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Preface 1

Dear Reader,

We would like to thank you very much for studying the proceedings volume
of the conference “Risk Management Reloaded”, which took place in Garching-
Hochbriick, during September 9-13, 2013. This conference was organized by the
KPMG Center of Excellence in Risk Management and the Chair of Mathematical
Finance at Technische Universitdt Miinchen. The scientific committee consisted
of Prof. Claudia Kliippelberg, Prof. Matthias Scherer, Prof. Wim Schoutens, and
Prof. Rudi Zagst. Selected speakers were approached to contribute with a manu-
script to this proceedings volume. We are grateful for the large number of high-
quality submissions and would like to especially thank the many referees that
helped to control and even improve the quality of the presented papers.

The objective of the conference was to bring together leading researchers and
practitioners from all areas of quantitative risk management to take advantage of the
presented methodologies and practical applications. With more than 200 registered
participants (about 40 % practitioners) and 80 presentations we outnumbered our
own expectations for this inaugural event. The broad variety of topics is also
reflected in the long list of keynote speakers and their presentations: Prof. Hansjorg
Albrecher (risk management in insurance), Dr. Christian Bluhm (credit-risk mod-
eling in risk management), Prof. Fabrizio Durante (dependence modeling in risk
management), Dr. Michael Kemmer (regulatory developments in risk manage-
ment), Prof. Riidiger Kiesel (model risk for energy markets), Prof. Ralf Korn (new
mathematical developments in risk management), Prof. Alfred Miiller (new risk
measures), Prof. Wim Schoutens (model, calibration, and parameter risk), and Prof.
Josef Zechner (risk management in asset management). Besides many invited and
contributed talks, the conference participants especially enjoyed a vivid panel
discussion titled “Quo vadis quantitative risk management?” with Dr. Christopher
Lotz, Dr. Matthias Mayer, Vassilios Pappas, Prof. Luis Seco, and Dr. Daniel
Sommer as participants and Markus Zydra serving as anchorman. Moreover,
we had a special workshop on copulas (organized by Prof. Fabrizio Durante and
Prof. Matthias Scherer), a DGVFM workshop on “Alternative interest guarantees in
life insurance” (organized by Prof. Ralf Korn and Prof. Matthias Scherer),
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a workshop on “Advances in LIBOR modeling” (organized by Prof. Kathrin Glau),
and a workshop on “Algorithmic differentiation” (organized by Victor Mosenkis
and Jacques du Toit). Finally, the last day of the conference was dedicated to young
researchers, serving as a platform to present results from ongoing Ph.D. projects. It
is clearly worth mentioning, however, that there was enough time reserved for
social events like a conference dinner at “Braustiiber] Weihenstephan,” a “Night
watch man tour” in Munich, and a goodbye reception in Garching-Hochbriick. The
editors of this volume would like to thank again all participants of the conference,
all speakers, all members of the organizing committee (Kathrin Glau, Bettina Haas,
Asma Khedher, Mirco Mabhlstedt, Matthias Scherer, Anika Schmidt, Thorsten
Schulz, and Rudi Zagst), all contributors to this volume, the referees, and finally our
generous sponsor KPMG AG Wirtschaftspriifungsgesellschaft.

Kathrin Glau
Matthias Scherer
Rudi Zagst
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The conference “Risk Management Reloaded” was held on the campus of
Technische Universitdt Miinchen in Garching-Hochbriick (Munich) during
September 9-13, 2013. Thanks to the great efforts of the organizers, the scientific
committee, the keynote speakers, contributors, and all other participants, the
conference was a great success, motivating academics and practitioners to learn and
discuss within the broad field of financial risk management.

The conference “Risk Management Reloaded” and this book are part of an
initiative called KPMG Center of Excellence in Risk Management that was founded
in 2012 as a very promising cooperation between the Chair of Mathematical
Finance at the Technische Universitit Miinchen and KPMG AG Wirt-
schaftspriifungsgesellschaft. This collaboration aims at bringing together practi-
tioners from the financial industry in the areas of trading, treasury, financial
engineering, risk management, and risk controlling, with academic researchers in
order to supply trendsetting and realizable improvements in the effective manage-
ment of financial risks. It is based on three pillars, consisting of the further
development of a practical and scientifically challenging education of students, the
support of research with particular focus on young researchers as well as the
encouragement of exchange within the scientific community and between science
and the financial industry.

The topic of financial risk management is a subject of great importance for
banks, insurance companies, asset managers, and the treasury departments of
industrial corporations that are exposed to financial risk. It has been of even greater
attention ever since the financial crisis in 2008. Though regulatory focus rose and
the requirements on internal risk models have become more pronounced and
comprehensive, confidence in risk models and the financial industry itself has been
damaged to some extent. We intended to discuss several questions concerning these
doubts, for example, whether we need more or fewer quantitative risk models, and
how to adequately use and manage risk models. We think that quantitative risk
models are an important tool to understand and manage the risks of what continues
to be a complex business. However, comprehensive regulation for internal models

vii



viii Preface 11

is necessary. It is important that models can be explained to internal and external
stakeholders and are used in a suitable way.

The campus of the university in Garching-Hochbriick was a great place for the
conference. The 200 participants, 55 % of whom were academics, 40 % practi-
tioners, and 5 % students, had many fruitful discussions and exchanges during five
days of workshops, talks, and great social events. Participants came from more than
20 countries, which made the conference truly international. Due to the broadness
of the main theme and the many different backgrounds of the participants, the topics
presented during the conference covered a large spectrum, ranging from regulatory
developments to theoretical advances in financial mathematics and including
speakers from both academia and the industry.

The first day of the conference was dedicated to workshops on copulas, algo-
rithmic differentiation, guaranteed interest payments in life insurance contracts, and
LIBOR modeling. During the following days, several keynote speeches and con-
tributed talks treated various aspects of risk management, including market specific
(insurance, credit, energy) challenges, and tailor-made methods (model building,
calibration). The panel discussion on Wednesday brought together the views of
prestigious representatives from academia, industry, and regulation on the neces-
sity, reasonableness, and limitations of quantitative risk methods for the measure-
ment and evaluation of risk. The conference was completed by a “Young
Researchers Day” giving junior researchers the opportunity to present and discuss
their results in front of a broad audience.

We would like to thank all the participants of the conference for making this
event a great success. In particular, we express our gratitude to the scientific
committee, namely Claudia Kliippelberg, Matthias Scherer, Wim Schoutens, and
Rudi Zagst, the organizational team, namely Kathrin Glau, Bettina Haas, Asma
Khedher, Mirco Mahlstedt, Matthias Scherer, Anika Schmidt, Thorsten Schulz, and
Rudi Zagst, the keynote speakers, the participants of the panel discussion, namely
Christopher Lotz, Luis Seco, and Vasilios Pappas, all speakers within the work-
shops, contributed talks, and the young researchers day, and, last but not least, all
participants that attended the conference.

Dr. Matthias Mayer
KPMG AG Wirtschaftspriifungsgesellschaft

Dr. Daniel Sommer
KPMG AG Wirtschaftspriifungsgesellschaft
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A Random Holding Period Approach
for Liquidity-Inclusive Risk Management

Damiano Brigo and Claudio Nordio

Abstract Within the context of risk integration, we introduce risk measurement
stochastic holding period (SHP) models. This is done in order to obtain a ‘liquidity-
adjusted risk measure’ characterized by the absence of a fixed time horizon. The
underlying assumption is that—due to changes in market liquidity conditions—one
operates along an ‘operational time’ to which the P&L process of liquidating a market
portfolio is referred. This framework leads to a mixture of distributions for the port-
folio returns, potentially allowing for skewness, heavy tails, and extreme scenarios.
We analyze the impact of possible distributional choices for the SHP. In a multivari-
ate setting, we hint at the possible introduction of dependent SHP processes, which
potentially lead to nonlinear dependence among the P&L processes and therefore
to tail dependence across assets in the portfolio, although this may require dras-
tic choices on the SHP distributions. We also find that increasing dependence as
measured by Kendall’s tau through common SHPs appears to be unfeasible. We
finally discuss potential developments following future availability of market data.
This chapter is a refined version of the original working paper by Brigo and Nordio
(2010) [14].

1 Introduction

According to the Interaction between Market and Credit Risk (IMCR) research group
of the Basel Committee on Banking Supervision (BCBS) [5], liquidity conditions
interact with market risk and credit risk through the horizon over which assets can
be liquidated. To face the impact of market liquidity risk, risk managers agree in
adopting a longer holding period to calculate the market VaR, for instance 10 business
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4 D. Brigo and C. Nordio

days instead of 1; recently, BCBS has prudentially stretched such liquidity horizon
to 3 months [6]. However, even the IMCR group pointed out that the liquidity of
traded products can vary substantially over time and in unpredictable ways, and
moreover, IMCR studies suggest that banks’ exposures to market risk and credit
risk vary with liquidity conditions in the market. The former statement suggests a
stochastic description of the time horizon over which a portfolio can be liquidated,
and the latter highlights a dependence issue.

We can start by saying that probably the holding period of a risky portfolio is
neither 10 business days nor 3 months; it could, for instance, be 10 business days
with probability 99 % and 3 months with probability 1%. This is a very simple
assumption but it may have already interesting consequences. Indeed, given the FSA
(now Bank of England) requirement to justify liquidity horizon assumptions for the
Incremental Risk Charge modeling, a simple example with the two-points liquidity
horizon distribution that we develop below could be interpreted as a mixture of
the distribution under normal conditions and of the distribution under stressed and
rare conditions. In the following we will assume no transaction costs, in order to
fully represent the liquidity risk through the holding period variability. Indeed, if
we introduce a process describing the dynamics of such liquidity conditions, for
instance,

e the process of time horizons over which the risky portfolio can be fully bought or
liquidated,

then the P&L is better defined by the returns calculated over such stochastic time
horizons instead of a fixed horizon (say daily, weekly or monthly basis). We will
use the “stochastic holding period” (SHP) acronym for that process, which belongs
to the class of positive processes largely used in mathematical finance. We define
the liquidity-adjusted VaR or Expexted Shortfall (ES) of a risky portfolio as the VaR
or ES of portfolio returns calculated over the horizon defined by the SHP process,
which is the ‘operational time’ along which the portfolio manager must operate, in
contrast to the ‘calendar time’ over which the risk manager usually measures VaR.

1.1 Earlier Literature

Earlier literature on extending risk measures to liquidity includes several studies.
Jarrow and Subramanian [17], Bangia et al. [4], Angelidis and Benos [3], Jarrow and
Protter [18], Stange and Kaserer [25], Ernst, Stange and Kaserer [15], among others,
propose different methods of extending risk measures to account for liquidity risk.
Bangia et al. [4] classify market liquidity risk into two categories: (a) the exogenous
illiquidity that depends on general market conditions is common to all market players
and is unaffected by the actions of any one participant and (b) the endogenous
illiquidity, which is specific to one’s position in the market, varies across different
market players and is mainly related to the impact of the trade size on the bid-ask
spread. Bangia et al. [4] and Ernst et al. [15] only consider the exogenous illiquidity
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risk and propose a liquidity adjusted VaR measure built using the distribution of the
bid-ask spreads. The other mentioned studies model and account for endogenous risk
in the calculation of liquidity adjusted risk measures. In the context of the coherent
risk measures literature, the general axioms a liquidity measure should satisfy are
discussed in [1]. In that work coherent risk measures are defined on the vector space
of portfolios (rather than on portfolio values). A key observation is that the portfolio
value can be a nonlinear map on the space of portfolios, motivating the introduction
of a nonlinear value function depending on a notion of liquidity policy based on a
general description of the microstructure of illiquid markets.

As mentioned earlier, bid-ask spreads have been used to assess liquidity risk.
While bid-ask spreads are certainly an important measure of liquidity, they are not
the only one. In the Credit Default Swap (CDS) space, for example, Predescu et al.
[22] have built a statistical model that associates an ordinal liquidity score with
each CDS reference entity. The liquidity score is built using well-known liquidity
indicators such as the already mentioned bid-ask spreads but also using other less
accessible predictors of market liquidity such as number of active dealers quoting
a reference entity, staleness of quotes of individual dealers, and dispersion in mid-
quotes across market dealers. The bid-ask spread is used essentially as an indicator of
market breadth; the presence of orders on both sides of the trading book corresponds
to tighter bid-ask spreads. Dispersion of mid-quotes across dealers is a measure
of price uncertainty about the actual CDS price. Less liquid names are generally
associated with more price uncertainty and thus large dispersion. The third liquidity
measure thatis used in Predescu et al. [22] aggregates the number of active dealers and
the individual dealers’ quote staleness into an (in)activity measure, which is meant
to be a proxy for CDS market depth. Illiquidity increases if any of the liquidity
predictors increases, keeping everything else constant. Therefore, liquid (less liquid)
names are associated with smaller (larger) liquidity scores. CDS liquidity scores are
now offered commercially by Fitch Solutions and as of 2009 provided a comparison
of relative liquidity of over 2,400 reference entities in the CDS market globally,
mainly concentrated in North America, Europe, and Asia. The model estimation and
the model generated liquidity scores are based upon the Fitch CDS Pricing Service
database, which includes single-name CDS quotes on over 3,000 entities, corporates,
and sovereigns across about two dozen broker-dealers back to 2000. This approach
and the related results, further highlighting the connection between liquidity and
credit quality/rating, are summarized in [14], who further review previous research
on liquidity components in the pricing space for CDS.

Given the above indicators of liquidity risk, the SHP process seems to be naturally
associated with the staleness/inactivity measure. However, one may argue that the
random holding period also embeds market impact and bid-ask spreads. Indeed,
traders will consider closing a position or a portfolio also in terms of cost. If bid-
ask spreads cause the immediate closure of a position to be too expensive, market
operators might wait for bid-asks to move. This will impact the holding period for
the relevant position. If we take for granted that the risk manager will not try to
model the detailed behavior of traders, then the stochastic holding period becomes a
reduced form process for the risk manager, which will possibly incapsulate a number
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of aspects on liquidity risk. Ideally, as our understanding of liquidity risk progresses,
we can move to a more structural model where the dynamics of the SHP is explained
in terms of market prices and liquidity proxies, including market impact, bid-ask
spreads, and asset prices. However, in this work we sketch the features the resulting
model could have in a reduced form spirit.

This prompts us to highlight a further feature that we should include in future
developments of the model introduced here: we should explicitly include dependence
between price levels and holding periods, since liquidity is certainly related to the
level of prices in the market.

1.2 Different Risk Horizons Are Acknowledged by BCBS

The Basel Committee came out with a recommendation on multiple holding periods
for different risk factors in 2012 in [7]. This document states that

The Committee is proposing that varying liquidity horizons be incorporated in the market
risk metric under the assumption that banks are able to shed their risk at the end of the
liquidity horizon.[...]. This proposed liquidation approach recognises the dynamic nature of
banks trading portfolios but, at the same time, it also recognises that not all risks can be
unwound over a short time period, which was a major flaw of the 1996 framework.

Further on, in Annex 4, the document details a sketch of a possible solution: assign
a different liquidity horizon to risk factors of different types. While this is a step
forward, it can be insufficient. How is one to decide the horizon for each risk factor,
and especially how is one to combine the different estimates for different horizons
for assets in the same portfolio into a consistent and logically sound way? Our
random holding period approach allows one to answer the second question, but more
generally none of the above works focuses specifically on our setup with random
holding period, which represents a simple but powerful idea to include liquidity in
traditional risk measures such as Value at Risk or Expected Shortfall. Our idea was
first proposed in 2010 in [13].

When analyzing multiple positions, holding periods can be taken to be strongly
dependent, in line with the first classification (a) of Bangia et al. [4] above, or
independent, so as to fit the second category (b). We will discuss whether adding
dependent holding periods to different positions can actually add dependence to the
position returns.

The paper is organized as follows. In order to illustrate the SHP model, first in
a univariate case (Sect.2) and then in a bivariate one (Sect.3), it is considerably
easier to focus on examples on (log)normal processes. A brief colloquial hint at
positive processes is presented in Sect.2, to deepen the intuition of the impact on
risk measures of introducing a SHP process. Across Sects.3 and 4, where we try
to address the issue of calibration, we outline a possible multivariate model which
could be adopted, in line of principle, in a top-down approach to risk integration in
order to include the liquidity risk and its dependence on other risks.
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Table 1 Simplified discrete

Holdin iod Probabilit
SHP g perio robability

10 0.99

75 0.01

Finally, we point out that this paper is meant as a proposal to open a research
effort in stochastic holding period models for risk measures. This paper contains
several suggestions on future developments, depending on an increased availability
of market data. The core ideas on the SHP framework, however, are presented in this
opening paper.

2 The Univariate Case

Let us suppose that we have to calculate the VaR of a market portfolio whose value
at time 7 is V;. We call X; = In V}, so that the log return on the portfolio value at
time ¢ over a period £ is

Vt+h -V

Xivh — Xy =In(Vign/ Vi) = v
1

In order to include liquidity risk, the risk manager decides that a realistic, simplified
statistics of the holding period in the future will be the one given in Table 1. To
estimate liquidity-adjusted VaR say at time O, the risk manager will perform a number
of simulations of Vo4, — Vo with Hy randomly chosen by the statistics above, and
finally will calculate the desired risk measure from the resulting distribution. If
the log-return X7 — X is normally distributed with zero mean and variance T for
deterministic 7" (e.g., a Brownian motion, i.e., a Random walk), then the risk manager

. . . . . d
could simplify the simulation using Xo+n, — XolH, ~ + Ho (X1 — Xo) where | g,
denotes “conditional on Hy”. With this practical exercise in mind, let us generalize
this example to a generic ¢.

2.1 A Brief Review on the Stochastic Holding Period
Framework

A process for the risk horizon at time 7, i.e.,  +— H;, is a positive stochastic process
modeling the risk horizon over time. We have that the risk measure at time ¢ will be
taken on the change in value of the portfolio over this random horizon. If X; is the
log-value of the portfolio at time #, we have that the risk measure at time ¢ is to be
taken on the log-return

Xiyn — X;.
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For example, if one uses a 99 % Value at Risk (VaR) measure, this will be the 1st
percentile of X, g, — X;. The request that H; be just positive means that the horizon
at future times can both increase and decrease, meaning that liquidity can vary in
both directions.

There are a large number of choices for positive processes: one can take lognormal
processes with or without mean reversion, mean reverting square root processes,
squared Gaussian processes, all with or without jumps. This allows one to model the
holding period dynamics as mean reverting or not, continuous or with jumps, and
with thinner or fatter tails. Other examples are possible, such as Variance Gamma or
mixture processes, or Levy processes. See for example [11, 12].

2.2 Semi-analytic Solutions and Simulations

Going back to the previous example, let us suppose that

Assumption 1 The increments X, 1, — X, are logarithmic returns of an equity
index, normally distributed with annual mean and standard deviation, respectively,
1y = —1.5% and o1, = 30 %.

‘We suppose an exposure of 100in domestic currency.
Before running the simulation, we recall some basic notation and formulas.
The portfolio log-returns under random holding period at time O can be written

as
o]

P[Xw, — Xo <x] = /]P’[Xh — Xo < x]1dFpg(h)
0

i.e., as a mixture of Gaussian returns, weighted by the holding period distribution.
Here Fp ; denotes the cumulative distribution function of the holding period at time
t,1e., of H;.

Remark 1 (Mixtures for heavy-tailed and skewed distributions). Mixtures of distrib-
utions have been used for a long time in statistics and may lead to heavy tails, allowing
for modeling of skewed distributions and of extreme events. Given the fact that mix-
tures lead, in the distributions space, to linear (convex) combinations of possibly
simple and well-understood distributions, they are tractable and easy to interpret.
The literature on mixtures is enormous and it is impossible to do justice to all this
literature here. We just hint at the fact that static mixtures of distributions had been
postulated in the past to fit option prices for a given maturity, see for example [24],
where a mixture of normal densities for the density of the asset log-returns under
the pricing measure is assumed, and subsequently [8, 16, 20]. In the last decade
[2, 9, 10] have extended the mixture distributions to fully dynamic arbitrage-free
stochastic processes for asset prices.
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Table 2 SHP distributions and market risk

Holding period VaR 99.96% | (Analytic) | ES99.96% | (Analytic)
Constant 10 b.d. 20.1 (20.18) 21.7 (21.74)
Constant 75 b.d. 55.7 (55.54) 60.0 (59.81)
SHP (Bernoulli 10/75, p1op =0.99) | 29.6 (29.23) 36.1 (35.47)

Going back to our notation, VaR, j . and ES; ;, . are the value at risk and expected
shortfall, respectively, for a horizon 4 at confidence level ¢ at time 7, namely

P{X;4h — X; > —VaR; j, ¢} = c.ES; pc = —E [ X, — Xi| Xy — Xy < —VaR; p, ] .

We now recall the standard result on VaR and ES under Gaussian returns in
deterministic calendar time.

Proposition 1 (VaR and ES with Gaussian log-returns on a deterministic risk hori-
zon h) In the Gaussian log-returns case where

Xi4+n—X; is normally distributed with mean [, , and standard deviation oy (1)
we obtain

VaR: p,c = — s, n + ‘D_I(C)Ut,h» ESt,h,c = —WUn +0rnp (‘p_l(c)) /(1 —0¢)

where p is the standard normal probability density function and @ is the standard
normal cumulative distribution function.

In the following we will calculate VaR and Expected Shortfall referred to a confi-
dence level of 99.96 %, calculated over the fixed time horizons of 10 and 75 business
days, and under SHP process with statistics given by Table 1, using Monte Carlo
simulations. Each year has 250 (working) days. The results are presented in Table 2.

More generally, we may derive the VaR and ES formulas for the case where H,
is distributed according to a general distribution

P(H; <x)=Fp,(x), x>0

and
P(Xiyn — X; <x) = Fx 1 p(x).

Definition 1 (VaR and ES under Stochastic Holding Period) We define VaR and ES
under a random horizon H, at time ¢ and for a confidence level ¢ as

P{X;+n, — X; > —VaRy 1} = ¢, ESprc = —E[Xiwnm, — XelXin, — X < —VaRpc].
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We point out that the order of time/confidence/horizon arguments in the VaR and
ES definitions is different in the Stochastic Holding Period case. This is to stress the
different setting with respect to the fixed holding period case.

We have immediately the following:

Proposition 2 (VaR and ES for SHP independent of returns in deterministic calendar
time) Assume that H is independent of the log returns of X in deterministic calendar
time. Using the tower property of conditional expectation it is immediate to prove
that such a case VaRy ; . obeys the following equation:

o0
/ 11— FX t, h VaRH,I,c)) dFH,t(h) =cC
0

whereas ESy ; . is given by

o0
ESHyc=— = /]E [XH—h = X¢lXe4n — X < —VGRH,t,c] Prob (Xiwn — X, < —VaRu .c) dFp  (h)
0

For the specific Gaussian case (1) we have

oo

VaR
/(D (Mr,h+ a H,t,c)dFH’t(h) .

Ot.h
0

1
ESH,I,C = 1

00
: — — VaR . — — VaR .

_c/ [—Mz,h@( Hen — Va H,t,L)J’_Ut’hp( . a H,t,c)i| dF g, ()

0

Ot.h Ot.h

Notice that in general one can try and obtain the quantile VaR g ; . for the random
horizon case by using a root search, and subsequently compute also the expected
shortfall. Careful numerical integration is needed to apply these formulas for general
distributions of H;. The case of Table 2 is somewhat trivial, since in the case where
H)j is as in Table | integrals reduce to summations of two terms.

We note also that the maximum difference, both in relative and absolute terms,
between ES and VaR is reached by the model under random holding period Hj.
Under this model the change in portfolio value shows heavier tails than under a single
deterministic holding period. In order to explore the impact of SHP’s distribution tails
on the liquidity-adjusted risk, in the following we will simulate SHP models with
Hj distributed as an Exponential, an Inverse Gamma distribution! and a Generalized

!

! Obtained by rescaling a distribution IG(f l) with v = 3. Before rescaling, setting o = v/2,
the inverse gamma density is f(x) = (1/I"(«))(a)*x™ ¢~ le=@/¥ x > 0,0 > 0, with expected
value /(¢ — 1). We rescale this distribution by k = 8.66/(«/( — 1)) and take for Hy the random
variable with density f(x/k)/k.
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Pareto distribution’ having parameters calibrated in order to obtain a sample with
the same 99 %-quantile of 75 business days. The results are in Table 3.

The SHP process changes the statistical nature of the P&L process: the heavier
the tails of the SHP distribution, the heavier the tails of P&L distribution. Notice
that our Pareto distribution has tails going to 0 at infinity with exponent around 3, as
one can see immediately by differentiation of the cumulative distribution function,
whereas our inverse gamma has tails going to 0 at infinity with exponent about 2.5.
In this example we have that the tails of the inverse gamma are heavier, and indeed
for that distribution VaR and ES are larger and differ from each other more. This can
change of course if we take different parameters in the two distributions.

3 Dependence Modeling: A Bivariate Case

Within multivariate modeling, using a common SHP for many normally distributed
risks leads to dynamical versions of the so-called normal mixtures and normal mean-
variance mixtures [19].

Assumption 2 In this section we assume that different assets have the same random
holding period, thus testing an extreme liquidity dependence scenario. We will briefly
discuss relaxing this assumption at the end of this section. We further assume that
the stochastic holding period process is independent of the log returns of assets in
deterministic calendar time.

Let the log returns (recall X! = In V//, with V/ the value at time ¢ of the ith asset)

1 1 m m
Xogn —Xpo oo, Xy — X
be normals with means utl B ,u;’fh and covariance matrix Qy j.
Then
1 1 m m
P[Xt+H[—Xl<x1,..., rrH, — X <xm]
o
1 1
:/IP’[X,M—XI <Xlyeees X — X[ <xm]dFH’t(h)
0

is distributed as a mixture of multivariate normals, and a portfolio V; of the assets
1,2,...,m whose log-returns X, y; — X; (X; = In V;) are a linear weighted combi-
nation wi, ..., wy, of the single asset log-returns X ; =X ; would be distributed as

2 With scale parameter k = 9 and shape parameter & = 2.0651, with cumulative distribution

o
function F(x) =1 — (ﬁ) , x > 0, this distribution has moments up to order «. So the smaller

o, the fatter the tails. The mean is, if « > 1, E[Hyp] = k/(a — 1).
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00
_ 1 1 m m
P[Xim — X <2] = /P[wl (Xt+h - Xt) totwn (Xt+h - Xi ) < Z] dFy ¢(h)
0

In particular, in analogy with the unidimensional case, the mixture may potentially
generate skewed and fat-tailed distributions, but when working with more than one
asset this has the further implication that VaR is not guaranteed to be subadditive on
the portfolio. Then the risk manager who wants to take into account SHP in such a
setting should adopt a coherent measure like Expected Shortfall.

A natural question at this stage is whether the adoption of a common SHP can add
dependence to returns that are jointly Gaussian under deterministic calendar time,
perhaps to the point of making extreme scenarios on the joint values of the random
variables possible.

Before answering this question, one needs to distinguish extreme behavior in the
single variables and in their joint action in a multivariate setting. Extreme behavior
on the single variables is modeled, for example, by heavy tails in the marginal dis-
tributions of the single variables. Extreme behavior in the dependence structure of,
say, two random variables is achieved when the two random variables tend to take
extreme values in the same direction together. This is called tail dependence, and one
can have both upper tail dependence and lower tail dependence. More precisely, but
still loosely speaking, tail dependence expresses the limiting proportion according
to which the first variable exceeds a certain level given that the second variable has
already exceeded that level. Tail dependence is technically defined through a limit,
so that it is an asymptotic notion of dependence. For a formal definition we refer,
for example, to [19]. “Finite” dependence, as opposed to tail, between two random
variables is best expressed by rank correlation measures such as Kendall’s tau or
Spearman’s rho.

We discuss tail dependence first. In case the returns of the portfolio assets are
jointly Gaussian with correlations smaller than one, the adoption of a common ran-
dom holding period for all assets does not add tail dependence, unless the commonly
adopted random holding period has a distribution with power tails. Hence, if we
want to rely on one of the random holding period distributions in our examples
above to introduce upper and lower tail dependence in a multivariate distribution for
the assets returns, we need to adopt a common random holding period for all assets
that is Pareto or Inverse Gamma distributed. Exponentials, Lognormals, or discrete
Bernoulli distributions would not work. This can be seen to follow from properties of
the normal variance-mixture model, see for example [19], p. 212 and also Sect.7.3.3.

A more specific theorem that fits our setup is Theorem 5.3.8 in [23]. We can write
it as follows with our notation.

Proposition 3 (A common random holding period with less than power tails does
not add tail dependence to jointly Gaussian returns) Assume the log returns to be
W/ =InV/, with V} the value at time t of the ith asset, i = 1, 2, where

1 1 2 2
Wz+h - Wt ’ Wt+h - Wr
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are two correlated Brownian motions, i.e., normals with zero means, variances h,
and instantaneous correlation less than 1 in absolute value:

d<w1, W2>t =dW, dW? = piodt, |pr1ol < L.

Then adding a common nonnegative random holding period Hy independent of W’s
leads to tail dependence in the returns

1 2
WHo’ WHO
if and only if / Hy is regularly varying at oo with index o > 0.

Theorem 5.3.8 in [23] also reports an expression for the tail dependence coeffi-
cients as functions of « and of the survival function of the student ¢ distribution with
o + 1 degrees of freedom.

Summarizing, if we work with power tails, the heavier the tails of the common
holding period process H, the more one may expect tail dependence to emerge for the
multivariate distribution: by adopting a common SHP for all risks, dependence could
potentially appear in the whole dynamics, in agreement with the fact that liquidity
risk is a systemic risk.

‘We now turn to finite dependence, as opposed to tail dependence. First, we note the
well-known elementary but important fact that one can have two random variables
with very high dependence but without tail dependence. Or one can have two random
variables with tail dependence but small finite dependence. For example, if we take
two jointly Gaussian Random variables with correlation 0.999999, they are clearly
quite dependent on each other but they will not have tail dependence, even if a
rank correlation measure such as Kendall’s T would be 0.999, still very close to 1,
characteristic of the co-monotonic case. This is a case with zero tail dependence but
very high finite dependence. On the other hand, take a bivariate student ¢ distribution
with few degrees of freedom and correlation parameter p = 0.1. In this case the two
random variables have positive tail dependence and it is known that Kendall’s tau
for the two random variables is

2
T = — arcsin(p) ~ 0.1
b4

which is the same tau one would get for two standard jointly Gaussian random
variables with correlation p. This tau is quite low, showing that one can have positive
tail dependence while having very small finite dependence.

The above examples point out that one has to be careful in distinguishing large
finite dependence and tail dependence.

A further point of interest in the above examples comes from the fact that the
multivariate student ¢ distribution can be obtained by the multivariate Gaussian dis-
tribution when adopting a random holding period given by an inverse gamma dis-
tribution (power tails). We deduce the important fact that in this case a common
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random holding period with power tails adds positive tail dependence but not finite
dependence.

In fact, one can prove a more general result easily by resorting to the tower property
of conditional expectation and from the definition of tau based on independent copies
of the bivariate random vector whose dependence is being measured. One has the
following “no go” theorem for increasing Kendall’s tau of jointly Gaussian returns
through common random holding periods, regardless of the tail’s power.

Proposition 4 (A common random holding period does not alter Kendall’s tau for
jointly Gaussian returns) Assumptions as in Proposition 3 above. Then adding a
common nonnegative random holding period Hy independent of W's leads to the
same Kendall’s tau for
1 2
WHO’ WHO

as for the two returns
1 2
W, W,

for a given deterministic time horizon t.

Summing up, this result points out that adding further finite dependence through
common SHPs, at least as measured by Kendall’s tau, can be impossible if we start
from Gaussian returns. A different popular rank correlation measure, Spearman’s
rho, does not coincide for the bivariate ¢ and Gaussian cases though, so that it is
not excluded that dependence could be added in principle though dependent hold-
ing periods, at least if we measured dependence with Spearman’s p. This is under
investigation.

More generally, at least from a theoretical point of view, it could be interesting
to model other kinds of dependence than the one stemming purely from a common
holding period (with power tails). In the bivariate case, for example, one could have
two different holding periods that are themselves dependent on each other in a less
simplistic way, for example through a common factor structure, rather than being just
identical. In this case it would be interesting to study the tail dependence implications
and also finite dependence as measured by Spearman’s rho.

We will investigate this aspect in further research, but increasing dependence
may require, besides the adoption of power tail laws for the random holding periods,
abandoning the Gaussian distribution for the basic assets under deterministic calendar
time.

A further aspect worth investigating is the possibility to calculate semi-closed
form risk contributions to VaR and ES under SHP along the lines suggested in [26],
and to investigate the Euler principle as in [27, 28].

4 Calibration with Liquidity Data

We are aware that multivariate SHP modeling is a purely theoretical exercise and that
we just hinted at possible initial developments above. Nonetheless, a lot of financial
data is being collected by regulators, providers, and rating agencies, together with
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a consistent effort on theoretical and statistical studies. This will possibly result in
available synthetic indices of liquidity risk grouped by region, market, instrument
type, etc. For instance, Fitch already calculates market liquidity indices on CDS
markets worldwide, on the basis of a scoring proprietary model [14].

4.1 Dependencies Between Liquidity, Credit, and Market Risk

It could be an interesting exercise to calibrate the dependence structure (e.g., cop-
ula function) between a liquidity index (like the Fitch’s one), a credit index (like
iTRAXX), and a market index (for instance Eurostoxx50) in order to measure the
possible (nonlinear) dependence between the three. The risk manager of a bank
could use the resulting dependence structure within the context of risk integration,
in order to simulate a joint dynamics as a first step, to estimate later on the whole
liquidity-adjusted VaR/ES by assuming co-monotonicity between the variations of
the liquidity index and of the SHP processes.

4.2 Marginal Distributions of SHPs

A lot of information on SHP ‘extreme’ statistics of an OTC derivatives portfolio
could be collected from the statistics, across Lehman’s counterparties, of the time
lags between the Lehman’s Default Event Date and the trade dates of any replacement
transaction. The data could give information on the marginal distribution of the SHP
of a portfolio, in a stressed scenario, by assuming a statistical equivalence between
data collected ‘through the space’ (across Lehman’s counterparties) and ‘through
the time’ under i.i.d. hypothesis.> The risk manager of a bank could examine a
more specific and non-distressed dataset by collecting information on the ordinary
operations of the business units.

5 Conclusions

Within the context of risk integration, in order to include liquidity risk in the whole
portfolio risk measures, a stochastic holding period (SHP) model can be useful,
being versatile, easy to simulate, and easy to understand in its inputs and outputs.
In a single-portfolio framework, as a consequence of introducing an SHP model, the
statistical distribution of P&L moves to possibly heavier tailed and skewed mixture
distributions. In a multivariate setting, the dependence among the SHP processes to
which marginal P&L are subordinated, may lead to dependence on the latter under
drastic choices of the SHP distribution, and in general to heavier tails on the total

3 A similar approach is adopted in [21] within the context of operational risk modeling.
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P&L distribution. At present, lack of synthetic and consensually representative data
forces to a qualitative top-down approach, but it is straightforward to assume that
this limit will be overcome in the near future.
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Regulatory Developments in Risk
Management: Restoring Confidence
in Internal Models

Uwe Gaumert and Michael Kemmer

Abstract The paper deals with the question of how to restore lost confidence in
the results of internal models (especially market risk models). This is an impor-
tant prerequisite for continuing to use these models as a basis for calculating risk-
sensitive prudential capital requirements. The authors argue that restoring confidence
is feasible. Contributions to this end will be made both by the reform of regulatory
requirements under Basel 2.5 and the Trading Book Review and by refinements of
these models by the banks themselves. By contrast, capital requirements calculated
on the basis of a leverage ratio and prudential standardised approaches will not be
sufficient, even from a regulatory perspective, owing to their substantial weaknesses.
Specific proposals include standardising models with a view to reducing complexity
and enhancing comparability, significantly improving model validation and increas-
ing transparency as to how model results are determined, also over time. The article
reflects the personal views of the authors.

1 Introduction

Since 1997 (“Basel 1.5”), banks in Germany have been allowed to calculate their
capital requirements for the trading book using internal value-at-risk (VaR) models
that have passed a comprehensive and stringent supervisory vetting and approval
process. Basel II and Basel III saw the introduction of further internal models com-
plementing the standardised approaches already available—take, for example, the
internal ratings-based (IRB) approach for credit risk under Basel I and the advanced
credit valuation adjustment (CVA) approach for counterparty risk under Basel III.
During the financial crisis, particular criticism was directed at internal market risk
models, the design of which supervisors largely left to the banks themselves. This
article therefore confines itself to examining these models, which are a good starting
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point for explaining and commenting on the current debate. Much of the following
applies to other types of internal models as well.

Banks and supervisors learned many lessons from the sometimes unsatisfactory
performance of VaR models in the crisis—one of the root causes of the loss of confi-
dence by investors in model results. This led, at bank level, to arange of improvements
in methodology, and also to the realisation that not all products and portfolios lend
themselves to internal modelling. At supervisory level, Basel 2.5 ushered in an initial
reform with rules that were much better at capturing extreme risks (tail risks) and
that increased capital requirements at least threefold. Work on a fundamental trading
book review (Basel 3.5), which will bring further methodological improvements to
regulatory requirements, is also underway.

Nevertheless, models are still criticised as being

too error-prone,

suitable only for use in “fair-weather” conditions,

too variable in their results when analysing identical risks,

insufficiently transparent for investors and

manipulated by banks, with the tacit acceptance of supervisors, with the aim of
reducing their capital requirements.

As a result, the credibility of model results and thus their suitability for use as a
basis for calculating capital requirements have been challenged. This culminated
in, for example, the following statement by the academic advisory board at the
German Ministry for Economic Affairs: “Behind these flaws (in risk modelling)1
lie fundamental problems that call into question the system of model-based capital
regulation as a whole.”? It therefore makes good sense to explore the suitability of
possible alternatives. The authors nevertheless conclude that model-based capital
charges should be retained. But extensive efforts are needed to restore confidence in
model results.

2 Loss of Confidence in Internal Models—How Did It
Happen?

2.1 An Example from the First Years of the Crisis

The market disruption which accompanied the start of the financial crisis in the second
half of 2007 took the form in banks’ trading units of sharply falling prices with a
corresponding impact on their daily P&Ls after a prolonged phase of low volatility.
Uncertainty grew rapidly about the accuracy of estimated probabilities of default,
default correlations of the underlying loans and the scale of loss in the event of default,

! Wording in brackets inserted by the authors.
2 [31], p. 19.
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and thus also about the probabilities of default and recovery rates of the securitisation
instruments. This in turn caused spreads to widen, volatility to increase and market
liquidity for securitisation products to dry up. A major exacerbating factor was that
many market participants responded in the same way (“flight to simplicity”, “flight
to quality”). Later on, there were also jump events such as downgrades. Calibrating
the above parameters proved especially problematic since there was often a lack of
historical default or market data. Unlike in the period before the crisis, even AAA-
rated senior or super senior tranches of securitisation instruments, which only start
to absorb loss much later than their riskier counterparts, suffered considerably in
value as the protective cushion of more junior tranches melted away, necessitating
substantial write-downs.?

The performance of internal market-risk models was not always satisfactory, espe-
cially in the second half of 2007 and in the “Lehman year” of 2008. In this period,
a number of banks found that the daily loss limits forecast by their models were
sometimes significantly exceeded (backtesting outliers).* The performance results
of Deutsche Bank, for instance, show that losses on some sub-portfolios were evi-
dently serious enough to have an impact on the overall performance of the bank’s
trading unit. This demonstrates the extremely strong market disruption which can
follow an external shock. When backtesting a model’s performance, the current
clean P&L—P&L,;—is compared with the previous day’s VaR forecast VaR,_;.> At
a confidence level of 99 %, an average of two to three outliers a year may be antic-
ipated over the long term (representing 1 % of 250-260 trading days a year). In the
years between 2007 and 2013, Deutsche Bank had 12, 35, 1, 2, 3, 2 and 2 outliers.®
Although the models’ performance for 2007 and 2008 looks bad at first sight, the
question nevertheless arises as to whether or not these outliers are really the models’
“fault”, so to speak. By their very nature, models can only do what they have been
designed to do: “If you’re in trouble, don’t blame your model.” To function properly,
the models needed liquid markets, adequate historical market data and total coverage
of all market risks, particularly migration and default risk. These prerequisites were
not always met by markets and banks. Anyone using a model has to be aware of its
limitations and exercise caution when working with its results.

Even Germany’s Federal Financial Supervisory Authority BaFin pointed out that,
given the extreme combination of circumstances on the market in connection with
the financial crisis, the figures do not automatically lead to the conclusion that the
predicative quality of the models is inadequate.” The example could indicate that,

3. Cf. (18], p. 128.

41101, p. 8.

5 Between 2007 and 2009, only so-called “dirty” P&L results were published in chart form, while
outliers are based on “clean” P&L data. This inconsistency was eliminated in 2010. Dirty and clean
P&L figures may differ. This is because clean P&L simply shows end-of-day positions revalued
using prices at the end of the following trading day, whereas dirty P&L also includes income from
intraday trading, fees and commissions and interest accrued.

6 [11], Management Report, 2007, p. 88, 2008, p. 98, 2009, p. 85, 2010, p. 95, 2011, p. 104, 2012,
p. 167, 2013, p. 170.

7 [16], p. 133.
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since 2009, the bank has been successful in eliminating its models weaknesses, at
least at the highest portfolio level. It should nevertheless be borne in mind that market
phases analysed after 2008 were sometimes quieter and that there has also been some
reduction in risk. The increasing shift in the nature of the financial crisis from 2010
towards a crisis concerning the creditworthiness of peripheral European countries,
which created new market disruption, is most certainly reflected at the highest level of
the backtesting time series. Particularly large losses were incurred in March and May
2010, which only in May 2010 led to the two outliers realised that year. These outliers
may be explained by the fears brewing at the time about the situation of the PIIGS
states. Possibly, the scale of the corresponding trading activities was such that any
problems with the models for these sub-portfolios made themselves felt at the highest
portfolio level. The weaknesses outlined below were, by the banks own testimony,
identified and rapidly addressed.® As mentioned above, two to three outliers per year
represent the number to be expected and are not sufficient, in themselves, to call the
quality of modelling into question.

The flaws banks identified in their models following the outbreak of the crisis
revealed that a variety of areas needed work and improvement. These improvements
have since been carried out. Some examples of model weaknesses which banks have
now resolved are”:

1. No coverage of default-risk driven “jump events”, such as rating changes and
issuer defaults. At the outbreak of the crisis, models often failed to cover the
growing amount of default risk in the trading book. The introduction of IRC
models!'? to cover migration and default risk helped to overcome this.

2. Insufficient coverage of market liquidity risk. It was often not possible to liquidate
or hedge positions within the ten-day holding period assumed under Basel 1.5.
This led to risks being underestimated. Basel 2.5 takes account of market liquidity
risk explicitly and in a differentiated way, at least for IRC models. Full coverage
will be achieved under Basel 3.5.

3. Slow response to external shocks (outlier clustering). The introduction of stress
VaR under Basel 2.5 went a long way towards eliminating the problem of under-
estimating risks in benign market conditions. Historical market data for “normal
VaR” are now adjusted daily, while monthly or quarterly adjustments were the
norm before the crisis.

4. Insufficient consideration of the risk factors involved in securitisation. As a result,
models designed for securitisation portfolios may no longer be used to calculate
capital charges (with the exception of the correlation trading portfolio). Even
before the rule change, some banks had already decided themselves to stop using
these models.

5. Flawed proxy approaches. Prior to the crisis, it was often possible to assign a
newly introduced product to an existing one and assume the market risk would

8 Cf. [11], Management Report, 2010, p. 91.
9301, pp. 13-17.

10 [RC stands for incremental risk charge. This refers to risks such as migration and default risk,
which were not covered by traditional market risk models before the crisis.
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behave in the same way. During the crisis, this assumption proved to be flawed.'!
The supervisory treatment of such approaches is now much more restrictive.

6. The approximation of changes in the price of financial instruments cannot accom-
modate large price movements (delta-gamma approximations). Full revaluation
of instruments is now standard practice.

7. No and/or flawed scaling to longer time horizons. Scaling practices of this kind,
such as square-root-of-time scaling, are now subject to prudential requirements
to ensure their suitability.

These problems were the basis of the review of market risk rules under Basel 2.5
and, as described above, were able to be eliminated both by banks themselves and by
new supervisory requirements.!> Despite this large-scale and appropriate response,
distrust of internal model results and their use for prudential purposes persisted,
leading to further fundamental discussions.!3

2.2 Divergence of Model Results

This continuing distrust at the most senior level of the Basel Committee'* led to the
commissioning of the Standards Implementation Group for Market Risk (SIG-TB) to
compare the results generated by the internal models of various banks when applied
to the same hypothetical trading portfolios (hypothetical portfolio exercise). A major
point of criticism has always been that internal model results are too variable even if
the risks involved are the same. In January 2013, the SIG-TB published its analysis. !
The following factors were identified as the key drivers of variation:

e The legal framework: some of the banks in the sample did not have to apply Basel
2.5. This means the US banks, for instance, supplied data from models that had
neither been implemented nor approved. Analysis showed that some of these banks
had significantly overestimated risk, though this did not, in practice, translate into
higher capital requirements.

e National supervisory rules for calculating capital requirements: differences were
noted, for example, in the multipliers set by supervisors for converting model
results into capital requirements. In addition, some supervisors had already
imposed restrictions on the type of model that could be used and/or set specific
capital add-ons.

e Legitimate modelling decisions taken by the banks: among the most important
of these was the choice of model (spread-based, transition matrix-based) in the
absence of a market standard for modelling rating migration and default risk (IRC

111181, p. 133.

121211, pp. 59 f£., [25], p. 39.

13 Cf. Sect. 3.

14 The precise reasons for this distrust at senior level are not known.
15 Cf. [6].
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models). Different assumptions about default correlations also led to different
results. In VaR and stressed VaR models, major factors were the length of data
histories (at least one year, no maximum limit), the weighting system, the aggre-
gation of asset classes and of general and specific market risk, and the decision
whether to scale a one-day VaR up to ten days or estimate a 10-day VaR directly.
The choice of stress period for the stressed VaR also played an important role.'®

In summary, the differences noted were the result of legitimate decisions taken
by banks with the approval of supervisors and of variations between supervisory
approval procedures. There is no evidence to suggest manipulation with the aim of
reducing capital requirements. Differences can also be explained by variations in
the applicable legal framework and in the market phase on which the study was
based. An issue related to the market phase is the length of the observation period
used. Observation periods of differing lengths will have an impact if, for instance,
the volatility of market data has changed from high (during a period over one year
ago) to low (last year). In this example, a bank using a one-year data history will not
capture the phase of higher volatility. This volatility will, by contrast, most certainly
be captured by any bank using a longer data history (with the extent also depending
on the weighting system applied to historical data).

It is also important to note that the study was based on a hypothetical portfolio
approach at the lowest portfolio level and not on real portfolios. The study does not
address the inherent weakness of this method. One major weakness is that the test
portfolios used do not reflect portfolio structures in the real world. Portfolios for
which banks calculate VaR are normally located at a far higher level in the portfolio
“tree” and are consequently more diversified. If the portfolios analysed had been
more realistic, variations would probably have been significantly less marked.!”

Even if the variation between results can be readily explained and cannot be
“blamed” on the banks, it is nevertheless difficult to communicate differences of, for
instance, around 13-29 million euros in the results for portfolio 25, the most highly
aggregated portfolio.!® Efforts are most certainly needed to reduce the amount of
variation by means of further standardisation, even if complete alignment would not
make good sense (see Sect. 4.2). At first sight, the differences could also be interpreted
as a quantitative measure of the uncertainty surrounding model results and thus as an
expression of model risk. Section4.7 will explore to what extent this is a reasonable
analysis and whether banks should try to capitalise model risk themselves as things
stand. As the next section shows, dispensing with internal models for prudential
purposes would not, by contrast, be the correct response.

16 Cf. [6], p. 10.

17 The study by the SIG has now been expanded to cover more complex portfolios, cf. [7]. The
results are nevertheless comparable. Variation increases with the complexity of the portfolios. In the
first analysis, this was found to be particularly the case with IRC modelling compared to “normal”
market risk modelling.

18 Cf. portfolio 25, [6], p. 27.
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3 Alternatives to Internal Models

3.1 Overview

Given the difficulties associated with modelling and the variation in results, it is
legitimate to ask whether model-based, risk-sensitive capital charges should be
dropped altogether. Such a step would, moreover, significantly simplify regulation.
But it could also be asked whether it would not make more sense to address the
undoubted weaknesses of internal models by means of the reforms already in place
or in the pipeline without “throwing the baby out with the bath water”, i.e. should we
not try to learn from past mistakes instead of just giving up. These questions can best
be answered systematically by examining to what extent the existing regulatory pro-
posals could, together or on their own, replace model-based capital charges. There
are essentially two alternatives under discussion:

e dropping risk-sensitive capital charges and introducing a leverage ratio as the sole
“risk metric”;

e regulatory standardised approaches: applying risk-sensitive capital charges while
abandoning model-based ones.

3.2 The Leverage Ratio

An exclusively applicable, binding leverage ratio—defined as the ratio of tier 1
capital to total assets including off-balance-sheet and derivative positions'—is only
a logical response if it must be assumed that neither banks nor supervisors are capa-
ble of measuring the risks involved in banking. Advocates of this approach talk of
the “illusion of the measurability of risk.”?’ They argue that we are in a situation
of “uncertainty”, not “risk”. Uncertainty in decision theory is characterised by two
things: neither are all conceivable results known, nor is it possible to assign proba-
bilities to the results or estimate a probability density function. In this case, it would
not, for example, be possible to calculate a VaR defined as a quantile of a portfolio
loss distribution. This is only possible under “risk”.

The concepts of “uncertainty” and “risk” are, however, abstract, theoretical
extremes, while the various situations observed in reality usually lie somewhere
in between. The answer to the question of whether it is more appropriate to assume
a risk situation or an uncertainty situation is determined above all by the availability
of the data needed for the model estimate (such as market data or historical default
data). If, in addition, the risk factors associated with the financial instruments are
known and taken into account, and if the potential changes in the value of a trading

19 The most recent revision of the Basel Committee’s definition of the leverage ratio can be found
in draft form in [4] and, in its final form, in [8].

20 ¢f. [31], p. 19.
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portfolio can be satisfactorily measured, (quality of the stochastic model, no normal
loss distribution as arule), determining a VaR of portfolio losses is likely to be appro-
priate.?! This may be assumed for the vast majority of trading portfolios. Should this
nevertheless not be the case, regulatory standardised approaches, which normally
require less data to be available, could then be used. Reviewing and adjusting mod-
els is a never-ending task for banks. The model risks which undoubtedly exist (e.g.
estimation errors) are also a focus of supervisors’ attention. An awareness of the
limits of a model and of such model risks does not, however, make the use of models
obsolete.”? Although modelling by its very nature always involve simplification of
reality, quantitative and qualitative model validation is crucial. Supervisors set and
enforce stringent rules for such validation.?

Advocates of the “uncertainty approach” propose a so-called heuristic as a “rule
of thumb” and as a risk metric, at least for supervisors. Leverage ratios with widely
differing minimum levels have been suggested as a heuristic for ensuring the solvency
of banks. The levels called for range from 3 to 30 %.2* As is generally recognised, it
is not possible to infer a specific minimum level from theory.

The question of whether a leverage ratio is actually a suitable heuristic for ensur-
ing solvency has not been satisfactorily answered, however. Empirical studies to
determine to what extent the leverage ratio is a statistical, univariate risk factor that
can distinguish between banks that survive and those that fail come to different
conclusions.> Often, no such distinguishing ability can be demonstrated. This may
have an economic explanation since the leverage ratio, as a vertical metric on the
liabilities side of the balance sheet, cannot act as a horizontal metric of a bank’s risk-
bearing capacity by means of which sources of loss (causes of insolvency), which
are mainly to be found on the assets side of the bank’s balance sheet, are compared
with a loss-absorbing indicator (capital). This can, by contrast, be accomplished by
ratios such as the “core tier 1” or “tier 1" capital ratio. If, moreover, a leverage ratio
were a measure capable of predicting the insolvency of certain types of banks, it
would probably swiftly cease to be a good measure once it became a binding target
(Goodhart’s Law).

What is more, the leverage ratio has a very long—and already widely discussed—
list of drawbacks.? These are the points of most relevance here:

e Perverse incentives and the potential for arbitrage: there are strong incentives to
make business models more risky. Because assets are measured on a non-risk-
weighted basis, an AAA investment, for instance, ties up just as much capital as
does a B investment.

21 Cf.[19], p. 36.
22 See footnote 21
23 See also Sect. 4.6.

24 Cf., for example, [31], p. 23 (15 % capital ratio), cf. [26], p. 182 (20-30 % capital ratio). Leverage
ratios set at this level would override risk-based standards, thus rendering them obsolete.

25 Cf., for example, the summarising article [32], pp. 26 f.
26 Cf., for example, [17] or [20], p. 58.
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e A leverage ratio is by no means “model free”: highly complex valuation models
or even simulation approaches are sometimes needed to measure derivatives on
a marked-to-market basis, for example. In a broader context, this is more or less
true for all balance-sheet valuations. So even a leverage ratio cannot claim to be
the simple, robust rule that proponents of a heuristic approach are looking for.?’

e It makes it impossible to compare capital adequacy across banks. The adequacy
of a bank’s capital resources cannot be assessed without measuring the associated
risks.

For these and other reasons not mentioned here, the international banking community
continues to reject the leverage ratio as a sole indicator and as a binding limit. At most,
it may make sense to monitor changes in a bank’s leverage ratio, but not its absolute
level; this is the approach of the German Banking Act at present.?® Supervisors
have widely differing views on the leverage ratio. Even Haldane/Madouros (Bank
of England) by no means call in their famous “The dog and the frisbee” speech for
a leverage ratio on its own or a minimum leverage ratio set at such a high level that
risk-based requirements are overridden and therefore indirectly rendered obsolete
(leverage ratio as a frontstop instead of the Basel backstop). Owing to the massive
perverse incentives which they too have noted, they talk instead of placing leverage
ratios on an equal footing with capital ratios.>

3.3 Regulatory Standardised Approaches

Standardised approaches, i.e. approaches which spell out in detail how to calculate
capital requirements on the basis of prudential algorithms (“supervisory models”),
will always be needed for smaller banks which cannot or do not wish to opt for internal
models. But larger banks need standardised approaches too—as a fallback solution
if their internal models are or become unsuitable for all or for certain portfolios.
Having said that, a standardised approach alone is by no means sufficient for larger
banks; the reasons are as follows3?:

e Itisinvariably true of a standardised approach that “one size does not fit all banks”.
Since a standardised approach is not tailored to an individual bank’s portfolio
structure, it cannot measure certain risks (such as certain basis risks) or can only

27 The discussion about a suitable definition of the leverage ratio also shows that improved definitions
invariably lead to significantly greater complexity, cf. [8].

28 Cf. Section24 (1) (16) and (1a) (5) of the German Banking Act [27].

29 Cf. [24], p. 19: “The case against leverage ratios is that they may encourage banks to increase
their risk per unit of assets, reducing their usefulness as an indicator of bank failure—a classic
Goodhart’s Law. Indeed, that was precisely the rationale for seeking risk-sensitivity in the Basel
framework in the first place. A formulation which would avoid this regulatory arbitrage, while
preserving robustness, would be to place leverage and capital ratios on a more equal footing.” A
leverage ratio of at least 7% would be necessary for this purpose, in the authors’ view.

30 Cf.[19], p. 37.
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do so very inaccurately. It is normally much less risk-sensitive than an internal
model.

e A related problem is that a standardised approach usually works only with com-
paratively simple portfolios. This results in risk being overstated or understated.

e It normally fails to capture diversification or hedging effects satisfactorily.

e Standardised approaches can thus be more dangerous than internal models because
it is often easy to “game the system”. Trading revenue, for instance, can be gen-
erated seemingly without risk, enabling trading units to inflate risk-adjusted earn-
ings.3!

e If internal models are no longer used, supervisors will also have to dispense with
banks’ risk-management expertise.

e Standardised approaches are simple models. But as all proposals for standardised
approaches to date have shown, supervisors are by no means better at constructing
models than are the banks themselves.

A further alternative would be scenario-based approaches, which are often relatively
similar to models, such as those which may currently be used for calculating capital
charges for options under the standardised approach to market risk (scenario matrix
approach). This alternative, though definitely worth considering, is not being dis-
cussed at present and will therefore be only briefly explored in this article. Scenario
approaches may be regarded as a kind of “halfway house” between risk-sensitive
standardised approaches and internal models. If they are prescribed as a regulatory
standardised approach, they may also demonstrate the weaknesses of standardised
approaches described above. The key criteria for evaluating such approaches are the
scenario generation technique and the process/algorithm used for calculating val-
uation adjustments on the basis of the scenarios. An especially critical question is
to what extent the (tail) loss risk of the instruments and portfolios concerned can
be captured. At one end of the spectrum are approaches that merely differentiate
between a few scenarios (e.g. base case and adverse case) and make no attempt to
estimated a loss distribution. At the other extreme are internal models which simulate
such a large number of scenarios that it is possible to estimate a loss distribution on
the basis of which a parameter such as VaR or expected shortfall can be calculated.
Another important question is whether or not the scenario generation takes account
of stressed environmental conditions.

To sum up, standardised approaches usually have considerable failings when
it comes to measuring risk, especially the risk associated with large-scale, com-
plex trading activities. On their own, they are not an adequate basis on which to
determine appropriate capital requirements.>> So it may be concluded at this point

31 One example: when supervisors set risk factors in the standardised approach model, basis risk is
often ignored because different risk factors are (and must be) mapped to the same regulatory risk
factor. This is part of the model simplification process. It is often easy to design a trade to exploit
the “difference”.

32 The outlined shortcomings of standardised approaches also mean they have only limited suitability
as a floor for model-based capital requirements. Contrary to what is sometimes claimed, model risk
would therefore not be reduced by a floor.
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that, together or separately, a leverage ratio and standardised approaches are inappro-
priate and insufficient from a supervisory perspective. Internal models must remain
the first choice. Nevertheless, confidence in internal models needs to be significantly
strengthened.

4 Ways of Restoring Confidence

4.1 Overview

The first, important step should be to standardise supervisory approval processes to
eliminate this major source of variation. A single set of approval and review standards
should be developed for application worldwide. A globally consistent procedure
needs to be enforced for granting and withdrawing permission to use models. With
activities of this kind, supervisors themselves could make a significant contribution
to restoring confidence.}

A number of further proposals are also under discussion at present. Together, they
have the potential to go a long way towards winning back trust:

a. Reducing the variation in model results through standardisation (Sect.4.2).

b. Enhancing transparency (Sect.4.3).

c. Highlighting the positive developments as a result of the trading book review
(Sect.4.4).

Strengthening the use test concept (Sect.4.5).

A comprehensive approach to model validation (Sect.4.6).

Quantification and capitalisation of model risk (Sect.4.7).

Voluntary commitment by banks to a code of “model ethics” (Sect.4.8).

Other approaches (Sect.4.9).

P s oe

4.2 Reducing the Variation in Model Results Through
Standardisation

First of all, however, it is important to be aware of the dangers of excessive standard-

isation*:

33 For example: the range of multipliers (“3 + x” multiplier), which convert model results into
capital requirements, and the reasons for their application differ widely from one jurisdiction to
another.

34 The Basel Committee is already trying to find a balance between the objectives of “risk sensitiv-
ity”, “complexity” and “comparability”. Standardisation has the potential to reduce the complexity
of internal models and increase their comparability. Against that, increasing the complexity of

standardised approaches often improves comparability. See [5, 22] on the balancing debate.
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e Standardised models can pose a threat to financial stability because they encourage
all banks to react in the same way (herd behaviour). Model diversity is a desirable
phenomenon from a prudential point of view since it generates less procyclicality.

e Standardised models would frequently be unsuitable for internal use at larger
banks, which would consequently need to develop alternative models for internal
risk management purposes. As a result, the regulatory model would be maintained
purely for prudential purposes (in violation of the use test; see below). This would
encourage strategies aimed at reducing capital requirements since the results of
this model would not have to, and could not, be used internally.

e It is therefore in the nature of models that a certain amount of variation will
inevitably exist.

Nonetheless, it is most certainly possible to standardise models in a way which will
reduce their complexity and improve the comparability of their results but will not

compromise their suitability for internal use. Here are a few suggestions®>:

e Develop a market standard for IRC models to avoid variation as a result of differ-
ences in the choice of model (proposed standard established by supervisors: see
Trading Book Review).

e Reduce the amount of flexibility in how historical data are used. For the standard
VaR, one year should be not just the minimum but both the minimum and max-
imum period. This may well affect different banks in different ways, sometimes
increasing capital requirements and sometimes reducing them.

e Standardise the stress period for stressed VaR. The period should be set by super-
visors instead of being selected by banks. True, this means the stress period would
no longer be optimally suited to the individual portfolio in question. But as the
study by the Basel Committee’s SIB-TB has shown, similar periods may, as a
result of the financial crisis, be considered relevant at the highest portfolio level—
namely the second half of 2008 (including Lehman insolvency) and the first half
of 2009.%

4.3 Enhancing Transparency

Much could also be done to improve transparency. Banks could disclose their
modelling methodologies in greater detail, and explain—for example—why changes
made to their models have resulted in reduced capital charges. Transparency of this
kind will significantly benefit informed experts and analysts. These experts will then
be faced with the difficult challenge of preparing their analyses in such a way as to
be accessible to the general public. The public at large cannot be expected to be the
primary addressees of a bank’s disclosures. Someone without specialist knowledge is
unlikely to be able to understand a risk report, for instance. Nor is it the task of banks

35 Cf. [23].
36 Cf. [6], p. 50.
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to write their reports in a manner that makes such specialist knowledge unnecessary.
This is, however, by no means an argument against improving transparency.

The work of the Enhanced Disclosure Task Force (EDTF) is also a welcome
contribution®’ and some banks have already implemented its recommendations in
their trading units voluntarily. The slide from the Deutsche Bank’s presentation for
analysts on 31 January 2013 is just one illustration.>® This explains, in particular, the
changes in market-risk-related RWAs (mRWA flow), i.e. it is made clear what brought
about the reduction in capital requirements in the trading area. The reasons include
reduced multipliers (for converting model results into capital requirements) on the
back of significantly better review results, approval of models (IRB approach, IMM)
for some additional products and the consideration of additional netting agreements
and collateral in calculations of capital requirements.

Another possible means of improving transparency would be to disclose the his-
tory of individual positions with a certain time lag. Serious discussion is nevertheless
called for to determine at what point the additional cost of transparency incurred by
banks would exceed the additional benefit for stakeholders. From an economic per-
spective, this may be regarded as a transparency ceiling.

4.4 Highlighting the Positive Developments as a Result
of the Trading Book Review

The Basel Committee is currently working on a fundamental review of how capital
requirements should be calculated for trading book exposures.>” It has taken criticism
of the existing regime on board and proposes to reduce the leeway granted to banks
in the design of their internal models. Without going into the Committee’s extensive
analysis in detail, here are some key elements of relevance to the questions examined
in this article:

e Expected shortfall is to be introduced as a new risk metric calibrated to a period
of market stress. The intention is to switch to a coherent measure of risk which
can take better account of tail risk.*0 The reference to a stress period is intended
to address the issue of “fair-weather models” (the problem facing the turkey in
Taleb’s “The Black Swan”).

e A so-called desk approach is to be introduced for granting and withdrawing
approval for models. In the future, model approval is to be decided on a
case-by-case basis at trading desk level. This will enable portfolios which are
illiquid and/or cannot easily be modelled to be excluded from the model’s scope.

37 Cf. [13]. Recommendations for market risk (nos 22-25), cf. pp. 12, 51-55.
38 Cf.[12], p. 23.

¥ ¢t [2, 3].

40 Cf. [1], p. 203.
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e Model validation will take place at desk level and become even more stringent
through backtesting and a new P&L attribution process. This will significantly
improve the validation process. At the same time, it will have the effect of raising
the barriers to obtaining supervisory approval of internal models.

e All banks using models will also have to calculate requirements using the stan-
dardised approach. Supervisors take the view that the standardised approach can
serve as a floor, or even a benchmark, for internal models (the level of the floor has
not yet been announced). This may provide a further safety mechanism to avoid
underestimating risk, even if the standardised approach does not always produce
sound results (see above).

4.5 Strengthening the Use Test Concept

Up to now, approval of internal models has been dependent, among other things,
on supervisors being convinced that the model is really used for internal risk man-
agement purposes. Banks consequently have to demonstrate that the model they
have submitted for supervisory approval is their main internal risk management tool.
Basically, they have to prove that the internal model used to manage risk is largely
identical to the model used to calculate capital charges (use test). The rationale behind
this sensible supervisory requirement is that the quality of these risk measurement
systems can best be ensured over time if the internal use of the model results is an
absolute prerequisite of supervisory approval. As a result of the use test, the bank’s
own interests are linked to the quality of the model. The design of the model should
on no account be driven purely by prudential requirements. Moreover, the reply to
the question of how model results are used for internal risk management purposes
shows what shape the bank’s “risk culture” is in.

The use test concept has been undermined, however, by a development towards
more prudentially driven models which began under Basel 2.5 and is even more
pronounced under Basel 3.5. This trend should be reversed. At a minimum, the core
of the model should be usable internally—that is to say be consistent with the bank’s
strategies for measuring risk. Conservative adjustments can then be made outside the
core.

4.6 A Comprehensive Approach to Model Validation

It should be borne in mind that conventional backtesting methods cannot be per-
formed on IRC models. Instead, the EBA has issued special guidelines based on
indirect methods such as stress tests, sensitivity and scenario analyses.*!
A distinction therefore needs to be made between “normal” market risk models

41 Cf. [14], pp. 15 1.
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and IRC models. Though validation standards already exist for IRC models, they
can by no means be described as comprehensive.

For normal market risk models, a comprehensive approach going beyond purely
quantitative backtesting and the P&L attribution process could be supported by banks
themselves. Proposals to this effect are already on the table at the Federal Financial
Supervisory Authority (BaFin).*? It would be worth examining whether the minimum
requirements for the IRB approach could make an additional contribution. These
minimum requirements already pursue a comprehensive quantitative and qualitative
approach to validation, though it may not be possible to apply a number of problems
needing to be resolved to the area of market risk.*?

4.7 Quantification and Capitalisation of Model Risk

A further approach might be to quantify and capitalise model risk either in the form
of a capital surcharge on model results under pillar 1 or as an additional risk category
under pillar 2.

It would be worthwhile discussing the idea of using the diverging result inter-
val of the hypothetical portfolio exercise (see Sect.2.2) as a quantitative basis for
individual capital surcharges. This may be regarded as prudential benchmarking.**
The portfolios tested in this exercise do not, however, correspond to banks’ real
individual portfolios, which makes them a questionable basis for individual capital
surcharges. As explained above in Sect.2.2, moreover, it cannot be concluded that
the differences are largely due to model weaknesses. The question of how to derive
the differences actually due to model risk from the observed “gross” differences is
yet to be clarified and will probably be fraught with difficulties. What is more, model
risk is not reflected solely in the differences in model results (see below on the nature
of model risk, which also covers the inappropriate use of model results, for example,
which can result in flawed management decisions).

This raises the question as to whether it may be better to address model risk under
pillar 2. If model risk is assumed to arise, first, when statistical models are not used
properly and, second, from an inevitable uncertainty surrounding key features of
models, then it is likely to be encountered above all in the areas of

e design (model assumptions concerning the distribution of market risk parameters
or portfolio losses, for example),

e implementation (e.g. the approximation assumptions necessary for I'T purposes),

e internal processes (e.g. complete and accurate coverage of positions, capture of
market data, valuation models at instrument level [see below]) and IT systems
used by banks to estimate risk, and

42 Cf. [9], pp. 38—49.
43 Cf. Articles 174, 185 CRR [29].

44 The EBA is currently preparing a regulatory technical standard to this effect under Article 78 of
CRD IV.



34 U. Gaumert and M. Kemmer

e model use.

The authors take the view that solving the question of how to quantify model risk for
the purpose of calculating capital charges is a process very much in its infancy and
that it is consequently too soon for regulatory action in this field. As in other areas,
risk-sensitive capital requirements should be sought; one-size-fits-all approaches,
like that called for by the Liikanen Group, should not be pursued because they
usually end up setting perverse incentives.

This point notwithstanding, there are already rigid capital requirements for trad-
ing activities under pillar 1 which address model risk, namely in the area of prudent
valuation. These require valuation adjustments to be calculated on accounting mea-
surements of fair value instruments (additional valuation adjustments, AVAs) and
deducted from CET]1 capital. This creates a capital buffer to cover model risk associ-
ated with valuation models at instrument level (see above).46 Valuation risk arising
from the existence of competing valuation models and from model calibration is
addressed by the EBA standard. Deductions for market price uncertainty (Article 8
of the EBA RTS) can also be interpreted as charges for model risk, even if the EBA
does not itself use the term.

4.8 Voluntary Commitment by Banks to a Code of “Model
Ethics”

A commitment could be made to refrain from aggressive or inappropriate modelling
with the sole aim of minimising capital requirements. Banks voluntarily exclude
portfolios, such as certain (though by no means all) securitisation portfolios, from the
scope of their model if questionable results tend to be generated. This may be regarded
as a subitem of the modelling validation issue. The desk approach under Basel 3.5
will help to put this new culture into practice. Since capital requirements will have
to be calculated using the standardised approach as well as the IMA, any aggressive
modelling should be exposed. At a minimum, banks will have to demonstrate that
the standardised approach overstates risk in the portfolio in question. If this cannot
be demonstrated, a case of excessively aggressive modelling may be assumed.

4.9 Other Approaches

Other approaches to restoring confidence also deserve a brief mention:

e further incentives to use models appropriately
e opening up of access to trade repository data
e review of models by auditors

45 Cf. [28], pp. 20-23.
46 Cf. [15], p. 20, Art. 11.



Regulatory Developments in Risk Management ... 35

e more stringent new product introduction (NPI) processes.

In addition to the code of “moral ethics” discussed in Sect.4.8, the following addi-
tional incentive to use models appropriately could be considered. Establishing a link
between traders’ bonuses and model backtesting results could serve to improve the
alignment of interests. This idea is also closely connected with the issue of strength-
ening the use test concept (see Sect.4.5).

Trade repositories already collect key data, including calculated market values,
relating to all derivative contracts, irrespective of whether they are centrally cleared
or not. As things stand, banks have no way of accessing the data of other banks. If
access were made possible at an anonymised level, for example, banks would be able
to carry out internal benchmarking, which could reduce valuation uncertainty and
thus model risk (see also Sect.4.7).

External auditors already review banks’ internal models (both instrument and
stochastic) when auditing the annual accounts. Ways could be explored of further
improving or extending this process, e.g. to include a review of use test compliance.

In the insurance industry, the chief actuary is personally responsible for the correct
pricing of new products. This practice could be adopted in the NPI process used in
the banking industry. The CRO would then be responsible for pricing products fairly,
including products aimed at retail clients. The NPI process could also be made stricter
by requiring external reviewers to approve major new products. Finally, the suitability
of proxy approaches, which are extremely important in the NPI process, could be
examined more stringently and in greater depth.

5 Conclusion

The key conclusions of this article can be summarised as follows:

e A risk-sensitive and model-based approach to calculating capital requirements for
banks should be retained.

e Not only should model-based approaches be formally retained, but there should
also continue to be a capital incentive to use these approaches (i.e. no overriding
leverage ratio, no floor set at too high a level).

e Non-risk-sensitive approaches to calculating capital requirements should, at most,
be used in a complementary capacity, serving merely as indicators and not as
binding limits. Otherwise, dangerous perverse incentives will arise.

e There are also dangers associated with risk-sensitive standardised approaches
because these typically overestimate or underestimate the actual risk.

e Variation in the area of models is something that needs to be lived with to a certain
extent. Some standardisation is nevertheless possible, as are other ways of restoring
confidence. But it should not compromise the internal usability of models.
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Model Risk in Incomplete Markets with Jumps

Nils Detering and Natalie Packham

Abstract We are concerned with determining the model risk of contingent claims
when markets are incomplete. Contrary to existing measures of model risk, typically
based on price discrepancies between models, we develop value-at-risk and expected
shortfall measures based on realized P&L from model risk, resp. model risk and
some residual market risk. This is motivated, e.g., by financial regulators’ plans to
introduce extra capital charges for model risk. In an incomplete market setting, we
also investigate the question of hedge quality when using hedging strategies from a
(deliberately) misspecified model, for example, because the misspecified model is
a simplified model where hedges are easily determined. An application to energy
markets demonstrates the degree of model error.

1 Introduction

We are concerned with determining model risk of contingent claims when mar-
ket models are incomplete. Contrary to existing measures of model risk, based on
price discrepancies between models, e.g., [8, 26], we develop measures based on
the realized P&L from model risk. This is motivated by financial regulators’ plans
to introduce extra capital charges for model risk, e.g., [5, 13, 17]. In a complete
and frictionless market model, the “residual” P&L observed on a perfectly hedged
position is due to pricing and hedging in a misspecified model. The distribution of
this P&L can therefore be taken as an input for specifying measures of model risk,
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such as expected loss, value-at-risk, or expected shortfall, [10]. In an incomplete
market, model risk cannot be entirely isolated from market risk by hedging, and fur-
ther, it is not a priori clear, which hedging strategies are most effective under model
uncertainty. The purpose of this paper is to investigate these questions.

The analysis in [10] is primarily focussed on complete and frictionless market
models, as this allows for a convenient separation into P&L from market risk and
P&L from model risk: Since market risk is hedgeable, any remaining P&L is due to
pricing and hedging in a misspecified model. In the setting of incomplete markets,
one would rather distinguish between hedgeable and unhedgeable (or residual) P&L,
expressing that the unhedgeable P&L refers to model uncertainty and some unhedged
market risk. However, from a practical perspective, as an institution needs to take
care of both market risk and model risk—either through hedging or through capital
requirements—the distinction is of minor importance.

In addition, the determination and choice of effective hedging strategies in incom-
plete markets is not as straightforward as the replicating argument in a complete
market, but is of high practical relevance. The techniques developed in this paper are
suitable to comparing the effectiveness of hedging strategies in incomplete markets
under model uncertainty.

Model risk is associated with uncertainty about the model or probability measure
that governs the probabilistic behavior of unknown outcomes. In this context, uncer-
tainty refers to uncertainty in the Knightian sense, e.g., [16, 23], in which case the
model uncertainty or model ambiguity is expressed by a set of probability measures,
each of which defines a valid pricing and hedging model.

A set of axioms for measures of model risk, in the spirit of coherent and convex
risk measures [1, 18], was put forward by [8]. A popular measure fulfilling these
axioms is a contingent claim’s price range across the set of models expressing the
model uncertainty. This measure is generalized by [2] to account for a distribution
on the model set. It thus allows to incorporate the likelihood of the models into the
price range and as such to derive value-at-risk and expected shortfall type measures.
However, these measures do not account for the potential losses from model risk
realized when hedging in a misspecified model. In a complete market setup, [10]
develop value-at-risk and expected shortfall measures on the distribution of losses
from model risk, and show that these measures fulfill the axioms for model risk (with
the usual exception of value-at-risk not being subadditive).

As a generalization of [10], we develop measures for unhedged risk in incomplete
markets, comprising both market and model risk. This applies, for example, when
asset price processes are subject to jumps under the pricing measure, where, if at
all, perfect replication of contingent claims is possible only under conditions not
met in practice (such as infinitely many hedging instruments). Furthermore, in an
incomplete market setting, we investigate the question of hedge quality when using
hedging strategies from a (deliberately) misspecified model, for example, because
the misspecified model is a simplified model where hedges are easily determined.
A typical case could be to use a simplified complete market model to determine a
replication strategy, when it is known that the actual market is incomplete.
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Several simulation studies investigate the risk from hedging in a simplified model,
e.g., [11, 24, 25]. However, to the best of our knowledge, this is never compared to
the residual risk in the alternative model when following a risk-minimizing strategy.
Yet, this comparison is important for selecting an appropriate model for pricing and
hedging.

In a case study, we study the respective loss distributions and measures when
applied to options on energy futures. Empirical returns in the energy spot and future
markets behave in a spiky way and thus need to be modeled with jump processes.
However, to reduce the computational cost and to attain a parsimonious model, often
simplified continuous asset price processes are assumed. Based on the measures of
model risk, we assess the quality and robustness of hedging in a continuous asset
price model when the underlying price process has jumps relative to determining
hedges in the jump model itself. As asset price models, we employ continuous and
pure-jump versions of the Schwartz model [27], calibrated to the spot market at the
Nordic energy exchange Nord Pool.

The paper is structured as follows: In Sect. 2, we construct the loss variable and loss
distribution relevant for model risk. Section3 defines measures on the distribution
of losses from model risk and relates them to the axioms for measures of model
uncertainty introduced by [8]. In Sect. 4, we introduce a way of measuring the relative
losses from hedging in a misspecified model as opposed to hedging in the appropriate
model. Finally, Sect. 5 contains a case study from the energy market to illustrate the
relative loss measure and draw conclusions about the quality of hedging strategies
determined in a complete model with continuous asset price processes, when the
underlying market is in fact subject to jumps.

2 Losses from Hedged Positions

In this section, we formalize the market setup and the loss process expressing the
residual losses from a hedged position. In the case of a complete and frictionless
market, these losses correspond to model risk, whereas in the case of an incomplete
market, these losses comprise in addition the market risk that is not hedged away.

2.1 Market and Model Setup

We begin with a standard market setup under model certainty, as in e.g., [22]. On a
probability space (§2, F, @) endowed with a filtration (F;);>¢ satisfying the “usual
hypotheses” are defined adapted asset price processes (S} );>0, j = O, ...,d. The
asset with price process S” represents the money market account, whereas S!, .. ., §¢
are risky assets. All prices are discounted, that is, expressed in units of the money
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market account, and Q-martingales, with Q a martingale measure equivalent to the
objective probability measure.

Throughout we shall assume that S is a Markov process. This applies to many
models commonly used in practice, such as the Black—Scholes model, exponential
Lévy models, exponential additive models, and stochastic volatility models, such as
the Heston model. We shall see below that the Markov assumption simplifies the
analysis considerably.

Fixing a time horizon 7', we consider European-type claims with Fr-measurable
integrable payoff. Other claims, in particular, path-dependent options, such as Barrier
options, can be integrated into the analysis; we refer to [10] for the more general
case.

In addition to the risky assets S = (S L., s ), there may be tradeable options
maturing at 7 written on S, with observable market prices at time 0, so-called bench-
mark instruments. Their Fr-measurable payoffs are denoted by (H;);cs, and their
observed market prices by C7, i € I, or by [C}’id, C f‘Sk], i € I, if no unique price is
available. These benchmark instruments can be used for static hedging, potentially
reducing a claim’s model risk.

A trading strategy is a predictable process @ = (¢O, e, ¢d, ui,...,uy), where
qb-/ = (qb,] )¢>0 denotes the holdings in asset j and u; € R denotes the static holding of
benchmark instrument i . The time-¢ value of the portfolio is V;(®) = Z?zo #! S +

Z{Zl uiH,i, with Hti, i =1,...,1,the time-f prices of the benchmark instruments.
To rule out arbitrage opportunities, we require that @ is admissible. Further, @ is
assumed to be self-financing, thatis, dV;(®) = Z?:l qb,/ dS,/ +Zil=l Uj dH,i,t > 0.

A contingent claim with Fr-measurable payoff X is hedgeable if there exists a
replicating strategy, i.e., a self-financing trading strategy @ such that V7 (@) = X.
Hedging eliminates any P&L arising from market risk, and, because of the absence of
arbitrage opportunities, the claim’s price process and the price of the hedging strategy
agree for all 0 < ¢ < T. In an incomplete market, in the absence of a replicating
strategy, losses from market risk may be eliminated or reduced by super-replicating
strategies, e.g., [14], or by risk-minimizing strategies, e.g., [19, 20], but some P&L
due to market risk remains.

Aside from market risk, a stakeholder (trader, hedger, shareholder, regulator) may
be concerned about model risk when pricing and hedging a contingent claim. Model
risk refers to potential losses from mispricing and mishedging, because model Q is
possibly misspecified. This uncertainty regarding model Q is captured by a set Q of
martingale measures for the asset price processes, e.g., [8, 9], which may incorporate
uncertainty about both the model type and model parameters.

Let

C=1X €o(Sp)| supE[Xz] <oot,
QeQ

be the set of contingent claims under consideration, where we require square-
integrability, because for claims with finite second moments quadratic minimizing
hedging strategies exist, which will be employed later. The set of trading strategies
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considered is

S :[@Ifb admissible, predictable, self-financing, @; € o (S;),Vt >0
T
and E /(¢-f)2d[s-/,sf] <00,j=0,...,d}.
0

The condition @; € o (S;) implies that the hedging strategy is a Markov process.

Working on a set of measures requires further conditions, in particular, as the
measures in Q need not be absolutely continuous with respect to Q. More specifi-
cally, the asset price processes must be consistent under all measures and specifying
trading strategies requires the notion of a stochastic integral with respect to the set
of measures.

In case the models in Q are diffusion processes, [28] develop the necessary tools
from stochastic analysis, such as existence of a stochastic integral, martingale rep-
resentation, etc. Although this restricts the joint occurrence of certain probability
measures, it does not exclude any particular measure. For our purposes, this limi-
tation does not play a role, as we are primarily interested in choosing a rich set of
possible models to cover the model uncertainty. For details, we refer to [10].

In the general case, we pose the following condition on the set of measures Q,
which ensures that all objects are well defined when working with uncountably many
measures.

Assumption 1 There exists a universal version of the stochastic integral f(; ¢ds,
¢ € S. In addition, for all Q € Q, the integral coincides Q—a.s. with the usual
probabilistic construction and fé ¢ dS is F;-measurable.

2.2 Loss Process

Consider a short position in a claim X € C and a trading strategy @ € S. The time-T
loss of X that we consider is given by

L7 (X, ®):=—-(Vr(9) = 7Y), (D

where Vr(¢) = Vr((¢,0,...,0))and Y = X — Zilzl u;H;. If@ calibrates to the
market prices of the benchmark instruments, i.e., E[Hi] = Ci*, i=1,...,1,then
L7(X, ®) = —(Vr(®)— X), which corresponds to the overall realized loss from the
position. However, if Q does not calibrate perfectly to the benchmark instruments,
then there is additional instantaneous P&L at time O from trading the benchmark
instruments. This is not included in Eq. (1), and will be ignored in what follows, as
this is booked as (sunk) trading cost and as is does not give rise to further risks.
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The goal will be to extend this variable to a loss process L;(X, @), t < T, with
@ a hedging, resp. replicating strategy under Q. As both the time-r price, E[Y|F;]
and the strategy ¢ are defined only Q-a.s., one must be explicit in specifying the
version to be used when dealing with models that are not absolutely continuous with
respect to @ In our setup, we have E[Y|f,] = E[Y|St] = f(S;) for some Borel-
measurable function f, and likewise for the trading strategy. Since Q expresses the
model uncertainty when employing Q for pricing and hedging, it must not be involved
in the choice of the respective versions of the pricing and hedging strategies.

Assumption 2 The versions of E[Y |S¢],t < T, and ¢ are chosen irrespective of the
measures contained in Q.

We further impose lineargy conditions on the versions of E[Y|.’Ft] and ¢, which
are in general only fulfilled Q—a.s. but for all practically relevant models and claims
hold for all w € §2. This will be important for the axiomatic setup in Sect.3.2.

Assumption 3 Let X1, X, € C, &1 = (¢1,ul, ... ,ub), &> = (¢, ul, ..., u3) €
Sand define Y; := X; — zi[:l ul H;, j = 1,2.Forallt < T, itholds that

ElaY; + bY>|Fil(w) = aE[Y1|Fil(w) + bE[Y2|Fil(®), a,beR, we R
and
Vi(ad1(®) + bgp(w)) = aVi(¢p1(w)) + bVi(d2(w)), a,beR, we 2.

E[Y1|S7](0) = Y1 (0), ® € £2.

Assumptions 2 and 3 will be fulfilled in typical cases relevant in practice. Suppose
for example that S is a Black—-Scholes model under Q. Then prices and the replicating
strategy of European payoffs can be determined via the Black—Scholes PDE, and
these are suitable versions fulfilling the assumptions.

Definition 1 Let X € Cand @ = (¢, uy,...,us) € S. The loss process associated
with a short position in X and the trading strategy @ is given by

L= L(X,®) = —(Vi(¢) — E[Y|S;])

d t
=—(Vo+ D [¢/dS/ —E[Y|S])). 0<t<T, (2
j=1°

with Y = X — >/, u; H; and Vo = E[Y].
If @ is a replicating strategy under Q, then L; = 0 Q—a.s., but possibly for some

Q € Q,Q(L; = 0) < 1, which expresses that @ fails to replicate X under Q. A
model-free hedging strategy is defined as follows:

Definition 2 The trading strategy @ = ((¢1)o<s<T, U1, - .., 1) 1S a model-free or
model-independent replicating strategy for claim X with respect to Q, if L; = 0,
t>0,Q-as., forallQ € Q.
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Note that our definition of the hedge error based on a continuous time integral sep-
arates model risk from a discretization error. When actually calculating the hedge
error, it is necessary to use a time grid small enough such that the discretization error
is negligible.

The following proposition shows that the overall expected loss at time 7' from
replicating in Q when the market evolves according to Q instead of Q depends
only on the price difference.

Proposition 1 1. The total expected loss from replicating under Q claim X, that is
E[L7] plus the initial transaction cost E[Zl 1 Ui (H0 CH)1, when the market
evolves according to Qyy is just the price difference in the two models, —(E[ X ]—
EQv[X]).

2. The price range measure, deﬁned by supgeo EQ[X] — infgeg EQ[X], can be

expressed as SUPy g EQ[L ], where L? denotes the loss variable from hedging
under Q.

Proof See [10].

If a claim cannot be replicated, then—given the static hedging component

Z{:l u; Hi—a hedging strategy can be defined as a solution (170, ) e RxS
of the optimization problem

d T
inf E[U(L7(X, ®))] = inf E pds — ,
(VoeR,®eS) (LT ( )] (VoeR,®eS) go/

3)

where U : R — R, weighs the magnitude of the hedge error. The most common
choice is U(x) = x2, which minimizes the quadratic hedge error. This so-called
quadratic hedging has the advantage that the resulting pricing and hedging rules
become linear and it is also the analytically most tractable rule. Under this choice of
U (x), if S is a martingale, then a solution exists and ‘70 = E[Y], [20].

Of course, in an incomplete market, L7 (X, @) entails not only losses due to model
misspecification, but some losses due to market risk as well, since QL7 (X, ®) =
0) < 1, that is, P&L is incurred even when there is no model uncertainty.

For the explicit determination of L;(X, @) in some examples, we refer to [10]. It
is worth noting that in a complete market setup, the loss process corresponds to the
tracking error of [15].

2.3 Loss Distribution

The next step is to associate a distribution with the loss variable L;, t < T, based
on which risk measures such as value-at-risk and expected shortfall can be defined.



46 N. Detering and N. Packham

This is achieved by considering an extended probability space (£2, F, [P), where
JF now incorporates in addition the model uncertainty and P contains information
about the degree of uncertainty associated with each model. To make this precise,
let G C F be a o-algebra such that conditioning on G eliminates the uncertainty
about the pricing measure Q € Q. In this setting, the measures in Q constitute a
regular conditional probability with respect to G. For existence and construction of
this probability space, we refer to [10].

In this setup, the models can be indexed by a random variable 0 € ® C R, with
o(0) = G, so that Qg = P(:|o()) and

P(B) = E[P(B|o(0))] = /]P’(B|o(9)) dP = /]P’(B|9 =a)u(da), BelF,
2 ®

where p is the distribution of 6. In particular, losses from hedging in a misspecified
model under model uncertainty have distribution function

P(L; <x)= [ Qu(L; <x)p(da), 0<r=<T.
®

The following proposition is proved in [10].

Proposition 2 A strategy @ is a model-free hedging strategy for claim X P-a.s. if
and only if P(L, = 0) = 1.

Hence, model uncertainty is expressed by the unconditional distribution P,
whereas model certainty is expressed via the conditional distribution P(-|o (6)).

A concrete approach to determining the distribution 6 is presented in [10]. Here,
probability weights are assigned to the models in Q via the Akaike Information
Criterion (AIC), e.g., [6, 7], which trades off calibration quality against model com-
plexity.

3 Measures of Model Risk

The loss distribution aggregated across the measures in Q from Sect.2.3 is the key
input to define measures of model risk. For the time being, we continue to work
in a setting where a particular model Q is used for pricing and hedging, as this is
appropriately quantifies the model risk from a bank’s internal perspective.

If a claim cannot be replicated, and the trading strategy @ is merely a hedg-
ing strategy in some risk-minimizing sense, then the loss variable L;(X, @) from
Definition 1 features not only model risk, but also the unhedged market risk. To dis-
entangle model risk from the market risk, one could first determine the market risk
from the unhedged part of the claim under Q and set this into relation to the overall
residual risk. This requires taking into account potential diversification effects, since
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risks are not additive. We shall continue to work under the setup of measuring resid-
ual risk, and use the terminology “model risk,” although some market risk is also
present.

Market incompleteness can also be seen to be a form of model risk, as—in addition
to the uncertainty on the objective measure—it causes uncertainty on the equivalent
martingale measure. However, hedging strategies would typically be chosen that are
risk minimizing not under the martingale measure, but risk minimizing under the
objective measure. In the case of continuous asset prices, this implies that hedging
is done under the minimal-martingale measure, which is uniquely determined. In
practice, it is more common to choose an equivalent measure that calibrates suf-
ficiently well, and in this case one could argue that incompleteness also increases
model uncertainty. In our setup, this would be reflected by a larger set Q.

3.1 Value-at-Risk and Expected Shortfall

The usual value-at-risk and expected shortfall measures are defined as follows:

Definition 3 Let L, (X, @) be the time-7 loss from the strategy & that hedges claim
X under Q. Given a confidence level @ € (0, 1),

1. Value-at-risk (VaR) is given by
VaR, (L;(X, ®)) =inf{l e R: P(L;(X, D) > 1) <1 —«},

that is, VaR, is just the o-quantile of the loss distribution;
2. Expected shortfall (ES) is given by

1
(I —a)

1
ESo(Li(X, ®)) = /VaRu(L,(X, @)) du.

In the presence of benchmark instruments, the hedging strategy in model Q may
not be unique. If the claim X can be replicated, then [T = {® € S : Q(L;(X, ®) =
0) = 1, ¢ < T}isthe set of replicating strategies for claim X in model @ Otherwise,
we focus on quadratic hedging and define [T = {® = (450, o ,¢>j, Ui, ..., uy) €
S, (uy,...,uy) € R! : & = & under @}, where @ refers to the quadratic risk-
minimizing strategy attaining the infimum in (3) with U(x) = x?. Because in an
incomplete market, the loss from hedging entails some market risk aside from model
risk, the benchmark instruments play a more important role than in complete market,
as they are not necessarily redundant, but may reduce the hedge error under Q.

To abstract from the particular hedging strategy chosen, we define measures that
quantify the minimal degree of model dependence, indicating that when pricing and
hedging under measure Q, the model dependence cannot be further reduced. This is
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reasonable in the sense that it is not of interest whether a position is indeed hedged
or not. Rather the hedging argument serves only to eliminate (or reduce, in case the
claim cannot be replicated) P&L from market risk. Choosing the minimal degree
allows to appropriately capture claims that can be replicated in a model-free way.

Definition 4 Concrete measures capturing the model uncertainty when pricing and
hedging claim X according to model Q are given by

I e, (X) = infocn BIL (X, )71,

2. UGk s (X) = inf ey VaRy (ILi (X, @),

3. g s (X) = infper ESq (L (X. @)).

4 Py s (X) = infocry max(VaRa (L (X, ©)), 0),
5

. P,y (X) = infoery max (ESq (Li (X, ©)). 0).
The measures /L%R,ayt and ,ugs,w capture model uncertainty in an absolute sense,

and are thus measures of the magnitude or degree of model uncertainty. The measures

p%R o and ,0}93 o.; consider losses only. As such, they are suitable for defining a

capital charge against losses from model risk.

Contrary to the case of bank internal risk measurement, a regulator may wish to
measure model risk independently of a particular pricing or hedging measure, taking
a more prudent approach. To abstract from the pricing measure, one would first
define the set Qy < Q of potential pricing and hedging measures (e.g., measures
that calibrate sufficiently well) and then define the risk measure in a worst-case sense
as follows:

Definition 5 Let ui@H (X) be a measure of model uncertainty when pricing and
hedging X according to model Qy € Qp. The model uncertainty of claim X is
given by

w(X) = sup p2(X). )
@HéQH

Capital charges can then be determined from either /L%R’ it (X), resp. /,LgS’ ot (X),
or from wUvaR .t (X), resp. UES, e, (X).

3.2 Axioms for Measures of Model Risk

Cont [8] introduces a set of axioms for measures of model risk. A measure satisfying
these axioms is called a convex measure of model risk. The axioms follow the general
notion of convex risk measures, [18, 21], but are adapted to the special case of model
risk. In particular, these axioms take into account the possibility of static hedging



Model Risk in Incomplete Markets with Jumps 49

with liquidly traded option and of hedging in a model-free way. More specifically,
the axioms postulate that an option that can be statically hedged with liquidly traded
options is assigned a model risk bounded by the cost of replication, which can be
expressed in terms of the bid-ask spread. Consequently, partial static hedging for
a claim reduces model risk. Further, the possibility of model-free hedging with the
underlying asset reduces model risk to zero. Finally, to express that model risk can
be reduced through diversification, convexity is required.

Here we only state the following result, which ensures that our measures fulfill
the axioms proposed in Cont [8]. The proof is given in [10] for complete markets
and can be easily generalized to an incomplete market.

Proposition 3 The measures MgQEJ(X), Mgs,a,t(x) and p%’a’t(X) satisfy the

axioms of model uncertainty. The measures ,ugaR,a’t(X) and p%R’a’t(X) satisfy
Axioms 1, 2, and 4.

4 Hedge Differences

Instead of considering the P&L arising from model misspecification as in Sect. 2.2,
one might be interested in a direct comparison of hedging strategies implied by
different models. For example, one might wish to assess the quality of hedging
strategies determined from a deliberately misspecified, but simpler model, in a more
appropriate, but more involved model.

We first explain the idea with respect to one alternative model Qs € Q and outline
then how measures with respect to the entire model set can be built. As before, Q
is the model for pricing and hedging and, fixing a claim X € C, IT is the set of
quadratic risk-minimizing (QRM) hedging strategies for X under Q (containing
various hedging strategies, depending on how static hedges with the benchmark
instruments are chosen).

We seek an answer to the following question: If the market turns out to follow
Qp, what is the loss incurred by hedging in Q instead of hedging in Qu? Let
@ = (¢p,uy,...,u;) € Il be the QRM strategy for ¥ = X — Z{Zl u; H;, and let
@) be the respective QRM strategy for ¥ derived under Q. The relative difference
of the hedge portfolio compared to the hedge portfolio when using the strategy of
Qs is given by

d t
LA(X, ®, @) = EW[Y] - E[Y]+ > / ($3 — 7 ds. (5)
j=1%
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This variable differs from L;(X, @), cf. Eq.(2), in that it expresses the difference
between the hedging strategies @ and @, whereas L; (X, @) describes the difference
between the hedging strategy @ and the claim X.!

The next proposition provides some insight on the different nature of the two
variables.

Proposition 4 The following properties hold for the processes L (X, @, ®y) and
L(X, ®):

LAX, @, @) is a Qu-martingale with L§ (X, @, ®p) = EQv[Y] — E[Y]
E[Ly(X, )] = E@[Y] — E[Y]

L?(X, @, ®y) = L7 (X, D) Qu—a.s. if Y can be replicated under Q
L,A(X, D, Dy) — Li(X, D) = EQM[YLE] — E[YU’:,] Qup—-a.s. if Y can be
replicated under Q.

R

Proof 1. This follows directly from the definition of L (X, &, ®) and the fact
that ®M and @ are in S.

2. See Proposition 1. _

3. If Y can be replicated, then ¥ = E@u[y] + Z?:l fOT ¢1,dS/ Qu—a.s., and
consequently L2 (X, @, @) = Y — (E[Y] + Z?:l fOT ¢J dS7) Qu-a.s.. The
claim follows by observing that L; (X, @) = —(E[Y] + 27:1 fOT ¢j dsi —v).

4. Using that LA(X, @, @yy) = EQ[Y|F] - EY]+ X9, [; ¢/ dS/ Qu-as.,

since Y can be replicated under Qy, the claim follows with the definition of
L:(X, D).

Observe that the variable L, (X, @) is neither a sub-martingale nor a super-martingale
as shown in the example in [10, Sect.3.5.].

As an example, Fig. 1 shows the distributions of L;(X, @) and L,A(X , D, Dy)
for an at-the-money call option X = (S — K)T with Sy = K = 1, with expiry
T in 3months, at time + = T /2, dynamically hedged with the underlying asset,
ie., @ = (¢), resp. @y = (¢pr). Under the misspecified model Q, the asset price
process corresponds to a geometric Brownian motion with 20 % volatility, whereas
under Qs the asset price process follows a geometric Brownian motion with 25 %
volatility. The correlation of the two loss variables is 67.97 %. At maturity 7, both
variables agree.

Generalizing the relative hedge difference to a set of models is not straightforward,
as the loss variable LZA (X, @, @jy) depends explicitly on Qp and, as such, a version
of the variable that is valid under all models cannot be constructed. [12] shows how
a loss distribution under model uncertainty can be constructed, which can then be
used to define the usual risk measures such as value-at-risk and expected shortfall.

! There is no need to pose specific conditions on the version of the hedging strategy @, chosen,
since in the following only properties of L2 (X, &, @) under Qy are analyzed.
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Fig. 1 Loss att = 1/2T from dynamically hedging an at-the-money call option with a maturity
T of 3 months based on 10,000 simulations and 1,000 time steps. Left Distribution of L,(X, @),
E[L,(X, ®)] = 0.0053. Right Distribution of L2 (X, @, @), E[LA (X, @, ®41)] = 0.0099, which
equals the initial price difference

5 Application to Energy Markets

As areal-worked example, we study the loss variables and risks from hedging options
on futures in energy markets. The spot and future prices in energy markets are
extremely volatile and show large spikes, and a realistic model for the price dynamics
should therefore involve jumps. However, continuous models based on Brownian
motions are not only computationally more tractable, but prevalent in practice. Our
analysis sheds light on the risks of hedging in a simplified continuous model instead
of a model involving jumps.

Assume given a probability space (£2, (F;)o<;<7) With a measure P on which a
two-dimensional Lévy process (L;) = (L1, L2;);~0 with independent components
is defined. A popular two-factor model for the energy spot price is developed by
Schwartz and Smith [27]. The spot is driven by a short-term mean reverting factor to
account for short-term energy supply and energy demand and a long-term factor for
changes in the equilibrium price level. In its extended form, [4, Sect. 5], the logarithm
of the spot price is

logSi=A+ X+ Y; (6)

with (A;);=0 a deterministic seasonality function, (X;);~o a Lévy driven Ornstein
Uhlenbeck process with dynamics dX; = —AX;dr +dL;; and (Y;);~¢ defined by
dY; = dL; . We further assume that the cumulant function ¥ (z) := 10g(IE[e<Z'L1)])
is well defined for z = (z1, z2) € R?, |z] < C, for C € R. Due to the independence
of L1 and L, the cumulant transforms of both processes add up and we have ¥ (z) =
¥1(z1) + W2 (z2) where ¥ and ¥, is the cumulant for L1 and L, respectively.

We consider the pricing and hedging of options on the future contract. In contrast
to, for example, equity markets, the future contract in energy delivers over a period
of time [T, T>] instead of a fixed time point by defining a payout
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)3

1
S-d 7
Tz_Tl/rr )

T

in return for the agreed future price. While the spot is not tradable due to lack of
storage opportunities, the future is tradable and used for hedging both options on the
future itself and options directly on the spot price. Assuming that the future price F;
equals its expected payout

bl

1
=EQ . TI/S, dr|F (8)

T

under a pricing measure Q ~ ~ P, the value F; is derived in analytic form in [4]. Under
the assumption that L and L, are normal inverse Gaussian (NIG) distributed Lévy
processes an approximate process (F )i <7 is determined in [4] by matching first
and second moments such that (Ft )i <15 1s of exponential additive type. We assume

in this application that Q = PP. The value of I?IL is then

t t t
Fl = Fyexp (— / Wy (SF ) + w2k () ds + / shydry s+ / k) sz,s>
0 0 0

€))

with time-dependent, deterministic functions X 1L (t) and 22L (t). The process FL
depends on the interval [T}, T>], but in order to avoid overloading the notation and
since we shall only consider a single delivery period in our example, we simply
write F L Z‘lL and 22" . The market under this model is incomplete and claims can in
general only be hedged with risk-minimizing strategies. Integral representations for
prices and quadratic risk-minimizing hedge positions of call and put payoffs can be
derived, and we refer the reader to [4, Prop.3.9.] for further details and the explicit
formulas.

As a pricing and hedging model, we consider a simplified version of (6), which
is driven by two (nonstandard) independent @—Brownian motions (Bj;);~o and
(B2,1)i=0 defined on (£2, (F;)o<:<7) and we derive, again by moment matching,
an analog approximate future price process FB of the form

t t t
FP = Fyexp ( / vE(zEe) +ef (2F ) ds+ / =P () dB s + / =7 (s)de,s> (10)
0 0 0

with time-dependent, deterministic functions Z‘]B (t) and Z‘ZB (¢) and with lI/IB (z) and
lI/QB (z) being the cumulant transforms of B 1 and B; ;.
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Although the model has two sources of randomness, it is a complete model under
the filtration generated by the future price itself as the next proposition shows, which
means that all practically relevant claims can be replicated.

Proposition 5 Let (G;); <7 be the filtration generated by F FB up to time't, i.e., G; :=
o{F; FB s < t}. Then the market consisting of F FB and a constant riskless bank account
isa complete financial market with respect to (G;);<T.

Proof See [12].

We estimate the parameters for both models based on future and spot data from
Nord Pool energy exchange. We use average daily system peak load electricity
spot prices for the period from January 2011 until May 2013 (prices as shown
on Bloomberg page “ENOSOSPK”) and weekday prices for front month and sec-
ond month future contracts. For details on the estimation procedure, we refer to
[4, Sect.5.2.]. In Table 1, we collect the parameter estimates for the two factors of
both models, the simplified model with two nonstandard Brownian motions and the
model with two independent NIG-Lévy processes. The estimates for the Brownian
factor are only the drift term p and the volatility term o. The NIG distribution is a
four-parameter distribution with scale parameter §, tail heaviness «, skew parameter
B, and the location parameter v, see [3].

Figure 2 shows the empirical return distributions of both factors together with the
density function of the estimated distribution. It is obvious that the NIG distribution
provides a significantly better fit to the empirical returns than the normal distribution.

The claim to be hedged is an option on a future with a one-week delivery period
trading one month prior to expiry, so that 77 = 23 and 7> = 30. Based on the
parameter estimates, we determine scahng terms Z‘ (t) and Z‘ () for the dynamics
of FL and scaling terms 5 (¢) and 22 (¢) for the dynamlcs of FB, respectively.
Assuming that the measures Q and Q are orthogonal, we define an aggregating
process F such that F = FB Q-as. and F = I?,L Q-a.s.. Pricing and hedging is
performed under Q, and there is only one alternative measure, denoted by Q. Our
model set is thus Q = {Q, Q). Applying the Akaike Information Criterion (AIC),
we assign a probability distribution to the model set Q. It turns out that model Q gets
assigned a probability of basically 1 due to its much better fit of the returns and we
simulate according to this model.

We consider an at-the-money call option X := (1/‘7}2 — Fy)™" and calculate the
hedge positions implied by Q. For the simulation of the process under Q, we use 600
time steps in order to reduce the discretization error. We investigate the distribution
of L? (X, @, dg) and L7 (X, @), with @ and @ dynamic hedging strategy as there
are no benchmark instruments. As implied by Proposition 5, the hedging strategy is
actually a perfect hedge under the model Q.

Figure 3 shows on the left-hand side the distributions under Q of L7 (X, @) and
L? (X, @, @q). To compare, Fig. 3 shows the distribution under Q of the hedge error
L7 (X, ®9) when hedging under Q (top right). Here, the hedge error is introduced
by market incompleteness.
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Table 1 Estimated parameters for the NIG distributions of L ; and L, ; and parameters for the
normal distributions of By ; and B> ;

A A

a B D 8
Ly, 1.9240 —0.8860 0.0176 0.0622
Ly, 33.3008 —1.0988 —0.0009 0.0071
4 P
By, 0.2328 —0.0004
By, 0.0133 0.0002
60 6
g 50 ¢ g 5F
% 40 ¢ % 4t
g 30 g 3t
'g 20 F g 2k
2 0} 2t
0—6.10 -0.05 0.00 0.05 0?10 —?O —i.S -1.0 -0.5 0.0 O.\S 15_
Return Return

Fig. 2 Empirical distributions of long-term factor (/eft) and short-term factor (right) together with
fitted NIG distribution (solid line) and normal distribution (dashed line)

It turns out that the loss due to the misspecified model Q is minor compared to the
loss due to the incompleteness. The loss due to model misspecification as measured by

L?(X, @, ®q) has amean-squared value ofu%é’t(X) = EQ[(Lﬁ(X, D, (PQ))Z] =
9.50. The mean-squared hedge error from hedging under the misspecified model is
greater with MgQE,z(X) = EQ[(LT(X, ®))?] = 34.61. Although the magnitude
appears high, it is relativized by the fact that even under correct model specifica-
tion the mean-squared hedge error E@[(LT(X , @Q))z] is 25.54. The initial prices

under the two models are EQ[X ] = 10.954 and EQ[X] = 8.068, respectively.
If we consider the variance of the loss variables, which corrects for the mean, it
turns out that the impact from the misspecified hedge is rather low. For the variable
LY(X, @, D), we get Var(L7 (X, @, @g)) = 1.07. We find that Var(L7 (X, @))
and IEQ[(LT(X, @Q))Z] = Var(L7(X, ®q)) are similar with 25.71 and 25.56,
respectively. The lower right of Fig.3 shows a scatter plot of (L7(X, ®) and
L7 (X, @@). The two variables show a correlation of 97.91 %, implying a strong
linear dependence between the hedge error under model Q (market risk) and the
hedge error due to using the misspecified model Q.

The fact that the impact due to hedging in the wrong model is relatively low in
this case study should not be misinterpreted. It confirms a stylized fact that is well
known for diffusion processes (see [15]), namely that, hedging is robust, as long as
the overall variance of the underlying is described sufficiently well by the model.
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The overall volatility in our setup is the same for both models due to the moment
matching procedure and uncertainty in this volatility is likely to result in greater
model risk. The study makes also clear that the hedging error due to incompleteness
cannot be neglected.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

. Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Financ. 9(3),

203-228 (1999)

Bannor, K., Scherer, M.: Capturing parameter uncertainty with convex risk measures. Eur.
Actuar. J. 3, 97-132 (2013)

Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Financ. Stochast. 2,41-68
(1998)

Benth, EE., Detering, N.: Pricing and hedging Asian-style options in energy. Financ. Stochast.
(2013)

. BIS: Revisions to the Basel II market risk framework. Basel committee on banking supervision,

Bank for International Settlements, February (2011)
Burnham, K., Anderson, D.: Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach, 2nd edn. Springer, New York (2002)



56

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

N. Detering and N. Packham

. Burnham, K., Anderson, D.: Multimodel inference—understanding AIC and BIC in model

selection. Sociol. Methods Res. 33(2), 261-304 (2004)

. Cont, R.: Model uncertainty and its impact on the pricing of derivative instruments. Math.

Financ. 16(3), 519-547 (2006)

. Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the

presence of model uncertainty. Ann. Appl. Probab. 16(2), 827-852 (2006)

. Detering, N., Packham, N.: Measuring the model risk of contingent claims. Working Paper,

Frankfurt School of Finance & Management (submitted) (2013)

. Detering, N., Weber, A., Wystup, U.: Return distributions of equity-linked retirement plans

under jump and interest rate risk. Eur. Actuar. J. 3(1), 203-228 (2013)

. Detering, N.: Measuring the model risk of quadratic risk minimizing hedging strategies with

an application to energy markets. Working paper, February (2014)

. EBA: Discussion paper on draft regulatory technical standards on prudent valuation, under

Article 100 of the draft Capital Requirements Regulation (CRR). Discussion Paper, European
Banking Authority, November (2012)

El Karoui, N., Quenez, M.: Dynamic programming and pricing of contingent claims in an
incomplete market. SIAM J. Control Optim. 33(1), 29-66 (1995)

El Karoui, N., Jeanblanc-Picqué, M., Shreve, S.: Robustness of the Black and Scholes formula.
Math. Financ. 8(2), 93—-126 (1998)

Epstein, L.: A definition of uncertainty aversion. Rev. Econ. Stud. 66(3), 579-608 (1999)
Federal Reserve: Supervisory guidance on model risk management. Board of Governors of the
Federal Reserve System, Office of the Comptroller of the Currency, SR Letter 11-7 Attachment,
April (2011)

Follmer, H., Schied, A.: Convex measures of risk and trading constraints. Financ. Stochast.
6(4), 429447 (2002)

Follmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. In:
Davis, M., Elliott, R. (eds.) Applied Stochastic Analysis, Stochastics Monographs, vol. 5, pp.
389-414. Gordon and Breach, London (1991)

Follmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. In: Hildenbrand,
W., MasCollel, A. (eds.) Contributions to Mathematicla Economics, pp. 205-223. North-
Holland, Amsterdam (1986)

Frittelli, M., Gianin, E.R.: Putting order in risk measures. J. Bank. Financ. 26(7), 1473-1486
(2002)

Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer,
Berlin (2009)

Knight, FEH.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)

Melino, A., Turnbull, S.M.: Misspecification and the pricing and hedging of long-term foreign
currency options. J. Int. Money Financ. 14(3), 373-393 (1995)

Nalholm, M., Poulsen, R.: Static hedging and model risk for barrier options. J. Futures Mark.
26(5), 449-463 (2006)

Schoutens, W., Simons, E., Tistaert, J.: A perfect calibration! now what? Wilmott Mag. 2,
66-78 (2004)

Schwartz, E.S., Smith, J.E.: Short-term variations and long-term dynamics in commodity prices.
Manag. Sci. 46(7), 893-911 (2000)

Soner, M., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron.
J. Probab. 16, 1844—-1879 (2011). Article number 67



Part 11
Financial Engineering



Bid-Ask Spread for Exotic Options
under Conic Finance

Florence Guillaume and Wim Schoutens

Abstract This paper puts the concepts of model and calibration risks into the
perspective of bid and ask pricing and marketed cash-flows which originate from
the conic finance theory. Different asset pricing models calibrated to liquidly traded
derivatives by making use of various plausible calibration methodologies lead to
different risk-neutral measures which can be seen as the test measures used to assess
the (un)acceptability of risks.

Keywords Calibration risk -+ Model risk - Exotic bid-ask spread + Conic finance *
Metric-free calibration risk measure

1 Introduction

The publication of the pioneering work of Black and Scholes in 1973 sparked off
an unprecedented boom in the derivative market, paving the way for the use of
financial models for pricing financial instruments and hedging financial positions.
Since the late 1970s, incited by the emergence of a liquid market for plain-vanilla
options, a multitude of option pricing models has seen the day, in an attempt to
mimic the stylized facts of empirical returns and implied volatility surfaces. The
need for such advanced pricing models, ranging from stochastic volatility models to
models with jumps and many more, has even been intensified after Black Monday,
which evidenced the inability of the classical Black—Scholes model to explain the
intrinsic smiling nature of implied volatility. The following wide panoply of models
has inescapably given rise to what is commonly referred to as model uncertainty or, by
malapropism, model risk. The ambiguity in question is the Knightian uncertainty as
defined by Knight [17], i.e., the uncertainty about the true process generating the data,
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as opposed to the notion of risk dealing with the uncertainty on the future scenario of a
given stochastic process. This relatively new kind of “risk” has significantly increased
this last decade due to the rapid growth of the derivative market and has led in some
instances to colossal losses caused by the misvaluation of derivative instruments.
Recently, the financial community has shown an accrued interest in the assessment
of model and parameter uncertainty (see, for instance, Morini [19]). In particular,
the Basel Committee on Banking Supervision [2] has issued a directive to compel
financial institutions to take into account the uncertainty of the model valuation in
the mark-to-model valuation of exotic products. Cont [6] set up the theoretical basis
of a quantitative framework built upon coherent or convex risk measures and aimed
at assessing model uncertainty by a worst-case approach.! Addressing the question
from a more practical angle, Schoutens et al. [22] illustrated on real market data
how models fitting the option surface equally well can lead to significantly different
results once used to price exotic instruments or to hedge a financial position.
Another source of risk for the price of exotics originates from the choice of the
procedure used to calibrate a specific model on the market reality. Indeed, although
the standard approach consists of solving the so-called inverse problem, i.e., quoting
Cont [7], of finding the parameters for which the value of benchmark instruments,
computed in the model, corresponds to their market prices, alternative procedures
have seen the day. The ability of the model to replicate the current market situation
could rather be specified in terms of the distribution goodness of fit or in terms of
moments of the asset log-returns as proposed by Eriksson et al. [9] and Guillaume
and Schoutens [12]. In practice, even solving the inverse problem requires making
a choice among several equally suitable alternatives. Indeed, matching perfectly the
whole set of liquidly traded instruments is typically not plausible such that one
looks for an “optimal” match, i.e., for the parameter set which replicates as well as
possible the market price of a set of benchmark instruments. Put another way, we
minimize the distance between the model and the market prices of those standard
instruments. Hence, the calibration exercise first requires not only the definition of
the concept of a distance and its metric but also the specification of the benchmark
instruments. Benchmark instruments usually refer to liquidly traded instruments. In
equity markets, it is a common practice to select liquid European vanilla options.
But even with such a precise specification, several equally plausible selections can
arise. We could for instance select out-of-the-money options with a positive bid price,
following the methodology used by the Chicago Board Options Exchange (CBOE
[4]) to compute the VIX volatility index, or select out-of-the-money options with a
positive trading volume, or ... Besides, practitioners sometimes resort to time series
or market quotes to fix some of the parameters beforehand, allowing for a greater
stability of the calibrated parameters over time. In particular, the recent emergence
of a liquid market for volatility derivatives has made this methodology possible to
calibrate stochastic volatility models. Such an alternative has been investigated in
Guillaume and Schoutens [11] under the Heston stochastic volatility model, where

1 Another framework for risk management under Knightian uncertainty is based on the concept of
g-expectations (see, for instance, Peng [20] and references therein).
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the spot variance and the long-run variance are inferred from the spot value of the VIX
volatility index and from the VIX option price surface, respectively. Another example
is Brockhaus and Long [3] (see also Guillaume and Schoutens [13]) who propose to
choose the spot variance, the long-run variance, and the mean reverting rate of the
Heston stochastic volatility model in order to replicate as well as possible the term
structure of model-free variance swap prices, i.e., of the return expected future total
variance. Regarding the specification of the distance metric, several alternatives can
be found in the literature. The discrepancy could be defined as relative, absolute, or in
the least-square sense differences and expressed in terms of price or implied volatility.
Detlefsen and Hérdle [8] introduced the concept of calibration risk (or should we say
calibration uncertainty) arising from the different (plausible) specifications of the
objective function we want to minimize. Later, Guillaume and Schoutens [10] and
Guillaume and Schoutens [11] extended the concept of calibration risk to include not
only the choice of the functional but also the calibration methodology and illustrated
it under the Heston stochastic volatility model.

In order to measure the impact of model or parameter ambiguity on the price of
structured products, several alternatives have been proposed in the financial litera-
ture. Cont [6] proposed the so-called worst-case approach where the impact of model
uncertainty on the value of a claim is measured by the difference between the supre-
mum and infimum of the expected claim price over all pricing models consistent with
the market quote of a set of benchmark instruments (see also Hamida and Cont [16]).
Gupta and Reisinger [14] adopted a Bayesian approach allowing for a distribution
of exotic prices resulting directly from the posterior distribution of the parameter set
obtained by updating a plausible prior distribution using a set of liquidly traded instru-
ments (see also Gupta et al. [15]). Another methodology allowing for a distribution
of exotic prices, but based on risk-capturing functionals has recently been proposed
by Bannor and Scherer [1]. This method differs from the Bayesian approach since the
distribution of the parameter set is constructed explicitly by allocating a higher proba-
bility to parameter sets leading to a lower discrepancy between the model and market
prices of a set of benchmark instruments. Whereas the Bayesian approach requires
a parametric family of models and is consequently appropriate to assess parameter
uncertainty, the two alternative proxies (i.e., the worst-case and the risk-capturing
functionals approaches) can be considered to quantify the ambiguity resulting from a
broader set of models with different intrinsic characteristics. These three approaches
share the characteristic that the plausibility of any pricing measure 2 is assessed
by considering the average distance between the model and market prices, either
by allocating a probability weight to each measure .2 which is proportional to this
distance or by selecting the measures 2 for which the distance falls within the aver-
age bid-ask spread. Hence, the resulting measure of uncertainty implicitly depends
on the metric chosen to express this average distance. We will adopt a somewhat
different methodology, although similar to the ones above-mentioned. We start from
a set of plausible calibration procedures and we consider the resulting risk-neutral
probability measures (i.e., the optimal parameter sets) as the test measures used to
assess the (un)acceptability of any zero cost cash-flow X. In other words, these pric-
ing measures can be seen as the ones defining the cone of acceptable cash-flows;
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where X is acceptable or marketed, denoted by X € <7, if its expectation under any
of the test measures 2 is nonnegative:

Xedod & Eg[X]>0V2e 4.

This allows us to define the cone of marketed cash-flows in a market-consistent way
rather than parametrically in terms of some family of concave distortion functions as
proposed by Cherny and Madan [5]. We can even play with the minimum proportion p
of model prices included within their bid-ask spread in order to change the amplitude
of the cone of acceptability by requiring that at least [ pM ] model prices are within
their market spread for 2 to be included in the set of test measures . :

Qe//@#{ﬁige[bi,ai],i:1,-~-,M} = [pM],

where ﬁf@ , aj, bj, i =1,..., M denote the model price under the pricing measure
2, the quoted ask price, and the quoted bid price of the M benchmark instruments,
respectively. The higher the proportion, the smaller the set of test measures .# and
hence, the wider the cone of acceptability. We opt for a threshold expressed as a
percentage rather than as an average distance since we want our specification to be
free of any distance metric. Indeed, the set .# will be built by considering different
objective functions (expressed as price or implied volatility differences, as absolute,
relative, or in the least-square sense differences, ...) such that we do not want to
favor any of these metrics, to the detriment of the others. The impact of model or
parameter uncertainty on the price of exotic (i.e., illiquid) instruments is then assessed
by adopting a worst-case approach as in Cont [6]:

s = max {EP ]— min [EP }, 1
(p) 226///{ Qe 1)

provided that . # }; where EP denotes the exotic price under the pricing measure

2. The model uncertainty can thus be quantified by the bid-ask spread of illiquid

products. Indeed, the cash-flow of selling a claim with payoff X at time T at its ask

price is acceptable for the market if E gla — exp(—rT)X] > 0,YV2 € .4, ie., if

a > exp(—rT) ar@nai(// {E 9[X1}. For the sake of competitiveness, the ask price is set
en

at the minimum value, i.e.,

a =exp(—rT) Dr@nea}/[{EQ[X]}.

Similarly, the cash-flow of buying a claim with payoff X at time 7 at its bid price
is acceptable for the market if E g[—b + exp(—rT)X] > 0,V2 € ., i.e., taking
the maximum possible value for competitiveness reasons

b =exp(~rT) min (Eg[X]).
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The impact of model uncertainty can be expressed as a function of the severity of the
percentage threshold p. We note that decreasing the threshold ultimately boils down
to considering a thinner set of benchmark instruments since the model price has to
fall within the market bid-ask spread for a smaller number of calibration instruments
in order for a pricing measure to be selected. In particular, such a relaxation typically
results in the “elimination” of the most illiquid calibration instruments, i.e., deep
out-of-the-money options in the case of equity markets (see Fig.2).

For the numerical study, we consider the Variance Gamma (VG) model of Madan
et al. [18] only, although the methodology can be equivalently used to assess cali-
bration or/and model uncertainty. The calibration instrument set consists of liquid
out-of-the-money options: moving away from the forward price, we select put and
call options with a positive bid price and with a strike lower and higher than the
forward price, respectively, and this until we encounter two successive options with
zero bid. Denoting by P; = @ the mid-price of option i and by o; its implied
volatility, the set of measures .# results from the following specifications for the
objective function we minimize (i.e., for the distance and its metric):

1. Root-mean square error (RMSE)

a. price specification

M
RMSE = | > w; (P — P
i=1

)2

b. implied volatility specification

M
RMSE = | > w; (0; — ;)
i=1

2. Average relative percentage error (ARPE)

a. price specification

M ~
ARPE = > o "Pf“
i=1 !
b. implied volatility specification
- L oi -5
ARPE” = > w;———
“ o}
i=1

3. Average absolute error (APE)

a. price specification
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1 M
APE = szi |P; — P
i=1

b. implied volatility specification

APE° = lia)- lo; — G
_O—_ 1 1 Ll

i=1

where P and & denote the average option price and the average implied volatil-

ity, respectively.
Each of these six objective functions can again be subdivided into an unweighted
functional for which the weight w; = @ = % Vi and a weighted functional for which
the weight w; is proportional to the trading volume of option i. We furthermore con-
sider the possibility of adding an extra penalty term to the objective function in order
to force the model prices to lie within their market bid-ask spread. Besides these stan-
dard specifications (in terms of the price or the implied volatility of the calibration
instruments), we consider the so-called moment matching market implied calibra-
tion proposed by Guillaume and Schoutens [12] and which consists in matching the
moments of the asset log-return which are inferred from the implied volatility sur-
face. As the VG model is fully characterized by three parameters, we consider three
standardized moments, namely the variance, the skewness, and the kurtosis. Since
as shown by Guillaume and Schoutens [12], the variance can always be perfectly
matched, we either allocate the same weight to the matching of the skewness and the
kurtosis or we match uppermost the lower moment, i.e., the skewness. This leads to
a total of 26 plausible calibration procedures, each of them leading to a test measure
2 e ./ provided that the proportion of model prices falling within their market
bid-ask spread is at least equal to the threshold p.

2 Exotic Bid-Ask Spread

For the numerical study, we consider daily S&P 500 option surfaces for a timespan
ranging from October 2008 to October 2009, including ,therefore, the recent credit
crunch?. We calibrate the VG model daily on the quoted (liquid) maturity which is the
closest to the reference maturity of three months. Note that we only consider matu-
rities for which the total trading volume of out-of-the-money options exceeds 1,000
contracts which allows to avoid the extreme situation of an undetermined calibration
problem where the number of parameters to calibrate is higher than the number of
benchmark instruments. This also ensures that the number of option prices is large
enough (and so the strike range wide and refined enough) to guarantee a sufficient
precision for the derived market implied moments. For each of the trading days

2 The data are taken from the KU Leuven data collection which is a private collection of historical
daily spot and option prices of major US equity stocks and indices.
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Fig. 1 Maximum proportion 7 of option prices replicated within their bid-ask spread (upper) and
option bid-ask spreads (below)

included in the sample period, we successively perform the 26 calibration method-
ologies, which leads to 26 optimal parameter sets. We then select those for which
the proportion of model prices falling within their market bid-ask spread is at least
p- The higher the threshold p, the fewer the test measures 2 € .# and hence, the
thinner the exotic bid-ask spreads. Figure 1 shows the highest proportion 7 of option
prices replicated within their bid-ask spread for the 26 above-mentioned calibration
procedures:

1 _
n:Mm;x#{Pige[bi,ai],i=1,...,M}.

Ifr < p,then . is an empty set and there does not exist exotic spread for that partic-
ular threshold p as defined by (1). Hence, when selecting the proportion threshold p,
we should keep in mind the trade-off between the in-spread precision and the number
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Fig. 2 Number of options for which the model price falls within the quoted bid-ask spread

of test measures. Indeed, the higher the proportion, the higher the precision but the
fewer the measures selected as test measure, which can in turn lead to an underesti-
mation of the calibration uncertainty measured as the exotic bid-ask spreads. From
Fig. 1, we observe that 7 is significantly higher during the heart of the recent credit
crunch, i.e., from the beginning of the sample period until mid 2009. This can easily
be explained by the typically wider bid-ask spreads observed during market distress
periods. Indeed, as shown on the lower panel of Fig. 1, the quoted spread for at-the-
money, in-the-money (K = 0.75 Sp), and out-of-the-money (K = 1.25 Sp) options
has significantly shrunk after the troubled period of October 2008—July 2009.
Figure 2 shows the number of vanilla options whose model price falls within the
quoted bid-ask spread as a function of the option moneyness for four of the calibration
procedures under investigation, namely the weighted and unweighted RMSE price
and implied volatility specifications without penalty term. To assess the impact of
moneyness on the model ability to replicate option prices within their bid-ask spread,

we split the strike range into 21 classes: S% < 0.5, 05< Sﬁo < 0.55, 0.55 < SEO <
0.6,...,1.45 < S% < 1.5, and Sﬁo > 1.5. We clearly see that, at least for the price

specifications, option prices falling outside their quoted bid-ask spread are mainly
observed for deep out-of-the-money calls and puts. This trend is even more marked
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and present in the implied volatility specifications when we add a penalty term in
the objective function to constraint the model price within the market spread. Hence,
increasing the proportion threshold p mainly boils down to limit the set of calibration
instruments to close to the money vanilla options.

In order to illustrate the impact of parameter uncertainty on the bid-ask spread of
exotics, we consider the following path dependent options (with a maturity of 7 = 3
months):

1. Asian option
The payoff of Asian options depends on the arithmetic average of the stock price
from the emission to the maturity date of the option. The fair price of the Asian
call and put options with maturity 7" is given by

e et — oxn(— _ +
AC = exp( rT)E'“@[(ongl?gnTSt K)*] AP =exp(—rT)Eg[(K Orgc;:%nTSt) ].

2. Lookback call option
The payoff of lookback call and put options corresponds to the call and put vanilla
payoff where the strike is taken equal to the lowest and highest levels the stock
has reached during the option lifetime, respectively. The fair price of the lookback
call and put with maturity 7 is given by

LC = exp(—rT)E g [(ST - m~;)+] LP = exp(—rT)E g [(M}g - ST)+] ,

respectively, where m ,X and M, denote the minimum and maximum processes
of the process X = {X;,0 <t < T}, respectively:

m¥ =inf{X;,0<s <1} MY =sup{X;,0<s<r1}.

3. Barrier call option
The payoff of a one-touch barrier option depends on whether the underlying
stock price reaches the barrier H during the lifetime of the option. We illustrate
the findings by looking at the up-and-in call and the down-and-in put price:

UIBC = exp(—rT)Eg [(ST —K*1 (Mi > H)]

DIBP = exp(—rT)E g [(K | (m§ < H)] .

4. Cliquet option
The payoff of a cliquet option depends on the sum of the stock returns over a
series of consecutive time periods; each local performance being first floored
and/or capped. Moreover, the final sum is usually further floored and/or capped
to guarantee a minimum and/or maximum overall payoff such that cliquet options
protect investors against downside risk while allowing them for significant upside
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potential. The Cliquet we consider has a fair price given by

N

. . St[ - Sti_l
Cliquet = exp(—rT)E g | max | 0, E min | cap, max ( floor, ———— .
i=1 Sty

For sake of comparison, we also price a 3 months at-the-money call option. Note
that this option does not generally belong to the set of benchmark instruments since,
most of the time, we can not observe a market quote for the option with the exact
same maturity and moneyness.

The path dependent nature of exotic options requires the use of the Monte Carlo
procedure to simulate sample paths of the underlying index. The stock price process

o _ Soexp((r — q)i +X0)
' E glexp(X,)]

, X~VG(o,v,0)

is discretized by using a first order Euler scheme (for more details on the simula-
tion, see Schoutens [21]). The (standard) Monte Carlo simulation is performed by
considering one million scenarios and 252 trading days a year.

The bid and ask prices and the relative bid-ask spread (dollar bid-ask spread
expressed as a proportion of the mid-price) of different exotic options are shown
on Figs.3 and 4, respectively, and this for a proportion threshold p equal to 0.5,
0.75, and 0.9. For sake of comparison, Fig.5 shows the same results but for the
3months at-the-money call option. The figures clearly indicate that the impact of
parameter uncertainty is much more marked for path-dependent derivatives than for
(non-quoted) vanilla options. Indeed, the relative bid-ask spread is of a magnitude
order at least 10 times higher for the Asian call, lookback call, barrier call, and
cliquet than for the vanilla call option. Besides, we observe that a far above average
call relative spread does not necessarily imply a far above average percentage spread
for path dependent options. In order to assess the consistency of our findings, we
have reproduced the Monte Carlo simulation 400 times for one fixed quoting day
(namely October, 1, 2008) with different sets of sample paths and computed the
option relative spreads for each simulation. Figure 6 shows the resultant histogram
for each relative spread and clearly brings out the consistency of the results: the
relative spread is far more significant for the exotic options than for the vanilla
options whatever the set of sample paths considered. The consistency of the Monte
Carlo study is besides guaranteed by the fact that we used the same set of sample
paths to price each option. Table 1 which shows the average price, standard deviation,
and relative spread (across the 400 Monte Carlo simulations) for the price weighted
RMSE functional confirms that the exotic bid-ask spreads are due to the nature of
the exotic options rather than to the intrinsic uncertainty of Monte Carlo simulations.
Indeed, the Monte Carlo relative spread given in Table 1 is significantly smaller than
the option spread depicted on Fig. 6, and this for each exotic option. Table2 shows
the average of the relative spread over the whole period under investigation, and this
for the different options under consideration. We clearly observe that the threshold p
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Fig. 3 Evolution of exotic bid and ask prices through time
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impacts more severely the spread of the path-dependent options. Indeed, decreasing
p leads to a sharper increase of the relative bid-ask spread for the exotic options than
for the European call and put options. Besides, the calibration risk is predominant
for the up-and-in barrier call option and, to a smaller extent, for the Asian options.
Table 3 shows the 95 % quantile of relative bid-ask spreads. We clearly see that in
terms of extreme events, the more risky options are the up-and-in barrier call option
and the lookback options. By way of conclusion, our findings clearly illustrate the
impact of the calibration methodology on the price of exotic options, suggesting that
risk managers should take into account calibration uncertainty when assessing the
safety margin.
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Fig. 6 Relative bid-ask spreads (in absolute value) for different Monte Carlo simulations

Table 1 Monte Carlo precision

Call Put Asian | Asian | Lookback| Lookback| UIBC | DIBP | Cliquet

call put call put
Mean 77.201 | 73.647 | 29.270 | 27.487 | 254.70 | 283.32 |43.690 | 57.681 | 0.0449
Std 0.1000 0.1202, 0.0345 0.0552] 0.1505| 0.1856| 0.0922/ 0.1225| 5E-05
Rel. spread?| 0.0078 0.0092, 0.0073] 0.0118 0.0034| 0.0035| 0.0131 0.0120/ 0.0066

4 The Monte Carlo relative spread is defined as the maximum minus the minimum price divided by

the average price across the 400 Monte Carlo simulations

Table 2 Average relative bid-ask spreads (in %)

p Call | Put | Asian call | Asian put | Lookback call | Lookback put | UIBC | DIBP | Cliquet
0.5 [2.59|2.53(29.82 27.41 17.89 24.97 43.80 | 7.20 | 17.26
0.75 | 1.66 | 1.72 | 19.81 18.68 11.09 16.78 22.11 |3.75 |11.50
09 |1.37]1.46|12.18 11.77 597 9.75 1031 | 2.44 | 6.55
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Table 3 95 % quantile of relative bid-ask spreads (in %)

P Call | Put | Asian call | Asian put | Lookback call | Lookback put | UIBC | DIBP | Cliquet
0.5 |5.75/5.24|77.95 67.56 79.19 90.87 102.32 | 28.41 | 49.75
0.75|3.89|3.67 | 51.99 51.98 68.04 81.13 72.11|12.88 | 40.64
0.9 |3.15|3.26|40.46 40.44 27.28 43.58 33.03| 5.06|24.36

3 Conclusion

This paper sets the theoretical foundation of a new framework aimed at assessing the
impact of calibration uncertainty. The main advantage of the proposed methodology
resides in its metric-free nature since the selection of test measures does not depend
on any specified distance. Besides, the paper links the concept of uncertainty and
the recently developed conic finance theory by defining the test measures used to
construct the cone of acceptable cash-flows as the pricing measures resulting from
any plausible calibration methodology such that model and parameter uncertainties
are naturally measured as bid-ask spreads. The numerical study has highlighted
the significant impact of parameter uncertainty for a wide range of path-dependent
options under the popular VG model.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Derivative Pricing under the Possibility
of Long Memory in the supOU Stochastic
Volatility Model

Robert Stelzer and Jovana ZaviSin

Abstract We consider the supOU stochastic volatility model which is able to exhibit
long-range dependence. For this model, we give conditions for the discounted stock
price to be a martingale, calculate the characteristic function, give a strip where it
is analytic, and discuss the use of Fourier pricing techniques. Finally, we present a
concrete specification with polynomially decaying autocorrelations and calibrate it
to observed market prices of plain vanilla options.

Keywords Calibration - Fourier pricing - Lévy basis * Long memory - Superposi-
tion of Ornstein—Uhlenbeck-type processes * Stochastic volatility
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1 Introduction

The Ornstein—Uhlenbeck (OU)-type stochastic volatility (SV) model introduced in
[3] is one of the most popular stochastic volatility models for prices of financial
assets driven by a Lévy process (see, e.g., [11, 25]). It covers many of the stylized
facts typically encountered in financial data (cf. [10, 14]). Over the years many
variants have been introduced, for instance a variant with two sided jumps in [1] or
a multivariate extension in [21].
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In this paper, we consider a variant of the model which additionally can cover
the stylized fact of long-range dependence (or slower than exponentially decaying
autocorrelations), the supOU stochastic volatility model. In this model, we specify
the volatility as a superposition of Ornstein—Uhlenbeck (thus “supOU”) processes,
which have been introduced in [2]. Various features of this volatility model (in a
multidimensional setting) have been considered in [4, 5, 18, 26].

Typically long-range dependence is obtained by using fractional Brownian motion
or fractional Lévy processes as the driving noises, see, e.g., [6, 7] for a critical
discussion of such models for financial markets. In such models one cannot have
jumps, as fractional Lévy processes (cf. [16]) have continuous paths, and one is
bound to have long memory. In our supOU model, one has a natural extension of the
OU-type model that exhibits jumps and, depending on the parameters, can exhibit
short or long memory. However, our model shares one disadvantage with fractional
process based models, viz. that it is no longer Markovian. In this context, one should
bear in mind that most Markov processes one employs to model volatilities are
geometrically ergodic and thus cannot exhibit long memory, although there exists
also Markov process with polynomial mixing coefficients and even long memory
(see, e.g., [27]).

The focus of the present paper is on derivative pricing in and calibration of the
univariate supOU SV model similar to the papers [19, 20] in the (multivariate) OU-
type SV model. To this end, we first briefly review the model in Sect.2. In Sect. 3,
we give conditions on the parameters such that the discounted stock price process
is a martingale which implies that under these conditions the model can be used to
describe the risk neutral dynamics of a financial asset. Thereafter, we start Sect. 4
with a review of Fourier pricing. Then, we give the characteristic function of the log
asset price in the supOU SV model and show conditions for the moment generating
function to be sufficiently regular so that Fourier pricing is applicable. Finally, we
present a concrete specification, the I"-supOU SV model, in Sect.5 and discuss its
calibration to market data which we illustrate with a small example using options on
the DAX. Finally, we discuss a subtle issue regarding how to employ the calibrated
model to calculate prices of European options with a general maturity.

2 A Review of the supOU Stochastic Volatility Model

We briefly review the definition and the most important known facts of the supOU
stochastic volatility model introduced in [5]. More background on supOU processes
can be found in [2, 4, 13, 26].

In the following, R_ denotes the set of negative real numbers and %, (R_ x R)
denotes the bounded Borel sets of R_ x R.

Definition 2.1 A family A = {A(B) : B € %,(R_ x R)} of real-valued ran-
dom variables is called a real-valued Lévy basis (infinitely divisible independently
scattered random measure) on R_ x R if:
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e the distribution of A(B) is infinitely divisible for all B € %, (R_ x R),

e for any n € N and pairwise disjoint sets By, ..., B, € %,(R_ x R) the random
variables A(Bj), ..., A(B,) are independent,

e for any sequence of pairwise disjoint sets B, € %, (R_ xR) withn € N satisfying
UnenBrn € Bp(R_ xR) the series Z:il A(Bp) converges a.s. and A(U,enBy) =
>, AGB).

We consider only Lévy bases with characteristic functions of the form
E(exp(iuA(B))) = exp(e(u)I1(B))

forallu € R and all B € %#,(R_ x R), where [T = 7 x A is the product of a
probability measure 7 on R_ and the Lebesgue measure A on R and

o(u) =iuyy + / (ei”x — 1)v(dx)

Ry

is the cumulant transform of an infinitely divisible distribution on R with Lévy-
Khintchine triplet (yp, 0, v), which is also the characteristic triplet of the underlying
Lévy process Ly = A(R_ x (0,¢]) and L_; = A(R_ x (—t¢,0)) for t € R, (see,
e.g., [24] for the relevant background on infinitely divisible distributions and Lévy
processes). We call the triplet (yo, v, ) the generating triplet. Note that this means
that 9 > 0, v(R\R ) = 0, and fm<1 |x|v(dx) < oo.

If L is apure jump Lévy process with triplet (0, 0, v) and jump measure N (ds, dx),
then turning the Poisson point process of jumps in R x R \ {0} toone in R x R \ {0} x
R_ by marking all jumps with independent marks distributed according to r produces
the jump measure of a Lévy basis with triplet (o, v, 7).

In the supOU process defined now, this can be understood as assigning every jump
of a Lévy process an individual exponential decay rate. We restrict our attention to
positive supOU processes as this is natural when using them to model a variance
changing over time.

Theorem 2.2 ([2, 4, 13]) Let A be an R-valued Lévy basis on R_ x R with
generating triplet (yp, v, 7). Assume

/ In(jJxDv(dx) < oo, and —/%ﬂ(dA) < 00.

[x]>1 R_

Then the process X = (X;);cRr given by

t
Z‘t://eA(’_S)A(dA,ds)
R_ —o©

is well defined as a Lebesgue integral for all t € R and it is stationary.
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Moreover, X; > 0 for all t € R and the distribution of X, is infinitely divis-

. ; .. . . i i r, (" =1y
ible with characteristic function given by E (e’”E’) = e““/)‘q’o—kj]R+ (¢ Juz( X),

for all u € R where

Y50 = / / A yodsr(dA), vy (B) = / / / 1 (%) v(dx)dsm(dA),
R,

forall B € Z(R).

As shown in [4, Theorem 3.12] the supOU process is adapted to the filtration gener-
ated by A and has locally bounded paths. Provided 7 has a finite first moment, one
can take a supOU process to have cadlag paths.

Definition 2.3 Let W be a standard Brownian motion, a = (a;);cRr, a predictable
real-valued process, A an R -valued Lévy basis on R_ x R independent of W with
generating triplet (yp, v, ) and let L be its underlying Lévy process. Let X be a
non-negative cadlag supOU process and p € R. Assume that the logarithmic price
process X = (X;);cRr, is given by

t

1
X, =Xo+/asds+/2§dws+p(u — o),
0

where Xg is independent of A. Then we say that X follows a univariate supOU
stochastic volatility model and refer to it by SVsupOU (a, p, yo, v, 7).

In the following, we always use as filtration the one generated by W and A.

In Definition 2.3 X is supposed to be the log price of some financial asset and
p is the typically negative correlation between jumps in the volatility and log asset
prices modeling the leverage effect. To ensure that the absolutely continuous drift is
completely given by a;, we subtract the drift 3 from the Lévy process noting that
this can be done without loss of generality.

In [5], it has been shown that the model is able to exhibit long-range dependence
in the squared log returns. The typical example leading to a polynomial decay of
the autocovariance function of the squared returns and to long-range dependence
for certain choices of the parameter is to take 7 as a Gamma distribution mirrored
at the origin. [13, 26] discuss in general which properties of 7 result in long-range
dependence.

3 Martingale Conditions

Now we assume given a market with a deterministic numeraire (or bond) with price
process €'’ for some r > 0 and a risky asset with price process S;.

We want to model the market by a supOU stochastic volatility model under the risk
neutral dynamics. Thus, we need to understand when S, =e"eXisa martingale
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for the filtration G = (%;);cr, generated by the Wiener process and the Lévy basis,
ie, % = o ({A(A), Wy :s €[0,t]and A € Bp(R_ x (—o0,t])}) for t € Ry.
Implicitly, we understand that the filtration is modified such that the usual hypotheses
(see, e.g., [22]) are satisfied.

Theorem 3.1 (Martingale condition) Consider a market as described above. Sup-
pose that

/ (e’ — 1) v(dx) < oo. (D)

x>1
If the process a = (a;);cRr, satisfies

ap=r— lEt - / (e = 1) v(dx), @

2
Ry
then the discounted price process Sisa martingale.

Proof The arguments are straightforward adaptations of the ones in [19, Proposition
2.10] or [20, Sect. 3].

4 Fourier Pricing in the supOU Stochastic Volatility Model

Our aim now is to use the Fourier pricing approach in the supOU stochastic volatility
model for calculating prices of European derivatives.

4.1 A Review on Fourier Pricing

We start with a brief review on the well-known Fourier pricing techniques introduced
in [9, 23].

Let the price process of a financial asset be modeled as an exponential semi-
martingale S = (S;)o<;<7, 1.e., S = SoeX1,0 <t < T where X = (Xt)o<i<T IS
semimartingale.

Let r be the risk-free interest rate and let us assume that we are directly work-
ing under an equivalent martingale measure, i.e., the discounted price process
S = (8)o<i<r given by S; = SoeXr~"" is a martingale.

We call the process X the underlying process and without loss of generality we
can assume that Xo = 0. We denote by s minus the logarithm of the initial value of
S,ie.,s = —1log(Sp).

Let f denote the Fourier transform of the function f,1i.e., f (u) = fR eMr £ (x)dx.
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Let now f : R — R, be a measurable function that we refer to as the payoff
function. Then, the arbitrage-free price of the derivative with payoff f(Xr — s)
and maturity 7 at time zero is the conditional expected discounted payoff under the
chosen equivalent martingale measure, i.e., Vi (X71;s) = e "E (f (X1 — $)|%) .

The following theorem gives the valuation formula for the price of the derivative
paying f(Xr — s) at time 7.

Theorem 4.1 ([12] Theorem 2.2, Remark 2.3) Let f : R — R be a payoff function
and let ggr(x) = e~ R* f(x) for some R € R denote the dampened payoff function.
Define @, 14, (u) :=E (e”XT |€§0) ,ueC.If

(i) gr € L'(R) N L™ (R), (ii) @y, 4, (R) < 00, (iii) Px 4, (R +i-) € L'(R),

then V(X713 5) = S5 [ e Dy (R +iu) f(i R — w)du.
It is well known that for a European Call option with maturity 7" and strike K > 0
condition (7) is satisfied for R > 1 and that for the payoff function f (x) = max(e* —
K,0) =: (¢ — K)7T the Fourier transform is f(u) = % for u € C with
Im(u) € (1, 00).

In the following, we calculate the characteristic/moment generating function for
the supOU SV model and show conditions when the above Fourier pricing techniques
are applicable.

4.2 The Characteristic Function

Consider the general supOU SV model with drift of the form a; = n + yo + 2.
Note that then the discounted stock price is a martingale if and only if 8 = —1/2
andpu +yo=r — IRJr (e”* — 1) v(dx).

Standard calculations as in [19, Theorem 2.5] or [20] give the following result
which is the univariate special case of a formula reported in [4, Sect. 5.2].

Theorem 4.2 Let X € R and let the log-price process X follow a supOU SV model
of the above form. Then, for every t € Ry and for all u € R the characteristic
function of X, given 4 is given by

P00 110) = E (%[ (3)

0
= exp ‘i(u(Xo + ut) + (u,B —+ %uz) / / % (eA(’ﬂ) — eiA“) A(dA, ds))
R_ —00
[ A i, 1 i, dsr(dA
+‘//<P 1 (Mﬁ-*-iu)—(z(uﬂ-‘riu)—pu) s7( )}.
R- 0
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Note that in contrast to the case of the OU-type stochastic volatility model, where
(X, X) is a strong Markov process, in the supOU stochastic volatility model X' is not
Markovian. Thus, conditioning on X and X is not equivalent to conditioning upon
%. Therefore, @ X,|%, (iu) is not simply a function of X¢, Xy. Instead, the whole past
of the Lévy basis enters via the 4-measurable

0
. 1 A(t—s) —As
7t .—/ / 2 (e —e )A(dA,ds),
R_ —o0

which has a similar role as the initial volatility X in the OU-type stochastic volatility
model. Like ¥y in the OU-type models, z; can be treated as an additional parame-
ter to be determined when calibrating the model to market option prices. We can
immediately see that thus the number of parameters to be estimated increases with
each additional maturity. As it will become clear later, the following observation is
important.

Lemma 4.3 z;, <z, forallt;,to € Ry suchthatt; < tp.

—As
Proof Fort € Ry and s < t we have % (eA(’_s) — e_AS) =< (eA[ — 1) and
for 11 < 1> one sees eA? — 1 < ¢4 — 1 < 0 since A < 0. This implies that for

—As —As
s<t <hg (eA[l — 1) << (eAtz — 1) and thus z;, < z,.

4.3 Regularity of the Moment Generating Function

In order to apply Fourier pricing, we now show where the moment generating function
Dy, |4, is analytic.
Let 01, (u) = you + fR+ (e"* — 1) v(dx) be the cumulant transform of the Lévy

basis (or rather its underlying subordinator). If fx>1 e v(dx) < oo forallr €
R such that r < ¢ for some ¢ > 0, then the function 6, is analytic in the open set
Sy :={z€C: Re(z) < ¢}, as can be seen, e.g., from the arguments at the start of
the proof of [19, Lemma 2.7].

Theorem 4.4 Let the measure v satisfy

/ e v(dx) < oo forallr € Rsuchthatr < ¢ )

x>1

for some & > 0. Then the function © (u) = [ fot O (uf, (A, s))dsm(dA) is analytic
on the open strip
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S:={ueC, |Re()| <38} with 8:=—|ﬁ|—|:¥|+«/Z, (5)

2
where A = (|ﬁ| + @) + 2

t

The rough idea of the proof is similar to [19, Theorem 2.8], but the fact that we
now integrate over the mean reversion parameter adds significant difficulty, as now
bounds independent of the mean reversion parameter need to be obtained and a very
general holomorphicity result for integrals has to be employed.

Proof Define
A(t—s)

fu<A,s>=1[o,r](s>(eA (ﬂ+%)—(%(ﬁ+%)—p)). (©)

We first determine § > 0 such that for all u € R with |u| < § it holds that
lufy,(A,s)| < e. We have

lufu(A, )| =

eA(tfs)_l u2 .
| \IBllul+ = ) +lpllul (7

by the triangle inequality. In order to find the upper bound for the latter term, we first
note that elementary analysis shows

eA(t—s) -1

2 =t ®)

forall A < 0 and s € [0, t]. Thus, we have to find § > 0 such that |uf, (A, s)| <
t (|,B||u| 4 %) 1 Ipllul < & forall u € R with [u] <8, i.e., to find the solutions of
the quadratic equation

%u2+(t|ﬂ|+|p|)|u|—8=0- €))

Since for u = 0 the sign of (9) is negative, i.e., (9) is equal to —e, we know that there
exist one positive and one negative solution. The positive one is § as given in (5).

Now let u € S,ie,u = v+ iw with v,w € R, |v|] < 4. Observe that
2 eA(f*S)fl A(fff)fl

Re(ufu(A, ) = vfi(A,5) = 5 (£5=1) and €251 = 0 forall s € [0,1]
and A < 0. Hence, Re(uf, (A, s)) < vf,(A,s). This implies that

/eRe(ufu(A,S))xv(dx) < /erV(A,S)Xv(dx) < o0

x>1 x>1
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due to |vf,(A,s)| < ¢ for |v] < § and condition (4). Hence for u € § the func-
tion O (ufy(A,s)) = youfu(A,s) + f]R+ (e"fulA:9x — 1) y(dx) is well defined.
uf, (A, s)is apolynomial of # and thus it is an analytic function in C, forall s € [0, ]
and A < 0. The function 6, is analytic in the set S = {z € C: |Re(z)| < ¢}.

Thus, the function 67 (i f, (A, s)) is analytic in S, for all s € [0, f] and A < 0. By
the holomorphicity theorem for parameter dependent integrals (see, e.g., [15]), we
can conclude that fé 0 (uf,(A,s))ds is analytic in S, for all A < 0.

Defining ¢ (u, A) := f(; 0 (ufy, (A, s))ds wenow apply [17] to prove that ® (u) =
IS fol Or(ufu(A, 5))dsw(dA) = [p @(u, A)m(dA) is analytic in S. Its conditions
Aj and A, are obviously satisfied. It remains to prove that condition A3 holds, i.e.,
that fR_ lo(u, A)| w(dA) is locally bounded. First, observe that

efulAs)x g v(dx)

0LWfu (A )] < youfa(A, )] + /

x<l1
«/

x>1

plfulAs)x _ 1‘ v(dx). (10)

Using (8), we can bound the first summand in (10) by:

2
lvoufu(A, )| < lyol (l (Iﬂllul + WTl) + Ipllul) =: Bi(u).

For the second summand, using Taylor’s theorem we have that ‘e”f”(""s)’“ — 1} <

. 2
[fuCAs IIxI+Oufir(A, )P 1x[2). Since lufi (A, )| <t (1811ul + 55 ) +1pllul,
for the remainder term of Taylor’s formula we have
2
lez),

Ju|?
t(lﬂllul + —) + [o]|ul

O(lufu (A, )*|x|?) < 0( 5

where the latter term converges to zero as x — 0. If we define

Ju|?
K(u) =t |ﬂ||u|+7 + pollul
we obtain that

/ MfulAX 11y (dx) < K (u) / xv(dx) + / O(K(u)2|x|2) v(dx) =: By(u),

x=1 x<1 x<l1

which is finite due to the properties of the measure v.
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LetS, :={Cou=v+iw: |v| <8§—1/n}C S.Sincethefunctionvf,(A,s)
is continuous on the compact set V,, = {v € R: |v| < § — 1/n}, it attains its min-
imum and maximum on that set, i.e., there exists v* € V,, such that vf,(A,s) <
v fix(A,s) < v fix(A, s)| =: K, (u) forall v € V,,. Note that v* € V,, implies that
K,(u) < e. Since Re(ufy(A,5)) < vfi(A,s) and |e"fud:9)x| = eRelfulA))x <
eKnx it follows that

/ efuA9)x _ 1‘ v(dx) < / eKn 0%y, (dx) + / v(dx) =: B3, (),

x>1 x>1 x>1

which is finite due to (4) and the properties of the measure v.
Since Bj(u), Ba(u), and B3 ,(u) do not depend neither on s nor on A, we have
lp(u, A)| < t(B1(u) + Ba(u) + B3, (u)) and

/R 1(B1(u) + Ba(u) + B3 n(u))m(dA) = 1(B1(u) + Ba(u) + B3 n(u)) < o0,

so the function 7(B1(u) + B2(u) + B3 ,(u)) is integrable with respect to . Since
¢(u, A) is analytic and thus a continuous function on §,,, for all A < 0, it also holds
that |¢(u, A)| is continuous on S, for all A < 0. By the dominated convergence
theorem, it follows that fR, |o(u, A)| m(dA) is continuous and thus a locally bounded
function on S,. Since n € N was arbitrary, it follows that the function is continuous
and locally bounded on S, which completes the proof.

Now, we can easily give conditions ensuring that (ii) in Theorem 4.1 is satisfied.

Corollary 4.5 Let fx>1 e v(dx) < oo forallr € Rsuchthatr < ¢ for some
e > 0. Then the moment generating function D14, is analytic on the open strip

2
S:={ueC:|Re(u)| <8} withs := —|B| — 2l + VA where A = (|,B| + %) +

278. Furthermore,

Dx 14, 1) = (11)
1 ’ 1
exp Y u(Xog+ uT) + (u,B + Euz) / / n (eA(Tfs) — eiAS) A(dA, ds) + O (u)
R_ —o0
forallu € S.

Proof Follows from Theorems 4.2 and 4.4 noting that an analytic function is uniquely
identified by its values on a line and [19, Lemma A.1].

Very similar to [19, Theorem 6.11], we can now prove that also condition (iii) in
Theorem 4.1 is satisfied for the supOU SV model.

Theorem 4.6 Ifu € C,u =v+iw and u € S as defined in Theorem 4.4, then the
map
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w > Py, (v +iw)

is absolutely integrable.

5 Examples

5.1 Concrete Specifications

If we want to price a derivative by Fourier inversion, then this means in the supOU SV
model that we have to calculate the inverse Fourier transform by numerical integration
and inside this the double integral in & (1) = fR, fot Or(ufy (A, s))dsm(dA). If we
want to calibrate our model to market data, the optimizer will repeat this procedure
very often and so it is important to consider specifications where at least some of the
integrals can be calculated analytically.

Actually, it is not hard to see that one can use the standard specifications for v of
the OU-type stochastic volatility model (see [3, 11, 20, 25]) which are named after
the resulting stationary distribution of the OU-type processes.

Asinthe case of a I"-OU process we can choose the underlying Lévy process to be
a compound Poisson process with the characteristic triplet (yp, O, abe™bx 1(x>01dx)
with a, b > 0 where abusing notation we specified the Lévy measure by its density.
Furthermore, we assume that A follows a “negative” I"-distribution, i.e., that 7 is
the distribution of BR, where B € R_ and R ~ I'(«, 1) with @ > 1 which is
the specification typically used to obtain long memory/a polynomial decay of the
autocorrelation function. We refer to this specification as the I -supOU SV model.

Using (6) we have

O ) —u//yofu(A s)dsn(dA)—i—/// "fu“‘ Ox _ 1) v(dx)dsm(dA).

R_ 0 R,

For the first summand in ® (1) we see

: ! pAU=$) 2
u / / Yo fu(A, s)ds(dA) = Vo( / / : (uﬁ+7) ds(dA)
R_ 0 R_ 0

I

t

—//;(uﬂ+ z)dsn(dA) + //pudsn(dA)).

R_ 0

I I3
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For the three parts, we can now show:

I (=B —1 .,
‘_(’“ )32(a Da—2) T¢7%

(u,3+7)
I=———"2in(l— Bifa =2,

B2
(M,B + u

L = , dsw(dA) = put.

) B(a_l) // sT(dA) = pu
Furthermore setting C(A) := % (uﬂ + %) — pu one obtains for the second sum-
mand in &

t
/ / / (e”f“(A’S)x - 1) abe~"*dxdsm(dA)
R_ 0 Rt
1 b — pu
=a | — | bn — AC(A)t | m(dA).
A+ C(A)) _ﬂ(’g_f_ )—I—C(A)

Unfortunately, we have been unable to obtain a more explicit formula for this integral,
and so it has to be calculated numerically. In our example later on we have used the
standard Matlab command “integral” for this. Note that the well-behavedness of
this numerical integration depends on the choice of 7. For our choice, 7 being a
negative Gamma distribution implies roughly (i.e., up to a power) an exponentially
fast decaying integrand for A — oo, whereas the behavior at zero appears to be hard
to determine.

We can also choose the underlying Lévy process as in an IG-OU model with
parameters 6 and y, while keeping the choice of the measure 7 the same. In this
case, we have v(dx) = #ES (x 1 +y?) X~z exp (—3¥2x) 1(y=0)dx and the only
difference compared to the previous case is in the calculation of the triple integral
which also can be partially calculated analytically so that only a one-dimensional
numerical integration is necessary.

5.2 Calibration and an Illustrative Example

In this chapter, we calibrate the I"—supOU SV model to market prices of European
plain vanilla call options written on the DAX.

Lett, 1, ..., 1) be the set of different times to maturity (in increasing order) for
which we have market option prices. The parameters to be determined by calibration
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Table 1 Calibrated supOU SV model parameters for DAX data of August 19, 2013

P a b B o Y0

—10.8797 0.2225 29.4025 —0.0004 4.3632 0.0000
21 in in 21y 215 216 217 21y
0.0012 0.0026 0.0038 0.0054 0.0093 0.0136 0.0225 0.0328
are (p,a,b, B, a, vy, 2, - - - » 21y, ), Where p describes the leverage, a and b are para-
meters of the measure v, B, and « are parameters of the measure 7 and yy is the drift
parameter. Finally, z;,, ..., 2, are z;, = [p_ fi)oo % (eA(ti =) e’AS) A(dA, ds),
i=1,...,M.

We calibrate by minimizing the root mean squared error between the Black—
Scholes implied volatilities corresponding to market and model prices, i.e., RMSE =

\/Zlﬂil Z?”:] (blsimpv (Cf;”) — blsimpv (Cij))z/ZiAil N;, where M is the num-
ber of different times to maturity, &N; is the number of options for each maturity,
{Cl’;”} is the set of market prices and {C;; } is the set of model prices, i = 1, ..., Ny,
j =1,..., M. Of course, minimizing the difference between Black—Scholes im-
plied volatilities is just one possible choice for the objective function. We note that
this data example is only supposed to be an illustrative proof of concept and that us-
ing other objective functions including in particular weights for the different options
should improve the results.

We use closing prices of 200 DAX options on August 19, 2013. The level of DAX
on that day was 8366.29. The data source was Bloomberg Finance L.P. and all the
options were listed on EUREX.

For the instantaneous risk-free interest rate, we used the 3-month LIBOR rate,
which was 0.15173 %. The maturities of the options were 31, 59, 87, 122, 213, 304,
486, and 668 days. The calibration procedure was performed in MATLAB. To avoid
being stuck in local minima the calibration was run several times with different initial
values and the overall minimum RMSE was taken.

The implied parameters from the calibration procedure are given in Table 1. The fit
is good: The RMSE is 0.0046. We plot market against model Black—Scholes implied
volatilities in Fig. 1. Although the RMSE is very low and in plots of market against
fitted model prices (not shown here) one sees basically no differences, Fig. 1 shows
that our model fits the implied volatilities for medium and long maturities very well,
but the quality of the fit for shorter maturities is lower.

The vector of the parameters {z;};=1,.. m is indeed increasing with maturity
(cf. Lemma 4.3), although we actually refrained from including this restriction into
our optimization problem. The autocorrelation function of the I"-supOU model ex-
hibits long memory for o € (1, 2) (cf. [26, Sect.2.2]). Since the calibration returns
a = 4.3632, our market data are in line with a rather slow polynomial decay of the
autocorrelation function, which is in contrast to the exponential decay of the auto-
correlation function in the OU-type SV model, but the calibrated model does not
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Fig. 1 Calibration of the supOU model to call options on DAX: The Black—Scholes implied
volatilities. The implied volatilities from market prices are depicted by a dot, the implied volatilities
from model prices by a solid line
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exhibit long memory. One should be very careful not to overinterpret these findings,
as no confidence intervals/hypothesis tests are available in connection with such a
standard calibration.

The leverage parameter p is negative, which implies a negative correlation be-
tween jumps in the volatility and returns. Hence, the typical leverage effect is present.
The drift parameter of the underlying Lévy basis yq is estimated to be practically
zero. So our calibration suggests that a driftless pure jump Lévy basis may be quite
adequate to use.

Let us briefly turn to a comparison with the OU-type stochastic volatility model
(cf. [19] or [20]) noting that a detailed comparison with various other models is
certainly called for, but beyond the scope of the present paper. For some 8 < 0
looking at a sequence of I"-supOU models with o, = n, B, = B/n and all others
parameters fixed, shows that the mean reversion probability measures 7, converge
weakly to the delta distribution at 8. So the OU model is in some sense a limiting
case of the supOU model. However, the limiting model is very different from all
approximating models, as it is Markovian, has the same decay rate for all jumps,
whereas the approximating supOU models have all negative real numbers as possible
decay rates for individual jumps. This implies that in connection with real data the
behavior of the OU and the supOU model can well be rather different. Calibrating a
I'-OU model to our DAX data set (so the only parameter now different is 7z, which is
a Dirac measure) returns actually a globally better fit (the RMSE is 0.0037). Looking
at the plots of market against model implied volatilities they all look quite similar
(Fig. 2 shows only the last four largest maturities) to the ones in Fig. 1, although the
fit for the early maturities is definitely better when looking closely. Yet, there is one
big exception, the last maturity, where the supOU model fits much better. Whereas
the rate of the underlying compound Poisson process is a = 0.2225 in the supOU
model, it is 1.2671 in the OU model. The mean of the decay rates is —0.0017 in the
supOU model and the decay rate of the OU case is —1.3906. Noting that the standard
deviation of the decay rates is 0.0008 in the supOU model, the two calibrated models
are indeed in many respects rather different.

Remark 5.1 (How to price options with general maturities?) After having calibrated
a model to observed liquid market prices one often wants to use it to price other
(exotic) derivatives. Looking at a European derivative with payoff f(S7) for some
measurable function f and maturity 7 > 0, one soon realizes that we can only
obtain its price directly if T € {#1, 12, ..., tp}, as only then we know z7, thus the
characteristic function @y, |« and therefore the distribution of the price process
at time T conditional on our current information %. This is not desirable and the
problem is that we assume that we know % in theory, but we have only limited
information in the market prices which we can use to get only parts of the information
in 4.

It seems that to get z; for all # € R4 one needs to really know the whole past
of A, i.e., all jumps before time O and the associated times and decay rates. This is
clearly not feasible. A detailed analysis on the dependence of z; on ¢ is beyond the
scope of this paper. But we briefly want to comment on possible ad hoc solutions
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Fig. 2 Calibration of the OU model to call options on DAX: The implied volatilities from market
prices are depicted by a dot, the implied volatilities from model prices by a solid line. Last four
maturities only

to “estimate” z7 based on {z;};=1,... ». The first one is to either interpolate or fit
a parametric curve ¢t +— z; to the “observed” {z;}i=1,.. .m. If one also ensures the
decreasingness in tin this procedure, one should get a reasonable approximation,
especially when the grid {#;};=1.... » is fine and one considers maturities in [¢, far].

From the probabilistic point of view, one wants to compute E (z7|{zs, }i=1,..., m) for
T & {t1, 1, ..., ty}. Whether and how this conditional expectation can be calculated,
is again a question for future investigations. But what one can calculate easily is
the best (in the L? sense) linear predictor of z7 given {z;}i=1,.. m. One simply
needs to straightforwardly adapt standard time series techniques (like the innovations
algorithm or linear L filtering, see, e.g., [8]) noting that one has

—2As
COV(Zthu):/ / ¢ 2 (eA’—l)(eA“—l)dsn(dA)/ x2v(dx) Vi, u € Ry.
rR_Jr. A R,

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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A Two-Sided BNS Model for Multicurrency
FX Markets

Karl Friedrich Bannor, Matthias Scherer and Thorsten Schulz

Abstract We present a multivariate jump-diffusion model incorporating stochastic
volatility and two-sided jumps for multicurrency FX markets, which is an extension
of the univariate /"-OU-BNS model introduced by [2]. The model can be considered
a multivariate variant of the two-sided I"-OU-BNS model (cf. [1]). We discuss FX
option pricing and provide a calibration exercise, modeling two FX rates with a
common currency by a bivariate model and calibrating the dependence parameters
to the implied FX volatility surface.

Keywords Barndorff-Nielsen—Shephard model - Stochastic volatility + Multivari-
ate model - Jump-diffusion model - Multicurrency FX markets

1 Introduction

For derivatives valuation, the Black—Scholes model, presented in the seminal paper
[4], generated a wave of stochastic models for the description of stock-prices. Since
the assumptions of the Black—Scholes model (normally distributed log-returns, inde-
pendent returns) cannot be observed in neither time series of stock-prices nor option
markets (implicitly expressed in terms of the volatility surface), several alterna-
tive models have been developed trying to overcome these assumptions. Some
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models, as, e.g., [9, 23] account for stochastic volatility, while others as, e.g., [12,
16] enrich the original Black—Scholes model with jumps. Both approaches have
been combined in the models of, e.g., [3, 6]. Another approach combining stochastic
volatility and negative jumps in both volatility and asset-price process, employ-
ing Lévy subordinator-driven Ornstein—Uhlenbeck processes, is available with the
Barndorff—Nielsen—Shephard (BNS) model class, presented in [2] and extended in
several papers (e.g. [18]). A multivariate extension of the BNS model class employ-
ing matrix subordinators is designed in [20] and pricing in this model is scrutinized in
[17]. In the special case of a I'-OU-BNS model, a tractable variant of a multivariate
BNS model based on subordination of compound Poisson processes was developed
by [15]. This model allows for a separate calibration of the single assets (following
a univariate I"-OU-BNS model) and the dependence structure.

Besides for options on stocks, these models have also been used to price derivatives
on other underlyings. When modeling foreign exchange (FX) rates instead of stock-
prices, one has to cope with the introduction of two different interest rates as well as
identifying the actual tradeable assets. The Black—Scholes model was adapted to FX
markets by [8]. Many of the models mentioned above have been employed for FX
rates modeling as, e.g., [3, 9]. Since the original BN'S model assumes only downward
jumps in the asset-price process, [1] extend the BNS model class to additionally
incorporate positive jumps, which is needed for the realistic modeling of FX rates
and calibrates much better to FX option surfaces.

In this paper, we unify the extensions of the BNS model from [1, 15] and intro-
duce a multivariate I"-OU-BNS model with time-changed compound Poisson drivers
incorporating dependent jumps in both directions, both generalizing the univariate
two-sided I"-OU-BNS model and the multivariate “classical” I"-OU-BNS model.
Since the two-sided I"-OU-BNS model seems to be particularly suitable for the mod-
eling of FX rates, we consider a multivariate two-sided I"-OU-BNS model a sensible
choice for the valuation of multivariate FX derivatives such as best-of-two options.
Since the multivariate two-sided model accounts for joint and single jumps in the FX
rates, the jump behavior of modeled FX rates resembles reality better than models
only employing joint or single jumps, as illustrated in Fig. 1. Furthermore, a mul-
tivariate two-sided BNS model for FX rates with a common currency also implies
a jump-diffusion model for an FX rate via quotient or product processes. A crucial
feature of our multivariate approach is the separability of the univariate models from
the dependence structure, i.e. one has two sets of parameters that can be determined
in consecutive steps: parameters determining each univariate model and parameters
determining the dependence. This feature provides tractability for practical applica-
tions like simulation or calibration on the one side, but also simplifies interpretability
of the model parameters on the other side.

Instead of modeling the FX spot rates only, one could model FX forward rates
to get a model setup suited for pricing cross-currency derivatives depending on FX
forward rates, as for example cross-currency swaps. Multicurrency models built
upon FX forward rates (see e.g. [7]) on the one hand support flexibility to price
such derivatives, on the other hand, however, these models do not provide the crucial
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Fig. 1 The logarithmic returns of EUR-SEK and USD-SEK FX rates over time. Assuming that
every logarithmic return exceeding three standard deviations (dashed lines) from the mean can be
interpreted as a jump (obviously, smaller jumps occur as well, but may be indistinguishable from
movement originating in the Brownian noise), one can see that joint as well as separate jumps in the
EUR-SEK and the USD-SEK logarithmic returns occur. Clearly, this 3-standard deviation criterion
is just a rule of thumb, however, [10] investigated the necessity of both common and individual
jumps in a statistical thoroughly manner. Hence, a multivariate FX model capturing the stylized
facts of both joint and separate jumps can be valuable. The data was provided by Thomson Reuters

property of separating the dependence structure from the univariate models, which
makes it extremely difficult to calibrate such a multivariate model in a sound manner.

The remaining paper is organized as follows: In Sect.2, we recall the two-sided
Barndorff—Nielsen—Shephard model constructed in [1] and outline stylized facts of
its trajectories. In Sect. 3, we introduce a multivariate version of the two-sided I"-OU-
BNS model, using the time change construction from [15] to incorporate dependence
between the jump drivers. Section4 focuses on the specific obstacles occuring when
modeling FX rates in a multivariate two-sided I"-OU-BNS model, particularly the
dependence structure of joint jumps and the implied model for a third FX rate which
may be induced. In Sect. 5, we describe a calibration of the model to implied volatility
surfaces and show how the model can be used to price multivariate derivatives. We
then evaluate the model in a numerical case study. Finally, Sect. 6 concludes.

2 The Two-Sided Barndorff-Nielsen—Shephard Model Class

We briefly motivate the construction and main features of the two-sided BNS model
class. The classical BNS model accounts for the leverage effect, a feature of stock
returns, by incorporating negative jumps in the asset-price process, accompanied by
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upward jumps in the stochastic variance. While downward jumps might be sufficient
in the case of modeling stock-price dynamics, it is not suitable when modeling FX
rates, where one-sided jumps contradict economic intuition. Hence, [1] develop an
extension of the BNS model which allows for two-sided jumps and is able to capture
the symmetric nature of FX rates.

We say that a stochastic process {S;};>0 follows a two-sided BNS model (abbrevi-
ated BNS2 model), if the log-price X, := log S; follows the dynamics of the SDEs

dX; = (u 4 Bo2)dt + o, AW, + p, dZ + p_dZ,,
do? = —rof dr +dZ; +dZ;,

with independent Lévy subordinators Z+ = {Z;"};=0 and Z~ = {Z; };=0 and W =
{W:}i>0 being a Brownian motion independent of Ztand Z7, n € R, A > 0,
p4 >0, p_ < 0.1 If the Lévy drivers ZT, Z~ are independent copies of each other,
we call the model a reduced two-sided BNS model. If, additionally, p, = —p_ we
have a symmetric situation, upward jumps occurring similarly likely as downward
jumps. Furthermore, the average absolute jump sizes in the log-prices coincide. Thus,
we call the model a symmetric BNS model or SBNS model. In a calibration exercise of
[1], the SBNS model produced decent calibration results, while limiting the number
of parameters to five.

In contrast to the classical BNS model, the BNS2 model has two independent Lévy
subordinators Z*, Z~ incorporating jumps in the asset-price process in opposite
directions, but both accounting for upward jumps in the variance process o2 =
{0,2} +>0- Thus, shocks in the asset-price are always accompanied by upward jumping
variance, regardless of the jump direction. Furthermore, the variance process is still
a Lévy subordinator driven Ornstein—Uhlenbeck process. As discussed in [1], the
symmetric nature of the two-sided BNS model makes it particularly suitable for FX
rates modeling and calibrates well to option surfaces on FX rates.

An important example is the special case where the Lévy drivers Z*, Z~ are
compound Poisson processes with exponential jump heights. In this case we call the
model a two-sided I"'-OU-BNS model. The log-price of a two-sided I"-OU-BNS
model has a closed-form characteristic function (cf. [1]), hence allows for rapid
calibration to vanilla prices by means of Fourier-pricing methods as introduced in
[5, 21]. A typical trajectory of the two-sided I"-OU-BNS model can be found in
Fig.2. It can clearly be seen that shocks in the FX rate process, e.g. caused by
macroeconomic turbulences or unanticipated interest rate movements, cause a sudden
rise in volatility. As time goes by without the arrival of new shocks, volatility is
calming down again.

1 Compared to the original formulation of the model in [1] and the original BNS model from [18],
we do not change the clock of the subordinators to # + Az. This formulation is equivalent and more
handy in the upcoming multivariate construction.
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Fig.2 Sample path of a two-sided BNS model, generated from calibrated parameters. The FX rate
process exhibits positive and negative jumps

3 A Tractable Multivariate Extension of the Two-Sided
I'-OU-BNS Model

We now present a multivariate two-sided /"-OU-BNS model, where the univariate
processes still follow the dynamics of a two-sided I"-OU-BNS model. Here, all
univariate FX rate processes live on the same probability space and the probabil-
ity measure is assumed to be a pricing measure. Besides establishing dependence
between the driving Brownian motions, we want to incorporate dependence to the
Lévy drivers, thus establishing dependence among the price jumps as well as among
the variance processes. Jumps in FX rates are mainly driven by unanticipated macro-
economic events (e.g. interest-rate decisions of some central bank) in one of the
monetary areas. If we consider a multivariate model with one common currency, e.g.
modeling the EUR-USD and the EUR-CHF exchange rates, it is likely that jumps
caused by macroeconomic events in the common currency monetary area have an
impact on all exchange rates, e.g. the debt crisis of Eurozone countries should affect
both the EUR-USD as well as the EUR-CHF exchange rate. Hence, dependence of
the jump processes seems to be a desirable feature of a multivariate model for FX
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rates with common currency. To establish dependence between the compound Pois-
son drivers, we employ the time-change methodology presented in [15], yielding an
analytically tractable and easy-to-simulate setup.

Definition 1 (7ime-changed CPPs with exponential jump sizes) Let co, n1, ...,
ng > 0and cq,...,cq € (0, co). Furthermore, let d € N and yh, o y@D
be d independent compound Poisson processes with intensities ¢1/(co — c1), .- .,
cq/(co — cq) and Exp(coni/(co — c1)), - .., Exp(cona/(co — cq))-distributed jump
sizes. To these compound Poisson processes, we apply a time change with another
independent compound Poisson process T = {7;};>0 with Exp(1)-distributed jump
sizes and intensity cp. Define the T-subordinated compound Poisson processes
ZW, . ZD by (2 )20 = (¥} }iz0. We call the d-tuple of (2, ..., Z@)
a time-change-dependent multivariate compound Poisson process with parameters
(co,Cly-verCdys NsesNd)-

At first sight, the subordination of a compound Poisson process with another
compound Poisson process may look strange, particular in the light of interpreting
the time change as “business time”, following the idea of [14]. But in this case, we
primarily use the joint subordination to introduce dependence via joint jumps between
compound Poisson processes without the interpretation as “business time”, the time
change construction has a technical nature and provides a convenient simulation
scheme.

Remark 1 (Properties of time-changed CPPs, cf. [15])

(i) Each coordinate of the T-subordinated compound Poisson process Z/) is again a
compound Poisson process with intensities ¢ ; and jump size distribution Exp(# ;)
forallj =1,...,d.

(ii) For cpax := maxi<j<g {cj}, the correlation coefficient of (Z(j), Z(k)), 1<j<
d,1 <k <d,j # kis given by

: /Ci Ck /Ci Ck
Corr[Z,(j),Z[(k)]z B =Y ,

(€] Cmax

with k := cmax/co € (0, 1). We call k the time-change correlation parameter. In
particular, correlation coefficients ranging from zero to  /C; Cx / cmax are possible,
and the correlation does not depend on the point in time 7.

(iii) Due to the common time change, the compound Poisson processes Z (ORI AC
are stochastically dependent. Moreover, it can be shown that the dependence
structure of the d-dimensional process (ZV, ..., Z(@) is driven solely by the
time-change correlation parameter «.

A striking advantage of introducing dependence among the jumps in this manner
is that the time-changed processes Z1, ..., Z@ remain in the class of compound
Poisson processes with exponential jump heights, which ensures that the marginal
processes maintain a tractable structure. In particular, the characteristic functions
of the univariate log-price processes in a two-sided I"-OU-BNS model are still at
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hand. Moreover, the univariate processes Z M., Z@D can be simulated as ordinary
compound Poisson processes with exponentially distributed jump heights and the
Laplace transform is given. Hence, we can now define a multidimensional two-sided
I'-OU-BNS model with dependent jumps.

Definition 2 (Multivariate two-sided I'-OU-BNS model) A d-dimensional sto-
chastic process {S;};>0 with §; = (S,(l), e, S,(d)) follows a multivariate two-sided
I'-OU-BNS model with time-change-dependent volatility drivers, if the dynamics of
the log-price vector X, = (Xt(l), ceeh X,(d)) = (log St(l), ..., log S,(d)) are governed
by the following SDEs:

dx\) = (M,- +8; () ) dt + o0 aw + pdz D 4 pP az; P,
()? ()? +()) ~(j)
d (a, ) _—y (a, ) dt +dzH 4 dz 9,

with (WD w@) being correlated Brownian motions with correlation matrix
Yand forall 1 < j < d, nj,B; € R, ,oij) > 0, p(_j) < 0,2; > 0, and
(zTD z=My (Z+(d), Z= Dy are pairs of independent compound Poisson
processes with exponential jumps. Furthermore, the 2d-dimensional Lévy process
(z+tW z=W 7+ 7=D)y gplits up in two time-change-dependent d-tuples
of compound Poisson processes (cf. Definition 1).

At first glance, Definition 2 looks cumbersome, but it is necessary to capture all
combinations of possible dependence. As a simplifying example, one might think
about introducing dependence between (Z+(1), R Z+(d)) on the one hand and
between (Z N4 _(d)) on the other hand. In this case, positive jumps of the
processes are mutually dependent and negative jumps are mutually dependent, but
positive jumps occur independently of negative jumps. A closer examination how to
establish the dependence structure between the time-change-dependent compound
Poisson processes is made in the following section, since dependence between the
jumps has to be introduced in a sound economic manner.

This construction can further be generalized by employing Lévy processes, cou-
pled by Lévy copulas (cf. [11]). For the present investigation, however, we prefer the
time-change construction presented in Definition 1, since this construction provides
an immediate stochastic representation of the dependence structure. Thus, a straight-
forward simulation scheme is provided and at least some analytical tractability when
doing computational exercises is ensured, which may be more complicated when
employing general Lévy copulas.

Remark 2 (Calibration of the univariate processes) An immediate corollary from
the compound Poisson structure of the univariate jump processes (ZT), Zz=()),
j = 1,...,d, is that the univariate log-price processes {X,(j)},zo, j=1,...,d,
still follow a univariate two-sided I"-OU-BNS model and the parameters of the
univariate processes may be calibrated separately to univariate derivative prices.
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The dependence parameters, which are the correlation matrix X of the Brownian
motions and the time-change correlation parameters ¥ and & that determine the
dependence structure of the time-change-dependent multivariate compound Poisson
processes, can be calibrated separately afterwards without altering the already fixed
marginal distributions. This simplifies the model calibration and is a convenient fea-
ture for practical purposes, because it automatically ensures that univariate derivative
prices are fitted to the multivariate model.

4 Modeling Two FX Rates with a Bivariate Two-Sided
I'-OU-BNS Model

In this section, we discuss the modeling of FX rates with a bivariate two-sided /"-OU-
BNS model. Particularly, we discuss how to soundly introduce dependence between
the Lévy drivers and investigate a possible “built-in” model induced by the model for
the two FX rates. We concentrate on the case of two currency pairs, which illustrates
the problems of choosing the jump dependence structure best.

To ensure familiarity with the FX markets wording, we recall that an FX rate
is the exchange rate between two currencies, expressed as a fraction. The currency
in the numerator of the fraction is called (by definition) domestic currency, while
the currency in the denominator of the fraction is called foreign currency.> The role
each currency plays in an FX rate is defined by market conventions and is often due
to historic reasons, so economic interpretations are not necessarily helpful. A more
detailed discussion of market conventions of FX rates and derivatives is provided in
[22], a standard textbook on FX rates modeling is [13].

4.1 The Dependence Structure of the Lévy Drivers

Analogously to the multivariate classical I"-OU-BNS model described in the previ-
ous section, we use the time-change construction to introduce dependence between
the compound Poisson drivers in the bivariate two-sided I"-OU-BNS model. Since
we want to model dependence between the jumps in different FX rates, we have to
choose the coupling of the compound Poisson drivers carefully and in a way to cap-
ture economic intuition: When modeling two FX rates, we may want to establish an
adequate kind of dependence between the different drivers, accounting separately for
positive and negative jumps in the respective FX rate. Depending on which currency
is foreign or domestic in the two currency pairs of the FX rates, dependence may be

2 The wording “foreign” and “domestic” currency does not necessarily reflect whether the currency
is foreign or domestic from the point of view of a market participant. The currency EUR, e.g., is
always foreign currency by market convention. Sometimes, the foreign currency is called underlying
currency, while the domestic currency is called accounting or base currency.
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introduced in a different manner to result in sound economic situations. Hence, we
can distinguish between the following combinations that may occur for two different
FX rates:

1. There are no common currencies, e.g. in the case of EUR-CHF and USD-JPY.

2. In both FX rates the common currency is the foreign (resp. domestic) currency,
e.g. EUR-USD and EUR-CHF (EUR-CHF and USD-CHEF, respectively).

3. The common currency is the domestic currency in one FX rate and the foreign
currency in the other FX rate, e.g. EUR-USD and USD-CHF.

For the sake of simplicity, we restrict ourselves to the second case, which occurs
in a detailed numerical study in the following section. The other cases can be treated
analoguously.

In case of a common foreign currency, a sudden macroeconomic event strength-
ening (resp. weakening) the common currency should result in an upward (resp.
downward) jump of both FX rates. Hence, it may be a sensible choice to couple the
drivers for the positive jumps and to separately couple the drivers for the negative
jumps respectively, to ensure the occurrence of joint upward and downward jumps.

4.2 Implicitly Defined Models

When two FX rates are modeled and among the two rates there is a common cur-
rency, this bivariate model always implicitly defines a model for the missing currency
pair which is not modeled directly, e.g. when modeling EUR-USD and EUR-CHF
exchange rates simultaneously, the quotient process automatically implies a model
for the USD-CHF exchange rate. Similar to the bivariate Garman—Kohlhagen model,
modeling two FX rates directly by a bivariate two-sided BNS model does not nec-
essarily imply a similar model for the quotient or product process from the same
family, but the main structure of a jump-diffusion-type model is maintained.

Lemma 1 (Quotient and product process of a two-sided BNS model) Given two
asset-price processes {S,(I)},Zo and {St(z)}tzo modeled by a multivariate two-sided
I'-OU-BNS models, the product and quotient processes {St(l)S,(z)}tZo resp.
{St(l)/S,(z)},Z() are both of jump-diffusion type.

Proof Follows directly from log(St(l)S,(z)) = X,(l) + X,(z) and log(S,(I)/S,(Z)) =
xV - x?.

Due to symmetry in FX rates, the implied model for the third missing FX rate can
be used to calibrate the parameters steering the dependence, namely, the correlation
between the Brownian motions as well as the time-change correlation parameters, or
equivalently the intensities of the time-change processes. Additionally, the calibration
performance of the implied model to plain vanilla options yields a plausibility check
whether the bivariate model may be useful for the evaluation of true bivariate options,
e.g. best-of-two options or spread options.
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5 Application: Calibration to FX Rates and Pricing of
Bivariate FX Derivatives

In this section, we describe the calibration process of a bivariate two-sided BNS
model to market prices of univariate FX derivatives, which allows us to completely
specify the model. Furthermore, we describe how to price bivariate FX options like,
e.g., best-of-two options in a bivariate two-sided BNS model.

5.1 Data

As input data for our calibration exercise we use option data on exchange rates
concerning the three currencies EUR, USD, and SEK. Since the EUR-USD exchange
rate can be regarded as an implied exchange rate, i.e.

USD  SEK/EUR
EUR = SEK/USD’

we model the two exchange rates EUR-SEK and USD-SEK directly with two-sided
I'-OU-BNS models as suggested in [1]. For each currency pair EUR-SEK, USD-
SEK, and EUR-USD, we have the implied volatilities of 204 different plain vanilla
options (different maturities, different moneyness) available as input data. The option
data is as of August 13, 2012, and was provided by Thomson Reuters.

5.2 Model Setup

We consider a market with two traded assets, namely {exp(rUSDt)S}JSDSEK} >0 and
{exp(rEURt)SFURSEK}tZ(), where S}ISDSEK, SZEURSEK denote the exchange rates at
time ¢ and rysp, 'EUR, 7'SEk denote the risk free interest rates in the correspond-
ing monetary areas. These assets can be seen as the future value of a unit of
the respective foreign currency (in this case USD or EUR), valued in the domes-
tic currency (which is SEK). Assume a risk-neutral measure QSEK {0 be given
with numéraire process {exp(rsgx?)}:>0,1.e. {exp((rusp — rSEK)t)SlUSDSEK},Zo and
{exp((reur — rSEK)t)SFURSEK} ¢>0 are martingales with respect to QSEK, governed
by the SDEs
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(U;SEK)Z -

2

+ + - -
c 0 c 0
dx*SEK ("SEK r « SEK P« SEK + SEK P« SEK )dt

¥ ¥ - =
NeSEK ~ Px«SEK  "SEK T PaSEK

«SEK 1+#SEK |+ 4#SEK  — —+SEK
+o/ 7 dW; + 0,/ sex 4Z; — Pusex 4Z; ;
«SEK «SEK _
dO't2 =— A, SEKU[2 dr + dZ;F*SEK + dZt *SEK’

for v SEK, 0,sgK Puspx > Os * € {EUR, USD}, {WEURSEK [y USDSEK), ) heing

a two-dimensional Brownian motion with correlation r € [—1, 1], and {Z;r EURSEK,

Z;r USDSEK},ZO and {Z, EURSEK, zZ; USDSEK}IEO being (independent) two-dimen-

sional time-change dependent compound Poisson processes with parameters

+ + + o+ + + +
(max(cgyrsek > CUsDSEK)/K " » CEURSEK * CUSDSEK * TEURSEK * TUSDSEK)
and  (max(cgyrspk: CUspSEK)/K > CEURSEK > CUSDSEK » TEURSEK * TUSDSEK)»

where kT and « ~ are the time-change correlation parameters (following the frame-
work in Sect.4.1). Hence, the EUR-SEK, EUR-USD exchange rates follow a bivari-
ate SBNS model. The implied exchange rate process SFURUSP ig given by

EURSEK
{ SEURUSD} _ [ S ]
t = | <USDSEK
=0 S >

Due to the change-of-numéraire formula for exchange rates (cf. [19]), the process
{exp((rgur — rUSD)t)StEURUSD},ZO is a martingale with respect to QUSD, where
QUYSP s determined by the Radon—Nikodym derivative

d @USD
d QSEK

SYSPSEK exp(ruspt)

exp(rsgx?)

= "CUSDSEK
t So

5.3 Calibration

For calibration purposes, we use the volatility surfaces of the EUR-SEK and USD-
SEK exchange rates to fit the univariate parameters. Due to the consistency relation-
ships which have to hold between the exchange rates, we can calibrate the dependence
parameters by fitting them to the volatility surface of EUR-USD. Even in presence of
other “bivariate options” (e.g. best-of-two options), we argue that European options
on the quotient exchange rate currently provide the most liquid and reliable data for
a calibration.

The calibration of the presented multivariate model is done in two steps. Due to the
fact that the marginal distributions can be separated from the dependence structure
within our models, it is possible to keep the parameters governing the dependence
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Table 1 Calibrated parameters in the two univariate FX models

. SESEK | GaSEK | o cpp N SEK AeSEK | P«SEK | #options | Error (%)
EUR | 8.229 0.074 0.71 62.13 3.25 1.66 204 1.08
USD | 6.664 0.078 1.15 40.81 2.19 1.22 204 3.17

separated from the parameters governing the marginal distributions. Therefore, in a
first step we independently calibrate both univariate models for the EUR-SEK and
USD-SEK exchange rates, and in a second step we calibrate the parameters driving
the dependence structure. In doing so, the fixed univariate parameters are not affected
by the second step. Since there is little market data of multi-currency options, this two
step method is very appealing: we can disintegrate one big calibration problem in two
smaller ones. The univariate models are calibrated to volatility surfaces of the EUR-
SEK and USD-SEK exchange rates via minimizing the relative distance of the model
implied option prices to market prices, with equal weight on every option. Option
prices in the univariate two-sided BNS models are obtained via Fourier inversion (cf.
[5, 21]) by means of the characteristic function of the log-prices.

Table 1 gives an overview of the calibration result of the univariate models. To
reduce the number of parameters, we use symmetric two-sided /I"-OU-BNS models as
described in [1]. Furthermore, we assume that the time-change correlation parameters
« T and k ~ coincide; maintaining the symmetric structure. The relative error in model
prices with respect to market prices of the 204 options can be seen as calibration error.
The average relative error in the EUR-SEK-model is about one percent, and in the
USD-SEK-model it is around three percent. Hence, the univariate models fit the FX
market reasonably well. Each univariate calibration requires about 20s.

The calibration of the parameters governing the dependence is done by means
of the third implied exchange rate, namely by the volatility surface of EUR-USD.
Model prices of EUR-USD-options with payout function f at time # can be obtained
by a Monte-Carlo simulation of the following expected value:

EQUSD [f(S,EURUSD) exp (—VUSDI)]

SEURSEK \  GUSDSEK
= Eqsex | f ( SUSDSEK) SUSDSEK exp(—7sex?) (1
t

Here, we used 100,000 simulations to calibrate the dependence parameters. The exe-
cution of the overall optimization procedure takes around four hours. The calibration
error of the dependence parameters in terms of average relative error is roughly nine
percent, which is still a good result giving consideration to the fact that we try to
fit 204 market prices by means of just two parameters in an implicitly specified
model. A more complex model, obtained by relaxing the condition that «* and «~



A Two-Sided BNS Model for Multicurrency FX Markets 105

calibration error

0.4

] 0.6
time-change
dependence 1

Fig. 3 The best matching correlation between the two Brownian motions is 0.52 and the optimal
time-change dependence parameter is k = 0.96. This corresponds to a calibration error of around
nine percent for the 204 options on this currency pair

coincide, leads to even smaller calibration errors. However, we keep the model as
simple as possible to maintain tractability. Figure 3 illustrates the calibration error
of this second step depending on different choices of the dependence parameters.
Eventually, the whole model is fixed.

Now, we are able to price European multi-currency options, for instance a best-
of-two call option with a payoff at time ¢ given by

USDSEK EURSEK
eXr X7

max 4 max — K, 0, max - K, 0 ,

USDSEK EURSEK
SO SO

i.e. we consider the maximum of two call options with strike K > 0 on two exchange
rates. This option can be used as an insurance against a weakening SEK, because one
gets a payoff if the relative performance of one exchange rate, USD-SEK or EUR-
SEK, is greater than K — 1. Pricing is done by a Monte-Carlo simulation that estimates
the expected value in Eq. (1). We used 100,000 scenarios to price this option, which
takes about four minutes. Figure 4 shows option prices of the best-of-two call option
dependent on various choices of the dependence parameters.



106 K.F. Bannor et al.

300 bp -
280 bp |
[0]
Q
o
o 260 bp
9
a
© 240bp
220 bp - : ) 0
0.2
0.2 04 o 0.4
0.6 0.6
time—change 08 1 08 BM correlation
dependence correlatio

Fig. 4 Prices of a best-of-two call option where K = 1.1 and T = 1. One observes that both
dependence parameters play an important role for the price of this option. For the optimal parameter
setting (Brownian motion correlation is 0.52, k = 0.96), the fair price of this option is 261 bp

6 Conclusion and Outlook

We introduced a multi-dimensional FX rate model generalizing the univariate two-
sided BNS model in a way that each FX rate is still modeled as a two-sided BNS
model. Thus, the parameters driving the dependence structure can be separated from
the marginal distributions. This simplifies the calibration of the overall model tremen-
dously, such that the multicurrency model can be calibrated to plain vanilla FX option
prices. As an outlook for further research, we wonder whether there exists a measure
change from the real world measure to the martingale measure we assumed to exist
in the first place.
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Modeling the Price of Natural Gas
with Temperature and QOil Price
as Exogenous Factors

Jan Miiller, Guido Hirsch and Alfred Miiller

Abstract The literature on stochastic models for the spot market of gas is domi-
nated by purely stochastic approaches. In contrast to these models, Stoll and Wiebauer
[14] propose a fundamental model with temperature as an exogenous factor. A model
containing only deterministic, temperature-dependent and purely stochastic compo-
nents, however, still seems not able to capture economic influences on the price. In
order to improve the model of Stoll and Wiebauer [14], we include the oil price as
another exogenous factor. There are at least two fundamental reasons why this should
improve the model. First, the oil price can be considered as a proxy for the general
state of the world economy. Furthermore, pricing formulas in oil price indexed gas
import contracts in Central Europe are covered by the oil price component. Itis shown
that the new model can explain price movements of the last few years much better
than previous models. The inclusion of oil price and temperature in the regression of
a least squares Monte Carlo method leads to more realistic valuation results for gas
storages and swing options.

Keywords Gas spot price - Oil price model - Temperature - Gas storage valuation -
Least squares Monte Carlo - Seasonal time series model

1 Introduction

During the last years trading in natural gas has become more important. The traded
quantities over-the-counter and on energy exchanges have strongly increased and new
products have been developed. For example, swing options increase the flexibility of
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suppliers and they are used as an instrument for risk management purposes. Important
facilities for the security of supply are gas storages.

These are two examples of complex American-style real options that illustrate the
need for reliable pricing methods. Both options rely on nontrivial trading strategies
where exercise decisions are taken under uncertainty. Therefore, analytic pricing
formulas cannot be expected. The identification of an optimal trading strategy under
uncertainty is a typical problem of stochastic dynamic programming, but even then
numerical solutions are difficult to obtain due to the curse of dimensionality. There-
fore, simulation-based approximation algorithms have been successfully applied in
this area. Longstaff and Schwartz [9] introduced the least square Monte Carlo method
for the valuation of American options. Meinshausen and Hambly [10] extended the
idea to Swing options, and Boogert and de Jong [5] applied it to the valuation of
gas storages. Their least squares Monte Carlo algorithm requires a stochastic price
model for daily spot prices generating adequate gas price scenarios. We prefer this
approach to methods using scenario trees or finite differences as it is independent of
the underlying price process.

The financial literature on stochastic gas price models is dominated by purely sto-
chastic approaches. The one- and two-factor models by Schwartz [12] and Schwartz
and Smith [13] are general approaches applicable to many commodities, such as oil
and gas. The various factors represent short- and long-term influences on the price.
An important application of gas price models is the valuation of gas storage facili-
ties. Within this context, Chen and Forsyth [7] and Boogert and de Jong [6] propose
gas price models. Chen and Forsyth [7] analyze regime-switching approaches incor-
porating mean-reverting processes and random walks. The class of factor models is
extended by Boogert and de Jong [6]. The three factors in their model represent short-
and long-term fluctuations as well as the behavior of the winter—summer spread. In
contrast to these models, Stoll and Wiebauer [14] propose a fundamental model
with temperature as an exogenous factor. They use the temperature component as an
approximation of the filling level of gas storages, which have a remarkable influence
on the price.

There is a fundamental difference between the model of Stoll and Wiebauer [14]
and the other models mentioned before as far as their stochastic behavior is concerned.
Incorporating cumulated heating degree days over a winter as an explanatory variable
leads to a seasonal effect in the variance of the prices. In this model the variance of the
gas prices increases over the winter depending on the actual weather conditions and
has a maximum at the end of winter. This is much more in line with the observations
than the behavior of the model of Boogert and de Jong [6] where the variance of the
gas price has aminimum at the end of winter as there is no effect of the winter—summer
spread used there. Another major difference is the use of exogenous variables that
can be observed and thus the optimal exercising decision for American-style options
depends on these variables and therefore also the price of these real options will be
different.

In this paper we extend the model of Stoll and Wiebauer [14] by introducing
another exogenous factor to their model: the oil price. There are at least two reasons
why we believe that this is useful. The main reason is that an oil price component can
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be considered as a proxy for the state of the world economy in the future. In contrast
to other indicators, such as the gross domestic product (GDP), futures prices for oil
are available on a daily basis. Furthermore, the import prices for gas in countries
such as Germany are known to be oil price indexed.

Apart from the GDP or oil price there might be more candidates as an explanatory
variable in the model. The most natural choice would be the forward gas price. We
prefer the oil price as it gives us the chance to valuate gas derivatives that are oil
price indexed, as is often the case for gas swing contracts. For the valuation of such
swing contracts gas price scenarios are needed as well as corresponding oil price
scenarios. This application is hardly possible with explanatory variables other than
the oil price.

The rest of the paper is organized as follows. In Sect.2 we introduce the model
by Stoll and Wiebauer [14] including a short description of their model for the
temperature component. In Sect. 3 we discuss the need for an oil price component in
the model. The choice of the component in our model is explained. Then we fit the
model to data in Sect.4. The new model is used within a least squares Monte Carlo
algorithm for valuation of gas storages and swing options in Sect. 5. The exogenous
factors are included in the regression to approximate the continuation value. We
finish with a short conclusion in Sect. 6.

2 A Review of the Model by Stoll and Wiebauer (2010)

Modeling the price of natural gas in Central Europe requires knowledge about the
structure of supply and demand. On the supply side there are only a few sources in
Central Europe, while most of the natural gas is imported from Norway and Russia.
On the demand side there are mainly three classes of gas consumers: Households,
industrial companies, and gas fired power plants. While households only use gas for
heating purposes at low temperatures, industrial companies use gas as heating and
process gas. Households and industrial companies are responsible for the major part
of the total gas demand.
These two groups of consumers cause seasonalities in the gas price:

e Weekly seasonality: Many industrial companies need less gas on weekends as their
operation is restricted to working days.
e Yearly seasonality: Heating gas is needed mainly in winter at low temperatures.

An adequate gas price model has to incorporate these seasonalities as well as sto-
chastic deviations of these.

Stoll and Wiebauer [14] propose a model meeting these requirements and incor-
porating another major influence factor: the temperature. To a certain extent the
temperature dependency is already covered by the deterministic yearly seasonality.
This component describes the direct influence of temperature: The lower the tem-
perature, the higher the price. But the temperature influence is more complex than
this. A day with average temperature of 0°C at the end of a long cold winter has
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a different impact on the price than a daily average of zero at the end of a “warm”
winter. Similarly, a cold day at the end of a winter has a different impact on the price
than a cold day at the beginning of the winter.

The different impacts are due to gas storages that are essential to cover the demand
in winter. The total demand for gas is higher than the capacities of the gas pipelines
from Norway and Russia. Therefore, gas providers use gas storages. These storages
are filled during summer (at low prices) and emptied in winter months. At the end of
a long and cold winter most gas storages will be rather empty. Therefore, additional
cold days will lead to comparatively higher prices than in a normal winter.

The filling level of all gas storages in the market would be the adequate variable
to model the gas price. However, these data are not available as they are private
information. Therefore, we need a proxy variable for it. As the filling levels of gas
storages are strongly related to the demand for gas which in turn depends on the
temperature, an adequate variable can be derived from the temperature.

Stoll and Wiebauer [14] use normalized cumulated heating degree days to cover
the influence of temperature on the gas price. They define a temperature of 15°C
as the limit of heating. Any temperature below 15°C makes households as well
as companies switch on their heating systems. Heating degree days are measured
by HDD, = max (15 — T;, 0), where T; is the average temperature of day . As
mentioned above the impact on the price depends on the number of cold days observed
so far in the winter. In this context, we refer to winter as 1 October and the 181
following days till end of March. We will write HD Dy ,, for HD Dy, if t is day
number d of winter w. Cumulation of heating degree days over a winter leads to
a number indicating how cold the winter has been so far. Then we can define the
cumulated heating degree days on the day d in winter w as

d
CHDDy,,, = Z HDDy , forl <d < 182. (1)
k=1

The impact of cumulated heating degree days on the price depends on the comparison
with a normal winter. This information is included in normalized cumulated heating
degree days

1 w—1
Adw=CHDDg, — —— > CHDDgforl <d < 182. )
w—1 =

We use A; instead of Ay, for simplicity, if 7 is a day in a winter. The definition
of A, for a summer day is described by a linear return to zero during summer.
This reflects the fact that we use A; as a proxy variable for filling levels of gas
storages. Assuming a constant filling rate during summer we thus get the linear
part of normalized cumulated heating degree days (see Fig. 1). Positive values of A;
describe winters colder than the average. A; is included into the gas price model by
a regression approach. As the seasonal components and the normalized cumulated
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heating degree days are linear with respect to the parameters, we can use ordinary
least squares regression for parameter estimation. The complete model can be written
as

Gi=m+a- A+X9 4y 3)

with the day-ahead price of gas G, the deterministic seasonality m;, the normal-
ized cumulated heating degree days A;, an ARMA process X I(G) , and a geometric
Brownian motion Y, [(G) . For model calibration day-ahead gas prices from TTF market
(Source: ICE) are used. The Dutch gas trading hub TTF offers the highest trading vol-
umes in Central Europe. As corresponding temperature data we choose daily average
temperatures from Eindhoven, Netherlands (Source: Royal Netherlands Meteorolog-
ical Institute). The fit to historical prices before the crisis can be seen in Fig. 2. Outliers
have been removed (see Sect. 4 for details on treatment of outliers).

3 The Oil Price Dependence of Gas Prices

The model described in Eq.(3) is capable to cover all influences on the gas price
related to changes in temperature. But changes in the economic situation are not
covered by that model. This was clearly observable in the economic crisis 2008/2009
(see Fig.5). During that crisis the demand for gas by industrial companies in Central
Europe was falling by more than 10%. As a consequence the gas price rapidly
decreased by more than 10 Euro per MWh.

The oil price showed a similar behavior in that period. Economic changes are
the main drivers for remarkable changes in the oil price level. Short-term price
movements caused by speculators or other effects cause deviations from the price
level that represents the state of the world economy. Therefore, gas price changes
often correspond to long-term changes in the oil price level. Such an influence can be
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Fig.2 m; + o - A; from Eq. (3) (black) fitted to TTF prices from 2004-2009 (grey)
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Fig.3 Ina3-1-3 formula the price is determined by the average price of 3 months (March to May).
This price is valid for July—September. The next day of price fixing is 1 October

modeled by means of a moving average of past oil prices. The averaging procedure
removes short-term price movements if the averaging period is chosen sufficiently
long. The result is a time series containing only the long-term trends of the oil
price. Using such an oil price component in a gas price model explains the gas price
movements due to changes in the economic situation. This consideration is in line
with He et al. [8]. They identify cointegration between crude oil prices and a certain
indicator of global economic activity.

Another important argument for the use of this oil price component is based on
Central European gas markets. Countries such as Germany import gas via long-
term contracts that are oil price indexed. This indexation can be described by three
parameters:

1. The number of averaging months. The gas price is the average of past oil prices
within a certain number of months.

2. The time lag. Possibly, there is a time lag between the months the average is
taken of and the months the price is valid for.

3. The number of validity months. The price is valid for a certain number of months.

An example of a 3-1-3 formula is given in Fig. 3.

The formulas used in the gas import contracts are not known to all market partici-
pants. Theoretically, any choice of three natural numbers is possible. But from other
products, like oil price indexed gas swing options, we know that some formulas are
more popular than others. Examples of common formulas are 3-1-1, 3-1-3, 6-1-1,
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Fig. 4 The oil price (grey), the 6-0-1 formula (black step function) and the moving average of
180days (black)

6-1-3, and 6-3-3. Therefore, we assume that these formulas are relevant for import
contracts as well.

As there are many different import contracts with possibly different price formulas
we cannot be sure that one of the mentioned formulas is responsible for the price
behavior on the market. The mixture of different formulas might affect the price in
the same way as a common formula or a similar one.

Evaluation of the formula leads to price jumps every time the price is fixed. The
impact on the gas price will be smoother, however. The new gas price determined
on a fixing day is the result of averaging a number of past oil prices. The closer
to the fixing day the more prices for the averaging are known. Therefore, market
participants have reliable estimations of the new import price. If the new price would
be higher it would be cheaper to buy gas in advance and store it. This increases the
day-ahead price prior to the fixing day and leads to a smooth transition from the old
to the new price level on the day-ahead market.

This behavior of market participants leads to some smoothness of the price. In
order to include this fact in a model a smoothed price formula can be used. A sophis-
ticated smoothing approach for forward price curves is introduced by Benth et al.
[3]. They assume some smoothness conditions in the knots between different price
intervals. It is shown that splines of order four meet all these requirements and make
sure that the result is a smooth curve. As our price formulas are step functions like
forward price curves, this approach is applicable to our situation.

If the number of validity months is equal to one it is possible to use a moving
average instead of a (smoothed) step function to simplify matters (see Fig.4). This
alternative is much less complex than the approach with smoothing by splines, and
delivers comparable results. Therefore, the simpler method is applied in case of
formulas with one validity month.
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In the next section we compare various formulas regarding their ability to explain
the price behavior on the gas market.

4 Model Calibration with Temperature and Qil Price

We now compare different formulas of oil prices in the regression model in order to
find the one explaining the gas price best (see Fig.5).

For the choice of the best formula we use the coefficient of determination R>
as the measure of goodness-of-fit. We choose the reasonable formula leading to the
highest value of RZ. Reasonable, in this context, means that we restrict our analysis
to formulas that are equal or similar to the ones known from other oil price indexed
products (compare Sect.3). The result of this comparison is a 6-0-1 formula (see
Fig. 6). Although this is not a common formula there is an explanation for it: The gas
price decreased approximately six months later than the oil price in the crisis. This
major price movement needs to be covered by the oil price component. As explained
above we replace the step function by a moving average. Taking the moving average
of 180days is a good approximation of the 6-0-1 formula. All in all, the oil price
component increases the R? as our measure of goodness-of-fit from 0.35 to 0.83
(see Fig.5). Even if the new model is applied to data before the crisis the oil price
component is significant. In that period the increase of R? is smaller but still improves
the model.

These comparisons give evidence that both considerations in the previous section
are valid. The included oil price component can be seen as the smoothed version
of a certain formula. At the same time it can be considered as a variable describing
economic influences indicated by the trends and level of the oil price.

Therefore, we model the gas price by the new model

G; =ml—|—a1Al+a2lI/,+Xt(G) 4)
with ¥; being the oil price component. This means that the unobservable factor Yt(G)
in Stoll and Wiebauer [14] is replaced by the observable factor ¥;.

Parameter estimation of our model is based on the same data sources as the model
by Stoll and Wiebauer [14]. However, we extend the period to 2011. Additionally, we
need historical data for the estimation of the oil price component. Therefore, we use
prices of the front month contracts of Brent crude oil traded on the Intercontinental
Exchange (ICE) from 2002-2011. Using these data we can estimate all parameters
applying ordinary least squares regression after removing outliers from the gas price
data, G,.

Outliers can be due to technical problems or a fire at a major gas storage. We
exclude the prices on these occasions by an outlier treatment proposed by Weron [15],
where values outside a range around a running median are declared to be outliers.
The range is defined as three times the standard deviation. The identified outliers
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Fig. 5 The model of Stoll and Wiebauer [14] (bold black) and our model (thin black line) fitted to
historical gas prices (grey)
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Fig. 6 Comparison of different oil price components in the model: 6-0-1 formula (bold black),
6-1-1 formula (grey) and 3-0-1 formula (thin black) fitted to the historical prices (dark grey)

are excluded in the regression. We do not remove them from our model, however, as
they are still included in the estimation of the parameters of the remaining stochastic
process.

Altogether, these model components give fundamental explanations for the his-
torical day-ahead price behavior. Short-term deviations are included by a stochastic
process (see Sect.4.3). Long-term uncertainty due to the uncertain development of
the oil price is included by the oil price process. Therefore, our model is able to
generate reasonable scenarios for the future (see Fig.7). We specify the stochastic
models for the exogenous factors ¥; and A, as well as the stochastic process X Z(G)
in the following.
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Fig. 7 The historical gas price (2008-2012) and its extensions by two realizations of the gas price
process for 2012-2013

4.1 Oil Price Model

Oil prices show a different behavior than gas prices, which influences the choice
of an adequate model. The most obvious fact is the absence of any seasonalities or
deterministic components. Therefore, we model the oil price without a deterministic
function or fundamental component. Another major difference affects the stochastic
process. While the oil price and also logarithmic oil prices are not stationary the gas
price is stationary after removal of seasonalities and fundamental components.

A very common model for nonstationary time series is the Brownian motion
with drift applied to logarithmic prices. Drift and volatility of this process can be
determined using historical data or by any estimation of the future volatility. For a sta-
tionary process, the use of an Ornstein-Uhlenbeck process or its discrete equivalent,
an AR(1) process, is an appropriate simple model.

A combination of these two simple modeling approaches is given by the two-
factor model by Schwartz and Smith [13]. They divide the log price into two factors:
one for short-term variations and one for long-term dynamics.

P =exp (xr +&) )

with an AR(1) process x; (short-term variations) and a Brownian motion &, (long-

term dynamics). These processes are correlated. We apply this two-factor model as it

considers long- and short-term variations. The estimation of parameters in this model

is more complex. The factors are not observable on the market. Following the paper

by Schwartz and Smith [13] we apply the Kalman filter for parameter estimation.
The resulting process (v;) is used to derive the process (¥;) in Eq. (4).



Modeling the Price of Natural Gas with Temperature ... 119

30

Temperature in °C

0.5

ACF
PACF

0 20 40 (] 10 20
Lags in days Lags in days
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(right) of residual time series (black) and innovations of AR(3) process (grey)

4.2 Temperature Model

When modeling daily average temperature we can make use of a long history of
temperature data. Here, a yearly seasonality and a linear trend can be identified.
Therefore, we use a temperature model closely related to the one proposed by Benth
and Benth [2].

T, = ay + axt +azsin ot ) + 2 ) 4 x® ©)
=a a az Sin ayg COS
P AT A Ta 365.25 4 365.25 !

with X Z(T) being an AR(3) process. The model fit with respect to the deterministic
part (ordinary least squares regression) and the AR(3) process is shown in Fig. 8. The
process (7;) (see Fig.9) is then used to define the derived process (A;) of normalized
cumulated heating degree days as described in Sect. 2.

4.3 The Residual Stochastic Process

The fit of normalized cumulated heating degree days, oil price component, and deter-
ministic components to the gas price via ordinary least squares regression (see Fig. 10)
results in a residual time series. These residuals contain all unexplained, “random”
deviations from the usual price behavior.
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Fig. 10 Fit of deterministic function and exogenous components (black) to the historical gas price
(grey)

The residuals exhibit a strong autocorrelation to the first lag. Further analysis
of the partial autocorrelation function reveal an ARMA(1,2) process providing a
good fit (see Fig. 11). The empirical innovations of the process show heavier tails
than a normal distribution (compare Stoll and Wiebauer [14]). Therefore, we apply
a distribution with heavy tails. The class of generalized hyperbolic distributions
including the NIG distribution was introduced by Barndorff-Nielsen [1]. The normal-
inverse Gaussian (NIG) distribution leads to a remarkably good fit (see Fig. 11).

Both the distribution of the innovations and the parameters of autoregressive
processes are estimated using maximum likelihood estimation.
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5 Option Valuation by Least Squares Monte Carlo Including
Exogenous Components

An optimal exercise of flexibility like gas storages as well as swing options is a
decision under uncertainty. While the price for the next day is known, the future
development of the spot prices is uncertain. Nevertheless, gas withdrawn today cannot
be withdrawn on a day in the future at a possibly higher price level. The identification
of an optimal trading strategy under this uncertainty is a typical problem of stochastic
dynamic programming, and simulation-based approximation algorithms have been
successfully applied in this area. Longstaff and Schwartz [9] introduced the least
squares Monte Carlo method for the valuation of American options, Meinshausen
and Hambly [10] extended the idea to swing options and Boogert and de Jong [5]
applied it to the valuation of gas storages. Furthermore, Boogert and de Jong [6] found
that the different components of the gas price process should be included into the
regression of the least squares Monte Carlo method for the valuation of gas storages
as this increases the value. While they included components that are not observable
but virtual components of their price process, the price process introduced in Sect. 4
of this paper includes two exogenous and at the same time observable components.
The normalized cumulated heating degree days as well as the 180 days average of the
oil price can directly be observed and easily included into the exercise decision of the
option that has to be done on a daily basis by a trader. The least squares Monte Carlo
method including further factors is described in Sect. 5.1 and valuation examples are
given in Sect.5.2.
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5.1 Extensions of Least Squares Monte Carlo Algorithm
Including Exogenous Components

A gas storage is characterized by the following restrictions:

e The filling level must lie between given minimum and maximum volumes at any
times 0 <7 < T + L: Umin(r) < v(t) < Vmax (1)

e For each day volume changes are limited by withdrawal and injection rate:
Avmin(?, v(1)) < Av < Avmax (2, v(1))

From a mathematical point of view a swing option is a special case of a gas storage.
During the delivery period a daily nomination of the gas delivery for the next day is
done, while the following restrictions apply:

e Daily contract quantity (DCQ): minimum as well as maximum daily volume;
typical values are DCQmin 50-90 % and DCQmax 100-110 % of a given DCQ
reference (where DCQ = ACQ/365)

e Annual contract quantity (ACQ): minimum as well as maximum yearly volume;
typical values are ACQmin 80-90 % and ACQmax 100-110% of a given ACQ
reference

Due to these restrictions, a swing option is the same as a storage with an initial
volume equal to the ACQmax of the swing
Umin(0) = Umax (0) = ACQmax (7
and the following restriction for the final volume
0=vmin(T+ 1 =v(T +1) < vmax(T + 1) = ACQmin. ®)
where only withdrawal is possible

—DCQmax = Avpin(t, v(1)) < Av < Avpax(t, v(t)) = —DCQmin. 9

We assume that the storage is available from time ¢ = O till time r = T + | and
the holder is allowed to take an action at any discrete date t = 1, ..., T after the spot
price S(¢) is known. Let v(¢) denote the volume in storage at the start of day ¢ and
Av the volume change during day ¢. In case of an injection Av > 0, while Av < 0
means withdrawal from the storage. The payoff on day 7 is

(=G —cwp,r) - Av, Av >0

. (10)
(=G, —ciNyg) - Av, Av <0

h(G;, Av) = [

Here cw p,; denotes the withdrawal costs and ¢ ; the injection costs on day ¢, which
can be different and may include a bid-ask spread.
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Let U(t, G¢, v(t)) be the value of the flexibility starting at volume level v(t)
at time t. By C(¢, Gy, v(t), Av) we denote the continuation value after taking an
allowed action Av from D(¢, v(t)) (the set of all admissible actions at time ¢ if the
filling level is v(z)). If () is the interest rate at time ¢ then

C(t, Gy, v(1), Av) = E [e—’<'+1>U(t 1, G, 0(0) + Av)] .

The continuation value only depends on v(f + 1) := v(¢) + Av. Therefore, we will
from now on also write C(¢, G, v(t + 1)) for short. With this notation the flexibility
value U (¢, Gy, v(t)) satisfies the following dynamic program:

UT+1L,Gry1,v(T + 1) = q(Gr41, v(T + 1)) (12)
U(t,Grv@) = max  [a(Gy, Av) + C(1, Gy, v(2), Av)]
AveD(t,v(t))

for all times 7. In the first equation ¢ is a possible penalty depending on the volume
level at time 7 + 1 and the spot price at this time G741.

As the continuation value cannot be determined analytically, we use the least
squares Monte Carlo method to approximate the continuation value

C(t,Gro(t+ 1)~ D Bt + 1) - ¢1(Gy) 13)

=0

using basis functions ¢;. If N price scenarios are given, estimates Blﬁt(v(t + 1))
for the coefficients 5;;(v(t + 1)) result by regression. With these coefficients an
approximation é’(t, G;, v(t + 1)) of the continuation value is obtained that is used
to determine an approximately optimal action Av(¢) for all volumes v(¢).

Moreno and Navas [11] have shown that the concrete choice of the basis functions
does not have much influence on the results. For this reason we have chosen the easy
to handle polynomial basis functions ¢;(G;) = Gﬁ. Calculations have shown that
m = 3 is enough to get good results. A higher number of basis functions leads to
similar results.

Boogert and de Jong [6] use a multi-factor price process and include the factors
of the price process into the basis used for the regression in the least squares Monte
Carlo method. While their factors are unobservable, our price process (see Eq.(4))
includes two exogenous factors, which can easily be observed. We include the oil
price component ¥; (see Sect.3) and the temperature component A; (see Sect.2)
into the regression by using
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m
C(t. G A, Wy, v(t), Av) ~ D By ¢1(Gy)
=0

+ B, ¥ + ﬁm+2,t‘pt2 + B3, ¥ - Gy
+ ﬁm+4,tAt + ﬁm+5,tAz . Gt~ (14)

For simplification of notation we omit to mention the explicit dependence of the
parameters on the filling level v(¢+-1) asis done in Boogert and de Jong [6] throughout
the paper. Monomials of higher degree in the oil price or temperature components as
well as higher mixed terms have also been examined, but do not yield better results.

5.2 Influence of Exogenous Components on Valuation Results

Gas storages and swing options are not only virtual products but are real options. This
means that traders need to take exercise decisions on a daily basis. These decisions
depend on all observable market information. In order to reflect this behavior in the
pricing algorithm for such options we will use the least squares Monte Carlo method
described above in combination with the spot price model in Sect.4. The examples
given in this section are artificial gas storages and swing options valuated at two
different dates, 4 July 2012 and 2 April 2013. These dates are characterized by a
very different implicit volatility observed at the markets—for example for TTF the
long-term volatility has significantly decreased in the 8-month period from 25to 12 %
(Source: ICE). At the same time the summer—winter spread between winter 13/14
and summer 13 has decreased from 2.40 EUR/MWh to 1.20 EUR/MWh, whereas
the price level has increased from 26.15 EUR/MWh to 27.70 EUR/MWh.

The TTF market prices have been used for the valuation of a slow and a fast
storage that are identical to the ones valued by Boogert and de Jong [6]. Moreover,
we have also valued a flexible and an inflexible swing contract. The parameters for
these storages and swings are given in Table 1. All valuations have been done using
5,000 price scenarios, which results in sufficiently convergent results.

We denote by daily intrinsic the value obtained if a daily price forward curve is
taken and an optimal exercise is calculated (using a deterministic dynamic program).
This value could be logged in immediately if each single future day could be traded
as an individual forward contract. The fair value denotes the value resulting from the
least squares Monte Carlo method, and the extrinsic value is the difference between
fair value and daily intrinsic value. Therefore, the extrinsic value is a measure for
the value of the flexibility included in the considered real option.

As can clearly be seen by comparing Tables 2 and 3 the decrease of the summer—
winter spread results in a lower daily intrinsic value for the storages. In contrast to
this behavior the intrinsic value of the flexible swing increases because of the higher
price level in 2013 compared to 2012. Furthermore, the decrease of volatility does
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Table 1 Parameters for gas storages and swing options from 1.4.2013-1.4.2014

Parameter Slow storage Fast storage Inflexible swing Flexible swing
Min volume 0MWh 0MWh 0MWh 0MWh

Max volume 100MWh 100MWh 438MWh 438MWh
Min injection 0MWh/day 0MWh/day - -

Max injection 1 MWh/day 2MWh/day - -

Min withdrawal 0MWh/day 0MWh/day 0.6 MWh/day 0MWh/day
Max withdrawal 1 MWh/day 5SMWh/day 1.2MWh/day 1.2MWh/day
Injection costs 0EUR/MWh 0EUR/MWh - -

Withdrawal costs 0EUR/MWh 0EUR/MWh 27EUR/MWh 27EUR/MWh
Start volume 0MWh 0MWh 438 MWh 438MWh
Max end volume 0MWh 0MWh 146 MWh 146 MWh

Table 2 Results for valuation date 4 July 2012 (5,000 scenarios)

Contract Factors in regression Daily intrinsic Fair value Extrinsic value
Slow storage Spot 360.8 3824 21.6
Spot & Brent 360.8 549.5 188.7
Spot & Brent & HDD 360.8 571.2 210.4
Fast storage Spot 517.1 561.8 44.7
Spot & Brent 517.1 1,006.6 489.5
Spot & Brent & HDD 517.1 1,090.1 572.9
Inflexible swing Spot —126.2 274.5 400.7
Spot & Brent —126.2 285.4 411.6
Spot & Brent & HDD —126.2 286.3 4124
Flexible swing Spot —41.6 356.5 398.1
Spot &Brent —41.6 397.2 438.8
Spot &Brent &HDD —41.6 959.6 1,001.2

not change the extrinsic value of the two storages—very much in contrast to the
swings.

For storages these findings correspond very well to the observations by Boogert
and de Jong [6]. They also found that a change of volatility in the long-term compo-
nent does not influence the value of gas storages—it may even decrease the value.
An explanation for this behavior is that it becomes more difficult for traders to decide
correctly if today’s price is high or low and therefore withdrawal, injection, or no
action makes most sense. Due to the decision under uncertainty about the future price
development with an increased volatility, more and more wrong decisions are taken
and this may decrease the value at least in case of fast storages.

The situation is completely different for swing options. With an increasing volatil-
ity their value also increases. This is not surprising as can easily be seen from looking
at a special case. If the yearly restriction is not binding the swing is equivalent to a
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Table 3 Results for valuation date 2, April 2013 (5,000 scenarios)

Contract Factors in regression Daily intrinsic Fair value Extrinsic value
Slow storage Spot 227.3 309.5 82.2
Spot & Brent 227.3 419.1 191.8
Spot & Brent & HDD 227.3 411.7 184.4
Fast storage Spot 353.5 593.4 240.0
Spot & Brent 3535 855.0 501.6
Spot & Brent & HDD 3535 877.0 523.5
Inflexible swing Spot 310.0 485.2 175.2
Spot & Brent 310.0 488.0 177.9
Spot & Brent & HDD 310.0 471.9 161.9
Flexible swing Spot 324.1 542.1 218.0
Spot & Brent 324.1 558.5 234.4
Spot & Brent & HDD 324.1 572.2 248.1

strip of European options. In this case it is well known that an increase of volatility
implies an increase of the extrinsic option value under quite general assumptions on
the underlying stochastic process, see e.g. Bergenthum and Riischendorf [4].

Another important difference between swings and storages is their behavior if
the exogenous components of the spot price process are included in the regression
of the algorithm. For the value of storages the oil price component is much more
important—in contrast to swings. For the inflexible swing both components are
irrelevant, while for the flexible swing the temperature component is more important
than the oil price component. For storages the oil price component is a measure for
normal long-term levels. As prices revert back to this long-term level mainly defined
by the oil price component, a price higher than this level is good for withdrawal
while a price lower than this level is good for injection. Therefore, an inclusion in
the regression is very important for the exercise decision and increases the value.

Another interesting observation is the influence of the two exogenous components
on the less flexible products. While an inclusion of the oil price component increases
the fair value, a further inclusion of the temperature component decreases the value
slightly for valuation date 2 April 2013—but not for 4 July 2012. One important
reason is that in April 2013 the end of a long and as far as heating degrees are
concerned quite normal winter has just been exceeded and the linear return to zero is
starting, while the winter 2011/12 has been very warm and in July the linear return
with a slight gradient has half been finished.

To sum up, these results indicate that it is very important to include both exogenous
components into the exercise decision for storages as well as swings, as this can
significantly increase the extrinsic value.
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6 Conclusion

The spot price model by Stoll and Wiebauer [14] with only temperature as an exoge-
nous factor is not able to explain the gas price behavior during the last years. We
have shown that adding an oil price component as another exogenous factor remark-
ably improves the model fit. It is not only a good proxy for economic influences on
the price but also approximates the oil price indexation in gas import contracts on
Central European gas markets. These fundamental reasons and the improvement of
model fit give justification for the inclusion of the model component. The resulting
simulation paths from the model are reliable. The inclusion of both exogenous factors
in algorithms for the valuation of options by least squares Monte Carlo remarkably
affects the valuation results.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Copula-Specific Credit Portfolio Modeling

How the Sector Copula Affects the Tail of the Portfolio
Loss Distribution

Matthias Fischer and Kevin Jakob

Abstract Traditionally, banks estimate their economic capital which has to be
reserved for unexpected credit losses with individual credit portfolio models. Many
of those have its roots in the CreditRisk™ or in the CreditMetrics framework, which
were both launched in 1997. Motivated by the current regulatory requirements, banks
are required to analyze how sensitive their models (and the resulting risk figures) are
with respect to the underlying assumptions. Within this context, we concentrate
on the dependence structure in terms of copulas in both frameworks. By replacing
the underlying copula and using other popular competitors instead, we quantify the
effect on the tail, in general, and on the risk figures in specific for a hypothetical loan
portfolio.

1 Introduction

After the market crash of October 1987, Value-at-Risk (VaR) became a popular
management tool in financial firms. Practitioners and policy makers have invested
individually in implementing and exploring a variety of new models. However, as a
consequence of the financial markets turmoil around 2007/2008, the concept of VaR
was exposed to fierce debates. But just a few years after the crisis, VaR is still being
used albeit with greater awareness of its limitations (model risk) or in combination
with scenario analysis or stress testing. In particular, banks are required to critically
analyze and validate their employed VaR models which form the basis for their
internal capital allocation process (ICAAP, see BaFin [1, AT.4.1]). In this context,
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the term “model validation” should be associated to the activity of assessing if the
assumptions of the model are valid. Model assumptions, not computational errors,
were the focus of the most common criticisms of quantitative models in the crisis. In
particular, banks should be aware of the errors that can be made in the assumptions
underlying their models which form one of the crucial parts of model risk, probably
underestimated in the past practice of model risk management. With respect to the
current regulatory requirements (see, e.g., BaFin [1] or Board of Governors of the
Federal Reserve System [2]), banks are also required to quantify how sensitive their
models and the resulting risk figures are if fundamental assumptions are modified.

The focus of this contribution is solely on credit risk as one of the most important
risk types in the classical banking industry. Typically, the amount of economic capital
which has to be reserved for credit risk is determined with a credit portfolio model.
Two of the most widespread models are CreditMetrics, launched by JP Morgan
(see Gupton et al. [3]) and CreditRisk™, an actuarial approach proposed by Credit
Suisse Financial Products (CSFP, see Wilde [4]). Shortly after their publication,
Koylouglu and Hickman [5], Crouhy [6] or Gordy [7] offered a comparative anatomy
of both models and described quite precisely where the models differ in functional
form, distributional assumptions, and reliance on approximation formulae. Sector
dependence, however, was not in the focus of these studies.

A crucial issue with credit portfolio models consists in the realistic modeling
of dependencies between counterparties. Typically, all counterparties are assigned
to one or more (industry/country) sectors. Consequently, high-dimensional counter-
party dependence can be reduced to low(er)-dimensional sector dependence, which
describes the way how sector variables are coupled together. Against this background,
our focus is on the impact of different dependence structures represented in terms of
copulas within credit portfolio models. Relating to Jakob and Fischer [8], we extend
the analysis of the CreditRisk™ model to CreditMetrics and provide comparisons
between both frameworks. For this purpose, we work out the implicit and explicit
sector copula of both classes in a first step and quantify the effect of exchanging the
copula model on the risk figures for a hypothetical loan portfolio and a variety of
recent flexible parametric copulas in a second step.

Therefore, the outline is as follows. In Sect. 2, we review the classical copula con-
cept and briefly introduce those copulas which are used during the analysis. Section 3
summarizes and compares the underlying credit portfolio models with special empha-
sis on the underlying sector dependence. Finally, we empirically demonstrate the
influence of different copula models on the upper tail of the loss distribution and,
hence, on the risk figures for a hypothetical but realistic loan portfolio. Section5
concludes.
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2 Copulas Under Consideration

The concept of copulas dates back to Sklar [9]. In general, a copula is a
multivariate distribution function on the d-dimensional unit hypercube with uniform
one-dimensional margins.! With the help of a copula function, one can decompose
an arbitrary multivariate distribution into its margins and the dependence structure.
i.e., according to Sklar’s Theorem, for any multivariate distribution function F on
R4 with univariate margins F; a unique function C : xf: Im(F;) — [0, 1] exists,
such that F (x) = C (Fi(x1), ..., Fg(xg)) for all x € R?. Conversely, for arbi-
trary univariate distribution functions F; and a copula C, the function F defines a
valid multivariate distribution function. Because our focus is solely on the depen-
dence structure between economic sectors, we will use Sklar’s theorem in the second
direction. By exchanging the copula, we can construct new multivariate distributions
without affecting the margins.

Already at the beginning of this century, Li [12] incorporated the concept of
copulas into the CreditMetrics model. Ebmeyer et al. [13] used a Gaussian and a
t-copula within the CreditRisk™ framework to model sector dependencies. Our aim
is to extend these studies to a broader range of copulas and to establish a comparison
between both portfolio models regarding the sensitivity of the risk figures with respect
to the sector dependence. In addition to the original dependence structures, i.e., the
Gaussian copula (CreditMetrics) and a specific factor copula (CreditRisk ™), we apply
the following parametric competitors:

e elliptical copulas, i.c., the Gaussian copula (GC) and the t-copula (TC) (see,
McNeil et al. [14]),

e generalized hyperbolic copulas (GHC), implicitly defined by the family of gen-
eralized hyperbolic distributions (see Barndorff-Nielsen [15]),

e Archimedean (AC), for example the Gumbel, Clayton, Joe or Frank copula and
hierarchical Archimedean copulas (HAC) (see Savu and Trede [16], McNeil
[17] or Hofert and Scherer [18]),

e pair copula constructions (PCC) (see Aas et al. [19]).

To estimate the unknown parameters, e.g., the dispersion matrix in case of the GC,
we use the maximum likelihood (ML) approach. Other techniques, e.g., inverting
Kendall’s 7 may be also possible. In case of the HAC and PCC, one also has to
choose a suitable nesting or vine structure, 2 respectively. For this purpose, we applied
the methods implemented in the R-packages “HAC” by Okhrin and Ristig [20] and
“VineCopula” by Schepsmeier et al. [21], respectively. Further information about
the estimation are given in Sect.4.3. In addition, for more details about the model
selection process we also refer to the mentioned articles.

! In general, we assume that the reader is already familiar with the concept of copulas as well as
the most popular classes. For details, we refer to Joe [10] and Nelson [11].

2 A vine is a directed acyclic graph, representing the decomposition sequence of a multivariate
density function.



132 M. Fischer and K. Jakob

3 A Comparison Between CreditRisk* and CreditMetrics

Within this section, we shortly introduce both CreditMetrics and CreditRisk™ in a
comparative way to highlight the differences.

3.1 Preliminary Notes and General Remarks

CreditMetrics was developed by a group of investment banks, led by J.P. Morgan
(see Gupton et al. [3]). It follows a mark to market approach and includes default
risk as well as migration risk.? In order to ensure comparability across both models,
we solely focus on the default risk. Nevertheless, in practice, migration risk is also
very important and should not be neglected. CreditMetrics belongs to the class of
threshold models (see McNeil et al. [14]). Here, the creditworthiness of each obligor
is governed by a latent variable, which is driven by the state of the overall economy
or a special sector/region as well as by an idiosyncratic factor. A default occurs if a
predefined threshold, determined by the obligors’ initial probability of default (PD),
is exceeded.

In contrast, CreditRisk™ belongs to the class of actuarial models. It was developed
by the Financial Products division of Credit Suisse (see Wilde [4]). The default
distribution of each counterparty is influenced by one or several factors. As in case
of CreditMetrics, these factors depend on the current state of the economy as well
as on idiosyncratic components. Given these values, defaults are assumed to be
independent of each other.

A major difference between both models is the way how the portfolio loss distrib-
ution is achieved. Whereas in the CreditMetrics framework a Monte Carlo simulation
is required to estimate the later, the same can be calculated analytically within the
CreditRisk* framework. A numerically stable algorithm is described in Gundlach
and Lehrbass [22, Chap. 5].

3.2 Theoretical Background

3.2.1 Model Input

We assume that for each counterparty i = 1, ..., N the exposure at default (EAD;),
the loss given default (LGD;) and the (unconditional) probability of default (PD;)
are known and not stochastic. We also assume that all business transactions of the
obligors have been aggregated to a single position for each counterparty. To derive the
loss distribution analytically, CreditRisk™ requires the exposures to be discretized
with respect to a so-called loss unit U > 0. The original values for EAD; and PD;

3 Migration risk includes the financial risk due to a change of the portfolio value caused by rating
migrations (i.e., down- and upgrade).
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are replaced by

—— EAD; - LGD; — EAD; - LGD; - PD;
EAD; .= max{| ——— |, 1 and PD; := —
U EAD; - U

respectively. The adjustment of the PDs ensures that the expected loss of the portfolio
is not affected by the discretizastion. i.e., it holds:

N N
E(L) = ZEAD,- -LGD; - PD; = ZEAT),- U - PD; =]E(Z)-
i=1 i=1

To simplify notation, we will omit the tilde for the discretized exposure and the PD
in the following and denote them also with EAD; and PD;, respectively. Since the
CreditMetrics model is a simulative one, such an adjustment is not necessary.

3.2.2 Sector Variables and Sector Dependencies

In order to introduce dependencies between counterparties, every obligor is mapped
to one or several out of K sectors. Since the interpretations and assumptions behind
the sectors variables and the corresponding counterparty specific sector weights are
different, we will use an individual notation for each model. In CreditMetrics, the
vector of sector variables X = (Xq,..., X K)T is assumed to follow a multivariate
normal distribution. Therefore, each sector variable X—1,  x has a standard normal
law and the copulaof X = (X1, ..., X K)T is a Gaussia one with dispersion matrix X

Within CreditRisk™, the sector variables S are assumed to follow a Gamma law
with specific shape and scale parameters, such that E (Sy) = 1 forallk =1, ..., K.
The choice of the Gamma distribution was motivated by the fact that in combination
with Poisson distributed defaults, the loss distribution can be derived analytically.
In order to specify the sector distributions, the sector variances akz can be estimated
from empirical data, for example, insolvency rates. In the original model of 1997, the
variables Sy are also assumed to be independent of each other. In contrast, we apply
the so-called CBV approach, which is an extension, published by Fischer and Dietz
[23], with respect to correlated sectors. Here, each single sector variable is driven by
a linear combination of L + 1 independent Gamma distributed variates, i.e.,

L
Sk=St+ > vude. fork=1... K (1)
=1
with non-negative weights yx o fork = 1,..., K and £ = 1, ..., L. The vector

A

~ ~\T ~ ~
S = (Sl, el SL) ,with S ~ I” (0913, 1), is called common-background-vector
(CBV). Besi_des this vector, each sector variable is a_lso affegted by an individual
component S; ~ I (6k, 8r). Because all variables S; and S, are assumed to be
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independent of each other, one can reduce the CBV extension to the basic CreditRisk™
model. Hence, also the CBV model can be solved analytically, too. For further details
on the estimation of the Gamma parameters, we refer to Fischer and Dietz [23].

In Eq. (1), the marginal distributions of § = (S, ..., Sk)T are (in general) not
Gamma anymore. An analysis of the resulting univariate distribution was established
by Moschopoulos [24]. The copula of S is called a multi factor copula, which is
discussed by Oh and Patton [25] in a very general way or Mai and Scherer [26].

3.2.3 Default Mechanism

In the CreditMetrics setting, a default occurs if obligor i ’s creditworthiness,* modeled

by
Ai=R!'X+,/1-RI'ZR;Y;, 2

falls below ¢! (PD;), where ¢! denotes the quantile function of the standard
normal distribution and ¥; ~ N/ (0, 1) is independent from X and Y; fori # j. The
vector Rl.T € [—1, 11X, with the restriction that Rl.TE R; < 1, contains the so-called
factor loadings, describing the correlation between a counterparty’s asset value A;
and the systemic factors X. Given a sector realization x of X, the conditional PD,
derived from the asset process (2) reads as

PDM(X = x) =¢[(¢—‘ (PD,-)—Rl.Tx) /,/1 —RiTERI-:|. 3)

In the CreditRisk™ model, the sector variables Sj are assumed to influence the con-
ditional PD according to

PDR* (§ = 5) = PD; (Wl-T s+ W,-,o) @)

with W; € [0, 11X and Wio = Zle Wi < 1. Equations (3) and (4) establish a
connection between sector variables and counterparties PDs. In CreditRisk ™, PDl.CR+
serves as intensity parameter of a Poisson distribution from which defaults are drawn
independently for every counterparty. The Poisson distribution is used instead of a
Bernoulli one in order to obtain a closed form expression of the loss distribution.
Therefore, also multiple defaults of counterparties (especially with bad creditworthi-
ness) are possible. This is a major drawback of the model, leading to an overestimation
of the risk figures. In Sect.4 we analyze the changes of risk figures with respect to
the underlying copula. But since our focus is on relative changes, this overestimation
does not influence the comparison.

4 One should note, that A; again has a standard Gaussian law. The dependence structure is described
by a multi factor copula as in case of the CreditRisk™- CBV model, but with a different parame-
trization.
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4 Results on Estimated Copulas and Risk Figures

In this section the estimation results for the sector copulas are presented as well as
the effect on economic capital.

4.1 Portfolio and Model Calibration

Consider a hypothetical portfolio consisting of 5,000 counterparties, each mapped
to exactly one® out of ten industrial sectors. For reasons of simplicity, LGDs® are
assumed to be deterministic and independent from PD. Since the absolute expo-
sure values are chosen arbitrarily, we can assume that w.l.o.g LGD; = 1 for all
i =1,...,5,000. Because our focus is only on the relative changes of the risk figures
rather than absolute values, this simplification does not restrict our results. Table 1
summarizes the number of counterparties (#CP) and exposures by industrial sectors,
as well as the estimated sector parameters related to the marginal sector distribu-
tions. Although the portfolio itself is hypothetical, the distribution of exposure and
counterparties across sectors might be characteristic for certain banks. Please note,
that in case of CreditMetrics higher values of R,f indicate a stronger dependency to
systemic factors, leading to a higher risk for the specific sectors. In the CBV model

Table 1 Number of counterparties, percentage of exposures, factor loadings (R,f CreditMetrics)
and sector variances (akz, CreditRisk*) by industrial sector

Sector Portfolio characteristics Sector parameters
#CP EAD (%) R? of
1 Basic materials 16 1.7 0.070 0.42
2 Communication 5 2.5 0.045 0.29
3 Cyclical consumer goods 4,631 19.5 0.058 0.36
4 Noncyclical consumer goods 15 1.5 0.048 0.27
5 Diversified companies 28 3 0.040 0.19
6 Energy 10 4.3 0.075 0.40
7 Finance 146 459 0.050 0.46
8 Industry 75 11.1 0.050 0.30
9 Technology 19 1.8 0.046 0.26
10 Utilities 55 8.7 0.082 0.72

5 Assigning an obligor to more than one sector would cause serious problems in the CreditMetrics
framework, since, in general, the distribution of the asset value (2) is unknown if the copula of X
is not Gaussian.

6 For readers who are interested in the effect of stochastic LGDs, we refer to Gundlach and Lehrbass
[22, Sect. 7] or Altman [27].
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a,? represent the uncertainty about possible PD changes within the sector. Therefore,
the risk related to a particular sector increases with akz.

The basis for the parameter estimation is a data pool containing monthly obser-
vations (PD estimations) from 2003 to 2012 for more than 30,000 exchange traded
corporates from all over the world. The individual PD time series, derived from mar-
ket data (equity prices and liabilities) via a Merton model (see Merton [28]), are
aggregated on sector level via averaging. In order to take time dependencies into
account, we fitted a univariate autoregressive process to every sector time series.

4.2 Parametrization of Marginal Distributions

In order to fully determine the marginal distributions, we have to specify the sector
variances akz for the CreditRisk™ and the asset correlations R,% for the CreditMetrics
model.” The sector variances are estimated based on the autocovariance function of
the aggregated sector time series mentioned above, which are normalized such that
E(Sx) = 1 holds, in order to ensure that the mean of the conditional PD (Eq. (4))
equals the unconditional PD. In case of the CreditMetrics model, the asset correlation
parameters R,% are estimated via a moment matching approach, such that the first
two moments of the conditional PD in both models coincide.® Note, that the PD
variance Var (PDl.CM(X )) induced by Eq. (3) of counterparty i in sector k is given by
@, (¢! (PD;), ¢~ (PD;), R?) whereas, in case of CreditRisk™,Var (PDSR* (8))
is simply PD%akz. Hence, fork =1, ..., K the parameter R,% is chosen such that

@, (¢~ (PDy) ¢ (PDy) . RY) = o7PD,
where PD;, denotes the mean of the time series for sector k and @ is the distribution
function of the bivariate normal distribution with correlation parameter R,%.
4.3 Estimation of Copulas

First note that the estimations are based on the residuals of the autoregressive
processes, fitted on every sector PD time series. For a more detailed discussion
on this topic, we refer to Jakob and Fischer [8], for instance.

7 In practice, the parametrization of both models are very different. The parameters of the
CreditRisk™ model are typically estimated based on default data or insolvency rates, whereas
in case of the CreditMetrics model marked data are used. Using PD time series based on marked
data might serve as a compromise in order to compare the results across both models.

8 Please note that E (PDSM (X)) = E (PDER*(S)) = PD;.
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Table 2 Rounded
log-likelihood values for
elliptical copulas and GHC

Copula GC TC sym. GHC GHC
Log-likelihood 634 728 8,848 13,566

4.3.1 Elliptical and Generalized Hyperbolic Copulas

The parameters of the GC and the TC (as representatives of the elliptical copula class)
are estimated via maximum likelihood using the R-Package “copulas” from Hofert
et al. [29]. For the TC, we estimated 3.786 degrees of freedom indicating that a joint
exceedance of high quantiles is more likely compared to the GC. Generalizing the
TC, we also considered symmetric and asymmetric’ GHC. For parameter estimation
the R-package “ghyp” from Luethi and Breymann [30] was used. Please note that
compared to the TC, the sym. GHC poses two more parameters due to the generalized
inverse Gaussian distribution, which is used as mixing distribution for the family of
generalized hyperbolic distributions and by another ten parameters because of the
skewness vector in case of the asymmetric GHC. The corresponding log-likelihood
values are summarized in Table2. A standard likelihood ratio test indicates that the
TC fits the data significantly better than the Gaussia one on every typical significance
level. Also, the increase of the log-likelihood of the asymmetric GHC is significant
to that of its symmetric counterpart. Hence, the stronger dependence between higher
PDs, occurring in the asym. GHC, is significant again on every common level.

Please note that the application of the GHC in practice has several drawbacks.
The estimation procedure, the MCECM (multi-cycle, expectation, conditional esti-
mation) algorithm is much more difficult to implement and time consuming com-
pared to estimation of GC or a TC. Furthermore, the simulation of random numbers
is much more computationally intensive due to the quantile functions, which con-
tain the modified Bessel function of the third kind, requiring methods for numerical
integration.

4.3.2 (Hierarchical) Archimedean Copulas

Out of the Archimedean class, we estimated parameters for the Gumbel, Clayton,
Joe, and Frank copula but only the copulas of Gumbel and Joe provided a reasonable
fit to our data. Since our data represent default probabilities, the economic intuition
would be that the dependence increases for higher values, i.e., in times of recession,
as can be seen from the empirical data (see, Fig.2). The Gumbel and Joe copulas
exhibit a positive upper tail dependence,'? while the lower ones are zero. Therefore,
they are suitable to model this kind of asymmetric dependence. The Frank copula is

9 For the symmetric GHC, we force the skewness parameter y € RX to be zero for all components
(notation according to Luethi and Breymann [30]).

10 The coefficients of upper (lower) tail dependence are defined by iy =

limy, 11 ]P’[Xz >yl | X > Ffl(u)} and A = limu\o]P’[Xz <Pl X < F;‘(u)],
respectively.
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Fig. 1 First level of R-vine (with parameters of Gumbel and Joe copulas) and Hierarchical
Archimedean copula (Gumbel) estimated from default data

tail independent, whereas the Clayton copula posses only a lower tail dependence.
Applying goodness-of-fit tests (see Genest et al. [31]), we have to reject both copulas
(Frank and Clayton) on a significance level considerably below 1 %. In addition, we
also considered hierarchical Archimedean constructions. With the help of the “HAC”
package from Okhrin and Ristig [20], a stepwise ML estimation procedure was used
to estimate the tree of the Gumbel HAC, depicted in Fig. 1. The figure shows that the
dependence parameters are in a range of 4.35 at the bottom, indicating the strongest
dependence, and 1.21 at the top of the tree. For the ordinary Gumbel copula, we
estimate a parameter value of 1.836, which is in the range of the HAC parameters.
Since the variates selection on each level of the HAC tree is based on empirical values
of Kendall’s 7, the structures of the two HACs (Gumbel and Joe) coincide.

4.3.3 Pair Copula Construction (PCC)

In general, a PCC arises from a nonunique decomposition of a multivariate distrib-
ution into a product of conditional bivariate distribution, characterized by so-called
vines. The estimation algorithm of a PCC in general consists of three major steps:

(I) Specification of a valid vine structure (e.g., C-, D-, or R-Vine tree),
(II) type-selection of the underlying bivariate copulas for the tree in (I) (e.g., GC or
Gumbel copula),
(IIT) parameter estimation for the copulas, selected in (II).

Brechmann and Schepsmeier [32] describe several algorithms addressing all these
issues. In particular, the specification of the vine structure is done with the help of
maximum spanning trees, where on each level a tree is selected such that the sum of
Kendall’s 7 for all pairs of variables is maximized. To determine a particular copula
for the selected pairs out of a set of certain candidates, the AIC criterion is applied.
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Finally, the copula parameters are estimated via ML. The corresponding steps
(D)—(III) are implemented in the R-package “VineCopula” (see Schepsmeier et al.
[21]), which has been used to determine a PCC for our data set. In order to allow
maximum flexibility, we decided to use a R-vine, which generalizes both C- and D-
vines. The candidate set for the pair copulas comprises GC, TC, Gumbel, Clayton,
Frank, and Joe copula.

Analog to the HAC, the estimation algorithm of the PCC identifies sectors 3
and 8 as those with the strongest dependence. Therefore, these sectors are coupled
together on the first level of the R-vine, which means that their pairwise dependence
is explicitly selected to follow a Gumbel copula with 6 =4.35.1In general, all except
one bivariate copulas on the first level are estimated to be Gumbel with parameter
values in [1.56, 4.35], which is close to the HAC parameter range, see Fig. 1. Only
in case of sectors 5 and 9, the Joe copula with parameter 1.87 is preferred. Again,
the weakest dependence (measured by the implied value of Kendall’s t) on the first
level is related to sector 5. On higher levels, all copulas out of the candidates set are
selected to model conditional bivariate dependencies.

4.3.4 Parametrization of the CreditRisk *- CBV Copula

For the CBV model, the likelihood function is rather complex and a ML estimation is
numerically not feasible. Hence, the parameters of the CBV factor copula are chosen
such that the Euclidean distance between the empirical and the theoretical covariance
matrix is minimal (see, e.g., Fischer and Dietz [23]).

4.3.5 Illustration for Sectors 3 and 8

Exemplarily, Fig.2 illustrates the contour plot of the estimated copula density
between sectors 3 (cycl. consumer goods) and 8 (industry) for different competi-
tors as well as the (transformed) empirical observations. Notice that darker areas
indicate higher concentration of the probability mass. In the first row, the elliptical
and GHC:s are displayed. Looking at the center of the unit squares, one observes that,
in case of the TC and the asymmetric GHC, more probability mass is concentrated
around the main diagonal as for the GC or the symmetric GHC. Since the asymmetric
GHC provides a significantly better fit compared to the TC, the issue of asymmetri-
cally distributed data seems to be more important than the absence of a positive tail
dependence, at least for our data. This might be caused by the limited sample size
of only 120 observations. Although the asymmetric GHC has a significantly better
fit compared to the symmetric one and the skewness parameters are strictly positive,
its density still looks very symmetric.

In contrast, the copula of the CBV model!! is extremely concentrated around
the main diagonal. Here, observations aside from the diagonal have a very low

"'n case of the CBV copula, the density is estimated via a two dimensional kernel density estimator.
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Fig. 2 Contour of the estimated copulas between sector 3 (cycl. consumer goods) and 8 (industry)
together with empirical observations

probability. Please note again that the estimation procedure for this copula is dif-
ferent, which might explain this issue to some extend. For the ordinary Gumbel and
Joe copulas, one has to choose one single parameter for all bivariate (and higher
dimensional) dependencies. Therefore the estimation is always a trade-off between
stronger and weaker dependencies. This leads to the effect that, in our example, the
dependence in both cases seems to be rather underestimated by this copulas compared
to its competitors. The HAC overcomes this drawback by using different parameters,
which leads to a significantly better fit.

4.4 Effect of the Copula on the Risk Figures and the Tail
of the Loss Distribution

Finally, we analyze the impact of the sector copula on the right tail and therefore
on the economic capital. Since, in practice, the underlying data sets used for para-
metrizations of both model types are rather different and not comparable, we do
not draw any comparisons between the absolute values of the risk figures across the
two models. Instead, we measure the impact with the help of factors, where the risk
figures of the models with the GC are normalized to one. In case of the CreditRisk™-
CBYV model, the marginal distributions of the sectors, which follow a weighted sum
of Gamma distributions (see Eq. (1)), are replaced by Gamma distributed variates
with the same mean and variance, for reasons of simplicity. Since this is a monotone
transformation, the dependence structure is not affected. Please note that by drawing
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the sector realizations!2 for the CreditMetrics model, we use the survival copula,13
because in this case higher values of the sector variates correspond to an increase
rather than a decrease of obligors creditworthiness.

Table3 summarizes all risk figures. The copulas are ordered according to the
impact on the economic capital on a 99.9 % level in case of the CreditRisk™ model.

First of all, one observes that in the CreditRiskt framework, the risk decreases
if we switch from the original model (CBV) to another one. In both models, the
GC implies the lowest risk, followed by the sym. GHC. Although both copulas
are elliptically symmetric and tail independent, the risk figures differ by up to 4 %.
Applying a TC, the risk rises in both models because of the positive tail dependence of
Au = 0.69. For the CreditMetrics model the markup is around 6 %. The highest risk
arises if we use an asymmetric dependence structure, i.e., a (hierarchical) Gumbel
or Joe copula, an asym. GHC, a PCC or, in case of CreditRisk™, the factor copula
induced by the CBV model. Therefore, at least for our data set and portfolio, there
is an indication that the risk arising from an asymmetric dependence structure, i.e.,
where dependencies are higher during times of a recession, is higher compared to
the risk caused by a positive tail dependence. In the CreditRisk™ model even the
economic capital in case of the HAC (Joe) copula is around 8.1 % above the amount
of the model with a GC and 2 % below the basic model. In both models, the risk
implied by a Joe copula is higher compared to a Gumbel copula. Since both copulas
exhibit no positive lower tail dependence, whereas the upper tail dependence'* is
higher in case of the Joe copula, this observation is plausible.

As to be expected, all portfolio loss distributions exhibit a significant amount of
skewness (skew) and kurtosis (kurt), measured by the third and fourth standardized
moments, respectively. In addition, we calculated the right-quantile weight (RQW)
for B = 0.875 which was recommended by Brys et al. [34] as a robust measure of
tail weight and is defined as follows:

F (%) + 0t (1= 8) — 26, 079)

—1 {1+ -1 ’
Fr (T)—FL (1—%5)

where, inour case, F; ! denotes the quantile function of the portfolio loss distribution.
First of all, it becomes obvious that the rank order observed for ECog 9 with respect
to the copula model is highly correlated to the rank order of the higher moments and
of the tail weight. Secondly, all of the latter statistics derived from the CreditMet-
rics framework are (significantly) higher than those derived from the CreditRisk™
framework.

RQW(B) :=

12 For details on the simulation of copulas in general, please refer to Mai and Scherer [33].

13 For a random vector u = (g, ..., uK)T with copula C, the survival copula is defined as the
copula of the vector (1 — uy,...,1 — uK)T.

14 The coefficients of upper tail dependence implied by the estimated parameters are 0.54 in case
of the Gumbel copula and 0.66 for the Joe copula.
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Fig. 3 Right tail of portfolio loss distribution for selected copulas

Finally, Fig. 3 exhibits the estimated densities of the portfolio loss for both models
and different copulas. On the horizontal axis, the percentiles of the loss distribution of
the particular standard models are displayed. The ordering of the densities confirms
our results, derived from the corresponding risk figures.

5 Summary

Credit portfolio models are commonly used to estimate the future loss distribution
of credit portfolios in order to derive the amount of economic capital which has to
be allocated to cover unexpected losses. Therefore, capturing the (unknown) depen-
dence between the counterparties of the portfolios or between the economic sectors
to which counterparties have been assigned is a crucial issue. For this purpose, copula
functions provide a flexible toolbox to specify different dependence structures.
Against this background, we analyzed the effect of different parametric copulas on
the tail of the loss distribution and the risk figures for a hypothetical portfolio and for
both CreditMetrics and CreditRisk™, two of the most popular credit portfolio mod-
els in the financial industry. Our results indicate that the specific CreditRiskt* —CBV
model uses a rather conservative copula. However, referring to Jakob and Fischer
[8], one might come across to certain artifacts for this (implicit) copula family. In the
CreditMetrics setting, the canonical assumption of a Gaussian copula allows an easy
and fast implementation but also gives rise to certain drawbacks, such as the absence
of a tail dependence (“‘extreme events occur together”) or the ability to model asym-
metric dependence structures for which we found evidence in the underlying data
set. Replacing the Gaussian copula by alternative competitors (Student-t, General-
ized hyperbolic, PCC or generalized Archimedean copulas) we could significantly
improve the goodness-of-fit to the underlying PD series. As a consequence, using the
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Gaussian copula might lead to an underestimation of credit risk by up to 10 % (for
ECg9.9) within the CreditMetrics framework, at least for our calibration. In contrast,
the CreditRisk+ model seems to be less sensitive with respect to the dependence
structure, because here the markup (related to the Gaussian copula as benchmark) is
around 2—4 % points lower. The question about the different behavior of both model
types has to be left open for further research.
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Implied Recovery Rates—Auctions
and Models

Stephan Hocht, Matthias Kunze and Matthias Scherer

Abstract Credit spreads provide information about implied default probabilities
and recovery rates. Trying to extract both parameters simultaneously from market
data is challenging due to identifiability issues. We review existing default models
with stochastic recovery rates and try calibrating them to observed credit spreads.
We discuss the mechanisms of credit auctions and compare implied recoveries with
realized auction results in the example of Allied Irish Banks (AIB).

1 Introduction

Corporate credit spreads contain the market’s perception about (at least) two sources
of risk: the time of default and the subsequent loss given default, respectively, the
recovery rate. Default probabilities and recovery rates are unknown parameters—
comparable to the volatility in the Black—Scholes model. We concern the question
whether it is possible to reverse-engineer and disentangle observed credit spreads
into these ingredients. Such a reverse-engineering approach translates market values
into model parameters, comparable to the extraction of market implied volatilities
in the Black—Scholes framework. There is growing literature in the field of implied
default probabilities, whereas scientific studies on implied recoveries are sparse.
Inferring implied default probabilities from market quotes of credit instruments often
relies on the assumption of a fixed recovery rate of, say, @ = 40 %. Subsequently,
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default probabilities are chosen such that model implied credit spreads match quoted
credit spreads. The assumption of fixing @ = 40 % is close to the market-wide
empirical mean (compare Altman et al. [1]), but disregards recovery risk. In many
papers, the same recovery rate is assumed for all considered companies, although
empirical studies suggest that recoveries are time varying (compare Altman et al.
[2], Bruche and Gonzdlez-Aguado [3]), depend on the specific debt instrument, and
vary across industry sectors (compare Altman et al. [1]). Obviously, the resulting
implied default probability distribution strongly depends on the assumptions on the
recovery rate. Since default probabilities and recoveries both enter theoretical spread
formulas, we face a so-called identification problem. Making this more plastic, the
widely known approximation via the ‘“credit triangle” (see, e.g., Spiegeleer et al.
[4, pp. 256]) suggests:

spread s = (1 — ®)A, (1)

where @ is the recovery rate and A denotes the default intensity. Obviously, for any
given market spread s, the implied recovery is a function of (the assumption on) A
and vice versa. Using this simplified spread formula alone, it is clearly impossible to
reverse-engineer @ and A simultaneously from s. As we will see, this identification
problem also appears in more sophisticated credit models.

We invoke and (at least partially) answer the questions:

e Is it possible to simultaneously extract implied recovery rates and implied default
probabilities (under the risk-neutral measure Q)?
e How do implied recoveries compare to realized recoveries?'

We address the first question using two types of credit models, where neither the
recovery rate nor the default probability distribution is fixed beforehand. As opposed
to most existing approaches for the calculation of implied recoveries, both procedures
only take into account prices from simultaneously traded assets. Instead of analyzing
the spread of one credit instrument for different points in time, implied recoveries
and default probabilities are extracted from the term structure of credit spreads.
Likewise to the aforementioned implied volatility calculation, this restriction allows
for an implied recovery calibration under the risk-neutral measure Q. Analyzing the
second question, both models are exemplarily calibrated to market data of Allied
Irish Banks (AIB), who experienced a credit event in June 2011. Subsequently, real
recovery rates were revealed and can thus be compared to their implied counterparts.
In order to clarify how real recoveries are settled in today’s credit markets, we start
by introducing the mechanism of credit auctions.

! Here, the term realized recovery does not refer to workout recoveries but to a credit auction result.
The question whether the auction procedure appropriately anticipates workout recoveries is left for
future research.
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2 CDS Settlement: Credit Auction

CDS are the most common and liquidly traded single-name credit derivatives—their
liquidity usually even exceeds the one of the underlying bond market. In case of a
credit event, the protection buyer receives a default payment, which approximates
the percentage loss of a bond holder subject to this default® (see Schonbucher [53,
preface]). This payment is referred to as loss given default (LGD). The corresponding
recovery is defined as one minus the LGD. Recoveries are often quoted as rates, e.g.,
referring to the fraction of par the protection buyer receives, after the CDS is settled.
There are mainly three types of credit events that can be distinguished:

e Bankruptcy A bankruptcy event occurs if the company in question faces insol-
vency or bankruptcy proceedings, is dissolved (other than merger, etc.), liquidated,
or wound up.

e Failure-to-pay This occurs if the company is unable to pay back outstanding
obligations in an amount at least as large as a prespecified payment requirement.

e Restructuring A restructuring event takes place if any clause in the company’s
outstanding debt is negatively altered or violated, such that it is legally binding
for all debt holders. Not all types of CDS provide protection against restructuring
events.

These credit events are standardized by the International Swaps and Derivatives
Association (ISDA). The legally binding answer to the question, whether or not a
specific credit event occurred, is given by the so-called Determinations Commit-
tees (DC).3> CDS ISDA standard contracts as well as the responsible DCs differ
among geopolitical regions. As opposed to standard European contracts, the stan-
dard North American contract does not provide protection against restructuring credit
events. The differences are originated by regulatory requirements and the absence
of a Chapter 11 equivalent: in order to provide capital relief from a balance sheet
perspective, European contracts have to incorporate restructuring events. Our focus
will be on the case of nonrestructuring credit events in what follows.

Prior to 2005, CDS were settled physically, i.e., the protection buyer received the
contractually agreed notional in exchange for defaulted bonds with the same notional.
Accordingly, the corresponding CDS recovery rate was the ratio of the bond’s market
value to its par. This procedure exhibited different shortfalls (see Haworth [6, p. 24]
or Creditex and Markit [7]):

e For a protection buyer, it was necessary to own the defaulted asset. Often, this
entailed an unnatural inflation of bond prices after default and became a substantial

2 We will use “credit event” and “default” as synonyms. Note, however, that the terms default
and credit event are sometimes distinguished in the sense that default is associated with the final
liquidation procedure.

3 More information on DCs and ISDA can be found on www.isda.org.
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problem in default events, where the notional of outstanding CDS contracts
exceeded the par of available bonds by multiples.*

e On the contrary, the protection seller was obliged to own the defaulted asset after
settlement of the CDS. Thus, she or he mandatorily retained a long position with
respect to the reference entity’s credit risk, making it less attractive to sell protec-
tion.

e Since different bonds generally may have different prices, there was no unique set-
tlement price and two identical CDS contracts often were settled against different
recoveries, depending on the liquidity of the associated bond market.

These shortfalls were the initial motivation to alter the standard settlement proce-
dure by introducing an auction-based method. From 2005 to 2013 auctions for the
settlement of CDS and LCDS (Loan Credit Default Swaps) contracts for 112 default
events were held (see Creditex and Markit [8]). On an annual basis, the number of
auctions clearly peaked after the financial crisis, i.e., in 2009, where auctions for 45
default events took place. The recovery of a standard CDS contract, traded today,
thus usually refers to the result of an auction, which is held subsequent to a credit
event.

The auction mechanism aims at a unique and fair settlement price (recovery).
It can be split into two stages: the initial bidding period and a subsequent one-
sided Dutch auction. The whole process is administrated by Creditex and Markit.
In the initial bidding period, each participant, i.e., each protection seller or buyer,
represented by one of the bigger investment banks as their dealer, submits a two-way
quote. This quote consists of a bid and an offer price for the cheapest-to-deliver bond
of the reference entity together with a one-way physical settlement request. In the
one-sided Dutch auction, the unique recovery for all outstanding CDS is assessed as
the “fair” value of the cheapest-to-deliver bond with respect to its par.’ Before the
auction starts, a quotation amount, a maximum bid-offer spread, and the cap amount
is published by ISDA. These three quantities will be explained, while passing through
the auction.

2.1 Initial Biding Period

All participants submit a two-way quote together with a one-way physical
settlement request. That quote refers to the price of the cheapest bond which is listed
as deliverable obligation by ISDA. The request must be in the same direction as the
net CDS position, e.g., participants that have net sold protection are not allowed to
request delivery of an obligation. Furthermore, the two-way quote must not violate
the maximum bid-offer spread. In case a dealer does not represent any outstand-
ing CDS positions with respect to the defaulted entity, she or he is not admitted to

4 Sometimes the phenomenon that some bonds were used several times for the settlement of CDS
is referred to as “recycling.”

5 Restructuring events differ, since they allow for maturity specific cheapest-to-deliver bonds.
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participate in the auction. Moreover, the notional of the physical settlement request
is not allowed to exceed the notional of the outstanding position.

In the next step, the so-called inside market midpoint IMM) is calculated subject
to the following method:

1. Crossing quotes are canceled, i.e., in case an offer quote is smaller or equal to
another bid quote, the specific bid and offer are both eliminated.®

2. The so-called best halves of the remaining quotes are constructed. The best bid
half refers to the (rounded up) upper half of the remaining bid quotes. Accord-
ingly, the best offer half contains the same number of lowest non-canceled offer
quotes.

3. The IMM is defined as the average of all quotes in those best halves.

Any participant, whose bid and ask price are both violating the IMM has to pay
an adjustment amount.” This penalty is supposed to assure that the IMM reflects
the underlying bond market in an appropriate way.® The initial bidding period is
concluded by calculating the net open interest, i.e., the netted notional of physical
settlement requests, which is simply carried out by aggregation. In case this amount
is zero, the IMM is fixed as the auction result and consequently as the recovery for
all CDS, which were supposed to be settled via the auction. Otherwise, the IMM
serves as a benchmark for the second part of the auction procedure.

To illustrate this first step, we consider the failure-to-pay event of AIB on June
21, 2011. Two auctions were held, one for senior and one for subordinated CDS
referring to AIB. We only consider the senior auction. Table 1 displays the submitted
two-way quotes from all 14 participants. For the calculation of the IMM, the reported
bid quotes are arranged in descending order, whereas the offers start from the lowest
quote.

The first quotes from Nomura (bid) and Citigroup (offer) are canceled out, since
the corresponding bid exceeds the offer. Note that this cancelation does not entail
a settlement, both quotes are merely neglected with regard to the IMM calculation.
Therefore, 13 bid and offer quotes remain and the best halves are the seven highest bid
and lowest offer quotes, which are emphasized in Table 1. The IMM is calculated via
averaging over these quotes and rounding to one eighth, yielding an IMM of 71.375.
The maximum bid-offer spread was 2.50 %-points and the quotation amount was
EUR 2 MM. In Table 2, the corresponding physical settlement requests are reported.

As the aggregated notional from bid quotes exceeds the aggregated notional from
offer quotes, the auction type is “to buy”. Since there is netted demand for the
cheapest-to-deliver senior bond, initial offers falling below the IMM are considered

6 Note that they are not settled, but only not taken into account for the calculation of the IMM.

7 The term “violating™ refers to both quotes falling below the IMM (auction is “to buy”) or exceeding
the IMM (auction is “to sell”’), respectively.

8 Suppose the net open interest is “to sell”, i.e., there is a surplus on the seller side. If a participant
submits a bid exceeding the IMM, he or she is considered off-market, since prices are supposed to go
down and not up. Then the corresponding participant has to pay the prefixed quotation amount times
the difference between the IMM and his or her bid. The penalty works vice versa for off-market
offers if the open interest is “to buy”.
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Table 1 Dealer inside market quotes for the first stage of the auction of senior AIB CDS (see
Creditex and Markit [8]). Published with the kind permission of ?Creditex Group Inc. and Markit
Group Limited 2013. All rights reserved

Dealer Bid Offer | Dealer

Nomura Int. PLC 72.00 |70.50 | Citigroup Global Markets Ltd.
Goldman Sachs Int. 71.00 |71.50 |Société Générale

Bank of America N.A. 70.50 |72.00 |Credit Suisse Int.

Barclays Bank PL.C 70.50 |72.00 |Deutsche Bank AG

BNP Paribas 70.50 |72.00 |JPMorgan Chase Bank N.A.
HSBC Bank PLC 70.50 |72.25 | Morgan Stanley &Co. Int. PLC
The Royal Bank of Scotland PLC | 70.50 |72.50 |UBS AG

Deutsche Bank AG 70.00 |73.00 |Bank of America N.A.

UBS AG 70.00 |73.00 | Barclays Bank PLC

Morgan Stanley &Co. Int. PLC 69.75 |73.00 | BNP Paribas

Credit Suisse Int. 69.50 |73.00 |HSBC Bank PLC

JPMorgan Chase Bank N.A. 69.50 |73.00 | The Royal Bank of Scotland PLC
Société Générale 69.00 |73.50 | Goldman Sachs Int.

Citigroup Global Markets Ltd. 68.00 |74.50 | Nomura Int. PLC

Resulting IMM 71.375

All quotes are reported in %

Table 2 Physical settlement requests for the first stage of the auction of AIB (see Creditex and
Markit [8]). Published with the kind permission of ?Creditex Group Inc. and Markit Group Limited
2013. All rights reserved

Dealer Type Size in EUR MM
BNP Paribas Offer 48.00

Credit Suisse Int. Offer 43.90

Morgan Stanley &Co. Int. PLC Offer 11.80

Barclays Bank PLC Bid 30.00

JPMorgan Chase Bank N.A. Bid 52.00

Nomura Int. PLC Bid 7.75

UBS AG Bid 16,00

Total (net) “To buy” 2.05

off-market and the corresponding dealers have to pay an adjustment amount. In
Table 1, only Citigroup’s offer of 70.50 is considered off-market. The difference to
the IMM is 0.875. Using the quotation amount as notional, the resulting adjustment
amount is EUR 17, 500. The second part of the auction aims at satisfying the net
physical settlement request of EUR 2.05 MM demand.
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2.2 Dutch Auction

This second step is designed as a one-sided Dutch auction, i.e., only quotes in the
opposite direction of the net open interest are allowed. In case the net open interest is
“to sell”, dealers are only allowed to submit bid limit orders and vice versa. For the
senior CDS auction of AIB, the net physical settlement request is “to buy” and thus
only offer limit orders are allowed. As opposed to the first stage of the auction, there
is no restriction with respect to the size of the submitted orders, regardless of the
initial settlement request. In order to prevent manipulations, particularly in case of a
low net open interest, the prefixed cap amount, which is usually half of the maximum
bid-offer spread, imposes a further restriction on the possible limit orders. In case the
auction is “to sell”, orders are bounded from above by the IMM plus the cap amount
and vice versa if the net open interest is “to buy”.

In addition to these new limit orders, the appropriate side from the initial two-way
quotes from the first stage of the auction are carried over to the second stage—as
long as the order does not violate the IMM. All quotes, which are carried over, are
determined to have the same size, i.e., the prespecified quotation amount, which was
already used to assess the adjustment amount.

Now, all submitted and carried over limit orders are filled, until the net open
interest is matched. In case the auction is “to sell”, i.e., there is a surplus of bond
offerings, the bid limit orders are processed in descending order, starting from the
highest quote. Analogously, if the auction is “to buy”, offer quotes are filled, starting
from the lowest quote. The unique auction price corresponds to the last quote which
was at least partially filled. Furthermore, the result may not exceed 100 %.°

Reconsider the credit event auction for outstanding senior AIB CDS. Both, carried
over offer quotes (first) as well as offers from the second stage (second) of the auction
are reported in Table 3.

Recalling that the net physical settlement request was EUR 2.05 MM, we observe
that the first two orders were partially filled. The associated limit orders were
70.125 %, which is consequently fixed as the final auction result, i.e., all outstanding
senior CDS for AIB were settled subject to a recovery rate of 70.125 %. Following
an auction, all protection buyers, who decided to settle their contracts physically
beforehand, are obliged to deliver one of the deliverable obligations in exchange for
par. Naturally, they are interested in choosing the cheapest among all possible deliv-
erables. Thus, in case of a default, protection buyers are long a cheapest-to-delivery
option (compare, e.g., Schonbucher [5, p. 36]), enhancing the position of a protection
buyer. Details about the value of that option can be found in Haworth [6, pp.30-32]
and Jankowitsch et al. [9].

9 For Northern Rock Asset Management, the European DC resolved that a restructuring credit event
occurred on December, 15, 2011. Two auctions took place on February, 2, 2012 and the first one
theoretically would have led to an auction result of 104.25 %. Consequently, the recovery was fixed
at 100 % (compare Creditex and Markit [8]).
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Table 3 Limit orders for the senior auction of AIB (see Creditex and Markit [8]). Published with
the kind permission of ?Creditex Group Inc. and Markit Group Limited 2013. All rights reserved

Dealer Type | Quote (%) Size (EUR MM) Aggregated size (USD MM)
JPMorgan Chase Bank N.A.| Second 70.125 | 2.05 2.05
Barclays Bank PL.C Second| 70.125 | 2.05 4.10
Credit Suisse Int. Second| 70.25 2.05 6.15
BNP Paribas Second| 70.25 1.00 7.15
BNP Paribas Second| 70.375 1.05 8.20
Citigroup Global Markets Ltd.| First |71.375 2.00 10.20
Nomura Int. PLC Second| 75 2.00 42.25

2.3 Summary of the Auction Procedure

The auction-based settlement of CDS is designed to approximate the loss of the
cheapest-to-deliver bond. The term “CDS auction” might thus be misleading, since
itis an auction, where the market value of the cheapest from a set of bonds is assessed.
Consequently, the recovery rate of a CDS contract is the market value of this bond
divided by its par.

In the above example, JPMorgan’s and Barclays’ orders were the only ones filled.
Both dealers had a considerable physical settlement request of EUR 52 MM and
EUR 30 MM, respectively, possibly reflecting a long CDS position. By submitting
the lowest possible quote for a notional of EUR 2.05 MM each, both dealers stretched
the recovery to the possible maximum. In case, both parties indeed represented large
long CDS positions, they profited from the low open interest. Moreover, the final
auction result was below the IMM. Thus, if one dealer would have quoted the final
auction result already in the first step, she or he would have been considered off-
market and consequently penalized.

Another problem appeared during a restructuring credit event of SNS bank, where
senior and subordinated CDS were settled in the same auction. Due to government
intervention, subordinated bond holders experienced a full write-down (“bail-in”)
before the auction. Thus, there were no more subordinated deliverables and senior
and subordinated CDS had the very same recovery (either 95.5 or 85.5 %, depending
on the maturity of the CDS), contradicting the connection between the subordinated
bond holder’s loss and the subordinated CDS recovery. Another case for a coun-
terintuitive auction result concerned the settlement of CDS referring to Fannie Mae
or Freddy Mac, where subordinated contracts recovered above senior. Moreover, as
the determination committees and dealers are big investment banks, there might be
conflicts of interest when determining whether a credit event occurred or not.

These are reasons for an ongoing discussion about whether this one-sided auction
design is fair or not (compare Du and Zhu [10] for the proposal of an alternative
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auction design). Currently, ISDA is working on a further supplement to the credit
derivative definitions, involving among others the introduction of a new credit event
as a solution to what happened with subordinated SNS CDS.

3 Examples of Implied Recovery Models

As explained above, the recovery of a CDS, @, € [0, 1], refers to the result of an
auction which is held after a credit event at time t and is designed to approximate
the relative “left-over” for a bond holder. Before a default event and the following
auction takes place this recovery is unknown. One way to assess this quantity for
nondefaulted securities is to reverse-engineer implied recoveries from market CDS
quotes. Any basic pricing approach for the “fair” spread sy of a CDS with maturity
T > 0 is of the form

st = Eqlf(z, @)l @)

Le., the spread is the risk-neutral expectation of a function of the default time (or
default probability, respectively) and the recovery rate in case of default. Specifying
and @, two models are revisited and calibrated by minimizing the root mean squared
error (RMSE) between Egl f (7, @;)] and market spreads over a term structure of
CDS spreads.

3.1 Cox—Ingersoll-Ross Type Reduced-Form Model

This reduced-form model resembles the one presented in Jaskowski and McAleer
[11], although applied in a different context. All reduced-form models are based
on the same principle. The time of a credit event 7 is the first jump of a stochastic
counting process Z = {Z;};59 € Ny, i.e., T = inf{t > 0: Z; > 0}. In this case Z
will be a Cox-Process governed by a Cox—Ingersoll-Ross type intensity process A,
ie.,

dhi = k(O — A)dt + o/adW;, Ao > 0.

The recovery in this model is defined as an exponential function of the intensity
process, i.e.,

1 T
. —— o Aedt
@.L. = qe rf() e

where a € [0, 1] is referred to as the recovery parameter. A default in a period
of high expected distress, e.g., in an economic downturn, entails lower recoveries
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Fig.1 Weekly average spreads for AIB senior and subordinated CDS with 1 and 5 years maturity.
The spreads represent two whole term structures, which are used to calibrate the presented implied
recovery approaches in every displayed week independently

and vice versa. Comparable choices for modeling recoveries can be found, e.g., in
Madan et al. [12], Das and Hanouna [13], Hocht and Zagst [14], or Jaskowski and
McAleer [11]. Since the model will be calibrated to one CDS spread curve, one has
to be restrictive concerning the amount of free model parameters in the recovery
model. Using this model, the risk-neutral spread sr («, 0, o, Ao, a) has an integral-
free representation. The resulting risk-neutral parameters and subsequently the risk-
neutral implied recovery and probability of default are determined by minimizing
the RMSE:

1
(k*,0%, 0%, Ay, a*) := argmin m Z (s%’l —s7(, 8, 0, Ao, a))z, 3)
Tel

where [ is the set of maturities with observable market quotes for CDS spreads s%” .
In case senior as well as subordinated CDS are available for a certain defaultable
entity, two different recovery parameters agen and agyp, are used, while the intensity
parameters are the same for both seniorities. This reflects the fact that in case of a
credit event both CDS types are settled, although usually in different auctions.'? In
this case, the optimization in Eq.(3) is simply carried out by matching senior and
subordinated spreads simultaneously. For the calibration, we reconsider the exam-
ple of AIB. Figure 1 exemplarily shows weekly average quotes for AIB senior and
subordinated CDS spreads with maturities 1 and 5 years.

Approaching the time of default, a spread widening and inversion of both senior
and subordinated term structures can be observed. Calibrating the introduced Cox-
Ingersoll-Ross model to AIB CDS quotes for each week independently for several
maturities leads to the resulting implied recoveries and 5-year default probabilities
shown in Fig. 2.

10 1 the current version of the upcoming ISDA supplement, subordinated CDS may also settle
without effecting senior CDS. However, so far either both or none settles.
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Fig. 2 Weekly calibration results for the CIR model applied to CDS spreads of AIB before its
default in June 2011

Implied senior and subordinated recoveries and implied default probabilities vary
substantially over time. One reason is that term structure shapes and general spread
regimes also vary unusually strong from week to week, since AIB is in distress.
Furthermore, there are co-movements of the 5-year implied default probability and
the implied recoveries. This is caused by the fact that a (recovery) and 6 (long-term
default intensity) have a similar effect on long term CDS spreads. Assuming A; = 6
for all t > r* > 0, the fair long term spread can be approximated via

st ~co+ (1 —ae o, forall T > r*, 4)

where co € R is constant. Hence, using the above approximation for a given spread
sT, the optimal recovery parameter a* can be seen as a function of the long term
default intensity, denoted as a*(0). This entails the existence of a continuum of
parameter values (k*, 0, 0%, A%, a*(0)), & > 0, which all generate a comparable
long term spread and thus a similar RMSE. Consequently, a minor variation in the
quoted spreads might cause a substantial change in the resulting optimal parameters
and thus in the implied recovery and implied probability of default. This is referred
to as identification problem.

The following section contains a framework to circumvent this identification
problem.

3.2 Pure Recovery Model

Two CDS contracts with the same reference entity and maturity, but differently ranked
reference obligations, face the same default probabilities, but different recoveries.
The general idea of the “pure recovery model” goes back to Unal et al. [15] and
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Schlifer and Uhrig-Homburg [16]. The approach makes use of this fact by con-
sidering the fraction of two differently ranked CDS spreads, which is then free of
default probabilities. Hence, spread ratios are considered and modeled and default
probabilities can be neglected. A comparable approach is outlined in Doshi [17]. Let
5% and s5"° denote the fair spreads of two CDS contracts referring to senior and
subordinated debt. The basic idea can be illustrated using the credit triangle formula
from Eq. (1), i.e.,

gsen (1— cbsen))L 1 — ¢@sen

gsub ~ (1— q)sub)k T 1 — @sub )

Under simplified assumptions the ratio of two different types of CDS spreads is a
function of the recoveries @*°" and @"°. In case of the credit triangle formula, for
instance, the underlying assumptions include independence of A and @. The crucial
point is to find a suitable and sophisticated model, such that this fraction again only
contains recovery information. Implied recoveries are then extracted by calibrating
fractions of senior and subordinated spreads. We propose a model that allows for
time variation in @ but no dependence on the default time 7.

In a first step, a company-wide recovery rate X is defined, i.e., a recovery for
the whole company in case of a default until 7, where Tpax is the maximum of all
instruments’ maturities which should be captured by the model. Suppose 1o € (0, 1),
w1 € (—1,1), and uo + u1 € (0, 1). Furthermore, let v € (0, 1). For a certain
maturity Tmax > T > 0, X7 is assumed to be Beta-distributed with the following
expectation and variance:

EqlX1] = u(T) := pto + m1v/T/ Tmax, 6)
Varg[X7] = 0*(T) := v[p(T) — u(T)°]. (7)

The Beta distribution is a popular choice for modeling stochastic recovery rates,
since it allows for an U-shaped density on [0, 1] that is empirically confirmed for
recovery rates. The above parameter restrictions assure that a Beta distribution with
Egl[X7]and Varg[ X 7] as above actually exists. The square-root specification allows
for a higher differentiation between maturity specific recoveries near 7T = 0, a
phenomenon which is also widely reflected in CDS market term structures. Overall,
this company-wide recovery distribution varies in time without depending on .
In a second step, the seniority specific recoveries @5 and qﬁ;“b are defined as
functions of X7. In legal terms, such a relation is established via a pecking order,
defined by the Absolute Priority Rule (APR): In case of a default event, any class
of debt with a lower priority than another will only be repaid if all higher ranked
debt is repaid in full. Furthermore, all claimants of the same seniority will recover
simultaneously, i.e., they receive the same proportion of their par value. Let dec,
dsen, and dgyp, denote the proportions of secured, senior unsecured, and subordinated
unsecured debt, respectively, on the balance sheet of a company at default, such that
dsub + dsen + dsec = 1. Figure 3 illustrates the APR.
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Fig. 3 Absolute priority rule: seniority specific recoveries depend on the stochastic firm-wide
recovery and the debt structure of the company

The parameters dgb, dsen, and dgec determine, which proportion of X7 is assigned
to senior and subordinated debt holders if a default occurs. Motivated by the linkage
of bonds and CDS in the auction mechanism, @3 and <DST“b are also assumed to
be the appropriate CDS recoveries. Note, however, that in practice, APR violations
often occur and are widely examined (see, e.g., Betker [18] and Eberhart and Weiss
[19]). Using the APR rule, a general spread representation as in Eq. (2) as well as
independence of @ and 7, the recoveries are deterministic functions of the company-
wide recovery X7 and the fraction of senior to subordinated CDS spreads is given
by

dsec+dsen x—d. 1
syt 1 - J: T forgr 0dx = 4 g Fpr.gr (x)dx

Sec
sub

— 1 X —(dsect+dsen)
ST 1 fdsec"rdsen dsub f[’Ta‘IT (x)d‘x

®)

where fj; 4 (x) denotes the density of a Beta(pr, g7)-distributed random variable.
The variables pr and g7 are linked to the parameters 1o, 41, and v via Egs. (6)
and (7) and the first two moments of the Beta distribution. They are calibrated using
the above formula, whereas the balance sheet parameters dgec, dsen, and dgyp are
directly taken from quarterly reports. Instead of calibrating a single-spread curve,
the calibration is carried out by matching theoretical fractions s%e“ / s%“b (o, 11, v)
in Eq. (8) for a set of several maturities to their market counterparts si " /g3

i.e.

1 M M ,sub 2
(ug, wi, v*) := argmin 0 z (sT S st — sSTen/SSTub(l/«O, 1, v)) )
Tel
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Fig. 4 Weekly calibration results for the pure recovery model applied to CDS spreads of AIB
before its default in June 2011

The resulting risk-neutral implied distribution of the company-wide recovery can be
translated into risk-neutral seniority specific recovery distributions by applying the
APR rule. Furthermore, we could proceed to use this implied recovery result and
extract implied default probabilities in a second step.

Calibrating the pure recovery model to senior and subordinated spreads from
AIB (see Fig. 1) before its default yields implied recoveries for senior and sub debt,
averaged over all maturities as displayed in Fig.4.

As opposed to the Cox—Ingersoll-Ross model, the resulting recoveries do not
exhibit sudden jumps, but are more stable over time. Only during the last weeks
before default (weeks 17 to 7), particularly the subordinated recovery fluctuates.
However, this is related to the significant movements of the market spreads and not
originated by an identification problem among the parameters. Moreover, both senior
and subordinated recoveries are in line with the later auction results, at least with
respect to their proportional relation.

4 Conclusion and Outlook

Extracting implied recoveries and implied default probabilities in a risk-neutral set-
ting tends to generate instable parameter estimates. The identification problem among
long-term default probabilities and recovery rates is not limited to the presented CIR
model, but can also be observed, e.g., in jump-to-default equity models such as
the one proposed in Das and Hanouna [13]. We illustrated one way to circumvent
the problem by reducing the calibrated expression to a form, where only recovery-
related parameters appear. This is possible by considering instruments with different
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seniorities, such as senior and subordinated CDS.!! Furthermore, the extracted risk-
neutral recoveries are more in line with the observed final auction results. Generally,
further instruments, e.g., loans or the recently more popular contingent convertibles
could be used in a similar way.
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Upside and Downside Risk Exposures
of Currency Carry Trades via Tail
Dependence

Matthew Ames, Gareth W. Peters, Guillaume Bagnarosa
and Ioannis Kosmidis

Abstract Currency carry trade is the investment strategy that involves selling low
interest rate currencies in order to purchase higher interest rate currencies, thus
profiting from the interest rate differentials. This is a well known financial puzzle
to explain, since assuming foreign exchange risk is uninhibited and the markets
have rational risk-neutral investors, then one would not expect profits from such
strategies. That is, according to uncovered interest rate parity (UIP), changes in
the related exchange rates should offset the potential to profit from such interest
rate differentials. However, it has been shown empirically, that investors can earn
profits on average by borrowing in a country with a lower interest rate, exchanging
for foreign currency, and investing in a foreign country with a higher interest rate,
whilst allowing for any losses from exchanging back to their domestic currency at
maturity.

This paper explores the financial risk that trading strategies seeking to exploit
a violation of the UIP condition are exposed to with respect to multivariate tail
dependence present in both the funding and investment currency baskets. It will
outline in what contexts these portfolio risk exposures will benefit accumulated
portfolio returns and under what conditions such tail exposures will reduce portfolio
returns.
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1 Currency Carry Trade and Uncovered Interest Rate Parity

One of the most robust puzzles in finance still to be satisfactorily explained is the
uncovered interest rate parity puzzle and the associated excess average returns of
currency carry trade strategies. Such trading strategies are popular approaches which
involve constructing portfolios by selling low interest rate currencies in order to buy
higher interest rate currencies, thus profiting from the interest rate differentials. The
presence of such profit opportunities, pointed out by [2, 10, 15] and more recently
by [5-7, 20, 21, 23], violates the fundamental relationship of uncovered interest rate
parity (UIP). The UIP refers to the parity condition in which exposure to foreign
exchange risk, with unanticipated changes in exchange rates, is uninhibited and
therefore if one assumes rational risk-neutral investors, then changes in the exchange
rates should offset the potential to profit from the interest rate differentials between
high interest rate (investment) currencies and low interest rate (funding) currencies.
We can more formally write this relation by assuming that the forward price, F/, is
a martingale under the risk-neutral probability Q ([24]):

FT .
ﬁ] =5 =PI, (1)
t

The UIP Eq. (1) thus states that under the risk-neutral probability, the expected vari-
ation of the exchange rate S; should equal the differential between the interest rate
of the two associated countries, denoted by, respectively, r; and r;. The currency
carry trade strategy investigated in this paper aims at exploiting violations of the UIP
relation by investing a certain amount in a basket of high interest rate currencies (the
long basket), while funding it through a basket of low interest rate currencies (the
short basket). When the UIP holds, then given foreign exchange market equilibrium,
no profit should arise on average from this strategy, however, such opportunities are
routinely observed and exploited by large volume trading strategies.

In this paper, we build on the existing literature by studying a stochastic feature
of the joint tail behaviours of the currencies within each of the long and the short
baskets, which form the carry trade. We aim to explore to what extent one can attribute
the excess average returns with regard to compensation for exposure to tail risk, for
example either dramatic depreciations in the value of the high interest rate currencies
or dramatic appreciations in the value of the low interest rate currencies in times of
high market volatility.

We postulate that such analyses should also benefit from consideration not only
of the marginal behaviours of the processes under study, in this case the exchange
rates of currencies in a portfolio, but also a rigorous analysis of the joint dependence
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features of such relationships. We investigate such joint relationships in light of the
UIP condition. To achieve this, we study the probability of joint extreme movements
in the funding and investment currency baskets and interpret these extremal tail proba-
bilities as relative risk exposures of adverse and beneficial joint currency movements,
which would affect the portfolio returns. This allows us to obtain a relative contribu-
tion to the exposure of the portfolio profit decomposed in terms of the downside and
upside risks that are contributed from such tail dependence features in each currency
basket. We argue that the analysis of the carry trade is better informed by jointly
modelling the multivariate behaviour of the marginal processes of currency baskets
accounting for potential multivariate extremes, whilst still incorporating heavy tailed
relationships studied in marginal processes.

We fit mixture copula models to vectors of daily exchange rate log returns between
1989 and 2014 for both the investment and funding currency baskets making up the
carry trade portfolio. The method and the dataset considered for the construction
of the respective funding and investing currencies baskets are thoroughly described
in [1]. The currency compositions of the funding and investment baskets are vary-
ing daily over time as a function of the interest rate differential processes for each
currency relative to the USD.

Our analysis concludes that the appealing high return profile of a carry portfolio
is not only compensating the tail thickness of each individual component probability
distribution but also the fact that extreme returns tend to occur simultaneously and
lead to a portfolio particularly sensitive to the risk of what is known as drawdown.
Furthermore, we also demonstrate that high interest rate currency baskets and low
interest rate currency baskets can display periods during which the tail dependence
gets inverted, demonstrating when periods of construction of the aforementioned
carry positions are being undertaken by investors.

2 Interpreting Tail Dependence as Financial Risk Exposure
in Carry Trade Portfolios

In order to fully understand the tail risks of joint exchange rate movements present
when one invests in a carry trade strategy, we can look at both the downside extremal
tail exposure and the upside extremal tail exposure within the funding and investment
baskets that comprise the carry portfolio. The downside tail exposure can be seen
as the crash risk of the basket, i.e. the risk that one will suffer large joint losses
from each of the currencies in the basket. These losses would be the result of joint
appreciations of the currencies that one is short in the low interest rate basket and/or
joint depreciations of the currencies that one is long in the high interest rate basket.

Definition 1 (Downside Tail Risk Exposure in Carry Trade Portfolios) Consider the
investment currency (long) basket with n-exchange rates relative to base currency, on
day ¢, with currency log returns (X t(] ), X t(z)’ o X t(d)). Then, the downside tail expo-

sure risk for the carry trade will be defined as the conditional probability of adverse
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currency movements in the long basket, corresponding to its upper tail dependence
(a loss for a long position results from a forward exchange rate increase), given by,

29 ) = Pr (x§” > FlaolxV > Frlao. xS Fr @ x0T s FRl e x> Fajl(u))

)

for a currency of interest i € {1, 2, ..., d} where F; is the marginal distribution for
the asset i. Conversely, the downside tail exposure for the funding (short) basket
with d currencies will be defined as the conditional probability of adverse currency
movement in the short basket (a loss for a short position results from a forward
exchange rate decrease), given by

M w =pr(xP < R @i < Frlw, XY < B e x Y < FRhwo, o x( @ < Bt w).

3)

In general, then a basket’s upside or downside risk exposure would be quantified by
the probability of a loss (or gain) arising from an appreciation or depreciation jointly
of magnitude u and the dollar cost associated to a given loss/gain of this magnitude.
The standard approach in economics would be to associate say a linear cost function
in u to such a probability of loss to get say the downside risk exposure in dollars
according to E;(u) = C(Fi_] (u)) x Agy (1), which will be a function of the level u.
As Ag, becomes independent of the marginals, i.e. asu — O oru — 1, Cy also
becomes independent of the marginals.

Conversely, we will also define the upside tail exposure that will contribute to
profitable returns in the carry trade strategy when extreme movements that are in
favour of the carry position held. These would correspond to precisely the prob-
abilities discussed above applied in the opposite direction. That is the upside risk
exposure in the funding (short) basket is given by Eq. (2) and the upside risk exposure
in the investment (long) basket is given by Eq. (3). That is the upside tail exposure of
the carry trade strategy is defined to be the risk that one will earn large joint profits
from each of the currencies in the basket. These profits would be the result of joint
depreciations of the currencies that one is short in the low interest rate basket and/or
joint appreciations of the currencies that one is long in the high interest rate basket.

Remark 1 In a basket with d currencies, d > 2, if one considers capturing the
upside and downside financial risk exposures from a model-based calculation of
these extreme probabilities, then if the parametric model is exchangeable, such as
an Archimedean copula, then swapping currency i in Eqs. (2) and (3) with another
currency from the basket, say j will not alter the downside or upside risk exposures.
If they are not exchangeable, then one can consider upside and downside risks for
each individual currency in the carry trade portfolio.

We thus consider these tail upside and downside exposures of the carry trade
strategy as features that can show that even though average profits may be made
from the violation of UIP, it comes at significant tail exposure.
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We can formalise the notion of the dependence behaviour in the extremes of the
multivariate distribution through the concept of tail dependence, limiting behaviour
of Egs.(2) and (3), as u 1 1 and u | O asymptotically. The interpretation of such
quantities is then directly relevant to assessing the chance of large adverse move-
ments in multiple currencies which could potentially increase the risk associated
with currency carry trade strategies significantly, compared to risk measures which
only consider the marginal behaviour in each individual currency. Under certain sta-
tistical dependence models, these extreme upside and downside tail exposures can
be obtained analytically. We develop a flexible copula mixture example that has such
properties below.

3 Generalised Archimedean Copula Models for Currency
Exchange Rate Baskets

In order to study the joint tail dependence in the investment or funding basket,
we consider an overall tail dependence analysis which is parametric model based,
obtained by using flexible mixtures of Archimedean copula components. Such a
model approach is reasonable since typically the number of currencies in each of
the long basket (investment currencies) and the short basket (funding currencies)
is4or5.

In addition, these models have the advantage that they produce asymmetric depen-
dence relationships in the upper tails and the lower tails in the multivariate model.
We consider three models; two Archimedean mixture models and one outer power
transformed Clayton copula. The mixture models considered are the Clayton-Gumbel
mixture and the Clayton-Frank-Gumbel mixture, where the Frank component allows
for periods of no tail dependence within the basket as well as negative dependence.
We fit these copula models to each of the long and short baskets separately.

Definition 2 (Mixture Copula) A mixture copula is a linear weighted combination
of copulae of the form:

N
Cu(u; 0) = D" 3 Ci(u; 0y), €
i=1

where0 <i; <1 Vie{l,...,Nyand 3" 2 =1.

Definition 3 (Archimedean Copula) A d-dimensional copula C is called Archime-
dean if it can be represented by the form:

C) =y )+ + ¢ ()} Yuelo, 179, (5)

where ¥ is an Archimedean generator satisfying the conditions given in [22].
¥~1:[0, 1] — [0, 00) is the inverse generator with ¥ ~1(0) = inf{r : ¥ (r) = 0}.



168 M. Ames et al.

In the following section, we consider two stages to estimate the multivariate basket
returns, first the estimation of suitable heavy tailed marginal models for the currency
exchange rates (relative to USD), followed by the estimation of the dependence
structure of the multivariate model composed of multiple exchange rates in currency
baskets for long and short positions.

Once the parametric Archimedean mixture copula model has been fitted to a basket
of currencies, it is possible to obtain the upper and lower tail dependence coefficients,
via closed form expressions for the class of mixture copula models and outer power
transform models we consider. The tail dependence expressions for many common
bivariate copulae can be found in [25]. This concept was recently extended to the
multivariate setting by [9].

Definition 4 (Generalised Archimedean Tail Dependence Coefficient) Let X =
(X1,...,Xs)T be an d-dimensional random vector with distribution C(F;(X),
..., F3(Xga)), where C is an Archimedean copula and F1, ..., F; are the marginal
distributions. The coefficients of upper and lower tail dependence are defined respec-
tively as:

a it led lim P (X1 S FNw), o X > B0 X > Bl ), Xa > FJl(u))
()i v an
= lim dll (ih [ . ]> ’ (6)
SO ()i [ an))
AlW“dﬂ%fﬁmﬂmmwh<ﬁWWm<%W%w&<TW) ----- -----

. d ¥ (dr)
=00 d —h ' ((d — hyr) 7

for the model dependence function ‘generator’ ¥ (-) and its inverse function.

In [9], the analogous form of the generalised multivariate upper and lower tail
dependence coefficients for outer power transformed Clayton copula models is pro-
vided. The derivation of Egs. (6) and (7) for the outer power case follows from [12],
i.e. the composition of a completely monotone function with a non-negative func-
tion that has a completely monotone derivative is again completely monotone. The
densities for the outer power Clayton copula can be found in [1].

In the above definitions of model-based parametric upper and lower tail depen-
dence, one gets the estimates of joint extreme deviations in the whole currency basket.
It will often be useful in practice to understand which pairs of currencies within a
given currency basket contribute significantly to the downside or upside risks of the
overall currency basket. In the class of Archimedean-based mixtures we consider,
the feature of exchangeability precludes decompositions of the total basket down-
side and upside risks into individual currency specific components. To be precise,
we aim to perform a decomposition of say the downside risk of the funding basket
into contributions from each pair of currencies in the basket, we will do this via a
simple linear projection onto particular subsets of currencies in the portfolio that are
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of interest, which leads, for example to the following expression:

d
S 20— i, nd | 2211 23]1 2312 sdld—17 il
E[A% AR 33 ]—4m—%§:awk%, ®)
i%i

21,2, 0i— it d . . .
where ‘ZI/ is a random variable since it is based on parameters of

the mixture copula model which are themselves functions of the data and therefore
random variables. Such a simple linear projection will then allow one to interpret
directly the marginal linear contributions to the upside or downside risk exposure
of the basket obtained from the model, according to particular pairs of currencies in
the basket by considering the coefficients «;;, i.e. the projection weights. To perform
this analysis, we need estimates of the pairwise tail dependence in the upside and
downside risk exposures )A\l?llj and )A»ilgj, for each pair of currencies 7, j € {1,2,...,d}.
‘We obtain this through non-parametric (model-free) estimators, see [8].

Definition 5 Non-Parametric Pairwise Estimator of Upper Tail Dependence
(Extreme Exposure)

. lo CA" ";’”;
x%zz—mnk,g’(" ”)}k:LZ“”n—L ©)

n
where C, (11, up) = % > 1 (% <uj, % < uz) and R ; is the rank of the variable
i=1

in its marginal dimension that makes up the pseudo data.

In order to form a robust estimator of the upper tail dependence, a median of

the estimates obtained from setting & as the 1st, 2nd, . . ., 20th percentile values was
used. Similarly, k¥ was set to the 80th, 81st, ..., 99th percentiles for the lower tail
dependence.

4 Currency Basket Model Estimations via Inference
Function for the Margins

The inference function for margins (IFM) technique introduced in [17] provides a
computationally faster method for estimating parameters than Full Maximum Like-
lihood, i.e. simultaneously maximising all model parameters and produces in many
cases a more stable likelihood estimation procedure. This two-stage estimation pro-
cedure was studied with regard to the asymptotic relative efficiency compared with
maximum likelihood estimation in [16] and in [14]. It can be shown that the IFM
estimator is consistent under weak regularity conditions.

In modelling parametrically the marginal features of the log return forward
exchange rates, we wanted flexibility to capture a broad range of skew-kurtosis rela-
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tionships as well as potential for sub-exponential heavy tailed features. In addition,
we wished to keep the models to a selection which is efficient to perform inference
and easily interpretable. We consider a flexible three parameter model for the mar-
ginal distributions given by the Log-Generalised Gamma distribution (1.g.g.d.), see
details in [19], where Y has a l.g.g.d. if Y = log(X) such that X has a g.g.d. The

density of Y is given by
1 y—u y—u
k{— ) — — |, 10
br<k)exp[( b ) eXp( b )} o

with u = log («), b = B! and the support of the 1.g.g.d. distribution is y € R.
This flexible three-parameter model admits the LogNormal model as a limiting
case (as k — 00). In addition, the g.g.d. also includes the exponential model (8 =
k = 1), the Weibull distribution (k = 1) and the Gamma distribution (8 = 1).
As an alternative to the l.g.g.d. model, we also consider a time series approach to
modelling the marginals, given by the GARCH(p,q) model, as described in [3, 4],
and characterised by the error variance:

frvik,u,b)=

q p
o’ =ao+ D wigr  + > Biol . (11)
i=1 i=1

4.1 Stage 1: Fitting the Marginal Distributions via MLE

The estimation for the three model parameters in the 1.g.g.d. can be challenging due to
the fact that a wide range of model parameters, especially for k, can produce similar
resulting density shapes (see discussions in [19]). To overcome this complication
and to make the estimation efficient, it is proposed to utilise a combination of profile
likelihood methods over a grid of values for £ and perform profile likelihood based
MLE estimation for each value of k, over the other two parameters b and u. The
differentiation of the profile likelihood for a given value of k produces the system of
two equations:

e T Zhoes(2n) s
exp(ft) = |:; Zexp (&y_ﬁ)} ; - (‘ﬁ) -y - % =0,
i=1 = )
(12)

where n is the number of observations, y; = log x;,6 = b/«/z and it = u+blogk.
The second equation is solved directly via a simple root search to give an estimation
for 6 and then substitution into the first equation results in an estimate for ji. Note,
for each value of k we select in the grid, we get the pair of parameter estimates [t
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and &, which can then be plugged back into the profile likelihood to make it purely
a function of k, with the estimator for k then selected as the one with the maximum
likelihood score. As a comparison, we also fit the GARCH(1,1) model using the
MATLAB MFEtoolbox using the default settings.

4.2 Stage 2: Fitting the Mixture Copula via MLE

In order to fit the copula model, the parameters are estimated using maximum like-
lihood on the data after conditioning on the selected marginal distribution models
and their corresponding estimated parameters obtained in Stage 1. These models are
utilised to transform the data using the CDF function with the l.g.g.d. MLE parame-
ters (12, i and I;) or using the conditional variances to obtain standardised residuals
for the GARCH model. Therefore, in this second stage of MLE estimation, we aim
to estimate either the one parameter mixture of CFG components with parameters

0= (Pclaytons Pfrank > Pgumbels Aclaytons Afrank > Agumbel)> the one parameter mixture of
CG components with parameters 6 = (Pclaytons Pgumbels Aclaytons Agumbel) OF the two

parameter outer power transformed Clayton with parameters @ = (0clayton, Belayton)-
The log likelihood expression for the mixture copula models, is given generically
by:

n n d
10) = D log c(F1(Xi1: i1, 61). ... Fa(Xiai ha. 6)) + D > log fj(Xiji itj. 6)).
i=1 i=1j=1

13)
This optimization is achieved via a gradient descent iterative algorithm which was
found to be quite robust given the likelihood surfaces considered in these models with
the real data. Alternative estimation procedures such as expectation-maximisation
were not found to be required.

5 Exchange Rate Multivariate Data Description and
Currency Portfolio Construction

In our study, we fit copula models to the high interest rate basket and the low interest
rate basket updated for each day in the period 02/01/1989 to 29/01/2014 using log
return forward exchange rates at one month maturities for data covering both the
previous 6 months and previous year as a sliding window analysis on each trading
day in this period.

Our empirical analysis consists of daily exchange rate data for a set of 34 currency
exchange rates relative to the USD, as in [23]. The currencies analysed included:
Australia (AUD), Brazil (BRL), Canada (CAD), Croatia (HRK), Cyprus (CYP),
Czech Republic (CZK), Egypt (EGP), Euro area (EUR), Greece (GRD), Hungary
(HUF), Iceland (ISK), India (INR), Indonesia (IDR), Israel (ILS), Japan (JPY),
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Malaysia (MYR), Mexico (MXN), New Zealand (NZD), Norway (NOK), Philippines
(PHP), Poland (PLN), Russia (RUB), Singapore (SGD), Slovakia (SKK), Slove-
nia (SIT), South Africa (ZAR), South Korea (KRW), Sweden (SEK), Switzerland
(CHF), Taiwan (TWD), Thailand (THB), Turkey (TRY), Ukraine (UAH) and the
United Kingdom (GBP).

We have considered daily settlement prices for each currency exchange rate as
well as the daily settlement price for the associated 1 month forward contract. We
utilise the same dataset (albeit starting in 1989 rather than 1983 and running up
until January 2014) as studied in [20, 23] in order to replicate their portfolio returns
without tail dependence risk adjustments. Due to differing market closing days, e.g.
national holidays, there was missing data for a couple of currencies and for a small
number of days. For missing prices, the previous day’s closing prices were retained.

As was demonstrated in Eq. (1), the differential of interest rates between two
countries can be estimated through the ratio of the forward contract price and the
spot price, see [18] who show this holds empirically on a daily basis. Accordingly,
instead of considering the differential of risk-free rates between the reference and
the foreign countries, we build our respective baskets of currencies with respect to
the ratio of the forward and the spot prices for each currency. On a daily basis,
we compute this ratio for each of the d currencies (available in the dataset on that
day) and then build five baskets. The first basket gathers the d /5 currencies with the
highest positive differential of interest rate with the US dollar. These currencies are
thus representing the ‘investment’ currencies, through which we invest the money to
benefit from the currency carry trade. The last basket will gather the d/5 currencies
with the highest negative differential (or at least the lowest differential) of interest
rate. These currencies are thus representing the ‘financing’ currencies, through which
we borrow the money to build the currency carry trade.

Given this classification, we investigate then the joint distribution of each group
of currencies to understand the impact of the currency carry trade, embodied by the
differential of interest rates, on currencies returns. In our analysis, we concentrate on
the high interest rate basket (investment currencies) and the low interest rate basket
(funding currencies), since typically when implementing a carry trade strategy one
would go short the low interest rate basket and go long the high interest rate basket.

6 Results and Discussion

In order to model the marginal exchange rate log returns, we considered two
approaches. First, we fit Log Generalised Gamma models to each of the 34 cur-
rencies considered in the analysis, updating the fits for every trading day based on
a 6 month sliding window. A time series approach was also considered to fit the
marginals, as is popular in much of the recent copula literature, see for example [4],
using GARCH(1,1) models for the 6-month sliding data windows. In each case we
are assuming approximate local stationarity over these short 6 month time frames.
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Table 1 Average AIC for the Generalised Gamma (GG) and the GARCH(1,1) for the four most
frequent currencies in the high interest rate and the low interest rate baskets over the 2001-2014
data period split into two chunks, i.e. 6 years

01-07 07-14

Investment Currency GG GARCH GG GARCH
TRY 356.9 (3.5) 341.1 21.7) 358.7 (3.0) 349.1 (16.8)
MXN 360.0 (1.2) 357.04 (3.8) 358.6 (4.0) 344.5 (28.1)
ZAR 358.7 (3.0) 353.5(11.4) 358.0 (6.1) 352.8 (12.2)
BRL 359.0 (2.8) 341.6 (19.4) 360.0 (2.1) 341.6 (23.2)

Funding JPY 361.2 (0.9) 356.5(7.2) 356.9 (6.8) 355.0 (7.0)
CHF 360.8 (1.4) 359.1 (2.9) 358.6 (7.4) 355.4 (8.8)
SGD 360.0 (2.7) 356.8 (5.7) 360.0 (2.6) 353.7(7.5)
TWD 358.7 (6.2) 347.0 (16.4) 359.1 (5.8) 348.5 (13.2)

Standard deviations are shown in parentheses. Similar performance was seen between 1989 and
2001

A summary of the marginal model selection can be seen in Table 1, which shows
the average AIC scores for the four most frequent currencies in the high interest
rate and the low interest rate baskets over the data period. Whilst the AIC for the
GARCH(1,1) model is consistently lower than the respective AIC for the Generalised
Gamma, the standard errors are sufficiently large for there to be no clear favourite
between the two models.

However, when we consider the model selection of the copula in combination
with the marginal model, we observe lower AIC scores for copula models fitted
on the pseudo-data resulting from using Generalised Gamma margins than using
GARCH(1,1) margins. This is the case for all three copula models under consid-
eration in the paper. Figure 1 shows the AIC differences when using the Clayton-
Frank-Gumbel copula in combination with the two choices of marginal for the high
interest rate and the low interest rate basket, respectively. Over the entire data period,
the mean difference between the AIC scores for the CFG model with Generalised
Gamma versus GARCH(1,1) marginals for the high interest rate basket is 12.3 and
for the low interest rate basket is 3.6in favour of the Generalised Gamma.

Thus, it is clear that the Generalised Gamma model is the best model in our copula
modelling context and so is used in the remainder of the analysis. We now consider
the goodness-of-fit of the three copula models applied to the high interest rate basket
and low interest rate basket pseudo data. We used a scoring via the AIC between the
three component mixture CFG model versus the two component mixture CG model
versus the two parameter OpC model. One could also use the Copula-Information-
Criterion (CIC), see [13] for details.

The results are presented for this comparison in Fig.2, which shows the dif-
ferentials between AIC for CFG versus CG and CFG versus OpC for each of the
high interest rate and the low interest rate currency baskets. We can see it is not
unreasonable to consider the CFG model for this analysis, since over the entire data
period, the mean difference between the AIC scores for the CFG and the CG models
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AIC of CFG Model with GenGamma Margins minus AIC of CFG with GARCH Margins on High Basket.
(Negative means CFG is a better fit)
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Fig.1 Comparison of AIC for Clayton-Frank-Gumbel model fit on the pseudo-data resulting from
generalised gamma versus GARCH(1,1) margins. The high interest rate basket is shown in the
upper panel and the low interest rate basket is shown in the lower panel

for the high interest rate basket is 1.33 and for the low interest rate basket is 1.62 in
favour of the CFG.

However, from Fig. 2, we can see that during the 2008 credit crisis period, the CFG
model is performing much better. The CFG copula model provides a much better
fit when compared to the OpC model, as shown by the mean difference between
the AIC scores of 9.58 for the high interest rate basket and 9.53 for the low interest
rate basket. Similarly, the CFG model performs markedly better than the OpC model
during the 2008 credit crisis period.

6.1 Tail Dependence Results

Below, we will examine the time-varying parameters of the maximum likelihood fits
of this mixture CFG copula model. Here, we shall focus on the strength of dependence
present in the currency baskets, given the particular copula structures in the mixture,
which is considered as tail upside/downside exposure of a carry trade over time.
Figure 3 shows the time-varying upper and lower tail dependence, i.e. the extreme
upside and downside risk exposures for the carry trade basket, present in the high
interest rate basket under the CFG copula fit and the OpC copula fit. Similarly, Fig. 4
shows this for the low interest rate basket.

Remark 2 (Model Risk and its Influence on Upside and Downside Risk Exposure) In
fitting the OpC model, we note that independent of the strength of true tail dependence
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Fig. 2 Comparison of AIC for Clayton-Frank-Gumbel model with Clayton-Gumbel and outer
power clayton models on high and low interest rate baskets with generalised gamma margins. The
high interest rate basket is shown in the upper panel and the low interest rate basket is shown in the
lower panel

in the multivariate distribution, the upper tail dependence coefficient A4 for this
model strictly increases with dimension very rapidly. Therefore, when fitting the OpC
model, if the basket size becomes greater than bivariate, i.e. from 1999 onwards, the
upper tail dependence estimates become very large (even for outer power parameter
values very close to § = 1). This lack of flexibility in the OpC model only becomes

VIX vs Tail Dependence Present in CFG Copula and OpC Copula in High IR Basket

Upper Tail Dependence
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Fig. 3 Comparison of Volatility Index (VIX) with upper and lower tail dependence of the high
interest rate basket in the CFG copula and OpC copula. US NBER recession periods are represented
by the shaded grey zones. Some key crisis dates across the time period are labelled
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VIX vs Tail Dependence Present in CFG Copula and OpC Copula in Low IR Basket
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Fig. 4 Comparison of Volatility Index (VIX) with upper and lower tail dependence of the low
interest rate basket in the CFG copula and OpC copula. US NBER recession periods are represented
by the shaded grey zones. Some key crisis dates across the time period are labelled

apparent in baskets of dimension greater than 2, but is also evident in the AIC scores
in Fig. 2. Here, we see an interesting interplay between the model risk associated to
the dependence structure being fit and the resulting interpreted upside or downside
financial risk exposures for the currency baskets.

Focusing on the tail dependence estimate produced from the CFG copula fits, we
can see that there are indeed periods of heightened upper and lower tail dependence in
the high interest rate and the low interest rate baskets. There is a noticeable increase
in upper tail dependence in the high interest rate basket at times of global market
volatility. Specifically, during late 2007, i.e. the global financial crisis, there is a
sharp peak in upper tail dependence. Preceding this, there is an extended period of
heightened lower tail dependence from 2004 to 2007, which could tie in with the
building of the leveraged carry trade portfolio positions. This period of carry trade
construction is also very noticeable in the low interest rate basket through the very
high levels of upper tail dependence.

We compare in Figs. 3 and 4 the tail dependence plotted against the VIX volatility
index for the high interest rate basket and the low interest rate basket, respectively,
for the period under investigation. The VIX is a popular measure of the implied
volatility of S&P 500 index options—often referred to as the fear index. As such,
it is one measure of the market’s expectations of stock market volatility over the
next 30 days. We can clearly see here that in the high interest rate basket, there
are upper tail dependence peaks at times when there is an elevated VIX index,
particularly post-crisis. However, we would not expect the two to match exactly
since the VIX is not a direct measure of global FX volatility. We can thus conclude
that investors’ risk aversion clearly plays an important role in the tail behaviour. This
conclusion corroborates recent literature regarding the skewness and the kurtosis
features characterising the currency carry trade portfolios [5, 11, 23].
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6.2 Pairwise Decomposition of Basket Tail Dependence

In order to examine the contribution of each pair of currencies to the overall n-
dimensional basket tail dependence, we calculated the corresponding non-parametric
pairwise tail dependencies for each pair of currencies. In Fig. 5, we can see the average
upper and lower non-parametric tail dependence for each pair of currencies during
the 2008 credit crisis, with the 3 currencies most frequently in the high interest rate
and the low interest rate baskets labelled accordingly. The lower triangle represents
the non-parametric pairwise lower tail dependence and the upper triangle represents
the non-parametric pairwise upper tail dependence.

If one was trying to optimise their currency portfolio with respect to the tail risk
exposures, i.e. to minimise negative tail risk exposure and maximise positive tail risk
exposure, then one would sell short currencies with high upper tail dependence and
low lower tail dependence, whilst buying currencies with low upper tail dependence
and high lower tail dependence.

Similarly, in Fig. 6 we see the pairwise non-parametric tail dependencies averaged
over the last 12 months (01/02/2013 to 29/01/2014). Comparing this heat map to the
heat map during the 2008 credit crisis (Fig.5), we notice that in general there are
lower values of tail dependence amongst the currency pairs.

We performed linear regression of the pairwise non-parametric tail dependence
on the respective basket tail dependence for the days, during the period (01/02/2013
to 29/01/2014), on which the 3 currencies all appeared in the basket (224 out of
250 for the lower interest rate basket and 223 out of 250 for the high interest rate
basket). The regression coefficients and R> values can be seen in Table2. We can

Period = 26-May-2008 - 23-Nov-2009

ST o TS T - o o NN L1 1 STy 1
EUR TRY JPY GBP AUD CAD NOK CHF SEK MXN PLN MYR SGD INR ZAR NZD THB KRW TWD BRL HRK CZK HUF ISK IDR ILS PHP RUB UAH

Fig. 5 Heat map showing the strength of non-parametric tail dependence between each pair of
currencies averaged over the 2008 credit crisis period. Lower tail dependence is shown in the lower
triangle and upper tail dependence is shown in the upper triangle. The 3 currencies most frequently
in the high interest rate and the low interest rate baskets are labelled
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Period = 01-Feb-2013 - 29-Jan-2014
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XN PLN MYR SGD NZD THB. RUB UAH

Fig. 6 Heat map showing the strength of non-parametric tail dependence between each pair of
currencies averaged over the last 12 months (01/02/2013-29/01/2014). Lower tail dependence is
shown in the lower triangle and upper tail dependence is shown in the upper triangle. The 3
currencies most frequently in the high interest rate and the low interest rate baskets are labelled

interpret this as the relative contribution of each of the 3 currency pairs to the overall
basket tail dependence. We note that for the low interest rate lower tail dependence
and for the high interest rate upper tail dependence, there is a significant degree of
cointegration between the currency pair covariates and hence we might be able to
use a single covariate due to the presence of a common stochastic trend.

Table 2 Pairwise non-parametric tail dependence, during the period 01/02/2013 to 29/01/2014,
regressed on respective basket tail dependence (standard errors are shown in parentheses)

Low IR Basket Constant CHF JPY CZK CHF CZK JPY R?
Upper TD 0.22 (0.01) 0.02 (0.03) 0.18 (0.02) 0.38 (0.05) 0.57
Lower TD 0.71 (0.17) —0.62 (0.25) —0.38 (0.26) 0.23 (0.32) 0.28
High IR Basket Constant EGP INR UAH EGP UAH INR R?
Upper TD 0.07 (0.01) —0.06 (0.33) 0.59 (0.08) 2.37 (0.42) 04
Lower TD 0.1 (0.02) 0.56 (0.05) 0.44 (0.08) —0.4(0.07) 0.44

The 3 currencies most frequently in the respective baskets are used as independent variables
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6.3 Understanding the Tail Exposure Associated with the
Carry Trade and Its Role in the UIP Puzzle

As was discussed in Sect. 2, the tail exposures associated with a currency carry trade
strategy can be broken down into the upside and downside tail exposures within each
of the long and short carry trade baskets. The downside relative exposure adjusted
returns are obtained by multiplying the monthly portfolio returns by one minus the
upper and the lower tail dependence present, respectively, in the high interest rate
basket and the low interest rate basket at the corresponding dates. The upside relative
exposure adjusted returns are obtained by multiplying the monthly portfolio returns
by one plus the lower and upper tail dependence present, respectively, in the high
interest rate basket and the low interest rate basket at the corresponding dates. Note
that we refer to these as relative exposure adjustments only for the tail exposures
since we do not quantify a market price per unit of tail risk. However, this is still
informative as it shows a decomposition of the relative exposures from the long and
short baskets with regard to extreme events.

Downside Risk Adjusted Returns for HML basket (penalising tail dependence)
250 (o s A S s SR SR .

— HML Returns

HIGH IR CFG Upper TD risk adj returns

200 | A4 LOW IR CFG Lower TD risk adj returns L B B N R SR RN R

=== HIGH IR OpC Upper TD risk adj returns

+ LOW IR OpC Lower TD risk adj returns

150 [ R R R Sy

T

Cumulative log returns (%)

88 90 92 94 96 98 00 02 04 06 08 10 12 14
Date

Fig.7 Cumulative log returns of the carry trade portfolio (HML = High interest rate basket minus
low interest rate basket). Downside exposure adjusted cumulative log returns using upper/lower
tail dependence in the high/low interest rate basket for the CFG copula and the OpC copula are
shown for comparison

As can be seen in Fig. 7, the relative adjustment to the absolute cumulative returns
for each type of downside exposure is greatest for the low interest rate basket, except
under the OpC model, but this is due to the very poor fit of this model to baskets
containing more than 2 currencies which we see transfers to financial risk exposures.
This is interesting because intuitively one would expect the high interest rate basket
to be the largest source of tail exposure. However, one should be careful when
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Fig. 8 Cumulative log returns of the carry trade portfolio (HML = High interest rate basket minus
low interest rate basket). Upside exposure adjusted cumulative log returns using lower/upper tail
dependence in the high/low interest rate basket for the CFG copula and the OpC copula are shown
for comparison

interpreting this plot, since we are looking at the extremal tail exposure. The analysis
may change if one considered the intermediate tail risk exposure, where the marginal
effects become significant. Similarly, Fig.8 shows the relative adjustment to the
absolute cumulative returns for each type of upside exposure is greatest for the low
interest rate basket. The same interpretation as for the downside relative exposure
adjustments can be made here for upside relative exposure adjustments.

7 Conclusion

In this paper, we have shown that the positive and negative multivariate tail risk
exposures present in currency carry trade baskets are additional factors needing
careful consideration when one constructs a carry portfolio. Ignoring these exposures
leads to a perceived risk return profile that is not reflective of the true nature of such
a strategy. In terms of marginal model selection, it was shown that one is indifferent
between the log Generalised Gamma model and the frequently used GARCH(1,1)
model. However, in combination with the three different Archimedean copula models
considered in this paper, the log Generalised Gamma marginals provided a better
overall model fit.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Participating Life Insurance Contracts under
Risk Based Solvency Frameworks: How
to Increase Capital Efficiency by Product Design

Andreas Reuf}, Jochen Rufs and Jochen Wieland

Abstract Traditional participating life insurance contracts with year-to-year
(cliquet-style) guarantees have come under pressure in the current situation of low
interest rates and volatile capital markets, in particular when priced in a market con-
sistent valuation framework. In addition, such guarantees lead to rather high capital
requirements under risk-based solvency frameworks such as Solvency II or the Swiss
Solvency Test (SST). We introduce several alternative product designs and analyze
their impact on the insurer’s financial situation. We also introduce a measure for
Capital Efficiency that considers both, profits and capital requirements, and compare
the results of the innovative products to the traditional product design with respect
to Capital Efficiency in a market consistent valuation model.

Keywords Capital efficiency - Participating life insurance + Embedded options -
Interest rate guarantees + Market consistent valuation * Risk based capital require-
ments * Solvency II - SST

1 Introduction

Traditional participating life insurance products play a major role in old-age provision
in Continental Europe and in many other countries. These products typically come
with a guaranteed benefit at maturity, which is calculated using some guaranteed
minimum interest rate. Furthermore, the policyholders receive an annual surplus
participation that depends on the performance of the insurer’s assets. With the so-
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called cliquet-style guarantees, once such surplus has been assigned to the policy at
the end of the year, it increases the guaranteed benefit based on the same guaranteed
minimum interest rate. This product design can create significant financial risk.

Briys and de Varenne [8] were among the first to analyze the impact of interest rate
guarantees on the insurer’s risk exposure. However, they considered a simple point-
to-point guarantee where surplus (if any) is credited at maturity only. The financial
risks of cliquet-style guarantee products have later been investigated, e.g., by Grosen
and Jorgensen [17]. They introduce the “average interest principle”, where the insurer
aims to smooth future bonus distributions by using a bonus reserve as an additional
buffer besides the policy reserve (the client’s account). Besides valuing the contract
they also calculate default probabilities (however, under the risk-neutral probability
measure Q). Grosen et al. [19] extend the model of Grosen and Jorgensen [17], and
introduce mortality risk. Grosen and Jorgensen [ 18] modify the model used by Briys
and de Varenne [8] by incorporating a regulatory constraint for the insurer’s assets
and analyzing the consequences for the insurer’s risk policy. Mitersen and Persson
[23] analyze a different cliquet-style guarantee framework with the so-called terminal
bonuses, whereas Bauer et al. [4] specifically investigate the valuation of participating
contracts under the German regulatory framework.

While all this work focuses on the risk-neutral valuation of life insurance contracts
(sometimes referred to as “financial approach”), Kling et al. [20, 21] concentrate
on the risk a contract imposes on the insurer (sometimes referred to as “actuar-
ial approach”) by means of shortfall probabilities under the real-world probability
measure P.

Barbarin and Devolder [3] introduce a methodology that allows for combining
the financial and actuarial approach. They consider a contract similar to Briys and
de Varenne [8] with a point-to-point guarantee and terminal surplus participation.
To integrate both approaches, they use a two-step method of pricing life insurance
contracts: First, they determine a guaranteed interest rate such that certain regulatory
requirements are satisfied, using value at risk and expected shortfall risk measures.
Second, to obtain fair contracts, they use risk-neutral valuation and adjust the par-
ticipation in terminal surplus accordingly. Based on this methodology, Gatzert and
Kling [14] investigate parameter combinations that yield fair contracts and analyze
the risk implied by fair contracts for various contract designs. Gatzert [13] extends
this approach by introducing the concept of “risk pricing” using the “fair value of
default” to determine contracts with the same risk exposure. Graf et al. [16] (also
building on Barbarin and Devolder [3]) derive the risk minimizing asset allocation
for fair contracts using different risk measures like the shortfall probability or the
relative expected shortfall.

Under risk-based solvency frameworks such as Solvency II or the Swiss Solvency
Test (SST), the risk analysis of interest rate guarantees becomes even more impor-
tant. Under these frameworks, capital requirement is derived from a market consistent
valuation considering the insurer’s risk. This risk is particularly high for long term
contracts with a year-to-year guarantee based on a fixed (i.e., not path dependent)
guaranteed interest rate. Measuring and analyzing the financial risk in relation to the
required capital, and analyzing new risk figures such as the Time Value of Options
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and Guarantees (TVOG) is a relatively new aspect, which gains importance with
new solvability frameworks, e.g., the largest German insurance company (Allianz)
announced in a press conference on June 25, 2013 the introduction of a new partici-
pating life insurance product that (among other features) fundamentally modifies the
type of interest rate guarantee (similar to what we propose in the remainder of this
paper). It was stressed that the TVOG is significantly reduced for the new product.
Also, it was mentioned that the increase of the TVOG resulting from an interest rate
shock (i.e., the solvency capital requirement for interest rate risk) is reduced by 80 %
when compared to the previous product. This is consistent with the findings of this
paper.

The aim of this paper is a comprehensive risk analysis of different contract designs
for participating life insurance products. Currently, there is an ongoing discussion,
whether and how models assessing the insurer’s risk should be modified to reduce the
capital requirements (e.g., by applying an “ultimate forward rate” set by the regula-
tor). We will in contrast analyze how (for a given model) the insurer’s risk, and hence
capital requirement can be influenced by product design. Since traditional cliquet-
style participating life insurance products lead to very high capital requirements, we
will introduce alternative contract designs with modified types of guarantees, which
reduce the insurer’s risk and profit volatility, and therefore also the capital require-
ments under risk-based solvency frameworks. In order to compare different product
designs from an insurer’s perspective, we develop and discuss the concept of Capital
Efficiency, which relates profit to capital requirements.” We identify the key drivers
of Capital Efficiency, which are then used in our analyses to assess different product
designs.

The remainder of this paper is structured as follows:

In Sect.2, we present three considered contract designs that all come with the
same level of guaranteed maturity benefit but with different types of guarantee:

e Traditional product: a traditional contract with a cliquet-style guarantee based on
a guaranteed interest rate > 0.

e Alternative product 1: a contract with the same guaranteed maturity benefit, which
is, however, valid only at maturity; additionally, there is a 0 % year-to-year guar-
antee on the account value meaning that the account value cannot decrease from
one year to the next.

e Alternative product 2: a contract with the same guaranteed maturity benefit that is,
however, valid only at maturity; there is no year-to-year guarantee on the account
value meaning that the account value may decrease in some years.

1 Cf. [1], particularly slide D24.

2 Of course, there already exist other well-established measures linking profit to required capital,
such as the return on risk-adjusted capital (RORAC). However, they may not be suitable to assess
products with long-term guarantees since they consider the required capital on a one-year basis only.
To the best of our knowledge there is no common measure similar to what we define as Capital
Efficiency that relates the profitability of an insurance contract to the risk it generates, and hence
capital it requires over the whole contract term.
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On top of the different types of guarantees, all three products include a surplus
participation depending on the insurer’s return on assets. Our model is based on
the surplus participation requirements given by German regulation. That means in
particular that each year at least 90 % of the (book value) investment return has to be
distributed to the policyholders.

To illustrate the mechanics, we will first analyze the different products under
different deterministic scenarios. This shows the differences in product design and
how they affect the insurer’s risk.

In Sect. 3, we introduce our stochastic model, which is based on a standard fi-
nancial market model: The stock return and short rate processes are modeled using
a correlated Black-Scholes and Vasicek model.> We then describe how the evolu-
tion of the insurance portfolio and the insurer’s balance sheet are simulated in our
asset-liability-model. The considered asset allocation consists of bonds with differ-
ent maturities and stocks. The model also incorporates management rules as well as
typical intertemporal risk sharing mechanisms (e.g., building and dissolving unreal-
ized gains and losses), which are an integral part of participating contracts in many
countries and should therefore not be neglected.

Furthermore, we introduce a measure for Capital Efficiency based on currently
discussed solvency regulations such as the Solvency II framework. We also propose
a more tractable measure for an assessment of the key drivers of Capital Efficiency.

In Sect. 4, we present the numerical results. We show that the alternative products
are significantly more capital efficient: financial risk, and therefore also capital re-
quirement is significantly reduced, although in most scenarios all products provide
the same maturity benefit to the policyholder.* We observe that the typical “asymme-
try”, i.e., particularly the heavy left tail of the insurer’s profit distribution is reduced
by the modified products. This leads to a significant reduction of both, the TVOG
and the solvency capital requirement for interest rate risk.

Section 5 concludes and provides an outlook for further research.

2 Considered Products

In this section, we describe the three different considered contract designs. Note that
for the sake of simplicity, we assume that in case of death in year ¢, always only the
current account value AV; (defined below) is paid at the end of year 7. This allows
us to ignore mortality for the calculation of premiums and actuarial reserves.

3 The correlated Black-Scholes and Vasicek model is applied in Zaglauer and Bauer [29] and Bauer
et al. [5] in a similar way.

4 Note: In scenarios where the products’ maturity benefits do differ, the difference is limited since
the guaranteed maturity benefit (which is the same for all three products) is a lower bound for the
maturity benefit.
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2.1 The Traditional Product

First, we consider a traditional participating life insurance contract with a cliquet-
style guarantee. It provides a guaranteed benefit G at maturity 7 based on annual
premium payments P. The pricing is based on a constant guaranteed interest rate i
and reflects annual charges ¢;. The actuarial principle of equivalence’ yields

T-1

Z (P—c)- 1+ =0G. (1)

t=0

During the lifetime of the contract, the insurer has to build up sufficient (prospective)
actuarial reserves A R; for the guaranteed benefit based on the same constant interest

rate i:
1 T—t T-1 1 k—t
AR, =G - — P — . . 2
' (1+i) kzz;( ‘) (1+i) @

The development of the actuarial reserves is then given by:

AR, = (AR_1+ P —c;_1) - (1 +10).

Traditional participating life insurance contracts typically include an annual sur-
plus participation that depends on the performance of the insurer’s assets. For exam-
ple, German regulation requires that at least a “minimum participation” of p = 90 %
of the (local GAAP book value) earnings on the insurer’s assets has to be credited
to the policyholders’ accounts. For the traditional product, any surplus assigned to
a contract immediately increases the guaranteed benefit based on the same interest
rate i. More precisely, the surplus s; is credited to a bonus reserve account BR;
(where BRy = 0) and the interest rate i will also apply each year on the bonus
reserve:

BR; = BR;—1 - (1 4+1) + ;.

The client’s account value AV, consists of the sum of the actuarial reserve AR, and
the bonus reserve B R;; the maturity benefit is equal to AVr.

As a consequence, each year at least the rate i has to be credited to the contracts.
The resulting optionality is often referred to as asymmetry: If the asset return is above
i, alarge part (e.g., p = 90 %) of the return is credited to the client as a surplus and
the shareholders receive only a small portion (e.g., | — p = 10 %) of the return.
If, on the other hand, the asset returns are below i, then 100 % of the shortfall has
to be compensated by the shareholder. Additionally, if the insurer distributes a high
surplus, this increases the insurer’s future risk since the rate i has to be credited also
to this surplus amount in subsequent years. Such products constitute a significant

3 For the equivalence principle, see e.g., Saxer [25], Wolthuis [28].
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MNon-critical i tr [ Adverse scenario for traditional product
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Fig. 1 Two illustrative deterministic scenarios for the traditional product: asset returns and yield
distribution

financial risk to the insurance company, in particular in a framework of low interest
rates and volatile capital markets.®

The mechanics of this year-to-year guarantee are illustrated in Fig.1 for two
illustrative deterministic scenarios. We consider a traditional policy with term to
maturity 7 = 20 years and a guaranteed benefit of G = €20,000. Following the
current situation in Germany, we leti = 1.75 % and assume a surplus participation
rate of p = 90 % on the asset returns.

The first scenario is not critical for the insurer. The asset return (which is here
arbitrarily assumed for illustrative purposes) starts at 3 %, then over time drops to 2 %
and increases back to 3 % where the x axis shows the policy year. The chart shows
this asset return, the “client’s yield” (i.e., the interest credited to the client’s account
including surplus), the “required yield” (which is defined as the minimum rate that
has to be credited to the client’s account), and the insurer’s yield (which is the portion
of the surplus that goes to the shareholder). Obviously, in this simple example, the
client’s yield always amounts to 90 % of the asset return and the insurer’s yield
always amounts to 10 % of the asset return. By definition, for this contract design,
the required yield is constant and always coincides with i = 1.75 %.

In the second scenario, we let the asset return drop all the way down to 1 %.
Whenever 90 % of the asset return would be less than the required yield, the insurer
has to credit the required yield to the account value. This happens at the shareholder’s
expense, i.e., the insurer’s yield is reduced and even becomes negative. This means
that a shortfall occurs and the insurer has to provide additional funds.

It is worthwhile noting that in this traditional product design, the interest rate i
plays three different roles:

e pricing interest rate i, used for determining the ratio between the premium and
the guaranteed maturity benefit,

e reserving interest rate i,, i.e., technical interest rate used for the calculation of the
prospective actuarial reserves,

e year-to-year minimum guaranteed interest rate ig, i.€., a minimum return on the
account value.

6 This was also a key result of the QISS final report preparing for Solvency II, cf. [2, 11].
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2.2 Alternative Products

We will now introduce two alternative product designs, which are based on the idea
to allow different values for the pricing rate, the reserving rate and the year-to-
year minimum guaranteed interest rate on the account value. So Formulas 1 and 2
translate to the following formulae for the relation between the annual premium, the
guaranteed benefit and the actuarial reserves:

T-1

Sy (1+i) =6

=0

1 T—t T-1 1 k—t
AR, =G - — P—cp)- .
! (1+i,) Z‘( 2 (1+i,)

Note, that in the first years of the contract, negative values for AR; are possible in
case of i, < i,, which implies a “financial buffer” at the beginning of the contract.
The year-to-year minimum guaranteed interest rate i, is not relevant for the formulae
above, but it is simply a restriction for the development of the client’s account, i.e.,

AV, = (AVii + P —eo1) - (1+iy)

where AVy = max {A Ry, 0} is the initial account value of the contract.

The crucial difference between such new participating products and traditional
participating products is that the guaranteed maturity benefit is not explicitly in-
creased during the lifetime of the contract (but, of course, an increase in the account
value combined with the year-to-year minimum guaranteed interest rate can implic-
itly increase the maturity guarantee).

In this setting, the prospective reserve AR; is only a minimum reserve for the
guaranteed maturity benefit: The insurer has to make sure that the account value
does not fall below this minimum reserve. This results in a “required yield” explained
below. Under “normal” circumstances the account value (which is also the surrender
value) exceeds the minimum reserve. Therefore, the technical reserve (under local
GAAP), which may not be below the surrender value, coincides with the account
value.

The required yield on the account value in year ¢ is equal to

Zy — max

max {AR;, 0} L ig} ' 3)

AVici + P — ¢

The left part of (3) assures that the account value is nonnegative and never lower
than the actuarial reserve. The required yield decreases if the bonus reserve (which
is included in AV;_) increases.
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The surplus participation rules remain unchanged: the policyholder’s share p
(e.g., 90 %) of the asset return is credited to the policyholders (but not less than z;).
Hence, as long as the policyholder’s share is always above the technical interest rate
used in the traditional product, there is no difference between the traditional and the
alternative product designs.

Obviously, only combinations fulfilling i, < i, < i, result in suitable products:
If the first inequality is violated, then the year-to-year minimum guaranteed interest
rate results in a higher (implicitly) guaranteed maturity benefit than the (explicit)
guarantee resulting from the pricing rate. If the second inequality is violated then at
t = 0, additional reserves (exceeding the first premium) are required.

In what follows, we will consider two concrete alternative contract designs. Ob-
viously, the choice of i; fundamentally changes the mechanics of the guarantee em-
bedded in the product (or the “type” of guarantee), whereas the choice of i, changes
the level of the guarantee. Since the focus of this paper is on the effect of the different
guarantee mechanisms, we use a pricing rate that coincides with the technical rate of
the traditional product. Hence, the guaranteed maturity benefit remains unchanged.
Since the legally prescribed maximum value for the reserving rate also coincides
with the technical rate of the traditional product, we get i, = i, = 1.75 % for both
considered alternative designs.

In our alternative product 1, we set iy, = 0 % (0 % year-to-year guarantee) and for
alternative 2 we set iy, = —100 % (no year-to-year guarantee). In order to illustrate
the mechanics of the alternative products, Figs.2 and 3 show the two scenarios
from Fig. 1 for both alternative products. In the first scenario (shown on the left),
the required yield z; on the account value gradually decreases for both alternative
contract designs since the bonus reserve acts as some kind of buffer (as described
above). For alternative 1, the required yield can of course not fall below iy = 0%,
while for the alternative 2 it even becomes negative after some years.

The adverse scenario on the right shows that the required yield rises again after
years with low asset returns since the buffer is reduced. However, contrary to the
traditional product, the asset return stays above the required level and no shortfall
occurs.

Non-critical scenario for alternative 1 Adverse scenario for alternative 1
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3.00% v 3.00% -+
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Fig. 2 Two illustrative deterministic scenarios for alternative 1 product: asset returns and yield
distribution
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Fig. 3 Two illustrative deterministic scenarios for alternative 2 product: asset returns and yield
distribution

From a policyholder’s perspective, both alternative contract designs provide the
same maturity benefit as the traditional contract design in the first scenario since the
client’s yield is always above 1.75 %. In the second scenario, however, the maturity
benefit is slightly lower for both alternative contract designs since (part of) the buffer
built up in years 1 to 8 can be used to avoid a shortfall. In this scenario, the two
alternative products coincide, since the client’s yield is always positive.

Even if scenarios where the products differ appear (or are) unlikely, the mod-
ification has a significant impact on the insurer’s solvency requirements since the
financial risks particularly in adverse scenarios are a key driver for the solvency cap-
ital requirement. This will be considered in a stochastic framework in the following
sections.

3 Stochastic Modeling and Analyzed Key Figures

Since surplus participation is typically based on local GAAP book values (in particu-
lar in Continental Europe), we use a stochastic balance sheet and cash flow projection
model for the analysis of the product designs presented in the previous section. The
model includes management rules concerning asset allocation, reinvestment strat-
egy, handling of unrealized gains and losses and surplus distribution. Since the focus
of the paper is on the valuation of future profits and capital requirements we will
introduce the model under a risk-neutral measure. Similar models have been used
(also in a real-world framework) in Kling et al. [20, 21] and Graf et al. [16].

3.1 The Financial Market Model

We assume that the insurer’s assets are invested in coupon bonds and stocks. We
treat both assets as risky assets in a risk-neutral, frictionless and continuous financial
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market. Additionally, cash flows during the year are invested in a riskless bank
account (until assets are reallocated). We let the short rate process r; follow a Vasicek’
model, and the stock price S; follow a geometric Brownian motion:

dry = & (0 — r;) dt + 0, dW" and

ds,
T[ = r,dr + ,oade,(l) +1 - pzanW,(z),

t

where Wt(l) and Wt(z) each denote a Wiener process on some probability space
(2, 7 ,F, Q) with a risk-neutral measure Q and the natural filtration F = .%; =

o Ws(l), Ws(z) ,§ < t). The parameters «, 6, o, o5 and p are deterministic and

constant. For the purpose of performing Monte Carlo simulations, the stochastic
differential equations can be solved to

t t t
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where So = 1 and the initial short rate r( is a deterministic parameter. Then, the bank
account is given by B; = exp ( f(; rudu). It can be shown that the four (stochastic)

integrals in the formulae above follow a joint normal distribution.® Monte Carlo
paths are calculated using random realizations of this multidimensional distribution.
The discretely compounded yield curve at time ¢ is then given by’

ri(s) =
1f1—e*s 1 —e s o2 1—e*\? o2

exp| | —r+{s———) (60— )+ —) L)1
s K K k2 K 4k

for any time ¢ and term s > (. Based on the yield curves, we calculate par yields that
determine the coupon rates of the considered coupon bonds.

7 Cf. [27].

8 Cf. Zaglauer and Bauer [29]. A comprehensive explanation of this property is included in
Bergmann [6].

9 See Seyboth [26] as well as Branger and Schlag [7].
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Table 1 Balance sheet at

. Assets Liabilities
time ¢

BVS X,

BVS AV,

3.2 The Asset-Liability Model

The insurer’s simplified balance sheet at time ¢ is given by Table 1. Since our analysis
is performed for a specific portfolio of insurance contracts on a stand-alone basis,
there is no explicit allowance for shareholders’ equity or other reserves on the liability
side. Rather, X; denotes the shareholders’ profit or loss in year ¢, with corresponding
cash flow at the beginning of the next year. Together with AV; as defined in Sect.2,
this constitutes the liability side of our balance sheet.

In our projection of the assets and insurance contracts, incoming cash flows (pre-
mium payments at the beginning of the year, coupon payments and repayment of
nominal at the end of the year) and outgoing cash flows (expenses at the beginning of
the year and benefit payments at the end of the year) occur. In each simulation path,
cash flows occurring at the beginning of the year are invested in a bank account. At
the end of the year, the market values of the stocks and coupon bonds are derived and
the asset allocation is readjusted according to a rebalancing strategy with a constant
stock ratio g based on market values. Conversely, (1 — ¢) is invested in bonds and
any money on the bank account is withdrawn and invested in the portfolio consisting
of stocks and bonds.

If additional bonds need to be bought in the process of rebalancing, the corre-
sponding amount is invested in coupon bonds yielding at par with term M. However,
toward the end of the projection, when the insurance contracts’ remaining term is
less than M years, we invest in bonds with a term that coincides with the longest
remaining term of the insurance contracts. If bonds need to be sold, they are sold
proportionally to the market values of the different bonds in the existing portfolio.

With respect to accounting, we use book-value accounting rules following German
GAAP, which may result in unrealized gains or losses (UGL): Coupon bonds are
considered as held to maturity and their book value BV,? is always given by their
nominal amounts (irrespective if the market value is higher or lower). In contrast,
for the book value of the stocks B V,S , the insurer has some discretion.

Of course, interest rate movements as well as the rebalancing will cause fluc-
tuations with respect to the UGL of bonds. Also, the rebalancing may lead to the
realization of UGL of stocks. In addition, we assume an additional management rule
with respect to UGL of stocks: We assume that the insurer wants to create rather
stable book value returns (and hence surplus distributions) in order to signal stability
to the market. We, therefore, assume that a ratio dy,s of the UGL of stocks is realized
annually if unrealized gains exist and a ratio dneg Of the UGL is realized annually
if unrealized losses exist. In particular, dneg = 100 % has to be chosen in a legal
framework where unrealized losses on stocks are not possible.
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Based on this model, the total asset return on a book value basis can be calculated
in each simulation path each year as the sum of coupon payments from bonds,
interest payments on the bank account, and the realization of UGL. The split between
policyholders and shareholders is driven by the minimum participation parameter p
explained in Sect.2. If the cumulative required yield on the account values of all
policyholders is larger than this share, there is no surplus for the policyholders,
and exactly the respective required yield z; is credited to every account. Otherwise,
surplus is credited, which amounts to the difference between the policyholders’ share
of the asset return and the cumulative required yield. Following the typical practice,
e.g., in Germany, we assume that this surplus is distributed among the policyholders
such that all policyholders receive the same client’s yield (defined by the required
yield plus surplus rate), if possible. To achieve that, we apply an algorithm that

Z,(l) (k)

sorts the accounts by required yield, i.e., s 2y ) , k € Nin ascending order.

First, all contracts receive their respective required yield. Then, the available surplus
is distributed: Starting with the contract(s) with the lowest required yield zgl), the
algorithm distributes the available surplus to all these contracts until the gap to the
next required yield zt(z) is filled. Then, all the contracts with a required yield lower
or equal to z,(2) receive an equal amount of (relative) surplus until the gap to z§3) is
filled, etc. This is continued until the entire surplus is distributed. The result is that
all contracts receive the same client’s yield if this unique client’s yield exceeds the
required yield of all contracts. Otherwise, there exists a threshold z* such that all
contracts with a required yield above z* receive exactly their required yield (and no
surplus) and all contracts with a required yield below z* receive z* (i.e., they receive
some surplus).

From this, the insurer’s profit X, results as the difference between the total asset
return and the amount credited to all policyholder accounts. If the profit is negative,
a shortfall has occurred, which we assume to be compensated by a corresponding
capital inflow (e.g., from the insurer’s shareholders) at the beginning of the next
year.! Balance sheet and cash flows are projected over T years until all policies that
are in force at time zero have matured.

3.3 Key Drivers for Capital Efficiency

The term Capital Efficiency is frequently used in an intuitive sense, in particular
among practitioners, to describe the feasibility, profitability, capital requirement,
and riskiness of products under risk-based solvency frameworks. However, to the
best of our knowledge, no formal definition of this term exists. Nevertheless, it
seems obvious that capital requirement alone is not a suitable figure for managing a

10 We do not consider the shareholders’ default put option resulting from their limited liability,
which is in line with both, Solvency II valuation standards and the Market Consistent Embedded
Value framework (MCEV), cf. e.g., [5] or [10], Sect.5.3.4.
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product portfolio from an insurer’s perspective. Rather, capital requirement and the
resulting cost of capital should be considered in relation to profitability.

Therefore, a suitable measure of Capital Efficiency could be some ratio of prof-
itability and capital requirement, e.g., based on the distribution of the random variable

> 5
= )

ZT: RC,_{-CoC,
B;

=1

The numerator represents the present value of the insurer’s future profits, whereas the
denominator is equal to the present value of future cost of capital: RC, denotes the
required capital at time ¢ under some risk-based solvency framework, i.e., the amount
of shareholders’ equity needed to support the business in force. The cost of capital
is derived by applying the cost of capital rate CoC; for year ¢ on the required capital
at the beginning of this year.!! In practical applications, however, the distribution of
this ratio might not be easy to calculate. Therefore, moments of this distribution, a
separate analysis of (moments of) the numerator and the denominator or even just
an analysis of key drivers for that ratio could create some insight.

In this spirit, we will use a Monte Carlo framework to calculate the following key
figures using the model described above:

A typical market consistent measure for the insurer’s profitability is the expected
present value of future profits (PVFP),'? which corresponds to the expected value of
the numerator in (4). The PVFP is estimated based on Monte Carlo simulations:

PVFP = Z Z X" _ L ZPVFP(")
N - N - ’

where N is the number of scenarios, X t(") denotes the insurer’s profit/loss in year ¢
in scenario n, B,(") is the value of the bank account after ¢ years in scenario n, and
hence PVFP™ is the present value of future profits in scenario 7.

In addition, the degree of asymmetry of the shareholder’s cash flows can be char-
acterized by the distribution of PVFP™ over all scenarios'® and by the time value of
options and guarantees (TVOG). Under the MCEV framework,' the latter is defined
by

TVOG = PVFPcg — PVFP

11 This approach is similar to the calculation of the cost of residual nonhedgeable risk as introduced in
the MCEV Principles in [9], although RC; reflects the total capital requirement including hedgeable
risks.
12 The concept of PVFP is introduced as part of the MCEV Principles in [9].
13 Note that this is a distribution under the risk-neutral measure and has to be interpreted carefully.
However, it can be useful for explaining differences between products regarding PVFP and TVOG.
14

Cft. [9].
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Table 2 Product parameters I

Traditional Product (%) Alternative 1 (%) Alternative 2 (%)
ip,ir 1.75 1.75 1.75
ig 1.75 0 -100
(CE)

where PVFPcgp = > 7, X(C 7y is the present value of future profits in the so-called

“certainty equivalent” (CE) scenario. This deterministic scenario reflects the expected
development of the capital market under the risk-neutral measure. It can be derived
from the initial yield curve ro(s) based on the assumption that all assets earn the
forward rate implied by the initial yield curve.!> The TVOG is also used as an
indicator for capital requirement under risk-based solvency frameworks.

Comparing the PVFP for two different interest rate levels—one that we call ba-
sic level and a significantly lower one that we call stress level—provides another
important key figure for interest rate risk and capital requirements. In the standard
formula'® of the Solvency II framework

APVFP = PVFP(basic) — PVFP(stress)

determines the contribution of the respective product to the solvency capital require-
ment for interest rate risk (SCR;,;). Therefore, we also focus on this figure which
primarily drives the denominator in (4).

4 Results

4.1 Assumptions

The stochastic valuation model described in the previous section is applied to a
portfolio of participating contracts. For simplicity, we assume that all policyholders
are 40 years old at inception of the contract and mortality is based on the German
standard mortality table (DAV 2008 T). We do not consider surrender. Furthermore,
we assume annual charges c; that are typical in the German market consisting of
annual administration charges 8- P throughout the contract’s lifetime, and acquisition
charges o - T - P, which are equally distributed over the first 5 years of the contract.
Hence,¢; = 8- P+ « Té—P 1;¢(0,...,4)- Furthermore, we assume that expenses coincide
with the charges. Product parameters are given in Tables 2 and 3.

Stochastic projections are performed for a portfolio that was built up in the past
20 years (i.e., before ¢+ = 0) based on 1,000 new policies per year. Hence, we have a

15 Cf. Oechslin et al. [24].
16 A description of the current version of the standard formula can be found in [12].
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Table 3 Product parameters 11
G(€) T (years) P(€) B (%) o (%)
20,000 20 896.89 3 4

portfolio at the beginning of the projections with remaining time to maturity between
1 year and 19 years (i.e., T = 19 years).!” For each contract, the account value at
t = 0 is derived from a projection in a deterministic scenario. In this deterministic
scenario, we use a flat yield curve of 3.0 % (consistent with the mean reversion
parameter 6 of the stochastic model after + = 0), and parameters for management
rules described below. In line with the valuation approach under Solvency II and
MCEY, we do not consider new business.

The book value of the asset portfolio at + = 0 coincides with the book value of
liabilities. We assume a stock ratio of ¢ = 5 % with unrealized gains on stocks at
t = 0 equal to 10 % of the book value of stocks. The coupon bond portfolio consists
of bonds with a uniform coupon of 3.0 % where the time to maturity is equally split
between 1 year and M = 10 years.

Capital market parameters for the basic and stress projections are shown in Table 4.
The parameters «, oy, os and p are directly adopted from Graf et al. [16]. The pa-
rameters 6 and ry are chosen such that they are more in line with the current low
interest rate level. The capital market stress corresponds to an immediate drop of
interest rates by 100 basis points.

The parameters for the management rules are given in Table 5 and are consistent
with current regulation and practice in the German insurance market.

For all projections, the number of scenarios is N = 5,000. Further analyses
showed that this allows for a sufficiently precise estimation of the relevant figures.!®

Table 4 Capital market parameters

ro (%) 0 (%) K (%) oy (%) os (%) p (%)
Basic 2.5 3.0 30.0 2.0 20.0 15.0
Stress 1.5 2.0

17 Note that due to mortality before 7 = 0, the number of contracts for the different remaining times
to maturity is not the same.

18 In order to reduce variance in the sample an antithetic path selection of the random numbers is
applied, cf. e.g., Glasserman [15].
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Table 5 Parameters for management rules
q (%) M (years) dpos (%) dneg (%) p (%)
5 10 20 100 90

4.2 Comparison of Product Designs

In Table 6, the PVFP and the TVOG for the base case are compared for the three
products. All results are displayed as a percentage of the present value of future
premium income from the portfolio. For alternative 1, the PVFP increases from
3.63 to 4.24 %, i.e., by 0.61 percentage points (pp), compared to the traditional
contract design (which corresponds to a 17 % increase of profitability). This means
that this product with a “maturity only” guarantee and an additional guarantee that
the account value will not decrease is, as expected, more profitable than the product
with a traditional year-to-year (cliquet-style) guarantee. This difference is mainly
caused by the different degree of asymmetry of the shareholders’ cash flows which is
characterized by the TVOG. Since PVFP¢ g amounts to 4.26 % for all products in the
base case, the difference of TVOG between the traditional product and alternative
1 is also 0.61 pp. This corresponds to a TVOG reduction of more than 90 % for
alternative 1, which shows that the risk resulting from the interest rate guarantee is
much lower for the modified product.

Compared to this, the differences between alternative 1 and alternative 2 are
almost negligible. The additional increase of the PVFP is only 0.01 pp, which is due
to a slightly lower TVOG compared to alternative 1. This shows that the fact that
the account value may decrease in some years in alternative 2 does not provide a
material additional risk reduction.

Additional insights can be obtained by analyzing the distribution of PVFP™ (see
Fig.4)!: For the traditional contract design, the distribution is highly asymmetric
with a strong left tail and a significant risk of negative shareholder cash flows (on a
present value basis). In contrast, both alternative contract designs exhibit an almost
symmetric distribution of shareholder cash flows which explains the low TVOG.
Hence, the new products result in a significantly more stable profit perspective for
the shareholders, while for the traditional product the shareholder is exposed to
significantly higher shortfall risk.

Ultimately, the results described above can be traced back to differences in the
required yield. While for the traditional product, by definition, the required yield
always amounts to 1.75 %, it is equal to 0 % in most scenarios for the alternative 1
product. Only in the most adverse scenarios, the required yield rises toward 1.75 %.%°
For the alternative 2 product, it is even frequently negative.

19 Cf. Footnote 13.

20 Note that here, the required yield in the first projection year reflects the financial buffer available
for the considered portfolio of existing contracts at ¢ = 0. This is different from the illustrations in
Sect. 2, which consider individual contracts from inception to maturity.
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Distribution of PVFP(n) in base case
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Fig. 4 Histogram of PVFP™ in base case

Table 6 PVFP and TVOG for base case (as percentage of the present value of premium income)

Traditional product (%) Alternative 1 (%) Alternative 2 (%)
PVFP 3.63 4.24 4.25
TVOG 0.63 0.02 0.01

Apart from the higher profitability, the alternative contract designs also result
in a lower capital requirement for interest rate risk. This is illustrated in Table7,
which displays the PVFP under the interest rate stress and the difference to the basic
level. Compared to the basic level, the PVFP for the traditional product decreases
by 75 %, which corresponds to an SCR;,; of 2.73 % of the present value of future
premium income. In contrast, the PVFP decreases by only around 40 % for the
alternative contract designs and thus the capital requirement is only 1.66 and 1.65 %,
respectively.

We have seen that a change in the type of guarantee results in a significant increase
of the PVFP. Further analyses show that a traditional product with guaranteed interest
rate i = 0.9 % instead of 1.75 % would have the same PVFP (i.e., 4.25 %) as the
alternative contract designs with i, = 1.75 %. Hence, although changing only the
type of guarantee and leaving the level of guarantee intact might be perceived as a
rather small product modification by the policyholder, it has the same effect on the
insurer’s profitability as reducing the level of guarantee by a significant amount.

Furthermore, our results indicate that even in an adverse capital market situation
the alternative product designs may still provide an acceptable level of profitability:
The profitability of the modified products if interest rates were 50 basis points lower
roughly coincides with the profitability of the traditional product in the base case.
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Table 7 PVEP for stress level and PVFP difference between basic and stress level

Traditional product (%) Alternative 1 (%) Alternative 2 (%)
PVFP(basic) 3.63 4.24 4.25
PVFP(stress) 0.90 2.58 2.60
APVFP 2.73 1.66 1.65

4.3 Sensitivity Analyses

In order to assess the robustness of the results presented in the previous section, we
investigate three different sensitivities:

1. Interest rate sensitivity: The long-term average 6 and initial rate ry in Table 4 are
replacedby 0 = 2.0 %, ro = 1.5 % for the basic level, and 6 = 1.0 %,ry = 0.5 %
for the stress level.

2. Stock ratio sensitivity: The stock ratio is set to g = 10 % instead of 5 %.

3. Initial buffer sensitivity: The initial bonus reserve BR, = AV, — AR, is doubled
for all contracts.”!

The results are given in Table 8.

Interest rate sensitivity If the assumed basic interest rate level is lowered by
100 basis points, the PVFP decreases and the TVOG increases significantly for all
products. In particular, the alternative contract designs now also exhibit a significant
TVOG. This shows that in an adverse capital market situation, also the guaran-
tees embedded in the alternative contract designs can lead to a significant risk for
the shareholder and an asymmetric distribution of profits as illustrated in Fig.5.
Nevertheless, the alternative contract designs are still much more profitable and less
volatile than the traditional contract design and the changes in PVFP/TVOG are
much less pronounced than for the traditional product: while the TVOG rises from
0.63 to 2.13 %, i.e., by 1.50pp for the traditional product, it rises by only 0.76 pp
(from 0.02 to 0.78 %) for alternative 1.

As expected, an additional interest rate stress now results in a larger SCR;,;. For
all product designs, the PVFP after stress is negative and the capital requirement
increases significantly. However, as in the base case (cf. Table7), the SCR;,; for
the traditional product is more than one percentage point larger than for the new
products.

Stock ratio sensitivity The stock ratio sensitivity also leads to a decrease of PVFP
and an increase of TVOG for all products. Again, the effect on the PVFP of the
traditional product is much stronger: The profit is about cut in half (from 3.63 to
1.80 %), while for the alternative 1 product the reduction is much smaller (from 4.24
to 3.83 %), and even smaller for alternative 2 (from 4.25 to 3.99 %). It is noteworthy
that with a larger stock ratio of ¢ = 10 % the difference between the two alternative

21 The initial book and market values of the assets are increased proportionally to cover this addi-
tional reserve.
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Table 8 PVFP, TVOG, PVFP under interest rate stress and APVFP for base case and all
sensitivities

Base case Traditional product (%) | Alternative 1 (%) | Alternative 2 (%)
PVFP 3.63 4.24 4.25
TVOG 0.63 0.02 0.01
PVFP(stress) 0.90 2.58 2.60
APVFP 2.73 1.66 1.65
Interest rate sensitivity

PVFP 0.90 2.58 2.60
TVOG 2.13 0.78 0.76
PVFP(stress) —4.66 —1.81 —1.76
APVFP 5.56 4.39 4.36
Stock ratio sensitivity

PVFP 1.80 3.83 3.99
TVOG 245 0.43 0.26
PVFP(stress) —1.43 1.65 1.92
APVFP 3.23 2.18 2.07
Initial buffer sensitivity

PVFP 3.74 4.39 4.39
TVOG 0.64 <0.01 <0.01
PVFP(stress) 1.02 2.87 291
APVFP 2.72 1.52 1.48

products becomes more pronounced, which is reflected by the differences of the
TVOG. Alternative 2 has a lower shortfall risk than alternative 1 since the account
value may decrease in some years as long as the account value does not fall below
the minimum reserve for the maturity guarantee. Hence, we can conclude that the
guarantee that the account value may not decrease becomes more risky if asset returns
exhibit a higher volatility.

The results for the stressed PVFPs under the stock ratio sensitivity are in line with
these results: First, the traditional product requires even more solvency capital: The
SCR;;; is half a percentage point larger than in the base case (3.23 % compared to
2.73 %), and it is also more than one percentage point larger than for the alternative
products with 10 % stocks (2.18/2.07 %). Second, the interest rate stress shows a
more substantial difference between the two different alternative products. While
the difference of the SCR;,,; between alternative 1 and 2 was 0.01 % in the base case,
itis now 0.11 %.

Initial buffer sensitivity If the initial buffer is increased, we observe a slight in-
crease of the PVFP for all products. However, there are remarkable differences for
the effect on TVOG between the traditional and the alternative products: While for
the traditional product the TVOG remains approximately the same, for the alterna-
tive products it is essentially reduced to zero. This strongly supports our product
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Distribution of PVFP(n) with interest rate sensitivity
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Fig. 5 Histogram of PVFP®™ for interest rate sensitivity (—100 basis points)

motivation in Sect.2: For the alternative products, larger surpluses from previous
years reduce risk in future years.”? Furthermore, the stressed PVFPs imply that the
decrease of capital requirement is significantly larger for the alternative products:
0.14 % reduction (from 1.66 to 1.52 %) for alternative 1 and 0.17 % reduction (from
1.65 to 1.48 %) for alternative 2, compared to just 0.01 % reduction for the traditional
product.

4.4 Reduction in the Level of Guarantee

So far we have only considered contracts with a different type of guarantee. We will
now analyze contracts with a lower level of guarantee, i.e., products where i), < i,.
If we apply a pricing rate of i, = 1.25 % instead of 1.75 %, the annual premium
required to achieve the same guaranteed maturity benefit rises by approx. 5.4 %,
which results in an additional initial buffer for this contract design. For the sake of
comparison, we also calculate the results for the traditional product with a lower
guaranteed interest rate i = 1.25 %. The respective portfolios at ¢t = 0 are derived
using the assumptions described in Sect. 4.1.

The results are presented in Table 9. We can see that the PVFP is further increased
and the TVOG is very close to 0 for the modified alternative products, which implies
an almost symmetric distribution of the PVFP. The TVOG can even become slightly
negative due to the additional buffer in all scenarios. Although the risk situation for
the traditional product is also improved significantly due to the lower guarantee, the

22 From this, we can conclude that if such alternative products had been sold in the past, the risk
situation of the life insurance industry would be significantly better today in spite of the rather high
nominal maturity guarantees for products sold in the past.
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Table 9 PVFP, TVOG, PVFP under interest rate stress and APVFP for the alternative products
with lower pricing rate

Traditional | Alternative| Alternative| Traditional | Alternative 1 | Alternative 2
product (%)| 1 (%) 2 (%) i =125%) ip=125%) ip=125(%)
PVFP 3.63 4.24 4.25 4.12 4.31 4.31
TVOG 0.63 0.02 0.01 0.14 —0.05 —0.05
PVFP 0.90 2.58 2.60 243 3.28 3.32
(stress)
APVFP 2.73 1.66 1.65 1.69 1.03 0.99

alternative products can still preserve their advantages. A more remarkable effect
can be seen for the SCR;,;, which amounts to 1.03 and 0.99 % for the alternative
products 1 and 2, respectively, compared to 1.69 % for the traditional product. Hence,
the buffer leads to a significant additional reduction of solvency capital requirements
for the alternative products meaning that these are less affected by interest rate risk.

5 Conclusion and Outlook

In this paper, we have analyzed different product designs for traditional participating
life insurance contracts with a guaranteed maturity benefit. A particular focus of our
analysis was on the impact of product design on capital requirements under risk-based
solvency frameworks such as Solvency II and on the insurer’s profitability.

We have performed a market consistent valuation of the different products and
have analyzed the key drivers of Capital Efficiency, particularly the value of the
embedded options and guarantees and the insurer’s profitability.

As expected, our results confirm that products with a typical year-to-year guaran-
tee are rather risky for the insurer, and hence result in arather high capital requirement.
Our proposed product modifications significantly enhance Capital Efficiency, reduce
the insurer’s risk, and increase profitability. Although the design of the modified prod-
ucts makes sure that the policyholder receives less than with the traditional product
only in extreme scenarios, these products still provide a massive relief for the insurer
since extreme scenarios drive the capital requirements under Solvency II and SST.

It is particularly noteworthy that starting from a standard product where the guar-
anteed maturity benefit is based on an interest rate of 1.75 %, changing the type of
the guarantee to our modified products (but leaving the level of guarantee intact) has
the same impact on profitability as reducing the level of guarantee to an interest rate
of 0.9 % and not modifying the type of guarantee. Furthermore, it is remarkable that
the reduction of SCR;,,; from the traditional to the alternative contract design is very
robust throughout our base case as well as all sensitivities and always amounts to
slightly above one percentage point.
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We would like to stress that the product design approach presented in this paper
is not model arbitrage (hiding risks in “places the model cannot see”), but a real
reduction of economic risks. In our opinion, such concepts can be highly relevant in
practice if modified products keep the product features that are perceived and desired
by the policyholder, preserve the benefits of intertemporal risk sharing, and do away
with those options and guarantees of which policyholders often do not even know
they exist. Similar modifications are also possible for many other old age provision
products like dynamic hybrid products®? or annuity payout products. Therefore, we
expect that the importance of “risk management by product design” will increase.
This is particularly the case since—whenever the same pool of assets is used to back
new and old products—new capital efficient products might even help reduce the
risk resulting from an “old” book of business by reducing the required yield of the
pool of assets.

We, therefore, feel that there is room for additional research: It would be interesting
to analyze similar product modifications for the annuity payout phase. Also—since
many insurers have sold the traditional product in the past—an analysis of a change
in new business strategy might be worthwhile: How would an insurer’s risk and
profitability change and how would the modified products interact with the existing
business if the insurer has an existing (traditional) book of business in place and
starts selling modified products today?

Another interesting question is how the insurer’s optimal strategic asset allocation
changes if modified products are being sold: If typical criteria for determining an
optimal asset allocation are given (e.g., maximizing profitability under the restriction
that some shortfall probability or expected shortfall is not exceeded), then the c.p.
lower risk of the modified products might allow for a more risky asset allocation, and
hence also higher expected profitability for the insurer and higher expected surplus
for the policyholder. So, if this dimension is also considered, the policyholder would
be compensated for the fact that he receives a weaker type of guarantee.

Finally, our analysis so far has disregarded the demand side. If some insurers
keep selling the traditional product type, there should be little demand for the alter-
native product designs with reduced guarantees unless they provide some additional
benefits. Therefore, the insurer might share the reduced cost of capital with the poli-
cyholder, also resulting in higher expected benefits in the alternative product designs.

Since traditional participating life insurance products play a major role in old-age
provision in many countries and since these products have come under strong pressure
in the current interest environment and under risk-based solvency frameworks, the
concept of Capital Efficiency and the analysis of different product designs should be
of high significance for insurers, researchers, and regulators to identify sustainable
life insurance products. In particular, we would hope that legislators and regulators
would embrace sustainable product designs where the insurer’s risk is significantly
reduced, but key product features as perceived and requested by policyholders are
still present.

23 Cf. Kochanski and Karnarski [22].
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Reducing Surrender Incentives Through Fee
Structure in Variable Annuities

Carole Bernard and Anne MacKay

Abstract In this chapter, we study the effect of the fee structure of a variable annuity
on the embedded surrender option. We compare the standard fee structure offered
in the industry (fees set as a fixed percentage of the variable annuity account) with
periodic fees set as a fixed, deterministic amount. Surrender charges are also taken
into account. Under fairly general conditions on the premium payments, surrender
charges and fee schedules, we identify the situation when it is never optimal for the
policyholder to surrender. Solving partial differential equations using finite difference
methods, we present numerical examples that highlight the effect of a combination
of surrender charges and deterministic fees in reducing the value of the surrender
option and raising the optimal surrender boundary.

1 Introduction

A variable annuity (VA) is a unit-linked insurance product, which guarantees a certain
amount at some future dates. Usually, the policyholder pays an initial premium for
the contract. This premium is invested in a mutual fund chosen by the policyholder.
There are different kinds of VAs defined by the type of guarantees embedded in the
contract (for more details see Hardy [9]). In this paper, we focus on a variable annuity
contract that pays the maximum of the mutual fund value and a guaranteed amount
at maturity. This type of VA is referred to as a guaranteed minimum accumulation
benefit (GMAB) (see Bauer et al. [1]).

Typically, the fee that covers the management of the VA and embedded financial
guarantees is set as a constant percentage of the VA account and withdrawn directly
from it at regular intervals. When the account value is high, the financial guarantee
is worth very little, but the fee is still being paid as the same percentage. Thus, it
represents an incentive for the policyholder to surrender the contract and take the
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amount accumulated in the account. Such surrenders represent an important risk for
VA issuers as the expenses linked to the sale of the policy are typically reimbursed
through the fees collected throughout the duration of the contract. As exposed by
Kling et al. [11], unexpected surrenders also compromise the efficiency of dynamic
hedging strategies.

There are various ways to reduce the incentive to surrender a VA contract with
guarantees. For example, insurance companies usually impose surrender charges,
which reduce the amount available at surrender. Milevsky and Salisbury [13] argue
that these charges are necessary for VA contracts to be both hedgeable and marketable.
The design of VA benefits can also discourage policyholders from surrendering. Kling
et al. [11] discuss for example the impact of ratchet options (possibility to reset the
maturity guarantee as the fund value increases) to convince policyholders to keep
the VA alive. Yet another way to reduce the incentive to surrender can be to modify
the way fees are paid from the VA account. As explained above, the typical constant
percentage fee structure leads to a mismatch between the fee paid and the value of
the financial guarantee, which can discourage the policyholder from staying in the
contract.! By reducing the fee paid when the value of the financial guarantee is low, it
is possible to reduce the value of the real option to surrender embedded in a VA. The
new fee structure can take different forms. For example, Bernard et al. [2] suggest to
set a certain account value above which no fee will be paid. This is shown to modify
the rational policyholder’s surrender incentive. In this paper, we explore another fee
structure so that part of (or all) the fee is paid as a deterministic periodic amount. The
intuition behind this fee structure is that the amount will represent a lower percentage
of the account value as the value of the financial guarantee decreases. This will affect
the surrender incentive, and reduce the additional value created by the possibility to
surrender the contract.

To explore the effect of the deterministic fee amount on the surrender incentive, we
consider a VA with a simple GMAB. We assume that the total fee withdrawn from the
VA account throughout the term of the contract is set as the sum of a fixed percentage
¢ of the account value, and a deterministic, pre-determined amount p; at time ¢ (in
other words, the deterministic amount does not need to be constant).> Our paper
constitutes a significant extension of the results obtained on the optimal surrender
strategy for a fee set as a fixed percentage of the fund [4], since the deterministic fee
structure increases the complexity of the dynamics of the VA account value. For this
reason, we need to resort to PDE methods to obtain the optimal surrender strategy

! Specifically, the policyholder has the option to surrender the contract and to receive a “surrender
benefit”, which can be more valuable than the contract itself. This additional value, as well as the
optimal surrender strategy, is explored and quantified by Bernard, MacKay, and Muehlbeyer in [4]
in the case when the fees are paid as a percentage of the underlying fund.

2 Note that the deterministic amount component of the fee can be interpreted as a variable percentage
of the account value F;. In fact, let p denote the percentage of the fund value that yields the same
fee amount as the deterministic amount p;. Then, p is a function of time and of the fund value F;,
and can be computed as p(t, F;) = p;/F;. Then, p(t, F;) F; = p; is the fee paid at time ¢.
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when a portion of the fee is set as a deterministic amount. This paper also extends the
work done on state-dependent fee structures, since Bernard et al. [2] do not quantify
the reduction in the surrender incentive resulting from the new fee structure.

Throughout the paper, our main goal is to investigate the impact of the deter-
ministic fee amount on the value of the surrender option. In Sect.2, we describe the
model and the VA contract. Section3 introduces a theoretical result and discusses
the valuation of the surrender option. Numerical examples are presented in Sects. 4
and 5 concludes.

2 Assumptions and Model

Consider a market with a bank account yielding a constant risk-free rate r and an
index evolving as in the Black-Scholes model so that

ds,
Tt = rdt + odW;,

t

under the risk-neutral measure Q, where o > 0 is the constant instantaneous volatility
of the index. Let .%; be the natural filtration associated with the Brownian motion W;.

In this paper, we use a Black-Scholes setting since its simplicity allows us to
compute prices explicitly, and thus to study the surrender incentive precisely. More
realistic market models could be considered, but resorting to Monte Carlo methods or
more advanced numerical methods would be required. Since the focus of this paper is
on the surrender incentive, we believe that the Black-Scholes model’s approximation
of market dynamics is sufficient to provide insight on the effect of the deterministic
amount fee structure.

2.1 Variable Annuity

We consider a VA contract with an underlying fund fully invested in the index S. At
time 7, we assume that the fee paid is the sum of a constant percentage ¢ > 0 of the
account value and a deterministic amount p;. Setting p; = 0, we will find back the
results commonly used in the literature with the fee being only paid as a percentage
of the fund (see for example [4]).

The motivation to study periodic deterministic fees is that the surrender incentives
when the fees are paid as a fixed percentage of the fund are larger than when the fees
are set as a deterministic amount. This will be illustrated via numerical examples in
Sect. 4.

We further assume that the investment of the policyholder is Py at time 0, and
that regular additional premiums a, are paid at time 7. Additional contributions are



212 C. Bernard and A. MacKay

common in variable annuities but they are regularly neglected in the literature and
most academic research focuses on the single premium case as it is simpler. When
additional contributions can be made to the account throughout time, VAs are called
Flexible Premiums Variable Annuities (FPVAs). Chi and Lin [7] provide examples
of such VAs where the policyholder is given the choice between a single premium
and a periodic monthly payment in addition to some initial lump sum. Analytical
formulae for the value of such contracts can be found in [8, 10]. In the first part of
this chapter, we show how flexible premium payments influence the surrender value.

We assume that all premiums paid at 0 and at later times ¢ are invested in the fund.
All fees (percentage or fixed fees) are taken from the fund. We need to model the
dynamics of the fund. Our approach is inspired by Chi and Lin [7]. For the sake of
simplicity, we assume that all cash flows happen in continuous time, so that a fixed
payment of A attime 1 (say, end of the year) is similar to a payment made continuously
over the interval [0, 1]. Due to the presence of a risk-free rate r, an amount paid at
time T equal to A is equivalent to an instantaneous contribution of a; dt at any time
t € (0, 1] so that the annual amount paid per year is A = fol a;e"17)dr. By abuse
of notation, if a; is constant over the year, we will write that a; is the annual rate of
contribution per year (although there is no compounding effect).

Specifically, the dynamics of the fund can be written as follows

dFt = (}" — C)Ftdt + UF[dW[ +atdt — ptdt

with Fy = Py, and where F; denotes the value of the fund at time ¢, a; is the annual
rate of contributions, c is the annual rate of fees, and p; is the annual amount of fee
to pay for the options. Similarly as [7] it is straightforward to show that

t
F, = Foe("*c*%)”ﬂfw/ +/(as _ ps)e(r*C*%)(I*S)JrU(Wx*Ws)ds’ t>0,
0

that is

N

t
S,
F; = S;e™“ +/(aS — ps)e_c(t_s)s—tds, (1)
0

in particular Py = Fy = Sp. To simplify the notation, we will write

t

S,
F, = Sie " + / bse_c(’_s)s—tds, )
N
0

where by = a; — pg can take values in R. While in the case of regular contributions,
by is typically positive, it can also be negative, for example in the single premium



Reducing Surrender Incentives Through Fee Structure in Variable Annuities 213

case, or if the regular premiums are very low. We will split b5 into contributions ag
and deterministic fees p; when it is needed for the interpretation of the results.

This formulation can be seen as an extension of the case studied in [7], where it
is assumed that a constant contribution parameter @; = a for all ¢ and there is no
periodic fees, so that p, = 0. It is clear from (2) that the fund value becomes path-
dependent and involves a continuous arithmetic average. Without loss of generality,
let Fy = So.

2.2 Benefits

We assume that there is a guaranteed minimum accumulation rate g < r on all the
contributions of the policyholder until time ¢ so that the accumulated guaranteed
benefit G, at time ¢ has dynamics

de = thdt + afdt

where Gy = Py attime 0. Thus, at time ¢ the guaranteed amount G, can be expressed

as
13

G; = Pye’! +/aseg('_s)ds.
0

When the annual rate of contribution is constant (a; = a), the guaranteed value can
be simplified to

8t _

e 1
G; = Pye$" +a ( Lie=0) + t]l{g:()}) .

Chi and Lin [7] develop techniques to price and hedge the guarantee at time 7. Using
their numerical approach it is possible to estimate the fair fee for the European VA
(Proposition 3 in their paper).

As in [4, 13], we assume that the policyholder has the option to surrender the
policy at any time ¢ and to receive a surrender benefit at surrender time equal to

(I —k)Fy

where «; is a penalty percentage charged for surrendering at time ¢. As presented
for instance in [3, 13] or [15], a standard surrender penalty is decreasing over time.
Typical VAs sold in the US have a surrender charge period. In general, the maxi-
mum surrender charge is around 8 % of the account value and decreases during the
surrender charge period. A typical example is New York Life’s Premier Variable
Annuity [14], for which the surrender charge starts at 8 % in the first contract year,
decreases by 1 % per year to reach 2 % in year 7. From year 8 on, there is no penalty
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on surrender. In another example, “the surrender charge is 7 % during the first Con-
tract Year and decreases by 1 % each subsequent Contract Year. No surrender charge
is deducted for surrenders occurring in Contract Years 8 and later” [17].

3 Valuation of the Surrender Option

In this section, we discuss the valuation of the variable annuity contract with maturity
benefit and surrender option.? We first present a sufficient condition to eliminate the
possibility of optimal surrender. We then explain how we evaluate the value of the
surrender option using partial differential equations (PDEs). We consider a variable
annuity contract with maturity benefit only, which can be surrendered. We choose to
ignore the death benefits that are typically added to that type of contract since our
goal is to analyze the effect of the fee structure on the value of the surrender option.

3.1 Notation and Optimal Surrender Decision

We denote by v(t, F;) and V (¢, F;) the value of the contract without and with sur-
render option, respectively. In this paper, we ignore death benefits and assume that
the policyholder survives to maturity.* Thus, the value of the contract without the
surrender option is simply the risk-neutral expectation of the payoff at maturity,
conditional on the filtration up to time ¢.

u(t, F) = Ele "7 max(Gr, Fr)|%:] 3)

We assume that the difference between the value of the maturity benefit and the
full contract is only attributable to the surrender option, which we denote by e(, F;).
Then, we have the following decomposition.

V(t’ FI)=U(t7Fl)+e(t’ F[) (4)

The value of the contract with surrender option is calculated assuming that the
policyholder surrenders optimally. This means that the contract is surrendered as
soon as its value drops below the value of the surrender benefit. To express the total
value of the variable annuity contract, we must introduce further notation. We denote
by 7; the set of all stopping times t greater than ¢t and bounded by 7. Then, we can
express the continuation value of the VA contract as

3 In this paper, we quantify the value added by the possibility for the policyholder to surrender
his policy. We call it the surrender option, as in [13]. It is not a guarantee that can be added to the
variable annuity, but rather a real option created by the fact that the contract can be surrendered.

4 See [2] for instance for a treatment on how to incorporate mortality benefits.
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V¥(t, F) = sup Ele™" "Dy (z, Fp)l,
te;

where
(1 —kp)x, ifre(0,7)
max(Gr, x), ift=T

Tlf(l,x)Z{

is the payoff of the contract at surrender or maturity. Finally, we let .%; be the optimal
surrender region at time ¢ € [0, T']. The optimal surrender region is given by the
fund values for which the surrender benefit is worth more than the VA contract if the
policyholder continues to hold it for at least a small amount of time. Mathematically
speaking, it is defined by

S ={F V't F) <y, Fk

The complement of the optimal surrender region .#; will be referred to as the con-
tinuation region. We also define By, the optimal surrender boundary at time ¢, by

Bl = inf {F[ € %}
F; €10,00)

3.2 Theoretical Result on Optimal Surrender Behavior

According to (2) the account value F; can be written as follows at time ¢

t

S,
F, =e 'S, +/bse—0<’—S>S—’ds, t>0,

s

0
and at time ¢ + dt, it is equal to
t+dt
. . o Siad
Frtar :e—c(t+dl)SH_dt + / bse—c(1+dl é)ids.
N
0

Proposition 3.1 (Sufficient condition for no surrender) For a fixed time t € [0, T,
a sufficient condition to eliminate the surrender incentive at time ‘t’ is given by

(k; + (1 = k1)) Fr < bi(1 — k1), (&)
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where k{ = dk;/0t. Here, are some special cases of interest:

e Whena, = p; = 0(no periodic investment, no periodic fee) and ; = 1 —e T =1

(situation considered by [4]) then by = 0 and (5) becomes
K > c.

e When a; = 0 (no periodic investment, i.e., a single lump sum paid at time 0), then
by = —p; < 0. Assume that p; > 0 so that b; < 0 thus

— If k] + (1 —k;)c > O (for example if k is constant), then the condition can never
be satisfied and no conclusion can be drawn.
— If k] + (1 — k;)c < O then it is not optimal to surrender when

—pi(1 — 1)
! k] + (1 — )

When k; = k and b, = b are constant over time, condition (5) can be rewritten as

S
c(l —«) c

Remark 3.1 Proposition3.1 shows that in the absence of periodic fees and invest-
ment, an insurer can easily ensure that it is never optimal to surrender by choosing a
surrender charge equal to 1 — e ' at time #, with a penalty parameter « higher than
the percentage fee c. Proposition 3.1 shows that it is also possible to eliminate the
surrender incentive when there are periodic fees and investment opportunities, but
the conditions are more complicated.

Proof Consider a time ¢ at which it is optimal to surrender. This implies that for any
time interval of length dz > 0, it is better to surrender at time ¢ than to wait until
time ¢ + dz. In other words, the surrender benefit at time ¢ must be at least equal to
the expected discounted value of the contract at time ¢ + d¢, and in particular larger
than the surrender benefit at time ¢ + dr. Thus

(1 — k) F, = E[le™ (1 = kyvai) Friar 171

Using the martingale property for the discounted stock price S; and the independence
of increments for the Brownian motion, we know that E[S;g4e™" df) = 5, and

E[S’SLf ft] ZE[S’SLI‘“] = "% thus
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N

t
E[e_rthz+dt|§t] — e—c(t+dt)St —i—/bse_c(t"'_dt_x)%ds
0

t-+dt
+ / be—c(l+dt—s)e—rth M ds
S SS 9
t
t S t+dr
ze—c(t+dt)Sl+/bse—c(t+dt—s)s_lds+ / bse_c(t"_dt_s)ds,
0 : t
t+dr
= e “VF 4o / bye " ™Vds. (6)
t
Thus
t+dr

(I =) Fr = (1 — k4dr) e Y, e / bee ¢ ds

t

We then use «;+d; = i +ic}di +o(dr), e =4 = 1—cdi +o(dr) and [T e
ds = b,dr + o(dt) to obtain

(I — k) F > (1 —ky — k/dt) (1 — cdt) Fy + (1 — cdr)b,dt) + j(dp),
which can be further simplified into
(k] + (1 — k)c) Frdt > by(1 — k;)dt + j(dr). (7)
where the function j (dt) is o(dt). Since this holds for any dr > 0, we can divide (7)

by dr and take the limit as d# — 0. Then, we get that if it is optimal to surrender the
contract at time ¢, then

(k] + (1 — k1)) Fr > be(1 — ).

It follows that if (k] + (1 — k1)) F; < bs(1 — ky), it is not optimal to surrender the
contract at ¢. ([l

3.3 Valuation of the Surrender Option Using PDEs

To evaluate the surrender option e(#, Fy), we subtract the value of the maturity benefit
from the value of the VA contract. These values can be compared to American and
European options, respectively, since the guarantee in the former is only triggered
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when the contract expires, while the latter can be exercised at any time before matu-
rity.

From now on, we assume that the deterministic fee p; is constant over time, so that
p: = p for any time . We also assume that the policyholder makes no contribution
after the initial premium (so that a; = O for any ¢).

It is well-known” that the value of a European contingent claim on the fund value
F; follows the following PDE:

v N 1 8%v
at  29F?

5
F20? + 8—;[(Fl(r —c)—p)—rv=0. ®)

Note that Eq. (8) is very similar to the Black-Scholes equation for a contingent
claim on a stock that pays dividends (here, the constant fee c represents the dividends),
with the addition of the term 33_1% p resulting from the presence of a deterministic fee.
Since it represents the contract described in Sect. 2, Eq. (8) is subject to the following
conditions:

u(T, Fr) = max(Gr, Fr)

lim v(t, F;) = Gre 7T,
Fi—0

The last condition results from the fact that when the fund value is very low, the
guarantee is certain to be triggered. When F; — o0, the problem is unbounded.
However, we have the following asymptotic behavior:

lim v(t, F,) = E,[Fre "7, )

Fi—o00

which stems from the value of the guarantee approaching O for very high fund values.
We will use this asymptotic result to solve the PDE numerically, when truncating the
grid of values for F;. The expectation in (9) is easily calculated and is given in the
proof of Proposition 3.1.

Asitis the case for the American put option,® the VA contract with surrender option
gives rise to a free boundary problem. In the continuation region, V*(z, F;) follows
Eq. (8), the same equation as for the contract without surrender option. However, in
the optimal surrender region, the value of the contract with surrender is the value of
the surrender benefit:

V*t, F) =y, F), t€[0,T], F €.%. (10)

For the contract with surrender, the PDE to solve is thus subject to the following
conditions:

5 See, for example [5, Sect.7.3].
6 See, for example [6].
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VX(T, Fr) = max(Gr, Fr)

lim V*(t, F,) = Gpe "7~
Fi—0

lim V*(, F;) = ¥ (¢, By).

F;— B;

d
li —V*t, F) =1—k;.
F,inB/ OF, ( 1) Kt

For any time ¢ € [0, T'], the value of the VA with surrender is given by
V(t, F) = max(V*(t, Fy), ¥ (¢, F7)).

This free boundary problem is solved in Sect.4 using numerical methods.

4 Numerical Example

To price the VA