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Foreword

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and
schools; robots fighting fires, making goods and products, saving time and lives.
Robots today are making a considerable impact from industrial manufacturing to
health care, transportation, and exploration of the deep space and sea. Tomorrow,
robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field based on their significance and quality. During the latest fifteen years, the
STAR series has featured publication of both monographs and edited collections.
Among the latter, the proceedings of thematic symposia devoted to excellence in
robotics research, such as ISRR, ISER, FSR, and WAFR, have been regularly
included in STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarge the pool of proceedings in the STAR series in the past few
years. This has ultimately led to launching a sister series in parallel with STAR. The
Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the timely
dissemination of the latest research results presented in selected symposia and
workshops.

This volume of the SPAR series brings the proceedings of the fifteenth edition of
ARK on Advances in Robot Kinematics, whose proceedings have been previously
published by Kluwer and Springer since 1991. This edition took place in Grasse,
France, from June 27 to June 30, 2016. The volume edited by Jadran Lenarčič and
Jean-Pierre Merlet contains 46 scientific contributions, revised and extended after
the meeting. This collection focuses on mechanism and kinematics with special
emphasis on parallel robots, control, and singularities.
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From its excellent technical program to its warm social interaction, ARK cul-
minates with this unique reference on the current developments and new advances
in robot kinematics—a genuine tribute to its contributors and organizers!

Naples, Italy
Stanford, CA, USA
March 2017

Bruno Siciliano
Oussama Khatib

SPAR Editor
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Preface

Kinematics, the motion of mechanisms, is one of the most fundamental aspects of
robot design, analysis, and control, but it is also relevant to other scientific domains,
such as biomechanics, molecular biology, and others. This series of books on
Advances in Robot Kinematics, which reports the latest achievements in the field,
has a long history, as the first symposium was organized in 1988, and the first book
was published by Springer in 1991. Since then, a new issue has been published
every two years. Each book is linked to a single-track symposium in which the
participants exchange their results and opinions in a meeting that brings together the
world's best researchers and scientists as well as young students. Since 1992, these
symposia have come under the patronage of the International Federation for the
Promotion of Machine Science (IFToMM).

In 2016, the symposium related to this book was organized by the French
National Research Institute in Computer Science and Control Theory (INRIA) in
Grasse, France. We are grateful to the authors for their contributions and to the
large team of reviewers for their critical and insightful recommendations. The
papers in this book show that robot kinematics is an exciting domain with an
enormous number of research challenges that go well beyond the field of robotics.
We are also indebted to the members of the HEP-HAISTOS team of INRIA for
their help in organizing the symposium. The articles from this symposium were first
published in a green open-access archive to favor the free dissemination of the
results. We are grateful to Y. Papegay for putting the edition together.

The current book is the 13th in the series of Springer (and Kluwer) and is the
result of a peer-review process intended to select the newest and most original
achievements in this field. The book was published after the conference. This was
unusual for the series from the symposia Advances in Robot Kinematics, because
the books are typically released before the conference. However, this circumstance
allowed the authors to have their manuscripts further improved and to take into
account the opinions and constructive criticisms of the conference participants.
Some authors even made re-calculations and produced new and more valuable
results.
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First and foremost, we are grateful to the authors who participated in this project
with all their enthusiasm and commitment. We are grateful to Springer, to the whole
team, but especially to Nathalie Jacobs and Cynthia Feenestra, who have made this
publication possible. Above all, we are grateful to our younger colleague Tadej
Petrič, Ph.D., whose assistance was crucial in the technical production of the book.
Without him, things would not have taken place as efficiently and rapidly.

We hope that our book will again reach the shelves of scholars, researchers, and
students around the world who are attracted to the unique field of robot kinematics.

Ljubljana, Slovenia Jadran Lenarčič
September 2016 Jean-Pierre Merlet
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Mass Equivalent Pantographs for Synthesis
of Balanced Focal Mechanisms

Volkert van der Wijk

Abstract Force balance is an important property in the design of high-speed high
precision machinery to reduce base vibrations and also for the design of inherently
safe largemovable structures. This paper presents the synthesis of inherently balanced
overconstrained focal mechanisms with mass equivalent pantographs. It is shown
how pantograph linkages can be combined into an overconstrained but movable
linkage by connecting them in their similarity points.Withmass equivalent modeling
the force balance conditions are derived for which the common center of mass is
in the focal point for any motion. As examples, Burmester’s focal mechanism is
investigated for balance and anewbalanced focalmechanismof threemass equivalent
pantographs is presented.

1 Introduction

In robotics, dynamic (shaking) force balance is an important property for high-
speed motion with minimal base vibrations [4]. Since force balanced mechanisms
are statically balanced too, it is also a useful property for large moving structures for
save motion with minimal effort.

A problemof common approaches to balance pre-existingmechanisms is that gen-
erally a multitude of counter-masses is required [1, 9], leading to unpractical designs
with a significant increase of mass and inertia [6]. Instead, a reversed approach was
presented where balanced mechanisms are synthesized from inherently balanced
linkage architectures [4]. These linkage architectures consist solely of the essential

V. van der Wijk (B)
Mechatronic System Design, Department of Precision and Microsystems Engineering,
Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology,
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2 V. van der Wijk

kinematic relations for balance. With this method a variety of new advantageous
inherently balanced mechanism solutions were found among which the first high-
speed dynamically balanced parallel manipulator that was successfully built and
tested [8].

With inherent balancing it is also possible to synthesize balanced mechanism
solutions from overconstrained inherently balanced linkage architectures [7]. These
architectures have more links than kinematically needed. This gives the designer the
freedom to select links to keep or eliminate to obtain a normally constrained balanced
mechanism solution. Also more solutions can potentially be found.

The goal of this paper is to investigate focal mechanisms, which are overcon-
strained and movable, for inherent balance. The focal mechanism of Burmester [2]
- the cognate of Kempe’s focal mechanism - can be regarded a combination of two
pantographs [3]. It is shown how these two pantograph linkages can be combined
by connecting them in their similarity points. For force balance the two pantographs
need to be mass equivalent with a model of which the common center of mass (CoM)
is in the focal point. The conditions for this are derived. In addition also a new inher-
ently balanced focal mechanism of three combined pantographs is presented at the
end.

2 CoM in Focal Point of Burmester’s Focal Mechanism

Figure1 shows Burmester’s focal mechanism which consists of the two pantograph
linkages P1A1P2S - with link lengths l1, l2, a1, and a2 - and P3A3P4S - with link
lengths l3, l4, a3, and a4 - that are connectedwith revolute pairs in the similarity points
A0, A2, and S. This linkage is two times overconstrained yet movable since both pan-
tographs are similar, i.e. elements A0A1P1 ∼ A1A2P2 ∼ A0A3P3 ∼ A3A2P4 with
anglesβ1 andβ2. These four triangular elements are also similar to triangle A0A2S for

Fig. 1 Burmester’s focal
mechanism of two
pantograph linkages
connected in their similarity
points A0, A2, and S. S is the
focal point and is the
common CoM of all
elements for force balance
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any motion of the mechanism. Both pairs of opposite internal four-bars are reflected
similar to one another, with one pair being parallelograms.

When, for example, for the upper pantograph a1, a2, l1, and β1 are given, l2 and
β2 can be calculated as

λS
1 = 1 − a1

l1
cosβ1, λS

2 = a1
l1

sin β1 (1)

β2 = tan−1 λS
2

λS
1

, l2 = a2
λS
1

cosβ2 = a2
λS
2

sin β2

with λS
1 and λS

2 the constant similarity parameters of the four triangular elements and
triangle A0A2S. When, subsequently, for the lower pantograph l3 and l4 are given,
a3 and a4 can be calculated as

a3 = (1 − λS
1 )

l3
cosβ1

= λS
2

l3
sin β1

, a4 = l4
λS
1

cosβ2
= l4

λS
2

sin β2
(2)

These parameters can also be obtained from the similarity conditions of the four
triangular elements which write

a1
l1

= a3
l3

,
a2
l2

= a4
l4

(3)

In Fig. 1 each of the eight links i has a mass mi of which the CoM is defined
with parameters ei and fi as illustrated. The aim is to design the mechanism such
that the common CoM of all elements is in focal point S for any motion. Then the
mechanism is inherently force balanced with respect to the focal point.

The force balance conditions describe how the CoM parameters of each element
are related for balance. These conditions can be found by mass equivalent mod-
eling with real and virtual equivalent masses [4, 5]. With mass mI = m1 + m2 +
m5 + m6 of upper pantograph P1A1P2S and mass mI I = m3 + m4 + m7 + m8 of
lower pantograph P3A3P4S the total mass of the focal mechanism can be written as
mtot = mI + mI I . The common CoM of the upper pantograph is denoted SI and the
common CoM of the lower pantograph is denoted SI I . With similarity points A0 and
A2 these two points form two triangles as well which also have to remain similar for
any motion. For force balance then each pantograph is mass equivalent to a 2-DoF
mass equivalent model with the conditions [5]

ma
I = mI (1 − λI

1), mb
I = mIλ

I
1, mc

I = mIλ
I
2 (4)

ma
I I = mI I (1 − λI I

1 ), mb
I I = mI Iλ

I I
1 , mc

I I = mI Iλ
I I
2

withλI
1 andλI

2 the similarity parameters of triangle A0A2SI ,λI I
1 andλI I

2 the similarity
parameters of triangle A0A2SI I , and real equivalent masses ma

j and mb
j and virtual

equivalent mass mc
j of each pantograph j . For the upper pantograph in Fig. 2a, b

shows the 2-DoF mass equivalent model adapted from [5]. Essentially the virtual
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Fig. 2 For force balance (a) each pantograph must be mass equivalent to the (b) 2-DoF mass
equivalent model, here shown for the upper pantograph with CoM in SI

equivalent mass determines the link CoMs relative to the lines connecting the joints,
i.e. the values of parameters fi , whereas the real equivalent masses determine the
link CoMs along the lines connecting the joints, i.e. the values of parameters ei .

Tohave the commonCoMin the focal point, the sumof themass equivalentmodels
of the two pantographs should equal the mass equivalent model of the complete
mechanism. This can be written asmIλ

I
1 + mI Iλ

I I
1 = mtotλ

S
1 andmIλ

I
2 + mI Iλ

I I
2 =

mtotλ
S
2 . The resulting model is similar to Fig. 2b but with each equivalent mass

replaced with the sum of the equivalent masses of the two pantograph models as
ma = ma

I + ma
I I ,m

b = mb
I + mb

I I , andm
c = mc

I + mc
I I . The conditions for themass

equivalent model of the complete mechanism then are written as

ma = mtot (1 − λS
1 ), mb = mtotλ

S
1 , mc = mtotλ

S
2 (5)

The force balance conditions for each pantograph can be derived from the linear
momentum equations of each DoF individually where the linear momentum of the
mass equivalent model must equal the linear momentum of the real pantograph,
similar as for the dyads in [5]. Figure3a shows the mass motions of DoF 1 of the
upper pantograph where link A1A2 is fixed and link A0A1 rotates about A1 with
angle θI1. The mass motion of the pantograph for this DoF is shown on the right
with a compact Equivalent Linear Momentum System (ELMS) where all masses are
projected on element A0A1. Figure3b shows the mass motions of DoF 2 where link
A1A0 is fixed and link A1A2 rotates about A1 with angle θI2. Also here the mass
motion of the pantograph for this DoF is shown on the right with a compact ELMS
where all masses are projected on element A1A2. The linear momentum L1 and L2 of
these individual motions can be written with respect to their relative reference frames
xI1yI1 and xI2yI2, which are aligned with lines A0A1 and A2A1, respectively, as
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Fig. 3 The force balance conditions are derived from the linear momentum equations of each DoF
individually which are equal for the mass equivalent model (left) and the real pantograph (right,
here shown as compact Equivalent Linear Momentum Systems)

L1

θ̇I1
=

[
ma

I l1−mc
I l1

]
=

[
m1e1 + m5(e5 cosβ1 + f5 sin β1) + m6a1 cosβ1

−m1 f1 − m5(e5 sin β1 − f5 cosβ1) − m6a1 sin β1

]
(6)

L2

θ̇I2
=

[
mb

I l2
mc

I l2

]
=

[
m2e2 + m5a2 cosβ2 + m6(e6 cosβ2 + f6 sin β2)

m2 f2 + m5a2 sin β2 + m6(e6 sin β2 − f6 cosβ2)

]

These equations result in the four force balance conditions

ma
I l1 = m1e1 + m5(e5 cosβ1 + f5 sin β1) + m6a1 cosβ1 (7)

mc
I l1 = m1 f1 + m5(e5 sin β1 − f5 cosβ1) + m6a1 sin β1 (8)

mb
I l2 = m2e2 + m5a2 cosβ2 + m6(e6 cosβ2 + f6 sin β2) (9)

mc
I l2 = m2 f2 + m5a2 sin β2 + m6(e6 sin β2 − f6 cosβ2) (10)

For the other pantograph the force balance conditions can be derived similarly as

ma
I I l3 = m3e3 + m7(e7 cosβ1 + f7 sin β1) + m8a3 cosβ1 (11)

mc
I I l3 = m3 f3 + m7(e7 sin β1 − f7 cosβ1) + m8a3 sin β1 (12)

mb
I I l4 = m4e4 + m7a4 cosβ2 + m8(e8 cosβ2 + f8 sin β2) (13)

mc
I I l4 = m4 f4 + m7a4 sin β2 + m8(e8 sin β2 − f8 cosβ2) (14)
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These are the 8 general force balance conditions of the focal mechanism in Fig. 1
for which the common CoM is in the focal point S. For example, from the first
four equations the equivalent masses ma

I , m
b
I , and m

c
I may be found to subsequently

calculate with Eq. (5) the equivalent massesma
I I m

b
I I , andm

c
I I to be used in the latter

four balance conditions. It is also possible to initially choose values for ma
I m

b
I , and

mc
I . Then for instance from the first four equations e5, f5, e6, and f6 can be derived as

e5 = sin β1(mc
I l1 − m1 f1 − m6a1 sin β1) + cosβ1(ma

I l1 − m1e1 − m6a1 cosβ1)

m5

f5 = sin β1(ma
I l1 − m1e1 − m6a1 cosβ1) − cosβ1(mc

I l1 − m1 f1 − m6a1 sin β1)

m5

e6 = sin β2(mc
I l2 − m2 f2 − m5a2 sin β2) + cosβ2(mb

I l2 − m2e2 − m5a2 cosβ2)

m6

f6 = sin β2(mb
I l2 − m2e2 − m5a2 cosβ2) − cosβ2(mc

I l2 − m2 f2 − m5a2 sin β2)

m6

3 Focal Mechanism of Three Pantographs

In general it is possible to synthesize a variety of inherently force balanced focal
linkages by combining multiple mass equivalent pantographs in the same way as
in the previous section. Figure4 shows a new focal mechanism that is composed of
the three pantographs P1A1P2S, P3A3P4S, and P5A5P6S which are connected in
similarity points A0, A2, A4, and S where S is the focal point. The resulting linkage
is four times overconstrained yet movable. Also here each pantograph has similar
triangular elements and a similar triangle of the similarity points.However in this case

Fig. 4 Focal mechanism of
three pantograph linkages
connected in their similarity
points A0, A2, A4, and S.
S is the focal point and is the
common CoM of all
elements for force balance
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l3
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l5
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a6
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Fig. 5 (a) A pantograph with CoM in SI can be modeled as a (b) mass equivalent single element
with equivalent masses ma

I , m
b
I , and mc

I

the pantographs differ from one another, e.g. the triangular elements of pantograph
P1A1P2S are not similar to the triangular elements of the other pantographs. In fact the
focal mechanism is a combination of the three different triangles A0A2S, A2A4S, and
A0A4S that together form the triangle A0A2A4. For each pantograph the dimensions
of the elements can be calculated with Eq. (1) with for each pantograph different
λS parameters. For two pantographs the λS parameters can be chosen independently
such that with the triangle A0A2A4 the third is determined.

The approach to derive the force balance conditions for which the common CoM
is in focal point S is similar to Burmester’s focal mechanism. Here the mechanism
can be considered a combination of three mass equivalent models with each a mass
mI , mII , and mIII with CoMs in SI , SII , and SIII , respectively. For each pantograph
the force balance conditions can be found with Eq. (6). The equivalent masses ma

j ,
mb

j , and mc
j of each mass equivalent model are defined according to Eq. (4).

Tofind themass equivalentmodel of the complete focalmechanism it is possible to
model each pantograph as a mass equivalent single element as shown for pantograph
P1A1P2S in Fig. 5. In Fig. 5b triangle A0A2SI can be regarded a rigid element with
a real equivalent mass ma

I in joint A0, a real equivalent mass mb
I in joint A2, and a

virtual equivalent mass mc
I located at a distance d1 from S1, the CoM of the model,

as illustrated. d1 is equal to the distance between A0 and A2.
Combining the mass equivalent single elements of the three pantographs then

results in the model in Fig. 6. This mass equivalent model of the complete focal
mechanism has real equivalent massesma

I + mb
I I I in A0,mb

I + ma
I I in A2, andmb

I I +
ma

I I I in A4 and it has virtual equivalent massesmc
I about SI ,m

c
I I about SI I , andm

c
I I I

about SI I I as illustrated. Figure7 shows the unified mass equivalent model of the
complete focal mechanism. The difference with Fig. 6 is that here all the three virtual
equivalent masses are located about S. From this model the conditions for which S
is the CoM can be derived as
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Fig. 6 Combination of the
three mass equivalent single
models with their equivalent
masses. The common CoM
of the focal mechanism is the
CoM of this combined mass
equivalent model
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Fig. 7 The unified mass
equivalent model of the focal
mechanism in Fig. 4 with the
CoM in S about which all
three virtual equivalent
masses are located
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(mb
I I + ma

I I I )d3 + (mb
I + ma

I I )d1 cosψ1 = mtoth1
(mb

I + ma
I I )d1 sinψ1 = mtoth2 (15)

mc
I I I d3 − mc

I I d2 cosψ3 − mc
I d1 cosψ1 = 0

mc
I d1 sinψ1 − mc

I I d2 sinψ3 = 0

with total massmtot = mI + mI I + mI I I andwith the CoM in S definedwith respect
to A0A4 by h1 and h2. The meaning of the first two conditions is that S is the CoM
of the real equivalent masses, while the meaning of the last two conditions is that S
is the CoM of the virtual equivalent masses.

4 Discussion and Conclusion

The inherent force balance of Burmester’s focal mechanism was investigated and
the force balance conditions were derived. It was shown that for balancing the focal
mechanism can be considered composed of two mass equivalent pantographs. Com-
bination of the mass equivalent models of the pantographs then results in one mass
equivalent model of which the center of mass is in the focal point.

It was also shown how with three mass equivalent pantographs a new focal mech-
anism could be designed. In general, by combining multiple mass equivalent pan-
tographs a variety of inherently balanced focal mechanisms can be synthesized.
Unifying the mass equivalent models of all pantographs then results in a single mass
equivalent model of which the center of mass is in the focal point.

Parameters ai are the principal dimensions of the focal mechanism when its com-
mon center of mass is in the focal point. When the center of mass of an individual
pantograph is in the focal point, then ai are also the principal dimensions of this
individual pantograph.

Although in Burmester’s focal mechanism the two pantographs are in opposite
branch, this is not required from the force balance conditions. This means that for
force balance one of the pantographs or both of themmay also be in the other branch,
which means that they could also appear as being on top of one another.

Acknowledgements This publication was financially supported by the Niels Stensen Fellowship.
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Compliant Serial 3R Chain with Spherical
Flexures

Farid Parvari Rad, Rocco Vertechy, Giovanni Berselli
and Vincenzo Parenti-Castelli

Abstract A spherical flexure is a special kind of compliant hinge specifically
conceived for spherical motion. It features an arc of a circle as centroidal axis and
an annulus sector as cross-section, circle and annulus having a common center coin-
ciding to that of the desired spherical motion. This paper investigates a compliant
spherical 3R open chain that is obtained by the in-series connection of three identical
spherical flexures having coincident centers and mutually orthogonal axes of max-
imum rotational compliance. The considered spherical chain is intended to be used
as a complex flexure for the development of spatial parallel manipulators. The com-
pliance matrix of the proposed chain is first determined via an analytical procedure.
Then, the obtained equations are used in a parametric study to assess the influence
of spherical flexure geometry on the overall stiffness performances of the considered
3R open chain.

1 Introduction

Compliant mechanisms (CMs) are a special kind of articulated systems in which
motion, force or energy are transferred or transformed through the deflection of
flexiblemembers (hereafter briefly referred to as “flexures” or “flexural hinges”) [10].
Thanks to the absence (or reduced use) of traditional kinematic pairs, which are
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instead based on mating surfaces, CMs are almost not affected by wear, friction and
backlash, and only require minimal maintenance with no need of lubrication. Due to
their hinge-less nature, CMs can be manufactured in a single piece (for instance via
laser or water jet cutting, electrical discharge machining or additive manufacturing),
thereby reducing number of parts, assembly needs and, thus, manufacturing costs.
With the above-mentioned features,CMsare ideal towork in vacuum, contamination-
free, wet or dirty environments and in devices requiring resistance to shocks and
silent operation. Common applications of CMs span high-precision manufacturing
[27, 36], minimally invasive surgery [9, 18] and micro-electromechanical systems
(MEMS) [1, 30].

As regards the existing literature, several studies have been devoted to the design,
the characterization and the comparative evaluation of different flexure geometries
and CMs formed therewith (see e.g. [14, 21, 31, 35]). In particular, most of these
devices have been specifically conceived for the generation of planar motions only,
out-of-plane displacements being regarded as parasitic effects to be minimized when
possible [13]. On the other hand, despite the huge potentialities, exploitation and
study of CMs specifically conceived for spatial motions have been much more rare
(see e.g. [3–5, 20, 26, 28, 32, 34, 39]). Within this scenario, the development
of Spherical CMs (SCMs) has recently attracted the attention of several researchers.
SCMs are an important class of flexure-based spatial CMs in which all points of the
end-link are ideally constrained to move on concentric spherical surfaces that are
fixed with respect to the grounded link. In particular, the in-series ensemble of two
or three compliant revolute (R) joints (of either planar notch, planar leaf spring or
straight torsion beam type) with orthogonal and intersecting axes has been proposed
in [8, 17, 19, 37] to conceive compliant spherical 2R or 3R serial chains to be used
as compliant universal or spherical joints for the development of Cardan’s [33] and
Double-Hooke’s couplings [17] and of spatial parallel manipulators [4, 5, 20, 26,
28, 32, 34, 39]. In these applications, the use of compliant spherical 2R or 3R serial
chains in place of the axial-symmetric notch primitive flexure is usually preferred
owing to the more limited ranges of motions and larger stress concentrations of this
latter. The connection of four, five, six or eight bars with an equal number of compli-
ant revolute joints (of either straight crease or lamina emergent torsional type) with
intersecting axes has been considered in [6, 7, 38] for the development of 4R, 5R, 6R
or 8R closed single-loop lamina-emergent SCMs, as well as arrays thereof (including
the six bar Watt’s and Stephenson’s linkages), to be used in origami-inspired fold-
able systems such as pop-up books, industrial packaging and deployable devices.
Planar notch and straight torsion beam flexures have been used in [19] to develop
an actuated miniature 3-CRU (C and U denoting cylindrical and universal joints
respectively) spherical parallel CM for the orientation of parts and tools in space.
The in-parallel connection of three symmetrically placed spherical 3R serial chains
employing either lamina emergent straight torsion beam or notch flexures has been
proposed in [11, 29] for the development of 3-(3R) spherical parallel CMs with flat
initial state to be used in compact pointing devices such as in MEMS beam-steering
mirrors or medical instruments.
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Fig. 1 Spherical flexures

Fig. 2 Cross section
properties of SFs

In all the above-mentioned studies, the considered SCMs have been obtained
by employing compliant revolute flexures specifically conceived for planar motion
applications. In contrast to this, Circularly-Curved Beam Flexures (CCBFs) with
constant cross-section and featuring lower rotational rigidity along the radial direc-
tion have been proposed in [12, 22] for the development of SCMs with improved
spherical motion capabilities. Among these CCBFs, those with annulus sector cross-
section as depicted in Figs. 1 and 2, hereafter referred to as Spherical Flexures (SFs),
have recently been demonstrated among the most effective ones in reducing the drift
of the desired center of spherical motion under the combined action of torques and
forces [25].

In this context, this paper investigates the use of SFs for the development of com-
pliant spherical 3R serial chains to be used as SCMs or as spherical complex flexure
components for spatial CMs with either serial or parallel architecture. As depicted
in Fig. 3, the considered spherical chains are obtained by the in-series connection
of three identical SFs that are arranged in space so as to share the same center of
curvature and have mutually orthogonal axes of maximum rotational compliance. In
particular, analytical results are provided to characterize the compliance behavior of
the considered chain in 3D space as a function of flexure geometric parameters.

2 Formulation

A spherical flexure connecting the rigid links A and B is depicted in Fig. 1. It is a
solid of revolution characterized by an annulus sector cross-section with inner and
outer radii, ri and ro, and subtended angle β (see Fig. 2), an axis of revolution zk



14 F. Parvari Rad et al.

Fig. 3 SF-based compliant
spherical 3R open chain

Fixed link

Output link

Rigid link

x0 ,x1 ,y2 ,z3

y0 ,y1 ,z2 ,x3

z0 ,z1 ,x2 ,y3

O0,1,2,3

SF#1

SF#2

SF#3

passing through the center Ok of the annulus and orthogonal to the cross-section axis
of symmetry, m, (see Fig. 1), and revolution angle θ (which describes the flexure
length). Cross-section dimensionless parameters, β and w∗ (w∗ = ro−ri

ro
), are such

that its smaller area moment of inertia is in the direction of them axis. Assuming link
A being clamped and B free and loaded, the small deflection behavior of the flexure
about its unloaded configuration can be described by the following relation [23]:

ks =
[

ku
kθθθ

]
=

⎡
⎣ kCu f

kCum

kCθ f
kCθm

⎤
⎦ ·

[
kf
km

]
= kC · kw (1)

where ks is composed of an incremental translation ku = [kux
kuy

kuz]T and an
incremental rotation kθ = [kθx kθy

kθz]T , kw is composed of an incremental force
kf = [k fx k fy k fz]T and an incremental torque km = [kmx

kmy
kmz]T , whereas

kCu f , kCum , kCθ f , kCθm are three-dimensional matrices composed of entries with
dimensions [m/N], [1/N], [rad/N], and [rad/Nm] respectively.

As a consequence, kC ≡ kCi j is a 6 × 6 matrix with entries of non uniform
physical dimensions, the submatrices kCT = [kCu f

kCum] and kCR = [kCθ f
kCθm]

relating the external wrench to the resulting translations and rotations respectively.
The expression of Eq.1 is frame dependent. For any SF intended for spherical

motion about the center of its centroidal axis circle, a suitable frame is Sk that features
center at Ok and orthogonal axes xk , yk and zk respectively lying on centroidal axis
plane, on beam symmetry plane and along the intersection of these two planes (see
Fig. 1). In this frame, indeed, sub-matrices kCu f and kCθm are diagonal (meaning
that xk , yk and zk are along the principal directions of rotational and translational
compliance of the flexure), and the components of kCu f and kCum (or kCθ f ) indicate
how the desired center of spherical motion drifts as a consequence of applied external
forces and torques.
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Knowing matrix kC for a single spherical flexure, the compliance matrix of the
in-series ensemble of any number n of identical flexures can be obtained with the
following formula [2]:

0C =
n∑

k=1

0T−T
k · kC · 0T−1

k =
n∑

k=1

kTT
0 · kC · kT0 (2)

where kT0 is a 6 × 6 matrix to transform the components of the stiffness matrix kC
of the k–th flexure from the local frame Sk to a ground frame S0. In particular, the
expression of kT0 is:

kT0 =
[

kR0 0
k̃r0 · kR0

kR0

]
=

⎡
⎣ 0RT

k 0(
0̃rk · 0Rk

)T 0RT
k

⎤
⎦ (3)

where kR0 denotes the rotation matrix of frame S0 with respect to frame Sk and 0̃rk
indicating the skew symmetric matrix of the position vector kr0, which locates the
origin of frame S0 with respect to frame Sk .

For the compliant spherical 3R chain shown in Fig. 3, made by three identical
spherical flexures with coincident centers Ok and mutually orthogonal axes, the
overall compliance matrix expressed with respect to the reference frame of the first
spherical flexure (namely, S0 ≡ S1) results as [24]:

0C3R =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy 0 Cy,mx 0 Cy,mz

0 0 Cz, fz Cz,mx Cz,my 0
0 Cθx , fy Cθx , fz Cθx ,mx 0 0

Cθy , fx 0 Cθy , fz 0 Cθy ,my 0
Cθz , fx Cθz , fy 0 0 0 Cθz ,mz

⎤
⎥⎥⎥⎥⎥⎥⎦

3R

(4)

where:

Cx, fx = Cy, fy = Cz, fz = Rθ (InG J+GJ R2A+R2E AIn)
E AInG J = Ct

Cθx ,mx = Cθy ,my = Cθz ,mz = Rθ (In E Im+InG J+GJ Im )

GJ E Im In
= Cr

Cx,my = Cy,mz = Cz,mx = Cθx , fz = Cθy , fx = Cθz , fy = −2R2 sin(θ/2)
GJ = Ctr1

Cx,mz = Cy,mx = Cz,my = Cθx , fy = Cθy , fz = Cθz , fx = 2R2 sin(θ/2)
E In

= Ctr2

(5)

In Eq.5, E and G are the Young’s and shear moduli of the employed material. A, R,
Im , In and J are, respectively, cross section area, certroidal axis radius, area moments
of inertia and torsional constant of the flexure cross section (refer to Fig. 2) that read
as follows [25]:
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A = r2oβ

2
− r2i β

2
= (r2o − r2i )β

2
(6)

R = 4

3

(r3o − r3i ) sin β/2

(r2o − r2i )β
(7)

Im = 1

8
(r4o − r4i )(β − sin β) (8)

In = 1

8
(r4o − r4i )(β + sin β) − 8

9

(r3o − r3i )
2 sin2 (β/2)

(r2o − r2i )β
(9)

J = 2

3
sin3 (β/2)(r4o − r4i ) − 16 sin4 (β/2)(VLr

4
o + VSr

4
i ) (10)

where:

VL = 0.10504 − 0.2 sin(β/2) + 0.3392 sin2 (β/2) − 0.53968 sin3 (β/2) + 0.82448
sin4 (β/2)
VS = 0.10504 + 0.2 sin(β/2) + 0.3392 sin2 (β/2) + 0.53968 sin3 (β/2) + 0.82448
sin4 (β/2)

Equation10 is the formula for the torsional constant firstly proposed by J.B. Reynolds
to account for the warping of annulus sector cross-sections [15, 16].

As one can notice from Eqs. 4 and 5, the compliance matrix of the compliant
spherical 3R chain with respect to frame S0 still retains diagonal translational and
rotational sub-matrices (0Cu f and 0Cθm), and is only a function of four independent
factors:Ct ,Cr ,Ctr1 andCtr2 .Cr is the primary rotational compliance of the 3R chain,
which should be as high as possible to minimize resistance to desired spherical
motions. Ct is a secondary translational compliance, which should be as close as
possible to zero to minimize drift of the desired center of spherical motion (O0)
under the action of the force vector 0f applied on the end-link. Ctr1 and Ctr2 are
secondary coupled rotational-translational compliances, which should be as close as
possible to zero to minimize spherical motion center drift under the action of the
torque vector 0m applied on the end-link.

3 Parametric Evaluation of the Compliant Spherical 3R
Chain

This section investigates the influence of flexure geometry on the ability of the
considered 3R chain in the generation of spherical motions. The study is performed
by evaluating the following three indices:
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Fig. 4 The influence of
varying w∗ and w∗/β on f1
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that represent the dimensionless ratios of the translational and coupled translational-
rotational compliances of a generic compliant spherical 3R chain to the rotational
counterpart. In the definition of these indices, the curvature radius ro of the SF is
used as characteristic size to obtain scale-independent expressions that only depend
on the flexure shape dimensionless parameters w∗, β and θ . In particular, f1 is only
a function of w∗ and w∗/β, whereas f2 and f3 also depend on θ . Among the possible
choices, ro has been chosen as characteristic length since it describes the overall
encumbranceof the 3Rchain,which is often themost important application constraint
in the design optimization process. Plots of Eq.11 are reported in Figs. 4, 5, 6, 7 and
8 as a function of the SF aspect ratios w∗ and w∗/β. The dependency of f2 and f3 on
θ is shown by comparing Figs. 5 and 7 (for θ = 45◦) to Figs. 6 and 8 (for θ = 90◦).
In addition, the contour plot of the size independent factor C∗

r = Cr ∗ r3o/θ (which
is constant irrespective of the value of θ and only dependent on the cross section
aspect ratios w∗ and w∗/β) is reported in Fig. 9. As figures show, maximization of
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Fig. 6 The influence of
varying w∗ and w∗/β on f2
for θ = 90◦
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Fig. 7 The influence of
varying w∗ and w∗/β on f3
for θ = 45◦
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Fig. 8 The influence of
varying w∗ and w∗/β on f3
for θ = 90◦
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the spherical motion generation capabilities of the considered compliant 3R chain
(that is, minimization of secondary to primary compliance ratios) can be obtained
by adopting the largest possible values for θ and w∗/β (within the limits of physical
realizability) as well as for w∗ (within the limit of validity of the slender beam
approximation; namely w∗ < 0.1θ ).
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Fig. 9 The influence of
varying w∗ and w∗/β on C∗
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4 Conclusions

A compliant open chain featuring three in-series connected identical primitive spher-
ical flexures with coincident centers of curvature and mutually orthogonal axes of
principal compliance, is introduced and analyzed for application in spherical compli-
ant mechanisms. First, the closed form compliance equations of the proposed spher-
ical chain are presented as a function of flexure dimensions and employed material.
The obtained equations are then used to study the influence of flexure dimensions
on spherical chain parasitic motions. The study is performed by evaluating three
dimensionless ratios of the translational and coupled translational-rotational com-
pliances of a generic compliant spherical 3R chain to the rotational counterpart. The
results show that maximization of the spherical motion generation capabilities of
the considered compliant 3R chain (that is, minimization of secondary to primary
compliance ratios) can be obtained by adopting the largest feasible values for θ and
w∗/β (within the limits of physical realizability) as well as for w∗ (within the limit
of validity of the slender beam approximation; namely w∗ < 0.1θ ). Future activities
will be devoted to the study of the compliant spherical chains in the case of stockier
flexures as well as in the large deformation range.
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33. Tanık, Ç.M., Parlaktaş, V., Tanık, E., Kadıoğlu, S.: Steel compliant cardan universal joint.
Mech. Mach. Theory 92, 171–183 (2015)

34. Teo, T.J., Chen, I.M., Yang, G.: A large deflection and high payload flexure-based parallel
manipulator for uv nanoimprint lithography: Part ii. Stiffness modeling and performance eval-
uation. Precis. Eng. 38(4), 872–884 (2014)

35. Tian, Y., Shirinzadeh, B., Zhang, D., Zhong, Y.: Three flexure hinges for compliant mechanism
designs based on dimensionless graph analysis. Precis. Eng. 34(1), 92–100 (2010)

36. Tian, Y., Zhang, D., Shirinzadeh, B.: Dynamic modelling of a flexure-based mechanism for
ultra-precision grinding operation. Precis. Eng. 35(4), 554–565 (2011)

37. Trease, B., Moon, Y., Kota, S.: Design of large-displacement compliant joints. J. Mech. Des.
127(4), 788–798 (2005)

38. Wilding, S.E., Howell, L.L., Magleby, S.P.: Spherical lamina emergent mechanisms. Mech.
Mach. Theory 49, 187–197 (2012)

39. Wu, T.L., Chen, J.H., Chang, S.H.: A six-dof prismatic-spherical-spherical parallel compliant
nanopositioner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2544–2551 (2008)



Combining Tube Design and Simple
Kinematic Strategy for Follow-the-Leader
Deployment of Concentric Tube Robots

Cédric Girerd, Kanty Rabenorosoa and Pierre Renaud

Abstract Concentric tube robots show promising performances for many medical
applications. A particularly useful but challenging deployment of these robots, called
“follow-the-leader” deployment, consists in the robot following the path traced out
by its tip. In this paper, we propose to combine a simple and analytical kinematic
approach combinedwith now possible tube design to offer efficient follow-the-leader
behavior. The approach is presented and then assessed with promising performances
using a realistic scenario in the context of human nose exploration.

1 Introduction

Concentric tube robots (CTR) constitute a class of continuum robots that is of partic-
ular interest in the medical context [3]. The displacements of the robot end-effector
are then obtained by relative translations and rotations of precurved elastic tubes
with diameters that can be typically below 3mm [5, 10]. Complex shapes of robots
can be generated using remote actuation, that is particularly relevant for navigation
in constrained anatomical areas. CTR kinematics are however complex because of
the mechanical interactions between the tubes. Several models have been derived
that now include in particular the impact of tube torsion which occurs in the general
case [2, 6]. Complementary work is now focused on the design of CTR tubes, with
local modifications of their shape and structure to obtain anisotropic behavior and
hence to modify the relative importance of bending and torsion in the tubes. Until
now, it is however still difficult to build a CTR and its control to satisfy a so-called
follow-the-leader approach, where the CTR body only occupies the volume swept
by its tip during the deployment. Even though this approach can be mandatory from
an application point-of-view, limited solutions have indeed been reported to choose
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accordingly a robot design, i.e. the number and geometry of precurved tubes, and
the deployment sequence [6].

In this paper we propose a simple-to-use and yet efficient approach to CTR design,
with the corresponding deployment strategy, that allows an approximate follow-the-
leader behavior. In a realistic case study, i.e. the context of human nose exploration,
it is shown to be of adequate performance. The design and deployment strategy
combines the now existing possibility of tube design with a kinematic approach. For
planar trajectories, the goal of the paper, analytical formulation of robot geometry,
defined by number of tubes and their curvatures, and path following sequence are
introduced. Required modifications of tubes are then determined from the task sim-
ulation. The method we propose consists first in path generation and robot design.
Their descriptions are introduced in Sects. 2 and 3 respectively with illustration of
the considered application. In Sect. 4, the determination of tube modifications is per-
formed and the method assessed through simulation of torsion impact as well as
control errors during the deployment. Conclusions and perspectives are finally given
in Sect. 5.

2 Trajectory Generation

In [6], the conditions for exact follow-the-leader deployment have been investigated.
To be admissible, a trajectory must not induce tube torsion. From a design point-
of-view, tubes with precurved helical shapes are identified as candidates for such
deployments, but their manufacturing remains delicate. The other option, for planar
paths, uses planar precurved tubes with constant curvatures in the same or opposite
configurations. As a first step of our method, the CTR path is hence determined
by including this latter constraint. It can be easily demonstrated that a set of tubes
with planar configurations and constant curvatures form a CTR with 2D shape and
constant curvature by sections. The first step is therefore to identify a trajectory that
is admissible from an application perspective and constituted by portions of constant
curvatures.

In the following of the paper, an application is used for evaluation. We consider
the deployment of a CTR to reach the olfactory cleft, located in the upper part of the
nose. Figure1a represents the 3D shape of the area reconstructed from CT images.
The goal is to reach the olfactory cleft starting from the nostril. A planar path with
constant curvature by sections can be identified to join the two regions, as illustrated
in Fig. 1a, b. A point-cloud extraction and circle-fitting algorithm based on least-
squares optimization, not detailed for the sake of compactness, is used to identify the
path parameters. Three sections are determined, with length and curvature for each
one being equal to: 17.32, 14.27, 14.20mm and 0.0353, 0.0646 and 0.0592mm–1

respectively. The resulting trajectory is a key element that will be used as a reference
to quantify deployment errors during the robot insertion.
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(a) (b) (c)

Fig. 1 Front view and perspective view of the nasal cavity with suitable trajectory (a, b) and CTR
with 3 tubes deployed (c)

3 Robot Design and Deployment

The CTR is considered to be composed of planar precurved tubes of constant curva-
tures, located in the same plane, with aligned or opposite curvatures. In this situation
indeed, no torsion occurs in the tubes. If the tubes have aligned curvatures, one can
easily imagine that the resulting robot will be in a stable configuration. On the con-
trary, depending on tube mechanical properties, opposite curvatures can make the
configuration unstable. This can be of course a main issue for the deployment. To
handle this situation, modification of the tube structure as described in [1, 7] is con-
sidered. This does not affect the robot synthesis, described below, with determination
of the number of tubes and their overall shapes, lengths and curvatures. Robot design
is thus described below, tube design being introduced in Sect. 4.

Let n be the number of tubes of the CTR. Each tube numbered i is described
by its precurvature u∗Fi (s)

i (s) = [u∗
i x (s) u

∗
iy(s) u

∗
i z(s)]T expressed in its cross section

material coordinate frame Fi (s). The stiffness properties of the tube are expressed by
the frame-invariant stiffness tensor Ki = diag(Ei Ii , Ei Ii ,Gi Ji ), with Ei ,Gi respec-
tively its Young and Shear modulus, and Ii , Ji respectively its cross section area and
polar moment of inertia. The curvature resulting from the combination of the n tubes
is then given by [5]:

uF0(s)(s) =
(

n∑
i=1

Ki

)−1 n∑
i=1

Kiu
∗F0(s)
i (s) (1)

with F0(s) the cross-section reference frame which experiences no twist when trans-
lated along the robot’s centerline.

In order to determine the robot geometry, we propose to invert Eq. (1) in order to
solve for the tube curvatures. As the tubes are considered to have a constant curvature
along their length, without any presence of torsion, their curvatures can then be
written as u∗

i = [κi 0 0]T or u∗
i = [0 κi 0]T . The path sections are characterized by

their lengths (s1, . . . , sn) and curvatures (1/r1, . . . , 1/rn), starting from the path end.
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The number n of tubes is immediately determined to correspond to the number of
constant curvature sections on the path generated in the previous section. The tube
lengths (l1, . . . , ln) and curvatures (κ1, . . . , κn) can then be determined using Eq. (2),
which has to be solved first for tube 1, the inner tube, up to tube n, the outer tube,
in increasing index order, and using positive or negative path and robot curvatures
depending on the curvature direction:

l j =
n∑

i= j

si

κ1 = 1

r1
and κ j, j>1 = 1

E j I j

(
j∑

i=1

Ei Ii
r j

−
j−1∑
i=1

Ei Iiκi

) (2)

In (2), the values of Young’s modulus and cross section area moments of inertia I j
are chosen from characteristics of circular Nitinol tubes, the standard choice for CTR
because of the material superelasticity. Using diameters of commercially-available
circular tubes, the lengths and curvatures are obtained from Eq. (2) and indicated in
Table1.

By extending the strategy described in [6], the computed CTR geometry can be
deployed with a follow-the-leader approach. As a first step, the n tubes are inserted
altogether by pure translation until the tube n reaches the end of its stroke (Fig. 2).

Table 1 Robot parameters after synthesis with the proposed method for the considered application

Tube index Young’s
modulus
(GPa)

Shear
modulus
(GPa)

Inner
diameter
(mm)

Outer
diameter
(mm)

Length
(mm)

Curvature
(mm–1)

1 80 30 0.880 1.200 45.8 0.059

2 80 30 1.296 1.524 31.6 0.136

3 80 30 1.760 2.184 17.3 0.066

Fig. 2 Deployment sequence of CTR with three tubes (n = 3)
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Then, the n − 1 tubes are inserted together, with the tube n remaining fixed, until
tube n − 1 reaches the end of its stroke. The procedure is repeated until the robot is
fully deployed.

4 Tube Design and Deployment Assessment

We have introduced in Sects. 2 and 3 how it is possible to generate a CTR geometry
and its deployment strategy for planar paths composed of constant curvature sections.
It was previously outlined that the use of concentric tubes with opposite curvatures
can lead to unstable configurations. To make use of a CTR for medical purposes, it
is obvious that only stable equilibrium positions should be used. In this section, we
propose to design tubes with anisotropic properties by local structure modification
to handle this particular issue and make the deployment strategy safe and accurate.

4.1 Robot Kinematic Model

The evaluation of the influence of tube properties is conducted using the application
data. The presented application context will also be used to assess the deployment
accuracy. Therefore, a model is needed to analyze the impact of torsion on the
interactions between the tubes, and possible deviations between stable and unstable
configurations. We here use the torsional model developed in [4, 9], based on an
energy method. For a set of n tubes experiencing bending and torsion, the energy
stored in the tubes is given byEq. (3) if the tubes overlap continuously for s ∈ [σ1, σ2].

E = 1

2

∫ σ2

σ1
(u(s) − α(s))T K (u(s) − α(s)) + Cds, (3)

with

α(s) = K−1
n∑

i=1

Kiu
∗
i (s), K =

n∑
i=1

Ki , θi (s) = ψi (s) − ψ1(s),

u∗
i (s) = Rθi u

∗
i − θ̇i (s)e3, C(s) =

n∑
i=1

u∗T
i (s)Kiu

∗
i (s) − αT (s)Kα(s),

(4)

In these equations, u(s) represents the equilibrium curvature vector for the robot,
and Rθi the rotation matrix of angle θi about e3 = [0 0 1]T . The angles (ψ1, . . . , ψn)

designate the absolute angular variables of each tube. As neither C(s) nor α(s)
depends on u(s), the minimal energy is obtained for u(s) = α(s). In order to com-
pute α(s), the variables ψi (s) that describe the evolution of torsion along the tubes
have to be estimated. For tubes with constant curvature of the form u∗

i = [κi 0 0]T
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or u∗
i = [0 κi 0]T , as previously considered, functions ψi (s) can be expressed by

solving the system (5) of two first order differential equations [8]:

ψ̇i (s) = uiz(s)

u̇i z(s) = Ei Ii
E IGi Ji

n∑
j=1

E j I jκiκ j sin(ψi (s) − ψ j (s))
(5)

where E I = ∑n
j=1 E j I j . The system (5) can be easily used for a CTR composed of

several sections by writing it for each set of overlapped tubes and adding continuity
constraints to the solution.

The set of equations representing torsion along the entire length of the robot is a
boundary value problem that is solved numerically using a finite difference code as
implemented in the bvp5c function in Matlab (The MathWorks Inc., Natick, USA).
Boundary conditions are ψi (0), the known angles at the tubes insertion points, and
ψ̇i (li ) = 0 as tubes can not apply axial moments at their distal ends. Finally, the
shape of the robot can be determined using Eq. (6), with superscript symbol “hat”
denoting the conversion of an element of R3 to an element of so(3), the Lie algebra
of Lie group SO(3).

ṗ = Re3
Ṙ = Rû

(6)

To solve Eq. (6), u(s) can be approximated by constant values over a given step
size, and then a Runge-Kutta method can be used for the resolution.

4.2 Tube Design

At this point, all the tube characteristics are known except the polar moments of
inertia Jj , j ∈ [1, n]. To select their adequate values, that can be adjusted by local
tubemodification as described in [7], the ratio betweenbending and torsion stiffnesses
is being varied in simulation. The ratio λ is equal to E j I j/G j Jj [7] and is considered
identical for all the tubes. As expected, Fig. 3 shows that lowest values of λminimize
the torsional effects and finally the position errors in stable configurations (Table2).
However, it is challenging to obtain experimentally very low values for λ. In [7],
the authors have successfully reached a value of 0.344. For our application, a ratio
λ = 0.348 results in a tip error of 2.51mm, which is acceptable for our application.
This value is therefore selected, which ends the robot design with the proposed
approach.
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Fig. 3 Robot positions for
different λ values

Table 2 Tip position errors
as a function of λ. λ = 1.33
corresponds to standard
non-modified circular tubes

λ Tip position error (mm)

0.348 2.51

0.4 19.24

0.7 36.49

1.33 44.96

4.3 Follow-the-Leader Behavior Assessment

We now investigate precisely the follow-the-leader deployment errors by measuring
tip position error and root mean square error along the robot’s centerline for different
deployment stages. The tubes are considered held at their insertion point. Measure-
ments are reported in Table3 with two indicators: the maximum error (Max), which
is equal to the tip error, and the RMS value of deviation along the deployed robot.
Three configurations during the deployment are considered: after deployment of the
3 tubes altogether (Point A, Fig. 1c), of tubes 1 and 2 altogether (Point B, Fig. 1c),
and finally of tube 1 (Point C, Fig. 1c). At point A, errors are equal to zero. Fur-
ther analysis shows that anisotropy leads to the existence of only one configuration,
superimposed with the desired deployed geometry, a situation previously observed

Table 3 Position errors during the follow-the-leader deployment. Maximum errors are in plain
letters, RMS values are in bold

Situation A B C

Without error (mm) 0 (0) 0.79 (0.27) 2.51 (0.95)
With error (mm) 0 (0) 1.05 (0.36) 3.31 (1.26)
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for two tubes in [9]. Results obtained are suitable for our application in terms of tip
deviation.

In order to go further and explore the robustness of the follow-the-leader behavior,
we introduce angular errors in the control of the tubes at their base. A value of 0.005
degree, achievable with standard encoders and transmissions, is chosen. Results in
Table3 indicate the maximum errors in presence of tube angular errors. Those results
still remain acceptable for our application,which is encouraging and show the interest
of the proposed robot design and deployment method.

5 Conclusion

In this paper, we have proposed a method for CTR design and deployment. It com-
bines a simple kinematic approach and tube design to achieve approximate follow-
the-leader deployment. We have shown that interesting accuracy can be obtained for
a medical application. The effect of the actuation control errors on the robot deploy-
ment have also been studied, and we have demonstrated that such errors remain
acceptable for our application. The interest of tube modification is outlined, with
high sensitivity of the robot behavior to these modifications. Further work will now
be focused on selecting the best tube patterning techniques to obtain anisotropic
properties. Evaluation of sensitivity to design parameters and extension to other 3D
deployment situations will also be considered.
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A Screw-Based Dynamic Balancing
Approach, Applied to a 5-Bar Mechanism

Jan de Jong, Johannes van Dijk and Just Herder

Abstract Dynamic balancing aims to reduce or eliminate the shaking base reaction
forces and moments of mechanisms, in order to minimize vibration and wear. The
derivation of the dynamic balance conditions requires significant algebraic effort,
even for simple mechanisms. In this study, a screw-based balancing methodology
is proposed and applied to a 5-bar mechanism. The method relies on four steps:
(1) representation of the links’ inertias into point masses, (2) finding the conditions
for these point masses which result in dynamic balance in one given pose (instanta-
neous balance), (3) extending these conditions over the workspace to achieve global
balance, (4) converting the point mass representation back to feasible inertias. These
four steps are applied to a 5-bar mechanism in order to obtain the conditions which
ensure complete force balance and additional moment balance over multiple trajec-
tories. Using this methodology, six out of the eight balancing conditions are found
directly from the momentum equations.

1 Introduction

The ever increasing demands on the throughput of robots requires reduction of their
cycle times without compromising the accuracy and the lifetime. Higher velocities
induce stronger base reaction forces andmomentswhich in turn cause framevibration
and wear of the manipulator [8]. Dynamic balancing aims to design the kinematics
and themass distribution of themanipulator such that both the changing base reaction
forces and moments are eliminated [10]. With force balancing, only the changing
reaction forces are considered [1].
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Dynamic balancing often involves the addition of linkages and masses - such as
countermasses and/or counter rotations - which in general leads to higher complexity
and higher motor torques [8]. For parallel mechanisms, the closure equations sup-
ports finding dynamic balance without additional linkages or counter-rotations [5].
However, for mechanisms with more DOFs, the dynamic balance conditions become
increasingly difficult to find as the number of bodies increase and the kinematic clo-
sure equations become more complicated. To overcome this, several synthesis meth-
ods are presented; such as stacking of dynamically balanced 4-bar linkages [10],
and synthesis based on principal vector linkages [7]. Nevertheless, these synthesis
methodologies do not cover all the possible solutions and require considerable effort
to find the balancing conditions.

In this paper, a screw theory-based, four stepmethodology is presented to simplify
the process of finding the dynamic balance conditions for planar mechanisms, with a
potential extension to spatial mechanisms. The methodology relies on two insights.
Firstly, the geometric screw theory gives the conditions for the direct calculation of
a subset of the balancing conditions without differentiation or solving the kinematic
closure equations. Secondly, the dynamics equations are simplified using an inertia
decomposition method derived from Foucault and Gosselin [2]. This approach is
illustrated by applying it to a 5-bar mechanism to obtain complete force balance
(similar to [4]) with additional moment balance over multiple trajectories (similar to
the Dual V [9]). First the kinematic model of a 5-bar mechanism (Sect. 2.1), and the
screw dynamics (Sect. 2.2) are described, based onwhich the four steps are illustrated
(Sects. 2.3–2.6).

2 Method

2.1 Kinematic Model of a 5-Bar Mechanism

The 5-bar mechanism under investigation consists of two RR linkages connected by
a revolute joint at x (see Fig. 1). To each body a reference frame (ψi ) is associated
in the joint as seen in the figure. The base reference frame is placed arbitrarily. The
frame in which a point is represented is denoted with a superscript (e.g. ai ).

The velocity of a body in space is described by a 6D twist vector (t jk ), which
is the general global velocity of frame ψk expressed in ψ j . The angular velocity
is denoted by ω and the linear velocity by v. The coordinate transformation matrix
(X j

i ) changes the expression of a twist from frame ψi to ψ j . The matrix consists of
a rotation matrix (R j

i ) and a translation vector (o j
i )

1:

1The
[
o j
i ×

]
is a skew symmetric form of vector o j

i .
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Fig. 1 Kinematic model and
instantaneous balance of a
5-bar mechanism. The
momentum wrenches sum to
zero for a pure motion of
joint 1
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(1)

The body Jacobian (J i ) relates the joint velocities to the twist (t0i ) of each body.
As input joint velocities (q̇) we choose the base joints. This makes bodies 1 and
3 the active, and 2 and 4 the passive (non-actuated) bodies. The Jacobian of the
mechanism can be found using methods such as presented by Zoppi et al. [12].
The body Jacobians are concatenated such that the total mechanism Jacobian (J)
becomes:

t0i = J i q̇ f J =
⎡

⎢
⎣

J1
...

J4

⎤

⎥
⎦ =

⎡

⎢⎢
⎣

X0
1 t̂ 0

X0
1 t̂ + d1X0

2 t̂ d2X0
2 t̂

0 X0
3 t̂

d3X0
4 t̂ X0

3 t̂ + d4X0
4 t̂

⎤

⎥⎥
⎦ (2)

in which t̂ = [
(nz)

T 0T
]T

is the local twist axis, in which nz is the unit vector in z
direction. The Jacobian coefficients are:

d1 = − x4 · R4
1

[
nz×

]
o12

x4 · R4
1

[
nz×

]
R1
2x2

− 1 d2 = x4 · R4
3

[
nz×

]
o34

x4 · R4
3

[
nz×

]
R3
2x2

(3)

d3 = o12 · R1
2

[
nz×

]
x2

x4 · R4
1

[
nz×

]
R1
2x2

d4 = − o34 · R3
2

[
nz×

]
x2

x4 · R4
3

[
nz×

]
R3
2x2

− 1 (4)

Note that the denominators of all the coefficients are equal, yet, we write them
differently in terms of the rotation matrix in the nominator for later use (Eq.11).
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2.2 Dynamics

The conditions for dynamic balance are usually derived from the momentum equa-
tions. Shaking forces and moments are the derivate of momentum. When assuming
zero initial velocity, the shaking forces and moments are zero when the momentum
is zero for all motions.

In screw theory, this momentum is seen as wrench [6]; the momentum wrench
(h), a concatenation of the angular momentum (ξ ) and the linear momentum ( p).
The momentumwrench can be expressed in another frame using a second coordinate
transformation matrix. The momentum generated by a body, is calculated from the
twist or the Jacobain of that body and the inertia matrix M i , which is given later
(Eq. 7).

h j =
[
ξ j

p j

]
= (X i

j )
T hi h0

i = M i t0i = M i J i q̇ (5)

The admissible momentum wrench of a mechanism is defined by its momentum
span. As the 5-bar mechanism is a 2 DOF mechanism, the dimension of the span
is maximally two. In the current study we choose the bases of this momentum span
(indicated with a hat) as the momenta generated by unit velocity of the two base
joints.

[
ĥ
0

1 ĥ
0

3

]
=

4∑

i

M i J i = 0 (6)

When the momentum span is only zero for a certain pose we have obtained a local
momentum equilibrium or instantaneous balance, this is a necessarily but not suffi-
cient condition for dynamic balance. For global dynamic balance, these instantaneous
conditions have to be extended over the complete workspace.

2.3 Step 1. Inertia Decomposition

Wu and Gosselin [11] used the property that the inertia of a body can be represented
as a collection of point masses to study the dynamic equivalence of robotic platforms.
Continuing on that, we recognize that the inertia of a planar body can be sufficiently
represented by two point masses. For a given center of mass (COM), inertia and
mass, four equations have to be satisfied [2]. As two point masses give six variables,
the location of one point mass can be chosen freely, fixing the location of the other
mass and the mass distribution over the two points.

When the free point mass is placed on the revolute joint, this joint has no influence
on themotion of the free point. Therefore this point can also be regarded to be fixed to
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the connecting body. This leaves the initial body with one point mass representation
(r i ,mi ). This inertia decomposition can be applied throughout thewholemechanism,
such that the inertia properties of each body are characterized by a single point mass.
This reduces the number of dynamic parameters from 4 to 3 per body. This finally
gives the inertia matrix for a planar body:

M i = mi

[
−[

r0i ×
]2 [

r0i ×
]

−[
r0i ×

]
I3

]

(7)

2.4 Step 2. Instantaneous Balance

Dynamic balancing occurs when the location and mass of these points are such that
the momentum span reduces to zero. For a 5-bar, the mechanism’s momentum basis
is defined by the motion of one joint while the other joint (and body) is fixed. This
means that only three bodies contribute to each mechanism’s momentum basis.

−ĥ
0

1,1 = ĥ
0

2,1 + ĥ
0

4,1 −ĥ
0

3,3 = ĥ
0

2,3 + ĥ
0

4,3 (8)

The three body momentum bases are represented as wrenches (see to Fig. 1). For
force balance, the vector sum of the linear momenta has be to zero. For additional
moment balance, the three wrenches have to intersect at one point. A momentum
wrench generated by rotation of a point mass around an axis passes trough the point
mass in a direction perpendicular to the point and the axis location. Therefore it
follows that the point mass of the base body has to be on the intersection point of
a line perpendicular to the wrench line (ĥ1,1) and the axis of rotation, as indicated
in Fig. 1. The mass to be located at this point is given by ratio of linear and angular
momentum.

r11 = 1

m1

[
nz×

] (
p̂12,1 + p̂14,1

)
m1 = − ‖ p̂12,1 + p̂14,1‖2

nz ·
(
ξ̂
1

2,1 + ξ̂
1

4,1

) (9)

If similar conditions are imposed on the second base link (r33, and m3), we have
obtained six instantaneous balance conditions.
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2.5 Step 3. Global Force Balance

Global force balance is obtained when the sum of the linear momentum span of the
passive bodies (2 and 4) - expressed in the base bodies reference frames - is constant
over the workspace. This is required to enforce a pose independent solution for
Eq.9. Therefore, the global force balance conditions only depends on the dynamic
properties of the passive bodies. After coordinate transformation of the linear part of
Eq.8, the following constraint equation is obtained:

− p̂11,1 = m2
[
nz×

]
o12 + m2(1 + d1)

[
nz×

]
R1
2r

2
2 + m4d3

[
nz×

]
R1
4r

4
4 = const. (10)

Inspection shows that Eq.10 and the terms d1 and d3 of Eqs. 3 and 4 are onlywritten in
terms of the variables R1

2(q2,1) and R1
4(q4,1). For global force balance, the derivative

of Eq.10 with respect to these two angles should remain zero:

δ

δq1,4

(
p̂11,1

)
= d3

x4 · R4
1

[
nz×

]
R1
2x2

(
m2‖x4‖2

[
nz×

]
R1
2r

2
2

+m4
((
x4 · x2) + (

x4 · [
nz×

]
x2

)
I3

)
R1
2r

4
4

) = 0 (11)

From this derivative, the following global force balance conditions is obtained.

r22 = m4

m2

1

‖x4‖2
((
x4 · [

nz×
]
x2

) [
nz×

] − (
x4 · x2) I3

)
r44 (12)

This constraint equation can also be obtained when differentiating Eq.10 to the other
angles (q1,2), and from the derivatives of ( p̂33,3). The implications of global force bal-
ance and additionally instantaneous dynamic balance on reactionless trajectories are
discussed in Sect. 2.7. This global solution step still requires considerable algebraic
effort.

2.6 Step 4. Inertia Recomposition

The resulting balancing conditions arewritten in terms of the pointmasses, describing
a range of inertias. To select a proper inertias, we recognize that at the joints (ui, j ) -
connecting body i with j - a point mass (ai, j ) can be exchanged between the bodies
(see to Fig. 2). The mass which is added to one link has to be subtracted from the
connecting link (ai, j = −a j,i ). In such a way the inertia (gi ) and COM (ci ) of mass
(mt,i ) can be selected which satisfy the balance conditions.
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Fig. 2 Inertia
decomposition of the 5 bar
mechanism. The COM (c4),
inertia (g4), and mass (m4)
of body 4 is given by sum of
three point masses (u4,2,
u4,3, and r4)

m4, r4

mt,4,g4, c4
a4,3,u4,3

a4,2,u4,2

a2,4

a3,4

mt,i = mi +
n∑

j=1

ai j mt,i ci = mi r i +
n∑

j=1

ai jui j

gi + mt,i‖ci‖2 = mi‖r i‖2 +
n∑

j=1

ai j‖ui j‖2 (13)

The mechanism can be built as long as the inertia and mass are positive. This
precludes a range selectable inertia distributions.

2.7 Reactionless Trajectories

With global force balance the dimension of momentum for planar mechanism is
reduced to one. Since a 5-bar mechanism has 2 DOF, there exist a velocity vector
in each pose for which the momentum is zero. This null space motion of Eq.5 is
numerically integrated to form a reactionless trajectory. In the instantaneous balance
poses, the momentum for both directions is always zero. This implies that in these
poses, two reactionless trajectories meet.

3 Results

To evaluate the presented method, a geometry is selected, as depicted in Fig. 3a and
Table1. The dynamic balance of the mechanism is evaluated using multibody soft-
ware package Spacar [3]. The mechanism moves over two reactionless trajectories
(red and blue) and one arbitrary unbalanced trajectory (yellow).

The maximal shaking forces of all the trajectories are in the order of computation
accuracy (max: 1.07−09 N), confirming that the mechanism is force balanced. Also
the shakingmoments are approximately zero (max: 3.01−04 Nm) for the twobalanced
trajectories. For the unbalanced trajectory a maximal shaking moment of 6.69Nm
is found (Fig. 3b).



40 J. de Jong et al.

x(m)
-1.5 -1 -0.5 0 0.5

y(
m
)

-1

-0.5

0

0.5

1

(a) (b)

x

ψ3

ψ1

ψ4

ψ2

time(s)
0 0.1 0.2 0.3 0.4 0.5

N
m

-4

-2

0

2

4

6

8

Reactionless Trajectory 1.
Reactionless Trajectory 2.
Unbalanced Trajectory

Fig. 3 a Geometry and trajectories. b Shaking moments

Table 1 Geometrical and dynamic parameters

Joint position [m]
ooo01 [0, 1]
ooo12 [-0.866, 0.5]
ooo03 [0, -1]
ooo34 [-0.866, -0.5]

COM [m]
ccc11 [0.220, 0.013]
ccc22 [0.250, 0.433]
ccc33 [0.220, -0.013]
ccc44 [0.250, -0.433]

Mass [kg]
mt,1 1.0155
mt,2 0.2000
mt,3 1.0155
mt,4 0.2000

Inertia [kgm2]
g1 0.0240
g2 0.0500
g3 0.0240
g4 0.0500

4 Discussion and Conclusion

Using the presented method a simplification of the balancing process is obtained,
such that six (Eq. 9 for r11, r

3
3,m1, andm3) out of eight conditions for dynamic balance

can be calculated directly from themomentum equations without manipulation of the
kineto-dynamic relationships. Furthermore, the two remaining conditions for global
balance (Eq.12 for r22) are found to be only dependent on the dynamic properties
of the passive bodies. However, these last two conditions require effort in taking
derivatives and manipulation of the momentum equations. The applicability of this
balance methodology to more complex planar and ultimately spatial mechanisms is
under investigation.

In this paper, a screw-based balancing method is presented and applied to a 5-bar
mechanism. The balancing conditions are found for force balance over the complete
workspace and additional moment balance over multiple trajectories, as shown by
simulation results. To arrive at these dynamic balance conditions, a screw-based
approachwas presented. It consists of four steps. In the first step itwas recognized that
the dynamic properties of a planar mechanism with revolute joints can be simplified
to one point mass per body. In the second step, instantaneous balance was found by
placing the point masses of the base links orthogonal to the momentum wrench line
generated by the rest of the mechanism. In the third step, the place of the remaining
point masses was calculated such that the force balance extends over the workspace.
In the last step, the resulting point masses where converted into actual inertias such
that the mechanism can be built.
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A Novel S-C-U Dual Four-Bar Linkage

Pierre Larochelle and Sida Du

Abstract This paper presents the kinematic architecture, analysis, and simulation
of the S-C-U Dual Four-Bar Linkage (Larochelle and Du, Dual four-bar linkage
mechanism, 2015, [4]). The S-C-U Dual Four-Bar Linkage, or SCUD Linkage, is a
biologically inspired design for articulating the leg in amechanical walkingmachine.
The SCUDLinkage consists of dual planar four-bar mechanisms used to support and
generate the desired motion of a rod in three-dimensional space. The rod is supported
by two joints; each of these binary joints connecting the rod to a coupler point on
a planar four-bar mechanism. At one end of the rod a universal joint connects it to
a coupler point. At the rod’s midpoint, a combination of a cylindrical joint and a
spherical joint are used to connect it to the other supporting coupler point. The result
is a two degree of freedom closed kinematic chain with two parallel sub chains. The
end-effector or workpiece of the SCUD Linkage is affixed to the free end of the
rod. Here, the concept of the SCUD Linkage as well as its kinematic analysis and
simulation are presented. The analysis of an example SCUD Linkage is included.

1 Introduction

The motivation for the creation of the SCUD Linkage came from the same source,
independently, to each of the authors before they hadmet. For both authors the source
of the inspiration was identical; it was the motion of the front legs of a tortoise. In
1999 the first author acquired as a family pet a geochelone sulcata or African Spurred
tortoise named Chomper, see Fig. 1. The complex motion of the front legs of the
tortoise and their ability to support the relatively large mass of the tortoise inspired
the first author in 2006 to pursue the design of kinematic closed chains that could
replicate the motion of the front foot. Similarly, the second author, while pursuing
his bachelors degree in 2009, was inspired by the front leg motion of tortoises while

P. Larochelle (B) · S. Du
Florida Institute of Technology, Melbourne, FL, USA
e-mail: pierrel@fit.edu

S. Du
e-mail: sdu2013@my.fit.edu

© Springer International Publishing AG 2018
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Fig. 1 A Geochelone sulcata or African spurred tortoise

working on the design of a mobile robot for the Biomimetic Robotics Competition
organized that year by theHarbin Institute of Technology. Independently, each author
explored the use of open kinematic chains to generate the desired motion however
they found that four or more degrees of freedomwere required for each foot. Simpler,
lower degree of freedom, solutions were sought. Once the authors met in Fall 2013
they began collaborating to identify kinematic architectures that would effectively
and efficiently replicate the front leg motion of the geochelone sulcata. The SCUD
Linkage presented here is one of the promising architectures that the authors have
designed.

Human beings have long been curious about the behavior of the world’s won-
derful creatures and have tried to understand and imitate them. The earliest walking
machines were mechanical toys. Their legs were driven by cranks or cams from a
source of rotary power, usually clockwork, and executed a fixed cycle [8]. The first
documentedwalkingmechanism appeared in about 1870 andwas based on a four-bar
mechanism invented by the Russian mathematician P.L. Chebyshev as an attempt to
imitate natural walking (Artobolevsky, 1964) [3]. In 1893 the first patents for legged
systems were registered with the US Patent Office [3].

Based on the number of legs the robot has, there are bipeds e.g. humans or birds,
quadrupeds e.g. mammals and reptiles, hexapods e.g. insects, and octopods e.g.
spiders [3]. A hexapod robot is a mechanical device that walks on six legs. One
example is RHex, a biologically inspired hexapod with compliant legs [1, 7]. The
SphereWalker is another biologically inspired hexapod device [5]. The SphereWalker
was developed by the first author and colleagues and was also inspired by the front
legs of a tortoise. The SphereWalker is composed of three spherical four-bar linkages
each connected to base plates that are serially connected to each other using two
universal joints. Each linkage in SphereWalker is identical and each has two feet
attached to its extended coupler link.
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2 The SCUD Linkage

To fulfill the desired characteristics and performance attributes discussed above a
novel linkage was designed. The S-C-U Dual Four-Bar Linkage, or SCUD Linkage,
consists of dual planar four-bar mechanisms used to support and generate the desired
motion of a rod in three-dimensional space. The rod is supported by two joints; each
of these binary joints connecting the rod to a coupler point on a planar four-bar
mechanism. These coupler points support the rod at its midpoint and at one of its
ends. At one end of the rod a universal joint connects it to a coupler point. Along
the rod’s span a combination of a cylindrical joint and a spherical joint are used to
connect the rod to the other supporting coupler point. The result is a two degree
of freedom spatial closed kinematic chain with two parallel sub chains. The SCUD
Linkage may also be classified as a parallel robot [6]. The end-effector or workpiece
of the SCUD Linkage is affixed to the free end of the rod. A kinematic diagram of
a SCUD Linkage is shown in Fig. 2. The two planar closed chain four-bar linkages
generate motion in either parallel or intersecting planes. These mechanisms transmit
motion and torque from their driving motors thru their couplers to the rod. Each of
the planar four-bar mechanisms drives their coupler point along coplanar coupler
curves and these curves determine the spatial motion of the end-effector rod. One
end of the rod is connected to one of the couplers with a universal joint. This end
of the rod is named the head of the rod and this four-bar mechanism is referred to
as the U-linkage. Its plane of motion is the U-plane and the curve generated by the
coupler point of the U-linkage is the U-curve. Along the rod is a second joint that

U-Plane
S-Plane

U-Linkage
S-Linkage

Operator Rod

U-Joint

x

End-effector

Base Frame

y

z

SC-joint

Fig. 2 An example SCUD linkage
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connects it to the other four-bar mechanism. This joint consists of a combination of a
spherical joint and a cylindrical joint. This linkage is named the S-linkage, due to the
spherical joint, its plane is the S-plane, and its coupler curve is the S-curve. The two
intersection points between the rod and the U and S planes move along the U-curve
and S-curve and determine the spatial motion of the end-effector rod.

3 Kinematic Analysis

Here we present the kinematic analysis of the SCUD Linkage. First, Cartesian coor-
dinate frames are affixed to the links. Then, the transformation operators, velocity
vectors and acceleration vectors of the coupler points of the planar linkages and
that of the end-effector are derived to describe their motion with respect to the
inputs. Next, the parameters of the SCUD Linkage are used to build models both in
Matlab and in Creo [2] to generate and analyze the workspace of this SCUDLinkage.
These models are utilized to visualize the kinematic capabilities and limitations of
the SCUD Linkage.

Consider the SCUD Linkage whose U-linkage and S-linkage are each crank-
rocker four-bar mechanisms as shown in Fig. 3. The kinematic analysis is performed
in 3 steps:

1. The derivation of the planar four-bar motions. In this first step, a four-bar posi-
tion analysis is performed to determine the relative angle (φ) of the coupler
with respect to the crank as a function of the input angle (θ ). Next the two
coupler point frames relative to the base frame are determined; i.e. the frames
{U } and {S}.

2. The derivation of the rod’s spatial motion operator. In this second step, the angles
λx and λy are solved from a set of non-linear equations that describe the geometric
relationship between the {U } and {S} frames. Next, the frame {U ′ } is derived by
rotating the frame {U } by λx and λy and then the end-effector frame {E} is
obtained by translating the frame {U ′ } along the operator rod.

3. The derivation of the kinematic derivatives. The velocity vectors and the acceler-
ation vectors of the coupler points and the end-effector are obtained by computing
the derivatives of the transformation operators obtained in steps 1 and 2.

Step 1 can be performed using the known position analysis of the planar four-bar
crank-rockermechanism and applying coordinate transformations to yield the frames
{U } and {S}. Step 2 requires the angles λx and λy that represent the motion at the
U joint. These angles are determined by performing an analysis of the orientation
of frame {U } with respect to the {S} frame. In this problem, the unknown frame
{U ′ } has the same position as the known frame {U } and is rotated with respect to
{U } such that its z axis is directed towards the origin of {S}. Utilizing this geometric
relationship, the angles λx and λy are determined. The known frames {U } and {S}
and the angles λx and λy are then used to obtain the frames {U ′ }, {S ′ }, and {E}. See
Fig. 3. The details follow.
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Frame {U ′ } is defined as having origin coincident with {U } and z-axis directed
along the rod toward {S}. Equating the direction of the z-axis of the {U ′ } and a vector
along the rod from {U } toward {S} yields,

px = λ(cosΓu sin λy + sinΓu sin λx cos λy)

py = λ(sinΓu sin λy − cosΓu sin λx cos λy)

pz = λ(cos λx cos λy). (1)

where p is the known vector from the origin of the {U } frame to the origin of the
{S} frame, Γu = γu + δu , and λ is an arbitrary scale factor. The maximum possible
range of motion of the universal joint is [−π

2 , π
2 ]. These bounds are in the range of

the arctan function therefore the angles λx and λy are also in this range and can be
computed from Eq.1 by eliminating λ and using arctan,

λx = arctan

(−(py cosΓu − px sinΓu)

pz

)
(2)

λy = arctan

(
cos λx px − pz sinΓu sin λx

pz cosΓu

)
. (3)

Having found the λx and λy angles a straight-forward kinematic analysis yields {U ′ }
and {S ′ } as well as the end-effector frame {E}. Step 3 requires differentiating the
transformation operators. Though tedious, the process is straight-forward.

3.1 Workspace

The workspace of a SCUD Linkage is defined as the set of all reachable points of
the origin of the end-effector frame {E}. The SCUD Linkage possesses 2 degrees of
freedom therefore its workspace is a 2 dimensional spatial surface. A visualization
of the workspace of a SCUD Linkage is generated in 3 steps. Step 1: discretize the
working range of θu . Step 2: for each value of θu vary the input angle θs throughout
its range of motion. Determine the origin of {E} for each θs . This results in a curve
that is on the surface of a sphere whose center is at the U joint and whose radius is the
length of the rod Lrod . Step 3: repeat Step 2 for each value of θu . The resulting curves
represent the discretized 2 dimensional workspace. The discrete points that represent
the workspace of the SCUD Linkage may be visualized as a surface by utilizing
MATLAB’s surface rendering function surf, see Fig. 4. Moreover, the workspace of
the SCUD Linkage may be visualized as a set of curves by utilizing the tracecurve
function in Creo, see Fig. 5.
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Fig. 4 An example SCUD linkage workspace rendered in MATLAB

Fig. 5 An example SCUD linkage and workspace rendered in Creo

The Sub-Figure to Show Detail of Arrows

Fig. 6 An example SCUD linkage linear velocity field: θ̇u = 0
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The Sub-Figure to Show Detail of Arrows

Fig. 7 An example SCUD linkage linear velocity field: θ̇s = 0

3.2 Velocity

Results of a linear velocity analysis of the example SCUD Linkage are shown in
Figs. 6 and 7.
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Inverse Kinematics Analysis of a P2CuP2Cu
Concentric Tube Robot with Embedded
Micro-actuation for 3T-1R Contactless Tasks

Mohamed Taha Chikhaoui, Kanty Rabenorosoa and Nicolas Andreff

Abstract This paper introduces a novel kinematic structure based on the concentric
tube robot (CTR) paradigm, augmented with embedded soft micro-actuation. The
latter allows to replace troublesome R-joints in CTR with 3 tubes by active tube
curvatures (Cu-joints). First, the forward kinematic model is derived. Furthermore,
the inverse kinematic problem is partially solved by restricting it to 3-translations/1-
rotation movements. Finally, the inverse model is used to perform path planning
schemes in medical scenarios.

1 Introduction

Flexible and miniaturized instruments are widely used for minimally invasive inter-
ventions. In this scope, continuum robots provide doctors with a controllable small
device offering high precision navigation inside the human body for both therapeutic
and diagnosis purposes [4]. Particularly, concentric tube robots (CTR) have proven
their efficiency for a wide range of medical applications [2, 10, 11, 13, 15]. CTR are
formed by several pre-shaped tubes nested in each other that can translate and rotate
relatively in a telescopic way. The improved efficiency is due, among other reasons,
to the use of tubes of small diameters ranging from 3mm down to 0.8mm [16] with
a free lumen able to embed different medical tools. Despite all these advantages,
CTR suffer from mechanical limits such as snapping explained in [16] and caused
by the high torsional energy involved when rotating the tubes relatively. In fact, the
rotation input at the tube base is all the more different from its output angle at the
tip as its length and/or curvature are higher. Another issue with CTR is that once
the tubes are assembled, the curvature of each component is a fixed parameter and
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cannot be modified afterward, which narrows the possible workspace to cover as
demonstrated in [6–8]. Furthermore, in order to perform the relative movements,
each tube is attached to the rotation stage, which can be connected to the translation
stage [3, 10, 18]. For n concentric tubes, one needs 2n actuators that should over-
come the frictional and torsional efforts of the tubes and thus are of a consequent size
compared to the effector size. With a 3-tubes CTR, 6 actuators are used implying the
possibility to control the 6 degrees of freedom (DoF) of the robot end-effector.

The aim of this work is to propose an equivalent structure of a standard 3-tubes
CTR but augmented with embedded soft micro-actuation based on 2 tubes only and
considered as a P2CuP2Cu. P denotes the prismatic joints, equivalent to the trans-
lational movements; and the 2 active tube curvatures in 2 orthogonal directions for
each tube are denoted by Cu for each bending. This structure is intended to keep the
same performances with less mechanical constraints and an embedded soft actuation
scheme able to be easily integrated into an actual operating room. If the forward
kinematic model is rather easy to derive, inversion of the robot model in a geomet-
rical way is quite challenging but useful for stable path planning including obstacle
avoidance, tissue and organ examination with imaging systems, and full robot shape
monitoring in constrained environments. From a control point of view, this solution
is proposed here in contrast with (i) Jacobian-based inverse-kinematics that require a
full knowledge of the kinematics, an important computational time and that are trib-
utary to the non-singular configurations [10], and with (ii) the kinematic-equivalent
model based inverse kinematics [14] that monitor exclusively the position of the
robot tip (added to the overall shape) by solution exploration without controlling its
orientation.

For the sake of the completeness of this introduction, a few words are needed on
technology. The comparison of the available micro-actuators such as shape memory
alloys (SMA) and piezoelectricmaterials (PEM) presents the electro-active polymers
(EAP) as the best candidates for this application. In fact, EAP-based actuators do not
produce additional heating in contrast with SMA, require very low voltages (<2 volts
for some ionic EAP) in contrast with PEM, and do not alter the structure mechanics
because of their lightweight [6]. Biocompatibility with a medical device is also
confirmed and a relatively high strain (more than 20%) should be noted. Section2
presents the combination of these promising technologies and the forward modeling
as the first work led to the best of our knowledge. Furthermore, the inversion of these
models is developed in a geometrical way in Sect. 3 for the P2CuP2Cu, it stems for
the computation of two tangentially connected circular arcs of controllable curvature,
orientation (hence, arc planes), and length. Simulations of path planning results are
also presented based on the developed models.
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2 Concentric Tube Robot with Embedded Soft
Micro-actuation

2.1 Embedded Soft Micro-actuation in Concentric Tube
Robots

Adding micro-actuation to a concentric tube robot provides several improvements.
First, the intrinsic curvature of each tube is accessible when activating the EAP-
based soft micro-actuators deposed as 4 electrodes onto each tube as described in
Fig. 1a. In fact, each pair of electrodes generates antagonistic efforts due to an electro-
chemo-mechanical conversion. When one positively activated electrode expands in
volume, its diametrically opposite one (negatively activated) shrinks which leads to
the bending of the substrate tube along the plane containing these electrode central
lines. This emerging technology is under continuous improvement and has shown
promising results that required expertise in chemistry, micro-fabrication and clean
room developments [1, 9]. Moreover, with this 4-electrodes configuration, the rota-
tion motors are not mandatory which reduces substantially the actuation unit size.
Furthermore, biocompatible flexible tubes are used and thus small efforts are required
to deploy them telescopically. Smaller translation stages are adequate and replace
for the high-torque-requiring motors used in standard CTR actuation. The thick-
ness of such actuators varies between 10 and 30 microns and thus does not alter the
concentric tube approach and saves the free-lumen configuration, in contrast with
cable-driven continuum robots [5]. Finally, in order to preserve the accessible 6 DoF
of the standard CTR, we introduce the P2CuP2Cu: a configuration with 2 concentric
tubes augmented with 4 EAP electrodes each in order to control their bending in 2
orthogonal directions added to their telescopic deployment.

Fig. 1 a CAD design of the proposed P2CuP2Cu robot based on embedded soft micro-actuators
at an arbitrary configuration, b Schematic description of an arc of a circle in 3D
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2.2 Forward Kinematic Model

The forward kinematic model first describes a single section of a CTR considering
its actuators. The modeling is based on the piece-wise constant curvature assumption
[12, 17]. Indeed, an arc of a circle in 3D is defined, following Fig. 1b, by its curvature
κ j (inverse of the radius of curvature r j ), its length � j , and the angle of the plane
in which it is located φ j . Thus, the transformation matrix from the arc origin to its
tip is:

j−1T j = j−1T j (φ j )
j−1T j (κ j , � j ) =

[
Rz(φ j ) 0

0 1

] [
Ry(θ j ) p j

0 1

]
(1)

where θ j = κ j� j is the bending angle and p j = [r j (1 − cos θ j ), 0, r j sin θ j ]T . The
arc variables are directly linked to the robot actuators, depending on the overlapping
of the n tubes constituting m sections. For the considered P2CuP2Cu with 2 tubes,
the actuator space is constituted of q = [v1x v1y v2x v2y ρ1 ρ2]T where vi x,y is the
supplied voltage to the i th tube according to its x and y axes respectively, and ρi

is its translation for i = {1, 2}. The intrinsic curvatures of each tubes are denoted
κi x,yin = CEAPi vi x,y noting thatCEAPi is the EAP electro-chemical constant of the i th

tube electrodes. The intrinsic arc variables for the 2 tubes (i = {1, 2}) are given by:

{
κiin =

√
κ2
i xin

+ κ2
iyin

φiin = atan2(κiyin , κi xin )
(2)

The second section (containing only tube 2) variables are directly identified as
κ2 = κ2in and φ2 = φ2in . However, for the first section subject to the mechanical
interaction of 2 tubes, one must compute the first section variables by:

{
κ1 =

√
κ2
1x + κ2

1y

φ1 = atan2(κ1y, κ1x )
(3)

where κ1x =
∑2

i=1 Ei Iiκiin cosφiin∑2
i=1 Ei Ii

, and κ1y =
∑2

i=1 Ei Iiκiin sin φiin∑2
i=1 Ei Ii

. Note that κi x

and κiy are the decomposition of the main curvature along the x and y axes respec-
tively for the j th section, Ei is the elastic modulus, and Ii is the cross sectional
moment of inertia of the i th tube. We should note that κiin is constant for the standard
CTR when they are directly accessible in the proposed P2CuP2Cu with the pair of
electrodes. Finally, considering the initial pose of the robot where all the tubes are
withdrawn, the link lengths are such that � j = 0,∀ j = {1, 2}. Whenever the tubes
are deployed, the link lengths are computed as �1 = ρ1 and �2 = ρ2 − ρ1.
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3 A Geometrical Approach to Kinematic Model Inversion
for 3T-1R Contactless Planning

3.1 Closed-Form Planar Solution to the Translation Part

The model is inverted geometrically in order to find a closed-form planar solution
to properly control the robot end-effector position as a first step. For standard CTR
with 3 tubes, straightforward computation of the exact inverse kinematic model is
very arduous due to the non-linear equations involved and require challenging inverse
kinematics or heuristicmethodswhich are often limited by singularity issues, demand
significant computational resources and a consequent execution time. In summary,
the proposed algorithm computes the inverse kinematic model of the P2CuP2Cu in
3D for 4 DoF including the three position components and one in-plane orientation
as described below.

3.1.1 Plane Definition

Recalling the geometrical description of an arc (or a tube) in Fig. 1b, let us assume
that S is its start point, E(XE ,YE , ZE ) its end point, and−→z j1 its tangent at the origin S.
We consider that the robot sections lie in the same planeΠ whereΠ = (S,

−→z j ,−→SE).
The output of this step is the homogeneous out-of-plane transformation j−1T j (φ j )

defined in Eq.1 such that:

j−1T j (φ j ) = f (S, E) where φ j = atan2(YE , XE ) (4)

The new frame at S is then
(−→x j ,

−→y j ,−→z j
)
where [−→u j , 1]T = j−1T j (φ j )[−−→u j−1, 1]T for−→u = {−→x ,

−→y ,
−→z }.

3.1.2 Planar Solution for a Single Arc

Once the plane Π is figured out, the process is performed in a planar way and thus
reduces substantially the computation complexity. The desired point is projected onto

the frame related to the plane Π such that its coordinates are Π XE =
√
X2

E + Y 2
E ,

ΠYE = 0, and Π ZE = ZE . In all cases, for a tangent vector −→z j , the end-effector of
an arc of a circle is described in its base frame (S,

−→x j ,
−→y j ,−→z j ) (cf. Fig. 1b) by Eqs. 5

and 6.

κ j = 2Π XE

Π X2
E +Π Z2

E

, (5)
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� j =
{

1
κ j

acos
(
1 − κ j

Π XE
)

if Π ZE > 0
1
κ j

(
2π − acos

(
1 − κ j

Π XE
))

else.
(6)

The homogeneous in-plane transformation matrix is then computed such as j−1T j

in Eq.1. This step is denoted (κ j , � j ,
j−1 T j (κ j , � j )) = g(S, E,

−→z j ).

3.1.3 Closed-Form Solution to the Translation Part

For the considered 2-tubes P2CuP2Cu, this single-arc inverse kinematic model g
is computed for each arc separately, once the plane Π is defined. Both arcs meet
at A which is the inflection point along the robot structure. Let us assure that for
any A ∈ Π , closed-form solutions can be computed [14]. We compute the single arc
solution following this order: (i) from the robot origin O to the first section end-
effector A – assuming that O is also the world frame (O,

−→x0 ,−→y0 ,−→z0 ) origin – then
(ii) from A to the second section (and the robot) end-effector B:

{(
κ1, �1,

0 T1(κ1, �1)
) = g(O,

−→z1 , A) for tube 1(
κ2, �2,

1 T2(κ2, �2)
) = g(A,

−→z2 ,2 B) for tube 2
(7)

which can be expressed by the global closed-form function h:

(
κ1, �1, κ2, �2,

0 T1(κ1, �1),
1 T2(κ2, �2)

) = h(O,
−→z1 , A, B) (8)

Fig. 2 Solving the closed-form inverse model for a desired point B after computing the plane Π

(in green) with an arbitrary inflection point A. Section1 plot is blue and Section2 is red
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Note that using f (O, A), we define F1 = (O,
−→x1 ,−→y1 ,−→z1 ) the origin frame of the

first arc and thus−→z1 = −→z0 . The output frames of the first and second arcs respectively
are F2 = (A,

−→x2 ,−→y2 ,−→z2 ) and F3 = (B,
−→x3 ,−→y3 ,−→z3 ) computed using g function, and

2B is the expression of B in the frame F2 obtained by inverting 0T1(κ1, �1). To check
the validity of this solution, the results of Eq.8 are fed through the forward model.
It enables to draw the robot shape and pose. The end-effector position must match
the initial desired point as described in Fig. 2 with orientation −→z3 .

3.2 Monovariable Virtual Proportional Control

The closed-form model inversion presented above solves for the 3D position of the
end-effector at B. In order to control the end-effector in-plane orientation, we use
Algorithm1. It is based on virtual proportional control of a single variablewhich is the
in-plane orientation at B denoted−→zB with a proportional gain λ. After initializing the
inflection point A at an arbitrary position in the calculated plane Π (cf. Sect. 3.1.1),
we solve the inverse kinematics for the position of point B through the function h in
Eq.8. The output orientation −→z3 at B is then compared to the desired orientation −→zB .
At every step, the point A is slid on the perpendicular (D) to (OB) in the plane Π

at A defined by its guiding vector −→uD .

Algorithm 1 Solving for position and in-plane orientation
Data: O , B, −→zB
Result: Arc variables χ = [κ1 φ1 κ2 φ2 �1 �2]T
0T2(φ2) = f (O, B);
Choose φ1 = φ2; {A ∈ Π}
while −→z3 �= −→zB do(

κ1, �1, κ2, �2 , 0T1(κ1, �1) , 1T2(κ2, �2)
) = h

(
O,

−→z1 , A, B
)
;

α = atan2
(−→z3 T−→zB ,

−→uΠ

(−→z3 × −→zB
))
;

δA = λα; {Virtual proportional control}
A = A + δA −→uD ;

end while

Once the arc variables χ = [κ1 φ1 κ2 φ2 �1 �2]T are computed, the actuator con-
figurations q are calculated by inverting Eqs. 2 and 3. For the brevity of this paper,
such demonstrations are not detailed.

3.3 3T-1R Task Planning

Using the aforementioned kinematic inversion, examples of the path planning simu-
lations of the P2CuP2Cu are presented hereby. For the intendedmedical applications,
a sweeping scheme of the distal tube end-effector housing an optical imaging system
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Fig. 3 For an arc length ratio Lr = 1, the robot poses during model inversion based path planning
are shown for a a square scanning and b a spherical cap scanning schemes

(camera with fiber bundle, OCT probe, confocal microscope) is developed. More
specifically, a square sweeping of 10 × 10mm2 is validated by the simulations in
Fig. 3a. One can note that the end-effector orientation is preserved (orthogonal to the
examined tissue surface) which respects the constraints of a sweeping procedure. A
circular path on a sphere of 2mm radius is also performed (Fig. 3b) while keeping the
orientation pointing to the sphere center as for a tissue examination with a sub-degree
precision. These planning schemeswere performed according tomechanical and fab-
rication constraints of a maximum arc lengths of 40mm and maximum curvatures
of 200m−1.

4 Conclusions

An alternative structure to the usual 3-tubes CTR was presented in this paper. This
P2CuP2Cu is based on EAP soft micro-actuators and provides equivalent kinematic
performances with only 2 tubes with a free lumen and a continuum shape approach.
The major expected advantages of our robot are the compactness due to the embed-
ded soft micro-actuation and the controllability especially for medical applications.
Furthermore, the inverse kinematic model was analyzed in a geometrical approach
and improved with an in-plane orientation control. This virtual control was validated
by path planning schemes (namely tissue scanning) in simulations for 3T-1R tasks.
Deriving the complete inverse kinematic model is a future challenge andwill conduct
to a full pose control.
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Structural Synthesis of Hands for Grasping
and Manipulation Tasks

Ali Tamimi, Alba Perez-Gracia and Martin Pucheta

Abstract In the kinematic synthesis of multi-fingered robotic hands for a specific
task, the selection of the hand topology is an important step. Considerable research
efforts have been directed to the structural synthesis of hand topologies for satisfy-
ing grasping and manipulation metrics such as mobility and force closure. In this
work, we develop a structural synthesis, isomorphism-free enumeration method that
combines the solvability for rigid-body guidance with the grasping andmanipulation
metrics, for general hands with a tree structure. An algorithmic implementation of
the methodology is presented and illustrated with validation examples.

1 Introduction

Multi-fingered robotic hands are mechanical linkages where a common set of links
spans a number of serial chains, designed for grasping andmanipulation tasks. Tradi-
tionally, a robotic hand consists of a single link, or palm, spanning several subchains,
which are the fingers. This definition can be extended to consider a common set of
links and joints spanning the finger chains, possibly in several stages.

The structural or type synthesis of multi-fingered hands seeks to enumerate all
possible topologies for a desired quality of the hand. Most of the previous work
focuses on enumerating the topologies according to the mobility of the hand. Salis-
bury and Roth [4] studied the type synthesis of three-fingered hands with a single
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palm and no wrist. They defined the degrees of freedom of the finger-object con-
tact to synthesize all the topologies with full mobility and non-positive locked-joint
mobility between palm and object. Based on this work, Lee and Tsai [2] undertook
the structural synthesis of multi-fingered hands without wrist, with a single palm and
identical type of finger contacts, with 3 to 7 fingers, to present an enumeration of
feasible kinematic structures of mechanical hands.

Tischler, Samuel, and Hunt worked on the type synthesis for robotic hands with
emphasis on the creation of a minimal-isomorphism list of kinematic chains [7].
They also considered a positive mobility between the ground and the grasped object
and the connectivity between fingertips and the grasped object as selection criteria
[8]. Their work imposes full-cycle mobility and restricts the results to full six-dof of
mobility and point contact with friction for the finger-object contact. This contact is
modelled as a spherical pair, realized as a 3R serial chain.

More recently, Özgür et al. [3] used the structural analogy between the palm-
fingers-object system and a parallel robot consisting on a base-limbs-platform system
(aswas recognized before by [2, 8]). They adapted the procedures developed byGogu
[1] for parallel robot manipulators and worked on the structural synthesis of robotic
hands for given values of dexterity, mobility, overconstraint, and redundancy.

All this previous work in structural synthesis of hands is focused on mobility and
related metrics for grasping and manipulation of hands.

This paper presents a method for the structural synthesis of general hands (allow-
ing multiple branchings of the tree topology) for grasping, mobility, and free motion
of the fingertips. This method combines the checking for solvability for the rigid-
body guidance dimensional synthesis problem [6] with the computation of a desired
mobility and force closure for the hand-object system, for a given number of finger-
tips. The method generates an isomorphism-free list of structural solutions with a
labelling approach which can be considered similar to [7].

2 Hand, Fingertip Contacts, and Hand-Object
Representations

A multi-fingered hand is defined as a multi-body system with a common body -
the wrist, which is a fundamental part of the hand manipulation- spanning several
branches and ending in multiple end-effectors [5]. The kinematic chain of a multi-
fingered hand has a tree topology that can be represented as rooted a tree graph [9],
with the root vertex being fixed with respect to a reference system, see Fig. 1b.

Amore general hand also has several palms arbitrarily branched and can be called
a multi-fingered, multi-palm hand. A palm is an intermediate link whose degree is
ternary or above. A branch of the hand is defined as the series of joints connecting the
root node to one of the end-effectors, or fingertip. They are the main elements whose
motion or contact with the environment is being defined by the task, see Fig. 1a.
Hereafter, the tree of the hand will refer to the contracted tree of the hand obtained
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Fig. 1 A hand-object interaction and its graph representation. aAmulti-fingered hand with 1-DOF
revolute joints and 3 spherical fingertips. b The tree associated to the hand. Vertices filled in black
are the root (circled), the palms, and the fingertip links; vertices filled in grey are binary links. c
Contraction replaces the string of vertices with a unique edge labeled with its number of 1-DOF
joints: 9 edges are contracted to 5 edges. d The contracted tree is connected by blue edges from
each fingertip, each one labelled with the type (DOF) of contact, to the grasped object (squared
vertex), to form the hand-object graph

by replacing the binary links between two higher order links by an edge labeled with
their connectivity, which is equivalent to the number of 1-DOF joints between them;
see for example Fig. 1c. Open hands with a hybrid topology can also be transformed
into a contracted tree topology, adequate to perform its dimensional synthesis, by
removing the internal loops [6].

Two arrays are defined for the tree topology with n vertices and e = n − 1 edges,
which capture the incidence and adjacency properties as well as information of the
edges. They are the parent-pointer array p and the joint array j. A labelling of
the graph edges from 1 to e is assumed for the entries of both arrays. The parent-
pointer array implements the parent-pointer representation of the tree. The first edges
incident at the root vertex take the value zero.

The relative motion allowed between each fingertip and the object can geometri-
cally be classified as proposed by Salisbury and Roth [4]. The connectivity c of the
grasped object relative to the fingertip, which is denoted as the degrees of freedom
at the contact, can take any value from 0 (rigidly attached) to 6 (no contact). The
Table1 summarizes the description of the contacts [4, 8].

This work uses these contact types to extend the representation of the hand to
the representation of the hand-object system. When an object is grasped, a loop is
created in the graph of the hand-object system for any two fingers in contact with
the object.
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Table 1 Contact types between a fingertip and a grasped object

Degrees of freedom Description

6 Free link (without contact)

5 Point contact without friction

4 Line contact without friction

3 Point contact with friction or plane contact without friction

2 Aea of contact with friction (Soft finger [4])

1 Plane contact with friction

0 Rigid attachment to object

An additional fingertip array c that contains the type of contact between the
fingertip and the object. Figure1d depicts the graph of the tree topology of the
hand grasping an object with all fingertips in contact. In this case, the correspond-
ing parent-pointer, joint, and fingertip arrays are respectively p = {0, 1, 1, 2, 2},
j = {2, 1, 2, 2, 2}, and c = {3, 3, 3}.

For dimensional synthesis purposes, the general Chevychev-Grübler-Kutzbach
mobility criteria for the hand-object system [4] is preferred to the more accurate
methods developed by [1] and used in [3], because the information on the relative
positions of the axes is not available; assuming a general position of the axes is
appropriate in the general design problem where no geometric constraint on the
unknown axes is prescribed.Once the degree-of-freedomof the fingertips are defined,
the grasping and manipulation tasks for a body with a known shape can be defined
to dimensionally size each of the feasible hand topologies found by the following
algorithm.

3 Type Synthesis Algorithm for Free-Finger
and Object-Contact Tasks

The goal is to find all hand topologies that can be paired with the task for dimensional
synthesis, given a set of user-defined restrictions. User-defined inputs are the number
of positions of the task m, the number of end-effectors or branches b, the range
[emin, emax] for the total number of edges of the graph e, the types of allowedfingertips
c (from Table1), and the desired mobility conditions.

The overall mobility M of the grasped object can be imposed as an input. In
addition, a different mobility can be imposed at a given palm level, M(Tpi ), for
in-palm manipulation or grasping, that can be different from M for certain sub-tasks
of the task.

The output is the set of topologies that (i) meet the solvability criterion subject to
these requirements, and (ii) meet the constraints related to the mobility.
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3.1 Full-Tree Mobility Conditions

Given the tree of the hand T and its mobility M , any root-to-end-effector subgraph
Tsub must satisfy a non-positivemobilityM ′ if joints are locked and amobility greater
or equal than that of the overall tree.

∀Tsub ∈ T :
{
M ′(Tsub) ≤ 0

M(Tsub) ≥ M.
(1)

3.2 Variety

Tischler and Hunt [8] define the variety of a graph as the difference between its full
mobility M and the minimum mobility of a subgraph containing a loop or set of
loops, Mmin , that is, V = M − Mmin .

For the reduced and compacted tree graphs of the hand, all the loops contain the
vertex corresponding to the grasped object. Imposing that the graphs have variety
V = 0 ensures that the object has the desired degrees of freedom and that the locked-
jointsmobility is non-positive. This condition is imposed by identifying and checking
the subgraphs created along the tree graph, starting at the root. Let the ternary or above
vertices (palms) be labeled as pi , and the subgraph starting at pi in which all previous
edges and vertices have been eliminated be Tpi .

For a graph with variety V = 0, the following condition is imposed:

M(Tpi ) ≥ M, i = 1, . . . , p, (2)

where p is the total number of palms in the hand.
For task consisting of sub-tasks that require different mobility at different palm

levels, the palms pi are identified and the required mobility of the subtree starting at
the edges spanning from the palm is checked for the candidate tree topologies,

M(Tpi ) = Mpi ,

M ′(Tpi ) ≤ 0. (3)

3.3 Solvability Conditions

The solvability criterion for the dimensional synthesis of a tree topology T passing
through a number of m positions is the formula m = s(T ) proposed by Simo-Serra
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and Perez-Gracia [6], which also requires the analysis for each subtree Tsub of the
graph. The tree is solvable iff

s(Tsub) ≥ m ∀Tsub ∈ T (4)

3.4 Algorithmic Implementation

The algorithm is divided in three main steps. In Step 1, the algorithm searches all
possible topologies which satisfy user inputs. Then, Step 2 checks the solvability
of candidate topologies and keeps only the topologies that are solvable. Finally, the
mobility of the solvable candidates is computed in Step 3 and those topologies that
satisfy the user inputs are presented as final answers. The method is described in
Algorithm 1.

4 Results

The calculation for a binary hand with four fingertips is detailed in Table2 for the
overall mobility and in-palm mobility for different palms along the depth of the tree,
removing first the wrist and then the depth-1 palm. For clarity, the solvability of this
hand is calculated separately.

For comparison, the input used in the type synthesis example of Tischler and Hunt
[8] is used here in the first example below. For the second example, we compare the
output to the results of Salisbury and Roth [4] but using soft fingers instead of pointy
fingers with friction. The number of positions for the synthesis is chosen so that the
number of joints in the hand candidates is similar to those in the references used.
The input values for both examples are shown in Table3.

For the first example, the algorithm constructed 95 hand topologies and 10 of
them were solvable. Out of those 10, only 3 topologies fulfilled the mobility require-
ments, that is, having M = 6 at the object with negative locked-joints mobility. The
3 topologies are shown in Table4. Out of these topologies, one of them has a 1-dof
wrist, which means that it has in-palm mobility equal to 5. The no-wristed hand
obtained is the same that was obtained in the example from [8].

For the second example, 295 topologies are compatible with the rigid-body guid-
ance task, out of which 78 are solvable. However only one topology, the one corre-
sponding to three 4-dof fingers and nowrist, has the requiredmobilityM = 6without
being constrained by any subgraph, and negative locked-joints mobility. This topol-
ogy corresponds to the solution chosen in [4]. In this case several other topologies
had the required overall mobility, but the additional constraint of having the same or
higher in-palm mobility from any palm discarded those other topologies.
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Algorithm 1 Type Synthesis Algorithm for Free-finger and Object-contact Tasks
(1) Find all the possible topologies.

Inputs: number of positions (m), number of branches (b), number of edges (e)
Outputs: Parent Pointer Array and Joints Array.

(1.1) Find parent pointer array (p). Parent pointer array must have length of e and b branches.

(1.2) Find joint array. For each parent pointer array in step 1.1, construct all possible joint
arrays which meet the input criteria

(2) Solvability check. For each pair of parent pointer array and joint array found in step 1,
calculates the number of positions for the exact kinematic synthesis. If the number of positions
obtained for the kinematic task of all subtrees is greater or equal than the number of positions
for the overall tree, the tree is solvable.

(2.1) Find all root to end effectors subgraphs. A graph with b branches has 2b − 1 subgraphs.
Calculate m for all subgraphs and compare with m for the overall tree.

(2.2) Remove common edges. Common edges are the edges which are contained in all branches.
In this step, an algorithm finds all common edges and removes them.

(2.3) Change root to one of end effectors. When the root of the graph is changed the value of
the parent pointer array and joint array should be updated. The algorithm updates them in two
steps. There is a path between the previous root and the new root.

• First, the parent-pointer value of the edges that are connected to this path is updated.
• Second, the parent-pointer value for the edges which are in the path is updated.
• Other edges which are not in the path or does not connect to the path do not need to be

updated because the parents of them did not change.

(2.4) Iterate steps 2.1 to 2.3. This part will be stopped when only two end-effectors remain.

(3) CheckMobility. The output of the step 2 are the possible topologies. In this step the algorithm
verifies that the mobility of the topology is equal to that defined as input when the grasping
loops are created adding the fingertip contact array c to the graph.

(3.1) Remove unused part and calculate mobility. Since some part of rigid body may not
participate in the grasping process, the algorithm removes them. For finding the used part,
the algorithm finds all the edges that are in the branches from root to the end-effectors which
contribute in grasping. The other edges are unused and the value of −1 is assigned to each
corresponding element of parent pointer array and joint array. Then, calculate mobility for
the resulting topology. If it equals to the user input, it is one of possible solutions.

(3.2) Find Mobility for subgraphs. Using the algorithm proposed in step 2.1, find all the root to
end-effector subgraphs and calculate mobility (M) and locked joint mobility (M′) for them.

(3.3) Remove common edges (Palms). Using the algorithm proposed in step 2.2 remove palms.

(3.4) Calculate Mobility for the graph of part 3.3.
(3.5) Iterate step 3.3 and 3.4 until there is no common edge.

(3.6) Internal checks. If all the subgraphs fulfill the two following conditions, the topology is
one of the solutions.

• M ′
subgraph ≤ 0

• Msubgraph ≥ M
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Table 2 Mobility calculations for a binary hand with four fingertips

Topology Parameter Symbol Value

p = {0, 1, 1, 2, 2, 3, 3}
j = {2, 1, 1, 2, 4, 2, 4}

Number of task positions m 9

Number of branches (fingertips) b 4

Number of edges e 7

Type of fingertip contact c {2, 2, 2, 2}
Mobility M 6

Locked-joints mobility M −10

Subgraph 1
Remove Wrist
p = {0, 0, 1, 1, 2, 2}
j = {1, 1, 2, 4, 2, 4}

Number of branches (fingertips) b 4

Number of edges e 6

Type of fingertip contact c {2, 2, 2, 2}
Mobility M 4

Locked-joints mobility M −10

Subgraph 2
Remove Palm 1
p = {0, 0}
j = {2, 4}

Number of branches (fingertips) b 2

Number of edges e 2

Type of fingertip contact c {2, 2}
Mobility M 4

Locked-joints mobility M −2

Table 3 Input values for the example

Parameter Symbol Example1 Example2

Number of task positions m 5 9

Number of branches (fingertips) b 3 3

Minimum and maximum number of edges e (2, 4) (2, 5)

Type of fingertip contact c {3, 3, 3} {2, 2, 2}
Mobility M 6 ≥6

For the third case, we consider all topologies solvable for m = 5 positions, with
b = 3 branches and e = 4 edges, and pointy fingertips with friction. This yields the
parent-pointer array p = {0, 0, 1, 1} shown in Table5. It is required that the overall
mobility of the tree isM = 6with locked-joints immobilizing the object. In addition,
it is only required to have M1 = 3 for the 2-finger palm. The candidate topologies
are shown in Table 5, with only the last topology fulfilling all conditions.

The results clearly show that the obtained hand topologies are general. Salisbury
and Roth as well as Lee and Tsai procedures leads to hands with serial chain fingers
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Table 4 Resulting topologies suited for the tasks of Examples1 and 2

Example Parent-pointer array Joint array Tree graph

Example 1 {0, 0, 0} {3, 3, 3}

{0, 0, 1, 1} {1, 3, 2, 3}

{0, 1, 1, 1} {1, 2, 3, 3}

Example 2 {0, 0, 0} {4, 4, 4}

Table 5 Topology with different mobility at different palm levels

Parent-pointer array Joint array Mobility Tree graph

{0, 0, 1, 1} {1, 3, 2, 3} M = 6, M1 = 5

{2, 3, 1, 3} M = 6, M1 = 4

{2, 3, 2, 2} M = 6, M1 = 4

{3, 3, 1, 2} M = 6, M1 = 3

and a unique palm without wrist. Özgür methodology leads to serial and complex
(chains with loops) parallel hand topologies analogous to parallel robots. Tischler
et al. procedures have complex fingers with hybrid kinematic chains and produce
topologies similar to the ones produced here for the case with a unique palm without
wrist. Additionally, the tree topologies used here can be dimensioned through exact
dimensional synthesis and when connected to the grasped object have serial, parallel,
and hybrid topologies given more, or eventually new, design alternatives compared
to those obtained in previous research.



70 A. Tamimi et al.

The current algorithm also allows flexibility on where and when define the mobil-
ity. The current implementation imposes the same or higher mobility at each palm
as that of the overall hand, but that can be modified to make some of the palms as
grasping-only, for instance, while having different degrees of dexterity depending
on the palm and fingers involved.

5 Conclusions

In this work, a structural synthesis procedure for general multi-fingered hands has
been presented. The methodology considers the solvability of the hand for rigid-
body guidance, and the mobility and locked-joints mobility when grasping an object,
including the selection of the fingertips involved in the grasping and manipulation
action. This procedure yields an isomorphism-free enumeration for compacted and
reduced tree graphs. The presented examples show the adequacy of the methodology
as a first step in the selection of a hand structure for a given general task that may
include free-finger motion, grasping, and manipulation of the grasped objects.
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Generalized Construction of Bundle-Folding
Linkages

Shengnan Lu, Dimiter Zlatanov, Matteo Zoppi and Xilun Ding

Abstract A mechanism which is able to fold into a bundle is of particular inter-
est: minimal size facilitates storage and transport. The paper presents a simple and
general geometric method to design bundle-folding linkages based on one-degree-
of-freedom spatial overconstrained loops. The so designed mechanism can be folded
into a line bundle and deployed into a spatial shape. The geometric conditions, under
which an overconstrained linkage can be folded into a bundle, are discussed. Case
studies of bundle-folding designs are presented and validated using simulations.

1 Introduction

A deployable mechanism (DM) is capable of configuration change which dramat-
ically alters its shape and size. This property enables many potential applications
[5, 6, 25]. With good design, DMs can be folded into a bundle and deployed into
different shapes: the compact folding facilitates storage and transport.

DMs are often constructed as networks of simple component mechanisms called
deployable units (DUs). Typically, identical units (of one or several types) can be
added to the assembly without limit resulting in arbitrarily large deployed structures.
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A necessary condition for the compact folding of the network is that each DU can
be reduced in size, ideally collapsed into a bundle. This is true for scissor-linkage
elements, themost important subassembly used inDMs [15, 24]. Recently, the classic
spatial overconstrained loops have been used as DUs. Pellegrino et al. studied a
bundle-compacting form of the Bennett linkage with equal link lengths [17]. Similar
research has also been done on theMyard [20] andBricard linkages c [3, 4, 9, 17, 22].
In this study, we discuss the generalized construction of bundle folding mechanisms,
focusing on 1-dof overconstrained hinged loops. Some general conditions and special
cases are discussed and illustrated with examples and simulations.

Section2 presents the geometric method for generating a bundle folding mecha-
nism. Next, geometric conditions for a 1-dof loop with different numbers of revolute
joints are analyzed. Case studies are performed on some typical overconstrained
linkages; the obtained mechanisms have been simulated.

2 General Method for Obtaining Bundle Folding
Mechanisms

In general, the geometric construction of R-jointed linkage with a given connectivity
graph involves the determination of the spatial relationship among the hinge axes in
each link. Beyond interference, the kinematics of the linkage is not affected by the
geometric outlines of the links, yet these affect its physical appearance and utility.

The linkage is bundle-folding, if it has a configuration, in which the physical
rigid links can be folded completely into a bundle without internal space gaps. We
focus on single loops. A rigid bar which realizes a physical binary link should not be
confused with the common normal used to geometrically represent the abstract link.
The former can be any line segment with ends on the two joint axes sharing the link.
The objective of the conceptual design of a maximally compact linkage is to find a
line segment containing all rigid bars in some configuration.

Thus, a simple construction procedure can be proposed: choose a configuration
and draw a line intersecting all joint axes. Then, take the segment of this line con-
necting the intersection points on any two adjacent R-axes as the physical rigid link.
Thus, in the chosen configuration, the linkage will be compacted into a single line
segment. Once the linkage moves to other configurations, (generally non-planar)
polygons will be formed by these connecting link segments. Practically, the rigid
links have finite cross section and so in the folded configuration, the physical shape
of the mechanism will be a bundle. The mechanical design must ensure that this
bundle is realized without gaps and interference.



Generalized Construction of Bundle-Folding Linkages 73

3 Bundle Folding Conditions of 1-dof Overconstrained
Mechanism

According to the Chebychev–Grübler–Kutzbach criterion, a spatial closed-loop link-
age should have seven joints to be mobile. If realized with fewer hinges, the mecha-
nism is called overconstrained. In the following, we will discuss the bundle folding
conditions for loops with four, five, and six revolute joints.

3.1 4R Loops

Figure1 [19] characterizes the Bennett linkage. Opposing links have the same length,
a or b, and twist angle, α or β, respectively. All offsets are zero and a sin β =
b sin α [1].

The linkage is mobile with one dof as in every configuration the four zero-pitch
twists of the hinges are linearly dependent and span a three-system of screws. For
general choices of the parameters a, b, α, β, and a general configuration, this is a
general three system with one positive, one negative, and no zero principal pitches.
So four revolute joint axes will be in the same regulus on a hyperboloid of one sheet
(the zero-pitch quadric of the system). Hence, every line of the second regulus of
the same hyperboloid intersects all four hinge axes, and can be used to construct
a bundle-folding Bennett four-bar. (See [8, 19] for the properties of the general
three-system and the one spanned by the Bennett axes.)

Special or degenerate cases occur when for special geometries or configurations.
Thus, when the common normals of the links align, the two reguli, of the R joints
and of their intersectors, both rule a hyperbolic paraboloid.

When a = b �= 0, each pair of opposing revolute axes intersects at a point. The
desired line can be the segment linking the two intersections, or any line passing
through one of the points and lying in the plane of the two axes through the other. In
this case the general three-system spanned by the joint twists has middle principal
pitch equal to zero and the hyperboloid regulus of the four lines degenerates to a pair
of intersecting planes.

Fig. 1 The Bennett linkage
and its geometric description
[19]
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When α = β = 0, the mechanism becomes a planar parallelogram. In a gen-
eral configuration no line intersects all axes (at finite points), but the four axes can
become coplanar in a singularity of increased instantaneous mobility. Only in this
configuration a bundle-generator line can be drawn.

Analogously, when a = b = 0, the mechanism is a collapsible spherical four-
bar. At the configuration where all the axes are coplanar, there are (infinitely many)
bundle generators.

3.2 5R Loops

In a 5R loop with one dof, the screw system spanned by the rotational twists is of
dimension 4. Any line intersecting all five hinges is the axes of a zero-pitch screw in
the reciprocal two-system. (Two zero pitch screws are reciprocal if and only if their
axes are coplanar.) Therefore, the existence and multiplicity of a bundle generator
depends on the type of the co-determined two- and four-systems. A two-system may
contain zero, one, two, or infinitely many zero-pitch screws. The most general cases
are of two or zero solutions.

It is important to distinguish the special case when the candidate generator is
parallel rather than intersecting an axis. To construct a physical bundle-folding link-
age the intersection point must be finite. In practice, the angle at the intersection is
preferred to be close to π/2, although some useful solutions exist when the generator
coincides with an axis.

An example of 5R-loop is the plane-symmetricMyard linkage, in Fig. 2. The zero-
pitch joint screws and their axes are denoted ρi and �(ρi ), i = 1, . . . , 5, respectively.
�(ρ2) and �(ρ5) always intersect, and so do �(ρ3) and �(ρ4). The two intersection
points must be in the plane of symmetry, therefore, the line connecting the two points
also intersects ρ1 (in some singular configurations, the two lines coincide). Onemore
solution exists: the intersection of the plane defined by �(ρ3) and �(ρ4) and the one
spanned by �(ρ2) and �(ρ5) intersects also with �(ρ1), Fig. 2 [16, 19, 20, 23].

Fig. 2 Plane symmetric
Myard linkage
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3.3 6R Loops

In a 6R 1-dof loop, the joint rotations span a 5-system of twists. The reciprocal
(wrench) system is defined by a unique screw. A (unique) bundle generator exists
only if the pitch of this screw is zero. (In addition this line must not be parallel to any
of the axes.) Let ρi = (ωi , vi ), i = 1, . . . , 5, be five independent zero-pitch twists in
the 5-system. A wrench, ψ = (f,m), with on the screw reciprocal to the 5-system
satisfies the five homogeneous linear equations

f · vi + m · ωi = 0 (1)

This defines a one-system of screws whose pitch is zero only if f · m = 0 for one
(and every) solution. To avoid parallelism with a joint axis we need, for every i ,
either f × ωi �= 0 or m/|f | �= vi/|ωi |. In general, one cannot expect the additional
conditions to be satisfied and therefore, for five lines in general position a sixth
intersecting each of them does not exist.

However, the search for a bundle generator needs to succeed in only one con-
figuration. If an IIM (increased instantaneous mobility) singularity exists, where no
five of the lines are independent, finding a generator is easier. In particular, if the
spanned system is three-dimensional, so is its reciprocal and then (usually) there will
be infinitely many solutions, as explained above.

For instance, the systems of some Bricard linkages can degenerate in some con-
figurations. Depending on the degree and type of the system, different numbers of
solutions can be obtained. Examples are given in the following section.

4 Case Studies of Bundle Folding Loops

4.1 Bennett Linkage

Wechoose aBennett linkagewith parameters a = 80, b = 128,α = 30◦,β = 51.13◦
as an example. The bundle is generated along the common intersecting line as shown
in Fig. 3a. Here the folded configuration is the one where the joint axes have a com-
mon normal, which is the chosen bundle generators. There are infinitely many other
common intersecting lines in this configuration, resulting in longer link segments.
Bennett loops can be linked in a network forming intersting DMs. Bundle folding
units are preferred; in particular the special case with a = b [2, 12, 17, 18].
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Fig. 3 Simulation of a
bundle-folding Bennett
linkage

(a)

(b) (c)

4.2 Type III Bricard Linkage

Figure4 shows the definition of a type III Bricard linkage in one of its two collapsed
configurations. The edges AB, BC , AC ′, A′B ′, B ′C ′, A′C are the rotation axes of
the mechanism. (For more details, see [7, 9].) In the example chosen, Figs. 4 and 5,
the dimensions are: r = 110, lOA = l ′OA = 213.35,∠AOA′ = 27.93◦, r = 110, R =
179.47.

In the collapsed configurations (where all hinge axes are coplanar), the rank of
the system spanned by the joint twists drops to three. Then, there are infinitely many
possible bundle generators, each intersecting all the revolute axes. Indeed, any line
in the plain which is not parallel to any of the six axes can be used. Obviously, none
of these generators can be a common normal to the hinges.

The segment BB ′ is the folded bundle of the linkage. In the other collapsed
configuration, the link segments form a square, Fig. 4. A 3D CAD model of the
Bricard linkage bundle has been build. The cross-section of each bar is nearly a
rectangle, slightly modified to avoid collisions during the motion. Simulation of the
movement is illustrated in Fig. 5. Bricard linkages have also been used as deployable

Fig. 4 Example of the type
III Bricard linkage
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Fig. 5 Simulation of a
Bricard linkage

units, usually bundle-folding [3, 4, 17, 22]. Type III Bricards can form indefinitely
long chains [11] which can deploy and reconfigure in various ways [14].

4.3 Sarrus Linkage

The model and parameters of the Sarrus linkage [21] are shown in Fig. 6. The unit
joint rotation twists are ρi , i = 1, . . . , 6. The adjacent axes of joints 1, 2 and 3
are parallel, and so are �(ρ4), �(ρ5), and �(ρ6). The angle between the necessarily
non-parallel directions of two groups of joint axes is α.

As discussed in Sect. 3.3, the desired common intersecting line (a zero-pitch recip-
rocal screw) does not always exist for a 6R loop. In a Sarrus linkage configuration
where the joint twists span a five-system, there cannot be a pure force exerting no
power on any hinge rotation. Indeed, if this were the case, then the reciprocal system
would be of dimension at least two because there is always an infinite-pitch recip-
rocal screw (in the direction perpendicular to all axes). However, for many Sarrus
linkages there are singular configurations with instantaneous mobility two (or three)
and then a bundle-generating line can be found.

For example suppose that the two planar 3R serial subchains of the Sarrus can be
maximally extended simultaneously. That is, there is a configuration where the paral-
lel triples �(ρi ), i = 1, 2, 3 and i = 4, 5, 6, are coplanar inπ123 andπ456, respectively.

Fig. 6 The Sarrus linkage
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(a) (b) (c)

Fig. 7 Bundle-folding Sarrus linkage

Fig. 8 Another bundle-folding Sarrus linkage

Then the intersection π123 ∩ π456 is the expected line. (The intersection line exists
and is unique if the Sarrus is non-degenerate, allowing finite translation of link 3–4
with respect to 1–6.) An example mechanism is shown in Fig. 7.

Another example is when a Sarrus can be collapsed. Then, as with the type III
Bricard, the joint twists span only a three-system, and any line on the plane not
directed in either of the two joint-axis directions, can be the bundle generator, Fig. 8.
Sarrus linkages can also be very useful when constructing deployable mechanisms:
they can be used as equivalents of sliders in networks of scissor linkages [10, 13].
Bundle-folding Sarrus variants can be useful in such DM applications.

5 Conclusions and Future Work

A simple general geometric method for the conceptual design of bundle-folding real-
izations of a spatial 1-dof overconstrained loop is presented. The procedure involves
the construction of a bundle-generating line, which intersects all hinge axes in a
chosen configuration. Geometric conditions are given for the existence of such a
generator for linkages composed of four, five, and six revolute joints. Case studies
of bundle-folding designs of different 4R and 6R loops are presented and validated
using simulations.
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A Complete Analysis of Singularities
of a Parallel Medical Robot

Josef Schadlbauer, Calin Vaida, Paul Tucan, Doina Pisla,
Manfred Husty and Nicolae Plitea

Abstract This paper analyzes the singular poses of a 5-DOF parallel robot used for
brachytherapy. In compliance with the latest safety protocols and requirements [3]
the paper presents a new mathematical model using algebraic constraints and the
Study parameterization of the Euclidian displacement group. Using algebraic meth-
ods combined with multidimension geometry proved to be efficient in the calculation
of the kinematics ofmechanisms and in the explanations of their behavior. The results
obtained using this algebraic method were analyzed with respect to the data obtained
from the experimental model of the robot by comparing theoretical computation
results with the actual behavior of the robot. The analysis of the kinematics using
these methods allows a complete description of working modes, singularities and
robot behavior enabling a safe control throughout the medical task.

1 Introduction

Robotic architectures have been introduced in multiple medical fields to provide
advanced tools for the doctors enhancing through their characteristics the medical
act and ultimately the life quality of patients. Some of the most complex tasks are
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those where the robot as a slave tool, controlled by the doctor from a master console,
interacts intimately with the patient [4]. A new challenge refers to the development
of new techniques for the curative and palliative treatment of malignant tumors. In
the recent years a new technique, called brachytherapy (BT), has been developed,
aiming to provide, local, targeted treatment of the tumors, by delivering specialized
radioactive seeds directing into the tumor. The limited use of BT is caused by the seed
placement accuracy required, which, especially for deeply located tumors is beyond
humancapability. Thus, as shown in [1, 5], robot assisted brachytherapyproves to be a
necessity in order to: improve the accuracy of the needle placement and seed delivery;
improve the consistency of the seed implant; avoid critical healthy areas; reduce
radiation exposure. For a successful procedure the robot should introduce, needles
with diameters varying from0.6mmup to 2mmondistances up to 200mm, following
a linear trajectory, with a maximum positioning error of 1mm [1]. This task requires
both high accuracy and stiffness where parallel robots thrive. In full compliance with
the latest challenges and requirements defined in [3] the CESTER team developed
an innovative parallel robotic system, PARA-BRACHYROB, capable of targeting
tumors located in the entire thoraco-abdominal area of the body under real-time CT
monitoring [1, 2].

The prototype of PARA-BRACHYROB parallel robot has been built at CESTER
and can be seen in Fig. 1. The study of this paper is the implementation of a new
mathematical model that defines all the area where the robot becomes unstable,
helping the controlling unit to avoid them, increasing the safety of the human patient
and in the same time optimizing the command of the robotic system, enabling the
manipulation in a singularity free workspace.

Fig. 1 PARA-
BRACHYROB prototype
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2 The Kinematics Using Study Parameters

PARA-BRACHYROB is a parallel robot with 2 modules with 3-DOF working in
cylindrical coordinates, the first module having three actuated joints (two translations
and one rotation), while the second has only two actuated joints (two translations).
The two modules each with Cardan joints having the first axis parallel with the
Z-axis, connect between them the needle-insertion module [5]. As described in detail
in [5] the two modules of the robot have been decomposed into the PRPRR identical
serial chains presented in Figs. 2 and 3. The matrices L1 resp. L2 characterize the
Euclidian displacements for each chain, Equation 1 defining the direct kinematics
computation. The terms of the matrix product are explained in the Table1 [5].

Li = Mi1 · T1 · T2 · T3 · T4 · Mi2 · T5 · Mi3, (1)

Summarizing the steps that lead to the direct kinematic description an ideal was
generated for each kinematic chain. For the first chain the ideal κ (L1) is generated by
four linear and one quadratic equation while the second ideal, κ (L2), is generated
by ten quadratic equations. Taking into account the motion dependency between

Fig. 2 Basic structure of the
2nd PRPRR chain
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Table 1 The geometric representation of the transformation matrices for L1 resp. L2

Matrix Representation Parameter Type

M11 Basistransformation for leg 1 (identity matrix) – –

M21 Basistransformation for leg 2, translation along the
x-axis

d12 –

T1 Translation along z-axis t1 resp. s1 Active

T2 Rotation around z-axis t2 resp. s2 Active resp. passive

T3 Translation along x-axis t3 resp. s3 Active

T4 Rotation around z-axis t4 resp. s4 Passive

M12 Translation along z-axis (distance between A1 C1) l1 –

M22 Translation along z-axis (distance between A2 C2) l1 –

T5 Rotation around y-axis t5 resp. s5 Passive

M13 Final translation along z-axis lc –

M23 Final translation along z-axis lc –

the two chains connected through a pair of Cardan joints, the direct kinematics
solution is the union I = I1 ∪ I2, computed for every set of input parameters.
The final result, which aims to determine a general Gröbner Basis, led to a result
of a univariate polynomial of degree eight. The final polynomial was achieved in
the most general case without defining any design parameter leading to a general,
complete, description of themanipulator. The quadratic normalizing condition added
in order to compute the basis doubles the number of solutions and it can be stated that
the direct kinematics of this manipulator has four solutions. There are two solutions
in the orientation module, consisting of the double cardan joints close to the end-
effector coordinate system (xE , yE , zE ) (Figs. 2 and 3). These two solutions differ
by a 180◦ rotation about the zE axis. The two solutions of the positioning of the
end-effector can be explained geometrically: when the input parameters s1 and s3 of
the first chain are specified then the intersection point A of the two cardan axes is
bound to move on a circle c1 in a plane orthogonal to the z-axis of the base system in
the height s3 + l1. When the input parameters t1, t2 and t3 of the second system are
specified, then the location of the intersection point MK of both cardan axes of the
second chain is defined. In the assembled robot the distance 2lc between the points
A and MK is fixed, so the endpoint of a rod emanating from MK with length 2lc
describes a sphere κ with center MK and radius 2lc. The intersection of the sphere
and the circle c1 yields two possible locations for the point A (Fig. 4). A complete
example of the solution of the direct kinematics can be found in [5].

3 Singularity Analysis

In this section a complete singularity analysis of the robot using the algebraic con-
straint equations from I1 and I2 will be presented. As it was mentioned in Sect. 2
the first ideal consists of five polynomials and the second on of ten polynomials. One
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Fig. 4 Geometric
interpretation of the direct
kinematics
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could rightfully question if this is a minimal description of the robot. Essentially it
can be shown that the LIA algorithm comes up with a minimal set of polynomials
that describe exactly the constraint variety of the robot.

In the following we are interested to compute all output singularities in the joint
space.Having a single polynomialwhich describes all singular poses, allows its use as
a parameter in the robot control, allowing the avoidance of any singular configuration,
ensuring the safe robot behavior during the procedure. The number of 15 polynomial
generates a serious difficulty in computing the Jacobian and the singularities. One
could take subsets of eight polynomials respectively, differentiate with respect to the
Study parameters (xi , yi ), assemble the differentials into an 8 × 8 Jacobian matrix
and compute the determinant. Unfortunately the resulting polynomials contain the
Study parameters non linearly and an attempt to eliminate these parameters to obtain
an equation in the input parameters solely is hopeless.

So another approach, based on the observation that in a singularity at least two
solutions of the direct kinematics have to coincide, was followed. As mentioned in
Sect. 2 the univariate polynomial of degree eight in one of the xi Study parame-
ters could be computed without specifying the input parameters (e.g. the univariate
polynomial P8(x3, t1, t2, t3, s1, s3)). It is easy to see that in a double solution the
polynomial DP = ∂P8

∂x3
and P8 have to vanish. P8 and DP can be taken to eliminate

the last Study parameter. The result is a large polynomial which fortunately factors
in eight terms:

Sing = P1 · P2 · P3 · P4 · P5 · P6 · P7 · P8.

But this is not the end of the story, because the set of all double solutions in one Study
parameter yields only a necessary condition for being a double solution of the direct
kinematics. Sufficiency is only guaranteed when one can obtain double solutions
in all Study parameters. This can be for example done by back substituting into
the original system of constraint equations and computing the direct kinematics. The
polynomials P1, P2, P3, P4 are simple enough to be displayed using the actual design
parameters of PARA-BRACHYROB (d12 = 615mm, lc = 85mm, l1 = 67mm):
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P1 : s1 − t1 + 304, P2 : s1 − t1 − 36, P3 : t22 t3 + 615 t22 − t3 + 615

P4 : t32 t23 + 1230 t22 + 378225 t22 + t23 − 1230 t3 + 378225 (2)

Substitution of the input parameters of P1 and P2 into the constraint equations reveals
that they even lead to self motions of the manipulator. In both cases the vertical axes
of the two cardan joints coincide and allow a full rotation of the end effector about its
zE axis. This motion was already detected in [5]. P5, P6, P7 are not discussed because
back substitution into the basis shows, that they do not lead to double solutions of the
direct kinematic and hence, don’t provide singular positions. The remaining cases
will be discussed separately.

3.1 P3

Here, one can solve for t3 and obtains t3 = − 615(t22+1)
t22−1

. Substituting t3 into the set
of original constraint equations and computing the Gröbner base with lexicographic
term order reveals that the univariate polynomial is indeed squared and yields only
four solutions, but one obtains one more polynomial in the base which is squared
and this fact brings a total number of eight solutions. The conclusion is that the input
parameter condition P3 does not yield singular poses for the manipulator.

3.2 P8

We start with this case because this case yields the general singularities which have
to be avoided in the medical operation. P8 is a polynomial of degree eight in the
input parameters t1, t2, t3, s1, s3. Figure5 shows the singularity surface P8 in the
joint space t1, t2, t3 for s1 = 200 and s3 = 700. This means, when four out of the
five parameters are given, then up to eight values of the remaining input parameter
will lead to a singular configuration of the end effector. These singularities have
an obvious geometric interpretation which can be seen in Fig. 6. The intersection
points of the sphere κ and the circle c1 merge into one point (A = A), or with other
words: the circle touches the sphere, either from inside or outside. Computing the
condition for this geometric situation yields also the polynomial P8 and conforms
the above statement. This polynomial codes all input configurations which yield the
tangency configuration of both geometric objects and therefore yields singularities,
an example is shown in Fig. 6. These poses have been tested on the experimental
model and behaved as expected, generating singularities. They define the intersection
of two working modes of the robot and shows that the robot cannot cross from one
working mode into the other.
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Fig. 5 Singularity set for
s1 = 200 and s3 = 700
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Fig. 6 Singularity condition
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3.3 P4

Solving P4 for t2 yields t2 = I (t3−615)
t3+615 , t2 = − I (t3−615)

t3+615 , which is only real for t2 = 0
and t3 = 615. This set of parameters leads to an interesting geometric configuration
of the manipulator, which can be seen in Fig. 7: the first rotation axis of the first chain
and the first rotation axis of the cardan joint of the second chain coincide.

This means that the circle axis of c1 passes through MK and the intersection circle
of κ in the plane of c1 and c1 are concentric. They have real intersections only when
they are congruent. The condition for this is s3 = √

(s1 − t1 + 304)(s1 − t1 + 36).
But then point A together with the whole end effector system can freely rotate about
the coinciding axes.

4 PARA-BRACHYROB Experimental Tests

The univariate polynomial that represents the complete description of the
PARA-BRACHYROB singularities was implemented in the robot controller to
enable real-time singularities avoidance. Even though the overall expression is big
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Fig. 7 Third self motion

Fig. 8 PARA-BRACHYROB tests inside the CT

the computation time for the controller is very small without any negative effect
on the robot motions. Having this safety condition satisfied, PARA-BRACHYROB
underwent a series of tests in medical environment. With the support of an oncology
clinic, Ametyst Cluj-Napoca, a first set of tests with the robot working inside the
CT-Sim were performed. The robot setup is illustrated in Fig. 8.

With respect to the medical protocol [6, 7] of the brachytherapy a ballistic gel
model was created, able to simulate the human tissue properties. Inside the model
some bodies with a similar density with the hepatic tumors were inserted. During
the entire procedure, the robotic system was controlled from a different room, the
test being performed in a room containing a CT unit, known as a high emission of
radiation source. Through its behavior during the entire procedure and based on the
results obtained (after the brachytherapy procedure, the ballistic model was scanned
using the CT) the parallel robotic system PARA-BRACHYROB has been validated
as an efficient solution in the robotic assisted brachytherapy procedure.
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5 Conclusions

Using algebraic constraint equations a complete singularity analysis of a medical
robot designed for brachytherapy was performed. It turned out that this manipulator
allows three kinds of selfmotions and all singularities canbe foundby input parameter
sets that fulfill an eight degree polynomial. The zero set of this polynomial describes
a degree eight hypersurface in the five dimensional joint space.

The polynomial expression was implemented in the control unit of the robot
ensuring its motion in singularity free poses enabling a safe behavior during the
medical procedure. The safe motion capability of the robot enables its use in a CT-
Sim environment with real-time position control of the needle.
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Workspace Analysis of a 3-PSP Motion
Platform

Luc Baron

Abstract This paper presents the workspace analysis of a 3-PSP motion platform
to be used as a flight simulator. In this design, all passive joints are kept on the
base plate rather than under the moving platform, thus ensuring a secure and easy to
construct configuration. With a proper description of the constrained rotation of the
platform, the inverse kinematics can be solved in an analytical form. The resulting
workspace shows varying tilting amplitudes with respect to the vertical displacement,
the azimuth and the actuator strokes.

1 Introduction

For flight simulation applications, parallel manipulators are first-choice mechanisms
to provide the 6-degrees-of-freedom (dof) mobility of the motion platform. In general,
these manipulators are particularly worthy of note because they have a high carrying
capacity, as well as a lower workspace volume, more singularity problems and an
increased complexity when solving the direct kinematic problem compared to serial
manipulators of equivalent size [1]. However, since a full 6-dof is not required for
every type of flight simulation training, the use of lower mobility mechanisms may
often fulfill the same training objectives at a much lower cost. In particular, 3-dof
motion platforms providing a vertical displacement and pitch and roll rotations,
without either the lateral and longitudinal displacement or the yaw rotation (see
Fig. 1), are the most important mobilities [2] required from the point of view of
flight simulation. Like 3-PSP platforms, these mechanisms have many advantages
in terms of simplicity of construction/control and reduced cost, although they also
present some problems due to the coupled orientation and position of the platform.
Most of the research works published in the literature on these platforms have been
done on the 3-PSP variant [3–7], i.e., where the actuated prismatic joint is located on
the base, unlike our 3-PSP variant [8], where the actuated prismatic joint are located
on the platform. In our design, all passive joints (possibly harmful) are located at the
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P
S

P

(a) (b)

(c) (d)

Fig. 1 The 3-PSP motion platform: a actual prototype; b CAD model; c actual passive PS joints;
and d modeled passive PS joints

attachment of the leg tip with the base plate through a passive combined PS joints.
As shown in Fig. 1c, d, the actual implementation is realized with a sphere (attached
to the leg tip) sliding and rotating into a partially open horizontal hole (attached to
the base plate). It is noteworthy that here we develop a kinematic model of general
geometry, while in our previous study [8] we assumed an equilateral triangle and not
addressing the influence of the actuator stroke.

2 Platform Mobility

The 3-PSP mechanism provides a constrained spatial displacement of the platform,
i.e., a generic point of it moves in 3-dimensional space, while the platform rotates
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around three axes, but only 3 out of 6 parameters are independent. Consequently,
the platform has only 3-dof relative to the base. The constrained rotation of the
platform can be described with only two independent coordinates together with its
vertical displacement. Thus, the orientation of the platform is not arbitrary and can
be described with the tilt and torsion angles [9] such that

RT&T (φ, θ, σ ) = RZ (φ)RY (θ)RZ (σ − φ) (1)

where the tilt angle θ is a rotation around axis a located in the original xy-plane,
while the orientation of the latter is given by the azimuth angle φ. As shown in
Fig. 2b, the torsion angle σ is about z∗-axis. It has been pointedout [9] that 3-PSP
mechanisms have a zero torsion angle, i.e., σ = 0, and are hence,

R(φ, θ) = RZ (φ)RY (θ)RZ (−φ) (2)

=
⎡
⎣

cos2 φ cos θ + sin2 φ sin φ cos φ(cos θ − 1) cos φ sin θ

sin φ cos φ(cos θ − 1) sin2 φ cos θ + cos2 φ sin φ sin θ

− sin θ cos φ − sin θ sin φ cos θ

⎤
⎦

Equation (2) is nothing else then the Euler ZYZ angles with the third angle being
constrained to −φ. This representation of the constrained rotation of the platform
will allow a compact formulation of the kinematic model.

(a) EulerZYZ (b) Tilt and Torsion

Fig. 2 Orientation parameters: a Euler ZYZ angles (rotation of φ around z, rotation of θ around
y∗ and a rotation of ψ around z∗); b the tilt and torsion [9] (tilting of θ around a being oriented in
xy-plan at φ; then torsion of σ around z∗)
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3 Kinematic Model

Let us attach frame A to the fixed base A and frame B to the moving body B, its
z-axis parallel to the three actuated joints axes, as shown in Fig. 3. Frames A and
B are coincident when all actuated prismatic joints are fully retracted. Finally, a
prime is used to denote vectors expressed in the moving frame B, while every other
vectors are by default expressed in frame A . Table 1 gives the geometry of the actual
prototype.

3.1 Position Analysis

The position vector of point Bi is expressed in B as

b′
i = [ri cos αi r sin αi 0]T , (3)

Fig. 3 The kinematic loop
of a leg

A

B

P

S

P

Table 1 Geometry of the
3-PSP prototype

i 1 2 3 unit

{qi }min 0 0 0 mm

{qi }max 100 100 100 mm

ri 475 400 400 mm
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with αi being defined as

αi ≡ 2(i − 1)π/3, i = 1, 2, 3. (4)

In the base frame A , the unit vectors along the three passive prismatic joints can
be written as

ni = [cos αi sin αi 0]T , (5)

or alternatively, in the moving frame B, as

n′
i = RTni . (6)

The position vector of the origin of B relative to the origin of A expressed in the
moving frame B is given as

p′ = [x ′ y′ z′]T , (7)

and alternatively, in the base frame A as

p = Rp′ = [x y z]T . (8)

The position vector of point Bi relative to the origin of A , but expressed in B, is
given as

m′
i = p′ + b′

i . (9)

Alternatively, the same position vector can also be obtained as

m′
i = a′

i + q′
i = ain′

i + qik′
i . (10)

Since the closure equation requires vectors m′
i , n

′
i and k′

i of each individual leg i to
be coplanar, they must satisfy the following equation

det
[
m′

i n′
i k′

i

] = 0, (11)

where k′
i = [0 0 1]T . Using Eq. (11), we can algebraically obtain the solution of

the inverse kinematic problem, i.e., the actuated joint position qi as

q1 = z − r1 sin θ cos φ

cos θ

q2 = 2z + r2 sin θ cos φ − √
3r2 sin θ sin φ

2 cos θ
(12)

q3 = 2z + r3 sin θ cos φ + √
3r3 sin θ sin φ

2 cos θ



96 L. Baron

from a given position and orientation of the platform, i.e., z, θ, φ. It is worth noting
that z is an independent coordinate that can be chosen freely, while θ and φ are the
specified orientation of the platform. An important feature of this mechanism is the
parasitic displacement in x and y as

x = 2r12(r11 − √
3r21)r1 + r11(r12 − 3r21 − √

3(r11 + r22))r2

2
√

3(r11r22 − r12r21)
(13)

y = −2r12(r12 − √
3r22)r1 + −r12(r12 − 3r21 − √

3(r11 + r22))r2

2
√

3(r11r22 − r12r21)
, (14)

which depend on the platform geometry ri and orientation θ and φ through ri j .

3.2 Velocity Analysis

On differentiating Eq. (12), it is easy to discover the mechanism’s general velocity
relationship, i.e.,

Aπ̇ = Bq̇ (15)

where π̇ , namely the twist of the platform, and q̇, namely the actuated joint velocities,
are defined as

π̇ ≡ [ż θ̇ φ̇]T , q̇ ≡ [q̇1 q̇2 q̇3]T . (16)

Matrices A and B are the so-called parallel and serial Jacobian matrices given as

A(z, θ, φ) =
⎡
⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ , B = 13×3, (17)

with
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a11 = 1

cos θ
,

a12 = q1 sin θ − r1 cos θ cos φ

cos θ
,

a13 = r1 sin θ sin φ

cos θ

a21 = 1

cos θ
, (18)

a22 = 2q2 sin θ + r2 cos θ cos φ − √
3r2 cos θ sin φ

2 cos θ
,

a23 = −(
√

3r2 sin θ cos φ + r2 sin θ sin φ)

2 cos θ
,

a31 = 1

cos θ
,

a32 = 2q3 sin θ + r3 cos θ cos φ + √
3r3 cos θ sin φ

2 cos θ
,

a33 =
√

3r3 sin θ cos φ − r3 sin θ sin φ

2 cos θ
.

MatrixA degenerates when θ = π/2. At this tilting angle, the legs become of infinite
length, and do not produce any motion of the platform. Obviously, the mechanism
is not able to reach such a high value of θ . In fact, the prototype is able to reach a
maximum tilt angle of approximately π/6.

4 Workspace

The workspace of the 3-PSP motion platform is determined by varying the following
three variables z, φ and θ , and computing the corresponding joint positions {qi }3

1
with Eq. (12). The first loop varies z from 0 to {qi }max . The second loop varies φ

from −π to +π , and the third loop varies θ from 0 to the angles for which one
of the qi reaches its minimum or maximum. In order to study the displacement the
pilot’s head with the platform motion, let us define the position of the pilot head in
frame B as h′ = [100 0 1200]T mm and compute the corresponding head position
in frame A as h. Figures 4 and 5 show a set of contours limiting the workspace
of constant z′ values of {0, 10, 20, . . . , {qi }max } mm. Apparently, the amplitude of
head displacement and orientation (corresponding to the pitch and roll angles of the
aircraft) are both varying with z′. All the azimuth φ are reachable with different
amplitude of tilt angle. Increasing the actuator strokes from 100 to 300 mm allows
to increase the maximum tilting angle from 8◦ to approximatively 25◦.
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Fig. 4 Workspace of the 3-PSP of Table 1 with h′ = [100 0 1200]T mm

5 Conclusions

The 3-PSP variant, i.e., with the three actuated prismatic joints rigidly attached to the
platform, is secure for the pilot and easy to construct. It is particularly well-suited
for the flight simulation applications. The inverse kinematic model can be solved in
analytical form with a proper description of the constrained rotation of the platform.
Although every azimuth are obtained, the amplitude of tilting is varying with both the
azimuth and the vertical displacement. The tilting amplitude also greatly dependes
on the actuator strokes.
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Fig. 5 Orientation workspace of the prototype for different z′ = {10, 30, 50, 70, 90} mm
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Posture Optimization of a Functionally
Redundant Parallel Robot

David Corinaldi, Jorge Angeles and Massimo Callegari

Abstract The use of parallel-kinematics machines (PKM) for manufacturing oper-
ations is attractive because of the high accuracy they can ensure. These robots might
perform a task that requires less degrees of freedom than those offered by the robot.
This is the case of a robot facing a functional redundancy, which can be exploited to
further increase the accuracy of the task, e.g. upon minimizing the condition number
of the Jacobian matrix. A practical case study of a spherical manipulator performing
a pointing task are reported, to show how posture-optimization can be used as a
redundancy-resolution means for functionally redundant PKMs. The kinematics of
the machine and the orientation of the pointing task is used to build, respectively,
the objective function and the constraint equations. Sequential Quadratic Program-
ming is conducted to solve the nonlinear constrained optimization problem and to
find the end-effector pose corresponding to the robot posture of minimum condition
number for every direction of a given pointing path. Lastly, the constrained problem
is rewritten as one of unconstrained optimization of one objective function in one
design variable.

1 Introduction and Case Study

The improvement of task performance using robotic manipulators is a recurrent chal-
lenge in robotics research. The need of a robot with high accuracy often arises in
industry when manufacturing tasks have to be performed without giving up the flex-
ibility provided by a manipulator. This feature often drives the choice of the manipu-
lator, namely the most generic type: robots aimed at displacing the end-effector (EE)
with six degrees of freedom (dof). Due to their wide range of applications, six-dof
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robots can manipulate an axially symmetric tool, thereby freeing a rotation around
its axis of symmetry. This class of tasks is characterized by five-dof, of particular
interest to industry, sincemachining, arc-welding [5] and deburring operations all fall
into this category. A six-dof robot that performs a five-dof task is said to be function-
ally redundant [1]: more dof are available than needed; therefore, these robots can
be exploited to accomplish a secondary task. More specifically, the robot considered
is functionally redundant because it has an operational-space dimension (reachable
Cartesian space of the EE) greater than its operational task-space dimension (Carte-
sian space of the task). Functional redundancy can be used to increase the accuracy of
the manipulator above what is currently available, as reported by Léger and Angeles
for serial robots, or to improve dynamic performance for high-speed task [6]. The
secondary objective in the Léger’s paper being to avoid singularities, the local dex-
terity index used was the condition number, which quantifies the error amplification
between joint and EE relative errors [7]: by lowering the condition number value,
the propagation of joint errors to the EE pose is reduced, thus increasing accuracy.
In this work the authors report a new step in the same direction and hence, apply the
same concept to parallel manipulators, known to offer many advantages over their
serial counterparts, like a lightweight structure and a high stiffness, which are ideal
for the task at hand: they are the best candidates for tasks that require high accuracy.

One of the issues in the analysis of parallel manipulators with six-dof is the
complexity of their kinematics, which can affect adversely in the path-planning.
Often what is done in conventional machining operations is to decompose the full-
mobility operations into elementary sub-tasks, to be performed by separate machines
with lower mobility [4]. The authors envisaged the architecture of a mechatronic
systemwith six-dof, i.e., two parallel robots cooperating while performing a five-dof
assembly task, as shown in Fig. 1. The kinematics of both machines is based upon
the 3-CPU topology, but the joints are differently assembled so as to obtain: one

TPM

SPM

peg

hole

Fig. 1 System architecture of an assembly cell based on two cooperating 3-dof parallel robots
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Fig. 2 Virtual model a of the spherical 3-CPU manipulator Sphe.I.Ro. Reference frames and
geometrical parameters (b)

translating parallel machine (TPM) with one mechanism and one spherical parallel
machine (SPM) with the other. The operation that the two PKMs have to perform is
a peg-in-hole assembly task with axisymmetric tools, a classical five-dof assembly
task. The SPM on the bottom, called Sphe.I.Ro., shown in Fig. 2a, holds the piece
with the hole, while the TPM on the top translates the cylindrical peg. The accuracy
of the two manipulators is often decisive for the assembly to be successful. Hence,
functional redundancy, pertaining to the SPM, is exploited to orient the axis of the
hole along the directions given by a pointing-path coming from the assembly strategy.
The manipulator, which is still able to rotate around such directions, will attain an
optimal posture that minimizes the condition number of the SPM.

2 Jacobian Matrices and Their Condition Number

The objective function of the optimization problem is the square of the condition
number of the Jacobian matrix of Sphe.I.Ro. The Jacobian is obtained by means of
the theory of screws; its formulation for the 3-CPU PKM architecture was reported
in [4]. The moving-platform (MP) twist t = [

ωT vT
]T

can be expressed as a linear
combination of the velocities that each joint in the kinematic chain provides. The
expression is simplified by multiplication of the screws reciprocal to all passive joint
screws of each leg: the screw directions e1, e2 and e3 are indicated in Fig. 2b. By doing
so, the influence on end-effector velocity of non actuated joint rates is eliminated. In
the specific case of a pure rotational tripod robot, the kinematic relations follow:
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[
n1 n2 n3

]T
︸ ︷︷ ︸

J

[
ω1 ω2 ω3

]T
︸ ︷︷ ︸

ω

= [
q̇1 q̇2 q̇3

]T
︸ ︷︷ ︸

q̇

(1)

where ni is the moment of the direction ei with respect to the F0-origin and q̇i
is the velocity of the actuated joint of the of i th leg. Since the inverse Jacobian
matrix is constant and equal to the identity matrix, the study focuses only on the
direct Jacobian J. To get an analytic function of the condition number, the Frobenius
norm of the 3 × 3 Jacobian J is calculated. This is the only matrix norm that is
infinitely many times differentiable with respect to its arguments. This choice allows
a straightforward minimum search by virtue of its smoothness properties. Based on
the Frobenius norm of J, the square of the condition number κ2

F (J) becomes

κ2
F (J) = ‖J‖2F‖J−1‖2F = 1

n2
tr

(
JJT

)
tr

(
J−1J−T

)
(2)

where ‖J‖ is obtained as the positive square root of ‖J‖2F = tr(JJT )/3. Each trace
of this expression is expanded, to express it as a function of the row vectors of the
Jacobianmatrix, namely, the first trace is equal to the summation of the 2-norm square
of the ni vectors. Regarding the second factor of Eq.2 tr(J−1J−T ), the inverse of JT

can be expressed in terms of its columns explicitly, without introducing components,
if the concept of reciprocal bases is recalled [2]. Hence, Eq.2 becomes

κ2
F (J) =

(‖n1‖2 + ‖n2‖2 + ‖n3‖2
) (‖n2 × n3‖2 + ‖n3 × n1‖2 + ‖n1 × n2‖2

)

9(n1 × n2 · n3)2
(3)

which can be written as a function of the parameters describing the orientation
through the rotation matrix since to an EE pose corresponds a single posture of
Sphe.I.Ro, as reported by Carbonari [4]. To this end the ni vectors are expressed in
terms of the rotation matrix Q, represented in the reference system F0 that maps a
vector from the mobile frame F1 to the fixed frame F0. This is possible since the
unit vectors of the reciprocal screws ei represent the axes of a reference frame fixed
to the ground, while the directions of the chosen vectors pi represent an orthonormal
triad of directions of a reference frame fixed to themobile platform. The three vectors
ni can then be written as

n1 = p1 × e1 = −dj1 × i0 = i0 × dj1 ⇒ [n1]0 = d[i0]0 × [Q]0[j1]1 (4)

n2 = p2 × e2 = −dk1 × j0 = j0 × dk1 ⇒ [n2]0 = d[j0]0 × [Q]0[k1]1
n3 = p3 × e3 = −di1 × k0 = k0 × di1 ⇒ [n3]0 = d[k0]0 × [Q]0[i1]1

Hence, p is the vector connecting the origin of the reference frameF0 to a point
of the axis of the screw. Among the various vectors, we choose the one from the
center of the spherical manipulator to the intersection of the two universal joint axes.
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3 Formulation of the Optimization Problem

In trying to resolve the functional redundancy of Sphe.I.Ro. performing a two-dof
task, the problemcanbe formulated as oneof solving a constrainedoptimizationprob-
lem, the constraints being imposed by the pointing specification, while the objective
function is κ2

F (J). Then the problem takes the form:

f (x) ≡ κ2
F (J) → min

x
, s.t. h(x) = 0 (5)

where h is a vector of constraints and x the array of unknowns. The constrained
problem can be formulated by means of points lying on a sphere with unit radius.
Choosing this approach, a rotation about the hole axis that passes through the center
of the spherical manipulator is the functional redundancy. The constraint is then the
coincidence of the vertical unit vector ev, taken as reference vector and mapped by
the rotation matrix, and the actual unit vector of the hole direction eh , both expressed
in the same reference frame, i.e., the fixed frameF0.

h(x) = Qev − eh = 0 ⇒ h(x) = [Q(x)]0[ev]0 − [eh]0 = 0 (6)

According to the two reference systems chosen, [ev]0 �=[eh]1 = −√
3/3

[
1 1 1

]T
.

So far the optimization problem is written in terms of the rotation matrix Q that
needs a proper parametrization to describe the orientation of the mobile platform:
among the various representations that describe the rotation, we choose the one based
on the rotation invariants, and in particular, the Euler-Rodrigues Parameters (ERPs),
i.e., the four scalars r and r0 [1]:

Q = (r20 − rT r)1 + 2rrT + 2r0R, R = CPM(r) (7)

where CPM(r) denotes the cross-product matrix1 of r ≡ e sin (φ/2). This repre-
sentation is more robust than the others because it does not entail any singularity;
therefore, smoother trajectories can be obtained. The array of unknowns becomes
x = [

rT r0
]T
, which are not independent, for they obey the constraint ‖r‖2 + r20 = 1.

A non linear system of four algebraic equations in four unknowns is thus obtained,
that seems to leave no room for optimization. Actually, the system conceals a non-
linear dependency between the variables [2], since the 4 × 4 gradient of the system
of equations is singular. As a matter of fact, the 4th equation of the system naturally
comes out from the Euclidean norm of the two sides of Eq. 6 by introducing Eq.7
and imposing that ev and eh be unit vectors. In order to provide the system with a
straightforward physical interpretation, a projection of the Eq.6 is operated along
known directions as shown below:

1That is, CPM(r) = ∂(r × v)/∂v, ∀v, x ∈ R
3.
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rT ev = rT eh; rTEveh = 2r0(rT r − (rT ev)2); eTv eh = 2(r20 + (rT ev)2) − 1 (8)

From the first scalar equation the angle between the vector r and the two unit vectors
ev and eh of the vertical and actual hole axes must be equal: this vector is bound to
lie on the bisecting plane defined by to the two unit vectors ev and eh . Vector r can
sweep this plane upon rotating around the origin of the frames. Within this set of
vectors r that brings ev to overlay with ep, the solution of the problem is the one that
optimally orients the EE in the eh pointing direction.

The constrained optimization can be rewritten as an unconstrained problem by
decomposing the Q matrix into two rotation matrices, namely, Q = Q1Q2. For the
sake of simplicity, the two factors are described here in terms of their linear invariants
Qi (ei , ϑi ), even though ERPs where used for practical implementation. The first
rotation is determined by imposing the coincidence of the two given vectors: among
the infinite number of rotation matrices, the geodetic one that minimizes the angle
of rotation ϑ1 is chosen [8]

Q1 = Q1

(
ev × eh

‖ev × eh‖ , atan2
(‖ev × eh‖, eTv eh

))
(9)

The matrix Q2(eh, ϑ2) describes a rotation around the unit vector eh of an angle ϑ2.
Then, thewhole rotationQ can be used to compute the square of the condition number
κ2
F as a function ofϑ2, which represents the only unknown. Suchmanipulations allow

the writing down of the problem as an unconstrained optimization of the objective
function κ2

F in the single design variable ϑ2.
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4 Implementation and Results

Sphe.I.Ro is to performapointing taskwhile keeping the Frobenius condition number
of its Jacobian matrix at a minimum. In order to prove the effectiveness of the
procedure, an arbitrary array of ERPs

[
rT r0

]T = [
0.140 0.210 0.280 0.926

]T
is

chosen to reproduce a geometric path for the EE. In practical cases instead, such
path is given by the task. The finite rotation between the two frames is taken as
the pointing path of the hole axis, represented by ehi : a total of 100 path points
on the unit sphere are used to describe the axis path, keeping fixed the axis of
rotation while decreasing the angle of rotation ϕ by Δϕ, as shown in Fig. 3a. For
each prescribed direction of the hole axis an optimization problem is solved in order
to find the EE orientation that minimizes the Jacobian condition number. To solve
the optimization problem of a nonlinear function with nonlinear constraint equations
we use the Sequential Quadratic Programming (SQP) algorithm, while the gradient
of the objective function is estimated using finite differences at every step. After
having found the first point of the optimum joint trajectory, the remainder of the path
follows in a similar way, using the previous trajectory point as an initial guess. The
next posture is, consequently, the closest minimizer at the current posture. To verify
the results of the SQP method, the condition number is evaluated at each iteration
upon varying the angle of rotation ϑ2 about the axis eh of the unconstrained problem:
the plots in Fig. 4a, b shows the evaluation in a rich sample of argument values for a
full rotation of 2π , i.e. the middle and final point of the path. In Fig. 4b the reciprocal
of the condition number indicates the passing through an isotropic configuration and
through a singular one; moreover, the plot rightfully appears as 2π−periodic. From
the first results of the optimization problem we conclude that the implementation
of Eq.6 together with ‖r‖2 + r20 = 1, leads to an excessive number of iterations,
often without reaching a minimum. The exclusion of the unit norm equation from
the system makes the dof of the functional redundancy explicit, thereby leading to
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a faster convergence. The comparison of the history of the condition number along
the path for the optimization problem, Fig. 3b, versus the unconstrained function
evaluation, shows the same results; hence, the solver is capable of finding the local
minimum. In Figs. 3 and 4 the histories of the actuated joints qi (t) are also plotted, for
the respective condition number obtained using the inverse kinematics relationships
q1,i = [

c − dQ1,2, c − dQ2,3, c − dQ3,1
]T
, where c is the constant length between

the prismatic pair direction and the universal-joint center along the cylindrical-joint
axis, as per Fig. 2b, while Qi, j represents the (i, j) entry of the rotation matrix.
The pointing-path was verified looking for potential problems such as joint-limit
violation and singular postures. No such problems were found for this particular
path. For every practical purpose, this result shows that the optimization scheme led
to a constant condition number, at a remarkably low level. It is noteworthy that the
optimization problem avoids singularities only if at least one non-singular posture
is available for a particular pointing direction; since this is not ensured for every
pointing direction, it can happen that the solution of the problem is a pose either
singular or close to a singular configuration. In any case, the proposed procedure is
not aimed at seeking a singularity-free trajectory, but at optimizing a path that should
be generated a priori and verified for singularity avoidance. In particular, for each
path it should be guaranteed that the condition number is lower than a safe threshold.
The pointing path discussed here is not defined in the time domain; for this reason
it does not represent a specific trajectory: a motion planner able to perform such
verification and to provide a time history for the subsequent configurations is still a
matter of study, that is to be further investigated.

In conclusion, the paper shows how posture-optimization can be used as a
redundancy-resolution means for functionally redundant PKMs. The constrained
optimization problem here defined is solved with the SQP algorithm. The problem
is recast as one of unconstrained optimization, whose objective function is evaluated
over a rich sample of argument values to verify the SQP results by inspection.
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Analysis Methods for the 3-RRR
with Uncertainties in the Design Parameters

Joshua K. Pickard, Juan A. Carretero and Jean-Pierre Merlet

Abstract Accounting for uncertainties in the design variables of a parallelmanipula-
tor is important for a reliable analysis of amechanism.Thedesignof the 3-RRRplanar
parallel manipulator is modelled with uncertainties. Interval analysis techniques are
utilised to solve for the reachable workspace and the collision-free workspace. It is
necessary to ensure that a fabricated design can achieve some desired criteria. Here,
we consider generating a desired set of wrenches at the end-effector. The wrench
capabilities under uncertainties are verified throughout the collision-free workspace.
The results describe the set of poses which are guaranteed to be collision free and
satisfy the desired wrench capabilities given the uncertainties in the specified design.

1 Introduction

A useful concept in parallel manipulator analysis is to evaluate certain properties
of a mechanism when the design geometries are not precisely known, but can be
determined with a tolerance. A desired geometry can be fabricated to within a certain
set of tolerances. In order to ensure that the desired properties will be present within
the fabricated mechanism, the fabrication tolerances must be taken into account
when analysing the mechanism. These properties can include, but are not limited
to, identifying collision-free regions [2], singularity-free regions [2, 8], and wrench
capability analysis [3, 9].

Self-collisions are typically prevalent throughout the reachable workspace of
parallel manipulators (especially for the 3-RRR mechanism). To ensure that the fab-
ricated mechanism avoids self-collisions, the components of the design (e.g., the
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actuator and mounting hardware, joints, links, platform, end-effector), and the
arrangement of these components, should be accounted forwhen analysing themech-
anism. Several techniques have been proposed to deal with self-collisions. Ketchel
and Larochelle [5] exploit the geometry of right circular cylindrical objects to facil-
itate the detection of collisions from three dimensional motions [5]. Merlet and
Daney [6] apply interval analysis techniques to determine the minimum distance
between cylindricalmembers to detect self-collisions in the Stewart-Gough platform.
These works cannot be directly applied here as the incorporation of uncertainties
does not allow for an exact description of the limb, but rather gives an overesti-
mated description. It is simple enough to ensure that two members do not collide
by verifying that the distance between the members is always greater than some
minimum allowable distance, however ensuring that the members always collide is
a difficult problem that should be addressed. The problem of detecting collisions
under uncertainties via interval analysis is considered here.

Interval analysis is amathematical frameworkwhich allows for computationusing
interval quantities, such that an interval variable [x] denotes the natural extension
of the closed interval [x] = [x, x] = {x | x ∈ R, x ≤ x ≤ x}. Through the use of
interval analysis techniques, a variable’s tolerances can be accounted for during
all computations. The evaluation of a function f (x) over an interval [x] yields the
interval solution [ f ] of the function. This function [ f ] is called the inclusion function
for f ([x]), such that f ([x]) = { f (x) | x ∈ [x]} ⊆ [ f ]. The converse inclusion does
not hold in general, and [ f ] overestimates f ([x]). This overestimation is a result
of the well known wrapping effect and dependency problem in interval analysis [4].
Several techniques are commonly applied tomanage interval overestimation: interval
contracting techniques, branch and bound methods, and alternative representations
of the inclusion functions (e.g., centred, mixed centred, Taylor) [4, 7].

In Sect. 2, interval analysis is incorporated into the design specifications of the
3-RRR parallel manipulator. This allows uncertainties in the mechanism to be
accounted for during analysis. Then, in Sect. 3, the inverse kinematics for the mech-
anism are solved using interval analysis and both self-collisions and joint limitations
are accounted for. Section4 introduces the description of a desired task in terms of
workspace and wrench requirements. The wrench capabilities of the mechanism are
evaluated and verified against the wrench requirements of the task.

2 Design Specifications

The design of a 3-RRR will be described in terms of a set of design parameters,
denoted D . Illustrated in Fig. 1, these design parameters include link lengths (ri and
li ), moving platform and fixed base geometries (described by di and ai , respectively),
and actuator torque capabilities (τi ). In addition to the discrete values for the design
parameters, interval analysis provides the ability to easilymodel tolerances on each of
the variables. It is therefore necessary to denote a design with tolerances as [D]. The
length of a linkmay normally be discretely represented as li , whereas the inclusion of
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Fig. 1 The 3-RRR architecture with 3-DOF (x , y, and ψ) (adapted from [9])

a manufacturing tolerance ρ allows for the length to be represented as [li ] = li ± ρ.
Also, consider that the location of each actuator is not exact; thus, it is useful to add
tolerances ([ai ]). Lastly, it may be necessary to include positioning and orientation
tolerance on the desired pose ([p]). The remainder of this work proposes and demon-
strates algorithms which are developed to analyse mechanisms with interval design
parameters, such that each designD ∈ [D] and each pose p ∈ [p] are accounted for.

3 Reachability and Collisions

Oetomo et al. [8] formulated a set of constraint equations using the inverse and direct
kinematics equations of a 3-RRR (for brevity these equations are not repeated here).
Reachability of the 3-RRR for a given pose interval [p] is determined by applying
interval constraint propagation and numerical constraint satisfaction techniques to
the set of constraint equations for the manipulator in order to solve the inverse
kinematics. A solution to the inverse kinematics yields consistent interval domains
for the joint variables: cos([αi ]), sin([αi ]), cos([βi ]), sin([βi ]), cos([γi ]), sin([γi ])
for i = 1 . . . 3, such that each of the joint variables is consistent with the domain
[−1, 1]. This domain can be narrowed to limit the allowable range of motion of a
joint. Elbow configurations can be specified by selecting the appropriate domain for
sin([βi ]). The allowable range of motion in the elbow joint is specified by selecting
the appropriate domain for cos([βi ]). The allowable range of motion between the
distal link and platform is specified by adding restrictions on the allowable domains
of cos([γi ]) and sin([γi ]). To account for a non-symmetric platform design, let φ+

i
and φ−

i describe the edges of the platform relative to the platform attachment point of
limb i (see Fig. 1). The restrictions are described by a union of constraints as follows

(
cos([γi ]) ⊂ [cos(φ−

i ), 1]
sin([γi ]) ⊂ [0, 1]

) ⋃ (
cos([γi ]) ⊂ [cos(φ+

i ), 1]
sin([γi ]) ⊂ [−1, 0]

)
(1)
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An ‘inside-outside’ classification test solves for the set of pose intervals which are
completely inside the reachable workspace (PRW )1 and the complementary set of
pose intervals which are completely outside the PRW . A pose interval [p] satisfies
the inside test when the set of interval joint variable solutions satisfies all of the
domain constraints. Alternatively, a pose interval [p] satisfies the outside test if any
of the joint variable solutions falls in the complement of a domain constraint. When a
pose interval fails to be classified as inside or outside, the pose interval [p] is bisected
using an interval bisection routine. For example, a largest-first bisection would bisect
[p] along the dimension with the largest width, resulting in two new pose intervals
[p1] and [p2], which can then be tested. This takes place until every unclassified pose
interval is below some desired width threshold, denoted ε.

An algorithm for detecting collisions between limbs and platform will now be
proposed. As a result of the uncertainties, it is necessary to determine if there is
always a collision or when there is never a collision for all p ∈ [p]. The proposed
collision algorithm consists of a partial collision test and a full collision test. The
partial collision test first determines if a collision is possible. The full collision
test is then applied to determine if a collision will always occur. The design of a
planar mechanismmay consist of several non-colliding layers which aid in enlarging
the collision-free workspace at the end-effector. The methods presented here can
be applied to designs consisting of many layers. It is not necessary to check for
collisions between every member during each pose test; instead, it is useful to track
which members are guaranteed not to collide and pass this information along in the
bisection. Only the members which have the possibility of colliding are rechecked.

Let [bi ] describe the location of the elbow joint in limb i . A line segment, denoted
aibi , is used to represent the proximal2 link for limb i . Similarly, a line segment,
denoted bici , is used to represent the distal3 link for limb i . The i th limb can be
described by the union of segments: Li = aibi ∪ bici (see Fig. 2). The width of link
k on limb i is represented by wik . Two links will collide when they are in the same
layer and the distance (dist) between the links is less than or equal to the sum of the
half-widths of the corresponding links. For convenience, Lik will denote the kth link
on limb i and L jh will denote the hth link on limb j . Assuming that two limbs i and
j are in the same layer, a collision will always occur when

∀ai ∈ [ai ], ∀a j ∈ [a j ], ∀bi ∈ [bi ], ∀b j ∈ [b j ], ∀ci ∈ [ci ], ∀c j ∈ [c j ],
dist(Lik, L jh) ≤

(wik

2
+ wjh

2

)
, for k = 1, 2, h = 1, 2 (2)

such that each pair of links is checked for collisions. Alternatively, k and h in Eq. (2)
may be modified to only consider links in the same layer.

It is also necessary to account for collisions between the links and the platform.
The distal link is ignored since it shares a joint with the platform and restrictions on

1The symbol P denotes a set of poses and the subscript refers to the relevant workspace.
2The link closest to the base with length ri .
3The link attached to the moving platform with length li .
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γi can be used to prevent collisions. The following method can be extended for limbs
consisting of two or more links. Let L p denote the set of line segments corresponding
to the platform: L p = c1c2 ∪ c2c3 ∪ c3c1. The edges of the platform are located at
a distance of wp from L p. Assuming that the elbow joint [bi ] does not intersect the
platform, a collision will always occur between limb i and the platform when

∀ai ∈ [ai ], ∀bi ∈ [bi ], ∀c1 ∈ [c1], ∀c2 ∈ [c2], ∀c3 ∈ [c3],
dist(Lik, L p) ≤

(wik

2
+ wp

)
, for k = 1. (3)

3.1 Partial Collision Test

Applying a convex hull routine (conv), the set of all line segments for the proximal
link ({Li1}), distal link ({Li2}), and platform ({L p}) are represented as

{Li1} = conv([ai ], [bi ]) (4)

{Li2} = conv([bi ], [ci ]) (5)

{L p} = conv([c1], [c2], [c3]) (6)

Let {Li } be the union of {Li1} and {Li2} (see Fig. 2). The distance between each pair
of links {Lik} and {L jh} is computed and a collision will not occur between limbs i
and j if

dist({Lik}, {L jh}) >
(wik

2
+ wjh

2

)
, for k = 1, 2, h = 1, 2 (7)

If the elbow joint [bi ] does not intersect {L p}, a collision between the proximal link
on the i th limb and the platform will not occur if

dist({Lik}, {L p}) >
(wik

2
+ wp

)
, for k = 1 (8)

The possibility of a collision exists when Eq.7 or 8 is not satisfied.
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3.2 Full Collision Test

To solve the full collision test, the use of a vertex representation of {Li } and {L p} is
proposed. The vertex representations, denoted as {Li }v and {L p}v respectively, are
finite in terms of line segments and are computed by selecting a vertex from the first
joint and connecting this to each consecutive corresponding vertex (see Fig. 2). Since
themechanism is planar, {Li }v and {L p}vwill each have four elements, corresponding
to each of the vertices.

A collision will always occur between limbs i and j when

∀Li ∈ {Li }v, ∀L j ∈ {L j }v, dist(Lik, L jh) ≤
(wik

2
+ wjh

2

)
, for k = 1, 2, h = 1, 2

(9)
A collision will always occur between the proximal link on the i th limb and the
platform when

∀Li ∈ {Li }v, L p ∈ {L p}v, dist(Lik, L p) ≤
(wik

2
+ wp

)
, for k = 1 (10)

If the full collision test fails, then only a partial collision can be guaranteed and the
pose interval [p] must be bisected for additional testing.

3.3 Applying the Reachability and Collision Algorithms

The 3-RRR planar parallel manipulator with design [D], described by the following
interval design parameters, is analysed. All of the links of the manipulator have a
width of w = 0.0150m, while the platform has wp = 0.0075m. A constant orienta-
tion is selected with a platform orientation specified as [ψ] = [0.0] rad. A resolution
of ε = 0.001m is used for all workspaces.

a1 =
⎛
⎝[0.0997, 0.0998]

[0.1077, 0.1078]
[0.0]

⎞
⎠m, a2 =

⎛
⎝[−0.2419,−0.2418]

[0.05427, 0.05428]
[0.0]

⎞
⎠m, a3 =

⎛
⎝ [0.07265, 0.07266]

[−0.2370,−0.2369]
[0.0]

⎞
⎠m;

d1 =
⎛
⎝ [0.0498, 0.0502]

[−0.0001, 0.0001]
[0.0]

⎞
⎠m, d2 =

⎛
⎝[−0.0251,−0.0249]

[0.0432, 0.0434]
[0.0]

⎞
⎠m, d3 =

⎛
⎝[−0.0251,−0.0249]

[−0.0434,−0.0432]
[0.0]

⎞
⎠m;

r1 = [0.1648, 0.1650]m, r2 = [0.1350, 0.1352]m, r3 = [0.1479, 0.1481]m;
l1 = [0.2411, 0.2413]m, l2 = [0.2955, 0.2957]m, l3 = [0.2895, 0.2897]m;
τ1 = [−10, 10]Nm, τ1 = [−10, 10]Nm, τ1 = [−10, 10]Nm;

The constant orientation workspace neglecting collisions is provided in Fig. 3a.
The set of poses with the inside classification are guaranteed to be reachable for
the design [D]. Alternatively, the set of poses with the outside classification are
guaranteed to be unreachable. The full PRW can be computed by accounting for
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Fig. 3 Constant orientation workspaces for the 3-RRR planar parallel manipulator

every platform orientation. This can be done by simply allowing [ψ] = [−π, π ] at
the start of the solving routine.

A design with all of the links on layer 1 is considered in Fig. 3b. The joints
limitations are set as αi ∈ [0◦, 360◦], βi ∈ [0◦, 165◦], and γi ∈ [−135◦, 135◦] for
i = 1, . . . , 3. Collisions between the proximal links, distal links and the platform are
accounted for.

A design with the proximal links in layer 1, the distal links in layer 2, and the
platform in layer 3 is considered in Fig. 3c. Distal-distal and proximal-proximal col-
lisions are accounted for. The joints limitations are αi ∈ [0◦, 360◦], βi ∈ [0◦, 180◦],
and γi ∈ [0◦, 360◦] for i = 1, . . . , 3.
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A designwith the proximal links and platform in layer 1 and the distal links in layer
2 is considered in Fig. 3d. Note also that the elbow configurations have been changed.
Distal-distal, proximal-proximal and proximal-platform collisions are accounted for.
The joints limitations areαi ∈ [0◦, 360◦],β1 ∈ [180◦, 360◦],β2 ∈ [180◦, 360◦],β3 ∈
[0◦, 180◦] and γi ∈ [0◦, 360◦] for i = 1, . . . , 3. It can be noted that two disconnected
components of the workspace are computed corresponding to different assemblies
of the mechanism. A single assembly can be considered by adding restrictions to γ1.

4 Task Requirements

Given a design [D] containing tolerances, it is important to understand the capa-
bilities of a mechanism in generating wrenches throughout PRW . The term wrench
capability (F ) denotes the complete set of wrenches that a mechanism can generate
at its end-effector in a given pose. Bouchard et al. [1] considered a discrete represen-
tation for a mechanism’s design and pose and presented an algorithm for an exact
polytopic representation of F . The selected design, D , and pose, p, both affect the
resultingwrenches, i.e.,F (p,D). Theminimumallowable wrench capability (Fmin)
defines the minimum wrench set required for a specific task. The set of poses with
Fmin ⊆ F (p,D) are said to be inside the mechanism’sWrench Workspace (PWW ).
That is,PWW is a subset of PRW which can be used by the desired task.

The description of a task used in thisworkwill contain: (1) the set of pose intervals,
denotedPtask = {[p1], . . . , [pk]} (Ptask may also be set equal toPRW ), and (2) the
Fmin required to be generated along the trajectory.PWW defined in terms of interval
variables is

PWW = {[p] | [p] ∈ Ptask, ∀ p ∈ [p], ∀ D ∈ [D], Fmin ⊆ F (p,D)}. (11)

4.1 Verifying Task Requirements

Interval analysis derived tests can be used to verify the wrench capabilities of a
mechanism. Gouttefarde et al. [3] proposed an inside-outside test for the verification
of the wrench capabilities of cable-driven parallel manipulators. Their inside test
makes use of a strong feasibility theorem proposed by Rohn [11] which relies on the
assumption that the solution of an interval linear system of equations is nonnegative.
This restriction makes the tests of Gouttefarde et al. suitable for cable-driven archi-
tectures which must maintain nonnegative cable tensions. Pickard and Carretero [10]
proposed an alternative formulation of the inside test which makes use of the strong
solvability theorem proposed by Rohn [11] which removes the nonnegative assump-
tion. The formulation in [10] removes the restriction on the actuator limits and their
tests can be applied to other parallel manipulator architectures, such as the 3-RRR.
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the constant orientation workspace.
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Fig. 4 Wrench capability verification for the 3-RRR planar parallel manipulator

A task may be specified in terms of wrench requirements at the end-effector. For
example, the manipulator is used to perform a task which requires
F = ([ fx ], [ fy], [mz])T = ([−30, 30] N, [−30, 30] N, [0] N)T . The interval analy-
sis tests described by Pickard and Carretero [10] can be utilized to verify that the
manipulator’s wrench capabilities exceed the task’s wrench requirements. The asso-
ciated wrench workspace considering the task’s requirements and self-collisions is
provided in Fig. 4a with a resolution of ε = 0.001m. Here, Ptask is set equal to
PRW , and the design of the mechanism is the same as in Fig. 3c. As a result of
the tolerances on the design variables and the inherent overestimation with interval
analysis, there are thick regions of unclassified (boundary) poses; that is, these poses
cannot be classified as inside or outsidewith the wrench workspace tests. Therefore,
a trajectory for the task must remain within the region of inside poses to guarantee
that the desired wrench set can be generated for the design [D].

If a desired trajectory and wrench set are known, the pose intervals containing
the trajectory are used to populatePtask. Depending on the resolution of the sensors
used by the manipulator and the control techniques applied, the manipulator may
also have a pose error. The sameF is selected as before, and a linear trajectory is to
be completed. A positioning error of ±0.1mm is assumed for the manipulator. The
associated wrench workspace considering the task’s requirements and self-collisions
is provided in Fig. 4b with a resolution of ε = 0.0001m. The benefit of considering
only the pose intervals containing the trajectory is that the problem can be solved
much more quickly. This is important when multiple designs are evaluated, as is
required in design optimization.
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5 Conclusions

Techniques for analysis of the 3-RRR planar parallel manipulator with tolerances
in the design parameters have been presented. These techniques are designed to
account for self-collisions and have been demonstrated by evaluating the reachable
andwrenchworkspaces of a given designwith reasonable tolerances on each variable.
The techniques presented here may easily be extended to other planar mechanisms.
In fact, with some additional consideration given to collisions between links and
the platform, these techniques may also be extended to spatial mechanisms. An
interesting application of these techniques is for the design synthesis of a mechanism
which accounts for tolerances in the design parameters.
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A Study on Simplified Dynamic Modeling
Approaches of Delta Parallel Robots

Jan Brinker, Philipp Ingenlath and Burkhard Corves

Abstract This contribution presents a study on simplified dynamic modeling
approaches of the Delta parallel robot. Complete and simplified dynamic model-
ing approaches are reviewed and compared in respect to their computation times.
Also, the dependency of the accuracy on the mass distribution of the distal link is
analyzed in detail and assessed based on a single industry-relevant pick-and-place
trajectory as well as randomly generated Lissajous curves for (more) general validity.

1 Introduction

In the 1980s, Reymond Clavel (professor at EPFL École Polytechnique Fédérale de
Lausanne) invented a parallel robot known as Delta robot [4]. A Delta robot consists
of three symmetric kinematic chains of the type RRPaR, RUU or R(SS)2 (where R:
revolute joint, U: universal joint, S: spherical joint, Pa: parallelogram). The three
spatial four-bar parallelograms, each attached distally to one of the rotationally actu-
ated links, restrain completely the orientation of the mobile platform which remains
with three purely translational degrees of freedom. With this, the rods within the
parallelogram only need to transmit axial forces allowing for light-weight materi-
als and thus, very low inertia compared to serial articulated robots. Research in the
general fields of kinematics, dynamics, control, singular configurations, workspace,
calibration, and mechanical design of Delta robots has been conducted extensively
during the last decades. A comprehensive overview about the historical, academic,
and industrial development of such mechanisms is presented by the authors of this
contribution [1].

Dynamicmodeling is generally used to predict the desired actuator torque in order
to dimension parts and develop efficient control schemes. Against this background,
the dichotomy between simulation accuracy and computation time poses high chal-
lenges to the development of robot dynamics models. The most common analytical
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Fig. 1 Geometric relations and notations for the basic structure (left) and for the complete and
simplified modeling approaches of the distal link (right)

approaches for dynamic modeling are: the Principle of Virtual Work, the Newton–
Euler Formulation, and the Lagrangian Formulation [3]. Besides basic assumptions
of complete non-simplified models (e.g., frictional effects are neglected, links are
modeled as rigid cylinders, etc.), the description of the dynamic behavior of a system
and its components can be further simplified to increase the computational efficiency
for control purposes. With regard to Delta robots, in these models usually the rota-
tional inertias of the light-weight distal links are neglected and their masses are
distributed to the corresponding joints (see Fig. 1). Due to the light-weight design of
the connecting rods, the significance of this simplification in respect to the accuracy
of the model is expected to be fairly low. However, neglecting the distal link’s rota-
tional inertia and thus, changing the direction of the resultant dynamic forces may
cause significant errors (i.e., deviations in actuator torques) of up to 10% depending
on the system parameters [9]. Current market developments demand adaptations of
materials and designs leading to increased inertias and component weights. This may
influence the accuracy of the models even more and thus, motivates this study.

On the one hand, adaptations of materials may be required due to hygiene issues
within the food processing industry (i.e., the most relevant field of application of
Delta robots). Here, machines need to adhere to strict regulations. This also concerns
carbon fiber components as commonly used for the links of a Delta robot.

On the other hand, adaptations of designs can be observed as a consequence of
adding serial mechanisms to the original purely parallel Delta architecture in order
to obtain orientation capabilities. These industrial concepts consist of the basic Delta
structure and a serial wrist which is mounted on the platform and usually driven by
three motors. These motors are fixed on the frame (e.g., FANUC M-1), attached to
the platform or to the distal links (e.g., FANUC M-3). Hence, modifications of the
basic structure including reinforcements of the distal links are required.

In this context, this contribution is concernedwith two key aspects. First, complete
and simplified dynamic modeling approaches are reviewed and compared in respect
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to their computation times. Second, the dependency of the accuracy on the mass
distribution of the distal link is analyzed and assessed.

2 Problem Statement

As mentioned before, for simplified modeling approaches, the rotational inertias of
the light-weight distal links are usually neglected and their masses are distributed
to the corresponding joints. To determine the ratio of mass distribution, the mass
distribution factors ν1 and ν2 are introduced (where ν1,ν2 ∈ [0, 1] and ν1 + ν2 = 1
with subscripts 1 and 2 denoting the proximal and distal connecting points, see
Fig. 1 right). Analyses on the determination of these factors are performed first by
Codourey [5]. Computing the actuation torques of a specific system and a given
trajectory, it was found that best results are obtained for ν1 = 2/3, i.e., two-thirds
of the mass are allocated to the tip of the proximal link. This distribution is also
applied in, e.g., [6, 7]. Stamper [13] presents a Delta-based structure with revolute
joints only. Here, the masses of the connecting rods are distributed evenly to the tip
of the proximal joint and the platform joint, respectively (ν1 = ν2 = 1/2). Contrary
to the Delta variant investigated in this study, the intermediate links of this partic-
ular manipulator connecting the proximal link to the parallelogram rotate and thus,
the related inertial effects are considered crucial. However, the comparison of the
accuracies of complete to simplified dynamic modeling approaches in [12] solely
considers an even mass distribution based on a single test trajectory. Also, it is not
distinguished between the deviations resulting from neglecting the motions of the
transmission bars and the deviations resulting from the simplification that the mass
is distributed to the joints. The present paper considers varying mass distribution
factors and randomly generated Lissajous curves imposed as trajectories for (more)
general validity. Contributions with even distributions are found in, e.g., [11, 14].

The dissemination of the first type of distribution (i.e., ν1 = 2/3 and ν2 = 1/3)
is due to the fact that the simplified consideration of the distal link corresponds to
the complete model under certain assumptions. These are that: (1) the velocity of the
joint connecting the proximal and distal link, i.e., the position of the distributed mass
ν1m2i , is assumed to be zero, (2) the distal links are modeled as rigid cylinders with a
moment of inertia of I = 1/3ml2, and (3) static force deviations among the models
are neglected. For the second type of distribution (i.e., ν1 = ν2 = 1/2) the resul-
tant gravitational forces of the simplified and complete consideration correspond.
It is thus, rather suitable for slow (quasi-static) applications since the effects of the
dynamic forces on the actuation torques are not taken into account adequately (cf.
Sect. 5). The following analyses are based on the kinematic and mass parameters,
test trajectory, and detailed specifications as introduced in [2].
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3 Complete and Simplified Dynamic Modeling Approaches

All three dynamic modeling approaches can be used for complete and simplified
dynamic analyses. For the sake of brevity and for further analyses (cf. Sect. 5),
solely the energy-based Lagrangian approach is reviewed briefly. Comprehensive
analyses are conducted in [2]. The desired actuator torques can be computed by
the Lagrange’s equations of the first kind. Thus, the kinetic and potential energies
(T and Π ) need to be derived for each component of link i in order to obtain the
Lagrangian equation:

L = T − Π (1)

The actuation torques can then be derived by:

τi = d

dt

(
∂L

∂ϕ̇1i

)
− ∂L

∂ϕ1i
− λi

∂Γi

∂ϕ1i
(2)

with px , py, pz, ϕ11, ϕ12, ϕ13 as generalized coordinates (see Fig. 1), the constraint
equations Γi , and the multipliers λi . The kinetic and potential energies are given
by the sum of energies of each component (i.e., proximal links, distal links and
platform). The following analyses solely consider the distal links. Thus, the energies
of the other components are not introduced. For the complete approach (cf. [9]), the
kinetic energies of the distal links are:

T2i = 1

2
m2i

(
ṗT v1i + 1

3
(ṗ − v1i) T (ṗ − v1i)

)
(3)

where ṗ and v1i denote the platform velocity and the velocity at the tip of the proximal
link, respectively. Their potential energies can be stated as:

Π2i = 1

2
m2i g (pz − l1i sin ϕ1i ) (4)

whereby the zero point lies within the origin of the coordinate system 0.
In simplified models (indicated with *), the rotational inertias of the light-weight

distal links are neglected. Thus, the energy equations can be simplified to:

∗T2i = 1

2
m2i

(
ν1 · l21i ϕ̇2

1i + ν2 · (
ṗ2x + ṗ2y + ṗ2z

))
(5)

∗Π2i = m2i g (−ν1 · l1i sin ϕ1i + ν2 · pz) (6)

assuming identical distribution factors for each link. Models based on the Principle
of Virtual Work and Newton–Euler can be formulated and simplified accordingly.
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Fig. 2 Comparison of the
computation times of
complete and simplified
approaches

4 Analysis of Computation Times

The three approaches for dynamic modeling are theoretically equivalent, but their
computational intensity may vary. A comparative study of complete models shows
that for the basic structure fastest processing times can be reached applying the
Lagrangian Formulation [2]. Assume a normalized reference time of 1 as a base for
the longest computation time (i.e., the time required to compute the complete model
based on Newton–Euler), the processing times of simplified and complete models
can be compared as displayed in the following Fig. 2.

It can be seen that independent of the underlying model shortest processing times
are achieved applying the Lagrangian approach. The relative saving of time between
complete and simplified models is 42, 10, and 29% for the Newton–Euler Formu-
lation, the Principle of Virtual Work, and the Lagrangian Formulation, respectively.
Referring to the simplified Newton–Euler Formulation, the application of the Princi-
ple of Virtual Work reduces the computation time by 32%. Applying the simplified
Lagrangian approach, relative saving of time is 63% compared to the Newton–Euler
Formulation.

To sum up, the minimum computation time is 74% less than the reference time
and obtained using the simplified Lagrangian approach. It should be noted that the
efficiency of a model not only depends on the analyzed mechanical structure, but
also on the computational scheme and the program structure (e.g., number and kind
of operations).

5 Assessment of Accuracy

This section provides analyses in order to show that the deviations of torques between
complete and simplified models are related to the mass distribution factor. Moreover,
the impact of optimizing the mass distribution factor in respect to the reduction of
the torque deviations is assessed.

From (2) it can be seen that the calculation of actuator torques can be per-
formed by an energy-based approach. Thus, to analyze the torque deviations and their
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Fig. 3 Comparison of the potential (a), kinetic (b), and superposition of both (c) energy deviations

origins, the energy deviations of the distal links are used. To increase theweighting of
relatively high deviations, the sum of squares of the energy deviations is considered
which gives:

E2 (Π) =
∑

i

(
Π2i − ∗Π2i

)2
(7)

E2 (T ) =
∑

i

(
T2i − ∗T2i

)2
(8)

E2 (Π, T ) =
∑

i

(
Π2i − ∗Π2i

)2 + (
T2i − ∗T2i

)2
(9)

referring to the potential (7), kinetic (8), and superposition of both (9) energy devi-
ations.

Provided that ν2 = 1 − ν1, these energy deviations can be visualized as a function
of time (resulting from the imposed trajectory) and the mass distribution factor ν1.
The results are displayed in Fig. 3 with gray and red colors denoting low and high
deviations, respectively. Minimal deviations are indicated by the black line.

Exclusively considering the deviations of the potential energy (Fig. 3a), it can be
seen that independently from the trajectory (denoted by Time [s]) minimal deviations
are achieved for ν1 = 0.5. The reason for this is that for any position the resultant
of the gravitational forces of the distributed masses within the simplified model
corresponds to the gravitational force of the complete model (also cf. (4) and (6)).

Figure3b shows the deviations of the kinetic energy. The imposed trajectory rep-
resents a standard pick-and-place cycle with maximum velocity reached half way
between pick and place positions. Inherently, velocities are minimal at these posi-
tions. Thus, it can be found that deviations are maximal and minimal at maximum
and minimum speed, respectively. More importantly, minimal deviations vary along
the distribution factor (cf. black line in Fig. 3b). Deviations are maximal for poorly
chosen mass distribution factors (e.g., ν1 = 0 or ν1 = 1). However, the optimal dis-
tribution factor (referring to minimal deviations along the trajectory) cannot be iden-
tified a priori. At this point it becomes evident that simply choosing a factor for
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Fig. 4 Comparison of the deviations of actuator torques

distribution may not be ideal. Figure3c depicts the superposition of the deviations
of both potential and kinetic energies (cf. (9)).

The consideration of the energy deviations helps to understand the influences of
the imposed trajectory and the chosen distribution factors on the accuracy of the
simplified modeling approaches. However, the primary motivation of the dynamics
modeling is the accurate computation of the actuator torques. Therefore, the optimal
mass distribution factor is identified by minimizing the torque deviations along the
trajectory. For that, the average deviation of all three actuators is taken into account.
This value in turn is averaged along the trajectory and finally gives a target value for
the optimization. Accordingly, minimum torque deviations are obtained for a mass
distribution factor of ν1 = 0.74. For the overall system, the upper part of Fig. 4 shows
the torque curves of the three actuators as modeled with a complete (C, black) and
simplified (S, red) approach.

The results for the commonly chosen factors ν1 = 0.5 (Fig. 4a) and ν1 = 0.67
(Fig. 4b) are compared with the results applying the optimal distribution factor, i.e.,
ν1 = 0.74 (Fig. 4c). The lower part of Fig. 4 displays the absolute torque deviations
for each actuator. The horizontal dash-dot line refers to the averaged torque deviation
as used as target value for the optimization.

As outlined previously, the factor ν1 = 0.5 is most suitable for very slow (quasi-
static) applications (for example, in surgical robotics [8]). Thus, for the fast applica-
tion in hand, the average torque deviation of 3.9Nm is highest for ν1 = 0.5.Applying
the distribution factor of ν1 = 0.67 closely approximates the outcome of a complete
modeling approach with an average torque deviation of 2.8 Nm. Further improve-
ments can be achieved by an optimized value of ν1 = 0.74. In this way, the average
torque deviation can be reduced to 2.5 Nm.
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Fig. 5 Analyses of the mass distribution factor based on Lissajous curves

In order to obtain general validity, the analyses are extended taking into account
randomly generated Lissajous curves within a prescribed workspace as similarly
proposed in [10]. Lissajous curves are infinitely differentiable periodic functions
given by:

x(t) = A1 sin(a1s(t) + δ1)

y(t) = A2 sin(a2s(t) + δ2) (10)

z(t) = A3 sin(a3s(t) + δ3)

where the constants A1, A2, A3, a1, a2, a3, δ1, δ2, and δ3 are chosen randomly and
where the path profiles are specified based on a fifth order polynomial s(t). Figure5a
depicts 200 open Lissajous curves covering a cuboid prescribed workspace of 1100 ·
800 · 300 mm3 within the reachable workspace (illustrated in Fig. 5a in blue). The
acceleration and velocity profiles for a randomly generated curve depend on the
imposed cycle time. For each curve of the set of 200 Lissajous curves the cycle
time is varied between 1 and 4s (with a step size of 0.1 s) which give an overall
number of 6200 trajectories. Each trajectory is analyzed in respect of the optimalmass
distribution factor deploying optimization algorithms. The results of the optimization
are shown in Fig. 5b. For each evaluated cycle time, the average and maximum
velocity and acceleration, respectively, for each of the curves are averaged over the
set of 200 Lissajous curves (see Fig. 5c, d).

The results demonstrate that, irrespective of the imposed path, the optimum of the
mass distribution factor depends on the application speed. In contrast to the outcome
of the analyses based on a single trajectory, the optimum distribution factor solely
exceeds the identified limit values (i.e., ν1 = 0.5 and ν1 = 0.67) for very short cycle
times (less than 1.2 s).
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6 Conclusion

In this study complete and simplified approaches for dynamic analyses of a Delta
robot were reviewed and compared in respect to their computation times and accu-
racies. It was found that compared to the complete Newton–Euler approach com-
putation times can be reduced by 74% applying a simplified Lagrangian approach.
Analyses of the energy deviations of the distal link revealed that mass distribution
factors are highly dependent on the imposed trajectory. For quasi-static motions
an optimum mass distribution factor of ν1 = 1/2 was identified. The deviations of
kinetic energies showed that simply choosing a factor for mass distribution may
not be ideal. Applying an optimized mass distribution factor of ν1 = 0.74, the aver-
age deviations of the actuator torque were reduced by 9.7% compared to the com-
monly chosen factor of ν1 = 0.67. Analyses taking into account randomly generated
Lissajous curves prove a more general validity of the achievements.

The results should be taken as an example to show that a careful evaluation of the
mass distribution factor may help to further improve the accuracy of the simplified
model. The impact needs to be assessed in the overall context and confronted with
the influence of frictional effects and the accuracy of the complete model itself. A
long-term goal of future investigations is the derivation of a single parameter which
can be used to find an optimal mass distribution factor related to a given system and
handling task.
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Hidden Cusps

Michel Coste, Philippe Wenger and Damien Chablat

Abstract This paper investigates a situation pointed out in a recent paper, in which
a non-singular change of assembly mode of a planar 2-RPR-PR parallel manipulator
was realized by encircling a point of multiplicity 4. It is shown that this situation
is, in fact, a non-generic one and gives rise to cusps under a small perturbation.
Furthermore, we show that, for a large class of singularities of multiplicity 4, there
are only two types of stable singularities occurring in a small perturbation: these two
types are given by the complex squaremapping and the quartomapping. Incidentally,
this paper confirms the fact that, generically, a local non-singular change of solution
must be accomplished by encircling a cusp point.

1 Introduction

The non-singular change of assembly mode in parallel manipulators, first observed
by C. Innocenti and V. Parenti-Castelli [1], is often associated with the presence of
cusps and the non-singular change of assembly mode is realized by turning around a
cusp point, or a cuspidal edge of the singularity surface (see for instance [2–5]). It has
also been reported that non-singular change of assembly modes can be realized by
following an “alpha curve” (i.e. a fold curve intersecting itself transversally) [6, 7],
and that the presence of cusps is not necessary for the existence of non-singular
assembly mode changes [8].
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A recent paper [9] exhibits an example of a 2-dof parallel manipulator with an
isolated singularity of multiplicity 4 of the inverse kinematics mapping, such that
circling around the image of this singularity in the joint space results in a non-singular
assembly mode change; moreover, after a second loop around the singularity, one
is back in the same assembly mode. There is no cusp in the picture, but we intend
to explain in the present paper that actually the cusps are hidden. Precisely, the
singularity of multiplicity 4 is not a stable singularity, which means that it disappears
under a small perturbation of the geometry of the manipulator, giving rise to three
cusp points; in the joint space, the isolated singularity is perturbed into a deltoid
curve with three cusps. Hence, circling around the singularity of multiplicity 4 was
actually circling around 3 degenerate cusps.

H.Whitney [10] has shown that the only stable singularities of mappings between
spaces of dimension2 are folds and cusps.Anyother higher order singularity becomes
a combination of folds and cusps after perturbation, which amounts to say that these
higher order singularities are degenerations of folds and cusps. We shall show that
the case study of the perturbation of the 2-dof manipulator actually describes two
main cases of singularities of multiplicity 4 (complex square and quarto mappings)
leading to two different perturbations (the former with three cusps, the latter with
one cusp).

2 A Case Study

2.1 2RPR-PR with Higher Order Singularities

We begin with the example given in [9]. It is a 2RPR-PR planar manipulator with
architecture described in Fig. 1.

The output coordinates are the angle ϕ and the y-coordinate of the revolute joint
B which is constrained to move on the vertical axis. The input coordinates are the
square �21 and �22 of the lengths of the legs A1B1 and A2B2. The equations for the
inverse kinematic mapping are

�2i = y2 − 2 bi y sin(ϕ) + a2i − 2 ai bi cos(ϕ) + b2i for i = 1, 2 (1)

Fig. 1 Architecture of
2RPR-PR
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The Jacobian matrix Jac of the inverse kinematic mapping and its Jacobian determi-
nant J (up to a factor 4) are:

Jac = 2

(−b1 y cos(ϕ) + a1 b1 sin(ϕ) y − b1 sin(ϕ)

−b2 y cos(ϕ) + a2 b2 sin(ϕ) y − b2 sin(ϕ)

)

J = (b1 + b2) cos(ϕ) y2 + (a1 b1 − a2 b2) sin(ϕ) y − (a1 + a2) b1 b2 sin(ϕ)2 .

(2)
The possible cusp points and higher order singularities may be detected by adding
to J = 0 the equations

Jac

(−Jy
Jϕ

)
=

(
0
0

)
, (3)

where Jϕ and Jy denote the partial derivatives of J with respect to ϕ and y. These
equations express that the curve of singular points in the workspace either has a
singularity or has a tangent vector in the kernel of the Jacobian matrix. We observe
that (ϕ, y) = (0 mod π, 0) satisfy Jac = the zero matrix (and hence also J = 0 and
Eq. (3) hold); these singularities are not cusps, but higher order singularities.

2.2 An Example

We compute the singularities in the workspace and in the joint space for an example
with a1 = 3, a2 = 7, b1 = 6, b2 = 5, which is the same as the one considered in [9].
In this case we can check that the only real solutions of J = 0 and the Eq. (3) are
(ϕ, y) = (0 mod π, 0).

For (ϕ, y) = (0, 0), we have �1 = 3, �2 = 2. Developing the equations for the
inverse kinematic mapping and for J in a neighbourhood of (0, 0) we get

�21 − 9 = y2 + 12 y ϕ + 18ϕ2 + h.o.t. , �22 − 4 = y2 − 10 yϕ + 35ϕ2 + h.o.t.

J = 11 y2 − 17 y ϕ − 300 ϕ2 + h.o.t. , (4)

where h.o.t. stands for “higher order terms”. This shows that the singularity is of
multiplicity 4, and that the point (ϕ = 0, y = 0) is a node of the curve of singular-
ities (the discriminant Δ = (−17)2 − 4 × 11 × (−300) of the quadratic part of the
development of J at (0, 0) is positive).

For (ϕ, y) = (π, 0), we have �1 = 9, �2 = 12. Developing �21 − 81, �22 − 144 and
J in a neighbourhood of (π, 0), with ψ = φ − π , we get

�21 − 81 = y2 − 12yψ − 18ψ2 + h.o.t. , �22 − 144 = y2 + 10yψ − 35ψ2 + h.o.t.

J = −11 y2 + 17 y ψ − 300ψ2 + h.o.t. . (5)
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Fig. 2 Workspace and joint space of the manipulator

This shows that the singularity is also of multiplicity 4, and that the point (ϕ =
π, y = 0) is an isolated double point of the curve of singularities (the discriminant
Δ = 172 − 4 × (−11) × (−300) of the quadratic part of the development of J at
(π, 0) is negative).

Figure2a represents the workspace of the manipulator; it must be understood that
the right side (ϕ = 3π/2) has to be identified with the left side (ϕ = −π/2). The
singularity curve is represented in thick blue; one can see the node at ϕ = 0, y = 0
and the isolated double point at ϕ = π, y = 0. The dash-dot black curve is the level
curve �1 = a1 + b1 = 9 and the dashed red curve is the level curve �2 = a2 + b2 =
12. The numbers in the zones delimited by these curves indicate the corresponding
images by the inverse kinematic mapping in the joint space.

The joint space is represented in Fig. 2b (the same figure appears in [9]). One
can see the image of the singularity curve in blue. Inside the domain delimited by
this curve, the direct kinematic problem has four solutions, except at the image
(�1 = 9, �2 = 12) of the isolated singularity point where there is one solution of
multiplicity 4 and two other solutions. Above each point of the image singularity
curve, there are two double solutions, except at the point �1 = 3, �2 = 2 (image of
the node) where there is one solution of multiplicity 4. The zones numbered 1, 2, 3,
4 are the images of the zones with the corresponding numbers in the workspace.

It can be seen that circling around the isolated singularity point in the joint space,
following the numbering 1-2-3-4-1, yields a non-singular assembly mode change
leading from a zone numbered 1 in the workspace touching the isolated singularity
point to the other one. A second loop makes one return to the initial assembly mode.
This phenomenon cannot be faithfully represented in a 3-dimensional reduced con-
figuration space: one cannot have a ramp turning around the singular configuration
and returning to the start level after two turns without an artificial self-intersection.

One can see in this example a non-singular assembly mode change by circling
around a singularity which is not a cusp. The hidden cusps are revealed by slightly
perturbing the geometry of the manipulator.
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Fig. 3 The modified
manipulator

2.3 Revealing the Hidden Cusps

The manipulator is modified so that the revolute joint B on the platform is no longer
on the line B1B2, but at a distance d from this line: see Fig. 3.

We compute the example with a1 = 3, a2 = 7, b1 = 6, b2 = 5 and d = 3. The
equations for the inverse kinematic mapping are now

�21 = y2 − 6y(cos(ϕ) − 2 sin(ϕ)) − 36 cos(ϕ) − 18 sin(ϕ) + 54

�22 = y2 − 2y(3 cos(ϕ) + 5 sin(ϕ)) − 70 cos(ϕ) + 42 sin(ϕ) + 83 ,
(6)

and the Jacobian determinant is, up to a constant factor,

J = 11 y2 cos(ϕ) − y (30 cos(ϕ) + 17 sin(ϕ) + 33)

+ 390 cos(ϕ)2 − 30 cos(ϕ) sin(ϕ) − 300
(7)

We can detect the cusps or higher order singularities by solving the system formed
by J = 0 and Eq. (3). We get four real solutions, which are

(ϕ � −0.0023, y � 2.9069), (ϕ � 2.6492, y � −2.2190),

(ϕ � −2.7368, y � −1.2968), (ϕ � 3.0855, y � 2.6935)
(8)

It can be checked that all four points are actually cusp points.
The curve of singularities in the workspace is represented in thick blue in Fig. 4a.

Note that it retains the overall features of the original singularity curve in Fig. 2a,
except for the node at (0, 0)which is simplified in two non-intersecting branches and
the isolated double point at (π, 0) which has evolved into an oval. The characteristic
curves in the workspace (defined in [11]) are represented in green. One can recognize
the cusp points as the points of tangency of the characteristic curves with the curve
of singularities: there is one cusp point on one branch of the simplification of the
node, and three cusp points on the oval obtained by perturbing the isolated double
point of the singularity curve.

Figure4b represents the joint space. One can see the four cusps, three on the
central deltoid (image of the oval) and one on a branch of the outer curve (the two
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Fig. 4 Workspace and joint space of the modified manipulator

branches have also a crossing point). There are six solutions to the direct kinematic
problem inside the deltoid, and 4, 2 or 0 solutions as one proceeds towards the outer
regions.

Note that the connected zone in the workspace encircling the large green deltoid
is not a uniqueness domain [11]: it is a 2-sheeted covering of the zone around the
deltoid in the joint space. This latter zone is not simply connected, so we cannot
deduce that a connected component of its preimage is a uniqueness domain.

The picture of the joint space shows that circling around the isolated singularity
in the joint space was actually circling around three degenerate cusps. The dashed
circle from Q to Q around the deltoid in the joint space lifts to the dashed trajectory
from P1 to P2 in the workspace; a second turn on the circle completes the circuit
from P2 back to P1.

3 The General Mathematical Picture: Unfolding of a
Singularity of Multiplicity 4 of a Mapping of Surfaces

We explain here how the observations made for the modified 2RPR-PR fit into a
general mathematical framework. We begin by recalling two examples described in
[12].

3.1 Complex Square Mapping and Its Unfolding

The first example is given by f : (x, y) �−→ (u = x2 − y2, v = 2xy) which is the
complex square function z �→ z2, written in real and imaginary parts; this shows that
every point in R

2 is the image by f of two points in R
2, except the origin which

is the image of the origin only. The Jacobian determinant of f is, up to a constant
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factor, x2 + y2. The only singularity of f is at the origin, and this singularity has
multiplicity 4 (the dimension of the quotient algebra R[x, y]/(x2 − y2, 2xy)).

Now we perturb the mapping f to

f̃ : (x, y) �−→ (u = x2 − y2 + 4ax, v = 2xy + 4by) . (9)

The Jacobian determinant of f̃ becomes, up to a constant factor, (x + a + b)2 + y2 −
(a − b)2. If b �= a, the set of singular points of f̃ is the circle with centre (−a − b, 0)
and radius |a − b|. There are three cusp points on this circle, and the image curve
in the (u, v) plane is a deltoid with three cusps. A point inside the deltoid has four
preimages, outside two. Circling around the deltoid permutes the two preimages (as
circling around the origin does for the complex square root).

Figure5a shows the situation at the source (coordinates (x, y)) and at the target
(coordinates (u, v)), in the case a = 1, b = −1. The blue curves are the curves of
singularities. The green curve at the source is the characteristic curve; the cusps
points are the points where the blue and green curves are tangent.

3.2 Quarto Mapping and Its Unfolding

The second example is the mapping g : (x, y) �−→ (u = x2, v = y2); this mapping
is named “quarto” because it folds the plane (x, y) onto the first quadrant of the plane
(u, v), which is covered by four sheets. The Jacobian determinant of g is, up to a
constant factor, xy. The set of singular points of g is the union of the two axes.

Let us perturb the mapping g to

g̃ : (x, y) �−→ (u = x2 + 2ay, v = y2 + 2bx) . (10)

The Jacobian determinant becomes, up to a constant factor, xy − ab. This is the
equation of an equilateral hyperbola, if ab �= 0. Its image by g̃ is a curve in the (u, v)
plane with two branches, one of which has a cusp; inside the cusp, each point has
four preimages by g̃, between the branches two, and zero elsewhere.

Figure5b represents the situation at the source and at the target in the case
a = b = 1 in the same way as for the preceding example. One can see the cusp
point at the source.

3.3 General Case

The two examples above are actually the complete list of the stable singularities that
can be obtained by perturbing a singularity ofmultiplicity 4where the 2 × 2 Jacobian
matrix is the zero matrix. These are the elliptic (complex square case) and hyperbolic
(quarto case) Σ2 singularities which are studied in [13], Part I §3. The notation Σ2
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Fig. 5 Perturbations of the complex square mapping and of the quarto mapping

means that the Jacobian matrix has corank 2, i.e. is the zero matrix in dimension 2,
and in this case multiplicity 4 is equivalent to the fact that the discriminant Δ of the
quadratic part of the Taylor expansion of the Jacobian determinant at the singularity
is nonzero. The elliptic case corresponds toΔ < 0 and the hyperbolic case toΔ > 0.

We can now return to the example of the 2RPR-PR. We have Δ > 0 at the sin-
gularity (ϕ, y) = (0, 0) (see (4)): we are here in the case “quarto mapping” and we
can clearly see the relevant parts of Fig. 4 corresponding to Fig. 5b. We have Δ < 0
at the singularity (ϕ, y) = (π, 0) (see (5)): we are now in the case “complex square
mapping” and we can compare the relevant parts of Fig. 4 with Fig. 5a.



Hidden Cusps 137

4 Conclusion

We have shown that the singularities of multiplicity 4 that appear in the study of the
kinematics of the 2RPR-PR are not generic and give rise to cusps under a small pertur-
bation.We have also shown that these singularities belong to a family of singularities
which splits in two cases according to the sign of the discriminant of the quadratic
part of the Jacobian determinant: the “complex squaremapping” case and the “quarto
mapping” case which are well known in the theory of singularities of differentiable
mappings. In the first case, the singularity is isolated and circling around it in the
joint space results in an exchange of two solutions to the direct kinematic problem. A
small perturbation to stable singularities gives three cusp points which were in some
sense “hidden” in the singularity of multiplicity 4, and so one can argue that this
example does not invalidate the rule that, generically, local non-singular assembly
mode changes arise by circling around cusps.

We have limited our study to the 2-dof case. In a future work, we shall examine the
perturbation of the second example in [9], which is interesting because it gives a fully
parallel generic 3-RPR manipulator with properties similar to the ones we have seen
for the constrained 2RPR-PR. We shall also discuss in more details characteristic
surfaces and uniqueness domains [11].
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Some Mobile Overconstrained Parallel
Mechanisms

J.M. Selig

Abstract The Griffis–Duffy platform is an example of an overconstrained parallel
mechanism. Although it has 6 SS legs joining its platform to its base it is still mobile.
In this work similar structures are found but with different types of legs. The key
to finding these structures is a pair of theorems concerning 3 degree-of-freedom
mechanisms subjected to a translation or a half-turn. Although these results are not
new concise statements and proofs are given. These constructions are then applied
to parallel mechanisms consisting of 3 RPS legs and 3UPU legs. Some details of the
rigid-bodymotions that the platformof thesemechanisms can execute are found. This
is facilitated by the observations that rigid displacements permitted by an RPS leg are
the displacements which constrain a point to a fixed plane, while the displacements
of a UPU leg constrain a line to be coplanar to a fixed line.

1 Introduction

There has been much interest in overconstrained, single loop mechanisms such as
the Bennett, Goldberg and various Bricard mechanisms. With interest turning to
parallel mechanisms workers have also begun to look at over constrained parallel
mechanisms. These are sometimes described as mechanisms which are architec-
turally singular. A key example of such a mechanism was the Griffis–Duffy platform
as explained by Husty and Karger, [2]. Here these ideas are extended to platforms
with other types of legs, in particular RPS and UPU. First we consider a pair of
constructions which guarantee the mobility of the mechanisms.
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2 Line-Symmetry and Translations

The results considered here are well known in general terms but giving formal state-
ments of the results clarifies the underlying geometry. In both cases the symmetries
discussed confine the rigid motion to the intersection of a 5-dimensional projective
space (a 5-plane) with the Study quadric.

We consider arbitrary mechanisms. These are to be thought of as systems of links
and joints but we don’t specify their arrangement so the mechanism could be a serial
chain, a single loop or a parallel mechanism, for example. All we require is that one
link is fixed and called the base link.Wewill concentrate our attention on another link
in themechanism andwill refer to this as the coupler or platform of themechanism. If
the coupler has 3-degrees-of-freedom then the possible displacements of the coupler,
relative to the base link, can be specified using three parameters.

Lemma 1 Let M be an arbitrary mechanism having a coupler with 3 degrees-of-
freedom. Duplicate the mechanismM and subject the new one to a fixed translation.
The translation must include all links and joints including the base link. After the
translation the translated base-link is again fixed. Rigidly join the coupler bars of
the two mechanisms to form a combined coupler. This combined coupler bar will be
able to move and will, in general, follow a 1 degree-of-freedom Schönflies motion.

Proof Assume g(μ1, μ2, μ3) is the dual quaternion representing the three parameter
motion performed by M . After a translation t , the shifted mechanism will be able
to perform the motion, tg(μ1, μ2, μ3)t−, where t− is the dual quaternion conjugate
of t . When the couplers are joined together, any motion performed must satisfy,

g(μ1, μ2, μ3) = tg(μ1, μ2, μ3)t
−.

This relation will have solutions for all displacements g(μ1, μ2, μ3) that commute
with t . The set of all elements in the group which commute with a translation consist
of the subgroup of all translations and all rotations about axes parallel to t . The
centraliser of a translation is a Schönflies group. In the Study quadric a Schönflies
group is the intersection of the Study quadric with a 5-plane. Intersecting with the
3-dimensional set of displacements g(μ1, μ2, μ3) generally gives a 1-dimensional
set, necessarily lying in the Schönflies subgroup. �

Only the direction of the translation is important, any translation in the same
direction will give the same Schönflies group. For the parallel mechanisms below
this means that the same motion can be generated by a machine with an arbitrary
number of legs.

The second result is probably even more well known, the statement and simple
proof are still instructive.

Lemma 2 Let M be an arbitrary mechanism that has a coupler with 3 degrees-
of-freedom. Again, duplicate the mechanism M but now subject the new one to a
half-turn about a line �0. This time the base-link of the new mechanism is rigidly
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fixed to the coupler link of the original and the coupler link of the new machine is
fixed to the base. The coupler bar of the new combined mechanism will generally
follow a 1 degree-of-freedom line-symmetric motion.

Proof After the half-turn the motion of the coupler will be �0g(μ1, μ2, μ3)�
−
0 but

the motion of the base with respect to the coupler will be, �0g−(μ1, μ2, μ3)�
−
0 .

After connecting the mechanism as specified the motion of the combined coupler
will satisfy,

g(μ1, μ2, μ3) = �0g
−(μ1, μ2, μ3)�

−
0 .

This can be rearranged to produce,

g(μ1, μ2, μ3)�
−
0 + �0g

−(μ1, μ2, μ3) = 0,

since �−
0 = −�0. In [6] it was shown that this equation characterises line-symmetric

motions, moreover, line-symmetric motions were shown to lie in the intersection of
the Study quadric with a 5-plane. �

3 RPS Legs

The legs considered here are each composed of a revolute, prismatic and a final
spherical joint, see Fig. 1. Keeping the base of the leg fixed and moving the platform
attached to the spherical joint gives a set of possible rigid-bodydisplacements allowed
by the leg. In all these displacements the centre of the spherical joint remains in
contact with a fixed plane normal to the axis of the first revolute joint. Clearly, the
set of displacements allowed by such a leg coincides with the point-plane constraint
varieties discussed in [4] for example. These point-plane constraint varieties can
be thought of as the intersection of the Study quadric in P

7 with another quadric
hypersurface.

Now the construction of Lemma1 is applied to a parallel mechanism consisting
of three general RPS legs, see Fig. 2. Assume the axis of the Schönflies motion is the
z-axis so the rotation matrix and translation vector can be written

Fig. 1 An RPS leg
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Fig. 2 A mobile 6RPS
parallel mechanism
constructed by translating a
3RPS linkage and joining the
coupler bars. The dots
represent the elliptical path
of the centre of one of the
spherical joints

R =
⎛
⎝
cosφ − sin φ 0
sin φ cosφ 0
0 0 1

⎞
⎠ and t =

⎛
⎝
tx
ty
tz

⎞
⎠ .

The three point-plane constraints can be written

(nT
i , −di )

(
R t
0 1

) (
pi
1

)
= nT

i (Rpi + t) − di = 0, i = 1, 2, 3, (1)

where ni is the unit normal to the plane, di the perpendicular distance from the plane
to the origin and pi the position vector of the point at the centre of the spherical joint.
These equations can be written in matrix form as

N t = δ, where N =
⎛
⎜⎝
nT
1

nT
2

nT
3

⎞
⎟⎠ and δ =

⎛
⎜⎝
d1 − nT

1 Rp1
d2 − nT

2 Rp2
d3 − nT

3 Rp3

⎞
⎟⎠ . (2)

Assuming that the points pi lie on their respective planes at the start of the motion,
when R(0) = I3, the row of δ can be written nT

i (I3 − R)pi . Elements of I3 − R can
be written in terms of the sine and cosine of the rotation angle φ as R can only be
rotations about the z-axis. The matrix N can be inverted symbolically,

N−1 = 1

n1 · (n2 × n3)

(
n2 × n3

∣∣∣ n3 × n1
∣∣∣ n1 × n2

)
.

So t = N−1δ = α(1 − cosφ) + β sin φ, where

α = 1

n1 · (n2 × n3)

(
(n1x p1x + n1y p1y)n2 × n3+

(n2x p2x + n2y p2y)n3 × n1 + (n3x p3x + n3y p3y)n1 × n2
)
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and

β = 1

n1 · (n2 × n3)

(
(n1x p1y − n1y p1x )n2 × n3+

(n2x p2y − n2y p2x )n3 × n1 + (n3x p3y − n3y p3x )n1 × n2
)

Using the familiar tan-half-angle substitutions, cosφ = (1 − t2)/(1 + t2) and
sin φ = 2t/(1 + t2), it can be seen that the motion of a general point in the platform
will be a conic curve. Hence this is a Darboux motion, see [1, Chap. IX, Sect. 3].
The fact that three point-plane constraints restricted to a Schönflies motion produces
a Darboux motion is well known, see for example [7]. Notice however, that in [3]
it was shown that a parallel mechanism with 3 RPS legs could perform a vertical
Darboux motion, a particular Darboux motion that is also line-symmetric. The above
shows that the mechanism can perform a general Darboux motion and indicates how
to construct such a mechanism.

Next, the construction from Lemma2 is applied to three RPS legs. As above there
are three point-plane constraints given in Eq. (1). Since a line-symmetric motion
consists of successive half-turns about the generators of a ruled surface, the rigid-
body displacements can be given by the exponential of a line

(
R t
0 1

)
= eπL , where L =

⎛
⎜⎜⎝

0 −P03 P02 P23
P03 0 −P01 P31

−P02 P01 0 P12
0 0 0 0

⎞
⎟⎟⎠ .

Here Pi j are the Plücker coordinates of the line L . The explicit dependence of L on
time has been suppressed for brevity. Using the Rodrigues formula, the exponential
can be written:

eπL = I4 + 2L2,

since L3 = −L and assuming P2
01 + P2

02 + P2
03 = 1. Writing,

Ω =
⎛
⎝

0 −P03 P02
P03 0 −P01

−P02 P01 0

⎞
⎠ , ω =

⎛
⎝
P01
P02
P03

⎞
⎠ , and v =

⎛
⎝
P23
P31
P12

⎞
⎠ ,

the rotation matrix is R = I + 2Ω2 and the translation vector t = 2ω × v, where ω

and v consist of the Plücker coordinates of a line and so satisfy ω · v = 0.
Assume that the motion passes through the identity element of the group and

that the points lie on their respective planes in this position. Then a line-symmetric
motion is given by reflecting the three points p1, p2 and p3 in the initial line of the
ruled surface L0, and then reflecting in the successive lines of the surface, so that,

(
R t
0 1

)
= (I4 + 2L2)(I4 + 2L2

0).
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To be definite assume that the initial line L0 is the z-axis. Let p′
i = (I3 + 2Ω2

0 )pi ,
where Ω0 is the direction of L0. The equations for the three point-plane constraints
become, niT (I3 + 2Ω2)p′

i + 2niT (ω × v) − di = 0. Since di = niT (I3 + 2Ω2
0 )p

′
i ,

we get, niT (Ω2 − Ω2
0 )p

′
i + niT (ω × v) = 0, for i = 1, 2, 3. These equations can

be made homogeneous by multiplying the Ω2
0 term by the square of the norm of the

vector ω, denoted |ω|2. This results in three homogeneous equations,

niT (Ω2 − |ω|2Ω2
0 )p

′
i + niT (ω × v) = 0, i = 1, 2, 3. (3)

Including the equation for the Klein quadric ω · v = 0, gives 4 homogeneous
quadratic equations for the ruled surface generating the line-symmetric motion. The
intersection of these quadrics is not a complete intersection as they clearly vanish on
the 2-dimensional plane of “lines at infinity” ω = 0.

The equation given in (3) can be written in the same matrix vector form as in (2)
but with

t = ω × v and δ =
⎛
⎜⎝
nT
1 (Ω2 − |ω|2Ω2

0 )p
′
1

nT
2 (Ω2 − |ω|2Ω2

0 )p
′
2

nT
3 (Ω2 − |ω|2Ω2

0 )p
′
3

⎞
⎟⎠ .

The variables v can be eliminated bymultiplying the equation N t = δ, by the inverse
or adjugate of N and then taking the scalar product with ω. The result is

ω · (n2 × n3)nT
1 (Ω2 − |ω|2Ω2

0 )p
′
1 + ω · (n3 × n1)nT

2 (Ω2 − |ω|2Ω2
0 )p

′
2+

ω · (n1 × n2)nT
3 (Ω2 − |ω|2Ω2

0 )p
′
3 = 0.

This equation determines a plane cubic curve in the variables P01, P02 and P03. This
is the base surface of the motion’s direction cone or spherical indicatrix. Generally
a plane cubic curve is rational or elliptic (has genus 0 or 1) depending on whether or
not it has a singularity. Computing with a few random examples shows that the curve
can be non-singular. Hence, in general, the curve is elliptic. However, there may
be particular examples where the cubic acquires a singularity and hence becomes
rational. Eliminating the moment vector v can be seen as a linear projection with
centre of projection given by the 2-plane of lines “at infinity” ω = 0. To recover the
moments of the generator lines multiply the equation N t = δ, by the inverse of N
and then take the vector product with ω to get,

|ω|2v = 1

n1 · (n2 × n3)

(
ω × (n2 × n3)n

T
1 (Ω2 − |ω|2Ω2

0 )p′
1 +

ω × (n3 × n1)n
T
2 (Ω2 − |ω|2Ω2

0 )p′
2 + ω × (n1 × n2)n

T
3 (Ω2 − |ω|2Ω2

0 )p′
3
)
.

The triple product ω × (ω × v), has been simplified using the equation for the Klein
quadric. This give a rational cubicmap from the planewith homogeneous coordinates
ω = (P01 : P02 : P03) to theKlein quadric. The imageof the cubic spherical indicatrix
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will be a degree 9 ruled surface meeting the center of the linear projection, the space
of lines at infinity, with multiplicity 6.

4 6UPU Legs

Next we study parallel mechanisms composed of 6 UPU legs with either line sym-
metry or a translational symmetry. We require the axes of the first and last revolute
joints of the two U joints to be coplanar, see Fig. 3. This is not the most general
configuration for such a leg but it is a commonly used design. The key observation is
that the rigid displacement allowed by such a UPU leg will maintain the coplanarity
of these lines. In [5] the problem of finding the set of rigid displacements which
move a line in such a way that it remains in a linear line complex was studied. The
set of lines meeting or parallel to a fixed line form a special linear line complex so
the displacements of a UPU leg are a special case of the quadratic constraint found
in [5]. The displacements achievable by the leg lie on the intersection of the Study
quadric with another quadric hypersurface in P

7. There are several serial kinematic
chains with the same property, the UPU, PSP and RRPC chains for example. The
remarks below thus apply to any of these chains.

It is convenient here to use the adjoint representation of SE(3). Consider a pair
of lines given in Plücker coordinates as,

�a =
(

ωa

va

)
, and �b =

(
ωb

vb

)
.

Two lines are coplanar if and only if they are reciprocal, this can be represented as,

(ωT
a , vTa )

(
0 I3
I3 0

) (
ωb

vb

)
= 0,

where I3 is the 3 × 3 identitymatrix.Rigid displacementsmoving �b so that it remains
coplanar to �a thus satisfy

Fig. 3 A UPU leg
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Fig. 4 A mobile 6UPU parallel mechanism constructed by reflecting three legs in the line shown.
For clarity, the base and platform are not shown, the base connects the lower R joint of each leg and
the platform joins the uppermost R joints

(ωT
a , vTa )

(
0 I3
I3 0

) (
R 0
T R R

)(
ωb

vb

)
= 0,

where R is a rotation as above and T is the translation vector written as a 3 × 3
anti-symmetric matrix. Expanding the equation above produces

ωT
a T Rωb + ωT

a Rvb + vTa Rωb = 0.

Three such legs yield an equation of the form N t = δ again, now with

N =
⎛
⎜⎝

(
ωa1 × (Rωb1)

)T
(
ωa2 × (Rωb2)

)T
(
ωa3 × (Rωb3)

)T

⎞
⎟⎠ and δ =

⎛
⎝

ωT
a1Rvb1 + vTa1Rωb1

ωT
a2Rvb2 + vTa2Rωb2

ωT
a3Rvb3 + vTa3Rωb3

⎞
⎠ .

Consider the 6UPU that can perform a Schönfliesmotion. Parameterising the rotation
by tan-half-angles, as in Sect. 3, we can solve for the translation t. This gives a degree
6 solution in the tan-half angle. The trajectories of general points on the platform
will follow rational curves of degree 6.

Finally consider the line symmetric 6UPU, see Fig. 4. The spherical indicatrix
of the base surface of the line-symmetric motion will be a planar curve of degree
7. From the genus-degree formula the maximum genus of such a curve is 1

2 (7 − 1)
(7 − 2) = 15.

5 Conclusion

Althoughmuch is known aboutmotions that constrain points to planes and to spheres,
motions in which lines remain coplanar seems less well studied.
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cube parallel manipulator. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp.
527–535. Springer, Switzerland (2014)

4. Selig, J.M.: On the geometry of point-plane constraints on rigid-body displacements. Acta Appl.
Math. 116(2), 133–155 (2011)

5. Selig, J.M.: On the geometry of the homogeneous representation for the group of proper rigid-
body displacements. Rom. J. Tech. Sci. Appl. Mech. 58(1–2), 27–50 (2013). (Special issue on
New Trends in Advanced Robotics)

6. Selig, J.M., Husty, M.: Half-turns and line symmetric motions. Mech. Mach. Theory 46(2),
156–167 (2011)

7. Zsombor-Murray, P.J., Gfrerrer, A.: A unified approach to direct kinematics of some reduced
motion parallel manipulators. ASME J. Mech. Robot. 2(2), 021006 (2010). (10 pages)



On the Line-Symmetry of Self-motions
of Linear Pentapods

Georg Nawratil

Abstract We show that all self-motions of pentapods with linear platform of Type 1
and Type 2 can be generated by line-symmetric motions. Thus this paper closes a gap
between the more than 100 year old works of Duporcq and Borel and the extensive
study of line-symmetric motions done by Krames in the 1930s. As a consequence
we also get a new solution set for the Borel Bricard problem. Moreover we discuss
the reality of self-motions and give a sufficient condition for the design of linear
pentapods of Type 1 and Type 2, which have a self-motion free workspace.

1 Introduction

The geometry of a linear pentapod is given by the five base anchor points Mi in the
fixed system Σ0 and by the five collinear platform anchor points mi in the moving
system Σ (for i = 1, . . . , 5). Each pair (Mi ,mi ) of corresponding anchor points is
connected by a SPS-leg, where only the prismatic joint is active.

If the geometry of the linear pentapod is given as well as the lengths Ri of the
five pairwise distinct legs, it has generically mobility 1. This degree of freedom
corresponds to the rotational motion about the carrier line p of the five platform
anchor points. As this rotation is irrelevant for applications with axial symmetry
(e.g. 5-axis milling, laser or water-jet engraving/cutting, spot-welding, spray-based
painting, etc.), these manipulators are of great practical interest. Nevertheless con-
figurations should be avoided where the linear pentapod gains an additional uncon-
trollable mobility, which is referred as self-motion.
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1.1 Review on Self-motions of Linear Pentapods

The self-motions of linear pentapods represent interesting solutions to a problem
posed 1904 by the French Academy of Science for the Prix Vaillant, which is also
known as Borel-Bricard problem (cf. [2, 3]). This still unsolved kinematic challenge
reads as follows: “Determine and study all displacements of a rigid body in which
distinct points of the body move on spherical paths.”

For the special case of five collinear points the Borel-Bricard problemwas studied
by Darboux [5, p. 222], Mannheim [6, p. 180ff] and Duporcq [7] (see also Bricard [3,
Chap. III]). A contemporary and accurate reexamination of these old results, which
also takes the coincidence of platform anchor points into account, was done in [1]
yielding a full classification of linear pentapods with self-motions.

Beside the architecturally singular linear pentapods [1, Corollary 1] and some
trivial caseswith pure rotational self-motions [1,Designsα,β,γ ] or pure translational
ones [1, Theorem 1] there only remain the following three designs:

Under a self-motion each point of the line p has a spherical (or planar) trajectory.
The locus of the corresponding sphere centers is a cubic space curve P, where the
mapping from p to P is named σ . P intersects the ideal plane in one real point W
and two conjugate complex ideal points, where the latter ones are the cyclic points I
and J of a plane orthogonal to the direction ofW. P is therefore a so-called straight
cubic circle. The following subcases can be distinguished:

• P is irreducible:

– σ maps the ideal point U of p toW (Type 5 according to [1]).
– σ maps U to a finite point of P (Type 1 according to [1]).

• P splits up into a circle and a line, which is orthogonal to the carrier plane of the
circle and intersects the circle in a point Q. Moreover σ maps U to a point on the
circle different from Q (Type 2 according to [1]).

1.2 Basics on Line-Symmetric Motions

Krames (e.g. [4, 10]) studied special one-parametric motions (Symmetrische Schro-
tung in German), which are obtained by reflecting the moving system Σ in the
generators of a ruled surface of the fixed system Σ0, which is the so called basic
surface. These so-called line-symmetric motions were also studied by Bottema and
Roth [8, Sect. 7 of Chap.9], who gave an intuitive algebraic characterization in terms
of Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3), which are shortly repeated
next.

All real points of the Study parameter space P7 (7-dimensional projective space),
which are located on the so-called Study quadric � : ∑3

i=0 ei fi = 0, correspond to
an Euclidean displacement with exception of the 3-dimensional subspace e0 = e1 =
e2 = e3 = 0, as its points cannot fulfill the condition N �= 0 with N := e20 + e21 +
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e22 + e23. The translation vector s := (s1, s2, s3)T and the rotation matrix R of the
corresponding Euclidean displacement mi �→ Rmi + s are given for N = 1 by:

s1 = −2(e0 f1 − e1 f0 + e2 f3 − e3 f2), s2 = −2(e0 f2 − e2 f0 + e3 f1 − e1 f3),

s3 = −2(e0 f3 − e3 f0 + e1 f2 − e2 f1),

R =
⎛

⎝
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎞

⎠ =
⎛

⎝
e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23

⎞

⎠ .

There always exists amoving frame (in dependenceof a givenfixed frame) in away
that e0 = f0 = 0 holds for a line-symmetric motion. Then (e1 : e2 : e3 : f1 : f2 : f3)
are the Plücker coordinates (according to the convention used in [8]) of the generators
of the basic surface with respect to the fixed frame.

1.3 Line-Symmetric Self-motions of Linear Pentapods

It is well known (cf. [7, Sect. 15], [3, Sect. 12]) that the self-motions of Type 5 are
obtained by restricting the Borel-Bricard motions1 (also known as BB-I motions) to
a line. Note that Krames gave a detailed discussion of this special case in [4, Sect. 5],
where he also pointed out the line-symmetry of BB-I motions.

Beside these BB-I motions, there also exist line-symmetric motions (so-called
BB-II motions), where every point of a hyperboloid carrying two reguli of lines has
a spherical path. It is known (cf. [9, p. 24] and [10, p. 188]) that the corresponding
sphere centers of lines, belonging to one regulus,2 constitute irreducible straight
cubic circles, which imply examples of Type 1 self-motions. It should be noted that
there also exist degenerated cases where the hyperboloid splits up into the union two
orthogonal planes, which contain examples of Type 2 self-motions.

A simple count of free parameters shows that not all self-motions of Type 1 (5-
parametric set3 of motions where all points of a line have spherical paths) can be
generated by BB-II motions (which produce only a 4-parametric set4). The same
argumentation holds for Type 2 self-motions and the mentioned degenerated case.

As a consequence the question arise whether all self-motions of linear pentapods
of Type 1 and Type 2 can be generated by line-symmetric motions. If this is the case

1These are the only non-trivial motions where every point of the moving space has a spherical
trajectory (cf. [3, Chap.VI]).
2The corresponding sphere centers of lines belonging to the other regulus are again located on lines
(cf. [9, p. 24]), which imply linear pentapods with an architecturally singular design.
3With respect to the notation introduced in Sect. 2 these five parameters are C, ar , ac, a4 and p5 or
R1 (cf. Eq. (7)) by canceling the factor of similarity by setting A = 1.
4These are the parameters a, c, g, k used in [9, Sect. 2.3].
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we can apply a construction proposed by Krames [4, p. 416], which is discussed in
Sect. 4, yielding new solutions to the Borel-Bricard problem.

Finally it should be noted that a detailed review on line-symmetric motions with
spherical trajectories is given in [11, Sect. 1].

2 On the Line-Symmetry of Type 1 and Type 2 Self-motions

For our calculations we do not select arbitrary pairs (mi ,Mi ) of p andP, which are in
correspondence with respect to σ (⇔ σ(mi ) = Mi ), but choose the following special
ones:

M4 equals W, M2 coincides with I and M3 with J. The corresponding platform
anchor points are denoted by m4, m2 and m3, respectively. As Mi are ideal points
the corresponding points mi are not running on spheres but in planes orthogonal to
the direction ofMi . Therefore these three point pairs imply three so-called Darboux
conditions Ωi for i = 2, 3, 4. Moreover we denote U as m5 and its corresponding
finite point under σ byM5. This point pair describes a so-calledMannheim condition
Π5 (which is the inverse of a Darboux condition). The pentapod is completed by a
sphere condition Λ1 of any pair of corresponding finite points m1 and M1.

In [1] we have chosen the fixed frame F0 in a way that M1 equals its origin and
M4 coincides with the ideal point of the z-axis. Moreover we located the moving
frameF in a way that p coincides with the x-axis, where m1 equals its origin.

For the study at hand it is advantageous to select a different set of fixed andmoving
frames F ′

0 and F ′, respectively:

• As M2 and M3 coincides with the cyclic points, we can assume without loss of
generality (w.l.o.g.) thatM5 is located in the xz-plane (as a rotation about the z-axis
does not change the coordinates of M1, . . . ,M4). Moreover we want to apply a
translation in a way that M5 is in the origin of the new fixed frame F ′

0. Summed
up the coordinates with respect toF ′

0 read as:

M5 = (0, 0, 0), M1 = (A, 0,C) with A �= 0 (1)

as A = 0 implies a contradiction to the properties of P for Type 1 and Type 2
pentapods given in Sect. 1.1. Moreover, M2, M3 and M4 are the ideal points in
direction (1, i, 0)T , (1,−i, 0)T and (0, 0, 1)T , respectively.

• With respect to F ′
0 the location of p is undefined, but the coordinates mi of mi

can be parametrized as follows for i = 1, . . . , 4:

mi = n + (ai − ar )d with a1 = 0, a2 = ar + iac, a3 = ar − iac (2)

where ar , ac ∈ R and ac �= 0 holds. m5 is the ideal point in direction of the unit-
vector d = (d1, d2, d3)T , which obtains the rational homogeneous parametrization
of the unit-sphere, i.e.
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d1 = 2h0h1
h20+h21+h22

, d2 = 2h0h2
h20+h21+h22

, d3 = h21+h22−h20
h20+h21+h22

. (3)

Now we are looking for the point n = (n1, n2, n3)T and the direction (h0 : h1 : h2)
in a way that for the self-motion of the pentapod e0 = f0 = 0 holds. We can discuss
Type 1 and Type 2 at the same time, just having in mind that a4 �= 0 �= C has to hold
for Type 1 and a4 = 0 = C for Type 2 (according to [1]).

By setting ri := (ri1, ri2, ri3)T for i = 1, 2, 3 the Darboux and Mannheim con-
straints with respect toF ′

0 and F ′ can be written as:

Ω2 : (s1 + r1m2) − i(s2 + r2m2) − p2N = 0, Ω4 : (s3 + r3m4) − p4N = 0, (4)

Ω3 : (s1 + r1m3) + i(s2 + r2m3) − p3N = 0, Π5 : (Rd)(s + Rp5)N
−1 = 0, (5)

with p5 = n + (p5 − ar )d, which is the coordinate vector of the intersection point
of the Mannheim plane and p with respect toF ′. Moreover (p j , 0, 0)T for j = 2, 3
(resp. (0, 0, p4)T ) are the coordinates of the intersection point of the Darboux plane
and the x-axis (resp. z-axis) of F ′

0.

Remark 1 As from the Mannheim constraint Π5 of Eq. (5) the factor N cancels
out, all four constraints Ω2,Ω3,Ω4,Π5 are homogeneous quadratic in the Study
parameters and especially linear in f0, . . . , f3. �

According to [1, Theorems 13 and 14] the leg-parameters p2, . . . , p5, R1 have to
fulfill the following necessary and sufficient conditions for the self-mobility (over
C) of a linear pentapod of Type 1 and Type 2, respectively:

p2 = Aa3v
(a3−a4)2

, p3 = Aa2v
(a2−a4)2

, p4 = − Ca4v
(a2−a4)(a3−a4)

, (6)

(a2 − a4)
2(a3 − a4)

2
[
2wp5 − vR2

1 − (2w − va4)a4
] + vw2(A2 + C2) = 0, (7)

with v := a2 + a3 − 2a4 andw := a2a3 − a24 . Therefore if we set p2, p3, p4 as given
in Eq. (6) then only one condition in p5 and R1 remains in Eq. (7). Therefore these
pentapods have a 1-dimensional set of self-motions.

Theorem 1 Each self-motion of a linear pentapod of Type 1 and Type 2 can be
generated by a 1-dimensional set of line-symmetric motions. For the special case
p5 = a4 = ar this set is even 2-dimensional.

Proof W.l.o.g. we can set e0 = 0 as any two directions d of p can be transformed
into each other by a half-turn about their enclosed bisecting line. Note that this line
is not uniquely determined if and only if the two directions are antipodal.

W.l.o.g. we can solve �,Ω2,Ω3,Ω4 for f0, f1, f2, f3 and plug the obtained
expressions into Π5, which yields in the numerator a homogeneous quartic poly-
nomial G[1563] in e1, e2, e3, where the number in the brackets gives the number
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of terms. Moreover the numerator of the obtained expression for f0 is denoted by
F[600], which is a homogeneous cubic polynomial in e1, e2, e3.

General Case (v �= 0): The condition G = 0 already expresses the self-motion as G
equals Λ1 if we solve Eq. (7) for R1. Moreover F = 0 has to hold if the self-motion
of the line p can be generated by a line-symmetric motion. As for any solution (e1 :
e2 : e3) of F = 0 also G = 0 has to hold, G has to split into F and a homogeneous
linear factor L in e1, e2, e3.

Now L = 0 cannot correspond to a self-motion of the linear pentapod, but has to
arise from the ambiguity in representing a direction of pmentioned at the beginning
of the proof. This can be argued indirectly as follows:

Assumed L = 0 implies a self-motion, then it has to be a Schönflies motion (with
a certain direction v of the rotation axis) due to e0 = 0. As under such a motion the
angle enclosed by v and p remains constant5 the ideal pointU of p has to be mapped
by σ to the ideal point V of v. This implies that V has to coincide withW, which can
only be the case for pentapods of Type 5; a contradiction.

Therefore there has to exist a pose of p during the self-motion, where it is
oppositely oriented with respect to the fixed frame and moving frame, respectively.
As a consequence we can set L = d1e1 + d2e2 + d3e3 which yields the ansatz Δ :
λLF − G = 0. The resulting set of four equations arising from the coefficients of
e31e2, e

3
1e3, e1e

3
3 and e2e33 of Δ has the unique solution:

n1 = acd2, n2 = −acd1, n3 = (ar − a4)d3, λ = 2(h20 + h21 + h22). (8)

Now Δ splits up into (e21 + e22 + e23)
2(h20 + h21 + h22)H [177], where H is homoge-

neous of degree 4 in h0, h1, h2. For more details on H = 0 please see Remark 3,
which is given right after this proof.

Remark 2 Note that all self-motions of the general case can be parametrized as
the resultant of G and the normalizing condition N − 1 with respect to ei yields a
polynomial, which is only quadratic in e j for pairwise distinct i, j ∈ {1, 2}. �

Special Case (v = 0): If v = 0 holds, we cannot solve Eq. (7) for R1. The con-
ditions v = 0 and Eq. (7) imply p5 = a4 = ar . Now G is fulfilled identically and
the self-motion is given by Λ1 = 0, which is of degree 4 in e1, e2, e3. Moreover for
this special case F = 0 already holds for n given in Eq. (8). Therefore any direction
(h0 : h1 : h2) for p can be chosen in order to fix the line-symmetric motion. �

Remark 3 H = 0 represents a planar quartic curve, which can be verified to be
entirely circular. Moreover H = 0 can be solved linearly for p5. The corresponding
graph is illustrated in Fig. 1.

If we reparametrize the h0h1h2-plane in terms of homogenized polar coordi-
nates by:

5This angle condition can be seen as the limit of the sphere condition (cf. [12, Sect. 4.1]).
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Fig. 1 For a type 1 pentapod with self-motion given by the parameters a4 = 2, A = −1, C = −5,
ar = 7 and ac = 4, the graph of p5 in dependency of h1 and h2 with h0 = 1 is displayed in the
axonometric view on the left and in the front resp. top view on the right side. The highlighted
point at height 6 corresponds to the values h1 = − 489262

226525 + 488
226525

√
675091 and h2 = 535336

226525 +
446

226525

√
675091

h0 = (τ 2
1 + τ 2

0 )ρ0, h1 = (τ 2
1 − τ 2

0 )ρ1, h2 = 2τ0τ1ρ1, (9)

where (τ0, τ1) �= (0, 0) �= (ρ0, ρ1) and τ0, τ1, ρ0, ρ1 ∈ R hold, then H factors into
(τ 2

0 + τ 2
1 )3(H2τ

2
1 + H1τ0τ1 + H0τ

2
0 ) with

H1 = 8ρ0ρ1A(a4 − ar )(ρ
2
1 + ρ2

0 )(a
2
r − a24 + a2c )ac,

H0 − H2 = 8ρ0ρ1A(a4 − ar )(ρ
2
1 + ρ2

0 )[ar (ar − a4)
2 + a2c (ar − 2a4)],

H0 + H2 = 2
[
(ar − a4)

2 + a2c
] [2a4(ρ4

1 − ρ4
0)(a4 − ar )C

+ (
(ar − a4)

2 + a2c
) (

(ρ4
0 + ρ4

1)(a4 − p5) + 2ρ2
0ρ

2
1 (2ar − a4 − p5)

)].
(10)

Therefore this equation can be solved quadratically for the homogeneous parameter
τ0 : τ1. Note that the value p5 is fixed during a self-motion. �
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3 On the Reality of Type 1 and Type 2 Self-motions

A similar computation to [1, Example 1] shows that for any real point pt ∈ p with
t ∈ R and coordinate vectorpt = n + (t − ar )dwith respect toF ′ the corresponding
real point Pt ∈ P has the following coordinate vector Pt with respect toF ′

0:

Pt =
(

A(a2r +a2c−tar )
(t−ar )2+a2c

,− Aact
(t−ar )2+a2c

, Ca4
a4−t

)T
. (11)

As L = 0 corresponds with one configuration of the self-motion we can compute the
locus Et of pt with respect to F ′

0 under the 1-parametric set of self-motions by the
variation of (h0 : h1 : h2) within L = 0. Moreover due to the mentioned ambiguity
we can select an arbitrary solution (e0 : e1 : e2) for L = 0 fulfilling the normalization
condition N = 1; e.g.:

e1 = h2√
h21+h22

, e2 = − h1√
h21+h22

and e3 = 0. (12)

Now the computation of Rpt + s yields a rational quadratic parametrization of Et in
dependency of (h0 : h1 : h2).

Note that this approach also includes the special case (v = 0) as there always
exists a value for R2

1 (in dependency of (h0 : h1 : h2)) in a way that Λ1 = 0 holds.
For t �= a4 all Et are ellipsoids of rotation (see Fig. 2a), which have the same

center point C and axis of rotation c. In detail, C is the point of the straight cubic

circle (11) for the value t = c with c := a24−a2c−a2r
2(a4−ar )

(for a4 = ar we get c = ∞ thus
p∞ = U = m5 holds, which implies C = M5) and c is parallel to the z-axis of F ′

0.
Moreover the vertices on c have distance |a4 − t | from C and the squared radius of
the equator circle equals (ar − t)2 + a2c . Note that for a4 �= ar the only sphere within
the described set of ellipsoids is Ec. For a4 = ar no such sphere exists.

Ea4 is a circular disc in the Darboux plane z = p4 (w.r.t.F ′
0) centered in C.

Remark 4 The existence of these ellipsoids was already known to Duporcq [7,
Sect. 9], who used them to show that the spherical trajectories are algebraic curves
of degree 4 (intersection curve of Et and the sphere Φt centered in Pt illustrated in
Fig. 2b). �

Based on this geometric property, recovered by line-symmetric motions, we can
formulate the condition for the self-motion to be real as follows:

• w �= 0:Wecan reduce the problem to a planar one by intersecting the plane spanned
byP0 = M1 and cwith E0 and the sphere with radius R1 centered inP0. Now there
exists an interval I0 =]I−, I+[ such that for R1 ∈ I0 the two resulting conics have
at least two distinct real intersection points. It is well known (e.g. [14]) that the
computation of the limits I− and I+ of the reality interval I0 leads across an
algebraic problem of degree 4 (explicitly solvable). Thus for a real self-motion we
have to choose R1 ∈ I0 and solve Eq. (7) for p5.
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(a)
(b)

(c) (d)

Fig. 2 Type 1 pentapod with self-motion given by a4 = 2, A = −1, C = −5, ar = 7 and ac = 4.
a The loci Ea4 , Ec and Et with t = 69

20 are sliced (along the not drawn axis of rotation c) in order
to visualize their positioning with respect to the cubic P on which the points P∞ = σ(U), Pc = C
and Pt are highlighted. Note that Pa4 = W is the real ideal point of P. b By setting p5 = 6 a
one-parametric self-motion μ is fixed. The trajectory of pt under μ is illustrated as the intersection
curve of Et and the sphere Φt centered in Pt . c A strip of the basic surface of μ is illustrated for the
value highlighted in Fig. 1. In addition P and p are visualized, where the latter denotes the pose of p
such that its half-turns about the generators of the basic surface yield the self-motion μ. dKrames’s
construction is illustrated with respect to the generator g of the basic surface: As Pa4 (resp. p∞) is
the real ideal point ofP (resp. p), the trajectory of pa4 (resp.P∞) underμ is planar. The (Mannheim)
plane ∈ Σ , which contains the point P∞ (resp. pa4 ) and is orthogonal to the direction of the real

ideal point p∞ (resp. Pa4 ) of p (resp. P) in the displayed pose, slides through the point P∞ (resp.
pa4 ) during the complete motion μ
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• w = 0: Now P0 coincides with C and the interval collapses to the single value
R1 = |a4|, which can be seen from Eq. (7). Moreover p5 can be chosen arbitrarily.

These considerations also show that any pentapod of Type 1 and 2 has real self-
motions if the leg-parameters are chosen properly.Note that this is e.g. not the case for
some designs of Type 5 pentapods described in [1, Sect. 6], where it was also proven
that pentapods with self-motions have a quartically solvable direct kinematics. It is
possible to use this advantage (closed form solution) of pentapods with self-motions
without any risk,6 by designing linear pentapods of Type 1 and Type 2, which are
guaranteed free of self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs ptPt of
the pentapod the corresponding reality interval It is disjoint with the interval of
the maximal and minimal leg length implied by the mechanical realization. This
condition for a self-motion free workspace gets especially simple if pcPc is this leg.

Remark 5 Due to limitation of pages, we refer for detailed examples to the paper’s
corresponding arXiv version [13], which also show that for the general case (v �= 0)
the basic surface is of degree 5 (see Fig. 2c) and that a general point has a trajectory
of degree 6 under the corresponding line-symmetric motion.7 Note that the latter also
holds for a general point of the cubic P explained in the next section. �

4 Conclusion and Open Problem

Krames [4, p. 416] outlined the following construction (see Fig. 2d): Assume that p
is in an arbitrary pose of the self-motion μ with respect to P, where g denotes the
generator of the basic surface, which corresponds to this pose. Moreover p and P are
obtained by the reflexion of p and P, respectively, with respect to g, where p belongs
to the fixed system Σ0 and P to the moving system Σ . Then under the self-motion
μ also the points of P are located on spheres with centers on the line p.

We can apply this construction for each line-symmetric motion of Theorem 1,
which yields new solutions for the Borel Bricard problem, with the exception of one
special case where W ∈ p holds (i.e. h1 = h2 = 0 or h0 = 0), which was already
given by Borel in [2, Case Fa4]. Moreover for this case Borel noted that beside p
and P only two imaginary planar cubic curves (∈ isotropic planes through p) run on
spheres. The example of [13] shows that this also holds true for the general case.

Thus the problem remains to determine all line-symmetric motions of Theorem 1
where additional real points (beside those of p and P) run on spheres. Until now the
only known examples with this property are the BB-II motions (cf. Sect. 1.3).

Acknowledgements This research is funded by Grant No. P 24927-N25 of the Austrian Science
Fund FWF within the project “Stewart Gough platforms with self-motions”.

6A self-motion is dangerous as it is uncontrollable and thus a hazard to man and machine.
7Note that all basic surfaces and trajectories can be parametrized due to Remark 2.
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On Some Notable Singularities of 3-RPR
and 3-RRR PPRMs

Khaled Assad Arrouk, Belhassen Chedli Bouzgarrou and Grigore Gogu

Abstract This paper highlights the existence of some notable type-II singular con-
figurations for certain planar parallel robotic manipulators (PPRMs). These singular-
ities are characterized by intrinsic geometric conditions of alignment or coincidence
between geometric entities of the fixed base, the mobile platform and the limbs.
Thus, in the general case of the 3-RPR manipulator, a set of 6 such singular config-
urations can be identified for each orientation of the mobile platform. Moreover, for
6 particular orientations of the mobile platform, a set of positions of the end-effector,
defined by two concurrent lines, can be identified as notable degenerated singularity
curves. On another side, in the general case of the 3-RRR manipulator, a set of 24
curves in the 3-dimensional operational space (x , y, β) can be identified as singular
poses. All these singularities are easy to determine by means of simple geometric
graphical constructions. In this paper, we try to exploit the existence of such partic-
ular singularities for kinematic analysis and design of PPRMs. For instance, we can
construct the singularity surface of the 3-RPRmanipulator by using a pure graphical
approach and without any need of algebraic or analytic formulations.

1 Introduction

Despite the apparently simple architecture of parallel planar robotic manipulators
(PPRMs), the characterization of their singularities remains a challenging problem in
robotic research field. In [5], the singularities of PRMs have been classified according
to three categories: the serial or type-I singularities, parallel or type-II singularities,
and the combined or type-III singularities (combination of types I and II). Constraint
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singularities have been introduced the first time by Zlatanov as phenomenon occur-
ring in parallel mechanisms with reduced freedoms when the screw system, formed
by the constraint wrenches in all legs, loses rank [9]. More recently, parallel mech-
anism singularities have been characterized in terms of structural parameters [1, 4].
Three types of singularities have been defined: constraint singularities, redundant sin-
gularities and constraint-redundant singularities [1]. Parallel singularities depend on
the choice of the passive and active joints in the mechanism. In a parallel singularity,
the actuators cannot control the motions of the mobile platform MPF.

The kinematic mapping method has been used to discuss all singularities of the
3-RPR manipulator in a uniform way, showing that all singularities are on a degree
four surface in the kinematic image space [6]. By fixing one of the actuated joints
and analyzing the configuration-space as a surface in a three-dimensional space, Zein
et al. have determined all possible non-singular assembly-mode changing by using
loop trajectories encircling a cusp points of the 3-RPR manipulator [8]. The present
paper fallswithin the context of previous researches inwhichwehave presented a new
unified CAD-based graphical approach, quite apart from the existing methods in the
literature, for determining and representing the main kinematic properties of PPRMs
such as the 3D total workspace, the parallel singularity surface, and the assembly
modes associated with the direct kinematic problem solutions [2]. It has been shown
that the graphical superimposing of the 3D total workspace, the singular surface and
the direct kinematic problem solutions enables a rapid and accurate identification of
all singularity-free regions (aspects), as 3D solids, and generating singularity-free
trajectories between different assembly modes [3].

In this work, we highlight the existence of particular parallel singular configura-
tions of certain PPRMs, characterized by intrinsic geometric conditions of alignment
or coincidence between geometric entities of the fixed base, the mobile platform and
the limbs. Therefore, they are easy to determine by means of geometric graphical
constructions. These particular singularities are mainly useful in kinematic analysis
and design of PPRMS. In the case of the 3-RPR manipulator, they are useful for
graphically determining the singularity curves associates with all singular configu-
rations for a given orientation angle of the MPF. For these reasons, we consider these
particular singular configurations as remarkable or notable singularities.

In this work, we highlight the existence of particular parallel singular configura-
tions of certain PPRMs, characterized by intrinsic geometric conditions of alignment
or coincidence between geometric entities of the fixed base, the mobile platform and
the limbs. Therefore, they are easy to determine by mean of geometric graphical
constructions. That’s why they can be considered as remarkable singularities. In this
paper, we try to emphasize the use of such particular poses for kinematic analysis
and design of PPRMs.

The paper is organized as follows. In Sect. 2, notable singularities of 3-RPR and
3-RRR manipulators are introduced. The geometric graphical operations used for
their determination are presented.As an immediate exploitation of such a result, a new
geometric-based graphical construction of singularity surface of 3-RPRmanipulator
is illustrated in Sect. 3.
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Fig. 1 Parameterizing of 3-RPR and 3-RRR manipulators

2 Notable Singularities of 3-RPR and 3-RRR PPRMs

In this section we consider two types of PPRMs: 3-RPR and 3-RRR manipula-
tors (Fig. 1). Even though they have been extensively studied in the literature, some
notable singular configurations of thesemanipulators deserve to be considered. These
singularities are characterized by intrinsic geometric conditions of alignment or coin-
cidence between geometric entities of the fixed base, the mobile platform and the
limbs. For the 3-RPR manipulator, these singularities are formed by a finite set
of points for each fixed orientation of the MPF. Whereas, a set of curves in the
operational space (x , y, β) are identified as notable singular poses for the 3-RRR
manipulator.

2.1 Notable Singular Points of the 3-RP R Manipulator

The 3-RPR manipulator is composed of three identical kinematic limbs connecting
the fixed base (FB) B1B2B3 to the mobile platform A1A2A3. Each limb has two pas-
sive revolute joints (on the extremities of each limb), and one actuated prismatic joint
relating the first and the second links. The directed distance between Bi and Ai along
the direction of the prismatic joint direction is ρi (i = 1, 2, 3). A parametrization of
the mechanism is given in Fig. 1. It is well known that the 3-RPR manipulator is in
a parallel singular configuration when the lines passing through its passive revolute
joint centers in each limb intersect in one point or are parallel [7].

For a given orientation of the MPF, the first subset of notable singularities cor-
responds to the configurations for which two passive revolute joints of a limb i are
superposed: Ai = Bi . These configurations verify the condition ρi = 0 for a given
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Fig. 2 Notable singular points of the 3-RPR manipulator

limb i (i ∈ {1, 2, 3}). Therefore, this subset is formed by 3 points which are the
positions in the (x, y) plane of the end-effector characteristic point (EECP) associ-
ated with each of these configurations. They are shown in Fig. 2a, b and c, where A1

is considered as the EECP.
Likewise, for a given orientation of the MPF, the second subset of notable sin-

gularities corresponds to the configurations for which two limbs, Bi Ai and Bj A j ,
are aligned, respectively, with two edges of the mobile platform, Ai Ak and A j Ak

(i, j, k ∈ {1, 2, 3}). In this case, the three limbs are concurrent in Ak , which corre-
spond to a type-II singular configurations. These 3 configurations can be obtained by
superposing the vertex Ak of the mobile platform with the intersection point of two
lines: the line parallel to the edge Ai Ak and passing through Bi , and the line parallel
to the edge A j Ak and passing through Bj . This second subset is also formed by 3
points which are the positions in the (x, y) plane of the EECP associated with each
of these configurations. They are shown in Fig. 2d, e and f, where A1 is considered
as the EECP.
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2.2 Notable Degenerate Singularity Curves of the 3-RP R
Manipulator

In addition to the set of six singular points that can be determined for a given orienta-
tion of the MPF, notable singular lines can be identified for particular orientations of
the MPF. Indeed, if the orientation of the MPF is such that its edge Ai A j is aligned
with the edge Bi B j of the FB, then the two links Bi Ai and Bj A j are also aligned with
the edge Bi B j . In this case all the links of the manipulator are concurrent in one point
belonging to the line Bi B j , which corresponds to a type-II singular configuration.
The set of positions described by the EECP verifying this condition is a line parallel
to the edge Bi B j and passing by the EECP when the edge Ai A j of the MPF is placed
wherever on the line Bi B j . This set of positions is the first notable singular line. It is
illustrated in Fig. 3 where i = 2, j = 3, k = 1 and A1 is the EECP.

Since a singularity curve, for a given orientation of the 3-RPR manipulator, is
a conic in the general case, the existence of a singularity line must correspond to a
degeneration of the conic. Thus, a second line necessarily exists. Even if this line is
less evident then the first one, it is easy to be determined by using the singular points
we have introduced in Sect. 2.1. Then, it is sufficient to use two notable singular
points, which are not on the first singularity line, to define the second notable singu-
larity line. As shown in Fig. 3, the second line passes through the singular points B1

and A1 when the limbs B2A2 and B3A3 are respectively aligned with the MPF edges
A2A1 and A3A1.

Fig. 3 Degenerate singularity curve of the 3-RPR manipulator
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There are two possible orientations, at 180 deg of rotation from each other, to have
aligned the edges Bi B j and Ai A j with i, j ∈ 1, 2, 3. Therefore, it can be stated, in the
general case, that the singularity curves associated with different MPF orientations
of the 3-RPR meet at least 6 cases of degeneration from an hyperbola into two
concurrent lines.

2.3 Notable Singularities of the 3-RRR Manipulator

The 3-RRR manipulator is composed of three limbs connecting the FB B1B2B3 to
the MPF A1A2A3. Each limb is composed by two links and three revolute joints.
The actuated revolute joint relates the first link to the FB. The first link of a limb i
(i = 1, 2, 3) is defined by the segment BiCi and the distal link by the segment Ci Ai .
A parametrization of the mechanism is given in Fig. 1.

In this paragraph,we show thatwe can also identify a set of notable type-II singular
configurations of the 3-RRR manipulator that we can graphically determine. Indeed,
this mechanism is in a parallel singularity when its distal links are concurrent in one
single point. Among these configurations, we can identify a first category of notable
singularities for which two distal links are aligned with two distinct edges of the
MPF. If these links are Ci Ai and C j A j , attached to the vertices Ai and A j of the
MPF, the considered edges are respectively Ai Ak and A j Ak . In this case, these links
are necessary concurrent in the triangle vertex Ak , which belongs to the remaining
third link Ck Ak .Therefore, all distal links are concurrent in the point Ak , which
corresponds to a parallel singularity of the manipulator. Figure4a, b and c illustrate
these singularities through three possibilities associated with three kinematic loops
of the 3-RRR manipulator.

The second category of notable singularities of the 3-RRR manipulator corre-
sponds to the configurations for which two distal links are aligned with an edge of
the mobile platform. If these links are Ci Ai and C j A j , the considered edge is Ai A j .
In this case, these two links are aligned and concurrent in the same point with the
remaining distal link Ck Ak . In this case, we also obtain a type-II singular config-
uration. Figure4d, e and f illustrate these singularities through three possibilities
associated with three kinematic loops of the 3-RRR manipulator.

A geometric graphical approach can be used in order to determine the set of
configurations associated with these two categories of singularities. For the first
category, the set of points described by the EECP when the singularity condition
is maintained as kinematic constraints, i.e. maintaining aligned the links Ci Ai and
C j A j respectively with the MPF edges Ai Ak and A j Ak , is a coupler curve in the
(x, y) plane. This coupler curve is obtained by considering the four-bar mechanism
BiCiC j B j , formed by links BiCi and BjC j and having as a coupler part the triangle
CiC j Ak . The considered EECP for the four-bar mechanism is the same as in the
3-RRR manipulator.

For the second category of these singularities, the set of points described by the
EECP when maintaining aligned the links Ci Ai and C j A j the MPF edge Ai A j is
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Fig. 4 Notable singular configurations of the 3-RRR manipulator and their representation in the
operational space
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also a coupler curve in the (x, y) plane. This curve, called singular coupler curve, is
obtained by considering the four-bar mechanism BiCiC j B j , formed by links BiCi

and BjC j and as a coupler part the triangle CiC j Ak with the same EECP as in the
3-RRR manipulator. Figure4d, e and f illustrate these singularities.

In previous works [3], we have shown that the domain reached by the MPF
belonging to a 2 dof limb isolated from the rest of the mechanism can be represented
in the 3-dimensional operational space (x, y, β) by a helical surface. The domain
reached by the coupler part of a four-bar mechanism in the 3-dimensional operational
space results from the intersections of the two domains associated with its two limbs.
Thereafter, this domain is the intersection of two helical surfaces, which gives a
3-dimensional curve. The projection of this curve on the (x, y) plane is nothing but
a singular coupler curve. These results are illustrated in Fig. 4 for the first category
of 3-RRR notable singularities we have defined. The determination of the second
category of 3-RRR notable singularities can be performed similarly.

3 Exploitation of the Notable Singularities for Singularity
Surface Construction of the 3-RPR Manipulator

For a given orientation of the MPF, it has been shown in [7] that the geometrical loci
of the EECP in the operational workspace, associated with parallel singular configu-
rations of the 3-RPR manipulator, form a quadratic conic curve (i.e., a hyperbola, a
parabola or an ellipse), unless there is an architectural singularity. This latter can be
easily predicted at the earlier stage of robot design [7]. In this section, we propose to
exploit this property as well as the existence of the notable singularities. Indeed, one
can perfectly determine the conic curve associated with all singular configurations
for a given orientation angle of the MPF by using only 5 points among the 6 singular
points introduced in Sect. 2.1. Figure5a illustrates the graphical determination of the
conics associated with different orientation of the MPF. This determination is purely
graphic and has been implemented in GeoGebra software. The construction proce-
dure of the notable singular points as well as the generation of the associated conic is
parametrized by the orientation of the MPF and the mechanism design parameters.
It can be noticed the transitions between different types of conics: from an ellipse to
a hyperbola passing by a parabola. All these graphical constructions didn’t require
any analytical or algebraic formulation by the user.

The automatic generation of all the singularity curves, in the (x, y) plane, asso-
ciated with the different orientations of the MPF, can also be exploited to generate
the singularity surface of the manipulator in the 3-dimensional operational space
(x, y, β). Singularity curves can be generated in a 3D CAD environment, based
on geometric determination of notable singular points, for different orientations of
the MPF. Since then, this can be performed in purely graphic approach by generat-
ing these conics in a 3D CAD environment, at different altitudes corresponding the
orientation of MPF with enough small step. Thereafter, these curves can be fitted by
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Fig. 5 Graphical determination, based onnotable singular points, of singularity curves a and surface
b of the 3-RPR manipulator

a surface, such as NURBS in CATIA® software, with quite a good precision. This
surface represents the singularity loci of the 3-RPR manipulator in the operational
space as illustrated in Fig. 5b.

4 Conclusion

In this paper notable type-II singular configurations of certain PPRMs have been
highlighted. These singularities are easily determined by using geometric graphical
constructions. It has been shown for the 3-RPR manipulator that the identification
of 6 singular poses for each orientation of the MPF allows the construction of the
singularity surface in the 3-dimensional operational space by using a pure geometric
graphical approach and with no need of any analytical or algebraic formulations.
This result has undoubtedly practical advantages in mechanism design and analysis.
Moreover, 6 degenerated singularity curves, in the general case, can be determined
immediately by simple geometric considerations. For the 3-RRR manipulator, the
identified singular poses form a set of 24 curves in the operational space. Each
curve is obtained by the intersection of two helical surfaces associated with the
reachable domains of each limb of a four-bar mechanism. The projections of these
singular curves on the (x, y) plane are coupler curves. Further exploitation of these
notable singularities can be addressed in future developments for optimalmechanism
synthesis. The geometric parameters of the 3-RPR manipulator, for a prescribed
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singularity curve corresponding to a given orientations of theMPF, can be determined
so as the working zone of the manipulator can be kept far from this curve.
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Minimized-Torque-Oriented Design
of Parallel Modular Mechanism
for Humanoid Waist

Mouna Souissi, Vincent Hugel, Samir Garbaya and John Nassour

Abstract This article focuses on the design and integration of a parallel modular
mechanism inside the waist of a human-sized biped robot to enable tilting motion
of the torso. The mechanism for each tier is adapted from the parallel 2-degree-of-
freedom tilting part of an existing 3-rotation flight simulator structure. The main
contribution of this work is the design of a minimized-torque-oriented optimization
process that takes into account the upper mass load to be supported by the mech-
anism, the constrained volume of the waist, a minimal dexterity threshold, and the
tilting range required. The design process aims to determine the relative size and
position of the different parts of the mechanism. The objective consists of minimiz-
ing the actuator average torque over the entire tilt range, and to evaluate how much
torque reduction this parallel mechanism can bring compared with the use of a serial
mechanism. Up to three modules can be stacked inside the waist to limit the actuator
torques and to reach the required tilting range for sitting and bending movements.

1 Introduction

This work was developed in the framework of the ROMEO project that aims at
building an innovative humanoid robot capable of assisting humans at home and
equipped with an actuated waist. The mobility of the waist is useful to achieve
human-like bending-down and sitting-down movements.

The trunk of most existing humanoid robots is equipped with one up to four serial
degrees of freedom (DOF). Asimo [2], Hubo [8], or Lola [12] have a single yaw joint
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in the trunk. Additional pitch and roll joints are used to execute specific whole-body
movements or to design human-like locomotion gaits [18].

Bio-inspired prototypes named musculoskeletal humanoids [15, 19] were desi-
gned to imitate the human spine, using wire cables to drive replica of the vertebrae
and inter-vertebral discs. Other bio-inspired prototypes without wire systems feature
flexible properties thanks to the use of silent block as intervertebral disc [1] or the
use of hydraulic pistons associated with springs [20].

Liang et al. [11] used rigid parallel mechanisms to model a waist-trunk system
with a 6-DOF a Gough/Stewart platform and a 3-rotary-DOF mechanism. 3-DOF
orientation manipulators were also designed as parallel wrists, e.g. wrists equipped
with a central mast and three UPS legs [17], spherical wrists with converging actuator
axes [4],wristswith converging passive joint axes [24], orwrists including cylindrical
joints [9].

Parallel rigid architectures have the advantages of higher rigidity and high load
capacity [10] in comparison with serial-based architectures. The waist mechanism
proposed in this paper is inspired by the parallel part of the Sabrié’s flight simulator
mechanism [21] which is composed of two asymmetric legs and a central mast with
a total of eight passive joints. Together with the adaptation of this mechanism to the
waist of a human-scale humanoid, this work presents a design optimization process
that aims to minimize the actuator torques required over the entire tilting range. The
process takes into account the mass load to be supported, the available volume, and a
given dexterity threshold. This approach is different from traditional design methods
that aim to minimize the condition number, maximize the dexterity [16], the global
conditioning index [13], some combined index [23], the workspace [14], or aim to
fit some prescribed workspace with accuracy requirements [5, 6].

Section2 describes the parallel mechanism. Section3 is devoted to the statics
analysis, and Sect. 4 with the design optimization. Results are presented in Sect. 5
and discussed in Sect. 6.

2 Parallel Mechanism

The parallel module consists of a base platform CA3B3 and a payload moving plat-
form OA1B1 linked by a fixed central rod CO and two legs arranged at 90[deg] in
the initial position (Fig. 1). The central rod joins the top platform through a Universal
joint. The leg A1A2A3 is a planar URR mechanism. The leg B1B2B3 is a 3D USR
mechanism. The revolute joint at A3, resp. B3, are to be actuated to drive the system
and produce the pitch, resp. roll, motion. The kinematic analysis leads to an actual
mobility of 2 for this mechanism.

The mechanism for the trunk DOF has to be located in the waist, which matches
the biological observation in humans that the vertebrae located in the lumbar part are
the most mobile ones [7]. It is required to support a total weight estimated at 15 [kg]
that includes the masses of the trunk, the head and the arms. Preliminary studies
showed that a forward tilting range of 30[deg] of the thorax is sufficient to execute
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(a)
(b)

Fig. 1 A. Perspective view of one parallel mechanism module after pitch and roll rotations, resp.
about fixed axis j0, and about axis i1. B. Top view of waist and footprints. Available volume: height
hs = 0.30 [m], width, ws = 0.25 [m] and depth ds = 0.20 [m]

flexion motions such as sitting down on a chair [22]. Given the constraint of total
height and limitation of miniaturization, it is possible to stack three modules inside
the ROMEO’s waist, with a tilting range of up to 10[deg] each.

3 Statics Analysis

The objective is to express the torques exerted by the rotary actuators as a function
of the geometric parameters of the mechanism. These torques are denoted by τa for
the 2D leg and τb for the 3D leg. The masses of the parallel mechanism are neglected
with respect to the mass M to be supported by the top platform. The mass M is
assumed to be concentrated on a point G located at a height hG above O along the
normal k1 to the top platform.

The equations that govern the equilibrium of the 2D leg, the 3D leg, and the top
platform lead to:

[
τa
τb

]
= JT

[
τ
g
a

τ
g
b

]
,

[
θ̇10
θ̇21

]
= J

[
α̇05

β̇05

]
,

J =
[

ra 0
−rarc rb

]

ra =
[
A3A2, uA2A1 , j0

]
[
OA1, uA2A1 , j0

]

rb =
[
B3B2, uB2B1 , i0

]
[
OB1, uB2B1 , i1

]

rc =
[
j1, uB2B1 , j0

]
k1.uB2B1
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τ g
a = −M

[
OG, g, j0

]
τ
g
b = −M

[
OG, g, i1

]

where J is the Jacobian matrix of forward kinematics. τ g
a and τ

g
b can be considered

as the torques to be produced by the legs at O about axes i1 and j0 respectively,
to compensate the moment due to the weight of mass M . These torques would be
the active torques in the case of the serial mechanism constituted of the central rod
only and where both rotary joints of the U-joint (θ10 and θ21) at the top would be
motorized.

4 Optimization Process

The aim of the optimization process consists of determining the adequate lengths of
the segments that compose the kinematic chains, namely �1, �2, �3 and �4 (Fig. 1),
in order to minimize the actuators’ average torque over the entire tilting range. The
maximal tilting angle of the torso is the same in all directions, which means that
the robot can bend forward, backward and sideways, right and left, until reaching
this maximal tilting angle, named θmax . The four parameters to be optimized are
normalizedwith respect to the height of themechanism hv, i.e. (�∗

i = �i/hv)i∈{1,2,3,4}.
The mechanical structure is arranged to form a V-shape in top view (Fig. 1b),

which means that legs are placed at ±45[deg] with respect to the longitudinal axis.
This enables to benefit from a maximal lever arm inside the available volume. The
central rod is placed at the rear of the lumbar part like in the human spine. The
corresponding offset ps from the external boundary of the lumbar region is set to
ds/4, but this value can be adjusted. The center of mass of the thorax, the head and the
arms in the rest positionmust be at the vertical of the central rod. Themaximal length
for �1 is calculated taking into account the volume constraints (�max = 0.15 [m]).

Active torques τa and τb depend on the tilting angles, but also on the lengths �i
of the mechanism. The optimal values (�

∗
i )i∈{1,2,3,4} are defined such that:

Γ (�
∗
i ) = min

�∗
i

Γ (�∗
i )

where Γ is the cost function of the optimization process:

Γ (�∗
i ) = −K

∫ 2π

ϕ=0

∫ θmax (ϕ)

θ=0
(exp[−τ 2

a (ϕ, θ, �∗
i )]

+exp[−τ 2
b (ϕ, θ, �∗

i )]) sin θdθdϕ

where K is a scaling factor, with −2K < Γ (�∗
i ) ≤ 0.

The cost function allows selecting the parameter values that involve reduced aver-
age torques over the entire tilting range of the torso. In the case of high torques over
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the tilting range, the cost function will tend to 0. When torques decrease over the
tilting range the value of the cost function also decreases.

The following constraints are taken into account in the optimization process:

1. The upper bounds of the normalized parameters are defined taking into account
the available volume in the lumbar part of the trunk. We set:

�∗
min ≤ �∗

1, �
∗
4 ≤ �∗

max ,

�∗
min ≤ �∗

2, �
∗
3 ≤ 1.5 �∗

max

with �∗
max = �max/hv and �∗

min = �∗
max/10.

The height of the lumbar part is limited to 0.30 [m]. Since we plan to incorporate
3 tiers for the mechanism, the height hv of one module is set to 0.1 [m], and
�∗
max = 0.15/0.1 = 1.5.

2. Three additional constraints for each leg are necessary to ensure the feasibility of
themechanism, i.e. the legsmust connect the bottom platform to the top platform:

z∗
A3

< z∗
A1

z∗
B3

< z∗
B1

(1)

|�∗
2 − �∗

3| < max
θ,ϕ

(A1A
∗
3) < �∗

2 + �∗
3

|�∗
2 − �∗

3| < max
θ,ϕ

(B1B
∗
3 ) < �∗

2 + �∗
3 (2)

3. A supplementary constraint on dexterity is also used to ensure aminimal dexterity
of the mechanism.

dext (ϕ = ±45[deg],±θmax (ϕ)) > dextmin (3)

The dexterity of the mechanism is calculated as follows:

dext = σmin

σmax
=

√
p − √

q

p + √
q

(4)

where σmin and σmax are the square roots of resp. the minimal and maximal
singular values of J , i.e. the eigenvalues of JT J , and p = (1 + r2c ).r

2
a + r2b ,

q = p2 − 4.r2a r
2
b . Here we assume that the dexterity is at the minimum when

the mechanism tilts in the direction of either leg, i.e. at ±45[deg] frontward or
backward. This constraint was introduced to prevent the mechanical legs from
reaching singularities whereby points A1, A2 and A3, or points B1, B2 and B3 get
aligned. In these configurations, forces on the end effector do not get transmitted
to the actuators any more.

The optimization process is carried out using matlab fmincon function. The fmincon
function uses a sequential quadratic programming method (SQP) that calculates an
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estimate of the Hessian of the Lagrangian at each iteration, then generates a QP
subproblem that is solved using the active set strategy [3].

The initial values of the four parameters (�∗
1, �

∗
2, �

∗
3, �

∗
4) are set using a prelimi-

nary grid exploration, to start the search for solutions from specific regions that are
promising in terms of minimal cost function, and to avoid local solutions.

5 Results

Table1 presents the optimization results obtained with a single module for a uniform
inclination range of 10, 15, 20, 25 and 30[deg]. It gives the optimal values for the
lengths (�∗

i ), the final value of the cost function, the average torque < τ >, the
maximal torque τmax , the ratios of the average torque and the maximal torque over
themaximal gravity torque τ g = Mg hG sin θmax , and the dexterity. The values in the
first part of the table were obtained without dexterity constraint, and the values in the
second part were obtained with a minimal dexterity constraint of 0.8 (inequality 3).
Regarding lengths, �1 is always set to the upper bound, this allows obtaining a
maximal lever arm.

The results also show that length �3 must be smaller than �2, which enables to
reduce the lever arm about A3 from A1A2 and therefore decrease ratios ra and rb.

With no dexterity constraint, �3 is increased and �2 remains constant as the incli-
nation rises. In the case with minimal dexterity, �3 is much more increased than in
the no-dexterity-constraint case, and �2 decreases. There is also a tendency to place
A3, resp. B3 closest to the center – �4 set to minimal value –, whatever the inclination
range. We can explain this fact as a consequence of the increase of �3 in order to
keep the lever arm about O from A1A2 as large as possible. Without the lower bound

Table 1 Results from the optimization process. hv = 0.1 [m]. hG = 0.1 [m]. M = 15 [kg]. �∗
1 is

always kept to the upper bound of 1.50 by the process. Underlined values refer to active constraints

Max. tilt �∗
2 �∗

3 �∗
4 Γ < τ > /τmax < τ > τmax Dexterity

[deg] [0.15, 2.25] [0.15, 1.5] [Nm]/[Nm] τ g τ g [0, 1]
No dexterity constraint

10 1.45 0.18 0.44 −1870 0.14/0.22 0.06 0.09 [0.02, 1.00]
15 1.44 0.27 0.45 −3894 0.31 / 0.50 0.08 0.13 [0.02, 1.00]
20 1.46 0.35 0.42 −5824 0.52 / 0.88 0.10 0.17 [0.02, 1.00]
25 1.44 0.44 0.43 −6913 0.79/1.38 0.13 0.23 [0.02, 1.00]
30 1.42 0.53 0.44 −7175 1.12/2.02 0.15 0.27 [0.01, 1.00]
With minimal dexterity constraint of 0.8 (Ineq. (3))

10 1.60 0.26 0.21 −1769 0.28 / 0.50 0.11 0.20 [0.80, 1.00]
15 1.59 0.40 0.15 −3101 0.61 / 1.09 0.16 0.29 [0.80, 1.00]
20 1.49 0.59 0.15 −3490 1.11/2.00 0.22 0.40 [0.80, 1.00]
25 1.28 0.89 0.15 −3221 1.90 / 3.47 0.31 0.57 [0.80, 1.00]
30 1.06 1.23 0.15 −2947 3.02 / 5.57 0.41 0.76 [0.75, 1.00]
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constraint of �4, there would be no such decrease of �2 for bending angles above
15[deg]. However this lower bound was set due to technological considerations of
integration. The case of 30[deg] bending is specific. The lowest dexterity is 0.75
because it was not possible to find a solution that could combine a dexterity above
0.8 over the entire range and a torque value always below themaximal gravity torque.

Figure2 shows the results related to a maximal bending of 20[deg]. The plottings
on the left-hand side show the torques issued from the parallel mechanism and the
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torques issued from the virtual serial mechanism where the top U-joint at O would
be actuated; here the mass M tilts frontward to θmax first, then makes a 360[deg]
turn before getting back to the straight initial position. The ratio of maximal torque
between the parallel mechanism and the serial mechanism is 17% with no dexterity
constraint, and 40% with the dexterity constraint, which is a significant reduction.
Obviously the dexterity constraint is met at the expense of torque reduction.

However the single module obtained with no dexterity constraint leads to a solu-
tion where the legs reach a singularity at ϕ = ±45[deg] when bending is maximal.
For each of these 4 configurations, the dexterity falls to 0.02 (Fig. 2, 1st colum-2nd
row), and one of the legs is either completely stretched or flexed (Fig. 2, 1st colum-3rd
row).

The results obtainedwith a singlemodule show that it is preferable to avoid the use
of the parallel mechanism for bending above 15[deg]. Actually the larger the bending
angle, the less the reduction ratio between maximal torque and gravity torque. This
ratio is equal to 0.29 for 15[deg] bending with a 0.8 minimal dexterity threshold.

6 Discussion

The optimization process proposed aims at minimizing the actuated torques in the
working volumeof themechanism.Torqueminimization does not prevent the process
from selecting a solution that includes singular configurations because torque tends
to 0 in the vicinity of singularities. It could be possible to avoid singularities by
adding geometric constraints similar to (1)–(2) using margin coefficients, which is
specific. The solution of adding a dexterity constraint proposed here is better because
it allows controlling the dexterity over the entire working volume, and it avoids the
singular configurations.

In order to increase the bending angle of the torso it is possible to stack 3 parallel
modules to build up a vertebral column. The tilt angle of each module can be set to
one third of the bending angle of the thorax. However motors that drive the active
joints need to be sized with increased power and nominal torque from the bottom
to the top. Compared with the serial mechanism equipped with actuated θ10 and
θ21 joints, the parallel mechanism allows reducing the average torque ratio and the
maximal torque ratio to respectively 0.16 and 0.29 for each module tilted by 15[deg].
This result shows that the use of a parallel mechanism can save actuator weight by
using motors with tree times less nominal torque than in the case of serial actuation.

The actuated torques and the dexterity were computed analytically using the dual-
ity between statics and kinematics of the mechanism. The maximal tilting angle of
30[deg] was identified for quasi-static bending and sitting down movements. In the
case of walking, a revised cost function must be built up to take into account horizon-
tal accelerations the waist mechanism must resist. The optimization process should
help determine the maximum tilting angle, which can be used for trunk oscillations
to enhance the dynamic balance of the walk.
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7 Conclusion

This paper proposed an approach that consists of adapting a flight simulator parallel
mechanism for the design of a three-tier waist mechanism that can execute pitch
and roll motion. A minimized-torque-oriented optimization procedure was proposed
to determine the adequate lengths of both lateral legs’ segments of each module.
A minimal dexterity threshold was introduced to avoid singularities and ensure the
controllability of the mechanism. The study carried out shows that the maximal
bending angle per module must be limited to enable enough dexterity in the direction
of the legs, and to have acceptable nominal torques for the motors of the actuated
joints. Compared with the actuated serial mechanism of the top U-joint, the use of
the parallel mechanism allows reducing the nominal torques of the actuators by one
third and consequently saving motor weight inside the humanoid trunk.
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Kinematic Analysis of the Delthaptic,
a New 6-DOF Haptic Device

Margot Vulliez, Said Zeghloul and Oussama Khatib

Abstract The need for multi-purpose haptic devices is extensively emerging. This
paper presents a novel 6-DOF versatile haptic device, the Delthaptic, with a large
and singularity-free workspace. The originality of the device comes from its struc-
ture combining two Delta robots to obtain rotational and translational movements.
The advantage of this type of paired parallel robots is to form 6-DOF manipulators
by connecting well-known parallel structures. The paper focuses especially on the
kinematic analysis of the Delthaptic. A method to evaluate the kinematics of paired
parallel robots is described. The approach allows evaluating the full robot kinematics
by considering each parallel manipulator separately. Then, the behavior of the device
along its workspace is highlighted by a singularity analysis.

1 Introduction

The increasing need for kinesthetic and tactile senses in varied activity areas has led to
manifold developments of dedicated haptic devices. But the design of an optimal and
versatile haptic interface remains amajor research concern. Only a fewmulti-purpose
6-DOF interfaces can be found in the literature. Ones of the most advanced solutions
are the Sigma.7 of Force Dimension [12], and its previous model the Omega.7. These
7-DOF haptic devices allow a large workspace based on a hybrid structure composed
of a parallel Delta mechanism, a serial wrist, and an active grasping extension. Other
hybrid interfaces have been developped as multi-purpose haptic devices such as the
Delta Haptic Device [5], the Falcon of Novint Technologies, or the Delta-R [1].
As inertia represents a critical issue for the transparency of haptic devices, parallel
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Fig. 1 2-Delta parallel robot of Lallemand et al. [6]

mechanisms can be preferred to serial structures. Some authors propose 6-DOF fully
parallel mechanisms such as Yoon et al. [13] through pantograph linkages, Lee et al.
[8] with a double-chain leg structure, or the desktop application of Gosselin et al.
[4]. However the major drawbacks of parallel manipulators are the proximity of
singular points and their limited workspace, particularly for rotational motions as
studied by Merlet [10]. The challenge for the Delthaptic, proposed in this paper, is
to constitute a low-inertia and high-stiffness versatile haptic interface with a large
and singularity-free workspace.

A new parallel robot family, characterized by the pairing of two independant par-
allelmanipulators, is introduced byLallemand et al. [6] with the 2-Delta. This 6-DOF
robot, in Fig. 1, is made of two Delta robots [3] whose moving platforms are con-
nected to the end-effector. The external Delta controls the translational movements
when the internal Delta generates the rotational movements of the end-effector. The
main advantage of this new family is to build a 6-DOF manipulator by connect-
ing simple and well-known parallel structures. Unfortunately the 2-Delta rotational
workspace is reduced due to the limitation of the spherical jointmotion range between
the moving platform and the end-effector.

The proposed 6-DOF haptic device is part of this paired parallel robot family. The
Delthaptic is a structure coupling two Delta robots to obtain rotational and trans-
lational movements. In that way the Delthaptic conserves the benefits of parallel
structures while providing a large workspace with respect to the human-being rota-
tions. This paper highlights the kinematic analysis of this new type of paired parallel
robots that is essential to valid their operation as haptic interface and to understand
their behavior toward singularity.

The paper is organized as follows. In Sect. 2 the design and the prescribed
workspace of the Delthaptic are introduced. Section3 details the calculation of the
kinematic model of the system. Then, the singularity analysis along the Delthaptic
workspace is carried out in Sect. 4.
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2 Principle of the Delthaptic Device

2.1 Prescribed Workspace

The Delthaptic is designed to constitute a versatile haptic device with 6 active DOFs.
It aims at ensuring a large singularity free workspace suitable for various applica-
tions. To fulfill this goal the prescribed workspace has to be defined based on the
human hand mobilities. The Fig. 2 shows the hand rotations. Bending-extension and
pronation-supination movements have an amplitude of ±90◦ when ulnar and radial
deviations admit around ±45◦ as angular displacement. For the sake of simplicity
the prescribed rotational workspace shall be assimilated to a half-sphere around the
handle axis. This wide rotational workspace represents a challenge for the design of
the Delthaptic that traditional parallel manipulators can not achieve.

The size of the prescribed translational workspace remains a subjective decision.
The workspaces of some 6-DOF multi-purpose haptic devices are shown in Table1.
According to this short review the prescribed translationalworkspace is chosenwithin
a cube of 200 × 200 × 200mm.

Fig. 2 Human hand rotational workspace

Table 1 Workspaces of different 6-DOF haptic devices

Workspace Translations (mm) Rotations

Sigma.7, Force dimension Φ190 × 130 235 × 140 × 200◦

Omega.7, Force dimension Φ160 × 110 240 × 140 × 180◦

Delta-R [1] Φ500 × 200 ±80 ± 80 ± 80◦

6-DOF Desktop haptic device
[4]

Sphere Φ150 ±45 ± 45 ± 45◦

6-DOF haptic device [13] 186 × 214 × 203 ±45 ± 45 ± 45◦
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Fig. 3 Delthaptic kinematical diagram and parameterization

2.2 Mechanical Design

To provide an efficient transparency a versatile 6-DOF haptic interface must meet
many requirements such as having a large and singularity-free workspace, a low
inertia, a high stiffness, minimal joint clearance and friction. The proposed structure
is part of the paired parallel robot family. Since the interface is composed by two
parallel manipulators, it ensures high dynamics, high stiffness and high precision.
Thanks to the paired structure it provides the wide prescribed workspace. Then, it is
designed to avoid singularity issues along the operational workspace. In the current
literature, only serial or hybrid devices are able to allow a such full workspace.
However these mechanisms have the disadvantages of serial structures.

The mechanism, showed in Fig. 3, consists of two coupled Delta robots connected
to the same fixed base. Their two mobile platforms are linked to the both extremities
of the handle. In that way the displacements of the two Delta robots can generate the
(X,Y, Z) translational movements and the (φ, θ) tilt movements of the handle. The
self-rotation (ψ) is obtained through a ball screw system located inside the handle.
Rotational movements are described by using the tilt-and-torsion modified Euler
angles presented by Bonev et al. [2] which are shown in Fig. 4. Each Delta robot i is
actuated by three motors driving respectively the angles qi = [ϕ11,iϕ12,iϕ13,i ]T .

The zoom on the detailed CAD design of the handle in Fig. 4 shows the achieve-
ment of the links between the handle and the platforms. These links are especially
important for ensuring the transparency of the device. Indeed the handle must trans-
fer all the user movements to both Delta robots without any restriction and be able
to transmit the forces of haptic feedback. To cope with its limited range of motion,
the spherical joint (S-joint) between the handle and the platform of the Delta 2 is
replaced by a pivot linkage and amodified universal joint (U-joint) with an axis offset
d. A ball screw with a thread of p = 20mm is selected to get a full reversibility of
the self-rotation and be able to transmit the torques. The lower U-joint is achieved
through a 2-DOF gimbal mechanism. It allows to reduce the moments of inertia of
the handle and the size of the Delta 2.

The unknown vector I of design parameters for the Delthaptic, defined in the
Figs. 3 and 4, is I = [L1,1, L1,2, L2,1, L2,2, r1, r2, a1, a2, H ], where L1,i and L2,i are
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Fig. 4 Delthaptic handle design and parameterization

the leg lengths, ri = rB,i − rA,i is the difference between the both platform radius, ai
is the distance between themobile platform and the handle joint and H represents the
height of the center of the prescribed workspace from the base platform. An optimal
solution for these parameters is chosen from the resulting Pareto front of a multi-
objective optimization process. The optimization problem is solved thanks to penalty
method. Two penalty components are considered: one to ensure the accessibility to
the Prescribed Workspace (PW) and the other to avoid singularity as well as change
of assembly and working modes. The first fitness function is chosen to minimize
the distance between the Delthaptic workspace and the PW and the second one
to maximize the distance to singularities, assimilated to the dexterity of the both
Delta robots. The optimization process is carried out on the discretized prescribed
workspace. Each point of the discretized half-sphere of tilt motion is checked for the
two extreme self-rotations and to respect the translational workspace.

The additional parameters of the handle such as (c, d, σ1,1, σ1,2) are fixed to be

easily handled by an operator. L p = Lini + ψ × p

2π
is the handle lenght that depends

on the self-rotation through the ball screw tranformation for the proposed design.
The geometric analysis of the Delta has been widely studied in the literature. More
details about its modeling and dimensional synthesis can be found in [7].

3 Kinematic Analysis

3.1 Kinematic Model of the Delta Robot

The kinematic model of the Delta robot is defined in this subsection. The platform
velocity of the Delta i is considered as the sum of the contributions of each bar. The
following equation is obtained for the leg j .
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vi = ω1j/0 × O1jO2j + ω2j/0 × O2jO3j (1)

[Ẋi ] · O2jO3j = [ ˙q j,i ] · (O1jO2j × O2jO3j)

Then, the combination of the Eq.1 applied to the three legs leads to the expression
of the Delta robot kinematics. In the Eq.2, Ji is the Delta i Jacobian matrix, [Ẋi ] the
mobile platform velocity vector and [q̇i ] the actuated angular velocities.

Ai [Ẋi ] = Bi [q̇i ] wi th Ji = A−1
i Bi (2)

This Delta robot kinematic model is fully detailed by Pierrot et al. [11]. An
overview of singularity can be found in [9].

3.2 Kinematic Model of the Delthaptic

The kinematic analysis of the Delthaptic is essential to ensure its proper functioning.
The proposed method to evaluate the kinematics of a paired robot is to consider
separately the kinematic model of each parallel manipulator composing the robot.
Then, the complete robot model is obtained by writing the relationships between the
end-effector and the different manipulators.

Kinematic analysis of this type of paired parallel robots is illustrated through the
following modeling of the Delthaptic. The kinematic model of the Delta robot is
first reminded in Sect. 3.1. Then the velocity of the handle VI′,h/0 is expressed with
respect to the kinematics of the joints with the two Delta mobile platforms. The link
between the handle and the Delta 2 mobile platform leads to Eq.3. The relationship
between the handle and the Delta 1 through the gimbal mechanism is expressed by
Eq.4, where h represents the handle and s the screw.

VI′,h/0 = VP2,h/0 + ωh/0 × P2I′ = v2 + α̇x1,2 × P1P2 + ωh/0 × P2I′ (3)

VI′,h/0 = VI′,s/0 + p

2π
ωh/s = v1 + ωs/0 × II′ + p

2π
ωh/s (4)

The handle angular velocity is deduced from these equations.

IP2 × ωh/0 = L̇ p · zp + v1 − (v2 + α̇x1,2 × P1P2) = V0

ωh/0 = ω0
h/0 + 2π

p
L̇ pzp wi th ω0

h/0 = V0 × IP2

‖ IP2 ‖2 (5)

The translational velocity is given by:

VI′,h/0 = v1 + ωs/0 × (L p − Lini ) · zp + L̇p · zp (6)

wi th L̇p = (v2 + α̇x1,2 × P1P2 − v1) · zp
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Then, the global kinematic model of the Delthaptic can be written by integrating
the two individual Delta robot kinematics.

⎡
⎢⎢⎢⎢⎢⎢⎣

Ẋ
Ẏ
Ż
ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎦

= J ×

⎡
⎢⎢⎢⎢⎢⎢⎣

˙ϕ11,1

˙ϕ12,1

˙ϕ13,1

˙ϕ11,2

˙ϕ12,2

˙ϕ13,2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎣
Jx1
Jy1
Jz1

⎤
⎦ v1 +

⎡
⎣
Jx2
Jy2
Jz2

⎤
⎦ v2

⎞
⎠ linear

⎡
⎣
Jωx1

Jωy1

Jωz1

⎤
⎦ v1 +

⎡
⎣
Jωx2

Jωy2

Jωz2

⎤
⎦ v2

⎞
⎠ angular

(7)

J =
[
Jt
Jr

]
=

⎡
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⎡
⎣
Jx1
Jy1
Jz1

⎤
⎦

⎡
⎣
Jx2
Jy2
Jz2
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︸ ︷︷ ︸
Jc

×
[

A−1
1 B1 zeros(3, 3)

zeros(3, 3) A−1
2 B2

]

This method allows to simply express the paired robot kinematic model as a
function of the kinematic model of each Delta robot and a linkage matrix Jc.

The actuator torques τ required to provide the force feedback F are then evaluated
through the static model as follows.

τ = J T F (8)

4 Singularity Analysis

The system kinematics is particularly important to understand the behavior of the
interface toward singularity. Singular configurations can be highlighted by evaluating
the Jacobian matrix determinant along the workspace. The proposed approach of the
kinematic model in Eq.7 allows to isolate the effects of the singularities of each
parallel manipulator.

| det (J ) |=| det (Jc) × det (J1) × det (J2) | (9)

The singular configurations are reached when det (J ) = 0. Equation9 demon-
strates that the Delthaptic singularities are those of each Delta i , when det (Ji ) = 0,
and coupling singularities if det (Jc) = 0. There is any coupling singularity for the
presented mechanism.

The Jacobian matrix determinant is plotted in Fig. 5 over the constant orientation
workspace at [φ, θ, ψ] = [0, 0, 0].
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Fig. 5 Singularity analysis along the constant orientation workspace at [φ, θ, ψ] = [0, 0, 0]

The Fig. 5 emphasizes the conclusions lead by the Eq.9 about the singularity
analysis of paired robots. TheDelthaptic admits the singular configurations of its both
Delta robots and particularly, for this design, the serial singularity of theDelta 1when
det (B1) = 0. Due to the multi-objective optimization of the design parameters, the
device is designed to have no singularity in the prescribed workspace. This is verified
for the constant orientation [φ, θ, ψ] = [0, 0, 0] in the Fig. 5 along the prescribed
translational workspace.

5 Conclusion

The Delthaptic, a novel 6-DOF versatile haptic device, is proposed in this paper. This
paired parallel robot combines two Delta robots to obtain rotational and translational
movements. In that way the structure conserves the benefits of parallel structures
(low inertia, high stiffness, high precision) while providing a large workspace with
full human-based rotations. A method to evaluate the kinematics of this type of
paired parallel robots is described. The approach allows considering the full robot
kinematics by considering each parallel manipulator separately. Then, the behavior
of the Delthaptic along its workspace is validated by a singularity analysis.
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A Family of Non-overconstrained 3-DoF
Reconfigurable Parallel Manipulators

Matteo-Claudio Palpacelli, Luca Carbonari, Giacomo Palmieri
and Massimo Callegari

Abstract Anextensive conceptual productionof three degrees of freedom translating
and rotating parallel kinematics machines has been already provided in the scientific
literature. In this paper an attempt to gather the two mentioned mobilities in a single
reconfigurable machine is made by means of a spherical lockable joint for a family
of fully parallel kinematics machines. An overconstrained configuration is exploited
for each manipulator of the family in order to realize the transition between the non-
overconstrained kinematics associated to the translational and rotational mobilities.
Kinematic synthesis is carried out by means of Lie group algebra.

1 Introduction

Parallel kinematics machines (PKMs) find today a widespread use in automated
processes where high speeds and accelerations, or otherwise high thrusts, are
required, even though conventional serial robots are preferred in most cases because
of their larger workspace. Several attempts were made by researchers to deal with
the complexity of analytic models of full mobility PKMs [13, 28]. Alternatively,
a low degree of mobility is often proposed, having recognized that a large part of
industrial operations can be realized by means of subgroups of displacements, like
pure translations, pure rotations or Schönflies motions.

One of the most successful kinematic machines adopted in industry is the Delta
robot [6], a parallel manipulator usually devoted to pick and place operations because
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of its high dynamics performance. It belongs to the family of translating parallel
manipulators (TPMs), in particular of fully parallel manipulators of pure translation,
where the number of actuated legs that connect the moving platform to the fixed
base is equal to the platform degrees of freedom. An elegant demonstration of the
translational mobility of the Delta robot is provided by Hervé et al. [12] by means
of Lie Groups. The paper also shows how to synthesize overconstrained TPMs by
choosing a suitable sequence of joints for each leg of the robot. A complete list of
combinations of one degree-of-freedom (1-DoF) kinematic pairs is presented in both
the mentioned paper and a more recent work of the same author [21]. Later works
extend the study to non-overconstrained TPMs [17, 22], orthogonal TPMs [26] and
fully-isotropic TPMs [9]. Several examples of TPMs are currently available in the
literature [2, 16, 27].

Similarly, rotational PKMs received great attention. Group theory and Screw the-
ory have been extensively used to synthesize fully parallel manipulators of pure
rotation [7, 15, 18], sometimes called spherical parallel manipulators (SPMs). The
Agile eye proposed by Gosselin [10] is the major example of SPM, where all bodies,
and in particular themoving platform,move on spherical surfaces.Many other exam-
ples can be found in the scientific literature [1, 4, 11]. SPMs usually need specific
geometric conditions to be fulfilled by the kinematics of their legs, which are mainly
realized with sequences of revolute joints. In more detail, the revolute axes must
intersect at a common point, which results to be the centre of rotation. However, the
synthesis of SPMs presents a complexity greater than TPMs, because rotations do
not commute and a sequence of revolute joints used in the mechanics of a leg cannot
be changed in their order. A different behaviour is provided instead by prismatic
pairs, which on the contrary can be reversed in the order.

The existence of 3-DoF PKMs of pure translation and rotation that share the same
leg sequence of joints while having different arrangements of their axes suggested
further study, aimed at the design of a reconfigurable machine that could modify its
mobility with small local changes in its mechanical structure. Algebraic geometry
was used by the authors to analyse the working modes of a manipulator with 3-CPU
kinematics [3], a PKM with three identical legs that consist of two links connected
by a prismatic pair. Each leg is connected to the fixed base with a cylindrical joint,
whose linear displacement is actuated, and to the mobile platform with a universal
joint. This latter was replaced by a lockable spherical joint (Sr ) realized with a
series of three revolute axes [24], which can be activated or locked according to user
needs. The investigation resulted in a reconfigurable 3-CPUmanipulator [25], whose
mechanical design is shown in Fig. 1. Two different U-joint configurations can be
alternately enabled, obtaining respectively a translational and a rotational 3-CPU.
In the following it is shown how the Sr -joint can be exploited to generate a whole
family of reconfigurable PKMs.
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Fig. 1 Mechanical design of
the 3-CPU reconfigurable
manipulator

Sr - reconfigurable
spherical joint

P - prismatic joint
C - cylindrical joint

Fixed base

Moving platform

2 Lockable Spherical Joint

In this section a description of the reconfigurable spherical joint is presented. As
already mentioned the Sr -joint is thought of as a sequence of three revolute joints,
similarly to robotic roll-pitch-roll wrists. The idea is to endow the joint with a switch
device, which will allow to lock alternately one axis between two of the three avail-
able, resulting in two different U-joint configurations.

The quadrants I and III shown in Fig. 2 are associated to the different U-joint
configurations, whereas II and IV refer respectively to a revolute (R) and a spherical
(S) joint configuration. The joint is based on a bevel gear coupling. A sliding cursor
c (red) is driven in four different positions by an actuator, which confers to the joint
the four different operating modes.

The relevant rigid bodies that make up the Sr -joint are indicated in the sketch of
Fig. 2. Member a (green) is a hollow cylinder, which the cursor c can slide within.
A second member b (blue) consists of a hollow cylinder with a C-shaped flange
rigidly connected at its top. Member b can rotate about its axis with respect to a
because of roller bearings. Angle ψ refers to such rotation. A square ring e (orange),
solid with a bevel gear, can rotate with respect to body b by means of two roller
bearings. Angle θ refers to such rotation. A body d (grey), with a second gear that
completes the bevel gear connection with e, can rotate with respect to b about its
axis. A further rotation ϕ is allowed between the last body f (black) and e about an
axis always orthogonal to the axis of θ . Body f can be considered fixed to the frame,
while body a is the output member of the chain. Cursor c moves within a and b. It
has a cylindrical shape with an external gear and an internal one at its left extreme,
as shown in Fig. 2. The former is used to engage the teeth of cursor c with those
of internal gears realized within the cylinders a and b, whereas the latter is used to
connect c with an external gear realized at the right extreme of d. It is now possible
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Fig. 2 Sketch of the
lockable spherical joint
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to analyse the four configurations: in I cursor c mechanically engages with b and d,
so that they globally behave like a rigid body. It follows that the rotation θ between
b and e is prevented, whereas the other two are free to rotate. This configuration is
called Urot . Its meaning will be clear in the following section. When the cursor c
is moved to the right there exists a phase, II in the figure, where all elements a, b,
c, d are rigidly joined. In this case also the rotation ψ is prevented, giving rise to a
revolute joint, given by the only rotation ϕ.

A further motion of cursor c to the right provides a disengagement between d and
c, while a, b and c still remain a whole body. Therefore, configuration III is obtained,
also called Utra : the joint gains the rotation θ , but rotation ψ is still prevented. In
this case, while θ changes, body d rotates about its axis because of the bevel gear
connection. The joint globally behaves like a universal joint, different with respect to
the other mentioned before. Finally, cursor c can be disengaged from b with a further
displacement, giving rise to a spherical joint: all rotations ϕ, θ and ψ are possible.
This last configuration is not exploited for the family of manipulators presented in
the following section. Summarizing:

• configurations I and III confer to the mechanism the mobility of a universal joint
with two different arrangements of the last axis of rotation;

• configuration II represents a revolute joint;
• configuration IV is an additional mode, which can be exploited as a spherical joint.

Some other examples of lockable joints were proposed and analysed in the litera-
ture [5, 8]. However, even if they show higher versatility, they do not generally deal
with some issues related to their integration in a physical prototype: during the transi-
tion between different operation modes a reconfigurable manipulator generally gains
degrees of freedom, becoming temporarily underconstrained. Therefore an external
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manual intervention is needed to hold the robot in its pose. As shown in the follow-
ing section, configuration II of the Sr -joint makes the manipulator overconstrained,
preventing the robot from moving during the transition when the axes of motors are
braked.

3 Family of Reconfigurable 3-DoF PKMs

The joint described in the previous section,with small changes in its functional design
and in the sequence of revolute axes, was already used to realize a reconfigurable
PKM of kinematics 3-CPU. The universal joint that is used to connect the three legs
with the mobile platform is actually a Sr -joint. It was showed that, when the joint is
arranged in one of the U-joint configurations, the robot behaves like a TPM, whereas
the other U-joint configuration makes the robot a SPM [25]. A downgrade of all the
Sr -joints to R-joints, allowed only when the robot is in its home configuration with
the three rotation axes (ψ, θ, ϕ) mutually orthogonal, gives rise to an overconstrained
3-CPRmanipulator. The transient phase needed to pass fromonemobility to the other
can be managed without any external intervention on the machine, which stays in its
home pose when the actuated axes are braked.

Starting from the concept exposed above, new architectures with analogous fea-
tures can be looked for. The study is narrowed to 3-DoF fully parallel manipulators,
where the three legs are connected to the mobile platform with the Sr -joint presented
in Sect. 2. Each leg in a non-overconstrained PKM provides a well-defined 5-DoF
kinematic bond, which can be obtained by different mechanical generators. Prismatic
(P), revolute (R), cylindrical (C) and universal (U) joints, together with the Sr -joint,
are chosen as kinematic pairs of the leg.

With reference to Fig. 2 and for all the architectures that will be investigated, body
a is rigidly joined to the mobile platform of the manipulator, whereas body f to the
second link of each leg. The mechanical generators must be chosen so that, when the
lockable joints are all in configuration III, the Utra-joint makes the tripod a TPM,
when in configuration I, the Urot -joint makes the tripod a SPM.

The algebraic structure of Lie groups and subgroups can be conveniently used
to synthesize TPMs and SPMs. After a brief analysis of the kinematic bond of the
3-CPU architecture, which already demonstrated a property of reconfigurability [25],
further kinematics with similar properties can be found out. A sketch of the CPU
kinematics developed in a plane π is shown in Fig. 3, where Fig. 3a refers to the
Utra configuration and Fig. 3b to the Urot . The mobile platform is indicated as MP
and the fixed platform as FP . The unit vector u represents the axis of the C-joint,
which connects the first link of the leg with FP . The unit vector w, orthogonal to
u, indicates the direction of the P-joint between the two links of the leg. The axes of
u and w intersect at point J . They both generate the plane π with normal the unit
vector v. The second link of the leg belongs to π . It is connected to MP by means
of the Sr -joint of Sect. 2: in Fig. 3a it is configured in the Utra mode, namely with
the first axis (rotation ϕ of Fig. 2) aligned with v and the last revolute axis (rotation
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Fig. 3 Leg kinematics CPU: a Configuration Utra , b configuration Urot

θ ) directed as u, whereas in Fig. 3b it is configured in the Urot mode, with the same
direction of the first axis, but with the last axis (rotation ψ) identified by the unit
vector s that is directed toward the point O . The latter is given by the intersection
with the axis of the C-joint. Finally point L is the center of the U-joint.

Said {C(J,u)}, {T (w)} and {S(L)} respectively the Lie subgroups generated
by C, P and S joints, the mechanical generator of a 6-DoF kinematic bond is
given by their product {C(J,u)} · {T (w)} · {S(L)}. It is easy to prove that such
product generates the improper Lie subgroup {D}. The subgroup {C(J,u)} can
be thought of as the product of a prismatic pair and a revolute pair, which gives
{T (u)} · {R(J,u)}, whereas the spherical joint can be generated by the product
{R(L , v)} · {R(L ,u)} · {R(L , s)} of three revolute pairs with linear independent
axes intersecting at the common point L , because of the product closure in the
subgroup {S(L)}. It should be mentioned that such assumption is valid only for
small finite displacements around the identity, which corresponds to the home con-
figuration of the manipulator. It follows that the generator of the 6-DoF bond is
given by {T (u)}{R(J,u)}{T (w)}{R(L , v)}{R(L ,u)}{R(L , s)}, where the dot rep-
resenting the product is neglected for the sake of conciseness. An equivalent rep-
resentation of the mechanical bond is {R(J,u)}{G(v)}{R(L ,u)}{R(L , s)}, where
a commutation between {T (u)} and {R(J,u)} is considered and the statement
{G(v)} = {T (u)}{T (w)}{R(L , v)} is assumed when the boundaries of the neigh-
borhood are neglected.

It follows that when the Sr -joint is configured as the Utra the mechanical bond
loses the term {R(L , s)}, whereas in the Urot configuration it loses {R(L ,u)}. Sum-
marizing, the 5-DoF mechanical bond is given by:

{R(J,u)}{G(v)}{R(L ,u)} (Utra mode) (1)

{R(J,u)}{G(v)}{R(L , s)} (Urot mode) (2)

Themobility of the reconfigurable 3-CPUmanipulator for both the configurations
can be evaluated according to the procedures shown in [14, 20]. Some assumptions
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Fig. 5 Leg kinematics UPU: a Configuration Utra , b configuration Urot

are made: the three legs of the tripod belong to three orthogonal planes, the direction
of the C-joint becomes the direction of v and w for the second and the third leg
respectively, and the axis of the P-joint becomes the direction of u and v. The robot
mobility results from the intersection of the mechanical bonds of the legs.

The results obtained for the 3-CPUmanipulator allow to find out new architectures
when different generators of the planar motion set {G(v)} used in (1) and (2) are
taken into account. The reconfigurable fully parallel manipulators of kinematics
3-CRU, 3-UPU, 3-URU, 3-RPaPaU are obtained, without claiming to be exhaustive.
The sketch of their leg kinematics is shown in Figs. 4, 5, 6 and 7. The mentioned
kinematics are obtained as follows:

• 3-CRU of Fig. 4 - {G(v)} = {T (u)}{R(K , v)}{R(L , v)}
• 3-UPU of Fig. 5 - {G(v)} = {R(J, v)}{T (s)}{R(L , v)}
• 3-URU of Fig. 6 - {G(v)} = {R(J, v)}{R(K , v)}{R(L , v)}
• 3-RPaPaU of Fig. 7 - {G(v)} = {T (Plv)}{R(L , v)}
where J �= K �= L . A small index from 1 to 5 is indicated in the figures according
to the sequence of joints from the fixed base to the mobile platform. In order to
have a non-overconstrained manipulator, the parallelogram Pa of the last kinematic
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Fig. 7 Leg kinematics RPaPaU: a Configuration Utra , b configuration Urot

architecture should be designed without redundancies, namely two revolute joints
should be replaced respectively with a spherical and a cylindrical joint.

The authors already proved that the reconfigurable 3-CPU and 3-CRU manipula-
tors allow large finite motions around the home configuration, which turns to be an
isotropic configuration both for the translational and rotational mobilities [23]. The
other architectures proposed in this work should be analysed in terms of singularity
maps and workspaces, in order to identify their kinematic performance.

Finally, it must be pointed out that the kinematic architectures that result from this
study are not new if they are considered as one-operation-mode machines, as already
mentioned in Sect. 1. On the contrary they are conceived to share a configuration,
called home configuration, in which the lockable joint of Sect. 2 allows a smooth
automatic transition between translation and rotation modes. Other studies in the
literature have a more theoretical content, showing how it is possible to synthesize
metamorfic manipulators with lockable joints, but without giving full information
about how to solve the change of configuration automatically in a physical device. An
example is the work proposed by Kong and Jin [19], who obtained an architecture
very similar to the reconfigurable 3-URU here presented, even if by following a
different approach.
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4 Conclusions

A family of 3-DoF reconfigurable fully parallelmanipulators is presented. A lockable
spherical joint is used for all the kinematic architectures to change the configuration
of a universal joint, which is used to connect the legs of the manipulator to its mobile
platform. The joint reconfiguration results in a change of mobility of the mobile
platform, which can have motions of pure translation and rotation. The novelty of
the paper is mainly in the smooth transition between the mentioned working modes,
which is allowedonly at a specific pose of themanipulator, called homeconfiguration.
An overconstrained kinematics for eachmanipulator of the family is exploited so that
the transition can be driven automatically. All the kinematic architectures proposed
in this work share the same reconfigurability, however further study is needed to
investigate their behaviour for large finite motions and to find out their singularity
maps.
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Dealing with Redundancy of a Multiple
Mobile Coil Magnetic Manipulator: A 3RPR
Magnetic Parallel Kinematics Manipulator

Baptiste Véron, Arnaud Hubert, Joel Abadie and Nicolas Andreff

Abstract This paper presents a magnetic manipulation system composed of three
mobile electromagnets. This system is used to control the position and the orientation
of a capsule embedding a small permanent magnet in the horizontal plane. The
kinematico-magnetic redundancy of the system is dealt with by imposing the planar
3RPR parallel kinematics constraints. The resulting controller is demonstrated in
silico.

1 Introduction

Themain existing systems dedicated to contactlessmanipulation of amagnetic object
can be divided in several categories. In [14], we introduced a kinematic criterion
which clusters most of the existing systems into two categories: those using static
electromagnets [2, 7, 8, 11, 15] and those using mobile permanent magnet(s) [1,
3–5, 9, 10].

For the remaining systems, a third category emerges: systems using mobile elec-
tromagnets. This category has been very little studied so far. More, most of the
systems that belong to this category have a limited number of degrees of freedom per
electromagnet and use a classical architecture with coils in Helmholtz and Maxwell
configuration [16, 17].

We propose here to study a system with 3 mobile electromagnets used to control
motion of magnetic capsule in the plane. Unlike what is done on most of the sys-
tems found in the literature, both movements and supplied currents of the coils are
controlled here, which results in a complex non-linear control problem. Specifically,
the system is kinematico-magnetically redundant, because it possesses 6 inputs (3
currents +3 electromagnet orientations in the horizontal plane) for only 3 outputs
(position and orientation of the magnetic capsule in the plane). One way to deal with
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this redundancy, presented here for the first time, is to impose a kinematic constraint
and convert this system into a 3RPR magnetic parallel manipulator, where mechan-
ical prismatic actuators are replaced by magnetic contactless actuators. Potential
interests for such an architecture are: (i) it can work in a cluttered environment
without the arms sweeping the workspace and (ii) it reduces the ratio between the
displaced mass and the manipulator masses.

The system studied is described in Sect. 2. Then, the system model and control
law is explained in Sects. 2.1 and 3. Finally, results obtained in simulation are shown
in Sect. 4 with emphasis on kinematic issues.

2 System Description

Our system is composed of a permanent magnet placed inside a capsule which is
controlled in the horizontal plane (3 degrees ofmobility). The control is performed by
three electromagnets (n = 3) placed in an original architecture presented in [12]. As
shown in Fig. 1, each electromagnet has one kinematic degree of freedom: a rotation
around the vertical axis.

The system control diagram is presented in Fig. 2. It is a closed loop control
composed with a Perception block for detecting the capsule current position and
orientation. This data is provided to a Trajectory block where it is compared with the
time-varying desired position to determine the desired accelerations for following

this trajectory. The

[
mc

Ic

]
block computes the efforts to be applied to the capsule

thanks to Newton’s law. Finally, the Controller block computes the system inputs
(currents in the coils I, motion of the coils Δβ).

(a) Real system.

x0

y0

O0

O1

β1

O2

β2O3 β3

P ,M

(b) Schematic description
(top-view).

(c) A 3RPR magnetic parallel
manipulator.

Fig. 1 System description
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Fig. 2 Control diagram of the system

This control law relies on the direct electromagnetic model (which is established
following the methodology explained in [8] while complementing the model with
the coils mobility) and deals with the redundancy.

2.1 Direct Electromagnetic Model

Most of the literature assumes that the magnetic field i Bi produced at the capsule
position i P by the i th electromagnet is proportional to the current Ii flowing through
the electromagnet:

i Bi = Ii · i bi (i P ) (1)

with i bi (i P ) the magnetic field per current unit created by electromagnet i .
A global reference frame F0 is defined at the system centre (see Fig. 1b). Each

electromagnet orientation is defined by an angle βi , thus the rotation matrix 0Ri =
Rot (βi , z) represents the transformation between the local reference frame Fi and
F0. As a result, the magnetic field 0Bi produced by an electromagnet is computed
in the global frame as:

0Bi (
0P ,βi ) = Ii · 0Ri · i bi (0RT

i
0P + 0 t i ) (2)

with 0 t i = O0Oi , the translation vector defining the origin of Fi .
Unlike themodel used in [8], Eq. (2) clearly shows the dependence of themagnetic

field to the coil variable poses, thanks to 0Ri = Rot (βi , z0). Thenotation 0Bi (
0P ,βi )

is simplified by 0Bi in the sequel.
The interaction between this field and a magnetic capsule creates efforts on this

capsule given by [6]:

0Fi = V · ∇(0M · 0Bi ) (3)
0C i = V · 0M ∧ 0Bi (4)

with ∇ the gradient operator,∧ the cross product, V the volume of the magnet inside
the capsule, and 0M its magnetisation.
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It is interesting to note that the permanent magnet moment is fixed inside the
capsule, thus its magnetisation 0M is a good indication of the capsule orientation.
Moreover, we assume that the magnetic fields produced by the system are not power-
ful enough to modify this magnetisation. More, the Jacobian matrix of the magnetic
vector 0Bi is defined as:

0JBi =
[
∂ 0Bi

∂ x

∂ 0Bi

∂ y

∂ 0Bi

∂ z

]
(5)

Thus, Eqs. (3) and (4) can be expressed in a matrix form as:

0Fi = V · 0JTBi · 0M (6)
0C i = V · [0M ]∧ · 0Bi (7)

with [0M ]∧ the skew-symmetric matrix associated with the vector cross-product. On
our system, the electromagnets are considered far enough from each other so that the
coupling between them can be neglected. Thus, air and water being linear mediums
for magnetic fields, the superposition principle applies and the overall magnetic field
0B(β, 0P , I) produced by the system is the sum of the magnetic fields produced by
each electromagnet:

0B(β, 0P , I) =
3∑

i=1

Ii · 0Ri · i bi (0R−1
i

0P + 0 t i ) (8)

with β = (
β1 β2 β3

)T
the vector representing the electromagnets configuration and

I = (
I1 I2 I3

)T
the vector gathering the supplied currents.

Similarly, the gradient of the overall magnetic field is the sum of the gradients
produced by each electromagnet:

0JB(β, 0P , I) =
3∑

i=1

0JBi =
3∑

i=1

Ii · 0Jbi (9)

with 0Jbi , the Jacobian matrix of the magnetic field per current unit 0bi . The total
efforts produced on the capsule are thus given by:

0F = V
3∑

i=1

Ii · 0JTbi · 0M (10)

0C = V [M]∧
3∑

i=1

Ii
0Ri

i bi (0R−1
i

0P + 0 t i ) (11)



Dealing with Redundancy of a Multiple Mobile Coil Magnetic Manipulator … 205

IntroducingB = [0R1 · b1 0R2 · b2 0R3 · b3] andJ = [0JTb1 · 0M 0JTb2 · 0M 0JTb3 ·
0M ], leads to express (10) and (11) in matrix form as:

0F = V · J · I � AF (β, 0P , 0M ) · I (12)
0C = V · [M]∧ · B · I � AC(β, 0P , 0M ) · I (13)

MatricesAC andAF , which depend on the capsule position P and magnetisation
0M , are computed from the magnetic fields 0Bi created by each coil. As shown in
(2), these magnetic fields depend on the orientation of each coil β.

Finally, these equations can be gathered into the direct electromagnetic model
(DEM ): (

0F
0C

)
=

[AF
AC

]
· I = A(β, 0P , 0M ) · I (14)

This equation enlightens that the magnetic efforts linearly depend on the cur-
rents applied in the electromagnets. Each current modifies the efforts applied on
the capsule. This model also highlights the non-linear dependence of the matrix
A(β, 0P , 0M ) to the capsule position and orientation, but also to the orientation of
each electromagnet, the total magnetic field depending on the coils configuration.
To simplify notations, we write: A(β, 0P , 0M ) = A in the sequel and we note that
this matrix is of size 6 × 3.

3 Control

Because of the actuation redundancy of the system, several control laws are admis-
sible to control the capsule. The simplest way would be to keep the electromagnets
static and to focus on the currents to apply the efforts allowing the capsule to follow
a defined trajectory, as in most of the literature. But here, our aim is to optimize the
capsule manipulability and to avoid singularities such as those shown in [13].

To find how to move the electromagnets, several strategies are possible because of
the system redundancy (3 degrees of mobility in the plane versus 3 electromagnetic
degrees of freedom plus 3 kinematic degrees of freedom). In this paper, we present a
funny way to handle this redundancy by applying a kinematic constraint. Instead of
aiming at the capsule center as in [12], we chose to mimic a planar 3RPR parallel
kinematics mechanism. Thereby, the coil axes must always aim at a virtual corner of
the 3RPR platform (Fig. 1c), replacing mechanical prismatic actuators by magnetic
contactless actuators.

Once the angular errors Δβ|k between the current coil axis orientation β|k−1 and
the desired one computed from the 3RPR kinematic constraint are known, a propor-
tional control (with gain λβ) is used to bring the motors to their next configuration:

β|k = β|k−1 + λβΔβ|k (15)
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(a) Capsule trajectory. (b) Motor angles.

Fig. 3 Simulation result: a trajectory of the capsule and b evolution of the motor angles (right)

The DEM is updated afterwards and the currents are computed by taking the
pseudo-inverse of A:

I = A(β|k, 0P , 0M )† ·
(
0F∗
0C∗

)
(16)

Thus, the modification of the coils orientation allows first to have a better system
configuration to realise the requested efforts, second tominimise the supplied current
variations. This second point is important, especially if coils have a large number of
turns, since it minimises the impact of the coil inductance on current control.

4 Results

This control law was implemented on our C++/OpenGL simulator. To make the
simulation more realistic, noise on the capsule position detection (±0.5 mm, ±1◦),
the currents flowing in the coils (5%) and the coils orientation (±1◦) was added.

In this simulation, the capsule follows a circle with its magnetisation tangent to
the circle (Fig. 3a), while moving the coils according to the kinematic constraint
(Fig. 3b). The trajectory is well performed, with a position error less than 0.3mm
(Fig. 4a) and an orientation error less than 0.3◦ (Fig. 4b).

5 Conclusions and Perspectives

A magnetic manipulation system with mobile electromagnets was presented in this
article. A model of the system was established to compute the magnetic efforts.
Unlike the models found in the literature, this one takes into account the mobility
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(a) Position errors. (b) Orientation error.

Fig. 4 Simulation result: a position errors and b orientation error along the trajectory

of each electromagnet composing the system. This yields a highly non-linear con-
trol problem, with several additional difficulties: redundancy, kinematico-magnetic
couplings, among others.

This opens to the development of new control laws as the one presented here,
where redundancy was handled by imposing virtual kinematic linkage. The coil
motors thus behave as the first passive joints of a planar 3RPR parallel kinematics
manipulator, whereas the magnetic field created by each coils plays roughly the
role of the prismatic actuators. Thereby, kinematic control and magnetic control are
decoupled, and magnetic control reuses the literature results.

The effectiveness of this strategy was implemented and tested in simulation. Of
course, singularities might occur in the system, but surely in different locations than
the kinematic singularities. For instance, the system does not loose torsional rigidity
in the kinematic singularitywhere all legs intersect, because in that case, themagnetic
field always produces a torque. This opens up to new kinematico-magnetic analyses,
and wider, to new possibilities in the design of manipulation systems. Also, such
coupled systems deserve and support research in non-linear and redundant control.

Finally, an important hypothesis was made while developing the direct electro-
magnetic model: the electromagnets were considered far enough from each other so
that coupling between them were neglected. In practice, this hypothesis might not
always be true and opens research paths related to electromagnetics.
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A New Generic Approach for the Inverse
Kinematics of Cable-Driven Parallel Robot
with 6 Deformable Cables

Jean-Pierre Merlet

Abstract Cable-driven parallel robot (CDPR) have a kinematics that is usually
complex as soon as there are possible deformation of the cable due to elasticity or
cable mass. The classical approach to solve the kinematics in that case is to inject a
cable model in the kinematics equations, that are then solved. According to the cable
model this solving may be extremely complex and a change in the model requires
to customize the solving algorithm. In this paper we consider the inverse kinematics
problem of CDPRwith 6 cables and exhibit a generic solving approach that will work
for any cable model, provided that it satisfies a minimal assumption.We demonstrate
it’s use on a CDPR with catenary cables.

1 Introduction

Cable-driven parallel robot (CDPR) have themechanical structure of the Gough plat-
form with rigid legs except that the legs are cables whose length may be controlled.
Numerous applications of CDPRs have been mentioned e.g. large scale maintenance
studied in the European project Cablebot [7], rescue robot [6, 9] and transfer robot
for elderly people [4] to name a few. We will assume that the output of the coiling
system for cable i is a single point Ai , while the cable is connected at point Bi on the
platform. A cable may be assumed to be mass-less and non-deformable i.e. the cable
shape is the linear segment going from A to B and its length does not changewhatever
is the tension in the cable or may be deformable i.e. the previous assumptions on the
cable shape and/or its lengths do not hold. For example Fig. 1 presents a robot with
sagging cables. In this paper we will consider the inverse kinematics problem (IK)
for CDPR having 6 cables. If we assume that the cables are non-deformable, then
being given the pose of the platform the lengths of the cables are obtained directly as
the 2-norm of the vector AiBi that is obtained directly from the platform pose. But
as the cable may exert only a positive tension we have to consider the static equation
obtained as
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Fig. 1 Cable driven parallel
robots with sagging cables
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F = J−Tτ (1)

whereF is the external wrench applied on the platform, τ is the vector of the cable
tensions and J−T is the transpose of the inverse kinematic jacobian of the robot, that
is fully determined as soon as the pose of the platform is known. Equation (1) is a 6
dimensional linear system that may easily be solved to provide the cable tensions. If
all these tensions are positive, thenwe have got a solution for the IK, otherwise the IK
has no solution. If the cable are deformable there has been very fewworks addressing
the IK solving: Riehl [8] and Hui [1] assume both Irvine sagging model [2] for the
cable but their numerical solver provides only a single solution, if any. Using the
same cable model we have exhibited a solving algorithm that allows one to calculate
all the solutions [5] (and exhibit a case for which a CDPR has 3 solutions) but the
solving algorithm is computer intensive. Simple linear elasticitymodel has been used
to study the kinematics of a special configuration of CDPR [3]. But to the best of the
author knowledge no upper bound on the number of solutions of the IK has even been
provided and no other cable model has been studied. The purpose of this paper is to
provide a generic solving approach that can be used whatever is the cable model and
possibly allow to provide a (probably largely overestimated) bound on the number
of solutions. An essential issue is the concept of cable model that is addressed in the
next section.

2 Cable Model

We denote by L0 the length of a cable before it is submitted to any deformation and
by P a set of parameters that allows one to describe the physical properties of the
cable with respect to deformation under tension. A cable model is a set of relations
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T(A, B, L0, τ,P) = 0 that allows one to determine the cable force action τ at point
B according to the values of A, B, L0.

For using our IK solving approach the following assumptions on the cable model
will be required:

1. the set T is constituted of continuous and differentiable functions,
2. the writing of T may involve new unknowns but the number of equations in T

is such that for given A, B, L0,P the system has only a discrete number of
solutions

3. for each parameter in P there is a limit value such that the cable model will be
asymptotically identical to the non-deformable cable model

As example of cable model we may mention the Irvine sagging cable model that
is valid for elastic cable with mass. In this model we consider the vertical plane that
includes the cable and assume that the cable is attached at point A with coordinates
(0, 0) while the other extremity is attached at point B with coordinates (xb ≥ 0, zb).
The vertical and horizontal forces Fz, Fx are exerted on the cable at point B and the
cable length at rest is L0. With this notation the coordinates of B are related to the
forces Fx , Fz [2] by the Cn functions:

xb = Fx

(
L0

E A0
+ sinh−1(Fz) − sinh−1((Fz − μgL0

Fx
)

μg

)
(2)

zb =
√
F2
x + F2

z − √
F2
x + (Fz − μgL0)2

μg
+ FzL0

E A0
− μgL2

0

2E A0

where E is the Young modulus of the cable material, μ its linear density, A0 the
surface of the cable cross-section and Fx > 0. For the IK problem the coordinates
xb, zb are known, the L0 have to be determined and two new unknowns are intro-
duced, Fx , Fz , while this cablemodel provide two relations. Consequently thismodel
satisfies assumption 1 and 2. Assume now that E goes to infinity and μ to 0. The
limit values xlb, z

l
b of xb, zb are then

xlb = L0Fx√
F2
x + F2

z

zlb = L0Fz√
F2
x + F2

z

(3)

which corresponds to a cable directed along the line A, B and exerting a force of
amplitude

√
F2
x + F2

z . Therefore this cable model also satisfies assumption 3.

3 The Continuity Model

Let us consider a CDPR with n cables and a cable model that involves p unknowns:
consequently the IK has n (the cable lengths) plus np unknowns. As for the equations
we have 6 equations coming from (1) and np equations coming from the cable model
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for a total of 6 + np equations. The system of IK equations is therefore square if
n = 6 which is the case we are considering in this paper.

3.1 The Inverse Model

Assume that a cable model has been decided and a solving algorithm has allowed
us to determine the IK solution(s) for a given pose and for given values of the cable
model parameters Pd . The cable model and IK equations being C1 we know that
for a “small” perturbation onP we will get IK solutions that are close to the initial
one. Furthermore for a given IK solution S (i.e. a set of length for the 6 cables) with
the initial P we also know that the Newton-Raphson algorithm with S as initial
guess may converge toward the solution of the IK with the new values of P , the
convergence being ensured as soon as the perturbation is small enough provided
that the system is not singular at S. The Kantorovitch theorem [10] allows one to
determine the meaning of a small perturbation: provided that the jacobian of the
new system has an inverse at S and that some conditions are satisfied for the norm
of the equations at S, for the norm of the jacobian inverse and for the norm of the
Hessian matrix of the system, then the theorem ensures that there is a single solution
of the new system in a ball centered at S and guarantees that the Newton-Raphson
scheme will converge toward this solution. Let Ps be the cable model parameters
limit values and a linear iterative interpolation scheme defined by

Pk+1 = Pk + α(Ps − Pk)

initialized with P0 = Pd . For the values Pd we assume that we know a set of n
solutions S0 = {S1, S2, . . . , Sn}. We will choose the positive α in such a way that
the IK system obtained with the parameters Pk+1 satisfies the conditions of the
Kantorovitch theorem for the solutions obtained for the system whose parameter
values are Pk). If the conditions does not hold we divide α by 2. For example
starting from P0 we set α to an arbitrary small value and test the condition of the
Kantorovitch theorem for P1 and decrease α until they hold. At this stage we will
use Newton to calculate the set S1 of the n solutions for the parameter set P1. We
will stop this scheme when α is close to 1. To determine how α should be close to 1
to stop the process we look at the cable tensions and lengths for all solutions in Sk

to determine what will be the non-deformable case to which will lead the parameters
going to their limit values. Namely we compare all cable lengths Li

0 to the distance
di between the Ai , Bi points and if Li

0 > di , then the i-th cable is slack otherwise
it is under tension. This provide us a system of equations for each solution of Sk

which should have as approximate solution the corresponding element inSk . If the
Kantorovitch conditions hold for the system, then we will be able to determine the
non-deformable configuration to which the deformable solution will lead, otherwise
we increase α.
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3.2 The Direct Model

As we have shown in the inverse model the manipulator ends up close to a configu-
ration with non-deformable cables for which the platform is at the desired pose with
some cables that are possibly slack. We may now revert the process to obtain the
IK solutions for the deformable cables. We will consider all combinations of cables
under tension in the set of 6 cables, assuming that they are non-deformable. We then
solve their IK, retaining only the solutions for which the non slack cable have a
positive tension.

There is clearly at most one solution when considering that all 6 cables are under
tension. This can be checked by solving equation (1) that is a six-dimensional linear
system in the 6 cable tensions. For the combinations with less than 6 cables under
tensionwewill assume that the slack cable have 0 tension or aminimal one depending
on the cable model. Hence if the CDPR has m cables under tension the system (1) is
still a linear system, possible overconstrained, that may have a positive solution in
terms of the tensions in the m cables.

After this processing we get feasible configurations for the non-deformable case.
For each of them we have a set of valid lengths L0 for the cables.P is set to a value
Pi close toPs and then we change the parameter using the iterative scheme:

Pk+1 = Pk + β(Pd − Pk) (4)

with P0 = Pi . As in the inverse scheme we choose β small enough so that the
Kantorovitch conditions are fulfilled forP = Pk+1. We then stop the process when
Pk+1 = Pd and at this stage we have obtained the IK solution(s) for the CDPRwith
deformable cables.

Note that this scheme startswith a non-deformable cables statewith possibly some
slack cables. However during the iterations it may perfectly happen that an initially
slack cable, which therefore does not support the platform, becomes supportive and
vice-versa.

3.3 Maximum Number of Solutions

The inverse scheme shows that the IK solutions originates from an IK solution with
non-deformable cables. Being given a distribution of slack and under tension cables
there is always at most a single solution to the IK problem and hence the total number
of solutions of the IK with deformable cables cannot exceed the total number of
slack/under tension combinations. This number may be established as 1 (6 cables
under tension) +6 (5 cables under tension) +15 (4 cables under tension) +20 (3
cables under tension)+15 (2 cables under tension)+6 (1 cable under tension) which
amounts to a maximum of 63 solutions. However this number will be the real bound
under some assumptions on singularities.
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3.4 The Singularity Case and Workspace Calculation

Both the inverse and direct scheme assume that the jacobian of the system does not
become singular. Such a case may occur if the cable model equations are singular
or a singularity will occur if (1) become singular. If the unit vector ni denotes the
direction of action of cable i at point Bi (ni may differ from the unit vector of the
line going through Ai , Bi because of the cable deformation) and τi the tension in the
cable at Bi then we define the interaction matrix G whose i-th row Gi is defined by
Gi = (ni CBi × ni)T so that the static of the CDPR may be written as

F = Gτ (5)

A singularity will occur if the Plücker vectors Gi are dependent, a well known
problem for the analysis of parallel robots. Such a singularitymaybe detected through
an increase in the tension of some cables. Open issues regarding this aspect are:

• can we avoid a singularity by modifying the iterative scheme (4)?
• in the inverse scheme can we encounter a singularity that will prohibit us to con-
verge toward a solution with non-deformable cables? If this is the case, then the
approach may miss IK solutions. Should we consider complex values for the
unknowns in order to avoid singularities?

• is possible to have IK solutions with deformable cables for which the inverse
continuation problem does not lead to a non deformable cable IK configuration?

All these issues are quite complex and will be the subject of another paper(s). Our
conjecture is that in general we will have only isolated singular points so that by
using bifurcation theory at the singular point so that all IK solutions will originate
from (possibly multiple) non-deformable configuration. If this conjecture is true it
has an important practical consequence: the reachable workspace of a CDPR with
deformable cables, whatever the cablemodel, is identical to the reachable workspace
of the same CDPR that has non-deformable cable.

4 Example

We consider as example our large scale robot MARIONET-CRANE [6], probably
the largest CDPR ever deployed, for which we will assume Irvine sagging cables.
The IK problem has already been studied in [5] but we will correct some mistakes of
this paper. We assume here that the external wrench applied on the platform is only
the gravity. This robot is a suspended CDPR (i.e. there is no cable having a B point
under the platform) with 6 cables, whose Ai , Bi coordinates are given in Table1.

The cables characteristics are E = 1009 N/m2,μ =0.079kg/mand their diameter
is 4mm. For finding the IK solutions for the non deformable case we assume that
the slack cables act along the vertical with a tension equal to μgL0/2, where μ has
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Table 1 Coordinates of the Ai and Bi points on the base and on the platform (in cm, by rows)

x y z x y z x y z x y z

–325.9 –47.5 882.6 942.1 –348.2 1155.5 –10 –93 –3 10 –93 –3

953.8 379.7 1153.3 557.0 2041.4 870.4 27 50 –7 27 50 –7

–250.5 1681.0 864.9 –334.2 942.1 878.8 –27 50 –7 –27 50 –7

a very low value. With that assumption equation (1) is 6 dimensional linear system
in the tensions of the cables that are supposed to be under tension and in the L0 for
the slack cables. We keep as potential IK solution the one for which the tensions and
the L0 are positive.

We are basically finding the same IK solution as in [5] except that for the pose
x = 400, y = 700, z = 200 and a platform mass of 69kg our new IK algorithm
provides a solution although we have claimed that there was none. This can be
explained as the IK solution leads to FX values that are not included in the intervals
we have provided in our previous algorithm.Howeverwe confirm that for x = y = 0,
z = 200 there is no IK solution. It must also be noted that we have found cases
with a singular configuration for the direct scheme but it appears when the Fx of
cable(s) are close to 0 (corresponding to a singularity of the cable model). In that
case we use a simplified model: we rewrite the equations with Fx = 0, Fz = μgL0/2
(corresponding to a cable that acts vertically on the platform) and we remove the
Irvine equations for the corresponding cable(s) so that this system is still square.
Then we use the Newton scheme to solve the simplified system and go on decreasing
E and increasing μ. After eachg successfull solving step of the simplified model we
use Kantorovitch and Newton to get a solution of the full system, using the solution
obtained for the simplified system and setting a small positive value for the Fx of the
singular cables. If we succeed, then we switch to the full model.

The previous paper have shown an example with up to 3 solutions but our new
algorithm has allowed to find examples with 5 solution, for example for x = 96.733,
y = 1138.33, z = 165, μ = 0.004kg/m and a mass of 10kg,the platform being hor-
izontal. We get 5 IK solutions for non-deformable cables with the following cables
that are not under tension: none, [3], [6], [3, 5], [4, 6] but 4 of them have an unreason-
able cable lengths (for all of them one cable has a length over 105m and may reach
4103m). Note that if we increase μ to 0.079, then the branches none and [3] meet
the same point for μ = 0.0042 and apparently no solution can be found for larger
values of μ so that we end up with only 3 solutions. This shows that apparently there
may be a limit on the value of μ that may lead two branches to collapse and not
generating an IN solution.

However a more rigourous singularity analysis has to be performed in order to
guarantee that will not miss one of the IK solution. An extensive search on the x, y, z
using a grid and a fixed orientation has provided at most 5 potential IK solutions for
the non-deformable case. During this search the only singularity we have found were
cable model singularity with one Fx going to 0. For a grid of over 150 000 points we
get 1, 2, 3, 4, 5 potential solutions respectively in 76, 19, 5, 0.01 and 0.05% of the
cases.
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5 Conclusion

Finding all IK solutions of CDPRwith deformable cables may be complex according
to the used cable model. We propose in this paper a generic approach that allow to
manage all cable models that satisfy minimal assumptions, while providing for the
first time an upper bound for the maximal number of solutions, provided that our
conjecture on singularity hold. Although it has be proven to be efficient even for a
complex cablemodel, the issue of the crossing of singularity remains to be addressed.
If the CDPR has more than 6 cables the IK equations have more unknowns than
equations but we may still apply the method after having chosen specific tensions
for the non-deformable case. At each step we may choose a close but different set
of tensions that satisfy some optimality criterion and then solve the IK equations
for the current values of the parameters. If the CDPR has less than 6 cables the
procedure may also be used provided that we choose which dof of the platform has
to be controlled.
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Rolling Contact in Kinematics
of Multifingered Robotic Hands

Lei Cui and Jian S. Dai

Abstract Rolling contact has been used in fine-manipulation by robot hands. It
provides an opportunity to manipulate an object to a desired location even when
the finger linkages do not have enough degrees of freedom. This paper was aimed
to provide a systematic approach to fine-manipulation of multifingered robot hands
with rolling contact. We established a Jacobian of a multifingered hand with point
contact and formulated the forward and inverse characteristic equations in terms
of joint velocities and contact trajectories. The results of the forward kinematics
are useful for simulation and off-line programming, and the results of the inverse
kinematics provide direct inputs to a kinematic controller.

1 Introduction

Humans use rolling contact to achieve fine manipulation when grasping small and
smooth objects, for example rolling a coin between two fingers. The development
of multifingered robotic hands has been aimed to imitate and replicate, ultimately to
surpass, the functionality of the human hand. Thus, Rolling contact has been applied
to in-hand fine manipulation for a grasped object to achieve a desired location, which
may not be feasible if only the finger joints are used [1, 8].

A useful kinematic formulation of in-hand manipulation should consider compu-
tational efficiency and the ease with which it can be manipulated. Further, it should
be flexible enough to admit a degree of coordinate independence, i.e. a given problem
should not be confined to any specific choice of reference frames to carry out the
kinematic analysis [2, 13].

Motivated in part by these considerations, the product of exponential formula
[2, 9–11] has been used in analyzing kinematics of multifingered hands [4, 5, 9,
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12]. However, the kinematics of rolling contact is traditionally derived in terms of
the coordinates of surface patches, thus these coordinates inevitably appear in the
kinematic formulations. This to some extent compromises the initial motivation.

This work presents a systematic approach to the kinematics of in-hand manipula-
tion with rolling contact, where the Darboux frame, which moves along a trajectory
on each of a fingertip surface and an object surface, is applied to the forward and
inverse kinematics of the moving object [3, 6, 7]. The combination of the product of
exponential and themoving framemethod yields an algebraic formulation, providing
an alternative to a differential equation approach.

2 Forward Kinematics of In-Hand Manipulation
with Rolling Contact

When the object surface and the fingertip surface roll on each other, the point of
contact moves across both surfaces. The object undergoes a spin-rolling motion with
respect to the fingertips. Each fingertip has to follow the object and maintain contact.
In most cases, the motions of each finger are independent, so it suffices to study the
motion of a single finger.

Let (P − ijk) represent a frame fixed at the palm, (T − i′j′k′) a tool frame fixed
on the fingertip, S1 to Sn the screws related to the n revolute joints, L and L ′ the
contact trajectories respectively on the fingertip and on the object, the Darboux
frame (M − e1e2e3) at the contact point M , and e1 the tangent vector to the contact
trajectories and e3 the common normal vector, as in Fig. 1.

The frame (T − i′j′k′) on the fingertip with respect to the palm frame (P − ijk)

can be obtained by the product of exponential formula in terms of joint velocities [9]
as

gPT = eS1η1eS2η2 . . . eSnηngPT (0) (1)

where η1 to ηn are the joint angles of the finger joints and gPT (0) is the initial location
of the frame T .

The twist of the frame (T − i′j′k′) with respect to the frame (P − ijk) can be
obtained as

SPT = J(η)η̇ (2)

where J(η) = [
S′
1 S

′
2 . . . S′

n

]
, S′

i = AdeS1η1 ...eSi−1ηi−1 Si , η̇ = [
η̇1 η̇2 . . . η̇n

]T
.

The homogeneous transformation matrix of the frame (M − e1e2e3) with respect
to the frame (T − i′j′k′) is

gT M =
[
E MT

0 1

]
(3)
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Fig. 1 Screws of the finger joints and the Darboux frame (M − e1e2e3) of the fingertip and the
object surfaces

where E = [
eT1 eT2 eT3

]
. The differentiation of the matrix E with respect to time t

yields

dE
dt

= σQE (4)

where the scalar σ is the rolling rate of the contact curve L , and

Q =
⎡

⎣
0 kn kg

−kn 0 τg
−kg −τg 0

⎤

⎦ (5)

The scalars kn , kg , τg are the normal curvature, geodesic curvature, and geodesic
torsion of the contact curve L on the fingertip, respectively. The differentiation of
the vector of the contact point M with respect to time t yields

dM
dt

= dM
ds

ds

dt
= σe1 (6)

Thus the differentiation of gT M with respect to time t can be obtained as

ġT M = σ

[
QE eT1
0 0

]
(7)
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The space velocity of the frame M with respect to T can be obtained as

VT M = ġT Mg−1
T M = σ

[
QE eT1
0 0

] [
ET −ETM
0 1

]
= σ

[
Q eT1 − QMT

0 0

]
(8)

It follows that the twist of the frame M with respect to the frame T is

ST M = [
σe1 − M × ωM ωM

]
(9)

where

ωM = σ(−τge1 + kne2 − kge3) (10)

The angular velocity of the object with respect to the frame (M − e1e2e3) [3] is

ωO = ω1e1 + ω2e2 + ω3e3 (11)

where ω1 = −σ(τ ′
g − τg), ω2 = σ(k ′

n − kn), ω3 = −σ(k ′
g − kg) and k ′

g , k
′
n , τ ′

g are
the geodesic curvature, normal curvature, and geodesic torsion of the curve L ′ on
the object. The twist of the object frame (O − i′′j′′k′′) with respect to the frame
(M − e1e2e3) is

SMO = [
O × ωM ω1e1 + ω2e2 + ω3e3

]
(12)

where the vectorO represents the vectorMOwith respect to the frame (M − e1e2e3).
Hence the twist of the object with respect to the palm frame P can be obtained as

SPO = SPT + AdgPT ST M + AdgPMSMO (13)

This gives the instantaneous motion of the object under the effects of rolling
contact and the joints rates.

3 Inverse Kinematics of In-Hand Manipulation
with Rolling Contact

The inverse kinematics is to obtain the joint rates and the contact trajectories given
the twist of the object. Suppose the surfaces of the fingertip is parameterized as
r(u, v) and the surface of the object as r′(α, β). Let eu represent the tangent vector
to the u- curve and eα the unit tangent vector to the α-curve. The common normal
vector is e3 and the angle between eu and eα is θ , as in Fig. 2.

A general rigid object has 6 degrees-of-freedom (DOF). Hence the number of
joints is at least 3 for a robotic finger to manipulate the object, since rolling contact
provides extra 3 terms to the system. In the authors’ previous work [7], these three
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Fig. 2 The Darboux frames
(M − eueve3),
(M − eαeβe3), and
(M − e1e2e3) at the contact
point M

terms were defined as the rolling rate σ , the angle ϕ between the rolling direction e1
and eα , and the complementary spin-speed ω′

3.
Hence the problemof inverse kinematics is formulated to obtain the joint rates η̇1 to

η̇n , and the aforementioned three terms given the twist of the object Sobj = [vO ,ωO ].
The vectors e1, e2, and e3 can be obtained in the frame M − eαeβe3 as

e1 = cos(ϕ + θ)eα + sin(ϕ + θ)eβ

e2 = − sin(ϕ + θ)eα + cos(ϕ + θ)eβ (14)

The normal curvature kn , geodesic curvature kg , and the geodesic torsion τg in
the direction of e1 in terms of the curvatures of the fingertip surface can be obtained
accordingly.

It follows from Eqs. 9, 14 and 15 that the twist ST M is a 6 × 1 vector function in
terms of ϕ and ω′

3

ST M =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

M2ωM3(σ, ϕ, ω′
3) − M3ωM2(σ, ϕ)

M3ωM1(σ, ϕ) − M1ωM3(σ, ϕ, ω′
3)

M1ωM2(σ, ϕ) − M2ωM1(σ, ϕ)

ωM1(σ, ϕ)

ωM2(σ, ϕ)

ωM3(σ, ϕ, ω′
3)

⎤

⎥⎥⎥⎥
⎥⎥
⎦

T

(15)

whereM1 toM3 are the coordinates of the pointM andωM1 toωM3 are the components
of the angular velocity ωM .

Similarly, it follows from Eq.12 that the twist SMO is a vector function in terms
of ϕ and ω′

3
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ST M =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

O2ωO3 − O3ωO2

O3ωO1 − O1ωO3

O1ωO2 − O2ωO1

ωO1(σ, ϕ)

ωO2(σ, ϕ)

ωO3(σ, ϕ, ω′
3)

⎤

⎥⎥⎥⎥
⎥⎥
⎦

T

(16)

where O1 to O3 are the coordinates of the point O andωO1 toωO3 are the components
of the angular velocity ωO with respect to the frame (M − e1e2e3). Hence, it follows
from Eq.13 the inverse kinematics is now formulated as a system of 6 nonlinear
equations:

η̇J(η) + [ f1(σ, ϕ, ω′
3) . . . f6(σ, ϕ, ω′

3)] = Sobj (17)

where fi (σ, ϕ, ω′
3 are the elements yielded by the rolling contact. In these 6 scalar

nonlinear equations, the number of unknowns is n + 3, namely η̇1 to η̇n , σ , ϕ, and
ω′
3. Hence it takes at least 3 joints on the finger to have full manipulability, with the

other 3 inputs from rolling contact.
These nonlinear equations will have to be solved by using numerical methods

in most cases. Suppose there are n joints on the finger with 3 ≤ n < 6. Taking the
reciprocity product on the both sides of Eq.17 by the reciprocal matrix JR of the
Jacobian J removes the joint velocity η̇1 to η̇n , yielding 6 − n scalar equations that
only contains the three variables from the rolling contact, namely σM , ϕ and ω′

3. If
n = 3, three scalar nonlinear equations will be generated, which have a finite number
of solutions. If n ≥ 4, an infinite number of solutions exist, giving more options as
to rolling motion.

4 An Example Problem of Forward Kinematics

A 3R robotic finger was used to illustrate the proposed approach. Suppose the finger
is equipped with a spherical fingertip of radius R that maintains rolling contact with
a unit ball. Establish a palm frame (P − ijk) and a tool frame (T − i′j′k′) in such a
way that the point T is located at the center of the half-sphere of the fingertip. The
radius of the half-sphere is assumed to be R, and the half-sphere is parameterized as
r = R[cos u cos v,− cos u sin v, sin u]. The joint screws are represented by S1 to S3
and the contact point is M , as in Fig. 3.

Suppose the joint angles of S1 to S3 are η1 to η3, respectively. It follows from Eq.2
that the twist of the frame T with respect to the frame P can be obtained straightfor-
wardly. The unit ball can be parameterized as r′ = (cosα cosβ,− cosα sin β, sin α).
Suppose the coordinates of the contact pointM are (u0, v0) and (α0, β0) on the spher-
ical fingertip and on the unit ball, respectively. Further, suppose the trajectory L on
the fingertip is along a meridian and the trajectory L ′ on the object is also along a
meridian. It follows that
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Fig. 3 A ball manipulated
by a 3R finger with a
spherical fingertip

e1 = [− sin u0 cos v0, sin u0 sin v0 cos u0
]

e2 = [− sin v0, cos v0 0
]

(18)

e3 = [− cos u0 cos v0, cos u0 sin v0 − sin u0
]

The normal curvatures, geodesic curvatures, and the geodesic torsion of the curves
L and L ′ are

kn = − 1

R
, kg = 0, τg = 0

k ′
n = 1, k ′

g = τ ′
g = 0 (19)

It follows from Eq.9 that the twist STM with respect to the frame T is

ST M = σM
[
sin u0 cos v0, − sin u0 sin v0, − cos u0 − sin v0

R , − cos v0
R , 0

]
(20)

It follows from Eq.12 that the twist SMO with respect to the frame T is

SMO = σM
[
0, 0, 0 ( 1

R + 1) sin v0, ( 1
R + 1) cos v0, 0

]
(21)

The twist of the unit ball can be obtained from Eq.13. This completes the forward
kinematics of in-hand fine-manipulation.
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5 Conclusions

We proposed a systematic approach to the forward and inverse kinematics of multi-
fingered hands based on the product of exponential formula. This approach yielded
a representation in forward kinematics that amounts to obtaining the twist of the
grasped object given the joint rates and the contact trajectories. The inverse kinemat-
ics was formulated as a system of nonlinear algebraic equations, where the variables
consists of the joint rates and contact parameters. The proposed approach provides an
alternative to the traditional approach that requires numerical integration of a system
of second-order differential equations.
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Synergies Evaluation of the SCHUNK S5FH
for Grasping Control

Fanny Ficuciello, Alba Federico, Vincenzo Lippiello and Bruno Siciliano

Abstract In this work, a study on postural synergies has been conducted on an
under-actuated anthropomorphic hand, the SCHUNK Five-Fingered Hand (S5FH).
Human hand grasps are mapped on the robotic hand using fingertips measurements,
obtained with an RGBD camera sensor, and inverse kinematics. Since the S5FH
is under-actuated, an approximate solution can be obtained using the differential
kinematics mapping between the motor space and the Cartesian space and a closed-
loop inverse kinematics (CLIK), based on a high-rectangular hand Jacobian that takes
into account themechanical synergies of the hand. The so-computedmotor synergies
have been tested for hand control during grasping. The motor current measurements
have been used to limit the grasping forces trough a motor position control in the
synergies subspace.

1 Introduction

Nowadays, in robotics and prosthetic applications, postural synergies have been
widely recognized to be a powerful tool to plan grasps and control artificial hands
using few parameters compared to the degrees of freedom (DOFs) of the hand itself
[1]. Several methods have been proposed to compute the synergies subspace. In [2–4]
the basis space of synergies is represented by a matrix of constant eigengrasps (basis
of eigenvectors), while in [5] synergies are mapped directly from human to robotic
hands using non-constant eigengrasps.
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The authors’ previous work refers to fully actuated anthropomorphic hands [6–
9]. In these works, the experimental results highlight that, despite the differences in
kinematics and mapping methods, the first three synergies have some basic features
that are preserved if the hand kinematics is anthropomorphic and if the grasps data
set is suitably chosen to cover a large variety of human grasping postures [10, 11].

In this work, the method developed in [8] has been adapted and tested to evaluate
the first three synergies on an under-actuated five-fingered hand suitable for service
robot applications in the household domain, the S5FH depicted in Fig. 1. The hand
possesses 20◦ ofmobility and it is designedwith “mechanical synergies” that regulate
the kinematic couplings between the finger joints while decreasing the number of
motors from 20 to 9.

One of the main problems of under-actuation is that the inverse kinematics prob-
lem that maps fingertips Cartesian space onto joints motor space does not neces-
sarily have a closed-form solution, but in some cases only an approximate solution
that minimizes the norm of the error can be obtained. Moreover, the human hand
grasps cannot be accurately mapped onto the robotic hand since some information
is unavoidably lost due to mechanical couplings between the joints.

Fig. 1 The Schunk
Five-Fingered Hand
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A valuable possibility to obtain a solution to the inverse kinematics problem is to
use the differential kinematics mapping between the motor space and the Cartesian
space and a closed-loop inverse kinematics (CLIK) algorithm based on the high-
rectangular hand Jacobian that takes into account the mechanical synergies of the
hand.

In this work, a data set of grasps, measured on five human subjects and available
from the authors’ previous work, is used to evaluate the grasping capabilities of the
robot hand in a synergy-based framework. For this purpose, a synergies Jacobian
can be computed and suitably used in the CLIK algorithm to map the grasps from
the human hand to the robotic hand. The details of the grasping data and mapping
method can be found in [2, 8].

The results demonstrate that the computed synergies are suitable to control the
hand in a three-dimensional subspace and the evaluated features of the first three
synergies confirm the results obtained in [12], i.e. the grasping capabilities are very
similar to those of the fully actuated anthropomorphic hands.

The paper is structured as follows: in Sect. 2 the hand kinematics and the mechan-
ical synergies are described, while in Sect. 3 the method for synergies computation
is briefly described and the computed synergies are analyzed. Section4 reports the
experimental results obtained using the synergy-based control for grasping actions
andgrasping forces regulations. Finally, Sect. 5 provides the conclusions and sketches
future work.

2 The Schunk S5FH

The Schunk S5FH has an anthropomorphic structure very similar to the human hand
for shape, size and overall for the cosmetic appearance. Indeed, the dimensions are
of 1 : 1 ratio with the human hand and the weight is of 1.3 kg. The control and power
electronics are integrated in the wrist allowing an easy connection with market-
standard industrial and lightweight robots. The current technology, however, does
not allow arranging twenty ormoremotorswithin amechanical structurewith dimen-
sions similar to those of the human hand while ensuring appropriate requirements of
speed and strength. As a matter of fact, the S5FH has 20 joints and 9 DOFs led by
servo motors. The reader can find the whole technical data, hardware and software
specifications in [13, 14].

Hence, the number of motors is significantly lower than the number of joints and
suitable motion couplings are obtained by means of mechanical synergies defined
via mechanical transmissions.

Let q be the vector of the 20 joint angles describing the robotic hand configuration.
The joint motions (Fig. 2) are coupled according to the mechanical synergies matrix,
defined below. m ∈ IRm , with m = 9, is the vector of motor variables and q0 is an
offset representing the vector of joint values when the motor positions are zero. In
vector q the finger joints are pointed in progressive order from the thumb to the little
finger using the subscripts t, i,m, r, l. Not all the fingers have the samenumber of joints
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Fig. 2 The finger
movements of the Schunk
Five-Fingered Hand are
illustrated

and motors. About the thumb, the opposition joint qto is coupled with the qpo joint
allocated into the palm that moves only the ring and the little finger with respect to
the palm frame. The carpometacarpal flexion joint qtcm , metacarpophalangeal flexion
joint qtmcp , distal interphalangeal flexion joint qtdip are clearly indicated in Fig. 2 as
well as the metacarpophalangeal flexion joint (DIP), proximal interphalangeal joint
(PIP) and distal interphalangeal flexion joint (MCP) for the other fingers. Finally, the
index, ring and little fingers have also coupled spread motion (qis , qrs , qls ).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qto
qtcm
qtmcp

qtdip
qis
qimcp

qi pip
qidip
qmmcp

qmpip

qmdip

qpo
qrs
qrmcp

qrpip
qrdip
qls
qlmcp

qlpip
qldip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
q

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0 0 0 0 0 0 0 0
0 0.29 0 0 0 0 0 0 0
0 0.29 0 0 0 0 0 0 0
0 0.42 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.25
0 0 1 0 0 0 0 0 0
0 0 0 0.49 0 0 0 0 0
0 0 0 0.51 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.49 0 0 0
0 0 0 0 0 0.51 0 0 0
0.5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.25
0 0 0 0 0 0 0.26 0 0
0 0 0 0 0 0 0.36 0 0
0 0 0 0 0 0 0.38 0 0
0 0 0 0 0 0 0 0 0.5
0 0 0 0 0 0 0 0.26 0
0 0 0 0 0 0 0 0.36 0
0 0 0 0 0 0 0 0.38 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Sm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0
m1
m2
m3
m4
m5
m6
m7
m8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m

+q0, (1)
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3 Postural Synergies Computation

A data set of 36 grasping configurations, measured on five human hands, have been
considered as in [8] and the samemappingmethod has been applied to the S5FHhand.
The differential kinematics mapping between themechanical synergies subspace and
the Cartesian space, used in the CLIK algorithm, is represented by the following
equation

ẋ = Jhm ṁ, (2)

where Jhm is the mechanical synergies Jacobian and is computed as

Jhm = JhSm . (3)

In (2), ẋ is the derivative of the position vector of the five fingertips x ∈ IR15, Jh
is the (15 × 20) S5FH hand Jacobian, Sm is the (20 × 9) matrix of the mechanical
synergies, and finallym ∈ IR9 is the vector of the motor angles. The CLIK algorithm
for inverse kinematics resolution can be based on the transpose of the Jacobian JT

h ,
or on the pseudoinverse of the Jacobian J†h . When the CLIK algorithm is used for
mapping gasps from the human to the robot hand, the desired fingertips position in the
Cartesian space, xd , is constant and the required feedforward term of the velocities
is null. In this work, the synergies subspace of the hand, constituted by the first
three eigengrasps, has been computed with both solutions in the CLIK algorithm,
namely JT

h and J†h . Actually, these solutions do not lead to significant differences in
the results. On the other hand, the use of the transpose Jacobian may be easier and
more convenient for real-time implementation. Moreover, even in the presence of a
variable Cartesian desired position, the latter solution does not require the addition
of a feedforward term. For these reasons, in this paper the results obtained with JT

h
are considered (Fig. 3).

For the sake of brevity, the synergies subspace, resulting from computation, is
schematically represented in Fig. 6. Here, the configurations that the hand assumes
according to the patterns of the first, second and third synergies when their coeffi-
cients vary fromminimum to maximum values are represented on the three principal
axes of the eigengrasps. The minimum and maximum values of the synergy coeffi-
cients are in agreement with the positive direction of the arrows. The obtained results
are very similar to those in [6] and the differences are due to the kinematic limitation
introduced by the under-actuation. It is worth observing that the first synergy opens
and closes the hand acting mainly on the flexion joints by moving them in the same
direction. The second synergy generates opposite motions for the metacarpopha-
langeal flexion and proximal interfalangeal flexion joints. Obviously, this is true for
the only two fingers that have no couplings on these joints (index andmiddle fingers).
On the other hand, the third synergy influences mainly the thumb motion both for
flexion and opposition.
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Fig. 3 The first three eigengrasps

4 Grasping Control in the Synergies Subspace

Once the (9 × 3) Ss synergy matrix has been computed, in order to test the
efficiency of the mapping method, different grasps have been reproduced in the
three-dimensional synergies subspace. Reproduced power grasps of spherical and
cylindrical objects are represented in Fig. 4a, b. Actually, since mechanical synergies
affect the mapping from the human hand, the projection of a grasp from the data set
in the synergies subspace is not so effective as for the full-actuated anthropomorphic
hands [6, 8]. Thus, the reproduction is not successful for all the grasps. This means
that a control strategy is required to adjust the reference grasp in order to let the hand
adapt to the object while moving in the synergies subspace. The kinematic control
of the hand in the synergies subspace is again a CLIK algorithm, but in this case it is
based on the synergies Jacobian given by ẋ = Jhms

σ̇ , where Jhms
= JhSmSs and σ̇

are the synergy coefficients. The differential mapping between synergies coefficients
and joint velocities is given by the following equation

q̇ = Smṁ = SmSs σ̇ .
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(a) Spherical object (b) Cylindrical object

Fig. 4 Some examples of reproduced grasps

A simple strategy tomodify the reference grasp can be adopted. The fingertips desired
positions are modified in the control algorithm in order to reduce their distance with
respect to the centroid of a virtual object computed as the centroid of the fingertips
involved in the desired grasp. Moreover, in order to limit the grasping forces, the
desired target of the CLIK algorithm is modified on the basis of the measured motor
current and of a defined threshold that is related to the texture of the object. The
experiments demonstrate that the synergies subspace is suitable for hand control in

Fig. 5 A cylindrical object is grasped
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Fig. 6 Time history of synergy coefficients during grasping a cylindrical object with contact forces
regulation

grasping awide variety of objects, i.e. the algorithm is stable and effectively regulates
the grasping forces by modifying the motor positions in the synergies subspace.
Thus, to improve the grasping capabilities as future work, strategies based on quality
indexes to close the hand toward the object in the synergies subspacewill be tested. In
Fig. 5 two different grasps of the same object are controlled in the synergies subspace
using different current thresholds.

In Fig. 6, the synergies coefficient are reported for one of the cylindrical grasps
described above. It is possible to observe that the control modifies the synergies
coefficients until reaching a steady-state value which depends on the allowed motors
current limits.

5 Conclusions

The S5FH synergies subspace has been computed by mapping human hand grasps
using a method based on fingertips measurements. The features of the first three syn-
ergies have been evaluated and the results are very similar to those of fully actuated
anthropomorphic hands. Furthermore, the synergies subspace has been tested for
hand control using a CLIK algorithm based on the synergies Jacobian. The experi-
ments have demonstrated that the method used to compute synergies provides good
results since the hand can be successfully and stably controlled in a three-dimensional
synergies subspace for grasping purpose while guaranteeing suitable regulation of
the contact forces.
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In-Hand Manipulative Synthesis Using
Velocity Subspaces

Neda Hassanzadeh, Shramana Ghosh and Nina Robson

Abstract The kinematic design of robots for tasks involving positions and its deriv-
atives has been explored in the past in order to shape the trajectory of the robot at a
given set of points. This approach has been successful for the synthesis of linkages
for grasping applications; however defining a single velocity in the vicinity of a spec-
ified location might not be enough for a desired manipulation task. In the synthesis of
multi-fingered robotic hands, it is interesting to ask whether a hand can be designed
for a certain in-hand manipulation task that ensures contact and at the same time
relative motion of the fingertips on the object surface in multiple desired directions.
In this article we define a method for designing robotic hands that guide an object
through a kinematic task with velocity specifications in the vicinity of key task posi-
tions. Given the mobility for a hand topology, the necessary velocities are derived
at each task position to fully define a subspace of allowable directions for object
manipulation. As an example, a multi-fingered robotic hand for an in-hand manipu-
lation of a body with a known geometry has been designed. The proposed synthesis
technique is the first step in creating tangent spaces in the vicinity of positions to
successfully guide a body for desired manipulation tasks.

1 Introduction

The design of end-effector robotic tools is directed towards grasping actions or
towards higher dexterity, usually anthropomorphic in structure (see for instance [1]).
In this research, we focus on creating multi-fingered hand designs specially tailored
to specific groups of manipulation tasks.
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We define a multi-fingered robotic hand as a series of common joints branching
at least once in several other serial chains, ending in a finite set of end-effector links
(the fingertips). The methodology developed in [2] for the design of multi-fingered
hands for kinematic tasks, both for finite and infinitesimal motion, offers a systematic
process to design innovative end-effectors for a simultaneous free-motion task of all
the fingertips.

When the hand grasps an object, the constraints on the relative motion need to
be taken into account. In this application, we focus on in-hand roll-slide, when the
fingertip contact is kept throughout the motion [3]. In such motions, the geometry
of robotic fingers cause the contact points to travel on the surface of the object’s
body as the configuration of the fingers change during the manipulation. The rolling
motion of the fingertip on the body requires that the velocities of the contact points
on the fingers and the body must remain the same. Including roll-slide constraints in
the problem involves the application of differential geometry. The analysis takes as
inputs the linear and angular relative velocities of the contact points on the finger and
the body and outputs the parameterized contact point velocities on the surfaces of the
finger and the body. Figure1 shows an example of the progression of the finger and
body contact coordinate frames for the rolling of a finger on the surface of a body.

Given a hand topology and themobility for a generally-grasped object, we propose
to use kinematic synthesis techniques in order to define a subspace of potential
velocities at a given position, compatiblewith desired objectmanipulation directions.
This is based on defining as many infinitesimal motion tasks at each position as
general degrees of freedom of the hybrid fingers-body topology is. That will fully
specify the subspace of velocities, yielding control over the allowable motion at
discreet points of the workspace. This new technique is applied to a three-fingered
handwith awrist. Experimentalmotion capture data is used for defining the positions.
As a next step, the fingers-body problem geometry is used to define the velocities in
the desired directions in the vicinity of contact locations, which define the velocity
subspaces.

Fig. 1 Left An illustration of the planar rolling problem: the body is moved from configuration I
to configuration II. Right The contact frame for the finger is u. After rolling occurs the new contact
frame for the finger is u′. The same holds true for the body frame
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Fig. 2 A five-fingered tree topology with j = {0, 1, 1, 1, 3, 3, 3} (left), and holding an object with
F degree-of-freedom contacts (right)

2 Topology of the Hand-Object System

A tree topology for a kinematic chain has a set of common joints spanning several
chains, possibly in several stages, and ending in multiple end-effectors.

Open hands not holding an object in the fingers can be represented as rooted tree
graphs [2, 4], where all links are ternary or above. Figure2 presents the compacted
graph for a hand with five branches and two palms. The root vertex is indicated
with a double circle. When the multi-fingered hand is holding an object, a set of
constraints are created at the contact point between fingertip and object. Standard
finger denominations, such as pointy finger or soft fingers [5], impose constraints
on the motion that can be modeled as a joint or set of joints. During the grasp and
manipulation of the grasped object, the topology is represented with a hybrid graph,
as shown in Fig. 2, where the object is indicated as a square vertex.

A first approximation to the ability to manipulate when the hand is grasping
an object can be calculated using standard mobility and connectivity formulas, see
for instance [5]. Object and hand geometry are taken into account by calculating
the subspaces of wrenches or twists created by the contacts on the object, see for
instance [6].

3 Kinematic Synthesis for Subspaces of Velocities

3.1 Velocity Subspaces

The design methodology follows [2] and uses a kinematic task as input to create
multi-fingered hand designs. The kinematic task consists of a set of simultaneous
displacements for each fingertip, and velocities defined at those positions.

Given a hand topology with b end-effectors and nc joints in branch c, solvable
[7] for mp positions and mv velocities, the design equations seek to minimize the
difference between the task and the motion of the robot. For displacements, this
is created as the product of exponentials defining each serial chain from root to
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end-effector, while the velocities are created as the linear combination of the joint
twists times the joint rate at a given position,

P̂ i
1k =

∏

j∈{Bi }
e

�θ̂kj
2 S j ,

Ṗi
k =

∑

j∈{Bi }
θ̇ k
jS

k
j , i = 1, . . . , b; k = 2, . . . ,m, (1)

where the number of end-effectors, or branches as root-to-fingertip chains, is indi-
cated by b, and {Bi } is the set of ordered indices of the joints belonging to branch i .
Notice that some of the joints will be common to several branches. The joint axes at
the kth position are Sk

j (at the reference configuration they are denoted as S j ), and

P̂ i
1k are the relative task positions for each branch. For most topologies, this method

yields many potential designs.
Equation1 can be used to specify the twist for each fingertip at a given position.

When several fingers are in contact with an object, the twist is compatible with the
contact and the displacement of the object.

The maximum number of twists that can be specified for a serial chain at a given
configuration, corresponds to the dimension of the twist subspace, which coincides
with its mobility M for generally-oriented axes. Specifying M twists fully defines
the subspace of potential velocities of the end-effector at a particular position. The
obtained equations are linear and the coordinates of the axes can be written as a
function of the joint rates,
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, (2)

for each branch i with number of joints bi .
Equation (2) allows the definition of the tangent space at a given position, con-

straining the motion to create a controlled subspace of potential velocities for the
in-hand manipulation and path-planning. In order to do so, the contact conditions,
the type of the manipulative motion, as well as the geometry of the object-fingertip
system must be considered.

3.2 Deriving Velocity Specifications from Task Geometry

To derive the position and velocity of the body at an instant t = 0 imposed by
contact with the fingers, we follow Robson and Tolety [8]. Let the movement of a
rigid body be defined by the parameterized set of 8-dimensional dual quaternions
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Fig. 3 Atriangular shaped object is in contactwith three sphereswith radii of curvature RA, RB , RC
in the vicinity of the specified position. Themoving frameM is located such that its origin coincides
with A(t) and its x-axis is directed along the line B − A

Q̂(t) = q̂(t) + εq̂0(t), defined in terms of the screw axis of the displacement,S(t) =
s(t) + εs0(t), and the rotation about and slide along the axis, φ(t) and d(t).

A point p fixed with respect to the moving body traces a trajectory P(t) in a fixed
coordinate frame F , given by:

P̂(t) = Q̂(t) p̂ Q̂∗(t) =
(
cos

θ̂

2
+ sin

θ̂

2
S

)
(1 + εp)

(
cos

θ̂

2
− sin

θ̂

2
S

)
, (3)

where cos θ̂
2 = cos θ

2 − ε d
2 sin

θ
2 , sin

θ̂
2 = sin θ

2 + ε d
2 cos

θ
2 , and the point has coordi-

nates p = px i + py j + pzk
Consider amoving frameattached to abody tobegrasped, shown inFig. 3.Assume

that while rolling/sliding along the object surface in the vicinity of a specified contact
location(s), the fingertips aremoving on spherical paths with radii Ri .When the body
is in contactwithn stationary frictionless fingers in an equilibriumgrasp, there are two
possible free motions: either roll-slide on the fingers, or escape from the fingers [9].
The mobility and locked-joints mobility of the hand-object system [5] is specified.
The goal is to determine the movement Q̂(t) so that the moving body has n points
with trajectories n(t) consistent with contact with n fingers.

3.3 Position Specification

Assuming that the contact of our moving body {M} with the three fixed objects
constrains the point trajectories A(t), B(t) and C(t) to follow spherical trajectories
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in the vicinity of the reference position at t = 0, the movement of {M} in the vicinity
of t = 0 can be expressed by the Taylor series expansion:

Q̂(t) = Q̂0 + Q̂1t + 1

2
Q̂2t

2 + · · · , where Q̂i = di Q̂

dt i
. (4)

In this equation, the subscript denotes the derivative: Q̂1 = ˙̂Q, and so on. The dual

quaternion Q̂0 = cos θ̂0
2 + ε sin θ̂0

2 S0 is calculated using the position of the moving
frame {M} with the coordinates of the contact points A0 = A(0), B0 = B(0) and
C0 = C(0). See [8, 10] for a similar approach.

3.4 Velocity Specification

Given a point a in the object expressed in the moving frame, its expression with
respect to the fixed frame is given by Â = Q̂â Q̂∗. The velocity of this point can be
obtained in general as

˙̂A = (
˙̂QQ̂∗) Â(

˙̂QQ̂∗)∗ = Ω̂ ÂΩ̂∗. (5)

In order to satisfy force constraints at the prescribed positions, we determine
directions of the velocity vectors Ȧ, Ḃ and Ċ that are perpendicular to the contact
forces FA, FB and FC passing along the direction of the radii of the three spheres
with centers O1, O2, O3 (see Fig. 3). The equations defining these constraints are:

Ȧ = Ω ÂΩ̂∗ = Ω̂O1A( Â − Ô1)Ω̂
∗
O1A, Ḃ = Ω B̂Ω̂∗ = Ω̂O2B(B̂ − Ô2)Ω̂

∗
O2B,

Ċ = ΩĈΩ̂∗ = Ω̂O3C(Ĉ − Ô3)Ω̂
∗
O3C , (6)

where Ω̂O1A( Â − Ô1)Ω̂
∗
O1A

yields the expression for the velocity of a point rotating
about a fixed point, ωO1A × (A − O1), and similarly for the rest of the points.

The same formulation is used to derive a second velocity at A(t) in Fig. 3, by
specifying another finger motion in a different desired direction. That results in the
definition of three more spheres, which describe that motion in the vicinity of the
contact location, with radii of curvature RD , RE and RF and centersO4,O5 andO6,
respectively. The process was repeated once again to derive a third velocity at A(t).
The three derived velocities at A(t) define the twist subspace for the desired roll-
slide motions of the fingertip along the body in the vicinity of the specified contact
position.
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4 Exact Synthesis of a Three-Fingered
Non-anthropomorphic Mechanical Hand for In-Hand
Manipulation Task

Rolling motion in three different directions of a small cube/dice was chosen as a
desiredmanipulation task. A subject was asked to roll-slide the dice, using the thumb,
index and middle fingers and keep the contact with the dice throughout the motion.
The consecutive motion in the three directions was captured using a Vicon™motion
capture system, as shown in Figs. 4 and 5.

Two positions for each of the fingertips for the in-hand manipulation task were
defined and shown in Table1. The positions were chosen at the start and end of the
motion trajectories, obtained from the motion capture system.

Using the task geometry from Sect. 3, three velocities, compatible with the three
in-hand manipulation directions, were defined at the first task position of each fin-

Fig. 4 Left Experimental setup of a human subject performing a rolling task. Right View from
Vicon motion capture system of human hand performing rolling task

Fig. 5 Left Fingertip motion. Green, yellow and blue frames correspond to thumb, middle and
index fingertips respectively. Right down sampled trajectories and the synthesis frames
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Table 1 Finite positions selected for each fingertip

Fingertip Position

Finger 1 {{0.522, 0.723,−0.358, 0.274804}, {−35.066, 116.668, 59.566,−162.493}}
{{0.233, 0.785, 0.190, 0.542}, {76.771, 50.987, 119.006,−148.429}}

Finger 2 {{0.061, 0.729,−0.679, 0.057}, {−126.520, 120.326, 110.801,−84.442}}
{{0.059, 0.761,−0.641, 0.077}, {−119.123, 117.141, 117.279,−90.694}}

Finger 3 {{−0.273, 0.810,−0.470, 0.221}, {−59.617, 97.518, 175.020,−59.467}}
{{0.132,−0.249,−0.904, 0.322}, {−72.584, 194.181,−48.121, 44.531}}

Table 2 Twists for the index finger at start position

Twist Values

1 {−0.064,−0.365, 0.535, 147.809, 439.141, 188.850}
2 {0, 0, 0, 2.539,−2.416, 1.440}
3 {−0.001,−0.003,−0.007, 0, 0, 0}

Table 3 Twists for the middle finger at start position

Twist Values

1 {−0.547, 0.0216, 0.002, 322.429, 349.003,−71.279}
2 {0, 0, 0, 2.652,−2.074, 0.714}
3 {−0.001,−0.006,−0.008, 0, 0, 0}

Table 4 Twists for the thumb at start position

Twist Values

1 {−0.106, 0.003, 0.153, 271.907, 346.412, 32.534}
2 {−0.001,−0.003,−0.007, 0, 0, 0}
3 {0, 0, 0, 0.930,−2.445, 1.684}

gertip. The velocities for the index and middle fingers, as well as the thumb in the
start task position are presented in the Tables2, 3 and 4.

4.1 Topology Selection and Synthesis Results

To select a suitable topology for this task, all the three-fingered hands with in-palm
mobility and overall mobility being equal to 2 or 3were investigated.When bounding
the overall number of joints and adding solvability conditions for the hands, the
topology presented in Table5 was selected as candidate. This topology is solvable
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Table 5 Candidate topology for synthesis

Parent-pointer array Joint array Tree graph

{0, 0, 1, 1} {2, 3, 2, 2}

Fig. 6 Hand design for twist subspace, left; hand design for approximate trajectory synthesis, right

for a total of m = 5 exact positions, and the general mobility at the object is M = 3
for fingertip contacts with 2 degrees of freedom.

For the synthesis results, both approximate synthesis for ten positions and ten
velocities of the experimental trajectory and exact synthesis using two positions and
the three obtained velocities in the first position for each finger were used. The system
of position and velocity design equations was solved using ArtTreeKS [2]. Figure6,
shows the resulting hand designs.

The analysis and further optimization of the obtained hand designs is subject of
our future research.

5 Conclusions

This paper introduces a new technique for designing robotic hands with control of
the allowable grasping and in-hand manipulation at a set of finite positions. Dimen-
sional kinematic synthesis with positions and velocity subspaces is presented. The
technique ensures not only the grasp positions of the fingertips, but also the in-hand
manipulation in desired directions at key contact locations. Themethod is tested with
a three-fingered hand design and the resulting twists subspaces are calculated and
compared. Future work will be devoted to optimization of the obtained hand designs.
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Synthesis of Linkages to Trace Plane Curves

Yang Liu and J. Michael McCarthy

Abstract Kempe’s universality theorem introduced in 1876 has recently been
proven to ensure that given any algebraic curve a mechanism exists that traces the
curve. In this paper, we present two methods to simplify Kempe’s linkages. One
method uses gear trains, differentials and belt drives to replace his multiplicator,
additor and translator linkages. A second method uses the Scotch yoke mechanism
and a summing belt drive to generate a mechanical Fourier series that traces the
curve. Examples are provided that demonstrate the two approaches.

1 Introduction

This paper considers the design of a mechanical device that guides a point along a
specified curve. The goal is to find amiddle ground between the synthesis of linkages
using Kempe’s construction and the synthesis of linkages using a set of points that
approximate the desired curve, called path generation or path synthesis.

Kempe’s construction [7] uses a set of standard linkages termed the Reversor,
Additor, Multiplicator, and Translator that he combines to constrain the two joint
angles of an RR planar chain so its end-point traces a specified algebraic curve.
Artobolevskii [2] presents a synthesis theory that yields simpler linkages that trace
curves up to degree four.

The approach presented in this paper increases the set of standard linkages used
for the synthesis of curve-tracing mechanisms to include gear trains to add and
multiply, and pulley and belt drives to translate values. In addition, the desired curve
is approximated by its Fourier series representation. The result is physically realizable
mechanical devices that trace complex plane curves.
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2 Literature Review

Interest in the mechanical generation of plane curves is traced by Nolle [13, 14] and
Koetsier [11, 12] to Watt’s 1784 patent that describes his approximate straight-line
linkage, and the associated parallel motion linkage, which he used in his design of a
double acting steam engine; also see Hartenberg and Denavit [4]. In his 1877 book,
Kempe [8] summarized the design theory for linkages that generate a straight line,
and about the same time presented a construction that yields a linkage to trace a given
algebraic curve, see [7].

Kempe’s construction introduces a correspondence between linkages and alge-
braic curves, which has been formalized by Jordan and Steiner [5] and Kapovich
and Millson [6], and termed Kempe’s Universality Theorem. Saxena [17] provides
a step-by-step description of this construction to obtain a linkage consisting of 48
links and 70 joints that traces a quadratic curve (Fig. 1). Gao et al. [3] showed that
the number of bars in Kempe’s construction is of order O(n4), where n is the degree
of algebraic curve. Abbott [1] tightened this bound to O(n2). However, using the
dynamic geometry software Cinderella, Kobel [10] provides a number of examples
that illustrate the complexity of the resulting linkages.

Artobolevskii [2] states that the direct application ofKempe’s construction “would
lead ... to such complicated mechanisms that in practice they would be impossible to
achieve.” He then proceeds to provide a wide range of practical designs for linkages
that generate algebraic curves through degree four and higher. For example, the
eight-bar conograph linkage shown in Fig. 2 can be adjusted to trace any quadratic
curve.

Fig. 1 The linkage that
traces the quadratic curve
presented in Saxena [17]
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Fig. 2 Artobolevskii [2]
shows that this conograph
linkage can be adjusted to
trace any quadratic plane
curve

Roth and Freudenstein [16] introduced a different approach to linkage design for
curve tracing. They used the loop equations of a four-bar linkage and nine accuracy
points along a desired curve to obtain a system of equations that defined the dimen-
sions of a linkage that guides a coupler point through the given points. Wampler
et al. [18] obtained a complete solution for these synthesis equations using polyno-
mial homotopy and showed that there are as many as 4326 distinct four-bar linkages
that pass a curve though nine accuracy points. Kim et al. [9] obtained a similar set
of synthesis equations for a six-bar linkage and showed that solutions can guide a
coupler point though 15 accuracy points. Recent research by Plecnik [15] shows that
the equations for 15-point six-bar path generation has a Bezout over 1046, and, while
individual solutions can be obtained, it is beyond our ability to compute a complete
set of solutions for a given set of 15 accuracy points.

3 Kempe’s Linkage with Gears and Pulleys

In this section, we introduce Kempe’s method to design planar linkages to trace an
algebraic curve. Then we modify his approach to simplify the resulting design.

Let f (x, y) = 0 be an algebraic curve. Kempe introduced planar serial chain
formed from two revolute joints with link lengths L1 and L2 to trace this curve.
Thus, the goal is to coordinate the angles θ and φ for this RR chain, so that x and y
are given by,

P =
{
x(θ, φ)

y(θ, φ)

}
=

{
L1 cos θ + L2 cosφ

L1 sin θ + L2 sin φ

}
, (1)
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such that
f (x(θ, φ), y(θ, φ)) = 0. (2)

Kempe shows that this equation can always be reduced to the form,

f (θ, φ) = �n
i Ai cos(riφ + siθ + α) − C = 0, (3)

where α = 0 or π/2, where the Ai and C are constants.
Rather than follow Kempe and introduce his multiplicator, additor, and translator

linkages, we use gears, differentials and pulleys to perform these operations. For each
ri and si we perform the multiplication using a set of meshing gears, which means
for n terms there are at most g = 2n gear pairs. The addition of the terms riφ + siθ
are each performed by a gear differential, thus for n terms, we have at most d = n
differentials. Finally, we assemble Kempe’s serial chain consisting of bars of lengths
Ai . We constrain this serial chain to move along the line x = C by a prismatic joint.

In order to obtain the constraint on θ and φ to trace the curve f , we connect the
gears, differentials and joints of Kempe’s serial chain using belts and pulleys. Each
pair of gears requires one belt, differential requires two belts, and the n joints of the
serial chain requires n(n + 1)/2 belts. Finally, three belts are required to drive the
RR chain. Thus, the number of belts can be estimated to be,

b = g + 2d + n(n + 1)/2 + 3. (4)

In order to demonstrate this procedure, we obtain the mechanism that traces the
cubic curve,

f (x, y) = x3 − y − 1 = 0. (5)

Let L1 = L2 = 1 be the length of theRRchain that is to trace the curve, and substitute
the resulting x(θ, φ) and y(θ, φ) into to f (x, y) to obtain,

f (θ, φ) = cos3 θ + cos3 φ + 3 cos2 θ cosφ + 3 cos2 φ cos θ − sin θ − sin φ − 1 = 0.
(6)

The powers of cosine are reduced to first degree using the identities,

cos2 θ = 1 + cos(2θ)

2
, cos3 θ = 3 cos θ + cos(3θ)

4
. (7)

Similarly, the trigonometric sum and difference identities can be used to obtain

f (θ, φ) = 9

4
cos θ + 9

4
cosφ + 1

4
cos 3θ + 1

4
cos 3φ + 3

4
cos(2θ − φ) + 3

4
cos(2θ + φ)

+3

4
cos(2φ − θ) + 3

4
cos(2φ + θ) + cos(

π

2
+ θ) + cos(

π

2
+ φ) = 1,

(8)

which has n = 10 terms.
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Table 1 Serial chain configuration

Link number Link length Phase offset (Degree) Angular velocity

A1 2.25 −60 θ

A2 2.25 60 φ

A3 0.25 −180 3θ

A4 0.25 180 3φ

A5 0.75 −180 2θ − φ

A6 0.75 −60 2θ + φ

A7 0.75 180 2φ − θ

A8 0.75 60 2φ + θ

A9 1 30 θ

A10 1 150 φ

Examining (8) we see that Kempe’s serial chain that constrains θ and φ has 10
links, which are listed in Table1. This equation requires six gear pairs and four
differentials. The number of belts are computed to be 72.

The initial configuration of the links in Kempe’s serial chain can be determined
by setting the initial position of P = (1, 0), so we have

{
1
0

}
=

{
cos θ + cosφ

sin θ + sin φ

}
. (9)

Solve this equation to obtain

θ = − 60◦, φ = 60◦,
θ = 60◦, φ = −60◦. (10)

Both solutions work, so we pick the first solution. This defines each of the angles of
the links in the Kempe’s serial chain, see Table1. This mechanical system traces the
algebraic curve when the end of Kempe’s serial chain is constrained to move along
the line x = 1 by a prismatic joint, Fig. 3.

In order to compare our linkage toKempe’s construction,we count the components
of elementary versions of Kempe’s additor, multiplicator and translator linkages.
The additor has six bars and is required for each addition including the constants.
A multiplication by k requires a multiplicator with at least m(k) = 2(k − 2) + 6
bars. We model the translator as a parallelogram linkage that requires three bars for
each belt used in our design, which means t = 3b. Therefore, in order to estimate
Kempe’s linkage, we note that (8), requires a = 6 additors, m(2) = 4 multiplicators
with k = 2, and m(3) = 2 with k = 3, thus

p = 6a + m(2)6 + m(3)8 + 3b = 36 + 24 + 16 + 216 = 292. (11)
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A10
A3A4A5
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A7

A6

Fig. 3 Gear pairs, differentials and belt drives are used to provide the multiplications, additions
and transmission necessary to constrain the RR chain to trace this curve

Thus, we can estimate Kempe’s construction to require at least 292 parts for this
example.

If we count the individual parts for our method, we have two gears per multi-
plication and four gears per addition, and two pulleys for each belt. Thus, the part
count is

p = 2g + 4d + 2b + b = 12 + 15 + 144 + 72 = 244. (12)

This comparison shows that the primary difference arises from the complexity of the
multiplicator linkage. Our method simplifies this further by using the sizes of pulleys
to perform the multiplication. This also shows the dominant role that the translator
linkages play in the part count of Kempe’s designs. It is our expectation that effective
use of gears, differentials, belts and pulleys can simplify the application of Kempe’s
results to a wide range of algebraic curves.

4 Fourier Series Method

In this section, we provide another approach to the design of a mechanism to trace
a plane curve. We assume the curve can be parameterized, then we compute its
Fourier decomposition for each component function. We use an array of Scotch
yoke mechanisms to generate individual terms and use a belt to add the terms of the
Fourier series.
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Fig. 4 The parameterized
heart curve has a finite
Fourier expansion for each
coordinate function
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In order to demonstrate this procedure, we obtain a mechanism that traces the
heart curve (Fig. 4),

{
x
y

}
=

{
16 sin3 t

13 cos t − 5 cos 2t − 2 cos 3t − cos 4t

}
. (13)

Now reduce powers of sine to first degree using the identity,

sin3 θ = 3 sin θ − sin 3θ

4
(14)

The result is the equation,

{
x
y

}
=

{
12 sin t − 4 sin 3t

13 cos t − 5 cos 2t − 2 cos 3t − cos 4t

}
. (15)

Reduceminus sign using shift angle properties of trigonometric function, and convert
sine terms into cosine terms to obtain

{
x
y

}
=

{
12 cos(−π

2 + t) + 4 cos(−3π
2 + 3t)

13 cos t + 5 cos(π + 2t) + 2 cos(π + 3t) + cos(π + 4t)

}
. (16)

Themechanical system that traces this heart curve is obtained by using two Scotch
yokemechanisms for the two terms of the x coordinate, and four of thesemechanisms
for the y coordinate. These terms are summed using belts. See Fig. 5.

This mechanism provides another approach to the design of mechanisms to trace
a plane curve. We have also used this Fourier series approach to design a curve that
fits an image generated by an array of points.
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Fig. 5 Each Scotch yoke mechanism computes a term in the Fourier expansion of the x and y
coordinate functions for the heart curve. There are two terms for x component and four terms for
the y component

5 Conclusion

In this paper, we present two ways to assemble a mechanical system to trace plane
curves. The first method uses Kempe’s universality theorem that guarantees a mech-
anism exists for any algebraic plane curve. We use gear pairs, differentials and belt
drives to simplify the resulting device. The secondmethod uses a mechanical Fourier
series constructed from Scotch yoke mechanisms to generate a parametrized plane
curve. Kempe’s formulation provides an exact representation of algebraic curves,
while the Fourier formulation is exact for certain parameterized curves. These are
early results in the formulation of a design methodology for mechanical systems that
trace arbitrary plane curves.
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Subject-Specific Model of Knee Natural
Motion: A Non-invasive Approach

Michele Conconi, Nicola Sancisi and Vincenzo Parenti-Castelli

Abstract The capability tomodel human joint motion is a fundamental step towards
the definition of effective treatments and medical devices, with an increasing request
to adapt the devised models to the specificity of each subject. We present a new
approach for the definition of subject-specific models of the knee natural motion.
The approach is the result of a combination of two different techniques and exploits
the advantages of both. It relays upon non invasive measurements based on which
a kinematic model of the natural motion is built, suitable to be extended to the
definition of static and dynamic models. Comparison of the model outcomes with in
vitro measurements performed on one specimen shows promising results supporting
the proposed approach.

1 Introduction

The natural motion of the knee is the motion of the joint in unloaded conditions.
It is the joint starting condition before loads are applied, thus contributing in the
determination of the tibio-femoral relative position in loaded conditions. For this
reason, the knowledge of the natural motion is useful for all applications which
aim at replicating or restoring the natural behaviour of the knee, such as lower-limb
modelling, surgical planning and prosthesis design.

The modelling of the joint natural motion can be based on mean data taken from
the literature, thus providing a representation of an average joint [3, 17, 24].However,
there is an increasing request of subject-specific models that would allow personal-
ization of treatments and prosthesis geometry to the patient needs. In these cases, the
subject-specific motion would be required.
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An accurate estimation of the joint motion is difficult to obtain in vivo [16]:
non-invasive techniques could be inaccurate (skin-markers) or too complicated (flu-
oroscopy) for standard practice, while more invasive techniques (bone-pins) are not
acceptable in most cases. Thus, new solutions are needed to predict the joint motion
with a good accuracy, based on non-invasive measurements.

In this study a new approach is presented which exploits two techniques with
complementary advantages for the modelling of the knee natural motion. The first
technique (T1), was originally developed and validated for the ankle joint [4] and
is here tested on the knee. T1 predicts the joint motion by optimizing the articular
load distribution, assuming this condition as representative of the joint behaviour
in physiological working conditions. T1 only requires a 3D representation of the
articular surfaces that canbeobtained fromstandard in vivo images of the articulation.
It is however not suitable for the characterization of the joint behaviour under generic
working conditions.

The second technique (T2) models the knee as a one-degree-of-freedom (1-Dof)
spatial mechanism, featuring the two articular contacts and the three isometric fibres
of the anterior cruciate (ACL), posterior cruciate (PCL) and medial collateral (MCL)
ligaments [17, 18]. T2 was very accurate to replicate the natural motion of specimens
over the full flexion arc and can be easily extended to define more complex static and
dynamic models that can take into account different loading conditions [22, 23], but
a reference motion is needed to adjust the model parameters.

In this study we want to exploit the advantages of both techniques by combining
them into a new approach (T1+T2) which allows the definition of subject-specific
models of the knee (as T2 does) from non invasive observations of its natural motion
(via T1).

The aim of this work is twofold: first, to evaluate the application of T1 to the knee
articulation and, second, to test the applicability of T1+T2 on the same joint. To
this purpose, a leg specimen is analyzed and the knee joint motion is obtained by T1
starting from magnetic resonance imaging (MRI) data. The motion resulting from
T1, together with additional information about the anatomy of the joint specimen
also taken from MRI, is used as an input for the definition of T2. Finally, the results
of both T1 and T1+T2 are validated against in vitro experimental measurements of
the joint natural motion.

2 Materials and Methods

2.1 T1 Technique

Biologic tissues are able to modify their structure in response to the mechanical
environment to which they are exposed [2, 6, 12, 19]. Experimental evidence from
the literature suggests that the aimof this process is themechanical optimization of the
tissues (functional adaptation). In particular, this process produces articular surfaces
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that, in physiological working conditions, optimize the contact load distribution or,
equivalently, maximize the joint congruence [8, 13].

It is thus possible to identify the adapted motion as the envelope of the maximum
congruence configurations (i.e., positions and orientations of all bones constituting
the joint). In [5] a measure of joint congruence was proposed, based on the Winkler
elastic foundation contact model [14]. This measure makes it possible to estimate the
peak-pressure to resultant-force ratio from the geometry of the articulating surfaces at
a given configuration, i.e., from a purely geometrical perspective. As a consequence,
the adapted motion can be obtained starting solely from the knowledge of the shape
of the articular surfaces.

As discussed in [4], the adapted motion should also keep the isometry of the
joint main ligaments. This condition is verified during the natural motion, which for
this reason can be taken as a good approximation of the adapted one. In the same
study, T1 was used to determine the adapted motion of ten human ankles, providing
good agreement with experimental measurements of the natural motion of the same
specimens. Based on these results, T1 is here applied to determine the knee natural
motion.

2.2 T2 Technique

Many studies showed that the natural motion of the tibia with respect to the femur is
represented by a complex 1-Dof spatial path, i.e. the relative position and orientation
of the tibia and femur is a function of a single motion parameter, for instance the
flexion angle [17, 24]. Moreover, some fibres of the ACL, PCL and MCL proved to
be almost isometric during this motion. From a mechanical point of view, this means
that the natural motion can be reproduced by an appropriate 1-Dof mechanism.
Three-dimensional parallel mechanisms were thus defined based on this concept.
One of them [17, 18] featured three rigid links representing the ACL, PCL and
MCL, while the contacts between tibial and femoral condyles were replaced by the
contacts between two pairs of spheres, or, equivalently, by two rigid links connecting
the sphere centres at each pair. The result was a 1-Dof 5-5 spatial parallel mechanism,
which features two rigid bodies (the femur and tibia) interconnected by 5 binary links.

In previous studies, the initial geometry of the mechanism, namely the attaching
points and lengths of the five rigid links was determined from knee specimens. This
initial geometry was then optimized in order to best-fit the experimental natural
motion of the corresponding specimens [22]. This approach has been extensively
validated with very good agreement between model outcomes and corresponding
experimental natural motion [17]. The same approach is applied here, but the motion
obtained by T1 is used as a reference for the model definition instead of the subject
experimental motion.
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2.3 Data Acquisition and Processing

A single fresh-frozen lower-limb specimen from a donor (female, 63 years old,
weight 68kg, height 158cm) was analyzed. The study was approved by the donor
organization, which provided written consent. A surgeon declared the leg free from
anatomical defects and removed the forefoot and the soft tissues external to the joint,
leaving the knee joint capsule and ligaments intact.

A stereophotogrammetric system (Vicon Motion Systems Ltd) was used to mea-
sure the tibia and femur relative motion by means of two trackers directly fixed to the
bones, thus introducing no soft tissue artefacts (Fig. 1a). The specimen was mounted
on a test rig for in vitro analysis of the knee joint behaviour [7] which also allows
measurement of the femur-tibia relative motion when no external forces are applied.
In this condition, the joint is guided only by the knee passive structures, namely liga-
ments and contacts, and thus the natural motion can be registered. This experimental
natural motion was used only for validation purposes, but it was not used for model
definition.

A MRI of the knee was acquired using an isotropic three-dimensional fast spin-
echo pulse sequence T2-weighted (3D-FSE-CUBE-T2)within a 1.5T scanner. Artic-
ular surfaces and ligament insertions were then manually segmented using the free
open-source software Medical Imaging Interaction Toolkit (MITK), obtaining 3D
models of the femur and tibia including bone, cartilage and ligaments (Fig. 1b). In
the same way, anatomical reperi were determined on the femur and tibia models,
and were used to build anatomical reference systems [22] on both bones (Fig. 2).

Fig. 1 a Stereophotogrammetric system for the measure of the bone relative motion. bReconstruc-
tion of knee anatomy from MRI
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Fig. 2 Anatomical reference systems for the femur a and the tibia b. The tibia anatomical frame
has origin in the tibia centre, i.e., the deepest point in the sulcus between the medial and lateral
tibial intercondylar tubercles; x-axis orthogonal to the plane defined by the two malleoli and the
tibia centre, anteriorly directed; y-axis directed from the midpoint between the malleoli to the tibia
centre; z-axis as a consequence, according to the right hand rule. The femur anatomical frame has
origin in the midpoint between the lateral and medial epicondyles; x-axis orthogonal to the plane
defined by the two epicondyles and the hip joint centre, anteriorly directed; y-axis directed from
the origin to the hip joint centre; z-axis as a consequence, according to the right hand rule

The relative motion of these reference systems was then expressed by means of a
standard convention [10], both for the computed and experimental motions.

The anatomical 3D models of the femur and tibia, comprehensive of both bone
and articular cartilage, were used within T1 for the evaluation of the knee joint
congruence. Flexion angle was imposed and the other five motion components were
obtained by maximizing the congruence; the procedure was repeated over the full
flexion arc [4].

T2 definition was then performed based on the T1 motion and on the 3D femur
and tibia models. The articular surfaces at the femur condyles and tibia plateaus
used for congruence evaluation in T1 were approximated by best-fitting spheres
in T2, and were then substituted by equivalent rigid links connecting the sphere
centres. The most isometric fascicles of the ACL, PCL, MCL (i.e., the anteromedial,
posteromedial, anterior fascicle respectively) were identified within the segmented
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ligament insertion areas [11]. The ligament isometric fibres were obtained as the
pair of points (one on the femur, the other on the tibia insertion areas of isometric
fascicles) that showed the minimum change in distance during the motion obtained
by T1. The so-determined isometric fibres were then substituted by three rigid links.
Finally, these preliminary mechanism parameters were adjusted by an optimization
procedure [22] to best-fit the T1 motion. The final mechanism parameters were
constrained to remain inside the experimental insertion areas and to have amaximum
distance of 2mm with respect to the preliminary parameters.

3 Results

The relative motion of the tibia and femur identified by T1 was consistent with the
joint constraints. All ligaments indeed showed very small length changes during T1
motion: isometric fibre length excursions were smaller than 4% of the relevant fibre
maximum length for the ACL, PCL, MCL and the lateral collateral ligament (LCL),
in agreement with what reported in the literature [1]. The subsequent application of
T2 made the ACL, PCL, MCL perfectly isometric, while the LCL showed a length
change smaller than 2%. Figure3 shows the add-abduction (AA), the in-external
rotation (IE) and the antero-posterior (AP), proximo-distal (PD) and medio-lateral
(ML) translation of the tibia, plotted versus the knee flexion angle as experimentally
measured and computed by T1 and T1+T2.

In Table1, the mean absolute errors (MAE) between T1 and experimental natural
motions, between T1+T2 and T1 motions and between T1+T2 and experimental
natural motions are presented.

4 Discussion

The tibio-femoral motion predicted by the combination of the two techniques T1 and
T2 well replicates the experimental data. There are however some differences in the
IE rotation andAP translation, forwhich theMAEsbetween themodel and the natural
motion are about 12 and 4.5mm, respectively. Despite these quantitative differences,
computed and experimental curves show a very similar trend, in particular for the
IE rotations which differ essentially by a constant offset. The typical screw-home
motion of the knee is therefore correctly predicted by the model, but at each flexion
angle the configuration of the tibia results less internally rotated than in the natural
motion.

It is worth mentioning that, despite ligaments and contacts do guide the knee nat-
ural motion on a 1-Dof spatial path, the IE rotation is less constrained than the other
motion components. As a result, the knee shows the smallest stiffness about the IE
axis [9, 15], which is thus the most sensitive among the knee motion components
both for experimental measure and for numerical models. For what concern the AP
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Fig. 3 Tibio-femoral relative motion as resulting from T1 (red dashed), T1+T2 (blue continue)
and experimental natural motion (black dotted)

Table 1 MAE for each motion component between T1 and experimental motion, between T1+T2
and T1 motion and between T1+T2 and experimental motion

AA [◦] IE [◦] AP [mm] PD [mm] ML [mm]

T1 versus exp. 0.90 12.24 4.55 0.32 1.22

T1+T2 versus T1 0.54 0.64 0.34 0.28 0.26

T1+T2 versus exp. 0.79 12.43 4.55 0.33 1.19

translations, variations in the IE rotation of the tibia are associated with AP displace-
ments of the same bone. In fact, the tibiofemoral motion is close to a spherical one
[21], whose centre does not coincidewith the centre of the tibial anatomical reference
system. As a result, an IE rotation of the tibia is associated with a translation of the
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origin of its reference system,mainly along theAP direction. It is thus reasonable that
differences in the IE rotation are associated with differences in the AP translation.

Despite the abovementioned differences, both themotion computed by T1 and the
experimental natural one respects the ligament isometry, producing length changes
smaller than 4 and 5% respectively for the ACL, PCL, MCL and LCL. This result
supports the analogy between adapted and natural motion, as validated for the ankle
[4] and here hypothesized for the knee. It should also be stressed that only the
ligament isometry during the T1 motion made it possible the subsequent application
of T2. In fact, in general it is not possible to define a 5-5 mechanism that both follows
a generic prescribed path and respects the joint anatomical constraints at the same
time. A wider validation of T1 is therefore necessary in order to fully understand the
relation between the natural and adapted motion of the knee joint, in terms of both
the differences and analogies in terms of motion and ligament isometric behaviour
shown in this study.

A similar combination of T1 and T2was investigated in [20]. In that case however,
only CT images of the knee were available, thus providing poor accuracy in the
reconstruction of soft tissues that introduced some noise in the motion computed by
T1. These limitations were overcome in this study by means of MRI of the articular
surfaces. Moreover, the use of MRI makes the proposed approach less invasive with
respect to CT images, not exposing the patient to ionizing radiation, and therefore
more suitable for the in vivo clinical application.

5 Conclusion

The aim of this studywas to test a new approach for the generation of subject-specific
model of the natural motion of the knee joint based on non invasive measurements.
This approach relays on two techniques defined as T1 and T2 that contribute to
determine the final model. The advantages of both techniques are exploited: T1
provides an evaluation of the knee natural motion by non invasive measurements of
the articular surfaces; then, based on this motion, T2 provides a mechanism which
complies with the constraints imposed by the ligaments and articular contacts, and
that can be easily extended to define more complex static and dynamic models.

The motion resulting from T1 fulfils the ligament isometry typical of the knee
natural motion, thus making it possible the subsequent application of T2. The results
of the combination of T1 and T2 are in good agreement with experimental data,
although some differences were found.

Future work is therefore in progress on other specimens in order to further vali-
date the proposed approach and to investigate whether the observed differences are
common to all the knee joints, and in case to give a solid explanation of them.
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An Approach for Bone Pose Estimation via
Three External Ellipsoid Pressure Points

Nikolas Bufe, Ansgar Heinemann, Peter Köhler and Andrés Kecskeméthy

Abstract The accurate reproduction of bone motion during normal gait using non-
invasive external sensors is still an open issue: Using skin markers may lead to large
artifacts due to skin sliding, while using newer technologies such as fluoroscopy
allows only for short exposure in small regions due to radiation limits, and bone pins
used in the past are today prohibited due to the risk of inflammations and pain. This
paper presents a simple method for noninvasive bone motion estimation based on
palpating prominent bone landmarks via tracked pressure foil planes, where three
such landmarks suffice for bone pose estimation. Its mathematical formulation cor-
responds to determining the pose of a rigid body carrying three ellipsoids when the
“pressure points”, i.e. the perpendicular feet of the extremal distance points of the
ellipsoids on the three pressure foil planes are given. In a previous paper, we showed
that the planar case is akin to the 3PPR manipulator, but yielding instead of two
solutions up to 64 complex and (up to now found) 48 real solutions. In this paper we
treat the 3D case, which is solved numerically, and validate the concept by experi-
mental measurements. It is shown that the method is numerically stable, yielding an
accuracy of 0.8◦ for flexion/extension and 1.2◦ for abduction/adduction motion of
the lower leg.
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1 Introduction

Bone motion tracking from external measurements is an important task in biome-
chanics, as it is indispensable for model validation and patient-specific objective
diagnoses. Currently, most bone tracking systems use markers attached to the skin
[9]. However, the skin moves with respect to the underlying bones during motion
causing an error known as “soft tissue artifact” (STA). STAs can be substantial (up to
3cm), as shown in comparisons with bone-pin measurements [8, 12, 17] and fluo-
roscopy [3, 7, 18]. Some authors have tried to minimize this error by using point
clusters [7], but there still remains a systematic error when using skin markers for
bone kinematics reconstruction [15]. Thus the problem of artifact-free noninvasive
bone motion estimation during gait has remained unsolved.

This paper presents a novel approach for noninvasive bone motion estimation
based on tracked external palpation of pressure points of prominent bone landmarks
via pressure foils. The concept was first proposed in [13], and a numerical analysis
of its planar counterpart was discussed in [5]. Later, the 2D case was formulated in
[6] via Gröbner bases, and it was found that the general 2D case with three rigidly
connected ellipses for which their “pressure points”, i.e. the perpendicular feet of the
ellipse extremal distance points (minimal ormaximal) on the pressure lines are given,
yields 64 complex solutions, for which up to now a case was found with 48 different
real solutions [6]. This proves that (1) the geometric problem is solvable, but (2) that
the solution is non-trivial, yielding more solutions than the general Steward-Gough
platform (which maximally has 40 solutions). However, only one solution, namely
the one bringing the bone landmarks as close as possible to the pressure points, is of
interest. The present paper extends this solution to 3D.

minimal distance (unknown)

tibia

fibula

Kb
pressure sensor

rigid body

ellipsoid

pressure point

head of
fibula

medial
malleolus

lateral
malleolus

Fig. 1 Pose detection of a rigid-body with three pressure points on tracked pressure foil planes
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Figure1 shows the basic concept of the approach using the human shank as an
example. Three pressure points, which are more or less rigid with respect to the tibia,
can be easily palpated at the bone landmarks: head of fibula as well as the lateral
and medial malleolus. The contact-relevant regions of the bone landmarks can be
locally approximated by ellipsoids which are rigidly attached to a body-fixed frame
Kb. However, while the pressure points are known, the actual distances between the
pressure points and the bone landmarks (representing soft tissue) are unknown. The
geometric problem is to find the Kb poses fulfilling these conditions.

2 Formulation of the Constitutive Equations

Assume that the rigid body is palpable as an array of three rigid ellipsoids E i i =
1, . . . , 3 which are rigidly attached to a body-fixed frameKb (Fig. 2). The rigid-body
pose is described by the rotation matrix R transforming body-fixed coordinates to
coordinates in the inertial frame K0, and the position rb from the origin of K0 to the
origin of Kb in coordinates of Kb. Each ellipsoid has a local coordinate frame KE i

rigidly attached to it, whose position relative to the body-fixed frame Kb is given
akin to the previous description by the vector Δr̄ i and the rotation matrix Ri . The
surface of each ellipsoid E i with semi-principal axes of length ai , bi and ci can be
parameterized with respect to its local frame KE i

as

E i (ui , vi ) =
⎡
⎣
ai cos(ui ) cos(vi )
bi cos(ui ) sin(vi )

ci sin(ui )

⎤
⎦ (1)

where −π/2 ≤ ui ≤ π/2 and −π ≤ vi ≤ π .
Likely, let the pose of each pressure foil plane Pi be defined by a plane-fixed

frame KPi with in-plane orthonormal vectors uxi and uyi . For an arbitrary point r ti
on the surface of E i it holds

r ti = rb + RΔr̄ i + RRi E i (ui , vi ) . (2)

Let r ti be the extremal ellipsoid point, i.e. with minimal or maximal distance to the
pressure foil plane. Then this point must fulfill two sets of constraints:

(1) [Gradient orthogonality] For the gradient of E i at point r ti ,

nE i
= RRi

(
∂E i

∂ui
(ui , vi ) × ∂E i

∂vi
(ui , vi )

)
. (3)
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Fig. 2 Definition of the
pressure point for a generic
ellipsoid

KPi

K0

Kb

KE i

Ri

Δ r̄i

rpi

nE idi

rti

R

rb

uxi

uyi

: given

: sought

: dependent

it must hold
gi,x : nTE i

uxi = 0 (4)

gi,y : nTE i
u yi = 0 . (5)

(2) [Distance orthogonality] Also, the distance vector from the measured pressure
point r pi on plane Pi to point r ti must be normal to the plane Pi :

di,x : (r ti − r pi )
T uxi = 0 (6)

di,y : (r ti − r pi )
T uyi = 0 . (7)

Collecting all equations for the three ellipsoids gives a system of 12 scalar con-
straint equations for the 12 unknowns

q = [ rb Φ u1 v1 u2 v2 u3 v3 ]T , (8)

where Φ are the rotation parameters defining the orientation of the rigid body frame
Kb, taken as roll-pitch-yaw angles in the present case.

As mentioned in the introduction, the general system of Eqs. (4)–(7) will yield a
plurality of solutions, so that a direct numerical root solving of these equations is not
be feasible due to the poor conditioning and the closeness of solutions with respect
to each other. Thus, instead, the problem is solved as an unconstrained optimization
problemwith a cost function composed of theweighted sum of the squared constraint
values and the squared distances d2

i = ‖r ti − r pi‖2

F(q) = c1

3∑
i=1

{
g2i,x + g2i,y

} + c2

3∑
i=1

{
d2
i,x + d2

i,y

} + c3

3∑
i=1

di
2; (9)

where the weights ci are defined such as to balance between preciseness (first two
terms) and feasibility (di ), and also to homogenize units among terms.
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3 Error Analysis

The procedure described above consists of four basic blocks (Fig. 3), each contribut-
ing to the overall error of the bone pose estimation algorithm. Here we discuss the
individual error sources and transmissions. For marker tracking (Block 1), we used
anA.R.T. camera system [2], yielding a resolution error below 0.4mm for the camera
volume used. For the pressure foil (Block 2), we used a 27.9 × 27.9mm Tekscan sen-
sor 5027 with 44 × 44 = 1936 cells, yielding a resolution of±0.6mm [1]. Each cell
reports a binarypressure pB from0 to255which is scaled to a physical pressure range,
in our case 0–34.5 N/cm2. The pressure center (Block 3) is computed at each time
step by five basic operations done using computer vision software (OpenCV, [4]):
(1) smoothing the data using cv::GaussianBlur with a Gaussian kernel size
K = 9 × 9 pixels and a standard deviation of σ = 2, (2) determining the maximum
binary pressure value pB

max over all cells (function cv::minMaxLoc), (3) zeroing
all cells with pressure below (pB

max − ΔpB),ΔpB being the “thickness” of the highest
pressure plateau (similar to amesa in themountains), in the present case chosen as 30;
(4) determining the contours of all remaining areas (using cv::findContours)
(seeFig. 4a), and (5) computing the center of pressure of the largest contour inner area.

The resolution error of block 3 can only be determined together with block 2. To
this end, a pressure sensor foil was placed on a flat surface whose pose was tracked by
the A.R.T. camera system w.r.t. the inertial frame K0. A thin foam layer was placed
on top of the pressure foil in order to obtain a larger contact area, emulating skin-
on-bone effects. Finally, a metal sphere was dragged along the foam using a KUKA
KR6/2 robot, so that the vector sr p remained constant during measurement (Fig. 4).
The pose of the body-fixed frame KS of the sphere was tracked with markers. The
position vector sr p was determined by an initial calibration. The resulting coordinates
of the center of pressure are displayed in Fig. 5. One can see that the total error is
in the order of the pressure foil resolution of ±0.2mm, showing that the pressure
contour algorithm contributes only marginally to the pressure point error.

Block 1
marker tracking

Block 2
sensor foil

Block 3
pressure center

Block 4
SE(3) numerics

Fig. 3 Basic blocks for bone pose determination from pressure foil measurements

(a) (b)

Fig. 4 a Peak pressure plateau with contour and b device for testing the pressure point
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Fig. 5 Comparison between prescribed and computed pressure points

For error analysis of the fourth block, a simulation of bone pose estimation using
the equations ofSect. 2was carriedoutwith anoisy input signal. For the solutionof the
equations the subroutine LMDIF of the numerical library MINPACK [11] was used.
Starting from the known solution for noise-free data as initial guess, (a) the poses
of each sensor were overlaid with Gaussian white noise with a signal-to-noise ratio
of 32 and 48 dB for position rPi

and orientationKPi respectively, which correspond
to a deviation of approximately 0.1 mm in position and Δα = 1◦ in orientation, and
(b) the relative position Pi

r pi of the pressure points on the sensors were overlaid
with Gaussian white noise with a signal-to-noise ratio of 12 dB which corresponds
approximately to theTekscan foil cell spacing of 0.6mm. For each of these variations,
the new pose was computed by re-applying the optimization run. The deviations of
the solutions were regarded as first-order variations Δr for translation and ΔR for
rotations. Both were then coupled using the concept of the characteristic length κ

[16], yielding the equivalent translational change

Δs = ‖Δr + κ · Δϕ‖ with κ =
√
2
2max(1 − cos(Δα)) ,

where 
max is the distance between the rigid body center Kb to the furthest ellipsoid
center, giving in the present case κ = 3.41. By applying the noisy data as the input
and computing the pose as the output, the relative error magnification for 7000 data
points was computed. The result is shown in Fig. 6. It can be seen that for both cases
the order of the output remains in the same order of magnitude as the input noise,
and that there is no substantial amplification of errors in this block.
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4 Experimental Verification

The approach has been tested in a self-experiment for the motion of the lower leg.
The study was approved by the ethical committee at the authors’ university. The test
subject was a male of age 27 and was sitting on a chair and lifting and swaying
the lower leg in flexion/extension (+105◦ – +135◦) and adduction/abduction (−15◦
– +5◦), respectively. The three ellipsoids where fitted manually to a CT scan of a
typical tibia, and the positions of the ellipsoids in the tibia where determined by
external measurements on the test persons with rulers. Three Tekscan pressure foil
sensors 5027 were slightly (≈8 N/cm2) pressed on the skin at the landmarks head
of fibula, lateral malleolus and medial malleolus (Figs. 1 and 7a, b). At the same
time, a rail with reflective markers was tightly fixed on the anterior crest of the tibia
by straps, so that near-zero relative motion between the rail and the tibia can be
assumed (Fig. 7c) [19], and the rail be taken as representative for bone reference
motion. Figure8 shows the difference between pressure foil bone pose estimator and
reference rail pose. For flexion/extension and adduction/abduction, the differences
between the determined angle and the reference angle are below ±0.4◦ and ±0.6◦,
respectively. As the rail is not perfectly rigidly attached to the bone, even these
discrepancies could emanate from the relative rail/bone motion, as the undulating
discrepancy suggests. Thus the proposed approach seems to yield accurate results
for bone motion tracking eliminating skin artifacts. This is remarkable, as knee STAs
are known to be especially significant in the initial stage of a sit-to-stand cycle [14].

Fig. 7 Sensor placement on shank, rail on shin for reference and bone geometry from CT scan
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5 Conclusions and Outlook

The paper presents a novel method for bone motion estimation using tracked pres-
sure foils, which consists in determining the pose of a rigid body to which three
rigid ellipsoids are attached when the “pressure points”, i.e. the perpendicular feet
of the minimal distance points of the ellipsoids on the three pressure foil planes,
are given. The geometrical problem has a variety of solutions [6], from which the
most feasible one is determined by optimization. The feasibility of the approach is
verified by experiments, leading to an error of approximately ±0.4◦ on the tibia for
flexion/extension and ±0.6◦ for abduction/adduction motion of the shank. For more
precise estimators, sensors with higher resolution and smaller contact areas could
be used. Moreover, the shape of the ellipsoids could be determined more precisely
by slightly rotating the pressure foil sensor on the landmarks and fitting suitable
ellipsoids to these palpating motions. By simplifying all ellipsoids to spheres and
assuming that all three planes are perpendicular, the pose analysis problem becomes
similar to the 3PPPS parallel manipulator presented in [10], which is shown to have
exactly eight solutions. However, in the general three ellipsoid problem, the number
of solutions is expected to be much larger, as already in the special planar case 64
complex solutions were found [6]. Also in this case, however, optimization may lead
to a unique feasible solution. These topics could be handled in further research.
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Robot Dynamics Constraint for Inverse
Kinematics

Enrico Mingo Hoffman, Alessio Rocchi, Nikos G. Tsagarakis
and Darwin G. Caldwell

Abstract Inverse Kinematics is a fundamental tool in Cartesian/Operational Space
control. Recent approaches make use of Quadratic Programming Optimization to
obtain desired joint velocities or accelerations from Cartesian references. QP based
IK also permits to specify constraints to affect the solution. Constraints are funda-
mental and necessary when working with real robotic hardware since they prevent
possible damages: joint limits, self collision avoidance and joint velocity limits are
examples of such constraints. In this workwe present a constraint to take into account
joint torque limits based on the robot dynamics and force/torque sensor measure-
ments. Despite the robot dynamics can be naturally expressed at acceleration level,
our main goal is to specify this constraint in a resolved motion rate control IK. For
this reason we formulate it also at the velocity level to be used in any IK QP based
scheme. Hence, this formulation allows to generate dynamically feasible motions of
the robot even in simple IK velocity based schemes. We apply this constraint to our
humanoid robot COMAN while performing a Cartesian task which requires high
torques in some joints. The constraint is developed inside the OpenSoT library.

1 Introduction

Inverse Kinematics (IK) is a fundamental step in robots control since it maps high
level Cartesian commands into joint space commands. This step is in general highly
non-linear, for this reason linearization through the robot Jacobian has been proposed
and it is commonly used (named Differential IK):
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ẋ = J(q)q̇ (1)

where q̇ are joint space velocities, the Jacobian J (we will skip the dependency on
the actual configuration q from now on) is expressed from a certain base link to a
certain distal link, and operational space velocities ẋ of the distal link are expressed
in the base link reference frame. A general and commonly used solution, for the
redundant case of (1), is based on the Jacobian pseudo-inverse J†:

q̇d = J†ẋd + (
I − J†J

)
q̇0 (2)

where q̇0 is an arbitrary joint space velocity.
Recent approaches make use of Quadratic Programming (QP) Optimization that

makes also possible to specify linear constraints for the IK to affect the solution:

q̇d = argmin
q̇

∥∥Jnq̇ − ẋn,d
∥∥ + λ ‖q̇‖

s.t. A1q̇ = A1q̇1
...

An−1q̇ = An−1q̇n−1

Ac,1q̇ ≤ bc,1
...

Ac,nq̇ ≤ bc,n

(3)

where A matrices and b vectors are constraints. In (3), priorities are taken into
account considering the previous solutions q̇i , i < n and constraints of the type
Ai q̇ = Ai q̇i , ∀i < n, so that the optimality of all higher priority tasks is not changed
by the current solution [5]. The second term in the cost function of (3) permits to
handle kinematics singularities in order to avoid high joint velocities [6]. A similar
structure can be used to solve the IK problem at the acceleration level [9, 11].

Many tasks and constraints have been presented in literature for the framework
depicted in (3), examples are: joint limits, joint velocity limits, self collision avoid-
ance [4], Cartesian velocity limits, minimum joint acceleration [2], Capture Point
[8] and Momentum Rate control [3] for humanoid robot balancing.

In this work, a fundamental constraint for the IK step is presented: the robot
dynamics. The computed velocities/accelerations in (3) may generate unfeasible
motions, in terms of high joint torques, causing the damage of the robot. For this
reason it is important to constrain the generated joint torques during the task execu-
tion. Despite this constraint is commonly used in resolved acceleration control IK
schemes, it is not taken into account in simpler resolved rate control ones. The main
goal of this work is to present the torque limit constraint expressed both at the accel-
eration and velocity level so that it can be applied to any IK scheme. Furthermore
we use this constraint in a stack implementing a high level task in the simulation of
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a complex humanoid robot. This work follows the basic idea, presented in [2], to
have a velocity control scheme that shares (approximately) the characteristics of an
acceleration based scheme.

2 OpenSoT

OpenSoT is a framework developed at the Istituto Italiano di Tecnologia and aimed
to control robots in Operational space [10]. OpenSoT implements the idea of decou-
pling atomic tasks/constraints descriptions and solvers to execute multiple tasks and
achieve complex motion behaviors.

It employs a solver, based on the formulation in (3), implementing a cascade
of QP problems, and a set of tasks and constraints in velocity space in order to
solve a generic hierarchical inverse kinematics problem on a floating or fixed base
robot. The IK solver consists of a state machine that hides all the complexity of
the underneath QP solver based on a state-of-art library in QP resolution using the
active set approach: qpOASES [1]. This yields the following features that make the
implementation of OpenSoT unique and attractive:

• Demonstrates high modularity through the separation of task descriptions, control
schemes and solvers maximizing customization, flexibility and expandability.

• Provides user friendly interfaces for defining tasks, constraints and solvers to pro-
mote integration and cooperation in the emerging field of whole-body hierarchical
control schemes.

• Demonstrates computation efficiency to allow for real time performance imple-
mentations.

• Allows ease of use and application with arbitrary robots through the Universal and
Semantic Robotic Description Formats (URDF and SRDF).

The architecture of OpenSoT encourages collaboration and helps integration and
code maintenance.1 With all this in mind, we developed a library of tasks and con-
straints and the robot dynamics constraint is part of the latter.

3 Robot Dynamics Constraint

One of the fundamental problem in IK is that some assigned Cartesian reference
trajectories might be dynamically unfeasible by the robot. This means that the robot
might get damaged since the required joint torques for a certain motion could be
too high. Various techniques have been presented in the past to avoid this problem,

1The OpenSoT library is open-source and downloadable at https://github.com/robotology-
playground/OpenSoT.

https://github.com/robotology-playground/OpenSoT
https://github.com/robotology-playground/OpenSoT
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one of the most famous is the Dynamic Filter [12]. This technique basically uses an
Inverse Dynamics step to filter the generated joint accelerations from the IK solution.

In this work we formulate the Dynamic Filter as a constraint. The dynamics of
the robot can be written as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − JTc fc (4)

where M(q) is the joint space inertia matrix, C(q, q̇) takes into account centrifugal
and Coriolis terms,G(q) are the gravity torques, τ are the joint torques and JTc fc are
the torques due to contacts (that we measure from the force/torque sensors).

Considering an acceleration level control and taking into account that each joint
can provide

[
τ , τ

]
, it is possible to write the constraint as:

D(q, q̇) + τ ≤ M(q)q̈ ≤ D(q, q̇) + τ (5)

with D(q, q̇, fc) = − (C(q, q̇)q̇ + G(q)) − JTc fc.
Despite the constraint is naturally described at the acceleration level, in this work

we are considering velocity level control, so it is possible to approximate the joint
acceleration q̈ as:

q̈ � q̇∗ − q̇
ΔT

(6)

then the constraint can be rewritten at the velocity level as:

ΔT
(
D(q, q̇) + τ

) + M(q)q̇ ≤ M(q)q̇∗ ≤ ΔT (D(q, q̇) + τ ) + M(q)q̇ (7)

where q̇∗ are the new joint velocities references.
A similar idea was presented also in [7] but contact forces were not taken in

consideration, while they are fundamental when working with floating base robots.
Practically speaking, it is useful to have a scaling factor σ ∈ (0, 1] in front of
the constraint, which allows to smoothen the solution as the robot approaches its
dynamic limits:

σ
(
ΔT

(
D(q, q̇) + τ

) + M(q)q̇
) ≤ M(q)q̇∗ ≤ σ (ΔT (D(q, q̇) + τ ) + M(q)q̇)

(8)

4 Experiments

In this section we will show the application of the robot dynamics constraint into
a complex IK problem to perform a Cartesian task with the simulated model of
our humanoid robot COMAN (in Fig. 1). The task consists of moving both arms
downwards generating awhole body squatmotion. To show the effect of the dynamics
constraint we highly reduce the available torques at the legs joints of 60%: from 50
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Fig. 1 COMAN robot kinematics and reference frames

Fig. 2 COMAN performing the squat motion. The upper sequence results in an unfeasible motion
considering the imposed torque limits while the second results in a feasible one

to 20Nm. We will show, in particular, that the joint torque at the knee is bounded in
the limits. Apart from the robot dynamics constraint, we consider joint limits, joint
velocity limits (up to 0.6

[
rad
sec

]
).

For the robot dynamics constraint we are using σ = 0.85 and we are filtering the
sensed (simulated) wrenches at the force/torque sensors using a simple filter:
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(a) Left leg

(b) Right leg

Fig. 3 Measured torques on the joints of the pitch joints in the legs while performing the task
without (dashed lines) and with (continuous lines) the robot dynamics constraint. The constant line
shows the limit on the torque of the knee joint



Robot Dynamics Constraint for Inverse Kinematics 281

Fig. 4 Cartesian error on the left hand while performing the task without (dashed lines) and with
(continuous lines) the robot dynamics constraint

wt + = (wt − wt-1) 0.9 (9)

The Cartesian task consists of a linear trajectory for the left and right hands, from
the initial pose, to 0.18m down and then back again. Desired joint trajectories are
sent to the robot open-loop integrating the results obtained from the IK:

qd = q + q̇ΔT (10)

Measured joint velocities and force/torques at the ankles are used as feedback.
In Fig. 2 it can be observed the final motion performed by the robot when the

robot dynamics constraint is not active (upper sequence) and when it is active (lower
sequence).

Cartesian errors are shown in Fig. 4. Despite the higher Cartesian errors when
using the robot dynamics constraint, the robot exceeds the imposed torque limits, at
the joint knees, trying to keep the Cartesian error small when the robot dynamics
constraint is not used. Figure3a and b shows in particular that the torques at left
and right knees, respectively, remains in the imposed limits when using the robot
dynamics constraint, while exceeds when not using it.
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5 Conclusions

In this paperwe have formulated the joints torque limit constraint at the velocity level,
for fixed/floating base robots, to filter dynamically unfeasible motions. We presented
the theoretical formulation and we showed results in simulation using our humanoid
robot COMAN considering a whole body task involving also other constraints such
as joint limits and joint velocity limits. We show that the robot dynamics constraint
can make the task dynamically feasible and it is able to keep the torque at the knee
joint on the given boundary limits. We think this is fundamental when working
on real hardware as well as joint limits and joint velocity limits. This constraint is
fundamental whenCartesian trajectories references are aggressive. Futureworkswill
consider the application of such constraint in more complicated tasks, investigate the
effect of the tuning of the σ parameter as well as the interaction with other constraints
and the test on the real robot.

Acknowledgements The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme [FP7-ICT-2013-10] under grant agreements n.611832
WALKMAN.
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Path Planning in Kinematic Image Space
Without the Study Condition

Martin Pfurner, Hans-Peter Schröcker and Manfred Husty

Abstract This article proposes a new dual quaternion based approach for motion
interpolation. The highlight is that dual quaternions act in the usual way on points,
even if the Study condition is not fulfilled. This induces a fibration of kinematic
image space into straight lines that describe the same rigid body displacement. This
allows to use standard interpolation schemes for (piecewise) rational curves in a
linear space rather than on the curved Study quadric.

1 Introduction

Motion design is generally considered to be amore demanding task than curve design.
One reason is that usual point models of SE(3), the group of rigid body displace-
ments, are curved. Hence the motion – a curve in a kinematic image space – must not
only satisfy approximation, interpolation, or fairness conditions, it is also constrained
to lie on a curved manifold. One example is [4] where variational motion design is
done in a Euclidean space of dimension twelve but a back-projection step onto the
six-dimensional motion group is required. Other examples come from interpolation
in the dual quaternion model of SE(3) [2, 3, 12] where the quadratic Study condition
is always taken into account. It is the highlight of this paper that the Study condition
can actually be ignored for the purpose of motion design, thus allowing direct motion
interpolation in a projective space. In this way, it is possible to use standard (piece-
wise) rational interpolation schemes to generate motions of arbitrary smoothness. In
this article we introduce the necessary theoretical background, discuss properties of
the proposed approach and present a simple example.
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2 Kinematic Mapping

A rigid body displacement is often described by a homogeneous 4 × 4 matrix M,
acting on a point x in the moving frame according to x′ = Mx. Here, x′ is the image
point in the base frame, the lower right 3 × 3 sub matrix ofM is a proper orthogonal
matrix corresponding to the orientation of the moving frame with respect to the
base frame, and the first column of M contains the vector connecting the origins
of the two frames representing the translational part of the transformation. Using
Study’s kinematic mapping κ (see [5, 13]), the displacement given byM is mapped
to a point d = [x0, x1, x2, x3, y0, y1, y2, y3]T in seven dimensional projective space
P7. Its coordinates are called the displacement’s Study parameters. They fulfill the
quadratic Study condition

x0y0 + x1y1 + x2y2 + x3y3 = 0, (1)

its zero set is the Study quadric S26 ⊂ P7.
Conversely, a point on S26 minus the exceptional three space E : x0 = x1 = x2 =

x3 = 0 yields the matrix

M := κ−1(d) = 1

Δ

⎡
⎢⎢⎣

1 0 0 0
t1 x20 + x21 − x23 − x22 −2x0x3 + 2x2x1 2x3x1 + 2x0x2
t2 2x2x1 + 2x0x3 x20 + x22 − x21 − x23 −2x0x1 + 2x3x2
t3 −2x0x2 + 2x3x1 2x3x2 + 2x0x1 x20 + x23 − x22 − x21

⎤
⎥⎥⎦

(2)

where Δ = x20 + x21 + x22 + x23 and

t1 = 2x0y1 − 2y0x1 − 2y2x3 + 2y3x2,

t2 = 2x0y2 − 2y0x2 − 2y3x1 + 2y1x3,

t3 = 2x0y3 − 2y0x3 − 2y1x2 + 2y2x1.

(3)

However, the Study condition (1) is not necessary forM to describe a rigid body
displacement. Thus, the range of κ−1 may be extended to P7\E . By doing thiswe lose
injectivity but get rid of the non-linear Study condition. Properties of this extended
inverse kinematic map are investigated in the following section.

3 Fibers of the Extended Inverse Kinematic Map

We consider the map κ−1 : P7 \ E → SE(3), defined in (2). Since it is not injective,
we should look at its fibers, the sets of points in P7 with the same image in SE(3).
Given a = [a0, . . . , a7] ∈ P7 \ E we have to solve the matrix equation

M(a) = M(b) (4)
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forb = [b0, . . . , b7]. Because the restriction of Study’s kinematicmapκ to the spheri-
calmotiongroupSO(3) is a bijection [6, Sect. 2]we immediately get [a0, a1, a2, a3] =
[b0, b1, b2, b3]. Now, b4, b5, b6, b7 are obtained by solving the linear system arising
from (3) and (4). It can be shown that this system of three linear equations in four
unknowns has solutions if and only if a /∈ E . In this case the solution of the corre-
sponding homogeneous system is (b4, b5, b6, b7) = λ(a0, a1, a2, a3) with λ ∈ R so
that the inhomogeneous system has the solution set

{a + λ(0, 0, 0, 0, a0, a1, a2, a3) | λ ∈ R}. (5)

In projective sense, this is the parametric equation of a straight line characterized by

Theorem 1 The fiber of point a = [a0, . . . , a7] ∈ P7 \ E with respect to the exte-
nded inverse kinematic map κ−1 is a straight line through a that intersects the excep-
tional generator E in [0, 0, 0, 0, a0, . . . , a3].

4 Path Planning Using the Extended Inverse
Kinematic Map

For a typical path planning task several poses of the end effector frame are given,
possibly with higher order derivatives (velocity, acceleration, …). The problem is
to find a valid path such that the manipulator is able to guide its end effector frame
through these poses. We propose to treat this as a (piecewise) rational curve interpo-
lation problem in P7 and map the solution to SE(3) via κ−1. This is possible with
or without prescribing parameter values. The fact that interpolation takes place in a
projective space rather than an affine space gives degrees of freedom that may be
used for additional optimization. Motion interpolation of this type is applicable for
path planning in Cartesian space of parallel or serial manipulators with six degrees
of freedom. If the inverse kinematics has closed form solutions, we automatically get
a motion parametrization in joint space. This is in particular true for Stewart–Gough
manipulators.

Because κ−1 is quadratic, the degree of any point path is at most twice the degree
of the interpolant in P7. Thus, we can achieve a geometric continuity of order n
for the motion with point paths of degree at most 2(n + 1). At possible intersection
points of interpolant and exceptional generator E , the map κ−1 becomes singular
and a degree reduction of the paths occurs.

In this paper we consider an example of the simplest case, a linear interpolant
(n = 0), in more detail. Its paths are at most of degree two. According to [8] this
type of rational motion is either a translation in constant direction, a rotation about
a fixed axis, a quadratic translation or a Darboux motion [1, Sect. 9.3]. It can be
shown that quadratic translations do not occur. The generic case is that of Darboux
motions which turn out to be of the special vertical type [11]. The projection on the
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spherical motion component yields a rotation with fixed direction. It corresponds to
linear interpolation in (non-dual) quaternion space which has already be considered,
for example in [9].

5 Path Planning for SG-Platforms

This section presents a numerical example for a path planning application. We take
a 3-3 Stewart–Gough manipulator with given start and end pose of the platform. The
anchor points in the base frame are

b1 = [1, 0, 0, 0], b2 = 1
3 [3, 200

√
3, 600, 0], b3 = 1

3 [3,−200
√
3, 600, 0];

(6)
the anchor points in the moving frame are

p1 = [1, 0, 100, 0], p2 = [1,−50
√
3,−50, 0], p3 = [1, 50√3,−50, 0]. (7)

The legs of the parallel platform connect the point bi with the points p j and pk , for
any three distinct indices i, j, k ∈ {1, 2, 3}. Start and end pose are given as

pS = [−1.969,−0.759, 1.149,−0.554,−39.282, 204, 98.154, 63.692],
pE = [−0.861,−1.169, 1.578,−0.362,−66.147, 220.447, 106.460,−90.362]

(8)

and the linear motion in P7 connecting them can be parameterized bym = (1 − λ)

pS + λpE with λ ∈ [0, 1]. The mapping κ−1(m) = M yields

M = 1

25γ

(
25γ 0
t A0 + λA1 + λ2A2

)
(9)

where γ = 110821λ2 − 203420λ + 416500,

t =
⎛
⎝

8293675λ2 + 908782λ + 41650000
5372659λ2 − 10882886λ + 29155000
24120195λ2 − 29264718λ + 62475000

⎞
⎠ ,

A0 =
⎛
⎝
193694.118 −268865.882 −252321.177
29976.471 295556.471 −291924.706
367500 117600 156800

⎞
⎠ ,

A1 =
⎛
⎝

−309436.235 26810.165 69673.553
−245088.941 −259464.141 2367.812

−47460 −7056 −423808

⎞
⎠ ,
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Fig. 1 Motion of the
platform coordinate frame

A2 =
⎛
⎝
80490.918 −53290.586 54429.952
5074.071 82761.743 73525.790
−76005 −50910.720 62551.040

⎞
⎠ .

In Fig. 1, 11 discrete poses of the platform’s motion between pS and pE with
respect to the base frame are shown.

The paths of the anchor points of the platform are parametrized by pi(λ) = Mpi,
i = 1 . . . 3, for example

p1 = 1

5γ

⎛
⎜⎜⎝

1
7(2471602λ2 + 1648393λ + 358540)
21935078λ2 + 20334377λ + 9980810

3(15483078λ2 + 11336647λ + 4206650)

⎞
⎟⎟⎠ . (10)

It is easy to compute the leg length as distance between corresponding anchor points.
The squared distance of b1 and p2 is

l21 = 1√
γ

(230970295100000λ4 + 233944277500000λ3

+122850542200000λ2 + 24493035330000λ+2567030405000). (11)

Plots of the joint functions of l1 and l2 are shown inFig. 2 and their first timederivative,
the joint velocity functions, in Fig. 3.

Remark 1 The presented construction offers degrees of freedom for possible
optimization:

• The vectors in (8) are unique only up to scalar multiplication, that is,m = (1 − λ)

σpS + λεpE with [σ, ε] ∈ P1. Here, we chose [σ, ε] such that the resulting
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Fig. 2 Explicit joint
functions of leg l1

Fig. 3 First time derivative
of the explicit joint function
of leg l1

parameterization minimizes the maximal joint velocity of the first leg. Other opti-
mization is obviously possible andmight bemore relevant in practical applications.

• We may also replace pS or pE by any point of the shape (5) on their respective
fibers. In general, this gives a different interpolating Darboux motion and yet
further variables for optimization. We did not use them in our example.

Because the paths of the platform anchor points are given in parametric form,
the Jacobian matrix can also be computed depending on the motion parameter. Its
determinant reads
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Fig. 4 Determinant of the
Jacobian of the manipulator
along the path

|J | = − 1

γ 4
82944000000

√
3(2846708474987877679535869344λ8

+ 7439781085532680427286620464λ7 + 3009884293952398044013325872λ6

− 6978549515800829192770757528λ5 − 10657661639071658458227857926λ4

− 7021871831411348585713842061λ3 − 2502177832360314067874514040λ2

− 464246599952835104361411000λ − 25197137764017298716000000).
(12)

From the plot of the Jacobian function in Fig. 4 we see that the designed path is free
of singularities.

6 Discussion and Conclusion

We have demonstrated that the Study condition is not necessary for motion interpola-
tion in the dual quaternionmodel of SE(3). It is possible to use existing algorithms for
direct interpolation of motion data in projective space P7. As an example, we created
a path connecting two poses and related it to the joint parameters of a Stewart–Gough
platform.

We can only speculate, why the Study condition has so far been omnipresent in
dual quaternion basedmotion interpolation approaches, for example in [2, 3, 12].One
reasonmay be analogy to the representation of SO(3) by points of the quaternion unit
sphere [6, Sect. 2]: The Study condition is what remains of the unit norm condition
after projectivization. Another reason could be mathematical aesthetics. The points
of Study quadric minus E are in bijection to SE(3) while our extended inverse
kinematic map is no longer injective.

We have not dealt in detail with interpolation algorithms in P7 so that it is probably
too early for a fair comparison with existing work. What we can already claim is the
possibility to generate arbitrarily smooth interpolants to given Hermite motion data
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by standard spline interpolation. By design, such approaches will yield paths of a
slightly higher degree than those coming from geometric motion interpolation [7, 10,
12]. However, in contrast to these papers existence of interpolants can be guaranteed,
their computation is straightforward and additional degrees of freedom may be used
for optimization. This is certainly a worthy topic of further investigations.

In this paper we did not deal with avoidance of singularities or obstacles. It is
possible to include this in the proposed method in particular if the obstacles or singu-
larities are described by algebraic equations. In this context, (piecewise) rationality
of paths is a great advantage because intersectionwith algebraic hypersurfaces imme-
diately yields a univariate polynomial. In order to fully profit from our construction,
it is necessary to extend the varieties of forbidden poses by the fibration described
in Theorem 1. This gives rise to numerous interesting questions for future research.

Acknowledgements This work was supported by the Austrian Science Fund (FWF): I 1750-N26,
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The 2D Orientation Interpolation Problem:
A Symmetric Space Approach

Yuanqing Wu, Andreas Müller and Marco Carricato

Abstract In this paper, we propose a novel construction of Bézier curves of
two-dimensional (2D) orientations using the geometry of real projective planeRP2.
Unlike the commonly adopted unit 2-sphere model S2,RP2 is naturally embedded in
the 3D special orthogonal group SO(3). It is also a symmetric space that is equipped
with a particular class of isometries called geodesic symmetry, which allows us
to generate any geodesics using the exponential map of SO(3). We implement the
generated geodesics to construct Bézier curves for direction interpolation.

1 Introduction

The 2D direction space (or orienting region [17]) refers to the set of all spatial
directions attainable by a reference unit 3D vector, and may be naturally identified
with a subset or the entirety of 2D unit sphere S2. It should be distinguished from the
3Dorientation space SO(3) of a rigid body [12]: two rotationmatricesR,R′ ∈ SO(3)
take the initial direction, say the north pole z = (0, 0, 1)T ∈ S2, to the same direction
π(R) = Rz ∈ S2 so long as they differ by a spinR′′ ∈ SO(3) about z, i.e.R = R′R′′.
The problem of motion design [19] on the direction space S2 arises in applications
where a decomposition of SO(3) into tilt (changing direction) and torsion (spin)
[1] is required or preferred, such as motion planning for two to three degrees-of-
freedom (3-DoF) robotic wrists, tool path generation for multi-axis machine tools,
and trajectory generation for unmanned aerial vehicles (Fig. 1).

Solving the aforementioned motion design problem poses several difficulties.
First, the motion design problem on S2 is not equivalent to the interpolation problem
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(a) (b) (c)

Fig. 1 The tilt motion of a a robotic wrist or b a five-axis machine spindle, and c the collective
roll/pitch motion of an UAV are a few relevant applications of motion design on S2 (photos from
internet)

on S2 [2–4]. In order to compute the inverse kinematics and/or equations of motion
for a robot or machine under consideration, we need to designate a 2D submanifold
M of SO(3) that (when acting on z) can reach any direction in S2. Besides, although
motion design on SO(3) [2, 6, 7, 13–16, 21] and interpolation on S2 [2, 3] have
been extensively studied in the past, existing methods may not be directly applied
to general submanifolds of SO(3): the group structure of SO(3), its double covering
by unit quaternions (S3) and the availability of exponential coordinates are usually
exploited in its motion design, which may no longer be available for submanifolds
of SO(3).

Fortunately, there is a special 2D submanifold of SO(3), which is diffeomorphic
to the real projective planeRP2, that retains properties similar to those of SO(3). We
may solve the motion design problem on S2 by reusing almost any SO(3) motion
design method for RP2 with a slight modification. In particular, RP2 is complete
(a geodesic segment can be infinitely extended), totally geodesic (sharing the same
form of geodesics as SO(3)) and auto-parallel (sharing the same formulation for
computing acceleration as SO(3)). In fact, this is a direct consequence ofRP2 being
a symmetric subspace of SO(3) [23]: RP2 is nothing but the exponential image of a
2D vector subspace of so(3) (Lie algebra of SO(3)).

The paper is organized as follows. In Sect. 2, we give a brief review of SO(3)
and RP2, and investigate explicit expressions for geodesics on RP2. In Sect. 3, we
present a de Casteljau type cubic Bézier interpolation algorithm for RP2 similar to
that for SO(3) [2, 15]. Finally in Sect. 4, we conclude our paper with a discussion of
future works.
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2 Model Space for Motion Design on S2

We give a brief review of SO(3) and its unit quaternion representation, which will
prepare the reader for a brief introduction of the real projective planeRP2 as the 2D
model space for motion design on S2.

The reader may refer to [12] for further analysis of SO(3) in robot kinematics and
dynamics, and [23] for a brief introduction to its symmetric space characterization.
SO(3) is a 3D compact Lie group with Lie algebra so(3) given by the 3D vector
space of all 3 × 3 real skew-symmetric matrices:

so(3) = {
ŵ ∈ R3×3

∣
∣ ŵT = −ŵ

}
(1)

with ŵ being induced by a 3D vector w = (w1,w2,w3)
T via ŵv = w × v,

∀v ∈ R3. The orthogonal matrix representing a rotation about unit axis w ∈ S2 with
angle θ ∈ R is given by the Rodriguez formula:

eθŵ = I + sin θŵ + (1 − cos θ)ŵ2 ‖w‖ = 1 (2)

where e(·) denotes the exponential map exp : so(3) → SO(3). The same rotation is
represented by two unit quaternions q,−q ∈ S3:

q = e
θ
2w = cos

θ

2
+ sin

θ

2
w ‖w‖ = 1 (3)

wherew = w1i + w2j + w3k and i, j, k are quaternionic units that admit the follow-
ing associative multiplication rules (see for example [20]):

ii = jj = kk = −1 ij = −ji = k, jk = −kj = i, ki = −ik = j (4)

This two-to-one correspondence ρ : ±e
θ
2w �→ eθŵ between S3 and SO(3) illus-

trates the fact that SO(3) is diffeomorphic to the 3D real projective spaceRP3, which
arises from identifying antipodal points of S3.

The geodesic between two orientationsR,R′ ∈ SO(3) is explicitly given by [15]:

γ (t,R,R′) = exp(t log(R′RT ))R, t ∈ [0, 1] (5)

If the initial velocity ω̂ ∈ so(3) is specified instead of the end point R′, we denote
the geodesic by:

γ (t,R, ω̂) = exp(tω̂)R, t ∈ R (6)

Other than being a Lie group, SO(3) is also a symmetric space [5, Chap. IV. 6].
Roughly speaking, a symmetric space M can be reflected isometrically onto itself
about each point p ∈ M. These reflection maps (denoted Sp, p ∈ M) are usually
referred to as geodesic symmetries, since they reverse the geodesics passing through
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p ∈ M. SO(3) becomes a symmetric space with SR,R ∈ SO(3) given by SR(R′) =
RR′TR,∀R′ ∈ SO(3). In this case, it is easy to see that:

SR(γ (t,R, ω̂)) = γ (t,R,−ω̂) = γ (−t,R, ω̂) (7)

The reason for us to introduce the concept of symmetric space is that the 2D sub-
manifold we propose for motion design on S2 is a symmetric subspace of SO(3).

A symmetric subspace N of a symmetric space M is a submanifold that is closed
under geodesic symmetry [10]:

Sp(q) ∈ N ∀p, q ∈ N (8)

SO(3) admits, up to conjugation, a unique symmetric subspace N given by the expo-
nential image exp p̂ of a 2D vector subspace p̂ of so(3) defined by:

p̂ = span(̂x, ŷ) x = (1, 0, 0)T , y = (0, 1, 0)T (9)

Several useful geometric properties of N = exp p̂ along with those reported in [23]
are summarized below without proof:

Properties of RP2

1. N corresponds, under unit quaternion representation, to the unit 2-sphere S2:

S2 = {a0 + a1i + a2j + 0k ∈ S3} (10)

More precisely, N is isometrically diffeomorphic to the real projective planeRP2,
which arises from identifying antipodal points of S2. Hereafter, we shall denote
N simply by RP2.

2. The exponential map exp : p̂ → RP2 is surjective, which allows us to take the
square root of any R ∈ RP2:

R1/2 = eŵ/2 R = eŵ ∈ RP2, ŵ ∈ p̂ (11)

3. The spatial (right-trivialized) velocity space ofRP2 at R ∈ RP2 is given by [23]:

AdR1/2 p̂ = span((R1/2x)∧, (R1/2y)∧) (12)

where the Adjoint transformation AdR1/2 is defined by
AdR1/2(ŵ) = R1/2ŵR−1/2 = (R1/2w)∧,∀ŵ ∈ so(3). This is referred to as the
half-angle property in [23].

4. RP2 is a totally geodesic submanifold ofSO(3) [23]; its geodesic, passing through

∀R ∈ RP2 with velocity (R1/2w)∧, ŵ ∈ p̂, is given by:
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γ (t,R,R1/2w) = exp(t (R1/2w)∧)R

= R1/2etŵR−1/2R = R1/2etŵR1/2
t ∈ [0, 1] (13)

5. RP2 is also an auto-parallel submanifold (see [8, Vol. 2]) of SO(3): computation
of acceleration is exactly the same as that of SO(3) (see for example [2, 14]).

The various properties of RP2 can be summarized into two useful propositions.

Proposition 1 The geodesic between R,R′ ∈ RP2 is given by:

γ (t,R,R′) = R1/2 exp(t log(R−1/2R′R−1/2))R1/2

= exp(tAdR1/2 log(R−1/2R′R−1/2))R
t ∈ [0, 1] (14)

Proof This is a direct consequence of Eq.13. 	

We emphasize that the 2D direction space S2 is not the same as that of the S2

model forRP2 (unit quaternion in a hyperplane). In particular, the geodesics γ (t) of
RP2 do not map (by π : RP2 → S2) to great arcs on S2. It can be seen from Fig. 2
that as the direction deviates further from z, the projected geodesics π(γ (t)) = γ (t)z
deviate further from great arcs.

Proposition 2 Given a trajectory R(t) = eŵ(t) ∈ RP2, t ∈ R where ŵ(t) ∈ p̂,∀t
∈ R, the right-trivialized velocity ω̂(t) and acceleration α̂(t) of R(t) are given by:

ω̂(t) = Ṙ(t)R(t)T = (
d expR(t) ẇ(t)

)∧ =
(∫ 1

0
exp(uŵ(t))ẇ(t)du

)∧

α̂(t) =
(
D2

dt2
R(t)

)
R(t)T = ̂̇ω(t)

(15)

where d exp denotes the right-trivialized differential of the exponential map, and
D/dt denotes the covariant differentiation along R(t). In particular, we have by the
half-angle property:

ω(t) ∈ eŵ(t)/2p α(t) ∈ eŵ(t)/2p (16)

Proof The expression for acceleration is exactly the same as that for SO(3) [2], since
RP2 is an auto-parallel submanifold of SO(3). 	


In summary,RP2, except for not being a Lie group, retains all properties of SO(3)
pertaining to motion design. It is also easy to see that RP2 (when acting on z) may
reach any direction on S2. This motivates us to designate RP2 as the model space
for motion design on S2. Note thatRP2 characterizes Bonev’s zero torsional rotation
[1, 22], thoughhe did not pursue the symmetric space properties ofRP2. Interpolation
on the real projective plane RP2 is studied in [9] without resorting to its symmetric
space characterization. This is later pointed out in [11]. In neither caseRP2 is treated
as a symmetric subspace of SO(3), nor is exponential coordinates utilized.
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Fig. 2 Geodesics of RP2

(red) in comparison with
great arcs on S2 (blue): a on
p̂, b on S2

(a)

(b)

3 Motion Design on S2 Using RP2

SinceRP2 retains almost identical properties of SO(3), it is theoretically possible to
adapt any motion design methods for SO(3) onto RP2. It suffice to make our point
by investigating a de Casteljau algorithm for cubic Bézier interpolation between two
directions. The following treatment follows closely that in [2].
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Given n + 1 control points R0
i = eŵi ∈ RP2, ŵi ∈ p̂, 0 ≤ i ≤ n, and a parameter

value t ∈ [0, 1], the de Casteljau algorithm computes a point R(t) ∈ RP2 on the nth

order Bézier curve in a recursive manner:

Rk
j (t) = γ (t,Rk−1

j (t),Rk−1
j+1(t))

= exp(tŵk−1
j (t))Rk−1

j (t)

R(t) = Rn
0(t)

1 ≤ k ≤ n, 0 ≤ j ≤ n − k (17)

In reference to Proposition 1 and Eq.12,

wk−1
j (t) = (Rk−1

j (t))1/2w̃k−1
j (t) w̃k−1

j (t) ∈ p (18)

and
(w̃k−1

j (t))∧ = log((Rk−1
j (t))−1/2Rk−1

j+1(t)(R
k−1
j (t))−1/2) (19)

See Fig. 3a for the case n = 3.
We shall first investigate the two-point boundary value problem (BVP) where

velocity for both initial and end point are specified. Given R0
0 = eŵ0 ,R0

3 = eŵ3 ∈
RP2 with w0,w3 ∈ p, and initial and end velocities ω0 = eŵ0/2ω̃0, ω3 = eŵ3/2ω̃3

with ω̃0, ω̃3 ∈ p, we need to compute the two remaining control points R0
1,R

0
2. In

reference to [2, Sect. 3], we have:

w̃1
0 = ω̃0

3
w1

2 = ω3

3
(20)

R0
1 = exp(ŵ0/2) exp((ω̃

1
0)

∧) exp(ŵ0/2) R0
2 = exp(−ŵ1

2)R
0
3 (21)

Next, for a initial-value problem (IVP), the initial acceleration α0 = eŵ0/2α̃0,
α̃0 ∈ p instead of end point velocity is given. The second missing control point is
then given by:

w1
1 = w1

0 + 1

6

∫ 1

0
exp(uŵ1

0)α0du (22)

R0
2 = exp(ŵ1

1)R
0
1 (23)

The IVP algorithm can be easily implemented in a multi-point interpolation in a
way similar to that proposed in [16], with suitably chosen initial acceleration, such as
for minimum distance (Fig. 3b) and for minimum acceleration (Fig. 3c). The details
are omitted due to page limit.

We also remark, although a direct interpolation on S2 is technically more conve-
nient, it does not respect the geometry of RP2 which we have to face when control-
ling a robot to follow a particular motion trajectory that results in the desired point



300 Y. Wu et al.

(b) (c)

(a)

Fig. 3 a cubic Bézier curve onRP2 (red) with control polygons (green); b and cminimum distance
and acceleration cubic Bézier interpolation of four directions on S2 (red) with control polygons
(green) as compared to great arcs (blue)

trajectory on S2. When the robot has a constant identity inertia tensor, for example,
the aforesaid minimal distance and acceleration trajectory are also the minimum
energy and minimum control effort trajectory, respectively.

4 Conclusion

In this paper, we have proposed a novel model space, the real projective plane
RP2 as a symmetric subspace of SO(3), for the motion design on S2. We empha-
size on the possibility of reusing existing interpolation methods for SO(3) on RP2

due to the symmetric space and symmetric subspace structure of SO(3) and RP2,
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respectively. We illustrate the use of this novel model space in direction interpolation
using a Riemannian Bézier cubic IVP interpolant. Nevertheless, interpolants based
on unit quaternions may be equally adapted to RP2. It may also be proved that the
Riemannian cubic spline on RP2 admits exactly the same form as that on SO(3)
[3, 14]. This opens up new applications, for example in optimal control problems
on RP2 (see for example [18]) using the computationally convenient exponential
coordinates. Our work may be carefully generalized to other symmetric subspaces
of SE(3) [23], which we hope to report in the near future.
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Closure Polynomials for Strips of Tetrahedra

Federico Thomas and Josep M. Porta

Abstract Atetrahedral strip is a tetrahedron-tetrahedron trusswhere any tetrahedron
has two neighbors except those in the extremes which have only one. Unless any of
the tetrahedra degenerate, such a truss is rigid. In this case, if the distance between
the strip endpoints is imposed, any rod length in the truss is constrained by all the
others to attain discrete values. In this paper, it is shown how to characterize these
values as the roots of a closure polynomial whose derivation requires surprisingly no
other tools than elementary algebraic manipulations. As an application of this result,
the forward kinematics of two parallel platforms with closure polynomials of degree
16 and 12 is straightforwardly solved.

1 Introduction

Let us consider the strip of tetrahedra in Fig. 1. Any such strip has two endpoints.
In this case, Pa and Pb. If the distance between these two points is imposed, the
length of any rod cannot be freely chosen. This paper is essentially devoted to obtain
a closed-form solution for the length of any rod in a strip of tetrahedra, once the
distance between its endpoints and the lengths of all other rods are known.

Although closure polynomials have been typically obtained on a case-by-case
analysis, a common pattern can be identified for most cases. First, a set of loop equa-
tions involving both translation and orientation variables is derived. Then, translation
variables are eliminated resulting in a system of trigonometric equations that is alge-
braized using the tangent half-angle substitution. Finally, elimination theory is used
to obtain a univariate closure polynomial. Here we solve this problem departing from
this standard approach. The proposed method can be summarized as follows. The
distance between the strip endpoints is first derived by iterating a basic operation
involving only two neighboring tetrahedra over the whole strip. This leads to a scalar
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Pa

Pb

Fig. 1 A strip of eight tetrahedra whose endpoints are Pa and Pb. Observe that no triangular face
is shared by more than two tetrahedra

equation containing radical terms. We will see how clearing these radicals is a trivial
task, and how the resulting polynomial contains, in general, factor terms that corre-
spond to singularities of the formulation that depend on the chosen variable length.
Since these terms can be easily spotted beforehand, their elimination is just a matter
of iterative polynomial division until a no null remainder is obtained. The result is the
sought-after univariate closure polynomial obtained without variable eliminations or
trigonometric substitutions.

Next, we detail this procedure and then we apply it to derive the minimal degree
closure polynomial for two widely studied parallel platforms: the decoupled parallel
platform, and a 4–4 platform with planar base and moving platform.

2 Obtaining the Closure Polynomials

Given a set of points, the valid distances between them can be characterized using the
theory ofCayley–Menger determinants [1, 6, 8]. TheCayley–Menger bi-determinant
of the two sets of points Pi1 , . . . , Pin and Pj1 , . . . , Pjn is defined as

D(i1, . . . , in; j1, . . . , jn) = 2
(− 1

2

)n

∣∣∣∣∣
∣∣∣∣

0 1 . . . 1
1 si1, j1 . . . si1, jn

1
...

. . .
...

1 sin , j1 . . . sin , jn

∣∣∣∣∣
∣∣∣∣

, (1)

where si, j stands for the squared distance between Pi and Pj .
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Pi PjPj

PkPk

PlPl

PmPm

l,i, j,k,m

Fig. 2 Substitution rule

If the two sets of points are the same, then D(i1, . . . , in) = D(i1, . . . , in; i1, . . . ,
in) is called the Cayley–Menger determinant of the involved set of points. The
Cayley–Menger determinant D(i1, . . . , in) is proportional to the squared volume
of the simplex spanned by Pi1 , . . . , Pin in R

n−1.
Now, let us suppose the two neighboring tetrahedra in Fig. 2-left belong to a strip

of tetrahedra in R
3. The squared distance between Pl and Pm can be expressed as

(see [7] for details):

sl,m = 2

D(i, j, k)

(

D(i, j, k, l; i, j, k,m)

∣∣∣∣
sl,m=0

± √
D(i, j, k, l) D(i, j, k,m)

)

.

(2)
where the ± sign accounts for the two possible solutions depending on the relative
orientation between the two tetrahedra. To lighten the notation, (2) will be simply
written as sl,m = Ψl,i, j,k,m . If some of the distances involved in Ψl,i, j,k,m are taken as
variables, they will be made explicit in parenthesis. For example, if si, j and si,k are
variables, we will write sl,m = Ψl,i, j,k,m(si, j , si,k).

If one of the points in the set {Pi , Pj , Pk} does not belong to any other tetrahedron
in the strip, it can be removed from the strip provided that a rod connecting Pl and Pm
is introduced with the double-valued length given by (2) (Fig. 2-right). This reduces
the number of tetrahedra in the strip by one. Then, by repeating this operation until
the strip contains only two tetrahedra, the distance between the tetrahedral strip
endpoints is finally obtained as a 2n−1−valued function, where n is the number of
tetrahedra in the strip.

To obtain the closure condition as a polynomial in terms of a given rod length,
the first step consists in taking the numerator of the rational form of the obtained
function and then clearing radicals. As radicals will appear nested, they are cleared
using an iterative process starting from the outer one. At each step of this process,
the expressions involving a radical will have the general form

α0 + α1
√
r + α2(

√
r)2 + α3(

√
r)3 + · · · = 0, (3)
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which can be rewritten as

(α0 + α2r + α4r
2 + . . . ) + √

r(α1 + α3r + α5r
2 + · · · ) = 0. (4)

This equation can be unfolded into two equations, one for each sign of
√
r . Since

we are interested in the roots of both equations, we obtain their product, which can
be written as

(α0 + α2r + α4r
2 + . . . )2 − r(α1 + α3r + α5r

2 + · · · )2 = 0. (5)

While clearing radicals as explained above introduces no extraneous roots, one
cannot expect for the obtained polynomial to be of minimal degree. This is due to the
presence of singularities of the formulation. Indeed, let us suppose that the closure
polynomial is expressed in terms of the squared rod length si, j . If a rod with variable
length belongs to a shared face, this face degenerates for some values of si, j . When
this happens, the three points defining the face get aligned and the tetrahedral strip can
be decomposed into two parts so that one can freely rotatewith respect the other about
the axis defined by these three aligned points. As we will see, terms corresponding
to these degenerate configurations will appear in the closure polynomial. They can
be easily removed by iteratively dividing the closure polynomial by them until the
remainder is not null.

3 Examples

Next, we apply the technique explained above to solve the forward kinematics of a
decoupled platform and a 4–4 platform with planar base and platform (see Figs. 3
and 5, respectively). The decoupled platform owes its name to the fact that three
legs permit the rotation of the platform about a point whose location is controlled

P1

P2

P3

P4

P5

P6

P7

S=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 34 49 62 ? ? 108
34 0 41 58 108 ? ?
49 41 0 68 ? 126 ?
62 58 68 0 38 91 34
? 108 ? 38 0 85 74
? ? 126 91 85 0 197

108 ? ? 34 74 197 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3 Decoupled parallel manipulator, with non-planar moving platform, used as example
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by the other three. Since the forward kinematics for the translational part is trivial,
the interest of this linkage lies in the spherical part for which a minimal closing
polynomial of degree 8 on a squared variable was first derived in [2]. In [7], this
derivation is simplified by using the closure polynomial of the so-called double
banana. Despite the simpler derivation, variable eliminations were still necessary.
For the chosen 4–4 platform with planar base and platform, a minimal 12th-degree
closure polynomial was first derived in [3]. The derivation was far from trivial and
applicable only to this particular platform. To properly compare our results with
those reported in [3, 7], we use the same numerical examples.

First, let us consider the decoupled platformdefined by the squared distancematrix
S appearing in Fig. 3, where si, j = S(i, j). It can be topologically described as the

Fig. 4 The decoupled
parallel platform in Fig. 3 can
be topologically described as
the strip of four tetrahedra in
which the distance between
P3 and P5 is variable and the
distance between its
endpoints, P1 and P7, is
known. The application of
the substitution rule
presented in Sect. 2 to this
strip (top) permits to
sequentially eliminate P6
(center) and P5 (bottom)

P1

P1

P1

P2

P2

P2

P3

P3

P3

P4

P4

P4

P5

P5

P6

P7

P7

P7

3,4,5,6,7(s3,5)

3,4,5,6,7(s3,5)

2,3,4,5,7(s3,7,s3,5)
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strip of tetrahedra shown in Fig. 4-top. Applying the substitution presented in the
previous section three times (see Fig. 4), we have

s3,7 = Ψ3,4,5,6,7(s3,5), (6)

s2,7 = Ψ2,3,4,5,7(s3,7, s3,5), (7)

s1,7 = Ψ1,2,3,4,7(s2,7, s3,7). (8)

The numerator of the rational form resulting from substituting (6) in (7), and the
result in (8), can be written as:

R1 − 1346.0 R2 + 7899650 R3 + 24942632734 s3,5 + 1402 R3 s3,5
2

− 323070338 s3,5
2 + 741658 s3,5

3 − 208500 R3 s3,5 + 528767086008 = 0,

where

R1 =
√

−2027718 R2
2 + 4695768 R2 R3 s23,5 − 729124704 R2 R3 s3,5 + · · · ,

R2 =
√
100464 R2

3 s
2
3,5 − 19847712 R2

3 s3,5 + 115799664 R2
3 − · · · ,

R3 =
√

−3481450 s23,5 + 806976100 s3,5 − 27440188650 .

The full expressions for R1 and R2 are not included here due to space limitations.
Now, clearing the radicals as described in Sect. 2, we obtain a polynomial of 24th-

degree. It is not of minimal degree because the rod connecting P3 and P5 belongs to
the shared face defined by P3, P4, and P5 which is singular when D(3, 4, 5) = 0, that
is, when s23,5 − 214s3,5 + 961 = 0. By iteratively dividing the obtained polynomial
by this singular factor until the remainder is not null, we get

s163,5 − 1.6652 · 104 s153,5 + 1.2722 · 106 s143,5 − 5.8952 · 108 s133,5 + 1.8487 · 1011 s123,5
− 4.1525 · 1013 s113,5 + 6.9146 · 1015 s103,5 − 8.7384 · 1017 s93,5 + 8.5338 · 1019 s83,5
− 6.5533 · 1021 s73,5 + 4.0715 · 1023 s63,5 − 2.1848 · 1025 s53,5 + 1.1165 · 1027 s43,5
− 5.4256 · 1028 s33,5 + 2.0923 · 1030 s23,5 − 5.0066 · 1031 s3,5 + 5.2479 · 1032,

which coincides with the closure polynomial reported in [7], but obtained in a much
simpler way.

As a second example, let us consider the 4–4 parallel platform appearing in Fig. 5.
Its forward kinematics is known to have 24 solutions [3]. However, they can be split
in two sets that are symmetric with respect to the base. Since the distance-based
formulation is invariant to this symmetry, we will get a 12th-degree closure poly-
nomial. The two sets of configurations are obtained in the coordinatization process
using trilateration [4, 5, 8].
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P1

P2

P3

P4

P5P6

P7 P8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 10.1982 19.7992 182 ? ? ? 15.16572

10.1982 0 16.49242 s2,4 14.29172 ? ? ?
19.7992 16.49242 0 14.56022 11.87702 10.85452 ? ?
182 s2,4 14.56022 0 ? 15.17192 15.79072 ?
? 14.29172 11.87702 ? 0 62 s5,7 4.47212

? ? 10.85452 15.17192 62 0 4.47212 5.65692

? ? ? 15.79072 s5,7 4.47212 0 22

15.16572 ? ? ? 4.47212 5.65692 22 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 5 4–4 parallelmanipulator used as example. Since the base and themoving platform are convex
planar quadrilaterals, s2,4 and s5,7 are unambiguously determined by the other known distances

Applying the substitution presented in the previous section four times (see Fig. 6),
we have that

s4,8 = Ψ4,5,6,7,8(s4,5),

s3,8 = Ψ3,4,5,6,8(s4,8, s4,5),

s2,8 = Ψ2,3,4,5,8(s3,8, s4,8),

s1,8 = Ψ1,2,3,4,8(s2,8, s3,8, s4,8).

After a proper sequence of forward substitutions in the above four equations, s1,8
can be expressed only in terms of s4,5. Since this parallel platform has planar base
and platform, Ψ4,5,6,7,8 and Ψ1,2,3,4,8 are single-valued functions. Only Ψ3,4,5,6,8 and
Ψ2,3,4,5,8 contribute with square roots to the obtained closure condition. Eliminating
them as explained leads to a 52nd-degree polynomial in s4,5. In this case, the rod
connecting P4 and P5 belongs to two shared faces (the ones defined by P4P5P6 and
P3P4P5), whose associated singular terms are s24,5 − 706.1251 s4,5 + 5031.9580, and
s4,52 − 532.3731 s4,5 + 37708.4160. After iteratively dividing the obtained polyno-
mial by these two factors until the remainder is not null, the following 12th-degree
polynomial is obtained

s124,5 − 0.676 · 103 s114,5 − 3.873 · 106 s104,5 + 5.400 · 109 s94,5 − 9.858 · 1012 s84,5
− 2.327 · 1015 s74,5 + 1.967 · 1018 s64,5 − 7.316 · 1020 s54,5 + 1.518 · 1023 s44,5
− 1.834 · 1025 s34,5 + 1.257 · 1027 s24,5 − 4.432 · 1028 S45 + 6.171 · 1029.
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P1

P1P1

P1

P2

P2P2

P2

P3

P3P3

P3

P4

P4P4

P4

P5

P5

P5

P6 P6

P7

P8

P8P8

P8

4,5,6,7,8(s4,5)4,5,6,7,8(s4,5)

4,5,6,7,8(s4,5)

3,4,5,6,8(s4,8,s4,5)3,4,5,6,8(s4,8,s4,5)

2,3,4,5,8(s3,8,s4,8)

Fig. 6 The 4–4 parallel manipulator in Fig. 5 can be topologically described as the strip of five
tetrahedra inwhich the distance between P4 and P5 is variable and the distance between its endpoints,
P1 and P8, is known. The application of the substitution rule to this strip (top left) permits to
sequentially eliminate P7 (top right), P6 (bottom left), and P5 (bottom right)

This polynomial has six roots that lead to real configurations of the moving platform
obtained by coordinatization via trilaterations [5, 8]. These roots and the correspond-
ing configurations appear in Fig. 7. They coincide with the solutions reported in [3]
obtained using an ad hoc intricate method.

4 Conclusions

It has been explained how to obtain closure polynomials for tetrahedral strips in terms
of the involved rod lengths and the distance between the strip endpoints, and how this
technique can be applied to solve some position analysis problems. However, this
technique cannot incorporate orientation constraints between tetrahedra at different
parts of the strip. As a consequence, if applied to a case in which such constraints
are necessary, the obtained closure polynomial would not be of minimal-degree as
some of its roots would violate these constraints. Despite this important limitation, it
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Fig. 7 Forward kinematics solutions of the 4–4 manipulator used as example. The mirror config-
urations with respect to the base are also solutions, but they are not represented

supersedes themethod presented in [7] in scope and simplicity, thus providing a better
starting point for a complete generalization to three dimensions of the techniques
developed for the position analysis of planar linkages using Distance Geometry.
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Robust Design of Parameter Identification

Aurélien Massein, David Daney and Yves Papegay

Abstract Quality of results computed during parameter identification problems
relies on the selection of system’s stateswhile performingmeasurements. This choice
usually does not take into account the uncertainty of states and of measures. For iden-
tifiability, classical methods focus only on the contribution of model errors on the
uncertainty of parameters. We present an alternative approach that tackles this draw-
back: taking into account influence of all uncertainty sources in order to improve
parameter identification robustness to uncertainties. A robotic application example
that showcases the differences between approaches is developed as well.

1 Introduction

Design of experiments [2] is a way to improve results of a generic parameter identi-
fication problem. It is applied namely in robotics [8], for calibration [1], and in GPS
area through dilution of precision [9].

In such identification problem, unknown parameters are related with states of the
system, and with measured outputs through a model prone to uncertainties. Inaccu-
racy sources of the model are model discrepancy, measurement errors and inexacti-
tude of system’s states. Observation of different sets of measurements for different
states of the systemprovides away to compute unknown parameters through a regres-
sion analysis process. In this process choice of states is crucial to enhance parameters
identification. It refers to identifiability of the model and identifiability criteria.

In the non-linear case [5], unknownparameters are classically computed by an iter-
ative optimisation algorithm, starting from an initial estimation. During this iterative
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process, states and measures remain unchanged and influence of their uncertainties
are neglected. At the end of the process, all uncertainties have the same order of
magnitude. Despite this last remark, in the literature, choice of states is done with
the same assumption that uncertainties on states andmeasures are negligible, by eval-
uating identifiability criteria to the so-called identification matrix. In this paper, we
promote the idea to take into account the different sources of inaccuracy –namely all
uncertainty sources– when selecting states for parameter identification. Hence, we
are applying similarly identifiability criteria to what we call the uncertainty matrix,
a matrix describing the contribution of all uncertainties to errors of the model.

In the next section, we are describing with more details the parameter identifica-
tion problem, the regression analysis process, the iterative optimisation process, and
identifiability criteria. We carefully define the identification matrix and the uncer-
tainty matrix, and how they are used for selection of identification states of the
system. The last section is devoted to a pedagogical application, that clearly shows
the difference between the classical and the proposed approach of states selection.

This application concerns the localisation of a source by a mobile robot. In this
application, measures are taken at regular time step, and the selection of states corre-
spond to a trajectory determination, that can be easily visualized. Another interest of
this example is the ability to perform the states selection incrementally, that allows
some enhancements of the identification method.

2 Parameter Identification

2.1 Model Definition

We consider a system in step k = 1 . . . K , depending on unknown parameters x ,
system’s states u = [

u1 . . . uk
]T
, and measured outputsm = [

m1 . . . mk
]T
, through

the following model:
fk (uk, x,mk) = 0 (1)

As we consider that system’s states and measured outputs are prone to uncertain-
ties, we distinguish each variable x of its actual value x∗, and denote uncertainty on
it by Δx . Once plugged into the model, the k-th observation of the system provides
a set of Dim( f ) equations:

fk
(
u∗
k , x

∗,m∗
k

) = fk
(
uk + Δuk, x

∗,mk + Δmk
) = 0 (2)

We need to acquire p system observations, such that the number of equations will
be greater than the number of unknown parameters (K · Dim( f ) > Dim(x)). The
resulting system is usually widely over-constrained.
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2.2 Regression Analysis

Based on the set of these observations leading to residual errors,

fk
(
uk, x

∗,mk
) = εk with k = 1 . . . K (3)

a regression analysis estimator provides a solution x̂ minimizing a given criterion. In
the classical case of a Non-Linear Least Squares estimator, the criterion is the sum
of the squares of residual errors:

K∑

k=1

fk
(
uk, x̂,mk

)T · fk
(
uk, x̂,mk

)
(4)

Method of optimisation is based on afirst-order linear approximation of themodel:

f (u + Δu, x + Δx,m + Δm) ≈ f (u, x,m) + Ju · Δu + Jx · Δx + Jm · Δm
or

Δ f ≈ Ju · Δu + Jx · Δx + Jm · Δm
(5)

with Δu = [Δu1, . . . , Δu p]T , Δm = [Δm1, . . . , Δmp]T and Δ f = [Δ f1, . . . ,
Δ f p]T .

Starting from an initial estimate x0 of x , the Non-Linear Least Squares method
performs several solving steps to reduce Δx . As Ju · Δu + Jm · Δm is assumed to
be negligible compared to Jx · Δx , see [4], j-th step consists in solving the follow-
ing linear system –with Δ f and Jx computed from previous estimation x j– in the
unknown variables x j+1:

Δ f [x j ] = Jx [x j ] · Δx j+1 with Δx j+1 = x j+1 − x j (6)

Iterative process ends when Δx is sufficiently small, and is the same order of mag-
nitude of Δu and Δm - see [4] for the stop condition.

At the end of this iterative process, one classically considers that the quality of
the final estimation x̂ relies on the numerical quality of the Jacobian matrix Jx ,
denoted by Identification Matrix. Numerical quality is precisely defined in terms
of identifiability criteria (see below). As identification matrix depends on system’s
states, poses of the system for measurements are selected by optimisation of these
criteria.

2.3 Identifiability Criteria

Identifiability criteria have been widely studied in optimal design of experiments
-being called optimality criteria- and in robotics calibration problems -being called



316 A. Massein et al.

observability criteria-. Sun andHollerbach have synthesized in [10] those criteria and
showed their similarities as some observability indexes have an optimality criterion
counterpart.

Given a rectangular matrix M such that Y = M · X , identifiability criteria quanti-
fies how uncertainties on X propagate to uncertainties on Y throughM . The objective
is to minimize some observability -or optimality- indexes, denoted O , associated to
M , by choosing the state variable û which parametrize the matrix M , such that:

û = argmin
u

O(M(u)) (7)

Three criteria are popular, related to the singular values of the matrix M , obtained
and sorted by a Singular Value Decomposition (and denoted by σL ≤ · · · ≤ σ1):

• D-Optimality: O1 = ∏L
l=1 σl

1/(np). This index corresponds to the determinant of
MT .M here,

√
det(MT .M) = ∏L

l=1 σl . The sensitivity of Y with respect to X is
decreased when O1 is minimized.

• Inverse of the condition number: O2 = σL/σ1

• E-Optimality: O3 = σL

Sun and Hollerbach argued that O1 (D-optimality) is the best criterion for a para-
meter estimation of an unscaled model or a model without a convincing scaling
approach has to be minimized [10]. Fedorov and Leonov stated that D-optimal (O1)
designs aremost popular among theoretical and applied researchers in optimal exper-
imental designs [2].

We can denote briefly that O2 which related to condition number is for balancing
parameter uncertainties importance,whereasO3 is for reducing theworst parameter’s
uncertainty.

2.4 Uncertainty Matrix

At the end of the iterative process, a linear approximation of f in the neighborhood
of the final estimation x̂ of x is given by the p following equations:

fk
(
u∗
k , x

∗,m∗
k

) ≈ f
(
uk, x̂,m

) + Ju · Δuk + Jx · Δx + Jm · Δmk (8)

that can be written synthetically:

Δ f ≈ Ju · Δu + Jx · Δx + Jm · Δm (9)
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or by introducing what we denote by U , the Uncertainty Matrix such that:

Δx = −J+
x · [

Ju Jm −Ip
] ·

⎡

⎣
Δu
Δm
Δ f

⎤

⎦ = U ·
⎡

⎣
Δu
Δm
Δ f

⎤

⎦ (10)

J+
x being the pseudo-inverse of Jx .
We then claim that it is interesting to apply identifiability criteria to this uncer-

tainty matrix U –minimizing O(U )– when selecting states. To be efficient, at
this point, we would benefit of normalizing the uncertainties as done in [6, 7] or
alternatively [3].

3 Source Localisation Application

In this section, we illustrate the difference between using the identifiability matrix
and using the uncertainty matrix in the previously described states selection process,
on a pedagogical two-dimensional source localisation application.

3.1 Problem Statement

We aim to localize accurately and step-efficiently a fixed source with the help of a
mobile robot.

The mobile robot we consider has an embedded sensor measuring its direction
with respect to a source x = [

xS yS
]T
, with a fixed sampling frequency and prone

to bounded uncertainties. Our workspace is two dimensional and free of obstacle:
wherever we are we can get a measure at each sampling step k and move anywhere.
Speed of the robot is supposed constant and a constant distance r separates two
consecutive measurement positions.

We describe the robot motion in polar coordinates. To move robot from position
uk = [

xk yk
]T

at step k onto the next position uk+1, we need a leading direction αk+1

as written below:

uk+1 = r

[
cosαk+1

sin αk+1

]
+ uk (11)

At each measurement step, the goniometric sensor on the robot provides the
azimuth mk –with respect to a fixed reference frame– such that

[
sinmk

− cosmk

]
· (x − uk) = 0 (12)
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In the equations of the model, the position of the source x , the position uk and the
measured azimuth mk play respectively the roles of unknown parameters x , states u
and measures m. Expressed at the k-th step, the model fk is precisely given by the
previous equations. Please note that uk depends on αk .

Hence first-order linear approximation of the model expressed as:

[
sinmk

− cosmk

]
· Δx +

[− sinmk

cosmk

]
· Δuk +

[
cosmk

− sinmk

]
· (x − uk) · Δmk (13)

The difference between robot and source position x − uk is equal to ρk , the dis-
tance between uk and x , modulo cos(m∗

k − mk) which approximation is considered
equal to 1.

3.2 States Choices

The expressions of the identifiability matrix and of the uncertainty matrix are respec-
tively (at the k-th step):

Jxk =
⎡

⎣
j x1
. . .

j xk

⎤

⎦ with j xk = [
sinmk,− cosmk

]
(14)

Uk = J+
xk · Nk (15)

where Nk =

⎡

⎢
⎢⎢⎢
⎣

n1 0 . . . 0

0 n2 0
...

... 0
. . . 0

0 . . . 0 nk

⎤

⎥
⎥⎥⎥
⎦

with nk = [
sinmk − cosmk −ρk 1

]
(16)

Then, the optimal next direction αk+1 for the mobile robot, is defined with the help
of the identifiability criterion O1 using either Jxk+1 or Uk+1.

3.3 Experiment and Results

In our experiment, source x is at position x = [
0 1

]T
, and the initial mobile robot

position is u1 = [
0 0

]T
. The fixed motion step is r = 0.01, with a relative error

lower than 1% and we have the same error on the direction αk about 0.1◦. Finally,
the uncertainty of the measured angle Δm is uniformly distributed and bounded by
Δm = ±10◦.
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Fig. 1 Source localisation application

In a first experiment, we select each step αk+1 according to the maximization of
O1(Jxk+1). In the second, we select it to minimize O1(Uk+1).

The obtained results are presented in Fig. 1a and b.
The first one displays the motion of the mobile robot into the euclidean workspace

step-by-step: blue motion curve stands for a gradient determinant optimisation on
identification matrix Jx and orange motion curve for one on uncertainty matrix U .

The second one presents the error ‖x∗ − x̂‖ as a function of the number of steps
in the two experiments with the same color code.

Note that the bluemotion favours a circle approach centered on the source position
whereas the orangemotion favours a spiral approachon it:Byneglectinguncertainties
on measures (blue case), we intuitively want to change the angle m as much as
possible between two measurement positions, see [11], for a better conditioning of
Jxk . On the orange trajectory, we also take into account the measurement errors, so
we try to become closer to the source to minimize the influence of such errors.

4 Conclusion

We have introduced a new matrix to improve parameter estimation robustness to
all uncertainties, in complement to classical identification optimisation. We applied
our matrix optimisation in a source localisation application and demonstrated its
possible application in a practical case. Results outperformed classical identification
optimisation.
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This application highlights that, to improve parameter estimation accuracy, we
need to take into account more uncertainties than classically ones held in the identi-
fication matrix. Our proposed uncertaintymatrix can be used in design of parameter
identification problems, can improve significantly estimations accuracy and their
robustness to uncertainties.
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Isotropic Design of the Spherical Wrist
of a Cable-Driven Parallel Robot

Angelos Platis, Tahir Rasheed, Philippe Cardou and Stéphane Caro

Abstract Because of their mechanical properties, parallel mechanisms are most
appropriate for large payload toweight ratio or high-speed tasks.Cable driven parallel
robots (CDPRs) are designed to offer a large translationworkspace, and can retain the
other advantages of parallel mechanisms. One of the main drawbacks of CDPRs is
their inability to reach wide ranges of end-effector orientations. In order to overcome
this problem, we introduce a parallel spherical wrist (PSW) end-effector actuated by
cable-driven omni-wheels. In this paper we mainly focus on the description of the
proposed design and on the appropriate placement of the omni-wheels on the wrist
to maximize the robot dexterity.

1 Introduction

Several applications could benefit from CDPRs endowed with large orientation
workspaces, such as entertainment and manipulation and storage of large and heavy
parts. This component of the workspace is relatively small in existing CDPR designs.
To resolve this problem, a parallel spherical wrist (PSW) end-effector is introduced
and connected in series with the translational 3-DOFCDPR to provide an unbounded
singularity-free orientation workspace.
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This paper focuses on the kinematic design and analysis of a PSW actuated by
the cables of a CDPR providing the robot independent translation and orientation
workspaces. CDPRs are generally capable of providing a large 3-dofs translation
workspace, normally needed four cables, which enable the user to control the point
where all of them are concentrated [2, 5].

Robots that can provide large orientation workspace have been developed using
spherical wrist in the past few years that allows the end-effector to rotate with unlim-
ited rolling, in addition to a limited pitch and yawmovements [3, 10]. Eclipse II [9] is
an interesting robot that can provide unbounded 3-dofs translational motions, how-
ever its orientation workspace is constrained by structural interference and rotation
limits of the spherical joints.

Several robots have been developed in the past having decoupled translation and
rotational motions. One interesting concept of such a robot is that of the AtlasMotion
Platform [6] developed for simulation applications. Another robot with translation
motions decoupled from orientation motions can be found in [11]. The decoupled
kinematics are obtained using a triple spherical joint in conjunctionwith a 3-UPS par-
allel robot.

In order to design a CDPR with a large orientation workspace, we introduce a
parallel spherical wrist (PSW) end-effector actuated by cable-driven omni-wheels.
In this paper we mainly focus on the description of the proposed design and on
the appropriate placement of the omni-wheels on the wrist to maximize the robot
dexterity.

2 Manipulator Architecture

The end-effector is a sphere supported by actuated omni-wheels as shown in Fig. 1.
The wrist contains three passive ball joints at the bottom and three active omni-
wheels being driven through drums. Each cable makes several loops around each
drum. Both ends are connected to two servo-actuated winches, which are fixed to the
base.When two servo-actuated winches connected to the same cable turn in the same
direction, the cable circulates and drives the drum and its associated omni-wheel.
When both servo-actuated winches turn in opposite directions, the length of the cable
loop changes, and the sphere centre moves. To increase the translation workspace of
the CDPR, another cable is attached, which has no participation in the omni-wheels
rotation. The overall design of the manipulator is shown in Fig. 2.

We have in total three frames. First, theCDPRbase frame (F0), which is described
by its center O0 having coordinates x0, y0, z0. Second, the PSW base frame (F1),
which has its center O1 at the geometric center of the sphere and has coordi-
nates x1, y1, z1. Third, the spherical end-effector frame (F2) is attached to the end-
effector. Its centre O2 coincides with that of the PSW base frame (O2 ≡ O1) and its
coordinates are x2, y2, z2.

Exit points Ai are the cable attachment points that link the cables to the base. All
exit points are fixed and expressed in the CDPR reference frameF0. Anchor points
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Fig. 1 Isotropic design of the parallel spherical wrist

Fig. 2 Concept idea of the manipulator
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Bi are the platform attachment points. These points are not fixed as they depend
on the vector P , which is the vector that contains the pose of the moving platform
expressed in the CDPR reference frameF0. The remaining part of the paper aims at
finding the appropriate placement of the omni-wheels on the wrist to maximise the
robot dexterity.

3 Kinematic Analysis of the Parallel Spherical Wrist

3.1 Parameterization

To simplify the parameterization of the parallel spherical wrist, some assumptions
are made. First, all the omni-wheels are supposed to be normal the sphere. Second,
the contact points of the omni-wheels with the sphere lie in the base of an inverted
cone where its end is the geometrical center of the sphere parametrized by angle α.
Third, the three contact points form an equilateral triangle as shown in [6, 7]. Fourth,
the angle between the tangent to the sphere and the actuation force produced by the
i th actuated omni-wheel is named βi , i = 1, 2, 3, and β1 = β2 = β3 = β. Figure3
illustrates the sphere, one actuated omni-wheel and the main design variables of the
parallel spherical wrist.Πi is the plane tangent to the sphere and passing through the
contact point Gi between the actuated omni-wheel and the sphere.

Fig. 3 Parameterization of the parallel spherical wrist
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(a) (b)

Fig. 4 a Actuation and constraint wrenches applied on the end-effector of the spherical wrist.
b Virtual i th leg with actuated prismatic joint

ωi denotes the angular velocity vector of the i th actuated omni-wheel. si is a unit
vector along the tangent line T that is tangent to the base of the cone and coplanar
to plane Πi . wi is a unit vector normal to si . fai depicts the transmission force lying
in plane Πi due to the actuated omni-wheel. α is the angle defining the altitude of
contact points Gi (α ∈ [0, π ]). β is the angle between the unit vectors si and vi

(β ∈ [−Π
2 , Π

2 ]). As the contact points Gi are the corners of an equilateral triangle,
the angle between the contact point G1 and the contact points G2 and G3 is equal to
γ . R is the radius of the sphere. ri is radius of the i th actuated omni-wheel. ϕ̇i is the
angular velocity of the omni-wheel. ui ,vi ,ni are unit vectors at point Gi and i, j,k
are unit vectors along x2, y2, z2 respectively.

In order to analyze the kinematic performance of the parallel spherical wrist, an
equivalent parallel robot (Fig. 4) having six virtual legs is presented, each leg having
a spherical, a prismatic and another spherical joints connected in series. Three legs
have an actuated prismatic joint (green), whereas the other three legs have a locked
prismatic joints (red). Here, the kinematics of the spherical wrist is analyzed with
screw theory and an equivalent parallel robot represented in Fig. 4.

3.2 Kinematic Modeling

Figure4a represents the three actuation forces fai , i = 1, 2, 3 and the three constraint
forces fci , i = 1, 2, 3 exerted by the actuated omni-wheels on the sphere. The three
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constraint forces intersect at the geometric center of the sphere and prevent the latter
from translating. The three actuation forces generated by the three actuated omni-
wheels allow us to control the three-dof rotational motions of the sphere. Figure4b
depicts a virtual leg corresponding to the effect of the i th actuated omni-wheel on the
sphere. The kinematicmodel of the PSW is obtained by using the theory of reciprocal
screws [4, 8] as follows:

A t = B ϕ̇ (1)

where t is the sphere twist, ϕ̇ = [
ϕ̇1 ϕ̇2 ϕ̇3

]T
is the actuated omni-wheel angular

velocity vector.A and B are respectively the forward and inverse kinematic Jacobian
matrices of the PSW and take the form:

A =
[
Arω Arp

03×3 I3

]
(2)

B =
[

I3
03×3

]
(3)

I3 and 03×3 are the 3 × 3 identity and zeros matrices, and the matrices Arω and
Arp are:

Arω =
⎡

⎣
R(n1 × v1)

T

R(n2 × v2)
T

R(n3 × v3)
T

⎤

⎦ and Arp =
⎡

⎢
⎣

vT
1

vT
2

vT
3

⎤

⎥
⎦ (4)

As the contact points on the sphere form an equilateral triangle, γ = 2π/3. As a
consequence, matrices Arω and Arp are expressed as functions of the design para-
meters α and β:

Arω = R

2

⎡

⎣
−2CαCβ −2Sβ 2SαCβ

CαCβ + √
3Sβ Sβ − √

3CαCβ 2SαCβ

CαCβ − √
3Sβ Sβ + √

3CαCβ 2SαCβ

⎤

⎦ (5)

Arp = 1

2

⎡

⎣
−2CαSβ 2Cβ 2SαSβ

CαSβ − √
3Cβ −(

√
3CαSβ + Cβ) 2SαSβ

CαSβ + √
3Cβ

√
3CαSβ − Cβ 2SαSβ

⎤

⎦ (6)

where C and S denote the cosine and sine functions, respectively.

3.3 Singularity Analysis

As matrix B cannot be rank deficient, the parallel spherical wrist meets singularities
if and only if (iff) matrix A is singular. From Eqs. (5) and (6), matrix A is singular
iff:
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Fig. 5 Singular configurations of the parallel spherical wrist

det(A) = 3
√
3

2
R3SαCβ(1 − S2αC2β) = 0 (7)

namely, if α = 0 or π ; if β = ±π/2; if α = π/2 and β = 0 or ±π .
Figure5a, b represent two singular configurations of the parallel spherical wrist

under study. The three actuation forces fa1, fa2 and fa3 intersect at point I in Fig. 5a.
The PSW reaches a parallel singularity and gains an infinitesimal rotation (uncon-
trolled motion) about an axis passing through points O and I in such a configura-
tion. The three actuation forces fa1, fa2 and fa3 are coplanar with plane (X1OY1)
in Fig. 5b. The PSW reaches a parallel singularity and gains two-dof infinitesimal
rotations (uncontrolled motions) about an axes that are coplanar with plane (X1OY1)
in such a configuration.

3.4 Kinematically Isotropic Wheel Configurations

This section aims at finding a good placement of the actuated omni-wheels on the
sphere with regard to the manipulator dexterity. The latter is evaluated by the condi-
tion number of reduced Jacobian matrix Jω = rA−1

rω which maps angular velocities
of the omni-wheels ϕ̇ to the required angular velocity of the end-effector ω. From
Eqs. (5) and (6), the condition number κF (α, β)ofJω based on theFrobenius norm [1]
is expressed as follows:

κF (α, β) = 1

3

√
3S2αC2β + 1

S2αC2β(1 − S2αC2β)
(8)
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Fig. 6 Inverse condition number of the forward Jacobian matrix A based on the Frobenius norm
as a function of design parameters α and β

Figure6 depicts the inverse condition number of matrixA based on the Frobenius
norm as a function of angles α and β. κF (α, β) is a minimum when its partial
derivatives with respect to α and β vanish, namely,

κ̇α(α, β) = ∂κ

∂α
= Cα(3S2αC2β − 1)(S2αC2β + 1)

18S3αC2β(S2αC2β − 1)2κ
= 0 (9)

κ̇β(α, β) = ∂κ

∂β
= − Sβ(3S2αC2β − 1)(S2αC2β + 1)

18S2αC3β(S2αC2β − 1)2κ
= 0 (10)

and its Hessian matrix is semi-positive definite. As a result, κF (α, β) is a minimum
and equal to 1 along the hippopede curve, which is shown in Fig. 6 and defined by
the following equation:

3S2αC2β − 1 = 0 (11)

This hippopede curve amounts to the isotropic loci of the parallel spherical wrist.
Figure7 illustrates some placements of the actuated omni-wheels on the sphere

leading to kinematically isotropicwheel configurations in the parallel spherical wrist.
It should be noted that the three singular values of matrix Arω are equal to the
ratio between the sphere radius R and the actuated omni-wheel radius r along the
hippopede curve, namely, the velocity amplification factors of the PSW are the same
and constant along the hippopede curve.

If the rotating sphere were to carry a camera, a laser or a jet of some sort, then
the reachable orientations would be limited by interferences with the omni-wheels.
Therefore, a designer would be interested in choosing a small value of alpha, so as to
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cap1 cap2

cap3 cap4

Fig. 7 Kinematically isotropic wheel configurations in the parallel spherical wrist

maximize the field of view of the PSW. As a result, the following values have been
assigned to the design parameters α and β:

α = 35.26◦ (12)

β = 0◦ (13)

in order to come up with a kinematically isotropic wheel configuration in the parallel
spherical wrist and a large field of view. The actuated omni-wheels are mounted
in pairs in order to ensure a good contact between them and the sphere. A CAD
modeling of the final solution is represented in Fig. 1.
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4 Conclusion

This paper presents the novel concept of mounting a parallel spherical wrist in series
with a CDPR, while preserving a fully-parallel actuation scheme. As a result, the
actuators always remain fixed to the base, thus avoiding the need to carry electric
power to the end-effector andminimizing its size,weight and inertia.Another original
contribution of this article is the determination of the kinematically isotropic wheel
configurations in the parallel spherical wrist. These configurations allow the designer
to obtain a very good primary image of the design choices. To our knowledge, these
isotropic configurations were never reported before, although several researchers
have studied and used omni-wheel-actuated spheres. Future work includes the devel-
opment of a control scheme to drive the end-effector rotations while accounting for
the displacements of its centre, and also making a small scale prototype of the robot.
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Dynamic Recovery of Cable-Suspended
Parallel Robots After a Cable Failure

Alessandro Berti, Marc Gouttefarde and Marco Carricato

Abstract This paper studies how emergencies and failures can bemanaged in cable-
driven parallel robots, in particular in the case of a redundant cable-suspended robot
subjected to a cable breakdown. The objective is to present and test via numerical
simulation the feasibility of an emergency strategy that allows the robot platform to
be dynamically recovered to a safe position. Preliminary results, based on a simpli-
fied robot with a point-mass platform suspended by 4 cables, show that the proposed
strategy may be an effective way to guide the platform from an unstable pose deter-
mined by the cable failure to a new static equilibrium pose.

1 Introduction

Cable-driven parallel robots (CDPRs) control the pose of the end-effector by cables.
Consequently, they benefit from peculiar characteristics, such as a potentially large
workspace, relatively lightweight support structures, ease of assembly, and superior
modularity and reconfigurability. However, cables can only pull but not push on the
mobile platform, which makes the study of CDPRs challenging. CDPRs are fully
constrained if, once the actuators are locked, the mobile platform pose is completely
determined. They are underconstrained [1, 2, 4] if the platform is movable when the
cable lengths are assigned. In a cable-suspended robot (CSPR), all cables lie above the
moving platform. A CSPR may be affected by several types of malfunctioning. This
paper focuses on CSPR behavior in case of cable ruptures. The rupture of one ormore
cables generally causes the CSPR static workspace to change significantly. Indeed,
after a cable failure, the platform posemay be located in a statically inadmissible part
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of the workspace. In that case, even if the actuators are locked, the mobile platform
will start moving towards a new statically admissible pose, which may be quite far
from the pose where the cable breakdown took place.

Only few previous works deal with the topic investigated in this paper. Gosselin
[5–7] presents an effective approach to control both planar and spatial CDPRs (with
3 dofs) outside their static workspace. Roberts [11] discusses a procedure for the
design of “fault-tolerant cable-suspended systems”, i.e. a method capable to assess
if a robot in a certain pose may tolerate a cable loss. Notash [10] presents a method
to recover the lost wrench after a cable failure, but only under the assumption that
the robot remains overconstrained after the failure has occurred.

This paper proposes an approach that aims at safely recovering themobile platform
after a cable failure, even if the breakdown causes the current platform pose to lie
outside the static workspace. To the best of our knowledge, this issue is investigated
here for the first time. Results are obtained via numerical simulation. The paper is
organized as follows. Sections2, 3 and 4 describe, respectively, the CSPRmodel, the
recovery strategy, and the control scheme. Section5 presents simulation examples
and discusses results. Section6 concludes the paper.

2 CSPR Model

The simplified CSPR studied in this paper has 4 cables, whose lengths are varied by
motorized winches. The cables exit from 4 coplanar points Ai , i = 1, . . . , 4, fixed
on the robot support structure and connected to a point-mass mobile platform P
(Fig. 1). The position vector of P in the fixed reference frame Oxyz is p, and the
platform mass is denoted by m. O is located on the ground, with the z-axis pointing
upward. Cables are assumed to be massless, and each one of them is considered to
be a straight-line segment from Ai to P .

Fig. 1 Geometric model of
the CSPR



Dynamic Recovery of Cable-Suspended … 333

The robot geometry and dimensions are inspired by the CoGiRo prototype
[8, 9]. The position vectors ai of points Ai in Oxyz are a1 = [−7.246,−5.174,
5.480]T, a2 = [−7.232, 5.305, 5.480]T, a3 = [7.253, 5.278, 5.480]T and
a4 = [7.232,−5.202, 5.480]T. Cable lengths are defined as:

ρi = ‖p − ai‖ i = 1, . . . , 4 (1)

Differentiating Eq. (1) with respect to time yields the cable-length time derivatives,
which can be expressed in matrix form as

ρ̇ = Jṗ (2)

where

J =
[
. . .

p − ai
ρi

. . .

]T

(3)

By letting the wrench matrix be W = −JT, the platform dynamics is expressed as

Wf = m
(
p̈ − fg

)
(4)

with fg = [0, 0,−g]T.
The cable-force array f is computedby a simplified elasticmodel basedonHooke’s

law, i.e.
f = K(ρ − ρ0) (5)

where ρ0 is the array of the unstrained cable lengths and K is a diagonal matrix
whose elements are the cable stiffnesses, namely

ki = Ei Si/ρi (6)

with Ei and Si being, respectively, the cable’s Young modulus and cross-sectional
area.

If tm is the array of motor torques assigned by the controller, the winch motors’
angular accelerations are

Im q̈ = tm − r f (7)

where Im is the motor inertia, q̈ is the array of motor accelerations, and r is the winch
drum radius. Im and r are assumed to be equal for all winches. ρ0 is computed as
ρ0 = −rq, namely by the numeric integration of the left-hand side of Eq. (7). The
integration of Eq. (4) provides the simulated motion of the robot.
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3 Recovery Strategy

A cable failure may cause the CSPR mobile platform to lie outside its (new) static
workspace. The main purpose of this work is to find a recovery strategy that can
safely drive the platform to a statically admissible rest configuration. Gosselin [7]
showed that a 2-dof planar CSPR can be dynamically controlled outside its static
workspace. In [5, 6], these results were extended to a spatial 3-dof 3-cable CSPR
with a point-mass platform. The recovery strategy proposed here is based on the
results of [5, 6]. When cable k breaks, the new static workspace is defined as the
prism Π whose base is the triangle formed by the projections on the xy plane of
points ai , i = 1, . . . , 4, i �= k, and whose height is equal to the (common) height of
the cable exit points, i.e. az . The platform position is statically feasible only if P lies
inside Π . If P lies outside Π and the actuators are locked, P will uncontrollably
move towards a new stable equilibrium within Π .

The strategy proposed in this paper is the following. Assuming that it is possible
to determine when a cable failure occurs, the controller tries to recover the mobile
platform towards the new static workspace by following a trajectory whose definition
is based on the approach presented in [5, 6]. Then, as soon as the platform enters the
new static workspace, the controller aims at stopping it. For simplicity, the whole
recovery trajectory is designed such that the path followed by p lies in a horizontal
plane. We define three main stages during the recovery phase (Fig. 2):

• (b) a cable breaks down;
• (r) the platform reaches its new static workspace (triangle A1A2A3 in Fig. 2);
• (s) the platform reaches a complete stop.

Quantities relative to each stage are denoted by subscripts (b), (r), or (s), respectively.
The first part of the trajectory, which immediately follows the cable breakdown,
between stages (b) and (r), leads the platform to its new static workspace. To this
end, the tensions in the remaining cables must be kept positive by the inertial load
on the platform. Thus, according to [5, 6], this part of the trajectory may consist of
two sinusoids with appropriate amplitudes and frequency along the x and y axes,
thus forming the following ellipse:

Fig. 2 The 3 main stages of
the recovery phase



Dynamic Recovery of Cable-Suspended … 335

Γ(b)−(r) = [x, y, z]T = [xc + rx sin(ωnt + αx ), yc + ry sin(ωnt + αy), z(b)]T (8)

where xc and yc are the coordinates of the center C of the ellipse, rx and ry are the
amplitudes of the sinusoids along x and y, respectively, αx and αy are their phases,
andωn is the oscillation frequency.ωn can be taken, according to [5, 6], as the natural
frequency of the robot after the cable breakdown, namely as

ωn =
√
g/

(
az − z(b)

)
(9)

The center of the ellipse C must lie inside the new static workspace, i.e. in Π . The
choice of C has a significant influence on the performance of the recovery operation.
Currently, coordinates xc and yc are not automatically computed, but their values are
tuned before the simulation. The remaining parameters, i.e. rx , ry , αx and αy , must
be chosen so as to ensure that the platform position and velocity are continuous in
(b). Thus, assuming that time t is zero in (b), the following equalities must hold

{
xc + rx sin(αx ) = x(b), yc + ry sin(αy) = y(b)

ωnrx cos(αx ) = ẋ(b), ωnry cos(αy) = ẏ(b)
(10)

which allow rx , ry , αx and αy to be computed.
As soon as P begins moving along the elliptic path, the controller starts checking

whether or not it lies in the new static workspace. Once the platform reaches stage
(r), the controller begins following the second part of the recovery trajectory, i.e. the
one leading to the complete stop of the platform in (s). This part is formed by two
7-degree polynomials along the x and the y axis:

Γ(r)−(s) = [x, y, z]T =
[

7∑
i=0

cix t
i ,

7∑
i=0

ciyt
i , z(b)

]T

(11)

The 16 unknown coefficients in Γ(r)−(s) are obtained by imposing continuity of
position, velocity, acceleration and jerk in (r), and cancelingout velocity, acceleration
and jerk in (s), provided that the position p(s) is assigned by the controller on the
basis of the environment characteristics.

The duration of the second part of the recovery trajectory and the location of p(s)

must be chosen so as to maintain positive tensions in the remaining three cables, and
to avoid collisions with the robot support structure. If necessary, the second part of
the trajectory can be conveniently segmented, with additional control points added,
and 7-degree polynomials used to lead P from one control point to the next one.
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Fig. 3 The control and simulation scheme adopted during the recovery trajectory

4 Recovery Control Scheme

We assume that it is possible to estimate the cable tension values and, consequently,
to detect when a cable breaks down. At the moment of a cable failure, the controller
checks whether the actual platform pose and the remaining part of its trajectory are
inside the new static workspace, in which case the robot performs an emergency stop
along this trajectory [3]. If the actual pose is outside the new static workspace, or it is
impossible to stop the mobile platform before it exits the new static workspace, the
controller starts a recovery strategy. The new static workspace is known, since, for
any 3-cable configuration, it can be computed offline. When a cable breakdown is
detected, the controller computes the parameters of the elliptic trajectory in Eq. (8).

If cable tensions can be estimated (i.e. measured by sensors), we should know
which cables are taut at every controller cycle. The input of the direct problem are
the motor angular rotations measured at the i th simulation step. The solution of the
direct problem returns the “real” platform pose p. With the pose p, the error with
respect to the pose pd coming from the trajectory planner at the simulation step i + 1
is computed, and through a PID controller we obtain the corrected velocity ṗd that
permits to follow the desired trajectory.

Inverse differential kinematics is then used to compute the motor velocities. The
motor model yields the corresponding motor torque, which is the input to the simu-
lated robot, thus yielding the new motor angular position that allow the control loop
to restart (Fig. 3). According to the results of the numerical simulations conducted
so far, it is not difficult to keep 3 cables in tension throughout the whole recovery
trajectory.

5 Simulation Results

Test 1. The example presented here simulates a recovery trajectory after the fail-
ure of cable number 4. The platform mass is m = 400 kg and, at stage (b), the
platform position and velocity are, respectively, p(b) = [0.830,−2.781, 1.915]T
and ṗ(b) = [1.984, 0.490, 0.055]T. The center of the ellipse Γ(b)−(r) is set as C =
[−1.0, 0.5, 1.915]T and the platform position at rest is p(s) = [−5.0,−1.0, 1.915]T.
The duration of the entire recovery phase is t(s) = 4 s. This test shows that the
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Fig. 4 Positioning error
with respect to the recovery
trajectory provided by the
controller

Fig. 5 Cable tensions during
the recovery trajectory

controller can lead the platform along the recovery trajectory with a positioning
error of a few centimeters (Fig. 4). It also shows that the tensions of the remaining
active cables are positive throughout the recovery trajectory (Fig. 5). The cable cross-
sectional area and elasticity are Si = 16.4 mm2 and Ei = 76 GPa, respectively. The
winch drum radius is r = 67.5 mm, and the motor inertia is Im = 0.062 kg m2.

Test 2. The same approach described for a 4-cable robot may be adapted and
applied to the 8-cable model of the CoGiRo prototype [8, 9]. Indeed, if the CoGiRo
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Fig. 6 Tests 1-2: Recovery trajectories for both models

exit points are approximated (taken 2 by 2) to lie at the vertices of a rectangle
and connected to the platform center of mass P by 4 cables (with doubled cross
section and Young modulus), the 4-cable robot simulated in Test 1 is obtained, and
the recovery strategy proposed in this paper may be used to design the trajectory
of P . This trajectory can then be used to compute, by the inverse kinematics, the
cable lengths of the actual 8-cable robot, which are fed to the CoGiRo controller.
Details are not reported due to space limitations. Figure6 refers to a simulation that
replicates the same conditions on stage (b) in Test 1 for the 8-cable CoGiRo model.
For consistency, when cable 7 breaks, cable 8 is also deactivated, thus leading to a
6-cable robot lying outside its static workspace. The recovery strategy brings the
robot to halt in the same position as in Test 1, with zero final orientation of the
platform. Figure6 shows that there is a very good match between the trajectory
followed by the simplified and the non-simplified model.

6 Conclusions, Open Issues and Future Works

This paper focused on the issue of cable failure (breakdown) in cable-suspended
parallel robots (CSPRs). A recovery strategywas introduced for a spatial 3-dof CSPR
with 4 cables and a point-mass mobile platform. This strategy consists in planning a
trajectory that, depending on which cable breaks down, may partly lie outside of the
failed CSPR static workspace. Simulation results showed that the mobile platform
may be recovered to a safe position, thereby preventing the mobile platform from
falling down or making large uncontrolled oscillations.

A number of issues remain to be dealt with in order to make the proposed recovery
strategy fully automated and reliable.
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(a) The recovery strategy is notably based on the results presented in [5, 6]. The
extension of [5, 6] to 6-cable 6-dof CSPRs is an open issue.

(b) In some circumstances, the recovery strategy may be counterproductive. For
example, if a cable breaks when the platform is close to the ground, it may be safer
to let it fall down. Criteria to determine whether or not the recovery strategy should
intervene need to be investigated.

(c) Some parameters of the recovery trajectory, such as the center of the ellipse
Γ(b)−(r), the location of the point where the platform has to be stopped, and the
duration t(s) of the trajectoryΓ(r)−(s), are currently provided by the user. The objective
of part of our ongoing works is to make the controller capable of determining these
parameters autonomously.

(d)The feasibility of the proposed recovery strategy in real-timemust be assessed,
in order to proceed with experiments on a CSPR prototype.

Acknowledgements This work was supported by Italian Ministry of Education, Universities and
Research by the PRIN grant No. 20124SMZ88.

References

1. Abbasnejad, G., Carricato, M.: Direct geometrico-static problem of underconstrained cable-
driven parallel robots with n cables. IEEE Trans. Rob. 31(2), 468–478 (2015)

2. Berti, A., Merlet, J.P., Carricato, M.: Solving the direct geometrico-static problem of under-
constrained cable-driven parallel robots by interval analysis. Int. J. Robot. Res. 35(6), 723–739
(2016)

3. Berti, A.,Merlet, J.P., Carricato,M.:Workspace analysis of redundant cable-suspended parallel
robots. In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots, pp. 41–53. Springer
(2015)

4. Carricato, M., Merlet, J.P.: Stability analysis of underconstrained cable-driven parallel robots.
IEEE Trans. Rob. 29(1), 288–296 (2013)

5. Gosselin, C.: Global planning of dynamically feasible trajectories for three-DOF spatial cable-
suspended parallel robots. In: Bruckmann, T., Pott, A., (eds.) Cable-Driven Parallel Robots,
pp. 3–22. Springer (2013)

6. Gosselin, C., Foucault, S.: Experimental determination of the accuracy of a three-DOF cable-
suspended parallel robot performing dynamic trajectories. In: Pott, A., Bruckmann, T. (eds.)
Cable-Driven Parallel Robots, pp. 101–112. Springer (2015)

7. Gosselin, C., Ren, P., Foucault, S.: Dynamic trajectory planning of a two-DOF cable-suspended
parallel robot. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1476–
1481 (2012)

8. Gouttefarde, M., Collard, J.F., Riehl, N., Baradat, C.: Geometry selection of a redundantly
actuated cable-suspended parallel robot. IEEE Trans. Rob. 31(2), 501–510 (2015)

9. Lamaury, J., Gouttefarde, M.: Control of a large redundantly actuated cable-suspended parallel
robot. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4659–4664
(2013)

10. Notash, L.: Failure recovery for wrench capability of wire-actuated parallel manipulators.
Robotica 30(6), 941–950 (2012)

11. Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance
of cable-suspended robots. J. Robot. Syst. 15(10), 581–597 (1998)



Workspace and Interference Analysis
of Cable-Driven Parallel Robots
with an Unlimited Rotation Axis

Andreas Pott and Philipp Miermeister

Abstract A drawback of many cable-driven parallel robots is a relatively small ori-
entation workspace. In this paper, two design variants for cable-driven parallel robots
with nine and twelve cables are proposed that allow for large rotations. It is shown
that the platform can perform a 360◦ rotationwhilemaintaining positive tension in all
cables and without collisions amongst the cables. Furthermore, workspace studies
of the total orientation workspace are provided. Surprisingly, this family of cable
robot is capable to perform an unlimited rotation within a translational workspace
of reasonable size. Finally, the efficiency and computation time of force distribution
algorithms is compared for cable robots having twelve cables.

1 Introduction

Cable-driven parallel robots, in the following simply called cable robots, mainly
consist of a light weight platform, cables, and winches and therefore allow to design
systems with an exceptional good power to mass ratio compared to conventional
kinematics. The workspace of the robot mainly depends on the winch positions and
platform anchor points. Cable robots have a relatively small rotational workspace
compared to their translational workspace. Prototypes such as the CoGiRo [4] are
able to rotate the platform by around 90◦ which is considered to be a large orientation
workspace for a cable robot. Handling tasks such as conveyer belt pick-and-place
applications demand for a larger rotational workspacewhich can yet only be achieved
by additional actuated axes on the platform.
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In this paper, an approach is presented where the desired rotation is actuated by
cables. This keeps the mass of the system low and avoids the need for power supply.
Beside that, additional cables increase the safety of the system and even may be used
to increase the translational workspace.

2 Cable Robot with Unlimited Rotation

The basic idea of a cable-driven parallel robot with one unlimited rotation axis
was recently presented [7]. In this paper, we detail the properties of such robots by
proposing a configuration with more cables that has the unlimited rotation property
of the platform within a reasonably large wrench-feasible workspace. Additionally,
we show that the robot does not suffer from cable–cable collisions in this workspace.
Considering the connection of many cables to the platform in a spatial robot, it
seems to be clear from intuition that large rotation is impossible for a cable-driven
robot. However, this intuition is wrong and one way to achieve this effect is to use a
platform that has the form of a crank shaft. Fixing three cables to each end of the shaft
is basically a generic 2R3T design. Then, one uses an eccentric connection point on
the shaft to independently control the rotation of the shaft (see Fig. 1). In this simple
example, three cables share a common anchor point at each end of the shaft as well as
on the crank. From a kinematic point of view, this yields exactly the desired rotational
mobility of the platform. As shown in [7], each additional degree-of-freedom can
be actuated on the platform and requires at least one extra cable. However, for a
cable robot, we might need to add more cables for a degree-of-freedom to achieve a
preferred geometry of the platform.

In the following, two archetypic robot designs are presented where the geometry
of the robot is characterized by the proximal anchor points ai and the distal anchor
points bi . The number of cables is denoted by m.

The endless Z9 design is a minimal realization of the idea sketched above to
achieve the rotation capabilities of the robot. The geometry of the robot consists of
three triangular levels on different heights that respectively share a common distal

Fig. 1 Design of two cable robot with an unlimited yaw rotation around its z-axis in the form of a
lever (left) and crank shaft (right) with nine cables
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Table 1 Geometry data for the base ai and platform bi anchor points

Endless Z9 Base ai Platform bi
i x y z x y z

1 − rB
2

√
3
2 rB HB rP 0 HP

2 rB 0 HB rP 0 HP

3 − rB
2 −

√
3
2 rB HB rP 0 HP

4 − rB
2

√
3
2 rB hB 0 0 hP

5 rB 0 hB 0 0 hP

6 − rB
2 −

√
3
2 rB hB 0 0 hP

7 − rB
2

√
3
2 rB 0 0 0 0

8 rB 0 0 0 0 0

9 − rB
2 −

√
3
2 rB 0 0 0 0

Endless Z12 Base ai Platform bi
i x y z x y z

1 −rB rB HB rP 0 HP
2 rB rB HB rP 0 HP
3 rB −rB HB rP 0 HP
4 −rB −rB HB rP 0 HP
5 −rB rB hB 0 0 hP
6 rB rB hB 0 0 hP
7 rB −rB hB 0 0 hP
8 −rB −rB hB 0 0 hP
9 −rB rB 0 0 0 0

10 rB rB 0 0 0 0

11 rB −rB 0 0 0 0

12 −rB −rB 0 0 0 0

anchor point bi . The structure in layers shall avoid collisions amongst these groups
of cables. Since all cables within a group share a common distal anchor point, the
cables cannot interfere in any other point within the robot frame [11]. The endless Z9
is a 9-3 cable configuration. A parametric representation of this geometry is given in
Table1.

The endless Z12 is a cable robot in a 12-3 cable configuration (see Fig. 2). In order
to match the mostly desired shape of a rectangular robot frame, the proximal anchor
points are moved to the surface of a box providing also a larger possible workspace
for the robot. The design has again three layers on the platform and on the base, where
for this robot each layer consists of four cables. Again, given a proper geometry for
the platform, cables on different layers shall not collide. For the sample robot, we
have chosen the parameters as follows: rB = 2, rP = 0.3, HB = 3, hB = 2, HP = 0.5,
and hP = 0.3.
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Fig. 2 The endless Z12 robot architecture with m = 12 cables

3 Kinematic Properties

In the following, we briefly present the modelling and tools used to analyze the cable
robots. The standard kinematic modelling for cable-driven parallel robots is used for
the analysis in this paper. The platform position r and rotation R can be controlled
by changing the cable length li according to the inverse kinematics

li = ai − r − Rbi, (1)

where vectors ai relate to the cable’s outlet points at the winch side and bi are
the distal anchor points on the mobile platform. Considering the platform as a free
floating body, a stable platform position is characterized by the force and torque
equilibrium

ATf + w = 0, (2)

where f and w denote the cable forces and external wrench, respectively, while AT

relates to the well-known structure matrix
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AT =
[

u1 · · · um
b1 × u1 · · · bm × um

]
. (3)

The unit vectors ui describe the direction of the cables. Cables can only resist pulling
forces so that Eq.2 must be fulfilled under the constraint of positive forces fi > 0
for i = 1 . . . ,m. Under the consideration of the minimal and maximal allowed cable
forces fmin and fmax, it is possible to determine the set of allowed platform poses for
a given wrench w using Eq. (2), that is to find a positive solution for the cable forces
f within the allowed range fmin ≤ fi ≤max.

Cable robotswithmore cables than the six degree-of-freedomare over-constrained
systems and therefore multiple valid force distributions for a single stable platform
pose exist. This holds true especially for the endless Z robots at hand which exhibit
a high degree-of-redundancy. Thus, for the determination of the cable force, differ-
ent methods are considered that are capable of dealing with such highly redundant
robots. For this study, we focus on the (advanced) closed-form method [10], the
Dykstra method [5], and the wrench-set method [1]. However, only little can be
found in the literature that analyze appropriateness and applicability of force dis-
tribution methods for robots with m = 12 cables. It is known that the computation
time and also the convergence can degenerate if the degree-of-redundancy increases.
Therefore, different approaches are used in this study to assess also the feasibility for
this highly redundant case. Following the discussion in [10], we use amongst others
a least squares approach

f = fm − A+T
(
w + ATfm

)
(4)

whereA+T is theMoore–Penrose pseudo inverse ofAT and fm is themedium feasible
force distribution fm = (fmin + fmax) /2.

The concept of wrench-feasibility poses is recalled above and is applied to the
workspace here. The wrench-feasible workspace (WFW) was defined in [2, 3, 12]
as follows: The wrench-feasible workspace is the set W of poses (r,R) of the
mobile platform. For any wrench w ∈ Q there exists a vector of cable tension
f ∈ [ fmin, fmax]m such that Eq. (2) is fulfilled. The pose (r,R) is called wrench-
feasible if it allows at least one solution f ∈ [ fmin, fmax]m . To test if a pose belongs
to the wrench-feasible workspace, the methods mentioned above to compute force
distributions are employed. For studying the workspace of the endless Z robots,
one is interested in the total orientation workspace [6], i.e. the set of all positions
where every orientation R ∈ R is wrench-feasible. In this study the orientation set
R = {R ∈ SO3 |R = RZ(φ)∀φ ∈ [0, 2π ]} contains a full rotation around the z-axis
of the platform.

For the workspace assessment, the hull method is used [9] which allows for
very accurate computation of the workspace border also taking into account sets of
orientations R. The hull methods uses a triangulation of a small sphere around the
estimated center of the workspace and inflates this region using line search until the
border of the workspace is found. However, similar results as presented here can be
achieved by simple sampling the workspace with discrete positions.
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For cable robots with many cables, the problem of colliding cables becomes an
issue, especially if large rotation angles are considered. A very interesting tech-
nique to calculate the regions of cable interference within the constant orientation
workspace was presented by Perreault [8]. Through purely geometric considerations,
it is possible to determine the loci of cable–cable interference from the geometry of
the frame ai and the relative geometry of the mobile platform bi . The main concept
of this approach is the simple fact that two cables can interfere only if the corre-
sponding anchor points ai , a j ,bi ,b j lie in a common plane. Since the anchor points
on the frame are fixed in space, the plane can be constructed as follows: As a model
of the possible interference region, one computes the normals of the connection lines
between pairs of proximal and distal anchor points from

ai j = a j − ai
||a j − ai ||2

, bi j = b j − bi
||b j − bi ||2

for i, j = 1, . . . ,m i �= j (5)

If ai j and bi j are not parallel, one can construct two triangles [8]

T+
i j : x = a j − bi + λai j + νbi j (6)

T−
i j : x = a j − bi − λai j − νbi j (7)

with λ, ν > 0. Exploiting the normalized length of the vectors ai j and bi j , one prac-
tically chooses a metric length for λ and ν in the range of the size of the robot to
receive finitely large triangles with the critical interference region. Note, that com-
mon anchor points as used in the robot geometries above decrease the collision region
from triangles to lines. The lines and triangles can be used for visual or automatic
detection of cable–cable interference. For many robot designs, one can see from
first glance, if the triangles are within the workspace of interest or outside. Further
information on dealing with parallel vectors can be found in the paper [8].

Relaxing the considerations for the fixed orientation, the vector bi j is transformed
by the rotation matrix RZ(φ) in order to study a full rotation of the platform. This
leads to the collision area given by the following parametric volume

T̂+
i j : x = a j − RZ(φ)bi + λai j + νRZ(φ)bi j (8)

T̂−
i j : x = ai − RZ(φ)b j − λai j − νRZ(φ)bi j , (9)

where for RZ(φ) is the elementary rotation matrix around the z axis.

4 Results

For the endless Z12 cable robots with the parameters given in Table1, a test trajectory
was computed where the platform simply performs a full rotation around its z-axis
with angle φ at the position r = [0, 0, 1.5]T m. The Dykstra method was used to
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Fig. 3 Possible positive force distribution for a 2π rotation of the mobile platform at position
r = [0, 0, 1.5]T

compute force distribution for all angles in the given range φ ∈ [−π, π ]which force
limits fi ∈ [ fmin, fmax] = [1, 10]N. The resulting forces are shown in Fig. 3 where
one can easily see that all 12 cables can be kept under tension and no cable violated
the given bounds for the cable forces. Thus, the orientation workspace of the sample
pose indeed includes a full rotation of the platform.

Interestingly, the full rotation maneuver is possible at different positions. To
quantitatively study this property of the robot, the wrench-feasible total orienta-
tion workspace of the robot was computed using the hull algorithm for the rotation
set R given above. Using the Dykstra method and the same force limits as given
above, a significantly large workspace was found (see Fig. 4).

The region of convergence and the computation time heavily differ amongst the
considered methods for force distribution. As conjectured in [10], the closed-form
method performs excellently in terms of computation time but is rather limited con-
cerning the region where force distributions can be computed. The advanced closed-
formmethod slows down the computation time by around a factor of four in average.
From the analysis of the complexity of the algorithm at most, a slow-down of the
degree-of-redundancy r is expected and the measured computation time is consis-
tent with the expectations. Using the advanced closed-form method, the size of the
computable workspace is largely extended by a factor of around eight. Finally, the
Dykstra as referencemethod provides similar results in terms of workspace size com-
pared to the advanced closed-formmethod. However, the alternative projections used
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Fig. 4 Total orientation workspace of the cable robot endless Z12 computed with the Dykstra
method

Table 2 Workspace volume and computation time of the endless Z12 computed with different
force distribution algorithms

Method Computation time (s) Volume (m3) Max. cable force

Closed-form 1.292 0.889 fmax = 10

Closed-form 1.338 4.204 fmax = 100

Advanced closed-form 5.449 7.168 fmax = 10

Advanced closed-form 5.162 21.062 fmax = 100

Dykstra 66.747 7.250 fmax = 10

Dykstra 76.062 20.632 fmax = 100

in Dykstra’s iterative scheme are rather inefficient for highly redundant cable robots
and lead to computation times that are one order of magnitude larger. Furthermore,
the consideration of a larger region of feasible cable forces adds additional efforts
to the Dykstra scheme where the computation time for closed-form and advanced
closed-form remains almost constant (Table2).
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A10,A11
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Fig. 5 Lateral view in the xz-plane of the region of cable–cable interference and total orientation
workspace W of the endless Z12 robot and the region of cable–cable interference I

Using the technique described above, the cable–cable interference was studied.
For this analysis, the following geometric parameters were used for the endless Z12
design: rB = 2, rP = 0.3, HB = 3, hB = 2, HP = 0.5, and hP = 0.2. Note, that the
z coordinates of the points b5–b8 are smaller in order to avoid collisions between
the cable groups 1–4 and 5–8. It can be seen from Fig. 5 that the total orientation
workspace and the region of interference is separated and thus cable–cable interfer-
ence is avoided throughout the workspace.

5 Conclusion

In this paper, design archetypes of cable-driven parallel robots with a huge orien-
tation workspace are proposed and studied. Surprisingly, such robots can execute a
full rotation of their platform while maintaining tension in the cables and avoiding
collisions amongst the cables. Also the size of the total orientation workspace is
surprisingly large. However, the effect comes at the costs of employing a large num-
ber of actuators and additional challenges to cope with many cable. In the future,
it is planned to experimentally study such designs. We conjecture that there exists
an eight or even seven cable design that also has the unlimited rotation orientation
workspace but until now no such configuration is known.
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Elasto-Static Model for Point Mass Sagged
Cable-Suspended Robots

Erika Ottaviano, Vincenzo Gattulli and Francesco Potenza

Abstract In this paper, a model is presented for the elasto-static problem of planar
point mass robots suspended by m-cables. In particular, each cable configuration is
described by an elastic catenary and static equations and compatibility conditions
for the system are given, thus the 2m force reaction unknowns can be evaluated. The
proposed formulation has been used to solve the direct problem and it is suitable
for investigating the influence of elastic catenary on the end-effector exact position-
ing. The model allows evaluating the relation between end-effector position and the
involvement of each cable in sustaining the payload.

1 Introduction

In recent years, cable-driven robots are attracting the attention of the scientific
community as well as industry because their potentiality in applications related to
manipulation for which large workspace, low inertia, high payload to robot mass
ratio, transportability, economy in construction, and maintenance are required. Since
cables are wounded around drums, the workspace may be very large [2] allowing
the application to cable-driven scaffold systems for aircraft maintenance [14], cable-
driven camera used for big entertainment or sport events [17], and contour crafting
system [3]. A class of cable driven robots is the under-constrained or cable-suspended
type, in which the moving platform acts in a crane configuration, [13]. Indeed, if all
the attachment points on the fixed base are located above the workspace then cables
do not clutter the portion of the robot workspace located below the platform. This
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occurrence reduces drastically the possible interference among cables, end-effector,
and environment, but a crucial issue is that due to the geometric configuration of the
system the pose capability is strictly related to the gravity and then to the solution
of the static problem. Moreover, external disturbances on the end-effector determine
complex dynamics involving cable vibrations.

Works on statics and dynamics of cable-suspended robots are reported in [4, 6, 14]
evidencing the importance of suspended cable vibrations, which can be attenuated
by active control, as shown in [7]. However, vibration occurrences may be effectively
studied in fully-constrained manipulators also by simply considering cables as linear
or nonlinear springs such as in [1, 5, 10]. For cable-suspended robots, kinetostatic
models taking into account hefty elastic cables were proposed with discretized masses
in [15] and with approximated cable static configuration description [8, 11].

In this paper, we present an exact model for the direct elasto-static problem of the
planar point mass sagged cable-suspended robot with m-elastic cables with distrib-
uted mass as insight investigation of the results presented in [16].

2 Elasto-Static Model for Cable-Suspended Robots

In the following we will consider the elasto-static problem of a cable-driven manip-
ulator with m cables and n DOFs, where E denotes a reference point of the moving
platform that can be described with respect to a global reference frame OXY attached
to the fixed base (Fig. 1).

An approximate solution, which constitutes the first trial for finding the solution
of the exact nonlinear problem, is obtained by solving the kinetostatics of cable-
suspended robots, based on the assumption of mass less inextensible cables, with the
hypothesis that they are always in tension and can thus be treated as line segments
representing bilateral constraints. In this case, cable configurations can be assumed
as coincident with the chords denoted by vectors rE0i of length L0i .

According to the mass less inextensible cable model, cable lengths can be com-
puted as (for i = 1, . . . , m)

L0i (r E0) =‖ r E0 − ai ‖; θ i (r E0i ) = cos−1

(
X i · r E0i

‖ X i ‖‖ r E0i ‖
)

(1)

where r E0 = [xE0, yE0]� are the coordinates of center of gravity of the end-effector
expressed in the fixed frame, L0i and θi are respectively the length and angle for the
i-th line segment cable, Ai are the attachments points. Accordingly, cable tensions
can be evaluated by imposing the equilibrium at the end-effector by using the inverse
of Moore–Penrose matrix [2], (when n < m).

However, a classical cable modeling approach permits to consider cable elastic-
ity and sagged catenary assuming homogeneous properties and negligible flexural
stiffness [9].
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Fig. 1 Static configuration of a planar m-cables point mass manipulator

On this basis, here, a model describing the static configuration of a planar point
mass manipulator suspended by m sagged cables, as depicted in Fig. 1, is derived.

The elastic catenary of each cable is described in a local frame AiXiYi through
the curve pi(si), being si the curvilinear abscissa of the reference unstretched cable
configuration going from the support at si = 0 to the final length si = L0i.

The elastic catenary curves are described in the vertical plane, satisfying the
following constraints (

dxi

dpi

)2

+
(

dyi

dpi

)2

= 1 (2)

and the global equilibrium in the elastic configuration of each i-th cable particle point
Pi(si) at length coordinate pi(si), requires that

Ni
dxi

dpi
= Hi ; Ni

dyi

dpi
= Vi − wi si i = 1, . . . , m (3)

being wi the constant weight per unit natural length with Wi = wiL0i as the total cable
weight, and Hi and Vi are the unknown horizontal and vertical components of the
support reaction at Ai, respectively (Fig. 1).

Adopting an exact kinematic formulation for the cable axial strain and linear
elasticity of the material, the constitutive relation and finite cable axial strains are

Ni = EiAiεi ; εi = dpi

dsi
− 1 i = 1, . . . , m (4)

where E is the Young’s modulus and A is the cable’s area.
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Consequently, the two parametric planar curves Si, exactly describing the i-th
cable configurations in the local reference frame, whose map from the si-parametric
domains to the vertical planes, are defined by the coordinate functions xi(si) and
yi(si).

Assuming satisfied the geometric boundary conditions xi(0) = 0 and yi(0) = 0 at
each supports Ai(si = 0) for i = 1, . . . m, the following equations in the 2m unknown
reactions Hi, Vi, are describing each elastic catenary

xi (si ) = Hi

EiAi
si + Hi

wi
Ψ1i (si );

yi (si ) = Vi

EiAi
si − 1

2

wi

EiAi
s2

i + Hi

wi
Ψ2i (si ) (5)

in which

Ψ1i (si ) = arcsinh[tan(ϕSi )] − arcsinh[tan(ϕsi )];
Ψ2i (si ) = [1 + tan2(ϕSi )]1/2 − [1 + tan2(ϕsi )]1/2 (6)

where

tan(ϕSi (si )) = Vi

Hi
; tan(ϕsi (si )) = Vi − wi si

Hi
(7)

On the basis of the given cable model description, the solution strategy, here
adopted, for the static problem of the system follows the direct force method in
which the 2m reactions Hi and Vi at points Ai are assumed as principal unknowns.

The unknowns Vi, Hi can be found solving simultaneously static and compatibility
equations. Consequently, satisfying the equilibrium for the i-th cable as

Hi E = Hi ; Vi E = Vi − wi L0i (8)

Static equations at the end-effector as described in Fig. 2, according to Eq. (8), are
given as

m∑
i=1

Hi = 0;
m∑

i=1

(Vi − wi L0i ) − WE = 0 (9)

while the relevant compatibility equations for the entire system relates the position
of the end-effector in the elastic configuration to the position of each cable support
(for i = 2, . . . , m, see Fig. 1), and it can be written in the global reference frame as

r Ei (L01) − r Ei (L0i ) = ai (10)

where ai is the position vector of the support Ai in the global reference frame, and
r Ei is the vector describing the end-effector position, as



Elasto-Static Model for Point Mass Sagged Cable-Suspended Robots 355

Fig. 2 Static equilibrium at
the end-effector of the
m-cable robot
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The projection of Eq. (10) for components and the use of the Eq. (5) to express
the end effector position as function only of the Hi and Vi unknowns, furnishes the
following 2m-2 scalar equations

H1 L01

E1A1
+ H1

w1
Ψ1(L01) + Hi L0i

EiAi
+ Hi

wi
Ψ1(L0i ) = Li ;

V1 L01

E1A1
− 1

2

w1

E1A1
L2

01 + H1

w1
Ψ2(L01) − Vi L0i

EiAi
+ 1

2

wi

EiAi
L2

0i − Hi

wi
Ψ2(L0i ) = Di (12)

which complete the set of 2m nonlinear algebraic equations in 2m unknowns.
Equations (9) and (12) can be solved for any manipulator planar elasto-geometry.

The direct problem can be completed determining the elastic catenary by (5)–(7) for
each cable providing the end-effector position E and the stretched cable lengths Lis.

3 A 3-Cable Planar Point Mass Cable Suspended Robot

According to the proposed model a case of study with 3 cables is considered in Fig. 3
with the following data: L2 = 1 m, L3 = 2 m, Di = 0, and cables made of a textile
wire rope with an average nominal diameter of 4 mm and linear density of 1.12 g/m.
The Young’s modulus is equal to 50 MPa and it was determined experimentally, see
[16]. The end-effector mass was set equal to 53.26 g.

The sensitivity of the solution to the cable lengths can be studied by using a
monodimensional parameter Λ. Parameter Λ is the ratio between the unstretched
cable length L0i and the nominal chord L0i , which is known as the cable aspect ratio
[9, 12].

The Λ parameter was introduced for a cable hanging between two fixed supports
to allow a distinction between pre-tensioned (Λ < 1) and non-pre-tensioned (Λ > 1)
cables as referred in [9]. In the following for cable-suspended robots, the Λ parameter
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Fig. 3 Static configuration of a planar 3-cables point mass manipulator

has been used to assess the sensitivity of the end-effector positioning to variation of
cable lengths with respect to the nominal chord.

It is important to point out that the working cable length may differ from the
estimated value during maneuvers due to several factors. Consequently, the studied
example is used to evaluate the end-effector position in three different cases. In the
first one the input data of the problem (the assumed value of L0i in the Eqs. (9) and
(12)) are such that the unstretched cable lengths L0i are equal to the nominal chords
L0i (Λ = 1), in the second case cable lengths are greater than the nominal chords
(Λ > 1) and in the third case the lengths are less than the chords (Λ < 1).

Figure 4 shows selected static configurations in the workspace obtained solving
the system of nonlinear equations (9) and (12) in the reaction unknowns and then
using their values in the configuration equations (5). It is worth noting that only half
of the workspace is spanned due to symmetry of the proposed example. Figure 4a
is related to the case of Λ = 1. For these configurations, going towards to the left
boundary of the workspace, center and right cables (2 and 3) show a non-negligible
sag.

This feature is more evident for manipulator with cables of lengths greater than
the nominal chord evaluated with respect to a pre-selected end effector position
(overestimated case with Λ > 1 Fig. 4b and is less relevant in the case of cable with
lengths smaller than the nominal chord (underestimated case with Λ < 1 in Fig. 4c.

Table 1 reports the cable tensions related to the given configuration in which the
unstretched lengths of the cables L0i have been selected on the basis of a nominal
configurations of the end-effector within the workspace, as reported in Eq. (1).

In the three different selected cases the cable aspect ratios have used to consider
different initial unstretched cable lengths as input data to the problem. The difference
in the cable lengths with respect to the chords have been considered equal for each
cable.
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Fig. 4 Simulation results for the planar point mass manipulator with 3 sagged cables when:
a Λ = 1; b Λ = 1.01; c Λ = 0.99

Analyzing the solutions of the elasto-static problem a series of consideration can
be drawn.

First, the model confirms that close to the left boundary of the workspace the
first cable sustains almost all the payload, while the other two cables have vertical
components of the tension comparable to the cable weight, as reported in Table 1
(first four rows).

Second, an underestimation of the cable lengths, in the symmetric configurations
of the case of study, brings the solution of the system composed by 6-system solving
equations to furnish tension vectors for which the central cable results to be com-
pressed. This occurrence is related to the vertical components of the tension vectors,
which assume negative values, as it is evidenced in bold letters in Table 1. It is worth
noting that V2E = N2E for symmetry.
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Table 1 Cable tensions (absolute values) for the 3-cables planar point mass manipulator

Λ = 1 Λ = 1.01 Λ = 0.99

xE0 yE0 N1E N2E N3E N1E N2E N3E N1E N2E N3E

0.10 0.50 0.525 0.041 0.097 0.521 0.058 0.070 0.527 0.030 0.124

0.10 1.00 0.526 0.041 0.074 0.528 0.043 0.067 0.525 0.038 0.083

0.10 1.50 0.534 0.049 0.075 0.536 0.050 0.071 0.531 0.047 0.080

0.10 2.00 0.542 0.058 0.081 0.545 0.059 0.078 0.540 0.057 0.084

0.50 0.50 0.511 0.146 0.281 0.403 0.352 0.052 0.589 0.018 0.447

0.50 1.00 0.438 0.087 0.207 0.347 0.267 0.065 0.466 0.031 0.259

0.50 1.50 0.429 0.088 0.180 0.353 0.240 0.080 0.449 0.044 0.214

0.50 2.00 0.433 0.094 0.173 0.369 0.223 0.096 0.450 0.057 0.199

1.00 0.50 0.262 0.319 0.262 0.037 0.523 0.037 0.631 0.0 0.631

17.41 14.82 17.41

1.00 1.00 0.281 0.186 0.281 0.052 0.514 0.052 0.398 0.0 0.398

7.67 10.19 7.67

1.00 1.50 0.262 0.319 0.262 0.037 0.523 0.037 0.34 0.0 0.34

3.86 5.78 3.86

1.00 2.00 0.293 0.126 0.293 0.088 0.496 0.088 0.328 0.0 0.328

2.32 3.492 2.32

These results put into evidence that if all three cables possess equal reduced
lengths with respect to the cable chord (Λ = 0.99) the central cable becomes slack
for the central symmetric configurations of the workspace (reported as dash-dotted
blue lines in Fig. 4c). In this case, the presence of the slack cable needs to be carefully
considered in the model. Indeed, the correct solution has to be evaluated considering
only two cables (red configurations in Fig. 4c), and new tension vectors should be
evaluated as solutions of the 4-system solving equations. The new solutions in terms
of cable tensions are reported in italics in Table 1.

4 Conclusions

In this paper, we have proposed a solving approach for elasto-statics of planar point
mass cable suspended manipulator with m cables for which is considered elasticity
and sag. According to the force method, the solving method utilizes both static
and compatibility equations to evaluate the support reactions, which are the only
minimal unknowns. In particular, the proposed compatibility conditions express the
need of the solution to satisfy the given system geometry (system support relative
positions), which is an input data of the problem. Hence, the end-effector positions
are not given as an input, but they are used to express the compatibility conditions
as function of the force unknowns. The proposed approach to the problem furnishes
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a set of 2m nonlinear equations in the 2m support reactions permitting to pursue
analytical solutions in both fully- and over-constrained cases with a minimum number
of unknowns, as it is typical in elasticity problems solved by force-based methods.
Simulation results presented for a planar 3-cable point mass manipulator have shown
the ability of the model to determine the cable tensions and consequently the exact
system configuration. The relation among the positioning in the workspace, the cable
lengths and tensions have evidenced the involvement of each cable in sustaining the
payload and the cases in which one cable becomes slack (compressed).
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Determination of a Dynamic Feasible
Workspace for Cable-Driven Parallel Robots

Lorenzo Gagliardini, Marc Gouttefarde and Stephane Caro

Abstract Thedynamic equilibriumof themoving platformof a cable-driven parallel
robot can be investigated by means of the Dynamic Feasible Workspace (DFW),
which is the set of dynamic feasible moving platform poses. A pose is said to be
dynamic feasible if a prescribed set ofmoving platform accelerations is feasible, with
cable tensions lying in between given lower and upper bounds. This paper introduces
an extended version of the DFW with respect to the one usually considered in the
literature. Indeed, the improved DFW introduced in this paper takes into account:
(i) The inertia of the moving platform; (ii) The external wrenches applied on the
moving platform and (iii) The centrifugal and the Coriolis forces corresponding to
a constant moving platform twist. Finally, the static, wrench-feasible, dynamic and
improved dynamic workspaces of a spatial cable-suspended parallel robot are plotted
in order to compare their sizes.

1 Introduction

Several industries, e.g. the naval and renewable energy industries, are facing the
necessity to manufacture novel products of large dimensions and complex shapes.
In order to ease the manufacturing of such products, the IRT Jules Verne promoted
the investigation of new technologies. In this context, the CAROCA project aims at
investigating the performance ofCable Driven Parallel Robots (CDPRs) tomanufac-
ture large products in cluttered industrial environments [5, 6]. CDPRs are a particular
class of parallel robots whose moving platform is connected to the robot fixed base
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Fig. 1 Example of a CDPR design created in the framework of the IRT JV CAROCA project

frame by a number of cables as illustrated in Fig. 1. CDPRs have several advan-
tages such as a high payload-to-weight ratio, a potentially very large workspace, and
possibly reconfiguration capabilities.

The equilibrium of the moving platform of a CDPR is classically investigated by
analyzing theCDPRworkspace. In serial and rigid-link parallel robots, theworkspace
is commonly defined as the set of end-effector poses where a number of kinematic
constraints are satisfied. In CDPRs, the workspace is usually defined as the set of
poses where the CDPR satisfies one or more conditions including the static or the
dynamic equilibrium of the moving platform, with the additional constraint of non-
negative cable tensions. Several workspaces and equilibrium conditions have been
studied in the literature.

The first investigations focused on the static equilibrium and theWrench Closure
Workspace (WCW) of the moving platform, e.g. [4, 7, 14–16]. Since cables can only
pull on themoving platform, a pose belongs to theWCWif and only if anywrench can
be applied bymeans of non-negative cable tensions. Feasible equilibria of themoving
platform can also be analyzed using theWrenchFeasibleWorkspace (WFW) [2, 3, 9].
By definition, the WFW is the set of wrench feasible platform poses where a pose is
wrench feasible when the cables can balance a given set of external moving platform
wrenches while maintaining the cable tensions in between given lower and upper
bounds. The Static Feasible Workspace (SFW) is a special case of the WFW, where
the sole wrench induced by the moving platform weight has to be balanced [13].
The lower cable tension bound, τmin , is defined in order to prevent the cables from
becoming slack. The upper cable tension bound, τmax , is defined in order to prevent
the CDPR from being damaged.

The dynamic equilibrium of the moving platform can be investigated by means
of the Dynamic Feasible Workspace (DFW). By definition, the DFW is the set of
dynamic feasible moving platform poses. A pose is said to be dynamic feasible if a
prescribed set of moving platform accelerations is feasible, with cable tensions lying
in between given lower and upper bounds. The concept of dynamic workspace has
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already been investigated in [1] for planar CDPRs. Barrette et al. solved the dynamic
equations of a planar CDPR analytically, providing the possibility to compute the
boundary of the DFW. This strategy cannot be directly applied to spatial CDPRs
due to the complexity of their dynamic model. In 2014, Kozlov studied in [12] the
possibility to investigate the DFW by using a tool developed by Guay et al. for
the analysis of the WFW [11]. However, the dynamic model proposed by Kozlov
considers the moving platform as a point mass, neglecting centrifugal and Coriolis
forces.

This paper deals with a more general definition of the DFW. With respect to the
definitions proposed in [1, 12], the DFW considered in the present paper takes into
account: (i) The inertia of the moving platform; (ii) The external wrenches applied
on the moving platform; (iii) The centrifugal and the Coriolis forces corresponding
to a given moving platform twist. The Required Wrench Set (RWS), defined here as
the set of wrenches that the cables have to apply on the moving platform in order to
satisfy its dynamic equilibrium, is calculated as the sum of these three contributions
to the dynamic equilibrium. Then, the corresponding DFW is computed by means
of the algorithm presented in [8] to analyze the WFW.

2 Dynamic Model

The CDPR dynamic model considered in this paper consists of the dynamics of the
moving platform. A dynamic model taking into account the dynamics of the winches
could also be considered but is not used here due to space limitations. Additionally,
assuming that the diameters of the cables and the pulleys are small, the dynamics of
the pulleys and the cables is neglected.

The dynamic equilibrium of the moving platform is described by the following
equation

Wτ − Ipp̈ − Cṗ + we + wg = 0 (1)

where W is the wrench matrix that maps the cable tension vector τ into a platform
wrench, and

ṗ =
[
ṫ
ω

]
p̈ =

[
ẗ
α

]
, (2)

where ṫ = [ṫx , ṫy, ṫz]T and ẗ = [ẗx , ẗy, ẗz]T are the vectors of the moving platform

linear velocity and acceleration, respectively, while ω = [
ωx , ωy, ωz

]T
and

α = [
αx , αy, αz

]T
are the vectors of the moving platform angular velocity and accel-

eration, respectively.
The external wrenchwe is a 6-dimensional vector expressed in the fixed reference

frameFb and takes the form

we = [
fTe ,mT

e

]T = [
fx , fy, fz,mx ,my,mz

]T
(3)
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fx , fy and fz are the x , y and z components of the external force vector fe. mx , my

andmz are the x , y and z components of the external moment vectorme, respectively.
The components of the external wrench we are assumed to be bounded as follows

fmin ≤ fx , fy, fz ≤ fmax (4)

mmin ≤ mx ,my,mz ≤ mmax (5)

According to (4) and (5), the set [we]r , called the Required External Wrench Set
(REWS), that the cables have to balance is a hyper-rectangle.

The Center of Mass (CoM) of the moving platform, G, may not coincide with
the origin of the frameFp attached to the platform. The mass of the platform being
denoted by M , the wrench wg due to the gravity acceleration g is defined as follows

wg =
[
MI3
MŜp

]
g (6)

where I3 is the 3 × 3 identity matrix, MSp = R
[
Mxp, Myp, Mzp

]T
is the first

momentum of the moving platform defined with respect to frame Fb. The vec-
tor Sp = [

xp, yp, z p
]T

defines the position of G in frame Fp. MŜp is the skew-
symmetric matrix associated toMSp.

The matrix Ip represents the spatial inertia of the platform

Ip =
[
MI3 −MŜp

MŜp Ip

]
(7)

where Ip is the inertia tensor matrix of the moving platform, which can be computed
by the Huygens-Steiner theorem from the moving platform inertia tensor, Ig , defined
with respect to the platform CoM

Ip = RIgRT − MŜpMŜp

M
(8)

R is the rotation matrix defining the moving platform orientation andC is the matrix
of the centrifugal and Coriolis wrenches, defined as

Cṗ =
[
ω̂ω̂MSp

ω̂Ipω

]
(9)

where ω̂ is the skew-symmetric matrix associated to ω.
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3 Dynamic Feasible Workspace

3.1 Standard Dynamic Feasible Workspace

Studies on the DFW have been realised by Barrette et al. in [1]. The boundaries of
the DFW have been computed for a generic planar CDPR developing the equations
of its dynamic model. Since this method cannot be easily extended to spatial CDPRs,
Kozlov proposed to use the method described in [11] in order to compute the DFW
of a fully constrained CDPR [12]. The proposed method takes into account the cable
tension limits τmin and τmax in checking the feasibility of the dynamic equilibrium
of the moving platform for the following bounded sets of accelerations

ẗmin ≤ ẗ ≤ ẗmax (10)

αmin ≤ α ≤ αmax (11)

where ẗmin, ẗmax ,αmin,αmax are the bounds on the moving platform linear and
rotational accelerations. These required platform accelerations define the so-called
Required Acceleration Set (RAS), [p̈]r . The RAS can be projected into the wrench
space by means of matrix Ip, defined in (7). The set of wrenches [wd ]r generated
by this linear mapping is defined as the Required Dynamic Wrench Set (RDWS). No
external wrench is applied to the moving platform. Accordingly, the DFW is defined
as follows

Definition 1 Amovingplatformpose is said to bedynamic feasiblewhen themoving
platform of the CDPR can reach any acceleration included in [p̈]r according to cable
tension limits expressed by [τ ]a . The Dynamic Feasible Workspace is then the set of
dynamic feasible poses, [p]DFW .

[p]DFW = {
(t,R) ∈ R3 × SO(3) : ∀p̈ ∈ [p̈]r , ∃τ ∈ [τ ]a s.t. Wτ − Ap̈ = 0

}
(12)

In the definition above, the set of Admissible Cable Tensions (ACT) is defined as

[τ ]a = {τ | τmin ≤ τi ≤ τmax , i = 1, . . . ,m} (13)

3.2 Improved Dynamic Feasible Workspace

The DFW described in the previous section has several limitations. The main draw-
back is associated to the fact that the proposed DFW takes into account neither
the external wrenches applied to the moving platform nor its weight. Furthermore,
themodel used to verify the dynamic equilibrium of themoving platform neglects the
Coriolis and the centrifugal wrenches associated to the CDPR dynamic model.
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At a given moving platform pose, the cable tensions should compensate both the
contribution associated to the REWS, [we]r , and the RDWS, [wd ]r . The components
of the REWS are bounded according to (4) and (5) while the components of the
RDWS are bounded according to (10) and (11).

The dynamic equilibrium of the moving platform is described by (1), where C is
related to the Coriolis and centrifugal forces of the moving platform and wg to its
weight. These terms depend only on the pose and the twist of the moving platform.
For given moving-platform pose and twist, these terms are constant.

Therefore, the DFW definition can be modified as follows.

Definition 2 A moving platform pose is said to be dynamic feasible when, for a
given twist ṗ, the CDPR can balance any external wrench we included in [we]r ,
while the moving platform can assume any acceleration p̈ included in [p̈]r . The
Dynamic Feasible Workspace is the set of dynamic feasible poses, [p]DFW .

[p]DFW : ∀we ∈ [we]r ,∀p̈ ∈ [p̈]r , ∃τ ∈ [τ ]a s.t. Wτ − Ipp̈ − Cṗ + we + wg = 0
(14)

In this definition, wemay note that the feasibility conditions are expressed accord-
ing to three wrench space sets. The first set, [wd ]r , can be computed by projecting the
vertices of [p̈]r into the wrench space. For a 3-dimensional case study (6 DoF case),
[p̈]r consists of 64 vertices. The second component, [we]r , consists of 64 vertices
as well. Considering a constant moving platform twist, the last component of the
dynamic equilibrium, wc = {Cṗ + wg}, is a constant wrench. The composition of
these sets generates a polytope, [w]r , defined as the Required Wrench Set (RWS).
[w]r can be computed as the convex hull of the Minkowski sum over [we]r , [wd ]r
and wc, as illustrated in Fig. 2:

[w]r = [we]r ⊕ [wd ]r ⊕ wc (15)

Thus, Definition 2 can be rewritten as a function of [w]r .
Definition 3 Amoving platform pose is said to be dynamic feasiblewhen the CDPR
can balance any wrenchw included in [w]r . The Dynamic Feasible Workspace is the
set of dynamic feasible poses, [p]DFW .

[p]DFW : ∀w ∈ [w]r , ∃τ ∈ [τ ]a s.t. Wτ − Ipp̈ + we + wc = 0 (16)

Themathematical representation in (16) is similar to the one describing theWFW.
As a matter of fact, from a geometrical point of view, a moving platform pose will
be dynamic feasible if [w]r is fully included in [w]a

[w]r ⊆ [w]a (17)
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Fig. 2 Computation of the RWS [w]r . Example of a planar CDPR with 3 actuators and 2 transla-
tional DoF

Consequently, the dynamic feasibility of a pose can be verified by means of
the hyperplane shifting method [3, 8, 11]. The distances between the facets of the
available wrench set, [w]a , and the vertices of the RWS, [w]r , is verified according
to the following inequality

Cwr ≤ dd , ∀w ∈ [w]r (18)
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4 Case Study

This section aims at comparing the SFW, WFW, DFW and Improved DFW (IDFW)
of the spatial suspended CDPR illustrated in Fig. 3. It has the layout the CoGiRo
robot [10] and the size of the IRT JV CAROCA prototype. The robot consists of
a moving platform connected to the fixed base frame by m = 8 cables. It is 7m
long, 4 m width and 3.5m high. The maximum cable tension is equal to 6990N.
The moving platform consists of a parallelepiped. Its width, wp, its length, l p, and its
height, h p, are equal to 20cm, 20cm and 25cm, respectively. Themass of themoving
platform, M , is equal to 100kg. In the proposed case study, the CoM of the platform,
G, does not coincidewith the origin Op of frameFp, beingS = [1 cm, 1 cm, 1 cm]T.

The volume inside the base frame has been discretized homogeneously into np =
882 points. Each point has been analysed in order to verify if the corresponding
poses of the CDPR belong to the improved DFW. The analysis has been performed
assuming that the moving platform is aligned with respect to the axes of frame Fb.
The linear velocity of the moving platform is equal to ṫ = [1 m/s, 1 m/s, 1 m/s]T
and its angular velocity is equal to ω = [0.05 rad/s, 0.05 rad/s, 0.05 rad/s]T. The
external wrenches acting on the moving platform are bounded as follows:

− 100N ≤ fx , fy, fz ≤ 100N (19)

− 1Nm ≤ mx ,my,mz ≤ 1Nm (20)

Similarly, the range of accelerations of the moving platform is limited according
to the following inequalities:

− 2 m/s2 ≤ ẗx , ẗy, ẗz ≤ 2 m/s2 (21)

− 0.1 rad/s2 ≤ αx , αy, αz ≤ 0.1 rad/s2 (22)

Fig. 3 Layout of the
CoGiRo cable-suspended
parallel robot [10] with the
size of the IRT JV CAROCA
prototype
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Fig. 4 a Improved DFW and b DFW of the CDPR under study covering 47.96 and 63.27% of its
volume, respectively

Table 1 Comparison of SFW , WFW , DFW and I DFW of the CDPR under study

Workspace type SFW WFW DFW I DFW

Covered volume
of the CDPR

99.32% 79.25% 63.27% 47.95%

For the foregoing conditions, the improved DFW of the CDPR covers the 47.96%
of its volume. Figure4a illustrates the improved DFW of the CDPR under study.

The results have been compared with respect to the dynamic feasibility conditions
described by Definition 1. By considering only the weight and the inertia of the
moving platform, the DFW covers the 63.27% of the volume occupied by the DFW,
as shown in Fig. 4b. Neglecting the effects of the external wrenches and the Coriolis
forces, the volume of the DFW is 32% larger than the volume of the improved DFW.

Similarly, by neglecting the inertia of the CDPR and taking into account only
the external wrenches we, the WFW occupies the 79.25% of the CDPR volume. By
taking into account only the weight of the moving platform, the SFW covers 99.32%
of the CDPR volume. These results are summarized in Table1.

5 Conclusion

This paper introduced an improved dynamic feasible workspace for cable-driven
parallel robots. This novel workspace takes into account: (i) The inertia of themoving
platform; (ii) The external wrenches applied on the moving platform and (iii) The
centrifugal and the Coriolis forces induced by a constant moving platform twist. As
an illustrative example, the static, wrench-feasible, dynamic and improved dynamic
workspaces of a spatial suspended cable-driven parallel robot, with the dimensions of
a prototype developed in the framework of the IRT JV CAROCA project, are traced.
It turns out that the IDFW of the CDPR under study is respectively 1.32 times,
1.65 times and 2.07 times smaller than its DFW, WFW and SFW.
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Adaptive Human Robot Cooperation Scheme
for Bimanual Robots

Bojan Nemec, Nejc Likar, Andrej Gams and Aleš Ude

Abstract The paper deals with human robot cooperation, where a bimanual robot
and a human are handling highly deformable objects, such as a table cloth. The
initial policy is demonstrated by kinesthetic guidance. For safety reasons, the robot
operates in high compliance mode, which degrades the performance of trajectory
tracking algorithm necessary to perform the demonstrated task. This problem was
solved applying iterative adaptation scheme, which successfully diminishes tracking
errors in just few adaptation cycles. The proposed approach was verified with a table-
cloth placing task involving a human and a bimanual robot composed of two Kuka
LWR-4 robot arms.

1 Introduction

Our research applies to dual arm robot manipulators. Nowadays, most of the biman-
ual control architectures are based on the concept of symmetric control [17], which
enables portioning of the task to so-called absolute coordinates and relative coordi-
nates [5]. This formalism allows to easily extend the control and adaptation algo-
rithms developed for single arm systems, to bimanual robotic systems.

Adaptation is one of the key features of new generation of service and humanoid
robots, aimed to cooperate with humans. An often applied paradigm formotion adap-
tation is reinforcement learning (RL) applying probabilistic algorithms [9], which
can deal with high dimensionality spaces induced by parameterised policies [16].
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Despite of these advances, humans can still learn much faster and more efficiently.
One of promising paradigms to effectively speed up robot learning is also Iterative
Learning Control (ILC). The main objective of ILC is to improve the behavior of the
control system that operates repeatedly by iterative refinement of the feed-forward
control input [3]. Due to its simplicity, effectiveness and robustness when dealing
with repetitive operations, ILC is often applied in robotics [12].

The proposed approach aims to contribute to the adaptation aspect during human-
robot cooperation (HRC). It is designed to handle the cooperative manipulation of
highly deformable object, where themain issue beside the safety for human operators
is also to assure that delicate objects made of fabric, such as table cloth, are not
damaged during the operation. Therefore, robot arms apply an appropriate control
scheme which assures high compliance. On the other hand, the tracking performance
of highly compliant robots is often degraded due to the non-modeled robot dynamics
(such as friction), as well as environment changes. This problemwas solved applying
iterative adaptation scheme,which successfully diminishes tracking errors in just few
adaptation cycles. Our approach relies on previously proposed adaptation scheme for
bimanual peg in hole task [10].

The paper is organized as follow. In Sect. 2 we outline kinematics and dynamics
of a bimanual system and propose a solution, which completely decouples absolute
and relative tasks at the velocity level. In Sect. 3 we briefly sketch the overall learning
and adaptation scheme for a bimanual robot with ability to iteratively adapt to the
environment changes and non-modeled robot dynamics. In Sect. 4 the experimen-
tal results of the proposed algorithm are presented. Discussion regarding bimanual
adaptation properties of the HRC scheme is given in conclusion.

2 Bimanual Task Control

We apply a control scheme for a bimanual system, which is based on previously pro-
posed coordinated task-space control framework [4]. It fully characterizes a coopera-
tive operational space and allows the user to specify the task in terms of geometrically
meaningfulmotion variables defined at the position/orientation level [1, 4]. Ourmod-
ification of the originally proposed framework decouples both subspaces; motion in
relative coordinates does not affect absolute coordinates and vice-versa. First, we
define the common base coordinate systems τb for both subspaces, as illustrated in
Fig. 1. From now on we use the notation where superscript j , j ∈ {1, 2, b} denotes
that the given quantity is specified relative to the coordinate system τ j , while the
subscript i , i ∈ {1, 2, a, r} denotes the arm of a bimanual system and relative and
absolute coordinates. Absolute and relative task coordinates are specified as

pa = 1

2
(pb1 + pb2), (1)
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Fig. 1 Dual arm
manipulator and the
corresponding notation used
in the paper
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pr = Ra
T (pb2 − pb1), (3)

Rr = Rb
1
T
Rb

2, (4)

where p ∈ R
3 applies to positions vector and R ∈ R

3×3 to rotational matrices.
k21 and ϑ21 are the axis and angle that realize the rotation Rb

1 to Rb
2. Note that

in relative coordinates definition we multiplied (pb2 − pb1) multiplied with Ra
T . As

this rotation compensates for the absolute coordinates rotation, it decouples relative
and absolute coordinates. In quaternion notation, (2) and (4) are in the form

qa = qb
1 ∗ qb

kb
21
, (5)

qr = q1
2 = q̄b

a ∗ qb
2, (6)

where the quaternion qb
1 ∈ R

4 and qb
2 ∈ R

4 expresses the rotation of the TCP of the
first and the second robot in the common base coordinate frame τb, respectively.
q̄ denotes conjugate quaternion and operator ∗ denotes quaternion product. qb

kb
21

denotes the unit quaternion corresponding to Rb
kb
21
(ϑ21/2), which can be calculated

from

qb
kb
21

=
(
cos

(
ϑ21

4

)
,kb

21 sin

(
ϑ21

4

))
. (7)

Our human robot cooperation scheme uses interactive forces for the demonstration
and adaptation of the task. Therefore, it is necessary to calculate the corresponding
forces and torques in both absolute and relative coordinates from wrist mounted
sensors. The corresponding transformations are given by
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fa = Rb
1 f 1

1 + Rb
2 f 2

2, ma = Rb
1 m 1

1 + Rb
2 m 2

2, (8)

fr = 1

2
(f 1

1 − Rr f 2
2), mr = 1

2
(m 1

1 − Rr m 2
2), (9)

where f i
i ∈ R

3 and m i
i ∈ R

3 denote the forces and torques measured at the i-th
manipulator tool center point (TCP).

In order to control the robot, we have to map the desired relative and absolute
task coordinates to the corresponding joint coordinates of both robots, denoted with
θθθ = [θθθ1 θθθ2]T ∈ R

(N1+N2), where N1 and N2 is the number of joints of the first and
the second robot, respectively. This transformation is obtained through relative and
absolute geometrical Jacobian,whichmaps the corresponding translational and angu-
lar velocities to the joint velocities,

[
ṗr
ωr

]
= Jr θ̇θθ,

[
ṗa
ωa

]
= Jaθ̇θθ . (10)

Absolute Jacobian is obtained from time derivative of (1)–(2),

Ja = [
1
2J1

1
2J2

]
. (11)

The derivation of the relative coordinates (3) becomes more complex as they are
premultiplied with the inversed absolute rotation, yielding

ṗr = Jr,pθθθ = Ṙa
T
(p2 − p1) + Ra

T (ṗ2 − ṗ1)

= −Ra
TST (p2 − p1)ωa + Ra

T (ṗ2 − ṗ1)

= Ra
T (−J1,pθθθ1 + J2,pθθθ2 − ST (p2 − p1)Ja,ωθθθ),

where we have taken into account the relation ṘTp = −RTST (p)ω [14]. Subscripts
(.)p and (.)ω denote positional and rotational part of the Jacobian. S is well known
skew-symmetric matrix. For the derivation of the rotational part of the relative
Jacobian we take into account that the angular velocities are additive as long as
they are expressed in the same coordinate frame. Hence, from the definition of rel-
ative coordinates (4) it follows ωr = Ra

T (ω2 − ω1) and Jr,ω = Ra
T (J1,ω − J2,ω).

Combining positional and rotational part of the relative Jacobian we obtain

Jr =
[
Ra

T 0
0 Ra

T

] [−(J1,p + Λ
J1,ω
2 ) J2,p + Λ

J2,ω
2 )

−J1,ω J2,ω

]
, (12)

where Λ = ST (p2 − p1).
To control both absolute and relative coordinates, we define extended task coordi-

nates xe = [pa qa pr qr ]T and extended Jacobian Je = [Ja Jr ]T . The corresponding
joint velocities are obtained from

θ̇θθ = J+
e (ve,d + Kkee) + (I − J+

e Je)θ̇θθ0, (13)
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whereJ+
e is theMoore–Penrosepseudo-inverse of the extended JacobianJe ,ve,d∈R

12

are the desired extended translational and rotational velocities, I is identity matrix,
Kk ∈ R

12×12 is a diagonal matrix with the kinematic gains and ee ∈ R
12 is the error

between the desired and actual extended task coordinates, calculated as

ee =

⎡
⎢⎢⎣

pa,d − pa
log(qa,d ∗ q̄a)
pr,d − pr

log(qr,d ∗ q̄r )

⎤
⎥⎥⎦ . (14)

The rotational part of the error is expressed with logarithmic map log, which maps
the quaternion describing the rotation between the desired and current pose to the
rotation error vector. This mapping is defined as

log(q) = log(v,u) =
{
arccos(v)

u
‖u‖ , u �= 0

[0, 0, 0]T, otherwise
. (15)

Vector θ̇θθ0 ∈ R
(N1+N2) is an arbitrary vector of joint velocities that is projected in the

null-space of the primary task, selected in such a way that it optimizes an additional
secondary task, i.e., obstacle avoidance, joint limit avoidance, singularity avoidance,
etc. Note that the dimension of the extended task defined with xe can be ≤12, which
allows to exploit the additional degrees of redundancy for secondary task(s).

The desired joint positions θθθd = [θθθ1,d θθθ2,d ]T are obtained with the numerical
integration of (13) and passed to the joint controller of the robot. The joint controller
has the form

ρi = Hi (θθθ i )θ̈θθ i,d + Ci (θ̇θθ i , θθθ i )θ̇θθ i,d + Gi (θθθ i ) − Kpei,θθθ − Kd ėi,θθθ , (16)

where ρi ∈ R
Ni are joint torques supplied to the robot torque controller of the i-th

robot arm, i ∈ {1, 2},Hi ∈ R
Ni×Ni is the inertia expressed in joint space,Ci ∈ R

Ni×Ni

is the matrix of Coriolis and radial forces, Gi ∈ R
Ni is the gravitational vector,

Kp and Kd ∈ R
Ni×Ni are diagonal positional and damping matrices and ei,θθθ ∈ R

Ni

denotes the tracking error in the joint coordinates. Gains of Kp define the desired
compliance in joint space and gains of Kd are chosen in such a way that the close
loop system is critically damped. Note that the control law (16) is designed using
passivity framework [2].

3 Bimanual Task Learning and Adaptation

Learning by demonstration of a bimanual task can be simplified with the decompo-
sition into relative and absolute coordinates. Both subtasks can be learned indepen-
dently. The relative task can be demonstrated by moving only one arm, while the
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other remains fixed. Once the relative task is defined, the absolute part of the task is
demonstrated by again moving only one arm, while the other follows accordingly in
order to fulfill the previously demonstrated relative task.

In our research we used kinesthetic guidance for initial demonstration of a biman-
ual task. For this, the robot has to operate in the gravity compensation mode and the
task is demonstrated by manual guidance of a single arm, as explained previously.
Absolute and relative coordinates are recorded as a time series

Gr = {pr (k),qr (k)}, Ga = {pa(k),qa(k)} |Tk=0, (17)

where T denotes the number of recorded samples. They are calculated form the
Cartesian coordinates of both robot arms using (1), (3), (5) and (6).

The learned absolute and relative coordinates are then passed to the bimanual
kinematic control (13) as the desired values. Initially demonstrated absolute trajec-
tory might not be perfect or might need additional modification when the human
cooperates with the robot. Here we consider the case when the task is repeated more
than once. In each repetition cycle the human operator can modify the trajectory
from the previous cycle using interactive forces. The modification of absolute task is
accomplishedwith adaptation of the absolute forces and torques (8) using admittance
force/torque control law

pa,l(k) = pa,l−1(k) + K f fa,l(k), (18)

qa,l(k) = qa,l−1(k) ∗ Kmma,l(k). (19)

Index l denotes the task repetition cycle and K f ,Km ∈ R
3×3 are diagonal force and

torque adaptationmatrices. Note that whenmultiplying 3-D vectors with quaternions
like in (19), vectors are interpreted as quaternionswith scalar part equal to zero.Using
the above adaptation law, the human operator can modify the previously learned
trajectory whenever it exerts forces and torques to the common manipulated object.
In order to suppress sensor noise, a threshold is usually applied to the measured force
and torque signals.

During the task execution, the tracking of relative coordinates is degraded due to
the low gains Kp in the joint controller (16), which are needed to achieve compliant
behavior of the robot. To overcome this problem, we propose iterative controller in
the form

pr,l(k) = Q(pr,l−1(k) + Lep,l−1(k + 1)) (20)

qr,l(k) = exp(Leq,l−1(k + 1)) ∗ χ(qr,l−1(k), Q) (21)

where ep(k) = pr (k) − pr,m(k), eq(k) = q̄r (k) ∗ qr,m(k), Q ∈ R
3×3 and L ∈ R

3×3

are diagonal matrices with ILC gains. Operator χ(q, Q) denotes scaling of unit
quaternion q by scalar Q, implemented by transforming quaternion to the angle-
vector notation, scaling the angle and calculating quaternion back from the angle-
vector representation. Scalars Q and L in (21) are ILC gains with the same role as
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diagonalmatricesQ andL in (20). Subscript (.)m denotesmeasured signals. Operator
exp(.) is defined as

exp(r) =
{
cos (‖r‖) + sin (‖r‖) r

‖r‖ , r �= 0

1 + [0, 0, 0]T, otherwise.
(22)

4 Experimental Evaluation

The performance of the proposed human robot cooperation scheme was evaluated
on the table cloth placing task. Bimanual robot composed of two Kuka LWR-4 robot
arms holds one side and the human operator holds the other side of the table cloth.
The setup is shown in Fig. 2. The width of the tablecloth was initially demonstrated
with kinesthetic guidance of one robot arm; it defines the relative part of the task.
Similarly, the absolute part of the task was demonstrated with kinesthetic guidance
of one robot arm, while the other maintained the previously demonstrated relative
part of the task, i.e., the desired distance between the arms.

Initially demonstrated absolute task was adapted by proprioceptive sensing. In
our scheme, absolute forces determine absolute positional velocities and absolute
torques determine absolute rotational velocities. During the task execution, the robot
adapts its absolute coordinates using (18) and (19) in order tominimize the interaction
forces. In our implementation, we added an offset force of 10N in the -X direction
and a small offset force in -Z direction in order to allow displacement of the absolute
coordinates in -X and -Z direction, respectively (see Fig. 2). This was necessary since
with highly deformable object such as the table cloth we can exert forces only by
pulling and not by pushing.

Fig. 2 Experimental platform for bimanual table cloth placing
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Fig. 3 Evolution of the position tracking error norm of relative coordinates through five repetitions
(denoted with 1–5) of the same task

During the execution of the demonstrated absolute task, the robot was not able
to precisely maintain the desired relative coordinates due to the arm compliance and
the interaction forces. In order to overcome this problem, we applied ILC control
scheme (20) and (21) which iteratively modified the controlled relative coordinates,
resulting in perfect tracking of the desired relative coordinates. In this experiment,
we used the following settings: Q = I, Q = 1,L = 0.8 I, L = 0. Figure3 shows
how L2 norm of the tracking error of the relative coordinates diminished in five
iterations. Note that in this experiment we did not explicitly control the internal
(relative) forces. Rather, we controlled the relative positions, as the internal forces
were very low during this experiment. Moreover, the measurement of the relative
forces was not precise enough, since Kuka LWR-4 robot estimates TCP forces from
the joint torques measurements. However, the extension of the control law (20) and
(21) in order to control also the internal forces is straightforward.

5 Conclusions

In the paperwe proposed a newadaptive human-robot cooperation scheme for biman-
ual robot systems. The main advantage of the proposed algorithms is that the adapta-
tion acts separately in relative and absolute coordinates. This scheme does not require
information about interaction forces for motion coordination. However, interaction
forces can still be used to compensate for robot and environment model errors.
In our previously presented bimanual HRC schemes [6, 11] robot arms were con-
sidered as independent agents, where adaptation and coordination of both arms was
accomplished using force interaction, similar as inmaster-slave bimanual approaches
[15, 18]. As such, they are not appropriate for handling of highly deformable objects.

In this work, we introduced a modified definition of the relative task (3), which
results in an additional compensation term in the relative Jacobian (12)with respect to
the one introduced in [5]. We believe that this definition properly decouples absolute
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and relative coordinates. Consequently, the proposed control law results in improved
tracking of relative coordinates and assures proper mapping to the Jacobian null-
space, when additional secondary tasks which exploit kinematic redundancy of the
overall system are applied.

The adaptation of relative coordinates relies on ILC framework, which effectively
improves initial demonstrated policy through task repetitions. An important issue is
also the robustness of the control/adaptation scheme. In human-robot cooperation,
the controller has to compensate also for the stochastic disturbances, induced by a
human. Previous results [13], as well as our experiments, demonstrate the robustness
of the ILC based controller against such disturbances. Another beneficial property of
ILC is incremental policy adaptation, determined with the gain L in (20). Although
similar policy could be obtained also with classical high gain feedback control [7],
ILC is still favorable since the adaptation is independent form the feedback control.
Thus, low feedback gains can be applied, as high gain controllers are not appropriate
for robots interacting with humans due to the safety reasons [8].

Acknowledgements This work was supported by the Slovenian Research Agency grant J2-7360,
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Influence of the Wind Load in the
Trolley-Payload System with a Flexible
Hoist Rope

Jianjie Zhang and Gabriel Abba

Abstract The anti-sway controllers are widely discussed due to the increasing
requirements of crane automation in seaports. In this paper, the dynamic model
of the trolley-payload pendulum system is put forward considering the flexibility
and damping of the hoist rope as well as the wind load as the external excitation. As
indicated from the simulation, the wind load increases both the static and fluctuating
part of the response of sway angle; the flexibility of the hoist rope cannot be ignored
especially near the destination of the final position of the payload. As inferred from
the results, the sway angle is the main source of the position error of the payload in
both horizontal and vertical direction.

1 Introduction

As the most important equipment in seaports, the Ship-To-Shore quayside container
crane (STS) affects the total efficiency for harbor operation. Traditionally, the most
skilled staffs are specially chosen to operate the STS in order to obtain the best
performance of the equipment.

As shown in Fig. 1, the photo shows STSs co-operating together to load and unload
a Post-Panamax container vessel. The cranes move to a particular position to be ready
for the loading or unloading operation with the gantry motion only. After the crane is
positioned, the gantry stands still and only the hoist and trolley devices are moving.

With the increasing requirements of the seaport automation, the research and
development of the crane automatic operating is widely discussed especially in engi-
neering application. As an important aspect, the anti-sway control strategy is the most
popular branch in this field. By analyzing latest papers and articles in three years,
Singhose W. and his group uses model reference control method to control several
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Fig. 1 The photo of
Ship-To-Shore quayside
container cranes (STS)

types of cranes in anti-sway applications [1–3]. He, B. et al. developed an anti-sway
controller for overhead cranes based on the analysis of the Lyapunov method [5].
Liu, X. et al. designed the novel controller in anti-sway application [6]. Viet, L.D.
discussed the sway reduction by radial spring and damper [19]. Smoczek, J. et al.
introduced fuzzy controller into the anti-sway application [16, 17]. Schaper, U. et al.
introduced an load position estimation method in gantry crane application [13].
Suzuki, K. et al. designed an anti-sway controller with the equivalent load as feed-
back [18]. Sato, K. et al. discussed the influence of the wind load in anti-sway control
[12]. Park, J., Kwon et al. developed a method to generate anti-sway trajectory for
incompletely restrained system [10].

Although within different application background, the trolley-payload system can
be regarded as special under-actuated cable-driven parallel robot and researches on
this topic are referenced. Gouttefarde M. et al. modeled and analyzed several types of
redundant and reconfigurable cable-driven robots [4, 9], and discussed the influence
of cable mass [11]. Pott A. et al. investigated a cable-driven robot and modeled the
elastic cable and hysteresis effect in the system [8]. Merlet J.P. analyzed kinematics
of cable-driven robots taking sagging cable into account [7].

As mentioned in the above references, regardless what particular control methods
the researchers are applied, two assumptions in dynamic models can be inferred:
(a) the sway angle is induced mainly from the trolley motion (paying little attention
to the environmental load); (b) in anti-sway application, the hoist rope is rigid.

Nevertheless, other papers in civil engineering fields report the elastic elongation
and damping is essential in the stability of structures [14]. In mechanical engineering
applications, the elastic elongation always needs to be paid attention to as mentioned
by many maintenance engineers during their daily work [20]. However, there are
rare papers or technical reports discussing the influence of the flexibility of the hoist
rope as well as the influence of the wind load in anti-sway control methods.

In this paper, the wind load is applied as an external excitation into the dynamic
model of a trolley-payload pendulum system with a flexible hoist rope. Dynamic
response of the system is discussed in both the time and frequency domain.
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2 Modeling of the Outdoor Anti-sway System

2.1 Problem Specifications and Assumptions

For a crane with bridge structure at large seaports, the operation of loading and
unloading a container vessel is always a motion in the vertical plane. Only the hoist
motion and the trolley moving are considered in this issue. The rope weights about
zero point nine percent of the payload and about four percent of the empty spreader,
so in this system, the self-weight of rope is ignored.

The assumption of the model for anti-sway system is that:

1. The concerned motion of the system is in the vertical plane;
2. The hoisting rope is flexible and mass-less;
3. The wind load is source of the external excitation.

As shown in Fig. 2, the system is composed by Trolley and Payload these two motion
parts. The payload is connected with a steel hoisting rope to the trolley traveling along
the rail. The external excitation is mostly from the wind load on the payload.

As shown in Fig. 2, a global Cartesian coordinate system is defined as O − xy,
whose origin is at the seaside limit (as shown the left direction in the figure) of the
trolley. So, the position of the trolley and the payload are defined in global Cartesian
coordinate system as (xtr , ytr) and (xp, yp); the length of the hoisting rope is l and the
sway angle α which is the angle between hoisting rope and vertical.

The length of connect rope l is the sum of rigid rope length lr and flexible elonga-
tion lf ; lr may change according to the input of desired position. lf is the rope elastic

Fig. 2 Trolley-payload
coordinate system
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elongation which is a function of tension force T . Drope is the damping force caused
by ropes elongation; and Dangle is the damping force caused by sway motion.

In this model, we have the assumption that: (1) the rope is flexible so that the
length of rope is a function of both the input signal lr and tension force T ; (2) the
rope damping force is taken into account.

2.2 Wind Load Simulation

In wind engineering, the wind load on cranes and the payloads is concluded as the
wind near ground which is affected by the friction on ground. So the wind velocity
can be regarded as a sum of average and fluctuating wind as listed in Eq. (1).

vwind = ṽwind + v̄wind (1)

In which, the average wind velocity is a function of height defined in Eq. (2)

v̄wind = f (h) = v̄wind(hst) · (h/hst)
αwind (2)

where, v̄wind(hst) is the average wind velocity at a standard height, hst = 10 m is used
in this case as widely applied in wind engineering researches; h is height of payload;
αwind is ground roughness coefficient whose value is saved in design standards.

The fluctuating wind velocity varies during time to time whose average is zero. The
time history of the wind load is calculated according to the harmonic superposition
method shown in Eq. (3).

ṽwind =
nup
∑

ni=nlow

√

S(h, ni ) · sin(ni ·t + φi ) (3)

where, nlow and nup are the upper and lower limit of the concerned frequency; φi is
the random phase angle; S(h, n) is PSD spectrum of the fluctuating wind velocity;
n is the frequency of the wind velocity.

Once the payload height is determined, the wind velocity spectrum is only a
function of frequency. The Kaimal spectrum is used in this research [15]. As shown
in Fig. 3, is the plot of Kaimal spectrum and the time history of wind velocity at the
position of 10 m high.

With the known wind velocity, (both the average part and fluctuating part) the
wind pressure p(h) = CP·0.625·v2

wind(h). Where,CP is wind coefficient of the object
which is related to the aerodynamic shape of the object which is defined in a crane
design code.

The wind load is integration of wind pressure on object’s windward surface.
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Fig. 3 Kaimal spectrum and time history of wind velocity at height of 10 m

2.3 Dynamic Equation of Trolley-Payload System
with Flexible Hoist Rope

With the issues discussed above, the dynamic equations are put forward. Following
the analysis in Fig. 2, the equations are based on the force balance function, the
constitutive relation function and the geometric function as listed in Eqs. (4) and (5):

{

−Thoistsinα − Dropesinα − mẍp − Danglecosα + Pwind = 0

Thoistcosα + Dropecosα − mÿp − mg − Danglesinα = 0
(4)

{

xp = lsinα + xtr

yp = −lcosα
(5)

where, Dangle is the damping force acting on the payload; Drope is the damping force in
the hoist rope. The damping force of the sway angle is Dangle = Cangleα̇/ l, the damp-
ing force in the hoisting rope is Drope = Cropel̇ f , and the tension force in the hoisting
rope is Thoist = krope(l r)l f . In which, krope(l r) is a nonlinear function of the rope length
and krope(l r) = AropeE rope/ l r; Arope is the area of the rope section whose unit is m2;
E rope is the equivalent Young modulus of the rope whose unit is Pa.

α̇ is the angular velocity of the sway angle; T is the tension force in the hoisting
rope; Cangle is the damping coefficient of the sway angle; l = l r + l f , l̇ = l̇ r + l̇ f and

l̈ = l̈ r + l̈ f are the length, the velocity and acceleration of the hoisting rope; Pwind is
the wind load actuating the payload; m is the mass of the payload. As a result, the
position of the payload (x p,yp) is calculated according to Eq. (5).
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Table 1 Parameters of a STS quayside container crane for simulation

Content Value Content Value

The length of hoist
rope:

5–70 m Modulus of the rope: 1.1 1011 Pa

The payload mass
(including spreader):

11500–61500 kg Damping coef. in the
rope:

138.23 kg/s

Rated operational
wind velocity:

17.1 m/s Damping coef. of the
angle:

106 kg·m/s

The dynamic equation of the pendulum system is shown in Eq. (6):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α̈ = −Cangle

m
α̇

1

l2
+ Pwind

m
cosα

1

l
− gsinα

1

l
− 2α̇

1

l
− ẍ trcosα

1

l

l̈ = − AropeErope

m

1

lr
lf + Pwind

m
sinα + gcosα + lα̇2 − ẍ trsinα − Crope

m
l̇ + Crope

m
l̇r

(6)

Finally, it can be concluded that the input of the system is the acceleration of the
trolley ẍ tr and the velocity of the rigid term of the hoist rope l̇ r, while the out put of
the system is the cargo position xp and yp. As defined in Eqs. (5) and (6), the terms
in the dynamic equation influence each other and the relationship between the inputs
and outputs is nonlinear.

3 Numerical Simulation

3.1 Load Case Specification

As an example, the parameters of a STS quayside container crane are applied to set
the model for simulation. The mainly concerned parameters are shown in Table 1.

To discuss the influence of the wind load and the flexibility in the hoist rope to
the response of the system, two load cases are used for simulation:

(1) In load Case 1, with wind load only, the trolley and hoist devices are standing
still and the only excitation of the system is the wind load which lists below in
detail: (a) The length of the hoist rope l = 40 m, the payload weight m = 11500 kg
(which is the weight of a spreader and an empty container), the height of the trolley
is 50 m which indicates the height of the payload is 10 m; (b) The simulated wind
velocity is 17.1 m/s which is the rated operational wind velocity; (c) The windward
area Awind =50 m2, which is close to a standard 60 ft container area and its spreader.

(2) In load Case 2, a typical operation is simulated. The trolley, hoist device moving
caused inertial load and the wind load are all taken into account as excitations of the
system. The detail of this load case lists below: (a) The payload weightm=36500 kg,
which is the mid-value of the payload which occurs mostly in daily operation; (b) The
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maximum hoisting velocity is 5 m/s, the maximum hoisting acceleration is 2 m/s2;
(c) The maximum trolley velocity is 1.2 m/s, the maximum trolley acceleration is
0.2 m/s2, the jerk of trolley is 1 m/s3;

3.2 Analysis of the Influence of the Stiffness of the Hoist
Rope

As mentioned, in most researches for the anti-sway applications, the hoist rope is
regarded as a rigid though in some of the study, the length of the rope changes during
operation. However, the stiffness of the hoist rope play a role in actual system.

As listed in most rope producer’s user manual, the stiffness of the rope is related
to the length of the rope. The stiffness varies from 1.6 × 106 to 2.8 × 106 N/m
according to different length of the rope. It is the reason why in Eq. (6), the flexible
length of the rope is also related to the rigid length of the rope.

3.3 Analysis of the Influence of the Wind Load

As described above, the wind load is a lateral load without particular restriction and
it extends the sway angle of the system. To discuss the influence of the wind load
only, the Load Case 1 is introduced for simulation. The time history of the sway
angle response and its Fast Fourier Transform is shown in Fig. 4. As shown in Fig. 4,
the time history of the sway angle indicates that the mean value of it is approximately
0.17 rad, when the vibration is about the 7 mrad around the mean value. So, one of
the essential influence of wind load is from the average part of it.

After transfer the vibration value of the sway angle into the frequency domain
with FFT, it is clear that there are two essential frequencies 0.04 and 0.08 Hz. They
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Fig. 4 Time history of sway angle and its FFT actuated by wind load only
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are close to the natural frequency of the simulated payload pendulum (about 0.07 Hz)
and within the wind loads spectrum range.

3.4 Analysis of a Typical Operation

In above sections, the response of the system with separate excitations is discussed.
In this section, the system response during a typical operation which is defined in
Load Case 2 is put forward.

(1) The results about the sway angle and the elastic elongation
As a simulation result, the time history of sway angle and its FFT during a typical

operation is shown in Fig. 5. As shown in Fig. 5, the sway angle with frequency
0.04 Hz increases in this load case compared with the load case with wind load only.
In order to compare the characteristics of the results, the maximum value and the
average of the sway angle in both the typical operation with and without wind load
as well as with wind load only are listed in Table 2.

As a summary, the wind load amplifies both the maximum and static sway angle of
the payload, however, at the same time, it has little influence on the elastic elongation
of the hoist rope. And the average of the sway angle which mainly caused by wind
load is much larger than the fluctuating part caused by trolley movement. Although,
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Fig. 5 Time history of sway angle and its FFT during a typical operation with wind load

Table 2 Characteristics of sway angle in different load cases

Content αmax (rad) ᾱ (rad) lfmax (m) l̄f (m)

Typical operation
with wind load

0.216 0.171 0.155 0.070

Typical operation
without wind load

0.045 −8.3e-4 0.151 0.069

With wind load
only

0.181 0.172 0.083 0.041
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there is fluctuating part in the wind load, the contribution of the fluctuating wind load
is really small.

(2) The results about the position of the payload
The most concerned characteristics of the system for actual trolley and hoist

system, is the accuracy of the positioning of the cargo. As a result, the time history
of the cargo position with and without wind load and the compare with the desired
position is shown in Fig. 6. The coordinate definition is shown in Fig. 2. The initial
position of the payload with wind load is the balance position under the average
wind load which simulates the effect of a continuous wind load, and the initial of
the desired position and without the wind load is from zero. To compare the error
between the actual position with the desired one in both typical operation with and
without wind load as well as with wind load only, the results are listed in Table 3.

It can be inferred from Table 3 that the trolley motion may cause large vibration
in x direction as the maximum position error is about 9 m, although, it has little
influence of the static position error. At the same time, wind load induced position
error is mainly in the static error in x direction. The typical operation with wind load
has both the static error mainly caused by the wind load and the fluctuating error
mainly caused by the trolley motion. The hoist motion increases the rope elongation
in y direction but it is really small compared with the position error in x direction.
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Fig. 6 Time history of payload position compared with the desired position

Table 3 Error between the actual and desired payload position in different load cases

Content err xmax (m) err ymax (m) err xstatic (m) err ystatic (m)

Typical operation
with wind load

18.437 1.962 14.388 1.190

Typical operation
without wind load

10.162 0.729 0.040 0.110

With wind load
only

8.837 0.784 8.550 0.695
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3.5 Results Summary and Discussion

As a summary, the analysis of different Load Cases indicated that:
(1) In the entire working space, the stiffness of the rope changes over two hundred

percent due to the variation of rope’s current length;
(2) Both the trolley motion and the external excitation, wind load for example,

cause payload sway; and the interaction of these two loads amplify the sway angle
and change the frequency of the forced vibration;

(3) According to the dynamic equation, the wind load can be regarded as a state
variable and observed in the state feedback system.

Based on these results, it can be suggested that:
(1) The trolley-payload system can be regarded as a large scale under-actuated

cable-driven robot so robotic kinematics and dynamics analysis can be applied in the
future research;

(2) The system is obvious a non-linear system, so the non-linear control strategy
should be studied for this specific application.

4 Conclusion

As all the dimensions discussed above, the conclusions list below: (1) The stiffness of
the hoist rope changes a lot along with its length and shows nonlinear characteristics;
(2) Based on wind spectrum, the dynamic wind load is simulated, and its influences
to the positioning accuracy is discussed; (3) The main source of positioning error
is from the combination of the wind load induced and trolley motion induced sway
angle. And the wind load induced sway angle is mainly a static value while the motion
induced one is mainly an oscillation around the balance position of the payload. So,
it maybe helpful to decrease the amplitude of sway angle by considering the effects
listed above while designing the controller for cargo positioning.
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Towards a Unified Notion of Kinematic
Singularities for Robot Arms and
Non-holonomic Platforms

Andreas Müller and Peter Donelan

Abstract Kinematic singularities are classically defined in terms of the rank of
Jacobians of associated maps, such as forward and inverse kinematic mappings.
A more inclusive definition should take into account the Lie algebra structure of
related tangent spaces. Such a definition is proposed in this paper, initially for serial
manipulators and non-holonomic platforms. The definition can be interpreted as a
change in the number of successive infinitesimal motions required for the system
to reach an arbitrary configuration in the vicinity of the given configuration. More
precisely, it is based on the filtration of a controllability distribution.

1 Introduction

The singularities of holonomic mechanisms are fairly well-understood, and there
is a well-established concept for holonomic mechanisms [4, 10]. There is yet no
established notion for non-holonomic systems. It is thus instructive to point out
some common features of the output singularities of holonomic serial manipulators
(SM) and the input singularities of non-holonomic platforms.

It is known that, in a forward kinematic singularity, the complexity of infinitesimal
motions that a SM has to perform in order to reach nearby configurations increases.
This is reflected by a drop of rank of the forward kinematics Jacobian. Further-
more, the nesting level of Lie brackets of the instantaneous joint screws necessary
to generate the Lie algebra corresponding to the motion subgroup of the kinematic
chain increases [6, 12]. This is a non-generic phenomenon, and singularities form
closed dense subspaces in the configuration space. The SM can be regarded as a drift-
less kinematic control system, and the Lie bracketing determines the accessibility
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algebra of this control system. An unconstrained holonomic SM is always kinemat-
ically controllable.

Also a non-holonomic platform can modeled as a driftless kinematic control
problem. It is configuration controllable if it is completely non-holonomic, i.e. there
is no integral manifold defined by the constraints. Controllability is ensured by the
Lie algebra rank condition, i.e. when the nested Lie brackets of the control vector
fields span the accessibility algebra. Even if this local property holds, the complexity
of the infinitesimal motions necessary to reach nearby configurations may change in
configurations that are referred to as singular.

The apparent similarity of the holonomic and non-holonomic systems is discussed
in this paper, and a unified definition accounting for both types of systems is proposed.
The definition rests on the concept of a filtration of a distribution associated with
the kinematic control system, which characterizes the complexity of motion in a
singularity. It provides a general framework of SMs and completely non-holonomic
systems. This preliminary result can potentially be extended to parallel manipulators.

2 Singularities of Lower-Pair Serial Manipulators

For a serial manipulator (SM) whose joints have n degrees of freedom, denote its
joint variables by q = (q1, . . . , qn) ∈ V

n , the configuration space (c-space) of the
SM. The task of the SM is to position an end-effector (EE) and its task space is
a subset of SE(3). The forward kinematic mapping f : V

n → SE(3) relates the
configuration q ∈ V

n of the SM to the EE configuration C = f (q) ∈ SE(3). The
mapping can be expressed as a PoE:

f (q) = exp (Y1q1) · · · · · exp (Ynqn)A (1)

where Yi ∈ se(3) (the Lie algebra of the Euclidean group) is a twist generating the
motion of of joint i , with respect to to the chosen global frame and A ∈ SE(3) is the
EE pose in the reference configuration q = 0.

The EE twist V = (ω, v) ∈ se(3) arising from a trajectory q(t) through configu-
ration C, in spatial representation, is determined by ̂V = ĊC−1 ∈ se(3), where ̂V is
the matrix representation of V ∈ se(3). It is determined in terms of joint velocities
by the spatial Jacobian J (q) : R

n → se(3) as

V (q, q̇) = J1 (q) q̇1 + · · · + Jn (q) q̇n = J (q) q̇. (2)

The columns J j , j = 1, . . . , n of J are the instantaneous joint screws in configuration
C, given by

J j (q) = Adg jY j . (3)

with g j (q) = exp(Y1q1) · · · · · exp(Y j−1q j−1).
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Definition 1 (Singularity—rank criterion) A (forward) kinematic singularity of an
SM is a critical point q ∈ V

n of the kinematic mapping f , i.e. a configuration where
rank (J(q)) < rmax = min{n, dim(task space)}.

Since the rank is lower semi-continuous and the assignment is analytic, this is
equivalent to saying there is no neighbourhood of q on which rank J is constant,
whereas at a regular point, the rank will be locally constant and equal to rmax.

The vector space of achievable EE twists at a given configuration q is given by:

Dq := im J (q) = span
R
(J1 (q) , . . . , Jn (q)). (4)

The J j are analytic right-invariant vector fields on SE(3) so the assignment q �→
(J1 (q) , . . . , Jn (q)) is smooth and so, at a regular point,q �→ Dq ⊆ se(3) is a smooth
map to the Grassmannian of subspaces of se(3) of dimension rmax.

An important characteristic of an SM is the vector space of all EE twists the SM
can generate at a given configuration q. This is a subspace of the involutive closure of
Dq. The latter is the Lie algebra, denoted Dq ⊆ se(3), generated by all Lie brackets
of the joint screws. It can be determined by taking all nested Lie brackets of J j (q), so
constructed by means of the filtration of Dq, which is the sequence of vector spaces
Di+1

q := Di
q + [

Dq, Di
q

]

, with D1
q := Dq. This terminates with Dq = Dκ

q for some

κ . It can be shown for the task space SE(3) that κ ≤ 4 [6]. So, for example, D0 =
span

R
(Yi , [Yi ,Y j ], [Yi , [Y j ,Yk]], [Yi , [Y j , [Yk,Yl ]]]]). The dimensions dim Di

q
are collected in the growth vector ρ ∈ N

κ .
Moreover, the involutive closure is the same at any q ∈ V

n and we denote this
common closure by D. This follows from the expression (3) for the instantaneous
joint screws, invoking the BCH formula. Hence rmax ≤ min

(

dim D, n
)

. Moreover,
the subgroup G generated by the subalgebra D is the smallest SE(3) subgroup
comprising all possible EE configurations. Hence f (q) ∈ G and im J (q) ⊆ D for
any q ∈ V

n , and f can be regarded as a mapping f : V
n → G. But note that this

restricted forward kinematic mapping may still not be surjective if the EE motions
do not form a subalgebra, since then Dq � D.

The filtration at q locally characterizes the process of manipulating the EE when
starting at q. The length κ of the filtration is the maximal number of successive
infinitesimal joint motions necessary to produce any given (feasible) EE twist. It
seems intuitively clear that this number should change at a singularity. The following
can be proved using the BCH formula.

Lemma 1 The filtrations of Dq are identical at all regular configurations q ∈ V
n of

the SM, i.e. when J (q) has full rank. The configuration q is a kinematic singularity
of f if and only if the filtration of Dp is not constant for p in a neighbourhood of q.

This leads an alternative definition of kinematic singularities for SM. Denote with
κ0 the length of the filtration at a regular point.

Definition 2 (Singularity—filtration criterion) A configuration q ∈ V
n of an SM is

a forward kinematic singularity if and only if the length κ(q) > κ0.
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Fig. 1 Kinematic model of a
7 DOF KUKA LWR

The condition κ > κ0 is equivalent to say that the filtration of D is not constant in a
neighbourhoodofq. Since thefiltration reveals the effect of higher-order infinitesimal
motions it allows for identification of the joint motions that lead the SM out of a
singularity [7, 12].

Example 1 Consider the redundant 7 DOF (anthropomorphic) SM in the reference
configuration q = 0 in Fig. 1. The SM has 7 revolute joints, and its c-space is V

n =
T 7. The joint screw coordinate vectors in the reference configuration w.r.t. to the
global frame are
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The Jacobian J (0) = (Y1,Y2,Y3,Y4,Y5,Y6,Y7) has rank J (0) = dim D0 = 3.
In regular configurations q it is rank J (q) = 6. The configuration q = 0 is thus a
corank 3 singularity, according to Definition 1. The Lie brackets
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[Y1,Y2] = (1, 0, 0, 0,−L3 − L5 − L E , 0)T

[Y1,Y4] = (−1, 0, 0, 0, L5 + L E , 0)T

[Y2,Y4] = (0, 0, 0, 0, 0,−L3)
T

for instance, yield linearly independent vectors not in D0. Hence the vector space
D2

0 = se(3) has dim D0 = 6. The filtration length at q = 0 is thus κ = 2, and the
growth vector is ρ (0) = (3, 6). Consequently, the SM may escape from this sin-
gularity by first-order motions of joints 1, 2, and 4. The filtration length in regular
configurations q is κ0 = 1 since Dq = SE(3). With κ > κ0 the configuration is a
singularity according to Definition 2.

Using the definition ̂V = ĊC−1 of spatial velocity, the relation (2) can be written
as a right-invariant driftless control system on SE (3)

Ċ = (

̂J1u1 + · · · +̂Jnun
)

C. (5)

The vector space D serves as the right-trivialized controllability distribution of this
control system. Necessary and sufficient for (5) to be locally controllable at q is that
Dq = D [1, 5]. Hence the system (5), and thus the SM, is always locally controllable,
even in forward kinematic singularities.

Remark 1 Thus far only holonomic SM were considered. In general, holonomic
manipulators are mechanisms comprising closed kinematic loops. This is beyond
the scope of this paper, but a note is in order. A mechanism is a physical realization
of set of kinematic relations. The mathematical model for the kinematics of a general
holonomic mechanism consists of its c-space V := h−1 (0) ⊂ V

n , where the system
of k holonomic constraints arising from closed loops is written as h (q) = 0 ∈ R

k ;
the input space I ⊂ R

m ; and the output space W ⊂ SE(3) [8]. These objects are
related via the input mapping fI and the output mapping fO

W
fO←− V

fI−→ I . (6)

The c-space V is an analytic variety when the constraint mapping h is formulated
in terms of POEs. Configurations q where V is not locally a smooth manifold are
c-space singularities. Configurations q ∈ V where the constraint Jacobian Jh is not
constant in a neighbourhood of q in V are constraint singularities. It is important
to note that c-space singularities are automatically constraint singularities, but the
opposite is not necessarily the case [9]. At c-space singularities the mobility of
the mechanism changes. How this affects the possible input and output motions is
determined by fI and fO, respectively. Input (output) singularities are such that the
input (output) Jacobian is not constant in a neighbourhood of q in V . These three
types of singularities can occur simultaneously. All possible combinations and their
instantaneous phenomenology were reported in [14]. The consequences for the local
finite mobility is yet to be explored.
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The associated kinematic control system for a closed loop mechanism can be
written in implicit form as:

Jh (q) q̇ = 0, JI (q) q̇ = u, JO (q) q̇ = V (7)

where u denotes an input vector. Suppose that, locally, rank Jh = n − δloc (i.e. no
c-space singularities, no underconstrained mechanisms). Away from input singular-
ities, the Implicit Function Theorem enables one to locally invert fI. Then the first
two constraint equations in (7) can be rewritten in the formF (q) u = q̇. The problem
of input singularities can be circumvented by working directly with the codistrib-
ution defined by the constraints. This will not be pursued further here. Rather the
purpose has been to signal the connection to non-holonomic systems, which will be
investigated next.

3 Singularities of Non-holonomic Mobile Platforms

Wheeled mobile platforms are frequently used in mobile robotics. The rolling
constraint gives rise to non-holonomic constraints so that they can be treated as
non-holonomic kinematic control systems. Denote with x ∈ V

p the p coordinates
represent the configuration of the system. They are subjected to a system of k non-
holonomic Pfaffian constraints

A (x) ẋ = 0. (8)

Throughout this section the system (8) is assumed tobe completely non-holonomic.
Then a configuration q is a constraint singularity if A (q) is not full rank.

Remark 2 If the constraints were not completely non-holonomic, it would be nec-
essary to determine the integral manifold M passing through x. The configuration x
is a constraint singularity if and only if rank A is not constant in a neighbourhood
of x in M , adopting the concept of holonomic mechanisms [10]. For completely
non-holonomic constraints this simply means that A is not full rank.

In the followingA is assumed to have full rank k. Then there arem = n − k vector
fields g1, . . . , gm that span kerA. They constitute the columns of the orthogonal
complement G of A. This gives rise to the driftless control system

ẋ = g1 (x) u1 + · · · + gm (x) um = G (x) u. (9)

Usually the inputs u form a subset of x consisting of steering and rolling velocities.
The associated controllability distribution is Δ := span

R
(g1, . . . , gm), which is also

referred to as the constraint distribution [11]. The distribution Δ is regular if it has a
locally constant dimension, i.e. if the constraints (8) have locally constant rank.

The similarity to the forward kinematics (2) of holonomicmanipulators is obvious,
but now (9) describes how input rates affect the system velocity. Now the matrix G
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plays the role of an input Jacobian. In case of holonomic mechanisms a drop of rank
would be necessary and sufficient for an input singularity, and the definitions 1 and 2
are equivalent. With the assumption thatG is full rank, the control system (9) would
not have a singularity according to the classical Definition 1 in terms of the rank ofG.
However, if one accepts that a singularity is a configuration in which the kinematic
accessibility changes then there are further situations that qualify as singular in case
of non-holonomic systems.

Definition 3 The configuration x is a kinematic singularity if the filtration of Δ at
x is not constant in a neighbourhood of x. If additionally Δ is regular, i.e. G (x) has
full rank, the configuration x is a non-holonomic kinematic singularity.

The difference to Definition 2 is that G may have full rank at a non-holonomic
singularity. Only for non-holonomic systems can G (x) be regular but the filtration
Δ not be regular at x.

Corollary 1 The set of non-holonomic singularities, denoted Σnh, is closed in V
p.

Example 2 Consider the carwith two trailers in Fig. 2. The p = 7 systemcoordinates
are (x, y, θ1, θ2, ϕ, α) ∈ V

7 = R
2 × T 5. The kinematic control system is

⎛
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u2. (10)

The accessibility distribution Δ = span (g1, g2) is regular, i.e. has constant dimen-
sion for all x ∈ V

7. Its filtration terminateswith the accessibility algebraΔ = R
7, and

Fig. 2 Kinematic model of a car with two trailers



400 A. Müller and P. Donelan

the system is thus accessible and controllable. As long as ϕ 	= ± n
2π the filtration

terminates with growth vector ρ = (2, 3, 5, 6, 7). But if the steering angle attains
ϕ = ± n

2π , the length of the filtration increases by two and the growth vector is ρ =
(2, 3, 5, 5, 6, 6, 7). These are non-holonomic singularities: Σnh = {x|ϕ = ± n

2π}. In
these singularities the control of the car with two trailers becomes more complex
than it is in regular configurations. This is intuitively clear since a steering motion
must be performed first so to reorientate the front axis. It can be shown that for each
additional trailer, the length of the filtration at a singularity increases by one.

4 Discussion and Conclusion

Singularities are kinematic configurations where the kinematic properties change.
For SMs this is simply reflected by a rank-deficient forward kinematics Jacobian.
This means that the complexity of the infinitesimal motion to reach a point in the
vicinity of a singularity increases. Non-holonomic systems possess further critical
configurations that qualify as singularities although the input Jacobian is full rank.
They are also characterized by an increase of the complexity of the motion. It has
been proposed here that the complexity in holonomic and non-holonomic cases is
characterized and exemplified by the degree of nesting of Lie brackets necessary
to generate the screw algebra defined by the joint screws of an SM, respectively
the controllability algebra of a mobile platform. The iteration depth of nested Lie
brackets (filtration of distribution) is used as defining property of singularities.
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13. Tchoń, K.: On kinematic singularities of nonholonomic robotic systems. In: Proceedings of
the RoManSy 13, Zakopane, Poland, pp. 75–84 (2000)

14. Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities as C-space singularities.
In: Proceedings of the 8th International Symposium on Advances in Robot Kinematics (ARK
2002), Caldes de Malavella, Spain, pp. 183–192 (2002)
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Dynamic Singularities of Non-holonomic
Robotic Systems: An Analytic Approach

Krzysztof Tchoń

Abstract Thiswork develops a concept of singular configurations of non-holonomic
systems, rooted in the endogenous configuration space approach. The approach takes
as a starting point a control system representation of the equations of motion of
a non-holonomic robotic system in the form of a control affine system with out-
put. The input-output map is introduced whose derivative is defined as the system’s
Jacobian. Dynamic singular configurations are defined as control functions at which
the input-output map is not surjective, i.e. the system’s Jacobian gets rank deficient.
It is shown that the dynamic singularities coincide with the singular optimal controls
of the control affine system. As a by-product of the Jacobian setting dynamic dexter-
ity measures of the non-holonomic systems are designed. The concept of dynamic
singularities is illustrated with an example of the front wheel driven car.

1 Introduction

The problem of singularities has been creating a challenge for robotics research for
decades. For holonomic, serial or parallel manipulators, the basic characteristics of
singularities are well established. In the area of non-holonomic (mobile) robots there
is even no commonly accepted definition of singularities. Specifically, the kinematics
studies of the non-holonomic robots represented by driftless control system concen-
trate on the control distributionwhose properties give rise to two kinds of singularities
referred to as the posture and the configuration singularities [8]. Recently, the posture
singularities have been examined systematically in [6, 7], within an approach that
may be called geometric. As a counterpoint, in [10] we have presented fundamentals
of configuration singularities, called an analytic approach, and suggested that both
these approaches might be unified based on the recent results of sub-Riemannian
geometry concerned with a determination of the distribution by its singular curves
[4, 5]. In accordance with the analytic approach the configuration singularities live in
an infinite-dimensional space of control functions. A singular configuration is then
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identified with a control function at which the input-output map loses rank. This
property can be verified by reference to the Gram matrix of the linear approximation
to the control system representation of the kinematics. Moreover, it is proved that
the configuration singularities coincide with the singular optimal control functions,
so they can be computed in a systematic way [3].

This paper attempts at extending the analytic approach of [10] to non-holonomic
systems with dynamics, represented by control affine systems. Analogously to [10]
we propose a definition of the dynamically singular configuration, establish check-
able necessary and sufficient conditions for singularity, and show that dynamically
singular configurations are identical with the singular optimal control functions. As
a by-product we get a concept of dynamic dexterity measures for the non-holonomic
robotic system, originally announced in [11].

The composition of this work is the following. Section2 introduces basic con-
cepts including the Jacobian. Section3 defines dynamic singularities. A link between
dynamic singular configurations and singular optimal control is established in Sect. 4.
Dynamic dexterity is shortly discussed in Sect. 5. An example of the front wheel
driven car is presented in Sect. 6. Section7 contains conclusions.

2 Basics

We shall consider non-holonomic robotic systems with dynamics whose equations
of motion can be represented by a control affine system with output, of the form

⎧
⎨

⎩

q̇ = f (q) + G(q)u = f (q) +
m∑

i=1
gi (q)ui ,

y = k(q).

(1)

Hereabove q ∈ Rn , u ∈ Rm and y ∈ Rr denote, respectively, the state, the control
and the output variable. The drift vector field f (q) and the control vector fields
g1(q), . . . , gm(q) are assumed to be smooth (C∞). The motion of the system will
be examined over a time interval [0, T ]. The configuration space of the system
(1) is defined as the Hilbert space U = L2

m[0, T ] of Lebesgue square integrable
functions on [0, T ] assuming values in Rm , with the inner product 〈u1(·), u2(·)〉 =
∫ T
0 uT

1 (t)u2(t)dt. The spaceU will be called the endogenous configuration space of
the system [9]. It is assumed that for every admissible control function u(·) ∈ U
and the initial state q0 the system’s trajectory q(t) = ϕq0,t (u(·)) exists for every
t ∈ [0, T ]. The corresponding output trajectory y(t) = k(ϕq0,t (u(·))). Further on the
control function will be called shortly the control. With a suitable interpretation of
system’s variables, the representation (1) encompasses non-holonomicmobile robots
or mobile manipulators composed of a non-holonomic mobile platform carrying
on-board either a holonomic or a non-holonomic manipulator.
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For a fixed initial state we define the input-output map of the system (1) as the
value at the time T of the system’s output, subject to a control u(·),

Kq0,T : U −→ Rr , Kq0,T (u(·)) = y(T ) = k(ϕq0,T (u(·))). (2)

This map is differentiable with respect to control. Its derivative will be called the
system’s Jacobian,

Jq0,T (u(·)) : U −→ Rr , Jq0,T (u(·))v(·) = D Kq0,T (u(·))v(·). (3)

The Jacobian can be computed by means of the linear approximation to the control
system (1), namely given a control u(t) we find the corresponding trajectory q(t),
and compute the matrices

A(t) = ∂( f (q(t)+G(q(t))u(t))
∂q , B(t) = G(q(t)), C(t) = ∂k(q(t))

∂q . (4)

The linear approximation of (1) along (u(t), q(t)) is defined as a linear, time-
dependent control system {

ξ̇ = A(t)ξ + B(t)v,
η = C(t)ξ.

(5)

Now, the Jacobian is the input-output map at T of (5) initialized at ξ0 = 0,

Jq0,T (u(·))v(·) = η(T ) = C(T )ξ(T ) = C(T )

∫ T

0
Φ(T, s)B(s)v(s)ds. (6)

The matrix Φ(t, s) appearing above satisfies the evolution equation ∂
∂t Φ(t, s) =

A(t)Φ(t, s) initialized at Φ(s, s) = In.

3 Dynamic Singularities

Dynamic singularities of the non-holonomic system will be defined with reference
to the Jacobian (3).

Definition 1 An endogenous configuration u(·) ∈ U is called regular, if the
Jacobian Jq0,T (u(·)) is a surjection of U onto Rr , otherwise this configuration is
singular.

Below we shall derive a necessary and sufficient condition for regularity. To this
objective, let us introduce the Gram matrix of the linear system (5),

Dq0,T (u(·)) = C(T )

∫ T

0
Φ(T, s)B(s)BT (s)ΦT (T, s)ds CT (T ). (7)
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It is easy to see that the Gram matrixDq0,T (u(·)) = C(T )Mq0,T (u(·))CT (T ), where
the inner factor satisfies the Lyapunov matrix differential equation

Ṁq0,t (u(·)) = B(t)BT (t) + A(t)Mq0,t (u(·)) + Mq0,t (u(·))AT (t) (8)

with initial condition Mq0,0(u(·)) = 0. We have the following

Theorem 1 An endogenous configuration u(·) is regular if and only if the Gram
matrix (7) has full rank r . Moreover, the regularity implies a local input-output
controllability of the control system (1).

Proof Sufficiency: Let rank Dq0,T (u(·)) = r , and consider the Jacobian equation

Jq0,T (u(·))v(·) = C(T )

∫ T

0
Φ(T, s)B(s)v(s)ds = η (9)

for an η ∈ Rr . It is easily checked that this equation has a solution

v(t) = BT (t)ΦT (T, t)CT (T )D−1
q0,T

(u(·))η,

therefore the Jacobian is surjective.
Necessity: Now assume that rank Dq0,T (u(·)) < r , so there exists a non-zero

vector η ∈ Rr , such that Dq0,T (u(·))η = 0. Suppose for a while that there exists a
v(·) ∈ U such that (9) holds. By definition of Dq0,T (u(·)), we have

ηTDq0,T (u(·))η =
∫ T

0
||BT (t)ΦT (T, t)CT (T )η||2dt = 0,

where || · || denotes the Euclidean norm in Rm . This results in

ηT C(T )Φ(T, t)B(t) = 0,

for every t ∈ [0, T ]. Invoking once again the Jacobian equation (9) we conclude that

ηT Jq0,T (u(·))v(·) = ηT C(T )

∫ T

0
Φ(T, s)B(s)v(s)ds = ||η||2 = 0,

so η must be zero, what leads to a contradiction.
The local input-output controllability means that if a control u(·) ∈ U transfers

in time T the system’s output to a point y0 then there exist controls that allow to
reach in T any point y from an open neighbourhood of y0. This property in a direct
consequence of the local surjectivity of the map Kq0,T , see [1], Theorem 2.5.9. �
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4 Singular Optimal Control

Consider an optimal control problem in the system (1), consisting in the determina-
tion of a control u(t) that transfers the system’s state at T to the terminal manifold
MT = {q ∈ Rn|yd − k(q) = 0}, and simultaneouslyminimizes theLagrangianobjec-
tive function ∫ T

0
L(q(t), u(t))dt.

Having introduced the adjoint variables p0 ∈ R, p ∈ Rn , we define the Hamiltonian

H(q, u, p0, p) = pT ( f (q) + G(q)u) − p0L(q, u). (10)

The canonical Hamiltonian equations take the form

q̇ = ∂ H

∂p
, ṗ = −∂ H

∂q
, (11)

where the optimality condition is ∂ H
∂u = 0.An extremal (u(t), q(t), p(t)) of the prob-

lem is called singular if it solves (11) for p0 = 0, p(t) �= 0, satisfies the optimality
condition and the transversality condition pT (T ) = ρT C(T ), for a non-zero vector
ρ ∈ Rr . The control included in a singular extremal is referred to as the singular
optimal control. The following theorem characterizes dynamic singularities of the
non-holonomic robotic system.

Theorem 2 Dynamic singularities of a non-holonomic robotic system are identical
with the singular optimal controls.

Proof Necessity: Suppose that (u(t), q(t), p(t)) is a singular extremal. This means
that p0 = 0 and pT (t)G(q(t)) = 0. The adjoint vector p(t) is non-zero and satisfies
the Hamiltonian equation

ṗT (t) = −pT (t)
∂ ( f (q(t)) + G(q(t))u(t))

∂q
= −pT (t)A(t), (12)

see (4), and the transversality condition. Now, the singularity condition and (12)
result in

pT (t)G(q(t)) = pT (t)B(t) = 0. (13)

To proceed we refer to the Gram matrix (7) and look at the Lyapunov equation (8).
Havingmultiplied this equation from the left by pT (t), after appropriate substitutions
from (12) and (13), we obtain

pT (t)Ṁq0,t (u(·)) = − ṗT (t)Mq0,t (u(·)) + pT (t)Mq0,t (u(·))AT (t).
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This leads to the differential equation

d

dt

(
pT (t)Mq0,t (u(·))) = (

pT (t)Mq0,t (u(·))) AT (t). (14)

For initially
(

pT (0)Mq0,0(u(·))) = 0, we deduce that the zero solution satisfies (14),

so
(

pT (t)Mq0,t (u(·)))) = (
pT (T )Mq0,T (u(·)))) = 0. Using the transversality con-

dition we get
(

pT (T )Mq0,T (u(·))p(T )
) = ρTDq0,T (u(·))ρ = 0, what means a rank

deficiency of the Gram matrix. Thus, the endogenous configuration u(·) is singular.
We have demonstrated that every singular optimal control is a singular endogenous
configuration.

Sufficiency: Choose a singular endogenous configuration u(·), take the
Hamiltonian (10) for p0 = 0, and and let the triple (u(t), q(t), p(t)) denote the corre-
sponding solution of the canonical equations (11). By singularity of the configuration
we get the existence of a non-zero vector ρ ∈ Rr such that ρTDq0,T (u(·))ρ = 0, i.e.

ρT C(T )Mq0,T (u(·))CT (T )ρ = 0.

Taking into account the identity (7) we deduce that

∫ T

0
||BT (s)ΦT (T, s)CT (T )ρ||2ds = 0,

therefore, for any t ∈ [0, T ],

ρT C(T )Φ(T, t)B(t) = 0. (15)

Now, by solving the canonical equation pT (t) = − ∂ H
∂q = −pT (t)A(t) we obtain

pT (t) = pT (T )Φ(T, t), (16)

whereΦ(t, s) denotes the fundamental matrix of (5), and pT (T ) = ρT C(T ). Finally,
from (15) and (16), we conclude that pT (t)B(t) = pT (t)G(q(t)) = 0, i.e. u(t) is a
singular optimal control. �

5 Dynamic Dexterity

In accordancewith [10, 11], theGrammatrix (7) plays the role of a dynamic dexterity
matrix of the non-holonomic system, and can be employed as a means for defining
dynamic performance measures. For example, the dynamic dexterity ellipsoid at the
endogenous configuration u(·) is obtained as the image by the Jacobian of the unit
sphere in U ,
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Sq0,T (u(·)) = {v(·) ∈ U |||v(·)|| = 1},

defined with respect to the norm induced by the inner product in U . The dynamic
dexterity ellipsoid

Eq0,T (u(·)) = Jq0,T (u(·))Sq0,T (u(·)) = {η ∈ Rr | ηTD−1
q0,T

(u(·))η = 1} (17)

is the image in Rr of the unit sphere by the Jacobian. It is inscribed into the sphere

in Rr of radius λ
1/2
Dq0 ,T (u(·)) and circumscribed on the sphere of radius λ

1/2
Dq0 ,T (u(·)),

determined, respectively, by the largest and the smallest eigenvalue of the dynamic
dexterity matrix. The square root of the determinant

dq0,T (u(·)) =
√

detDq0,T (u(·)),

describes the dynamic dexterity of the non-holonomic system at the endogenous
configuration u(·). Observe that the dexterity at a singular configuration is zero.

6 Example

Consider a front wheel driven car shown schematically in Fig. 1. The well known
control system representation of its kinematics will be extended to a control affine
system including the car’s kinematics and dynamics. The vector of generalized coor-
dinates of the car q = (q1, . . . , q6) ∈ R6 describes its position, orientation, the head-
ing angle, the forward and the steering wheel velocities. The controlled inputs will
be the forward and the steering forces/torques. The output variable coincides with

y
1

y
2

y
3

(q  ,q  )
1 2

q3

q
4

Fig. 1 Front wheel driven car
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the state variable, y = q. The car moves without the side slip of its front and rear
wheels. For simplicity all geometric and dynamic parameters of the car are assumed
equal to 1. After a feedback transformation the control affine system (1) comprises
the drift vector field

f T (q) = (q5 cos q3 cos q4, q5 sin q3 cos q4, q5 sin q4, q6, 0, 0)
T ,

and a pair of control vector fields g(q) = e5, g2(q) = e6, ei denoting the i th unit
vector in R6. It is well known that at the kinematic configuration singularities the car
does not move except for arbitrary changes of its heading angle [2].

Following a procedure provided in [3], we shall compute the dynamic config-
uration singularities of the car. Let p ∈ R6 denote the adjoint variable. Then, the
singular extremal (u(t), q(t), p(t)) satisfies for t ∈ [0, T ] the following identities
(for the sake of simplicity of notation the argument t will be omitted)

pT f (q) = const, pT g1(q) = 0, pT g2(q) = 0 and ṗT = −pT ∂ f (q)

∂q
,

for p �= 0. Specifically, we get p1 = const, p2 = const, ṗ3 = q5 cos q4(p1 sin q3 −
p2 cos q3), p4 = p5 = p6 = 0, ṗ4 = q5((p1 cos q3 + p2 sin q3) sin q4 − p3 cos q4)

and ṗ5 = −(p1 cos q3 + p2 sin q3) cos q4 − p3 sin q4. A combination of the iden-
tities ṗ4 = 0, ṗ5 = 0, p̈4 = 0, p̈5 = 0 and p(3)

5 = 0 results in

((p1 cos q3 + p2 sin q3) sin q4 − p3 cos q4)
2 (

u2
1 + u2

2

) = 0,

q5(p1 sin q3 − p2 cos q3) = 0 and (p1 cos q3 + p2 sin q3) sin q4 − p3 cos q4 = const.

For the reason that u2
1 + u2

2 �= 0 (otherwise the singular controls become zero), there
must be

(p1 cos q3 + p2 sin q3) sin q4 − p3 cos q4 = 0. (18)

Joining this with ṗ5 = 0 we deduce that

p1 cos q3 + p2 sin q3 = 0 and p3 = 0.

Now, consider the identity q5(p1 sin q3 − p2 cos q3) = 0. Since

d

dt
(p1 sin q3 − p2 cos q3) = p1 cos q3 + p2 sin q3 = 0,

we have p1 sin q3 − p2 cos q3 = const , so q5 = 0. But this means that u1 = q̇5 = 0.
Finally, the dynamically singular configurations of the car have the form

(u1(t) = 0, u2(t) − arbitrary).
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7 Conclusion

We have presented an analytic study of dynamic configuration singularities of non-
holonomic robotic systems, parallelizing a similar study of kinematic singularities
accomplished in [10]. A comparison reveals that our analytic characterization of
dynamic singularities extends in a natural way the previous concept of kinematic
configuration singularities. The sub-Riemannian geometry provides a means for
computing both the kinematic as well as the dynamic configuration singularities. An
extension of the geometric approach to the dynamic singularities of non-holonomic
systems seems to be an interesting problem for further research.
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A Taylor-Based Continuation Method
for the Determination and Classification
of Robot Singularities

Gauthier Hentz, Isabelle Charpentier, Lennart Rubbert
and Pierre Renaud

Abstract Robot design in contexts such as computer-assisted medical interventions
remains challenging. Compact, dexterous mechanisms with particular mobilities are
needed, the synthesis of which requires a systematic evaluation of workspace and
singular positions. The evaluation of singular positions and their classification are
still difficult to perform in a systematic manner. In this paper, an automated method
is presented and evaluated on a complex planar mechanism. A higher-order contin-
uation method is used to provide continuous and accurate representation of singular
locii. Classification is then performed by testing all the existing singularity types
through a direct evaluation. Only the mechanism loop-closure equations are required
thanks to automatic differentiation and the Diamanlab software developed for use of
continuation. The evaluation of the method shows promising results.

1 Introduction

Robot design in contexts such as computer-assisted medical interventions remains
challenging. Compact, dexterous mechanisms with particular mobilities are needed,
which synthesis is today still an issue. In order to help the designer, efficient and
automated methods are mandatory for mechanism assessment.

Workspace is a first property to be evaluated. We have described in [6] the use of
automatic differentiation (AD) and the so-called Diamant higher-order continuation
approach to compute the boundaries of reachable workspace in a simple manner.
Built as an extension of [5], our approach is of interest for its high accuracy, low
computation time and the description of workspace boundaries as Taylor series that
yields a continuous representation.

The determination of mechanism singularities is another major requirement in
mechanism evaluation. The problem is complex because of the variety of singular
situations for a mechanism. Six singularity types exist and up to 21 different singu-
larity classes can be detected during a mechanism analysis [10]. Several methods on
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singularity determination have been reported [3, 7, 8]. The determination is however
usually not possible for all the singularity classes, and a general manipulator. In [10]
algebraic and geometric techniques are given for finding singularity sets. Their appli-
cation remains however tedious and time consuming. More recently, [1] proposed
a general method based on interval analysis to perform an exhaustive numerical
determination and classification of the singularities. The latter process relies on a
sequential test process that can be affected by numerical accuracy issues, according
to the authors.

In this paper, we investigate the extension of our continuation method [6] to
propose a complete singularity analysis for general manipulators. Taking advantage
of the continuity and accuracy properties of continuation, the method is based on
a two-step process: firstly the determination of singularity locations, and secondly
their classification. This latter phase is based on a direct evaluation of the 21 possible
situations formulated in [10].

The paper is organized as follows. The singularity definition and classification is
introduced in Sect. 2. The proposed determination and classification method is then
detailed in Sect. 3. Themethod is tested in Sect. 4 by considering a planar mechanism
with complex kinematic behavior. Conclusions on the potential of the method and
future developments are detailed in Sect. 5.

2 Formulation of the Singularity Analysis Problem

We consider here a mechanism requiring N independent variables to define its con-
figuration in a unique manner. Following [5], we choose to describe the mecha-
nism configuration with a column-array q = [uᵀ, vᵀ,wᵀ]ᵀ ∈ IRnq , with u, v and
w being respectively the output, input and passive coordinates. The mobility of
the mechanism is denoted by n. We consider a non-redundant manipulator so that
dim(u) = dim(v) = n and nq ≥ N + n. The configuration space is the set of admis-
sible values of q for the manipulator:

C = {q|RC (q) = 0} , (1)

whereRC (q) = 0 is a system of neq non-linear equations, typically the loop-closure
equations for a parallel mechanism.

Feasible instantaneous motions are characterized by the velocity equations [10]:

RC
q (q) q̇ = 0 , (2)

with q̇ = [u̇ᵀ, v̇ᵀ, ẇᵀ]ᵀ a column-array of velocities and RC
q a neq × nq Jacobian

matrix. The following two kinematic problems are usually formulated:
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• Inverse instantaneous kinematics problem (IIKP): Find q̇ for a prescribed u̇.
• Forward instantaneous kinematics problem (FIKP): Find q̇ for a prescribed v̇.

Singularities can be defined as indeterminations in these two problems. To express
that, let sets of variables z = [vᵀ,wᵀ]ᵀ and y = [uᵀ,wᵀ]ᵀ be two sets of variables
issued from q. We note RC

z , RC
y and RC

w the submatrices obtained from RC
q by

removal of the columns related to u, v and (u,v), respectively [1].
Indetermination situations of the IIKP occur whenRC

z is rank deficient. The con-
figurations q ∈ Sz ⊂ C where these situations occur are called inverse singularities
and are solutions [5] of: ⎡

⎣
RC (u, z)(

RC
z (u, z)

)ᵀ
ξ

ξᵀξ − 1

⎤
⎦ = 0 , (3)

where ξ ∈ IRneq . The two lower terms express the rank deficiency of the JacobianRC
z .

Indetermination situations of the FIKP constitute a setSy of solutions to

⎡
⎣

RC (v, y)(
RC

y (v, y)
)ᵀ

ξ

ξᵀξ − 1

⎤
⎦ = 0 . (4)

Solutions to systems (3) and (4) define all singularities of a mechanism [1].
In order to express the nature of singularities for a mechanism, a classification has

to be performed. A classification of the singularities in 6 singularity types was intro-
duced in [10] with redundant input (RI), redundant output (RO), redundant passive
motion (RPM), impossible input (II), impossible output (IO), and increased instan-
taneous motion (IIM) singularities. A set of 6 criteria allows such classification [10]:

• q ∈ {RI } ⇔ rank(RC
z ) < rank(RC

w ) + n • q ∈ {I I } ⇔ rank(RC
y ) < rank(RC

q )

• q ∈ {RO} ⇔ rank(RC
y ) < rank(RC

w ) + n • q ∈ {I O} ⇔ rank(RC
z ) < rank(RC

q )

• q ∈ {RPM} ⇔ rank(RC
w ) < N − n • q ∈ {I I M} ⇔ rank(RC

q ) < N

A singular position can be of several types at the same time. A total of 21 classes
exists [10], each one corresponding to a particular degenerate kinematic behavior
of the mechanism. Indetermination of either the IIKP or the FIKP are the most
common and studied cases and correspond respectively to the well known output
(also designated as serial or (RI,IO)) singularities or input (also designated as parallel
or (RO,II)) singularities. Configurations satisfying both systems (3) and (4) can
belong to any of the other singularity classes. The corresponding singularity sets
are typically of lower dimension than the whole singularity set, implying different
kinematic behavior [1].
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3 A Fully Automated Computation Method

The method we propose is based on computation of singularities followed by their
classification.

Determination of the Singularity Set

The solutions to the systems (3) and (4) are composed of several continuous sets,
that can be designated as solution branches. We propose to follow solution branches
from an initial point by a numerical continuation technique. Intersections between
solution branches can occur. This corresponds to so-called bifurcation points. At such
points, the continuity of the solution set is broken and rank deficiency of the Jaco-
bian of the system occurs [9]. The detection of such points allows us to locate branch
intersections. A branch switchingmay then be carried out, allowing a complete deter-
mination of all the connected branches from one initial point. If the singularity set
is one-dimensional, continuation can be directly applied. If not, linear relationships
between the coordinates can be added to discretize the determination of solution sets,
as described in [5] and used in [6].

With a classical first-order continuation technique, branches are computed step-
by-step as a collection of solution points. With higher-order continuation, the
branches of solutions are computed as Taylor series which constitute continuous
and accurate representations. The system to be solved needs however a formulation
that usually requires complex and time-consuming additional work. On the contrary,
Diamant1 [2], the numerical method we use, is an implementation of higher-order
continuation with integration of automatic differentiation (AD). Using this frame-
work, non-linear equations describing a mechanism behavior are directly imple-
mented in their standard format and are being solved in a fully automated manner.
Bifurcation detection and branch switching are carried out automatically as well. In
addition, the Tapenade software [4] is used to build the JacobianRC

q from system (1)
at no cost, benefiting again from AD. Finally our method builds on AD and Diamant
to propose a fully automated framework for singularity analysis, allowing to generate
and solve systems (3) or (4) in a fully automated manner. The reader is referred to
[6] and the references therein for further explanations on AD and Diamant.

In addition to this exploration technique of the singularity sets, we propose to
monitor the rank deficiency of RC

y (respectively RC
z ) during the determination of

solutions of (3) (respectively (4)). In this way, if a rank deficiency of the monitored
Jacobian occurs, the corresponding configuration is located at the intersection ofSz

and Sy. We can therefore identify the input and output singularities and also the
other types of singularities. This means we can identify precisely and immediately
configurations that can belong to any of the 21 singularity classes.When the described

1Stands for Différentiation Automatique de la Méthode Asymptotique Numérique Typée.
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rank deficiency is detected, we can in addition use the corresponding points to switch
from branches of Sz to branches of Sy and conversely. There is then no need for
another initial point to compute all the connected branches ofSz ∪ Sy.

Thanks to AD, Diamant, monitoring of rank deficiency and automated branch
switching, we obtain the whole connected singularity setSz ∪ Sy as a grid of solu-
tion branches connected by singular points. The determination step can be finally
described as:

1. Determination:

a. Automatic differentiation of system (1) with respect to (u, v,w) using
Tapenade software [4] to build the Jacobian RC

q and the submatrices
RC

z , RC
y and RC

w ,
b. Computation of the singularities by solving systems (3) and (4) with

the non-linear solver Diamant [2]. Taylor series allow for the local
construction of solution branches. Monitoring of the rank deficiency of
Ry during continuation on system (3), and conversely, allows to detect
points of Sz ∩ Sy.

Singularity Classification

The solution branches of either (3) or (4) can be directly classified respectively in
(RI,IO) or (RO,II) singularity classes. Other detected singular points can belong to
any of the other existing singularity classes, which requires additional classification
steps. Thanks to the high accuracy in the estimation of singular points, a direct
classification of the solutions of Sz ∩ Sy can be performed. Each point is tested
from the propositions given in Sect. 2. The classification step can be finally described
as:

2. Classification of the points detected in Sz ∩ Sy using the test functions.
For each point:

a. Computation of the ranks of matrices RC
q , RC

w , RC
y and RC

z ,
b. Determination of the singularity types from the criteria given in Sect. 2,
c. Determination of the singularity class (see Table1 in [10]) by testing in

a successive manner membership to (a) combinations of RI, RO, RPM
types (rows of the Table), (b) IIM type, (c) IO type and (d) II type.
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Fig. 1 Singularity set (c) of the double-loop mechanism depicted in (a) after projection onto the
space of the x and y variables. Each singularity in the configuration space C is classified according
to the singularity classes indicated in (b)

4 Application to a 2-DOF Double-Loop Manipulator

Manipulator Description

In order to assess the efficiency of themethod, the 2-DOFplanarmanipulator depicted
in Fig. 1a is considered. This mechanism is a double-loop parallel mechanism, and it
possesses twomobilities (n = 2). In terms of singularity analysis, it is very challeng-
ing, especially with the geometric parameters issued from [1], for which all existing
singularity types occur. Its planar nature allows at the same time a comprehensive
interpretation of the kinematic behavior implied by each class of singularity, see [1],
which makes it a very interesting case study for the method benchmark.

The constraint equations describing the mechanism kinematics, adapted from [1],
are obtained by writing the closure equations for both loops and two equations that
constrain the position of point G:

RC (q) =

⎡
⎢⎢⎢⎢⎢⎣

CD cos(θD) + CG cos(θC ) − x
CD sin(θD) + CG sin(θC ) − y
AB cos(θA) + BC cos(θB) − CD cos(θD) − AD
AB sin(θA) + BC sin(θB) − CD sin(θD)

CD cos(θD) + CG cos(θC ) + FG cos(θG) − EF cos(θE ) − DE
CD sin(θD) + CG sin(θC ) + FG sin(θG) − EF sin(θE )

⎤
⎥⎥⎥⎥⎥⎦

= 0 , (5)
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with θA and θE the actuated joint coordinates, x and y the coordinates of point G.
The selected passive coordinates are θB , θC , θD and θG . Geometric parameters are
defined as AB = BC = DE = 1, AD = CD = FG = 2, CG = 1.5, EF = 3.

Results and Interpretation

The implementation is performed using Taylor series at a truncated order of 20 and a
precision of 1e − 6 on the residual [2]. Eigenvalues of square matrices and singular
values of rectangular matrices are considered null if inferior to a threshold of 1e − 5.
The solution branches corresponding to the output and input singularity locii are
defined in the configuration space C . For sake of representation they are projected
onto the space of the x and y variables only and plotted in Fig. 1c, using respectively
green and red lines.

Bifurcation points detected automatically during the continuation process are indi-
cated with a circle-shape marker (◦). They allow us to detect branch intersections in
Sz orSy. Intersection points between the output and input singularity sets, detected
by monitoring the simultaneous rank deficiency of both Rz and Ry, are indicated
by the other markers. As expected, detection of the intersection points and of the
bifurcation points allow for the computation of all connected solution branches of
Sz ∪ Sy. All the singularities other than input or output singularities are then clas-
sified by using the second step of the method.

The accuracy in the determination of the branches and the location method allows
us to assign a detected point to the class it belongs to in a straightforward manner.
All connected singularities can thus be entirely determined and classified. Markers
using multiplication symbol (×) designate (RI,RO,IIM) configurations. The points
depicted as diamonds (	) correspond to simultaneous output and input singularities
(RI,RO,II,IO). Two points belonging to (RI,RPM,IO,IIM) class are indicated with
plus-shape markers (+). Some points on the projected diagram are referenced with
several classes. This means they correspond to several configurations in C , because
a configuration must belong to a unique class [10]. The blue circle of center A
is in particular the superimposition of (RI,IO) and (RO,II) branches. The known
singularities are obtained, at the exception of singularities that are superimposed to
the blue circle in Fig. 1c (see also [1], Fig. 4). Further analysis shows that the gain
of mobility in that situation would require an exploration with continuation along
an additional direction. This would require as described earlier the introduction of
a discretization and an additional relationship in the system, a development to be
investigated.

5 Discussion and Conclusion

In this paper, we have introduced the use of higher-order continuation for accu-
rate and automatic determination of singularity sets. The accuracy of Taylor series
computation together with automatic differentiation allows us to easily implement
the singularity determination problem from loop-closure equations and perform an
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unambiguous classification of the obtained singularities. This is of particular interest
for the designer since only very little information on the mechanism is needed to
conduct the analysis.

The evaluation is promising, with the estimation of all input and output singulari-
ties, and more complex situations as described in Fig. 1. Only one set of IIM singular
positions is today not determined. Their estimation requires an improvement of the
exploration strategy by continuation that will be investigated.

Future work will be focused on the evaluation of the method by considering other
3D mechanisms. It will be also interesting to combine our method with the interval-
based method from [1] to get accurate and efficient determination of singularities
as well as an exhaustive determination, even in difficult cases of disconnected sets,
without any initial knowledge on the singular configurations. Sensitivity analysis
also provided by the Diamant framework will then also be exploited to provide the
designer with a tool for optimization of the mechanism geometry.
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Identifying Singularity-Free Spheres
in the Position Workspace of Semi-regular
Stewart Platform Manipulators

Anirban Nag, Vikranth Reddy, Saurav Agarwal
and Sandipan Bandyopadhyay

Abstract This paper presents a method to compute the largest sphere inside the
position-workspace of a semi-regular Stewart platform manipulator, that is free of
gain-type singularities. The sphere is specific to a given orientation of the moving
platform, and is centred at a designated point of interest. The computation is per-
formed in two parts; in the first part, a Computer Algebra System (CAS) is used to
derive a set of exact symbolic expressions, which are then used further in a purely
numerical manner for faster computation. Themethod thus affords high computation
speed, while retaining the exactness and generic nature of the results. The numerical
results are validated against those obtained from an established numerical algebraic
geometry tool, namely, Bertini, and are illustrated via an example.

1 Introduction

This paper presents a method for finding a sphere inside the position workspace of
a semi-regular Stewart platform manipulator (SRSPM), which is free of gain-type1

singularities. The singularity-free sphere (SFS) is derived for a given orientation of
the moving platform, and is centred at a designated point of interest. The choice of
this point is typically motivated by the intended applications of the manipulator.

1Gain-type singularities (also known as type-II singularities) occur when the forward kinematic
solutions of a manipulator merge. See [1] and the references therein for more details.
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The identification of such an SFS facilitates several aspects of path-planning
and design of such manipulators. As the sphere describes a convex region in R3, it is
obvious that anypath consisting of line segments is free of (gain-type) singularities, so
long as the end-points of the segments are inside the SFS. For any given manipulator,
such a calculation needs to be done only once, for any given orientation. If such an
SFS is to be identified for a range of orientations of the moving platform, then one
can scan the said range (up to some desired resolution), and identify the smallest SFS,
which would be free of singularities for the entire range of orientations. Identifying
such an SFS forms an important part of computing the “Safe Working Zone (SWZ)”
of such a manipulator, where the manipulator can operate without encountering
singularities and other issues, as explained in [11]. It is, therefore, possible to think
of a design algorithm, to invert the problem, and identify the geometric parameters
which would allow the manipulator to be free of singularities over a desired range
of orientations, and a spherical region in R3.

Motivated by such utilities, several attempts have been made in the recent times
to obtain such an SFS, or variants of the same. Determination of the maximal SFS
in the orientation workspace, parametrised by Euler angles for the Minimal Simpli-
fied Symmetric Manipulator (MSSM) has been presented by Jiang et al. [7]. Li et
al. [8] have tried to solve this problem in the six-dimensional space of rigid body
motions, SE(3), by finding a sphere that is tangential to the gain-singularity mani-
fold in this space. The formulation, however, seems to lack mathematical rigour for
several reasons, as explained below. It is well-known that SE(3) does not admit a
bi-invariant Riemannian metric (see, e.g., [9], Corollary A.5.1, pp. 427), and hence
the notion of “distance” or length in SE(3) is non-unique. Thus, the application of
the Euclidean metric to define a sphere in SE(3) is mathematically inaccurate, given
that the Euclidean metric is a bi-invariant one. Furthermore, because of the non-
existence of a unique “natural/characteristic length” in SE(3), the results obtained
by the application of this method are always subject to the choice of the assumed
characteristic length, and have therefore limited value in any generic problem. Also,
it is not clear as to how the eliminations were implemented to solve the system of
equations, and the corresponding computational efforts involved are not mentioned.
Finally, in the process of solution, the number of solutions is stated to be 81, which
is much higher than the total-degree Bézout’s number of 27.

In this paper, the formulation adheres to the standard definition of a sphere in R3,
and accordingly, the SFS is computed only in the position space. Thus, there is an SFS
for each point in SO(3)which is accessible to the moving platform. The formulation
is therefore free of any mathematical inaccuracies, and it renders the problem to be
solvable analytically. The analytical description of the singularity manifold of an
SRSPM is available in [2], which is used in this work. The formulation leads to three
cubic equations in the coordinates of the point of tangency between the SFS and the
singularity surface. By elimination of two of the coordinates, a univariate polynomial
of degree 48 is obtained in the remaining one. It may be noted that the degree of the
final polynomial is still higher than the theoretical limit of 27, but is closer to the same.
The coefficients of this polynomial are computed exactly, via a series of intermediate
expressions which are evaluated numerically in the end. Thus, the entire formulation
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is implemented symbolically and the final univariate polynomial expression obtained
in a manner, which can be ported to any numerical programming environment like C
or C++, thereby making the steps performed inside CAS a one-time procedure. The
roots obtained are validated numerically, as well as against the numerical algebraic
geometry (NAG) tool Bertini [3], and the solution are illustrated geometrically.

It may be noted that a complementary formulation of the problem is feasible, i.e.,
a singularity-free sphere could be identified in SO(3), for a given position of the
end-effector. It is mathematically consistent, when the Euclidean distance is used in
conjunction with the quaternion-based representation of SO(3) [6, 10]. However, the
computations required are very demanding in this case, as the problem is defined in
terms of four polynomials, one of total degree 2, and the rest of total degree 6 each,
resulting in a Bézout number of 432, which puts this problem out of the scope of the
present work.

The rest of the paper is organised as follows: in Sect. 2 the mathematical formula-
tion of the problem is described, followed by the solution of the resulting equations.
The results are described in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 Mathematical Formulation

This section describes the geometry of the manipulator and the derivation of the
equations describing the SFS in the position workspace of the SRSPM.

2.1 Geometry of the Manipulator

The SRSPM has semi-regular hexagonal top and bottom platforms, with alternate
sides in each platform having equal lengths. The angular spacings between the adja-
cent pairs of legs are denoted by 2γt and 2γb for the top (see Fig. 1a, b) and the bottom
platforms, respectively.Without any loss of generality, the radius of the circum-circle
of the bottom platform is scaled to unity, thus rendering all the linear dimensions
unit-less in this work. The circum-radius of the top platform is denoted by rt . The
orientation of the top platform is represented by the Rodrigue’s parametrisation (see,
e.g., [5], pp. 31) of SO(3), namely, {c1, c2, c3}.

2.2 Derivation of the SFS Equations

The objective of this work is to find the largest sphere in R
3, centred at a given

point of practical interest, say, p0 = {x0, y0, z0}�. The formulation is motivated by
the observation that such a sphere would be the smallest among those tangential
to the singularity surface in R

3. Thus, the first and the main task is to find all the
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(a) Schematic diagram of SRSPM. (b) Geometry of the top platform.

Fig. 1 Architecture of the SRSPM manipulator

spheres centred at p0, which are tangential to the singularity surface. In this case, the
singularity surface is given by f (x, y, z) = 0, where:

f (x, y, z) = a1x
2z + a2x

2 + a3xyz + a4xy + a5xz
2 + a6xz + a7x + a8y

2z

+ a9y
2 + a10yz

2 + a11yz + a12y + a13z
3 + a14z

2 + a15z + a16.
(1)

The coefficients ai ∈ R depend only on the orientation parameters c1, c2, c3, and the
architecture parameters γb, γt , and rt [2]. The equation of the sphere is given by:

g(x, y, z) = (x − x0)
2 + (y − y0)

2 + (z − z0)
2 − r2 = 0, (2)

where r is the radius of the sphere, and p = {x, y, z}� is the point of tangency
between the sphere and the singularity surface. Therefore, at p, the normals to these
two surfaces should align (see Fig. 2), giving rise to the tangency conditions:

∇f × ∇g = 0 ⇒ hi (x, y, z) = 0, i = 1, 2, 3. (3)

As only two of the equations hi = 0 are linearly independent, any two of the three can
be taken in combination with the equation defining the singularity surface, namely,
Eq. (1), to complete the set of three equations in the three unknowns, x, y, z. Each
real root of these equations leads to a sphere that is tangent to the singularity surface.
The one with the smallest value of r among these is the SFS.

2.3 Solution Procedure

The degrees of h1, h2, h3 in x, y, z individually are found to be {2, 3, 3}, {3, 2, 3} and
{2, 2, 2}, respectively, while the total degree in x , y, and z equals 3 in each case. In
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Fig. 2 Tangency of sphere with the singularity surface at the point p(x, y, z)

view of these, h1 = 0, h3 = 0 are chosen for the solution process, alongside f = 0.
From these equations, x, y are eliminated sequentially,2 as shown schematically in
Eq. (4):

f (x, y, z) = 0
h1(x, y, z) = 0
h3(x, y, z) = 0

⎞
⎠ ×x−→ g1(y, z) = 0

g2(y, z) = 0

⎞
⎠ ×y−→ g3(z) = 0. (4)

In the above, “
×x−→” denotes the elimination of the variable x from two or more

equations in x , via computation of resultants with respect to x . The functions g1
and g2 have degrees {4, 8} and {6, 7} in y and z, respectively. However, g2 is of the
form yg′

2, i.e., g
′
2 is of degree 5 in y. The variable y is eliminated between g1 = 0

and g′
2 = 0 (under the assumption y �= 0; the case y = 0 is treated separately) using

Bézout’s method, leading to a Bézout matrix of size 5 × 5. Direct expansion of the
determinant of this matrix leads to a polynomial in the only remaining unknown, z.
However, the size3 of the resulting symbolic expression is huge (about 29GB). The
time taken for expanding the determinant symbolically is about 17min. The time
taken for evaluating the determinant and the complexity of the resulting expression,
makes this method computationally inefficient and practically eliminates the chance
of it being used to find the SFS for a range of orientations, as a part of a larger but
more relevant analysis/design problem.

In order to overcome the above-mentioned drawbacks, a cascaded approach was
adopted to evaluate the 5 × 5 determinant, wherein it is expanded first in terms of
five 4 × 4 sub-determinants, which, in turn are expanded in terms of 20 (of which

2It may be noted that many different elimination sequences are possible. The one presented here
resulted in relatively smaller degrees of the intermediate and final polynomials.
3The “size” of an expression in this context indicates the amount of memory required to
store the expression in the internal format of the computer algebra system (CAS) used,
namely, Mathematica.
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only 10 are distinct) sub-determinants of size 3 × 3. Thus the coefficients of the final
univariate polynomial, g3(z), are obtained in terms of two stages of intermediate
expressions. Firstly, each of the 3 × 3 determinants are obtained in closed-form, in
terms of the coefficients a j (defined in Eq. (1)):

Δ3i =
29∑
k=1

bik(a j )z
k−1, i = 1, . . . , 20; j = 1, . . . , 16. (5)

The new sets of coefficients, bik , are obtained as closed-form expressions in terms of
the original coefficients, a j . In the next step, the five 4 × 4 determinants are obtained
in a similar manner, leading to the new set of coefficients cik :

Δ4i =
40∑
k=1

cik(blm)zk−1, i = 1, . . . , 5; l = 1, . . . , 20; m = 1, . . . , 29. (6)

Finally, the required 5 × 5 determinant is computed in terms of the 4 × 4 determi-
nants, and is cast as a polynomial in z:

Δ5 =
49∑
i=1

di (c jk) z
i−1, j = 1, . . . , 5; k = 1, . . . , 40. (7)

Therefore, the final univariate equation in z is obtained as:

g3(z) = Δ5 = 0. (8)

Equation (8) is solved to find all the 48 solutions of z. The real solutions of z are
used to find the values of x and y, and the radius of the desired sphere is obtained.
These steps are explained with the help of a numerical example in the next section.

Symbolic expansion of the determinant of each of the 3 × 3matrices takes an aver-
age of 0.5s, and their original size is about 30MB each. However, after symbolic
simplification using the built-in Mathematica routine Simplify, the sizes of
these determinants vary from 6.897 to 12.791MB, with a total size of 93.158MB (for
the ten unique determinants). The actual coefficients of the 3 × 3 determinants are
then replaced by the intermediate dummy variables (see Eq. (5)). Proceeding further,
the sizes of the five 4 × 4 determinants (defined as Δ4i in Eq. (6)) are found to be
(in MB): 1.083, 0.971, 0.892, 1.067, and 1.267, respectively. The final determi-
nant, Δ5, is obtained in a similar manner.

These steps of computing the final set of coefficients di starting from the inputs al
allowmuch faster computation (i.e., 11 s), and also leads to simpler final expressions.
The univariate equation, g3(z) = 0, consists of a total of 49 terms, with a cumulative
size of 1.842MB, while the largest term among these is only 160KB in size. The
comparison between the symbolic and the numeric computations of g3(z), in terms
of the computational efforts and sizes of the expressions involved, are presented in
Table1.
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Table 1 Comparison between the direct symbolic evaluation of the 5 × 5 determinant and the
proposed approach. CPU specifications of the computer used: Intel(R) Core(TM) i7-4790 CPU
running at a clock speed of 3.6GHz, with 16GB RAM

Symbolic evaluation Numerical evaluation

Software used Mathematica, Symbolic
mode

Mathematica, Numeric
mode, with default working
precision

Size of expressions Final univariate
polynomial, g3(z), (obtained
by direct expansion of
the 5 × 5 determinant): 29GB

Final univariate
polynomial g3(z) (computed
following Eqs. (5)–(7)): 1.842,
100.280MB inclusive of all
intermediate expressions

Time taken 17min and 33s 11s

It is important to note, that the expressions lead to the exact values of the final
coefficients, subject only to the working precision of the numerical computation
environment used.More importantly, it allows for a purely numerical implementation
of the solution process (e.g., in C or C++) without either impacting the exact nature
of the computation of the coefficients or restricting the computation to the symbolic
computation environment of a CAS. Another point worth noting is that once the
coefficients are obtained till the last level, the process need not be repeated, when
the point of interest (centre of the sphere) or the architectural parameters of the
SRSPM is changed. It also paves the way for computationally efficient scanning of
the orientation workspace of the manipulator for finding the smallest SFS.

3 Results

A sample problem was solved in CAS Mathematica [12] version 10.4 using the
default working precision of the system. The values of the architecture parameters
are adopted from [4]: γt = 0.0863 rad, γb = 0.0835 rad, and rt = 0.8479 (after scal-
ing the base circum-radius rb to 1). The fixed centre of the SFS is taken to be at
p0 = {0, 0, 1.9500}�. The orientation parameters were taken to be c1 = 0.1013,
c2 = 0.0368, and c3 = 0.2962. The monic form of Eq. (8) for these inputs is given
below (Fig. 3):

z48 + 4.4567 × 1015z47 + 3.9157 × 1019z46 + 8.4802 × 1021z45 + 8.8816 × 1023z44 − · · ·
+ 4.0056 × 1064z3 + 3.2054 × 1064z2 − 7.7684 × 1064z + 1.2071 × 1064 = 0. (9)

Bézout’s limit for the number of solutions in this casewas 3 × 3 × 3 = 27.Thehigher
degree of Eq. (9) indicates introduction of spurious solutions in the process of elimi-
nation of variables. Therefore, after completing the solutions with the corresponding
values of x, y, the original set of equations (i.e., Eq. (4)) are used to filter out any such



428 A. Nag et al.

Fig. 3 Manipulator pose for the given input parameters

solutions. Only three sets of real solutions survive this test, producing residues of
the order of 10−23: {x, y, z} = {−0.4384,−0.3125, 0.1696}, {−0.3996,−6.4295,
2.2232}, {0.3653,− 0.7859, 4.7318}. The corresponding values of r are: 1.8599,
6.4477, and 2.9137. Therefore, the SFS has a radius of 1.8599 for the given inputs.
The actual tangency is depicted in Fig. 2. For spheres with radii greater than the min-
imum radius, the sphere may be tangential to the singularity surface at one point, and
intersect the surface at another point, thus making them irrelevant for the purpose
at hand. Figure 4a depicts the sphere with minimal radius that is tangential to the
singularity surface. Figure 4b shows the sphere with radius 2.9137, which, though
tangential at one point, actually cuts the singularity surface at several places.

The above solutions were obtained for the case y �= 0. For y = 0, the obtained
solutions were p = {−66.3514, 0, 5.6010}�, and the corresponding r = 66.4518,
which is more than the minimum radius already obtained. Hence, the above-reported

(a) r = 1.8599 (b) r = 2.9137

Fig. 4 Tangency of the minimal sphere with the singularity surface
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radius of the SFS holds. The residues obtained on substituting this solution set in the
original set of equations was found to be of the order of 10−17.

The results obtained above are prone to numerical errors, due to the high degree
of the final equation in z and the huge variations in the order of magnitude of the
values of the coefficients in Eq. (9). Thus, it is desirable to solve the system in Eq. (4)
using another method, in order to assess the correctness of the solutions obtained.
For that purpose, the NAG tool, Bertini [3] is used, which is well-known for its
capability to compute all the solutions of a given polynomial system to a desired level
of accuracy. As expected, Bertini finds only 27 solutions, of which 22 are finite,
and the others escape to infinity. The real solutions match the solutions obtained
above up to 10 digits after the decimal point, establishing the correctness of the
solutions obtained.

4 Conclusion

A method for computing the largest gain-type singularity-free sphere inside the
workspace of the SRSPM has been presented in this paper. The said sphere is a
subset of the position workspace of the manipulator, and is derived for a given
orientation of the moving platform. The formulation leads to three cubic equations
in the coordinates of the point of tangency between the sphere and the singularity
surface. Amethod is presented to derive a univariate equation of degree 48 from these
three equations, such that all the coefficients of the intermediate as well as the final
polynomials are computed exactly, albeit in a numerical manner. This is the main
contribution of the paper, which allows, perhaps for the first time, fast computation of
these spheres inside a purely numerical computation environment, without losing the
accuracy of the solutions obtained. Although Mathematica was used to perform
the numerical computations, none of the symbolic capabilities of Mathematica
were made use of in the numerical evaluation of the coefficients.

There are existing numerical techniques, which allow the problem to be solved in
a completely numerical framework. For example, Sylvester’s dialytic method, leads
to a matrix which has polynomial entries in a single variable. This matrix can be
used to solve a generalised eigenproblem, where the eigenvalues of the system are
the same as the roots obtained by solving the univariate polynomial after expanding
the determinant. There exist efficient eigensolvers, which are capable of solving the
problem. However, the methods being purely numerical, they have difficulties of
their own. It is hard to ensure the numerical accuracy of the solutions, in particular,
when fixed precision computational environments are used.

The cascaded approach presented in this paper produces the coefficients of the
final univariate in their exact forms, thereby allowing accurate computations of these
coefficients in a purely numerical environment. Work is in progress to implement the
methodpresented inC++, so as to speedup the computations evenmore. Furthermore,
it is intended to use this method in the computation of the SWZ of SRSPM and more
general Stewart platform manipulators, as a part of their design process.
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Geometric Algebra Based Kinematics Model
and Singularity of a Hybrid Surgical Robot

Tanio K. Tanev

Abstract The paper presents a kinematics modelling and singularity analysis of a
novel hybrid robot using geometric algebra. The introduced hybrid robot is designed
for minimally invasive surgery (MIS). The geometric condition for singularity and
the instantaneous uncontrollable motion in a singular configuration are derived in
the geometric algebra terms. The singularities within the workspace are graphically
presented. Avoiding the singularities of the medical parallel robots is important for
the surgical manipulation success and the patient’s safety.

1 Introduction

Medical robots enhance the surgeons’ capability and encourage introducing novel
and more complex surgical techniques. In the robotic assisted Minimally Invasive
Surgery (MIS) the small abdominal incision restricts the motion of the end-effector
and acts as a pivoting point. Different mechanisms could be applied in order to pro-
vide the “Remote Centre-of-Motion” (RCM) [4]. RCM is a point where one or more
rotations are centred and located outside the mechanism itself. The analysis of sin-
gularities in parallel robots is important not only from the control point of view but
also for safety’s sake [7]. In singular configurations the parallel manipulator may
have undesired behaviour and compromised performance. Since the patient’s safety
is of paramount importance, the analysis of singular configurations in surgical robots
(especially parallel ones) is not only justified but also crucial. The singularities in
parallel medical manipulators need to be well analysed and should be avoided during
surgical manipulations. Various methods have been used for the analysis of singular-
ities of parallel manipulators, namely, Study’s kinematic mapping [8], Grassmann
geometry [6], Grassmann-Cayley algebra [3], screw theory [14], geometric algebra
[11]. A few papers have been dedicated to the singularity analysis of hybrid medical
robots [12, 13].
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In this paper, the geometric algebra (GA) is applied in the modelling of the kine-
matics and analysing the singularities of a novel type of hybrid robot designed for
MIS operations. This robot is the second one of the family of surgical robots, the
first one having been previously presented by the author (e.g. [12]).

2 Modelling of the Robot Kinematics

The parallel manipulator has three limbs. Two of them have SPU arrangement
and the third one is a double parallelogram (Fig. 1). The double parallelogram has
been used in some MIS robots in order to provide remote centre of motion (RCM)
[4, 5]. The constraints, enforced by the double parallelogram limb, provide a RCM
for the robot. The RCM is at the incision point of the patient’s body. Each limb has
one driven joint: the prismatic joints for the SPU legs are driven and the first revolute
joint of the third leg (double parallelogram), which connects the planar parallelogram
mechanism with the base platform, is driven. In addition to these three active joints,
an active prismatic joint allowing translation of the end-effector along the line OB3

is added. The overall degrees of freedom (dof) for the robot are four. The axes of the
revolute joints at A3 and at B3 are perpendicular to the planes of the base (A1A2A3)
and the moving platforms (B1B2B3), respectively. The origins of the reference (base)
coordinate system OXYZ and the coordinate systems {1}, {2} and {3} coincide with
the incision point of the patient’s body. The kinematic modelling could be performed
via different geometric algebras. The fundamentals of the geometric algebra can be
found in [1, 2]. The kinematics of the considered robot is modelled via geometric
algebra G3,0,1 and conformal geometric algebra G4,1, but here only the model from
G3,0,1 is presented, since the transformations needed for the singularity analysis are

Fig. 1 The cad model and kinematic scheme of the surgical robot
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mostly rotations and translations of vectors and screws. TheG3,0,1 ismore convenient
for this purpose. The geometric algebraG3,0,1 has basis vectors e1, e2, e3, e0; the first
three of them square to +1 and the last one squares to 0, i.e., ei · ei = 1, i = 1, 2, 3;
e0 · e0 = 0.

The coordinate transformation for the considered robot can be written as

Q04 = Rot (Y, β)Rot (X, α)Rot (Z , γ )Trans(Z , d) ≡ Q1Q2Q3Q4, (1)

where β, α and γ are angles of rotation about the Y , X and Z axes, respectively;
d is a translation along Z axis; Q1 = cos(β/2) − e3e1 sin(β/2), Q2 = cos(α/2) −
e2e3 sin(α/2), Q3 = cos(γ /2) − e1e2 sin(γ /2), Q4 = 1 − (d/2)e3e0.

A vector x written in G3 can be represented in G3,0,1 as point x = (1 + e0x)I3;
I3 = e1e2e3 is the unit pseudoscalar of G3.

A general screw could be written as a multivector in G3, i.e.,

s = u + r ∧ u + hI3u = v1e1 + v2e2 + v3e3 + b1e2 ∧ e3 + b2e3 ∧ e1 + b3e1 ∧ e2,
(2)

where u is the direction of the screw axis; r is the position vector of a point of the
screw axis; h is the pitch of the screw; vi and bi , i = 1, 2, 3 are scalar coefficients.

The same screw could be written as 2-vector in G3,0,1, i.e.,

S = uI3 + (r ∧ u + hI3u)e0 I3 = v1e2e3 + v2e3e1 + v3e1e2 + b1e1e0 + b2e2e0 + b3e3e0.
(3)

The 2-vector from Eq. (3) is similar to the equation of a line given in [9]. Equation (3)
can represent screwswith finite and zero (pure rotation) pitches. A screwwith infinite
pitch (pure translation) can be written as:

SP = ne0 = n1e1e0 + n2e2e0 + n3e3e0, (4)

where n = n1e1 + n2e2 + n3e3 is the vector of translation for the prismatic joint.
Then, a point and a screw (M) could be transformed as M

′ = QMQ†, where Q
is a transformation operator and Q† is reverse of Q. All the screws needed for the
singularity analysis are obtained via this model.

3 Singularity Analysis of the Parallel Manipulator
and the Double Parallelogram Limb

The geometric algebra approach for singularity analysis of parallelmanipulatorswith
limited mobility has been developed and presented by the author in two previous
papers [10, 11]. For this reason details of the approach are not given here. In order to
perform the singularity analysis, the parallel manipulator could be represented by an
equivalent kinematic scheme. In other words, the double parallelogram limb could
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Fig. 2 a The equivalent scheme of the parallel manipulator; b The double parallelogram limb

be represented by a RRR limb, where the second revolute joint should be located at
the incision point (Fig. 2a).

The concept of duality is utilized in the singularity analysis where the mathemati-
cal operation involves the outer product of up to six screws. Each screw has six com-
ponents (Eq. (3)). For this reason, it is convenient to use 6D geometric algebra for the
singularity analysis. Therefore, in contrast to Sect. 2, in this section the 6D geomet-
ric algebra G6 with basis vectors {e1, e2, e3, e4, e5, e6}, e2i = +1 (i = 1, 2, . . . , 6) is
used. Then, the obtained screws in Sect. 2 with finite (or zero) (S) and infinite pitches
(SP ), respectively, could be rewritten in G6 as

S = v1e1 + v2e2 + v3e3 + b1e4 + b2e5 + b3e6; SP = n1e4 + n2e5 + n3e6, (5)

where the coefficients vi , bi and ni , i = 1, 2, 3 are the same as in Eqs. (3) and (4).
If we consider the j-th limb of a parallel manipulator containing active, passive

and dummy (in case of a limited mobility limb) joints, then this limb will have full
mobility. Then, the subspace of twists (freedom) for five screws with exception of
the active (dummy) joint is represented by the following 5-blade for the j-th leg

jAk = j S1 ∧ jS2 ∧ · · · ∧ jSk−1 ∧ jSk+1 ∧ · · · ∧ jS6, (6)

where the subscript k denotes the active (or dummy) joint of the j-th leg.
The dual of the 5-blade from Eq. (6) is the orthogonal complement to the 5-blade

jDk = j Ak I
–1
6 , (7)
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where I6 = e1e2e3e4e5e6 is the unit pseudoscalar of the G6 and I –16 = e6e5e4e3e2e1
is its inverse; the subscript k denotes the active or dummy joint of the j-th leg.

The condition for singularity of a general parallel manipulator with fewer than
six dof (but with dummy joints) can be expressed in GA terms as [10–12]

Da1 ∧ · · · ∧ Dap ∧ Dd1 ∧ · · · ∧ Ddr = 0, (8)

where p + r = 6; p is the number of the active joints and r is the number of the
dummy joints; Dai is a dual vector (grade-1 blade) associated to the i-th active joint
and Ddi is a dual vector (grade-1 blade) associated to the i-th dummy joint.

Note that the computation of the dual vectors from Eq. (7) is straightforward and
involves only addition and multiplication operations. That is why this geometric
algebra approach is computationally more efficient than the screw theory method
where the computing of the reciprocal screws could be a complicated operation.
This is one of the advantages of the proposed geometric algebra approach.

The RRR leg has one active and three dummy joints. Therefore, four dual vectors
associated with these joints can be written as (only 3Da and 3Dd1 are listed here, since
the remaining two could be obtained similarly to 3Dd1 )

3Da = (3S2 ∧3 S3 ∧3 Sd1 ∧3 Sd2 ∧3 Sd3)I
–1
6 ,

3Dd1 = (3S1 ∧3 S2 ∧3 S3 ∧3 Sd2 ∧3 Sd3)I
–1
6 ,

(9)

where 3Si , (i = 1, 2, 3) are joint screws of the R-joints; and 3Sdi , (i = 1, 2, 3) are
screws of the dummy joints.

The two SPU legs (leg 1 and leg 2) of the parallel manipulator have full mobility
and, therefore, have only dual vectors 1Da and 2Da , respectively, associated with the
active joints, i.e.,

jDa = ( jS1 ∧ jS2 ∧ jS3 ∧ jS5 ∧ jS6)I –16 , ( j = 1, 2), (10)

where the fourth P (prismatic) joint is active and is not included in the formula.
The dual vectors 1Da and 2Da are lines (zero pitch screws) and their elliptic polars

1Ra (1Ra =1 D̃a) and 2Ra (2Ra =2 D̃a) are lines along the SPU legs, respectively. In
this case, there is no need to calculate all joint screws of the SPU legs, because the
dual vectors could be obtained by the elliptic polars of the lines along the SPU legs.

The condition for singularity from Eq. (8) can be written as

1Da ∧ 2Da ∧ 3Da ∧ 3Dd1 ∧ 3Dd2 ∧ 3Dd3 = 0. (11)

Equation (11) involves dummy vectors which could be eliminated as shown in
[11, 12]. The duality between inner and outer products is used in the elimination
process. Inner and outer products are dual to each other and the following identities
could be written
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(A · M)In = A ∧ (MIn); (A ∧ M)In = A · (MIn), (12)

whereA is a vector;M is multivector and In is the unit pseudoscalar of n-dimensional
space.

The process of elimination of the dummy vectors is explained by Eq. (13), where
the identities fromEq. (12) are used. The elimination example is for the outer product
of two dual vectors from Eq. (11) (the third leg which contains dummy joints), i.e.

3Da ∧3 Dd1 = −3Dd1 ∧3 Da = −3Dd1 ∧ [(3S2 ∧3 S3 ∧3 Sd1 ∧3 Sd2 ∧3 Sd3)I
–1
6 ]

= −[3Dd1 · (3S2 ∧3 S3 ∧3 Sd1 ∧3 Sd2 ∧3 Sd3)]I –16
= −(3Dd1 · Sd1)(3S2 ∧3 S3 ∧3 Sd2 ∧3 Sd3)I

–1
6 = c(3S2 ∧3 S3 ∧3 Sd2 ∧3 Sd3)I

–1
6
(13)

where c = −3Dd1 · Sd1 �= 0 is a scalar, while referring to Eq. (9) it can be seen that
the following inner products are zero: 3Dd1 ·3 Si = 0, (i=1, 2, 3) and 3Dd1 ·3 Sdi =0,
(i = 2, 3); these values are used in the expansion of the inner product between a
vector and a blade in Eq. (13).

Then, after elimination, the 4-blade formed by the outer product of the four dual
vectors associated with the RRR leg (the third leg) can be written as

3Da ∧ 3Dd1 ∧ 3Dd2 ∧ 3Dd3 = λ(3S2 ∧3 S3)I –16 , (14)

where λ is a scalar coefficient and is irrelevant to the geometric condition.
The 4-blade fromEq. (14) represents a blade of non-freedom for theRRR leg. This

is another advantage of the method, i.e., the twists of non-freedom (the wrenches of
constraint, respectively) could be represented by a blade and therefore, there is no
need to obtain each single twist of non-freedom. Then, the condition for singularity
(Eq. (11)) becomes

1Da ∧ 2Da ∧ [(3S2 ∧3 S3)I –16 ] = 0. (15)

Now, another advantage of the geometric algebra approach could be applied
here. Equation (15) could be further manipulated by applying the identities from
Eq. (12), i.e.

1Da ∧ [2Da · (3S2 ∧3 S3)]I –16 =1 Da ∧ (VI –16 ) = (1Da · V)I –16 = 0. (16)

The results from Eq. (16) could be geometrically interpreted and the drawn con-
clusions are explained below. The inner product between the vector 2Da and the
bivector 3S2 ∧3 S3 (Eq. (16)) is the vector V =2 Da · (3S2 ∧3 S3). This implies that
V is perpendicular to 2Da in the 6-D space and V belongs to the bivector space
3S2 ∧3 S3. Since the screws 3S2 and 3S3 are lines passing through the origin of the
coordinate system, therefore the vector V represents a line passing through the ori-
gin, too (Fig. 3). Thus, the line V lies in the plane defined by the lines 3S2 and 3S3.
The elliptic polar of 2Da is the line 2Ra along the second SPU leg (A2B2). Since
the vectors V and 2Da are mutually perpendicular in the 6-D space, then the elliptic
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Fig. 3 A singular
configuration of the surgical
robot

polar 2Ra (line) of the screw 2Da (2Ra =2 D̃a) and the line V should intersect at a
common point, i.e., the screws V and 2Ra are reciprocal. It can be concluded from
the last part of Eq. (16) that the manipulator is in singular configuration when the
inner product of vectors 1Da andV is zero (1Da · V = 0). This means that the elliptic
polar 1Ra (line) of the screw 1Da (1Ra =1 D̃a) and the line V should intersect, i.e.,
the screws V and 1Ra are reciprocal. Thus, the geometric condition for singularity
could be stated as: the considered parallel manipulator is in singular configuration if
the vector (line) V intersects both lines 1Ra and 2Ra which are along the SPU legs,
respectively. Similar results are obtained for the other robot (with different kinematic
scheme) of the family of MIS robots, presented in [12].

For completeness, the singularity of the parallelogram limb is considered. Since
the double parallelogram limb (Fig. 2b) consists of two connected parallelograms,
the singularity of each of them determines the singularity of this limb. The revolute
joints attached to the base and moving platforms do not affect the limb singularity.
Thus, considering the 1-dof planar mechanism P1P2P3P4P5P6P7 is enough for the
analysis. Let us assume that the active joint is at P2. The first parallelogram P1P2P3P4
can be considered as a parallel manipulator with two legs P2P3 and P1P4. The dual
vectors associated with the active and dummy joints of the two legs are

Da = (P3 ∧ Pd ∧ e234)I
–1
6 ;D1 = (P2 ∧ P3 ∧ e234)I

–1
6 ;D2 = (P1 ∧ P4 ∧ e234)I

–1
6 ,

(17)
wherePi , (i = 1, 2, 3, 4) are joint screws; e234 = e2 ∧ e3 ∧ e4 is a 3-blade associated
with dummy joints, which restrict the mechanism to move only in planes parallel to
Y − Z plane. Then, referring to [11], the condition for singularity leads to

Da ∧ D1 ∧ D2 = c3(P1 ∧ P4 ∧ P3 ∧ e234)e234 = 0, (18)

where c3 is a scalar coefficient which is irrelevant to the geometric condition.
Therefore, the condition for singularity is P1 ∧ P4 ∧ P3 = 0, and the mechanism

is in singular configuration if these parallel lines are linearly dependent, i.e., lie in a
single plane. In case of the parallelogrammechanism this occurswhen lines P2P3 and
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P1P4 coincide. The similar condition can be obtained for the second parallelogram
P3P6P7P5. It could be concluded that the limb is in singular configuration when all
lines (P2P3, P1P4, P6P7, P4P5) coincide.

3.1 The Instantaneous Uncontrollable Motion in a Singular
Configuration

In a singular configuration the dual vectors from Eq. (11) are linearly dependent. The
instantaneous uncontrollable twist could be obtained by the dual of a 5-blade. This
5-blade includes all the constituent members of Eq. (15) with the exception of one
vector. If we exclude 1Da from Eq. (15), we will obtain the following expression for
the uncontrollable twist U

U = [2Da ∧ (3S2 ∧3 S3)I –16 ]I –16 =
{[2Da · (3S2 ∧3 S3)]I –16 }I –16 =2 Da · (3S2 ∧3 S3) ≡ V.

(19)

Equation (19) proves that the uncontrollable twist U coincides with the vector V
from Eq. (16). Since V is a line, therefore the uncontrollable motion in this singular
configuration is a pure rotation about the lineV (Fig. 3),which implies that this instan-
taneous rotation does not affect (change) the RCM. In this case, the instantaneous
uncontrollable motion is obtained geometrically in a coordinate-free manner.

4 Singularities Within the Workspace

The algebraic formulation of the singular condition could be derived by the scalar
part from Eq. (15), which is a function of the design and input parameters. This
function is parametrized by the three angles α, β and γ . Then, the obtained singular
surface is shown in Fig. 4 together with the workspace (in terms of the angles α, β
and γ ) of the robot. Also, several slices of theworkspace and the singularities are pre-
sented in the same figure. Examining the workspace and the singular surface it can be
observed that the singularities are outside the workspace for the range γ = −15◦ ÷
15◦ (approximately). The singularity surface and workspace are obtained for the
following design parameters: OA1 = (−0.2, 0.52, 0.56); OA2 = (0.2, 0.52, 0.56);
OA3 = (0, 0.52, 0);O4B1 = (−0.1075, 0.05, 0);O4B2 = (0.1075, 0.05, 0);OP1 =
0.422; P1P2 = P3P4 = 0.06; P1P4 = P2P3 = 0.33; P3P6 = P5P7 = 0.06; P3P5 =
P6P7 = 0.482; OO4 = 0.52 (all values are in meters). The workspace is obtained
by imposing a range [0.30, 0.58] of the motion of the two SPU legs and a restriction
of the motion of the planar double parallelogram (α = [−80◦ ÷ 80◦]).
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Fig. 4 Workspace, singular surface, and workspace slices and singularities

5 Conclusions

The geometrical condition for singular configuration of the proposed MIS robot is
obtained in a basis-free form in termsof the geometric algebra. The approachprovides
a good geometrical insight into the singularity of this robot. The singularities are
presented within the robot workspace. The analysis revealed that a singularity-free
workspace exists for a given range of orientations, i.e. in this case the singularities
are outside the workspace. The results from the presented analysis could be applied
in the robot path planning, where the singular configurations should be avoided. The
outcome of this study also suggests that the singularities could be completely avoided
if the robot is endowed with an additional redundant rotation around the axis of the
surgical instrument.
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Kinematic Singularities of a 3-DoF Planar
Geared Robot Manipulator

S. Vahid Amirinezhad and Peter Donelan

Abstract By incorporating gearing into a planar 3R mechanism, one obtains a fam-
ily of mechanisms in which the gear ratios play a central kinematic role. Special
choices of these parameters result in interesting simplifications of the kinematic
mapping. An explicit expression for the mapping can be derived using the ‘matroid
method’ of Talpasanu et al. [6]. We use this relatively simple mechanism to illustrate
singularity analysis for geared mechanisms.

1 Introduction

The use of gear pairs in a mechanism may confer a number of advantages. For
example, they can enable more efficient placement of the actuators thereby reducing
their mass and inertia. Epicyclic gear trains (EGTs), in which the centre of one gear
wheel revolves around that of another, are the simplest form and therefore play an
important role in geared mechanisms (GMs). By utilising EGTs, we can easily place
actuators close to the base of aGMand rotation of inputs can be efficiently transmitted
to the end-effector. Careful choice of gear ratios can also enable end-effector motion
to be tailored to specific inputs.

The fundamental kinematic equation for an epicyclic gear is due to Willis [10].
Subsequent authors have introduced methods of global analysis for GMs that ensure
the equations are correctly formulated for a given mechanism topology and design.
Notably, Buchsbaum and Freudenstein [2] introduced combinatoric methods to rep-
resent the topology of themechanism. This approachwas later developed by Tsai [8],
Hsu and Lam [3]. In order to enhance the computational effectiveness of the method,
Talpasanu et al. [5, 6] refined and to some extent recast the approach, introducing
the ‘incidence and transfer method’ that uses the cycle matroid of the mechanism’s
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directed graph. A comparison of Talpasanu’s method with that of Tsai–Tokad was
made in [1]. In this paper, we illustrate Talpasanu’s method for a simple geared
version of a planar 3R mechanism in order to determine its kinematic mapping and
thereby its singularities. The goal is to develop a systematic approach to the kinematic
analysis of GMs and the determination of their singularities. While the example pre-
sented is straightforward, it is intended to provide a model for extending singularity
analysis of GMs to more complex cases, including those which are genuinely spatial
in their kinematics and to parallel mechanisms incorporating gearing.

2 The Mechanism

A simple planar GM consists of n + 1 links, L0, . . . , Ln , and m joints that include t
revolute (turning) pairs, T1, . . . , Tt , and g gear pairs,G1, . . . ,Gg , so thatm = t + g.
Note that the number of links, excluding the base L0, is assumed equal to the number
of simple pairs, i.e. t = n. In effect, the mechanism without gears contains no closed
chains.

By placing three actuator joints at the base and using simple spur-gear pairs to
transmit motion to the end-effector, one obtains a geared mechanism based on a
simple serial planar 3R mechanism (see Fig. 1). One EGT, consisting of three gear
wheels and using link L1 as carrier, transmits motion to the link L7, while a second
EGT of five gear wheels with links L1 and L7 as carriers transmits motion to the
end-effector.

A functional schematic for the mechanism is illustrated in Fig. 2. The inputs,
which are attached to the base L0, are via Ti , i = 1, 2, 3 while link L9 is the output
planet gear or end-effector. Note that the carrier arms L1 and L7 that form the first two
links in the underlying planar 3R are also gear wheels. Other links are intermediate
(idler) gear wheels.

In its directed graph (digraph) representation, Fig. 3, the links (including gear
wheels) are vertices (L0, . . . , L9) while joints are edges. Specifically, the revolute
pairs (T1, . . . , T9) are solid edges and gear pairs (G1, . . . ,G6) are dashed. Note that
the solid edges form a spanning tree for the graph; put another way, each simple
cycle contains at least one gear pair as an edge. The direction of an edge connecting
vertices (links) Li and L j is Li → L j if the transmission from input to output flows
from Li to L j .

Fig. 1 3-DoF geared planar manipulator
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Application of the Chebyshev-Grübler-Kutzbach (CGK) formula shows that the
GM has three degrees of freedom (3 dof), noting that a gear pair has 2 dof. Alterna-
tively, Talpasanu [5] and Tsai [8] observe that there is a relation between the degrees
of freedom f of the GM, the number of links and the number of gear pairs:

f = n − g (1)
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again yielding f = 3.

3 Constraint Analysis via the Matroid Method

To perform the kinematic analysis, we apply the matroid method of Talpasanu [6]
to obtain the Willis kinematic equations for all gear pairs and solve these equations
to express all joint variables in terms of the input (sun) variables. This enables us
to express the kinematic mapping as a product of exponentials (PoE) in terms of
input variables alone and consequently to undertake the singularity analysis. It is
worth noting that the Willis equations usually express the relation between angular
velocities in a gear-pair/carrier cycle but since the relations between the joint variables
themselves are linear, the same equations hold between the underlying variables as
between their velocities.

There are essentially three stages to the matroid or incidence–transfer method:
the first stage codifies the topology of the digraph representation of the GM in matrix
form. The second stage builds the specific design on to this by introducing dimensions
that can then be interpreted as gear ratios. The method insures that we obtain a
minimal set of linear (Willis) equations and the third stage is to solve these for the
joint variables in terms of the input variables.

Associated to the digraph are two matrices. The incidence matrix �0 has rows
labelled by the vertices and columns by edges and its entriesπ0

i j are−1 or 1 according
as edge j leaves or enters vertex i , or else is 0. In this setting, the base L0 is fixed and
its row (containing only −1 and 0) is linearly dependent on the other rows. So, for
the purpose of analysis we omit this row and arrive at the reduced incidence matrix
� as follows:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 T2 T3 T4 T5 T6 T7 T8 T9 | G1 G2 G3 G4 G5 G6

L1 1 0 0 −1 −1 −1 −1 0 0 | 0 0 0 0 0 0
L2 0 1 0 0 0 0 0 0 0 | −1 0 0 0 0 0
L3 0 0 1 0 0 0 0 0 0 | 0 −1 0 0 0 0
L4 0 0 0 1 0 0 0 0 0 | 1 0 −1 0 0 0
L5 0 0 0 0 1 0 0 0 0 | 0 1 0 −1 0 0
L6 0 0 0 0 0 1 0 0 0 | 0 0 1 0 −1 0
L7 0 0 0 0 0 0 1 −1 −1 | 0 0 0 1 0 0
L8 0 0 0 0 0 0 0 1 0 | 0 0 0 0 1 −1
L9 0 0 0 0 0 0 0 0 1 | 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Further, this is partitioned as indicated into submatrices: �n×m = [Pn×t |P̂n×g].
A cycle basis matrix � for a digraph consists of a maximally independent set

of rows Gi , i = 1, . . . , g, each corresponding to a cycle, whose entries γi j , j =
1, . . . ,m are −1 or 1 according as edge j appears in that cycle directed with, or
opposed to, a given vertex order for the cycle, or otherwise 0. The cycle space
is in fact the nullspace of the incidence matrix so, according to Euler’s formula,
its dimension is m − n. Given the special structure of the digraph for a GM, we
have m − n = g and a basis for the cycle space can be indexed by the gear pairs,
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G1, . . . ,Gg . For the given GM, with the vertex order as indicated in Fig. 3 by arrows
in each basis cycle, we have:

� =

⎡
⎢⎢⎢⎢⎢⎣

T1 T2 T3 T4 T5 T6 T7 T8 T9 | G1 G2 G3 G4 G5 G6

G1 −1 1 0 −1 0 0 0 0 0 | 1 0 0 0 0 0
G2 −1 0 1 0 −1 0 0 0 0 | 0 1 0 0 0 0
G3 0 0 0 1 0 −1 0 0 0 | 0 0 1 0 0 0
G4 0 0 0 0 1 0 −1 0 0 | 0 0 0 1 0 0
G5 0 0 0 0 0 1 −1 −1 0 | 0 0 0 0 1 0
G6 0 0 0 0 0 0 0 1 −1 | 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(3)

Again, this can be partitioned into submatrices: �g×m = [Cg×t |Ig×g] where the sec-
ond block is the identity matrix. Note that � is the cycle basis matrix corresponding
to the specific spanning tree for the digraph, which one can obtain by deleting the
dashed lines in Fig. 3. In any graph with edge set E , the collection I of subsets of
E that do not include a cycle form a matroid, mathematical objects that capture
the abstract idea of independence. Spanning trees are maximally independent while
simple cycles are minimally dependent objects.

The second step is to introduce design parameters into thematrices. The constraint
imposed by the cycles on themotion of theGM is captured by the joint positionmatrix
� whose entries are δi j = ci j di j , where ci j are components of the (reduced) cycle
basis matrix C and di j = yTj − yGi where yTj , j = 1, . . . , t and yGi , i = 1, . . . , g
are distances of the axes of turning joint Tj and meshing joint Gi from the base
in home configuration. These distances are the radii of the various gear wheels
rk, k = 2, . . . , t so that:

� =

⎡
⎢⎢⎢⎢⎢⎣

T1 T2 T3 T4 T5 T6 T7 T8 T9

G1 r2 −r2 0 −r4 0 0 0 0 0
G2 r3 0 −r3 0 −r5 0 0 0 0
G3 0 0 0 −r4 0 −r6 0 0 0
G4 0 0 0 0 −r5 0 −r7 0 0
G5 0 0 0 0 0 −r6 r6 −r8 0
G6 0 0 0 0 0 0 0 −r8 −r9

⎤
⎥⎥⎥⎥⎥⎦

(4)

For an oriented gear pair Gi , i = 1, . . . , g connecting link (gear wheel) L p to Lq ,
denote the corresponding gear ratio ρi = −rp/rq . The rows of the matrix represent
equations that hold between the joint variables at each revolute pair (or equivalently
their angular velocities) so that each row can be independently scaled by one of the
radii to realise the gear ratio matrix:

� =

⎡
⎢⎢⎢⎢⎢⎣

T1 T2 T3 T4 T5 T6 T7 T8 T9

G1 ρ1 −ρ1 0 −1 0 0 0 0 0
G2 ρ2 0 −ρ2 0 −1 0 0 0 0
G3 0 0 0 −ρ3 0 −1 0 0 0
G4 0 0 0 0 −ρ4 0 −1 0 0
G5 0 0 0 0 0 −ρ5 ρ5 −1 0
G6 0 0 0 0 0 0 0 −ρ6 −1

⎤
⎥⎥⎥⎥⎥⎦

(5)

To arrive finally at a complete set of Willis equations for the GM, it is necessary
to incorporate the component P of the reduced incidence matrix that provides the
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connection between the angles of rotation θi for each link Li and the joint variables
φ j at each revolute pair Tj , i, j = 1, . . . , n (= t as noted in Sect. 2). Specifically,
set:

�g×t = �g×t .PT
t×t , (6)

then the Willis equations have the matrix form:

�.θ = 0 (7)

where θ is the vector of link rotations.
We can partition θ between input variables and passive variables. Following

Eq. (1), there are three input variables and six passive variables. Explicitly:

θ = [
θ f | θ g

]T = [
θ1 θ2 θ3 | θ4 θ5 θ6 θ7 θ8 θ9

]T
(8)

Partitioning � in a similar way, and expanding the product gives:

� = [
Z f | Zg

] =

⎡
⎢⎢⎢⎢⎢⎣

L1 L2 L3 L4 L5 L6 L7 L8 L9

G1 ρ1 + 1 −ρ1 0 | −1 0 0 0 0 0
G2 ρ2 + 1 0 −ρ2 | 0 −1 0 0 0 0
G3 ρ3 + 1 0 0 | −ρ3 0 −1 0 0 0
G4 ρ4 + 1 0 0 | 0 −ρ4 0 −1 0 0
G5 0 0 0 | 0 0 −ρ5 ρ5 + 1 −1 0
G6 0 0 0 | 0 0 0 ρ6 + 1 −ρ6 −1

⎤
⎥⎥⎥⎥⎥⎦

(9)

Now, we can rewrite Eq. (7) in the form of [Z f | Zg].[θ f | θ g]T = 0. Fromwhich
it follows that, provided Zg is non-singular which is easily verified in this case:

[θ g] = −[Zg]−1.[Z f ].[θ f ] (10)

Solving Eq. (10), gives passive variables in terms of input variables as follows:

⎡
⎢⎢⎢⎢⎢⎣

θ4
θ5
θ6
θ7
θ8
θ9

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ1 + 1 −ρ1 0
ρ2 + 1 0 −ρ2
1 − ρ1ρ3 ρ1ρ3 0
1 − ρ2ρ4 0 ρ2ρ4

ρ1ρ3ρ5 − ρ2ρ4(1 + ρ5) + 1 −ρ1ρ3ρ5 ρ2ρ4(1 + ρ5)

−ρ1ρ3ρ5ρ6 + ρ2ρ4(ρ5ρ6 − 1) + 1 ρ1ρ3ρ5ρ6 −ρ2ρ4(ρ5ρ6 − 1)

⎤
⎥⎥⎥⎥⎥⎦

.

⎡
⎣

θ1
θ2
θ3

⎤
⎦ (11)

4 Kinematic and Singularity Analysis

The forward kinematic map of the mechanism can be written in terms of the revolute
pair rotations as a PoE in the relevant Euclidean group (see Murray et al. [4]). In this
case as the mechanism is planar, the group is SE(2). The form of PoE derives from
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the corresponding open-loop chain (see Tsai [9]) as follows:

T (φ) = eX1φ1eX7φ7eX9φ9T (0) (12)

where T (0) is the transformation between base and end-effector frames at the
rest position φ = 0 and X i denote the infinitesimal rotations of revolute joints Ti ,
i = 1, 7, 9 about their centres of rotation. Explicitly, we can use homogeneous rep-
resentations as follows:

X i =
⎡
⎣
0 −1 0
1 0 −ξi
0 0 0

⎤
⎦ (13)

where (with respect to appropriate choices of body coordinates) ξ1 = 0, ξ7 = l1, ξ9 =
l1 + l7 with l1 = r2 + 2r4 + r6 = r3 + 2r5 + r7 and l7 = r6 + 2r8 + r9 the lengths of
the carrier arms L1 and L7 (see Fig. 2); and:

T (0) =
⎡
⎣
1 0 l1 + l7
0 1 0
0 0 1

⎤
⎦ (14)

Then the homogeneous form of the forward kinematic map is

T (φ) =
⎡
⎣
cos(φ1 + φ7 + φ9) − sin(φ1 + φ7 + φ9) l1 cosφ1 + l7 cos(φ1 + φ7)

sin(φ1 + φ7 + φ9) cos(φ1 + φ7 + φ9) l1 sin φ1 + l7 sin(φ1 + φ7)

0 0 1

⎤
⎦

(15)

This can be more simply expressed in terms of link rotation variables using
θ1 = φ1, θ7 = φ1 + φ7, and θ9 = φ1 + φ7 + φ9. Moreover, for purposes of singu-
larity analysis it is preferable to work with a local representation of the kinematic
mapping T. Simply using the angle θ9 to parametrise the rotation matrix that con-
stitutes the top left 2 × 2 block of the homogeneous transformation, the local repre-
sentation is:

(θ1, θ7, θ9) �→
⎡
⎣

θ9
l1 cos θ1 + l7 cos θ7
l1 sin θ1 + l7 sin θ7

⎤
⎦ (16)

In this form, we have simply made use of the passive variables that describe the
kinematics of the underlying 3R mechanism. These can now be expressed using
Eq. (11) in terms of the input variables. Hence, the kinematic mapping for the GM
can be expressed as a function F : R3 → R

3, where:

F (θ1, θ2, θ3) =
⎡
⎣

β1θ1 + β2θ2 + β3θ3
l1 cos θ1 + l7 cos(α1θ1 + α3θ3)

l1 sin θ1 + l7 sin(α1θ1 + α3θ3)

⎤
⎦ (17)
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and α1 = 1 − ρ2ρ4, α3 = ρ2ρ4, β1 = −ρ1ρ3ρ5ρ6 + ρ2ρ4(ρ5ρ6 − 1) + 1, β2 =
ρ1ρ3ρ5ρ6, and β3 = −ρ2ρ4(ρ5ρ6 − 1). It is worth noting that by judicious choice of
gear ratios the rotation of the end-effector can be made independent of one or more
input variables. For example, setting ρ1ρ3 = ρ5ρ6 = 1 (equivalently r2 = r6 = r9)
ensures the rotation is independent of θ1, θ3 and is directly equal to θ2. This is nicely
illustrated by Thang [7].

Finally, to find singularities we need to investigate the Jacobian of the kinematic
mapping F . From Eq. (17) we obtain:

J =
⎡
⎣

β1 β2 β3

−l1 sin θ1 − α1l7 sin(α1θ1 + α3θ3) 0 −α3l7 sin(α1θ1 + α3θ3)

l1 cos θ1 − α1l7 cos(α1θ1 + α3θ3) 0 α3l7 cos(α1θ1 + α3θ3)

⎤
⎦ (18)

For a singularity, we require:

det(J ) = α3β2l1l7 sin(θ1 − α1θ1 − α3θ3) = 0. (19)

The design parameters α3, β2, l1, l7 are assumed non-zero so the GM is singular if
and only if sin(θ1 − α1θ1 − α3θ3) = 0 and hence:

θ1 − θ3 = nπ

ρ2ρ4
, for any integer n.

Thus, the singular configurations ofmechanism in Fig. 1 are strictly contingent on the
difference between input variables θ1 and θ3. It can be concluded that increasing the
product of gear ratiosρ2ρ4 connecting gearwheels L3 and L7 can causemore singular
points in the joint space, while keeping it close to zero will reduce singularities. It
must be noticed that having ρ2ρ4 � 1 may have dynamic consequences. The images
of the singularity set in the workspace of course correspond to the expected singular
configurations in which carrier arms L1 and L7 are collinear.

5 Conclusion

We have illustrated the constraint analysis of a geared mechanism involving two
epicyclic gear trains, using the matroid method of Talpasanu. This, in turn, leads
to an explicit determination of its passive variables in terms of input variables and
thereby to a representation of the kinematic mapping in those variables. Determi-
nation of the singularity set, not only in terms of specific geometric configurations
in the workspace—collinearity of the carrier arms—but also in the input space, is
a straightforward consequence. This demonstrates the dependency on gear ratios as
design parameters for the GM.
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