. However, with a larger data set, this approach may be preferable to the
AGEGROUP approach used earlier since the odds ratios for being young and old

can be determined separately.

Problems

9.1. We want to test the effect of light level and amount of water on the yield of tomato
plants. Each potted plant receives one of three levels of light (1 = 5 hours, 2 = 10 hours,
3 = 15 hours) and one of two levels of water (1 = 1 quart, 2 = 2 quarts). The yield, in
pounds, is recorded. The results are as follows:

Yield Light Water l Yield Light Water

12 1 1 20 2 2

9 1 1 16 2 2

8 1 1 16 2 2
13 1 2 18 3 1
15 1 2 25 3 1
14 1 2 20 3 1
16 2 1 25 3 2
14 2 1 27 3 2
12 2 1 29 3 2

Write a SAS program to read these data, and perform a multiple regression.

We would prefer to estimate the number of books in a college library without counting
them. Data are collected from colleges across the country of the number of volumes, the
student enrollment (in thousands), the highest degree offered (1 = BA., 2 = MA,,

9-2.
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3 = Ph.D.), and size of the main cam:

pus (in acres). Results of this (hypothetical) study
are displayed below:

[Continued]
Books Student Enroliment Degree Area PR
(millions) (in thousands) (acres) EG DATAMULTREG: ] .
IR ; PRO;ODEL WEIGHT = HEIGHT WAIST LEG ARM / SELECTION=STEPWISE;
: 5 3 20
o 8 3 40 9 RUN;
10 40 3 100
! 4 2 50 |
T t
: : : 00 9-6. Repeat problem 9-2 except treat DEGREE as a categorical variable. Yolu will need to
z , ; " ) create two dummy variables. Use the B.A. degree as your reference level.
7 30 3 40 : ere .
| 0 : 200 9.7. Accident data, similar to Section F, are presented below. This tlgg, ;{vx; rec;)orl()llee(in ect.
i 2 : ; dents that occurred in the past year, based on the presence of a drinking p;
i 12 1 100

whether the driver had one or more accidents in the previous ylear'. i{ur; a f(;::;f(a);desctli;;-

i st i J ite the resulting logistic regres -
logistic regression on these data, and write ° '

‘:il(l)s: Cgr:lpute gthe odds and the probability of an accident for t'w]f) c?is;si((l) : rlz)ebrls:;
ith inki i ident; (2) a person with a drinking

with no drinking problem or a previous acci 3 inking pros e

i i i he odds for person (2) divided by p
evious accidents. Take the ratio of t ' ¢ g
‘(3111)1 ;lr(l)dp;onﬁrm that the odds ratio is the same as listed in the SAS output (use the
MODEL option RL to obtain the risk limits). Here are the data:

Using a forward stepwise regression, show how each of the three factors affects the
number of volumes in a college library. Treat DEGREE as a continuous variable.

We want to predict a student’s success in college by a battery of tests. Graduating se-
niors volunteer to take our test battery, and their final grade point average is recorded.
Usinga MAXR technique, develop a prediction equation for final grade point average
using the test battery results. The data are as follows:

9-3.

Accident Statistics Based on Drinking and Accident History
GrA HS GPA College Board 1Q Test

(1 = Yes, 0=No)

39 38 680 130

B . . : 3 1l i S
A 60 120 Accidentin  Drinking  Previous | Accidentin  Drinking  Frevns
31 35 620 125 Past Year Problem  Accident | PastYear i

29 27 480 110 0
27 25 440 100

22 25 500 115

21 19 380 105

19 22 380 110

14 24 400 110

9-4. Take asample of 25 people and record their height, waist measurement, length of their
Tight leg, length of their arm, and their weight. Write a SAS program to create a SAS
data set of these data, and compute a correlation matrix of these variables. Next,run a
stepwise multiple regression using weight as the dependent variable and the other vari-
ables as independent.

9-5. What’s wrong with this program?

O RO R m O, OO0 RO, =

Rl R E-m, ,- P, m PO 00000000 O~ =
P, m, A, I, P PO SO0 R OO OO~ =

H
4 PROC CORR DATA = MULTREG
; HEIGHT -- WEIGHT.

[ NN = = N = I e R = =R =R ==l e
e, r O R, OR OO —~O RO, —~ O = O~ —~O
PO R e, ,r,OOOO RO ROO = =0~
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¢. Principal Components Analysis

We start with principal components analysis since it is conceptually somewhat sim-

ler than factor analysis. This does not mean that we are recommending it; it just al-
lows for a better pedagogical flow. Imagine you are trying to develop a new measure
of depression and paranoia (how pleasant). Your measure contains six questions. For
each question, the subject is to respond using the following Likert scale:

1 = Very Strongly Disagree
2 = Strongly Disagree

3 = Disagree
4 = No Opinion
5= Agree

6 = Strongly Agree
7 = Very Strongly Agree

The six questions are:

1. 1 usually feel blue.

2. People often stare at me.

3. I think that people are following me.
4. I am usually happy.

5. Someone is trying to hurt me.

6. I enjoy going to parties.

As stated, this example was created with two psychological problems in mind:
depression and paranoia. Someone who is depressed will likely agree with questions
1 and 6 and disagree with question 3. Someone who is paranoid will probably agree
with questions 2,4, and 5. Therefore, we would expect the factor analysis to come up
with two factors. One we can label depression, the other, paranoia.

Some sample data are shown below:

Question

SUBJ 1 2 3 4 5 6
1 7 2 3 4 5 [3
2 6 3 2 1 3 2
3 3 6 7 3 6 3
4 2 2 2 5 3 4
5 3 4 2 4 2 3
6 6 3 4 2 3 2
7 1 2 3 7 2 2
8 3 3 2 3 4 3
9 2 1 1 6 2 5
10 6 2 3 2 2 2
11 3 5 4 2 3 3
12 6 7 6 2 6 2
13 5 1 1 2 6 2
14 2 1 1 6 1 5
15 1 2 1 7 1 7
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Assume that we place these data in a file called FACTOR.DTA with the subject
number in columns 1 and 2 and the six questions in columns 3 through 8 (i.e., no
spaces between any values). Some people say that youshould have about 10 times the
number of subjects as you have variables to be factor analyzed. However, you proba-
bly want a minimum of 50 subjects and do not want huge numbers of variables. We vi-
olate that rule for this simple example where we have six variables and 15 subjects.

Our first step is to create a SAS data set containing the responses to the six
questions, as shown below:

Program Name: FACTOR.SAS in C:\APPLIED
Purpose: To perform a factor analysis on peychological Data i

PROC FORMAT;

VALUE LIKERT
'V. Strong Dis.*
'Strongly Dis.*
'Disagree*
'No Opinion*
‘Agree’
'Strongly Agree'
'V. 8trong Agree';

Noauhwnp
Enmn o

RON;

DATA FACTOR;
INFILE 'C:\APPLIED\FACTOR.DTA' PAD;
INPUT SUBJ 1-2 @3 (QUES1-QUES6) (1.);

LABEL " QUESl='Feel Blue' i
QUES2='People Stare at Me'
QUES3='People Follow Me®
QUES4='Basically Happy'
QUESS='People Want to Hurt Me*
QUES6="'Enjoy Going to Parties';

RUN;

The INPUT statement in the example above uses a list of variables in parenthe-
ses (QUES1-QUES6), followed by an informat list. The informat “1.” means one col-
umn for each of the six responses. If you prefer, you may separate each data item
from the next by a space, and use the free form or “list” input method. As always,
there are several ways to accomplish our goal with SAS software. Now, back to our
factor analysis example. The SAS statements to perform the factor analysis are:

PROC "FACTOR DATA=FACTOR PREPLOT ‘PLOT ROTATE=VARIMAX
NFACTORS=2 OUT=FACT SCREE;
- TITLE '‘Example of Factor
. VAR QUES1-QUES6;
RUN;

sis;

e e -
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We have selected several of the more popular PROC FACTOR otpttu())r: ;nLtgl;
xample, The PREPLOT option will show us a factor plot Ze)f(orc o a[sla\,/arimax
. i i = ues
i tion; ROTATE=VARIMAX req
will produce a factor plot after rotation; I X reducsts 2 arimax
ion; = ifies that a maximum of two factors
rotation; NFACTORS=2 speci o e vase FAG-
H = 1 hat you want the factor score ¢
e FACTORD 10 e | i d data set along with all the
d FACTOR?2) to be placed in the named daj he
;[a‘oriI:ék:snin the DATA = data set. The SCREE option gives you a Scree plot (dis
cussed later). Here is the output from PROC FACTOR:

Example of Factor Analysis
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE (D

i ix: = e =1
Eigenvalues of the Correlation Matrix: Total 6 Averag

1 2 3 ®
Eigenvalue 3.6683 1.2400 gi:;;
Difference 2.4283 0.7087 0.0335
proportion @ 0.6114 0.2067 0. 0888
Cumulative 0.6114 0.8180 “

4 S 6
Eigenvalue 0.3440 0. 154’; 0.0617
Difference 0.1893 0.0936 6.0103
Proportion 0.0573 0.025 1.0000
Cumulative 0.9639 0.9897 .

2 factors will be retained by the NFACTOR criterion.
Initial Factor Method: Principal Components

Scree Plot of Eigenvalues @

4 1
E
i
g
e
n
v 2
i
u 2
e
8 3
4 5 6
°t _
0 1 2 3 4 5 §
Number




[Continued]

Initija
1 Factor Method: Principal Components (5

Factor Pattern

FACTOR1 FACTOR2

QUES1

e g:;:g;; -0.54767 Feel Blue

Pl 0 raens 0.59840 People Stare at Me

cozes 0 8vans 0.50692 People Follow Me

ovnos 0 73588 3.36879 Basically Happy

oomee 0 a0ees .26237 People Want to Hurt M.
0.34660 Enjoy Going to Partie:

Variance explained by each factor ®

FACTOR1 FACTOR2
3.668279 1.239976

Fi, i
nal Communality Estimateg: Total = 4.908255

QUES1 QUES2
UES3
0.89042 : Sotns
5 0.890758 0.863868 0.899078 ¢ Sggggz 0 723286
. . 63

Ini
nitial Factor Method: Principal Components

Plot
of Factor Pattern for FACTOR1 and FACTOR2 (9

FACTOR1
1
.9
.8
A -7 E c;
.6
.5
-4
.3
.2
-1—.9-.8-.7-.6-.5-,4—.3— 2- 1'1
-’g 1.2 .3 .4.5.6.7.8 -9 1.0
-.2

HOpn

-.4
~.5
~-.6

~-.8
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[Continued]

Rotation Method: Varimax

orthogonal Transformation Matrix

1 2
1 -0.73625 0.67671
0.67671 0.73625

2

Rotated Factor Pattern

FACTOR1 FACTOR2
QUES1 -0.93637 0.11677 Feel Blue
QUES2 -0.13241 0.93446 People Stare at Me
QUES3 -0.23053 0.90040 People Follow Me
QUES4 0.89271 -0.31960 Basically Happy
QUESS -0.35684 0.68434 People Want to Hurt Me
QUES6 0.82737 -0.28969 Enjoy Going to Parties

Variance explained by each factor

FACTOR1 FACTOR2
2.556277 2.351977

Rotation Method: Varimax
Final Communality Estimates: Total = 4.908255

QUES1 QUES2 QUES3 QUES4
0.890425 0.890758 0.863868 0.899078 0.595662

QUESS QUES6
0.768463
Scoring Coefficients Estimated by Regression

Squared Multiple Correlations of the Variables with each Factor|

FACTOR1 FACTOR2
1.000000 1.000000

Standardized Scoring Coefficients @

FACTOR1 FACTOR2
QUES1 -0.45312 -0.18343 Feel Blue
QUES2 0.18008 0.48994 People Stare at Me
QUES3 0.12029 0.44471 People Follow Me
QUES4 0.37659 0.05783 Basically Happy
QUESS -0.00249 0.28968 People Want to Hurt Me
QUES6 0.35076 0.05726 Enjoy Going to Parties
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[Continved]

Plot
of Factor Pattern for FACTOR1 and FACTOR2 ©
FACTOR1
1
.9
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-1 -.9-.8-.7-.6-.5-
8-.7-.6~.5-.4-.3-.2-.1 0.1.2.3.4.5.6.7.8.91 Og
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QUES6
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original 6 unita’(f 0{5 wl:uch explain” the variance in the original variables. Of tha
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h ent, since this is a principal .
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is i : P g
factor b :S:::,l ‘: fh:;k about engenval_ues in the following fashion. Imagine the first
relate theirs riable, and everyone in the data set had a score on it. We could :
squaned th Score on thg factgr with their score on each of the six variables. If wi Slor_
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nal variable was explained by the factor. If we then added those six squared correla-
tions together, the sum would be the eigenvalue for that factor. Thus, the first factor
explains 3.6683 units of variance, or 3.6683/6 = .6114, of the total variance of the
original six variables. This .6114 figure is listed in the printout under “Proportion ®.”
The “Difference” heading tells us the difference in the proportion explained from
the previous total, and the “Cumulative” row gives the cumulative total.

The next thing we see is that two factors will be retained for rotation because
that is what we told the program to do.

The next section of printout is the “scree plot @.” The scree plot is used to help
determine how many factors to keep in the analysis. It is simply a plot of the eigen-
value against the number of the factor. One looks for breaks, or “elbows,” in the
curve. In this graph, it is easy to see that factors 1 and 2 are very different from 3-6,
so two factors should be retained. In our example, we knew from a theoretical per-
spective that we wanted two factors. The results support our notion. In determining
the number of factors to keep, it is always best to combine theory and data. If you
don’t have a strong theory to rely on beforehand, you will have to do one run just to
get an idea of how many factors to keep.

The next section ® presents the initial solution for the analysis. Oversimplified,
what the factor analysis tries to do is first find a factor (think of it as a new variable)
which will provide the highest set of correlations with the original variables (actu-
ally, with the squares of these variables) thus producing the largest eigenvalue. Then
it finds a second factor which will correlate as highly as possible with the original
variables once the variation from the first factor has been removed. Another way of
thinking about this is to say that the factors have to be uncorrelated (or orthogonal).
Then a third factor is extracted, which works with the remaining variance, and so on.

What is presented under the heading “Factor Pattern” is the result of this
process for factor 1 and factor 2. Had we said we wanted to keep three factors, there
would have been a factor 3 here. In the case of principal components analysis, if we
don’t specify the number of factors to keep, PROC FACTOR will keep as many fac-
tors as there are variables. If we specify PRIORS SMC (see Section E below), the
number of factors retained will be determined by the proportion of the total vari-
ance explained and may be less than the total number of variables. For more details
on controlling the number of factors to keep, see the SAS/Stat User’s Guide, Volume
1, Version 6, Fourth Edition (SAS Institute, Cary NC). The factor pattern displays
what are called “factor loadings” for each of the variables. At this point in the analy-
sis, these loadings are the simple correlations of the variables with the factor.

The next part of the printout ® shows the variance explained by each factor
(just the first two eigenvalues again) and then the communalities of the variables.
The what? The communalities. Communalities represent how much variance in the
original variable is explained by the total of all the factors which are kept in the
analysis. We see here that 89% (actually, .890425) of the variance in the first question
is explained (or attributable to) the first two factors. Communalities are for original
variables what eigenvalues are for factors (more or less).

The next portion of the printout is a plot of the two factors retained @. Note that
at the bottom of the plot is a key to what the letters are. There are basically two clusters
of variables here: A, B, C,and E; and F and D. One might look at this plot and wonder
if the axes could be rotated so that they ran directly through the clusters. What a good
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idea! The only question would be how to determine just how to do the rotation. SAS

software provides a number of alternative rotation methods. We look at two here,
The first is called VARIMAX. It maintains the orthogonal (uncorrelated) na-

ture of the factors and tries to get the original variables to load high on one of the

rotation are presented next .
There are several issues of note here. First, the factor loadings obtained from a
rotation of the axes almost always result in a more readily interpretable solution,

don’t recommend it. Instead, we recommend you simply construct scales using raw

to the next. Remember, what you are factoring is a matrix of correlations and, we all
know how sample dependent they are.

The FINAL (yeah!) piece of this analysis is a plot of the rotated factors . You
can see how the new axes really do run right through the clusters. If rotation is con-
fusing you a little, think of it in the three factor case. Here we would have a three-
dimensional swarm of points. Now think of looking at any three-dimensional object:
a football, a pen, or a diamond ring. It looks different, depending on how you hold
it in front of you. Rotating axes is just changing your perspective until you can get
the best “look” at something,

D. Oblique Rotations

Well, that was entertaining. But, we said there were several rotation methods possi-
ble. VARIMAX is one popular method, PROMAX is another. They are similar in
some respects, but different in opne important aspect. PROMAX does not maintain
the orthogonality of the factors. It allows the factors to be correlated. Why should a

to keep things cleaner. If your factors are orthogonal and you then want to use them
as independent variables in a regression, you will have fewer problems of collinarity.
In favor of a nonorthogonal (“oblique”) rotation is the argument that it is usually

paranoia aren’t correlate
with an oblique rotat
PROMAX from our data set:
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ted by the factors are,

o think that the underlying constructs which are represen
t h ying h a P
silly

in fact. uncorrelated. In our exalllple, it is unreasonable to think that dePKCSMOll and

10n. Fere & e program t obliique on calle
on. Here is th rogram to get the oblique rotati alled

: ; ACTORS=2;
'ACTOR DATA=FACTOR ROTATE= HFObliqﬁe ! cationts

TLE 'Example of ‘?acf:or~ ‘
VAR QUES1-QUES6; .« °

1 8 > ]
Now, much of the printout is stmular to the orthogonal case, so we will just focus

on one section here:

Rotation Method: Promax

Inter-factor Correlations

FACTOR1 FACTOR2
0 -0.44010

FACTOR1 1.0000
FACTOR2 -0.44010 1.00000

Rotated Factor Pattern (Std Reg Coefs)

FACTOR1 FACTOR2
Feel Blue

s -0»9:;?): 'gzéz:: People Stare a;ene
oones 0.02787 0.91684 People Follow
Somse “ole -0.11782 Basically Happy . Mo
s o aaeds 0.65033 People Want to Hur e
ese -gggg; -0:10212 Enjoy Going to Partie
QUES6 .

ted factor load-
i the factors and the rotal

E: e correlation between X B B o,
i He“’f W%‘:: ‘::Zrtr'lelation between the factors is —.44910, if we hz:n‘imft e
ok mamva 4 X 4 matrix. Looking at the factor loadings, we s;c sufts ot e
N v;ou‘dtoesi;ple structure than we were before, even though the re

are closer

orthogonal rotation were quite good.

E. Using Communalities Other Than One

back to the notion of communa!ities. z\'/hetg
Ily factor analysis, much of the issue has

The final stop on our journey brings us
of the correlation matrix that is to be

factor analysts get upset over“whz}t is rea .
do with what is placed on the “main diagno

{
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variables. In our example, this is a fairly reasonable assumption but, in most cases,
some variables are more important than others, have stronger relationships with the
variables in the analysis than others, or are measured with less error than others, In
this case, it would be better conceptually to have some indication of how much each
variable “fits in” with the others, This idea is realized by changing the communalities
on the main diagonal to be less than one. Now, there is a whole science to this, but one
popular approach is to take each variable and regress all the other variables against
it. Then the squared multiple correlation resulting from this regression is used as the
communality estimate. “Whoa,” you’re saying, “That’s a lot of work.” Indeed, but
PROC FACTOR does it all for you. All we have to do is include the statement, PRI-
ORS SMC, in our PROC FACTOR procedure, and it’s done. Here is an example:

PROC FACTOR DATA=FACTOR PREPLOT PLOT ROTATE=VARIMAX
NFACTORS=2 OUT=FACT SCREE;
TITLE 'Example of Factor Analysis’;
VAR QUES1-QUES6;
PRIORS SMC; *%*Thig ig the new line;
RUN;

Here is a portion of the output from this modified program:

Example of Factor Analysis

Initial Factor Method: Principal Factors @

Prior Communality Estimates: SMC

QUES1 QUES2 QUES3 QUES4 QUESS QUES6
0.827935 0.807363 0.806758 0.870613 0.485777 0.628900

Eigenvalues of the Reduced Correlation Matrix: ®
Total = 4.42734575 Average = 0.73789096

1 2 3
Eigenvalue 3.4196 1.0322 0.1191
Difference 2.3874 0.9131 0.0525
Proportion 0.7724 0.2331 0.0269
Cumulative 0.7724 1.0055 1.0324

4 5 6
Eigenvalue 0.0666 ~-0.0934 -0.1167
Difference 0.1600 0.0232
Proportion 0.0150 -0.0211 -0.0263
Cumulative 1.0475 1.0263 1.0000

i

{Continued]

s
2 factors will be retained by the NFACTOR criterion.
a

ractor Pattern @

FACTOR1 FACTOR2
- 59 Feel Blue

e O;igég ggggse People Stare a;eMe
Suees o'76325 0.48653 people Follow
Somse o 428 0.35487 Basically HaDDYH ct He
O es o ee 1] 0.17642 People Want to Hu C e
i gs;i;s 0:25896 Enjoy Going to Parti
QUES6 -0.

variance explained by each factor @

FACTOR1 FACTOR2
3.419580 1.032161
i = 4.451740
Final Communality Estimates: Total
ES6
QUES2 QUES3 QUES4 QUESS QU
QUES1

0.83495 0.8 64 0.819257 0.890306 - 0.630089
2 298 19 - 4
. - 0.447272 6

Rotation Method: Varimax

orthogonal Transformation Matrix

1 2
0.66678
1 -0.74526
2 0.66678 0.74526

Rotated Factor Pattern ®
FACTOR1 FACTOR2

-0.90401 0.13309 Feel Blue

g 725 People Stare at Me
i -O;EZ:i 3:23151 People Follow Me

Py o 819 -0.31848 Basically I:!appyH e Me
ees 0 5% 13 0.56161 people Wa.nt to Hu E e
S mee _g'—igim -0.30733 Enjoy Going to Par!
QUES6 .

variance explained by each factor

FACTOR1 FACTOR2
2.358154 2.093586
= 4.4517401
Final Communality Estimates: Total = 4
S6
QUES3 QUES4 QUESS Ggg'gsg
Laes oaes 0.890306 0.447272 ©.

0.819257

0.834952 0.829864

261
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Inall honesty, the results here are not too

member, this is a simple example. There are i

different than they were before but Te-
the three analyses we have |

! mportant theoreti
own here but, if you'll notice
hole book. Try Gorsuch (1983)
zur and Schmelkin (1991) for a

cal distinctions among
‘Factor Analysis” is only
for a thorough discussion

of factor analysis or Pedha couple of soli
uple of solid chapters,

E  How to Reverse Item Scores

tS‘:)me researchers prefer to leave the

that all scores are in th, i

| e same directi
© A ¢ ection. F
ccoring for st 4(a§;eg)s;0tgzte§;10; 1 implies depression. We can reverse tl?;
do thicis as sopmon 1gh scores also imply depression, One way to

€ (QUES1-QUESE) (1.);
8cores for questions 4 and 6;
: o

RUN;

Yyou ha Trge numbe; Jit at needed reversin ou could use a
If you had a la ber of uestio: h
( q ) s that n €) 2,y d use an

Let’s look at the rotated factor loa ings when we reverse these twi questions:
oad hen we r TS¢ th two tion:

Rotated Factor Pattern
FACTOR1 FACTOR2

0.90401 0.13309
0.15749 0.89725
0.24441 0.87151
0.88819 0.31848
0.36313 0.56161
0.73187 0.30733

Feel Blue

People Stare at Me
People Follow Me
Basically Happy
People Want to Hurt Me
Enjoy Going to Parties
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As you can quickly see, the factor loadings are identical to the one above (with
PRIORS=SMC) where the scores were not reversed, except that none of the
loadings are now negative.

We originally requested that PROC FACTOR create a new data set for us con-
taining all the original values plus two factor scores. You may choose to use these fac-
tor scores in further analyses, but see the caution in Section C above. We have reduced
the number of variables from six to two. In addition, these two factor scores are un-
correlated to each other, making them particularly useful in regression models. Fi-
nally, each of the two factors spans a single psychological dimension (depression or
paranoia). Let’s run a PROC PRINT on the new dataset and see what it contains:

PROC PRINT DATA=FACT NOOBS;
TITLE 'Output Data Set (FACT) Created by PROC FACTOR';
TITLE2 'Questions 4 and 6 Reversed';

RON;

Output Data Set (FACT) Created by PROC FACTOR W

Questions 4 and 6 Reversed

SUBJ QUES1 QUES2 QUES3 QUES4 QUES5 QUES6 FACTOR1 FACTOR2
1 7 3 4 6 2 6 1.13994 -0.11342
2 6 3 2 7 3 6 1.24019 -0.43330
3 3 6 7 5 6 5 -0.35471 2.11191
4 2 2 2 3 3 4 -0.64087 -0.32356
5 3 4 2 4 2 5 -0.39275 0.07976
6 6 3 4 6 3 6 0.96485 0.05673
7 1 2 3 1 2 6 -1.23125 -0.01079
8 3 3 2 5 4 5 0.05043 -0.07278
9 2 1 1 2 2 3 -0.87196 -0.93028
10 6 2 3 6 2 6 1.10334 -0.51853
11 3 5 4 6 3 5 0.05298 0.94688
12 6 7 6 6 6 6 0.39438 1.79914
13 5 1 1 6 6 6 1.07234 -0.97856
14 2 1 1 2 1 3 -0.87503 -0.98015

L 15 1 2 1 1 1 1 -1.65188 -0.63303

If factor 1 is depression and factor 2 is paranoia, you can readily spot those sub-
jects who are the most depressed or are paranoid.

Problems
10-1. Run a factor analysis on the questionnaire data in Chapter 3, Section B. Use only the

variables PRES, ARMS, and CITIES. Request two factors, VARIMAX rotation
method, and set the PRIORS estimate of communality to SMC.
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10-2. Usi i 2 i
sci;:eg;}::;;;ss?srfs :;glhqf)t«;r 11, SCC‘IOH. B, run a factor analysis on the test, using the
only one Loapaecs to cach : the five questions as the items to factor analyze. Request
it an ron;t‘ U an output data set containing that one factor score. Do not
y lons. Use PROC PRINT (o list the contents of this output data set. The

first unr 2 i i
nrotated factor from a test is sometimes related to 1Q and called factor G (for

“general”). Note that there are far t
ral”). ! 00 few observations to i
analysis—it is for instructional purposes only. un o meaningful factor

Psychometrics

A. Introduction

. Using SAS Software to Score a Test

. Generalizing the Program for a Variable Number of Questions
. Creating a Better Looking Table Using PROC TABULATE
E. A Complete Test Scoring and Item Analysis Program

F. Test Reliability

G. Interrater Reliability

Taowm

A. Introduction

This chapter contains programs to score a test, to perform item analysis, test relia-
bility (Cronbach’s Alpha), and interrater reliability (Coefficient Kappa). In Section
E, you will find a complete program for item analysis that you are free to use or in-
corporate in a larger test scoring and item analysis program.

B. Using SAS Software to Score a Test

We start with a simple program that will score a five question multiple-choice test.
Later sections enhance this program so that it will be more general and will work
with any number of questions. First the program, then the explanation:

-

s i o i e e K

“Progras Neme: SCORE

*;




[Continned]

DATA SCORE;
ARRAY ANS[S] § 1 an
S1-ANSS; **kStyde;
ARRAY KEY{5] § 1 KEY1-KEYS; *%#ap, rntk:?:wers;
swe: i

ARRAY 8[5] 3 S1-85; ww«
RETAIN KEY1-KEYS; () Score array l=right,0=wrong;

;;'Read the answer key;
-N_=1 THEN INPUT (KEY1-KEYS)($1.); @

***Read student res;
INPUT @1 ID 1-9 @ ponses;

@11 (ANS1-ANSS5)($1.);

**%*Score the test;
DO I=11TO S5;
sl1] = xex{1] EQ ans[z); ®

***Compute Raw and Per i

x ercentage sc 5
RAW= SUM (OF §1-85); age. scores;
PERCENT = 100%RAW / 5; ()

KEEP ID RAW PERCENT;

LABEL ‘ID = ‘Social Security
RAW = 'Raw Scores
'ERCENT = 'Perc

ABCDE - o
123456769 ABCDE
035469871 BBBBB
111222333 ABCBE
212121212 CCCDE
867564733 ABCDA
876543211 DADDE
987876765 ABEEE

PROC SORT DATA=SCORE;
BY ID;
RUN;

Paqszpnm DATA=SCORE LABEL;
TLE 'Listing of SCORE dats
ID ID; ¢ i a‘t
VAR RAW PERCENT;
FORMAT ID SSNii.;
RUN;
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Here is the output from the PROC PRINT:

S N —
1isting of SCORE data set
Social
Security Raw Percent
Number Score Score
035-46-9871 1 20
111-22-2333 4 80
123-45-6789 5 100
212-12-1212 3 60
867-56-4733 4 80
876-54-3211 2 40
L987_87_6765 3 60

Since the answer key for our test is contained in the first line of data, and the
student responses in the remaining lines, we can use the automatic SAS DATA step
variable _N_, which is incremented by one for each iteration of the DATA step.
When the program starts, the variable _N_, will have a value of 1 and the first line of
data will be read into the KEY variables @. By retaining the KEYn variables @,
their value will be available to compare to each of the student responses. Remem-
ber that the SAS system normally sets the value of each variable to missing before
a new data line is read. By retaining the KEYn variables, this initialization does not
occur.

The program continues with the next INPUT statement @ and reads a line of
student data. For all subsequent iterations of the data step, _N_ will be greater than
1 and statement @ will not execute again. Thus, the answer key is skipped and the
student ID and responses are read ®.

The scoring DO loop @ compares each of the student responses with the an-
swer key. Statement ® is somewhat unusual and needs some explanation. The
right-most portion of the statement (KEY[I] EQ ANS[I]) is a logical comparison.
If the student answer (ANS[I]) is equal to the answer key (KEY([1]), then the value
of S[I] will be 1 (true). Otherwise, it will be a 0 (false). A value of 1 or 0 will then be
assigned to the variable S[I]. Instead, you could also score the test with two lines,

like this:
IF REY[I] = ANS[I] THEN s[I}=1;
ELSE ANS[1]=0;
The SUM statement ® gives us the number of correct answers on the test. A

percentage score is computed by dividing the number of correct responses by the
number of items on the test and multiplying by 100 @.

We make use of the built-in format SSN11. to print the student social security
numbers in standard format (which also ensures that the leading zeros in the num-

ber are printed).
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C. Generalizing the P 1
o oralicin f rogram for a Variable Number

This next progra
program extends the program above in two ways: First, it can be used to
to produce class summary reports. gfc:[emsisecond‘ o (1o e mgparcs ace added
3 € Is the program (to stay with i
our previous

score tests with different numbers

example, the number of questions is set to five):

Program Name: SCORE2.8AS in C:\APPLIE; --------------------- I

Purpose: To score a
multiple-choi i
- . e ot ooit 52} hoice exam with an arbitrary
ata: The first line is th ema
; e answer k ini i

gcntaln the student responsesey, Tenaining lines

ata in file C:\APPLIED
Date: July 23, 1996 \TEST-DIA

%LET =5;
NUMBER = 5; ***The number of items on the test; @

DATA SCORE;
INFILE 'C:\APPLIED\TEST.DTA';
Am: :gs[[&m:g z ; g’s{i-gs&mm; ***Student answers;
ARRAY S[&NUMBER] 3 sl~s&Num;zR-Y§**s ot e, Kevs
el REY1-KETeNO, ; core array l=right, O=wrong;

IF _N_=1 THEN INPUT (KEY1-KEY&NUMBER) ($1.);

INPUT @1 ID 1-9
ei1 (ANS1-ANS&NUMBER) ($1. )i

DO I=1 TO &NUMBER;
'?[I] = REY[I] EQ ANS[1];

RAW = SUM (OF S1-S&NUMBER) ;
PERCENT = 100 *RAW/ &NUMBER ;
KEEP ANS1-ANS&NUMBER ID RAW PERCENT;

LABEL ID = 'Social Sec
‘urity Number*®
RAW = 'Raw Score'

— PERCENT = ‘Percent Score' H

PROC SORT DATA=SCORE; (3
BY ID;
RUN;

pnoiI::;m DATA=SCORE LABEL; @
'Listing of
TImE g SCORE data set';

VAR RAW PERCENT;
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[Continued]

FORMAT ID SSN11.;
RUN;

PROC MEANS DATA=SCORE MAXDEC=2 N MEAN STD RANGE MIN MAX; ®
TITLE 'Class Statistics’;
VAR RAW PERCENT;

RUN;

. PROC_CHART DATA=SCORE; ® .
TITLE 'Histogram of Student Scores';
VBAR PERCENT/MIDPOINTS=50 TO 100 BY 5;

RUN;
PROC FREQ DATA=SCORE; @
TITLE 'Frequency pistribution of Student Answers';
i TABLES ANS1-ANS&NUMBER/NOCUM;
~RON;

This program uses a macro variable (&NUMBER) which is assigned in the
%LET statement (@. Each occurrence of &NUMBER is replaced by this assigned
value before the program executes.

One other change from the previous program is that this program reads data from
an external file, which is accomplished by the INFILE statement @.The remainder of
the DATA step portion of the program is identical to the previous program.

The first several PROCs are straightforward. We want a student roster in D
order @ @, the class statistics ), a histogram ®, and the frequencies of A’s, B’s, etc.,
for each of the questions of the test @.

A portion of the output from this program is shown next:

Listing of SCORE data set

Social
Security Raw Percent

Number Score Score
111-22-2333 4 80
113-45-4545 4 80
132-43-4567 3 60
345-45-6233 4 80
386-54-7098 5 100
Class Statistics
Variable Label N Mean Std Dev Range
RAW Raw Score 34 2.91 1.38 5.00
PERCENT Percent Score 34 58.24 27.58 100.00
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[Continued]

Variable

Raw Raw Score 0.00 5.00
Percent Score 0.00 .

Histogram of Student Scores
Frequency

* kK

* ke

*kn

** Kk

* kK

*kw

*xk

*kk

*x K * ko
* ko *x Kk
* ko * xR

50 55 60 65 70 75 g0 85 90 95 100
Percent Score

Frequency Distribution of Student Answers

ANS1 Frequency Percent
IB\ 19 55.9
6 17.6
D 5 14.7
E 4 11.8
fN"s_zi Frequency Percent
A 4 11.8 B
B 17 50.0
c 3 8.8
: 3 8.8
7 20.6

D. Creating a Better Looking Table Usi
PROC TABULATE s Table Using

TVY[: BCSIL i’;éu;g 3 c:)hmpafrg table showing answer-choice frequencies using PROC
] . o this efficiently, we will restructure the data set so that
:r}z::zgle calle‘:i QU:ESTION, which is the question number: and CHOIéwanlk?c‘: iz
Swer choice for that question for each student. We ;m'll be ,
¢ ) fai
CHOICE as a character variable that shows the letter choice (A, B, (;1 Cg f;dE():r:v?tlﬁ
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an asterisk (*) next to the correct choice for each question. Again, we offer the pro-
gram here without much explanation for those who might find the program useful or
those who would like to figure out how it works. One of the authors (Smith) insists
that good item analysis includes the mean test score for all students choosing each of
the multiple-choice items. Therefore, the code to produce this statistic is included as
well. The details of TABULATE are too much to describe here, and we refer you to
the SAS Guide to Tabulate Processing, available from the SAS Institute, Cary, NC.
This is one of the best manuals from the SAS Institute; and if you plan to use PROC
TABULATE (it’s very powerful) we highly recommend this manual.

The complete program to restructure the data set and produce the statistics de-
scribed above is shown next: -

ram Name: SCORE3.SAS in C:\APPLIED

Purpose: To score a multiple-choice exam with an arbitrary
. number of items and compute item statistics

The first line is the answer key, remaining lines
contain the student résponses. Data is located in

/e C7 \APPLIED\TEST.DTA

23, 1996

-

NUMBER & 5; **%*The number of items on the test;

'DATA SCORE;

INFILE 'C:\APPLIED\TEST.DTA';
@ ARRAY ANS[¢NUMBER] $ 2 ANS1-ANS&NUMBER; ***Student answers;
ARRAY KEY[&NUMBER] § 1 KEY1-KEY&NUMBER; ***Answer key;
ARRAY S[¢NUMBER] 3 S1-S&NUMBER; ***Score array l=right,0=wrong;
RETAIN KEY1-KEY&NUMBER;

IF _N_=1 THEN INPUT (KEY1-KEYENUMBER)($1.);

INPUT @1 ID 1-9 e
@11 (ANS1-ANS&NUMBER) (§

DO I =1 TO &NUMBER;

IF REY[I] EQ ANS[I] THEN DO;
s[1}=1; s
®@ SUBSTR (ANS[I], 2,1} = '*'; *#¥

ELSE S[1]=0;
END; ‘

RAW = SUM_(OF S1-S&NUMBER);
PERCENT = 100*RAW / &NUMBER;




272 Chapter 11 / Psychometrics

{Continned]

KEEP ANS1-ANS&NUMBER ID RAW PERCENT;

LABEL ID = 'Social Security Number'
RAW = 'Raw Score'

PERCENT = 'Percent Score';
RUN;

DATA TEMP;
SET SCORE;
ARRAY ANS[*] $ 2 ANS1-ANS&NUMBER;
DO QUESTION=1 TO &NUMBER;
CHOICE=ANS[QUESTION];
OUTPUT;
END;
KEEP QUESTION CHOICE PERCENT;
ROUN;

PROC TABULATE DATA=TEMP;

TI'l'Lg !Item Analysis Using PROC. TABULATE' ;

CLABS QUESTION CHOICE; i

VAR’ PERCENT;

TABLE - QUESTION*CHOICE, e
PERCENT=' ' (PCTN < CHOICE > *FePCT. MEAN*F=PCT.
BTD*Fe10.2) / RTS=20 MISSTEXTs ' ' = :

KEYLABEL ALL='Total' MEAN='Mean Score' PCTN='FREQ'

e STD= 'Standard Deviation';

RUN;

A brief explanation of the program follows: PROC FORMAT @ is used to
create a picture format so that we can print scores as percentages. (NoTE: There
is a PERCENTR. format available as part of the SAS system, but it multiplies by
100 as well as placing a percent sign after a number.) The remainder of the
SCORE DATA step is the same as the previous program; with the exception that
the ANS1-ANSn variables are now two bytes in length. We will use this second
byte later to place an asterisk next to the correct answer for each item. The
SUBSTR function on the left of the equals sign @ is used to place an asterisk in
the second position of the correct answer choice. A DATA step @ is needed to
restructure the data set so that it will be in a convenient form for PROC TABU-
LATE. This data set contains n observations per student, where n is the number
of items on the test. Selected portions of the output from these procedures are
shown in the table on page 273.

The frequency column shows the percentage of students selecting each item
choice.Thefrequencynext tothe correct answer (markedby an *)is theitem’s difficulty
(percentage of students answering the item correctly). The column labeled MEAN
SCORE shows the mean test score for all students answering each answer choice. For
example, foritem 1,55% of the students chose A, which is the correct answer. The stu-
dents who chose A had a mean score of 71% on the test. Seventeen percent of the stu-
dents picked choice B,and the mean score of all students who chose Bwas 26%,andso

T A et T 7

L 8
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Item Analysis Using PROC TABULATE
—‘ Mean| Standard
FREQ | Score | Deviation

OICE

ZUESTION S: 55% 71% 23.40
B 17% 26% 24.22
D 14% 52% 22.80
E 11% 50% 11.55
2 A 11% 40% 28.28
B* 50% 75% 16.63
o 8% 40% 20.00
D 8% 73% 11.55
E 20% 28% 22.68
3 A 8% 20% 20.00
B 17% 46% 24.22
c* 52% 68% 22.98
D 8% 53% 46.19
E 11% 60% 16.33

. . -d fairl
i i i s he students who picked choice D did fairly
.Looking briefly atitem 2, we see that t. ¢
f:/)éltlhon (t)he tesgt overall (73% correct). We might want to look at choice D to make sure
itis not misleading.

E. A Complete Test Scoring and Item Analysis Program

. . .. ivel
We present hiere a complete test scoringand item analzsxs p_rogram.Thx:» k1isnag ;e‘lszr;)i
i into any detail about its inner wo .We ]

lex program, and we will not go in _ | -

:g:: Fi)t S0 fha;g;ou ;'nay copy pieces of it, or all of it, and use it to analyze yop“r ml.llttllezltea

choice tests. If you examine the sample output below the program, );J(:u v;x sSeZn hat 2

Jot of information is presented in a compact table. Each ro}vlv of l:he t:;a; so fot:c nitem
f the students who chose

ber, the answer key, the percentage o S h wer

rclll:::i]cc:s,’a difficulty (the ’proportion of students answering the item correcﬂ)gr 1:; %‘;T}:e

biserial correlation coefficient, and the proportion of students (in ?ach quartj

class) answering the item correctly. Here is the complete program:
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%LET NUMBER = 5; ***The number of items on the test;
i

DATA SCORE;
INFI?EA!"C \APPLIED\TEST. DTA';
S [&NUMB
ARRAY ey & :2} : i ANS1-ANS&NUMBER; ***Student answer
ARRA NUMB KEY1-KEY&NUMBER; ***Answer key; >

ARRAY S [&¢NUMBER] S1-
-S&NUMB]
RETAIN KEY1-KEY&NUMBER; ER; ***Score array l=right,0=wrong;

. B L
_N_=1 THEN INPUT (REY1-KEY&NUMBER) (§1.);

INPUT €1 ID 1-9
@11 (ANS1-ANS&ENUMBER)($1.);
DOI=1TO &NUMBER ;

S [I] =KEBY [T ANG
=, [1] EQ ANS [I];

RAW = SUM (OF Si-seNUMB
PERCENT = 1oo'mm i ER) ;.

KEEP ANS1-ANSSENUMEER 51

s L .
ID RAW PERCENT; sm KEY1-Key&NUMBER
***Note» ANS1-AN

vSocial B
m&w= "Raw 8¢
= 'Percent Score;

- ——

may. t to”
which print student s edures in Secti
tudent on C
statistics. rosters, histograms. and class

Reshape the aat
DATA coRmy a set;

'ARRAY S(%) 3 Si-sg
NOMBER
DO I=1 TO &NUMBER; ?
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: compute quartiles;
,0C. RANK DATA=SCORE
RANK«S QUARTILE;

;

GROUPS=4 OUT=QUART (DROP=PERCENT ID);

ate ITEM variable and reshape again;

'AB;

QUART;

GTH ITEM § 5 QUARTILE CORRECT I 3 CHOICE § 1;
¥ S{*} S1-S&NUMBER;

Y ANS{*} § 1 ANS1-ANS&NUMBER;

Y KEY{*} $ 1 KEY1-KEY&NUMBER;
QUARTILE=QUARTILE+1;

1 TO &NUMBER;
IM:RIGBT(PUT(I 3. 1
ORRECT = S[I];

" CHOICE = ANS([I];

OUTPUT;

KEY{I] 2

I ITEM QUARTILE CORRECT CHOICE;

'SORT DATA=TAB;

#%Combine correlations and quartile information;

TA BOTH;
MERGE CORR TAB;

fnt ont a pretty table;
ONS LS=72;

TLE 'Item Statistics';
L (IUAR’.I‘ILE = 'Quartile’
g CHOICE = 'Choices’;
‘CLASS ITEM QUARTILE CHOICE:
{CORRECT CORR;

I =t Key'*F=6.,"
CHOICE* (PCTN<CHOICE> ) *F=3. CORRECT
CORR=' '*MEAN='Corr.'*F=5.2 )

WMEAN=DIff. ¥

TABULATE FORMAT=7.2 DATA=BOTH ORDER:IN’I‘ERNAL NOSEPS ;
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[Continned]
CORRECT=' '*QUARTILE*MEAN=' Prop. Correct'*F=PERCENT7.2/
RTS=8;
KEYLABEL PCTN='%' ;
RUN;

Here is a sample of the output from this program:

Item Statistics

Quartile
Choices 1 2 3 4

A/B|C/DIE| Prop. Prop. Prop. Prop.

%|%|%]|%| % Diff.|Corr.|Correct |Correct | Correct | Correct
# KRey
1A 56(18| .|15[12] 56% | 0.55 33.3% 28.6% 90.9% 100%
2B 12150( 9} 9121 50% | 0.63 0.00% 42.9% 72.7% 100%
3c 9|18/53| 9(12/ 53% | 0.42 16.7% 50.0% 63.6% 100%
4D 15| 6| 6/65| 9| 65% | 0.68 0.00% 64.3% 80.9% 100%
5 E 9| 3|15| 6/68] 68% | 0.51 16.7% 71.4% 81.8% 100%

To make this listing clear, let’s look at item 1. The correct answer is ‘A’, which
56% of the students chose. Eighteen percent of the class chose ‘B’, and so forth. The
item difficulty is 56%, and the point-biserial coefficient is .55. Thirty-three percent of
the bottom quartile (Iowest) answered this item correctly; 29% of the next quartile;
91% of the third quartile; and 100% of the top quartile answered this item correctly.

E  Test Reliability

As of version 6.06, PROC CORR has had the ability to compute Cronbach’s Coef-
ficient Alpha. For test items that are dichotomous, this coefficient is equivalent to
the popular Kuder-Richardson formula 20 coefficient. These are the most popularly
used estimates of the reliability of a test. They basically assess the degree to which
the items on a test are all measuring the same underlying concept. The lines below

show how to compute Coefficient Alpha from the data set SCORE in Section C of
this chapter:

'PROC CORR DATA=SCORE NOSIMPLE
TITLE ‘Coefficient Alpha fri
VAR 81-85;

RUN;

LPHA ;
n Data Set SCORE';
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Since each test item is either right (1) or wrong (0), Coefficient Alpha is equiva-
lent to KR-20. Here is a partial listing:

Coefficint Alpha from Data Set SCORE
Correlation Analysis
Cronbach Coefficient Alpha

for RAW variables : 0.441866
for STANDARDIZED variables: 0.444147

Raw Variables std. Variables
Correlation

Deleted Correlation

Vvariable with Total Alpha with Total . lz ]flza_
----------------------------- 7 0.211150 0.404775
s1 0.219243 0.39588

82 0.316668 0.321263 0.317696 0.32587(9)
s3 0.053238 0.511023 0.049289 0.51336B
sS4 0.404102 0.256819 0.414362 0.248868
85 0.189630 0.415648 0.196747 0.41497

G. Interrater Reliability

In studies where more than one rater rates subjecgs, you may want to determine how
well the two raters agree. Suppose each rater is rating a §ub_]ect as normal ofr r;lot n'or—
mal. By chance alone, the two raters will agree f_rom time lo'n{ne, even Il( they are
both assigning ratings randomly. To adjust for this, a test statistic ‘called apga vYIzlis
developed. If you are running SAS version 6.10 or later, Kappa is requesteh LflStl 5
the AGREE option on the TABLE statement of PROC FREQ. Suppose each of tw
raters rated 10 subjects as shown below:

Outcome (N = Normal, X = Not Normal)
Subject Rater 1 Rater 2

So®xNoLb LN =
ZHRNRZZZYIXNZ
ZHRZZZRZRNRZ

—

The program to compute Kappa is:

e
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DATA KAPPA;
INPUT SUBJECT RATER_1 § RATER_2 § @@;
_ i

DATALINES;
1NN 2XX 3XX 4XN S5NX
?NN 7NN 8XN 9XX 10 NN

PROC FREQ DATA=KAPPA;
TITLE ‘Coefficient Kappa Calculation';

TABLE RAT! *
o 'ER_1 * RATER 2 / NOCUM NOPERCENT KAPPA;

The output is shown below:

Coefficient Kappa Calculation
TABLE OF RATER_1 BY RATER_2

RATER_1 RATER_2

Frequency

Row Pct

Col Pct N X Total

N 4 1 5
80.0020.00
66.67125.00

X 2 3 5
40.00/60.00
33.33(75.00

Total 6 4 10

STATISTICS FOR TABLE OF RATER_1 BY RATER_2

McNemar‘’s Test

Statistic=0.333 DF=1 Prob=0.564

Simple Kappa Coefficient

95% Confidence B
Kappa = 0.400 ASE = 0.284 -0.157 0.9;’;1“55

Sample Size =10

As you can see, Kappa is .4 betwi
; u car K K een these two raters. This may not s i
;e:f'liig rellab:hty, apd indeed it isn’t. You might say,“But they were)i,n agr:ee:eg:( ?c:
cases,” and indeed they were. But we would expect 5 out of 10 agreements by

B
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flipping a coin (there are only two ratings possible here), so 7 out of 10 is not a won-
derful improvement over chance.

Problems

11-1. Given the answer key below:
Question 1 = ‘B’ Question2 = ‘C Question 3 = ‘D’
Question 4 = ‘A’ Question 5 = ‘A
Write a SAS program to grade the six students whose data are shown below. Pro-
vide one listing in Social Security number order and another in decreasing test-score
order. Compute both a raw score (the number of items correct) and a percentage score.
(Hin: Use the SSN11. format for the Social Security number. Be sure to read it as a nu-

meric if you do this.)

Student Data:

Social Security No. Responses to Five Items
123-45-6789 BCDAA
001-44-5559 ABCDE
012-12-1234 BCCAB
135-63-2837 CBDAA
005-00-9999 ECECE
789-78-7878 BCDAA

11-2. Using the test data from problem 11-1, compute the KR-20 (or Cronbach’s Alpha) for
the test. Also, compute a point-biserial correlation coefficient for each item. Remember
that a point-biserial correlation i equivalent to a Pearson Correlation coefficient when
one of the scores has values of O or 1.

11-3. Two pathologists viewed 14 slides and made a diagnosis of cancer or not cancer. Using the
data below, compute Kappa, an index of interrater reliability: (C = Cancer, X = Not

cancer)

Rater 1 Rater 2 Rater 1 Rater 2

XXOXXXO
axooxax

C
X
X
C
X
X
X

axoaox
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A. Introduction

Throughout the examples in the statistics sec
the power of the SAS INPUT stateme
Programming,
basics of the I

tion of this book, we have seen
L s some of
nt. In this chapter, the first in a secti
s section o
Nvll)eU e).(plorc the power of the INPUT statement. (Nore: To lean S/;:S
T statement, return to Chapter 1.) ) e

B. List Directed Input: Data values separated by spaces

SAS can read data valueé Separated b

. one or more spa i . .

sometime: Bt y paces. This form o

o S refe‘rred to as list directed. The rules here are that wi f input is
ariable on a line, the data values mu: e must read every

S st be separated b
miss v one or moj
ing values are represented by periods. A simple cxamyp]e is showr: (}z:lp;wcf:& and

DATA QUEST;

DAT‘I‘I;PII;;SI'D GENDER § AGE HEIGHT WEIGHT;
1 M 23 68 155

2F- 61 102

3 M S5 70 202

i
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Notice that character variable names are followed by a $. The multiple spaces
between the data values in the third line of data will not cause a problem.

C. Reading Comma-delimited Data

Sometimes we are given data that are comma-delimited (i.e., separated by commas)
instead of the spaces that SAS is expecting. We have two choices here: We can use an
editor and replace all the commas with blanks, or we can leave the commas in the data
and use the DLM= option of the INFILE statement to make the comma the data de-
limiter. (See Chapter 13 for details on the INFILE statement and its options.) As an
example, suppose you were given a file on a floppy diskette called SURVEY.DTA. All
the data values are separated by commas. The first three lines are shown next:

1,M,23,68,155

2,F,.,61,102

3, M, 55, 70, 202

To read this file we code:

AsSURVEY.DTA' DLM=*,!
GENDER $ AGE HEIGHT ¥

The INFILE statement directs the INPUT statement to read an external file
called SURVEY on the floppy diskette in drive A and to use commas as the data
delimiter.

Another useful INFILE option for reading comma-delimited files is DSD. Be-
sides treating commas as delimiters, this option performs several other functions.
First, if it finds two adjacent commas, it will assign a missing value to the corre-
sponding variable in the INPUT list. Second, it will allow text strings surrounded by
quotes to be read into a character variable and will strip off the quotes in the
process. To illustrate the DSD option, suppose the three lines of data below are
stored in the file A:SURVEY.DTA.

1,"M",23,68,155

2,F,,61,102

3, M, 55, 70, 202

A SAS DATA step to read these three lines of data is shown next:
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The resulting data set will be identical
tion. Notice that the GENDER for the firs
quotes, and the AGE for the second perso

to the earlier example using the DLM op-
t person will be the value ‘M’ without the
n will be assigned a missing value.

D.  Using INFORMATS with List-directed Data

We may have data such as date values which we want to read with a date informat,
but still want to use the list-directed form of input. We have two choices here. One
is to precede the INPUT statement with an INFORMAT statement, assigning an
informat to each variable. An INFORMAT Statement uses the same syntax as a
FORMAT statement but is used to supply an input format instead of an output for-
mat for a variable. An example, using an INFORMAT statement, is shown below:

DATA INFORM;
INFORMAT DOB VISIT MMDDYYS.;
INPUT ID DOB VISIT DX;
DATALINES; : :
1 10/21/46 6/5/89 256.20
2 9/715/44 4/23/89 232.0
etc. ’

An alternative to the INFORMAT statement is to supply the informats directly in
the INPUT statement. We do this by following t]

he variable name with a colon, followed
by the appropriate informat, A program using this method with the same data set is:

INPUT ID DOB : MMDDYYS. VISIT : MMDDYY8. DX;
DATALINES;

1 10/21/46 6/5/89 256.20
2 9/15/44 4/23/89 232,0
etc.

Either method can also be used to override the default eight character limit for
character variables. So, to read a file containing last names (some longer than eight
characters) we could use either of the next two programs:

*Example with an INFORMAT statement;
DATA LONGNAME;
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[Continued]

*Example with INPUT informats;
DATA LONGNAME;
INPUT ID LAST : $20. SCORE;
DATALINES;
1 STEVENSON 89
- 2 cobY 100
-3 SMITH 55
'~ 4 GETTLEFINGER 92
(etc.

Before we leave “list-directed” reads, there is one more t;u;li(ng){gt‘ll :l::[:)llt:kl?(vjvz

Suppose you wanted to read a first and last name into o variable 1f we

ill::; tsbacis as data delimiters, we could not ll;vAeSaIIt:lirtx‘l;tbit::Iie& ot s

name. However, the very clevgr people at thg > 11 ;i :ec;d et A

B e ¢ haveocdci'g::r 1f‘(l))ll‘(\)litflilnlghz i;f&;nn:;i: changes the default delim.il;r of

e (&an:) or more spaces. You may also follow the ampersand with an
(I)II\II;(S)I;:;:AEI?. To see how this works, look at the next program:

SCORE1 SCORE2::

irst score.
Notice that there are at least two spaces between the name and the fir:

E. Column Input

i i T statements that specify which
amples in this book use INPU ) > : h
e tl(l)l ie:(i folr) each data value. The syntax is to list the variable p:LTc:af;e
lCOIUIEI‘l: the column or columns to read. In addition, we follow Fhe variable
I:)yw: $ si)g/n if we are reading character values. A simple example is:
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Notice that R
programming la;‘lz ;De nu}r:lber for subject number 2 is not right-adjusted. In some
could have place dgthf ; ‘t‘ 15‘ would cause a problem; not so for SAS software, We
read properly, Notice als m any of the‘ first three columns, and it would have been
remermber to 1 oo 0 that we can include decimal points in numeric fields. J

€ extra colu . Just

mns for them. Fi i
ply leave columns blank when we have missi‘:;1 vl:lxlllaelslx remember tha we can sim.

If you want to make thi
1S program a bit easi
INPUT statement on several lines like this: sesier o read,you can spread out the

DATA COL;
INPUT ID 1-
GENDER §
HEIGHT
WEIGHT
DATALINES;
001M68155.5
2 F61 99.0
:3M  233.5
(more data lines)

4
6
1

~w

1;

E  Pointers and Informats

An alternati ifyi i
atve to specifying the starting and ending columns (column input) is to

zgf;:!(;yn sat cftarl‘ijng cc')lu.mn anfi an INFORMAT (which also specifies ho
read). This is especially useful when we are given a coding layoutv;,ikr:at‘;:y
e

following;
. Starting
annane Column Length Type Description
D 1
GENDER . f NUM SUBJECT ID
o N ) CHAR GENDER M=MALE F=FEMALE
HEGHT 11 z NUM AGE IN YEARS
V. DATE 5 z NUM HEIGHT IN INCHES

DATE VISIT DATE IN MMDDYY FORMAT

Rat] i i i
cact oaf g;:erslhan _dc})’mg all the high-level arithmetic to compute ending columns for
€ variables, we can use a pointer (@ sign) to specify the starting colum;

and an i i i
an informat, which will not only tell SAS how to read the data value, but how

man; i
y columns to read. Here is the program to read the data layout above:

2.
111 HETGHT 2.
€15 V_DATE MMDDYY6.;
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The @ symbol, called an absolute column pointer, indicates the starting column
for each variable. In the INPUT statement above, some of the pointers are redun-
dant, such as the @4 before GENDER. As data are read, an internal pointer moves
along the data line. Since ID started in column 1 and was three columns in length,
this internal pointer was ready to read data in column 4 next. We recommend using
an absolute column pointer before every variable as in this example; it makes for a
neater program and reduces the possibility of reading the wrong column. The infor-
mat N. is used for a numeric variable of length N; $N. is the informat used for a char-
acter variable of length N. The general form for a SAS numeric informat is N.n
where N is the number of columns to read and n is the number of digits to the right
of an implied decimal point (if a decimal point is not included in the data value). For
example, the number 123 read with a format 3.2 would be interpreted as 1.23 (we are
reading three columns, and there are two digits to the right of the decimal point).
Using this notation, we can read numbers with an “implied” decimal point. By the
way, we can also read numbers with decimal points. The number 1.23 read with the
format 4. (remember the decimal point takes up a column) would be interpreted as
1.23. The informat MMDDYY6. was one of the date formats we used in Chapter 4 to
read date values. We used a separate line for each variable simply as a matter of
programming style.

G. Reading More Than One Line per Subject

When we have more than one line of data for each subject, we can use the row
pointer, #, to specify which row of data we want to read. Just as with the column
pointer, we can move anywhere within the multiple rows of data per subject. Keep
in mind that we must have the same number of rows of data for each subject. Below
is an example where two lines of data were recorded for each subject:

DATA COLUMN;
INPUT #1 ID 1-3 AGE 5-6 HEIGHT 10-11 WEIGHT 15-17
#2 SBP 5-7 DBP 8-10;

DATALINES;
00156 72 202
140080
00245 70 170
130070

i

If you have N lines of data per subject but don’t want 1o read data from all N
lines, make sure to end your input statement with #N where N is the number of data
lines per subject. For example, if you have six lines of data per subject but only want
to read two lines (as in the example above), you would write:

INPUT #1 ID 1-3 AGE 5-6 HEIGHT 10-11 WEIGHT 15-17
#2 SBP 5-7 DBP 8-10 #6;
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H. Changing the Order and j
MareSng the Or and Reading a Column

It is possible t
Orderl:_)']}IUS weoc;x:lorvcaclihe a'hsolul'e column pointer to any starting column, in an
3 cad variables in any order, and we can read columns m<;re tha[)ll

once. Suppose we had a six-digit ID igi
code Weerrge had gl where the last two digits represented a county

INPUT @1 ID 6. @5 COUNTY 2. etc

or
INPUT ID 1-6 COUNTY 5-6 etc.;

We can also read vari i i
valic variables in any order, The following INPUT statements are

INPUT ID 1-3 HEIGHT 5-6 GENDER § 4 WEIGHT 7-9;
i

I
NPUT @1 ID 3. @5 HEIGHT 2. @4 GENDER $1. @7 WEIGHT 3.;

L Informat Lists

Yo i
u may place a group of variables together within parentheses in an INPUT state

ment and follow this list by on, i
fs 2 simple ool y one or more INFORMATS, also in parentheses. Below

INPUT (X Y 2z C1-C3)(1. 2. 1. $3. $3. $3.);

N TN
abled ;w;t:lc:; 12?1t veryhuseful as shown. Where you save time is when several vari-
INFORN t:?e the same INEORMAT. You can have fewer informats in the
A an thTrg are variables in the variable list. When this happens, the
Is recycled as many times as nec i !
o ] / 1 essary to provid INI
oreachofthevariablesin the variable list. The INPUTstaleleent befoz\iﬁ/nillusl;‘gtltgﬁT
is:

INPUT (X1-X50)(1.);

oa e;::dll:ast;s tq read X1,X2,X3,. .., X50, all with the 1. INFORMAT. Below

i exan t;; c]owmg how you can shorten a fairly long INPUT statement usin.
a sts and INFORMAT lists. First, the INPUT statement with i ;

able and INFORMAT lists: viout sing vari-

DATA NOVICE;
INPUT ID 1-3 QUES1 4 QUE

2 : 82 5.9

ggﬁsgo 10 QUES6 11 QUES7 13~

B MMDDYY6. @26 ST DAT

MMDDYYE. ; ST

ES4 7 QUESSB 8 QUES4C
QUESY 14 ’
6. ‘@32 END_DATE
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The program above, rewritten to use informat lists is:

DATA ADVANCED;

INPUT ID 1-3
@4 (QUES1-QUES4 QUESAB QUESAC QUES5-QUESS)(1.)

@20 (DOB ST_DATE END_DATE) (MMDDYY6. ) ;

Well, it didn’t really save much typing, but if you had hundreds or thousands of
variables, the savings would be considerable.

The informat list can also contain something called relative column pointers.
Using + and — signs, we can move the pointer forward or backward in the record.
Next, we show you a novel INPUT statement where relative pointers saved a lot of
coding.

A researcher coded 12 systolic and diastolic blood pressures for each subject
(the number was reduced for illustrative purposes). They were entered in pairs. A
straightforward INPUT statement would be:

INPUT ID 1-3 SBP1 4-6 DBP1 7-9 SBP2 10-12 DBP2 13-15 etc. ;
A more compact method, using relative pointers is:

INPUT ID 1-3 @4 (SBP1-SBP12) (3. +3)
: @7 (DB 1—D§P;2)(3. +3);

The INFORMAT list (3. + 3) says to read a variable using the 3. INFORMAT
and then move the pointer over three spaces. Thus, we “skip over” the diastolic pres-
sures the first time, set the pointer back to column 7, and repeat the same trick with

the diastolic pressures.

J. “Holding the Line”—Single- and Double-trailing @’s

There are times when we want to read one variable and, based on its value, decide
how to read other variables. To do this, we need more than one INPUT statement.
Normally, when SAS finishes an INPUT statement, the pointer is moved to the
next line of data. So, if we had more than one INPUT statement, the second
INPUT statement would be reading data from the next record. We have two ways
to prevent this: the single- and double-trailing @ symbols. A single @ sign, placed
at the end of an INPUT statement, means to “hold the line.” That is, do not move
the pointer to the next record until the end of the DATA step is reached. The dou-
ble-trailing @ symbol “holds the line strongly.” That is, the pointer will not be
moved to the next record, even if a DATALINES statement (end of the DATA
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step) is encountered. It will m.
. ove to th
values to be read on a line. ‘
Here are some exam,
ples to help mak
survey for 1989 and 1990. Unforlunart)ely ;
_mlddk, of the questionnaire (where clse!
in a single file and read each record acc

in 1990, an extra question was added, in the

). ;Ye want to be able to combine these data

e ‘ T ording to the data layout f

y € survey was coded in columns 79 and 80 (89 for 19%9 an; ;(llhfac‘xlrylzi;r(.))nlle
. In

1 we ha uestions in colum: -10. 990 there was an extra uestion (let’s
989 had 1('q S fumns 1-10. In 1 her as q (

callit 5B) placed in column 6 i
; and quest / i
We will use a trailing @ to read lh?sse Sd:t):"S Phroneh 10 wound up i columns 711

DATA QUEST;
II[FNl’mRU‘l'Ym 79-80 @; *** HOLD THE LINE;
A H
et 89 ‘:‘E:g INPUT @1 (QUES1-QUES10) (1.);
YEAR THEN INPUT @1 (QUESI-QUESS) (1.)

@6 QUESSBE 1. 0) (:
DATAL TR 1. e7 (QUESG-QUBSIO)(i.); .

A simple example where a double-
we want to read in pairs of X’s and Y’s
We could read these data with a doubl,

trailing @@ is needed is shown next. Suppose

and want to place several XY pai i
- irailing o pairs per line,

1279341012
15 18 23 67
L

The data set XYDATA wo i

uld contain si
(19,12), (15,18), and (23,67). Without the dou}fl
tain only two X,Y pairs, (1,2) and (15,18).

X,Y.l.)airs, namely (1,2), (7,9), (3,4)
e-trailing @, the data set would con-

K. Suppressing the Error Messages for Invalid Data

If invalid data values are read b
meric field or two decimal
Log, the offending record
Below is an example of a S
meric field:

Oimsy the SAS system (such as character data in a nu-
pointsina number), an error message is placed in the SAS
is listed, and a missing value is assigned to the variable.
AS Log where a character value (‘a’) was read into a nu:

next record only if there are no more data

this clear. In the first example, we ran a

NOTE: Invalid data for X in line 5 1-1
ULE:-———+-—--1---—+———-2-——-+————3-
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1 data example;
2 input x y z;
3 datalines;

5a34

. ¥=3 z=4 _ERROR =1 _N_=2

6 run;

NOTE: The data set WORK.EXAMPLE has 2 observations and 3 variables.
NOTE: The DATA statement used 2.00 seconds.

Although this information can be very useful, there are times where we know
that certain fields contain invalid data values, and we want missing values to be sub-
stituted for the invalid data. For large files, the SAS Log may become quite large, and
the processing time will be longer when these error messages are processed. There
are two ways to reduce the error message handling. First, a single question mark
placed after the variable name will suppress the invalid data message but still print
the offending line of data. Two question marks following the variable name will sup-
press all error messages and prevent the automatic _ERROR_ variable from being
incremented. Here is the INPUT statement to SUPpTess €fTOr messages when an
invalid value is encountered for X:

INPUT X 2? Y Z;

If you are using column input, you would write:

INPUT X ?? 1-2 ¥ 3-4 Z 5-6;

To allow invalid values for X, Y, and Z, we could write:

INPUT @1 (X ¥ 2)(?? 2.):

L. Reading “Unstructured” Data

Almost all the examples in this text have been either small data sets or balanced
data sets that were relatively easy to read using standard INPUT statements. How-
ever, in the real world, we often encounter data sets that are not so clean. For exam-
ple, we might have a varying umber of records for each subject in a study. Another
example would be an unbalanced design where there were different numbers of sub-
jects in each treatment. As these data sets become large, reading them without error
sometimes becomes the most difficult part of the data processing problem. The tech-
niques shown in this section will allow you to read almost any type of unstructured
data easily.

The key to all the examples that follow is to embed “tags” in the data to indicate
to the program what type of data to read. A t-test example with unequal n’s and an
unbalanced ANOVA will serve to illustrate the use of tags and stream data input.
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Example 1. Unbalanced T-test

The amount and complexit;
short and easy to follow. Th
complicated data sets.

We want to analyze an experiment where we had five control and three treatment
subjects and we recorded a single variable per subject. The data are shown below:

y of the data have been reduced to make the examples
e strength of the techniques is their use with larger, more

GROUP
Control Treatmeut
20 40
25 42
23 35
27
30

The simplest, most straightforward method to read these data is shown next:

Example 1-A

***Traditional INPUT Method;
DATA EXI1A;

INPUT GROUP § X @@;
DATALINES;
C20025€r33027c30
T 40 T 42T 35

For larger amounts of data, this program contains some problems. It is tedious
and time-consuming to repeat the group identification before each variable to be
read. This can be corrected in two ways: First, we can put the information concern-
ing the number of observations per group in the program (Example 1-B) or we can
put this information in the data itself (Example 1-C). As mentioned above, if the
number of observations were large (several hundred or more), a single mistake in
counting would have disastrous consequences.

Example 1-B Example 1-C
DATA EX1B;
GROUP=C'; i
DO I=1 TO 5; INPUT N;
INPUT X @; DO I=1 TO N;
OUTPUT; INPUT X @;
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[Continned]
OUTPUT;

END; i

GROUP="T"'; ENDE.ND,

DO I=1 TO 3; ; 5
INPUT X @; DROP N I;
OUTPUT; DATALINES;

END ’ 5

DRO; I; 20 25 23 27 30

Y 3
DATALINES )
20 25 23 27 30 ?0 42 35
40 42 35 ;ROC TTEST DATA=EX1C;
;ROC TTEST DATA=EX1B; C::s}s{ .GRO H
CLASS GROUP; mz ;
VAR X; R
RUN;

i i le 1-D
The method we are suggesting for large data sets is shown in Example

below:

Example 1-D

“'R‘e’a‘dingthe pata with Tags;
DATA EX1D;
RETAIN GROUP; .
iF ?lgm:'c'soa DUMMY='T"" THEN GROUP=DUMMY;
ELSE DO;
X=INPUT (DUMMY,5.0);
OUTPUT;
END;
DROP DUMMY;
DATALINES;
¢ 20 25 2327 30
T 40 42 35

i i 0 our
With this program we can add or delete data without making any changes t
it d or ¢ .
program. The three important points in the program are:

- 1tems interprete a or is found,
All data P 3
1 are read as character and int d. If a ‘C ¢
the variable GROUP is set equal to DUMMY, and the DATA step rel'ums
T e next number. The RETAIN statement prevents tne
to read th . he variable
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GROUP from being reinitialized to missing each time the INPUT state-
ment reads a new number—it will keep its value of ‘C’ or *T" until reset.

- The INPUT function is used to “read” a character variable with a numeric in-
format. The INPUT function takes two arguments. The first is the variable 1o
“reread,” the second is the informat with which to read that value. Thus, al-
though DUMMY is a character variable, X will be stored as a numeric. We chose
the informat 5. since we knew it would be larger than any of our data values.

3. Because there is an OUTPUT statement in the ELSE DO block, the program
will not output an observation when DUMMY is equal to a ‘C’ or a ‘T,
Whenever an explicit OUTPUT statement is used in a DATA step, the auto-
matic implied OUTPUT does not occur at the end of the DATA step.

N

This same program can read data that are not as ordered as Example 1-D. For
instance, the data set

€ 20 25 23 T 40 42
c 30T 35

will also be read correctly. For large data sets, this structure is less prone to error
than Examples 1-A through 1-C. (Of course, we pay additional processing costs for
the alternative program, but the ease of data entry and the elimination of counting
errors is probably worth the extra cost.)

Example 2. Unbalanced Two-way ANOVA.

The next example is an unbalanced design for which we want to perform an analysis
of variance. Our design is as follows:

GROUP
A B C
20 70 9%
30 80 90
M 40 % 8
20 90
50
Gender
25 70 20
30 9% 20
F 45 90 30
30 80
65 85
72

The straightforward method of entering these data would be:

DATA EX2A;
INPUT GROUP § GENDER § SCORE;
DATALINES;
A M 20
A M 30
etc.

we could follow the example of_ the unbalanced t-te:
of observations per cell, either in the program or em
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1S 1S a 1€ Wi r hod. For small data sets of this type,
Th al nglhy and wasteful data ent y metho Y
bedded in the data A prefel able
€] T = T C: ns per ce ere countin; ou
method espec1ally fora lalg number of observations p 11 wh ounting w Ic

be inconvenient, is shown in Example 2-B below:

8;
w*+First Method of Reading ANOVA Data with Tags;

DATA EX2A;
DO GENDER=‘M', ‘F'; ,
DO GROUP='A’, 'B', ‘C’; .

INPUT DUMMY § €;

DO WHILE (DUMMY NE '#');
SCORE=TNPUT (DUMMY, 6.0);
OUTPUT;
INPUT DUMMY § €;

END;

. DATALINES;
/20 30 40:20 50 # 70 80 90

80 90 # 25 30 45 30

"J0 90 90 80 85 # 20 20 30 #

nd assigns observations to a cell until a “#” is read in the
nermost loop, and the next cell is se-
for the observations in a given cell.‘

of this program is shown next (Example 2-B). With this

i not have to supply the program
cells in any order, and do P s ook over

This program reads a ; :
data stream. The program then finishes the in
lected. We can read as many lines as necessary

An improved version
rogram, we can read the cells in any not h
slill% the ’cell identification since it 1S mcorporate@ right in t e
the program first, and then we will discuss the salient features:

'*;ibre Elegant xethm; for Unbalanced ANOVA Design;
. 'DATA EX2B; .
k= RETAIN GROUP GENDER}
NPUT DUMMY § @@;
ir VERIFY (DUMMY, 'ABCMF ') = 0 THEN DO;
GROUP = SUBSTR (DUMMY,1,1)s
; R = SUBSTR (DUMMY,2,1)7

;,

SCORE = INPUT (DUMMY,6.);
: -4
DATALINES;
AM 20 30 40 20 50
BM 70 80 90
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CM 90 80 80 90

AF 25 30 45 30 65 72
BF 70 90 90 80 85
CF 20 20 30

i
PROC GLM DATA=EX2B;
etc.

This program allows us to enter the cells in any order and even use as many lines
as necessary for the observations from a cell. This form of data entry is also conve-
nient when we will be adding more data at a later time. The analysis can be rerun
without any changes to the program. Additional observations can even be added at
the end of the original data.

Special features of this program are the use of the VERIFY and SUBSTR
functions. The VERIFY function returns 0 if all the characters in the variable
DUMMY can be found as one of the characters in the second argument of the
function. Note that a blank is included in argument 2 of the VERIFY function
since the length of DUMMY is, by default, equal to eight bytes, which means that
it will contain two letters and six blanks. The SUBSTR function picks off the
GROUP and GENDER values from the DUMMY string, and the INPUT func-
tion converts all character values back to numeric. (See Chapters 17 and 18 for a

more detailed discussion of SAS functions.) A CONCLUDING NOTE: One of the au-
thors of this book writes these programs with relative ease. The other author calls

him when in need of help. You can’t call either one of us. So, be careful about how
You structure your data sets.

Problems

12-1. You have five subjects in a placebo

group and five in a drug group. One way to struc-
ture your data is like this:

GROUP SCORE
\77
76
74
72
78
80
84
88
87
90

TUUOUv Y

(a) Write an INPUT statement to read these data, assuming you have one or more
spaces between the group designation and the score,
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i i is:
(b) Suppose you prefer to arrange your values on two lines like th

P77 P76 P74 P72P 78
D80 D84 D88 D87 DI

Write an INPUT statement for this arrangement. ) e e
€ an €
(c) This time, the five scores for the placebo group are on the first lin
scores for the drug group are on another like this:
77 76 74 72 78
80 84 88 87 90

¢ i ROUP
Write a DATA step to read these data. Be suré the data set contains a G

as well as a SCORE variable. . . -
(d) Modify the program in part (c) so that each of the 10 subjects has a subject num-
ber from 1 to 10.
12-2. Given the three lines of data:

igni the vari-
Write a SAS DATA step to read these data, assigning the four data values to the
ables X1 to X4.
12-3. Given the three lines of data:
1,,"HELLO",7

2,4,TEXT, 8
9,4:6

igning the four data values to the vari-
ite 2 y to read these data, assigning t! u
s X S\és(‘D;?:iAZS%Zdele C should be a character variable. The doxlj;lseqil:z::
3[‘:13;( ile ’st;ipped t;ff the text strings, and two adjacent commas shou
sho he text
preted as containing a missing value.

resenting a patient

i a va separated by one or more spaces, rep: ;

s ?Sudarti g(:;, ir‘;sgats;d:yuozsé alrjxd cost. Create a SAS data set called OFFICE from
, da 3 >

these data:
01/96 V075 $102.45
; et 02/05/97 X123456789 $3,123
8
3 07/07/96 V456
4 11/11/96 a123 $777.

i ine i ith blanks. (2)

i tient 3, and the line is not padded witl )

T (}r)r\;.ll-lm]erhear:;ﬂ‘:ofgf ?S?élfogirispalg (3) The largest cost is $99,999. (4) Use the IN
%RII“AWAT DOLLARS for the variable cost.

12-5. Given the data layout:

Variable Starting Column Ending Column Type

3 Char
SUBJECT ; : S
< 7 8 Num
v 9 10 Num
; 1 12 Num
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i i i ata lines on which to test your program:
Write a SAS DATA step to read these data using starting and ending column specifi- Here are some sample data line; icl your p

cations in your INPUT statement. Here are some sample lines of data for you to test 1 2
your program: 12345678901234567890
1 2 & mmmmmmmmmmommeeooes
01 2345
}2345678901234567890 AAAX
_______________ 02 9876
Al12 X 111213 BBBY

Al3 W 102030

12-9. Write a SAS DATA step to read a series of X,Y pairs where there are severfxl XS;
pairs per line. Each X,Y pair forms one observation. Here are some sample lines o

data on which to test your program: -

12-6. Create a SAS data set, using the same data as above, except use column pointers and
INFORMATS instead of starting and ending columns.
*12-7. Someone gives you the following data layout:
gives y g y! 12 34 56 78
11 12 13 14

Variable  Start Column Length D p 21 22 23 24 25 26 27 28
ID 1 3 Num
GENDER 4 1 Char *12-10. You conducted two surveys.
DOB 10 6 MMDDYY s
VISIT 16 6 MMDDYY Survey ONE format is:
DISCHRG 2 6 MMDDYY
SBP1 30 3 Num Varisble _Starting Column __ Length _ Type
DBP1 3 3 Num D 1 3 Char
HRI 36 2 Num HEIGHT 4 2 Num
SBP2 38 3 Num WEIGHT 6 3 Num
DBP2 41 3 Num
HR2 “ 2 Num .
SBP3 46 3 Num Survey TWO format is:
DBP3 49 3 Num
HR3 52 2 Num Variable __ Starting Column __ Length  Type
D 1 3 Char
AGE 4 2 Num
Write a SAS DATA step to read the two lines of sample data below. Use variable HEIGHT 6 2 Num
lists and informat lists, to read these data. See if you can find a way to read the WEIGHT 8 3 Num

SBP’s and DBP’s other than the straightforward @30 SBP1 3. @33 DBP1 3. @36
HR1 2. etc. That s, try to read all the SBP’s together (SBP1-SBP3)(your informat)
and so on.

All lines of data using the ONE format have a‘1’ in colump 12. Lines of data using the}
TWO format have a ‘2’ in column 12. Create a data set using the sample data below:

1 2 3 4 5
1 2
1234567890123456789012345678901234567890123456789012345
__________________________________ 12345678901234567890
123m 102146111196111396 130 8668134 8872136 8870 S ..
456F 010150122596020597 220110822101028424012084 00168155 1

00272201 1
0034570170 2

*12-8. Write a SAS DATA step to read the following data: 0045562 90 2

Variable Starting Column Length Type

Line 1 ID 1 2 Num
X 4 2 Num
Y 6 2 Num
Line2 Al 3 3 Char
A2 6 1 Char
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A. Introduction

Ne.w SAS users are often confused by the different ways SAS

write data to external files. This is due to the fact lhaly SA‘; p:ggr::: ::::: rr::g :zg
write many different types of data files. For example, simple ASCII files (or
EBCDIC text files on IBM-compatible mainframes) are read with INFILE and
INPUT statements, whereas SAS data sets use two-level SAS data set names and do
not require INPUT statements. This chapter discusses several ways that SAS soft-
ware can read and write a variety of data types. The use of temporary and perma-
nent SAS data sets is discussed and the advantages and disadvantages of eacl; type.

B. Data in the Program Itself

Before discussing how to read data from external files, let’s review how SAS reads

data lines that a i i
For example: re part of the program itself, following a DATALINES statement.

DATA EX1;
INPUT GROUP $ X Y Z;

DATALINES;

CONTROL 12 17 19
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[Continued]

TREAT 23 25 29
CONTROL 19 18 16
TREAT 22 22 29

i
PROC MEANS DATA=EX1 N MEAN STD STDERR MAXDEC=2;
TITLE ‘MEANS FOR EACH GROUP';
CLASS GROUP;
VAR X Y Z;
RUN; -

The INPUT method used, whether column specification, informats, pointers,
etc., will not change any of our examples so, for the most part, simple list input is
used. The DATALINES statement tells the program that the data lines will follow.
The program reads data lines until it encounters a line that ends in a semicolon. The
examples in this book use a semicolon on a line by itself (called a null statement) to
end instream data. The word DATALINES replaces an older term, CARDS, obvi-
ously a throwback to the past when actual punched cards were read into a card
reader. However, since your children have probably never even heard of computer
cards (maybe you haven’t either), the SAS Institute decided that the statement
DATALINES was more appropriate than CARDS.

Before we leave this topic, here is one more (and rare) possibility you may en-
counter. What happens when your data contains semicolons? For example, suppose

you had:

'DATA TEST;
'INPUT AUTHOR $10. TITLE $40.7

DATALINES;

SMITH The Use of the ; in Writing

FIELD Commentary on Smith’s Book

i

The program, recognizing the semicolon in the first line of data, treats the line as
a SAS statement and generates more error messages than you can “shake a stick at.”
The solution to this rare problem is to use the special SAS statement
DATALINES4, which requires four semicolons in a row *;;;;” to indicate the end of
your data. The corrected example would look like this:

UTHOR: §10. TITLE §4

" fhe Use of the ; in Writl
Commentary on Smith’s Bool
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C. Reading ASCII Data Jrom An External File

It’s not : i i

Wh;(})]gl:t;l::t;a:ito receive data in an external file to be analyzed with SAS softw

framaer o Uteroppy diskette on a microcomputer or on a tape used with a m'a_re.

a sourcepFof tv}v}e Want a way to have our SAS program read data from an ex‘:m.

(AmericanA stamjar‘; é}({)&:jr:;;lc, Iw? assume that the data file is either an ASCeIri

or Information Interchange) file or a “ i »
on l:%); (:ls]o cel\llled raw data). To read this file js surprigsir)lgly eas;ll card image” e
1. :

DATALINEyScS;r:eges to be made to a program that reads “instream” data with

ment are: (1) Precede the INPUT statement with an INFILIzEi

data.
If you are running a batch i
version of SAS softwary
Tob ' ] e on a platf
(Job Control Language) is needed, the INFILE name will correipon(:ir?:) ;VISS;;EL
‘ c

Personal Computer or UN.
IX Example
Reading ASCII data from an External Data File

——
H

DATA EX2a;
INFILE 'B:MYDATA';
Tk
'ﬁ:sIINFILE statement tells the program that
our g:s:yd::akis located in the flle MYDATA
skette i ;
] INPUT GROUE & x n the B drive;
UN;

PROC MEANS DATA=EX2A
N MEAN
VAR X Y Z; STD STDERR MAXDEC=2 ;
RUN;

Fi
ile MYDATA (located on the fioppy diskette in drive B) looks like this:

CONTROL 12 17 19
TREAT 23 25 29
CONTROL 19 18 16
TREAT 22 22 29
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An alternative way of writing the INFILE statement in the example above is to
use a FILENAME statement to create an alias, or “fileref,” for the file (a short “nick-
name” which we associate with the file). This is shown below:

DATA EX2B;
FILENAME GEORGE 'B:MYDATA';

INFILE GEORGE;
****Thig INFILE statement tells the program that

our INPUT data is located in the file MYDATA
on a floppy diskette in the B drive;
INPUT GROUP $ X Y Z; b
RUN;
PROC MEANS DATA=EX2B N MEAN STD STDERR MAXDEC=2 ;

VAR X Y Z;
RUN;

Note the difference between these two INFILE statements. The first INFILE
statement refers to the external file directly, and the filename is placed within single
quotes. The second INFILE example defines an alias first wi th a FILENAME state-
ment and then uses the alias with the INFILE statement. Notice that when we use a
fileref it is not in single quotes. This point isimportant since it is the only way that the
program can distinguish between an actual file name and a fileref.

A Mainframe Example Using JCL. The mainframe example shown next is
basically the same as the microcomputer example shown above. The only difference
is in the way we create the fileref. On an MVS batch system, we would create the

fileref with a DD statement in the JCL like this:

//JOBNAME JOB (ACCT,BIN), 'RON CODY'

1/ EXEC SAS
//8AS.GEORGE DD DSN=ABC.MYDATA,DISP=SHR

//SA8.SYSIN DD *

DATA EX2C;
INFILE GEORGE;

#s#rhig INFILE statement tells the program that the
file ABC.MYDATA contains our external data flle
(Agsume it is catalogued);

INPUT GROUP $ X Y Z;

RUN;
PROC MEANS DATA=EX2C N MEAN STD STDERR MAXDEC=2 ;

VAR X Y Z;

RUN;

This example on a VM system would be the same except that a FILEDEF state-
ment would be used to associate the DDname with the file instead of the DD

statement in the JCL. Here it is:
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Notice here that we can conditionally execute an INFILE statement, thus giving

CMS FILEDEF GEORGE DISK MYDATA DATA B; us complete control over the file-reading operation.
***The file MYDATA DATA is on the B minidisk;
DATA EX2D;

INFILE GEORGE;

***This INFILE statement tells the program that the
data is located in the flle with FILENAME MYDATA,
FILETYPE DATA, and FILEMODE B.;

INPUT GROUP § X Y Z;

RUN;

Option MISSOVER. The MISSOVER option is very useful when you h.av.e
records of different length and have missing values at the end of a record. This (;s
frequently the case when a text file is created with a word processor ant]i3 21; /l;e;or s
are not padded on the right with blanks. Suppose our file called MY as a

short record and looks like:

PROC MEANS DATA=EX2D N MEAN STD STDERR MAXDEC=2 H
VAR X Y Z;
RUN;

CONTROL 1 2 3
TREAT 4 5

CONTROL 6 7 8
TREAT 8 9 10

These last two examples could also use a FILENAME statement to point to our
data source. Whatever method we use, once we know how to create a DDname ora
fileref on our particular platform, the SAS statements for reading the files are the
same. You will need to refer to your manual on how to create a fileref with TSO or
VSE. Again, the SAS statements will not change.

The program EX2A or EX2B would have a problgm readi.ng the second record
of this file. Instead of assigning a missing value to the vanal?le Z.,itwould go to the next
record and read “CONTROL” as the value for Z and print an error message (since
CONTROL is not a numeric value). The SAS LOG would also contain a NOTE
telling us that SAS went to a new line when the INPUT statement reached past the
end of a line. The remainder of the third record would not be read, and the next
observation in our data set would be GROUP=TREAT, X=8,Y=9,and Z=?0. To
avoid this problem, use the MISSOVER option on lhe'INFILE statement.'[’hxs.ml'l
set all variables to missing if any record is short. The entire program would look like:

D. INFILE Options

There are a variety of options that can be used with an INFILE statement to control
how data are read and to allow the SAS program more control over the input oper-
ation. These options are placed after the word INFILE and before the semicolon. We S
. DATA EX2F; )

now demonstrate several useful options: INFILE 'B:MYDATA' MISSOVER;
INPUT GROUP § X Y Z;
Option END=variable name. This option will automatically set the value of RUN;
“variable name” to 0 (false) until the INPUT statement has finished reading the last
data record. This option can be used when you want to read several different files
and combine their data, or when you want to do special processing after you’ve read
the last record in a file. (An alternative is to use the EOF=label option which
branches to “label” when the end of file is reached.)

The next example first reads data from a file called OSCAR on a floppy diskette

in the B: drive and then from a file called BIGBIRD.TXT located in a subdirectory

PROC MEANS DATA=EX2F N MEAN STD STDERR MAXDEC=2 ;
VAR X Y Z;
RUN;

Option PAD. When your INPUT statement uses colun'ms or pointers and
informats, the option PAD can be used to prevent problems with short records. For

C:\DATA. example, to read data values from fixed columns from a file called C: \DATA\
MYDATA.TXT, you could write:

DATA EX2E; e

IF TESTEND NE 1 THEN INFILE 'B:OSCAR‘' END=TESTEND; DATA EX2G; ‘

;I‘-gsml‘.g:gg: 'C;\nam\amsm G INFILE 'C:\DATA\MYDATA.TXT' PAD;

: Frxrm INPUT GROUP § 1
RUN;
X 2-3

PROC MEANS DATA=EX2E N MEAN STD STDERR MAXDEC=2; : ::3,

VAR'X Y 2Z; i i

RUN; RUN;




304 Chapter 13 / External Files: Reading and Writing Raw and System Files

[Continued]

PROC MEANS DATA=EX2G N MEAN STD STDERR MAXDEC=2 ;
VAR X Y Z;
RON;

Option LRECL=record-length. You may need to specify your logical record
length (the number of columns on a line, roughly speaking) if it exceeds the default
value for your system. When in doubt,add the LRECL (this stands for logical record
length and is pronounced El-Rec-el) option to the INFILE statement. It will not
cause a problem if you specify an LRECL larger than your actual record length. For
example, suppose you have an ASCII file on a floppy diskette with 210 characters

per line and your system default LRECL is 132. To read this file, you would write the
INFILE statement thus:

INFILE fileref LRECL=210;

There are many other INFILE options that allow you more control over how
data is read from external files. They can be found in the SAS Language, Reference
Version 6 (see Chapter 1 for complete references).

There will be times where you have data within the SAS program itself (follow-
ing a DATALINES; statement) and not in an external file, yet you want to use one
or more Of the INFILE options to control the input data. We can still use these op-
tions by specifying a special fileref called DATALINES, followed by any options you
wish. Suppose you want to use MISSOVER and you have included the data within
the program. You would proceed as follows:

DATA EX2H;
INFILE DATALINES MISSOVER;
INPUT X Y 2

E. Writing ASCII or Raw Data to An External File

‘We may have reason to have our SAS program write data to an external file in “card
image,” or ASCII format. Writing raw data to a file would have the advantage of
being somewhat “universal” in that most software packages would be able to read it.
On most microcomputer systems, as ASCII file could be read by a wordprocessing
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program, or a data-base management package. Wntmi::i
h like reading data from an external file. }lVe u;;:J (';‘nfo fate-
t, FILE, to tell the program where to senq the data and anot e;, v éata e
cate » hich ’ariables and in what format to write them. Thus, to read ra tata e
e ll(i vtatements‘ INFILE and INPUT: to write raw data files we use the s aﬁ;:e
me US(“T ;‘I(Ieji and PU’t Here is a simple example of a program that reads zzr l:wm ©
I(Irl\/elr;t]?)‘A’[‘A) creates new variables, and writes out the new file (NEWDATA)

floppy disk:

program, a spread-sheet
data to a file is very muc

& DATA EX3A; ] -

<, wwxThig program reads
variable, and wrilte
INFILE 'C:MYDATA';.

file, creates a nevw
ita set to another file;

o

YL T
PUT GROUP § 1-10- @12 (X Y 2 TOTAL) (5.)s
Running this program produces a new file called NEWDATA, which looks like
this:

3
1 2
123456789012345676890123456789012

CONTROL 12 17 19 48
TREAT 23 25 29 77
CONTROL 19 18 16 53
TREAT 22 22 29 73

Notice that we can employ any of the method§ of specxg};gtcct)i\:nn:;st oIrn f?;:l:;s—
that are permissble v o o £ Stétlltleﬂ;::l: ’v::it:btlte(gRO:J;) and a- format (in
e abcl"ve, ?e Sg:ec lrz:liazﬁ;zrgn?juf:’ ;aﬁZbles. This gives us compleFe control t)vcf,lrl
R <f)rthe file to be created. It goes without saying tl}at this example wi
o Str'umut;nee(;ame on a mainframe under MVS or VM, prov@ed that the cqrrec;
g:l;ll:::tstatements are issued. Note that on an MVS system, if ’;;eé Iz:r& ;;Ie’;t]l)r,SgN
new file, we have to provide all the parameters (such as RECFM, ) N ,

DCB, etc.) necessary for your system.

E Creating a Permanent SAS Data Set

» data and to write the same

raw “card image
Thus far, we have seen how to read e s permanent SAS

type of data to an external file. We now demonstrate how t
data set.

e
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/ Ext ! Files: Reading a d Writing Raw ai Y le

A SAS data set, unli
- s ke a raw dat: 1
Hcomans da i : ata file, is not usable by softw
P any)oxng:;f; (‘jvit‘;,h l())ut such information as the)\//ariablzr::x:l:rl:i)a;; SAS
: . " y > ; s S,
o u;ng Dermanon Sag setZou an example, let’s first discuss the pros and C?(l)l:]l;
Irst, some cons: As we me; i
wets yor y qtloned, non-SAS progr g
o You mor;?f;t :sse Aastyplcal editor to read or mogifygaag.l':sc z:ir:t]; ts o e
program (for cxamals ::lat‘ah set requires using SAS software and e?ttﬁzo l'e{iq‘ o
Produet) to dion an(,:Uo change a data value) or using SAS/FSP(r Fr I Sor
P toymocr?r upsdate an observation. When you write a)S(Aélll aoreen
i
o dat o op modiﬁe(}j’ a (;\S data set, you must keep in mind that thepm'gfam
the raw date o maki,nagnthyou (;z{n no longer recreate the SAS data s::]%mal
SAS dnto o With ¢ modification again. Finally, in i .
. ,in th
Kept i additio)rllplt((:)altll):euscer im.orflz storage than the original gata sete a?zlin:rsemlun;n,
in &
Storage requiromens ginal raw data, thus more than doubling the s;:lixlz
With all these negati
gatives, why create
ot S : lte permanent SAS dat: ?
most con ga[azi (rje:rs:pt is speed. Considerable computer resojrz:;sé Probal?ly e
analyues o g o Setz:he a SAS data set. If you plan to be runnin, n:e feql}U'Ed o
Gata sct pormaniaset ! tﬁl v:'jlll not be changing often, it is a good i%ieaatr(l)y dlfiﬂ'e}?t
e uratlonoftheaal“‘ 2 good
way to transfer d ey e et
Kromane e damatsz:"tlotothe‘r users provided they have SASS:;E:J:I_BISO ¥ e,
andl formats Lo str cdure is no k?nger necessary since all the vari Zlavaﬂab]e.
o N e eady been defined. We will see shortly h fo e PROGC
NquEr o examt;frmm}? what is contained in a SAS data sit o fo e PROC
e in this section i i ]
N L on is to write i
€ program itself, and to create a permanent SZSSAdSag:ftr m whiclhas the data n

This program reads dats eoido oo oo Lo TTTTm==-
ogram reads data following the datalines statement i
atement

and creates a
permane:
called C:\SASDATA nt SAS data set in a subdirectory

LIBNAME FELIX 'C:\SASDATA';

DATA ml‘n-n‘ll
INPUT GROUP $ X Y 2,

29

i 5
CONTROL ‘19 18 16
TREAT 22 22 29

i

The way we distinguish between temporary and permanent SAS data set
g S18 t)
the S) AS data set name. If we have a two-level name (tW() names separated by ape-
g 4 t . sing
riod), we are definin a permanent SAS data set name. With a single-level SAS data

set name,
SAS environment.

tion where the SAS data set wi
cation is usually a subdirecto
or nickname, referred to as a
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we are defining a temporary data set which will disappear when we exit the

The first part of the two-level name (the part before the period) names a loca-
1l be written. In a PC or UNIX environment, this lo-

ry. SAS uses a LIBNAME statement to assign an alias
libref in SAS manuals, for this directory. We can have
many SAS data sets contained within a single subdirectory.

When this program executes, the data set EX4A will be apermanent SAS dataset
located in the CASASDATA subdirectory. If we look at a list of files in the
C:\SASDATA subdirectory, there will be a file called EX4A .SD2.The extension SD2
may be different for different platforms. Note that on any SAS system, the first-level
name does not remain with the data set; it is only used to point to a SAS library. The
only requirement is that the first-level name match the LIBNAME within a program.

Now that we have created a permanent SAS data set, let’s see how to read it and

determine its contents.

G. Reading Permanent SAS Data Sets

nent SAS data set, we can use it directly in a proce-

Once we have created a perma
bref, We now show you a SAS program which uses

dure, once we have defined a li
this permanent data set.

LIBNAME ABC 'C: \SASDATA';

PROC MEANS DATA=ABC.EX4A N MEAN STD STDERR MAXDEC=3;

VAR X Y Z;
RUN;

You can see right away how useful it is to save SAS data sets. Notice that there
is no DATA step at all in the program above. All that is needed is to define a SAS li-
brary (where the SAS data set is located) and to use a DATA = option with PROC
MEANS to indicate on which data set to operate. First, observe that the libref ABC
is not the same name we used when we created the data set. The libref ABC is de-
fined with the LIBNAME statement and indicates that we are using the subdirec-
tory C:\SASDATA. Therefore, the first part of the two-level SAS data set name is
ABC. The second part of the two-level name tells the system which of the SAS data
sets located in C:\SASDATA is to be used. It is important to remember that we must
use the DATA= option with any procedure where we are accessing previously
stored SAS data sets, because the program will not know which data set to use (when
we create a SAS data set in a DATA step, the system keeps track of the “most re-
cently created data set” and uses that data set with any procedure where you do not
explicitly indicate which data set to use with a DATA = option). Just so that we don’t
shortchange the mainframe users, the same program, written on an MV!

S system,
would look something like this:
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//GROUCH JOB (1234567,BIN), '0OSCAR THE®
17 EXEC SAS

//8SAS.ABC DD DSN:OLS.M23.SdSS.CODY,DISP=SHR
//SAS.SYSIN DD *

PROC MEANS DATA=ABC.EX4A N MEAN STD STDERR MAXDEC=3;
VAR X Y 2;

/%
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The DDname was defined in the JCL, indicating my SAS data set was stored in
the MVS data set called OLS.A123.8456.CODY which was catalogued. On a VM
system, the DDname, or first part of a two-level name, is what VM calls the filetype
in the general, filename filetype filemode method of defining a file. The filename cor-

responds to the SAS second-level name. Thus, without even issuing a FILEDEF
command, we could write:

PROC MEANS DATA=ABC.EX4A N MEAN STD STDERR MAXDEC=3;

which is valid as long as we have a filetype of ABC and a filename of EX4A.

H. How to Determine the Contents of a SAS Data Set

As mentioned earlier, we cannot use our system editor to list the contents of a SAS
data set. How can we “see” what is contained in a SAS data set? We use PROC
CONTENTS. This very useful procedure will tell us important information about
our data set: the number of observations, the number of variables, the record length,
and an alphabetical listing of variables (which includes labels, length, and formats).
As an option, you can obtain a list of variables in the order of their position in the

data set. Here are the statements to display the contents of the permanent SAS data
set EX4A created above:

LIBNAME SUGI "C:\SASDATA';

PROC CONTENTS DATA=SUGI .EX4A POSITION;
RUN;

Output from this procedure is shown below:

CONTENTS PROCEDURE

Data Set Name: SUGI.EX4A Observations:

Member Type: DATA Variables:

Engine: véell Indexes:

Created: 10:01 Thu, Jul 25, 1996 Obgervation Length:
Last Modified: 10:01 Thu, Jul 25, 1996 Deleted Observations:
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[Continued]
. Compressed: Eg
;i:teggéc’n e Sorted:
a Type:
Label:

Data Set Page Size: 8192
Number of Data Set Pages:1l
File Format: 607
First Data Page: 1
Max Obs per Page: 254

Obs in First Data Page: 4

1 GROUP Char 8 0
2 X Num 8 8
3 v Num 8 16
" z Num 8 24

1 GROUP Char 8 0
2 x Num 8 8
3 Y Num 8 16
4 z Num 8 24

One final point of information, the DA'TAd:. optisog S()illl’)g?y(i Iigl:['il‘(};:fl\?ssinc;l:
ist all the SAS data sets containe ina of a single
gzt:s:; t%::: t;:e form libref._ ALL_ instead of llbref_data_set_nellme. This will dis:
play all ihe SAS data sets stored in the librz}ry referred to b)./rth:nl::;:ef.me o com.
are working in an interactive, wm(?ows type enviro nt, :
mangsylgl;R and VARg(or pointing and clicking appropriately) will show you any
permanent SAS data set and a variable list.

1. Permanent SAS Data Sets with Formats

i ets in
One special note is needed to caution you about saving pennanfe;:es‘z:fi:slt:ssin sin
i i - formats to one or more o i
ch you have assigned user-created : nthe
Ei:TAystep If you try to use that data set (in a procedure for exalr;ple).;);z{:sttlllfl ygou
: issi i rtant thing to remember i :
that formats are missing. The impor ]
o e::); ermanent SAS data set which assigns user-creat}ed fom_xats to varlal;llegsé
Cfelf mustpmake the format library permanent as well. Also, if you give someone els
©f . o
fhe data set, make sure you give him or her the format library.
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To make your format library permanent, add the LIBRARY =libref option to
PROC FORMAT. You may either use a special libref called LIBRARY or one of
your own choosing, If you choose your own libref, you need to supply a system option
called FMTSEARCH=(libref) to tell the program where to look for user-defined for.
mats. Since this sounds rather complicated, we show the code to Create a permanent
format library and the code to access a permanent data set where formats were used,

Code to Create a Permanent Format Library and Assign the Format to a Variable:

LIBNAME FELIX 'C: \SASDATA"';

OPTIONS FHTSEARCH=(FBLIX) i

***We will place the bermanent SAS data sets and the
formats in C:\SASDAT 7

PROC FORMAT LIBRARY=FELIX;
VALUE $XGROUP ' TREAT' = ' TREATMENT GRP'

' CONTROL ' = ' CONTROL GRP' ;
RUN;

DATA FELIX.EX4A;
INPUT GROUP § X Y 3;
FORMAT GROUP $XGROUP.;

DATALINES;

CONTROL 12 17 19

TREAT 23 25 29

CONTROL 19 18 16

TREAT 22 22 29

Program to Read a Permanent SAS Data Set with Formats

LIBNAME C 'C:\SASDATA";

OPTIONS FHTSEARCH=(C)

***Tall the brogram to look in C:\SASDATA for user
defined formats;

PROC PRINT DATA=C -EX4A;

RUN;

In this example, the libref FELIX was used when the SAS data set and the
permanent SAS format was created, A different libref, C, was used in the subse-
quent program when the data set was accessed. This was for illustrative purposes
only. In practice, most SAS programmers use the same libref to point to a specific
subdirectory.

If someone gives you a SAS data set that has user formats defined and does not
give you the format library, don’t despair! You can at least get the procedures to
work if you use the system option NOFMTERR. This option will allow you to
process the data set that contains missing formats by supplying SAS system defaults
to the character and numeric variables.
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J. Working with Large Data Sets

ioni / large data sets. Of course, “large." is
Speda'l C‘)"Sideroat‘o“ . :Ei:z?;z:::;:x:: gﬂrz)%i)sf)bsegrvations with 50 var;lab] _elfi;nnlsg};;
beconsid termi o a(;r: a mainframe, users frequently process data sets wit mslin i of
o c()nSld‘emd/ﬁxEl ?isx; simple techniques described here can redt'lce the pro;;:s g
Obze;\’:;zf:; usage (and cost if you're paying for it) for processing a large file.
an

1. Don't read a file unnecessarily. For example:
Inefficient Way:

LIBNAME INDATA 'C:\MYDATA';
DATA TEMP;
SET INDATA.STATS;

RUN;

PROC PRINT;
R X Y&

Efficient Way:

. y
P C! Xamp! S unnecessary. simp!
The DATA step in the Inefficient” e: le is umn It
copies one data set into another so that the PROC PRINT can use the default, mos

isi is i error.
recently created data set. Surprisingly, this is a common

i re
Drop all unnecessary variables. Not only QO more variables take up mo
> s acré they slow down DATA step processing as we}l.
Iﬁefﬁ,cient Way (if all you want is the quiz average):

DATA QUIZ; .
Dm;ngm* @1 (QUIZ1-QUIZ10) -

QUIZAVE = MEAN (OF QUIZ1
DATALINES;

Efficient Way:

mTImi;. @1 (QUIZ1-QUIZ10) (3,){10).
QUIZAVE = MEAN (OF QUIZ1-QUIZ10);
DROP (QUIZ1-QUIZ10); :

DATALINES;
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3. Use a DROP (or KEEP) option on the SET slatement rather than a
DROP (or KEEP) statement in the DATA step. When a DROP option is
used, only the variables still in the data set will be brought into the Pro-
gram Data Vector, which can result in a significant decrease in processing
time.

Inefficient Way:

DATA NEW;
SET OLD;

DROP X1-X20 A B;

etc.

Efficient Way:

DATA NEW
SET OLD (DROP=X1-X20 A B);
etc.

4. Do not sort data sets more than necessary. For example, if you need your

data in DAY order and know that later in the program you need it in DAY-
HOUR order, do the two-level sort first.
Inefficient Way:

PROC SORT DATA=MYDATA;
BY DAY;

RUN;

etc.

PROC SORT DATA=MYDATA
BY DAY HOUR;

RUN;

etc.

Efficient Way:

PROC SORT DATA=MYDATA;
BY DAY HOUR;

RON;

ete.

Think about using a CLASS statement instead of a BY statement with
PROC MEANS. This will eliminate the need to sort the data but will re-
quire more memory to run.

o
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Inefficient Way:

PROC SORT DATA=MYDATA;
BY DAY;
RUN;

PROC MEANS DATA=MYDATA N MEAN NWAY;
BY DAY;
VAR .. .}

RUN;

Efficient Way:

PROC MEANS DATA=MYDATA N MEAN NWAY;

CLASS DAY;
VAR . ..
RUN;

te-
When a small subset is selected from a large file, use the WHERE sta
ment instead of a subsetting IF statement.

Inefficient Way:

DATA ALPHA;
SET BETA;
IF X GE 20;

RUN;

Efficient Way:

DATA ALPHA;
SET BETA;
WHERE X GE 20;
RUN;

or

DATA ALPHA;
SET BETA(WHERE=(X GE 20));

RUN;
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7. Use a WHE i
RE statement in a PROC when you only need to run a single

procedure on a subset of the data,
Inefficient Way: -

DATA TEMP DATA=MYDATA;
SET OLD;
WHERE AGE GE 65;
RUN; 51

PROC MEANS DATA=MYDATA N MEAN STD;
i

VAR .. .;
RUN;
Efficient Way:

PROC. MEANS DATA=MYDA

C_MEANS DATA=MYDATA N MEAN STD;

WHERE AGE GE 65; - #D;
VAR ., .; 7

RON;

or

PROC MEANS DATA=MYDA
vam o TA=MYDATA (WHERE= (AGE GE. 65)) N MEAN 7D

RUN;

Use ELSE IF instead of i
nelticiont Wag, multiple IF statements.

DATA SURVY;
gpgr[‘m AGE HEIGHT WEIGHT;
B E AGE LT 20 THEN
IF 20 LE AGE Rgresal
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Efficient Way:

DATA SURVY;
INPUT ID AGE HEIGHT WEIGHT;
IF 0 LE AGE LT 20 THEN AGEGRP=1;
ELSE IF 20 LE AGE LT 30 THEN AGEGRP=2;
ELSE IF 30 LE AGE LT 40 THEN AGEGRP=3;
ELSE IF AGE GE 40 THEN AGEGRP=4;

RUN;
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9. When using multiple IF statements, place first the one most likely to be true.

Inefficient Way (most of the subjects are over 65):

DATA SURVEY;
SET OLD;
IF 0 LE AGE LT 20 THEN AGEGRP=1;
ELSE IF 20 LE AGE LT 30 THEN AGEGRP=2;
ELSE IF 30 LE AGE LT 40 THEN AGEGRP=3;
ELSE IF AGE GE 40 THEN AGEGRP=4;

RUN;

Efficient Way (most of the subjects are over 65):

DATA' SURVEY;
" SET OLD;
IF AGE GE 40 THEN AGEGRP=4;
ELSE IF 30 LE AGE LT 40 THEN AGEGRP=3;
ELSE IF 20 LE AGE LT 30 THEN AGEGRP=2;
ELSE IF 0 LE AGE LT 20 THEN AGEGRP=1;

RUN;

10. Save summary statistics in a permanent SAS file if y
computations with it.
Inefficient Way:

LIBNAME C 'C:\MYDATA';
PROC MEANS DATA=C.INDATA;
‘CLASS RACE GENDER;

VAR . . .
RON;

ou plan to do further
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12,

13.

14.
15.

. Use _NULL,
— — as a data set name when you only want to process records

from a file (such as data cleani
a2 f cleaning) but do not want to keep the resulting

Inefficient Way:
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Efficient Way:

LIBNAME C 'C:\MYDATA®;
PROC MEANS DATA=C.IND,
=C.INDATA NWAY;
CLASS RACE GENDER; ’
VAR . ..;

OUTPUT OUT=C.SUMMAR
RON; Y MEAN= ;

RUNj'

Save your SAS system files if
y 1 you plan to do further processin
Reading a system file is much more efficient than reading rawgd(;ft;h © data.

Use * — P

w;einom()NS OBS=n", where n is either zero or a small number when

st g your code. Remember to set it back with “OPTIONS OBS=MAX”

Oc P'?f[eo );f;u do any more processing. BE VERY CAREFUL WITH THIS
. You may wind up replacing an existing SAS data set with an

empty one.

Use PROC DATASETS to rename variables or change variable labels,
Use PROC APPEND to add new data to a large file.
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Inefficient Way:

DATA COMBINE;
SET BIGFILE NEWFILE;

RUN;

Efficient Way:

PROC APPEND BASE=BIGFILE DATA=NEWFILE;

Problems

RUN;
13-1. You receive a text (ASCII) file, called FRODO, on a floppy diskette. The data layout is
as follows:
‘Variable Col(s)
D 1-3
AGE 5-6
HR 8-10
SBP 12-14
DBP 16 -18

A few sample records are shown below:

(Columns listed here,

123456789012345678
not on the diskette)

001 56 64 130 80
002 44 72 180 Note: No DBP recorded for

003 64 78 140 88 this ID (short record)

You place this diskette in the A: drive of your computer. Write a SAS program that
will read this file and do the following:

(a) Create a permanent SAS data set called BILBO on the floppy diskette in drive A.
This data set should contain AGE, HR, SBP,and AVEBP, where AVEBP is defined
as two-thirds of the diastolic blood pressure (DBP) plus one-third of the systolic
blood pressure (SBP). (This is actually a weighted average of the DBP and SBP with
weights of 2/3 and 1/3,since the heart spends more time in diastole than systole.)
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(b) Create another SAS system file calied HIBP, which contains only records of sub-
jects with AVEBP greater than or equal to 100.

You are given a diskette with two files: SURVEY.SD2 and FORMATS.SC2. The for-
mer is a SAS system file (compatible with your version of SAS software), and FOR-
MATS.SC2 is a user-defined format library. You copy these two files to a subdirectory

has been assigned in the data set to ICD_9. Write a SAS program, for a computer sys-
tem you use (mainframe MVS, VM, Windows, Windows95, UNIX, etc.) that will read
that data set, recognize the format library, and produce a frequency distribution of the
ICD_9 codes in decreasing order of frequency (PROC FREQ option ORDER =
FREQ). Also, compute descriptive statistics for AGE (n, mean, standard deviation,
standard error, minimum, and maximum).

. You have collected demographic data for the years 1996 and 1997. The data for 1996 is

placed in a file called DEM_1996, and the data for 1997 is placed in a file called
DEM_1997. These two files use the same data layout (see below). Both files are located
on afloppy disk that you place in the A: drive of your computer. Write a program to read
all the data from both files, and create a single, permanent SAS data set to be located in
CAMYDATA. Call the SAS data set DEM_9697. The data layout for both files is:

Starting
Variable Column Length Type
D 1 3 Char
AGE 4 2 Num
JOB_CODE 6 1 Char
SALARY 7 6 Num

. You have a raw data file called SAMPLE.DTA on a floppy disk. The file contains 100

numbers per line, and the values are separated by one or more spaces. The length of the
longest line is 320 bytes, and some lines contain fewer than 100 numbers. Write a SAS
DATA step that will read this file from the floppy disk in drive B: and will assign the 100
values to the variables X1-X100. Assume that the default logical record length for your
system is less than 320 bytes.

Run the program below to create a SAS data set called MILTON, Next, write a SAS
DATA step that will read the values from MILTON and write the data for variables A, B,
and C to a raw data file to the subdirectory CAMYDATA. Call the output data file OUT-
DATA, and write the values for A, B, and C to columns 1-3,4-6,and 7-9, respectively.

***DATA step to'create MILTON;
DATA MILTON; .

INPUT X Y A B C 2
DATALINES; .
123456
11 22 33 44 55 66
1

B
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E. “Table Look Up”
F. Updating a Master Data Set from An Update Data Set

A. Introduction

. Lo . .
This chapter covers some basic data set operations. Subsetting is an operation ;}tl,:e
we éelect a subset from one data set to form another. We‘may also wan: to v;‘(; mbine
data from several data sets into a single SAS data set; this chapter explore:

ways of doing this. Let’s take these topics one at a time.

B. Subsetting

i i SET
We have already seen some examples of data subsetting. ’I'hefkcy Zenree v;sst,:; .
i ” i from a SAS data set to form
statement which “reads” observations AS o Sty any of
i he original data set, we can y
we process the observations from tl rig v of
fﬁz \leaslues,rc):reate new variables, or make a decision whether to include the observ

tion in the new data set. A simple example:

In this example, data set ALL contains a variable, QENDER, which has v;;lu]cq;
of ‘M’ and ‘F’. The ’IF statement, used in this context, is called a subsetting IF.

319
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those of you familiar with other Programming languages, this is a “funny” looking IF
statement-there is no THEN clause. If the IF statement is NOT true, the observation

IF GENDER NE 'M';

Be careful here. If there are any observations with missing or miscoded values
(i.e,, any value that is not an ‘M’) for GENDER, the stateme
those observations to data set WOME;
want, rather than what you do not want
We can use any logical ex
example, we could have:

nt above would add
N. It is usually better to indicate what you

pression in the IF statement to subset the data set. For

DATA OLDWOMEN;
SET ALL;

IF GENDER = 'F' AND AGE > 65;
RUN;

With the release of version 6 of SAS software, an alternative to the subsetting IF
Statement, called the WHERE statement, became available. Although there are sev-
eral subtle differences between using IF and WHERE Statements, we can subset a
data set just as easily by substituting WHERE for IF in the programs above. When
the data set we are creating is a small subset of the original data set, the WHERE
re efficient. In addition, we also have the option of
using the WHERE statement in a SAS PROCEDURE. So, to compute frequencies
of RACE and INCOME only for females, we could write:

PROC FREQ DATA=ALL;
WHERE GENDER = 'P';
TABLES RACE INCOME;

RON;

If we want to run a procedure for all levels of a variable, we should use a BY state-
ment instead. We have found the WHERE statement particularly useful when we run
t-tests or ANOVAs and we want to eliminate one or more groups from the analysis.
Suppose, the variable GROUP has three levels (A, B, and C) and we want to run a
t-test between groups A and B. Using the WHERE statement greatly simplifies the job:

PROC TTEST DATA=data_set_name;
WHERE GROUP='A' OR: GROUP
'CLASS QROUP;
VAR ... ;
RUN;

P
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C. Combining Similar Data from Multiple
SAS Data Sets

ini iables. To
S h containing the same varial
e several SAS data sets, eac riables. 1o
e s IST:; ‘::I,:tzas\;t from multiple SAS data sets, use the ?)ET sttl:e(;?lfa (1o name
cach of he data sets to be combined. For example, to com lr;f e e A, the
3392 gftt esets MEN and WOMEN into a single data set calle
SAS data :
following program could be used:

DATA ALLDATA;
SET MEN WOMEN;
RUN;

ata st ontain a € servatons ir e S EN,
Data set ALLDATA will contain 11 the observatiol om the data set M
followed by all the observations from he data set WOMEN.

D. Combining Different Data from Multiple
SAS Data Sets

ine different information from muluple
e demoilvit;axeh: vxrlz(s)tceor?ttl)ldem data set that contains Somtal SZZ:
oy s S; pp:jitudent names (NAME). We then give a test and c-retaoi ?a aa
et ('S - dent SS numbers and test scores. We now want to pn::listin .
o th?jt C(:H‘E:EZZ?; nar:nes and scores. Below are sample master and tes! gs:
of student n 3 3

SS Name

123-45-6789 CODYI'i

987-65-4321 SMIT!

111-22-3333 GREGORY Master Data
222-33-4444 HAMER

777-66-5555 CHAMBLISS

SS Score
123-45-6789 100 .
987-65-4321 67 Test Data

222-33-4444 92

i bers in
To merge the student names in the MASTER data set with the SS numl
the TEST data set, we first sort both data sets by SS:

PROC SORT DA’I‘Mmm)
BY 88; ;

RUN;

PROC SORT DATA=TEST;

BY 88;
RON;
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To merge these two data sets into a new data set, we use a MERGE statement:

DATA BOTH;
MERGE MASTER TEST;
BY SS;
FORMAT SS SSN11.;
RUN;

Since the MASTER and TEST data sets are now sorted by SS, the MERGE op-
eration will attempt to combine observations from each of the two data sets when
the SS has the same value in each observation. Let’s look at the observations from
these two data sets, in sorted order, side by side:

Data Set MASTER Data Set TEST
SS Name SS Score
_ W ame — %  Score
111-22-3333 GREGORY 123-45-6789 100
123-45-6789 CODY 222-33-4444 92
222-33-4444 HAMER 987-65-4321 67

777-66-5555 CHAMBLISS
987-65-4321 SMITH

The first S number in data set MASTER is not found in data set TEST, There-
fore, when the MERGE takes place, the first observation in data set BOTH will have
a missing value for SCORE. The next observation in MASTER has a SS number of
123-45-6789. This number is found in both data sets, so the second observation in
data set BOTH will contain a value of 123-45-6789 for SS, the NAME ‘CODY’ and
a SCORE of 100. This process continues until all the observations in data sets
MASTER and TEST have been processed. The resulting data set BOTH will have
the following observations:

Data Set BOTH

SS Name Score
111-22-3333 GREGORY .
123-45-6789 CODY 100
222-33-4444 HAMER
777-66-5555 CHAMBLISS .
987-65-4321 SMITH 67

Most likely, we would like the merged data set to contain only those observa-
tions for which there was a test score, The data set option IN=logical_variable fol-
lowing either (or both) of the data set names listed in the MERGE statement gives
us control over which observations are added to the merged data set. The value of
logical_variable will be true (1) if that data set has made a contribution to (has a
nonmissing value for the BY variable) the current observation being created. If not,
it has a value of false (0). The logical_variable created by the IN= data set option is
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i t is not added
temporary variable that can be used anywhere in the DATAtS(t);L:ig; s ot added
¥ hepnew data set. Let’s see how we can use the IN= data s¢ e modify the pro-
[(l)atervations in data set MASTER who did not take the test.
obs

gram above as follows:

DATA BOTH;
MERGE MASTER TEST (IN=FRODO);

BY SS:
IF FRODO; A
FORMAT SS SSN11.;
RUN;

i iable
The IN= option following the data sct name TEST creates tilxle l;%l;:?; (;/:tr;a:)et
FROD% To 1ilrp1)it the merged data set to only those studenc:s u: }t‘az T data e
use a.subsetting IF statement to make sure that the studen
we

in the TEST data set. The resuiting merged data set (BOTH) is:

Data Set BOTH
SS Name Score
123-45-6789 CODY 100
222-33-4444 HAMER 92
987-65-4321 SMITH 67

S here were observations in the TEST data set without a C'OHESPOT:::E
i the M AST R data set. How would we use the IN= data set options to cre:
o et MASTEth taonl c;Jntained observations where there was a contr‘xbuuog
? merssfh(j)af‘tahze;at; sets"yWe could use an IN= option for each of the data sets an
rom ?

test that both logical variables were true, like this:

DATA BOTH;. )

MERGE ;tasmn (IN=B
BY S8;

IF BILBO AND FRODO;

FORMAT SS SSN1l.;

RUN; . :

LBO) TE

The general syntax for the MERGE statement is:
= name) ;
MERGE data_set_one (IN=var_name) data_set_two (IN=var_!
BY match_vars;
o
data_set_one and data_set_two are the two data sets t

B e et e, if used, can control which

be merged; the IN= option that follows each data set nam
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observations will be included in the m
program how to select observations fr

If the BY variable has a different
use a RENAME option in the MERG
in the TEST data set, we would write:

erged data set. The BY statement will tel] the
om the two data sets.

variable name in one of the data sets, you can
E statement. For example, if SS were called ID

[Continued]

DATA COMBINE;
MERGE WORKER (IN=INWORK) EXP;
BY YEAR;
IF INWORK;

MERGE MASTER TEST (IN=INTEST RENAME= (ID=SS)); RUN;

This brings in an observation from da
purposes of the MERGE. Note tha
mains ID.

We should mention that MERGE can be used with
that is done, the observations are co
sets. (This is extremely risky and we

ta set TEST and renames ID to SS$ for

t the variable name in the data set TEST re- . -
The resulting data set, COMBINE is shown next:

out a BY statement. When

mbined in the order they appear in the two data

ID _ Year WBC __ Exposure
recommend that you never do it.)

1 1940 6000 ;gg
2 ig:g % 200 Data sct COMBINE
1 194t 6500 150
E. “Table Look Up” 2 1941 8500 150
3 1941 8900 150
This section explores some other w;

ays that merging can be used to perform a “table
look up.” By table look up, we mean that one can pull information from a dataset based

On one or more criteria and add that information to the current data set. Some simple
ear. We have one data set which contains ID numbers,
unt (WBC). Some sample observations are shown here:

i i BY variables. We want to assign an

tend this problem to include two Y i

xpo‘glfrg(i):s(zi OI:] the YEAR and the WORK assignment. Our look up table con
e

sists of years, work codes, and exposures. Here is the look up table:
YEAR, and white blood co

Year Work Exposure
190
1940 MIXER
ID Year WBC 1940 SPREADER 200
1 1940 6000 1941  MIXER 140 .
2 1940 8000 1941 SPREADER 150 Data set EXP
3 1940 9000 Data set WORKER 90
1942 MIXER
1 1941 6500 1942  SPREADER 100
2 1941 8500 70
1943 MIXER
3 1941 8900 1943 SPREADER 80

Next, we have a data set that tell

s us the benzene exposure for these subjects for
each year.

ts:
The WORKER data set now contains the YEAR,WORK code,and WBC coun

D Year Work WBC
Year Exposure L 1940 MIXER 6000
1940 200 PREADER 8000
2 1940 S|
1941 150 Data set EXP 3 1040  MIXER 9000 Dataset WORKER
1942 100 1 1941  MIXER 6500
1943 80 2 1941 MIXER 8500
3 1941 SPREADER 8900
What we want is to add the correct exposure to each observation in the

WORKER data set. The SAS statements to perform the merge are:

ion i et, we
To add the correct exposure to each observation in the WORKER data s

ERGE
have to“look up” the exposure for the correct YEAR and WORK code. AM
PROC SORT DATA=WORKER;

statement with two BY variables will accomplish this for us:
BY YEAR;

RUN;

PROC SORT DATA=EXP; e DM‘:;WO .

" ; BY YEAR WORK;

ROUN;

RUN;
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[Continued]

PROC SORT DATA=EXP;
BY YEAR WORK;
RUN;

DATA COMBINE;
MERGE WORKER (IN.
=INWORK ;
BY YEAR WORK; ) Exe;

The merged data set (COMBINE) is shown next:

ID Year Work WBC Exposure
1940 MIXER 6000

1

3 1940 MIXER 9000 1190
2 1940 SPREADER 8000 %
1 1941 MIXER 6500 o
2 1941 MIXER 8500 1
3 1941 SPREADER 8900 11;3

E  Updating a Master Data Set from An Update Data Ser

Many busines's applications contain a
new information. For €xample, we might have

i 19

23 MASTER d
6 » ata set
7 45

PART_NO  Price
—PARTNO __ Price
4 24
UPDATE d

5 37 ata set
7

W
€ sort both data sets by PART_NO and then perform the UPDATE:

DATA NEWMASTR;
P MASTER UPDATE;
PART_NoO;

RUN;
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The result is:
PART_NO Price
1 19
4 24 NEWMASTR data set
S 37
6 22
7 45

Note that the missing value in UPDATE does NOT replace the corresponding
observation in MASTER.

Problems

14-1. You have a file containing gymnastic scores for boys and gitls, as follows:

Lty Gender Age Vault Floor P_BAR
3 M 8 75 72 6.5
5 F 14 7.9 82 6.8
2 F 10 5.6 57 5.8
7 M 9 54 59 6.1
6 F 15 82 82 79

(a) Create a SAS data set called GYM from these data.
(b) Create a subset of these data for males only. Call it MALE_GYM.
(c) Create another subset of GYM for all females greater than or equal to 10 years of
age. Call it OLDER_F.
14-2. You have two data files, one from the year 1996 and the other from the year 1997, as

follows:
File for 1996 (DATA96) File for 1997 (DATA97)
D Height Weight D Height Weight
2 68 155 7 72 202
1 63 102 5 78 220
4 61 m 3 66 105

Create a SAS data set from each file (call them YEAR1996 and YEAR1997, respec-
tively). Combine the data from each data set into a single file (call it BOTH).

14-3. You have a separate file on the children in problem 14-1.This file contains ID numbers,
income ranges,and the parents’ last name as follows:

ID Income L_NAME
Klein
Cesar
Solanchick
Warlock
Cassidy
Volick

N W
WP wrw»
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Note that ’s /hi i

s dataa ;::ea]?; E;Sffg whnch there is no GYM data and vice versa. First create a

the merped e oo GYMN;I from thle data above. Next, merge the two data ;ets (cali
ONEY), including only those ID’s that are present in the

ata set. Next, print ou i lame, gender, and age. Have this
GYMd t, t d d H. th
p a lis: showmg ID, last n 5 8

14-4. Combi
‘ombine the GYMMONEY data set from problem 14-3 with the data set BOTH from

problem 14-2. Call the resultin:
g data set FRE 's wi i
both data sets. List the contents of this data SSDY preude only those ID's with data n

14-5. Y i i
; ;)t: :uf‘v; ‘2)1 nf:ne;c;g: plan based on income range and gender. Using the GYMMONEY
(et GY& (;4 g;lElzks. creatg anew data set called FINAL, which contains all the
'Y along with the correct financial plan based on the table below:

Income Range Gender Financial Plan

ww ey
mEmE
N X €

Produce a listing of this data set.

14-6. You h. i i
5,711) " z;:/eBsX:fa nz\fv m@’matnon on the gymnasts in problem 14-1. Su bject 3 now has a
rcspecﬁ‘_wl \R; Eu ject 5is now 15 and has scores of 8.1 and 7.20n VAULT and P_BAR,
! datg, ::t )(;c‘thj Was incorrectly entered as a male and should be female. Create an~
of this new information and updat .
Call the updated data set GYM_2,and providepa fisii:;e M from probiem 14:1.
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A. Introduction

SAS arrays are a facility that can reduce the amount of coding in a SAS DATA step.
Although often thought of as an advanced programming tool, there are many appli-
cations of arrays that can be easily mastered. This chapter demonstrates some of the
more common uses of SAS arrays.

One of the most common uses of arrays is to shorten a program that repeats one
or more lines of code with the only change being the variable names referenced in
each of the lines. You will see that you can write “model” lines, replacing the variable
pames with array names and, by placing these mode} lines in a looping structure, you
can effectively replace hundreds or thousands or millions or ... lines of code with just
a few lines. O.K., we sometimes get carried away with how useful arrays can be!

B. Substituting One Value for Another for a Series
of Variables

One of the best ways to learn how to use arrays is to first write a few lines of SAS
code without them. Once you see the pattern, you can write your array statement,
your “model” lines of code, and decide how to place those model lines in a DO loop.
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So, for this example and for most of the examples in this chapter, you will see some
lines of SAS code without using arrays and the corresponding coding using arrays,

For this first example, imagine that you have been given a SAS data set where a
value of 999 was entered whenever there was a missing numeric value. (Yes, you
guessed it, probably a converted SPSS data sct!) Here is a DATA step that converts
the values of 999 to missing, without using SAS arrays:

_______________ P, R 3

' Example 1: Converting 999 to missing without using an array '

*e

_____________ R et

DATA MISSING;
SET OLD; M
IF A =999 THEN A= .;
IF B=999 THEN B=.;
IF C=999 THEN C= .,
IF D=999 THEN D= .,
IF E=999 THEN E= .;
RUN;

Do you see a pattern here? Good. Here is the same program using arrays:

Example 1: Convert

IF XI1) = 999 THEN X(T

DROP I;
RUN;

OK.,it’s not that much shorter. But, if we had to recode hundreds of variables
(or thousands or millions!) you would clearly see the advantage. Here’s how the pro-
gram works:

You first need to create an array to represent the five variables A, B, C,D,and E.
You can choose an array name using the same rules you use for SAS variable names.
However, be sure not to use the same name for a SAS array as for a variable in the
same DATA step. In the example above, the array name is X. Next, in square brack-
ets[ ], curly brackets { ), or parentheses ( ), you enter the number of elements
(variables) in the array. You may, if you are “counting challenged” (as is one of the
authors), use an asterisk in place of the number. Also note that, on some operating
systems and versions of SAS software, parentheses are not acceptable. We usually

use. and prefer, square brackets. Following the brackets is a list of SAS variable
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names. You may list them explicitly or use any of thg SAS DATA step conventlolx:s
that refer to a group of variable names such as the single dash, double das?l, or l’ e
reserved names _CHARACTER_ or _NUMERIC_. Be forewarned that an array
cannot contain a mixture of character and numeric variables. A later example will
demonstrate how to create an array of character variables. )

Having created your array, you can refer to any of the array elelments by usu11g
the array name and the appropriate subscript withm_ brackets. In this first example,
the element X[3] would represent the third element in the array, C. Just_ sub'smu’t;}rig
an array element for a variable name in a DATA step would accomplish little. The
most common use of an array is to place it in an iterative loop such as a DO loc?p, a
DO WHILE, or a DO UNTIL structure. In the example a.bo.ve, for each of the iter-
ations of the DO loop, you are setting values of 999 to missing for each of the ele-
ments of the array and, therefore, each of the variablc‘s A through E.

If you are not familiar with DO loops, the syntax is:

The SAS statements between the DO and END statement will be repeated ac-
cording to the directions specified in the DO statement. In the first cxample, the
index variable I was used as the counter, and the iteration went from1 to 5. Since the
INCREMENT value was omitted, it defaulted to 1. Also,don’t forget to DROP DO
loop counters in your DATA step.

C. Extending Example 1 to Convert All Numeric Values
of 999 to Missing

Here is a useful extension of Example 1 that converts values of 999 to missing for all
numeric variables:
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First, you may wonder where the array name PRESTON came from. That’s easy.
It is the name of one of the authors’ youngest boy, who loves to program (and has
visited the SAS Institute). The reserved name _NUMERIC_ refers to all the nu-
meric variables in the data set ALL. Since it might be a lot of trouble to count how
many numeric variables there are, you use the asterisk (*) instead of the actual num-
ber. The only trick here is that you don’t know the ending value for the DO loop.
Luckily, the DIM function comes to the rescue. The argument of the DIM function
is an array name, and it returns the number of elements in the array.

D. Converting the Value of N/A (Not Applicable)
to a Character Missing Value

For this problem, you have a SAS data set called OLD where the character string
‘N/A’ (not applicable) was used in place of a character missing value (a blank). You
want to convert the values of ‘N/A’ to missing for several character variables. As
before, here is the program without arrays:

H e e —— e —————— - —-—— ———
l Example 3: Converting 'N/A‘' to Missing for character vars !
- - e e e —— - t;
DATA NOTAPPLY;

SET OLD;

IF 81 = 'N/A* THEN 81 = * 1';

IF 82:= 'N/A' THEN 82 = ' ';

IF 83 = 'N/A' THEN 83 = ' 1';

IFX = 'N/A* THEN X = ' ';

IFY = 'N/A* THEN Y = ' *;

IFZ = 'N/A* THEN Z = ' ';

DIM(RUSSELL) j
ELL{J] = *N/A‘ THEN
I = v ’
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This time, I'm sure you guessed that the array name RUSSELL és the nalrlne :[fl 1a::
other son. (He is a PADI certified SCUBA diver and a m‘usman.f) “m;‘enytih ewbraCk-
declare the atray as a character array, you place a fiollar sign ($) ollo lsi g brack
ets. In this case, since you are reading the observations from an exlstmg AS data 0‘;
the variables S1,52, 53, X,Y,and Z are already declared as character vanz;mmin Zac,
could actually omit the $ in the an;yﬁst{:t;me:flt. Horw:;/irf, :hi(;(:cjtgxirri o ng g rac
ice is always to include a $ in the definition of an arr: . i
::cgeol(s); t‘;vrf\}; to mention that you can also indicate a LENGTH for the ele;nﬁg;slir(:f
these variables don’t already exist) of either a numeric or charactir arrz;i); b(l)es havtzv
immediately before the list of variables. In the examples so fax;, t emvaTO bles have
come from an already created SAS data set and had predefined e‘ngt s.would e
array of character variables Q1-Q50 with lengths of one byte, the syntax :

ARRAY Q[50) $§ 1 Q1-050;
E. Converting Heights and Weights from English
to Metric Units

For this example, you want to input three heights and five weigh{s in Ifltnglxsh units
and create new variables that represent these same values in metric umts.
Here is the program without arrays:
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[Continued)

ARRAY WT[5];
ARRAY WTKG[5];
*
** Yes, we know the variable
names are missing, read on;
DO I=1T0 5;
IF I LE 3 THEN
HTCM[I] = 2.54 * HT[I];
WIKGII] = Wr{I} / 2.3; e
DATALINES;

(data goes here)
RUN;

There are a few thin
that th

ARRAY QUES[3];
is equivalent to:
ARRAY QUES[3] QUES1-QUES3;

Next, you have the problem that the number of
same. There are several solutions to this

that the index for the height

variable .
for two DO loops, one going s would not exceed 3. An alternative would be

from 1 to 3 and another going from 4 to 5. For example:

DOI=1T0 3;
HTCM[I] = 2.54 * HT[I];
WTKG [I] = WT[I

END; ‘ 1 /7 2,2;

DOI=4TO5;
WIKG {I) = WI(T] 7 2

Pay your money and take your choice!

E  Temporary Arrays

The arrays you have encountered thus far all
ter variables. There is a s
not actually refer to a lis
temporary and use the a

i represent a list of numeric or charac-
pecial type of array (called a temporary array) which does
t of variables at all! Instead, you can declare an array to be
rray elements in their subscripted form in the DATA step.
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No real variables are created when you use a temporary array. You can also provide
initial values for each of the array clements, Let’s look at an example first, and then
discuss the advantages and disadvantages of temporary arrays.

This first example uses a temporary array to hold the passing scores on five
exams. Students’ scores are then read and compared to these passing scores, and the
number of failed courses is recorded. Now for the program:

Example 5: Using a temporary array to determine the number
of tests passed

DATA PASSING;

ARRAY PASS[5] _TEMPORARY_ (65 70 65 80 75);
ARRAY SCORE[5];

INPUT ID $ SCORE[*];
PASS_NUM = 0;

DO I=1 TO 5;
IF SCORE[I] GE PASS[I] THEN
PASS_ NOM + 1;

#xD;

)
82,74

60 80

DATA = PASSING;
*pasging Data Set';

TITI
ID 1D;

VAR PASS_NUM SCORE1-SCORES;
RUN;

The main feature of this program is the array PASS, defined as a temporary
array by the key word _"TEMPORARY_ following the brackets. Notice the five
scores within parentheses following the _”TEMPORARY_ key word. These are ini-
tial values assigned to the five array elements PASS[1] through PASS[5]. Since we
never change them, they do not change. Also, they are automatically retained. It is
important to note that the variables PASSI1 through PASSS are not created by this

array and do not exist in the data set.
Again, notice that we used the “short-cut” method of defining the SCORE

array. As mentioned previously, the array statement:
ARRAY SCORE[5];

is equivalent to
ARRAY SCORE[5] SCORE1-SCORES;

We just never seem to be able to pass up the chance to save a few keystrokes. One
final, very important point to make concerning temporary arrays: Remember that the



336 Chapter 15 / Working with Arrays

elements of temporary arra i i
ys are automatically retained. This is wh
pare ;;ch ofthe scores to PASS[1] through PASS{5] in the DATA stel); you cam com-
won ec rmotsl compelling reason to use temporary arrays is for efficiency. Since th
cate actual data set variables, they do not increase the length of the PDC\X

(program data vector), they a i
: , they are automatically retai a
bother dropping useless variables, Y retained, and you do not have to

G. Using a Temporary Array to Score a Test

This exam,
a— elemgi]e[ alsﬁ us;s temporary arrays. Instead of assigning initial values to the
array element : tv;r er:A eﬁnmglthe array, the initial values are read as raw data, which
resting problems and innovative solutions, j i
o i : 0 utions. The object of this sam-
g in}:r:)hgram 1s to score a ten-question multiple-choice test. The first line of data 002
¢ answer key, and the remaining lines contain student ID’s and student

answers to the ten questions. Here est-scoring progr at makes good use
the t est H 1S a test-sc p
q oring gram that kes g se of

*_

] Example 6: Using a temporary array to score a test |
- *

*o o

DATA BCORE; - H

ARRAY XEY[10] § 1 TEMPORARY
ARRAY ANS{10] § 1; ~

ARRAY SCORE([10] _TEMPORARY. ;

IF _N_=1 THEN
DO I=1 TO 10;
INPUT KEY[I] @;
END;

INPUT ID § @5 (ANS1-ANS10
RAWSCORE = 0; ) (51,
DO I=1TO 10;

SCORE[I) = ANS{I] EQ KEY{I];

RAWSCORE + SCORE[I)];
END;

PERCENT = 100*RAWSCORE/10; =
DATALINES;
ABCDEEDCBA
001 ABCDEABCDE

002 AAAAABEBBB

7

PROC PRINT;
TITLE 'SCORE Data Set';
ID 1D;

VAR RAWSCORE PERCENT;
RUN;
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Let's take it step-by-step. The two arrays, KEY and SCORE are declared to be
temporary. In addition, the elements of the KEY array are to be one byte characters.
The elements in the KEY array hold the answer key (which will be retained by the
nature of temporary array elements), and the elements of the SCORE array will be
either 1’s (correct answer) or 0s (incorrect answer). The array ANS is not a tempo-
rary array, and the variables ANS1-ANS10 will contain the student answers to the
ten questions comprising the test.

Unlike the previous example, you do not initialize the values of the KEY array
with the ARRAY statement. Instead, you read the values from the first line of data.
That’s what the group of code starting with IF _N_ =1 is all about. Since the first
line of data is the answer key, this DO group will only execute once for the first line
of data. Notice that instead of reading in the data with:

INPUT KEY[1] KEY[2] REY[3] ... KEY[10];
The easier (and more generalizable form)
DO I=1 To 10;

INPUT REY[I]@;
END;

is used instead. Remember that there are no variables with names KEY1, KEY2,
etc., in this data set. Also note that it is not proper to write:

INPUT KEY[1]- KEY[10];
since the form BASEn-BASEm works only for real variables and not elements

of arrays.
For the remaining lines of data, the statement IF _N_ = 1 is false, and the pro-

gram drops down to the INPUT ID $ ANS1-ANSI10; statement. Scoring is per-
formed by the somewhat unusual statement:

SCORE[1] = aNS[1] EQ KEY[I];

This statement causes the student answer, ANS [I], to be compared to the value
of KEY [I]. If they are equal, this part of the statement is true (equal to 1) and
SCORE [I] is set equal to 1. Otherwise, SCORE [1] will be set to false (equal to 0).
Finally, the statement:

RAWSCORE + SCORE[I];
accumulates the raw score for each student. You could have used a SUM function
outside this loop like this:

RAWSCORE = SUM (OF SCORE[1] SCORE[2] ... SCORE[10]);

This, like the alternative INPUT statement discussed earlier is not as easy to
generalize (for tests of different length) as the structure used here.

For those truly compulsive programmers (like one the authors), you can omit
the SCORE array entirely and simply code the following:

DO I=1 TO 10;

RAWSCORE + (KEY[I] EQ ANS[I]);:
END;

However, we wanted the excuse to show you a numeric temporary array.



338 Chapter 15 / Working with Arra yS
H. Specifying Array Bounds

All of the arrays you have seen thus far had array elements starting from 1. So, for
example, if you wanted an array to represent the five variables, YR1993, YR1994,
YR1995, YR1996, and YR1997, you could write your array statement like this:

ARRAY YR[5] YR1993-YR1997;

This is OK, but you would have to remember that YR [1] represents the variable
YRI1993, YR [2] represents the variable YR1994 and so on. You might like to have
the array element YR [1993] associated with the variable YR1993; YR [1994] associ-
ated with the variable YR1994 instead. You can specify starting and ending bound-
aries in your array statement by entering the starting value, a colon, and the ending
value within the brackets following the array name. For the problem just discussed,
the array statement:

ARRAY YR[1993:1997] YR1993-YR1997;

gives you just what you want. You separate the lower and upper bounds of the array
index by a colon. Another application where specifying array bounds is useful is
when you are counting from zero instead of one. For example, you may be measur-
ing heart rate (HR) at times 0,1,2,and 3. A convenient array statement would be:

ARRAY HR[0:3] HRO-HR3;

Now that you see that array bounds do not have to run from 1 to n, you need to
rethink the use of the DIM function, which returns the number of elements in an
array. If the array starts from 1, the DIM function will also represent the upper bound
of the array. However, in the array YR above, the DIM function would return a five!
To extract the lower and upper bounds of an array, use the LBOUND and UBOUND
functions instead. They return the lower and upper bounds of an array, respectively.

L. Temporary Arrays and Array Bounds

Here is an interesting program that converts plain text to Morse code. The program
uses a temporary array to store the Morse equivalents of the letters, and subscripts
the elements of the array, starting at 65 since the RANK function, which returns the
location of a letter in the ASCII collating sequence, returns a 65 for a capital “A,” a 66
for a capital “B,” etc. Here then, is the program to convert plain text to Morse code:
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[Continned]

L R S e

te=lt):

INPUT LETTER $1. @@;
LETTER = UPCASE(LETTER);

IF LETTER EQ ' ' THEN DO;

PUT * ' @;

RETURN; -
END;

MORSE = M[RANK(LETTER)];
PUT MORSE @; '
DATALINES;
This is a test
i

J.  Implicitly Subscripted Arrays

Before leaving the topic of arrays, we should mention the alternate typel of artrz?y
which does not explicitly show the subscript when you refer to an array el cmcsax:hlrll
the DATA step. This was the original form of the array statgment u::1 ver‘s.110n Vfl‘e
. ici i hat we have discussed until now.
as superseded by the explicit subscript fqrfn t di
::rongll; recommend that you use the explicit form when writing axllly nevtv progn::;
i implici is sti rted and you may have to mai

However, since the implicit form is still suppo ) I r
older SAS code that contains this type of array, we will briefly show you how it
works. The form the ARRAY statement is:

ARRAY ARRAYNAME (index variable) list-of-sas-variables;

Length and § attributes are also available and are placgd before ‘the li§t of <SASt
variables. When using the array name in a DATA step, the xnc!ex variable is ﬁrsl ;e
to a value (usually in a DO loop) and the array name is used without a subscript. For

example:
_____ ———-
o _— —
ra;
I Example 9: demonstrating the older implicit:ur‘ Y .
Frmmmrmes e e — e oo - ——— by

DATA OLDARRAY;
ARRAY MOZART(I) A B C D E;

INPUT A B:C'D E;
DO I=1 TO 5; .
TF MOZAHT = 999 THEN
MOZART = .;
END;
DROP I;
DATALINES;

(data lines)
H
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Notice that inside the DO loop the array name MOZART is used without a sub-
script. When I = 1, MOZART will represent the variable A; when = 2, MOZART
will represent the variable B;and so forth. A default subscript _I_ is used if no sub.
script is indicated in the ARRAY statement. The DO loop would then read:

DO _I_=1 to 5;

A very useful form of the DO loop, “DO OVER,” is available when the implicit
subscript form of the array is used. DO OVER automati

and upper bounds of the array and loops over all the elements in the array. The pro-
gram above can be written using a DO OVER structure like this:

* i - W
| Exampie 10: Demonstrating the Older Implicit ARRAY |
. 3

—------_-_——--_---____--;--_;*,
DATA OLDARRAY;
ARRAY MOZART A B C D E;
INPUT A B C D E;
DO OVER MOZART;
IF MOZART = 999 THEN
MOZART = . ;

END;
DATALINES;
(data 1lines)

i

As convenient as this ma
version 6.

Yes, you can live without arrays, but a t
substantially reduce the size of aSAS
here will give you the courage to try a

y seem, we still recommend the explicit arrays of

horough understanding of them can
program. We hope that the examples offered
ITays in your next program.

Problems

15-1. Rewrite this program, using arrays:

DATA PROB15_ 1; .-
INPUT (BT1-HTS){(2.). (W
WT1 7 mT1%%2;
 WI2 / HT2%#2;
{ WI3 / BT3%+2;
' DR WId / HT4*+2;
DENS5 = Wrs / HT5*#2;
DATALINES;
6862727074150090208230240
64 66" 70140 150 170
i

Problems 341

15-2. Rewrite the following program, using arrays:

TA OLDMISS;
o INPUT A B C X1-X3 Y1-¥3;
IF A=999 THEN A=.;
IF B=999 THEN B=.;
IF C=999 THEN C=.;
IF:X1=999 THEN Xl=.;

56789 .
9 999 5 999 777 7 7

999 4.

9
e

ing the program below. Create
i SPEED, created by running th >
B e 31’38:%11 :hSePslgisl;i; mﬁg: SPEED, with some new va.x);l;'xblesél "t[:c r;i\i: t\';::xgl;}i?
LXLLXS are. he variables X1-X5, and the v: ;
atural (base e) logs of the fes SY1-
LXLthshzr: tlh;en roots o(f the variables Y1-Y3. Use arrays to c;eat; tI}:leC:eS;v ;rou ibles.
N a're Cga ter 17 for how to take a natural log of a num e:nl o
(Notei Stelfm to Iz:hapter 17 now, the statement to take the natural log
want to it er o
the value to a variable LOG_X is: LOG_X = LOG(X)

- -
"INPUT X1-X5 Y1-Y3;
DATALINES; .
1234567

-11 22 33 44 55 66 77 88
oy g

15-4. Rewrite the program below, using arrays:
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[Continued)]

IF X2 = 999 OR Y2 = §
= 999 TH
X2 = . v2= N DO;

END;
IF X3 = 999 OR Y3 =

X3, 999 THEN DO;
END;

IF X4 = 999 OR vq
M= vea., 999 THEN pO;
END;
IF X5 = 999 OR y5 rHE
X5 = .; 5 = =999m90;:
END; R
DATALINEs;
AABBCCDDEE 123 45
"“‘XXNAYYNA999334

.i

s

CHAPTER

Restructuring SAS Data Sets
Using Arrays

A. Introduction
B. Creating a New Data Set with Several Observations per Subject
from a Data Set with One Observation per Subject
C. Another Example of Creating Multiple Observations from a
Single Observation
D. Going from One Observation per Subject to Many
Observations per Subject Using Multi-dimensional Arrays
E. Creating a Data Set with One Observation per Subject from a
Data Set with Multiple Observations per Subject
F. Creating a Data Set with One Observation per Subject from a
Data Set with Multiple Observations per Subject Using a
Multi-dimensional Array

A. Introduction

This chapter describes how to restructure data sets by using arrays. First, what do we
mean by the term restructuring? You may want to create multiple observations from
a single observation (or vice versa) for several possible reasons: You may waiit to
create multiple observations from a single observation to count frequencies or to
allow for BY variable processing or to restructure SAS data sets for certain statisti-
cal analyses. Creating a single observation from multiple observations may make it
easier for you to compute differences between values without resorting to LAG
functions or perhaps to use the REPEATED statement in PROC GLM.

PROC TRANSPOSE may come to mind as a solution to these transforming
problems, but using arrays in a DATA siep can be more flexible and allow you to
have full control over the transformation process.

B. Creating a New Data Set with Several Observations per
Subject from a Data Set with One Observation per Subject

Suppose you have a data set called DIAGNOSE, with the variables ID, DX1, DX2,
and DX3. The DX variables represent three diagnosis codes. The observations in
data set DIAGNOSE are:

343
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Data set DIAGNOSE
D DX1 DX2 DX3
B R
02 1 2 3
03 4 5
04 7

il ‘:?2 gc;l; cax; ::e, some subjects have only one diagnosis code, some two, and some
e diagnops}i)s > 3'0: want to count how many subjects have diagnosis 1, how many
sy agnosis 2 ,thn 50 on. You don’t care if the diagnosis code is listed as DX1
Code; e A o ¢ example here, you would have a frequency of one for diagnosi ;
> ,2,5,and 7, and g freq‘uency of two for diagnosis codes 3 and 4. grosi

has Onr;eovt\::gf rtvc:l ?iif;}:-l;ﬂlb}?; tas;( 1[; to rzstructure the dataset DIAGNOSE, which

X 3 v : and three diagnosis variables, to a data ¢

;::glll;a dlagn.osls var}able and as many o.bservations per subje?t as there asree! (;111: tr{l:)i: .
at subject. This new data set (call it NEW_DX) would look as follows: groses

Restructured Data Set (NEW_DX)

ID DX

01
01
02
02
02
03
03
04

N U R WA

vaﬂ;; ll: 1]1;;; a;;nple ﬁjob to count diagnosis codes using PROC FREQ on the single
. us first write a SAS D, i i
does n0t use arsays. Hoss e 2 SA ATA step that accomplishes this task and

As you read each observation from dat
each a set DIAGNOSE, you
to three observations in the new data set NEW_DX.The KEEi’);lat::::l‘: lfsr ?1::332;

-_—

————
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since you only want the variables ID and DX in the new data set.
Notice the repetitive nature of the program and your array light bulb should

“turn on.” Here is the program rewritten using arrays:

o e o i *
Example 1B: Cteatying multiple observations. from a single
| ‘observation using an array
- -

e e = ;

In this program, you first create an array called DXARRAY, which contains the
three numeric variables DX1, DX2, and DX3. The two lines of code inside the DO
loop are similar to the repeated lines in the nonarray example with the variable
names DX1, DX2, and DX3 replaced by the array elements. For a more detailed
discussion of array processing, refer to the previous chapter.

To count the number of subjects with each diagnosis code, you can now use

PROC FREQ like this:

In this example, you saved only one line of SAS code. However, if there were
more variables, DX1 to DX50 for example, the savings would be substantial.

C. Another Example of Creating Multiple Observations
Jfrom a Single Observation

Here is an example that is similar to Example 1. You start with a data set that con-
tains an ID variable and three variables S1, S2, and 83, which represent a score at
times 1,2, and 3, respectively. The original data set,called ONEPER, looks as follows:

Data Set ONEPER

iD s1 S2 S3
01 3 4 5
02 7 8 9
03 6 S 4
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You want t
this: o create a new data set called MANYPER, which looks like

Data set MANYPER
D Tme Score
01 1 3
01 2 4
01 3 5
02 1 7
02 2 3
02 3 9
03 1 6
03 2 5
03 3 3

progra 0 restructur o data set MANYPER is Simi-
he mtor cture data set ON

EPER to d.
lar to the program in Example 1 except that you need to create the TIME variable

€ restructur ata set. 1S 1S € y acco! y n <] 00]
in th tructured dat t. This is easily a mphshed by nam g the DO p

_'KEEP ID TIME § k
RUN; : CORE;

Notice that th
to demonstrate an(e) {:eRrRAY stale‘n'lenl does not have a variable list. This was do
the variable names defazfty;)f vl:tl[ll'lg an array statement. When this list is omiu;je
0 the arra; s
lower y nare, followed b
bound to the upper bound. In this case, tile statcmenty the numbers from the

ARRAY S[3];
is equivalent to

ARRAY 8[3] §1-83;

Still going in the direction o
ion of creating mult; ple Observations from a single ob
gomg t Iti] bservations fi g
servation, let us extend this program to include an additional dimension
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D. Going from One Observation per Subject to Many
Observations per Subject Using Multi-dimensional Arrays

Suppose you have a SAS data set (call it WT_ONE) that contains an ID and six
weights on each subject in an experiment. The first three values represent weights at
times 1, 2, and 3 under condition 1; the next three values represent weights at times
1,2, and 3 under condition 2. To clarify this, suppose that data set WT_ONE con-
tained two observations:

Data Set WT_ONE

iD WT1 WT2 WT3 WT4 WT5 WT6

01 155 158 162 149 148 147
02 110 112 114 107 108 109

You want a new data set called WT. " MANY to look like this:

Data set WT_MANY

iD COND Time Weight
01 1 1 155
01 1 2 158
01 1 3 162
01 2 1 149
01 2 2 148
01 2 3 147
02 1 1 110
02 1 2 112
02 1 3 114
02 2 1 107
02 2 2 108
02 2 3 109

A convenient way to make this conversion is to create a two-dimensional array,
with the first dimension representing condition and the second representing time.
So, instead of having a one-dimensional array like this:

ARRAY WEIGHT[6]) WT1-WT6;
You could create a two-dimensional array like this:

ARRAY WEIGHT[2,3] WT1-WT6;

The comma between the 2 and 3 separates the dimensions of the array. This is a
2 by 3 array. Array element WEIGHT|2,3}, for example, would represent a subject’s
weight under condition 2 at time 3.

Let us use this array structure to create the new data set which contains six obser-
vations for each ID. Each observation is to contain the ID and one of the six weights,
along with two new variables, COND and TIME, which represent the condition and
the time at which the weight was recorded. Here is the restructuring program:
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Example 3: Using & meedoaimn o IToTTTTTTTmmememmceeeeos .
: -
a data get 1-dimensional array to restructure

DATA WT_MANY; B L *

ARRAY WTS[2,3] WT1-WT6;

DO COND = 1 TO 32,
DO TIME = 1 TO 3;

WEIGHT = WTS[COND, T
ouTPUT; + TIME] ;
END;
END;

DROP WT1-WI6;

RUN;

that"if‘: :oggrlilcl) con_xb%nalions of condition and time, you use “nested” DO loo,

the ovter oop N[; ;:1}1{111;\14 z]ia Ii)O l(otop1 I;ere’s how it works: COND is first set to 1 {);
3 . ~1s set to 1,2, and 3 while COND 1 i

a COND and TIME combination is selected, a WEIGHT isZ:Tams o tach time

rial - equal -
priate array element and the observation is written out to the ne»\? dat;(;el:] ¢ appro

E. Creating a Data Set with O
e ne Observation per Subj
Jrom a Data Set with Multiple Obserwu‘ionéJ prer l.;‘zJIJeJ'Lth

It’s now time to reverse the restructu
2_ to demonstrate how to create a sin
time, we start with data set MANY
gram, then the explanation:

ring process. We will do the reverse of Exampl
s e

gle observation from multiple observations, Tltplis

PER and create data set ONEPER. First the pro-

e R S 3 R 2 2 s
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[Continued]

DATA ONEPER;
ARRAY S[3] S1-83;
RETAIN S1-83;
SET MANYPER;
BY ID;
S[TIME] = SCORE;
IF LAST.ID THEN OUTPUT;
KEEP ID S1-83;

RUN; -

First, you sort data set MANYPER to be sure that the observations are in ID
and TIME order. In this example, data set MANYPER is already in the correct
order, but the SORT procedure makes the program more general. Next, you need to
create an array containing the variables you want in the ONEPER data set, namely,
§1,S2,and S3. You can “play computer” to see how this program works. The first ob-
servation in data set MANYPER is:

ID = 01 TIME = 1 SCORE = 4

Therefore, S [TIME] will be S [1], representing the variable S1 and set to the value
of SCORE, which is 3. Since LAST.ID is false, the OUTPUT statement does not exe-
cute. However, the value of S1 is retained. In the next observation, time is 2 and SCORE
is 4, so the variable S2 is assigned a value of 4. Finally, the third and last observation is
read for ID 01. 3 is set to the value of SCORE, which is 5 and, since LAST.ID is true,
the first observation in data set ONEPER is written. Everything seems fine. Almost.

What if dataset MANYPER did not have an observation at all three values of time
for each ID? Use the data set MANYPER2 shown next to see what would happen:

Data set MANYPER2
01 1 3
01 2 4
01 3 5
02 1 7
02 3 9
03 1 6
03 2 5
03 3 4

Notice that ID number 02 does not have an observation with TIME=2. What
will happen if you run program Example 4A? Since you retained the values of S1,
$2,and $3,and never replaced the value of S2 for ID number 02, ID number 02 will
be given the value of S2 from the previous subject! Not what you want. You must al-
ways be careful when you retain variables. To be sure that this will not happen, you
need to set the values of S1, S2, and S3 to missing each time you encounter a new
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subject. This is readily accom,
rected program is;

_________________________________________________________ *

Example 4B: Creating a data set with one observation per
subject from a data set with multiple observations per
subject (corrected version)

PROC SORT DATA =MANYPER2;
BY ID TIME;
RUN;

DATA ONEPER;
ARRAY S[3] s1-83;
RETAIN S1-83;
SET MANYPER2;
BY ID;
IF FIRST.ID THEN DO I = 1 TO 3;
S[I] = .;
END;
SITIME] = SCORE;
IF LAST.ID THEN OUTPUT;
KEEP ID S1-83;
RUN;

This program will now work corre

ctly whether or not there are missing TIME
values.

E  Creating a Data Set with One Observation per Subject
Jrom a Data Set with Multiple Observations per Subject
Using a Multi-dimensional Array

This example is the reverse of Example 3. That is, you want to start from data set
WT_MANY and wind up with data set WT_ONE. The solution to this problem is
similar to Example 4, except that we use a multi-dimensional array. Instead of writ-
ing the program in two steps, as we did in Examples 4A and 4B, we present the gen-

eral solution that will work whether or not there are any missing observations in the
data set. Here is the program:

W e e

Example 5: 'Creating a data get wig;h opne observation per
subject from a data set withpmltjiple observations per
subject using a Multi-dimengional array

——————— e ———— p——

plished by checking the value of FIRST.ID. The cor-
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PROC SORT DATA=WT_MANY;
BY ID COND TIME;
RUN;

DATA WT_ONE; .
ARRAY WT[2,3] WT1-WT6;
RETAIN WI1-WT6;

SET WT_MANY;
BY ID;
IF FIRST.ID THEN

I'=17T0 2;

Spo'T =1 T03;
" WTIT, 1 = .
END;

END;

WT [COND, TIME] = WEIGHT;

IF LAST.ID THEN OUTPUT;

EEP ID WT1-WT6;

- RUN

RUN;

i or
You have seen how to restructure SAS data sets, %;)mg fromaortnet otierzsrtlz; or
i bject, using arrays. You may wan
from many to one observation per sul s You ‘
examples )}Ilandy for the next time you have a restructuring job to be done

Problems

*16-1. We have a data set called FROG, which looks like this:

ID X1 X2 X3 X4 X5 Y1 Y: Y: Y: Y:
1
4 5 4 7 3
?); 8 7 8 6 7 5 4 3 5 6

We want a data set that has an observation for each s}lbject (ID) at each lilr_nj1 ltrlzllzrgsl
(X1 represents X at time 1, etc.). Write a program, Using arrays, to accomplis
jective. The new data set (TOAD) should look like:

ID Time X
o1
01
01
o1
01
02
02
02
02
02

VR WNRORWN R
NOAONNWI A0
AU WER OO WN K
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Run the program below to create data set FROG:

DATA FROG;
INPUT ID X1-X5 Y1-y5;
DATALINES; Y1-¥5;
01 4 5 4 9
3 1 7

i

*16-2.
2 V‘Ve have data set (called STATE) that contai
gr wo let‘ter codes) where an individual may h:
om this data set are shown: Y

ns ar} ‘ID variable, and up to five states
ave visited last year. Three observations

ID  STATE1  sT
ATE2  STA
1 NY TE3  STATE4 g,
N PA ATES
Doy o2 05 @
= xx xx xx o
XX

As “XX»
these reg;l:i::;:;lace th‘:a:l'.llxsed ?S a missing value. Write a
N values of “XX” with
counts showing h e with blanks, and (b
creasing orde 'gof g‘:q’s::zyﬁ‘;[’l:hv%red each state. Present [g‘le) f(;?eo;xgz; flri::lf‘egc}’
/ e the ORDER=] N m de-
Run the program below to create data set STI;;SEQ option of PROC FREQ).

program to: (a) read

DATA STATE, B e
- INFORMAT STATE1-STATES § 2;
INPUT ID STATE1-STATES,

NI NY caA xx xx

" ‘Dara "

AUNYT .
2 Ng PA X aa
3 PA XX xx
7 X xx

*16-3.  You have inheri
erited an old SAS
usi - . Program (shown bel .
sing explicit array subscripts, Rewrite the Progl'anex :)owc)i; ?}i;v ant o convert it to one

xysy“?"'i 21-25;

OUNK = 939 THEN JONKs
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A Review of SAS Functions

Part I. Functions Other Than Character Functions

. Introduction

. Arithmetic and Mathematical Functions

. Random Number Functions

. Time and Date Functions

. The INPUT and PUT Functions: Converting Numerics to
Character, and Character to Numeric Variables

F. The LAG and DIF Functions

mTAwP

A. Introduction

Throughout this book we have used functions to perform a variety of tasks. We use
a LOG function to transform variables, and various DATE functions to convert a
date into an internal SAS date. We will see in this chapter that the SAS programming

¢ has a rich assortment of functions that can greatly simplify some complex

languag
h this chapter to see what

programming problems. Take a moment to browse throug
SAS functions can do for you.

B. Arithmetic and Mathematical Functions

The functions you are probably most familiar with are ones that perform arithmetic
or mathematical calculations. Remember that all SAS functions are recognized as
such because the function name is always followed by a set of parentheses contain-
ing one or more arguments. This way, the program can always differentiate between
a variable name and a function. Here is a short program that computes a new
variable, called LOGLOS, which is the natural log of LOS (length of stay). This is a
common way to “pull in the tail” of a distribution skewed to the right. We have:

DATA FUNC_EG; . . :
INPUT ID SEX § LOS HEIGHT mxm;‘
LOGLOS = LOG(LOS) ; '

DATALINES;

353
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is that the MEAN function returns the mean of the nonmissing values. Thus, if we

[Continued]
1 M5 68 155 had a missing value for X5, the function would return the mean of X1, X2, X3, and
: : 2100 62 98 X4. Only if all the variables listed as arguments of the MEAN function are missing,
072 220 will the MEAN function return a missing value. Our equation for the mean above,
would return a missing value if any of the X values were missing.

The MIN, MAX, SUM, STD, and STDERR functions work the same way as the
MEAN function, except that a minimum, maximum, sum, standard deviation, or a
standard error, respectively, is computed instead of a mean.

Two useful functions are N and NMISS. They return, as you would expect, the
number of nonmissing (N) or the number of missing (NMISS) values in a list of vari-
ables. Suppose we have recorded 100 scores for each subject and want to compute
the mean of those 100 scores. However, we want to compute the mean score only if
there are 75 or more nonmissing responses. Without the N function, we would have
to do a bit of programming. Using the N function, the computation is much simpler:

The new vari .

will be the natvlf:;:?l():;g(:o?LOS) will be in the data set FUNC_EG and its val,
a missing value for Lo (o oL -OS Note that a z¢ro value for LOS will result iy
log transformation, it & . When Zeros are possible values, and you still vt
the variabl »1L1s common practice to add a small number wanta
e before taking the log. (usually 5or 1) to

We now list so
me of the more : .
and their purposes: common arithmetic and mathematical functions

Functi
Loocr; Name Action
Base e log
LOG10 B DATA EASYWAY;
SIN s;s:ol?ﬂl:g ) INPUT (X1-X100) (2.);
cos Sine of e argument (in radians) IF N(OF X1-X100) GE 75 THEN
TAN osine (17_1 radians) AVE = MEAN(OF X1-X100);
ARSIN Tang'ent (in radians) DATALINES;
szsme;}nve)xse sine) of argument (lines of data)
n radians; ;
:E’ﬁg:z Arccosine (in radians) !
Arctangent (in radians)
INT Drops the fractional part of a number i i i imi i
SQRT Square root The NMISS function is used in a similar fashion.
Some functios
ns can accommo o
date more than one argument. For example, the i . C. Random Number Functi
’ 1 . andom Numober Functions

In Chapter 6, we saw how we could use random numbers to assign subjects to groups.
The function RANUNI will generate uniform random numbers in the range from 0
to 1. Random-number generators (more properly called pseudo random number

ROUND
ROUND ((:([: li) 2:“::: : to the nearest whole number
ROUND (x,100) Round X §° S:e nearest tenth enerators) requi initial number, called a seed, used to calculate the first random
ROUND (X, 20) Round X co © nearest hundred g §) require an initia numoer, seed, usee
© the nearest twenty number. From then on, each random number is used in some way to generate the
next. A zero seed will cause the function to use a seed derived from the time clock,

thus generating a different random series each time it is used. RANUNI can also be
seeded with any number of your choosing. If you supply the seed, the function will
generate the same series of random numbers each time. A simple example follows
where we use a uniform random number to put a group of subjects in random order:

(NoTE: If you omit the
second
the mo T intoger) nd argument of the ROUND function, it rounds to
Other f i i
MEAS l:n ;1]1(;:‘:1%?; zlii:ate on a list of arguments. A good example of this is th
. Ve a series of variably j i
We want the mean of these five numbers, we ;r?lf:é Y1 OX3) for cach Fubiect,and

MEAN X = MEAN (OF X1-X5);
DATA SHUFFLE;
INPUT NAME : §20.;
X = RANUNI (0);
DATALINES;

We may use an i i i
Y variable list following the word i
between the MEAN function and the alterxglative exr;)re(ggolr?'n mportant difference

MEAN X = (x1+x2+x3+x4+x5)/5;
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[Continned)

coby
SMITH
MARTIN
LAVERY
THAYER

H
PROC SORT DATA=SHUFFLE;

BY X; ’
RUN;

PROC _PRINT DATA=SHUFFLE;
TITLE 'Names in Random
) [e)
: rder’ ;

VAR
RUN;

To generat i
2 te a series of random numbers from n to m, we need to scale our 0 to

1 random numbers aCCOId‘ugU To generate a series of random numbers from 1 to

X=1+99 * RANUNI (0);

D. Time and Date Functions

We saw some €xamples of date functions in apter 4. We
pl f dat i S| i i
% . Ch: pter 4. We summarize the time and

ample, that we want to know a subject’
: ject’s age as of July 15,1990, and i
date of birth. We could use the MDY function to compute the ’agré t:;l'mow pisther

AGE = (MDY (7, 15, 90) - DOB)/365.25;

Although a more efficj
belons eflicient method would be to use a SAS date literal, as shown

AGE = ('15JUL90'D - DOB)/365.25;

and ;&s;z_s S::‘z lllirlf:c;'iagliis always representc?d Py a two-digit day, a three-letter month
an unper. o 1wt ‘}g?r, all placed within single or double quotes, followed b};
rewﬁr;(;tt;roﬁzszifb:gellsstz (::‘fa the MDY functioq is when date information is not
can read the month, day, ar?d y:;irnilr?::(ii;g:;lev:,h\::: an e oo nformat. I we
to compute the date. For example: e fhen e the MDY function

'PROC FORMAT;
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DATA DATES;
INPUT ID 1-3 MONTH 4-5 DAY 10-11 YEAR 79-80;

DATE = MDY (MONTH, DAY, YEAR);
DROP MONTH DAY YEAR;
FORMAT DATE MMDDYYS.;

DATALINES;
(data lines)

H

There are several date functions that extract information from a SAS date. For
example, the YEAR function returns a four-digit year from a SAS date. The
MONTH function returns a number from 1 to 12, which represents the month for a
given date. There are two functions which return day information. The DAY function
returns the day of the month (i.e.,a number from 1 to 31) and the WEEKDAY func-
tion returns the day of the week (a number from 1 to 7, 1 being Sunday). As an ex-
ample, suppose we want to see distributions by month and day of the week for
hospital admissions. The variable ADMIT is a SAS date variable:

VALUE DAYWK 1='SUN‘' 2='MON' 3='TUE' 4='WED' 5='THU'
6='FRI 1

= 'FEB' 3='MAR' 4='APR' 5='MAY' 6='JUN'

RUN;

' DATA HOSP; L

INPUT @1 ADMIT MMDDYY6. etc. 7

DAY = WEEKDAY (ADMIT) ;

MONTH = MONTH (ADMIT) ;

FORMAT ADMIT MMDDYY8. DAY DAYWK. MONTH MONTH.;
DATALINES; :
(data lines)

’ %
PROC_CHART DATA=HOSPj . °
VBAR DAY / DISCRETE;
VBAR MONTH /. DISCRETE;
‘RUN;

Later in this chapter, look for a short-cut method for producing the day of the
week or month name in the discussion of the PUT function.

Besides working with date values, SAS has a corresponding set of functions to
work with “time.” For example, we can read a time (in “military” form from 00:00
to 24:00) in hh:mm:ss (hours, minutes, seconds) or hh:mm (hours and minutes) for-
mat using the time8. informat. We can then extract hour, minute, or second infor-
mation from the time variable using the HOUR, MINUTE, or SECOND
functions, just the way we used the YEAR, MONTH, and WEEKDAY functions

above.




Section E / The INPUT and PUT Functions 359
358 Chapter 17 / A Review of SAS Functions

i i er variable with values of ‘1°,2°,

In‘ ﬂ:‘is examlt):l?rl }elae(:;;laeblseu?ﬁ)]si: vlsea;::: 2z.icxt/ariable to contain the t'hr'ee-flet-
N ‘A;aﬂo k abbreviat’ions (MON, TUE, etc.). One of the SAS bUllt’lll‘l):;
. day' o ‘I’ggDATEn which returns values such as: WEDNESE3 Y,
COPTEN ¥§ 12,1990 (if we use WEEKDATE?29.). The format WEEKDAT d is
tslisepf;rril\t/{l?ee lelle:rs of the day name (SUN, MON, etc.). To create our character day

variable, we can use the PUT function:

Before we leave the date and time functions, let’s discuss two very useful func.
tions, INTCK and INTNX. They may save you pages of SAS coding. INTCK returng
the number of intervals between any two dates, Valid, interval choices are: DAY,

WEEK, MONTH, QTR, YEAR, HOUR, MINUTE, and SECOND. The syntax of
the INTCK function is:

INTCK (interval, start, end);

Interval is one of the choices above, placed within single quotes; start is the start-
ing date; and end is the ending date. As an example, suppose we want to know now
many quarters our employees have worked., [f START is the SAS variable that holds
the starting date, the number of quarters worked would be:

DAYNAME = PUT (DATE, WEEKDATE3. ) ;

There are some useful tricks that can be accomp{is}'fed gﬁmlg the l;:él; f;‘:zt:g:r
ial s i bers as nine-digit num 3
i le that has social security numbers I Al -
COﬂSlde;‘l Ongc?alesecurity numbers coded as 11-digit Fharacte.r strings (123-45 678’119r)e
on h?sl: ie io merge the two files, based on the social security numbeli)a 'tl'h:;: are
Ou;)]r(ivayss to solve this problem, either pulling out the three numbers betw
ma

NUM_QTR = INTCK ('QTR', START, TODAY() ) ;
(NotE: the TODAY function, which has no argument, returns today’s date.)

‘ L ic, or converting the nine-digit num-

Since the algorithms used to compute the number of intervals can be confusing, dashes and recombmlpg them tlo f,crml;en;;lzgsc’in the proper places using the ap-

Wwe recommend reading the section on SAS functions in the appropriate SAS manual, 3 1 ber to a character string and p aa:tghod is to use the fact that SAS has a built-in

The INTNX function can be thought of as the inverse of the INTCK function; it . propriate string functions. One :e digit numerics to 123-45-6789 style social secu-

Teturns a date, given an interval, starting date, and the number of intervals elapsed. ] format, SSN11., which iom.latst;:l PU'lgl function, we can create a character variable
Suppose we know the date of hire and want to compute the date representing the rity numbers. Therefore, using the g

in the form 123-45-6789, like this:

DATE3RD = INTNX (‘QTR', HIRE, 3);
FORMAT DATE3RD MMDDYYS. ;

If HIRE were 01/01/90, 01/05/90, or 03/30/90, the value of DATE3RD would be

10/01/90. I a person were hired on April 1,1990, his/her third-quarter date would be
01/01/91.

8s = PUT (ID,S8SSN1l.);

i i he
In general, to convert a numeric variable to a character variable, we amilslsae :l he
PUT[;fnction,with the appropriate format. If we have a file wheri:,e'group
meric variablev and we want a character variable instead, we can write:

GROUPCHR = PUT (GROUP,1.);

« d”a
ioni imilar manner, except that we can “‘rerea
e INPUT function in a simil ereac
VZIe u::c[o}:ding to a new informat. The most common use of the fur;cnorfl ; ;ﬁ
cony f character values into numeric values. There are several e)((;’mDp fs (v’v Suh
Conzz:sions in the last section of Chapter 12, Reading “Unstructure: ata.
con
les here. ) ) ]
ShO";’ th’}';lel‘;’:)sf };i:‘:lple we convert a character representation of a socu;lt:ec;{}t%
’ 3 i ine-digit numeric, the reverse of the
i orm 123-45-6789) into a nine-digi .
numbelre(:l;g:/z fFirst we have to remove the dashes from the chafracler variable. We
aj . First, v :
fl)s(ertrgz: COMPRESS function to do this. COMPRESS takes the form

E. The INPUT and PUT Functions: Converting Numerics
to Character and, Character to Numeric Variables

While the INPUT and PUT functions (not to be mistaken for INPUT and PUT

statements) have many uses, one common application is to convert numeric and
character values.

The PUT function uses the formatted value of a variable to create a new vari-
able. For example, Suppose we have recorded the AGE of each subject. We also have
a format that groups the ages into four groups:

har_var = COMPRESS (char_var, 'list_of_characters');
char_ =

If the second argument. the list_of_characters is omitted, the COMPRESS func-
s - 3
tion will, by default, remove blanks from a character value. To remove the dashes
, 0y 3

from a social security number (SS) we write:

1-60="'3' 61-HIGH='4"' i

char_var = COMPRESS(SS,'-'): h
To create a numeric variable, we can use the INPUT function to perform the
oc s

character to numeric conversion:
i

ID = INPUT (COMPRESS (SS, '~'),9.):
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where ID is a SAS numeric variable.

. For f:? seczorzd example, We want to read data values that may either represent
g; ups (‘A’ or ‘B’) or numeric scores, Since we don’t know if we will be reading a
character or a number, we read every value as a character, and test if it is an ‘A’ or a

R I
B If no_t, we assume lt. 1s a score and use the INPUT function to convert the char-
acter variable to numeric. Here is the code:

DATA FREEFORN;

To help make this exampl i i
s bk bglow: ample clearer, the data set formed by running this program

OBS Group Score

1 A 45
2 A 55
3 B 87
4 A 4
5 A 23
6 B 88
7 B 99

As you can see, the INPUT function provides a flexible way of reading data.

E The LAG and DIF Functions

A “lagged” value is one from an earlier time. In SAS, we may want to compare a data
value from a current observation with a value from a previous observation. We ma;
also want to look back several observations. Without the LAG function thi's isa dif)-{
ficult task—with it, it’s simple. The value returned by the LAG functior; is the value
of tpe argument the last time the function was invoked (see a more complete expla-
nation in Chapter 19, Section H). In more complicated DATA steps, this can be vI::
tricky. If we invoke the LAG function for each observation, then the value of tl::
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LAG function will be the value of the argument in the previous observation. The
value LAGn (X) where n is a number, is the value from the nth previous observation.
A common application of the LAG function is to take differences between observa-
tions. Suppose each subject was measured twice, and each measurement was entered
as a separate observation. We want to take the value of X at time 1 and subtract it
from the value of X at time 2. We proceed as follows:

Data set ORIG looks like this:

SUBJ TIME X
1 1 4
1 2 6 -
2 1 7
2 2 2

To subtract the X at time 1 from the X at time 2, we write:

You could shorten this program even further by using the DIFn function, which
returns the difference between a value from the current observation and the nth pre-
vious observation. The calculation above would be:

DIFF = DIF(X);

Chapter 19, Section H, shows how to use the LAG function to compute moving
averages.

Problems

17-1. You have a SAS data set called HOSP, which contains a patient ID, gender, date of
Birth (DOB), date of service (DOS), length of stay (LOS), systolic blood pressure
(SBP), diastolic blood pressure (DBP), and heart rate (HR). Run the program below
to create this data set:
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DATALINES;

1 M 10/21/46 3/17/97 3 130 90 68
2 F 11/1/55 3/1/97 5 120 70 72

3 M 6/6/90 1/1/97 100 102 64 88

4 F 12/21/20 2/12/97 10 180 110 86

1

Create a new data set (NEW_HOSP) that contains all of the variables in HOSP, plus

the following:

(2) The base 10 log of LOS (call it LOG_LOS).

(b) The patient’s age as of his/her last birthday, on the date of service (call it
AGE_LAST).

(€) Anew variable (X) computed as the square root of the mean of the systolic and di-
astolic blood pressures, rounded to the nearest tenth.

17-2. A data set (MANY) contains the variables X1-X5, Y1-Y5. First, run the program

below (o create this data set:

DATA MANY;
INPUT X1-X5 Y1-Y5;

DATALINES;

12345 678910

3.5 .7 5. ..15

98 ... 44441

i

Write a program to include the following in data set MANY:

(a) The mean (average) of the X’s (call it MEAN_X) and the mean of the Y’s (call it
MEAN_Y).

(b) The minimum value of the X’s (call it MIN_X) and the minimum value of the Y’s
(call it MIN_Y).

() A new variable (CRAZY) which is the maximum of the X’s times the minimum of
the Y’s times the sum of (the number of nonmissing X’s plus the number of missing
Y’s). In other words:

CRAZY = (Maximum of X’S) X (Minimum of Y’g) X
(Number of nonmissing X‘s + Number of missing
Y’s).

(d) Compute a variable MEAN_X_Y that is the mean of all the X’s and Y’s (the mean
of all 10 numbers) with the provision that there be three or more nonmissing X
values and four or more nonmissing Y values.
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*17-3. Create a SAS data set (UNI) that contains 1000 random numbers in the range of 1

to 5. Use the INT function to give you only integers, and be sure that there is an
equal likelihood of choosing each of the five integers. Be careful that the values of 1
and 5 have the same probability of being chosen as 2 and 4. Run PROC FREQ to
count the number of 1’5, 2s, and so forth, and compute chi-square by hand to test if
the distribution differs from uniform. Note that this goodness-of-fit test has four de-
grees of freedom.

17-4. Use the data set HOSP from problem 17-1, and create two vertical bar charts: one for

the day of the week (formatted please) and one for the month of the year (no need to
format) of the date of service.

17-5. Run the program below to create a SAS data set called MIXED:

DATA MIXED;
INPUT X YA 'S B §;

DATALINES;

1234

5678

i

Create a new data set (NUMS) containing all four variables (yol can use a new name
for A and B) with only numeric variables.

*17-6. Using the data set NEW_HOSP created in problem 17-1, create a new character vari-

able called AGEGROUP, with the following groupings:

1= ages less than 20 (but not missing)
2 =20 to 40
3 =41 to highest

Do this with a user-defined format and a PUT function.
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A. Introduction

SAS software is rich in its assortment of functions that deal with character data. This
class of functions is sometimes called STRING functions. In this chapter, we demon-
strate some of the more useful string functions.

Some of the functions we discuss are: VERIFY, TRANSLATE, TRANWRD,
COMPRESS, COMPBL, LENGTH, SUBSTR, INPUT, PUT, SCAN, TRIM,
UPCASE, LOWCASE, REPEAT, | | (concatenation), INDEX, INDEXC, AND
SOUNDEX. Did you realize there were so many string functions? Let’s get started.

B. How Lengths of Character Variables Are Set
in a SAS DATA Step

Before we actually discuss these functions, we need to understand how SAS soft-
ware assigns storage lengths to character variables and what the LENGTH function

does for us. Look at the following program:

364
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DATA EXAMPLEL;
INPUT GROUP § @10 STRING $3.;
LEFT = 'X '; *X AND 4 BLANKS;
RIGHT = * X'; *4 BLANKS AND X;
C1 = SUBSTR(GROUP, 1,2) ;
C2 = REPEAT(GROUP, 1) ;
LGROUP = LENGTH(GROUP) ;
LSTRING = LENGTH (STRING) ;
LLEFT = LENGTH (LEFT) ;
LRIGHT = LENGTH(RIGHT);
LC1 = LENGTH(C1)
. LC2 = LENGTH(C2);
DATALINES;
ABCDEFGH 123
XXX ta
Y 5
;noc CONTENTS DATA=EXAMPLE1 POSITION;
'TITLE- *Output from PROC. CONTENTS®;
RON; iy
PROC PRINT: DATAEXAMPLEL NOOBS;
* TITLE 'Listing of Example 1';
RUN; o S

One purpose of this example is to clarify the term LENGTH. If youilook at the
output from PROC CONTENTS, each of the variables is listed, along with a TYPE
and LENGTH. Take a moment and look at the output from PROC CONTENTS
below:

CONTENTS PROCEDURE

1 GROUP Char 8 0
2 STRING Char 3 8
3 LEFT Char 5 11
4 RIGHT Char 5 16
s c1 Char 8 21
6 c2 Char 200 29
7 LGROUP Num 8 229
8 LSTRING Num 8 237
9 LLEFT Num 8 245
10 LRIGHT Num 8 253
11 rc1 Num 8 261
12 LCc2 Num 8 269
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The column labeled LEN (length) is the number of bytes needed to store the
values for each of the variables listed. By default, all the numeric variables are stored
in eight bytes.

But, what about the storage lengths of the character variables? Look first at the
two variables listed in the INPUT statement; GROUP and STRING. Since this is
the first mention of these variables in this DATA step, their lengths are assigned by
the rules governing INPUT statements. Since no columns or informats were associ-
ated with the variable GROUP, its length is set to eight bytes, the default length for
character variables in this situation. The variable STRING uses a $3.INFORMAT so
its length will be set to three bytes. The length of LEFT and RIGHT are determined
by the assignment statement. The storage lengths of C1 and C2 are more difficult to
understand.

The variable C1 is defined to be a substring of the variable GROUP. The
SUBSTR function takes the form:

SUBSTR(char_var, start, length) ;

This function says to take a substring from char_var, starting at the position in-
dicated by the start argument, for a length indicated by the length argument. Why
then, is the length of C1 equal to 8 and not 2? The SAS compiler determines lengths
at compile time. Since the starting position and length arguments of the SUBSTR
function can be variable expressions, the compiler must set the length of C1 equal to
the largest possible value it can ever attain, the length of GROUP.

The same kind of logic controls the length of C2, defined by the REPEAT func-
tion. Since the number of addition replications is defined by the second argument of
the REPEAT function, and this argument can be a variable expression, the compiler
sets the length of C2 to the largest possible value, 200. Why 2007 Because that is the
maximum length of a character variable in the SAS system.

There is a lesson here: Always use a LENGTH statement for any character vari-
ables that do not derive their length elsewhere. For example, to set the length of C2
to 16, you would write:

LENGTH C2 § 16;

The LENGTH function does not, as you might guess, return the storage length
of a character variable. Instead, it returns the position of the right-most nonblank
character. Thus, trailing blanks are excluded in its computation.

The value of LLEFT and LRIGHT are 1 and 5, respectively, for every observa-
tion. This demonstrates that the trailing blanks in LEFT are not counted by the
LENGTH function, while the leading blanks in RIGHT are. The table below sum-
marizes the lengths for the remaining variables:

Obs GROUP LGROUP STRING LSTRING Cl LCl1 C2 LC2
1 abcdefgh 8 123 3 ab 2 abcdefghabcdefgh 16
2 XXX 3 4 1 xx 2 K¢ XXX 11
3 v 1 5 1 y 1 vy Y 9
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The values of LGROUP and LSTRING are straightforward. The value of LC1
is 1 for the third observation since C1 is only 1 byte in length in tht“t third observa-
tion. The values for LC2 are more complicated. The REPEAT functlpn says to'take
the original value and repeat it n times. So, for the first ob_servauon, LC2 is 16
(2 times 8). For observations 2 and 3, the trailing blanks come into play. In observa-
tion 2, the value of GROUP is ‘XXXbbbbb’ (where the b’s stand for blanks). }Vhen
we repeat this string one additional time, we get: ‘XXXbbbbeXXbbbbb . Ngt
counting the trailing blanks, we have a length of 8 + 3 = 11. Using the same logic
for the third observation, we have a “Y’ followed by seven blanks, repeated once. Not
counting the last seven trailing blanks, we have a length of 8 + 1=9

With these preliminaries out of the way, we can now begin our tour of some of
the very useful string functions available in SAS software.

C. Working with Blanks

This example demonstrates how to convert multiple blanks to a single blank. Sup-
pose you have some names and addresses in a file. Some_ of the data-entry clerks
placed extra spaces between the first and last names and in the a(?dress fields. You
prefer to store all names and addresses with single blanks. Here is an example of
how this conversion is accomplished:

@25 zZIP
NAME = COMPBL (NAME) ;
ADDRESS = COMPBL (ADDRESS) ;
. CITY = COMPBL(CITY);
DATALINES;
RON CODY
89. LAZY BROOK ROAD
FLEMINGTON NJ 08822

ID NAME;
. VAR’ ADDRESS CITY STATE ZIP;

RON; Y

Thus, a seemingly difficult task is accomplished in a single line by using the
COMPBL (COMPress BLank) function, compressing multiple blanks to a single
blank. How useful!
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D. How to Remove Characters from a String

A more general problem is the removal (deletion) of selected characters from a
string. For example, suppose you want to remove blanks, parentheses, and dashes
from a phone number that has been stored as a character value. Here comes the
COMPRESS function to the rescue! The COMPRESS function can remove any
number of specified characters from a character variable. The program below uses the
COMPRESS function twice. The first time, to remove blanks from the string; the sec-
ond, to remove blanks plus the other characters mentioned above. Here is the code:

DATA EXAMPLE3;
INPUT PHONE § 1-15;
PHONE1 = COMPRESS(FHONE);

PHONE2 = COMPRESS (PHONE, '{-) ');
DATALINES; : :
(908)235-4490
(201) 555-77 99

i S

PROC PRINT DATA=EXAMPLE.
TITLE 'Listing of E:

RUN; h

The variable PHONET has just blanks removed. Notice that the COMPRESS
function does not have a second argument here. When it is omitted, the COMPRESS
function removes only blanks. For the variable PHONE?2, the second argument of the
COMPRESS function contains a list of the characters to remove: left parenthesis,
dash, right parenthesis, and blank. This string is placed within single or double quotes.

E. Character Data Verification

A common task in data processing is to validate data. For example, you may want to
be sure that only certain values are present in a character variable. In the example
below, only the values ‘A’,‘B’,‘C’, ‘D’, and ‘E’ are valid data values. A very easy way
to test if there are any invalid characters present is as follows:

TITLE 'Listing of Example 4°;
RUN;
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The “workhorse” of this example is the VERIFY function, which is a bit com-
plicated. It inspects every character in the first argument and, if it ﬁnds any value
not in the verify string (the second argument), it will return the position of the first
offending value. If all the values of the string are located in the verify string, a value
of 0 is returned. In the first observation, P will be 0 and OK will be 1; m the §econd
observation, P will be a 3 (the position of the ‘X”) and OK will be 0; in the lh¥rd ob-
servation, P will be 1 and OK will be 0; finally, in the fourth observation, P will be a
4 and OK will be 0.

Another way to solve the same problem is the following: Suppose someone
gave you the data set EXAMPLES, created by running the short DATA step
below: -

To list any observation with values for STRING that are not the letters A-E or
blank, the following DATA step could be used:

FE. Substring Example

We mentioned in the Introduction that a substring is a part of a longer string (a}~
though it can actually be the same length but this would not bfa too useful). In lh{s
example, you have ID codes that contain a state abbreviation in the first two posi-
tions, Furthermore, in positions 7-9 is a numeric code. You want to create two new
variables; one containing the two-digit state codes, and the other, a numeric variable
constructed from the three numerals in positions 7, 8, and 9. Here goes:
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DATALINES;
NYXXXX123
NJ1234567

;
PROC PRINT DATA=EXAMPLE6 NOOBS;
TITLE ‘LISTING OF EXAMPLE 67;
RUN;

Creating the state code is easy. We use the SUBSTR function. The first argument
is the variable from which we want to extract the substring; the second argument is
the starting position of the substring; and the last argument is the length of the sub-
string (not the ending position as you might guess). Also note the use of the
LENGTH statement to set the length of STATE to 2 bytes.

Extracting the three-digit number code is more complicated. First, we use the
SUBSTR function to extract the three numerals (numerals are character represen-
tations of numbers). However, the result of a SUBSTR function is always a charac-
ter value. To convert the character value to a number, we use the INPUT function.
The INPUT function takes the first argument and “reads” it as if it were coming
from a file, according to the INFORMAT listed as the second argument. So, for the
first observation, the SUBSTR function would return the string ‘123°, and the
INPUT function would convert this to the number 123. As a point of interest, you
may use a longer INFORMAT as the second argument without any problems. For
example, the INPUT function could have been written as:

INPUT (SUBSTR(ID,7,3),8.);

and everything would have worked out fine. This fact is useful in situations where
you do not know the length of the string ahead of time.

G. Using the SUBSTR Function on the Left-hand Side
of the Equals Sign

There is a particularly useful and somewhat obscure use of the SUBSTR function
that we would like to discuss next. You can use this function to place characters in
specific locations within a string by placing the SUBSTR function on the left-hand
side of the equals sign (in the older SAS manuals we believe this was called a
SUBSTR pseudo variable).

Suppose you have some systolic blood pressures (SBP) and diastolic blood pres-
sures (DBP) in a SAS data set. You want to print out these values and star high val-
ues with an asterisk. Here is a program that uses the SUBSTR function on the left of
the equals sign to do that:
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DATA EXAMPLE7;
INPUT SBP DBP G@;
LENGTH SBP_CHK DBP_CHK § 4;
SBP_CHK = PUT(SBP,3.);
DBP_CHK = PUT(DBP,3.);
IF SBP GT 160 THEN SUBSTR(SBP_CHK,4,1)
IF DBP GT 90 THEN SUBSTR(DBP_CHK,4,1)
DATALINES;
120 80 180 92 200 110

T
H

non

e,

H
PROC PRINT DATA=EXAMPLE7 NOOBS;

TITLE 'Listing of Example 7';
RUN;

We first need to set the lengths of SBP_CHK and DBP_CHK to four (three
spaces for the value plus one for the possible asterisk). Next, we use a ?UT function
to perform a numeric to character conversion. The PUT function is, in some ways,
similar to the INPUT function. It “writes out™ the value of the first argument, ac-
cording to the FORMAT specified in the second argument. By “w‘rilerout“ we actu-
ally mean assign the value to the variable on the left of the equals sign. The SUBSTR
function then places an asterisk in the fourth position when a value of SBP is greater
than 160 or a value of DBP is greater than 90.

H. Doing the Previous Example Another Way

It is both interesting and instructive to obtain the results above withogt usin.g ‘the
SUBSTR function on the left-hand side of the equals sign. We are not doing Fhls just
to show you a hard way to accomplish something we already did. Rather, this alter-
native solution uses a number of character functions that can be demonstrated. Here

is the program:

DATA EXAMPLES;
INPUT SBP DBP @@;
LENGTH SBP_CHK DBP_CHK § 4;
SBP_CHK = PUT(SBP,3.);
DBP_CHK = PUT(DBP,3.);

IF SBP GT 160 THEN SBP_CHK = SUBSTR(SBP_CEK,1,3) || '+';
IF DBP GT 90 THEN DBP_CHK = TRIM(DBP_CHK) || '*';
DATALINES;

120 80 180 92 200 110

i )

PROC PRINT DATA=EXAMPLES NOOBS;
TITLE ‘Listing of Example 8';

RUN;
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This program is not really more complicated but maybe just not as elegant as the
first program. This program uses the concatenation operator (| |) to join the three-
character blood-pressure value with an asterisk. Since SBP_CHK and DBP_CHK
were both assigned a length of 4, we wanted to be sure to concatenate, at most, the
first 3 bytes with the asterisk. Just for didactic purposes, we did this two ways. For
the SBP_CHK variable, we used a SUBSTR function to extract the first 3 bytes.
For the DBP_CHK variable, the TRIM function was used. The TRIM function
removes trailing blanks from a character string.

L. Unpacking a String

To save disk storage, you may wish to store several single-digit numbers in a longer
character string. For example, storing five numbers as numeric variables with the de-
fault 8 bytes each would take up 40 bytes of disk storage per observation. Even
reducing this to 3 bytes each would result in 15 bytes of storage. If, instead, you store
the five digits as a single character value, you need only 5 bytes.

That is fine, but at some point, you may need to get the numbers back out for
computation purposes. Here is a nice way to do this:

DATA EXAMPLES;
INPUT STRING § 1-5;

DATALINES;

12345

8 642

’
DATA UNPACK;

BET EXAMPLES;

ARRAY x[5);

DOJ=1TO 5;

X[J] = INPUT(SUBSTR(STRING,J,1),1.);

END;

DROP J;
RUN;

PROC PRINT DATA=UNPACK NOOBS;
TITLE 'Listing of UNPACK';
RUN;

We first created an array to hold the five numbers, X1 to X5. Don’t be alarmed
if you don’t see any variables listed on the ARRAY statement, ARRAY X[5]; is
equivalent to ARRAY X[5] X1-X5; We use a DO loop to cycle through each of the
five starting positions corresponding to the five numbers we want. As mentioned be-
fore, since the result of the SUBSTR function is a character value, we need to use the
INPUT function to perform the character to numeric conversion.
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J. Parsing a String

“Parsing” a string means to take it apart based on some rules. In the example to fol-
low, five separate character values are placed together on a line, with either a space,
a comma, a semicolon, a period, or an explanation mark between them. You would
like to extract the five values and assign them to five character variables. With the
SCAN function this difficult task is simplified:

DATA EX_10;
INPUT LONG_STR § 1-80; .
ARRAY PIECES[5] $ 10

PIECE1-PIECES;
DO I =1 TO 5;

PIECES[I] = S8CAN(LONG_STR,I,',;.! '):
END;
DROP LONG_STR I;

DATALINESY;

THIS LINE,CONTAINS!FIVE.WORDS

ABCDEFGHIJKL XXX;YYY

OC PRINT DATA=EX_10 NOOBS;
" TITLE ‘Listing of Example 10';
RUN;

Before we discuss the SCAN function, a brief word about DATALINES4 and
the four semicolons ending our data. If you have data values that include semicolons,
you cannot use a simple DATALINES (or CARDS) statement since the semicolon
would signal the end of your data. Instead, the statement DATALINES4 (or
CARDS4) is used, causing the program to continue reading data values until four
semicolons are read.

The function:

SCAN(char_var,n,’list-of-delimiters’);
returns the nth “word” from the char_var, where a “word” is defined as anything be-
tween two delimiters. If there are fewer than n words in the character variable, the
SCAN function will return a blank.

By placing the SCAN function in a DO loop, we can pick out the nth word in
the string.

K. Locating the Position of One String within
Another String

Two somewhat similar functions, INDEX and INDEXC, can be used to locate a
string or one of several strings within a larger string. For example, if you have a string
‘ABCDEFG’ and want the location of the letters DEF (starting position 4), the
following INDEX function could be used:
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INDEX ( 'ABCDEFG’, ‘DEF" )i

This would return a value of 4. Ifyouwant to know the starting position of any one
of severalstrings,the INDEXC function can be used. Asan example,if you wanted the
starting position of either ‘BC’,or'FG’ in the string’ABCDEFG’, you would code:

INDEXC (‘ABCDEFG", ‘BC’, 'FG’);

The function would return a value of 2, the starting position of ‘BC’. Here is a
short program which demonstrates these two functions:

DATA EX_11;
INPUT STRING $ 1-10;
FIRST = INDEX (STRING, 'XYZ' ):
FIRST_C = INDEXC(STRING, 'X' YN, 'Z),
DATALINES;
ABCXYZ1234
1234567890
ABCX1Y2Z39
ABCZZZXYZ3
PROC PRINT DATA=EX_ 11 NOOBS;
TITLE 'Listing of Example 11°;
RUN;

FIRST and FIRST_C for each of the 4 observations are:

OBS FIRST FIRST C
1 4 4
2 o 0
3 0 4
4 7 4

When the search fails, both functions return a 2ero.

L. Changing Lower Case to Upper Case and Vice Versa

The two companion functions UPCASE and LOWCASE do just what you would
expect. These two functions are especially useful when data-entry clerks are careless
and a mixture of upper- and lower-case values are entered for the same variable. You
may want to place all of your character variables in an array and UPCASE (or
LOWCASE) them all. Here is an example of such a program:

DATA EX_12;
LENGTH ABCDE § 1;
INFUTABCDEX Y;
DATALINES;
MfPpD
mfmFNM
i

12
34
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[Continued]

DATA UPPER;
SET EX_12;
ARRAY ALL_C[*] _CHARACTER_;

DO I = 1 TO DIM(ALL_C);
aLp_c[1] = UPCASE (ALL_C[I]);

END;

DROP I;

This program uses the _CHARACTER_ keyword to select all the characte‘r
variables. The result of running this program is to convert all v.alues fol:—j t::e :/1::‘
ables A, B, C, D, and E to upper case. The LOWCASE function could be >
in pIact; o’f tl;e bPCASE function if you wanted all your character values in
lower case.

M. Substituting One Character for Another

A very handy character function is TRANSLATE. It can be gszd n:sltci(;;l;/zlrlto ;)Cr;:
i i le, suppose you recorde ¢

character to another in a string. For example, oul m ol

i d the letters ‘A’ through ‘E’, respectively.
on a test as 1,2, 3,4, or 5, which represente, el

i t to see the letters rather than

‘When you print out the character values, you wan ; . °
nunferils Vr&hile formats would accomplish this very nicely, it also serves as an ex
ample for the TRANSLATE function. Here is the code:

RON;

The syntax for the TRANSLATE function is:
TRANSLATE (char_var, to_string, from_string);

Each value in from_string is translated to the corresponding value in the
to_string.
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Another interesti i

) ng applicati

dichotomony eres! : on of the TRANSLATE function i

o sor mous mun I\?’rltcovgnatges from character variables, ForI:::r): l1S eneation of

BTHEN G o sta[em;::s ;/alyues of fY‘ to 1. Although this is[t)::;i}l@liimay i

function. Hore go. , let’s see if we can do it using the TRyAIfIJ;IiX’?h
j E

g

. 'I.‘he UPCASE function sets all
unction converts values of ‘N’ to ‘0’
verts the numerals ‘0’

;21(;1?; ,t? u{)per case. Next, the TRANSLATE
I 0 ‘1”. Finally, th i
and ‘1 to the numbers 0 and 1, resgectti:vggrPUT function con-

N L
Substituting One Word for Another in a String

A relatively new functi
ction (as of .
(translate word version 6.07 on personal co TRA
For example, yl’um;‘l;’effom a search and replace opemti(z?lp(l,1 ters), T NWRD
y Want fo standardize addresses by wn’:};g:‘m%hvanable,
g the words

‘Street’, ‘Avenue’, a
’ ,and ‘Road’ t .
Look at the following program? the abbreviations ‘St., ‘Ave.’, and ‘Rd.’ respectivel
: Vs y.

R

The syntax of the TRANWRD function is:

TRANWRD (ch: .
ar_var, ‘find_string’, ‘replace_string’);
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That is, the function will replace every occurrence of find_string with

replace_string. Notice that the order of the find and replace strings are reversed
compared to the TRANSLATE function where the to_string comes before the
from_string as arguments to the function. In this example, ‘Street’ will be converted
to ‘St”, ‘Avenue’ to ‘Ave.’, and ‘Road’ to ‘Rd.". The listing below confirms this fact:

Listing of Data Set CONVERT

OBS ADDRESS
1 89 Lazy Brook Rd.
2 123 River Rd.
3 12 Main St.

0. Concatenating (Joining) Strings

e should mention the concatenation operation. Al-
ful string operation and this seems as good as

anywhere to tell you about it! In computer jargon, «concatenate” means to join. So, if
we concatenate the string ‘ABC’ with the string ‘XYZ’, the result is ‘ABCXYZ'.
Pretty clever, eh? Things can get “a bit sticky” if we forget that SAS character vari-

ables may be padded on
variable. If this is the case,
before we concatenate the st
bars). Suppose we had social security
separators, the digit groups were separ
way to read this string and convert it in

Since we are discussing strings, W
though this is not a function, it is a use!

the right with blanks to fill out the predefined length of the
we can use the TRIM function to remove trailing blanks
rings. The concatenation operator is | | (two vertical
numbers in a file and, instead of the usual—
ated by colons, 123:45:6789, for example. One
to the more common format would be:

The output (just one observation) is:

Listing of EX 15
OBS 8s
1 123-45-6789

of us (Cody), will not let this program stand
TE function discussed previously would be

The compulsive programmer in one
without mentioning that the TRANSLA’
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a better way to solve this
lieve anyone is actuall
problem above is:

problem. (Your pumble second author, Smith, cannot be-
y reading this section.) The solution to the social security

INPUT SS ¢ 1-11;
88 = TRANSLATE (88, =1, 051y,

,

P Soundex Conversion

SAS software provides a soundex functi
aname. Soundex equivalents of names

oundex equivalent of most names wij i

J ill result
strange looking codes such as C3 or A352.Here is a sample program and th s
of the soundex translations: ¢ result

DATA EX_16;
LENGTH NAME1-NAME3 $ 10;
INPUT NAME1-NAME3;
81 = SOUNDEX (NAME1) ;
82 = SOUNDEX (NAME2);
83 = "SOUN;DBX(NAIIE3);
DATALINES;
cody Kody

.3 s L

PROC P INT DATA=EX_16 NOOBS;
TITLE 'Listing of Example 16';

RUN; .

This program will result in the following soundex matches:

Name Soundex Equivalent

CODY c3

KODY K3

CADI C3

CLINE C45

KLEIN Kas
CLANA C45

SMITH 853
SMYTHE 853

ADAMS A352
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Problems

18-1. First, create a data set called CHAR1 by running the DATA step below:

DATA CHAR1;
INPUT STRING1 $1.
STRING2 $5.
STRING3 $8.
(C1-C5) ($1.);
DATALINES;
XABCDE1234567 8YNYNY
YBBBBB12V56876yn YY
ZCCKCC123-/. ,WYNYN

i

Create a new data set ERROR containing any observations in CHAR1 that meet any
one of the following conditions:

1. A value other than an ‘X’ or a ‘Y’ for the variable STRING1.

2. A value other than an ‘A’,‘B’,*C’,‘D’, o1 ‘E’ in STRING?2.

3. A value other than an upper or lower case ‘N’ or “Y’ for the variables C1-CS5.
(Nore: Blank values of C1-CS will place the observation in the ERROR data set.)

18-2. Using the data set CHAR1 from the previous problem, create a new variable (NEW3)
from the variable STRING3, based on the following rules: First, remove embedded
blanks and the characters ‘-, */’,*., and ‘,’. Next, substitute the letters A-H for the nu-
merals 1-8. Finally, set NEW3 equal to a missing value if there are any characters other
than A-H (trailing blanks are OK) in the string. The value of NEWS3 for the three ob-
servations should be: ‘ABCDEFGH’, missing, and ‘ABC’.

18-3. For the variables C1-CS in data set CHARI1 (problem 18-1), change all lower-case val-
ues to upper case, and set any remaining values other than “Y’,‘N’, or blank to missing.
You may wish to use an ARRAY to solve this problem.

18-4. You are given a data set (PHONE) with phone numbers stored in a variety of formats.
Run the program below to create the PHONE data set and create a new variable,
NUMBER, that is, a numerical variable derived from the character variable
CHAR_NUM, with all extraneous symbols and blanks removed. Assume that the
longest phone number contains 10 digits.

DATA PHONE;
INPUT CHAR NUM $20.;

DATALINES;

(908)235-4490

(800) 655 ~ 1 2 1 2

203/222-4444

i
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18-5.

*18-6.

*18-7.
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The data set (EXPER) created by running the program below, contains the variables
ID, GROUP, and DOSE. Create two new variables as follows: One is a 2-byte charac-
ter variable created from the second and third bytes of ID. The other is a variable cre-
ated by concatenating GROUP and DOSE. This variable should be 6 bytes long with
a ‘-’ between the GROUP and DOSE values, and it should not contain any embedded
blanks. Call the two variables SUB_ID and GRP_DOSE, respectively:

DATA EXPER;
INPUT ID $ 1-5

GROUP § 7

DOSE §$ 9-12;
DATALINES;
INY23 A HIGH :
3NJ99 B HIGH e
2NY89 A LOW Tl
5NJ23 B LOW

H

Using the data set EXPER from the previous problem, create a new variable (ID2)
from ID. Make this new variable 6 bytes in length and place an asterisk in the sixth byte
if the fourth byte of ID has a value of 5 or more. For this solution, create a numeric
variable based on the fourth byte of ID, and check if it is greater than or equal to 5. Do
not check this byte as a character value against the numerals 5-9.

Merge the two data sets created by running the program below, using the GENDER,
date of birth (DOB), and the SOUNDEX equivalent of the NAME to determine
maches. Keep only those observations where a match is successful. Call the new data
set COMBINED. There should be three observations in data set COMBINED.

DATA ONE;
INPUT €1 GENDER $1.
€2 DpoB MMDDYYS8.
@10 NAME $11.
@21 STATUS $1.;
FORMAT DOB MMDDYYS.;

DATALINES;
M10/21/46CADY A
F11/11/50CLINE B
M11/11/528MITH AT
F10/10/800PPENHEIMERB
M04/04/6000SE - A
1

DATA TWO;

INPUT @1 GENDER $1.
@2 DoB MMDDYYS.
@10 NAME $11.
€21 WEIGHT 3.;

[Coutinued]

FORMAT DOB MMDDYYS8.;
DATALINES;
M10/21/46CODY 160
F11/11/50CLEIN 102
F11/11/528MITH 101
F10/10/800PPENHAIMER120
M02/07/60J0SA 220

i

Problems
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CHAPTER

Selected Programming Examples

A. Introduction

B. Expressing Data Values as a Percentage of the Grand Mean
C. Expressing a Value as a Percentage of a Group Mean

D. Plotting Means with Error Bars

E. Using a Macro Variable to Save Coding Time

F. Computing Relative Frequencies
G. Computing Combined Frequencies on Different Variables
H. Computing a Moving Average

L. Sorting Within an Observation

J. Computing Coefficient Alpha (or KR-20) in a DATA Step

A. Introduction

This chapter contains a number of common applications and serves two functions:
One is to allow you to use any of the programs here, with modification, if you have a
similar application; the other is to demonstrate SAS programming techniques.

B. Expressing Data Values as a Percentage
of the Grand Mean

A common problem is to express data values as percentages of the grand mean,
rather than in the original raw units. In this example, we record the heart rate
(HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) for each
subject. We want to express these values as percentages of the mean HR, SBP, and
DBP for all subjects. For example, in the data set below, the mean heart rate for
all subjects is 70 (mean of 80,70, and 60). The first subject’s score of 80, expressed
as a percentage, would be 100% X 80/70 = 114.28%. The approach here will be
to use PROC MEANS to compute the means and to output them in a data set

which we then combine with the original data so that we can perform the required
computation.

382
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DATA TEST;
INPUT HR SBP DBP;
DATALINES;
80 160 100
70 150 90
60 140 80

PROC MEANS NOPRINT DATA=TEST;
VAR HR SBP DBP;
OUTPUT OUT=MOUT (DROP=_TYPE_ _FREQ_)
MEAN=MHR MSBP MDBP; .
RUN;

DATA NEW (DROP=MHR MSBP MDBP);
:iT_:fSZ'l THEN SET MOUT;
HRPER=100*HR/MHR;
SBPPER=100*SBP /MSBP;
DEPPER=100*DBP/MDBP;

RUN; °

PROC PRINT DATA=NEW NOOBS; )
"PITLE ‘Listing of Data Set NEW';
RUN;

Description. We use the NOPRINT option with PROC MEA:NSa t;:;zu::tvg;

do not want the procedure to print anything but, rather, to Scre{:x]IeCOHSist et of

ans. In this case, the output data set from PROC‘ MEANS wil ist of one

I(:‘llfsf:rv'ation The variables _TYPE_ and _FREQa, Wthlt'l arii:s;n:iz;lz etlhe ; 110 the
4 ing a DROP= data set op

qu;utdda"l‘aYSIf}g a?s: Ssgfrl’lxl’fhil:ls?%:zASS statement is used with PROC MEA}:S'

f\l;: sio'»; cxamr;les of this later. The single observation in the data set MOUT is

shown below:

OBS MHR MSBP  MDBP
1 70 150 90
a-
We want to add the three variables MHR',;VISBI;;M?H?E}?E;; Z‘;iri;;::;‘llﬁ,
ioni iginal data set so that we can divide each va .
tlEanbm Il(l)?)‘f/): gSirlct: our original data set has three observations an.d tthe n'lleva;i:;tlz
Is’et cgntains only one observation, we use a trick: We use the SAS mter;llactor able
N_ to conditionally execute the SET statement. The ProgramADaVz; ri:bles Jow
contains the variables HR, SBP, DBP, MHR, M]SIBP, ?:1?1 ::IjDsoB}:henvyalues bles com-
ing i ET statement are automatically re! : L
;\‘}gSl;‘;’ f;g;n&SBP will not change and will be available for every 1tex;tl;0n Iv(I’[f) gl;
DATA’ step. We can now divide HR by MH]:, Sthby I\;Igslfj, ?¥g§r]? dat}; oy the.
i bring in another observation rom the or! [
E:](l:ll::st l:)l;el\/}vl-(iRnl\I/llgSBP and MDBP will remain in the Program Data Vector (they
v 5 s
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are automatically RETAINED because of the SET statem,

created by this program (NEW) is shown next- ent). The final data se;
0BS  GROUP  MHR MSBP MDBP
1 a 70 150.000 90.000
2 B 80 173.333 133.333

114.286 106.667 111.111
100.000 100.000 100.000
85.714 93.333 88.889

Data set NEW, which contains both the original values and the percentage
values is shown next:

C. Expressing a GROUP HR  SBP  DBP HRPER -  SBPPER DBPPER
pressing a Value as a Percentage of a Group Mean =~~~ | o W s ter | hem o tmm | ME

Thisex i ; i A 80 160 100 114.286 106.667 111.111
B) andavl:;p‘i;ﬁs:,eansmnonheprewoustb]em'Herewehavetwogmu s (A A 70 150 90 100.000 100.000 100.000
B expresseachmeasurememaSaperCema cofthe G ps(Aand A 60 140 80 85.714 93.333 88.889
& €GROUP mean, B 90 200 180 112.500 115.385 135.000

B 80 180 140 100.000 103.846 105.000

B 70 140 80 87.500 80.769 60.000

D. Plotting Means with Error Bars

When we plot a set of means, we may want to include error bars, which represent one
standard error above and below the mean. The program below shows how we can
use PROC MEANS to output the standard errors and then use PROC PLOT to plot
the means and the error bars.

Description. Since the output d
Since ata set from PROC MEANS i
getcan MERGE lt. with the original data set, using GROUP zlsc:)l{l Y GRQUP,
ata set MOUT will contain two obs  GROGcle

contents of MOUT are shown below:ervatlons, one for each value of GROUP. The

HEE R
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[Coutinued]

PROC PLOT DATA=TMP;
PLOT SBP*TIME='o" SBPHI*TIME=' - SBPLO*TIME="'-"' / OVERLAY BOX;
PLOT DBP*TIME='o" DBPHI*TIME='_1 DBPLO*TIME='-* / OVERLAY BOX;
TITLE 'Plot of Mean Blood Pressures at Each Time';

TITLE2 'Error bars represent +- 1 gtandard error';
RON; )

Below is the first of the two plots (SBP by TIME) produced by this program:

Plot of Mean Blood Pressures at Each Time
Error bars represent +- 1 standard error

Plot of SBP*TIME. Symbol used is 'o'
Plot of SBPHI*TIME. Symbol used is '-',
Plot of SBPLO*TIME. Symbol used is '-',

Description. The original data set contained the variable TIME as well as the
two blood pressures (SBP and DBP). The data set produced by PROC MEANS
(with the CLASS statement) will have as many observations as there are values of
TIME (note the NWAY option). We are seeking a plot of mean SBP (and DBP)
versus time with a Jower-case ‘0’ as the plotting symbol. The data set TMP adds and
subtracts the standard errors from the means so that we can plot them along with the
means. We are using a “-” as a plotting symbol to represent error bars.

E. Using a Macro Variable 10 Save Coding Time

Programmers are always looking for a way to make their programs more compact
(and to avoid typing). While there is an extensive macro language as part of the SAS
system, we will use only a macro variable in this example. Macro statements begin
with % signs. A macro variable is defined with a %LET function. The expression to
the right of the = sign will be assigned to the macro variable. We precede the macro
variable name with an ampersand (&) in the program so that the system knows we
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are referring to a macro variable. In this example, we are using ahmacr(_)a;elx:sag;g
take the place of a variable list. Any time we want to reff:r tot e;anCh o 11.
TWO, and THREE, we can use the macro variable LIST instead. (See Chap s
Secli(;n C for another example of a macro variable.)

DATA TEST;
%LET LIST=ONE TWO THREE;
INPUT &LIST FOUR;
DATALINES; :
1234
4566

PROC FREQ DATA=TEST;
TABLES &LIST;
RUN;

FE  Computing Relative Frequencies

In this example, we have an ICD (International Classification of Diskeases) cl:)dlepi(;r
j " diagnosis was made. We want to now wha -

each subject as well as the year that ) ' Lo Snow wha per

i i ticular code for each year. That is,
centage of the observations contain a par T oades for that year,
h ICD code as a percentage of all co
to express the frequency of eacl o codes m 1950 (oote ey
le, in the data below, there were threc'e recorde .
Sfer :())(?xi‘l:pYEAR order). Code 450 occurred twice, giving us a relative frequentcl:ly ::
2/3, or 66.6%. We will use an output data set from PROC FREQ to compute the:

relative frequencies, as follows:

DATA ICD;
INPUT ID YEAR ICD;

DATALINES;

001 1950450
002 1950 440
003 1951 460
004 1950 450
005 1951 300

7
PROC FREQ DATA=ICD; S
TABLES YEAR*ICD / OUT=ICD!

***Data set ICDFREQ cont
for each CODE in each YEAR)
RUN; R v

PROC FREQ DATA=ICD;

°'TABLES YEAR / OUT=TOTAL NO
w«*Data set ICD contains tt
of obs for each YEAR;

RUN;
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[Coutinued]

DATA RELATIVE;
MERGE ICDFREQ TOTAL (RBNAHE'COUNT-TOT_CNT));
***We need to rename COUNT in one of the two data sets
80 that we can have both values in data set RELATIVE;
BY YEAR;
REI.ATIVE=100*COUNT/TOT_CNTI
DROP PERCENT;
RUN;

PROC PRINT DATA=RELATIVE;

TITLE 'Relative Frequencies of ICD Codes by Year';
RUN;

Description. The first PROC FREQ creates an output data set (ICDFREQ)
that looks like the following:

ICDFREQ data set

YEAR ICDp COUNT PERCENT

440 20
450 40
300 20

20

this data set tells us how many times a given ICD code appeared in each year.

Next, we need the total number of ICD codes for each year to be used in the de-
nominator to create a relative incidence of each ICD code for each year. Running
PROCFREQ with only YEAR as aTABLE variable will give us the number of ICD
codes there were for each year. Data set TOTAL is shown next:

YEAR COUNT PRRCENT

1950 3 60
1951 2 40

All we have to do now is to merge the two data sets so that we can divide the
COUNT variable in the ICDFREQ data set by the COUNT variable in the TOTAL
data set. When we do the merging, we will rename COUNT in the TOTAL data set
to TOT_CNT since we can’t have two values for a single variable in one observation.
Finally, we can dividle COUNT by TOT_CNT to obtain our desired result.

A
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Relative Frequencies of ICD Codes by Year

YEAR ICD COUNT TOTAL RELATIVE

1950 440 1 3 33.3333
1950 450 2 3 66.6667
1951 300 1 2 50.0000
1951 460 1 2 50.0000

G. Computing Combined Frequencies on Different Variables

In this example questionnaires are issued to people to determine to wh:lch tchen;::zl:
they are sensitive. Each subject replies yes or no (1 or 0)_ to each of the e‘x:. C‘t ”
icals in the list. We want to list the chemicals in decreasu?g l<))rder ?,fl s&zns(ni .lvll Z. !
i 10 variables, we will be unable to display
we compute frequencies for each of thf: |
list shoging the chemicals in decreasing order of frquency. Ol.lrbf.i;sctt sée;z 11180:,0
i i to 10 observations per subject. -
restructure the data set into one with up ons per < ¢
servation will include a chemical number (from 1 to 10) indicating which chemical
was selected. Here is the program:

PhoC B o \ ' = + 4='IRON' 5='TIN'
‘. VALUE SYMPTOM. 1='ALCO 2='INK' 3='SULPHUR
i e "é--cmzit-' 7='DDT' 8='CARBON' 9='802' 10='NO2';

fren : %
DATA SENSI;- i i
“ INPUT ID 1-4 (CHEM1-CHEM10)(1.);
ARRAY CHEM[*] CHEM1-CHEM10;
DO I=1 TO 10;
IF CHEM[I])=1 THEN DO;

SYMPTOM=I;
OUTPUT;

KEEP.'ID S

§nrqu;» 1

ORI ———
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) Description. For a more detailed description of how to restructure data sets
using arrays, see the relevant section of Chapter 16. Data set SENSI will have as
many observations per person as the number of 1’s on the list of chemicals (CHEM]b
to CHEMIQ).The variable SYMPTOM is set equal to the DO loop counter, I, which
tells us which of the ten chemicals was selected. The observations from ,d;ta t
SENSI are shown here to help clarify this point *

D Symptom
- aem

ALCOHOL
SULPHUR
TIN

DDT

802
ALCOHOL
COPPER
ALCOHOL
INK
ALCOHOL
IRON

DDT
CARBON
S02

NO2
ALCOHOL
COPPER
SO2

R R R N N VT VN T

Notice that the formatted values for SYMPTOM i i
) : I are displayed since we as-
s{gned aformat to the variable. A simple PROC FREQ will now tell us the frequen-
(:1&;5d for eacfh of the 10 chemicals. The ORDER=FREQ option of PROC FREQ will
produce a frequency list in decreasing order of fr i
TREG o cauenc g equencies. The output from PROC

Cumulative i
SYMPTOM Frequency Percent Frequency C“-“Pl:i::;‘ée
ALCOHOL 5 27.8 5 27.8 -
502 3 16.7 8 44.4
COPPER 2 11.1 10 55.6
DDT 2 11.1 12 66.7
INK 1 5.6 13 72.2
SULPHUR 1 5.6 14 77.8
IRON 1 5.6 15 83.3
TIN 1 5.6 16 88.9
CARBON 1 5.6 17 94.4
No2 1 5.6 18 100.0
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H. Computing a Moving Average

Suppose we record the COST of an item each day. For this example, we want to com-
pute a moving average of the variable COST for a three-day interval. On day 3, we
will average the COST for days 1, 2, and 3; on day 4, we will average the COST on
days 2,3, and 4, etc.

| Program to compute a moving average |

W s em e m o e “—tky

DATA  MOVING;

INPUT COST @@;

DAY+1;

COST1=LAG(COST) ;

COST2=LAG2 (COST) ;

IF _N_ GE 3 THEN MOV_AVE=MEAN (OF COST COST1 COST2);
,DROP COST1 COST2;

1234.68128
i )
PROC PRINT DATA=MOVING NOOBS;

TITLE ‘Listing of Data Set MOVING';

RUN;

The data set MOVING is:

OBS COST DAY MOV_AVE
1 1 1
2 2 2 .
3 3 3 2.00000
4 4 4 3.00000
5 5 3.50000
6 6 6 5.00000
7 8 7 7.00000
8 12 8 8.66667
9 8 9 9.33333

Description. The LAG function returns the value of the argument the last time
the function was executed. If you place the LAG function in a DATA step where it will
be executed for every iteration of the DATA step, it will give you the value of the
argument from the previous observation. There are also a family of LAG functions,
LAGI1, LAG2, LAG3, etc., which will return the value of the argument from the nth
previous execution of the function. Thus, LAG (which is equivalent to LAG1) will
return the value from a previous observation; LAG2 will return the value from the next
earlier observation, and so forth. Notice how the use of a moving average “smooths
out” the abrupt change on day 8. A note of caution here: it is usually inadvisable to
execute the LAG function conditionally. Consider the following example:
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DATA NEVER;

INPUT X @e; .

IF X GT 3 THEN X_LAG = LAG
DATALINES; N @
57214
i

What are the values of X_LAG in i
o are - the five observations? A : Mi
missing, missing, and 7! Read the definition of the LA« ety
you can understand what is happening here.

s ssing, 5,
G function carefully, and see if

L. Sorting Within an Observation

rc/c use PROC SQRT tosort obsen{ations ina SAS data set. However, we may have
Lsgas;zr: :c)o S(:ir;d wfnhm an observation. In the example that follows, five values (L1
T or each subject. We want to arran 2 i ;
: ge the five values from hij;
to lowest. The method used here is known as a “bubble sort,” because the highefth (505;

IOWﬁSt) values bubble, or move closer, to the top each time the program returns to
B
P 48
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Description. Statement @ contains a SAS label. A statement in a SAS program
can be labeled by a one- to eight-character label, followed by a colon. We can then use
a GO TO statement @ to control the logical flow of the program. The DO loop @ runs
through the data values pairwise, reversing the order of a pair if two values are not in
descending order. A flag then gets set, so that the program knows to repeat the process
until no more pair reversals are made. Notice that we have five variables to be sorted,
and the DO loop runs from 1 to 4 since we have I+1 as a subscript inside the loop. To
reverse the sorting order, substitute a LT operator for the GT operator in line @.

For those of you who don't like GO TO statements, the program below also
sorts values within an observation but doesn’t use any GO TO statements:

J. Computing Coefficient Alpha (or KR-20)
in a DATA Step

This program computes a test statistic called coefficient alpha, which, for a test item
that is dichotomous, is equivalent to the Kuder-Richardson formula 20. This statis-
tic is available in PROC CORR with option ALPHA (Cronbach’s alpha—see
Chapter 11, Section F). You may still want to use the code below to compute your
KR-20. At the very least, it serves as a good programming example. The formula for

Cronbach’s alpha is:
k
— |1
=1l
where k is the number of items in the test.
The key here is to output a data set that contains the item and test variances.
Here is the program:

Alpha (or KR-20 if dichotomous) =

_ 2 ltem variances
Test variance
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_______________________________________________________ *
Assume that data set SCORE (see Chapter 11) contains
variables S1-85 which are the scored responses for
each of the 5 items on a test. S=1 for a correct
answer, S$=0 for an incorrect response

*
PROC MEANS NOPRINT DATA=SCORE H
VAR S1-S5 Raw;

OUTPUT OUT=VAROUT VAR=VS1-VS5 VRAW;
RUN;

DATA NULL_;
FILE PRINT;
SET VAROUT; y s
SUMVAR = SUM (OF VS81-V85); @ .
KR20 = (5/4)*(1-SUMVAR/VRAW) ;" @)
‘PUT KR20=; (® o -

i RW'

We use PROC MEANS to output a data set containing the item variances, The
keyword VAR= computes variances for the variables listed in the VAR statement.
This data set contains only one observation. In order to sum the item variances, we
need to use another DATA step. You may not be familiar with the special SAS data
set name _NULL_ @. This reserved data set name instructs the SAS system to
process the observations as they are encountered but not to write them to a tempo-
rary or permanent SAS data set. This saves time and, perhaps, money. Line @ com-
putes the sum of the item variances, and line @ is the formula for coefficient alpha,

We get the program to print the results for us by using a PUT statement ). The

results of this PUT are sent to the same place that normal SAS output goes, because
of the FILE PRINT statement ®.

Problems

As aspecial treat to you, this chapter does not contain any SAS programming problems (since
they are not really appropriate). So your assignment, should you decide to accept it, is to go
out and have a good time (on us of course)!

CHAPTER

Syntax Examples

A. Introduction
B. PROCANOVA
C. PROC APPEND
D. PROC CHART
E. PROC CONTENTS
E. PROC CORR
G. PROC DATASETS
H. PROC FACTOR
L PROC FORMAT
J. PROCFREQ
K. PROC GLM
L. PROC LOGISTIC
M. PROC MEANS
N. PROC NPAR1IWAY
0. PROCPLOT
P. PROC PRINT
Q. PROCRANK
R.PROCREG
S. PROC SORT
T. PROCTTEST
U. PROC UNIVARIATE

A. Introduction

This chapter presents examples of each of the procedures listed above. Instead of a
generalized, hard-to-understand syntax reference, we present several concrete ex-
amples that cover the majority of options and statements that you may want for egch
procedure. Simply replace our highlighted variable names and data set names with
your own, and you are ready to go.
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B. PROC ANOVA

One-way Design:

PROC ANOVA DATA=MYDATA;

CLASS RACE;

MODEL SCORE FINAL = RACE;

MEANS RACE / SNK; ***SNK ig Student Newman Keuls;
RUN;

Two-way Factorial Design (balanced only):

PROC ANOVA DATA=MYDATA;

CLASS GROUP DOSE;

MODEL HR SBP DBP = GROUP | DOSE;

MEANS GROUP |DOSE / DUNCAN; ***DUNCAN multiple range test;
RUN;

One-way Repeated Measures Design (using the REPEATED statement):

PROC ANOVA DATA=MYDATA;
MODEL SCORE1~SCORE4 = / NOUNI ;
REPEATED TIME;

RUN;

One-way Repeated Measures Design (without using the REPEATED statement):

PROC ANOVA DATA=MYDATA;
CLASS SUBJ TIME;
MODEL SCORE = SUBJ TIME;
MEANS TIME / SNK;

RUN;

For more advanced factorial and repeated measures designs, refer to Chapters 7
and 8.

C. PROC APPEND

PROC APPEND BASE=BIG DATA=NEWDATA;
RUN;

D. PROC CHART

Vertical Bar Chart (Frequencies):

PROC CHART DATA=MYDATA i
VBAR GENDER;
RUN;

PROC CHART DATA=MYDATA;
VBAR DAY / DISCRETE;
RUN;

Section G / PROC DATASETS

Horizontal Bar Chart:

PROC CHART DATA=MYDATA;
HBAR GROUP;
RUN;

Bar Chart Where Bars Represent Sums or Means of a Variable:

PROC CHART DATA=MYDATA;
VBAR REGION / SUMVAR=SALES TYPE=SUM;

RUN;
For more details on PROC CHART see Chapter 2.

E. PROC CONTENTS

PROC CONTENTS DATA=MYDATA POSITION;
RUN;

LIBNAME XXX 'C:\SASDATA';
PROC CONTENTS DATA=XXX._ALL_ POSITION;

RUN;

E PROC CORR

Correlation Matrix:

PROC CORR DATA=MYDATA NOSIMPLE;
VAR A B C X Y Z;
RUN;

Correlate One Variable with Several Others:

PROC CORR DATA=MYDATA NOSIMPLE;
WITH QUES1-QUES50;
VAR GRADE;

RUN;

For additional examples, see Chapter 5.

G. PROC DATASETS

LIBNAME XXX 'C:\SASDATA';
PROC DATASETS LIBRARY=XXX;
MODIFY MYDATA;
LABEL CANDID = 'CANDIDATE';
RENAME OLDWT = WEIGHT;
FORMAT COST DOLLAR7.;
RUN;
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H. PROC FACTOR

Principal Components Analysis (with rotation):

PROC FACTOR DATA=FACTOR PREPLOT PLOT ROTATE=VARIMAX
NFACTORS=2 OUT=FACT SCREE;
VAR JIEZ]-QUES6;

RUN;

Factor Analysis with Squared Multiple Correlations and Oblique Rotation:

PROC FACTOR DATA=FACTOR PREPLOT PLOT ROTATE=PROMAX
NFACTORS=2 OUT=FACT SCREE;
VAR QUES1-QUES6;
PRIORS SMC;
RUN;

See Chapter 10 for more examples and explanations.

I. PROC FORMAT

Temporary Character and Numeric Formats:

PROC FORMAT;

VALUE $GENDER 'M' = 'Male’
'F' = 'Female';
VALUE LIKERT 1 = rStrongly Disagree’
2 = 'Disagree’
3 = 'No Opinion*
4 = 'Agree’
5 = 'Strongly Agree';
VALUE WTGRP LOW-<20 = 'Zero to 20°'
20-<40 '20 TO 40°
40-HIGH ‘40 and Above';
VALUE $CODES 'A','C','E' = 'Group 1'
X, 'Y, vz 'Group 2';
VALUE NUMS 1,4-8 ‘Range One’
2,3,9-11 = 'Range Two';

RUN;
Permanent Formats:

LIBNAME XXX 'C:\SASDATA';

OPTIONS FMTSEARCH=(XXX);

PROC FORMAT LIBRARY=XXX;
VALUE $YESNO '1' 'Yes'
'0' = 'No';

RUN;

Section K / PROC GLM

J. PROC FREQ

One-way Frequencies:

PROC FREQ DATA = MYDATA ORDER=FREQ;
TABLES GENDER RACE GROUP / NOCUM;
RUN;

Two-way Frequencies (with request for chi-square):

PROC FREQ DATA=MYDATA;
TABLES TREAT*OUTCOME / CHISQ:
RUN;

Three-way Frequencies (with a request for all statistics):

PROC FREQ DATA=MYDATA;
TABLES STRATA*GROUP*OUTCOME / ALL;

RON;

See Chapter 3 for more examples.

K. PROC GLM

One-way Design:

PROC GLM DATA=MYDATA;
CLASS TREAT;
MODEL Y = TREAT;
CONTRAST 'A VS. B AND C' TREAT 2 -1 -1;
CONTRAST 'B Vs. C!' TREAT 0 1 -1;
MEANS TREAT / SNK;

RUN;

Two-way Factorial Design (balanced or unbalanced):

PROC GLM DATA=MYDATA;

CLASS TREAT GENDER;

MODEL Z = TREAT | GENDER;

LSMEANS TREAT | GENDER / SCHEFFE ALPHA=.1;
RUN;

399

For more examples of factorial designs, contrast statements, and repeated mea-

sures designs, see Chapters 7 and 8.
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L. PROC LOGISTIC

PROC LOGISTIC DATA=LOGISTIC DESCENDING;
MODEL ACCIDENT = AGE VISION DRIVE_ED /
SELECTION = FORWARD
CTABLE PPROB=(0 to 1 by .1)
LACKFIT
RISKLIMITS;
RUN;

For other examples of PROC LOGISTIC, see Chapter 9, Section F.

M. PROC MEANS

Descriptive Statistics on All Subjects Together:

PROC MEANS DATA=MYDATA N MEAN STD STDERR MAXDEC=2;
VAR HR SBP DBP;
RUN;

Descriptive Statistics Broken Down by One Variable:

PROC MEANS DATA=MYDATA N MEAN STD STDERR MIN
MAX MAXD
CLASS GROUP; mesas
VAR X Y 2;
RUN;

Creating an Output Data Set Containing Means and Variances:

PROC MEANS DATA=MYDATA NOPRINT NWAY;
CLASS GENDER GROUP;
ID SUBJ;

MEAN=M X M_Y M_zZ
VAR =V_X V.Y V_z;
RUN;

Using PROC MEANS to Run a Paired t-Test:
PROC MEANS DATA=MYDATA N MEAN STD STDERR T PRT;

VAR DIFF;
RUN;

Section P/ PROC PRINT

N. PROC NPARIWAY

PROC NPARIWAY DATA=MYDATA WILCOXON;
CLASS GROUE;
VAR WEIGHT;
EXACT WILCOXON;

RUN;

See Chapter 6, Section D, for more details.

0. PROC PLOT N

Simple X-Y Plot:

PROC PLOT DATA=MYDATA;
PLOT Y*X;
RON;

Choosing 0’s as Plotting Symbols:

PROC PLOT DATA=MYDATA;
PLOT Y*X = ‘o';
RUN;

Using the Value of Gender (‘M’ or ‘F’) as the Plotting Symbol:

PROC PLOT DATA=MYDATA;
PLOT Y*X = GENDER;
RUN;

For more details, see Chapter 2, Section G.

P PROC PRINT

Simple Listing with Variable Names as Column Headings:

PROC PRINT DATA=MYDATA;
TITLE 'This is the Title of My Report';
ID SUBJ_ID;
VAR DATE HR SBP DBP;

RUN;

Simple Listing with Variable Labels as Column Headings:

401

(Nore: In this example, the LABEL statement is included in the procedure. In other
situations, the labels may be assigned in the DATA step and you would not need an
additional LABEL statement in the PROC. The formats may have also been as-
signed previously.)

For more examples of PROC MEANS with and without creating an QUTPUT
data set, see Chapter 2.
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PROC PRINT DATA=MYDATA LABEL;
TITLEl 'Fancier Report';
TITLE2 ‘'Compiled by J. Smith and R. Cody';

S. PROC SORT

Sorting a Data Set “In Place™

TITLE3 oo _ i

FOOTNOTE 'Printed on recycled paper'; PROC SORT DATA=MYDATA;
ID SUBJ ID; BY ID DATE;

VAR DATE COST SBP DBP; RUN;

FORMAT DATE MMDDYY8. COST DOLLARS. SBP DBP 4.;

LABEL SUBJ ID = *Subject Ip Example Creating an Output Data Set (Using KEEP and WHERE= data set

DATE = 'Date of Visit: ions):

ns):

CoST = 'Cost of Treatment'; optio 5)

o PROC SORT DATA=MYDATA(KEEP=ID HR SBP DBP GENDER
WHERE= (SBP GT 140)) OUT=OUTDATA;
BY ID DATE;
RUN;

Q. PROC RANK

Create a New Data Set with R_X Representing the Rank of X: T. PROC TTEST;

PROC RANK DATA=MYDATA OUT=RANKDATA ;

VRMANKX" PROC TTEST DATA=MYDATA;
§ R CLASS GENDER;
RO VAR HR SBP DBP;

RUN;
Using PROC RANK to Split the Group in Two (median split):

PROC RANK DATA=MYDATA OUT=NEWDATA GROUPS=2;

RU""IAR x; U. PROC UNIVARIATE
PROC UNIVARIATE DATA=MYDATA NORMAL PLOT;
R. PROCREG me;lu XY Z;

Simple Linear Regression:

PROC REG DATA=MYDATA;
MODEL Y = X;
RUN;

Two Variable Regression:

PROC REG DATA=MYDATA;
MODEL LOSS = DOSAGE EXERCISE / P R;
RUN;

Stepwise Multiple Regression:

PROC REG DATA=MYDATA;
MODEL OUTCOME = INCOME SES AGE IQ /
SELECTION = STEPWISE;
ROUN;

See Chapter 9 for more examples of PROC REG.

R e
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CHAPTER 1

1-1 (a) PATA COLLEGE;
INPUT ID AGE GENDER § GPA CSCORE;
DATALINES;
118 M 3.7 650
2 18 F 2.0 490

3 19 F 3.3 580
4 23 M 2.8 530
M 3.5 640

5 21
(b) PROC MEANS DATA=COLLEGE;

VAR Gpa CSCORE;
RUN;

(c) Between the “INPUT” and “DATALINES” lines insert:
INDEX = GPA + 3*CSCORE/500;
Add to the end of the program:

PROC SORT DATA=COLLEGE;
BY INDEX;
RUN;

PROC PRINT DATA = COLLEGE;
TITLE *Stu i N i
iy dents in Index Order'; /* (optional) +/
VAR GPA CSCORE INDEX;

RUN;

1-2 (a) DATA TAXPROB;
;NPUT S5 SALARY AGE RACE §;
DATAgﬁ:;:]ss SSN1l.; /* (See Chapter 3 about FORMATS) */
123874414 28000 35 W
646239182 29500 37 B
012437652 35100 40 W
018451357 26500 31 w

;
PRO,X(‘IITI(BANL S DATA = TAXPROB N MEAN MAXDEC=0;

E ‘'Descriptive Stat Y

s el atistics for Salary and aAge’;
RUN;

(b) Add a line after the INPUT statement:
TAX = .30 * SALARY;
Add to the end of the program:

404

Solutions to Problems

PROC SORT DATA=TAXPROB:
BY SS;
RUN;

PROC PRINT DATA=TAXPROB;
TITLE ‘Listing of Salary and Taxes’;

ID SS;
VAR SALARY TAX;
RUN;

DATA MISTARE;
INPUT ID 1-3 TOWN 4-6 REGION 7-9 YEAR 11-12 BUDGET 13-14

VOTER TURNOUT 16-20
(data lines go here)

i
4 PROC MEANS DATA=MISTAKE;
5 VAR ID REGION VOTER TURNOUT;
6

Line 3: Variable name cannot contain a blank. Variable name too
long. (Actually,

405

if we had two variables, VOTER and TURNOUT, the INPUT

statement above would work since we can combine LIST input with column

specifications. However,

for this problem, we intended VOTER TURNOUT to

represent a single variable.) Semicolon missing after TURNOUT 16-20.

Line 5: We probably don‘t want the mean ID. Also, would be more meaningful

to use PROC FREQ for a Categorical variable such as REGION.

DATALINES; missing.

Line 6: Options for PROC MEANS go on the PROC line between the word MEANS

and the semicolon.

The options must have a space between them, not a

comma .
PROC MEANS DATA=MISTAKE N MEAN STD;
VAR ---- ;
RUN;
1-4 we have a SAS data set with the variables AGE, GENDER, RACE, INCOME,
MARITAL, and HOME (homeowner versus renter).
Code Book
Variable Name Col(s) Description and Formats
AGE 1 Age group of subject
1=10t019 2=20-29 3 =30-39
4 = 4049 5=50-5 6=60+
GENDER 2 Gender, 1 =male 2 = female
RACE 3 Race, 1= white 2 = African Am. 3 = hispanic
4 = other
INCOME 4 Income group,1 = 0to $9,999
= 10,000 t0 19,999
3 = 20,000 to 39,000
4 = 40,000 to 59,000
5 = 60,000 to 79,000
6 = 80,000 and over
MARITAL 5 Marital status,1 = single 2 = married
3 = separated 4 = divorced S5 = widowed
HOME 6 Homeowner or renter, 1 = homeowner
0 = renter

o s
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DATA CEO;
INPUT AGE 1 GENDER 2 RACE R (b) PROC PLOT DATA=PROB2_3;
DATALTNES 3 INCOME 4 MARITAL 5 HOME 6; PLOT Y*X;
311411 RUN;
;2310 (c) PROC SORT DATA=PROB2_3;
411221 BY GROUP;
(more data lines) RUN;
RUN;

PROC PLOT DATA=PROB2_3;
PROC FREQ DATA=CEO ORDER=FREQ;

BY GROUP;
*Note, tl.xe ORDER=FREQ option will list the frequencies in PLOT ¥*X;
decreasing frequency order, i.e. the most frequent first; Ruw;

TITLE 'Frequencies and Contingency Tables for CEO Report';

TABLES AGE GENDER RACE INCOME MARITAL HOME
AGE*GENDER*RACE INCOME*AGE*GENDER MARITAL*HOME;

*or whatever other combinations you are interested in;

Don’t forget that you must have your data set sorted by the BY variables before you can use a BY
statement in a PROC.

RUN; 2-4 Program to read liver data and produce statistics:

DATA LIVER;
INPUT SUBJ DOSE REACT LIVER WT SPLEEN;
DATALINES;
115.410.28.9
215.99.87.3
(more data lines)

PROC CHART DATA=CEO;
TITLE 'Histograms';

VBAR AGE GENDER RACE INCOME MARITAL HOME / DISCRETE;
RUN;

1-5 DATA PROB1_S;

H
INPUT ID RACE $ SBP DBP HR; PROC SORT DATA=LIVER;

AT BY DOSE; *Note, optional since already in dose order;
001 W 130 80 60 RON;
002 B 140 90 70
003 W 120 70 64 B ITie. Disteioations for viver Doca:
oo " b I b TITLE 'Distributions for Liver Data';
005 B 124 86 72 VAR REACT -- SPLEEN:
; RUN;
PROC SORT DATA=PROB1_5;
oY one, PROC UNIVARIATE DATA=LIVER NORMAL PLOT;
RUN;

BY DOSE;
ROC TITLE ‘Distributions for Liver Data by Dose';
R rrre  DATAEROBL_S NOOBS; VAR REACT -- SPLEEN;

TITLE ‘Race and Hemodynamic Variables’;

RUN;
VAR ID RACE SBP DBP;
Rows 251 DATA 123;
2 INPUT AGE STATUS PROGNOSIS DOCTOR GENDER STATUS2
1-6 Add the following line after the INPUT statement: i (dats;x‘?;.;s:s;)
ABP = 2*DBP/3 + SBP/3; ;
ar 5 PROC CHART DATA=123 BY GENDER;
ABP = DBP + (SBP-DBP)/3; . P
7 VBAR PROGNOSIS;
8 RUN;

CHAPTER 2

2-1 PROC FREQ DATA=COLLEGE;

9 PROC PLOT DATA=123;
10 DOCTOR BY PROGNOSIS;

TABLES GENDER; 11 RON;
RUN X
' Line 1: Invalid data set name, cannot start with a number.
%2 PROC FREQ DATA~TAXEROB; Line 2: PROGNOSIS has nine letters. A
TABLES RACE / NOCUM; Line 2: Not really an error, but it would be better to list GENDER with the other demographic
KON variables. . . rab
2-3 (a) PROC CHAR’ = Line 2: Again, not an error, but an ID variable is desirable.
@ o\(::'BAR G:O[?:?A Froee-3s Lines 2and 3:  Boy, we're picky. If you have STATUS2 and STATUS3, STATUS should be
RON; STATUSI.
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. . =] 7:
DATALINES; or CARDS; statement missing between lines 3 and 4. PROC MEANS DATA=PROB2_’

Line 5: Two things wrong here: One, If you use a BY variable, the data set must be sorted in Cmsscg::?;
order of the BY variable; two, a semicolon is missing between PROC CHART and BY VAR S ’
GENDER. RUN;

Line 6: Missing a semicolon at the end of the line.
Line 7: In case you thought this was an error, it isn’t. You can have two (or more) VBAR
statements with one PROC CHART.

Line 8: Missing the keyword PLOT before the plot request. Also, the plot request is of the form
Y*Xnot YBY X.

t first.
If you use a BY statement instead of a CLASS statement, remember to sort your data set fi

CHAPTER 3

3-1 PROC FORMAT;

26 (a) DATA SALES; VALUE FGROUP 1l='CONTROL' 2='DRUG A'

INPUT PERSON § TARGET $ VISITS CALLS UNITS;

3="DRUG B'; .
DATALINES; RUN;
Brown American 3 12 28000
Johnson VRW 6 14 33000 3-2 PROC FORMAT;
Rivera Texam 2 6 8000 VALUE $GENDER 'M'='Male’
Brown Standard 0 22 0 !Fl='Female';
Brown Knowles 2 19 12000 VALUE $PARTY '1'='Republican
Rivera Metro 4 8 13000 ‘2" = 'Democrat .
Rivera Uniman 8 7 27000 '3'='Not Registered';
Johnson Oldham 3 16 8000 VALUE YESNO 0='No' l='Yes';
Johnson Rondo 2 14 2000

RUN;

i
PROC MEANS DATA=SALES N SUM MEAN STD MAXDEC=0;
CLASS PERSON;
TITLE ‘Sales Figures for Each Salesperson’;
VAR VISITS CALLS UNITS;
RUN;
(b) PROC PLOT DATA=SALES;
TITLE 'Sales Plots"';
PLOT VISITS*CALLS=PERSON;

DATA SURVEY;

INPUT ID 1-3 GENDER § 4 PARTY § 5

VOTE 6 FOREIGN 7 SPEND 8;
LABEL PARTY = 'Political Party' ,

VOTE = 'Vote in Last Electio:?rouwr

= 'Agree with Governmen!

::I:;G“ = ‘nguld we Increase Domestic Spending?'; CESNO.

FORMAT GENDER $GENDER. PARTY $PARTY. VOTE FOREIGN SPEND .:

DATALINES;
RON; 007M1110
(c) PROC CHART DATA=SALES; 013F2101
TITLE 'Distribution of Units Sold by Salesperson'; 137F1001
VBAR PERSON /SUMVAR=UNITS TYPE=SUM; 117 1111
RUN; 428M3110
or 017F3101
037M2101

PROC CHART DATA=SALES;
TITLE 'Distribution of Units Sold by Salesperson';
VBAR UNITS /GROUP=PERSON;

RUN;

The first PROC CHART in part (c) above will produce a single bar for each salesperson, the height

PROC FREQ DATA=SURVEY; ,
TITLE 'Political Survey Resulta';
TABLES GENDER PARTY VOTE FOREIGN SPEND;
TABLES VOTE* (SPEND FOREIGN) / CHISQ:

representing the total (sum) of the units sold. The alternate statements will produce an actual frequency RON;
distribution of the number of units sold, for each salesperson, in a side-by-side fashion. 3.3 Method L
. DEMOG;
2-7 A program toread these data and compute means would be: DAT‘;WW ";“GHT o oo 61
DATA PROB2_7; *Create weight groups;
: e § sconm IF 0 LE WEIGHT LT 101 THEN WTGRP=1;
TR ELSE IF 101 LE WEIGHT LT 151 THEN WTGRP=2;
: 5 s ELSE IF 151 LE WEIGHT LE 200 THEN WTGRP=3;
: c : ELSE IF WEIGHT GT 200 THEN WTGRP=4;
: A "o *Create height groups;
: 5 R Ig‘ 0 LE HEIGHT LE 70 THEN HTGRP=1;
: c / ELSE IF HEIGHT GT 70 THEN HTGRP=2;
: A g DATALINES;
5 > 5 155 68 M
: c : 98 60 F
3 c 234

- o A e ——————
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202 72 4
280 75 M
130 63 F

i

PROC FREQ DATA=DEMOG;
TABLES WIGRP*HTGRP;

RON;

(NoTE: You may use <= instead of LE, < instead of LT, and > instead of GT))
Method 2:
PROC FORMAT;

VALUE WTFMT 0-100='1' 101-15
VALUE HTFMT 0-70='1' 71-HIGH=

'2' 151-200='3' 201-HIGH='4';

DATA DEMOG;
INPUT WEIGHT HEIGHT GENDER §;
DATALINES;
155 68 M
98 60 F
202 72 M
280 75 M
130 63 F

PROC FREQ DATA=DEMOG;

TABLES WEIGHT*HEIGHT;

FORMAT WEIGHT WTFMT. HEIGHT HTFMT.;
RUN;

3-4 paTa ASTHMA ;

INPUT ASTHMA § SES $ COUNT;

DATALINES;

YES LOW 40

NO LOW 100

YES HIGH 30

NO HIGH 130

;

PROC FREQ DATA=ASTHMA ;
TITLE 'Relationship between Asthma and SES';
TABLES SES*ASTHMA / CHISQ;
WEIGHT COUNT;

RUN;

Chi-square = 4.026, p = .045.

3-5 DATA VITAMIM;
INPUT V_CASE § V_CONT $ COUNT;
LABEL V_CASE = 'Case Use Vitaming'
V_CONT = 'Control Use Vitamins';
***Note: Values of V_CASE and V_CONT chosen so that 1-YES
will come before 2-NO in the table;
DATALINES;
1-YES 1-YES 100
1-YES 2-NO 50
2-NO 1-YES 90
2-NO 2-NO 200

7

PROC FREQ DATA=VITAMIN;
TITLE ‘Matched Case-control Study*';
TABLES V_CASE * V_CONT / AGREE;
WEIGHT COUNT;

RUN;

Solutions to Problems

Chi-square (McNemar) = 11.429,p = .001 More likely to develop disease X if you do not use
vitamins. (Remember, it is only the discordant pairs (yes/no or no/yes) that contribute to the
McNemar Chi-square.)

3-6 DATA VDT_USE;

INPUT GROUP § VDT § COUNT;

DATALINES;

CASE 1-YES 30

CASE 2-NO 50

CONTROL 1-YES 90

CONTROL 2-NO 200

PROC FREQ DATA=VDT_USE;
TITLE 'Case-control study of VDT Use';
TABLES VDT * GROUP / CHISQ CMH;
WEIGHT COUNT;

RUN;

Chi-square = 274, p > 05 OR = 1.333, 95% CI (.796,2.234).

3-7 DATA CLASS;
INPUT TYPE : $10. PROBLEM § COUNT;
DATALINES;
1-STANDARD 1-YES 30
1-STANDARD 2-NO 220
2-PROOFED 1-YES 20
2-PROOFED 2-NO 280

i
PROC FREQ DATA=CLASS;
TITLE 'Sound Proofing Study':
TABLES TYPE * PROBLEM / CHISQ CMH;
WEIGHT COUNT;
ROUN;
RR = 1.800 (room noise increases the incidence of problems), 95% CI (1.057,3.065).

3-8 PROC FORMAT;
VALUE SIZE 1= 'Small' 2 = '‘Medium' 3 = 'Large' 4 = 'Gigantic‘;

RUN;

DATA CLASS;
INPUT SIZE PROBLEM $ COUNT @@;
FORMAT SIZE SIZE.;
DATALINES;
1 1-YES 3 1 2-NO 12 2 1-YES 6 2-No 22
3 1-YES 17 3 2-NO 38 4 1-YES 80 4 2-NO 120

i
PROC FREQ DATA=CLASS;
TITLE ‘'Relationsghip Between Class Size and Behavior';
TABLES PROBLEM * SIZE / CHISQ;
WEIGHT COUNT;
RUN;

Chi-square test for trend = 6.038,p = .014.
Nore: The chi-square for the 2 by 4 table is 6.264, with p = .094.

3-9 DATA TEMP;
INPUT T_CONTRL § GROUP : $10. COLD § COUNT;
DATALINES;
1 -POOR SMOKERS 1-YES 30
1-POOR SMOKERS 2-NO 50
1 -POOR NONSMOKERS 1-YES 40
1-POOR NONSMOKERS 2-NO 100
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2 -GOOD 8MOKERS 1-YES 20
2 -GOOD SMOKERS 2-NO 55
2 -GOOD NONSMOKERS 1-YES 3§
2 -GOOD NONSMOKERS 2-NO 150

i
PROC FREQ DATA=TEMP;
TITLE ‘Relationship Between Temperature Control and Colds';
TABLES GROUP * T_CONTRL * COLD / ALL;
WEIGHT COUNT;
RUN;

The overall RR for the combined tables = 1.468.
The 95% CI is (1.086,1.985).
The p-value is .013.

3-10 PROC FORMAT;

31

VALUE PROB 1= ‘Cold' 2= 'Flu' 3 = 'Trouble Sleep’
4 = 'Chest pain' = ‘Muscle Pain‘' 6 = 'Headache’

7 = 'Overweight' 8= 'High BP' 9 = ‘Hearing Loss';
RUN;

DATA PATIENT;
INPUT SUBJ 1-2 PROB1 3 PROB2 4 PROB3 5 HR 6-8 SBP 9-11 DBP 12-14;

DATALINES;

11127 78130 80
1787 82180110
031 62120 78
4261 68130 80
89 58120 76
9948 82178100

7
PROC MEANS DATA=PATIENT N MEAN STD MAXDEC = 1;
TITLE 'Statistics from Patient Data Base';
VAR HR SBP DBP;
RUN;
For part (b) add:
(Solution without arrays)
DATA PROBLEN;
SET PATLIENT;
PROB = PROB1;
IF PROB NE . THEN OUTPUT;
PROB = PROB2; PROB = XPROB[I];
IF PROB NE . THEN OUTPUT; IF PROB NE . THEN OUTPUT;
PROB = PROB3; 8ND;
IF PROB NE . THEN OUTPUT; FORMAT PROB PROB.;
FORMAT PROB PROB.; KEEP PROB;
KEEP PROB; RUN;
RUN

(Solution with arrays)

DATA PROBLEM;
SET PATIENT;
ARRAY XPROB[3] PROBL-PROB3;
DOI=1TO 3;

PROC FREQ DATA=PROBLEM;
PROC FREQ DATA=PROBLEN; TABLES PROB;
TABLES PROB; RUN;
RUN;

Lime 3: The formats cannot be assigned to variables before they have been defined. Therefore,
move lines 5 through 8 0 the beginning of the program (before line 1).

Line 11: PROC FREQ uses the keyword TABLES, not VAR, to specify a list of variables.

Line 11: You cannot use the CHISQ option unless a two-way table (or higher order) is specified.
That is, we could have written:
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PROC FREQ DATA=IGOOFED;
TABLES GENDER*RACE / CHISQ:
RUN;
Line 14: You cannot use a BY statement unless the data set has been sorted first by the same
variable.

CHAPTER 4

4-1 DATA PROB4_1;

42

INPUT @1 ID 3.
@5 (DOB ST_DATE END_DATE) (MMDDYY6.) -
@23 SALES 4.;
AGE = (ST_DATE - DOB) / 365.25;
*For section E, substitute the line below for AGE;
AGE = INT((ST_DATE - DOB) / 365.25);
LENGTH = (END_DATE - ST_DATE) / 365.25;
*or LENGTH = (END_DATE - ST_DATE + 1) / 365.25;
SALES_YR = SALES / LENGTH;
*For section, E substitute the line below for SALES_YR;
SALES_YR = ROUND ((SALES/LENGTH),10);
FORMAT DOB MMDDYY8. SALES_YR DOLLARS.;
DATALINES;
001 10214611128012288887343
002 09135502028002049088123
005 06064003128103128550000
003 07054411158011139089544

i
PROC PRINT DATA=PROB4_1;
TITLE 'Report for Homework Problem 4-1';

ID ID;
VAR DOB AGE LENGTH SALES_YR;
RUN;
DATA RATS;
INPUT @1 RAT NO 1.
@3 DoB DATE7.

@11 DISEASE DATE7.
@19 DEATH DATE7.
@27 GROUP $1.;
BIR_TO_D = DISEASE - DOB;
DIS_TO_D = DBATH - DISEASE;
AGE = DEATE - DOB;
FORMAT DOB DISEASE DEATH MMDDYYS.;

23MAY90 23JUN9O 28JUN9O
21MAY90 27JUN9C 05J0UL90
23MAY90 25JUN9C 01JULIC
27MAY90 07JULS0 15JULI0
239JUNSO 220U0L90
26MAY90 03JULSO 03AUGI0
24MAY90 01JULSO 29JUL90
29MAY90 15JULS0 18AUGY0

e DN AUV e WN R
N
g
"
©
=3
Wwww Y

'ROC MEANS DATA=RATS MAXDEC=1 N MEAN STD STDERR;
CLASS GROUP;
VAR BIR_TO_D -- AGE;

RUN;
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4-3 DATA PATIENTS;

INPUT @1 ID 3.
@4 DATE MMDDYY6.
@10 HR 3.

@13 ssp 3.

@16 pep 3.

@19 px 3.

@22 DOCFEE 4.

@26 LABFEE d.;

FORMAT DATE MMDDYYS.;

DATALINES;
00710218307012008001400400150
00712018307213009002000500200
00909038306611007013700300000
00507058307414008201300900000
00501158208018009601402001500
00506188207017008401400800400
00507038306414008401400800200

PROC SORT DATA=PATIENTS;
BY ID DATE;
RUN;
DATA PROB4_3;
SET PATIENTS;
BY ID;
*omit the first VISIT for each patient;
IF NOT FIRST.ID;
RUN;

PROC MEANS DATA=PROBA_3 NOPRINT NWAY;
CLASS ID;
VAR HR SBP DBP;
OUTPUT OUT=PAT_MEAN MEAN=;

RUN;
4-4 PROC SORT DATA=PATIENTS; **+From problem 4-3;
BY ID;
RUN;

DATA PROB4_4;

SET PATIENTS;

BY ID;

*Omit patients with only one visit;
IF FIRST.ID AND LAST.ID THEN DELETE;
ROUN;

PROC MEANS DATA=PROB4_4 NOPRINT NWAY ;
CLASS ID;
VAR HR SBP DBP;
OUTPUT OUT=PAT_MEAN MEAN=;

RUN;

45 ***Program to create data set BLOOD;
DATA BLOOD;
LENGTH GROUP § 1;
INPUT ID GROUP § TIME WBC RBC @@;

DATALINES;

1A180004.5 1A 2 8200 4.8 1A 3 8400 5.2
1A dB83005.3 1A5 8400 5.5

2 A178004¢.9 2 a2 7900 5.0

3 B 18200 5.4 3B 28300 5.4 3 B 3 8300 5.2
3 B 48200 4.9 3B 58300 5.0

Solutions to Problems
4 B 18600 5.5
5 A 17800 5.2 5A 2 80005.2 5A3 8200 5.4
5 A 4 8400 5.5

PROC MEANS DATA=BLOOD NWAY NOPRINT;
CLASS ID;
ID GROUP;
VAR WBC RBC; .
OUTPUT OUT=TEMP (WHERE={(_FREQ_ GT 2) DROP=_TYPE_) MEAN=;

RUN;

PROC PRINT DATA=TEMP NOOBS; ,
TITLE 'Listing of data set TEMP';

ROUN;
4-6 Replace the OUTPUT statement of PROC MEANS with:

OUTPUT OUT=TENP(WHERE=(_FREQ_ GT 2) DROP= _TYPE_)
MEAN= STD=SD_WBC SD_RBC;

CHAPTER 5

51 (a) DATA PROBS_1;
INPUT X Y 2;
DATALINES
1315
7 13 7
8125
3414
4710

; = .965 p=.0078 */
=PROBS_1; /* xve. y r 9
RO o paTA ’ /* x va. z r=—.975 p=.0047 */

VAR X;
WITH Y Z;
RUN; .
(b) PROC CORR DATA=PROB5_1; /* y va. z r=-.963 p=.0084
VAR X Y %;
RUN;

5-2 DATA PRESSURE;
INPUT AGE SBP;
DATALINES;
15 116
20 120
25 130
30 132
40 150
50 148

H

PROC CORR DATA=PRESSURE;
VAR AGE SBP;

ROUN;

5-3 (a) PROC REG DATA=PROB5_1;
MODEL Y =X;
RUN;
Intercept = .781, prob > |T| = 5753,
Slope = 1.524, prob >

T| = .0078.
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5-4 DATA PROBS_4;
INPUT X Y 2;
LX = LOG(X) ;
LY = LOG(Y) ;
LZ = LOG(Z) ;

DATALINES ;

315

13 7

12 s

4 14

7 10

efwoaR

PROC CORR DATA=PROBS_4;
VAR LX LY LZ;
ROUN;
§-5 (a) PROC PLOT DATA=PROBS_1;
PLOT Y*X;
RUN;
(b) PROC REG DATA=PROBS_1;
MODEL Y = X;
PLOT PREDICTED.*X='P' Y*X='o'/ OVERLAY;
RUN;
You may use any plotting symbol you wish for the two plots; we used P’s and o’s.
5-6 Sections (a-c):

DATA PROBS_6;
INPUT COUNTY POP HOSPITAL FIRE_CO RURAL $;

DATALINES;
135 1 2 vyES
2 88 5 8 NO
3 5 0 1 YES
4 55 3 3 YES
5 75 ¢ 5 NO
6 125 5 8 NO
7225 7 9 YES
8 500 10 11 NO

i

PROC UNIVARIATE DATA=PROB5_6 NORMAL PLOT;
TITLE 'Checking the Distributions’;
VAR POP HOSPITAL FIRE_CO;

RUN;

PROC CORR DATA=PROB5_6 NOSIMPLE PEARSON SPEARMAN;
TITLE ‘'Correlation Matrix';
VAR POP HOSPITAL FIRE_CO;

RUN;

Because of the outliers in the population variable, we prefer the Spearman correlation for this
problem.

(d) We can use the output from UNIVARIATE to find the medians and do the recoding. In
Chapter 6 we will sec that PROC RANK can be used to produce a median cut icall,
by using the GROUPS=2 option. For now, we will recode the variables using formats. You can
also create new variables in the data step with IF statements.

PROC FORMAT;
VALUE POP LOW-81='Below median' 82-HIGH='Above Median';
VALUE HOSPITAL LOW-4='Below Nedian' 5-HIGH='Above Median‘;
VALUE FIRE CO LOW-6='Below Median' 7-HIGH='Above Median';
RUN;

e oppr———————

SRR
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PROC FREQ DATA=PROB5_6; ***Data set from above;
TITLE 'Cross Tabulations': .
FORMAT POP POP. HOSPITAL HOSPITAL. FIRE_CO FIRE_CO.;
TABLES RURAL* (POP HOSPITAL FIRE_CO) / CHISQ;

RUN;

in a dash.
5-7 Line 1: Incorrect data set name, cannot contain a )
Lines 3-5: These lines will recode missing values to 1, which we probably do not want to do. the

correct form of these statements is:

IF X LE 0 AND X NE . THEN X=1;

Line 10: The options PEARSON and SPEARMAN do not follow a slash. The line should read:
PROC CORR DATA=MANY ERR PEARSON SPEARMAN;

Line 11: The correct form for a list of variables where the “ro6t” is not the same is:

VAR X -- LOGZ;
Remember, the single dash is used for a list of variables such as ABC1 - ABC2S.

CHAPTER 6

6-1 DATA HEADACHE;
INPUT TREAT § TIME @@;
DATALINES;
A 40 A 42 A 48 A 35 A 62 A 35
T35 T37 T42 T 22 T 38 T 29

;ROC TTEST DATA=HEADACHE;
CLASS TREAT;
VAR TINE;

RUN;

Not significant at the .05 level (t = 1.93,p = .083).

6-2 PROC NPARIWAY DATA=HEADACHE WILCOXON;
TITLE ‘'Nonparametric Comparisonm';
CLASS TREAT;
VAR TIME;
EXACT WILCOXON;
RUN;

Sum of ranks for A = 48.5; for B,29.5.

Exact two-sided p = .1385 ) o . B B
Approximation using a normal approximation with a continuity correctionz = 145,p = .146.

6-3 Use a paired t-test. We have

DATA PAIR;
INPUT SUBJ A_TINE B_TINE;
DIFF = A_TIME - B_TIME;

DATALINES;

20 18

40 36

30 30

45 46

19 15

27 22

32 29

26 25

Mo NON R WD
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PROC MEANS DATA=PAIR N MEAN
VAR DIFF;
RUN;

STD STDERR T PRT MAXDEC=3;

t =+3.00,p = -0199;drug B works faster.
6-4 PROC FORMAT;
VALUE GROUP 0='A' 1='B' =C';
RUN;

DATA RANDOM;
INPUT SUBJ @@;
GROUP = RANUNI (0); *NOTE: CAN ALSO USE UNIFORM FUNCTION;
DATALINES;
001 137 454 343 257 876 233 165 002
7
PROC RANK DATA=RANDOM OUT=RANKED GROUP=3;
VAR GROUP;
RUN;

PROC SORT DATA=RANKED;
BY SUBJ;
RUN;

PROC PRINT DATA=RANKED;
TITLE ‘Listing of Sub
FORMAT GROUP GROUP.;
ID SUBJ;

VAR GROUP;

RUN;

ject Numbers and Group Assignmentas’;

6-5 Line 2: Variable name HEARTRATE too long.
Line 11: Correct procedure name is TTEST

CHAPTER 7

7-1 DATA BRANDTST;
DO BRAND='A‘, 'N', T
DO SUBJ=1 TO 8;
INPUT TIME e;
OUTPUT;
END;

END;
DATALINES;
8 10 9 11 10 10 8 12
47556764
12 8 10 10 11 9 9 12

7

PROC ANOVA DATA=BRANDTST;
CLASSES BRAND;
MODEL TIME=BRAND;
MEANS BRAND / DUNCAN;

RUN;

F = 28.89,p = .0001;N is significantly lower than either T or A (p < .05).Tand A are not

significantly different (p > .05).
7-2 DATA BOUNCE;
DO AGE = 'NEW', ‘oLD* ;
DO BRAND = 'W', 'PY;
DO I=1T05;
INPUT BOUNCES @;

Solutions to Problerns

END;
DROP I;
DATALINES;
67 72 74 82 81 75 76 80 72 73
46 44 45 51 43 63 62 66 62 60

;
PROC ANOVA DATA=BOUNCE; .
TITLE 'Two-way ANOVA (AGE by BRAND) for Tennis Balls';
CLASSES AGE BRAND;
MODEL BOUNCES = AGE | BRAND;
MEANS AGE | BRAND;
RUN;
NortE: A simpler INPUT statement could have been used:
INPUT BRAND $ AGE § BOUNCES;
‘With the data listed one number per line such as:
W NEW 67
P NEW 75
etc.

Both main effects (AGE and BRAND) are significant (p = .0001 and .0002, respectively).
The interaction is also significant, p = .0002.
7-3 (a) DATA SODA;
INPUT BRAND § AGEGRP RATING;
DATALINES;

NS UNMEYRMNOQOONNNQTYYNINAQONO
NNNNONNNNNNNHHEHRRMRBRHERR R R
MOANNDDILVDBDOBOLOW®EWLAOUN G

'ROC GLM DATA=SODA;
TITLE 'Two-way Unbalanced ANOVA';
CLASSES BRAND AGEGRP;
MODEL RATING = BRAND | AGEGRP;
MEANS BRAND | AGEGRP;

RUN;
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(b) PROC MEANS DATA=SODA NWAY NOPRINT;
CLASS BRAND AGEGRP;
VAR RATING;
OUTPUT OUT=MEANS MEAN=;
RON;

PROC PLOT DATA=MEANS;
PLOT RATING*AGEGRP=BRAND;
RUN;

{c) PROC SORT DATA=SODA;
BY AGEGRP;
RUN;

PROC TTEST DATA=SODA;
BY AGEGRP;
CLASS BRAND;
VAR RATING;

RUN;

7-4 PROC TTEST DATA=BRANDTST;
WHERE BRAND=‘A' OR BRAND='T';

/* Alternative: WHERE BRAND IN ('A','T'); */
/* WHERE BRAND NE 'N'; is not as desirable, since
in a more general data 8set, there may be missing

or miscoded values */
CLASS BRAND;
VAR TIME;
RUN;

7-5 Line 4: Since thisisa two-way unbalanced design, PROC GLM should be used instead of PROC

ANOVA,

76 ***part a;
DATA PROB7_6;

DO GROUP = 'A', 'B*,'C’;
INPUT M_SCORE AGE @;
OUTPUT;

END;

DATALINES;

90 16 92 18 97 18
88 15 88 13 92 17
72 12 76 12 88 16
82 14 78 14 92 17
65 12 90 17 99 17
74 13 68 12 82 14

PROC ANOVA DATA=PROB7_6;
CLASS GROUP;
MODEL: M_SCORE AGE = GROUP;
MEANS GROUP /SNK;

RUN;

***part B,
PROC GLM DATA=PROB7_6;

TITLE ‘'Testing Assumption of Homoge:

CLASS GROUP;
MODEL M_SCORE = AGE GROUP AGE*GROUP;
RUN;

/* Interaction term not significant. OK t

covariance */

neity of Slope‘;

© do analysis of
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**#part C;
PROC GLM DATA=PROB7_6;

TITLE ‘'Analysis of Covariance';

CLASS GROUP;

MODEL M_SCORE = AGE GROUP;

LSMEANS GROUP /PDIFF;
RON;
In the unadjusted analysis, the groups are significantly different (p = .0479) and the ages are x_:earl:'
significant (p = .0559). The null hypothesis that the slop;s are equal among Lhe'three groups is n:
rejected (AGE*GROUP interaction p = .1790). Adjusting for age, the group differences on mat

scores disappears completely (p = .7606).

CHAPTER 8

8-1 DATA SHIRT;
INPUT (.'rmx:x BRAND COLOR WORK OVERALL)(1.);

INDEX = (3*OVERALL + 2*WORK + COLOR) /6.0;
DATALINES;
{(data lines)

i

PROC ANOVA DATA=SHIRT;
CLASSES JUDGE BRAND;
MODEL COLOR WORK OVERALL INDEX = JUDGE BRAND;
MEANS BRAND / DUNCAN;

RUN;

8-2 DATA WATER;

INPUT ID 1-3 CITY § 4 RATING 5;

DATALINES;

(data lines)

i

PROC ANOVA DATA=WATER;
CLASSES ID CITY;
MODEL RATING = ID CITY;
MEANS CITY /SNK;

RUN;

8-3 PROC FORMAT; ,
VALUE CITY l='New York' 2='New Orleans
3='Chicago’ 4='Danver';
RUN;

DATA PROB8_3;
INPUT JUDGE 1-3 @;
DO CITY=1 TO 4;
INPUT TASTE 1. @;
OUTPUT;
END;
FORMAT CITY CITY.;
DATALINES;
0018685
0025654
0037464
0047573
:"sum PROC ANOVA statements as problem 7-2 except for the

Data Set Name;
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***Solution using the REPEATED statement of PROC ANOVA;
DATA REPEAT;

INPUT ID 1-3 @4 (RATINGI—RATING‘)(l.);
DATALINES;
0018685
0025654
0037464
0047573

PROC ANOVA DATA=REPEAT;
MODEL RATING1-RATING4 = /NOUNI;
REPEATED CITY;

RON;

The unadjusted comparison shows that the cities are not all equal (p = .0067). Using the
Greenhouse-Geisser correction, the p-value is .0375 and, using the Huynh-Feldt correction, the

p-value is .0108. Therefore, you should feel comfortable in rejecting the null hypothesis at the .05

level, regardless of which correction (if any) you use.
8-4 DATA RATS;
INPUT GROUP $ RATNO DISTAL PROXIMAL;
DATALINES;
34 38
28 38
38 48
32 38
44 42
52 48
46 46
54 50

hECA-E-E-R BN N
IR T I

PROC ANOVA DATA=RATS;
CLASSES GROUP;
MODEL DISTAL PROXIMAL = GROUP / NOUNI;
REPEATED LOCATION 2;

ROUN;

Although the main effects are significant (GROUP p = 01, LOCATION p = .0308) the
interaction term is highly significant (GROUP*LOCATION interaction F = 31.58,p = .0014).
We should look carefully at the interaction graph to see exactly what is going on.

8-5 The DO loops are in the wrong order, and the OUTPUT statement is missing, Lines 2 through 8
should read:
DO SUBJ=1 TO 3;
DO GROUP='CONTROL*®, ‘DRUG" ;
DO TIME='BEFORE', 'AFTER';
INPUT SCORE @;
OUTPUT;
END;
END;
END;

There are no other errors.

CHAPTER 9

9-1 DATA TOMATO;
DO LIGHT=1 TO 3;
DO WATER=1 TO 2;
DO I=1 TO 3;
INPUT YIELD @;

Solutions to Problems

OUTPUT;
END;
END;
END;
DROP I;
I;QT;L;M:?'H 14 16 14 12 20 16 16 18 25 20 25 27 29

i
PROC REG DATA=TOMATO;
MODEL YIELD = LIGHT WATER;
RUN;
9-2 DATA LIBRARY;
INPUT BOOKS ENROLL DEGREE AREA;

DATALINES;

4 5 3 20
5 8 3 40
10 40 3 100
1 4 2 50
.5 2 1 300
2 8 1400
7 30 3 40
4 20 2 200
110 2 5
112 1 100

7
PROC REG DATA=LIBRARY; )
MODEL BOOKS = ENROLL DEGREE AREA / SELECTION = FORWARD;
RUN;
9.3 DATA PROBY_3;
INPUT GPA HS_GPA BOARD IQ;

DATALINES;
3.9 3.8 680 130
3.9 3.9 720 110
3.8 3.8 650 120
3.1 3.5 620 125
2.9 2.7 480 110
2.7 2.5 440 100
2.2 2.5 500 115
2.1 1.9 380 105
1.9 2.2 380 110
1.4 2.4 400 110
i

PROC REG DATA=PROBI_3;
MODEL GPA = HS_GPA BOARD IQ / SELECTION=MAXR;
RUN;

9-4 DATA PEOPLE;
INPUT HEIGHT WAIST LEG ARM WEIGHT;
DATALINES;
(data lines)

7

PROC CORR DATA=PEOPLE NOSIMPLE;
VAR HEIGHT--WEIGHT;

RON;

PROC REG DATA=PEOPLE; ;
MODEL WEIGHT = HEIGHT WAIST LEG ARM
SELECTION = STEPWISE;
RUN;

(You may also use FORWARD, BACKWARD, or MAXR instead of STEPWISE)
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9-5 Ha! No errors here. As a matter of fact, you can use this program for problem 9-4.

9~6 DATA CATEGOR;
SET LIBRARY;**%From Problem 9-2;
MASTERS = 0;
PH D=0;
IF DEGREE = 2 THEN MASTERS = 1;
ELSE IF DEGREE = 3 THEN PH D= 1;
RUN;

PROC REG DATA=CATEGOR;
MODEL BOOKS = ENROLL AREA MASTERS PH_ D/
SELECTION = FORWARD;
ROUN;

Program Name: PROBY9_7.SAS in C:\APPLIED
Purpose: Solution to homework problem 9-7
Date: June 29, 1996

PROC FORMAT;
VALUE YES NO 0 = 'No'
= 'Yea';
RON;

DATA LOGISTIC;
INPUT ACCIDENT DRINK PREVIOUS;

LABEL ACCIDENT = 'Accident in Last Year?'
DRINK = 'Drinking Problem?*
PREVIOUS = 'Accident in Previous Year?';

FORMAT ACCIDENT DRINK PREVIOUS YES_NO.;
DATALINES;
(data lines)

i
PROC LOGISTIC DATA=LOGISTIC DESCENDING;
TITLE 'Predicting Accidents Using Logistic Regression';
MODEL: ACCIDENT = DRINK PREVIOUS /
SELECTION = FORWARD
RISKLIMITS ;
RUN;
QUIT;
The logistic regression equation is:

LOG(0dds of accident) = ~1.9207 + 1.9559 (DRINK)
+ 1.7770 (PREVIOUS).

The odds and probability of an accident for person 1 (no drinking history, no previous accidents)
are .1465 and .1278 respectively. For person 2 (history of a drinking problem but no previous
accident history), they are 1.0358 and 5088 respectively. The odds ratio is 1.0358.1465 = 7.07,
which agrees with the PROC LOGISTIC output.

CHAPTER 10

10-1 DATA QUEST;
INPUT ID 1-3 AGE 4-5 GENDER $ 6 RACE § 7 MARITAL § 8
EDUC $ 9 PRES 10 ARMS 11 CITIES 12;
DATALINES;
001091113232
002452222422

Solutions to Problems

003351324442
004271111121
005682132333
006651243425

; =VARIMAX
PROC FACTOR DATA=QUEST ROTATE:
NFACTORS=2 OUT=FACT;

TITLE 'Example of Factor Analysis';
VAR PRES ARMS CITIES;
PRIORS 8MC;

RUN;

10-2 DATA SCORE;

ARRAY ANS[5] § 1 ANS1-ANSS;
ARRAY KEY{5] § 1 KEY1-KEYS;
ARRAY s[;a[g S1-85; ***Score array l=right,O=wrong;
RETAIN KEY1-KEYS;

IF _N_=1 THEN INPUT (KEY1-KEYS)($1.);

INPUT @1 ID 1-9
@11 (ANS1-ANS5)($1.);

DO I=1TO 5;
s[1] = REY{1] EQ ANS[I];
END;

DATALINES;
ABCDE

123456789 ABCDE
035469871 BBEBB
111222333 ABCBE
212121212 CCCDE
867564733 ABCDA
876543211 DADDE
987876765 ABEEE

;ROC FACTOR DATA=SCORE OUT=FACTDATA NFACTORS=1;
TITLE 'Factor Analysis of Test Data’;
VAR S1-85;
PRIORS SMC;

RUN;

PROC PRINT DATA=FACTDATA;
TITLE 'Listing of Data Set FACTDATA';

RUN;

CHAPTER 11

ltiple choice exam.
Program to score a five item mu.
D:::: The first line is the answer key, remaining lines
contain the student responses .
RE
DAT:mSCsOr A;IS[S] § 1 ANS1-ANSS; ***Student answers;
ARRAY KEY[5] § 1 KEY1-KEY5; ***Answer key;
ARRAY S[5] 3 S1-85; ***Score array l=right,O=wrong;
RETAIN KEY1-KEYS;
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11-2

***Read the answer key;
IF _N_=1 THEN INPUT {KEY1-KEYS) ($1.);

***Read student responses;
INPUT @1 SS 1-9
e11 (ANS1-ANSS) ($1.);
***Score the test;
DOI=11T0S5;
s[1] = keY[1] EQ ANS[I];
ND;

***Compute Raw and Percentage scores;
RAW = SUM (OF S1-85);
PERCENT = 100*RAW / 5;

KEEP SS RAW PERCENT 81-85; ***51-55 needed for 11-2;

LABEL SS = 'Social Security Number'

RAW = 'Raw Score'
PERCENT = 'Percent Score';

DATALINES;

BCDAA

123456789 BCDAA

001445559 ABCDE

01212123¢ BCCas

135632837 CBDAA

005009999 ECECE

789787878 BCDAA

i

PROC SORT DATA=SCORE;
BY s8S;

RUN;

PROC PRINT DATA=SCORE LABEL;
TITLE ‘Listing of Student Scores in SS Order';
ID SS;
VAR RAW PERCENT;
FORMAT SS SSN11.;
RUN; '

PROC SORT DATA=SCORE;
BY DESCENDING RAW;
RUN;

PROC PRINT DATA=SCORE LABEL;
TITLE 'Listing of Student Scores in Decreasing Order‘;
ID 88;
VAR RAW PERCENT;
FORMAT SS SSN11.;
RON;

PROC CORR DATA=SCORE ALPHA NOSIMPLE;
TITLE 'Computing KR-20';
VAR S51-85;

RUN;

PROC CORR DATA=SCORE NOSIMPLE;
TITLE ‘'Point-biserial Correlations';
VAR S51-85;

WITE RAW; ***Same results if Yyou use PERCENT;
RUN;

Solutions to Probiems

11-3 DATA KAPPA;
LENGTH RATER_1 RATER 2 § 1;
INPUT RATER_1 RATER_2 @@;
DATALINES;
cC XX X CX XC XX XX
X ¢cCC xXx ¢ ceCc XXx c¢C

~ao

OC FREQ DATA=KAPPA; .
PR ’I‘ITLBQ'InCer-rater Reliability: Coefficient hp‘;:r’~’
TABLES RATER_1 * RATER_2 / AGREE NOCUM NOPERCENT;

RUN;

CHAPTER 12

12-1 (a) DATA PROB12_1;
INPUT GROUP § SCORE;

DATALINES;

77

76

74

72

78

80

84

88

87

90

FCECERREEL]

i
(b) DATA PROB10_1;
INPUT GROUP § SCORE @@;
DATALINES;
P77 P76P 74P 72P78
D 80 D 84 D 88 D 87 D 90

;
(c) DATA PROB10_1:
DO GROUP= 'P','D';
DO I=1TO 5;
INPUT SCORE @e;
OUTPUT;
END;
END;
DROP I;
DATALIMES;
77 76 74 72 78
80 84 88 87 90
;
(d) DATA PROB10_1;
DO GROUP= ‘P', 'D';
DO I=1TOS;
SUBJ+1;
INPUT SCORE @@;
OUTPUT;

DATALINES;

77 76 74 72 78
80 84 88 87 90
H
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12-2 DATA PROB12_2;
INFILE DATALINES DLM=',*;
INPUT X1-X4;
DATALINES;

12-3 DATA PROB12_3;
INFILE DATALINES DSD;
INPUT X Y C § 2;
DATALINES;
1,,“HELLO",7
2,4, TEXT,8
S:/,6
7
12-4 DATA OFFICE;
INFORMAT VISIT MMDDYY8. DX $10. COST DOLLARS. ;
INFILE DATALINES MISSOVER;
INPUT ID VISIT DX COST;

DATALINES;

1 10/01/96 V075 $102.45

2 02/05/97 X123456789 $3,123
3 07/07/96 V4568

4 11/11/96 A123 $777.

7

12-5 DATA PROB12_5;
INPUT SUBJECT § 1-3
1 $s
7-8
9-10
11-12;

N

DATALINES;
Al2 X 111213
Al3 W 102030
7

12-6 DATA PROB12_6;
INPUT €1 SUBJECT §3.

€5 Al $1.
@7 (XY Z) (2.); /* OK to specify X, Y, and 2 */
DATALINES; /* separately */

Al2 X 111213
Al3 W 102030
i

127 paTA PROB12_7;

INPUT @1 ID 3.
@4 GENDER $1.
@10 (DOB VISIT DISCHRG) (MMDDYYS6.)
@30 (SBP1-SBP3) (3. + 5)
@33 (DBP1-DBP3) (3. + 5)
@36 (HR1-HR3) (2. + 6);

FORMAT DOB VISIT DISCHRG MMDDYYS. ;

DATALINES;
1234 102146111196111396 130 8668134 8872136 8870
456F 010150122596020597 220110822101028424012084

7
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12-8 DATA PROB12_8;

INPUT #1 @1 ID 2.
e x 2.
@ Y 2.
#2 @3 a1 §3.
@ A2 $1.;
DATALINES;
01 2345
AAAX
02 9876
BBBY

;

129 DATA PROB12_9;
INPUT X Y @@;
DATALINES;
12 34 56 78
11 12 13 14
21 22 23 24 25 26 27 28
7

12-10 DATA SURVEY;
INPUT @12 TEST 1. @;
IF TEST = 1 THEN
INPUT @1 ID $3.
@4 HEIGHT 2.
@6 WEIGHT 3.;
ELSE IF TEST = 2 THEN
INPUT @1 ID §3.
@4 AGE 2.
@6 HEIGHT 2.
@8 WEIGHT 3.;
DROP TEST:
DATALINES;
00168155 1
00272201 1
0034570170 2
0045562 90 2
7

CHAPTER 13

13-1 LYBNAME A ‘A:\';
A.BILBO;
DAT:NFILB *A:FRODO' PAD; *(Don't forget the PAD);
INPUT ID 1-3 AGE 5-6 HR 8-10 SBP 12-14 DBP 16-18;
AVEBP = 2+DBP/3 + SBP/3;
RUN;

DATA A.HIBP;

SET A.BILBO;

IF AVEBP GE 100;
RUN; o
Alternative solutions using a WHERE statement or WHERE data set option:

DATA A.HIBP;

SET A.BILBO;

WHERE AVEBP GE 100;
RUN;
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or

DATA A.HIBP;

SET A.BILBO(WHERE= (AVEBP GE 100));
RUN;

13-2 LIBNAME INDATA 'C:\SASDATA';
OPTIONS FMTSEARCH= (INDATA) ;
***Alternative is to use the default library name LIBRARY;
PROC FREQ DATA=INDATA.SURVEY ORDER=FREQ;
TITLE ‘'Frequencies for ICD_9 codes from the 1990 Survey';
TABLES ICD_9;
RUN;

PROC MEANS DATA=INDATA.SURVEY N MEAN
STD STDERR MIN MAX MAXDEC=2;
TITLE 'Descriptive Statistics for the Survey';
VAR AGE;
RUN;

13-3 LIBNAME C 'C:\MYDATA;
DATA C.DEM_9697;
IF END96 NE 1 THEN INFILE ‘A:DEM_1996° END = END96;
ELSE INFILE 'A:DEM_1997°;
INPUT @1 ID $3.
@4 AGE 2.
@6 JOB_CODE $1.
@7 SALARY 6.;
RUN;
13-4 DATA PROB13_4;
INFILE ‘B:SAMPLE.DTA' LRECL=320 MISSOVER;
INPUT X1-X100;
RUN;

13-5 ***DATA step to create MILTON;

DATA MILTON;
INPUT X Y A B C Z;

DATALINES;

123456

11 22 33 44 55 66

DATA _NULL_; ***No need to create a SAS data set;
SET MILTON;
FILE 'C:\MYDATA\OUTDATA®;
PUT @1 (A B C) (3.);

RUN;

CHAPTER 14

14-1 (a) DATA GYM;
LENGTH GENDER § 1;
INPUT ID GENDER AGE VAULT FLOOR P_BAR;
***GENDER is already declared a character variable by
the LENGTH statement so a § is not needed in the INPUT

statement;
DATALINES;
N M 8 7.5 7.2 6.5
5 F 14 7.9 8.2 6.8
2 F 10 5.6 5.7 5.8
7 “ 9 5.4 5.9 6.1
6 F 15 8.2 8.2 7.9

Solutions to Problems

(b) DATA MALE_GYM;

142

14-3

SET GYM;
IF GENDER = 'M';
RUN;

or

DATA MALE_GYM; .
SET GYM(WHERE= (GENDER= 'M'));
RUN;

(c) DATA OLDER_F;
GYM;
§§TGBN‘DBR- 'F' AND AGE GE 10; ***WHERE statement OK;

RUN;
or

DATA OLDER_F; .
SET GYM(WHERE= (GENDER = 'F' AND AGE GE 10));

RUN;
DATA YEAR1996;
INPUT ID HEIGHT WEIGHT;
DATALINES;
2 68 155
1 63 102
4 61 111
;
DATA YEAR1997;
INPUT ID HEIGHT WEIGHT;
DATALINES;
7 72 202
5 78 220
3 66 105

i
DATA BOTH;
SET YEAR1996 YEAR1997;
RUN;
DATA MONEY; )
INPUT ID INCOME : $1. L_NAME : $10.;
DATALINES;
3 A Klein
7 B Cesar
8 A Solanchick
1 B Warlock
5 A Cassidy
2 B Volick
i
P!

ROC SORT DATA=GYM;
BY ID;
RUN;

PROC SORT DATA=MONEY;
BY ID;
RUN;

DATA GYMMONEY;
MERGE GYM(IN=IN_GYM) MONEY;
BY ID;
IF IN_GYM;

RUN;
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PROC PRINT DATA=GYMMONEY;
e
TI;Not?: GYMMONEY already in ID order;
LE 'Listing of Gym and Financial Data';

ID Ip;
VAR L_NAME GENDER AGE;
RUN;
14-4 PROC SORT DATA=BOTH:
BY ID;
RUN;
DATA FREDDY;

MERGE GYMMONEY (IN=ONE)
BOTH (IN=TWO);
BY ID;
IF ONE AND TWO;
RUN;

PROC PRINT DATA=FREDDY NOOBS;
TITLE 'Listing of Dat. ’
- g a Set FREDDY';

14-5 DATA FINANCE;
xmmnl,:m‘m GENDER PLAN § 1;
NPUT 'OME GENDER PLAN .
DATALINES; ee:
ANW AFX BMY BFz

i

PROC SORT DATA=FINANCE;
BY GENDER INCOME;

RUN;

PROC SORT DATA=GYMMONEY;
BY GENDER INCOME;
RUN;

DATA PINAL;
MERGE PINANCE GYMMONEY;
BY GENDER INCOME;

RUN;

PRO; PRINT DATA=FINAL NOOBS ;
ITLE 'Li
- sting of Data Set FINAL';

14-6 DATA NEW;
INFILE DATALINES MISSOVER;
NI b
of short line
INPUT ID GENDER : $1. AGI \ULT BAR 5’
DATALINES; " VALY BmAR
3...6.7
5.158.17.2
7P

i

PROC SORT DATA=NEW;
BY ID;

RUN;

PROC SORT DATA=GYM;
BY ID;
RUN;

4
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DATA GYM_2;
UPDATE GYM NEW;
BY ID;

RUN;

PROC PRINT DATA=GYM_2 NOOBS;
TITLE 'Listing of Data Set GYM 2';
RUN;
An alternative way to create the update (NEW) data set is:

DATA NEW;
LENGTH GENDER § 1;
INPUT ID= GENDER = § AGE= VAULT= P_BAR=;
DATALINES;
ID=3 P_BAR=6.7
ID=5 AGE=15 VAULT=8.1 P_BAR=7. 2
ID=7 GENDER=F
i
This is called NAMED input and is discussed in the SAS Language

First Edition.

Reference, version 6,

CHAPTER 15

15-1 DATA PROB15_1;
INPUT (HT1-HT5)(2.) (WT1-WT5)(3.);
ARRAY HT{*] HT1-HTS5;

ARRAY WI{*] WT1-WT5;
ARRAY DENS[*] DENS1-DENSS;
DO I=1TOS5;
pENS{1] = wr{1] / HT{I]**2;
END;
DROP I;
DATALINES;
6862727074150090208230240
64 68 70140 150 170
i
15-2 DATA OLDMISS;
INPUT A B C X1-X3 Y1-¥3;
ARRAY NINE[*] A B C X1-X3;
ARRAY SEVEN{*] Y1-¥3;
DO I=1TO 6;
IP NINE[I] = 999 THEN NINE[I]=.;
END;
DO I=1TO 3;
IF SEVEN[I] =777 THEN SEVEN(I]= .;
END;
DROP I;
DATALINES;
123456789
999 4 999 999 5 999 777 7 7

H

Alternative:

DATA OLDMISS;
INPUT A B C X1-X3 ¥1-Y3;
ARRAY NINE[*] A B C X1-X3;
ARRAY SEVEN{*] Y1-Y3;

DO I=1 TO 6;
IF NINE[I] = 999 THEN NINE[I]= .;

’
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.IP I LE 3 aND SEVEN[I] = 777 THEN SEVEN[I]=.;
i
DROP I;
DATALINBS;
1234567389
999 4 999 999 5 999 777 7 7
i

15-3 pata SPEED;

INPUT X1-X5 v1-v3;
DATALINES;
12345678
11 22 33 44 55 66 77 88

DATA SPEED2;
SET SPEED;
ARRAY X[5] x1-x5;
ARRAY Y[3] vi-v3;
ARRAY LX[S] Lxi-Lxs;
ARRAY SY[3] sv1-gv3;
DOI = 1 TO 5;
;-J;II] = LOG(X[1]);
I LE 3 7 =
D, HEN SY[I] = SQRT(Y[1]);
DROP I;
RUN;

15-4 paTa PROB15_4;

LENGTH C1-C5 § 2;

INPUT C1-C5 § X1-X5 yi-ys;

ARRAY C[5] $ ci-c5;

ARRAY X[5) X1-x5;

ARRAY ¥[5] y1-v5;

DO I=1T0S;
IF i{x]] = 'NA' THEN C[I]= ' +;
IF X[1] = 999 oRr ¥{1]= 999 1

= HEN DO;

X[I]=.; ¥1]- .,
END;

END;
DROP I;
DATALINES;
MBBCCDDEE12345678910
fIAXXNAYYNA9992349999991567
CHAPTER 16
16-1 pATA FROG;
INPUT ID X1-X5 ¥1-Y5;
DATALINES;
014547317368
028786754356
?
DATA TOAD;
SET FROG;

ARRAY XX[5] X1-x5;
ARRAY YY[5] vi-ys,
DO TIME=1 TO 5,
X = XX[TIME];
Y = YY[TIME];

R R T g
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OUTPUT;
END;
DROP X1-X5 Y1-Y5;
RUN;

16-2 DATA STATE;

INFORMAT STATE1-STATES $2.;
INPUT ID STATE1l-STATES:
DATALINES;
1 NY NJ PA TX GA
2 NJ NY CA XX XX
3 PA XX XX XX XX

DATA NEWSTATE;
SET STATE;
ARRAY XSTATE{*] § STATE1-STATES;
DO I=1TO 5;

IF XSTATE[I]= 'XX' THEN XSTATE(I]= ‘' *;
STATE = XSTATE[I];
OUTPUT;

END;

DROP I;

RUN;

PROC FREQ DATA=NEWSTATE ORDER=FREQ;
TABLES STATE;
RUN;

16-3 DATA NEW;

SET BLAH;
ARRAY JUNK[*] X1-X5 Y1-Y5 21-Z5;
DO J =1 TO DIM(JUNK);
IF JUNK[J] = 999 THEN JUNR(J] = .;
END;

DROP J;
RUN;

CHAPTER 17

17-1 DATA HOSP;

INFORMAT ID $3. GENDER $1. DOB DOS MMDDYYS.;
INPUT ID GENDER DOB DOS LOS SBP DBP HP;
FORMAT DOB DOS MMDDYY10.:
DATALINES;
1 M 10/21/46 3/17/97 3 130 90 68
2 F 11/1/55 3/1/97 5 120 70 72
3 N 6/6/90 1/1/97 100 102 64 88
4 F 12/21/20 2/12/97 10 180 110 86
i
DATA NEW_HOSP;
SET HOSP;
LOG_LOS = LOG10(LOS); ***Part A;
AGE_LAST = INT((DOS - DOB) /365.25); ***%Part B;
X = ROUND (SQRT (MEAN(OF SBP DBP)),.1); ***Part C;
RUN;

17-2 DATA MANY;
INPUT X1-X5 Y1-Y5;
***part A;
MEAN_X = MEAN(OF X1-X5);
MEAN_Y = MEAN(OF Y1-Y5);
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***parg B;
MIN X = MIN(OF X1-X5);
NIN_Y « MIN(OF Y1-¥5);
***Pare C;
CRAZY = MAX(OF X1-X5) *
erare o ) MIN Y * (N(OF X1-X5) + NMISS (OF Y1-¥5));
IF N(OF X1-X5) GE 3
AND N(OF Y1-¥5) GE 4T
MEAN X Y = MEAN(OF X1-X5 Y1-Y5), =

DATALINES;
12345 678919
3.5.7 5., .15
98 .. 44443
7

17-3 DATA UNI;
DO I=1TO 1000;
N = INT(RANUNI(0)+5 4 1);
OUTPUT;
END;
DROP I;
RUN;

PROC FREQ DATA=UNT;
TABLES N / NOCUM;
RUN;

17-4 PrOC FORMAT;
VALUE DAYFMT ;:'SU’N’ 2="'MON" 3='TUE' 4='WED' S='THU"*
= FRI' o
RON, I' T='SAT:;

DATA DATES;
SET HOSP; ***From 17-1,
DAY = WEEKDAY (DOS) ;
MONTH ~ MONTH (DOS) ;
PORMAT DAY DAYFMT.,

RUN;

PROC CHART DATA=DATES;
VBAR DAY MONTH / DISC] :
RON; 'RETE;

17-5 paTA MIXED;

INPUT X Y A § B §;

DATALINES;

1234

5678

7

DATA NUMS;
SET MIXED;
A_NUM = INPUT(a, 8.);
B_NUM = INPUT(B,8.);

l“:ml'JROP A B; **eDop't forget this;

176 PROC PORMAT;
VALUE AGEGRP LOW-< 20 = 1
20-40 = '2' /%OR SIN
41-HIGH « r3¢; CE INTEGERS+/
RUN; ;

DATA NEWER;
SBT NEW_HOSP; ***prom 17-1;
AGEGROUP = PUT(AGE_LAST, AGRGRP )i
- 2)i

e ——

CHAPTER 18

18-1 DATA CHAR1;
INPUT STRING1 $1.
STRING2 §5.
STRING3 $8.

(C1-C5) ($1.);

DATALINES;

XABCDE12345678YNYNY
YBBBBB12V56876yn YY
ZCCKCC123-/. ,WYNYN

:
DATA ERROR;
SET CHAR1;
LENGTH DUMMY § 5;
pummy = c1 || ¢2 || ¢c3 || ce || c5;
IF VERIFY(STRING1, ‘XYZ') NE 0 OR
VERIFY (STRING2, 'ABCDE‘') NE 0 OR
VERIFY (UPCASE (DUMMY), 'NY') NE 0 THEN OUTPUT;
DROP DUMMY;
RUN;

18-2 DATA PROB18_2;
SET CHAR1l; ***From 18-1;

NEW3 = TRANSLATE (
COMPRESS (STRING3, ' -/.,'), 'ABCDEFGH', '12345678');
IP VERIFY(NEW3, 'ABCDEFGH ') NE 0 THEN NEW3 = ' ';
RUN;

18-3 DATA PROB18_3;
SET CHAR1; *+**From 18-1;
ARRAY C[5] $§ 1 C1-C5; ***Create a character array;
DO XI=1TO 5;
¢f1] = UPCASE (C[I]) ;
IPF VERIFY(C[I],'NY ') NE 0 THEN c[1]= ' *
END;
DROP I;
RUN;
18-4 DATA PHONE;
INPUT CHAR _NUM $20.;
NUMBER = INPUT( COMPRESS (CHAR_NUM,' ()-/'),10.);
DATALINES;
{908)235-4490
(800) 555 - 1212
203/222-4444
7

18-5 DATA EXPER;

13

INPUT ID $ 1-5
GROUP § 7
DOSE § 9-12;

LENGTH SUB_ID § 2 GRP_DOSE § 6;
SUB_ID = SUBSTR(ID,2,2);
GRP_DOSE=GROUP | | '-' | | DOSE;

DATALINES;

1NY23 A HIGH
3NJ99 B HIGH
2NY89 A LOW
5NJ23 B LOW

i
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18-6 DATA PROB18_6;
SET EXPER; ***From the previous problem;
LENGTH ID2 § 6;
ID2 = ID;

IF INPUT(SUBSTR(ID,4,1),1.) GE 5 THEN SUBSTR(ID2,6,1) = "*';

RUN;

18-7 DATA ONE;
INPUT @1 GENDER $1.
@2 poB MMDDYYS8.
@10 NAME $11.
@21 STATUS $1.;
FORMAT DOB MMDDYYS.;
DATALINES;
M10/21/46CADY A
F11/11/50CLINE B
M11/11/52SMITH a
F10/10/800PPENHEIMERB
M04/04/60J0SE a

DATA TWO;
INPUT @1 GENDER $1.
@2 poB MMDDYYS .
@10 NAME $11.
@21 WEIGHT 3.;
FORMAT DOB MMDDYYS. ;

DATALINES;
M10/21/46coDY 160
F11/11/50CLEIN 102
F11/11/52SMITH 101
F10/10/800PPENHAIMER120
M02/07/6090SA 220
;
DATA ONE_TMP;

SET ONE;

S_NAME = SOUNDEX (NAME) ;
RUN;
DATA TWO_TMP;

SET TWO;

S_NAME = SOUNDEX (NAME) ;
RUN;

PROC SORT DATA=ONE_TMP;
BY GENDER DOB S_NAME;
RUN;

PROC SORT DATA=TWO_TMP;
BY GENDER DOB S_NAME;
RUN;

DATA COMBINED;
MERGE ONE_TMP (IN=INONE) TWO_TMP ( IN=INTWO) ;
BY GENDER DOB S_NAME;
IF INONE AND INTWO;

RUN;

Norte: There are no problems for chapters 19 and 20.

INDEX

_ALL_, with Libname, 309, 397
_CHARACTER_, 331,375
_FREQ_, 47,51-52
_N_,266-267, 337, 369,383,391
_NULL_, 316, 338, 369, 394
_NUMERIC_,331
_TEMPORARY_, 338
_TYPE_, 47,50-52

A

Adding new observations,
see SET
see also PROC APPEND
Adjusted r-square, 225
Age calculation, 103-105, 356
Alpha, coefficient, 276-277, 393-394
Alphanumeric, 476
Alternative hypothesis, 138-139,
145-146, 151
Ampersand (&), format modifier, 283
Analysis of covariance,
see Covariance
Analysis of variance,
assumptions for, 151-159
contrasts, 158-159, 169-170
n-way factorial design, 170-171
one-way, 150159
repeated measures designs,
see Repeated measures ANOVA
two-way, 159-170
unbalanced designs, 171-174
ANOVA procedure,
see PROC ANOVA
see also Analysis of variance
APPEND procedure,
see PROC APPEND
Arrays, 329-351
ASCII, 300-302, 304-305,338
“At” sign (@), single trailing, 144, 199,
287-288

“At” sign (@@), double trailing, 153-154,
87-288
Average, moving, 391-392

Balanced designs, 151

Bar graph, 3541

Batch, 2,18, 300

Block chart, 41

Boxplot, 27-32

BY variables, 32-34, 43,110, 166, 322-326

[

CARDS statement, 4,299-300, 373
Character arrays, 332-333
Character functions,
COMPBL, 367
COMPRESS, 368
Concatenation (ll), 168, 371-372,377
INDEX, 373-374
INDEXC, 373-374
INPUT, 358-360
LENGTH, 366-367
LOWCASE, 375
PUT, 358-360
REPEAT, 365-367
SCAN, 373
SOUNDEX, 378
SUBSTR, 369-371
TRANSLATE, 375-376
TRANWRD, 376-377
TRIM, 371-372
UPCASE, 374-375
VERIFY, 368-369
Character informats, 102
Character-to-numeric conversion, 358-360
Chart procedure,
see PROC CHART
“Check All That Apply” questions, 92-96
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Chi-square, 76-78
from cell frequencies, 79-80
CLASS statement, with PROC MEANS,
33-34,45-53
CLASS, with ANOVA, 154-155
Coefficient alpha, 276-277, 393-394
Coefficient of variation, 25, 27, 225
Colon (:), format modifier, 282
Comma delimited data, 281-282
Comment statement, 15-18
Communality, 256262
COMPBL function, 367
COMPRESS function, 368
Concatenation operation, 168, 371 -372,377
Confidence interval,
about the mean, 25-26
about the odds ratio, 8386
about the slope, 126-128
CONTENTS procedure,
see PROC CONTENTS
CONTRAST statement, 158-159, 169-170
CORR procedure,
see PROC CORR
Correction for continuity, 78
Correlation, 115-137
Covariance,
analysis of, 174-178
homogeneity of slope assumption,
176-177
Cronbach’s coefficient alpha, 276-277,
393-394
Crossed designs, 159-174
Crosstabulations, 75-79
Cumulative frequencies, 13, 35

D

Dash (-),62
Data set, 23-26, 305-307, 309-310
DATA step, 13,23-24
Data vector,

see Program Data Vector
DATALINES, 4,299-300, 373
DATALINES4, 4,299-300,373
DATASETS procedure,

see PROC DATASETS
Date functions, 356-358

DAY, 358

INTCK, 358

INTNX, 358

MONTH, 356-358

WEEKDAY, 357

YEAR, 356-358
Dates, working with, 356-358
DAY function, 358

DDNAME, 300-302
Default options, 26
Degrees of freedom,
with ANOVA, 155
with Chi-square, 78
with regression, 224-225
DELETE statement, 293-360
Descending option,
with PROC LOGISTIC, 238
with PROC SORT, 426
Descriptive statistics, 22-57
Designed regression, 222-226
DIF function, 360-361
DIM function, 331-362
DISCRETE, option with PROC CHART,
35-39
Display Manager, 2
Distribution-free tests,
see Nonparametric tests
Division, 8
DLM=, INFILE option, 281-282
DO loop, 163-164,183-184, 214-215
Dollar sign ($),4
Double dash (- -),62
DROP data set option, 311-312
DROP statement, 311-312
DSD, INFILE option, 281-282
Dummy variables, 234-235
Duncan multiple range test, 155-158

E

Efficiency techniques, 311-317
Eigenvalues, 256-258
ELSE statement, 7-9, 72-73
END-=, INFILE option 302-303
EOF=, INFILE option, 302
Error,in ANOVA, 152
Error messages, 5

suppressing, 288-289
Exponentiation, 9

F

F ratio, with ANOVA, 152-153
Factor analysis, 250-264
FACTOR procedure,

see PROC FACTOR
Factorial designs, 170-174
FILE, statement, 394
FILEDEEF, 300-302
FILENAME, 300-302 -
Files, reading and writing, 298-318
FIRST,, 110-111
Fisher’s exact test, 78

FMTSEARCH, system option, 310
Format library, 309-310
Format list, 286-287
FORMAT procedure,

see PROC FORMAT
FORMAT statement, 67
FREQ procedure,

see PROC FREQ
Frequency bar chart, 35-41
Frequency distributions, 34-35
Functions,

see Character functions

see Date functions

see Numeric functions

see Trigonometric functions

G

GLM procedure,

see PROC GLM
GO TO statement, 393
Grand mean, 151
Greenhouse-Geisser-Epsilon, 188
GROUP-=, option with PROC CHART,

3941

GROUP=, option with PROC RANK, 142

H

H,, 138-141

H,,138-141

HBAR, 36-40

“Hidden” observations, 44

HIGH, with PROC FORMAT, 73
“Holding the line,” 287-288

Homogeneity or variance assumption, 151
Hosmer and Lemeshow goodness-of-fit, 238
Hotelling-Lawley Trace, 191-~193
Huynh-Feldt Epsilon, 188

ID statement,

with PROC MEANS, 47-48

with PROC PRINT, 11-12

with PROC UNIVARIATE, 31
IF statement, 9
Implicitly subscripted arrays, 339-340
IN=, option with merge, 322-324
IN statement, 420
INDEX function, 373-374
INDEXC function, 373-374
INFILE options, 281282, 302-304
INFILE statement, 300-302
INFORMAT, 282-285

Index

INPUT function, 358-360
INPUT statement, 3-4
INPUT, column form, 383-384
INPUT, list, 280-282
INT function, 354
INTCK function, 358
Interaction, 162
Intercept, 123
Interquartile range, 27, 32
Interrater reliability, 82, 277-279
INTNX function, 358
Invalid data,
checking for, 368-369
overriding LOG messages, 288-289
Item analysis, 273-276

J

JCL,301-302
JOB statement, 301
Justification, 4

K

Kappa, coefficient, 82,277-279
KEEP, data set option, 403
KEEP statement, 95
Kuder-Richardson, 276-277, 393

L

L.95,126-128
L95M, 126-128
LABEL statement, 63-65
Labels, for SAS statements, 393
LAG function, 391-392, 360-361
Large data sets, working with, 311-317
LAST. ,109-111
Least significant difference, 156
Least squares, 122
Left justified, 4
LENGTH function, 366
LENGTH statement, 366
LEVELS=,37-38
LIBNAME, 306-307
Likert scale, 66-70
Linear regression, 121-124
LINESIZE (LS), system option, 271
List-directed input, 280-281
Lists of variables, 62
Log transformation, 353-354
Logical operators, 9
LOGISTIC procedure,

see PROC LOGISTIC
Logistic regression, 235-247
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Longitudinal data, 101114
LOW, with PROC FORMAT, 73
LOWCASE function, 375
LRECL, INFILE option, 304
LSD, 156

Macro variable, 269, 386-387
Mann-Whitney U-test, 143
Mantel-Haenszel Chi-square for stratified
tables, 90-92
MAXDEC=n, 6, 24-25
McNemar’s test, 81-83
MDY function, 356
MEAN function, 354-355
MEANS procedure,
see PROC MEANS
Median, 27, 54
MERGE statement, 321-324
Meta analysis,
see Mantel-Haenszel ...
MIDPOINTS=, option with PROC
CHART, 37-38
Missing value, 8
Missing values,
changing 999 to missing, 329-332
changing N/A to missing, 332-333
MISSOVER, option with INFILE, 303
Moments, 30-31
Month format, 356-358
MONTH function, 356-358
Month/day/year, 356-358
Morse code, conversion to, 338-339
Multidimensional arrays, 347-348
Muitilevel sort, 10-11
Multiple comparisons, 155-158
Multiple lines per subject, 106-109,
285-286
Multiple regression, 221-249
Multiplication, 8

N function, 355
Named input, 433
Nested DO loops, 214-215
Nesting, in ANOVA, 194
NMISS function, 355
Nonexperimental regression, 226-228
Nonparametric tests,
two-sample, paired (Wilcoxon signed
rank test), 28,31
two-sample, unparied (Wilcoxon rank-
sum test), 143-145

NOPRINT option,

with PROC CORR, 274

with PROC FREQ, 387

with PROC MEANS, 4647

with PROC REG, 134
Normal probability plot, 32
NOUNI, 187
NPAR1WAY procedure,

see PROC NPARIWAY
Null hypothesis, 138-141
Numeric functions,

INT, 354

LOG, 353-354

LOGI0, 354

MEAN, 354-355

N, 355

NMISS, 355

MAX, 355

MIN, 355

ROUND, 354

SQRT, 354
NWAY, option with PROC MEANS, 46-48

o

Oblique rotations, 258-259
OBS=, system option, 316
Observation, 3
Observation counter, 266-267, 337,369,
383,391

Odds ratio, 83-86
One-tailed test, 138, 145-146
One-way analysis of variance,

see Analysis of variance
Options,

SAS syntax for, 24

system, 105,217, 310,316

with PROC MEANS, 25-26

with PROC UNIVARIATE, 26-27
OR,

see Odds ratio
ORDER=, with PROC FREQ, 84
Ordinal scales, 88, 143
Orthogonal designs, 160
OTHER, with PROC FORMAT, 74
OUTEST=, options with PROC REG,

133-135

OUTPUT statement,

with PROC MEANS, 45-54
OVERLAY option, 125

[

PAGESIZE (PS), system option, 271
Paired t-test, 146-148

ey

Parsing a string, 373
Partial correlation, 120-121
Partitioning the total SS,
with analysis of variance, 151-153
with regression, 124
PDV,
see Program Data Vector
Pearson correlation, 115-118
Pedhazur, Elazar J,, 18
Period, as a missing value, 8
Permanent SAS data set, 305-308
Pillai’s trace, 192
PLOT procedure,
see PROC PLOT
PLOT statement,
with PROC PLOT, 4244
with PROC REG, 125-128
Plotting symbol, 43-44
Pointer,
# (see “Pound” sign)
@, (see “At” sign, @)
@@, (see “At” sign, @@)
Post hoc tests, 155-156
“Pound” sign, 106-107, 285
Pre/post designs, 189-197
PREDICTED., with PROC REG, 125-127
Principal components, 251-258
PRINT procedure,
see PROCPRINT
PRIORS, with PROC FACTOR, 257
PROC,
ANOVA, 153-156, 160-164, 168,
170-171, 396
APPEND, 316-317,39%
CHART, 3541, 396-397
CONTENTS, 308-309, 397
CORR, 116-118,120-121, 397
DATASETS, 316,398
FACTOR, 250-264, 398
FORMAT, 66-70,73-75,398
FREQ, 34-35,75-92,398
GLM, 158-159, 168-174,177-178, 399
LOGISTIC, 235-247, 400
MEANS, 23-26, 32-34, 45-54, 400
with paired t-test, 146-148, 400
NPAR1WAY, 144-145, 401
PLOT, 42-44,401
PRINT, 7,11, 142,401-402
RANK, 141-142, 402
REG, 121-124,127-135,223-233,403
RSQUARE (obsolete; use PROC REG)
SORT, 33, 54,312,403
STEPWISE (obsolete; use PROC REG)
SUMMARY (obsolete; use PROC
MEANS)
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PROC, (Cont.):

TABULATE, 270-272,275

TTEST, 140-141, 403

UNIVARIATE, 27--32, 54,403
Procedure options, 13-15
Program Data Vector (PDV),13,95,312, 383
Promax rotation, 258-259
PUT function, 358-360
PUT statement, 369-394

Q

Quantiles, 28, 31

?, with INPUT, 288-289

797, with INPUT, 288-289
Questionnaire design, 59-63

R

R-squared, 119-120
Random assignment of subjects, 141-143
Random number functions, 141-142, 355-356
RANK procedure,
see PROC RANK
RANNOR function, 356
RANUNI function, 141-142, 355-356
Receiver operator characterestic (ROC)
curve, 244-246
Recoding data,
using IF statements, 70-73
using formats, 73-75
REG procedure,
see PROCREG
Relative risk, 8688
Reliability, 276-277, 393-394
RENAME, data set option, 324, 388
Regression,
line, plotting, 125-128
linear, 121-124
multiple, 221-247
Reliability of test, 276-277
REPEAT function, 365-367
Repeated measures ANOVA,
one-factor, 181-189
three-factor, repeated measure on the
last factor, 202-209
three-factor, repeated measures on two
factors, 209-217
two-way, one repeated factor, 189-197
two-way, repeated measures on both
factors, 197-202
REPEATED statement,
with PROC ANOVA, 186-188, 190-193,
202-203,211-213
Residual, 121
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RETAIN statement, 266-267,291-292,
349-350, 360

Reversing item scores, 72-73
Right justified, 4
Risk Ratio,

see Relative risk
RISKLIMITS, 238-240
ROC curve, 244-246
Roy’s greatest root, 192
ROUND function, 354
RR,

see Relative risk

S

SASlog,5
SAS output,6
SCAN function, 373
Scatterplots,

see PROC PLOT
Scheffe multiple comparison, 156
Scree plot, 252-253
Semicolon (;), 4
Sensitivity, 246
SET statement, 319-321
Significance of correlation, 118-119
Skewness, 26-28
Slash (/), 14
Slope, 123
Social Security format, 267, 359
SORT procedure,

see PROC SORT
SOUNDEX function, 378
Spearman correlation coefficient, 117
Specificity, 246
Square root function, 354
SSN11. format, 267,359
Standard deviation, 23-24
Standard error, 25-26
Stem and leaf plot, 27-28
Stepwise regression, 227-231
String, 364
String functions,

see Character functions
Student-Newman-Keuls test, 156
Subsetting, 110,313, 319-320
SUBGROUP=, option with PROC

CHART, 40-41

SUBSTR function, 369371
Subtraction, 9
SUM function, 365
Sum of squares, 124, 152

SUMVAR-=, option with PROC CHART, 40

Suppressing error messages, 288-289
Survey data, 59-63

T

T-test,
assumptions for, 139
independent samples, 138-141
regression coefficients, 123
related samples, 146-148
Table look up, 324-326
TABLES statement, 62
TABULATE procedure,
see PROCTABULATE
Temporary arrays, 334-339
Test of normality, 27-32
Test scoring, 265-270
TEST statement, with ANOVA, 194
TITLE statement, 11
TITLEn, 174
Trailing @, 144, 199, 287-288
Trailing @@, 153-154, 287288
Transforming data, 129-133
TRANSLATE function, 375-376
TRANWORD function, 376-377
Trend, Chi-square test, 88-90
Trigonometric functions,
ARCOS, 354
ARSIN, 354
ARTAN, 354
COS, 354
SIN, 354
TAN, 354
TRIM function, 371-372
Truncatation functions, 354
TTEST procedure,
see PROCTTEST
Tukey’s honestly significant
difference, 156
Two-level data set name, 305-308
Two-tailed test, 145-146
Two-way frequency table, 75-78
Type LIL II, 1V SS,174
TYPE-=, option with PROC CHART, 40

u

U95,126-127

U95M, 126-127

Unbalanced designs, 171-174

UNIVARIATE procedure,
see PROC UNIVARIATE

UPCASE function, 374-375

UPDATE statement, 326-327

v

Value labels,
see Format

e

VAR statement

with PROC MEANS, 11
Variable, 3
Variable labels, 63-65
Variable names, 3
Variance, 25
Varimax rotation, 253
VBAR, 3540
VERIFY function, 368-369

w

WEEKDAY function, 357
WEIGHT statement,

with PROC FREQ, 79-80
WHERE data set option, 313-314, 403
WHERE statement, 313-314, 320
Wilcoxon rank-sum test, 143-145
Wilcoxon signed rank test, 28, 31
Wilk’s lambda, 193
Winer, B. J.,, 18,181
Within-subject siopes, 133-135
Writing external files,

see Files

Y

Yates’ correction, 78
Year 2000 probiem,
see YEARCUTOFF
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YEARCUTOFF, system option, 105
YEAR function, 357

Speciai Characters

, (comma) data delimiter, 281-282

/ (slash), 14

/* (slash asterisk), begin comment
indicator, 16-18

.(period), 8

Il (concatenation operator), 168,
371-372,377

& (ampersand), format modifier, 283

$ (dollar sign), 4

— (dash), specifiying a like group of
variables, 62

—— (double dash), specifying a list of
variables, 62

*/ (asterisk slash), end of comment
indicator, 16-18

* (asterisk), comment indicator, 15-18

; (semicolon), 4

7 (question mark), 288-289

77 (double question mark), 288289

: (colon), format modifier, 282

#(“pound” sign), 106-107, 285

@ (“at” sign), 144, 199, 287288

@@ (double “at” sign), 153-154, 287288




