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Preface

Background

Big Data are the future of Statistics. The electronic revolution has increased exponentially our abil-
ity to measure things. A century ago, data were hard to come by. Statisticians put a premium on
extracting every bit of information that the data contained. Now data are easy to collect; the prob-
lem is sorting through them to find meaning. To a large extent, this happens in two ways: doing a
crude analysis on a massive amount of data or doing a careful analysis on the moderate amount of
data that were isolated from the massive data as being meaningful. It is quite literally impossible to
analyze a million data points as carefully as one can analyze a hundred data points, so “crude” is
not a pejorative term but rather a fact of life.

The fundamental tools used in analyzing data have been around a long time. It is the emphases
and the opportunities that have changed. With thousands of observations, we don’t need a per-
fect statistical analysis to detect a large effect. But with thousands of observations, we might look
for subtle effects that we never bothered looking for before, and such an analysis must be done
carefully—as must any analysis in which only a small part of the massive data are relevant to the
problem at hand. The electronic revolution has also provided us with the opportunity to perform
data analysis procedures that were not practical before, but in my experience, the new procedures
(often called machine learning), are sophisticated applications of fundamental tools.

This book explains some of the fundamental tools and the ideas needed to adapt them to big
data. It is not a book that analyzes big data. The book analyzes small data sets carefully but by using
tools that 1) can easily be scaled to large data sets or 2) apply to the haphazard way in which small
relevant data sets are now constructed. Personally, I believe that it is not safe to apply models to
large data sets until you understand their implications for small data. There is also a major emphasis
on tools that look for subtle effects (interactions, homologous effects) that are hard to identify.

The fundamental tools examined here are linear structures for modeling data; specifically, how
to incorporate specific ideas about the structure of the data into the model for the data. Most of the
book is devoted to adapting linear structures (regression, analysis of variance, analysis of covari-
ance) to examine measurement (continuous) data. But the exact same methods apply to either-or
(Yes/No, binomial) data, count (Poisson, multinomial) data, and time-to-event (survival analysis,
reliability) data. The book also places strong emphasis on foundational issues, e.g., the meaning of
significance tests and the interval estimates associated with them; the difference between prediction
and causation; and the role of randomization.

The platform for this presentation is the revision of a book I published in 1996, Analysis of
Variance, Design, and Regression: Applied Statistical Methods. Within a year, I knew that the book
was not what I thought needed to be taught in the 21st century, cf., Christensen (2000). This book,
Analysis of Variance, Design, and Regression: Linear Modeling of Unbalanced Data, shares with
the earlier book lots of the title, much of the data, and even some of the text, but the book is radically
different. The original book focused greatly on balanced analysis of variance. This book focuses on
modeling unbalanced data. As such, it generalizes much of the work in the previous book. The more
general methods presented here agree with the earlier methods for balanced data. Another advantage
of taking a modeling approach to unbalanced data is that by making the effort to treat unbalanced
analysis of variance, one can easily handle a wide range of models for nonnormal data, because the
same fundamental methods apply. To that end, I have included new chapters on logistic regression,

xvii



xviii PREFACE

log-linear models, and time-to-event data. These are placed near the end of the book, not because
they are less important, but because the real subject of the book is modeling with linear structures
and the methods for measurement data carry over almost immediately.

In early versions of this edition I made extensive comparisons between the methods used here
and the balanced ANOVA methods used in the 1996 book. In particular, I emphasized how the
newer methods continue to give the same results as the earlier methods when applied to balanced
data. While I have toned that down, comparisons still exist. In such comparisons, I do not repeat the
details of the balanced analysis given in the earlier book. CRC Press/Chapman & Hall have been
kind enough to let me place a version of the 1996 book on my website so that readers can explore the
comparisons in detail. Another good thing about having the old book up is that it contains a chapter
on confounding and fractional replications in 2n factorials. I regret having to drop that chapter, but
the discussion is based on contrasts for balanced ANOVA and did not really fit the theme of the
current edition.

When I was in high school, my two favorite subjects were math and history. On a whim, I made
the good choice to major in Math for my BA. I mention my interest in history to apologize (primarily
in the same sense that C.S. Lewis was a Christian “apologist”) for using so much old data. Unless
you are trying to convince 18-year-olds that Statistics is sexy, I don’t think the age of the data should
matter.

I need to thank Adam Branscum, my coauthor on Christensen et al. (2010). Adam wrote the first
drafts of Chapter 7 and Appendix C of that book. Adam’s work on Chapter 7 definitely influenced
this work and Adam’s work on Appendix C is what got me programming in R. This is also a
good time to thank the people who have most influenced my career: Wes Johnson, Ed Bedrick,
Don Berry, Frank Martin, and the late, great Seymour Geisser. My colleague Yan Lu taught out
of a prepublication version of the book, and, with her students, pointed out a number of issues.
Generally, the first person whose opinions and help I sought was my son Fletcher.

After the effort to complete this book, I’m feeling as unbalanced as the data being analyzed.

Specifics

I think of the book as something to use in the traditional Master’s level year-long course on regres-
sion and analysis of variance. If one needed to actually separate the material into a regression course
and an ANOVA course, the regression material is in Chapters 6–11 and 20–23. Chapters 12–19 are
traditionally viewed as ANOVA. But I much prefer to use both regression and ANOVA ideas when
examining the generalized linear models of Chapters 20–22. Well-prepared students could begin
with Chapter 3 and skip to Chapter 6. By well-prepared, I tautologically mean students who are
already familiar with Chapters 1, 2, 4, and 5.

For less well-prepared students, obviously I would start at the beginning and deemphasize the
more difficult topics. This is what I have done when teaching data analysis to upper division Statis-
tics students and graduate students from other fields. I have tried to isolate more difficult material
into clearly delineated (sub)sections. In the first semester of such a course, I would skip the end of
Chapter 8, include the beginning of Chapter 12, and let time and student interest determine how
much of Chapters 9, 10, and 13 to cover. But the book wasn’t written to be a text for such a course;
it is written to address unbalanced multi-factor ANOVA.

The book requires very little pre-knowledge of math, just algebra, but does require that one
not be afraid of math. It does not perform calculus, but it discusses that integrals provide areas
under curves and, in an appendix, gives the integral formulae for means and variances. It largely
avoids matrix algebra but presents enough of it to enable the matrix approach to linear models to
be introduced. For a regression-ANOVA course, I would supplement the material after Chapter 11
with occasional matrix arguments. Any material described as a regression approach to an ANOVA
problem lends itself to matrix discussion.

Although the book starts at the beginning mathematically, it is not for the intellectually unso-
phisticated. By Chapter 2 it discusses the impreciseness of our concepts of populations and how
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the deletion of outliers must change those concepts. Chapter 2 also discusses the “murky” transfor-
mation from a probability interval to a confidence interval and the differences between significance
testing, Neyman–Pearson hypothesis testing, and Bayesian methods. Because a lot of these ideas
are subtle, and because people learn best from specifics to generalities rather than the other way
around, Chapter 3 reiterates much of Chapter 2 but for general linear models. Most of the remainder
of the book can be viewed as the application of Chapter 3 to specific data structures. Well-prepared
students could start with Chapter 3 despite occasional references made to results in the first two
chapters.

Chapter 4 considers two-sample data. Perhaps its most unique feature is, contrary to what seems
popular in introductory Statistics these days, the argument that testing equality of means for two
independent samples provides much less information when the variances are different than when
they are the same.

Chapter 5 exists because I believe that if you teach one- and two-sample continuous data prob-
lems, you have a duty to present their discrete data analogs. Having gone that far, it seemed silly to
avoid analogs to one-way ANOVA. I do not find the one-way ANOVA F test for equal group means
to be all that useful. Contrasts contain more interesting information. The last two sections of Chap-
ter 5 contain, respectively, discrete data analogs to one-way ANOVA and a method of extracting
information similar to contrasts.

Chapters 6, 7, and 8 provide tools for exploring the relationship between a single dependent
variable and a single measurement (continuous) predictor. A key aspect of the discussion is that
the methods in Chapters 7 and 8 extend readily to more general linear models, i.e., those involving
categorial and/or multiple predictors. The title of Chapter 8 arises from my personal research inter-
est in testing lack of fit for linear models and the recognition of its relationship to nonparametric
regression.

Chapters 9, 10, and 11 examine features associated with multiple regression. Of particular note
are new sections on modeling interaction through generalized additive models and on lasso regres-
sion. I consider these important concepts for serious students of Statistics. The last of these chapters
is where the book’s use of matrices is focused. The discussion of principal component regression is
located here, not because the discussion uses matrices, but because the discussion requires matrix
knowledge to understand.

The rest of the book involves categorical predictor variables. In particular, the material after
Chapter 13 is the primary reason for writing this edition. The first edition focused on multifactor
balanced data and looking at contrasts, not only in main effects but contrasts within two- and three-
factor interactions. This edition covers the same material for unbalanced data.

Chapters 12 and 13 cover one-way analysis of variance (ANOVA) models and multiple com-
parisons but with an emphasis on the ideas needed when examining multiple categorical predictors.
Chapter 12 involves one categorical predictor much like Chapter 6 involved one continuous predic-
tor.

Chapter 14 examines the use of two categorial predictors, i.e., two-way ANOVA. It also in-
troduces the concept of homologous factors. Chapter 15 looks at models with one continuous and
one categorical factor, analysis of covariance. Chapter 16 considers models with three categorical
predictors.

Chapters 17 and 18 introduce the main ideas of experimental design. Chapter 17 introduces
a wide variety of standard designs and concepts of design. Chapter 18 introduces the key idea of
defining treatments with factorial structure. The unusual aspect of these chapters is that the analyses
presented apply when data are missing from the original design.

Chapter 19 introduces the analysis of dependent data. The primary emphasis is on the analysis
of split-plot models. A short discussion is also given of multivariate analysis. Both of these methods
require groups of observations that are independent of other groups but that are dependent within
the groups. Both methods require balance within the groups but the groups themselves can be un-
balanced. Subsection 19.2.1 even introduces a method for dealing with unbalance within groups.

It seems to have become popular to treat fixed and random effects models as merely two options
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for analyzing data. I think these are very different models with very different properties; random
effects being far more sophisticated. As a result, I have chosen to introduce random effects as a
special case of split-plot models in Subsection 19.4.2. Subsampling models can also be viewed as
special cases of split-plot models and are treated in Subsection 19.4.1.

Chapters 20, 21, and 22 illustrate that the modeling ideas from the previous chapters continue
to apply to generalized linear models. In addition, Chapter 20 spends a lot of time pointing out
potholes that I see in standard programs for performing logistic regression.

Chapter 23 is a brief introduction to nonlinear regression. It is the only chapter, other than Chap-
ter 11, that makes extensive use of matrices and the only one that requires knowledge of calculus.
Nonlinear regression is a subject that I think deserves more attention than it gets. I think it is the
form of regression that we should aspire to, in the sense that we should aspire to having science that
is sophisticated enough to posit such models.

Ronald Christensen
Albuquerque, New Mexico

February 2015



Edited Preface to First Edition

This book examines the application of basic statistical methods: primarily analysis of variance and
regression but with some discussion of count data. It is directed primarily towards Master’s degree
students in Statistics studying analysis of variance, design of experiments, and regression analysis.
I have found that the Master’s level regression course is often popular with students outside of
Statistics. These students are often weaker mathematically and the book caters to that fact while
continuing to give a complete matrix formulation of regression.

The book is complete enough to be used as a second course for upper division and beginning
graduate students in Statistics and for graduate students in other disciplines. To do this, one must
be selective in the material covered, but the more theoretical material appropriate only for Statistics
Master’s students is generally isolated in separate subsections and, less often, in separate sections.

I think the book is reasonably encyclopedic. It really contains everything I would like my stu-
dents to know about Applied Statistics prior to them taking courses in linear model theory or log-
linear models.

I believe that beginning students (even Statistics Master’s students) often find statistical proce-
dures to be a morass of vaguely related special techniques. As a result, this book focuses on four
connecting themes.

1. Most inferential procedures are based on identifying a (scalar) parameter of interest, estimat-
ing that parameter, obtaining the standard error of the estimate, and identifying the appropriate
reference distribution. Given these items, the inferential procedures are identical for various pa-
rameters.

2. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of compar-
ing the sample variance of the group means with the mean of the sample variances for each group.
All balanced analysis of variance problems can be considered in terms of computing sample vari-
ances for various group means. These concepts exist in the new edition but are de-emphasized as
are balanced data.

3. Comparing different models provides a structure for examining both balanced and unbalanced
analysis of variance problems and for examining regression problems. In some problems the
most reasonable analysis is simply to find a succinct model that fits the data well. This is the core
of the new edition.

4. Checking assumptions is a crucial part of every statistical analysis.

The object of statistical data analysis is to reveal useful structure within the data. In a model-
based setting, I know of two ways to do this. One way is to find a succinct model for the data. In
such a case, the structure revealed is simply the model. The model selection approach is particu-
larly appropriate when the ultimate goal of the analysis is making predictions. This book uses the
model selection approach for multiple regression and for general unbalanced multifactor analysis
of variance. The other approach to revealing structure is to start with a general model, identify in-
teresting one-dimensional parameters, and perform statistical inferences on these parameters. This
parametric approach requires that the general model involve parameters that are easily interpretable.
We exploit the parametric approach for one-way analysis of variance and simple linear regression.

All statistical models involve assumptions. Checking the validity of these assumptions is crucial
because the models we use are never correct. We hope that our models are good approximations

xxi
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of the true condition of the data and experience indicates that our models often work very well.
Nonetheless, to have faith in our analyses, we need to check the modeling assumptions as best we
can. Some assumptions are very difficult to evaluate, e.g., the assumption that observations are statis-
tically independent. For checking other assumptions, a variety of standard tools has been developed.
Using these tools is as integral to a proper statistical analysis as is performing an appropriate confi-
dence interval or test. For the most part, using model-checking tools without the aid of a computer
is more trouble than most people are willing to tolerate.

My experience indicates that students gain a great deal of insight into balanced analysis of
variance by actually doing the computations. The computation of the mean square for treatments in
a balanced one-way analysis of variance is trivial on any hand calculator with a variance or standard
deviation key. More importantly, the calculation reinforces the fundamental and intuitive idea behind
the balanced analysis of variance test, i.e., that a mean square for treatments is just a multiple of
the sample variance of the corresponding treatment means. I believe that as long as students find
the balanced analysis of variance computations challenging, they should continue to do them by
hand (calculator). I think that automated computation should be motivated by boredom rather than
bafflement. While I still believe this is true, it too is deemphasized in this edition.

In addition to the four primary themes discussed above, there are several other characteristics
that I have tried to incorporate into this book.

I have tried to use examples to motivate theory rather than to illustrate theory. Most chapters
begin with data and an initial analysis of that data. After illustrating results for the particular data,
we go back and examine general models and procedures. I have done this to make the book more
palatable to two groups of people: those who only care about theory after seeing that it is useful and
those unfortunates who can never bring themselves to care about theory. (The older I get, the more I
identify with the first group. As for the other group, I find myself agreeing with W. Edwards Deming
that experience without theory teaches nothing.) As mentioned earlier, the theoretical material is
generally confined to separate subsections or, less often, separate sections, so it is easy to ignore.

I believe that the ultimate goal of all statistical analysis is prediction of observable quantities. I
have incorporated predictive inferential procedures where they seemed natural.

The object of most Statistics books is to illustrate techniques rather than to analyze data; this
book is no exception. Nonetheless, I think we do students a disservice by not showing them a
substantial portion of the work necessary to analyze even ‘nice’ data. To this end, I have tried to
consistently examine residual plots, to present alternative analyses using different transformations
and case deletions, and to give some final answers in plain English. I have also tried to introduce
such material as early as possible. I have included reasonably detailed examinations of a three-factor
analysis of variance and of a split-plot design with four factors. I have included some examples in
which, like real life, the final answers are not ‘neat.’ While I have tried to introduce statistical ideas
as soon as possible, I have tried to keep the mathematics as simple as possible for as long as possible.
For example, matrix formulations are postponed to the last chapter on multiple regression.

I never use side conditions or normal equations in analysis of variance. But computer programs
use side conditions and I discuss how they affect model interpretations.

In multiple comparison methods, (weakly) controlling the experimentwise error rate is discussed
in terms of first performing an omnibus test for no treatment effects and then choosing a criterion for
evaluating individual hypotheses. Most methods considered divide into those that use the omnibus
F test, those that use the Studentized range test, and the Bonferroni method, which does not use any
omnibus test. In the current edition I have focused primarily on multiple comparison methods that
work for unbalanced data.

I have tried to be very clear about the fact that experimental designs are set up for arbitrary
groups of treatments and that factorial treatment structures are simply an efficient way of defining
the treatments in some problems. Thus, the nature of a randomized complete block design does not
depend on how the treatments happen to be defined. The analysis always begins with a breakdown
of the sum of squares into blocks, treatments, and error. Further analysis of the treatments then
focuses on whatever structure happens to be present.
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The analysis of covariance chapter no longer includes an extensive discussion of how the covari-
ates must be chosen to maintain a valid experiment. That discussion has been moved to the chapter
Basic Experimental Designs. Tukey’s one degree of freedom test for nonadditivity is presented as
a test for the need to perform a power transformation rather than as a test for a particular type of
interaction. Tukey’s test is now part of the Model Checking chapter, not the ACOVA chapter.

The chapter on confounding and fractional replication has more discussion of analyzing such
data than many other books contain.
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Computing

There are two aspects to computing: generating output and interpreting output. We cannot always
control the generation of output, so we need to be able to interpret a variety of outputs. The book
places great emphasis on interpreting the range of output that one might encounter when dealing
with the data structures in the book. This comes up most forcefully when dealing with multiple
categorical predictors because arbitrary choices must be made by computer programmers to produce
some output, e.g., parameter estimates. The book deals with the arbitrary choices that are most
commonly made. Methods for generating output have, for the most part, been removed from the
book and placed on my website.

R has taken over the Statistics computing world. While R code is in the book, illustrations
of all the analyses and all of the graphics have been performed in R and are available on
my website: www.stat.unm.edu/∼fletcher. Also, substantial bodies of Minitab and SAS code
(particularly for SAS’s GENMOD and LOGISTIC procedures) are available on my website. While
Minitab and many versions of SAS are now menu driven, the menus essentially write the code for
running a procedure. Presenting the code provides the information needed by the programs and,
implicitly, the information needed in the menus. That information is largely the same regardless of
the program. The choices of R, Minitab, and SAS are not meant to denigrate any other software.
They are merely what I am most familiar with.

The online computing aids are chapter for chapter (and for the most part, section for section)
images of the book. Thus, if you want help computing something from Section 2.5 of the book, look
in Section 2.5 of the online material.

My strong personal preference is for doing whatever I can in Minitab. That is largely because
Minitab forces me to remember fewer arcane commands than any other system (that I am familiar
with). Data analysis output from Minitab is discussed in the book because it differs from the output
provided by R and SAS. For fitting large tables of counts, as discussed in Chapter 21, I highly
recommend the program BMDP 4F. Fortunately, this can now be accessed through some batch
versions of SAS. My website contains files for virtually all the data. But you need to compare
each file to the tabled data and not just assume that the file looks exactly like the table.

Finally, I would like to point out a notational issue. In both Minitab and SAS, “glm” refers
to fitting general linear models. In R, “glm” refers to fitting generalized linear models, which are
something different. Generalized linear models contain general linear models as a special case. The
models in Chapters 20, 21, and 22 are different special cases of generalized linear models. (I am not
convinced that generalized linear models are anything more than a series of special cases connected
by a remarkable computing trick, cf. Christensen, 1997, Chapter 9.)

BMDP Statistical Software was located at 1440 Sepulveda Boulevard, Los Angeles, CA 90025.

MINITAB is a registered trademark of Minitab, Inc., 3081 Enterprise Drive, State College, PA
16801, telephone: (814) 238-3280, telex: 881612.
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Chapter 1

Introduction

Statistics has two roles in society. First, Statistics is in the business of creating stereotypes. Think of
any stereotype you like, but to keep me out of trouble let’s consider something innocuous, like the
hypothesis that Italians talk with their hands more than Scandinavians. To establish the stereotype,
you need to collect data and use it to draw a conclusion. Often the conclusion is that either the
data suggest a difference or that they do not. The conclusion is (almost) never whether a difference
actually exists, only whether or not the data suggest a difference and how strongly they suggest it.
Statistics has been filling this role in society for at least 100 years.

Statistics’ less recognized second role in society is debunking stereotypes. Statistics is about
appreciating variability. It is about understanding variability, explaining it, and controlling it. I ex-
pect that with enough data, one could show that, on average, Italians really do talk with their hands
more than Scandinavians. Collecting a lot of data helps control the relevant variability and allows
us to draw a conclusion. But I also expect that we will never be able to predict accurately whether a
random Italian will talk with their hands more than a random Scandinavian. There is too much vari-
ability among humans. Even when differences among groups exist, those differences often pale in
comparison to the variability displayed by individuals within the groups—to the point where group
differences are often meaningless when dealing with individuals. For statements about individuals,
collecting a lot of data only helps us to more accurately state the limits of our (very considerable)
uncertainty.

Ultimately, Statistics is about what you can conclude and, equally, what you cannot conclude
from analyzing data that are subject to variability, as all data are. Statisticians use ideas from prob-
ability to quantify variability. They typically analyze data by creating probability models for the
data.

In this chapter we introduce basic ideas of probability and some related mathematical concepts
that are used in Statistics. Values to be analyzed statistically are generally thought of as random
variables; these are numbers that result from random events. The mean (average) value of a pop-
ulation is defined in terms of the expected value of a random variable. The variance is introduced
as a measure of the variability in a random variable (population). We also introduce some special
distributions (populations) that are useful in modeling statistical data. The purpose of this chapter is
to introduce these ideas, so they can be used in analyzing data and in discussing statistical models.

In writing statistical models, we often use symbols from the Greek alphabet. A table of these
symbols is provided in Appendix B.6.

Rumor has it that there are some students studying Statistics who have an aversion to mathemat-
ics. Such people might be wise to focus on the concepts of this chapter and not let themselves get
bogged down in the details. The details are given to provide a more complete introduction for those
students who are not math averse.

1.1 Probability

Probabilities are numbers between zero and one that are used to explain random phenomena. We are
all familiar with simple probability models. Flip a standard coin; the probability of heads is 1/2. Roll
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a die; the probability of getting a three is 1/6. Select a card from a well-shuffled deck; the probability
of getting the queen of spades is 1/52 (assuming there are no jokers). One way to view probability
models that many people find intuitive is in terms of random sampling from a fixed population.
For example, the 52 cards form a fixed population and picking a card from a well-shuffled deck is
a means of randomly selecting one element of the population. While we will exploit this idea of
sampling from fixed populations, we should also note its limitations. For example, blood pressure is
a very useful medical indicator, but even with a fixed population of people it would be very difficult
to define a useful population of blood pressures. Blood pressure depends on the time of day, recent
diet, current emotional state, the technique of the person taking the reading, and many other factors.
Thinking about populations is very useful, but the concept can be very limiting both practically and
mathematically. For measurements such as blood pressures and heights, there are difficulties in even
specifying populations mathematically.

For mathematical reasons, probabilities are defined not on particular outcomes but on sets of
outcomes (events). This is done so that continuous measurements can be dealt with. It seems much
more natural to define probabilities on outcomes as we did in the previous paragraph, but consider
some of the problems with doing that. For example, consider the problem of measuring the height of
a corpse being kept in a morgue under controlled conditions. The only reason for getting morbid here
is to have some hope of defining what the height is. Living people, to some extent, stretch and con-
tract, so a height is a nebulous thing. But even given that someone has a fixed height, we can never
know what it is. When someone’s height is measured as 177.8 centimeters (5 feet 10 inches), their
height is not really 177.8 centimeters, but (hopefully) somewhere between 177.75 and 177.85 cen-
timeters. There is really no chance that anyone’s height is exactly 177.8 cm, or exactly 177.8001 cm,
or exactly 177.800000001 cm, or exactly 56.5955π cm, or exactly (76

√
5+ 4.5

√
3) cm. In any

neighborhood of 177.8, there are more numerical values than one could even imagine counting. The
height should be somewhere in the neighborhood, but it won’t be the particular value 177.8. The
point is simply that trying to specify all the possible heights and their probabilities is a hopeless
exercise. It simply cannot be done.

Even though individual heights cannot be measured exactly, when looking at a population of
heights they follow certain patterns. There are not too many people over 8 feet (244 cm) tall. There
are lots of males between 175.3 cm and 177.8 cm (5′9′′ and 5′10′′). With continuous values, each
possible outcome has no chance of occurring, but outcomes do occur and occur with regularity. If
probabilities are defined for sets instead of outcomes, these regularities can be reproduced mathe-
matically. Nonetheless, initially the best way to learn about probabilities is to think about outcomes
and their probabilities.

There are five key facts about probabilities:

1. Probabilities are between 0 and 1.

2. Something that happens with probability 1 is a sure thing.

3. If something has no chance of occurring, it has probability 0.

4. If something occurs with probability, say, .25, the probability that it will not occur is 1− .25 =
.75.

5. If two events are mutually exclusive, i.e., if they cannot possibly happen at the same time, then
the probability that either of them occurs is just the sum of their individual probabilities.

Individual outcomes are always mutually exclusive, e.g., you cannot flip a coin and get both heads
and tails, so probabilities for outcomes can always be added together. Just to be totally correct, I
should mention one other point. It may sound silly, but we need to assume that something occurring
is always a sure thing. If we flip a coin, we must get either heads or tails with probability 1. We
could even allow for the coin landing on its edge as long as the probabilities for all the outcomes
add up to 1.

EXAMPLE 1.1.1. Consider the nine outcomes that are all combinations of three heights, tall (T),
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Table 1.1: Height—eye color probabilities.

Eye color
Blue Brown Green

Tall .12 .15 .03
Height Medium .22 .34 .04

Short .06 .01 .03

medium (M), short (S), and three eye colors, blue (Bl), brown (Br) and green (G). The combinations
are displayed below.

Height—eye color combinations
Eye color

Blue Brown Green
Tall T,Bl T,Br T,G

Height Medium M,Bl M,Br M,G
Short S,Bl S,Br S,G

The set of all outcomes is

{(T,Bl),(T,Br),(T,G),(M,Bl),(M,Br),(M,G),(S,Bl),(S,Br),(S,G)} .

The event that someone is tall consists of the three pairs in the first row of the table, i.e.,

{T}= {(T,Bl),(T,Br),(T,G)} .

This is the union of the three outcomes (T,Bl), (T,Br), and (T,G). Similarly, the set of people with
blue eyes is obtained from the first column of the table; it is the union of (T,Bl), (M,Bl), and (S,Bl)
and can be written

{Bl}= {(T,Bl),(M,Bl),(S,Bl)} .
If we know that {T} and {Bl} both occur, there is only one possible outcome, (T, Bl).

The event that {T} or {Bl} occurs consists of all outcomes in either the first row or the first
column of the table, i.e.,

{(T,Bl),(T,Br),(T,G),(M,Bl),(S,Bl)} . �

EXAMPLE 1.1.2. Table 1.1 contains probabilities for the nine outcomes that are combinations of
height and eye color from Example 1.1.1. Note that each of the nine numbers is between 0 and 1
and that the sum of all nine equals 1. The probability of blue eyes is

Pr(Bl) = Pr[(T,Bl),(M,Bl),(S,Bl)]

= Pr(T,Bl)+Pr(M,Bl)+Pr(S,Bl)

= .12+ .22+ .06

= .4 .

Similarly, Pr(Br) = .5 and Pr(G) = .1. The probability of not having blue eyes is

Pr(not Bl) = 1−Pr(Bl)

= 1− .4

= .6 .

Note also that Pr(not Bl) = Pr(Br)+Pr(G).
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The (marginal) probabilities for the various heights are:

Pr(T) = .3, Pr(M) = .6, Pr(S) = .1 . �

Even if there are a countable (but infinite) number of possible outcomes, one can still define a
probability by defining the probabilities for each outcome. It is only for measurement data that one
really needs to define probabilities on sets.

Two random events are said to be independent if knowing that one of them occurs provides no
information about the probability that the other event will occur. Formally, two events A and B are
independent if

Pr(A and B) = Pr(A)Pr(B).

Thus the probability that both events A and B occur is just the product of the individual probabilities
that A occurs and that B occurs. As we will begin to see in the next section, independence plays an
important role in Statistics.

EXAMPLE 1.1.3. Using the probabilities of Table 1.1 and the computations of Example 1.1.2,
the events tall and brown eyes are independent because

Pr(tall and brown) = Pr(T,Br) = .15 = (.3)(.5) = Pr(T)×Pr(Br).

On the other hand, medium height and blue eyes are not independent because

Pr(medium and blue) = Pr(M,Bl) = .22 �= (.6)(.4) = Pr(M)×Pr(Bl). �

1.2 Random variables and expectations

A random variable is simply a function that relates outcomes with numbers. The key point is that
any probability associated with the outcomes induces a probability on the numbers. The numbers
and their associated probabilities can then be manipulated mathematically. Perhaps the most
common and intuitive example of a random variable is rolling a die. The outcome is that a face of
the die with a certain number of spots ends up on top. These can be pictured as
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Without even thinking about it, we define a random variable that transforms these six faces into the
numbers 1, 2, 3, 4, 5, 6.

In Statistics we think of observations as random variables. These are often some number asso-
ciated with a randomly selected member of a population. For example, one random variable is the
height of a person who is to be randomly selected from among University of New Mexico students.
(A random selection gives the same probability to every individual in the population. This random
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variable presumes that we have well-defined methods for measuring height and defining UNM stu-
dents.) Rather than measuring height, we could define a different random variable by giving the
person a score of 1 if that person is female and 0 if the person is male. We can also perform math-
ematical operations on random variables to yield new random variables. Suppose we plan to select
a random sample of 10 students; then we would have 10 random variables with female and male
scores. The sum of these random variables is another random variable that tells us the (random)
number of females in the sample. Similarly, we would have 10 random variables for heights and
we can define a new random variable consisting of the average of the 10 individual height random
variables. Some random variables are related in obvious ways. In our example we measure both a
height and a sex score on each person. If the sex score variable is a 1 (telling us that the person is fe-
male), it suggests that the height may be smaller than we would otherwise suspect. Obviously some
female students are taller than some male students, but knowing a person’s sex definitely changes
our knowledge about their probable height.

We do similar things in tossing a coin.

EXAMPLE 1.2.1. Consider tossing a coin twice. The four outcomes are ordered pairs of heads
(H) and tails (T ). The outcomes can be denoted as

(H,H) (H,T ) (T,H) (T,T )

where the outcome of the first toss is the first element of the ordered pair.
The standard probability model has the four outcomes equally probable, i.e., 1/4 = Pr(H,H) =

Pr(H,T ) = Pr(T,H) = Pr(T,T ). Equivalently

Second toss
Heads Tails Total

First toss Heads 1/4 1/4 1/2
Tails 1/4 1/4 1/2
Total 1/2 1/2 1

The probability of heads on each toss is 1/2. The probability of tails is 1/2. We will define two
random variables:

y1(r,s) =
{

1 if r = H
0 if r = T

y2(r,s) =
{

1 if s = H
0 if s = T .

Thus, y1 is 1 if the first toss is heads and 0 otherwise. Similarly, y2 is 1 if the second toss is heads
and 0 otherwise.

The event y1 = 1 occurs if and only if we get heads on the first toss. We get heads on the first toss
by getting either of the outcome pairs (H,H) or (H,T ). In other words, the event y1 = 1 is equivalent
to the event {(H,H),(H,T )}. The probability of y1 = 1 is just the sum of the probabilities of the
outcomes in {(H,H),(H,T )}.

Pr(y1 = 1) = Pr(H,H)+Pr(H,T )

= 1/4+1/4= 1/2.

Similarly,

Pr(y1 = 0) = Pr(T,H)+Pr(T,T )

= 1/2

Pr(y2 = 1) = 1/2

Pr(y2 = 0) = 1/2 .
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Now define another random variable,

W (r,s) = y1(r,s)+ y2(r,s) .

The random variable W is the total number of heads in two tosses:

W (H,H) = 2

W (H,T ) = W (T,H) = 1

W (T,T ) = 0 .

Moreover,

Pr(W = 2) = Pr(H,H) = 1/4

Pr(W = 1) = Pr(H,T )+Pr(T,H) = 1/2

Pr(W = 0) = Pr(T,T ) = 1/4 .

These three equalities define a probability on the outcomes 0, 1, 2. In working with W , we can
ignore the original outcomes of head–tail pairs and work only with the new outcomes 0, 1, 2 and
their associated probabilities. We can do the same thing for y1 and y2. The probability table given
earlier can be rewritten in terms of y1 and y2.

y2

1 0 y1 totals
y1 1 1/4 1/4 1/2

0 1/4 1/4 1/2
y2 totals 1/2 1/2 1

Note that, for example, Pr [(y1,y2) = (1,0)] = 1/4 and Pr(y1 = 1) = 1/2. This table shows the
distribution of the probabilities for y1 and y2 both separately (marginally) and jointly. �

For any random variable, a statement of the possible outcomes and their associated probabilities
is referred to as the (marginal) probability distribution of the random variable. For two or more
random variables, a table or other statement of the possible joint outcomes and their associated
probabilities is referred to as the joint probability distribution of the random variables.

All of the entries in the center of the distribution table given above for y1 and y2 are independent.
For example,

Pr[(y1,y2) = (1,0)]≡ Pr(y1 = 1 and y2 = 0) = Pr(y1 = 1)Pr(y2 = 0).

We therefore say that y1 and y2 are independent. In general, two random variables y1 and y2 are
independent if any event involving only y1 is independent of any event involving only y2.

Independence is an extremely important concept in Statistics. Observations to be analyzed are
commonly assumed to be independent. This means that the random aspect of one observation con-
tains no information about the random aspect of any other observation. (However, every observation
tells us about fixed aspects of the underlying population such as the population center.) For most
purposes in Applied Statistics, this intuitive understanding of independence is sufficient.

1.2.1 Expected values and variances

The expected value (population mean) of a random variable is a number characterizing the middle
of the distribution. For a random variable y with a discrete distribution (i.e., one having a finite or
countable number of outcomes), the expected value is

E(y)≡ ∑
all r

rPr(y = r) .
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EXAMPLE 1.2.2. Let y be the result of picking one of the numbers 2, 4, 6, 8 at random. Because
the numbers are chosen at random,

1/4 = Pr(y = 2) = Pr(y = 4) = Pr(y = 6) = Pr(y = 8) .

The expected value in this simple example is just the mean (average) of the four possible outcomes.

E(y) = 2

(
1
4

)
+4

(
1
4

)
+6

(
1
4

)
+8

(
1
4

)

= (2+4+6+8)/4

= 5 . �

EXAMPLE 1.2.3. Five pieces of paper are placed in a hat. The papers have the numbers 2, 4, 6,
6, and 8 written on them. A piece of paper is picked at random. The expected value of the number
drawn is the mean of the numbers on the five pieces of paper. Let y be the random variable that
relates a piece of paper to the number on that paper. Each piece of paper has the same probability of
being chosen, so, because the number 6 appears twice, the distribution of the random variable y is

1
5

= Pr(y = 2) = Pr(y = 4) = Pr(y = 8)

2
5

= Pr(y = 6) .

The expected value is

E(y) = 2

(
1
5

)
+4

(
1
5

)
+6

(
2
5

)
+8

(
1
5

)

= (2+4+6+6+8)/5

= 5.2 . �

EXAMPLE 1.2.4. Consider the coin tossing random variables y1, y2, and W from Example 1.2.1.
Recalling that y1 and y2 have the same distribution,

E(y1) = 1

(
1
2

)
+0

(
1
2

)
=

1
2

E(y2) =
1
2

E(W ) = 2

(
1
4

)
+1

(
1
2

)
+0

(
1
4

)
= 1 .

The variable y1 is the number of heads in the first toss of the coin. The two possible values 0 and
1 are equally probable, so the middle of the distribution is 1/2. W is the number of heads in two
tosses; the expected number of heads in two tosses is 1. �

The expected value indicates the middle of a distribution, but does not indicate how spread out
(dispersed) a distribution is.

EXAMPLE 1.2.5. Consider three gambles that I will allow you to take. In game z1 you have equal
chances of winning 12, 14, 16, or 18 dollars. In game z2 you can again win 12, 14, 16, or 18 dollars,
but now the probabilities are .1 that you will win either $14 or $16 and .4 that you will win $12 or
$18. The third game I call z3 and you can win 5, 10, 20, or 25 dollars with equal chances. Being no
fool, I require you to pay me $16 for the privilege of playing any of these games. We can write each
game as a random variable.
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z1 outcome 12 14 16 18
probability .25 .25 .25 .25

z2 outcome 12 14 16 18
probability .4 .1 .1 .4

z3 outcome 5 10 20 25
probability .25 .25 .25 .25

I try to be a good casino operator, so none of these games is fair. You have to pay $16 to play, but
you only expect to win $15. It is easy to see that

E(z1) = E(z2) = E(z3) = 15 .

But don’t forget that I’m taking a loss on the ice-water I serve to players and I also have to pay for
the pictures of my extended family that I’ve decorated my office with.

Although the games z1, z2, and z3 have the same expected value, the games (random variables)
are very different. Game z2 has the same outcomes as z1, but much more of its probability is placed
farther from the middle value, 15. The extreme observations 12 and 18 are much more probable
under z2 than z1. If you currently have $16, need $18 for your grandmother’s bunion removal, and
anything less than $18 has no value to you, then z2 is obviously a better game for you than z1.

Both z1 and z2 are much more tightly packed around 15 than is z3. If you needed $25 for the
bunion removal, z3 is the game to play because you can win it all in one play with probability .25.
In either of the other games you would have to win at least five times to get $25, a much less likely
occurrence. Of course you should realize that the most probable result is that Grandma will have
to live with her bunion. You are unlikely to win either $18 or $25. While the ethical moral of this
example is that a fool and his money are soon parted, the statistical point is that there is more to a
random variable than its mean. The variability of random variables is also important. �

The (population) variance is a measure of how spread out a distribution is from its expected
value. Let y be a random variable having a discrete distribution with E(y) = μ , then the variance of
y is

Var(y)≡ ∑
all r

(r− μ)2Pr(y = r) .

This is the average squared distance of the outcomes from the center of the population. More tech-
nically, it is the expected squared distance between the outcomes and the mean of the distribution.

EXAMPLE 1.2.6. Using the random variables of Example 1.2.5,

Var(z1) = (12−15)2(.25)+ (14−15)2(.25)

+ (16−15)2(.25)+ (18−15)2(.25)

= 5

Var(z2) = (12−15)2(.4)+ (14−15)2(.1)

+ (16−15)2(.1)+ (18−15)2(.4)

= 7.4

Var(z3) = (5−15)2(.25)+ (10−15)2(.25)

+ (20−15)2(.25)+ (25−15)2(.25)

= 62.5.
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The increasing variances from z1 through z3 indicate that the random variables are increasingly
spread out. However, the value Var(z3) = 62.5 seems too large to measure the relative variabilities
of the three random variables. More on this later. �

EXAMPLE 1.2.7. Consider the coin tossing random variables of Examples 1.2.1 and 1.2.4.

Var(y1) =

(
1− 1

2

)2 1
2
+

(
0− 1

2

)2 1
2
=

1
4

Var(y2) =
1
4

Var(W ) = (2− 1)2
(

1
4

)
+(1−1)2

(
1
2

)
+(0−1)2

(
1
4

)
=

1
2
. �

A problem with the variance is that it is measured on the wrong scale. If y is measured in meters,
Var(y) involves the terms (r− μ)2; hence it is measured in meters squared. To get things back on
the original scale, we consider the standard deviation of y

Std. dev. (y)≡
√

Var(y) .

EXAMPLE 1.2.8. Consider the random variables of Examples 1.2.5 and 1.2.6. The variances of
the games are measured in dollars squared while the standard deviations are measured in dollars.

Std. dev. (z1) =
√

5
.
= 2.236

Std. dev. (z2) =
√

7.4
.
= 2.720

Std. dev. (z3) ≡
√

62.5
.
= 7.906

The standard deviation of z3 is 3 to 4 times larger than the others. From examining the distribu-
tions, the standard deviations seem to be more intuitive measures of relative variability than the
variances. The variance of z3 is 8.5 to 12.5 times larger than the other variances; these values seem
unreasonably inflated. �

Standard deviations and variances are useful as measures of the relative dispersions of different
random variables. The actual numbers themselves do not mean much. Moreover, there are other
equally good measures of dispersion that can give results that are somewhat inconsistent with these.
One reason standard deviations and variances are so widely used is because they are convenient
mathematically. In addition, normal (Gaussian) distributions are widely used in Applied Statistics
and are completely characterized by their expected values (means) and variances (or standard devi-
ations). Knowing these two numbers, the mean and variance, one knows everything about a normal
distribution.

1.2.2 Chebyshev’s inequality

Another place in which the numerical values of standard deviations are useful is in applications
of Chebyshev’s inequality. Chebyshev’s inequality gives a lower bound on the probability that a
random variable is within an interval. Chebyshev’s inequality is important in quality control work
(control charts) and in evaluating prediction intervals.

Let y be a random variable with E(y) = μ and Var(y) = σ2. Chebyshev’s inequality states that
for any number k > 1,

Pr[μ − kσ < y < μ + kσ ]≥ 1− 1
k2 .

Thus the probability that y will fall within k standard deviations of μ is at least 1− (1/k2).
The beauty of Chebyshev’s inequality is that it holds for absolutely any random variable y. Thus
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we can always make some statement about the probability that y is in a symmetric interval about
μ . In many cases, for particular choices of y, the probability of being in the interval can be much
greater than 1− k−2. For example, if k = 3 and y has a normal distribution as discussed in the next
section, the probability of being in the interval is actually .997, whereas Chebyshev’s inequality
only assures us that the probability is no less than 1− 3−2 = .889. However, we know the lower
bound of .889 applies regardless of whether y has a normal distribution.

1.2.3 Covariances and correlations

Often we take two (or more) observations on the same member of a population. We might observe
the height and weight of a person. We might observe the IQs of a wife and husband. (Here the
population consists of married couples.) In such cases we may want a numerical measure of the
relationship between the pairs of observations. Data analysis related to these concepts is known
as regression analysis and is introduced in Chapter 6. These ideas are also briefly used for testing
normality in Section 2.5.

The covariance is a measure of the linear relationship between two random variables. Suppose
y1 and y2 are discrete random variables. Let E(y1) = μ1 and E(y2) = μ2. The covariance between y1

and y2 is
Cov(y1,y2)≡ ∑

all (r,s)

(r− μ1)(s− μ2)Pr(y1 = r,y2 = s) .

Positive covariances arise when relatively large values of y1 tend to occur with relatively large
values y2 and small values of y1 tend to occur with small values of y2. On the other hand, negative
covariances arise when relatively large values of y1 tend to occur with relatively small values of y2

and small values of y1 tend to occur with large values of y2. It is simple to see from the definition
that, for example,

Var(y1) = Cov(y1,y1) .

In an attempt to get a handle on what the numerical value of the covariance means, it is often
rescaled into a correlation coefficient.

Corr(y1,y2)≡ Cov(y1,y2)
/√

Var(y1)Var(y2) .

Positive values of the correlation have the same qualitative meaning as positive values of the covari-
ance, but now a perfect increasing linear relationship is indicated by a correlation of 1. Similarly,
negative correlations and covariances mean similar things, but a perfect decreasing linear relation-
ship gives a correlation of −1. The absence of any linear relationship is indicated by a value of
0.

A perfect linear relationship between y1 and y2 means that an increase of one unit in, say, y1

dictates an exactly proportional change in y2. For example, if we make a series of very accurate
temperature measurements on something and simultaneously use one device calibrated in Fahren-
heit and one calibrated in Celsius, the pairs of numbers should have an essentially perfect linear
relationship. Estimates of covariances and correlations are called sample covariances and sample
correlations. They will be considered in Section 6.7 although mention of the sample correlation is
made in Section 2.5 and Section 3.9.

EXAMPLE 1.2.9. Let z1 and z2 be two random variables defined by the following probability
table:

z2

0 1 2 z1 totals
6 0 1/3 0 1/3

z1 4 1/3 0 0 1/3
2 0 0 1/3 1/3

z2 totals 1/3 1/3 1/3 1
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Then

E(z1) = 6

(
1
3

)
+4

(
1
3

)
+2

(
1
3

)
= 4,

E(z2) = 0

(
1
3

)
+1

(
1
3

)
+2

(
1
3

)
= 1,

Var(z1) = (2−4)2
(

1
3

)
+(4−4)2

(
1
3

)
+(6−4)2

(
1
3

)

= 8/3,

Var(z2) = (0−1)2
(

1
3

)
+(1−1)2

(
1
3

)
+(2−1)2

(
1
3

)

= 2/3,

Cov(z1,z2) = (2− 4)(0−1)(0)+ (2−4)(1−1)(0)+(2−4)(2−1)

(
1
3

)

+(4− 4)(0−1)

(
1
3

)
+(4−4)(1−1)(0)+ (4−4)(2−1)(0)

+ (6− 4)(0−1)(0)+ (6−4)(1−1)

(
1
3

)
+(6−4)(2−1)(0)

= −2/3,

Corr(z1,z2) = (−2/3)
/√

(8/3)(2/3)

= −1/2.

This correlation indicates that relatively large z1 values tend to occur with relatively small z2 values.
However, the correlation is considerably greater than −1, so the linear relationship is less than
perfect. Moreover, the correlation measures the linear relationship and fails to identify the perfect
nonlinear relationship between z1 and z2. If z1 = 2, then z2 = 2. If z1 = 4, then z2 = 0. If z1 = 6,
then z2 = 1. If you know one random variable, you know the other, but because the relationship is
nonlinear, the correlation is not ±1. �

EXAMPLE 1.2.10. Consider the coin toss random variables y1 and y2 from Example 1.2.1. We
earlier observed that these two random variables are independent. If so, there should be no relation-
ship between them (linear or otherwise). We now show that their covariance is 0.

Cov(y1,y2) =

(
0− 1

2

)(
0− 1

2

)
1
4
+

(
0− 1

2

)(
1− 1

2

)
1
4

+

(
1− 1

2

)(
0− 1

2

)
1
4
+

(
1− 1

2

)(
1− 1

2

)
1
4

=
1

16
− 1

16
− 1

16
+

1
16

= 0. �

In general, whenever two random variables are independent, their covariance (and thus their
correlation) is 0. However, just because two random variables have 0 covariance does not imply that
they are independent. Independence has to do with not having any kind of relationship; covariance
examines only linear relationships. Random variables with nonlinear relationships can have zero
covariance but not be independent.
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1.2.4 Rules for expected values and variances

We now present some extremely useful results that allow us to show that statistical estimates are
reasonable and to establish the variability associated with statistical estimates. These results relate to
the expected values, variances, and covariances of linear combinations of random variables. A linear
combination of random variables is something that only involves multiplying random variables by
fixed constants, adding such terms together, and adding a constant.

Proposition 1.2.11. Let y1, y2, y3, and y4 be random variables and let a1, a2, a3, and a4 be real
numbers.

1. E(a1y1 + a2y2 + a3) = a1E(y1)+ a2E(y2)+ a3.

2. If y1 and y2 are independent, Var(a1y1 +a2y2 +a3) = a2
1Var(y1)+ a2

2Var(y2).

3. Var(a1y1 + a2y2 +a3) = a2
1Var(y1)+ 2a1a2Cov(y1,y2)+ a2

2Var(y2).

4. Cov(a1y1 + a2y2,a3y3 + a4y4) = a1a3Cov(y1,y3) + a1a4Cov(y1,y4) + a2a3Cov(y2,y3) +
a2a4Cov(y2,y4).

All of these results generalize to linear combinations involving more than two random variables.

EXAMPLE 1.2.12. Recall that when independently tossing a coin twice, the total number of
heads, W , is the sum of y1 and y2, the number of heads on the first and second tosses, respectively.
We have already seen that E(y1) = E(y2) = .5 and that E(W ) = 1. We now illustrate item 1 of the
proposition by finding E(W ) again. Since W = y1 + y2,

E(W ) = E(y1 + y2) = E(y1)+E(y2) = .5+ .5 = 1.

We have also seen that Var(y1) = Var(y2) = .25 and that Var(W ) = .5. Since the coin tosses are
independent, item 2 above gives

Var(W ) = Var(y1 + y2) = Var(y1)+Var(y2) = .25+ .25= .5 .

The key point is that this is an easier way of finding the expected value and variance of W than using
the original definitions. �

We now illustrate the generalizations referred to in Proposition 1.2.11. We begin by looking at
the problem of estimating the mean of a population.

EXAMPLE 1.2.13. Let y1, y2, y3, and y4 be four random variables each with the same (population)
mean μ , i.e., E(yi) = μ for i = 1,2,3,4. We can compute the sample mean (average) of these,
defining

ȳ· ≡ y1 + y2 + y3 + y4

4

=
1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4.

The · in the subscript of ȳ· indicates that the sample mean is obtained by summing over the subscripts
of the yis. The · notation is not necessary for this problem but becomes useful in dealing with the
analysis of variance problems treated later in the book.

Using item 1 of Proposition 1.2.11 we find that

E(ȳ·) = E

(
1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4

)

=
1
4

E(y1)+
1
4

E(y2)+
1
4

E(y3)+
1
4

E(y4)

=
1
4

μ +
1
4

μ +
1
4

μ +
1
4

μ
= μ .
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Thus one observation on ȳ· would make a reasonable estimate of μ .
If we also assume that the yis are independent with the same variance, say, σ2, then from item 2

of Proposition 1.2.11

Var(ȳ·) = Var

(
1
4

y1 +
1
4

y2 +
1
4

y3 +
1
4

y4

)

=

(
1
4

)2

Var(y1)+

(
1
4

)2

Var(y2)

+

(
1
4

)2

Var(y3)+

(
1
4

)2

Var(y4)

=

(
1
4

)2

σ2 +

(
1
4

)2

σ2 +

(
1
4

)2

σ2 +

(
1
4

)2

σ2

=
σ2

4
.

The variance of ȳ· is only one fourth of the variance of an individual observation. Thus the ȳ·
observations are more tightly packed around their mean μ than the yis are. This indicates that one
observation on ȳ· is more likely to be close to μ than an individual yi. �

These results for ȳ· hold quite generally; they are not restricted to the average of four random
variables. If ȳ· = (1/n)(y1 + · · ·+ yn) = ∑n

i=1 yi/n is the sample mean of n independent random
variables all with the same population mean μ and population variance σ2,

E(ȳ·) = μ

and

Var(ȳ·) =
σ2

n
.

Proving these general results uses exactly the same ideas as the proofs for a sample of size 4.
As with a sample of size 4, the general results on ȳ· are very important in statistical inference. If

we are interested in determining the population mean μ from future data, the obvious estimate is the
average of the individual observations, ȳ·. The observations are random, so the estimate ȳ· is also a
random variable and the middle of its distribution is E(ȳ·) = μ , the original population mean. Thus
ȳ· is a reasonable estimate of μ . Moreover, ȳ· is a better estimate than any particular observation
yi because ȳ· has a smaller variance, σ2/n, as opposed to σ2 for yi. With less variability in the
estimate, any one observation of ȳ· is more likely to be near its mean μ than a single observation
yi. In practice, we obtain data and compute a sample mean. This constitutes one observation on the
random variable ȳ·. If our sample mean is to be a good estimate of μ , our one look at ȳ· had better
have a good chance of being close to μ . This occurs when the variance of ȳ· is small. Note that the
larger the sample size n, the smaller is σ2/n, the variance of ȳ·. We will return to these ideas later.

Generally, we will use item 1 of Proposition 1.2.11 to show that estimates are unbiased. In other
words, we will show that the expected value of an estimate is what we are trying to estimate. In
estimating μ , we have E(ȳ·) = μ , so ȳ· is an unbiased estimate of μ . All this really does is show that
ȳ· is a reasonable estimate of μ . More important than showing unbiasedness is using item 2 to find
variances of estimates. Statistical inference depends crucially on having some idea of the variability
of an estimate. Item 2 is the primary tool in finding the appropriate variance for different estimators.

1.3 Continuous distributions

As discussed in Section 1.1, many things that we would like to measure are, in the strictest sense, not
measurable. We cannot find a building’s exact height even though we can approximate it extremely
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K(1 − α)0

0

1 − α α

Figure 1.1: A continuous probability density.

accurately. This theoretical inability to measure things exactly has little impact on our practical
world, but it has a substantial impact on the theory of Statistics.

The data in most statistical applications can be viewed either as counts of how often some event
has occurred or as measurements. Probabilities associated with count data are easy to describe. We
discuss some probability models for count data in Sections 1.4 and 1.5. With measurement data, we
can never obtain an exact value, so we don’t even try. With measurement data, we assign probabil-
ities to intervals. Thus we do not discuss the probability that a person has the height 177.8 cm or
177.8001 cm or 56.5955π cm, but we do discuss the probability that someone has a height between
177.75 cm and 177.85 cm. Typically, we think of doing this in terms of pictures. We associate prob-
abilities with areas under curves. (Mathematically, this involves integral calculus and is discussed
in a brief appendix at the end of the chapter.) Figure 1.1 contains a picture of a continuous proba-
bility distribution (a density). Probabilities must be between 0 and 1, so the curve must always be
nonnegative (to make all areas nonnegative) and the area under the entire curve must be 1.

Figure 1.1 also shows a point K(1−α). This point divides the area under the curve into two
parts. The probability of obtaining a number less than K(1−α) is 1−α , i.e., the area under the
curve to the left of K(1−α) is 1−α . The probability of obtaining a number greater than K(1−α)
is α , i.e., the area under the curve to the right of K(1−α). K(1−α) is a particular number, so the
probability is 0 that K(1−α) will actually occur. There is no area under a curve associated with any
particular point.

Pictures such as Figure 1.1 are often used as models for populations of measurements. With a
fixed population of measurements, it is natural to form a histogram, i.e., a bar chart that plots in-
tervals for the measurement against the proportion of individuals that fall into a particular interval.
Pictures such as Figure 1.1 can be viewed as approximations to such histograms. The probabilities
described by pictures such as Figure 1.1 are those associated with randomly picking an individ-
ual from the population. Thus, randomly picking an individual from the population modeled by
Figure 1.1 yields a measurement less than K(1−α) with probability 1−α .

Ideas similar to those discussed in Section 1.2 can be used to define expected values, variances,
and covariances for continuous distributions. These extensions involve integral calculus and are
discussed in the appendix. In any case, Proposition 1.2.11 continues to apply.

The most commonly used distributional model for measurement data is the normal distribution
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(also called the Gaussian distribution). The bell-shaped curve in Figure 1.1 is referred to as the
standard normal curve. The formula for writing the curve is not too ugly; it is

f (x) =
1√
2π

e−x2/2.

Here e is the base of natural logarithms. Unfortunately, even with calculus it is very difficult to
compute areas under this curve. Finding standard normal probabilities requires a table or a computer
routine.

By itself, the standard normal curve has little value in modeling measurements. For one thing,
the curve is centered about 0. I don’t take many measurements where I think the central value should
be 0. To make the normal distribution a useful model, we need to expand the standard normal into
a family of distributions with different centers (expected values) μ and different spreads (standard
deviations) σ . By appropriate recentering and rescaling of the plot, all of these curves will have
the same shape as Figure 1.1. Another important fact that allows us to combine data into estimates
is that linear combinations of independent normally distributed observations are again normally
distributed.

The standard normal distribution is the special case of a normal with μ = 0 and σ = 1. The
standard normal plays an important role because it is the only normal distribution for which we
actually compute probabilities. (Areas under the curve are hard to compute so we rely on computers
or, heaven forbid, tables.) Suppose a measurement y has a normal distribution with mean μ , standard
deviation σ , and variance σ2. We write this as

y ∼ N(μ ,σ2).

Normal distributions have the property that

y− μ
σ

∼ N(0,1),

cf. Exercise 1.6.2. This standardization process allows us to find probabilities for all normal distri-
butions using only one difficult computational routine.

The standard normal distribution is sometimes used in constructing statistical inferences but
more often a similar distribution is used. When data are normally distributed, statistical inferences
often require something called Student’s t distribution. (Student was the pen name of the Guinness
brewmaster W. S. Gosset.) The t distribution is a family of distributions all of which look roughly
like Figure 1.1. They are all symmetric about 0, but they have slightly different amounts of dis-
persion (spread). The amount of variability in each distribution is determined by a positive integer
parameter called the degrees of freedom. With only 1 degree of freedom, the mathematical proper-
ties of a t distribution are fairly bizarre. (This special case is called a Cauchy distribution.) As the
number of degrees of freedom get larger, the t distributions get better behaved and have less vari-
ability. As the degrees of freedom gets arbitrarily large, the t distribution approximates the standard
normal distribution; see Figure 1.2.

Two other distributions that come up later are the chi-squared distribution (χ2) and the F dis-
tribution. These arise naturally when drawing conclusions about the population variance from data
that are normally distributed. Both distributions differ from those just discussed in that both are
asymmetric and both are restricted to positive numbers. However, the basic idea of probabilities
being areas under curves remains unchanged. The shape of a chi-squared distribution depends on
one parameter called its degrees of freedom. An F depends on two parameters, its numerator and
denominator degrees of freedom. Figure 1.3 illustrates a χ2(8) and an F(3,18) distribution along
with illustrating the notation for an α percentile. With three or more degrees of freedom for a χ2 and
three or more numerator degrees of freedom for an F , the distributions are shaped roughly like those
in Figure 1.3, i.e., they are positive skewed distributions with densities that start at 0, increase, and
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Figure 1.2: Three t distributions.
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Figure 1.3 Top: A χ2(8) distribution with the α percentile. Bottom: An F(3,18) distribution the α percentile.

then decrease. With fewer than three degrees of freedom, the densities take on their largest values
near 0.

In Section 1.2, we introduced Chebyshev’s inequality. Shewhart (1931, p. 177) discusses work
by Camp and Meidell that allows us to improve on Chebyshev’s inequality for continuous distri-
butions. Once again let E(y) = μ and Var(y) = σ2. If the density, i.e., the function that defines the
curve, is symmetric, unimodal (has only one peak), and always decreases as one moves farther away
from the mode, then the inequality can be sharpened to

Pr[μ − kσ < y < μ + kσ ]≥ 1− 1
(2.25)k2 .
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As discussed in the previous section, with y normal and k = 3, the true probability is .997, Cheby-
shev’s inequality gives a lower bound of .889, and the new improved Chebyshev inequality gives
a lower bound of .951. By making some relatively innocuous assumptions, we get a substantial
improvement in the lower bound.

1.4 The binomial distribution

There are a few distributions that are used in the vast majority of statistical applications. The reason
for this is that they tend to occur naturally. The normal distribution is one. As discussed in the next
chapter, the normal distribution occurs in practice because a result called The Central Limit Theorem
dictates that many distributions can be approximated by the normal. Two other distributions, the
binomial and the multinomial, occur in practice because they are very simple. In this section we
discuss the binomial. The next section introduces the multinomial distribution. The results of this
section are used in Chapters 5, 20, and 21 and in discussions of transformations.

If you have independent identical random trials and count how often something (anything) oc-
curs, the appropriate distribution is the binomial. What could be simpler?

EXAMPLE 1.4.1. Being somewhat lonely in my misspent youth, I decided to use the computer
dating service aTonal.com. The service was to provide me with five matches. Being a very open-
minded soul, I convinced myself that the results of one match would not influence my opinion about
other matches. From my limited experience with the opposite sex, I have found that I enjoy about
40% of such brief encounters. I decided that my money would be well spent if I enjoyed two or more
of the five matches. Unfortunately, my loan shark repossessed my 1954 Studebaker before I could
indulge in this taste of nirvana. Back in those days, we chauvinists believed: no wheels—no women.
Nevertheless, let us compute the probability that I would have been satisfied with the dating service.
Let W be the number of matches I would have enjoyed. The simplest way to find the probability of
satisfaction is

Pr(W ≥ 2) = 1−Pr(W < 2)

= 1−Pr(W = 0)−Pr(W = 1) ,

but that is much too easy. Let’s compute

Pr(W ≥ 2) = Pr(W = 2)+Pr(W = 3)+Pr(W = 4)+Pr(W = 5) .

In particular, we compute each term on the right-hand side.
Write the outcome of the five matches as an ordered collection of Ls and Ds. For example, (L,

D, L, D, D) indicates that I like the first and third matches, but dislike the second, fourth, and fifth.
To like five matches, I must like every one of them.

Pr(W = 5) = Pr(L,L,L,L,L) .

Remember, I assumed that the matches were independent and that the probability of my liking any
one is .4. Thus,

Pr(W = 5) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(L)

= (.4)5 .

The probability of liking four matches is a bit more complicated. I could only dislike one match,
but there are five different choices for the match that I could dislike. It could be the fifth, the fourth,
the third, the second, or the first. Any pattern of 4 Ls and a D excludes the other patterns from
occurring, e.g., if the only match I dislike is the fourth, then the only match I dislike cannot be the
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second. Since the patterns are mutually exclusive (disjoint), the probability of disliking one match
is the sum of the probabilities of the individual patterns.

Pr(W = 4) = Pr(L,L,L,L,D) (1.4.1)

+Pr(L,L,L,D,L)

+Pr(L,L,D,L,L)

+Pr(L,D,L,L,L)

+Pr(D,L,L,L,L) .

By assumption Pr(L) = .4, so Pr(D) = 1−Pr(L) = 1− .4 = .6. The matches are independent, so

Pr(L,L,L,L,D) = Pr(L)Pr(L)Pr(L)Pr(L)Pr(D)

= (.4)4.6 .

Similarly,

Pr(L,L,L,D,L) = Pr(L,L,D,L,L)

= Pr(L,D,L,L,L)

= Pr(D,L,L,L,L)

= (.4)4.6 .

Summing up the values in Equation (1.4.1),

Pr(W = 4) = 5(.4)4(.6) .

Computing the probability of liking three matches is even worse.

Pr(W = 3) = Pr(L,L,L,D,D)

+Pr(L,L,D,L,D)

+Pr(L,D,L,L,D)

+Pr(D,L,L,L,D)

+Pr(L,L,D,D,L)

+Pr(L,D,L,D,L)

+Pr(D,L,L,D,L)

+Pr(L,D,D,L,L)

+Pr(D,L,D,L,L)

+Pr(D,D,L,L,L).

Again all of these patterns have exactly the same probability. For example, using independence

Pr(D,L,D,L,L) = (.4)3(.6)2 .

Adding up all of the patterns
Pr(W = 3) = 10(.4)3(.6)2 .

By now it should be clear that

Pr(W = 2) = (number of patterns with 2 Ls and 3 Ds)(.4)2(.6)3 .

The number of patterns can be computed as
(

5
2

)
≡ 5!

2!(5−2)!
≡ 5 ·4 ·3 ·2 ·1

(2 ·1)(3 ·2 ·1) = 10 .
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The probability that I would be satisfied with the dating service is

Pr(W ≥ 2) = 10(.4)2(.6)3 +10(.4)3(.6)2 +5(.4)4.6+(.4)5

= .663 . �

Binomial random variables can also be generated by sampling from a fixed population. If we
were going to make 20 random selections from the UNM student body, the number of females would
have a binomial distribution. Given a set of procedures for defining and sampling the student body,
there would be some fixed number of students of which a given number would be females. Under
random sampling, the probability of selecting a female on any of the 20 trials would be simply the
proportion of females in the population. Although it is very unlikely to occur in this example, the
sampling scheme must allow the possibility of students being selected more than once in the sample.
If people were not allowed to be chosen more than once, each successive selection would change the
proportion of females available for the subsequent selection. Of course, when making 20 selections
out of a population of over 20,000 UNM students, even if you did not allow people to be reselected,
the changes in the proportions of females are insubstantial and the binomial distribution makes a
good approximation to the true distribution. On the other hand, if the entire student population was
40 rather than 20,000+, it might not be wise to use the binomial approximation when people are
not allowed to be reselected.

Typically, the outcome of interest in a binomial is referred to as a success. If the probability
of a success is p for each of N independent identical trials, then the number of successes y has a
binomial distribution with parameters N and p. Write

y ∼ Bin(N, p) .

The distribution of y is

Pr(y = r) =

(
N
r

)
pr(1− p)N−r

for r = 0,1, . . . ,N. Here (
N
r

)
≡ N!

r!(N − r)!

where for any positive integer m, m! ≡ m(m− 1)(m− 2) · · · (2)(1) and 0! ≡ 1. The notation
(N

r

)
is read “N choose r” because it is the number of distinct ways of choosing r individuals out of a
collection containing N individuals.

EXAMPLE 1.4.2. The random variables in Example 1.2.1 were y1, the number of heads on the
first toss of a coin, y2, the number of heads on the second toss of a coin, and W , the combined
number of heads from the two tosses. These have the following distributions:

y1 ∼ Bin

(
1,

1
2

)

y2 ∼ Bin

(
1,

1
2

)

W ∼ Bin

(
2,

1
2

)
.

Note that W , the Bin
(
2, 1

2

)
, was obtained by adding together the two independent Bin

(
1, 1

2

)
random

variables y1 and y2. This result is quite general. Any Bin (N, p) random variable can be written as
the sum of N independent Bin(1, p) random variables. �
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Given the probability distribution of a binomial, we can find the mean (expected value) and
variance. By definition, if y ∼ Bin(N, p), the mean is

E(y) =
N

∑
r=0

r

(
N
r

)
pr(1− p)N−r .

This is difficult to evaluate directly, but by writing y as the sum of N independent Bin(1, p) random
variables and using Exercise 1.6.1 and Proposition 1.2.11, it is easily seen that

E(y) = N p .

Similarly, the variance of y is

Var(y) =
N

∑
r=0

(r−N p)2
(

N
r

)
pr(1− p)N−r

but by again writing y as the sum of N independent Bin(1, p) random variables and using Exer-
cise 1.6.1 and Proposition 1.2.11, it is easily seen that

Var(y) = N p(1− p) .

Exercise 1.6.8 consists of proving these mean and variance formulae.
On occasion we will need to look at both the number of successes from a group of N trials and

the number of failures at the same time. If the number of successes is y1 and the number of failures
is y2, then

y2 = N − y1

y1 ∼ Bin(N, p)

and
y2 ∼ Bin(N,1− p) .

The last result holds because, with independent identical trials, the number of outcomes that we call
failures must also have a binomial distribution. If p is the probability of success, the probability of
failure is 1− p. Of course,

E(y2) = N(1− p)

Var(y2) = N(1− p)p .

Note that Var(y1) = Var(y2) regardless of the value of p. Finally,

Cov(y1,y2) =−N p(1− p)

and
Corr(y1,y2) =−1 .

There is a perfect linear relationship between y1 and y2. If y1 goes up one count, y2 goes down one
count. When we look at both successes and failures write

(y1,y2)∼ Bin
(
N, p,(1− p)

)
.

This is the simplest case of the multinomial distribution discussed in the next section. But first we
look at a special case of Binomial sampling.
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1.4.1 Poisson sampling

The Poisson distribution might be used to model the number of flaws on a dvd. There is no obvious
upper bound on the number of flaws. If we put a grid over the (square?) dvd, we could count
whether every grid square contains a flaw. The number of grid squares with a flaw has a binomial
distribution. As we make the grid finer and finer, the number of grid squares that contain flaws will
become the actual number of flaws. Also, for finer grids, the probability of a flaw decreases as the
size of each square decreases but the number of grid squares increases correspondingly while the
expected number of squares with flaws remains the same. After all, the number of flaws we expect
on the dvd has nothing to do with the grid that we decide to put over it. If we let λ be the expected
number of flaws, λ = N p where N is the number of grid squares and p is the probability of a flaw
in the square.

The Poisson distribution is an approximation used for binomials with a very large number of
trials, each having a very small probability of success. Under these conditions, if N p

.
= λ we write

y ∼ Pois(λ ) .

For an infinitely large number of trials, the distribution of y is

Pr(y = r) = λ reλ/r!,

r = 0,1,2, . . .. These probabilities are just the limits of the binomial probabilities under the condi-
tions described. The mean and variance of a Pois(λ ) are

E(y) = λ

and
Var(y) = λ .

1.5 The multinomial distribution

The multinomial distribution is a generalization of the binomial allowing more than two categories.
The results in this section are used in Chapters 5 and 21.

EXAMPLE 1.5.1. Consider the probabilities for the nine height and eye color categories given in
Example 1.1.2. The probabilities are repeated below.

Height—eye color probabilities
Eye color

Blue Brown Green
Tall .12 .15 .03

Height Medium .22 .34 .04
Short .06 .01 .03

Suppose a random sample of 50 individuals was obtained with these probabilities. For example,
one might have a population of 100 people in which 12 were tall with blue eyes, 15 were tall with
brown eyes, 3 were short with green eyes, etc. We could randomly select one of the 100 people
as the first individual in the sample. Then, returning that individual to the population, take another
random selection from the 100 to be the second individual. We are to proceed in this way until 50
people are selected. Note that with a population of 100 and a sample of 50 there is a substantial
chance that some people would be selected more than once. The numbers of selections falling into
each of the nine categories has a multinomial distribution with N = 50 and these probabilities.

It is unlikely that one would actually perform sampling from a population of 100 people as
described above. Typically, one would not allow the same person to be chosen more than once.
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However, if we had a population of 10,000 people where 1200 were tall with blue eyes, 1500 were
tall with brown eyes, 300 were short with green eyes, etc., with a sample size of 50 we might be
willing to allow the possibility of selecting the same person more than once simply because it is
extremely unlikely to happen. Technically, to obtain the multinomial distribution with N = 50 and
these probabilities, when sampling from a fixed population we need to allow individuals to appear
more than once. However, when taking a small sample from a large population, it does not matter
much whether or not you allow people to be chosen more than once, so the multinomial often
provides a good approximation even when individuals are excluded from reappearing in the sample.

�

Consider a group of N independent identical trials in which each trial results in the occurrence
of one of q events. Let yi, i = 1, . . . ,q be the number of times that the ith event occurs and let pi be
the probability that the ith event occurs on any trial. The pis must satisfy p1 + p2 + · · ·+ pq = 1. We
say that (y1, . . . ,yq) has a multinomial distribution with parameters N, p1, . . . , pq. Write

(y1, . . . ,yq)∼ Mult(N, p1, . . . , pq) .

The distribution is given by the probabilities

Pr(y1 = r1, . . . ,yq = rq) =
N!

r1! · · · rq!
pr1

1 · · · p
rq
q

=

(
N!
/ q

∏
i=1

ri!

)
q

∏
i=1

pri
i .

Here the ris are allowed to be any whole numbers with each ri ≥ 0 and r1+ · · ·+rq = N. Note that if
q = 2, this is just a binomial distribution. In general, each individual component yi of a multinomial
consists of N trials in which category i either occurs or does not occur, so individual components
have the marginal distributions

yi ∼ Bin(N, pi).

It follows that
E(yi) = N pi

and
Var(yi) = N pi(1− pi) .

It can also be shown that

Cov(yi,y j) =−N pi p j for i �= j .

EXAMPLE 1.5.2. Suppose that the 50 individuals from Example 1.5.1 fall into the categories as
listed below.

Height—eye color observations
Eye color

Blue Brown Green
Tall 5 8 2

Height Medium 10 18 2
Short 3 1 1

The probability of getting this particular table is

50!
5!8!2!10!18!2!3!1!1!

(.12)5(.15)8(.03)2(.22)10(.34)18(.04)2(.06)3(.01)1(.03)1.
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This number is zero to over 5 decimal places. The fact that this is a very small number is not
surprising. There are a lot of possible tables, so the probability of getting any particular table is very
small. In fact, many of the possible tables are much less likely to occur than this table.

Let’s return to thinking about the observations as random. The expected number of observations
for each category is given by N pi. It is easily seen that the expected counts for the cells are as
follows.

Height—eye color expected values
Eye color

Blue Brown Green
Tall 6.0 7.5 1.5

Height Medium 11.0 17.0 2.0
Short 3.0 0.5 1.5

Note that the expected counts need not be integers.
The variance for, say, the number of tall blue-eyed people in this sample is 50(.12)(1− .12) =

5.28. The variance of the number of short green-eyed people is 50(.03)(1− .03) = 1.455. The
covariance between the number of tall blue-eyed people and the number of short green-eyed people
is −50(.12)(.03) = −.18. The correlation between the numbers of tall blue-eyed people and short
green-eyed people is −.18/

√
(5.28)(1.455) =−0.065. �

1.5.1 Independent Poissons and multinomials

Suppose that instead of sampling 50 people and cross classifying them into the height–eye color
categories, we spend an hour at a shopping mall looking at people. Suppose during that time we
saw 5 tall, blue-eyed people as well as the other numbers given earlier. Note that there is no obvi-
ous maximum number of tall blue-eyed people that we can see in an hour, nor obvious maximum
numbers for the other categories. The Poisson distribution is a reasonable model for the count in
each category and the counts could well be independent. If we happen to see 50 observations in the
table, we can think about the distribution of the counts given that there is a total of 50 observations.
It turns out that this conditional distribution is the multinomial distribution.

Later, in Chapter 21, we will look at methods for analyzing independent Poisson observations.
Because of the relationship between independent Poissons and multinomials, the methods for inde-
pendent Poisson data can also be used to analyze multinomial data.

Appendix: probability for continuous distributions

As stated in Section 1.3, probabilities are sometimes defined as areas under a curve. The curve,
called a probability density function or just a density, must be defined by some nonnegative func-
tion f (·). (Nonnegative to ensure that probabilities are always positive.) Thus the probability that a
random observation y is between two numbers, say a and b, is the area under the curve measured
between a and b. Using calculus, this is

Pr[a < y < b] =
∫ b

a
f (y)dy.

Because we are measuring areas under curves, there is no area associated with any one point, so
Pr[a < y < b] = Pr[a ≤ y < b] = Pr[a < y ≤ b] = Pr[a ≤ y ≤ b]. The area under the entire curve must
be 1, i.e.,

1 = Pr[−∞< y <∞] =

∫ ∞

−∞
f (y)dy.

Figure 1.1 indicates that the probability below K(1−α) is 1−α , i.e.,

1−α = Pr[y < K(1−α)] =

∫ K(1−α)

−∞
f (y)dy
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and that the probability above K(1−α) is α , i.e.,

α = Pr[y > K(1−α)] =

∫ ∞

K(1−α)
f (y)dy.

The expected value of y is defined as

E(y) =
∫ ∞

−∞
y f (y)dy.

For any function g(y), the expected value is

E[g(y)] =
∫ ∞

−∞
g(y) f (y)dy.

In particular, if we let E(y) = μ and g(y) = (y− μ)2, we define the variance as

Var(y) = E[(y− μ)2] =

∫ ∞

−∞
(y− μ)2 f (y)dy.

To define the covariance between two random variables, say y1 and y2, we need a joint density
f (y1,y2). We can find the density for y1 alone as

f1(y1) =

∫ ∞

−∞
f (y1,y2)dy2

and we can write E(y1) in two equivalent ways,

E(y1) =

∫ ∞

−∞

∫ ∞

−∞
y1 f (y1,y2)dy1 dy2 =

∫ ∞

−∞
y1 f1(y1)dy1.

Writing E(y1) = μ1 and E(y2) = μ2, we can now define the covariance between y1 and y2 as

Cov(y1,y2) =
∫ ∞

−∞

∫ ∞

−∞
(y1 − μ1)(y2 − μ2) f (y1,y2)dy1 dy2.

1.6 Exercises

EXERCISE 1.6.1. Use the definitions to find the expected value and variance of a Bin(1, p) dis-
tribution.

EXERCISE 1.6.2. Let y be a random variable with E(y) = μ and Var(y) = σ2. Show that

E

(
y− μ

σ

)
= 0

and

Var

(
y− μ

σ

)
= 1.

Let ȳ· be the sample mean of n independent observations yi with E(yi) = μ and Var(yi) = σ2.
What is the expected value and variance of

ȳ·− μ
σ/

√
n

?

Hint: For the first part, write
y− μ

σ
as

1
σ

y− μ
σ
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and use Proposition 1.2.11.

EXERCISE 1.6.3. Let y be the random variable consisting of the number of spots that face up upon
rolling a die. Give the distribution of y. Find the expected value, variance, and standard deviation of
y.

EXERCISE 1.6.4. Consider your letter grade for this course. Obviously, it is a random phe-
nomenon. Define the ‘grade point’ random variable: y(A) = 4, y(B) = 3, y(C) = 2, y(D) = 1,
y(F) = 0. If you were lucky enough to be taking the course from me, you would find that I am
an easy grader. I give 5% As, 10% Bs, 35% Cs, 30% Ds, and 20% Fs. I also assign grades at ran-
dom, that is to say, my tests generate random scores. Give the distribution of y. Find the expected
value, variance, and standard deviation of the grade points a student would earn in my class. (Just
in case you hadn’t noticed, I’m being sarcastic.)

EXERCISE 1.6.5. Referring to Exercise 1.6.4, supposing I have a class of 40 students, what is the
joint distribution for the numbers of students who get each of the five grades? Note that we are no
longer looking at how many grade points an individual student might get, we are now counting how
many occurrences we observe of various events. What is the distribution for the number of students
who get Bs? What is the expected value of the number of students who get Cs? What is the variance
and standard deviation of the number of students who get Cs? What is the probability that in a class
of 5 students, 1 gets an A, 2 get Cs, 1 gets a D, and 1 fails?

EXERCISE 1.6.6. Graph the function f (x) = 1 if 0< x< 1 and f (x) = 0 otherwise. This is known
as the uniform density on (0,1). If we use this curve to define a probability function, what is the
probability of getting an observation larger than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.7. Arthritic ex-football players prefer their laudanum made with Old Pain-Killer
Scotch by two to one. If we take a random sample of 5 arthritic ex-football players, what is the
distribution of the number who will prefer Old Pain-Killer? What is the probability that only 2 of
the ex-players will prefer Old Pain-Killer? What is the expected number who will prefer Old Pain-
Killer? What are the variance and standard deviation of the number who will prefer Old Pain-Killer?

EXERCISE 1.6.8. Let W ∼ Bin(N, p) and for i = 1, . . . ,N take independent yis that are Bin(1, p).
Argue that W has the same distribution as y1 + · · ·+ yN . Use this fact, along with Exercise 1.6.1 and
Proposition 1.2.11, to find E(W ) and Var(W ).

EXERCISE 1.6.9. Appendix B.1 gives probabilities for a family of distributions that all look
roughly like Figure 1.1. All members of the family are symmetric about zero and the members are
distinguished by having different numbers of degrees of freedom (df ). They are called t distribu-
tions. For 0 ≤ α ≤ 1, the α percentile of a t distribution with df degrees of freedom is the point x
such that Pr[t(df )≤ x] = α . For example, from Table B.1 the row corresponding to df = 10 and the
column for the .90 percentile tells us that Pr[t(10)≤ 1.372] = .90.

(a) Find the .99 percentile of a t(7) distribution.

(b) Find the .975 percentile of a t(50) distribution.

(c) Find the probability that a t(25) is less than or equal to 3.450.

(d) Find the probability that a t(100) is less than or equal to 2.626.

(e) Find the probability that a t(16) is greater than 2.92.

(f) Find the probability that a t(40) is greater than 1.684.

(g) Recalling that t distributions are symmetric about zero, what is the probability that a t(40) dis-
tribution is less than −1.684?
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(h) What is the probability that a t(40) distribution is between −1.684 and 1.684?

(i) What is the probability that a t(25) distribution is less than −3.450?

(j) What is the probability that a t(25) distribution is between −3.450 and 3.450?

EXERCISE 1.6.10. Consider a random variable that takes on the values 25, 30, 45, and 50 with
probabilities .15, .25, .35, and .25, respectively. Find the expected value, variance, and standard
deviation of this random variable.

EXERCISE 1.6.11. Consider three independent random variables X , Y , and Z. Suppose E(X) =
25, E(Y ) = 40, and E(Z) = 55 with Var(X) = 4, Var(Y ) = 9, and Var(Z) = 25.

(a) Find E(2X + 3Y +10) and Var(2X +3Y +10).

(b) Find E(2X + 3Y +Z+10) and Var(2X +3Y +Z+10).

EXERCISE 1.6.12. As of 1994, Duke University had been in the final four of the NCAA’s national
basketball championship tournament seven times in nine years. Suppose their appearances were
independent and that they had a probability of .25 for winning the tournament in each of those
years.

(a) What is the probability that Duke would win two national championships in those seven appear-
ances?

(b) What is the probability that Duke would win three national championships in those seven ap-
pearances?

(c) What is the expected number of Duke championships in those seven appearances?

(d) What is the variance of the number of Duke championships in those seven appearances?

EXERCISE 1.6.13. Graph the function f (x) = 2x if 0 < x < 1 and f (x) = 0 otherwise. If we use
this curve to define a probability function, what is the probability of getting an observation larger
than 1/4? Smaller than 2/3? Between 1/3 and 7/9?

EXERCISE 1.6.14. A pizza parlor makes small, medium, and large pizzas. Over the years they
make 20% small pizzas, 35% medium pizzas, and 45% large pizzas. On a given Tuesday night they
were asked to make only 10 pizzas. If the orders were independent and representative of the long-
term percentages, what is the probability that the orders would be for four small, three medium, and
three large pizzas? On such a night, what is the expected number of large pizzas to be ordered and
what is the expected number of small pizzas to be ordered? What is the variance of the number of
large pizzas to be ordered and what is the variance of the number of medium pizzas to be ordered?

EXERCISE 1.6.15. When I order a limo, 65% of the time the driver is male. Assuming indepen-
dence, what is the probability that 6 of my next 8 drivers are male? What is the expected number of
male drivers among my next eight? What is the variance of the number of male drivers among my
next eight?

EXERCISE 1.6.16. When I order a limo, 65% of the time the driver is clearly male, 30% of
the time the driver is clearly female, and 5% of the time the gender of the driver is indeterminant.
Assuming independence, what is the probability that among my next 8 drivers 5 are clearly male
and 3 are clearly female? What is the expected number of indeterminant drivers among my next
eight? What is the variance of the number of clearly female drivers among my next eight?



Chapter 2

One Sample

In this chapter we examine the analysis of a single random sample consisting of n independent
observations from some population.

2.1 Example and introduction

EXAMPLE 2.1.1. Consider the dropout rate from a sample of math classes at the University of
New Mexico as reported by Koopmans (1987). The data are

5,22,10,12,8,17,2,25,10,10,7,7,40,7,9,17,12,12,1,

13,10,13,16,3,14,17,10,10,13,59,11,13,5,12,14,3,14,15.

This list of n = 38 observations is not very illuminating. A graphical display of the numbers is
more informative. Figure 2.1 plots the data above a single axis. This is often called a dot plot. From
Figure 2.1, we see that most of the observations are between 0 and 18. There are two conspicuously
large observations. Going back to the original data we identify these as the values 40 and 59. In
particular, these two outlying values strongly suggest that the data do not follow a bell-shaped curve
and thus that the data do not follow a normal distribution. �

Typically, for one sample of data we assume that the n observations are

Data Distribution
y1,y2, . . . ,yn independent N(μ ,σ2)

The key assumptions are that the observations are independent and have the same distribution. In
particular, we assume they have the same (unknown) mean μ and the same (unknown) variance σ2.

These assumptions of independence and a constant distribution should be viewed as only useful
approximations to actual conditions. Often the most valuable approach to evaluating these assump-
tions is simply to think hard about whether they are reasonable. In any case, the conclusions we
reach are only as good as the assumptions we have made. The only way to be positive that these
assumptions are true is if we arrange for them to be true. If we have a fixed finite population and take
a random sample from the population allowing elements of the population to be observed more than
once, then the assumptions (other than normality) are true. In Example 2.1.1, if we had the dropout

:

. . : ::: .

.: : :::.:::.: . . . .

-+---------+---------+---------+---------+---------+-----

0 12 24 36 48 60

Figure 2.1: Dot plot for drop rate percentage data.
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rates for all math classes in the year and randomly selected these 38 while allowing for classes to
appear more than once in the sample, the assumptions of independence with the same distribution
are satisfied.

The ideal conditions of independent sampling from a fixed population are difficult to achieve.
Many populations refuse to hold still while we sample them. For example, the population of students
at a large university changes almost continuously (during working hours). To my way of thinking,
the populations associated with most interesting data are virtually impossible to define unambigu-
ously. Who really cares about the dropout rates? As such, they can only be used to fix blame. Our
real interest is in what the data can tell us about current and future dropout rates. If the data are
representative of current or future conditions, the data can be used to fix problems. For example,
one might find out whether certain instructors generate huge dropout rates, and avoid taking classes
from them. Perhaps the large dropout rates are because the instructor is more demanding. You might
want to seek out such a class. It is difficult to decide whether these or any data are representative of
current or future conditions because we cannot possibly know the future population and we cannot
practically know the current population. As mentioned earlier, often our best hope is to think hard
about whether these data approximate independent observations from the population of interest.

Even when sampling from a fixed population, we use approximations. In practice we rarely
allow elements of a fixed population to be observed more than once in a sample. This invalidates
the assumptions. If the first sampled element is eliminated, the second element is actually being
sampled from a different population than the first. (One element has been eliminated.) Fortunately,
when the sample contains a small proportion of the fixed population, the standard assumptions make
a good approximation. Moreover, the normal distribution is never more than an approximation to a
fixed population. The normal distribution has an infinite number of possible outcomes, while fixed
populations are finite. Often, the normal distribution makes a good approximation, especially if we
do our best to validate it. In addition, the assumption of a normal distribution is only used when
drawing conclusions from small samples. For large samples we can get by without the assumption
of normality.

Our primary objective is to draw conclusions about the mean μ . We condense the data into sum-
mary statistics. These are the sample mean, the sample variance, and the sample standard deviation.
The sample mean has the algebraic formula

ȳ· ≡
1
n

n

∑
i=1

yi =
1
n
[y1 + y2 + · · ·+ yn]

where the · in ȳ· indicates that the mean is obtained by averaging the yis over the subscript i. The
sample mean ȳ· estimates the population mean μ . The sample variance is an estimate of the popula-
tion variance σ2. The sample variance is essentially the average squared distance of the observations
from the sample mean,

s2 ≡ 1
n− 1

n

∑
i=1

(yi − ȳ·)
2 (2.1.1)

=
1

n− 1

[
(y1 − ȳ·)

2
+(y2 − ȳ·)

2
+ · · ·+(yn − ȳ·)

2
]
.

The sample standard deviation is just the square root of the sample variance,

s ≡
√

s2.

EXAMPLE 2.1.2. The sample mean of the dropout rate data is

ȳ· =
5+22+10+12+8+ · · ·+3+14+15

38
= 13.105.
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If we think of these data as a sample from the fixed population of math dropout rates, ȳ· is obviously
an estimate of the simple average of all the dropout rates of all the classes in that academic year.
Equivalently, ȳ· is an estimate of the expected value for the random variable defined as the dropout
rate obtained when we randomly select one class from the fixed population. Alternatively, we may
interpret ȳ· as an estimate of the mean of some population that is more interesting but less well
defined than the fixed population of math dropout rates.

The sample variance is

s2 =

[
(5− 13.105)2+(22−13.105)2+ · · ·+(14−13.105)2+(15−13.105)2

]
38−1

= 106.42.

This estimates the variance of the random variable obtained when randomly selecting one class from
the fixed population. The sample standard deviation is

s =
√

106.42 = 10.32 . �

The only reason s2 is not the average squared distance of the observations from the sample mean
is that the denominator in (2.1.1) is n− 1 instead of n. If μ were known, a better estimate of the
population variance σ2 would be

σ̂2 ≡
n

∑
i=1

(yi − μ)2 /n. (2.1.2)

In s2, we have used ȳ· to estimate μ . Not knowing μ , we know less about the population, so s2 cannot
be as good an estimate as σ̂2. The quality of a variance estimate can be measured by the number of
observations on which it is based; σ̂2 makes full use of all n observations for estimating σ2. In using
s2, we lose the functional equivalent of one observation for having estimated the parameter μ . Thus
s2 has n− 1 in the denominator of (2.1.1) and is said to have n−1 degrees of freedom. In nearly all
problems that we will discuss, there is one degree of freedom available for every observation. The
degrees of freedom are assigned to various estimates and we will need to keep track of them.

The statistics ȳ· and s2 are estimates of μ and σ2, respectively. The Law of Large Numbers is a
mathematical result implying that for large sample sizes n, ȳ· gets arbitrarily close to μ and s2 gets
arbitrarily close to σ2.

Both ȳ· and s2 are computed from the random observations yi. The summary statistics are func-
tions of random variables, so they must also be random. Each has a distribution and to draw conclu-
sions about the unknown parameters μ and σ2 we need to know the distributions. In particular, if
the original data are normally distributed, the sample mean has the distribution

ȳ· ∼ N

(
μ ,

σ2

n

)

or equivalently,
ȳ·− μ√

σ2/n
∼ N(0,1) ; (2.1.3)

see Exercise 1.6.2. In Subsection 1.2.4 we established that E(ȳ·) = μ and Var(ȳ·) = σ2/n, so the
only new claim made here is that the sample mean computed from independent, identically dis-
tributed (iid) normal random variables is again normally distributed. Actually, this is a special case
of the earlier claim that any linear combinations of independent normals is again normal. More-
over, the Central Limit Theorem is a mathematical result stating that the normal distribution for ȳ·
is approximately true for ‘large’ samples n, regardless of whether the original data are normally
distributed.

As we will see below, the distributions given earlier are only useful in drawing conclusions
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Figure 2.2: Three distributions: solid, N(0,1); long dashes, t(1); short dashes, t(3).

about data when σ2 is known. Generally, we will need to estimate σ2 with s2 and proceed as best
we can. By the law of large numbers, s2 becomes arbitrarily close to σ2, so for large samples we can
substitute s2 for σ2 in the distributions above. In other words, for large samples the approximation

ȳ·− μ√
s2/n

∼ N(0,1) (2.1.4)

holds regardless of whether the data were originally normal.
For small samples we cannot rely on s2 being close to σ2, so we fall back on the assumption that

the original data are normally distributed. For normally distributed data, the appropriate distribution
is called a t distribution with n− 1 degrees of freedom. In particular,

ȳ·− μ√
s2/n

∼ t(n−1). (2.1.5)

The t distribution is similar to the standard normal but more spread out; see Figure 2.2. It only makes
sense that if we need to estimate σ2 rather than knowing it, our conclusions will be less exact. This
is reflected in the fact that the t distribution is more spread out than the N(0,1). In the previous
paragraph we argued that for large n the appropriate distribution is

ȳ·− μ√
s2/n

∼ N(0,1).

We are now arguing that for normal data the appropriate distribution is t(n− 1). It had better be
the case (and is) that for large n the N(0,1) distribution is approximately the same as the t(n− 1)
distribution. In fact, we define t(∞) to be a N(0,1) distribution where ∞ indicates an infinitely
large number.

Formal distribution theory

By definition, the t distribution is obtained as the ratio of two things related to the sample mean and
variance. We now present this general definition.
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First, for normally distributed data, the sample variance s2 has a known distribution that depends
on σ2. It is related to a distribution called the chi-squared (χ2) distribution with n− 1 degrees of
freedom. In particular,

(n−1)s2

σ2 ∼ χ2(n−1). (2.1.6)

Moreover, for normal data, ȳ· and s2 are independent.

Definition 2.1.3. A t distribution is the distribution obtained when a random variable with a
N(0,1) distribution is divided by an independent random variable that is the square root of a χ2

random variable over its degrees of freedom. The t distribution has the same degrees of freedom as
the chi-square.

In particular, [ȳ·− μ ]/
√

σ2/n is N(0,1),
√
[(n−1)s2/σ2]/(n−1) is the square root of a chi-

squared random variable over its degrees of freedom, and the two are independent because ȳ· and
s2 are independent, so

ȳ·− μ√
s2/n

=
[ȳ·− μ ]/

√
σ2/n√

[(n−1)s2/σ2]/(n−1)
∼ t(n−1).

The t distribution has the same degrees of freedom as the estimate of σ2; this is typically the case
in other applications.

2.2 Parametric inference about μ

Most statistical tests and confidence intervals are applications of a single theory that focuses on a sin-
gle parameter. While we will make use of this parametric theory when necessary, and while people
educated in Statistics are expected to know this parametric approach to inference, the current book
focuses on a model-based approach to statistical inference that will be introduced in Section 2.4.

To use the parametric theory in question, we need to know four things. In the one-sample prob-
lem the four things are

1. the parameter of interest, μ ,

2. the estimate of the parameter, ȳ·,
3. the standard error of the estimate, SE(ȳ·)≡

√
s2/n = s

/√
n, and

4. the appropriate distribution for [ȳ·− μ ]
/√

s2/n .

In practice the appropriate distribution can always be thought of as a t distribution with some number
of degrees of freedom, df . The t distribution is denoted t(df ). When the original observations are
assumed to be independent N(μ ,σ2), the appropriate distribution is t(n− 1), that is, the degrees
of freedom are n− 1. Regardless of the original distribution, if the observations are independent
with a common distribution having mean μ and variance σ2 and if the sample size n is large, the
central limit theorem and the law of large numbers suggest that the appropriate distribution is a
N(0,1), which is the same as a t(∞) distribution, that is, a t with an infinite number of degrees of
freedom. In practice, I suspect that a t(n− 1) will almost always be a better approximation to the
true distribution than a t(∞).

Specifically, we need a known (tabled or programmed) distribution for [ȳ·− μ ]
/√

s2/n that is
symmetric about zero and continuous. The standard error, SE(ȳ·), is the estimated standard deviation
of ȳ·. Recall that the variance of ȳ· is σ2/n, so its standard deviation is

√
σ2/n and estimating σ2

by s2 gives the standard error
√

s2/n.
The appropriate distribution for [ȳ·− μ ]

/√
s2/n when the data are normally distributed is the

t(n− 1) as in (2.1.4). For large samples, an approximate distribution is the N(0,1) as in (2.1.3).
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Figure 2.3: 1−α percentile of the distribution of [ȳ·− μ]/SE(ȳ·).

Recall that for large samples from a normal population, it is largely irrelevant whether we use the
standard normal or the t distribution because they are essentially the same. In the unrealistic case
where σ2 is known we do not need to estimate it, so we use

√
σ2/n instead of

√
s2/n for the

standard error. In this case, the appropriate distribution is N(0,1) as in (2.1.2) if either the original
data are normal or the sample size is large.

We need notation for the percentage points of the known distribution and we need a name for
the point that cuts off the top α of the distribution. Typically, we need to find points that cut off the
top 5%, 2.5%, 1%, or 0.5% of the distribution, so α is 0.05, 0.025, 0.01, or 0.005. As discussed
in the previous paragraph, the appropriate distribution depends on various circumstances of the
problem, so we begin by discussing percentage points with a generic notation. We use the notation
t(1−α,df ) for the point that cuts off the top α of the distribution. Figure 2.3 displays this idea
graphically for a value of α between 0 and 0.5. The distribution is described by the curve, which is
symmetric about 0. t(1−α,df ) is indicated along with the fact that the area under the curve to the
right of t(1−α,df ) is α . Formally the point that cuts off the top α of the distribution is t(1−α,df )
where

Pr

[
ȳ·− μ
SE(ȳ·)

> t(1−α,df )

]
= α.

Note that the same point t(1−α,df ) also cuts off the bottom 1−α of the distribution, i.e.,

Pr

[
ȳ·− μ
SE(ȳ·)

< t(1−α,df )

]
= 1−α.

This is illustrated in Figure 2.3 by the fact that the area under the curve to the left of t(1−α,df )
is 1−α . The reason the point is labeled t(1−α,df ) is because it cuts off the bottom 1−α of the
distribution. The labeling depends on the percentage to the left even though our interest is in the
percentage to the right.

There are at least three different ways to label these percentage points; I have simply used the
one I feel is most consistent with general usage in Probability and Statistics. The key point however
is to be familiar with Figure 2.3. We need to find points that cut off a fixed percentage of the area
under the curve. As long as we can find such points, what we call them is irrelevant. Ultimately,
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t(1 − α, df)− t(1 − α, df) 0

0

1 − 2α αα

Figure 2.4: Symmetry about 0 in the distribution of [ȳ·− μ]/SE(ȳ·).

anyone doing Statistics will need to be familiar with all three methods of labeling. One method of
labeling is in terms of the area to the left of the point; this is the one we will use. A second method
is labeling in terms of the area to the right of the point; thus the point we call t(1−α,df ) could be
labeled, say, Q(α,df ). The third method is to call this number, say, W (2α,df ), where the area to
the right of the point is doubled in the label. For example, if the distribution is a N(0,1) = t(∞),
the point that cuts off the bottom 97.5% of the distribution is 1.96. This point also cuts off the top
2.5% of the area. It makes no difference if we refer to 1.96 as the number that cuts off the bottom
97.5%, t(0.975,∞), or as the number that cuts off the top 2.5%, Q(0.025,∞), or as the number
W (0.05,∞) where the label involves 2× 0.025; the important point is being able to identify 1.96
as the appropriate number. Henceforth, we will always refer to points in terms of t(1−α,df ), the
point that cuts off the bottom 1−α of the distributions. No further reference to the alternative
labelings will be made but all three labels are used in Appendix B.1. There t(1−α,df )s are labeled
as percentiles and, for reasons related to statistical tests, Q(α,df )s and W (2α,df )s are labeled as
one-sided and two-sided α levels, respectively.

A fundamental assumption in our inference about μ is that the distribution of [ȳ·− μ ]/SE(ȳ·)
is symmetric about 0. By the symmetry around zero, if t(1−α,df ) cuts off the top α of the distri-
bution, −t(1−α,df ) must cut off the bottom α of the distribution. Thus for distributions that are
symmetric about 0 we have t(α,df ), the point that cuts off the bottom α of the distribution, equal
to −t(1−α,df ). This fact is illustrated in Figure 2.4. Algebraically, we write

Pr

[
ȳ·− μ
SE(ȳ·)

<−t(1−α,df )

]
= Pr

[
ȳ·− μ
SE(ȳ·)

< t(α,df )

]
= α.

Frequently, we want to create a central interval that contains a specified probability, say 1−α .
Figure 2.5 illustrates the construction of such an interval. Algebraically, the middle interval with
probability 1−α is obtained by

Pr

[
−t
(

1− α
2
,df
)
<

ȳ·− μ
SE(ȳ·)

< t
(

1− α
2
,df
)]

= 1−α.
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t(1 − α 2, df)− t(1 − α 2, df) 0

0
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Figure 2.5: 1−α central interval for the distribution of [ȳ·− μ]/SE(ȳ·).

The probability of getting something outside of this interval is

α =
α
2
+

α
2
= Pr

[
ȳ·− μ
SE(ȳ·)

<−t
(

1− α
2
,df
)]

+Pr

[
ȳ·− μ
SE(ȳ·)

> t
(

1− α
2
,df
)]

.

Percentiles of the t distribution are given in Appendix B.1 with the ∞ row giving percentiles of
the N(0,1) distribution.

2.2.1 Significance tests

A significance test is a procedure for checking the validity of a (null) model for the data. A model
involves a number of assumptions; often one of those assumptions is identified as being of special
importance and is called the null hypothesis. We wish to test whether or not the (null) model is true.
If relevant data are available, we can test the model, but we cannot really test whether it is true or
false; we can merely test whether the data are consistent or inconsistent with the model. Data that
are inconsistent with the model suggest that the model is false. Data that are consistent with the
model are just that, consistent with the model; they do not imply that the model is true because
other models could equally well have generated the data.

In a one-sample problem, for some fixed known number m0 we may want to test the null hy-
pothesis

H0 : μ = m0.

The number m0 must be known; it is some number that is of interest for the specific data being
analyzed. It is not just an unspecified symbol. The null model involves not only the assumption that
μ = m0 but also the assumptions that the data are independent with common mean μ and common
variance σ2, and perhaps also that the data are normally distributed.

EXAMPLE 2.2.1. For the dropout rate data, we might be interested in the hypothesis that the
true dropout rate is 10%. Thus the null hypothesis is H0 : μ = 10. The other assumptions were
discussed at the beginning of the chapter. They include such things as independence, normality, and
all observations having the same mean and variance. While we can never confirm that these other
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assumptions are absolutely valid, it is a key aspect of modern statistical practice to validate the
assumptions as far as is reasonably possible. When we are convinced that the other assumptions are
reasonably valid, data that contradict the assumptions can be reasonably interpreted as contradicting
the specific assumption H0. �

The test is based on all the assumptions including H0 being true and we check to see if the data
are inconsistent with those assumptions. The idea is much like the idea of a proof by contradiction.
We assume a model that includes the assumption H0. If the data contradict that model, we can con-
clude that something is wrong with the model. If we can satisfy ourselves that all of the assumptions
other than the assumption H0 are true, and we have data that are inconsistent with the model, then
H0 must be false. If the data do not contradict the H0 model, we can only conclude that the data
are consistent with the assumptions. We can never conclude that the assumptions are true. Unfortu-
nately, data almost never yield an absolute contradiction to the null model. We need to quantify the
extent to which the data are inconsistent with the null model.

We need to be able to identify data that are inconsistent with the null model. Under the assump-
tions that the data are independent with common mean and variance, with either normal distributions
or a large sample and with μ = m0, the distribution of (ȳ·−m0)/

√
s2/n has an approximate t(n−1)

distribution with density as illustrated in Figures 2.2–2.5. From those illustrations, the least likely
observations to occur under a t(n−1) distribtion are those that are far from 0. Thus, values of ȳ· far
from m0 make us question the validity of the null model.

We reject the null model if the test statistic is too far from zero, that is, if

ȳ·−m0

SE(ȳ·)

is greater than some positive cutoff value or less than some negative cutoff value. Very large and
very small (large negative) values of the test statistic are those that are most inconsistent with the
model that includes μ = m0.

The problem is in specifying the cutoff values. For example, we do not want to reject μ = 10
if the data are consistent with μ = 10. One of our basic assumptions is that we know the distribu-
tion of [ȳ·− μ ]/SE(ȳ·). Thus if H0 : μ = 10 is true, we know the distribution of the test statistic
[ȳ·− 10]/SE(ȳ·), so we know what kind of data are consistent with the μ = 10 model. For instance,
when μ = 10, 95% of the possible values of [ȳ·−10]/SE(ȳ·) are between −t(0.975,n− 1) and
t(0.975,n−1). Any values of [ȳ·− 10]/SE(ȳ·) that fall between these numbers are reasonably con-
sistent with μ = 10 and values outside the interval are defined as being inconsistent with μ = 10.
Thus values of [ȳ·− 10]/SE(ȳ·) greater than t(0.975,n−1) or less than −t(0.975,n−1) cause us to
reject the null model. Note that we arbitrarily specified the central 95% of the distribution as being
consistent with the μ = 10 model, as opposed to the central 99% or central 90%. We get to pick our
criterion for what is consistent with the null model.

EXAMPLE 2.2.2. For the dropout rate data, consider the null hypothesis H0 : μ = 10, i.e., that
the mean dropout rate is 10%. These data are not normal, so we must hope that the sample size is
large enough to justify use of the t distribution. Mathematically, large n suggest a t(∞) = N(0,1)
distribution, but we consider the t(n− 1) to be a better approximate distribution. If we choose a
central 90% interval, then the probability of being outside the central interval is α = 0.10, and the
upper cutoff value is t

(
1− α

2 ,37
)
= t(0.95,37) = 1.687.

The α = 0.10 level test for the model incorporating H0 : μ = 10 is to reject the null model if

ȳ·−10

s/
√

38
> 1.687,

or if
ȳ·−10

s/
√

38
<−1.687.
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The estimate of μ is ȳ· = 13.105 and the observed standard error is s/
√

n = 10.32/
√

38 = 1.673,
so the observed value of the test statistic is

tobs ≡
13.105−10

1.673
= 1.856 .

Comparing this to the cutoff value of 1.687 we have 1.856 > 1.687, so the null model is rejected.
There is evidence at the α = 0.10 level that the model with mean dropout rate of 10% is incorrect.
In fact, since ȳ· = 13.105 > 10, if the assumptions other than H0 are correct, there is the suggestion
that the dropout rate is greater than 10%.

This conclusion depends on the choice of the α level. If we choose α = 0.05, then the appropri-
ate cutoff value is t(0.975,37) = 2.026. Since the observed value of the test statistic is 1.856, which
is neither greater than 2.026 nor less than −2.026, we do not reject the null model. When we do not
reject the H0 model, we cannot say that the true mean dropout rate is 10%, but we can say that, at
the α = 0.05 level, the data are consistent with the (null) model that has a true mean dropout rate of
10%. �

Generally, a test of significance is based on an α level that indicates how unusual the data
are relative to the assumptions of the null model. The α-level test for the model that incorporates
H0 : μ = m0 is to reject the null model if

ȳ·−m0

SE(ȳ·)
> t
(

1− α
2
,n−1

)

or if
ȳ·−m0

SE(ȳ·)
<−t

(
1− α

2
,n−1

)
.

This is equivalent to saying, reject H0 if

|ȳ·−m0|
SE(ȳ·)

> t
(

1− α
2
,n−1

)
.

Also note that we are rejecting the H0 model for those values of [ȳ· −m0]/SE(ȳ·) that are most
inconsistent with the t(n− 1) distribution, those being the values of the test statistic with large
absolute values.

In significance testing, a null model should never be accepted; it is either rejected or not rejected.
A better way to think of a significance test is that one concludes that the data are either consistent or
inconsistent with the null model. The statement that the data are inconsistent with the H0 model is a
strong statement. It suggests in some specified degree that something is wrong with the H0 model.
The statement that the data are consistent with H0 is not a strong statement; it does not suggest the
H0 model is true. For example, the dropout data happen to be consistent with H0 : μ = 12; the test
statistic

ȳ·−12
SE(ȳ·)

=
13.105−12

1.673
= 0.66

is quite small. However, the data are equally consistent with μ = 12.00001. These data cannot
possibly indicate that μ = 12 rather than μ = 12.00001. In fact, we established earlier that based on
an α = 0.05 test, these data are even consistent with μ = 10. Data that are consistent with the H0

model do not imply that the null model is correct.
With these data there is very little hope of distinguishing between μ = 12 and μ = 12.00001. The

probability of getting data that lead to rejecting H0 : μ = 12 when μ = 12.00001 is only just slightly
more than the probability of getting data that lead to rejecting H0 when μ = 12. The probability of
getting data that lead to rejecting H0 : μ = 12 when μ = 12.00001 is called the power of the test
when μ = 12.00001. The power is the probability of appropriately rejecting H0 and depends on the
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particular value of μ ( �= 12). The fact that the power is very small for detecting μ = 12.00001 is not
much of a problem because no one would really care about the difference between a dropout rate of
12 and a dropout rate of 12.00001. However, a small power for a difference that one cares about is a
major concern. The power is directly related to the standard error and can be increased by reducing
the standard error. One natural way to reduce the standard error s/

√
n is by increasing the sample

size n. Of course this discussion of power presupposes that all assumptions in the model other than
H0 are correct.

One of the difficulties in a general discussion of significance testing is that the actual null hy-
pothesis is always context specific. You cannot give general rules for what to use as a null hypothesis
because the null hypothesis needs to be some interesting claim about the population mean μ . When
you sample different populations, the population mean differs, and interesting claims about the pop-
ulation mean depend on the exact nature of the population. The best practice for setting up null
hypotheses is simply to look at lots of problems and ask yourself what claims about the population
mean are of interest to you. As we examine more sophisticated data structures, some interesting
hypotheses will arise from the structures themselves. For example, if we have two samples of sim-
ilar measurements we might be interested in testing the null hypothesis that they have the same
population means. Note that there are lots of ways in which the means could be different, but only
one way in which they can be the same. Of course if the specific context suggests that one mean
should be, say, 25 units greater than the other, we can use that as the null hypothesis. Similarly, if
we have a sample of objects and two different measurements on each object, we might be interested
in whether or not the measurements are related. In that case, an interesting null hypothesis is that the
measurements are not related. Again, there is only one way in which measurements can be unrelated
(independent), but there are many ways for measurements to display a relationship.

In practice, nobody actually uses the procedures just presented. These procedures require us to
pick specific values for m0 in H0 : μ = m0 and for α . In practice, one either picks an α level and
presents results for all values of m0 by giving a confidence interval, or one picks a value m0 and
presents results for all α levels by giving a P value.

2.2.2 Confidence intervals

A (1−α) confidence interval for μ consists of all the values m0 that would not be rejected by an
α-level test of H0 : μ = m0. Confidence intervals are commonly viewed as the most useful single
procedure in statistical inference but it should be pointed out that they require the validity of all the
model assumptions other than H0 : μ = m0. A 95% confidence interval for μ is based on the fact
that an α = 0.05 level test will not be rejected when

−t(0.975,n−1)<
ȳ·−m0

SE(ȳ·)
< t(0.975,n−1).

Some algebra shows that these inequalities are equivalent to

ȳ·− t(0.975,n− 1)SE(ȳ·)< m0 < ȳ·+ t(0.975,n−1)SE(ȳ·).

Thus, the value m0 is not rejected by an α-level test if and only if m0 is within the interval having
endpoints ȳ·± t(0.975,n− 1)SE(ȳ·).

More generally, a (1−α)100% confidence interval for μ is based on observing that an α-level
test of H0 : μ = m0 does not reject when

−t
(

1− α
2
,n−1

)
<

ȳ·−m0

SE(ȳ·)
< t
(

1− α
2
,n−1

)

which is algebraically equivalent to

ȳ·− t
(

1− α
2
,n− 1

)
SE(ȳ·)< m0 < ȳ·+ t

(
1− α

2
,n−1

)
SE(ȳ·).
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A proof of the algebraic equivalence is given in the appendix to the next chapter. The endpoints of
the interval can be written

ȳ·± t
(

1− α
2
,n−1

)
SE(ȳ·),

or, substituting the form of the standard error,

ȳ·± t
(

1− α
2
,n−1

) s√
n
.

The 1−α confidence interval contains all the values of μ that are consistent with both the data and
the model as determined by an α-level test. Note that increasing the sample size n decreases the
standard error and thus makes the confidence interval narrower. Narrower confidence intervals give
more precise information about μ . In fact, by taking n large enough, we can make the confidence
interval arbitrarily narrow.

EXAMPLE 2.2.3. For the dropout rate data presented at the beginning of the chapter, the param-
eter is the mean dropout rate for math classes, the estimate is ȳ· = 13.105, and the standard error is
s/
√

n = 10.32/
√

38 = 1.673. As seen in the dot plot, the original data are not normally distributed.
The plot looks nothing at all like the bell-shaped curve in Figure 1.1, which is a picture of a normal
distribution. Thus we hope that a sample of size 38 is sufficiently large to justify use of the central
limit theorem and the law of large numbers. We use the t(37) distribution as a small sample approx-
imation to the t(∞) = N(0,1) distribution that is suggested by the mathematical results. For a 95%
confidence interval, 95 = (1−α)100, .95 = (1−α), α = 1− 0.95 = 0.05, and 1−α/2 = 0.975,
so the number we need from the t table is t(0.975,37) = 2.026. The endpoints of the confidence
interval are

13.105±2.026(1.673)

giving an interval of
(9.71,16.50).

Rounding to simple numbers, we are 95% confident that the true dropout rate is between 10% and
16.5%, but only in the sense that these are the parameter values that are consistent with the data and
the model based on a α = 0.05 test. �

Many people think that a 95% confidence interval for μ has a 95% probability of containing
the parameter μ . The definition of the confidence interval just given does not lend itself towards
that misinterpretation. There is another method of developing confidence intervals, one that has
never made any sense to me. This alternative development does lends itself to being misinterpreted
as a statement about the probability that the parameter is contained in the interval. Traditionally,
statisticians have worked very hard to correct this misinterpretation. Personally, I do not think the
misinterpretation does any real harm since it can be justified using arguments from Bayesian Statis-
tics.

2.2.3 P values

Rather than having formal rules for when to reject the null model, one can report the evidence
against the null model. This is done by reporting the significance level of the test, also known as
the P value. The P value is computed assuming that the null model including μ = m0 is true and
the P value is the probability of seeing data that are as weird or more weird than those that were
actually observed. In other words, it is the α level at which the test would just barely not be rejected.
Remember, based on Figures 2.2 through 2.5, weird data are those that lead to t values that are far
from 0.

EXAMPLE 2.2.4. For H0 : μ = 10 the observed value of the test statistic is 1.856. Clearly, data that



2.3 PREDICTION INTERVALS 39

give values of the test statistic that are greater than 1.856 are more weird than the actual data. Also,
by symmetry, data that give a test statistic of −1.856 are just as weird as data that yield a 1.856.
Finally, data that give values smaller than −1.856 are more weird than data yielding a statistic of
1.856. As before, we use the t(37) distribution. From an appropriate computer program,

P = Pr [t(37)≥ 1.856]+Pr [t(37)≤−1.856]

= 0.0357+0.0357

= 0.0715.

Thus the approximate P value is 0.07. The P value is approximate because the use of the t(37)
distribution is an approximation based on large samples. Algebraically,

P = Pr [t(37)≥ 1.856]+Pr [t(37)≤−1.856] = Pr [|t(37)| ≥ |1.856|] .

We can see from this that the P value corresponds to the α level of a test where H0 : μ = 10 would
just barely not be rejected. Thus, with a P value of 0.07, any test of H0 : μ = 10 with α > 0.07 will
be rejected while any test with α ≤ 0.07 will not be rejected. In this case, 0.07 is less than 0.10, so
an α = 0.10 level test of the null model with H0 : μ = 10 will reject H0. On the other hand, 0.07 is
greater than 0.05, so an α = 0.05 test does not reject the null model.

If you do not have access to a computer, rough P values can be determined from a t table.
Comparing |1.856| to the t tables of Appendix B.1, we see that

t(0.95,37) = 1.687 < |1.856|< 2.026 = t(0.975,37),

so the P value satisfies

2(1− 0.95) = 0.10 > P > 0.05 = 2(1−0.975).

In other words, t(0.95,37) is the cutoff value for an α = 0.10 test and t(0.975,37) is the cutoff
value for an α = 0.05 test; |1.856| falls between these values, so the P value is between 0.10 and
0.05. When only a t table is available, P values are most simply specified in terms of bounds such
as these. �

The P value is a measure of the evidence against the null hypothesis in which the smaller the P
value the more evidence against H0. The P value can be used to perform various α-level tests.

2.3 Prediction intervals

In many situations, rather than trying to learn about μ , it is more important to obtain information
about future observations from the same process. A 1 −α prediction interval will consist of all
future observations that are consistent with the current observations and the model as determined by
an α-level test. With independent observations, the natural point prediction for a future observation
is just the estimate of μ . Unfortunately, we do not know μ , so our point prediction is our estimate
of μ , the sample mean ȳ·. Our ideas about where future observations will lie involve two sources
of variability. First, there is the variability that a new observation y0 displays about its mean value
μ . Second, we need to deal with the fact that we do not know μ , so there is variability associated
with ȳ·, our estimate of μ . In the dropout rate example, ȳ· = 13.105 and s2 = 106.42. If we could
assume that the observations are normally distributed (which is a poor assumption), we could create
a 99% prediction interval. The theory for constructing prediction intervals is discussed in the next
subsection. The interval for the new observation is centered about ȳ·, our best point predictor, and
is similar to a confidence interval but uses a standard error that is appropriate for prediction. The
actual interval has endpoints

ȳ·± t
(

1− α
2
,n−1

)√
s2 +

s2

n
.
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In our example of a 99% interval, .99 = 1−α , so α = 0.01 and with n = 38 we use t(0.995,37) =
2.715. The endpoints of the interval become

13.105±2.715

√
106.42+

106.42
38

or
13.105±28.374

for an interval of (−15.27,41.48). In practice, dropout percentages cannot be less than 0, so a more
practical interval is (0,41.44). To the limits of our assumptions, a math class will be consistent
with the model and past data if its dropout rate falls between 0 and 41.5%. It is impossible to
validate assumptions about future observations (as long as they remain in the future), thus the exact
confidence levels of prediction intervals are always suspect.

The key difference between the 99% prediction interval and a 99% confidence interval is the
standard error. In a confidence interval, the standard error is

√
s2/n. In a prediction interval, we

mentioned the need to account for two sources of variability and the corresponding standard error is√
s2 + s2/n. The first term in this square root estimates the variance of the new observation, while

the second term in the square root estimates the variance of ȳ·, the point predictor.
As mentioned earlier and as will be shown in Section 2.5, the assumption of normality is pretty

poor for the 38 observations on dropout rates. Even without the assumption of normality we can
get an approximate evaluation of the interval. The interval uses the value t(0.995,37) = 2.71, and
we will see that even without the assumption of normality, the approximate confidence level of this
prediction interval is at least

100

(
1− 1

(2.71)2

)
% = 86%.

Theory

In this chapter we assume that the observations yi are independent from a population with mean
μ and variance σ2. We have assumed that all our previous observations on the process have been
independent, so it is reasonable to assume that the future observation y0 is independent of the previ-
ous observations with the same mean and variance. The prediction interval is actually based on the
difference y0 − ȳ·, i.e., we examine how far a new observation may reasonably be from our point
predictor. Note that

E(y0 − ȳ·) = μ − μ = 0.

To proceed we need a standard error for y0 − ȳ· and a distribution that is symmetric about 0. The
standard error of y0 − ȳ· is just the standard deviation of y0 − ȳ· when available or, more often, an
estimate of the standard deviation. First we need to find the variance. As ȳ· is computed from the
previous observations, it is independent of y0 and, using Proposition 1.2.11,

Var(y0 − ȳ·) = Var(y0)+Var(ȳ·) = σ2 +
σ2

n
= σ2

[
1+

1
n

]
.

The standard deviation is the square root of the variance. Typically, σ2 is unknown, so we estimate
it with s2 and our standard error becomes

SE(y0 − ȳ·) =

√
s2 +

s2

n
=

√
s2

[
1+

1
n

]
= s

√
1+

1
n
.

For future reference, note that the first equality in this equation can be rewritten as

SE(y0 − ȳ·) =
√

s2 +SE(ȳ·)2.
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To get an appropriate distribution, we assume that all the observations are normally distributed.
In this case,

y0 − ȳ·
SE(y0 − ȳ·)

∼ t(n−1).

The validity of the t(n− 1) distribution is established in Exercise 2.8.10.
Using the distribution based on normal observations, a 99% prediction interval is obtained from

the following inequalities:

−t(0.995,n−1)<
y0 − ȳ·

SE(y0 − ȳ·)
< t(0.995,n−1)

which occurs if and only if

ȳ·− t(0.995,n− 1)SE(y0 − ȳ·)< y0 < ȳ·+ t(0.995,n−1)SE(y0 − ȳ·).

The key point is that the two sets of inequalities are algebraically equivalent. A 99% prediction
interval has endpoints

ȳ·± t(0.995,n−1)SE(y0 − ȳ·).

This looks similar to a 99% confidence interval for μ but the standard error is very different. In the
prediction interval, the endpoints are

ȳ·± t(0.995,n−1)s

√[
1+

1
n

]
,

while in a confidence interval the endpoints are

ȳ·± t(0.995,n−1)s

√
1
n
.

The standard error for the prediction interval is typically much larger than the standard error for
the confidence interval. Moreover, unlike the confidence interval, the prediction interval cannot be
made arbitrarily small by taking larger and larger sample sizes n. Of course, to compute an arbitrary
(1−α)100% prediction interval, simply replace the value t(0.995,n−1) with t(1−α/2,n−1).

Even when the data are not normally distributed, we can obtain an approximate worst-case
confidence coefficient or α level for large samples. In other words, if the data are not normal but we
still use the cutoff values from the t(n− 1) distribution, what can we say about how weird it is to
see something outside the cutoff values?

The approximation comes from using the Law of Large Numbers to justify treating s as if it were
the actual population standard deviation σ . With this approximation, Chebyshev’s inequality states
that

1
t(0.995,n− 1)2 ≥ Pr

[
|y0 − ȳ·|

SE(y0 − ȳ·)
> t(0.995,n−1)

]
,

cf. Subsection 1.2.2. The 99% prediction interval based on 38 observations and cutoff values from
the t(37) distribution corresponds to not rejecting an α-level test where α is somewhere below

1
(2.71)2 = 0.14,

for an approximate confidence coefficient above 0.86 = 1−0.14. This assumes that the past obser-
vations and the future observation form a random sample from the same population and assumes
that 38 observations is large enough to justify using the Law of Large Numbers. Similarly, if we can
apply the improved version of Chebyshev’s inequality from Section 1.3, we get an upper bound on
α of 1/2.25(2.71)2 = 0.061 for an approximate confidence coefficient above 0.94 = 1−0.06.
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2.4 Model testing

We return to the subject of testing hypotheses about μ but now we use model-based tests. If we were
only going to perform tests on the mean of one sample, there would be little point in introducing
this alternative test procedure, but testing models works in many situations where testing a single
parameter is difficult. Moreover, model testing can provide tests of more than one parameter. The
focus of this section is to introduce model-based tests and to show the relationship between para-
metric tests and model-based tests for hypotheses about the mean μ . Throughout, we have assumed
that the process of generating the data yields independent observations from some population. In
quality control circles this is referred to as having a process that is under statistical control.

Model-based tests depend on measures of how well different models explain the data. For many
problems, we use variance estimates to quantify how well a model explains that data. A better ex-
planation will lead to a smaller variance estimate. For one-sample problems, the variance estimates
we will use are s2 as defined in Equation (2.1.1) and σ̂2 as defined in (2.1.2). Recall that σ̂2 is the
variance estimate used when μ is known.

Under the one-sample model with μ unknown, our variance estimate is s2. Under the one-sample
model with the null hypothesis H0 : μ = m0 assumed to be true, the variance estimate is

σ̂2
0 ≡ 1

n

n

∑
i=1

(yi −m0)
2 .

If the null model is true, the two variance estimates should be about the same. If the two variance
estimates are different, it suggests that something is wrong with the null model. One way to evaluate
whether the estimates are about the same is to evaluate whether σ̂2/s2 is about 1.

Actually, it is not common practice to compare the two variance estimates σ̂2
0 and s2 directly.

Typically, one rewrites the variance estimate from the null model σ̂2
0 as a weighted average of the

more general estimate s2 and something else. This something else will also be an estimate of σ2

when the null model is true; see Chapter 3. It turns out that in a one-sample problem, the something
else has a particularly nice form. The formula for the weighted average turns out to be

σ̂2
0 =

n−1
n

s2 +
1
n

n(ȳ·−m0)
2.

This estimate has weight (n−1)/n on s2 and weight 1/n on the something else, n(ȳ·−m0)
2. When

the null model is true, n(ȳ·−m0)
2 is an estimate of σ2 with 1 degree of freedom. The estimate σ̂2

0
has n degrees of freedom and it is being split into s2 with n−1 degrees of freedom and n(ȳ·−m0)

2,
so there is only 1 degree of freedom left for n(ȳ·−m0)

2.
The test is based on looking at whether n(ȳ·−m0)

2/s2 is close to 1 or not. Under the null model
including normality, this ratio has a distribution called an F distribution. The variance estimate in the
numerator has 1 degree of freedom and the variance estimate in the denominator has n−1 degrees
of freedom. The degrees of freedom identify a particular member of the family of F distributions.
Thus we write,

n(ȳ·−m0)
2

s2 ∼ F(1,n−1).

To compare this test to the parameter-based test, note that

n(ȳ·−m0)
2

s2 =

[
|ȳ·−m0|√

s2/n

]2

,

with the right-hand side being the square of the t statistic for testing the null model with H0 : μ =m0.
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Figure 2.6: Dot plot for drop rate percentage data: outliers deleted.

2.5 Checking normality

From Figure 2.1, we identified two outliers in the dropout rate data, the 40% and the 59% dropout
rates. If we delete these two points from the data, the remaining data may have a more nearly normal
distribution. The dot plot with the two cases deleted is given in Figure 2.6. This is much more nearly
normally distributed, i.e., looks much more like a bell-shaped curve, than the complete data.

Dot plots and other versions of histograms are not effective in evaluating normality. Very large
amounts of data are needed before one can evaluate normality from a histogram. A more useful
technique for evaluating the normality of small and moderate-size samples is the construction of a
normal probability plot, also known as a normal plot, or a rankit plot, or a normal quantile plot,
or a normal q–q plot. The idea is to order the data from smallest to largest and then to compare
the ordered values to what one would expect the ordered values to be if they were truly a random
sample from a normal distribution. These pairs of values should be roughly equal, so if we plot the
pairs we would expect to see a line with a slope of about 1 that goes through the origin.

The problem with this procedure is that finding the expected ordered values requires us to know
the mean μ and standard deviation σ of the appropriate population. These are generally not avail-
able. To avoid this problem, the expectations of the ordered values are computed assuming μ = 0
and σ = 1. The expected ordered values from this standard normal distribution are called normal
scores or rankits, or (theoretical) normal quantiles. Computing the expected values this way, we no
longer anticipate a line with slope 1 and intercept 0. We now anticipate a line with slope σ and in-
tercept μ . While it is possible to obtain estimates of the mean and standard deviation from a normal
plot, our primary interest is in whether the plot looks like a line. A linear plot is consistent with nor-
mal data; a nonlinear plot is inconsistent with normal data. Christensen (2011, Section 13.2) gives
a more detailed motivation for normal plots.

The normal scores are difficult to compute, so we generally get a computer program to do the
work. In fact, just creating a plot is considerable work without a computer.

EXAMPLE 2.5.1. Consider the dropout rate data. Figure 2.7 contains the normal plot for the com-
plete data. The two outliers cause the plot to be severely nonlinear. Figure 2.8 contains the normal
plot for the dropout rate data with the two outliers deleted. It is certainly not horribly nonlinear.
There is a little shoulder at the bottom end and some wiggling in the middle.

We can eliminate the shoulder in this plot by transforming the original data. Figure 2.9 contains
a normal plot for the square roots of the data with the outliers deleted. While the plot no longer has
a shoulder on the lower end, it seems to be a bit less well behaved in the middle.

We might now repeat our tests and confidence intervals for the 36 observations left when the
outliers are deleted. We can do this for either the original data or the square roots of the original
data. In either case, it now seems reasonable to treat the data as normal, so we can more confidently
use a t(36− 1) distribution instead of hoping that the sample is large enough to justify use of the
t(37) distribution. We will consider these tests and confidence intervals in the next chapter.

It is important to remember that if outliers are deleted, the conclusions reached are not valid
for data containing outliers. For example, a confidence interval will be for the mean dropout rate
excluding the occasional classes with extremely large dropout rates. If we are confident that any
deleted outliers are not really part of the population of interest, this causes no problem. Thus, if
we were sure that the large dropout rates were the result of clerical errors and did not provide any
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Figure 2.7: Normal plot for drop rate percentage data: full data.
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Figure 2.8: Normal plot for drop rate percentage data: outliers deleted.

information about true dropout rates, our conclusions about the population should be based on the
data excluding the outliers. More often, though, we do not know that outliers are simple mistakes.
Often, outliers are true observations and often they are the most interesting and useful observations
in the data. If the outliers are true observations, systematically deleting them changes both the
sample and the population of interest. In this case, the confidence interval is for the mean of a
population implicitly defined by the process of deleting outliers. Admittedly, the idea of the mean
dropout rate excluding the occasional outliers is not very clearly defined, but remember that the
real population of interest is not too clearly defined either. We do not really want to learn about the
clearly defined population of dropout rates; we really want to treat the dropout rate data as a sample
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Figure 2.9: Normal plot for square roots of drop rate percentage data: outliers deleted.

from a population that allows us to draw useful inferences about current and future dropout rates.
If we really cared about the fixed population, we could specify exactly what kinds of observations
we would exclude and what we meant by the population mean of the observations that would be
included. Given the nature of the true population of interest, I think that such technicalities are more
trouble than they are worth at this point. �

Normal plots are subject to random variation because the data used in them are subject to random
variation. Typically, normal plots are not perfectly straight. Figures 2.10 through 2.13 each present
nine normal plots for which the data are in fact normally distributed. The figures differ by the
number of observations in each plot, which are 10,25,50,100, respectively. By comparison to these,
Figures 2.8 and 2.9, the normal plots for the dropout rate data and the square root of the dropout
rates both with outliers deleted, look reasonably normal. Of course, if the dropout rate data are truly
normal, the square root of these data cannot be truly normal and vice versa. However, both are
reasonably close to normal distributions.

From Figures 2.10 through 2.13 we see that as the sample size n gets bigger, the plots get
straighter. Normal plots based on even larger normal samples tend to appear straighter than these.
Normal plots based on smaller normal samples can look much more crooked.

Testing normality

In an attempt to quantify the straightness of a normal plot, Shapiro and Francia (1972) proposed
the summary statistic W ′, which is the squared sample correlation between the pairs of points in
the plots. The population correlation coefficient was introduced in Subsection 1.2.3. The sample
correlation coefficient is introduced in Chapter 6. At this point, it is sufficient to know that sam-
ple correlation coefficients near 0 indicate very little linear relationship between two variables and
sample correlation coefficients near 1 or −1 indicate a very strong linear relationship. Since you
need a computer to get the normal scores (rankits) anyway, just rely on the computer to give you the
squared sample correlation coefficient.

A sample correlation coefficient near 1 indicates a strong tendency of one variable to increase
(linearly) as the other variable increases, and sample correlation coefficients near −1 indicate a
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Figure 2.10: Normal plots for normal data, n = 10.
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Figure 2.11: Normal plots for normal data, n = 25.

strong tendency for one variable to decrease (linearly) as the other variable increases. In normal
plots we are looking for a strong tendency for one variable, the ordered data, to increase as the
other variable, the rankits, increases, so normal data should display a sample correlation coefficient
near 1 and thus the square of the sample correlation, W ′, should be near 1. If W ′ is too small,
it indicates that the data are inconsistent with the assumption of normality. If W ′ is smaller than,
say, 95% of the values one would see from normally distributed data, it is substantial evidence
that the data are not normally distributed. If W ′ is smaller than, say, 99% of the values one would
see from normally distributed data, it is strong evidence that the data are not normally distributed.
Appendix B.3 presents tables of the values W ′(0.05,n) and W ′(0.01,n). These are the points above



2.5 CHECKING NORMALITY 47

−2 −1 0 1 2
−1

.5
0.0

1.5

(a)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−3
−1

1

(b)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−2
0

2

(c)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−2
0

1
2

(d)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−2
0

2

(e)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−2
0

2

(f)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−3
−1

1

(g)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−3
−1

1
(h)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

−2 −1 0 1 2

−2
0

2

(i)

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

Figure 2.12: Normal plots for normal data, n = 50.
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Figure 2.13: Normal plots for normal data, n = 100.

which fall, respectively, 95% and 99% of the W ′ values one would see from normally distributed
data. Of course the W ′ percentiles are computed using not only the assumption of normality, but also
the assumptions that the observations are independent with the same mean and variance. Note also
that the values of these percentiles depend on the sample size n. The tabled values are consistent
with our earlier observation that the plots are more crooked for smaller numbers of observations
and straighter for larger numbers of observations in that the tabled values get larger with n. For
comparison, we give the observed W ′ values for the data used in Figure 2.11.
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Shapiro–Francia statistics for Figure 2.11
Plot W ′ Plot W ′ Plot W ′

(a) 0.940 (d) 0.982 (g) 0.977
(b) 0.976 (e) 0.931 (h) 0.965
(c) 0.915 (f) 0.915 (i) 0.987

These should be compared to W ′(0.05,25)
.
= 0.918 and W ′(0.01,25)

.
= 0.88 from Appendix B.3.

Two of these nine values are below the 5% point, which is quite strange.

EXAMPLE 2.5.2. For the dropout rate data we have three normal plots. The complete, untrans-
formed data yield a W ′ value of 0.697. This value is inconsistent with the assumption that the
dropout rate data has a normal distribution. Deleting the two outliers, W ′ is 0.978 for the untrans-
formed data and 0.960 for the square roots of the data. The tabled percentiles are W ′(0.05,36) =
0.940 and W ′(0.01,36) = 0.91, so the untransformed data and the square root data look alright. In
addition, W ′ was computed for the square roots of the complete data. Its value, 0.887, is still signif-
icantly low, but is a vast improvement over the untransformed complete data. The outliers are not
nearly as strange when the square roots of the data are considered. Sometimes it is possible to find
a transformation that eliminates outliers. �

2.6 Transformations

In analyzing a collection of numbers, we assume that the observations are a random sample from
some population. Often, the population from which the observations come is not as well defined as
we might like. For example, if our observations are the yields of corn grown on 30 one-acre plots of
ground in the summer of 2013, what is the larger population from which this is a sample? Typically,
we do not have a large number of one-acre plots from which we randomly select 30. Even if we
had a large collection of plots, these plots are subject to different weather conditions, have different
fertilities, etc. Most importantly, we are rarely interested in corn grown in 2013 for its own sake. If
we are studying corn grown in 2013, we are probably interested in predicting how that same type
of corn would behave if we planted it at some time in the future. No population that currently exists
could be completely appropriate for drawing conclusions about plant growths in a future year. Thus
the assumption that the observations are a random sample from some population is often only a
useful approximation.

When making approximations, it is often necessary to adjust things to make the approximations
more accurate. In Statistics, two approximations we frequently make are that all the data have the
same variance and that the data are normally distributed. Making numerical transformations of
the data is a primary tool for improving the accuracy of these approximations. When sampling
from a fixed population, we are typically interested in transformations that improve the normality
assumption because having different variances is not a problem associated with sampling from a
fixed population. With a fixed population, the variance of an object is the variance of randomly
choosing an object from the population. This is a constant regardless of which object we end up
choosing. But data are rarely as simple as random samples from a fixed population. Once we have
an object from the population, we have to obtain an observation (measurement or count) from the
object. These observations on a given object are also subject to random error and the error may well
depend on the specific object being observed.

We now examine the fact that observations often have different variances, depending on the
object being observed. First consider taking length measurements using a 30-centimeter ruler that
has millimeters marked on it. For measuring objects that are less than 30 centimeters long, like
this page, we can make very accurate measurements. We should be able to measure things within
half a millimeter. Now consider trying to measure the height of a doghouse that is approximately
3.5 feet tall. Using the 30-cm ruler, we measure up from the base, mark 30 cm, measure from the
mark up another 30 cm, make another mark, measure from the new mark up another 30 cm, mark
again, and finally we measure from the last mark to the top of the house. With all the marking
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and moving of the ruler, we have much more opportunity for error than we have in measuring the
length of the book. Obviously, if we try to measure the height of a house containing two stories,
we will have much more error. If we try to measure the height of the Burj Khalifa in Dubai using a
30 cm ruler, we will not only have a lot of error, but large psychiatric expenses as well. The moral
of this tale is that, when making measurements, larger objects tend to have more variability. If the
objects are about the same size, this causes little or no problem. One can probably measure female
heights with approximately the same accuracy for all women in a sample. One probably cannot
measure the weights of a large sample of marine animals with constant variability, especially if the
sample includes both shrimp and blue whales. When the observations are the measured amounts
of something, often the standard deviation of an observation is proportional to its mean. When the
standard deviation is proportional to the mean, analyzing the logarithms of the observations is more
appropriate than analyzing the original data.

Now consider the problem of counting up the net financial worth of a sample of people. For
simplicity, let’s think of just three people, me, my 10-year-old grandson (the one my son has yet
to provide), and my rich uncle, Scrooge. In fact, let’s just think of having a stack of one dollar
bills in front of each person. My pile is of a decent size, my grandson’s is small, and my uncle’s
is huge. When I count my pile, it is large enough that I could miscount somewhere and make a
significant, but not major, error. When I count my son’s pile, it is small enough that I should get
it about right. When I count my uncle’s pile, it is large enough that I will, almost inevitably, make
several significant errors. As with measuring amounts of things, the larger the observation, the larger
the potential error. However, the process of making these errors is very different than that described
for measuring amounts. In such cases, the variance of the observations is often proportional to the
mean of the observations. The standard corrective measure for counts is different from the standard
corrective measure for amounts. When the observations are counts of something, often the variance
of the count is proportional to its mean. In this case, analyzing the square roots of the observations
is more appropriate than analyzing the original data.

Suppose we are looking at yearly sales for a sample of corporations. The sample may include
both the corner gas (petrol) station and Exxon. It is difficult to argue that one can really count sales
for a huge company such as Exxon. In fact, it may be difficult to count even yearly sales for a gas
station. Although in theory one should be able to count sales, it may be better to think of yearly
sales as measured amounts. It is not clear how to transform such data. Another example is age. We
usually think of counting the years a person has been alive, but one could also argue that we are
measuring the amount of time a person has been alive. In practice, we often try both logarithmic
and square root transformations and use the transformation that seems to work best, even when the
type of observation (count or amount) seems clear.

Finally, consider the proportion of times people drink a particular brand of soda pop, say,
Dr. Pepper. The idea is simply that we ask a group of people what proportion of the time they
drink Dr. Pepper. People who always drink Dr. Pepper are aware of that fact and should give a quite
accurate proportion. Similarly, people who never drink Dr. Pepper should be able to give an accurate
proportion. Moreover, people who drink Dr. Pepper about 90% of the time or about 10% of the time,
can probably give a fairly accurate proportion. The people who will have a lot of variability in their
replies are those who drink Dr. Pepper about half the time. They will have little idea whether they
drink it 50% of the time, or 60%, or 40%, or just what. With observations that are counts or amounts,
larger observations have larger variances. With observations that are proportions, observations near
0 and 1 have small variability and observations near 0.5 have large variability. Proportion data call
for a completely different type of transformation. The standard transformation for proportion data
is the inverse sine (arcsine) of the square root of the proportion. When the observations are propor-
tions, often the variance of the proportion is a constant times μ(1−μ)/N, where μ is the mean and
N is the number of trials. In this case, analyzing the inverse sine (arcsine) of the square root of the
proportion is more appropriate than analyzing the original data.

In practice, the square root transformation is sometimes used with proportion data. After all,
many proportions are obtained as a count divided by the total number of trials. For example, the
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best data we could get in the Dr. Pepper drinking example would be the count of the number of
Dr. Peppers consumed divided by the total number of sodas imbibed.

There is a subtle but important point that was glossed over in the previous paragraphs. If we take
multiple measurements on a house, the variance depends on the true height, but the true height is the
same for all observations. Such a dependence of the variance on the mean causes no problems. The
problem arises when we measure a random sample of buildings, each with a variance depending on
its true height.

EXAMPLE 2.6.1. For the dropout rate data, we earlier considered the complete, untransformed
data and after deleting two outliers, we looked at the untransformed data and the square roots of the
data. In Examples 2.5.1 and 2.5.2 we saw that the untransformed data with the outliers deleted and
the square roots of the data with the outliers deleted had approximate normal distributions. Based on
the W ′ statistic, the untransformed data seemed to be more nearly normal. The data are proportions
of people who drop from a class, so our discussion in this section suggests transforming by the
inverse sine of the square roots of the proportions. Recall that proportions are values between 0 and
1, while the dropout rates were reported as values between 0 and 100, so the reported rates need to
be divided by 100. For the complete data, this transformation yields a W ′ value of 0.85, which is
much better than the untransformed value of 0.70, but worse than the value 0.89 obtained with the
square root transformation. With the two outliers deleted, the inverse sine of the square roots of the
proportions yields the respectable value W ′ = 0.96, but the square root transformation is simpler
and gives almost the same value, while the untransformed data give a much better value of 0.98.
Examination of the six normal plots (only three of which have been presented here) reinforce the
conclusions given above.

With the outliers deleted, it seems reasonable to analyze the untransformed data and, to a lesser
extent, the data after either transformation. Other things being equal, we prefer using the simplest
transformation that seems to work. Simple transformations are easier to explain, justify, and inter-
pret. The square root transformation is simpler, and thus better, than the inverse sine of the square
roots of the proportions. Of course, not making a transformation seems to work best and not trans-
forming is always the simplest transformation. Actually some people would point out, and it is
undeniably true, that the act of deleting outliers is really a transformation of the data. However, we
will not refer to it as such. �

Theory

The standard transformations given above are referred to as variance-stabilizing transformations.
The idea is that each observation is a look at something with a different mean and variance, where
the variance depends on the mean. For example, when we measure the height of a house, the house
has some ‘true’ height and we simply take a measurement of it. The variability of the measurement
depends on the true height of the house. Variance-stabilizing transformations are designed to elimi-
nate the dependence of the variance on the mean. Although variance-stabilizing transformations are
used quite generally for counts, amounts, and proportions, they are derived for certain assumptions
about the relationship between the mean and the variance. These relationships are tied to theoretical
distributions that are appropriate for some counts, amounts, and proportions. Rao (1973, Section 6g)
gives a nice discussion of the mathematical theory behind variance-stabilizing transformations.

Proportions are related to the binomial distribution for numbers of successes. We have a fixed
number of trials; the proportion is the number of successes divided by the number of trials. The
mean of a Bin(N, p) distribution is N p and the variance is N p(1− p). This relationship between the
mean and variance of a binomial leads to the inverse sine of the square root transformation.

Counts are related to the Poisson distribution. Poisson data has the property that the variance
equals the mean of the observation. This relationship leads to the square root as the variance-
stabilizing transformation.

For amounts, the log transformation comes from having the standard deviation proportional
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to the mean. The standard deviation divided by the mean is called the coefficient of variation, so
the log transformation is appropriate for observations that have a constant coefficient of variation.
(The square root transformation comes from having the variance, rather than the standard deviation,
proportional to the mean.) A family of continuous distributions called the gamma distributions has
a constant coefficient of variation; see Section 22.2.

The variance-stabilizing transformations are given below. In each case we assume E(yi) = μi

and Var(yi) = σ2
i . The symbol ∝ means “proportional to.”

Variance-stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson μi ∝ σ2

i
√

yi

Amount Gamma μi ∝ σi log(yi)

Proportion Binomial/N μi(1−μi)
N ∝ σ2

i sin−1(√yi
)

I cannot honestly recommend using variance-stabilizing transformations to analyze either binomial
or Poisson data. A large body of statistical techniques has been developed specifically for analyzing
binomial and Poisson data; see Chapters 5, 20, and 21. I would recommend using these alternative
methods. Many people would make a similar recommendation for gamma distributed data citing the
applicability of generalized linear models, cf. Chapter 22. McCullagh and Nelder (1989), Chris-
tensen (1997), and many other books provide information on generalized linear models. When ap-
plied to binomial, Poisson, or gamma distributed data, variance-stabilizing transformations provide
a way to force the methods developed for normally distributed data into giving a reasonable analysis
for data that are not normally distributed. If you have a clear idea about the true distribution of the
data, you should use methods developed specifically for that distribution. The problem is that we
often have little idea of the appropriate distribution for a set of data. For example, if we simply ask
people the proportion of times they drink Dr. Pepper, we have proportion data that is not binomial. In
such cases, we seek a transformation that will make a normal theory analysis approximately correct.
We often pick transformations by trial and error. The variance-stabilizing transformations provide
little more than a place to start when considering transformations.

At the beginning of this section, we mentioned two key approximations that we frequently make.
These are that all the data have the same variance and that the data are normally distributed. While
the rationale given above for picking transformations was based on stabilizing variances, in prac-
tice we typically choose a transformation for a single sample to attain approximate normality. To
evaluate whether a transformation really stabilizes the variance, we need more information than is
contained in a single sample. Control chart methods can be used to evaluate variance-stabilization
for a single sample, cf. Shewhart (1931). Those methods require formation of rational subgroups
and that requires additional information. We could also plot the sample against appropriately cho-
sen variables to check variance-stabilization, but finding appropriate variables can be quite difficult
and would depend on properties of the particular sampling process. Variance-stabilizing transfor-
mations are probably best suited to problems that compare samples from several populations, where
the variance in each population depends on the mean of the population.

On the other hand, we already have examined methods for evaluating the normality of a single
sample. Thus, since we cannot (actually, do not) evaluate variance-stabilization in a single sample, if
we think that the variance of observations should increase with their mean, we might try both the log
and square root transformations and pick the one for which the transformed data best approximate
normality. Systematic methods for choosing a transformation are discussed in Chapter 7.

2.7 Inference about σ2

If the data are normally distributed, we can also perform confidence intervals and tests for the
population variance σ2. While these are not typically of primary importance, they can be useful.
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Figure 2.14: Central χ2 interval with probability 1−α .

They also tend to be sensitive to the assumption of normality. The procedures do not follow the
same pattern used for most inferences that involve 1) a parameter of interest, 2) an estimate of the
parameter, 3) the standard error of the estimate, and 4) a known distribution symmetric about zero;
however, there are similarities. Procedures for variances typically require a parameter, an estimate,
and a known distribution.

The procedures discussed in this section actually apply to all the problems in this book that
involve a single variance parameter σ2. One need only substitute the relevant estimate of σ2 and
use its degrees of freedom. Applications to the data and models considered in Chapter 19 are not
quite as straightforward because there the models involve more than one variance.

In the one-sample problem, the parameter is σ2, the estimate is s2, and the distribution, as
discussed in Equation (2.1.6), is

(n−1)s2

σ2 ∼ χ2(n−1).

The notation χ2(1−α,n− 1) is used to denote the point that cuts off the bottom 1−α (top α) of
the χ2 distribution with n− 1 degrees of freedom. Note that (n− 1)s2/σ2 is nonnegative, so the
curve in Figure 2.14 illustrating the χ2 distribution is also nonnegative. Figure 2.14 shows a central
interval with probability 1−α for a χ2 distribution.

To test H0 : σ2 = σ2
0 the value σ2

0 must be known. As usual, we assume that the null hypothesis
is true, i.e., σ2 = σ2

0 , so under this assumption an α-level test is based on

1−α = Pr

[
χ2
(α

2
,n−1

)
<

(n−1)s2

σ2
0

< χ2
(

1− α
2
,n−1

)]
;

see Figure 2.14. If we observe data yielding an s2 such that (n− 1)s2
/

σ2
0 is between the values

χ2
(α

2 ,n− 1
)

and χ2
(
1− α

2 ,n−1
)
, the data are consistent with the assumption that σ2 = σ2

0 at
level α . Conversely, we reject H0 : σ2 = σ2

0 with a two-sided α-level test if

(n−1)s2

σ2
0

> χ2
(

1− α
2
,n−1

)
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or if
(n−1)s2

σ2
0

< χ2
(α

2
,n−1

)
.

More specifically, we reject the null model that the data are independent, normally distributed with
a constant variance σ2, that we have the correct model for the mean structure, and that σ2 = σ2

0 .

EXAMPLE 2.7.1. For the dropout rate data consider testing H0 : σ2 = 50 with α = 0.01. Again,
we use the data with the two outliers deleted, because they are more nearly normal. Thus, our
concept of the population variance σ2 must account for our deletion of weird cases. The deleted
data contain 36 observations and s2 for the deleted data is 27.45. The test statistic is

(n−1)s2

σ2
0

=
35(27.45)

50
= 19.215.

The critical region, the region for which we reject H0, contains all values greater than
χ2(0.995,35) = 60.275 and all values less than χ2(0.005,35) = 17.19. The test statistic is cer-
tainly not greater than 60.275 and it is also not less than 17.19, so we have no basis for rejecting the
null hypothesis at the α = 0.01 level. At the 0.01 level, the data are consistent with the claim that
σ2 = 50. �

Confidence intervals are defined in terms of testing the hypothesis H0 : σ2 = σ2
0 . A (1−α)100%

confidence interval for σ2 is based on the following inequalities:

χ2
(α

2
,n−1

)
<

(n−1)s2

σ2
0

< χ2
(

1− α
2
,n−1

)

which occurs if and only if

(n−1)s2

χ2
(
1− α

2 ,n−1
) < σ2

0 <
(n−1)s2

χ2
(α

2 ,n−1
) .

The first inequality corresponds to Figure 2.14 and just reflects the definition of the percentage
points χ2

(α
2 ,n− 1

)
and χ2

(
1− α

2 ,n−1
)
. These are defined to be the points that cut out the middle

1−α of the chi-squared distribution and are tabled in Appendix B.2. The second inequality is based
on algebraic manipulation of the terms in the first inequality. The actual derivation is given later in
this section. The second inequality gives an interval that contains σ2

0 values that are consistent with
the data and the model. (

(n−1)s2

χ2
(
1− α

2 ,n−1
) , (n−1)s2

χ2
(α

2 ,n−1
)
)
. (2.7.1)

The confidence interval for σ2 requires the data to be normally distributed. This assumption is
more vital for inferences about σ2 than it is for inferences about μ . For inferences about μ , the
central limit theorem indicates that the sample means are approximately normal even when the data
are not normal. There is no similar result indicating that the sample variance is approximately χ2

even when the data are not normal. (For large n, both s2 and χ2(n−1) approach normal distributions,
but in general the approximate normal distribution for (n−1)s2/σ2 is not the approximately normal
χ2(n− 1) distribution.)

EXAMPLE 2.7.2. Consider again the dropout rate data. We have seen that the complete data are
not normal, but that after deleting the two outliers, the remaining data are reasonably normal. We
find a 95% confidence interval for σ2 from the deleted data. The percentage points for the χ2(36−1)
distribution are χ2(0.025,35) = 20.57 and χ2(0.975,35) = 53.20. The 95% confidence interval is

(
35(27.45)

53.20
,

35(27.45)
20.57

,

)
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or equivalently (18.1,46.7). The interval contains all values of σ2 that are consistent with the data
and the model as determined by a two-sided α = 0.05 level test. The interval does not contain 50,
so we do have evidence against H0 : σ2 = 50 at the α = 0.05 level. Remember that this is the true
variance after the deletion of outliers. Again, when we delete outliers we are a little fuzzy about the
exact definition of our parameter, but we are also being fuzzy about the exact population of interest.
The exception to this is when we believe that the only outliers that exist are observations that are
not really part of the population. �

2.7.1 Theory

Alas, these procedures for σ2 are merely ad hoc. They are neither appropriate significance testing
results nor appropriate Neyman–Pearson theory results. Neither of those tests would use the central
χ2 interval illustrated in Figure 2.14. However, the confidence interval has a Bayesian justification.

These methods are valid Neyman–Pearson procedures but not the optimal procedures. As
Neyman–Pearson procedures, the endpoints of the confidence interval (2.7.2) are random. To use
the interval, we replace the random variable s2 with the observed value of s2 and replace the term
“probability (1−α)” with “(1−α)100% confidence.” Once the observed value of s2 is substituted
into the interval, nothing about the interval is random any longer, the fixed unknown value of σ2

is either in the interval or it is not; there is no probability associated with it. The probability state-
ment about random variables is mystically transformed into a ‘confidence’ statement. This is not
unreasonable, but the rationale is, to say the least, murky.

A significance test would not use the cutoff values χ2(α/2,n−1) and χ2(1−α/2,n−1). Let
the vertical axis in Figure 2.14 be z and the horizontal axis be w. The density function being plotted
is f (w). Any positive value of z corresponds to two points w1 and w2 with

z = f (w1) = f (w2).

For an α-level significance test, one would find z0 so that the corresponding points w01 and w02 have
the property that

α = Pr[χ2(n−1)≤ w01]+Pr[χ2(n−1)≥ w02].

The significance test then uses w01 and w02 as the cutoff values for an α-level test. As you can see,
the method presented earlier is much simpler than this. (The optimal Neyman–Pearson test is even
more complicated than the significance test.) But the significance test uses an appropriate measure
of how weird any particular data value s2 is relative to a null model based on σ2

0 . Given the cut-off
values w01 and w02, finding a confidence interval works pretty much as for the ad hoc method.

While methods for drawing inferences about variances do not fit our standard pattern for a single
parameter of interest based on 1) a parameter of interest, 2) an estimate of the parameter, 3) the
standard error of the estimate, and 4) a known distribution symmetric about zero, it should be noted
that the basic logic behind these confidence intervals and tests is the same. The correspondence
to model testing is strong since we are comparing the variance estimate of the original model s2

to the variance under the null model σ2
0 . The only real difference is that the appropriate reference

distribution turns out to be a χ2(n−1) rather than an F . In any case, significance tests are based on
evaluating whether the data are consistent with the null model. Consistency is defined in terms of a
known distribution that applies when the null model is true. If the data are inconsistent with the null
model, the null model is rejected as being inconsistent with the observed data.

Below is a series of equalities that justify the confidence interval.

χ2
(α

2
,n−1

)
<

(n−1)s2

σ2 < χ2
(

1− α
2
,n−1

)

1

χ2
(α

2 ,n−1
) > σ2

(n−1)s2 >
1

χ2
(
1− α

2 ,n−1
)
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Table 2.1: Weights of rats.

59 54 56 59 57 52 52 61 59
53 59 51 51 56 58 46 53 57
60 52 49 56 46 51 63 49 57

1

χ2
(
1− α

2 ,n−1
) < σ2

(n−1)s2 <
1

χ2
(α

2 ,n−1
)

(n−1)s2

χ2
(
1− α

2 ,n−1
) < σ2 <

(n−1)s2

χ2
(α

2 ,n−1
) .

2.8 Exercises

EXERCISE 2.8.1. Mulrow et al. (1988) presented data on the melting temperature of biphenyl as
measured on a differential scanning calorimeter. The data are given below; they are the observed
melting temperatures in Kelvin less 340.

3.02,2.36,3.35,3.13,3.33,3.67,3.54,3.11,3.31,3.41,3.84,3.27,3.28,3.30

Compute the sample mean, variance, and standard deviation. Give a 99% confidence interval for the
population mean melting temperature of biphenyl as measured by this machine. (Note that we don’t
know whether the calorimeter is accurately calibrated.)

EXERCISE 2.8.2. Box (1950) gave data on the weights of rats that were about to be used in an
experiment. The data are repeated in Table 2.1. Assuming that these are a random sample from a
broader population of rats, give a 95% confidence interval for the population mean weight. Test the
null hypothesis that the population mean weight is 60 using a 0.01 level test.

EXERCISE 2.8.3. Fuchs and Kenett (1987) presented data on citrus juice for fruits grown during
a specific season at a specific location. The sample size was 80 but many variables were measured
on each sample. Sample statistics for some of these variables are given below.

Variable BX AC SUG K FORM PECT
Mean 10.4 1.3 7.7 1180.0 22.2 451.0
Variance 0.38 0.036 0.260 43590.364 6.529 16553.996

The variables are BX—total soluble solids produced at 20oC, AC—acidity as citric acid unhydrons,
SUG—total sugars after inversion, K—potassium, FORM—formol number, PECT—total pectin.
Give a 99% confidence interval for the population mean of each variable. Give a 99% prediction
interval for each variable. Test whether the mean of BX equals 10. Test whether the mean of SUG
is equal to 7.5. Use α = 0.01 for each test.

EXERCISE 2.8.4. Jolicoeur and Mosimann (1960) gave data on female painted turtle shell
lengths. The data are presented in Table 2.2. Give a 95% confidence interval for the population
mean length. Give a 99% prediction interval for the shell length of a new female.

EXERCISE 2.8.5. Mosteller and Tukey (1977) extracted data from the Coleman Report. Among
the variables considered was the percentage of sixth-graders whose fathers were employed in white-
collar jobs. Data for 20 New England schools are given in Table 2.3. Are the data reasonably normal?
Do any of the standard transformations improve the normality? After finding an appropriate trans-
formation (if necessary), test the null hypothesis that the percentage of white-collar fathers is 50%.
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Table 2.2: Female painted turtle shell lengths.

98 138 123 155 105 147 133 159
103 138 133 155 109 149 134 162
103 141 133 158 123 153 136 177

Table 2.3: Percentage of fathers with white-collar jobs.

28.87 20.10 69.05 65.40 29.59
44.82 77.37 24.67 65.01 9.99
12.20 22.55 14.30 31.79 11.60
68.47 42.64 16.70 86.27 76.73

Use a 0.05 level test. Give a 99% confidence interval for the percentage of fathers with white-collar
jobs. If a transformation was needed, relate your conclusions back to the original measurement
scale.

EXERCISE 2.8.6. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.8.5. Remember that inferences about variances require the assumption of
normality. Could the variance reasonably be 10?

EXERCISE 2.8.7. Give a 95% confidence interval for the population variance associated with
the data of Exercise 2.8.4. Remember that the inferences about variances require the assumption of
normality.

EXERCISE 2.8.8. Give 99% confidence intervals for the population variances of all the variables
in Exercise 2.8.3. Assume that the original data were normally distributed. Using α = 0.01, test
whether the potassium variance could reasonably be 45,000. Could the formol number variance be
8?

EXERCISE 2.8.9. Shewhart (1931, p. 62) reproduces Millikan’s data on the charge of an election.
These are repeated in Table 2.4. Check for outliers and nonnormality. Adjust the data appropriately
if there are any problems. Give a 98% confidence interval for the population mean value. Give
a 98% prediction interval for a new measurement. (Millikan argued that some adjustments were
needed before these data could be used in an optimal fashion but we will ignore his suggestions.)

EXERCISE 2.8.10. Let y0,y1, . . . ,yn be independent N
(
μ ,σ2

)
random variables and compute ȳ·,

and s2 from observations 1 through n. Show that (y0 − ȳ·)/
√

σ2 +σ2/n ∼ N(0,1) using results
from Chapter 1 and the fact that linear combinations of independent normals are normal. Recalling
that y0, ȳ·, and s2 are independent and that (n−1)s2/σ2 ∼ χ2(n−1), use Definition 2.1.3 to show
that (y− ȳ·)/

√
s2 + s2/n ∼ t(n− 1).

Table 2.4: Observations on the charge of an electron.

4.781 4.764 4.777 4.809 4.761 4.769 4.795 4.776
4.765 4.790 4.792 4.806 4.769 4.771 4.785 4.779
4.758 4.779 4.792 4.789 4.805 4.788 4.764 4.785
4.779 4.772 4.768 4.772 4.810 4.790 4.775 4.789
4.801 4.791 4.799 4.777 4.772 4.764 4.785 4.788
4.779 4.749 4.791 4.774 4.783 4.783 4.797 4.781
4.782 4.778 4.808 4.740 4.790 4.767 4.791 4.771
4.775 4.747



Chapter 3

General Statistical Inference

Before we can perform a statistical analysis on data, we need to make assumptions about the data.
A model for the data is simply a statement of those assumptions. Typical assumptions are that
the observations are independent, have equal variances, and that either the observations are nor-
mally distributed or involve large sample sizes. (We don’t really know what “large” means, so large
samples is an assumption.) Typically, models also say something about the expected values of the
observations. In fact, it is the expected values that generally receive most of the attention when dis-
cussing models. Most statistical procedures, e.g., confidence intervals, prediction intervals, and tests
of a null hypothesis, rely on the validity of the model for the validity of the procedure. As such, it is
vitally important that we do what we can to establish the validity of the model. Sections 2.5 and 2.6
contained our first steps in that direction.

This chapter focuses on significance testing as a fundamental procedure in statistical inference.
Confidence intervals and P values are presented as extensions of a basic testing procedure. The
approach is very much in the spirit of the traditional approach used by R.A. Fisher as opposed to a
later approach to testing and confidence intervals introduced by Jerzy Neyman and E.S. Pearson. As
such, we do our best to avoid the artifacts of the Neyman–Pearson approach including alternative
hypotheses, one-sided testing, and the concept of the probability of Type I error. Although I am a
strong proponent of the use of Bayesian procedures—see Christensen et al. (2010)—they receive
little attention in this book.

The basic idea of significance testing is that one has a model for the data and seeks to determine
whether the data are consistent with that model or whether they are inconsistent with the model.
Determining that the data are inconsistent with the model is a strong statement. It suggests that
the model is wrong. It is a characteristic of statistical analysis that data rarely give an absolute
contradiction to a model, so we need to measure the extent to which the data are inconsistent with
the model. On the other hand, observing that the data are consistent with the model is a weak
statement. Although the data may be consistent with the current model, we could always construct
other models for which the data would also be consistent.

Frequently, when constructing tests, we have an underlying model for the data to which we add
some additional assumption, and then we want to test whether this new model is consistent with
the data. There are two terminologies for this procedure. First, the additional assumption is often
referred to as a null hypothesis, so the original model along with the additional assumption is called
the null model. Alternatively, the original model is often called the full model and the null model is
called the reduced model. The null model is a reduced model in the sense that it is a special case of
the full model, that is, it consists of the full model with the added restriction of the null hypothesis.
When discussing full and reduced models, we might not bother to specify the null hypothesis, but
every reduced model corresponds to some null hypothesis.

The most commonly used statistical tests and confidence intervals derive from a theory based
on a single parameter of interest, i.e., the null hypothesis is a specific assumption about a single
parameter. While we use this single parameter theory when convenient, the focus of this book is on
models rather than parameters. We begin with a general statement of our model-based approach to
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testing and then turn to an examination of the single parameter approach. A key aspect of the model-
based approach is that it easily allows for testing many parameters at once. The basic ideas of both
theories were illustrated in Chapter 2. The point of the current chapter is to present the theories in
general form and to reemphasize fundamental techniques. The general theories will then be used
throughout the book. Because the theories are stated in quite general terms, some prior familiarity
with the ideas as discussed in Chapter 2 is highly recommended.

3.1 Model-based testing

Our goal in data analysis is frequently to find the simplest model that provides an adequate explana-
tion of the data. A fundamental tool in that process is testing a given model, the full model, against
a special case of the full model, the reduced model. The tests are based on measures of how well the
models explain the data. We begin with a discussion of measuring how well a model fits the data.

Suppose we have a model that involves independent data yi, i = 1, . . . ,n, with E(yi) = μi and
some common variance, Var(yi) = σ2. This model is not very interesting because the only thing we
could do with it would be to use yi to estimate μi. A model becomes more interesting if we develop
some relationships between the μis. The simplest model is that the μis all equal some common value
μ . That is the one-sample model of the previous chapter. Other interesting models divide the data
into two groups with a common mean within each group (the two-sample problems of Chapter 4),
or divide the data into multiple groups with a common mean within each group (one-way analysis
of variance, Chapter 12), or use some other observations xi and assume a linear relationship, e.g.,
μi = β0 +β1xi (simple linear regression, Chapter 6). The general point is that a model allows us to
estimate the expected values of the yis. The estimate of the expected value μi might well be denoted
μ̂i but more commonly it is known as a fitted value and denoted ŷi. To measure the error in modeling
the mean values, compute the sum of the squared differences between the actual data yi and the fitted
values ŷi. This sum of squares for error (SSE) is defined as

SSE =
n

∑
i=1

(yi − ŷi)
2.

The values ε̂i ≡ yi − ŷi are called residuals and are also used to evaluate model assumptions like
independence, equal variances, and normality.

Typically the model involves parameters that describe the interrelations between the μis. If there
are r (functionally distinct) parameters for the mean values, we define the degrees of freedom for
error (dfE) as

dfE = n− r.

The degrees of freedom can be thought of as the effective number of observations that are available
for estimating the variance σ2 after using the model to estimate the means. Finally, our estimate of
σ2 is the mean squared error (MSE) defined as

MSE =
SSE
dfE

.

To test two models, identify the full model (Full) and compute SSE(Full), dfE(Full),
and MSE(Full). Similarly, for the reduced model (Red.), compute SSE(Red.), dfE(Red.), and
MSE(Red.). The identification of a full model and a reduced model serves to suggest a test statistic,
i.e., something on which to base a test. The test is a test of whether the reduced model is correct.
We establish the behavior (distribution) of the test statistic when the reduced model is correct, and
if the observed value of the test statistic looks unusual relative to this reference distribution, we
conclude that something is wrong with the reduced model. (Or that we got unlucky in collecting our
data—always a possibility.)

Although the test assumes that the reduced model is correct and checks whether the data tend to
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contradict that assumption, for the purpose of developing a test we often act as if the full model is
true, regardless of whether the reduced model is true. This focuses the search for abnormal behavior
in a certain direction. Nonetheless, concluding that the reduced model is wrong does not imply that
the full model is correct.

Since the reduced model is a special case of the full model, the full model must always explain
the data at least as well as the reduced model. In other words, the error from Model (Red.) must
be as large as the error from Model (Full), i.e., SSE(Red.)≥ SSE(Full). The reduced model being
smaller than the full, it also has more degrees of freedom for error, i.e., dfE(Red.)≥ dfE(Full).

If the reduced model is true, we will show later that the statistic

MSTest ≡ SSE(Red.)−SSE(Full)
dfE(Red.)−dfE(Full)

is an estimate of the variance, σ2, with degrees of freedom dfE(Red.)− dfE(Full). Since the re-
duced model is a special case of the full model, whenever the reduced model is true, the full model
is also true. Thus, if the reduced model is true, MSE(Full) is also an estimate of σ2, and the ratio

F ≡ MSTest/MSE(Full)

should be about 1, since it is the ratio of two estimates of σ2. This ratio is called the F statistic in
honor of R.A. Fisher.

Everybody’s favorite reduced model takes

E(yi) = μ

so that every observation has the same mean. This is the reduced model being tested in nearly all of
the three-line ANOVA tables given by computer programs, but we have much more flexibility than
that.

The F statistic is an actual number that we can compute from the data, so we eventually have
an actual observed value for the F statistic, say Fobs. If Fobs is far from 1, it suggests that something
may be wrong with the assumptions in the reduced model, i.e., either the full model is wrong or the
null hypothesis is wrong. The question becomes, “What constitutes an Fobs far from 1?” Even when
Model (Red.) is absolutely correct, the variability in the data causes variability in the F statistic.
Since MSTest and MSE(Full) are always nonnegative, the F statistic is nonnegative. Huge values
of Fobs are clearly far from 1. But we will see that sometimes values of Fobs very near 0 are also
far from 1. By quantifying the variability in the F statistic when Model (Red.) is correct, we get an
idea of what F statistics are consistent with Model (Red.) and what F values are inconsistent with
Model (Red.).

When, in addition to the assumption of independent observations with common variance σ2 and
the assumption that the reduced model for the means is correct, we also assume that the data are
normally distributed and that both the full and reduced models are “linear” so that they have nice
mathematical properties, the randomness in the F statistic is described by an F distribution. Proper-
ties of the F distribution can be tabled, or more commonly, determined by computer programs. The
F distribution depends on two parameters, the degrees of freedom for MSTest and the degrees of
freedom for MSE(Full); thus we write

F =
MSTest

MSE(Full)
∼ F [dfE(Red.)−dfE(Full),dfE(Full)].

The shape (density) of the F [dfE(Red.)−dfE(Full),dfE(Full)] distribution determines which
values of the F statistic are inconsistent with the null model. A typical F density is shown in Fig-
ure 3.1. F values for which the curve takes on small values are F values that are unusual under the
null model. Thus, in Figure 3.1, unusual values of F occur when F is either very much larger than 1
or very close to 0. Generally, when dfE(Red.)−dfE(Full)≥ 3 both large values of F and values of
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F(1 − α,df1,df2)1

0

1 − α

F(df1, df2)

Figure 3.1: Percentiles of F(df 1,df 2) distributions; df 1 ≥ 3.

F(1,df)
F(2,df)

10

0

Figure 3.2: F(1,df ) and F(2,df ) densities.

F near 0 are inconsistent with the null model. As shown in Figure 3.2, when dfE(Red.)−dfE(Full)
is one or two, only very large values of the F statistic are inconsistent with the null model because
in those cases the density is large for F values near 0.

It can be shown that when the full model is wrong (which implies that the reduced model is also
wrong), it is possible for the F statistic to get either much larger than 1 or much smaller than 1.
Either case calls the reduced model in question.

Traditionally, people and computer programs have concerned themselves only with values of
the F statistic that are much larger than 1. If the full model is true but the reduced model is not true,
for linear models it can be shown that MSTest estimates σ2 + δ where δ is some positive number.
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Since the full model is true, MSE(Full) still estimates σ2, so MSTest/MSE(Full) estimates (σ2 +
δ )/σ2 = 1+(δ/σ2) > 1. Thus, if the full model is true but the reduced model is not true, the F
statistic tends to get larger than 1 (and not close to 0). Commonly, an α-level test of whether Model
(Red.) is an adequate substitute for Model (Full) has been rejected when

[SSE(Red.)− SSE(Full)]
/
[dfE(Red.)−dfE(Full)]

MSE(Full)

> F [1−α,dfE(Red.)−dfE(Full),dfE(Full)] . (3.1.1)

The argument that the F statistic tends to be larger than 1 when the reduced model is false de-
pends on the validity of the assumptions made about the full model. These include the data being
independent with equal variances and involve some structure on the mean values. As discussed ear-
lier, comparing the F statistic to the F distribution additionally presumes that the full and reduced
models are linear and that the data are normally distributed.

Usually, the probability that an F[dfE(Red.)−dfE(Full),dfE(Full)] distribution is larger than
the observed value of the F statistic is reported as something called a P value. For three or more
numerator degrees of freedom, I do not think this usual computation of a P value is really a P value
at all. It is slightly too small. A P value is supposed to be the probability of seeing data as weird or
weirder than you actually observed. With three or more numerator degrees of freedom, F statistics
near 0 can be just as weird as F statistics much larger than 1. Weird values should be determined
as values that have a low probability of occurring or, in continuous cases like these, have a low
probability density function, i.e., the curve plotted in Figure 3.1. The probability density for an F
distribution with three or more degrees of freedom in the numerator gets small both for values much
larger than 1 and for values near 0. To illustrate, consider an F(5,20) distribution and an observed
test statistic of Fobs = 2.8. The usual reported P value would be 0.0448, the probability of being
at least 2.8. By our two-sided definition, the actual P value should be 0.0456. The computations
depend on the fact that, from the shape of the F(5,20) distribution; seeing an F statistic of 0.036 is
just as weird as seeing the 2.8 and the probability of seeing something smaller than 0.036 is 0.0008.
Technically, Fobs = 2.8 and Fobs = 0.036 have the same density, and the densities get smaller as the
F values get closer to infinity and to zero, respectively. The P value should be the probability of
being below 0.036 and above 2.8, not just the probability of being above 2.8.

For this little example, the difference between our two-sided and the usual one-sided P values
is 0.0008, so as commonly reported, a one-sided P value of 0.9992 = 1−0.0008, which would be
reported for Fobs = 0.036, would make us just as suspicious of the null model as the P value 0.0448,
which would be reported when seeing Fobs = 2.8.

Alas, I suspect that the “one-sided” P values will be with us for quite a while. I doubt that many
software packages are going to change how they compute the P values for F tests simply because I
disapprove of their current practice. Besides, as a practical matter, checking whether the one-sided
P values are very close to 1 works reasonably well.

We now establish that MSTest is a reasonable estimate of σ2 when the reduced model (Red.)
holds. The basic idea is this: If we have three items where the first is an average of the other two,
and if the first item and one of the other two both estimate σ2, then the third item must also be an
estimate of σ2; see Exercise 3.10.10. Write

MSE(Red.) =
1

dfE(Red.)
[SSE(Red.)−SSE(Full)+ SSE(Full)]

=
dfE(Red.)− dfE(Full)

dfE(Red.)

(
SSE(Red.)−SSE(Full)
dfE(Red.)−dfE(Full)

)
+

dfE(Full)
dfE(Red.)

MSE(Full)

=
dfE(Red.)− dfE(Full)

dfE(Red.)
MSTest +

dfE(Full)
dfE(Red.)

MSE(Full).
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This displays MSE(Red.) as a weighted average of MSTest and MSE(Full) because the multipliers

dfE(Red.)−dfE(Full)
dfE(Red.)

and
dfE(Full)
dfE(Red.)

are both between 0 and 1 and they add to 1. Since the reduced model is a special case of the full
model, when the reduced model is true, both MSE(Red.) and MSE(Full) are reasonable estimates
of σ2. Since one estimate of σ2, the MSE(Red.), has been written as a weighted average of another
estimate of σ2, the MSE(Full), and something else, MSTest, it follows that the something else must
also be an estimate of σ2.

In data analysis, we are looking for a (relatively) succinct way of summarizing the data. The
smaller the model, the more succinct the summarization. However, we do not want to eliminate
useful aspects of a model, so we test the smaller (more succinct) model against the larger model to
see if the smaller model gives up significant explanatory power. Note that the larger model always
has at least as much explanatory power as the smaller model because the larger model includes
everything in the smaller model plus more. Although a reduced model may be an adequate substitute
for a full model on a particular set of data, it does not follow that the reduced model will be an
adequate substitute for the full model with any data collected on the variables in the full model. Our
models are really approximations and a good approximate model for some data might not be a good
approximation for data on the same variables collected differently.

Finally, we mention an alternative way of specifying models. Here we supposed that the model
involves independent data yi, i= 1, . . . ,n, with E(yi) = μi and some common variance, Var(yi) = σ2.
We generally impose some structure on the μis and sometimes we assume that the yis are normally
distributed. An equivalent way of specifying the model is to write

yi = μi + εi

and make the assumptions that the εis are independent with E(εi) = 0, Var(εi) = σ2, and are nor-
mally distributed. Using the rules for means and variances, it is easy to see that once again,

E(yi) = E(μi + εi) = μi +E(εi) = μi +0 = μi

and
Var(yi) = Var(μi + εi) = Var(εi) = σ2.

It also follows that if the εis are independent, the yis are independent, and if the εis are normally
distributed, the yis are normally distributed. The εis are called errors and the residuals ε̂i = yi − ŷi

are estimates (actually predictors) of the errors.
Typically, the full model specifies a relationship among the μis that depends on some parameters,

say, θ1, . . . ,θr. Typically, a reduced model specifies some additional relationship among the θ js that
is called a null hypothesis (H0), for example, θ1 = θ2. As indicated earlier, everybody’s favorite
reduced model has a common mean for all observations, hence

yi = μ + εi.

We now apply this theory to the one-sample problems of Chapter 2. The full model is simply the
one-sample model, thus the variance estimate is MSE(Full) = s2, which we know has dfE(Full) =
n− 1. A little algebra gives SSE(Full) = dfE(Full)×MSE(Full) = (n−1)s2. For testing the null
model with H0 : μ = m0, the variance estimate for the reduced model is

MSE(Red.) = σ̂2
0 ≡ 1

n

n

∑
i=1

(yi −m0)
2

with dfE(Red.) = n and SSE(Red.) = nσ̂2
0 . We also discussed in Chapter 2 that

SSE(Red.)−SSE(Full) = n(ȳ·−m0)
2
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so that

MSTest = [SSE(Red.)− SSE(Full)]/[dfE(Red.)−dfE(Full)] = n(ȳ·−m0)
2/[n− (n−1)]

and

F =
MSTest

MSE(Full)
=

n(ȳ·−m0)
2

s2 =

[
ȳ·−m0

s/
√

n

]2

.

The F statistic should be close to 1 if the null model is correct. If the data are normally distributed
under the null model, the F statistic should be one observation from an F(1,n− 1) distribution,
which allows us more precise determinations of the extent to which an F statistic far from 1 contra-
dicts the null model. Recall that with one or two degrees of freedom in the numerator of the F test,
values close to 0 are the values most consistent with the reduced model, cf. Figure 3.2.

EXAMPLE 3.1.1. Years ago, 16 people were independently abducted by S.P.E.C.T.R.E after a
Bretagne Swords concert and forced to submit to psychological testing. Among the tests was a
measure of audio acuity. From many past abductions in other circumstances, S.P.E.C.T.R.E knows
that such observations form a normal population. The observed values of ȳ· and s2 were 22 and
0.25, respectively, for the audio acuity scores. Now the purpose of all this is that S.P.E.C.T.R.E.
had a long-standing plot that required the use of a loud rock band. They had been planning to
use the famous oriental singer Perry Cathay but Bretagne Swords’ fans offered certain properties
they preferred, provided that those fans’ audio acuity scores were satisfactory. From extremely long
experience with abducting Perry Cathay fans, S.P.E.C.T.R.E. knows that they have a population
mean of 20 on the audio acuity test. S.P.E.C.T.R.E. wishes to know whether Bretagne Swords fans
differ from this value. Naturally, they tested H0 : μ = 20.

The test is to reject the null model if

F =
16(ȳ·−20)2

s2

is far from 1 or, if the data are normally distributed, if the F statistic looks unusual relative to an
F(1,15) distribution. Using the observed data,

Fobs =
16(22−20)2

0.25
= 256

which is very far from 1. �

EXAMPLE 3.1.2. The National Association for the Abuse of Student Yahoos (also known as
NAASTY) has established guidelines indicating that university dropout rates for math classes should
be 15%. In Chapter 2 we considered data from the University of New Mexico’s 1984–85 academic
year on dropout rates for math classes. We found that the 38 observations on dropout rates were
not normally distributed; they contained two outliers. Based on an α = .05 test, we wish to know if
the University of New Mexico (UNM) meets the NAASTY guidelines when treating the 1984–85
academic year data as a random sample. As is typical in such cases, NAASTY has specified that
the central value of the distribution of dropout rates should be 15% but it has not stated a specific
definition of the central value. We interpret the central value to be the population mean of the dropout
rates and test the null hypothesis H0 : μ = 15%.

The complete data consist of 38 observations from which we compute ȳ· = 13.11 and s2 =
106.421. The data are nonnormal so, although the F statistic is reasonable, we have little to justify
comparing the F statistic to the F(1,37) distribution. Substituting the observed values for ȳ· and s2

into the F statistic gives the observed value of the test statistic

Fobs =
38(13.11−15)2

106.421
= 1.275,
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which is not far from 1. The 1984–85 data provide no evidence that UNM violates the NAASTY
guidelines.

If we delete the two outliers, the analysis changes. The summary statistics become ȳd = 11.083
and s2

d = 27.45. Here the subscript d is used as a reminder that the outliers have been deleted. With-
out the outliers, the data are approximately normal and we can more confidently use the F(1,35)
reference distribution,

Fobs,d =
36(11.083−15)

27.45
= 20.2.

This is far from 1. In fact, the 0.999 percentile of an F(1,35) is F(0.999,1,35)
.
= 12.9, so an

observed Fd of 20.2 constitutes very unusual data relative to the null model. Now we have evidence
that dropout rates differ from 15% (or that something else is wrong with the model) but only for a
population that no longer includes “outliers.” �

3.1.1 An alternative F test

Not infrequently, when testing models, both the full model (Full) and the reduced model (Red.)
are special cases of a biggest model (Big.). In these situations, typically we have fitted a model,
the biggest model, and are exploring various submodels that may adequately fit the data. Testing
full versus reduced models provides a tool in evaluating their relative merits. In cases with multiple
tests and a biggest model, the process of choosing the full model tends to bias MSE(Full) as an
estimate of σ2, so the best practice is to replace MSE(Full) in the denominator of the test by the
mean squared error from the biggest model, MSE(Big.). In such cases we prefer to reject the null
model at the α level when

[SSE(Red.)− SSE(Full)]
/
[dfE(Red.)−dfE(Full)]

MSE(Big.)

> F [1−α,dfE(Red.)−dfE(Full),dfE(Big.)] (3.1.2)

rather than using the critical region defined by (3.1.1).

3.2 Inference on single parameters: assumptions

A commonly used alternative to model testing is to focus attention on a single parameter that is
important in modeling the data. Most statistical inference on a single parameter devolves from one
general theory of inference. To use the general theory of inference on a single parameter, we need
to know four things:

1. the parameter of interest, Par,

2. the estimate of the parameter, Est,

3. the standard error of the estimate, SE(Est), and

4. the appropriate reference distribution.

Specifically, what we need to know about the reference distribution is that

Est −Par
SE(Est)

has a distribution that is some member of the family of t distributions, say t(df ), where df specifies
the degrees of freedom. The estimate Est is taken to be a random variable. The standard error,
SE(Est), is the standard deviation of the estimate if that is known, but more commonly it is an
estimate of the standard deviation. If the SE(Est) is estimated, it typically involves an estimate of
σ2 and the estimate of σ2 determines the degrees of freedom for the t distribution. If the SE(Est) is
known, then typically σ2 is known, and the distribution is usually the standard normal distribution,
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t(1 − α, df)0

0

1 − α α

Figure 3.3: Percentiles of t(df ) distributions.

i.e., t(∞). In some problems, e.g., problems involving the binomial distribution, the central limit
theorem is used to get an approximate distribution and inferences proceed as if that distribution
were correct. Although appealing to the central limit theorem, so the known distribution is the
standard normal, we generally use a t with finite degrees of freedom hoping that it provides a better
approximation to the true reference distribution than a standard normal.

Identifying a parameter of interest and an estimate of that parameter is relatively easy. The more
complicated part of the procedure is obtaining the standard error. To do that, one typically derives the
variance of Est, estimates it (if necessary), and takes the square root. Obviously, rules for deriving
variances play an important role in finding standard errors.

These four items—Par, Est, SE(Est), reference distribution—depend crucially on the assump-
tions made in modeling the data. They depend on assumptions made about the expected values of
the observations but also on assumptions of independence, equal variances (homoscedasticity), and
normality or large sample sizes. For the purposes of this discussion, we refer to the assumptions
made to obtain the four items as the (full) model.

We need notation for the percentage points of the t distribution. In particular, we need a name for
the point that cuts off the top α of the distribution. The point that cuts off the top α of the distribution
also cuts off the bottom 1−α of the distribution. These ideas are illustrated in Figure 3.3. The
notation t(1−α,df ) is used for the point that cuts off the top α .

The illustration in Figure 3.3 is written formally as

Pr

[
Est −Par
SE(Est)

> t(1−α,df )

]
= α.

By symmetry about zero we also have

Pr

[
Est −Par
SE(Est)

<−t(1−α,df )

]
= α.

The value t(1−α,df ) is called a percentile or percentage point. It is most often found from a
computer program but can also be found from a t table or, in the case of t(∞), from a standard
normal table. One can get a feeling for how similar a t(df ) distribution is to a standard normal simply
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Figure 3.4: t(df ) densities for df = 1,3,∞.

by examining the t tables in Appendix B.1 and noting how quickly the t percentiles approach the
values given for infinite degrees of freedom. Alternatively, Figure 3.4 shows that t(df ) distributions
are centered around 0 and that a t(1) distribution is more spread out than a t(3) distribution, which
is more spread out than a N(0,1)≡ t(∞) distribution.

Although we have advertised the methods to be developed in the next sections as being based
on parameters rather than models, our discussion of parametric testing will continue to be based
on the models assumed for the data and the more specific null models determined by specifying a
particular value for the parameter.

3.3 Parametric tests

Tests are often used to check whether Par has some specified value. For some fixed known number
m0, we may want to test the null hypothesis

H0 : Par = m0.

In this context, the null (reduced) model consists of the assumptions made to obtain the four ele-
ments discussed in the previous section together with H0.

The number m0 must be known; it is some number that is of interest for the specific data being
analyzed. It is impossible to give general rules for picking m0 because the choice must depend on
the context of the data. As mentioned in the previous chapter, the structure of the data (but not the
actual values of the data) sometimes suggests interesting hypotheses such as testing whether two
populations have the same mean or testing whether there is a relationship between two variables.
Ultimately the researcher must determine what hypotheses are of interest and these hypotheses
determine both Par and m0. In any case, m0 is never just an unspecified symbol; it must have
meaning within the context of the problem.

The test of the null model involving H0 : Par = m0 is based on the four elements discussed in
the previous section and therefore relies on all of the assumptions of the basic model for the data.
In addition, the test assumes H0 is true, so the test is performed assuming the validity of the null
model. The idea of the test is to check whether the data seem to be consistent with the null model.

When the (full) model is true, Est provides an estimate of Par, regardless of the value of
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Par. Under the null model, Par = m0, so Est should be close to m0, and thus the t statistic
[Est −m0]/SE(Est) should be close to 0. Large positive and large negative values of the t statis-
tic indicate data that are inconsistent with the null model. The problem is in specifying what we
mean by “large.” We will conclude that the data contradict the null model if we observe a value of
[Est −m0]/SE(Est) that is farther from 0 than some cutoff values.

The problem is then to make intelligent choices for the cutoff values. The solution is based on
the fact that if the null model is true,

Est −m0

SE(Est)
∼ t(df ).

In other words, the t statistic, computed from the data and H0, has a t(df ) distribution. From Fig-
ure 3.3, values of the t(df ) distribution close to 0 are common and values far from 0 are unusual.
We use the t(df ) distribution to quantify how unusual values of the t statistic are.

When we substitute the observed values of Est and SE(Est) into the t statistic we get one
observation on the random t statistic, say tobs. When the null model is true, this observation comes
from the reference distribution t(df ). The question is whether it is reasonable to believe that this one
observation came from the t(df ) distribution. If so, the data are consistent with the null model. If the
observation could not reasonably have come from the reference distribution, the data contradict the
null model. Contradicting the null model is a strong inference; it implies that something about the
null model is false. (Either there is something wrong with the basic model or with the assumption
that Par = m0.) On the other hand, inferring that the data are consistent with the null model does
not suggest that it is true. Such data can also be consistent with models other than the null model.

The cutoff values for testing are determined by choosing an α level. The α-level test for H0 :
Par = m0 is to reject the null model if

Est −m0

SE(Est)
> t
(

1− α
2
,df
)

or if
Est −m0

SE(Est)
<−t

(
1− α

2
,df
)
.

This is equivalent to rejecting H0 if

|Est −m0|
SE(Est)

> t
(

1− α
2
,df
)
.

We are rejecting H0 for those values of [Est−m0]/SE(Est) that are most inconsistent with the t(df )
distribution, those being the values far from zero. The α level is just a measure of how weird we
require the data to be before we reject the null model.

EXAMPLE 3.3.1. Consider again the 16 people who were independently abducted by
S.P.E.C.T.R.E after a Bretagne Swords concert and forced to submit to audio acuity testing.
S.P.E.C.T.R.E knows that the observations are normal and observed ȳ· = 22 and s2 = .25.
S.P.E.C.T.R.E. wishes to know whether Bretagne Swords fans differ from the population mean of
20 that Perry Cathay fans display. Naturally, they tested H0 : μ = 20. They chose an α level of 0.01.

1) Par = μ
2) Est = ȳ·
3) SE(Est) = s/

√
16. In this case the SE(Est) is estimated.

4) [Est −Par]
/

SE(Est) = [ȳ·− μ ]
/
[s/

√
16] has a t(15) distribution. This follows because the data

are normally distributed and the standard error is estimated using s.
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The α = 0.01 test is to reject H0 if

|ȳ·−20|
s/
√

16
> 2.947 = t(0.995,15).

To find the appropriate cutoff value, note that 1−α/2 = 1− 0.01/2 = 0.995, so t(1−α/2,15) =
t(0.995,15). With ȳ· = 22 and s2 = 0.25, we reject H0 if

|tobs| ≡
|22−20|√

0.25/16
> 2.947.

Since |22−20|
/√

0.25/16= 16 is greater than 2.947, we reject the null model at the α = 0.01 level.
If the assumptions of the basic model are correct, there is clear (indeed, overwhelming) evidence
that the Bretagne Swords fans have higher scores. (Unfortunately, my masters will not let me inform
you whether high scores mean better hearing or worse.) �

EXAMPLE 3.3.2. We again consider data from the University of New Mexico’s 1984–85 aca-
demic year on dropout rates for math classes and compare them to the NAASTY guidelines of 15%
dropout rates. Based on an α = .05 test, we wish to know if the University of New Mexico meets
the NAASTY guidelines of 15% dropout rates when treating the 1984–85 academic year data as a
random sample. We test the null hypothesis H0 : μ = 15%. The 38 observations on dropout rates
were not normally distributed; they contained two outliers.

From the complete data of 38 observations we compute ȳ· = 13.11 and s2 = 106.421. The data
are nonnormal, so we have little choice but to hope that 38 observations constitute a sufficiently
large sample to justify the use of a t approximation, i.e.,

ȳ·− μ√
s2/38

∼ t(37).

With an α level of 0.05 and the t(37) distribution, the test rejects H0 if

ȳ·−15√
s2/38

> 2.026 = t(0.975,37) = t
(

1− α
2
,37
)

or if
ȳ·−15√

s2/38
<−2.026.

Substituting the observed values for ȳ· and s2 gives the observed value of the test statistic

tobs =
13.11−15√
106.421/38

=−1.13.

The value of −1.13 is neither greater than 2.026 nor less than −2.026, so the null hypothesis cannot
be rejected at the 0.05 level. The 1984–85 data provide no evidence that UNM violates the NAASTY
guidelines (or that anything else is wrong with the null model). Many people would use a t(∞)
distribution in this example based on the hope that n = 38 qualifies as a large sample size, but the
t(∞) seems too optimistic to me.

If we delete the two outliers, the analysis changes. Again, the subscript d is used as a reminder
that the outliers have been deleted. Without the outliers, the data are approximately normal and we
can more confidently use the reference distribution

ȳd − μd√
s2

d/36
∼ t(35).
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For this reference distribution the α = 0.05 test rejects H0 : μd = 15 if

ȳd −15√
s2

d/36
> 2.030 = t(0.975,35)

or if
ȳd −15√

s2
d/36

<−2.030 =−t(0.975,35).

With ȳd = 11.083 and s2
d = 27.45 from the data without the outliers, the observed value of the t

statistic is

tobs,d =
11.083−15√

27.45/36
=−4.49.

The absolute value of −4.49 is greater than 2.030, i.e., −4.49<−2.030, so we reject the null model
with H0 : μd = 15% at the 0.05 level. When we exclude the two extremely high observations, we
have evidence that the typical dropout rate was different from 15%, provided the other assumptions
are true. In particular, since the test statistic is negative, we have evidence that the population mean
dropout rate with outliers deleted was actually less than 15%. Obviously, most of the UNM math
faculty during 1984–85 were not sufficiently nasty.

Finally, we consider the role of transformations in testing. As in Chapter 2, we again consider
the square roots of the dropout rates with the two outliers deleted. As discussed earlier, NAASTY
has specified that the central value of the distribution of dropout rates should be 15% but has not
stated a specific definition of the central value. We are reasonably free to interpret their guideline and
we now interpret it as though the population mean of the square roots of the dropout rates should
be

√
15. This interpretation leads us to the null hypothesis H0 : μrd =

√
15. Here the subscript r

reminds us that square roots have been taken and the subscript d reminds us that outliers have been
deleted. As discussed earlier, a reasonable appropriate reference distribution is

ȳrd − μrd√
s2

rd/36
∼ t(35),

so the test rejects H0 if

|ȳrd −
√

15|√
s2

rd/36
> 2.030 = t(0.975,35).

The sample mean and variance of the transformed, deleted data are ȳrd = 3.218 and s2
rd = 0.749574,

so the observed value of the t statistic is

tobs,rd =
3.218−3.873√

0.749574/36
=−4.54.

The test statistic is similar to that in the previous paragraph. The null hypothesis is again rejected and
all conclusions drawn from the rejection are essentially the same. I believe that when two analyses
both appear to be valid, either the practical conclusions agree or neither analysis should be trusted.

�

In practice, people rarely use the procedures presented in this section. These procedures require
one to pick specific values for m0 in H0 : Par = m0 and for α . In practice, one either picks an α level
and presents results for all values of m0 or one picks a value m0 and presents results for all α levels.
The first of these options is discussed in the next section.
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3.4 Confidence intervals

Confidence intervals are commonly viewed as the single most useful procedure in statistical infer-
ence. (I don’t think I agree with that view.) A (1−α) confidence interval for Par consists of all
the values m0 that would not be rejected by an α-level test of H0 : Par = m0. In other words, the
confidence interval consists of all the parameter values that are consistent with both the data and the
model as determined by an α-level test. (Since the parameter is part of the model, it seems a little
redundant to specify that these are parameter values that are consistent with the model. One might
take that to be understood.)

A 95% confidence interval for Par is based on the fact that an α = .05 level test of H0 : Par = m0

will not be rejected when

−t(0.975,d f )<
Est −m0

SE(Est)
< t(0.975,df ) .

Some algebra (given in the appendix to the chapter) shows that the test will not be rejected when

Est − t(0.975,df )SE(Est)< m0 < Est + t(.975,df )SE(Est).

Thus, the value m0 is not rejected by a 0.05 level test if and only if m0 is within the interval having
endpoints Est ± t(0.975,df )SE(Est).

EXAMPLE 3.4.1. In Example 3.3.1 we considered past data on audio acuity in a post-rock en-
vironment. Those data were collected on fans of Bretagne Swords from her days of playing Statler
Brothers Solitaire. The nefarious organization responsible for this study found it necessary to up-
date their findings after she found her missing card. This time they abducted for themselves 10
independent observations and they were positive that the data would follow a normal distribution
with variance 6. (Such arrogance is probably responsible for the failure of S.P.E.C.T.R.E.’s plans
of world domination. In any case, their resident statistician was in no position to question these
assumptions.) S.P.E.C.T.R.E. found that ȳ· was 17. They seek a 95% confidence interval for μ , the
mean of the population.

1) Par = μ ,

2) Est = ȳ·,
3) SE(Est) =

√
6/10, in this case SE(Est) is known and not estimated.

4) [Est −Par]
/

SE(Est) = [ȳ·− μ ]
/√

6/10 has a t(∞) distribution.

For a 95% confidence interval, observe that 1−α = 95% = 0.95 and α = 0.05. It follows that
t
(
1− α

2 ,∞
)
= t(0.975,∞) = 1.96. The limits of the 95% confidence interval are

ȳ·±1.96
√

6/10

or, since ȳ· = 17,
17±1.96

√
6/10.

S.P.E.C.T.R.E. concluded that for this model the data were consistent with a mean hearing score
between 15.5 and 18.5 for people at this concert (or at least for the population they were considering
for abduction) based on a 0.05 level test. �

EXAMPLE 3.4.2. In Chapter 2 we considered data on dropout rates for math classes. The 38
observations contained two outliers. Our parameter for these data is μ , the population mean dropout
rate for math classes, the estimate is the sample mean ȳ·, and the standard error is

√
s2/38 where

s2 is the sample variance. Based on the central limit theorem and the law of large numbers, we used
the approximate reference distribution

ȳ·− μ√
s2/38

∼ t(37).
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From the 38 observations, we computed ȳ· = 13.11 and s2 = 106.421 and found a 95% confidence
interval for the dropout rate of (9.7,16.5). The endpoints of the confidence interval are computed as

13.11±2.026(
√

106.421/38).

If we drop the two outliers, the remaining data seem to be normally distributed. Recomputing
the sample mean and sample variance with the outliers deleted, we get ȳd = 11.083 and s2

d = 27.45.
Without the outliers, we can use the reference distribution

ȳd − μd√
s2

d/36
∼ t(35).

This t(35) distribution relies on the assumption of normality (which we have validated) rather than
relying on the unvalidated large sample approximations from the central limit theorem and law of
large numbers. Philosophically, the t(35) distribution should give more accurate results, but we have
no way to establish whether that is actually true for these data. To compute a 95% confidence interval
based on the data without the outliers, we need to find the appropriate tabled values. Observe once
again that 1−α = 95% = 0.95 and α = 0.05. It follows that t

(
1− α

2 ,df
)
= t(0.975,35) = 2.030,

and, substituting the observed values of ȳd and s2
d , the confidence interval has endpoints

11.083±2.030(
√

27.45/36).

The actual interval is (9.3,12.9). Excluding the extremely high values that occasionally occur, the
model and data are consistent with a mean dropout rate between 9.3 and 12.9 percent based on a
0.05 test. Remember, this is a confidence interval for the mean of math classes; it does not indicate
that you can be 95% confident that your next math class will have a dropout rate between 9.3 and
12.9 percent. Such an inference requires a prediction interval, cf. Section 3.7.

The interval (9.3,12.9) is much narrower than the one based on all 38 observations, largely
because our estimate of the variance is much smaller when the outliers have been deleted. Note also
that with the outliers deleted, we are drawing inferences about a different parameter than when they
are present. With the outliers deleted, our conclusions are only valid for the bulk of the observations.
While occasional weird observations can be eliminated from our analysis, we cannot stop them from
occurring.

We have also looked at the square roots of the dropout rate data. We now consider the effect on
confidence intervals of transforming the data. With the two outliers deleted and taking square roots
of the observations, we found earlier that the data are reasonably normal. The sample mean and
variance of the transformed, deleted data are ȳrd = 3.218 and s2

rd = 0.749574. Using the reference
distribution

ȳrd − μrd√
s2

rd/36
∼ t(35),

we obtain a 95% confidence interval with endpoints

3.218±2.030

(√
0.749574

36

)
.

The confidence interval reduces to (2.925,3.511). This is a 95% confidence interval for the pop-
ulation mean of the square roots of the dropout rate percentages with ‘outliers’ removed from the
population.

The confidence interval (2.925,3.511) does not really address the issue that we set out to inves-
tigate. We wanted some idea of the value of the population mean dropout rate. We have obtained
a 95% confidence interval for the population mean of the square roots of the dropout rate percent-
ages (with outliers removed from the population). There is no simple, direct relationship between



72 3. GENERAL STATISTICAL INFERENCE

the population mean dropout rate and the population mean of the square roots of the dropout rate
percentages, but a simple device can be used to draw conclusions about typical values for dropout
rates when the analysis is performed on the square roots of the dropout rates.

If the square root data are normal, the mean is the same as the median. The median is a value
with 50% of observations falling at or below it and 50% falling at or above it. Although the mean
on the square root scale does not transform back to the mean on the original scale, the median does.
Since (2.925,3.511) provides a 95% confidence interval for the median from the square roots of
the dropout rate percentages, we simply square all the values in the interval to draw conclusions
about the median dropout rate percentages. Squaring the endpoints of the interval gives the new
interval (2.9252,3.5112) = (8.6,12.3). We are now 95% confident that the median of the population
of dropout rates is between 8.6 and 12.3. Interestingly, we will see in Section 3.7 that prediction
intervals do not share these difficulties in interpretation associated with transforming the data.

Note that the back transformed interval (8.6,12.3) for the median obtained from the trans-
formed, deleted data is similar to the interval (9.3,12.9) for the mean (which is also the median of
the assumed model) obtained earlier from the untransformed data with the outliers deleted. Again,
when two distinct analyses both seem reasonably valid, I would be very hesitant about drawing
practical conclusions that could not be justified from both analyses. �

The confidence intervals obtained from this theory can frequently be obtained by another ap-
proach to statistical inference using ‘Bayesian’ arguments; see Berry (1996). In the Bayesian justi-
fication, the correct interpretation of a 95% confidence interval is that the probability is 95% that
the parameter is in the interval.

Rather than the testing interpretation or the Bayesian interpretation, most statisticians seem to
favor the Neyman–Pearson definition for confidence intervals based on the idea that in a long run
of performing 95% confidence intervals, about 95% will contain the true parameter. Of course this
does not actually tell you anything about the confidence interval at hand. It also assumes that all the
models are correct in the long run of confidence intervals. It is difficult to get students to accept this
definition as anything other than a memorized fact. Students frequently misinterpret this definition
as the Bayesian interpretation.

The long run interpretation of confidence intervals tempts people to make a mistake in inter-
pretation. If I am about to flip a coin, we can agree that the physical mechanism involved gives
probability 1/2 to both heads and tails. If I flip the coin but don’t show it to you, you still feel
like the probabilities are both 1/2. But I know the result! Therefore, the probabilities based on the
physical mechanism no longer apply, and your feeling that probability 1/2 is appropriate is entirely
in your head. It feels good, but what is the justification? Bayesian Statistics involves developing
justifications for such probabilities.

The long run interpretation of confidence intervals is exactly the same as flipping a coin that
turns up heads, say, 95% of the time. The parameter being in the interval is analogous to the coin
being heads. Maybe it is; maybe it isn’t. How the number 0.95 applies to a particular interval or
flip, after it has been determined, is a mystery. Of course many statisticians simply recite the correct
probability statement and ignore its uselessness. The significance testing and Bayesian interpreta-
tions of the intervals both seem reasonable to me.

Confidence intervals give all the possible parameter values that seem to be consistent with the
data and the model. In particular, they give the results of testing H0 : Par =m0 for a fixed α but every
choice of m0. In the next section we discuss P values that give the results of testing H0 : Par = m0

for a fixed m0 but every choice of α .

3.5 P values

Rather than having formal rules for when to reject the null model, one can report the evidence
against the null model. That is done by reporting the P value. The P value is computed under the
null model. It is the probability of seeing data that are as weird or more weird than those that were
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actually observed. Formally, with H0 : Par = m0 we write tobs for the observed value of the t statistic
as computed from the observed values of Est and SE(Est). Thus tobs is our summary of the data
that were actually observed. Recalling our earlier discussion that the most unusual values of tobs are
those far from 0, the probability under the null model of seeing something as or more weird than
we actually saw is the probability that a t(df ) distribution is farther from 0 than |tobs|. Formally, we
can write this as

P = Pr

[∣∣∣Est −m0

SE(Est)

∣∣∣≥ |tobs|
]
.

Here Est (and usually SE(Est)) are viewed as random and it is assumed that Par = m0 so that
(Est −m0)/SE(Est) has the known reference distribution t(df ). The value of tobs is a fixed known
number, so we can actually compute P. Using the symmetry of the t(df ) distribution, the basic
idea is that for, say, tobs positive, any value of (Est −m0)/SE(Est) greater than tobs is more weird
than tobs. Any data that yield (Est −m0)/SE(Est) = −tobs are just as weird as tobs and values of
(Est −m0)/SE(Est) less than −tobs are more weird than observing tobs.

EXAMPLE 3.5.1. Again consider the Bretagne Swords data. We have 16 observations taken
from a normal population and we wish to test H0 : μ = 20. As before, 1) Par = μ , 2) Est = ȳ·,
3) SE(Est) = s/

√
16, and 4) [Est −Par]

/
SE(Est) = [ȳ·−μ ]

/
[s/

√
16] has a t(15) distribution. This

time we take ȳ· = 19.78 and s2 = .25, so the observed test statistic is

tobs =
19.78−20√

0.25/16
=−1.76.

From a t table, t(0.95,15) = 1.75, so

P = Pr [|t(15)| ≥ |− 1.76|] .= Pr [|t(15)| ≥ 1.75] = 0.10.

Alternatively, t(0.95,15)
.
= |1.76|, so P

.
= 2(1− .95). �

The P value is the smallest α level for which the test would be rejected. Thus, if we perform an
α-level test where α is less than the P value, we can conclude immediately that the null model is not
rejected. If we perform an α-level test where α is greater than the P value, we know immediately
that the null model is rejected. Thus computing a P value eliminates the need to go through the
formal testing procedures described in Section 3.3. Knowing the P value immediately gives the test
results for any choice of α . The P value is a measure of how consistent the data are with the null
model. Large values (near 1) indicate great consistency. Small values (near 0) indicate data that are
inconsistent with the null model.

EXAMPLE 3.5.2. In Example 3.3.2 we considered tests for the drop rate data. Using the complete
untransformed data and the null hypothesis H0 : μ = 15, we observed the test statistic

tobs =
13.11−15√
106.421/38

=−1.13.

Using a computer program, we can compute

P = Pr [|t(37)| ≥ |− 1.13|] = 0.26.

An α = 0.26 test would be just barely rejected by these data. Any test with an α level smaller than
0.26 is more stringent (the cutoff values are farther from 0 than 1.13) and would not be rejected.
Thus the commonly used α = 0.05 and α = 0.01 tests would not be rejected. Similarly, any test
with an α level greater than 0.26 is less stringent and would be rejected. Of course, it is extremely
rare that one would use a test with an α level greater than 0.26. Recall that the P value of 0.26 is
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a highly questionable number because it was based on a highly questionable reference distribution,
the t(37).

Using the untransformed data with outliers deleted and the null hypothesis H0 : μd = 15, we
observed the test statistic

tobs,d =
11.083−15√

27.45/36
=−4.49.

We compute

P = Pr [|t(35)| ≥ |− 4.49|] = 0.000.

This P value is not really zero; it is a number that is so small that when we round it off to three
decimal places the number is zero. In any case, the test is rejected for any reasonable choice of α .
In other words, the test is rejected for any choice of α that is greater than 0.000. (Actually for any
α greater than 0.0005 because of the round-off issue.)

Using the square roots of the data with outliers deleted and the null hypothesis H0 : μrd =
√

15,
the observed value of the test statistic is

tobs,rd =
3.218−3.873√

0.749574/36
=−4.54.

We compute

P = Pr [|t(35)| ≥ |− 4.54|] = 0.000.

Once again, the test result is highly significant. But remember, unless you are reasonably sure that
the model is right, you cannot be reasonably sure that H0 is wrong. �

EXAMPLE 3.5.3. In Example 3.3.1 we considered audio acuity data for Bretagne Swords fans
and tested whether their mean score differed from fans of Perry Cathay. In this example we test
whether their mean score differs from that of Tangled Female Sibling fans. Recall that the observed
values of n, ȳ·, and s2 for Bretagne Swords fans were 16, 22, and 0.25, respectively and that the
data were normal. Tangled Female Sibling fans have a population mean score of 22.325, so we test
H0 : μ = 22.325. The test statistic is (22−22.325)/

√
0.25/16 = −2.6. If we do an α = 0.05 test,

| − 2.6| > 2.13 = t(0.975,15), so we reject H0, but if we do an α = 0.01 test, | − 2.6| < 2.95 =
t(0.995,15), so we do not reject H0. In fact, | − 2.6| .

= t(0.99,15), so the P value is essentially
.02 = 2(1− .99). The P value is larger than 0.01, so the 0.01 test does not reject H0; the P value is
less than 0.05, so the test rejects H0 at the 0.05 level.

If we consider confidence intervals, the 99% interval has endpoints 22±2.95
√

0.25/16 for an
interval of (21.631,22.369) and the 95% interval has endpoints 22±2.13

√
0.25/16 for an interval

of (21.734,22.266). Notice that the hypothesized value of 22.325 is inside the 99% interval, so it is
not rejected by a 0.01 level test, but 22.325 is outside the 95% interval, so a 0.05 test rejects H0 :
μ = 22.325. The 98% interval has endpoints 22±2.60

√
0.25/16 for an interval of (21.675,22.325)

and the hypothesized value is on the edge of the interval. �

In the absence of other assumptions, a large P value does not constitute evidence in support
of the null model. A large P value indicates that the data are consistent with the null model but,
typically, it is easy to find other models even more consistent with the data. In Example 3.5.1, the
data are even more consistent with μ = 19.78.

Philosophically, it would be more proper to define the P value prior to defining an α-level test,
defining an α-level test as one that rejects when the P value is less than or equal to α . One would
then define confidence intervals relative to α-level tests. I changed the order because I caved to my
perception that people are more interested in confidence intervals.
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3.6 Validity of tests and confidence intervals

In significance testing, we make an assumption, namely the null model, and check whether the data
are consistent with the null model or inconsistent with it. If the data are consistent with the null
model, that is all that we can say. If the data are inconsistent with the null model, it suggests that
the null model is somehow wrong. (This is very similar to the mathematical idea of a proof by
contradiction.)

Often people want a test of the null hypothesis H0 : Par = m0 rather than the null model. The
null model involves a series of assumptions in addition to H0 : Par = m0. Typically we assume that
observations are independent and have equal variances. In most tests that we will consider, we as-
sume that the data have normal distributions. As we consider more complicated data structures, we
will need to make more assumptions. The proper conclusion from a test is that either the data are
consistent with our assumptions or the data are inconsistent with our assumptions. If the data are
inconsistent with the assumptions, it suggests that at least one of them is invalid. In particular, if the
data are inconsistent with the assumptions, it does not necessarily imply that the particular assump-
tion embodied in the null hypothesis is the one that is invalid. Before we can reasonably conclude
that the null hypothesis is untrue, we need to ensure that the other assumptions are reasonable. Thus
it is crucial to check our assumptions as fully as we can. Plotting the data, or more often plotting the
residuals, plays a vital role in checking assumptions. Plots are used throughout the book, but special
emphasis on plotting is given in Chapter 7.

In Section 3.2 it is typically quite easy to define parameters Par and estimates Est. The role of
the assumptions is crucial in obtaining a valid SE(Est) and an appropriate reference distribution.
If our assumptions are reasonably valid, our SE(Est) and reference distribution will be reasonably
valid and the procedures outlined here lead to conclusions about Par with reasonable validity. Of
course the assumptions that need to be checked depend on the precise nature of the analysis being
performed, i.e., the precise model that has been assumed.

3.7 Theory of prediction intervals

Some slight modifications of the general theory allow us to construct prediction intervals for future
observations from the model. Many of us would argue that the fundamental purpose of science is
making accurate predictions of things that can be observed in the future. As with estimation, predict-
ing the occurrence of a particular value (point prediction) is less valuable than interval prediction
because a point prediction gives no idea of the variability associated with the prediction.

In constructing prediction intervals for a new observation y0, we make a number of assumptions.
First, we assume that we will obtain data y1, . . . ,yn that are independent with common variance
σ2 and normally distributed. The random observation to be predicted is y0. It is assumed that y0

is independent of y1, . . . ,yn with variance σ2 and normal. Our parameter is Par = E(y0) and Est
uses y1, . . . ,yn to estimate E(y0), i.e., our point prediction for y0. We also assume that σ2 has an
estimate σ̂2 computed from y1, . . . ,yn, that SE(Est) = σ̂A for some known constant A, and that
(Est −Par)/SE(Est) has a t distribution with, say, df degrees of freedom. (Technically, we need
Est to have a normal distribution, df × (σ̂2/σ2), to have a χ2(df ) distribution, and independence
of Est and σ̂2.)

A prediction interval for y0 is based on the distribution of y0 −Est because we need to evaluate
how far y0 can reasonably be from our point prediction of y0. The value of the future observation y0

is independent of the past observations and thus of Est. It follows that the variance of y0 −Est is

Var(y0 −Est) = Var(y0)+Var(Est) = σ2 +Var(Est) = σ2 +σ2A2

and that the standard error of y0 −Est is

SE(y0 −Est) =
√

σ̂2 +[SE(Est)]2 =
√

σ̂2[1+A2]. (3.7.1)
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SE(y0 −Est) is called the standard error of prediction and is sometimes written SE(Prediction).
Using the standard error of prediction, one can show that

y0 −Est
SE(y0 −Est)

∼ t(df ).

A (1−α) prediction interval is based on testing whether a particular future y0 value would be
consistent with the assumptions we have made (our model) and the other data. An α-level test for
y0 would not be rejected if

−t
(

1− α
2
,df
)
<

y0 −Est
SE(y0 −Est)

< t
(

1− α
2
,df
)
.

Rearranging the terms leads to the inequalities

Est − t
(

1− α
2
,df
)

SE(y0 −Est)< y0 < Est + t
(

1− α
2
,df
)

SE(y0 −Est).

The prediction interval consists of all y0 values that fall between these two observable limits. These
are the y0 values that are consistent with our model and data. The endpoints of the interval can be
written

Est ± t
(

1− α
2
,df
)√

σ̂2 +[SE(Est)]2. (3.7.2)

Unfortunately, it is impossible to even attempt to validate assumptions about observations to be
taken in the future. How could we possibly validate that a future observation is going to be indepen-
dent of previous observations? Thus, the validity of prediction intervals is always suspect.

The prediction interval determined by (3.7.2) is similar to, but wider than, the confidence interval
for Par = E(y0), which is

Est ± t
(

1− α
2
,df
)

SE(Est).

From the form of SE(y0 −Est) given in (3.7.1), we see that

SE(y0 −Est) =
√

σ̂2 +[SE(Est)]2 ≥ SE(Est).

Typically, the prediction standard error is much larger than the standard error of the estimate, so
prediction intervals are much wider than confidence intervals for E(y0). In particular, increasing the
number of observations typically decreases the standard error of the estimate but has a relatively
minor effect on the standard error of prediction. Increasing the sample size is not intended to make
σ̂2 smaller, it only makes σ̂2 a more accurate estimate of σ2.

EXAMPLE 3.7.1. As in Example 3.3.2, we eliminate the two outliers from the dropout rate data.
The 36 remaining observations are approximately normal. A 95% confidence interval for the mean
had endpoints

11.083±2.030
√

27.45/36.

A 95% prediction interval has endpoints

11.083±2.030

√
27.45+

27.45
36

or
11.083±10.782.

The prediction interval is (0.301,21.865), which is much wider than the confidence interval of
(9.3,12.9). Dropout rates for a new math class between 0.3% and 21.9% are consistent with the data
and the model based on a 0.05 level test. Population mean dropout rates for math classes between
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9% and 13% are consistent with the data and the model. Of course the prediction interval assumes
that the new class is from a population similar to the 1984–85 math classes with huge dropout rates
deleted. Such assumptions are almost impossible to validate. Moreover, there is some chance that
the new observation will be one with a huge dropout rate and this interval says nothing about such
observations.

In Example 3.3.2 we also considered the square roots of the dropout rate data with the two
outliers eliminated. To predict the square root of a new observation, we use the 95% interval

3.218±2.030

(√
0.749574+

0.749574
36

)
,

which reduces to (1.436,5.000). This is a prediction interval for the square root of a new observa-
tion, so actual values of the new observation between (1.4362,5.0002), i.e., (2.1,25) are consistent
with the data and model based on a 0.05 level test. Retransforming a prediction interval back into
the original scale causes no problems of interpretation whatsoever. This prediction interval and the
one in the previous paragraph are comparable. Both include values from near 0 up to the low to mid
twenties. �

Lower bounds on prediction confidence

If the normal and χ2 distributional assumptions stated at the beginning of the section break down,
our measure of how unusual a future data point might be is invalid. The cut-off value for our test is
based on rejecting y0 values that are unusual relative to the t distribution. If we use the cut-off values
from the t distribution even when the distribution is not valid, what can we say about the weirdness
of data that exceed the cut-off values?

Relying primarily on the independence assumptions and having sufficient data to use σ̂2 as
an approximation to σ2, we can find an approximate lower bound for the confidence that a new
observation is in the prediction interval. Chebyshev’s inequality from Subsection 1.2.2 gives

1− t
(

1− α
2
,df
)−2

≤ Pr

[
−t
(

1− α
2
,df
)
<

y0 −Est
SE(y0 −Est)

< t
(

1− α
2
,df
)]

,

or equivalently,

1− t
(

1− α
2
,df
)−2

≤ Pr
[
Est − t

(
1− α

2
,df
)

SE(y0 −Est)< y0

< Est + t
(

1− α
2
,df
)

SE(y0 −Est)
]
.

This indicates that the confidence coefficient for the prediction interval given by

Est ± t
(

1− α
2
,df
)

SE(y0 −Est)

is (approximately) at least [
1− t
(

1− α
2
,df
)−2
]

100%.

In other words, the probability of seeing data as weird or weirder than t
(
1− α

2 ,df
)

is no more than

t
(

1− α
2
,df
)−2

.

If we can use the improved version of Chebyshev’s inequality from Section 1.3, we can raise the
confidence coefficient to [

1− (2.25)−1t
(

1− α
2
,df
)−2
]

100%
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or lower the α level to

(2.25)−1t
(

1− α
2
,df
)−2

.

EXAMPLE 3.7.2. Assuming that a sample of 36 observations is enough to ensure that s2 is es-
sentially equal to σ2, the nominal 95% prediction interval given in Example 3.7.1 for dropout rates
has a confidence level, regardless of the distribution of the data, that is at least

(
1− 1

2.0302

)
= 76% or even

(
1− 1

2.25(2.030)2

)
= 89%.

The true α level for the corresponding test is no more than 0.24, or, if the improved version of
Chebyshev applies, 0.11.

3.8 Sample size determination and power

Suppose we wish to estimate the mean height of the men officially enrolled in Statistics classes at
the University of New Mexico on April 5, 2010 at 3 pm. How many observations should we take?
The answer to that question depends on how accurate our estimate needs to be and on our having
some idea of the variability in the population.

To get a rough indication of the variability we argue as follows. Generally, men have a mean
height of about 69 inches and I would guess that about 95% of them are between 63 inches and
75 inches. The probability that a N(μ ,σ2) random variable is between μ ± 2σ is approximately
0.95, which suggests that σ = [(μ +2σ)− (μ −2σ)]/4 may be about (75−63)/4= 3 for a typical
population of men.

Before proceeding with sample size determination, observe that sample sizes have a real effect
on the usefulness of confidence intervals. Suppose ȳ· = 72 and n = 9, so the 95% confidence inter-
val for mean height has endpoints of roughly 72±2(3/

√
9), or 72±2, with an interval of (70,74).

Here we use 3 as a rough indication of σ in the standard error and 2 as a rough indication of the
tabled value for a 95% interval. If having an estimate that is off by 1 inch is a big deal, the confi-
dence interval is totally inadequate. There is little point in collecting the data, because regardless of
the value of ȳ·, we do not have enough accuracy to draw interesting conclusions. For example, if I
claimed that the true mean height for this population was 71 inches and I cared whether my claim
was off by an inch, the data are not only consistent with my claim but also with the claims that the
true mean height is 70 inches and 72 inches and even 74 inches. The data are inadequate for my pur-
poses. Now suppose ȳ· = 72 and n = 3600, the confidence interval has endpoints 72±2(3/

√
3600)

or 72± 0.1 with an interval of (71.9,72.1). We can tell that the population mean may be 72 inches
but we are quite confident that it is not 72.11 inches. Would anyone really care about the difference
between a mean height of 72 inches and a mean height of 72.11 inches? Three thousand six hundred
observations gives us more information than we really need. We would like to find a middle ground.

Now suppose we wish to learn the mean height to within 1 inch with 95% confidence. From
a sample of size n, a 95% confidence interval for the mean has endpoints that are roughly ȳ· ±
2(3/

√
n). With 95% confidence, the mean height could be as high as ȳ· + 2(3/

√
n) or as low as

ȳ· − 2(3/
√

n). We want the difference between these numbers to be no more than 1 inch. The
difference between the two numbers is 12/

√
n, so to obtain the required difference of 1 inch, set

1 = 12/
√

n, so that
√

n = 12/1 or n = 144.
The semantics of these problems can be a bit tricky. We asked for an interval that would tell us

the mean height to within 1 inch with 95% confidence. If instead we specified that we wanted our
estimate to be off by no more than 1 inch, the estimate is in the middle of the interval, so the distance
from the middle to the endpoint needs to be 1 inch. In other words, 1 = 2(3/

√
n), so

√
n = 6/1 or

n = 36. Note that learning the parameter to within 1 inch is the same as having an estimate that is
off by no more than 1/2 inch.
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The concepts illustrated above work quite generally. Typically an observation y has Var(y) = σ2

and Est has SE(Est) = σA. The constant A in SE(Est) is a known function of the sample size (or
sample sizes in situations involving more than one sample). In inference problems we replace σ in
the standard error with an estimate of σ obtained from the data. In determining sample sizes, the
data have not yet been observed, so σ has to be approximated from previous data or knowledge.
The length of a (1−α)100% confidence interval is

[Est + t(1−α/2,df )SE(Est)]− [Est − t(1−α/2,df )SE(Est)]

= 2t(1−α/2,df )SE(Est) = 2t(1−α/2,df )σA.

The tabled value t(1− α/2,df ) can be approximated by t(1 −α/2,∞). If we specify that the
confidence interval is to be w units wide, set

w = 2t(1−α/2,∞)σA (3.8.1)

and solve for the (approximate) appropriate sample size. In Equation (3.8.1), w, t(1−α/2,∞), and
σ are all known and A is a known function of the sample size.

Unfortunately it is not possible to take Equation (3.8.1) any further and show directly how it
determines the sample size. The discussion given here is general and thus the ultimate solution
depends on the type of data being examined. In the only case we have examined as yet, there is one-
sample, Par = μ , Est = ȳ·, and SE(Est) = σ/

√
n. Thus, A = 1/

√
n and Equation (3.8.1) becomes

w = 2t(1−α/2,∞)σ/
√

n.

Rearranging this gives √
n = 2t(1−α/2,∞)σ/w

and
n = [2t(1−α/2,∞)σ/w]2 .

But this formula only applies to one-sample problems. For other problems considered in this book,
e.g., comparing two independent samples, comparing more than two independent samples, and sim-
ple linear regression, Equation (3.8.1) continues to apply but the constant A becomes more compli-
cated. In cases where there is more than one sample involved, the various sample sizes are typically
assumed to all be the same, and in general their relative sizes need to be specified, e.g., we could
specify that the first sample will have 10 more observations than the second or that the first sample
will have twice as many observations as the second.

Another approach to determining approximate sample sizes is based on the power of an α-level
test. (Here we are sinking, or at least wading, into the morass of Neyman–Pearson testing.) If the
model is correct but the null hypothesis is noticeably wrong, we want a sample size that gives us
a decent chance of recognizing that fact. Tests are set up assuming that, say, H0 : Par = m0 is true.
Power is computed assuming that Par �= m0. Suppose that Par = mA �= m0, then the power when
Par = mA is the probability that the (1−α)100% confidence interval will not contain m0. Another
way of saying that the confidence interval does not contain m0 is saying that an α-level two-sided
test of H0 : Par = m0 rejects H0. In determining sample sizes, you need to pick mA as some value
you care about. You need to care about it in the sense that if Par = mA rather than Par = m0, you
would like to have a reasonably good chance of rejecting H0 : Par = m0.

Cox (1958, p. 176) points out that it often works well to choose the sample size so that

|mA −m0|
.
= 3SE(Est). (3.8.2)

Cox shows that this procedure gives reasonable powers for common choices of α . Here mA and m0

are known and SE(Est) = σA, where σ is known and A is a known function of sample size. Also
note that this suggestion does not depend explicitly on the α level of the test. As with Equation
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(3.8.1), Equation (3.8.2) can be solved to give n in particular cases, but a general solution for n is
not possible because it depends on the exact nature of the value A.

Consider again the problem of determining the mean height. If my null hypothesis is H0 : μ = 72
and I want a reasonable chance of rejecting H0 when μ = 73, Cox’s rule suggests that I should have
1 = |73− 72| .= 3(3/

√
n) so that

√
n
.
= 9 or n

.
= 81.

It is important to remember that these are only rough guides for sample sizes. They involve
several approximations, the most important of which is approximating σ . If there is more than
one parameter of interest in a study, sample size computations can be performed for each and a
compromise sample size can be selected.

In the early years of my career, I was amazed at my own lack of interest in teaching students
about statistical power until Cox (1958, p. 161) finally explained it for me. He points out that power
is very important in planning investigations but it is not very important in analyzing them. I might
even go so far as to say that once the data have been collected, a power analysis can at best tell you
whether you have been wasting your time. In other words, a power analysis will only tell you how
likely you were to find differences given the design of your experiment and the choice of test.

Although the simple act of rejecting a null model does nothing to suggest what models might be
correct, it can still be interesting to see whether we have a reasonable chance of rejecting the null
model when some alternative model is true. Hence our discussion. However, the theory of testing
presented here is not an appropriate theory for making choices between a null model and some
alternative. Our theory is a procedure for (possibly) falsifying a null model.

3.9 The shape of things to come

To keep the discussion in this chapter as simple as possible, the examples have thus far been re-
stricted to one-sample problems. However, the results of this chapter apply to more complicated
problems such as two-sample problems, regression, and analysis of variance. For these different
problems, the only thing that changes is how we model the means of the observations.

Through the vast majority of this book, we will assume that a model exists to predict a mea-
surement random variable y based on a (nonrandom) predictor x. The predictor x can be a single
measurement (continuous) variable or a single categorical (factor or classification) variable. A cate-
gorical variable is one that defines groups of observations. A categorical variable can identify which
observations are male and which are female. It can identify racial groups or socio-economic groups
or age groups. (Although age could also be a measurement.) The predictor x can be either a single
variable or x can be a vector of measurement and categorical variables.

Our models are written

y = m(x)+ ε,

where m(·) is some fixed function that determines the mean of y for a given x and ε is some unob-
servable error term with mean 0. Thus

E(y) = E[m(x)+ ε] = m(x)+E(ε) = m(x)+ 0 = m(x).

With n observations on this model, write

yh = m(xh)+ εh, h = 1, . . . ,n. (3.9.1)

We typically assume

εhs independent N(0,σ2). (3.9.2)

Here σ2 is an unknown parameter that we must estimate. Together (3.9.1) and (3.9.2) constitute our
model for the observations. The function m(·) is our model for the mean of y. We make assumptions
about the form of m(·) that typically include unknown (mean) parameters that we must estimate.
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Frequently, we find it more convenient to express the model in terms of the observations. These are
independent, normally distributed, and have the same variance σ2, i.e.,

yhs independent N[m(xh),σ2]. (3.9.3)

If x is a single variable that only ever takes on one value, say, x ≡ 1, then we have the model for
a one-sample problem as discussed in Chapter 2. In particular, Model (3.9.1) becomes

yh = m(1)+ εh, h = 1, . . . ,n.

If we make the identification
μ ≡ m(1),

we get a one-sample model with one mean parameter to estimate,

yh = μ + εh, h = 1, . . . ,n,

or, we more often write it in terms of Model (3.9.3),

yhs independent N(μ ,σ2).

In Chapter 6 we deal with a model that involves a single measurement predictor. In particular,
we discuss verbal abilities y in a school and relate them to a measurement of socio-economic status
x for the school. In simple linear regression we assume that

m(x) = β0 +β1x,

so our model incorporates a linear relationship between x and the expected value of y. For a set of n
observations, write

yh = β0 +β1xh + εh, h = 1, . . . ,n.

Here x is a known value but β0 and β1 are unknown, uniquely defined mean parameters that we must
estimate.

In Chapter 8 we introduce models with more complicated functions of a single predictor x. These
include polynomial models. A third-degree polynomial regression model has

m(x) = β0 +β1x+β2x2 +β3x3.

Again the β s are unknown, uniquely defined mean parameters and x is treated as fixed. If the rela-
tionship between x and E(y) is nonlinear, polynomials provide one method of modeling the nonlin-
ear relationship.

In Section 6.9 we introduce, and in Chapters 9, 10, and 11 we consider in detail, models for
measurement variables with a vector of predictors x = (x1, . . . ,xp)

′. With p = 3, a typical multiple
regression model incorporates

m(x) = β0 +β1x1 +β2x2 +β3x3.

When written for all n observations, the model becomes

yh = β0 +β1xh1 +β2xh2 +β3xh3 + εh. (3.9.4)

Here the β js are unknown parameters and the xh j values are all treated as fixed.
The predictors xh j used in (3.9.4) are necessarily numerical. Typically, they are either measure-

ments of some sort or 0-1 indicators of group membership. Categorical variables do not have to
be numerical (Sex, Race) but categories are often coded as numbers, e.g., Female = 1, Male = 2. It
would be inappropriate to use a (non-binary) categorical variable taking numerical values in (3.9.4).
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A categorical variable with, say, five categories should be incorporated into a multiple regression by
incorporating four predictor variables that take on 0-1 values. More on this in Sections 6.8 and 12.3.

Chapter 4 deals with two-sample problems, so it deals with a single categorical predictor that
only takes on two values. Suppose x takes on just the two values 1 and 2 for, say, females and males.
Then our model for the mean of y reduces to the two-sample model

m(x) =

{
μ1 ≡ m(1), if x = 1
μ2 ≡ m(2), if x = 2.

We have only two uniquely defined mean parameters to estimate: μ1 and μ2. This m(·) gives the
model used in Section 4.2.

Unlike simple, polynomial, and multiple regression, there is no convenient way to write the
specific two-sample model in the general form (3.9.1). Although the two-sample model clearly fits
the general form, to deal with categorical variables it is convenient to play games with our subscripts.
We replace the single subscript h that indicates all n of the observations in the data with a pair of
subscripts: i that identifies the group and j that identifies observations within the group. If we have
Ni observations in group i, the total number of observations n must equal N1 +N2. Now we can
rewrite Model (3.9.1), when x is a two-group categorical predictor, as

yi j = m(i)+ εi j, i = 1,2, j = 1, . . . ,Ni.

Identifying μi ≡ m(i) gives

yi j = μi + εi j, i = 1,2, j = 1, . . . ,Ni.

A single categorical predictor variable with more than two groups works pretty much the same
way. If there are a groups and the categorical predictor variable takes on the values 1, . . . ,a, the
model has

m(x) =

⎧⎪⎪⎨
⎪⎪⎩

μ1 ≡ m(1), if x = 1
μ2 ≡ m(2), if x = 2

...
...

μa ≡ m(a), if x = a,

with a uniquely defined mean parameters to estimate. We can rewrite Model (3.9.1) when x is an a
group categorical predictor as

yi j = μi + εi j, i = 1, . . . ,a, j = 1, . . . ,Ni.

These one-way analysis of variance (ANOVA) models are examined in Chapter 12.
It really does not matter what values the categorical predictor actually takes as long as there are

only a distinct values. Thus, x can take on any a numbers or it can take on any a letter values or a
symbols of any kind, as long as they constitute distinct group identifiers. If the category is sex, the
values may be the words “male” and “female.”

Sometimes group identifiers can simultaneously be meaningful measurement variables. In Chap-
ter 12 we examine data on the strength of trusses built with metal plates of different lengths. The
metal plates are 4, 6, 8, 10, or 12 inches long. There are 7 observations for each length of plate,
so we create a predictor variable x with n = 35 that takes on these five numerical values. We now
have two options. We can treat x as a categorical variable with five groups, or we can treat x as a
measurement predictor variable and fit a linear or other polynomial regression model. We will see
in Chapter 12 that fitting a polynomial of degree four (one less than the number of categories) is
equivalent to treating the variable as a five-category predictor.

If we have two categorical predictors, say, x1 a type of drug and x2 a racial group, we have
considerable variety in the models we can build. Suppose x1 takes on the values 1, . . . ,a, x2 takes
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on the values 1, . . . ,b, and x = (x1,x2). Perhaps the simplest two-category predictor model to state
is the interaction model

m(x) = m(i, j) ≡ μi j, if x1 = i and x2 = j,

with ab uniquely defined mean parameters. Using alternative subscripts we can write this model as

yi jk = μi j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j ,

where Ni j is the number of observations that have both x1 = i and x2 = j. For the interaction model,
we could replace the two categorical variables having a and b groups, respectively, with a single
categorical variable that takes on ab distinct categories.

Two categorical variables naturally allow some useful flexibility. We can write an additive-
effects model, also called a no-interaction model, as

m(x) = m(i, j)≡ μ +αi +η j, if x1 = i and x2 = j,

or
yi jk = μ +αi +η j + εi jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j.

Here there are 1+ a+ b parameters, μ , the αis, and the η js. Two of the parameters (not just any
two) are redundant, so there are (1+ a+ b)− 2 functionally distinct parameters. Models with two
categorical predictors are discussed in Chapter 14. Models with one categorical predictor and one
continuous predictor are discussed in Chapter 15 along with instances when the continuous predictor
can also be viewed as a categorical predictor. Models for three categorical predictors are discussed
in Chapter 16.

Models based on two categorical predictors are called two-factor ANOVA models. A model
based on two or more categorical predictors is called a multifactor ANOVA model. Models with
three or more categorical predictors may also be called higher-order ANOVAs. An ANOVA model
is considered balanced if the number of observations on each group or combination of groups is the
same. For a one-way ANOVA that means N1 = · · ·= Na ≡ N and for a two-factor ANOVA it means
Ni j ≡N for all i and j. Computations for ANOVA models are much simpler when they are balanced.

Analysis of covariance (ACOVA or ANCOVA) consists of situations in which we have both types
of predictors (measurement and categorical) in the same model. ACOVA is primarily introduced
in Chapter 15. Some use of it is also made in Section 8.4. When group identifiers are simultane-
ously meaningful measurements, we have the option of performing ACOVA, multifactor ANOVA,
or multiple regression, depending on whether we view the predictors as a mix of categorical and
measurement, all categorical, or all measurement.

The models m(·) all involve some unknown parameters that we must estimate, although some of
the parameters may be redundant. Call the number of nonredundant, i.e., functionally distinct, mean
parameters r. Upon estimating the mean parameters, we get an estimated model m̂(·). Applying
this estimated model to the predictor variables in our data gives the fitted values, also called the
predicted values,

ŷh ≡ m̂(xh), h = 1, . . . ,n.

From the fitted values, we compute the residuals,

ε̂h ≡ yh − ŷh, h = 1, . . . ,n.

As discussed in Chapter 7, we use the residuals to check the assumptions made in (3.9.2).
We also use the residuals to estimate the unknown variance, σ2, in (3.9.2). The degrees of

freedom for error is defined as the number of observations minus the number of functionally distinct
mean parameters, i.e.,

dfE = n− r.
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The sum of squares error is defined as the sum of the squared residuals, i.e.,

SSE = ε̂2
1 + · · ·+ ε̂2

n =
n

∑
h=1

ε̂2
h .

Finally, our estimate of the variance of an observation, σ2, is the mean squared error defined by

MSE =
SSE
dfE

.

Two models are considered to be equivalent if they give exactly the same fitted values for any
set of observations. In such cases the number of functionally distinct mean parameters will be the
same, as will the residuals, SSE , dfE , and MSE .

It is possible to put all of the models we have discussed here in the form of a multiple regression
model by properly selecting or constructing the predictor variables. Such models are called linear
models. Unless otherwise stated, we will assume that all of our measurement data models are linear
models. Linear models are “linear” in the parameters, not the predictor variables x. For example,
polynomial regression models are linear in the regression parameters β j but they are not linear in
the predictor variable x. The models used for count data at the end of the book differ somewhat from
the linear models for continuous measurements but all use similar mean structures m(x) that allow
us to exploit the tools developed in earlier chapters.

A valuable measure of the predictive ability of a model is R2, the squared sample correlation
coefficient between the pairs (ŷh,yh), cf. Section 6.7. Values near 0 indicate little predictive ability
while values near 1 indicate great predictive ability. (Actually, it is possible to get a high R2 with
lousy predictions but it is then easy to turn those lousy predictions into very good predictions.) R2

measures predictive ability, not the correctness of the model. Incorrect models can be very good
predictors and have very high R2s while perfect models can be poor predictors and have very low
R2s. Models with more parameters in them tend to have higher values of R2 because the larger
models can do a better job of approximating the yh values in the fitted data. Unfortunately, this can
happen when the bigger models actually do a worse job of predicting y values that are outside the
fitted data.

On occasion, better to satisfy the assumptions (3.9.2), we might transform the original data y into
y∗, for example y∗ = log(y), cf. Section 7.3. If we then fit a model y∗h = m(xh)+ εh and get fitted
values ŷ∗h, these can be back transformed to the original scale giving ŷh, say, ŷh = eŷ∗h . R2 values
computed in this way between (ŷh,yh) are comparable regardless of any transformations involved.

Appendix: derivation of confidence intervals

We wish to establish the equivalence of the inequalities

−t
(

1− α
2
,df
)
<

Est −Par
SE(Est)

< t
(

1− α
2
,df
)

and
Est − t

(
1− α

2
,df
)

SE(Est)< Par < Est + t
(

1− α
2
,df
)

SE(Est).

We do this by establishing a series of equivalences. The justifications for the equivalences are given
at the end:

−t
(

1− α
2
,df
)
<

Est −Par
SE(Est)

< t
(

1− α
2
,df
)

(1)

if and only if

−t
(

1− α
2
,df
)

SE(Est)< Est −Par < t
(

1− α
2
,df
)

SE(Est) (2)
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if and only if

t
(

1− α
2
,df
)

SE(Est)>−Est +Par >−t
(

1− α
2
,df
)

SE(Est) (3)

if and only if

Est + t
(

1− α
2
,df
)

SE(Est)> Par > Est − t
(

1− α
2
,df
)

SE(Est) (4)

if and only if

Est − t
(

1− α
2
,df
)

SE(Est)< Par < Est + t
(

1− α
2
,df
)

SE(Est). (5)

JUSTIFICATION OF STEPS.
For (1) iff (2): if c > 0, then a < b if and only if ac < bc.
For (2) iff (3): a < b if and only if −a >−b.
For (3) iff (4): a < b if and only if a+ c < b+ c.
For (4) iff (5): a > b if and only if b < a.

3.10 Exercises

EXERCISE 3.10.1. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.8.1.

EXERCISE 3.10.2. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.8.2.

EXERCISE 3.10.3. Identify the parameter, estimate, standard error of the estimate, and reference
distribution for Exercise 2.8.4.

EXERCISE 3.10.4. Consider that I am collecting (normally distributed) data with a variance of
4 and I want to test a null hypothesis of H0 : μ = 10. What sample size should I take according to
Cox’s rule if I want a reasonable chance of rejecting H0 when μ = 13? What if I want a reasonable
chance of rejecting H0 when μ = 12? What sample size should I take if I want a 95% confidence
interval that is no more than 2 units long? What if I want a 99% confidence interval that is no more
than 2 units long?

EXERCISE 3.10.5. The turtle shell data of Jolicoeur and Mosimann (1960) given in Exercise 2.7.4
has a standard deviation of about 21.25. If we were to collect a new sample, how large should the
sample size be in order to have a 95% confidence interval with a length of (about) four units?
According to Cox’s rule, what sample size should I take if I want a reasonable chance of rejecting
H0 : μ = 130 when μ = 140?

EXERCISE 3.10.6. With reference to Exercise 2.8.3, give the approximate number of observa-
tions necessary to estimate the mean of BX to within 0.01 units with 99% confidence. How large a
sample is needed to get a reasonable test of H0 : μ = 10 when μ = 11 using Cox’s rule?

EXERCISE 3.10.7. With reference to Exercise 2.8.3, give the approximate number of observa-
tions necessary to get a 99% confidence for the mean of K that has a length of 60. How large a
sample is needed to get a reasonable test of H0 : μ = 1200 when μ = 1190 using Cox’s rule? What
is the number when μ = 1150?
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EXERCISE 3.10.8. With reference to Exercise 2.8.3, give the approximate number of observa-
tions necessary to estimate the mean of FORM to within 0.5 units with 95% confidence. How large
a sample is needed to get a reasonable test of H0 : μ = 20 when μ = 20.2 using Cox’s rule?

EXERCISE 3.10.9. With reference to Exercise 2.8.2, give the approximate number of observa-
tions necessary to estimate the mean rat weight to within 1 unit with 95% confidence. How large a
sample is needed to get a reasonable test of H0 : μ = 55 when μ = 54 using Cox’s rule?

EXERCISE 3.10.10. Suppose we have three random variables y, y1, and y2 and let α be a number
between 0 and 1. Show that if y = αy1 +(1−α)y2 and if E(y) = E(y2) = θ then E(y1) = θ .

EXERCISE 3.10.11. Given that y1, . . . ,yn are independent with E(yi) = μi and σ2 = Var(yi) =
E[yi − μi]

2, give intuitive justifications for why both σ̂2 ≡ ∑n
i=1(yi − ŷi)

2/n and MSE ≡ ∑n
i=1(yi −

ŷi)
2/dfE are reasonable estimates of σ2. Recall that ŷi is an estimate of μi.



Chapter 4

Two Samples

In this chapter we consider several situations where it is of interest to compare two samples. First
we consider two samples of correlated data. These are data that consist of pairs of observations
measuring comparable quantities. Next we consider two independent samples from populations with
the same variance. This data form is generalized to several independent samples with a common
variance in Chapter 12, a problem that is known as analysis of variance or more commonly as
ANOVA. We then examine two independent samples from populations with different variances.
Finally we consider the problem of testing whether the variances of two populations are equal.

4.1 Two correlated samples: Paired comparisons

Paired comparisons involve pairs of observations on similar variables. Often these are two observa-
tions taken on the same object under different circumstances or two observations taken on related
objects. No new statistical methods are needed for analyzing such data.

EXAMPLE 4.1.1. Shewhart (1931, p. 324) presents data on the hardness of an item produced by
welding two parts together. Table 4.1 gives the hardness measurements for each of the two parts.
The hardness of part 1 is denoted y1 and the hardness of part 2 is denoted y2. For i = 1,2, the data
for part i are denoted yi j, j = 1, . . . ,27. These data are actually a subset of the data presented by
Shewhart.

We are interested in the difference between μ1, the population mean for part one, and μ2, the
population mean for part two. In other words, the parameter of interest is Par = μ1 − μ2. Note that
if there is no difference between the population means, μ1 − μ2 = 0. The natural estimate of this
parameter is the difference between the sample means, i.e., Est = ȳ1· − ȳ2·. Here we use the bar

Table 4.1: Shewhart’s hardness data.

d = d =
Case y1 y2 y1 − y2 Case y1 y2 y1 − y2

1 50.9 44.3 6.6 15 46.6 31.5 15.1
2 44.8 25.7 19.1 16 50.4 38.1 12.3
3 51.6 39.5 12.1 17 45.9 35.2 10.7
4 43.8 19.3 24.5 18 47.3 33.4 13.9
5 49.0 43.2 5.8 19 46.6 30.7 15.9
6 45.4 26.9 18.5 20 47.3 36.8 10.5
7 44.9 34.5 10.4 21 48.7 36.8 11.9
8 49.0 37.4 11.6 22 44.9 36.7 8.2
9 53.4 38.1 15.3 23 46.8 37.1 9.7

10 48.5 33.0 15.5 24 49.6 37.8 11.8
11 46.0 32.6 13.4 25 51.4 33.5 17.9
12 49.0 35.4 13.6 26 45.8 37.5 8.3
13 43.4 36.2 7.2 27 48.5 38.3 10.2
14 44.4 32.5 11.9

87
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Figure 4.1: Dot plot of differences.

and the dot (·) in place of the second subscript to indicate averaging over the second subscript, i.e.,
ȳi· = (yi1 + · · ·+ yi27)/27.

To perform parametric statistical inferences, we need the standard error of the estimate, i.e.,
SE(ȳ1·− ȳ2·). As indicated earlier, finding an appropriate standard error is often the most difficult
aspect of statistical inference. In problems such as this, where the data are paired, finding the stan-
dard error is complicated by the fact that the two observations in each pair are not independent. In
data such as these, different pairs are often independent but observations within a pair are not.

In paired comparisons, we use a trick to reduce the problem to consideration of only one sample.
It is a simple algebraic fact that the difference of the sample means, ȳ1· − ȳ2· is the same as the
sample mean of the differences d j = y1 j − y2 j, i.e., d̄ = ȳ1· − ȳ2·. Thus d̄ is an estimate of the
parameter of interest μ1 − μ2. The differences are given in Table 4.1 along with the data. Summary
statistics are listed below for each variable and the differences. Note that for the hardness data,
d̄ = 12.663 = 47.552− 34.889= ȳ1·− ȳ2·. In particular, if the positive value for d̄ means anything
(other than random variation), it indicates that part one is harder than part two.

Sample statistics
Variable Ni Mean Variance Std. dev.

y1 27 47.552 6.79028 2.606
y2 27 34.889 26.51641 5.149

d = y1 − y2 27 12.663 17.77165 4.216

Given that d̄ is an estimate of μ1 − μ2, we can base the entire analysis on the differences. The
differences constitute a single sample of data, so the standard error of d̄ is simply the usual one-
sample standard error,

SE(d̄) = sd
/√

27,

where sd is the sample standard deviation as computed from the 27 differences. The differences are
plotted in Figure 4.1. Note that there is one potential outlier. We leave it as an exercise to reanalyze
the data with the possible outlier removed.

We now have Par, Est, and SE(Est); it remains to find the appropriate distribution. Figure 4.2
gives a normal plot for the differences. While there is an upward curve at the top due to the possible
outlier, the curve is otherwise reasonably straight. The Wilk–Francia statistic of W ′ = 0.955 is above
the fifth percentile of the null distribution. With normal data we use the reference distribution

d̄− (μ1 − μ2)

sd
/√

27
∼ t(27−1)

and we are now in a position to perform parametric statistical inferences.
Our observed values of the mean and standard error are d̄ = 12.663 and SE(d̄) = 4.216

/√
27 =

0.811. From a t(26) distribution, we find t(0.995,26) = 2.78. A 99% confidence interval for the
difference in hardness has endpoints

12.663±2.78(0.811),

which gives an interval of, roughly, (10.41,14.92). Based on a .01 level test, the data and the model
are consistent with the population mean hardness for part 1 being between 10.41 and 14.92 units
harder than that for part 2.
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Figure 4.2: Normal plot of differences, W ′ = 0.955.

We can also get a 99% prediction interval for the difference in hardness to be observed on a new
welded piece. The prediction interval has endpoints of

12.663±2.78
√

4.2162 +0.8112

for an interval of (0.73,24.60).
To test the hypothesis that the two parts have the same hardness, we set up the hypothesis

H0 : μ1 = μ2, or equivalently, H0 : μ1 − μ2 = 0. The test statistic is

12.663−0
0.811

= 15.61.

This is far from zero, so the data are inconsistent with the null model. Thus, if the other assumptions
in the model are true, there is strong evidence that the hardness of part 1 is different than the hardness
of part 2. Since the test statistic is positive, we conclude that μ1 − μ2 > 0 and that part 1 is harder
than part 2. Note that this is consistent with our 99% confidence interval (10.41,14.92), which
contains only positive values for μ1 − μ2.

Inferences and predictions for an individual population are made ignoring the other population,
i.e., they are made using methods for one sample. For example, using the sample statistics for y1

gives a 99% confidence interval for μ1, the population mean hardness for part 1, with endpoints

47.552±2.78

√
6.79028

27

and a 99% prediction interval for the hardness of part 1 in a new piece has endpoints

47.552±2.78

√
6.79028+

6.79028
27

and interval (40.175,59.929). Of course, the use of the t(26) distribution requires that we validate
the assumption that the observations on part 1 are a random sample from a normal distribution.

When finding a prediction interval for y1, we can typically improve the interval if we know
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the corresponding value of y2. As we saw earlier, the 99% prediction interval for a new difference
d = y1 − y2 has 0.73 < y1 − y2 < 24.60. If we happen to know that, say, y2 = 35, the interval
becomes 0.73 < y1 − 35 < 24.60 or 35.73 < y1 < 59.60. As it turns out, with these data the new
99% prediction interval for y1 is not an improvement over the interval in the previous paragraph.
The new interval is noticeably wider. However, these data are somewhat atypical. Typically in paired
data, the two measurements are highly correlated, so that the sample variances of the differences is
substantially less than the sample variance of the individual measurements. In such situations, the
new interval will be substantially narrower. In these data, the sample variance for the differences is
17.77165 and is actually much larger than the sample variance of 6.79028 for y1. �

The trick of looking at differences between pairs is necessary because the two observations in a
pair are not independent. While different pairs of welded parts are assumed to behave independently,
it seems unreasonable to assume that two hardness measurements on a single item that has been
welded together would behave independently. This lack of independence makes it difficult to find a
standard error for comparing the sample means unless we look at the differences. In the remainder
of this chapter, we consider two-sample problems in which all of the observations are assumed to
be independent. The observations in each sample are independent of each other and independent of
all the observations in the other sample. Paired comparison problems almost fit those assumptions
but they break down at one key point. In a paired comparison, we assume that every observation is
independent of the other observations in the same sample and that each observation is independent
of all the observations in the other sample except for the observation in the other sample that it is
paired with. When analyzing two samples, if we can find any reason to identify individuals as being
part of a pair, that fact is sufficient to make us treat the data as a paired comparison.

Since paired comparisons reduce to one-sample procedures, the model-based procedures of
Chapter 2 apply.

The method of paired comparisons is also the name of a totally different statistical procedure.
Suppose one wishes to compare five brands of chocolate chip cookies: A, B, C, D, E . It would be
difficult to taste all five and order them appropriately. As an alternative, one can taste test pairs of
cookies, e.g., (A,B), (A,C), (A,D), (A,E), (B,C), (B,D), etc. and identify the better of the two. The
benefit of this procedure is that it is much easier to rate two cookies than to rate five. See David
(1988) for a survey and discussion of procedures developed to analyze such data.

4.2 Two independent samples with equal variances

The most commonly used two-sample technique consists of comparing independent samples from
two populations with the same variance. The sample sizes for the two groups are possibly different,
say, N1 and N2, and we write the common variance as σ2.

EXAMPLE 4.2.1. The data in Table 4.2 are final point totals for an introductory Statistics class.
The data are divided by the sex of the student. We investigate whether the data display sex differ-
ences. The data are plotted in Figure 4.3. Figures 4.4 and 4.5 contain normal plots for the two sets
of data. Figure 4.4 is quite straight but Figure 4.5 looks curved. Our analysis is not particularly
sensitive to nonnormality and the W ′ statistic for Figure 4.5 is 0.937, which is well above the fifth
percentile, so we proceed under the assumption that both samples are normal. We also assume that
all of the observations are independent. This assumption may be questionable because some students
probably studied together; nonetheless, independence seems like a reasonable working assumption.

�

The methods in this section rely on the assumption that the two populations are normally dis-
tributed and have the same variance. In particular, we assume two independent samples

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(μ1,σ2)
2 y21,y22, . . . ,y2N2 iid N(μ2,σ2)
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Figure 4.3: Dot plots for final point totals.
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Figure 4.4: Normal plot for females, W ′ = 0.974.
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Figure 4.5: Normal plot for males, W ′ = 0.937.
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Table 4.2: Final point totals for an introductory Statistics class.

Females Males
140 125 90 105 145 165 175 135
135 155 170 140 85 175 160 165
150 115 125 95 170 115 150
135 145 110 135 150 85 130
110 120 140 145 90 95 125

and compute summary statistics from the samples. The summary statistics are just the sample mean
and the sample variance for each individual sample.

Sample statistics
Sample Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

Except for checking the validity of our assumptions, these summary statistics are more than suffi-
cient for the entire analysis. Algebraically, the sample mean for population i, i = 1,2, is

ȳi· ≡
1
Ni

Ni

∑
j=1

yi j =
1
Ni

[yi1 + yi2 + · · ·+ yiNi ]

where the · in ȳi· indicates that the mean is obtained by averaging over j, the second subscript in the
yi js. The sample means, ȳ1· and ȳ2·, are estimates of μ1 and μ2.

The sample variance for population i, i = 1,2, is

s2
i =

1
Ni − 1

Ni

∑
j=1

(yi j − ȳi·)
2

=
1

Ni − 1

[
(yi1 − ȳi·)

2
+(yi2 − ȳi·)

2
+ · · ·+(yiNi − ȳi·)

2
]
.

The s2
i s both estimate σ2. Combining the s2

i s can yield a better estimate of σ2 than either individual
estimate. We form a pooled estimate of the variance, say s2

p, by averaging s2
1 and s2

2. With unequal
sample sizes an efficient pooled estimate of σ2 must be a weighted average of the s2

i s. Obviously,
if we have N1 = 100,000 observations in the first sample and only N2 = 10 observations in the
second sample, the variance estimate s2

1 is much better than s2
2 and we want to give it more weight.

The weights are the degrees of freedom associated with the estimates. The pooled estimate of the
variance is

s2
p ≡ (N1 − 1)s2

1 +(N2 −1)s2
2

(N1 −1)+ (N2−1)

=
1

N1 +N2 −2

[
N1

∑
j=1

(ȳ1 j − ȳ1·)
2 +

N2

∑
j=1

(ȳ2 j − ȳ2·)
2

]

=
1

N1 +N2 −2

2

∑
i=1

Ni

∑
j=1

(ȳi j − ȳi·)
2
.

The degrees of freedom for s2
p are N1+N2 −2 = (N1−1)+(N2 −1), i.e., the sum of the degrees

of freedom for the individual estimates s2
i .

EXAMPLE 4.2.2. For the data on final point totals, the sample statistics follow.
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Sample Statistics
Sample Ni ȳi· s2

i si

females 22 127.954545 487.2835498 22.07
males 15 139.000000 979.2857143 31.29

From these values, we obtain the pooled estimate of the variance,

s2
p =

(N1 − 1)s2
1 +(N2 −1)s2

2

N1 +N2 −2
=

(21)487.28+(14)979.29
35

= 684.08. �

We are now in a position to draw statistical inferences about the μis. The main problem in
obtaining tests and confidence intervals is in finding appropriate standard errors. The crucial fact is
that the samples are independent so that the ȳi·s are independent.

For inferences about the difference between the two means, say, μ1 −μ2, use the general proce-
dure of Chapter 3 with

Par = μ1 − μ2

and
Est = ȳ1·− ȳ2·.

Note that ȳ1·− ȳ2· is unbiased for estimating μ1 − μ2 because

E(ȳ1·− ȳ2·) = E(ȳ1·)−E(ȳ2·) = μ1 − μ2 .

The two means are independent, so the variance of ȳ1·− ȳ2· is the variance of ȳ1· plus the variance
of ȳ2·, i.e.,

Var(ȳ1·− ȳ2·) = Var(ȳ1·)+Var(ȳ2·) =
σ2

N1
+

σ2

N2
= σ2

[
1

N1
+

1
N2

]
.

The standard error of ȳ1·− ȳ2· is the estimated standard deviation of ȳ1·− ȳ2·,

SE(ȳ1·− ȳ2·) =

√
s2

p

[
1

N1
+

1
N2

]
.

Under our assumption that the original data are normal, the reference distribution is

(ȳ1·− ȳ2·)− (μ1 − μ2)√
s2

p

[
1

N1
+ 1

N2

] ∼ t(N1 +N2 −2).

The degrees of freedom for the t distribution are the degrees of freedom for s2
p.

Having identified the parameter, estimate, standard error, and distribution, inferences follow the
usual pattern. A 95% confidence interval for μ1 − μ2 is

(ȳ1·− ȳ2·)± t(0.975,N1+N2 −2)

√
s2

p

[
1

N1
+

1
N2

]
.

A test of hypothesis that the means are equal, H0 : μ1 = μ2, can be converted into the equivalent
hypothesis involving Par = μ1 −μ2, namely H0 : μ1 −μ2 = 0. The test is handled in the usual way.
An α = 0.01 test rejects H0 if

|(ȳ1·− ȳ2·)−0|√
s2

p

[
1

N1
+ 1

N2

] > t(0.995,N1 +N2 −2).
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As discussed in Chapter 3, what we are really doing is testing the validity of the null model that
incorporates all of the assumptions, including the assumption of the null hypothesis H0 : μ1−μ2 = 0.
Fisher (1925) quite rightly argues that the appropriate test is often a test of whether the two samples
come from the same normal population, rather than a test of whether the means are equal given that
the variances are (or are not) equal.

In our discussion of comparing differences, we have defined the parameter as μ1−μ2. We could
just as well have defined the parameter as μ2 − μ1. This would have given an entirely equivalent
analysis.

Inferences about a single mean, say, μ2, use the general procedures with Par = μ2 and Est = ȳ2·.
The variance of ȳ2· is σ2/N2, so SE(ȳ2·) =

√
s2

p/N2. Note the use of s2
p rather than s2

2. The reference

distribution is [ȳ2·− μ2]/SE(ȳ2·)∼ t(N1 +N2 −2). A 95% confidence interval for μ2 is

ȳ2·± t(0.975,N1+N2 −2)
√

s2
p/N2.

A 95% prediction interval for a new observation on variable y2 is

ȳ2·± t(0.975,N1+N2 −2)

√
s2

p +
s2

p

N2
.

An α = 0.01 test of the hypothesis, say H0 : μ2 = 5, rejects H0 if

|ȳ2·−5|√
s2

p/N2

> t(0.995,N1 +N2 −2).

EXAMPLE 4.2.3. For comparing females and males on final point totals, the parameter of interest
is

Par = μ1 − μ2

where μ1 indicates the population mean final point total for females and μ2 indicates the population
mean final point total for males. The estimate of the parameter is

Est = ȳ1·− ȳ2· = 127.95−139.00=−11.05 .

The pooled estimate of the variance is s2
p = 684.08, so the standard error is

SE(ȳ1·− ȳ2·) =

√
s2

p

(
1

N1
+

1
N2

)
=

√
684.08

(
1

22
+

1
15

)
= 8.7578 .

The data have reasonably normal distributions and the variances are not too different (more on this
later), so the reference distribution is taken as

(ȳ1·− ȳ2·)− (μ1 − μ2)√
s2

p

(
1
22 +

1
15

) ∼ t(35)

where 35 = N1 +N2 −2. The tabled value for finding 95% confidence intervals and α = 0.05 tests
is

t(0.975,35) = 2.030 .

A 95% confidence interval for μ1 − μ2 has endpoints

−11.05± (2.030)8.7578
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which yields an interval (−28.8,6.7). Population mean scores between, roughly, 29 points less for
females and 7 points more for females are consistent with the data and the model based on a 0.05
test.

An α = 0.05 test of H0 : μ1 − μ2 = 0 is not rejected because 0, the hypothesized value of
μ1 − μ2, is contained in the 95% confidence interval for μ1 − μ2. The P value for the test is based
on the observed value of the test statistic

tobs =
(ȳ1·− ȳ2·)−0√

s2
p

(
1

22 +
1

15

) =
−11.05−0

8.7578
=−1.26 .

The probability of obtaining an observation from a t(35) distribution that is as extreme or more
extreme than | − 1.26| is 0.216. There is very little evidence that the population mean final point
total for females is different (smaller) than the population mean final point total for males. The P
value is greater than 0.2, so, as we established earlier, neither an α = 0.05 nor an α = 0.01 test is
rejected. If we were silly enough to do an α = 0.25 test, we would then reject the null hypothesis.

A 95% confidence interval for μ1, the mean of the females, has endpoints

127.95± (2.030)
√

684.08/22,

which gives the interval (116.6,139.3). A mean final point total for females between 117 and 139 is
consistent with the data and the model. A 95% prediction interval for a new observation on a female
has endpoints

127.95± (2.030)

√
684.08+

684.08
22

,

which gives the interval (73.7,182.2). A new observation on a female between 74 and 182 is con-
sistent with the data and the model. This assumes that the new observation is randomly sampled
from the same population as the previous data.

A test of the assumption of equal variances is left for the final section but we will see in the next
section that the results for these data do not depend substantially on the equality of the variances.

�

4.2.1 Model testing

The full model has been described in great detail: one need only make the identification
MSE(Full) = s2

p, dfE(Full) = N1 +N2 −2, and SSE(Full) = (N1 +N2 −2)s2
p.

The usual reduced model has μ1 = μ2. In that case, all of the observations are independent with
the same mean and variance. Denote the sample variance computed from all N1 +N2 observations
as s2

y . It has N1 +N2 − 1 degrees of freedom. Identify MSE(Red.) = s2
y , dfE(Red.) = N1 +N2 −1,

and SSE(Red.) = (N1 +N2 − 1)s2
y .

EXAMPLE 4.2.4. Using earlier computations,

MSE(Full) = 684.08, dfE(Full) = 22+15−2= 35,

SSE(Full) = (35)684.08= 23942.8.

Computing the sample variance while treating all observations as one sample gives

MSE(Red.) = 695.31, dfE(Red.) = 22+15−1= 36,

SSE(Red.) = (36)695.31 = 25031.16.

It follows that

MSTest =
25031.16−23942.8

36−35
= 1088.36
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and the F statistic is

F =
1088.36
684.08

= 1.59 = (−1.26)2.

Note that the F statistic is simply the square of the corresponding t statistic for testing H0 : μ1 = μ2.
�

Algebraic formulae are available for SSE(Full) and SSE(Red.):

SSE(Full) =
2

∑
i=1

Ni

∑
j=1

(yi j − ȳi·)2,

and

SSE(Red.) =
2

∑
i=1

Ni

∑
j=1

(yi j − ȳ··)2,

where

ȳi· =
1
Ni

Ni

∑
j=1

yi j and ȳ·· =
1

N1 +N2

2

∑
i=1

Ni

∑
j=1

yi j.

Some additional algebra establishes that for this two-sample problem

SSE(Red.)−SSE(Full) =
2

∑
i=1

Ni(ȳi·− ȳ··)2 =
N1N2

N1 +N2
(ȳ1·− ȳ2·)2 =

(ȳ1·− ȳ2·)2

1
N1

+ 1
N2

.

From the last relationship, it is easy to see that the model-based F statistic is simply the square of
the parameter-based t statistic.

4.3 Two independent samples with unequal variances

We now consider two independent samples with unequal variances σ2
1 and σ2

2 . In this section we
examine inferences about the means of the two populations. While inferences about means can be
valuable, great care is required when drawing practical conclusions about populations with unequal
variances. For example, if you want to produce gasoline with an octane of at least 87, you may have
a choice between two processes. One process y1 gives octanes distributed as N(89,4) and the other
y2 gives N(90,4). The two processes have the same variance, so the process with the higher mean
gives more gas with an octane of at least 87. On the other hand, if y1 gives N(89,4) and y2 gives
N(90,16), the y1 process with mean 89 has a higher probability (0.84) of achieving an octane of 87
than the y2 process with mean 90 (probability 0.77); see Figure 4.6 and Exercise 4.5.10. This is a
direct result of the y2 process having more variability.

We have illustrated that for two normal distributions with different variances, the difference in
the means may not be a very interesting parameter. More generally, anytime the distributions of
the raw data have different shapes for the two groups, statements about the difference in the means
may be uninteresting. Nonetheless, having given this warning that mean differences may not be the
thing to look at, we proceed with our discussion on drawing statistical inferences for the means of
two groups. The first thing to note in doing this is that our model testing procedures in Section 3.1
assumed that all the data had the same variance, so they do not apply.

EXAMPLE 4.3.1. Jolicoeur and Mosimann (1960) present data on the sizes of turtle shells (cara-
paces). Table 4.3 presents data on the shell heights for 24 females and 24 males. These data are not
paired; it is simply a caprice that 24 carapaces were measured for each sex. Our interest centers on
estimating the population means for female and male heights, estimating the difference between the
heights, and testing whether the difference is zero.
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78 81 84 87 90 93 96 99 102

Octane ratings

N(89,4)
N(90,16)

Figure 4.6: Octane ratings.

Table 4.3: Turtle shell heights.

Female Male
51 38 63 46 39 42 37 43
51 38 60 51 39 45 35 41
53 42 62 51 38 45 35 41
57 42 63 51 40 45 39 41
55 44 61 48 40 46 38 40
56 50 67 49 40 47 37 44

Following Christensen (2001) and others, we take natural logarithms of the data, i.e.,

y1 = log(female height) y2 = log(male height).

(All logarithms in this book are natural logarithms.) The log data are plotted in Figure 4.7. The
female heights give the impression of being both larger and more spread out. Figures 4.8 and 4.9
contain normal plots for the females and males, respectively. Neither is exceptionally straight but
they do not seem too bad. Summary statistics follow; they are consistent with the visual impressions
given by Figure 4.7. The summary statistics will be used later to illustrate our statistical inferences.

Group Size Mean Variance Standard deviation
Females 24 3.9403 0.02493979 0.1579
Males 24 3.7032 0.00677276 0.0823

�

In general we assume two independent samples

Sample Data Distribution

1 y11,y12, . . . ,y1N1 iid N(μ1,σ2
1 )

2 y21,y22, . . . ,y2N2 iid N(μ2,σ2
2 )

and compute summary statistics from the samples.
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Figure 4.7: Dot plots of turtle shell log heights.
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Figure 4.8: Normal plot for female turtle shell log heights.
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Figure 4.9: Normal plot for male turtle shell log heights.
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Sample Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

Again, the sample means, ȳ1· and ȳ2·, are estimates of μ1 and μ2, but now s2
1 and s2

2 estimate σ2
1

and σ2
2 . We have two different variances, so it is inappropriate to pool the variance estimates. Once

again, the crucial fact in obtaining a standard error is that the samples are independent.
For inferences about the difference between the two means, say, μ1 − μ2, again use the general

procedure with
Par = μ1 − μ2

and
Est = ȳ1·− ȳ2·.

Just as before, ȳ1·− ȳ2· is unbiased for estimating μ1 −μ2. The two sample means are independent,
so

Var(ȳ1·− ȳ2·) = Var(ȳ1·)+Var(ȳ2·) =
σ2

1

N1
+

σ2
2

N2
.

The standard error of ȳ1·− ȳ2· is

SE(ȳ1·− ȳ2·) =

√
s2

1

N1
+

s2
2

N2
.

Even when the original data are normal, the appropriate reference distribution is not a t distribution.
As a matter of fact, the appropriate reference distribution is not known. However, a good approxi-
mate distribution is

(ȳ1·− ȳ2·)− (μ1 − μ2)√
s2

1/N1 + s2
2/N2

∼ t(ν)

where

ν ≡
(
s2

1/N1 + s2
2/N2
)2

(
s2

1/N1
)2
/(N1 −1)+

(
s2

2/N2
)2
/(N2 −1)

(4.3.1)

is an approximate number of degrees of freedom. This approximate distribution was proposed by
Satterthwaite (1946) and was discussed by Snedecor and Cochran (1980). Having identified the
parameter, estimate, standard error, and reference distribution, inferences follow the usual pattern.

EXAMPLE 4.3.2. Consider the turtle data. Recall that

Group Size Mean Variance Standard deviation
Females 24 3.9403 0.02493979 0.1579
Males 24 3.7032 0.00677276 0.0823

We begin by considering a test of H0 : μ1 = μ2 or equivalently H0 : μ1 − μ2 = 0. As before, Par =
μ1 − μ2 and Est = 3.9403− 3.7032= 0.2371. The standard error is now

SE(ȳ1·− ȳ2·) =

√
0.02493979

24
+

0.00677276
24

= 0.03635.

Using s2
1/N1 = 0.02493979/24 = 0.001039158 and s2

2/N2 = 0.00677276/24 = 0.000282198 in
Equation (4.3.1), the approximate degrees of freedom are

ν =
(0.001039158+0.000282198)2

(0.001039158)2/23+(0.000282198)2/23
= 34.6.
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An α = 0.01 test is rejected if the observed value of the test statistic is farther from zero than the
cutoff value t(0.995,34.6)

.
= t(0.995,35) = 2.72. The observed value of the test statistic is

tobs =
0.2371−0

0.03635
= 6.523,

which is greater than the cutoff value, so the test is rejected. There is evidence at the 0.01 level
that the mean shell height for females is different from the mean shell height for males. Obviously,
since ȳ1·− ȳ2· = 0.2371 is positive, there is evidence that the females have shells of greater height.
As always, such a conclusion relies on the other assumptions being true. With these sample sizes,
the main thing that could invalidate the conclusion would be a lack of independence among the
observations. Actually, the conclusion is that the means of the log(heights) are different, but if these
are different we conclude that the mean heights are different, or more particularly that the median
heights are different.

The 95% confidence interval for the difference between mean log shell heights for females and
males, i.e., μ1 − μ2, uses t(0.975,34.6)

.
= t(0.975,35) = 2.03. The endpoints are

0.2371±2.03(0.03635),

and the interval is (0.163,0.311). We took logs of the data, so for transformed data that are normal
(or any other symmetric distribution), eμi is the median height for group i even though eμi is not
the mean height for group i. Thus, eμ1−μ2 is the ratio of the median of the female heights to the
median of the male heights. If we transform back to the original scale the interval is (e0.163,e0.311)
or (1.18,1.36). The data are consistent with the population median for females being, roughly,
between one and a sixth and one and a third times the median shell heights for males. Note that a
difference between 0.163 and 0.311 on the log scale transforms into a multiplicative effect between
1.18 and 1.36 on the original scale. This idea is discussed in more detail in Example 12.1.1.

It is inappropriate to pool the variance estimates, so inferences about μ1 and μ2 are performed
just as for one sample. The 95% confidence interval for the mean log shell height for females, μ1,
uses the estimate ȳ1·, the standard error s1/

√
24, and the tabled value t(0.975,24− 1) = 2.069. It

has endpoints

3.9403±2.069
(

0.1579
/√

24
)

which gives the interval (3.87,4.01). Transforming to the original scale gives the interval
(47.9,55.1). The data are consistent with a median shell height for females between, roughly, 48
and 55 millimeters based on a 0.05 level test. Males also have 24 observations, so the interval for
μ2 also uses t(0.975,24− 1), has endpoints

3.7032±2.069
(

0.0823
/√

24
)
,

and an interval (3.67,3.74). Transforming the interval back to the original scale gives (39.3,42.1).
The data are consistent with a median shell height for males between, roughly, 39 and 42 millime-
ters. The 95% prediction interval for the transformed shell height of a future male has endpoints

3.7032±2.069

(
0.0823

√
1+

1
24

)
,

which gives the interval (3.529,3.877). Transforming the prediction interval back to the original
scale gives (34.1,48.3). Transforming a prediction interval back to the original scale creates no
problems of interpretation. �

EXAMPLE 4.3.3. Reconsider the final point totals data of Section 4.2. Without the assumption of
equal variances, the standard error is

SE(ȳ1·− ȳ2·) =

√
487.28

22
+

979.29
15

= 9.3507 .
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From Equation (4.3.1), the degrees of freedom for the approximate t distribution are 23. A 95%
confidence interval for the difference is (−30.4,8.3) and the observed value of the statistic for
testing equal means is tobs =−1.18. This gives a P value of 0.22. These values are all quite close to
those obtained using the equal variance assumption. �

It is an algebraic fact that if N1 = N2, the observed value of the test statistic for H0 : μ1 = μ2

based on unequal variances is the same as that based on equal variances. In the turtle example, the
sample sizes are both 24 and the test statistic of 6.523 is the same as the equal variances test statistic.
The algebraic equivalence occurs because with equal sample sizes, the standard errors from the two
procedures are the same. With equal sample sizes, the only practical difference between the two
procedures for examining Par = μ1 − μ2 is in the choice of degrees of freedom for the t distribu-
tion. In the turtle example above, the unequal variances procedure had approximately 35 degrees of
freedom, while the equal variance procedure has 46 degrees of freedom. The degrees of freedom are
sufficiently close that the substantive results of the turtle analysis are essentially the same, regardless
of method. The other fact that should be recalled is that the reference distribution associated with
μ1−μ2 for the equal variance method is exactly correct for data that satisfy the model assumptions.
Even for data that satisfy the unequal variance method assumptions, the reference distribution is just
an approximation.

4.4 Testing equality of the variances

We assume that the original data are independent random samples. Our goal is to test the hypothesis
that the variances are equal, i.e.,

H0 : σ2
2 = σ2

1 .

The hypothesis can be converted into an equivalent hypothesis,

H0 :
σ2

2

σ2
1

= 1.

An obvious test statistic is
s2

2

s2
1

.

We will reject the hypothesis of equal variances if the test statistic is too much greater than 1 or
too much less than 1. As always, the problem is in identifying a precise meaning for “too much.”
To do this, we need to know that both samples have normal distributions, so that the distribution of
the test statistic can be found when the variances are equal. The distribution turns out to be an F
distribution, i.e., if H0 is true

s2
2

s2
1

∼ F(N2 −1,N1 −1).

The distribution depends on the degrees of freedom for the two estimates. The first parameter in
F(N2 − 1,N1 − 1) is N2 − 1, the degrees of freedom for the variance estimate in the numerator of
s2

2

/
s2

1, and the second parameter is N1 − 1, the degrees of freedom for the variance estimate in the
denominator. The test statistic s2

2

/
s2

1 is nonnegative, so our reference distribution F(N2 −1,N1 −1)
is nonnegative. Tables are given in Appendix B.

In some sense, the F distribution is ‘centered’ around one and we reject H0 if s2
2

/
s2

1 is too
large or too small to have reasonably come from an F(N2 − 1,N1 − 1) distribution. A commonly
used α = 0.01 level test is rejected, i.e., we conclude that either σ2

2 �= σ2
1 or some other of our

assumptions is wrong, if
s2

2

s2
1

> F(0.995,N2 −1,N1 −1)
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or if
s2

2

s2
1

< F(0.005,N2 −1,N1 −1)

where F(0.995,N2−1,N1−1) cuts off the top 0.005 of the distribution and F(0.005,N2−1,N1−1)
cuts off the bottom 0.005 of the distribution. It is rare that one finds the bottom percentiles of an F
distribution tabled but they can be obtained from the top percentiles. In particular,

F(0.005,N2 −1,N1 −1) =
1

F(0.995,N1 −1,N2 −1)
.

Note that the degrees of freedom have been reversed in the right-hand side of the equality.
While this is a convenient way to construct a test, it is neither a significance test nor the opti-

mal Neyman–Pearson test. In fact, this problem raises serious issues about significance testing for
continuous distributions.

EXAMPLE 4.4.1. We again consider the log turtle height data. The sample variance of log female
heights is s2

1 = 0.02493979 and the sample variance of log male heights is s2
2 = 0.00677276. The

α = 0.01 level test is rejected, i.e., we conclude that the null model with σ2
2 = σ2

1 is wrong if

0.2716 =
0.00677276
0.02493979

=
s2

2

s2
1

> F(0.995,23,23) = 3.04

or if

0.2716 < F(0.005,23,23) =
1

F(0.995,23,23)
=

1
3.04

= 0.33.

The second of these inequalities is true, so the null model with equal variances is rejected at the 0.01
level. We have evidence that σ2

2 �= σ2
1 if the model is true and, since the statistic is less than one,

evidence that σ2
2 < σ2

1 . �

EXAMPLE 4.4.2. Consider again the final point total data. The sample variance for females is
s2

1 = 487.28 and the sample variance for males is s2
2 = 979.29. The test statistic is

s2
1

s2
2

=
487.28
979.29

= 0.498 .

For the tests being used, it does not matter which variance estimate we put in the numerator
as long as we keep the degrees of freedom straight. The observed test statistic is not less than
1
/

F(0.95,14,21)= 1
/

2.197 = 0.455 nor greater than F(0.95,21,14)= 2.377, so the null model is
not rejected at the α = 0.10 level. �

In practice, tests for the equality of variances are rarely performed. As misguided as it may be,
typically, the main emphasis is on drawing conclusions about the μis. The motivation for testing
equality of variances is frequently to justify the use of the pooled estimate of the variance. The
test assumes that the null hypothesis of equal variances is true and data that are inconsistent with
the assumptions indicate that the assumptions are false. We generally hope that this indicates that
the assumption about the null hypothesis is false, but, in fact, unusual data may be obtained if
any of the assumptions are invalid. The equal variances test assumes that the data are independent
and normal and that the variances are equal. Minor deviations from normality may cause the test
to be rejected. While procedures for comparing μis based on the pooled estimate of the variance
are sensitive to unequal variances, they are not particularly sensitive to nonnormality. The test for
equality of variances is so sensitive to nonnormality that when rejecting this test one has little idea if
the problem is really unequal variances or if it is nonnormality. Thus one has little idea whether there
is a problem with the pooled estimate procedures or not. Since the test is not very informative, it is
rarely performed. Moreover, as discussed at the beginning of this section, if the variances of the two
groups are substantially different, inferences about the means may be irrelevant to the underlying
practical issues.
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Theory

The F distribution used here is related to the fact that for independent random samples of normal
data,

(Ni −1)s2
i

σ2
i

∼ χ2(Ni −1).

Definition 4.4.3. An F distribution is the ratio of two independent chi-squared random variables
divided by their degrees of freedom. The numerator and denominator degrees of freedom for the F
distribution are the degrees of freedom for the respective chi-squareds.

In this problem, the two chi-squared random variables divided by their degrees of freedom are

(Ni −1)s2
i /σ2

i

Ni −1
=

s2
i

σ2
i

,

i = 1,2. They are independent because they are taken from independent samples and their ratio is

s2
2

σ2
2

/ s2
1

σ2
1

=
s2

2

s2
1

σ2
1

σ2
2

.

When the null hypothesis is true, i.e., σ2
2 /σ2

1 = 1, by definition, we get

s2
2

s2
1

∼ F(N2 −1,N1 −1),

so the test statistic has an F distribution under the null hypothesis and the normal sampling model.
Note that we could equally well have reversed the roles of the two groups and set the test up as

H0 :
σ2

1

σ2
2

= 1

with the test statistic
s2

1

s2
2

.

A non-optimal Neyman–Pearson α level test is rejected if

s2
1

s2
2

> F
(

1− α
2
,N1 −1,N2 −1

)

or if
s2

1

s2
2

< F
(α

2
,N1 −1,N2 −1

)
.

Using the fact that for any α between zero and one and any degrees of freedom r and s,

F(α,r,s) =
1

F(1−α,s,r)
, (4.4.1)

it is easily seen that this test is equivalent to the one we constructed. Relation (4.4.1) is a result of
the fact that with equal variances both s2

2/s2
1 and s2

1/s2
2 have F distributions. Clearly, the smallest,

say, 5% of values from s2
2/s2

1 are also the largest 5% of the values of s2
1/s2

2.
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Table 4.4: Weights of rats on thiouracil.

Rat Start Finish Rat Start Finish
1 61 129 6 51 119
2 59 122 7 56 108
3 53 133 8 58 138
4 59 122 9 46 107
5 51 140 10 53 122

Table 4.5: Weight gain comparison.

Control Thyroxin
115 107 132 88
117 90 84 119
133 91 133
115 91 118
95 112 87

4.5 Exercises

EXERCISE 4.5.1. Box (1950) gave data on the weights of rats that were given the drug Thiouracil.
The rats were measured at the start of the experiment and at the end of the experiment. The data are
given in Table 4.4. Give a 99% confidence interval for the difference in weights between the finish
and the start. Test the null hypothesis that the population mean weight gain was less than or equal
to 50 with α = 0.02.

EXERCISE 4.5.2. Box (1950) also considered data on rats given Thyroxin and a control group
of rats. The weight gains are given in Table 4.5. Give a 95% confidence interval for the difference
in weight gains between the Thyroxin group and the control group. Give the P value for a test of
whether the control group has weight gains different than the Thyroxin group.

EXERCISE 4.5.3. Conover (1971, p. 226) considered data on the physical fitness of male seniors
in a particular high school. The seniors were divided into two groups based on whether they lived
on a farm or in town. The results in Table 4.6 are from a physical fitness test administered to the
students. High scores indicate that an individual is physically fit. Give a 95% confidence interval for
the difference in mean fitness scores between the town and farm students. Test the hypothesis of no
difference at the α = 0.10 level. Give a 99% confidence interval for the mean fitness of town boys.
Give a 99% prediction interval for a future fitness score for a farm boy.

EXERCISE 4.5.4. Use the data of Exercise 4.5.3 to test whether the fitness scores for farm boys
are more or less variable than fitness scores for town boys.

Table 4.6: Physical fitness of male high school seniors.

Town 12.7 16.9 7.6 2.4 6.2 9.9
Boys 14.2 7.9 11.3 6.4 6.1 10.6

12.6 16.0 8.3 9.1 15.3 14.8
2.1 10.6 6.7 6.7 10.6 5.0

17.7 5.6 3.6 18.6 1.8 2.6
11.8 5.6 1.0 3.2 5.9 4.0

Farm 14.8 7.3 5.6 6.3 9.0 4.2
Boys 10.6 12.5 12.9 16.1 11.4 2.7
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Table 4.7: Turtle lengths.

Females Males
98 138 123 155 121 104 116 93

103 138 133 155 125 106 117 94
103 141 133 158 127 107 117 96
105 147 133 159 128 112 119 101
109 149 134 162 131 113 120 102
123 153 136 177 135 114 120 103

Table 4.8: Verbal ability test scores.

8 yr. olds 10 yr. olds
324 344 448 428 399 414
366 390 372 366 412 396
322 434 364 386 436
398 350 404 452

EXERCISE 4.5.5. Jolicoeur and Mosimann (1960) gave data on turtle shell lengths. The data
for females and males are given in Table 4.7. Explore the need for a transformation. Test whether
there is a difference in lengths using α = 0.01. Give a 95% confidence interval for the difference in
lengths.

EXERCISE 4.5.6. Koopmans (1987) gave the data in Table 4.8 on verbal ability test scores for
8 year-olds and 10 year-olds. Test whether the two groups have the same mean with α = 0.01 and
give a 95% confidence interval for the difference in means. Give a 95% prediction interval for a new
10 year old. Check your assumptions.

EXERCISE 4.5.7. Burt (1966) and Weisberg (1985) presented data on IQ scores for identical
twins that were raised apart, one by foster parents and one by the genetic parents. Variable y1 is
the IQ score for a twin raised by foster parents, while y2 is the corresponding IQ score for the twin
raised by the genetic parents. The data are given in Table 4.9.

We are interested in the difference between μ1, the population mean for twins raised by foster
parents, and μ2, the population mean for twins raised by genetic parents. Analyze the data. Check
your assumptions.

EXERCISE 4.5.8. Table 4.10 presents data given by Shewhart (1939, p. 118) on various atomic
weights as reported in 1931 and again in 1936. Analyze the data. Check your assumptions.

Table 4.9: Burt’s IQ data.

Case y1 y2 Case y1 y2 Case y1 y2

1 82 82 10 93 82 19 97 87
2 80 90 11 95 97 20 87 93
3 88 91 12 88 100 21 94 94
4 108 115 13 111 107 22 96 95
5 116 115 14 63 68 23 112 97
6 117 129 15 77 73 24 113 97
7 132 131 16 86 81 25 106 103
8 71 78 17 83 85 26 107 106
9 75 79 18 93 87 27 98 111
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Table 4.10: Atomic weights in 1931 and 1936.

Compound 1931 1936 Compound 1931 1936
Arsenic 74.93 74.91 Lanthanum 138.90 138.92
Caesium 132.81 132.91 Osmium 190.8 191.5
Columbium 93.3 92.91 Potassium 39.10 39.096
Iodine 126.932 126.92 Radium 225.97 226.05
Krypton 82.9 83.7 Ytterbium 173.5 173.04

Table 4.11: Peel-strengths.

Adhesive Observations
A 60 63 57 53 56 57
B 52 53 44 48 48 53

EXERCISE 4.5.9. Reanalyze the data of Example 4.1.1 after deleting the one possible outlier.
Does the analysis change much? If so, how?

EXERCISE 4.5.10. Let y1 ∼ N(89,4) and y2 ∼ N(90,16). Show that Pr[y1 ≥ 87]> Pr[y2 ≥ 87],
so that the population with the lower mean has a higher probability of exceeding 87. Recall that
(y1 − 89)/

√
4 ∼ N(0,1) with a similar result for y2 so that both probabilities can be rewritten in

terms of a N(0,1).

EXERCISE 4.5.11. Mandel (1972) reported stress test data on elongation for a certain type of
rubber. Four pieces of rubber sent to one laboratory yielded a sample mean and variance of 56.50
and 5.66, respectively. Four different pieces of rubber sent to another laboratory yielded a sample
mean and variance of 52.50 and 6.33, respectively. Are the data two independent samples or a paired
comparison? Is the assumption of equal variances reasonable? Give a 99% confidence interval for
the difference in population means and give an approximate P value for testing that there is no
difference between population means.

EXERCISE 4.5.12. Bethea et al. (1985) reported data on the peel-strengths of adhesives. Some of
the data are presented in Table 4.11. Give an approximate P value for testing no difference between
adhesives, a 95% confidence interval for the difference between mean peel-strengths, and a 95%
prediction interval for a new observation on Adhesive A.

EXERCISE 4.5.13. Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 11.5.2. The experiment involved testing fabric strengths on different
machines. Eight homogeneous strips of cloth were divided into samples and each machine was used
on a sample from each strip. The data are given in Table 4.12. Are the data two independent sam-
ples or a paired comparison? Give a 98% confidence interval for the difference in population means.
Give an approximate P value for testing that there is no difference between population means. What
is the result of an α = 0.05 test?

Table 4.12: Tensile strength.

Strip 1 2 3 4 5 6 7 8
m1 18 9 7 6 10 7 13 1
m2 7 11 11 4 8 12 5 11
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Table 4.13: Acreage in corn for different farm acreages.

Size Corn acreage
240 65 80 65 85 30
400 75 35 140 90 110

Table 4.14: Cutting dates.

Year 29 30 31 32 33 34 35 36 37 38
June 1 201 230 324 512 399 891 449 595 632 527
June 15 301 296 543 778 644 1147 585 807 804 749

EXERCISE 4.5.14. Snedecor and Cochran (1967) presented data on the number of acres planted
in corn for two sizes of farms. Size was measured in acres. Some of the data are given in Table 4.13.
Are the data two independent samples or a paired comparison? Is the assumption of equal variances
reasonable? Test for differences between the farms of different sizes. Clearly state your α level.
Give a 98% confidence interval for the mean difference between different farms.

EXERCISE 4.5.15. Snedecor and Haber (1946) presented data on cutting dates of asparagus.
On two plots of land, asparagus was grown every year from 1929 to 1938. On the first plot the
asparagus was cut on June 1, while on the second plot the asparagus was cut on June 15. Note
that growing conditions will vary considerably from year to year. Also note that the data presented
have cutting dates confounded with the plots of land. If one plot of land is intrinsically better for
growing asparagus than the other, there will be no way of separating that effect from the effect of
cutting dates. Are the data two independent samples or a paired comparison? Give a 95% confidence
interval for the difference in population means and give an approximate P value for testing that there
is no difference between population means. Give a 95% prediction interval for the difference in a
new year. The data are given in Table 4.14.

EXERCISE 4.5.16. Snedecor (1945b) presented data on a pesticide spray. The treatments were
the number of units of active ingredient contained in the spray. Several different sources for breed-
ing mediums were used and each spray was applied on each distinct breeding medium. The data
consisted of numbers of dead adult flies found in cages that were set over the breeding medium
containers. Some of the data are presented in Table 4.15. Give a 95% confidence interval for the
difference in population means. Give an approximate P value for testing that there is no difference
between population means and an α = 0.05 test. Give a 95% prediction interval for a new obser-
vation with 8 units. Give a 95% prediction interval for a new observation with 8 units when the
corresponding 0 unit value is 300.

EXERCISE 4.5.17. Using the data of Example 4.2.1 give a 95% prediction interval for the dif-
ference in total points between a new female and a new male. This was not discussed earlier so it
requires a deeper understanding of Section 3.5.

Table 4.15: Dead adult flies.

Medium A B C D E F G
0 units 423 326 246 141 208 303 256
8 units 414 127 206 78 172 45 103





Chapter 5

Contingency Tables

In this chapter we consider data that consist of counts. We begin in Section 5.1 by examining a
set of data on the number of females admitted into graduate school at the University of California,
Berkeley. A key feature of these data is that only two outcomes are possible: admittance or rejec-
tion. Data with only two outcomes are referred to as binary (or dichotomous) data. Often the two
outcomes are referred to generically as success and failure. In Section 5.2, we expand our discus-
sion by comparing two sets of dichotomous data; we compare Berkeley graduate admission rates for
females and males. Section 5.3 examines polytomous data, i.e., count data in which there are more
than two possible outcomes. For example, numbers of Swedish females born in the various months
of the year involve counts for 12 possible outcomes. Section 5.4 examines comparisons between
two samples of polytomous data, e.g., comparing the numbers of females and males that are born in
the different months of the year. Section 5.5 looks at comparisons among more than two samples of
polytomous data. The last section considers a method of reducing large tables of counts that involve
several samples of polytomous data into smaller more interpretable tables.

Sections 5.1 and 5.2 involve analogues of Chapters 2 and 4 that are appropriate for dichotomous
data. The basic analyses in these sections simply involve new applications of the ideas in Chapter 3.
Sections 5.3, 5.4, and 5.5 are polytomous data analogues of Chapters 2, 4, and 12. Everitt (1977)
and Fienberg (1980) give more detailed introductions to the analysis of count data. Sophisticated
analyses of count data frequently use analogues of ANOVA and regression called logistic regression
and log-linear models. These are discussed in Chapters 20 and 21, respectively.

5.1 One binomial sample

The few distributions that are most commonly used in Statistics arise naturally. The normal distri-
bution arises for measurement data because the variability in the data often results from the mean
of a large number of small errors and the central limit theorem indicates that such means tend to be
normally distributed.

The binomial distribution arises naturally with count data because of its simplicity. Consider
a number of trials, say n, each a success or failure. If each trial is independent of the other trials
and if the probability of obtaining a success is the same for every trial, then the random number of
successes has a binomial distribution. The beauty of discrete data is that the probability models can
often be justified solely by how the data were collected. This does not happen with measurement
data. The binomial distribution depends on two parameters, n, the number of independent trials,
and the constant probability of success, say p. Typically, we know the value of n, while p is the
unknown parameter of interest. Binomial distributions were examined in Section 1.4.

Bickel et al. (1975) report data on admissions to graduate school at the University of California,
Berkeley. The numbers of females that were admitted and rejected are given below along with the
total number of applicants.

Graduate admissions at Berkeley
Admitted Rejected Total

Female 557 1278 1835

109
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It seems reasonable to view the 1835 females as a random sample from a population of potential
female applicants. We are interested in the probability p that a female applicant is admitted to
graduate school. A natural estimate of the parameter p is the proportion of females that were actually
admitted, thus our estimate of the parameter is

p̂ =
557

1835
= 0.30354.

We have a parameter of interest, p, and an estimate of that parameter, p̂; if we can identify a standard
error and an appropriate distribution, we can use methods from Chapter 3 to perform statistical
inferences.

The key to finding a standard error is to find the variance of the estimate. As we will see later,

Var(p̂) =
p(1− p)

n
. (5.1.1)

To estimate the standard deviation of p̂, we simply use p̂ to estimate p in (5.1.1) and take the square
root. Thus the standard error is

SE(p̂) =

√
p̂(1− p̂)

n
=

√
0.30354(1−0.30354)

1835
= 0.01073.

The final requirement for using the results of Chapter 3 is to find an appropriate reference dis-
tribution for

p̂− p
SE(p̂)

.

We can think of each trial as scoring either a 1, if the trial is a success, or a 0, if the trial is a failure.
With this convention p̂, the proportion of successes, is really the average of the 0-1 scores and since
p̂ is an average we can apply the central limit theorem. (In fact, SE(p̂) is very nearly s/

√
n, where s

is computed from the 0-1 scores.) The central limit theorem simply states that for a large number of
trials n, the distribution of p̂ is approximately normal with a population mean that is the population
mean of p̂ and a population variance that is the population variance of p̂. We have already given the
variance of p̂ and we will see later that E(p̂) = p, thus for large n we have the approximation

p̂ ∼ N

(
p,

p(1− p)
n

)
.

The variance is unknown but by the law of large numbers it is approximately equal to our estimate
of it, p̂(1− p̂)/n. Standardizing the normal distribution (cf. Exercise 1.6.2) gives the approximation

p̂− p
SE(p̂)

∼ N(0,1)≡ t(∞). (5.1.2)

This distribution requires a sample size that is large enough for both the central limit theorem ap-
proximation and the law of large numbers approximation to be reasonably valid. For values of p
that are not too close to 0 or 1, the approximation works reasonably well with sample sizes as small
as 20. However, the normal distribution is unrealistically precise, since it is based on both a normal
approximation and a law of large numbers approximation. We use the t(n−1) distribution instead,
hoping that it provides a more realistic view of the reference distribution.

We now have Par= p, Est = p̂, SE(p̂)=
√

p̂(1− p̂)/n, and the distribution in (5.1.2) or t(n−1).
As in Chapter 3, a 95% confidence interval for p has limits

p̂±1.96

√
p̂(1− p̂)

n
.
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Here 1.96 = t(0.975,∞)
.
= t(0.975,1834). Recall that a (1−α)100% confidence interval requires

the (1−α/2) percentile of the distribution. For the female admissions data, the limits are

0.30354±1.96(0.01073),

which gives the interval (0.28,0.32). The data are consistent with a population proportion of females
admitted to Berkeley’s graduate school between 0.28 and 0.32. (As is often the case, it is not exactly
clear what population these data relate to.) Agresti and Coull (1998) discuss alternative methods of
constructing confidence intervals, some of which have better Neyman–Pearson coverage rates.

We can also perform, say, an α = 0.01 test of the null hypothesis H0 : p = 1/3. The test rejects
H0 if

p̂−1/3
SE(p̂)

> 2.58

or if
p̂−1/3
SE(p̂)

<−2.58.

Here 2.58 = t(0.995,∞)
.
= t(0.995,1834). An α-level test requires the (1− α

2 )100% point of the
distribution. The Berkeley data yield the test statistic

0.30354−0.33333
0.01073

=−2.78,

which is smaller than −2.58, so we reject the null model with p = 1/3 at α = 0.01. In other words,
we can reject, with strong assurance, the claim that one third of female applicants are admitted to
graduate school at Berkeley, provided the data really are binomial. Since the test statistic is negative,
we have evidence that the true proportion is less than one third. The test as constructed here is
equivalent to checking whether p = 1/3 is within a 99% confidence interval.

There is an alternative, slightly different, way of performing tests such as H0 : p = 1/3. The
difference involves using a different standard error. The variance of the estimate p̂ is p(1− p)/n.
In obtaining a standard error, we estimated p with p̂ and took the square root of the estimated
variance. Recalling that tests are performed assuming that the null hypothesis is true, it makes sense
in the testing problem to use the assumption p = 1/3 in computing a standard error for p̂. Thus an
alternative standard error for p̂ in this testing problem is

√
1
3

(
1− 1

3

)/
1835 = 0.01100.

The test statistic now becomes

0.30354−0.33333
0.01100

=−2.71.

Obviously, since the test statistic is slightly different, one could get slightly different answers for
tests using the two different standard errors. Moreover, the results of this test will not always agree
with a corresponding confidence interval for p because this test uses a different standard error than
the confidence interval. (It hardly seems worth the trouble to compute a confidence interval using
these standard errors, although it could be done; see Lindgren, 1968, Sec. 5.3.)

The difference between the two standard errors is often minor compared to the level of approx-
imation inherent in using either the standard normal or the t(n− 1) as a reference distribution. In
any case, whether we ascribe the differences to the standard errors or to the quality of the normal
approximations, the exact behavior of the two test statistics can be quite different when the sample
size is small. Moreover, when p is near 0 or 1, the sample sizes must be quite large to get a good
normal approximation.
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The theoretical results needed for analyzing a single binomial sample are establishing that p̂
is a reasonable estimate of p and that the variance formula given earlier is correct. The data are
y ∼ Bin(n, p). As seen in Section 1.4, E(y) = np and Var(y) = np(1− p). The estimate of p is
p̂ = y/n. The estimate is unbiased because

E(p̂) = E(y/n) = E(y)/n = np/n = p.

The variance of the estimate is

Var(p̂) = Var(y/n) = Var(y)/n2 = np(1− p)/n2 = p(1− p)/n.

5.1.1 The sign test

We now consider an alternative analysis for paired comparisons based on the binomial distribution.
Consider Burt’s data on IQs of identical twins raised apart from Exercise 4.5.7 and Table 4.9. The
earlier discussion of paired comparisons involved assuming and validating the normal distribution
for the differences in IQs between twins. In the current discussion, we make the same assumptions as
before except we replace the normality assumption with the weaker assumption that the distribution
of the differences is symmetric. In the earlier discussion, we would test H0 : μ1 − μ2 = 0. In the
current discussion, we test whether there is a 50 : 50 chance that y1, the IQ for the foster-parent-
raised twin, is larger than y2, the IQ for the genetic-parent-raised twin. In other words, we test
whether Pr(y1 − y2 > 0) = 0.5. We have a sample of n = 27 pairs of twins. If Pr(y1 − y2 > 0) = 0.5,
the number of pairs with y1 − y2 > 0 has a Bin(27,0.5) distribution. From Table 4.9, 13 of the 27
pairs have larger IQs for the foster-parent-raised child. (These are the differences with a positive
sign, hence the name sign test.) The proportion is p̂ = 13/27 = 0.481. The test statistic is

0.481−0.5√
0.5(1−0.5)/27

=−0.20,

which is clearly consistent with the null model.
A similar method could be used to test, say, whether there is a 50 : 50 chance that y1 is at least

3 IQ points greater than y2. This hypothesis translates into Pr(y1 − y2 ≥ 3) = 0.5. The test is then
based on the number of differences that are 3 or more.

The point of the sign test is the weakening of the assumption of normality. If the normality
assumption is appropriate, the t test of Section 4.1 is more appropriate. When the normality as-
sumption is not appropriate, some modification like the sign test should be used. In this book, the
usual approach is to check the normality assumption and, if necessary, to transform the data to make
the normality assumption reasonable. For a more detailed introduction to nonparametric methods
such as the sign test; see, for example, Conover (1971).

5.2 Two independent binomial samples

In this section we compare two independent binomial samples. Consider again the Berkeley admis-
sions data. Table 5.1 contains data on admissions and rejections for the 1835 females considered in
Section 5.1 along with data on 2691 males. We assume that the sample of females is independent
of the sample of males. Throughout, we refer to the females as the first sample and the males as the
second sample.

We consider being admitted to graduate school a “success.” Assuming that the females are a
binomial sample, they have a sample size of n1 = 1835 and some probability of success, say, p1.
The observed proportion of female successes is

p̂1 =
557

1835
= 0.30354.
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Table 5.1: Graduate admissions at Berkeley.

Admitted Rejected Total
Females 557 1278 1835
Males 1198 1493 2691

Treating the males as a binomial sample, the sample size is n2 = 2691 and the probability of success
is, say, p2. The observed proportion of male successes is

p̂2 =
1198
2691

= 0.44519.

Our interest is in comparing the success rate of females and males. The appropriate parameter
is the difference in proportions,

Par = p1 − p2.

The natural estimate of this parameter is

Est = p̂1 − p̂2 = 0.30354−0.44519=−0.14165.

With independent samples, we can find the variance of the estimate and thus the standard error.
Since the females are independent of the males,

Var(p̂1 − p̂2) = Var(p̂1)+Var(p̂2).

Using the variance formula in Equation (5.1.1),

Var(p̂1 − p̂2) =
p1(1− p1)

n1
+

p2(1− p2)

n2
. (5.2.1)

Estimating p1 and p2 and taking the square root gives the standard error,

SE(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

=

√
0.30354(1−0.30354)

1835
+

0.44519(1−0.44519)
2691

= 0.01439.

For large sample sizes n1 and n2, both p̂1 and p̂2 have approximate normal distributions and they
are independent, so p̂1 − p̂2 has an approximate normal distribution and the appropriate reference
distribution is approximately

(p̂1 − p̂2)− (p1 − p2)

SE(p̂1 − p̂2)
∼ N(0,1).

Alternatively, we could use the method of Section 4.3 to determine approximate degrees of freedom
for a t distribution.

We now have all the requirements for applying the results of Chapter 3. A 95% confidence
interval for p1 − p2 has endpoints

(p̂1 − p̂2)±1.96

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

where the value 1.96 = t(0.975,∞) seems reasonable given the large sample sizes involved. For
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comparing the female and male admissions, the 95% confidence interval for the population differ-
ence in proportions has endpoints

−0.14165±1.96(0.01439).

The interval is (−0.17,−0.11). Proportions of women being admitted to graduate school at Berkeley
between 0.11 and 0.17 less than that for men are consistent with the data and the model at α = 0.05.

To test H0 : p1 = p2, or equivalently H0 : p1 − p2 = 0, reject an α = 0.10 test if

(p̂1 − p̂2)−0
SE(p̂1 − p̂2)

> 1.645

or if
(p̂1 − p̂2)−0
SE(p̂1 − p̂2)

<−1.645.

Again, the value 1.645 is obtained from the t(∞) distribution and presumes very large samples.
With the Berkeley data, the observed value of the test statistic is

−0.14165−0
0.01439

=−9.84.

This is far smaller than −1.645, so the test rejects the null hypothesis of equal proportions at the
0.10 level pretty much regardless of how we determine degrees of freedom. The test statistic is
negative, so there is evidence that the proportion of women admitted to graduate school is lower
than the proportion of men.

Once again, an alternative standard error is often used in testing problems. The test assumes that
the null hypothesis is true, i.e. p1 = p2, so in constructing a standard error for the test statistic it
makes sense to pool the data into one estimate of this common proportion. The pooled estimate is a
weighted average of the individual estimates,

p̂∗ =
n1 p̂1 +n2 p̂2

n1 +n2

=
1835(0.30354)+ 2691(0.44519)

1835+2691

=
557+1198
1835+2691

= 0.38776 .

Using p̂∗ to estimate both p1 and p2 in Equation (5.2.1) and taking the square root gives the alter-
native standard error

SE(p̂1 − p̂2) =

√
p̂∗(1− p̂∗)

n1
+

p̂∗(1− p̂∗)
n2

=

√
p̂∗(1− p̂∗)

[
1
n1

+
1
n2

]

=

√
0.38776(1−0.38776)

[
1

1835
+

1
2691

]

= 0.01475.

The alternative test statistic is
−0.14165−0

0.01475
=−9.60.
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Table 5.2: Swedish female births by month.

Month Females p̂ Probability E (O−E)/
√

E
January 3537 0.083 1/12 3549.25 −0.20562
February 3407 0.080 1/12 3549.25 −2.38772
March 3866 0.091 1/12 3549.25 5.31678
April 3711 0.087 1/12 3549.25 2.71504
May 3775 0.087 1/12 3549.25 3.78930
June 3665 0.086 1/12 3549.25 1.94291
July 3621 0.085 1/12 3549.25 1.20435
August 3596 0.084 1/12 3549.25 0.78472
September 3491 0.082 1/12 3549.25 −0.97775
October 3391 0.080 1/12 3549.25 −2.65629
November 3160 0.074 1/12 3549.25 −6.53372
December 3371 0.079 1/12 3549.25 −2.99200
Total 42591 1 1 42591.00

Again, the two test statistics are slightly different but the difference should be minor compared to
the level of approximation involved in using the normal distribution.

A final note. Before you conclude that the data in Table 5.1 provide evidence of sex discrimi-
nation, you should realize that females tend to apply to different graduate programs than males. A
more careful examination of the complete Berkeley data shows that the difference observed here
largely results from females applying more frequently than males to highly restrictive programs,
cf. Christensen (1997, p. 114). Rejecting the test suggests that something is wrong with the null
model. In this case, the assumption of binomial sampling is wrong. Some people have different
probabilities of being admitted than other people, depending on what department they applied to.

5.3 One multinomial sample

In this section we investigate the analysis a single polytomous variable, i.e., a count variable with
more than two possible outcomes. In particular, we assume that the data are a sample from a multi-
nomial distribution, cf. Section 1.5. The multinomial distribution is a generalization of the binomial
that allows more than two outcomes. We assume that each trial gives one of, say, q possible out-
comes. Each trial must be independent and the probability of each outcome must be the same for
every trial. The multinomial distribution gives probabilities for the number of trials that fall into each
of the possible outcome categories. The binomial distribution is a special case of the multinomial
distribution in which q = 2.

The first two columns of Table 5.2 give months and numbers of Swedish females born in each
month. The data are from Cramér (1946) who did not name the months. We assume that the data
begin in January.

With polytomous data such as those listed in Table 5.2, there is no one parameter of primary
interest. One might be concerned with the proportions of births in January, or December, or in any
of the twelve months. With no one parameter of interest, the one-parameter methods of Chapter 3
do not apply. Column 3 of Table 5.2 gives the observed proportions of births for each month. These
are simply the monthly births divided by the total births for the year. Note that the proportion of
births in March seems high and the proportion of births in November seems low.

A simplistic, yet interesting, hypothesis is that the proportion of births is the same for every
month. In this case the model is multinomial sampling, the null hypothesis is equal probabilities, and
they are combined into a null model. To test this null model, we compare the number of observed
births to the number of births we would expect to see if the hypothesis were true. The number
of births we expect to see in any month is just the probability of having a birth in that month
times the total number of births. The equal probabilities are given in column 4 of Table 5.2 and the
expected values are given in column 5. The entries in column 5 are labeled E for expected value
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and are computed as (1/12)42591 = 3549.25. It cannot be overemphasized that the expectations
are computed under the assumption that the null model is true.

Comparing observed values with expected values can be tricky. Suppose an observed value is
2145 and the expected value is 2149. The two numbers are off by 4; the observed value is pretty
close to the expected. Now suppose the observed value is 1 and the expected value is 5. Again
the two numbers are off by 4 but now the difference between observed and expected seems quite
substantial. A difference of 4 means something very different depending on how large both numbers
are. To account for this phenomenon, we standardized the difference between observed and expected
counts. We do this by dividing the difference by the square root of the expected count. Thus, when
we compare observed counts with expected counts we look at

O−E√
E

(5.3.1)

where O stands for the observed count and E stands for the expected count. The values in (5.3.1)
are called Pearson residuals, after Karl Pearson.

The Pearson residuals for the Swedish female births are given in column 6 of Table 5.2. As
noted earlier, the two largest deviations from the assumption of equal probabilities occur for March
and November. Reasonably large deviations also occur for May and to a lesser extent December,
April, October, and February. In general, the Pearson residuals can be compared to observations
from a N(0,1) distribution to evaluate whether a residual is large. For example, the residuals for
March and November are 5.3 and −6.5. These are not values one is likely to observe from a N(0,1)
distribution; they provide strong evidence that the birth rate in March is really larger than 1/12 and
that the birth rate in November is really smaller than 1/12.

Births seem to peak in March and they, more or less, gradually decline until November. After
November, birth rates are still low but gradually increase until February. In March birth rates in-
crease markedly. Birth rates are low in the fall and lower in the winter; they jump in March and
remain relatively high, though decreasing, until September. This analysis could be performed using
the monthly proportions of column 2 but the results are clearer using the residuals.

A statistic for testing whether the null model of equal proportions is reasonable can be obtained
by squaring the residuals and adding them together. This statistic is known as Pearson’s χ2 (chi-
squared) statistic and is computed as

X2 = ∑
all cells

(O−E)2

E
.

For the female Swedish births,
X2 = 121.24.

Note that small values of X2 indicate observed values that are similar to the expected values, so
small values of X2 are consistent with the null model. (However, with 3 or more degrees of freedom,
values that are too small can indicate that the multinomial sampling assumption is suspect.) Large
values of X2 occur whenever one or more observed values are far from the expected values. To
perform a test, we need some idea of how large X2 could reasonably be when the null model is true.
It can be shown that for a problem such as this with 1) a fixed number of cells q, here q = 12, with
2) a null model consisting of known probabilities such as those given in column 4 of Table 5.2, and
with 3) large sample sizes for each cell, the null distribution of X2 is approximately

X2 ∼ χ2(q−1).

The degrees of freedom are only q−1 because the p̂s must add up to 1. Thus, if we know q−1 = 11
of the proportions, we can figure out the last one. Only q−1 of the cells are really free to vary. From
Appendix B.2, the 99.5th percentile of a χ2(11) distribution is χ2(0.995,11)= 26.76. The observed
X2 value of 121.24 is much larger than this, so the observed value of X2 could not reasonably come
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Table 5.3: Swedish births: monthly observations (Oi js) and monthly proportions by sex.

Observations Proportions
Month Female Male Total Female Male
January 3537 3743 7280 0.083 0.082
February 3407 3550 6957 0.080 0.078
March 3866 4017 7883 0.091 0.088
April 3711 4173 7884 0.087 0.091
May 3775 4117 7892 0.089 0.090
June 3665 3944 7609 0.086 0.086
July 3621 3964 7585 0.085 0.087
August 3596 3797 7393 0.084 0.083
September 3491 3712 7203 0.082 0.081
October 3391 3512 6903 0.080 0.077
November 3160 3392 6552 0.074 0.074
December 3371 3761 7132 0.079 0.082
Total 42591 45682 88273 1.000 1.000

from a χ2(11) distribution. Tests based on X2, like F tests, are commonly viewed as being rejected
only for large values of the test statistics and P values are computed correspondingly. However, X2

values that are too small also suggest that something is awry with the null model. In any case, there
is overwhelming evidence that monthly female Swedish births are not multinomial with constant
probabilities.

In this example, our null hypothesis was that the probability of a female birth was the same
in every month. A more reasonable hypothesis might be that the probability of a female birth is
the same on every day. The months have different numbers of days so under this null model they
have different probabilities. For example, assuming a 365-day year, the probability of a female
birth in January is 31/365, which is somewhat larger than 1/12. Exercise 5.8.4 involves testing the
corresponding null model.

We can use results from Section 5.1 to help in the analysis of multinomial data. If we consider
only the month of December, we can view each trial as a success if the birth is in December and a
failure otherwise. Writing the probability of a birth in December as p12, from Table 5.2 the estimate
of p12 is

p̂12 =
3371

42591
= 0.07915

with standard error

SE(p̂12) =

√
0.07915(1−0.07915)

42591
= 0.00131

and a 95% confidence interval has endpoints

0.07915±1.96(0.00131).

The interval reduces to (0.077,0.082). Tests for monthly proportions can be performed in a similar
fashion.

5.4 Two independent multinomial samples

Table 5.3 gives monthly births for Swedish females and males along with various marginal totals.
We wish to determine whether monthly birth rates differ for females and males. Denote the females
as population 1 and the males as population 2. Thus we have a sample of 42,591 females and, by
assumption, an independent sample of 45,682 males.

In fact, it is more likely that there is actually only one sample here, one consisting of 88,273
births. It is more likely that the births have been divided into 24 categories depending on sex and
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birth month. Such data can be treated as two independent samples with (virtually) no loss of gen-
erality. The interpretation of results for two independent samples is considerably simpler than the
interpretation necessary for one sample cross-classified by both sex and month, thus we discuss such
data as though they are independent samples. The alternative interpretation involves a multinomial
sample with the probabilities for each month and sex being independent.

The number of births in month i for sex j is denoted Oi j, where i = 1, . . . ,12 and j = 1,2. Thus,
for example, the number of males born in December is O12,2 = 3761. Let Oi· be the total for month
i, O· j be the total for sex j, and O·· be the total over all months and sexes. For example, May has
O5· = 7892, males have O·2 = 45,682, and the grand total is O·· = 88,273.

Our interest now is in whether the population proportion of births for each month is the same
for females as for males. We no longer make any assumption about the numerical values of these
proportions; our null hypothesis is simply that whatever the proportions are, they are the same for
females and males in each month. Again, we wish to compare the observed values, the Oi js with
expected values, but now, since we do not have specific hypothesized proportions for any month,
we must estimate the expected values.

Under the null hypothesis that the proportions are the same for females and males, it makes
sense to pool the male and female data to get an estimate of the proportion of births in each month.
Using the column of monthly totals in Table 5.3, the estimated proportion for January is the January
total divided by the total for the year, i.e.,

p̂0
1 =

7280
88273

= 0.0824714.

In general, for month i we have

p̂0
i =

Oi·
O··

where the superscript of 0 is used to indicate that these proportions are estimated under the null
hypothesis of identical monthly rates for males and females. The estimate of the expected number of
females born in January is just the number of females born in the year times the estimated probability
of a birth in January,

Ê11 = 42591(0.0824714)= 3512.54.

The expected number of males born in January is the number of males born in the year times the
estimated probability of a birth in January,

Ê12 = 45682(0.0824714)= 3767.46.

In general,

Êi j = O· j p̂0
i = O· j

Oi·
O··

=
Oi·O· j

O··
.

Again, the estimated expected values are computed assuming that the proportions of births are the
same for females and males in every month, i.e., assuming that the null model is true. The estimated
expected values under the null model are given in Table 5.4. Note that the totals for each month and
for each sex remain unchanged.

The estimated expected values are compared to the observations using Pearson residuals, just as
in Section 5.3. The Pearson residuals are

r̃i j ≡
Oi j − Êi j√

Êi j

.

A more apt name for the Pearson residuals in this context may be crude standardized residuals. It
is the standardization here that is crude and not the residuals. The standardization in the Pearson
residuals ignores the fact that Ê is itself an estimate. Better, but considerably more complicated,
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Table 5.4: Estimated expected Swedish births by month (Êi js) and pooled proportions.

Expectations Pooled
Month Female Male Total proportions
January 3512.54 3767.46 7280 0.082
February 3356.70 3600.30 6957 0.079
March 3803.48 4079.52 7883 0.089
April 3803.97 4080.03 7884 0.089
May 3807.83 4084.17 7892 0.089
June 3671.28 3937.72 7609 0.086
July 3659.70 3925.30 7585 0.086
August 3567.06 3825.94 7393 0.084
September 3475.39 3727.61 7203 0.082
October 3330.64 3572.36 6903 0.078
November 3161.29 3390.71 6552 0.074
December 3441.13 3690.87 7132 0.081
Total 42591.00 45682.00 88273 1.000

Table 5.5: Pearson residuals for Swedish birth months (r̃i js).

Month Female Male
January 0.41271 −0.39849
February 0.86826 −0.83837
March 1.01369 −0.97880
April −1.50731 1.45542
May −0.53195 0.51364
June −0.10365 0.10008
July −0.63972 0.61770
August 0.48452 −0.46785
September 0.26481 −0.25570
October 1.04587 −1.00987
November −0.02288 0.02209
December −1.19554 1.15438

standardized residuals can be defined for count data, cf. Christensen (1997, Section 6.7) and Chap-
ters 20 and 21. For the Swedish birth data, the Pearson residuals are given in Table 5.5. Note that
when compared to a N(0,1) distribution, none of the residuals is very large; all are smaller than 1.51
in absolute value.

As in Section 5.3, the sum of the squared Pearson residuals gives Pearson’s χ2 statistic for
testing the null model of no differences between females and males. Pearson’s test statistic is

X2 =∑
i j

(Oi j − Êi j)
2

Êi j
.

For the Swedish birth data, computing the statistic from the 24 cells in Table 5.5 gives

X2 = 14.9858.

For a formal test, X2 is compared to a χ2 distribution. The appropriate number of degrees of
freedom for the χ2 test is the number of cells in the table adjusted to account for all the parameters
we have estimated as well as the constraint that the sex totals sum to the grand total. There are
12× 2 cells but only 12− 1 free months and only 2−1 free sex totals. The appropriate distribution
is χ2((12− 1)(2− 1)) = χ2(11). The degrees of freedom are the number of data rows in Table 5.3
minus 1 times the number of data columns in Table 5.3 minus 1. The 90th percentile of a χ2(11) dis-
tribution is χ2(0.9,11) = 17.28, so the observed test statistic X2 = 14.9858 could reasonably come
from a χ2(11) distribution. Moreover, χ2(0.75,11) = 13.70, so a one-sided P value is between 0.25
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Figure 5.1: Monthly Swedish birth proportions by sex.

and 0.10, and the more appropriate two-sided P value would be even bigger. There is no evidence
of any differences in the monthly birth rates for males and females.

Another way to evaluate the null model is by comparing the observed monthly birth proportions
by sex. These observed proportions are given in Table 5.3. If the populations of females and males
have the same proportions of births in each month, the observed proportions of births in each month
should be similar (except for sampling variation). One can compare the numbers directly in Table 5.3
or one can make a visual display of the observed proportions as in Figure 5.1.

The methods just discussed apply equally well to the binomial data of Table 5.1. Applying the
X2 test given here to the data of Table 5.1 gives

X2 = 92.2.

The statistic X2 is equivalent to the test statistic given in Section 5.2 using the pooled estimate p̂∗
to compute the alternative standard error. The test statistic in Section 5.2 is −9.60, and if we square
that we get

(−9.60)2 = 92.2 = X2.

The −9.60 is compared to a N(0,1), while the 92.2 is compared to a χ2(1) because Table 5.1 has
2 rows and 2 columns. A χ2(1) distribution is obtained by squaring a N(0,1) distribution; P values
are identical and critical values are equivalent.

R and Minitab code for fitting contingency tables is given on my website.

5.5 Several independent multinomial samples

The methods of Section 5.4 extend easily to dealing with more than two samples. Consider the data
in Table 5.6 that were extracted from Lazerwitz (1961). The data involve samples from three re-
ligious groups and consist of numbers of people in various occupational groups. The occupations
are labeled A, professions; B, owners, managers, and officials; C, clerical and sales; and D, skilled.
The three religious groups are Protestant, Roman Catholic, and Jewish. This is a subset of a larger
collection of data that includes many more religious and occupational groups. The fact that we are
restricting ourselves to a subset of a larger data set has no effect on the analysis. As discussed in Sec-
tion 5.4, the analysis of these data is essentially identical regardless of whether the data come from
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Table 5.6: Religion and occupations.

Occupation
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

one sample of 1926 individuals cross-classified by religion and occupation, or four independent
samples of sizes 348, 477, 411, and 690 taken from the occupational groups, or three independent
samples of sizes 1135, 648, and 143 taken from the religious groups. We choose to view the data as
independent samples from the three religious groups. The data in Table 5.6 constitutes a 3×4 table
because, excluding the totals, the table has 3 rows and 4 columns.

We again test whether the populations are the same. In other words, the null hypothesis is that the
probability of falling into any occupational group is identical for members of the various religions.
Under this null hypothesis, it makes sense to pool the data from the three religions to obtain esti-
mates of the common probabilities. For example, under the null hypothesis of identical populations,
the estimate of the probability that a person is a professional is

p̂0
1 =

348
1926

= 0.180685.

For skilled workers the estimated probability is

p̂0
4 =

690
1926

= 0.358255.

Denote the observations as Oi j with i identifying a religious group and j indicating occupation.
We use a dot to signify summing over a subscript. Thus the total for religious group i is

Oi· =∑
j

Oi j,

the total for occupational group j is
O· j =∑

i
Oi j,

and
O·· =∑

i j
Oi j

is the grand total. Recall that the null hypothesis is that the probability of being in an occupation
group is the same for each of the three populations. Pooling information over religions, we have

p̂0
j =

O· j

O··

as the estimate of the probability that someone in the study is in occupational group j. This estimate
is only appropriate when the null model is true.

The estimated expected count under the null model for a particular occupation and religion is
obtained by multiplying the number of people sampled in that religion by the probability of the oc-
cupation. For example, the estimated expected count under the null model for Jewish professionals
is

Ê31 = 143(0.180685)= 25.84.
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Table 5.7: Estimated expected counts (Êi js).

Religion A B C D Total
Protestant 205.08 281.10 242.20 406.62 1135
Roman Catholic 117.08 160.49 138.28 232.15 648
Jewish 25.84 35.42 30.52 51.23 143
Total 348.00 477.00 411.00 690.00 1926

Table 5.8: Residuals (r̃i js).

Religion A B C D
Protestant 0.34 −0.24 0.76 −0.63
Roman Catholic −1.39 −1.62 −0.96 3.07
Jewish 2.00 4.13 −0.09 −4.78

Similarly, the estimated expected count for Roman Catholic skilled workers is

Ê24 = 648(0.358255)= 232.15.

In general,

Êi j = Oi· p̂0
j = Oi·

O· j

O··
=

Oi·O· j

O··
.

Again, the estimated expected values are computed assuming that the null model is true. The ex-
pected values for all occupations and religions are given in Table 5.7.

The estimated expected values are compared to the observations using Pearson residuals. The
Pearson residuals are

r̃i j =
Oi j − Êi j√

Êi j

.

These crude standardized residuals are given in Table 5.8 for all occupations and religions. The
largest negative residual is −4.78 for Jewish people with occupation D. This indicates that Jew-
ish people were substantially underrepresented among skilled workers relative to the other two
religious groups. On the other hand, Roman Catholics were substantially overrepresented among
skilled workers, with a positive residual of 3.07. The other large residual in the table is 4.13 for
Jewish people in group B. Thus Jewish people were more highly represented among owners, man-
agers, and officials than the other religious groups. Only one other residual is even moderately large,
the 2.00 indicating a high level of Jewish people in the professions. The main feature of these data
seems to be that the Jewish group was different from the other two. A substantial difference appears
in every occupational group except clerical and sales.

As in Sections 5.3 and 5.4, the sum of the squared Pearson residuals gives Pearson’s χ2 statistic
for testing the null model that the three populations are the same and the samples are independent
multinomials. Pearson’s test statistic is

X2 =∑
i j

(Oi j − Êi j)
2

Êi j
.

Summing the squares of the values in Table 5.8 gives

X2 = 60.0.

The appropriate number of degrees of freedom for the χ2 test is the number of data rows in Ta-
ble 5.6 minus 1 times the number of data columns in Table 5.6 minus 1. Thus the appropriate
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Table 5.9: Observed proportions by religion.

Occupation
Religion A B C D Total
Protestant 0.185 0.244 0.224 0.347 1.00
Roman Catholic 0.157 0.216 0.196 0.431 1.00
Jewish 0.252 0.420 0.210 0.119 1.00
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Figure 5.2: Occupational proportions by religion.

reference distribution is χ2((3−1)(4−1))= χ2(6). The 99.5th percentile of a χ2(6) distribution is
χ2(0.995,6) = 18.55 so the observed statistic X2 = 60.0 could not reasonably come from a χ2(6)
distribution. In particular, for multinomial sampling the test clearly indicates that the proportions of
people in the different occupation groups differ with religious category.

As in the previous section, we can informally evaluate the null model by examining the observed
proportions for each religious group. The observed proportions are given in Table 5.9. Under the
null model, the observed proportions in each occupation category should be the same for all the
religions (up to sampling variability). Figure 5.2 displays the observed proportions graphically. The
Jewish group is obviously very different from the other two groups in occupations B and D and
is very similar in occupation C. The Jewish proportion seems somewhat different for occupation
A. The Protestant and Roman Catholic groups seem similar except that the Protestants are a bit
underrepresented in occupation D and therefore are overrepresented in the other three categories.
(Remember that the four proportions for each religion must add up to one, so being underrepresented
in one category forces an overrepresentation in one or more other categories.)

5.6 Lancaster–Irwin partitioning

Lancaster–Irwin partitioning is a method for breaking a table of count data into smaller tables. (For
readers with prior knowledge of analysis of variance, when used to its maximum extent, partitioning
is similar in spirit to looking at orthogonal contrasts in analysis of variance.) The basic idea is that
a table of counts can be broken into two component tables, a reduced table and a collapsed table.
Table 5.10 illustrates such a partition for the data of Table 5.6. In the reduced table, the row for the
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Table 5.10: A Lancaster–Irwin partition of Table 5.6.

Reduced table
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Total 312 417 381 673 1783

Collapsed table
Religion A B C D Total
Prot. & R.C. 312 417 381 673 1783
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

Jewish group has been eliminated, leaving a subset of the original table. In the collapsed table, the
two rows in the reduced table, Protestant and Roman Catholic, have been collapsed into a single
row.

In Lancaster–Irwin partitioning, we pick a group of either rows or columns, say rows. The
reduced table involves all of the columns but only the chosen subgroup of rows. The collapsed table
involves all of the columns and all of the rows not in the chosen subgroup, along with a row that
combines (collapses) all of the subgroup rows into a single row. In Table 5.10 the chosen subgroup
of rows contains the Protestants and Roman Catholics. The reduced table involves all occupational
groups but only the Protestants and Roman Catholics. In the collapsed table the occupational groups
are unaffected but the Protestants and Roman Catholics are combined into a single row. The other
rows remain the same; in this case the other rows consist only of the Jewish row. As alluded to
above, rather than picking a group of rows to form the partitioning, we could select a group of
columns.

Lancaster–Irwin partitioning is by no means a unique process. There are as many ways to parti-
tion a table as there are ways to pick a group of rows or columns. In Table 5.10 we made a particular
selection based on the residual analysis of these data from the previous section. The main feature we
discovered in the residual analysis was that the Jewish group seemed to be different from the other
two groups. Thus it seemed to be of interest to compare the Jewish group with a combination of the
others and then to investigate what differences there might be among the other religious groups. The
partitioning of Table 5.10 addresses precisely these questions. In the remainder of our discussion
we assume that multinomial sampling is valid so that we have tests of the null hypothesis and not
just the null model.

Tables 5.11 and 5.12 provide statistics for the analysis of the reduced table and collapsed table.
The reduced table simply reconfirms our previous conclusions. The X2 value of 12.3 indicates sub-
stantial evidence of a difference between Protestants and Roman Catholics. The percentage point
χ2(0.995,3) = 12.84 indicates that the one-sided P value for the test is a bit greater than 0.005. The
residuals indicate that the difference was due almost entirely to the fact that Roman Catholics have
relatively higher representation among skilled workers. (Or equivalently, that Protestants have rela-
tively lower representation among skilled workers.) Overrepresentation of Roman Catholics among
skilled workers forces their underrepresentation among other occupational groups but the level of
underrepresentation in the other groups was approximately constant as indicated by the approxi-
mately equal residuals for Roman Catholics in the other three occupation groups. We will see later
that for Roman Catholics in the other three occupation groups, their distribution among those groups
was almost the same as those for Protestants. This reinforces the interpretation that the difference
was due almost entirely to the difference in the skilled group.

The conclusions that can be reached from the collapsed table are also similar to those drawn
in the previous section. The X2 value of 47.5 on 3 degrees of freedom indicates overwhelming
evidence that the Jewish group was different from the combined Protestant–Roman Catholic group.
The residuals can be used to isolate the sources of the differences. The two groups differed in
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Table 5.11: Reduced table.

Observations
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Total 312 417 381 673 1783

Estimated expected counts
Religion A B C D Total
Protestant 198.61 265.45 242.53 428.41 1135
Roman Catholic 113.39 151.55 138.47 244.59 648
Total 312.00 417.00 381.00 673.00 1783

Pearson residuals
Religion A B C D
Protestant 0.81 0.71 0.74 −1.66
Roman Catholic −1.07 −0.94 −0.97 2.20

X2 = 12.3, d f = 3

Table 5.12: Collapsed table.

Observations
Religion A B C D Total
Prot. & R.C. 312 417 381 673 1783
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

Estimated expected counts
Religion A B C D Total
Prot. & R.C. 322.16 441.58 380.48 638.77 1783
Jewish 25.84 35.42 30.52 51.23 143
Total 348.00 477.00 411.00 690.00 1926

Pearson residuals
Religion A B C D
Prot. & R.C. −0.57 −1.17 0.03 1.35
Jewish 2.00 4.13 −0.09 −4.78

X2 = 47.5, d f = 3

proportions of skilled workers and proportions of owners, managers, and officials. There was a
substantial difference in the proportions of professionals. There was almost no difference in the
proportion of clerical and sales workers between the Jewish group and the others.

The X2 value computed for Table 5.6 was 60.0. The X2 value for the collapsed table is 47.5 and
the X2 value for the reduced table is 12.3. Note that 60.0

.
= 59.8 = 47.5+12.3. It is not by chance

that the sum of the X2 values for the collapsed and reduced tables is approximately equal to the X2

value for the original table. In fact, this relationship is a primary reason for using the Lancaster–
Irwin partitioning method. The approximate equality 60.0

.
= 59.8 = 47.5+ 12.3 indicates that the

vast bulk of the differences between the three religious groups is due to the collapsed table, i.e., the
difference between the Jewish group and the other two. Roughly 80% (47.5/60) of the original X2

value is due to the difference between the Jewish group and the others. Of course the X2 value 12.2
for the reduced table is still large enough to strongly suggest differences between Protestants and
Roman Catholics.

Not all data will yield an approximation as close as 60.0
.
= 59.8 = 47.5+12.3 for the partition-

ing. The fact that we have an approximate equality rather than an exact equality is due to our choice
of the test statistic X2. Pearson’s statistic is simple and intuitive; it compares observed values with
expected values and standardizes by the size of the expected value. An alternative test statistic also
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Table 5.13: Reduced table.

Observations
Religion A B C Total
Protestant 210 277 254 741
Roman Catholic 102 140 127 369
Total 312 417 381 1110

Estimated expected counts
Religion A B C Total
Protestant 208.28 278.38 254.34 741
Roman Catholic 103.72 138.62 126.66 369
Total 312.00 417.00 381.00 1110

Pearson residuals
Religion A B C
Protestant 0.12 −0.08 0.00
Roman Catholic −0.17 0.12 0.03

X2 = 0.065, d f = 2

exists called the likelihood ratio test statistic,

G2 = 2 ∑
all cells

Oi j log
(
Oi j/Êi j

)
.

The motivation behind the likelihood ratio test statistic is not as transparent as that behind Pearson’s
statistic, so we will not discuss the likelihood ratio test statistic in any detail until later. However,
one advantage of the likelihood ratio test statistic is that the sum of its values for the reduced table
and collapsed table gives exactly the likelihood ratio test statistic for the original table. Likelihood
ratio statistics will be used extensively in Chapters 20 and 21, and in Chapter 21, Lancaster-Irwin
partitioning will be revisited.

Further partitioning

We began this section with the 3× 4 data of Table 5.6 that has 6 degrees of freedom for its X2 test.
We partitioned the data into two 2× 4 tables, each with 3 degrees of freedom. We can continue to
use the Lancaster–Irwin method to partition the reduced and collapsed tables given in Table 5.10.
The process of partitioning previously partitioned tables can be continued until the original table
is broken into a collection of 2× 2 tables. Each 2× 2 table has one degree of freedom for its chi-
squared test, so partitioning provides a way of breaking a large table into one degree of freedom
components.

What we have been calling the reduced table involves all four occupational groups along with
the two religious groups Protestant and Roman Catholic. The table was given in both Table 5.10 and
Table 5.11. We now consider this table further. It was discussed earlier that the difference between
Protestants and Roman Catholics can be ascribed almost entirely to the difference in the proportion
of skilled workers in the two groups. To explore this we choose a new partition based on a group of
columns that includes all occupations other than the skilled workers. Thus we get the ‘reduced’ table
in Table 5.13 with occupations A, B, and C and the ‘collapsed’ table in Table 5.14 with occupation
D compared to the accumulation of the other three.

Table 5.13 allows us to examine the proportions of Protestants and Catholics in the occupational
groups A, B, and C. We are not investigating whether Catholics were more or less likely than
Protestants to enter these occupational groups; we are examining their distribution within the groups.
The analysis is based only on those individuals that were in this collection of three occupational
groups. The X2 value is exceptionally small, only 0.065. There is no evidence of any difference
between Protestants and Catholics for these three occupational groups.
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Table 5.14: Collapsed table.

Observations
Religion A & B & C D Total
Protestant 741 394 1135
Roman Catholic 369 279 648
Total 1110 673 1783

Estimated expected counts
Religion A & B & C D Total
Protestant 706.59 428.41 1135
Roman Catholic 403.41 244.59 648
Total 1110.00 673.00 1783

Pearson residuals
Religion A & B & C D
Protestant 1.29 −1.66
Roman Catholic −1.71 2.20

X2 = 12.2, d f = 1

Table 5.15: Collapsed table.

Observations
Religion A & B & D C Total
Prot. & R.C. 1402 381 1783
Jewish 113 30 143
Total 1515 411 1926

Estimated expected counts
Religion A & B & D C Total
Prot. & R.C. 1402.52 380.48 1783
Jewish 112.48 30.52 143
Total 1515.00 411.00 1926

Pearson residuals
Religion A & B & D C
Prot. & R.C. −0.00 0.03
Jewish 0.04 −0.09

X2 = 0.01, d f = 1

Table 5.13 is a 2× 3 table. We could partition it again into two 2× 2 tables but there is little
point in doing so. We have already established that there is no evidence of differences.

Table 5.14 has the three occupational groups A, B, and C collapsed into a single group. This
table allows us to investigate whether Catholics were more or less likely than Protestants to enter
this group of three occupations. The X2 value is a substantial 12.2 on one degree of freedom, so we
can tentatively conclude that there was a difference between Protestants and Catholics. From the
residuals, we see that among people in the four occupational groups, Catholics were more likely
than Protestants to be in the skilled group and less likely to be in the other three.

Table 5.14 is a 2× 2 table so no further partitioning is possible. Note again that the X2 of 12.3
from Table 5.11 is approximately equal to the sum of the 0.065 from Table 5.13 and the 12.2 from
Table 5.14.

Finally, we consider additional partitioning of the collapsed table given in Tables 5.10 and 5.12.
It was noticed earlier that the Jewish group seemed to differ from Protestants and Catholics in every
occupational group except C, clerical and sales. Thus we choose a partitioning that isolates group
C. Table 5.15 gives a collapsed table that compares C to the combination of groups A, B, and D.
Table 5.16 gives a reduced table that involves only occupational groups A, B, and D.

Table 5.15 demonstrates no difference between the Jewish group and the combined Protestant–
Catholic group. Thus the proportion of people in clerical and sales was about the same for the
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Table 5.16: Reduced table.

Observations
Religion A B D Total
Prot. & R.C. 312 417 673 1402
Jewish 36 60 17 113
Total 348 477 690 1515

Estimated expected counts
Religion A B D Total
Prot. & R.C. 322.04 441.42 638.53 1402
Jewish 25.96 35.58 51.47 113
Total 348.00 477.00 690.00 1515

Pearson residuals
Religion A B D
Prot. & R.C. −0.59 −1.16 1.36
Jewish 1.97 4.09 −4.80

X2 = 47.2, d f = 2

Table 5.17: Reduced table.

Observations
Religion B D Total
Prot. & R.C. 417 673 1090
Jewish 60 17 77
Total 477 690 1167

Estimated expected counts
Religion B D Total
Prot. & R.C. 445.53 644.47 1090
Jewish 31.47 45.53 77
Total 477.00 690.00 1167

Pearson residuals
Religion B D
Prot. & R.C. −1.35 1.12
Jewish 5.08 −4.23

X2 = 46.8, d f = 1

Jewish group as for the combined Protestant and Roman Catholic group. Any differences between
the Jewish and Protestant–Catholic groups must be in the proportions of people within the three
occupational groups A, B, and D.

Table 5.16 demonstrates major differences between occupations A, B, and D for the Jewish
group and the combined Protestant–Catholic group. As seen earlier and reconfirmed here, skilled
workers had much lower representation among the Jewish group, while professionals and especially
owners, managers, and officials had much higher representation among the Jewish group.

Table 5.16 can be further partitioned into Tables 5.17 and 5.18. Table 5.17 is a reduced 2× 2
table that considers the difference between the Jewish group and others with respect to occupational
groups B and D. Table 5.18 is a 2×2 collapsed table that compares occupational group A with the
combination of groups B and D.

Table 5.17 shows a major difference between occupational groups B and D. Table 5.18 may or
may not show a difference between group A and the combination of groups B and D. The X2 values
are 46.8 and 5.45, respectively. The question is whether an X2 value of 5.45 is suggestive of a dif-
ference between religious groups when we have examined the data in order to choose the partitions
of Table 5.6. Note that the two X2 values sum to 52.25, whereas the X2 value for Table 5.16, from
which they were constructed, is only 47.2. The approximate equality is a very rough approximation.
Nonetheless, we see from the relative sizes of the two X2 values that the majority of the difference
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Table 5.18: Collapsed table.

Observations
Religion A B & D Total
Prot. & R.C. 312 1090 1402
Jewish 36 77 113
Total 348 1167 1515

Estimated expected counts
Religion A B & D Total
Prot. & R.C. 322.04 1079.96 1402
Jewish 25.96 87.04 113
Total 348.00 1167.00 1515

Pearson residuals
Religion A B & D
Prot. & R.C. −0.56 0.30
Jewish 1.97 −1.08

X2 = 5.45, d f = 1

between the Jewish group and the other religious groups was in the proportion of owners, managers,
and officials as compared to the proportion of skilled workers.

Ultimately, we have partitioned Table 5.6 into Tables 5.13, 5.14, 5.15, 5.17, and 5.18. These
are all 2× 2 tables except for Table 5.13. We could also have partitioned Table 5.13 into two 2×
2 tables but we chose to leave it because it showed so little evidence of any difference between
Protestants and Roman Catholics for the three occupational groups considered. The X2 value of
60.0 for Table 5.6 was approximately partitioned into X2 values of 0.065, 12.2, 0.01, 46.8, and 5.45,
respectively. Except for the 0.065 from Table 5.13, each of these values is computed from a 2× 2
table, so each has 1 degree of freedom. The 0.065 is computed from a 2×3 table, so it has 2 degrees
of freedom. The sum of the five X2 values is 64.5, which is roughly equal to the 60.0 from Table 5.6.

The five X2 values can all be used in testing but we let the data suggest the partitions. It is
inappropriate to compare these X2 values to their usual χ2 percentage points to obtain tests. A simple
way to adjust for both the multiple testing and the data dredging (letting the data suggest partitions)
is to compare all X2 values to the percentage points appropriate for Table 5.6. For example, the
α = 0.05 test for Table 5.6 uses the critical value χ2(0.95,6) = 12.58. By this standard, Table 5.17
with X2 = 46.8 shows a significant difference between religious groups and Table 5.14 with X2 =
12.2 nearly shows a significant difference between religious groups. The value of X2 = 5.45 for
Table 5.18 gives no evidence of a difference based on this criterion even though such a value would
be highly suggestive if we could compare it to a χ2(1) distribution. This method is similar in spirit to
Scheffé’s method to be considered in Section 13.4 and suffers from the same extreme conservatism.

5.7 Exercises

EXERCISE 5.7.1. Reiss et al. (1975) and Fienberg (1980) reported that 29 of 52 virgin female
undergraduate university students who used a birth control clinic thought that extramarital sex is not
always wrong. Give a 99% confidence interval for the population proportion of virgin undergraduate
university females who use a birth control clinic and think that extramarital sex is not always wrong.

In addition, 67 of 90 virgin females who did not use the clinic thought that extramarital sex is
not always wrong. Give a 99% confidence interval for the difference in proportions between the two
groups and give a 0.05 level test that there is no difference.

EXERCISE 5.7.2. In France in 1827, 6929 people were accused in the courts of assize and 4236
were convicted. In 1828, 7396 people were accused and 4551 were convicted. Give a 95% confi-
dence interval for the proportion of people convicted in 1827. At the 0.01 level, test the null model
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Table 5.19: French convictions.

Year Convictions Accusations
1825 4594 7234
1826 4348 6988
1827 4236 6929
1828 4551 7396
1829 4475 7373
1830 4130 6962

Table 5.20: Occupation and religion.

Religion A B C D E F G H
White Baptist 43 78 64 135 135 57 86 114
Black Baptist 9 2 9 23 47 77 18 41
Methodist 73 80 80 117 102 58 66 153
Lutheran 23 36 43 59 46 26 49 46
Presbyterian 35 54 38 46 19 22 11 46
Episcopalian 27 27 20 14 7 5 2 15

that the conviction rate in 1827 was different than 2/3. Does the result of the test depend on the
choice of standard error? Give a 95% confidence interval for the difference in conviction rates be-
tween the two years. Test the hypothesis of no difference in conviction rates using α = 0.05 and
both standard errors.

EXERCISE 5.7.3. Pauling (1971) reports data on the incidence of colds among French skiers
who where given either ascorbic acid or a placebo. Of 139 people given ascorbic acid, 17 devel-
oped colds. Of 140 people given the placebo, 31 developed colds. Do these data suggest that the
proportion of people who get colds differs depending on whether they are given ascorbic acid?

EXERCISE 5.7.4. Use the data in Table 5.2 to test whether the probability of a birth in each month
is the number of days in the month divided by 365. Thus the null probability for January is 31/365
and the null probability for February is 28/365.

EXERCISE 5.7.5. Snedecor and Cochran (1967) report data from an unpublished report by E.
W. Lindstrom. The data concern the results of cross-breeding two types of corn (maize). In 1301
crosses of two types of plants, 773 green, 231 golden, 238 green-golden, and 59 golden-green-
striped plants were obtained. If the inheritance of these properties is particularly simple, Mendelian
genetics suggests that the probabilities for the four types of corn may be 9/16, 3/16, 3/16, and 1/16,
respectively. Test whether these probabilities are appropriate. If they are inappropriate, identify the
problem.

EXERCISE 5.7.6. Quetelet (1842) and Stigler (1986, p. 175) report data on conviction rates in
the French Courts of Assize (Law Courts) from 1825 to 1830. The data are given in Table 5.19. Test
whether the conviction rate is the same for each year. Use α = 0.05. (Hint: Table 5.19 is written in
a nonstandard form. You need to modify it before applying the methods of this chapter.) If there are
differences in conviction rates, use residuals to explore these differences.

EXERCISE 5.7.7. Table 5.20 contains additional data from Lazerwitz (1961). These consist of a
breakdown of the Protestants in Table 5.6 but with the addition of four more occupational categories.
The additional categories are E, semiskilled; F, unskilled; G, farmers; H, no occupation. Analyze
the data with an emphasis on partitioning the table.
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Table 5.21: Heights and chest circumferences.

Heights
Chest 64–65 66–67 68–69 70–71 71–73 Total
39 142 442 341 117 20 1062
40 118 337 436 153 38 1082
Total 260 779 777 270 58 2144

EXERCISE 5.7.8. Stigler (1986, p. 208) reports data from the Edinburgh Medical and Surgical
Journal (1817) on the relationship between heights and chest circumferences for Scottish militia
men. Measurements were made in inches. We concern ourselves with two groups of men, those
with 39-inch chests and those with 40-inch chests. The data are given in Table 5.21. Test whether
the distribution of heights is the same for these two groups.





Chapter 6

Simple Linear Regression

This chapter examines data that come as pairs of numbers, say (x,y), and the problem of fitting a
line to them. More generally, it examines the problem of predicting one variable (y) from values of
another variable (x). Consider for the moment the popular wisdom that people who read a lot tend
to have large vocabularies and poor eyes. Thus, reading causes both conditions: large vocabularies
and poor eyes. If this is true, it may be possible to predict the size of someone’s vocabulary from the
condition of their eyes. Of course this does not mean that having poor eyes causes large vocabularies.
Quite the contrary, if anything, poor eyes probably keep people from reading and thus cause small
vocabularies. Regression analysis is concerned with predictive ability, not with causation.

Section 6.1 of this chapter introduces an example along with many of the basic ideas and meth-
ods of simple linear regression (SLR). The rest of the chapter goes into the details of simple linear
regression. Section 6.7 deals with an idea closely related to simple linear regression: the correla-
tion between two variables. Section 6.9 provides an initial introduction to multiple regression, i.e.,
regression with more than one predictor variable.

6.1 An example

Data from The Coleman Report were reproduced in Mosteller and Tukey (1977). The data were col-
lected from schools in the New England and Mid-Atlantic states of the USA. For now we consider
only two variables: y—the mean verbal test score for sixth graders, and x—a composite measure of
socioeconomic status. The data are presented in Table 6.1.

Figure 6.1 contains a scatter plot of the data. Note the rough linear relationship. The higher the
composite socioeconomic status variable, the higher the mean verbal test score. However, there is
considerable error in the relationship. By no means do the points lie exactly on a straight line.

We assume a basic linear relationship between the ys and xs, something like y = β0 +β1x. Here
β1 is the slope of the line and β0 is the intercept. Unfortunately, the observed y values do not fit
exactly on a line, so y = β0 +β1x is only an approximation. We need to modify this equation to
allow for the variability of the observations about the line. We do this by building a random error

Table 6.1: Coleman Report data.

School y x School y x
1 37.01 7.20 11 23.30 −12.86
2 26.51 −11.71 12 35.20 0.92
3 36.51 12.32 13 34.90 4.77
4 40.70 14.28 14 33.10 −0.96
5 37.10 6.31 15 22.70 −16.04
6 33.90 6.16 16 39.70 10.62
7 41.80 12.70 17 31.80 2.66
8 33.40 −0.17 18 31.70 −10.99
9 41.01 9.85 19 43.10 15.03

10 37.20 −0.05 20 41.01 12.77

133
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Figure 6.1: Coleman Report data.

term into the linear relationship. Write the relationship as y = β0 +β1x+ ε , where ε indicates the
random error. In this model for the behavior of the data, ε accounts for the deviations between the
y values we actually observe and the line β0 + β1x where we expect to observe any y value that
corresponds to x. As we are interested in predicting y from known x values, we treat x as a known
(nonrandom) variable.

We assume that the relationship y = β0 +β1x+ ε applies to all of our observations. For the cur-
rent data, that means we assume the relationship holds for all of the 20 pairs of values in Table 6.1.
This assumption is stated as the simple linear regression model for these data,

yi = β0 +β1xi + εi, (6.1.1)

i = 1, . . . ,20. For this model to be useful, we need to make some assumptions about the errors, the
εis. The standard assumptions are that the

εis are independent N(0,σ2).

Given data for which these assumptions are reasonable, we can estimate the unknown parameters.
Although we assume a linear relationship between the ys and xs, the model does not assume that
we know the slope β1 or the intercept β0. Together, these unknown parameters would tell us the
exact nature of the linear relationship but both need to be estimated. We use the notation β̂1 and
β̂0 to denote estimates of β1 and β0, respectively. To perform statistical inferences we also need
to estimate the variance of the errors, σ2. Note that σ2 is also the variance of the y observations
because none of β0, β1, and x are random.

The simple linear regression model involves many assumptions. It assumes that the relationship
between y and x is linear, it assumes that the errors are normally distributed, it assumes that the
errors all have the same variance, it assumes that the errors are all independent, and it assumes that
the errors all have mean 0. This last assumption is redundant. It turns out that the errors all have
mean 0 if and only if the relationship between y and x is linear. As far as possible, we will want
to verify (validate) that these assumptions are reasonable before we put much faith in the estimates
and statistical inferences that can be obtained from simple linear regression. Chapters 7 and 8 deal
with checking these assumptions.
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Before getting into a detailed discussion of simple linear regression, we illustrate some high-
lights using the Coleman Report data. We need to fit Model (6.1.1) to the data. A computer program
typically yields parameter estimates, standard errors for the estimates, t ratios for testing whether
the parameters are zero, P values for the tests, and an analysis of variance table. These results are
often displayed as illustrated below. We refer to them as the table of coefficients and the analysis of
variance (ANOVA) table, respectively.

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 33.3228 0.5280 63.11 0.000
x 0.56033 0.05337 10.50 0.000

Analysis of Variance
Source df SS MS F P
Regression 1 552.68 552.68 110.23 0.000
Error 18 90.25 5.01
Total 19 642.92

Much can be learned from these two tables of statistics. The estimated regression equation is

ŷ = 33.3+0.560x.

This equation allows us to predict a value for y when the value of x is given. In particular, for these
data an increase of one unit in socioeconomic status increases our prediction of mean verbal test
scores by about 0.56 units. This is not to say that some program to increase socioeconomic statuses
by one unit will increase mean verbal test scores by about 0.56 unit. The 0.56 describes the current
data, it does not imply a causal relationship. If we want to predict the mean verbal test score for a
school that is very similar to the ones in this study, this equation should give good predictions. If
we want to predict the mean verbal test score for a school that is very different from the ones in this
study, this equation is likely to give poor predictions. In fact, if we collect new data from schools
with very different socioeconomic statuses, the data are not similar to these, so this fitted model
would be highly questionable if applied in the new situation. Nevertheless, a simple linear regression
model with a different intercept and slope might fit the new data well. Similarly, data collected after
a successful program to raise socioeconomic statuses are unlikely to be similar to the data collected
before such a program. The relationship between socioeconomic status and mean verbal test scores
may be changed by such a program. In particular, the things causing both socioeconomic status
and mean verbal test score may be changed in unknown ways by such a program. These are crucial
points and bear repeating. The regression equation describes an observed relationship between mean
verbal test scores and socioeconomic status. It can be used to predict mean verbal test scores from
socioeconomic status in similar situations. It does not imply that changing the socioeconomic status
a fixed amount will cause the mean verbal test scores to change by a proportional amount.

The table of coefficients

The table of coefficients allows us to perform a variety of inferences on single parameters. In simple
linear regression, the reference distribution for statistical inferences is almost invariably t(dfE)
where dfE is the degrees of freedom for error from the analysis of variance table. For these data,
dfE = n− 2 = 18 because we are estimating 2 regression parameters β0 and β1. We now consider
some illustrations of statistical inferences.

The t statistics for testing H0 : βk = 0 are reported in the table of coefficients. For example, the
test of H0 : β1 = 0 has

tobs =
0.56033
0.05337

= 10.50.
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The significance level of the test is the P value,

P = Pr[|t(18)|> 10.50] = 0.000.

The value 0.000 indicates a large amount of evidence against the null model. If we are convinced that
all the assumptions of the simple linear regression model are correct, then the only thing that could
be wrong with the null model is that β1 �= 0. Note that if β1 = 0, the linear relationship becomes
y = β0 + ε , so there is no relationship between y and x, i.e., y does not depend on x. The small P
value indicates that the slope is not zero and thus the variable x helps to explain the variable y.

The table of coefficients also allows us to compute a variety of other t statistics. For example, if
we wanted to test H0 : β1 = 1

tobs =
0.56033−1

0.05337
=−8.24.

The significance level of the test is the P value,

P = Pr[|t(18)|> |− 8.24|] = 0.000.

Alternatively, we could compute the 95% confidence interval for β1, which has endpoints

β̂1 ± t(0.975,dfE)SE
(

β̂1

)
.

From a t table, t(0.975,18) = 2.101, so, using the tabled statistics, the endpoints are

0.56033±2.101(0.05337).

The confidence interval is (0.448,0.672), so values of the slope β1 between 0.448 and 0.672 are
consistent with the data and the model based on a 0.05 level test.

Consider the problem of estimating the value of the line at x = −16.04. This value of x is the
minimum observed value for socioeconomic status, so it is somewhat dissimilar to the other x values
in the data. Its dissimilarity causes there to be substantial variability in estimating the regression line
(expected value of y) at this point. The point on the line is β0 +β1(−16.04) and the estimator is

β̂0 + β̂1(−16.04) = 33.32+0.560(−16.04)= 24.34.

For constructing 95% t intervals, the percentile needed is t(0.975,18) = 2.101. The standard error
for the estimate of the point on the line is usually available from computer programs (cf. Sec-
tion 6.10.); in this example it is SE(Line) = 1.140. The 95% confidence interval for the point on the
line β0 +β1(−16.04) has endpoints

24.34±2.101(1.140),

which gives the interval (21.9,26.7). Values of the population mean of the schoolwise mean verbal
test scores for New England and Mid-Atlantic sixth graders with a school socioeconomic measure
of −16.04 that are consistent with the data are those between 21.9 and 26.7.

The prediction ŷ for a new observation with x = −16.04 is simply the estimated point on the
line

ŷ = β̂0 + β̂1(−16.04) = 24.34.

Prediction of a new observation is subject to more error than estimation of a point on the line. A new
observation has the same variance as all other observations, so the prediction interval must account
for this variance as well as for the variance of estimating the point on the line. The standard error
for the prediction interval is computed as

SE(Prediction) =
√

MSE +SE(Line)2. (6.1.2)
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In this example,

SE(Prediction) =
√

5.01+(1.140)2 = 2.512.

The prediction interval endpoints are

24.34±2.101(2.512),

and the 95% prediction interval is (19.1,29.6). Future values of sixth graders’s mean verbal test
scores that are consistent with the data and model are those between 19.1 and 29.6. These are for a
different New England or Mid-Atlantic school with a socioeconomic measure of −16.04. Note that
the prediction interval is considerably wider than the corresponding confidence interval. Note also
that this is just another special case of the prediction theory in Section 3.7. As such, these results
are analogous to those obtained for the one-sample and two-sample data structures.

The ANOVA Table

The primary value of the analysis of variance table is that it gives the degrees of freedom, the sum of
squares, and the mean square for error. The mean squared error is the estimate of σ2 and the sum of
squares error and degrees of freedom for error are vital for comparing different regression models.
Note that the sums of squares for regression and error add up to the sum of squares total and that
the degrees of freedom for regression and error also add up to the degrees of freedom total.

The analysis of variance table gives an alternative but equivalent test for whether the x variable
helps to explain y. The alternative test of H0 : β1 = 0 is based on

F =
MSReg
MSE

=
552.68

5.01
= 110.23.

Note that the value of this statistic is 110.23 = (10.50)2; the F statistic is just the square of the
corresponding t statistic for testing H0 : β1 = 0. The F and t tests are equivalent. In particular,
the P values are identical. In this case, both are infinitesimal, zero to three decimal places. Our
conclusion that β1 �= 0 means that the x variable helps to explain the variation in the y variable. In
other words, it is possible to predict the mean verbal test scores for a school’s sixth grade classes
from the socioeconomic measure. Of course, the fact that some predictive ability exists does not
mean that the predictive ability is sufficient to be useful.

6.1.1 Computer commands

Minitab, SAS, and R commands are all given on the website. However, since R is both free and
more complicated than the other options, we now present a reasonably complete set of R commands
for performing an analysis. The commands are also available on the website.

The following R script will give you most of what you need. When you open R, go to the File
menu and open a new script window. Copy this script into the new window. To run part of the script,
highlight the part you want to run, right click your mouse, and choose “Run line or selection.” The
last part of the script produces items discussed in Chapter 7. The material is integral to a good data
analysis, so I consider it is more useful to keep all of the commands together here. The Chapter 7
material includes the production of four plots. As far as I know, only one graph will show up at
a time, so graphs need to be run sequentially. If you run them all, you will only see the last one.
(There are ways to produce all four at once but the graphs are smaller; see the website.)

coleman.slr <- read.table("C:\\E-drive\\Books\\ANREG2\\NewData\\tab6-1.dat",

sep="",col.names=c("School","x","y"))

attach(coleman.slr)

coleman.slr
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#Summary tables

cr <- lm(y ~ x)

crp=summary(cr)

crp

anova(cr)

#compute confidence intervals

confint(cr, level=0.95)

# or do it from scratch

R=crp$cov.unscaled

se <- sqrt(diag(R)) * crp$sigma

ci=c(cr$coef-qt(.975,crp$df[2])*se, cr$coef+qt(.975,crp$df[2])*se)

CI95 = matrix(ci,crp$df[1],2)

CI95

#prediction

new = data.frame(x=c(-16.04))

predict(lm(y~x),new,se.fit=T,interval="confidence")

predict(lm(y~x),new,interval="prediction")

#ploting data with fitted line

plot(x,y)

abline(cr)

The rest of the script gives procedures discussed in Chapter 7. First we create a table of diag-
nostic values. Then we perform residual plots.

infv = c(y,cr$fit,hatvalues(cr),rstandard(cr),

rstudent(cr),cooks.distance(cr))

inf=matrix(infv,I(crp$df[1]+crp$df[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","r","t","C")))

inf

# Note: delete y from table if it contains missing observations

#Normal and two residual plots: Do one plot at a time!

qqnorm(rstandard(cr),ylab="Standardized residuals")

plot(cr$fit,rstandard(cr),xlab="Fitted",

ylab="Standardized residuals",main="Residual-Fitted plot")

plot(x,rstandard(cr),xlab="x",ylab="Standardized residuals",

main="Residual-Socio plot")

#leverage plot

Leverage=hatvalues(cr)

plot(School,Leverage,main="School-Leverage plot")

# Wilk-Francia Statistic

rankit=qnorm(ppoints(rstandard(cr),a=I(3/8)))

ys=sort(rstandard(cr))

Wprime=(cor(rankit,ys))^2
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Wprime

The vast majority of the analyses we will run can be computed by changing the (two lines of the)
read.table command to enter the appropriate data, and changing the cr <- lm(y ~ x) com-
mand to allow for fitting an appropriate model.

6.2 The simple linear regression model

In general, simple linear regression seeks to fit a line to pairs of numbers (x,y) that are subject to
error. These pairs of numbers may arise when there is a perfect linear relationship between x and a
variable y∗ but where y∗ cannot be measured without error. Our actual observations y are then the
sum of y∗ and the measurement error. Alternatively, we may sample a population of objects and
take two measurements on each object. In this case, both elements of the pair (x,y) are random. In
simple linear regression we think of using the x measurement to predict the y measurement. While
x is actually random in this scenario, we use it as if it were fixed because we cannot predict y until
we have actually observed the x value. We want to use the particular observed value of x to predict
y, so for our purposes x is a fixed number. In any case, the xs are always treated as fixed numbers in
simple linear regression.

The model for simple linear regression is a line with the addition of errors

yi = β0 +β1xi + εi, i = 1, . . . ,n

where y is the variable of primary interest and x is the predictor variable. Both the yis and the xis are
observable, the yis are assumed to be random, and the xis are assumed to be known fixed constants.
The unknown coefficients (regression parameters) β0 and β1 are the intercept and the slope of the
line, respectively. The εis are unobservable errors that are assumed to be independent of each other
with mean zero and the same variance, i.e.,

E(εi) = 0, Var(εi) = σ2.

Typically the errors are also assumed to have normal distributions, i.e.,

εis independent N(0,σ2).

Sometimes the assumption of independence is replaced by the weaker assumption that Cov(εi,ε j) =
0 for i �= j.

Note that since β0, β1, and the xis are all assumed to be fixed constants,

E(yi) = E(β0 +β1xi + εi) = β0 +β1xi +E(εi) = β0 +β1xi,

Var(yi) = Var(β0 +β1xi + εi) = Var(εi) = σ2.

If the εis are independent, the yis are independent, and if the εis are normally distributed, so are
the yis. When making assumptions about the errors, these facts about the yis are derived from the
assumptions. Alternatively, we could just specify our model assumptions in terms of the yis. That
is, we could just assume that the yis are independent with E(yi) = β0 +β1xi, Var(yi) = σ2, and that
the yis are normally distributed.

The regression parameter estimates β̂1 and β̂0 are least squares estimates. Least squares esti-
mates are choices of β0 and β1 that minimize

n

∑
i=1

(yi −β0 −β1xi)
2
.

Formulae for the estimates are given in Section 6.10. These estimates provide fitted (predicted)
values ŷi = β̂0 + β̂1xi and residuals ε̂i = yi − ŷi, i = 1, . . . ,n. The sum of squares error is

SSE =
n

∑
i=1

ε̂2
i .
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The model involves two parameters for the mean values E(yi), namely β0 and β1, so the degrees of
freedom for error are

df E = n−2.

Our estimate of the variance σ2 is the mean squared error defined as

MSE =
SSE
df E

.

Formulae for computing the least squares estimates are given in Section 6.10. The least squares
estimates and the mean squared error are unbiased in the sense that their expected values are the
parameters they estimate.

Proposition 6.2.1. E
(

β̂1

)
= β1, E

(
β̂0

)
= β0, and E(MSE) = σ2.

Proofs of the unbiasedness of the slope and intercept estimates are given in the appendix that appears
at the end of Section 6.10.

We briefly mention the standard optimality properties of least squares estimates but for a detailed
discussion see Christensen (2011, Chapter 2). Assuming that the errors have independent normal
distributions, the estimates β̂0, β̂1, and MSE have the smallest variance of any unbiased estimates.
The least squares estimates β̂0 and β̂1 are also maximum likelihood estimates. Maximum likelihood
estimates are those values of the parameters that are most likely to generate the data that were
actually observed. Without assuming that the errors are normally distributed, β̂0 and β̂1 have the
smallest variance of any unbiased estimates that are linear functions of the y observations. (Linear
functions allow multiplying the yis by constants and adding terms together. Remember, the xis are
constants, as are any functions of the xis.) Note that with this weaker assumption, i.e., giving up
normality, we get a weaker result, minimum variance among only linear unbiased estimates instead
of all unbiased estimates. To summarize, under the standard assumptions, least squares estimates of
the regression parameters are best (minimum variance) linear unbiased estimates (BLUEs), and for
normally distributed data they are minimum variance unbiased estimates and maximum likelihood
estimates.

The coefficient of determination, R2, measures the predictive ability of the model. When we
discuss sample correlations in Section 6.7, we will define R2 as the squared correlation between the
pairs (ŷi,yi). Alternatively, R2 can be computed from the ANOVA table as

R2 ≡ SSReg
SSTot

.

As such, it measures the percentage of the total variability in y that is explained by the x variable. In
our example,

R2 =
552.68
642.92

= 86.0%,

so 86.0% of the total variability is explained by the regression model. This is a large percentage, so
it appears that the x variable has substantial predictive power. However, a large R2 does not imply
that the model is good in absolute terms. It may be possible to show that this model does not fit
the data adequately. In other words, while this model is explaining much of the variability, we may
be able to establish that it is not explaining as much of the variability as it ought. (Example 7.2.2
involves a model with a high R2 that is demonstrably inadequate.) Conversely, a model with a
low R2 may be the perfect model but the data may simply have a great deal of variability. For
example, if you have temperature measurements obtained by having someone walk outdoors and
guess the Celsius temperature and then use the true Fahrenheit temperatures as a predictor, the exact
linear relationship between Celsius and Fahrenheit temperatures may make a line the ideal model.
Nonetheless, the obvious inaccuracy involved in people guessing Celsius temperatures may cause a
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Table 6.2: Analysis of Variance.

Source df SS MS F

Intercept(β0) 1 nȳ2· ≡C nȳ2·

Regression(β1) 1 ∑n
i=1 (ŷi − ȳ·)2 SSReg MSReg

MSE

Error n− 2 ∑n
i=1(yi − ŷi)

2 SSE/(n− 2)

Total n ∑n
i=1 y2

i

Table 6.3: Analysis of Variance.

Source df SS MS F

Regression(β1) 1 ∑n
i=1 (ŷi − ȳ·)2 SSReg MSReg

MSE

Error n− 2 ∑n
i=1(yi − ŷi)

2 SSE/(n− 2)

Total n− 1 ∑n
i=1 (yi − ȳ·)2

low R2. Moreover, even a high R2 of 86% may provide inadequate predictions for the purposes of
the study, while in other situations an R2 of, say, 14% may be perfectly adequate. It depends on the
purpose of the study. Finally, it must be recognized that a large R2 may be an unrepeatable artifact
of a particular data set. The coefficient of determination is a useful tool but it must be used with care.
In particular, it is a much better measure of the predictive ability of a model than of the correctness
of a model.

6.3 The analysis of variance table

A standard tool in regression analysis is the construction of an analysis of variance table. Tables 6.2
and 6.3 give alternative forms, both based on the sample mean, the fitted values and the data.

The best form is given in Table 6.2. In this form there is one degree of freedom for every obser-
vation, cf. the total line, and the sum of squares total is the sum of all of the squared observations.
The degrees of freedom and sums of squares for intercept, regression, and error can be added to
obtain the degrees of freedom and sums of squares total. We see that one degree of freedom is used
to estimate the intercept, one is used for the slope, and the rest are used to estimate the variance.

The more commonly used form for the analysis of variance table is given as Table 6.3. It elimi-
nates the line for the intercept and corrects the total line so that the degrees of freedom and sums of
squares still add up.

Note that
n

∑
i=1

(yi − ȳ·)
2
=

n

∑
i=1

y2
i −C = SSTot−C.

6.4 Model-based inference

We now repeat the testing procedures of Section 6.1 using the model-based approach of Section 3.1.
The simple linear regression model is

yi = β0 +β1xi + εi. (6.4.1)



142 6. SIMPLE LINEAR REGRESSION

This will be the full model for our tests, thus SSE(Full) = 90.25, dfE(Full) = 18, and
MSE(Full) = 5.01 are all as reported in the “Error” line of the simple linear regression ANOVA
table.

The model-based test of H0 : β1 = 0 is precisely the F test provided by the ANOVA table. To
find the reduced model, we need to incorporate β1 = 0 into Model (6.4.1). The reduced model is
yi = β0 + 0xi+ εi or

yi = β0 + εi.

This is just the model for a one-sample problem, so the MSE(Red.) = s2
y , the sample variance of

the yis, dfE(Red.) = n−1= df Tot−C, and SSE(Red.) = (n−1)s2
y = SSTot−C from the ANOVA

table. To obtain the F statistic, compute

MSTest ≡ SSE(Red.)−SSE(Full)
dfE(Red.)−dfE(Full)

=
642.92−90.25

19−18
= 552.68

and

F =
MSTest

MSE(Full)
=

552.68
5.01

= 110.23

as discussed earlier. The value 110.23 is compared to an F(1,18) distribution.
To test H0 : β1 = 1, we incorporate the null hypothesis into Model (6.4.1) to obtain yi = β0 +

1xi + εi. We now move the completely known term 1xi, known as an offset, to the left side of the
equality and write the reduced model as

yi − xi = β0 + εi. (6.4.2)

Again, this is just the model for a one-sample problem, but now the dependent variable is yi − xi. It
follows that MSE(Red.) = s2

y−x = 22.66, the sample variance of the numbers yi − xi, dfE(Red.) =
n− 1 = 19, and SSE(Red.) = 19s2

y−x = 430.54. To obtain the F statistic, compute

MSTest ≡ SSE(Red.)−SSE(Full)
dfE(Red.)−dfE(Full)

=
430.54−90.25

19−18
= 340.29

and

F =
340.29
5.01

= 67.87 = (−8.24)2.

Note that the F statistic is the square of the t statistic from Section 6.1. The F value 67.87 is much
larger than one but could be compared to an F(1,18) distribution.

Testing Model (6.4.1) against Model (6.4.2) may seem unusual because we are comparing mod-
els that have different dependent variables. The reason this works is because Model (6.4.1) is equiv-
alent to

yi − xi = β0 +β1∗xi + εi.

In particular, this model gives the same SSE(Full), dfE(Full), and MSE(Full) as Model (6.4.1).
Parameter estimates are a little different but in an appropriate way. For example, β̂1∗ from this model
equals β̂1 − 1 from Model (6.4.1).

To test H0 : β0 = 0, we fit the reduced model

yi = β1xi + εi. (6.4.3)

This is known as a simple linear regression through the origin. Most computer programs have fitting
an intercept as the default option but one can choose to fit the model without an intercept. Fitting
this model gives a new table of coefficients and ANOVA table.

Table of Coefficients
Predictor β̂k SE(β̂k) t P
x 1.6295 0.7344 2.22 0.039
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Analysis of Variance
Source df SS MS F P
Regression 1 5198 5198 4.92 0.039
Error 19 20061 1056
Total 20 25259

Note that the ANOVA table for regression through the origin is similar to Table 6.2 in that it does
not correct the total line for the intercept. As before, the table of coefficients and the ANOVA table
provide equivalent tests of H0 : β1 = 0, e.g., 4.92 = (2.22)2, but the tests are now based on the new
model, (6.4.3), so the tests are quite different from those discussed earlier.

For our purpose of testing H0 : β0 = 0, we only need dfE(Red.) = 19 and SSE(Red.) = 20061
from the Error line of this ANOVA table as well as the results from the full model. To obtain the F
statistic, compute

MSTest ≡ SSE(Red.)−SSE(Full)
dfE(Red.)−dfE(Full)

=
20061−90.25

19−18
= 19970.75

and

F =
19970.75

5.01
= 3983 = (63.11)2.

If you check these computations, you will notice some round-off error. MSE(Full) is closer to
5.0139. The value 3983 could be compared to an F(1,18) distribution but that is hardly necessary
since it is huge. The value 63.11 was reported as the t statistic in Section 6.1.

6.5 Parametric inferential procedures

The general theory for a single parameter from Chapter 3 applies to inferences about regression
parameters. The theory requires 1) a parameter (Par), 2) an estimate (Est) of the parameter, 3) the
standard error of the estimate (SE(Est)), and 4) a known (tabled) distribution for

Est −Par
SE(Est)

that is symmetric about 0. The computations for most of the applications considered in this section
were illustrated in Section 6.1 for the Coleman Report data.

Consider inferences about the slope parameter β1. Formulae for the estimate β̂1 and the standard
error of β̂1 are as given in Section 6.10. The appropriate reference distribution is

β̂1 −β1

SE
(

β̂1

) ∼ t(n−2).

Using standard methods, the 99% confidence interval for β1 has endpoints

β̂1 ± t(0.995,n−2)SE
(

β̂1

)
.

An α = .05 test of, say, H0 : β1 = 0 rejects H0 if

|β̂1 −0|
SE
(

β̂1

) > t(0.975,n−2).

An α = .05 test of H0 : β1 = 1 rejects H0 if

|β̂1 −1|
SE
(

β̂1

) > t(0.975,n−2).



144 6. SIMPLE LINEAR REGRESSION

For inferences about the intercept parameter β0, formulae for the estimate β̂0 and the standard
error of β̂0 are as given in Section 6.10. The appropriate reference distribution is

β̂0 −β0

SE
(

β̂0

) ∼ t(n−2).

A 95% confidence interval for β0 has endpoints

β̂0 ± t(0.975,n−2)SE
(

β̂0

)
.

An α = .01 test of H0 : β0 = 0 rejects H0 if

|β̂0 −0|
SE
(

β̂0

) > t(0.995,n−2).

Typically, inferences about β0 are not of substantial interest. β0 is the intercept; it is the value of
the line when x = 0. Typically, the line is only an approximation to the behavior of the (x,y) pairs
in the neighborhood of the observed data. This approximation is only valid in the neighborhood of
the observed data. If we have not collected data near x = 0, the intercept is describing behavior of
the line outside the range of valid approximation.

We can also draw inferences about a point on the line y = β0 + β1x. For any fixed point x,
β0 +β1x has an estimate

ŷ ≡ β̂0 + β̂1x.

To get a standard error for ŷ, we first need its variance. As shown in the appendix at the end of
Section 6.10, the variance of ŷ is

Var
(

β̂0 + β̂1x
)
= σ2

[
1
n
+

(x− x̄·)
2

(n−1)s2
x

]
, (6.5.1)

so the standard error of ŷ is

SE
(

β̂0 + β̂1x
)
=

√√√√MSE

[
1
n
+

(x− x̄·)
2

(n−1)s2
x

]
. (6.5.2)

The appropriate distribution for inferences about the point β0 +β1x is
(

β̂0 + β̂1x
)
− (β0 +β1x)

SE
(

β̂0 + β̂1x
) ∼ t(n−2).

Using standard methods, the 99% confidence interval for (β0 +β1x) has endpoints
(

β̂0 + β̂1x
)
± t(0.995,n−2)SE

(
β̂0 + β̂1x

)
.

We typically prefer to have small standard errors. Even when σ2, and thus MSE , is large, using
Equation (6.5.2) we see that the standard error of ŷ will be small when the number of observations
n is large, when the xi values are well spread out, i.e., s2

x is large, and when x is close to x̄·. In
other words, the line can be estimated efficiently in the neighborhood of x̄· by collecting a lot
of data. Unfortunately, if we try to estimate the line far from where we collected the data, the
standard error of the estimate gets large. The standard error gets larger as x gets farther away from
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the center of the data, x̄·, because the term (x− x̄·)
2 gets larger. This effect is standardized by the

original observations; the term in question is (x− x̄·)
2/

(n−1)s2
x , so (x− x̄·)

2 must be large relative
to (n−1)s2

x before a problem develops. In other words, the distance between x and x̄· must be several
times the standard deviation sx before a problem develops. Nonetheless, large standard errors occur
when we try to estimate the line far from where we collected the data. Moreover, the regression line
is typically just an approximation that holds in the neighborhood of where the data were collected.
This approximation is likely to break down for data points far from the original data. So, in addition
to the problem of having large standard errors, estimates far from the neighborhood of the original
data may be totally invalid.

Estimating a point on the line is distinct from prediction of a new observation for a given x
value. Ideally, the prediction would be the true point on the line for the value x. However, the true
line is an unknown quantity, so our prediction is the estimated point on the line at x. The distinction
between prediction and estimating a point on the line arises because a new observation is subject
to variability about the line. In making a prediction we must account for the variability of the new
observation even when the line is known, as well as account for the variability associated with our
need to estimate the line. The new observation is assumed to be independent of the past data, so
the variance of the prediction is σ2 (the variance of the new observation) plus the variance of the
estimate of the line as given in (6.5.1). The standard error replaces σ2 with MSE and takes the
square root, i.e.,

SE(Prediction) =

√√√√MSE

[
1+

1
n
+

(x− x̄·)
2

(n−1)s2
x

]
.

Note that this is the same as the formula given in Equation (6.1.2). Prediction intervals follow in the
usual way. For example, the 99% prediction interval associated with x has endpoints

ŷ ± t(0.995,n−2)SE(Prediction).

As discussed earlier, estimation of points on the line should be restricted to x values in the
neighborhood of the original data. For similar reasons, predictions should also be made only in the
neighborhood of the original data. While it is possible, by collecting a lot of data, to estimate the line
well even when the variance σ2 is large, it is not always possible to get good prediction intervals.
Prediction intervals are subject to the variability of both the observations and the estimate of the
line. The variability of the observations cannot be eliminated or reduced. If this variability is too
large, we may get prediction intervals that are too large to be useful. If the simple linear regression
model is the “truth,” there is nothing to be done, i.e., no way to improve the prediction intervals. If
the simple linear regression model is only an approximation to the true process, a more sophisticated
model may give a better approximation and produce better prediction intervals.

6.6 An alternative model

For some purposes, it is more convenient to work with an alternative to the model yi = β0+β1xi+εi.
The alternative model is

yi = β∗0 +β1 (xi − x̄·)+ εi

where we have adjusted the predictor variable for its mean. The key difference between the param-
eters in the two models is that

β0 = β∗0 −β1x̄·.

In fact, this is the basis for our formula for estimating β0 in Section 6.10. The new parameter β∗0

has a very simple estimate, β̂∗0 ≡ ȳ·. It then follows that

β̂0 = ȳ·− β̂1x̄·.
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The reason that this model is useful is because the predictor variable xi − x̄· has the property
∑n

i=1 (xi − x̄·) = 0. This property leads to the simple estimate of β∗0 but also to the fact that ȳ· and β̂1

are independent. Independence simplifies the computation of variances for regression line estimates.
We will not go further into these claims at this point but the results follow trivially from the matrix
approach to regression that will be treated in Chapter 11.

The key point about the alternative model is that it is equivalent to the original model. The
β1 parameters are the same, as are their estimates and standard errors. The models give the same
predictions, the same ANOVA table F test, and the same R2. Even the intercept parameters are
equivalent, i.e., they are related in a precise fashion so that knowing about the intercept in either
model yields equivalent information about the intercept in the other model.

6.7 Correlation

The correlation coefficient is a measure of the linear relationship between two variables. The popula-
tion correlation coefficient, usually denoted ρ , was discussed in Chapter 1 along with the population
covariance. The sample covariance between x and y is defined as

sxy =
1

n−1

n

∑
i=1

(xi − x̄·) (yi − ȳ·)

and the sample correlation is defined as

r =
sxy

sx sy
=

∑n
i=1 (xi − x̄·) (yi − ȳ·)√

∑n
i=1 (xi − x̄·)

2 ∑n
i=1 (yi − ȳ·)

2
.

As with the population correlation, a sample correlation of 0 indicates no linear relationship between
the (xi,yi) pairs. A sample correlation of 1 indicates a perfect increasing linear relationship. A
sample correlation of −1 indicates a perfect decreasing linear relationship.

The sample correlation coefficient is related to the estimated slope. From Equation (6.10.1) it
will be easily seen that

r = β̂1
sx

sy
.

EXAMPLE 6.7.1. Simulated data with various correlations
Figure 6.2 contains plots of 25 pairs of observations with four different correlations. These are pre-
sented so the reader can get some feeling for the meaning of various correlation values. The caption
gives the sample correlation r corresponding to each population correlation ρ . The population cor-
relation is useful in that it provides some feeling for the amount of sampling variation to be found
in r based on samples of 25 from (jointly) normally distributed data. Chapter 7 provides plots of
uncorrelated data. �

A commonly used statistic in regression analysis is the coefficient of determination, R2. The
best definition of R2 is as the square of the sample correlation between the pairs (ŷi,yi). This applies
to virtually any predictive model. Equivalently, for linear regression, R2 can be computed from the
ANOVA table as

R2 ≡ SSReg
SSTot

.

This is the percentage of the total variation in the dependent variable that is explained by the re-
gression. For simple linear regression (and only for simple linear regression), using formulae in
Section 6.10,

R2 = r2,

where r is the sample correlation between x and y.
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Figure 6.2 Correlated data. The actual sample correlations are r = 0.889,0.522,−0.388,−0.868, respec-
tively.

6.8 Two-sample problems

The problem of two independent samples with equal variances can be treated as a regression prob-
lem. For the data of Table 4.2, let y be the total point score and let x be a 0-1 indicator variable for
whether someone is female. In Chapter 4 we wrote the observations as yi j, i = 1,2, j = 1, . . . ,Ni

with i = 1 indicating females, so xi j = 1 if i = 1 and xi j = 0 if i = 2. Alternatively, we could list all
the data in one string, say, yk, k = 1, . . . ,n where n = N1 +N2 and use xk = 1 to indicate females, so
that xk = 0 indicates males.

If we fit the simple linear regression

yi j = β0 +β1xi j + εi j

or equivalently
yk = β0 +β1xk + εk,

then for males
μ2 ≡ E(y2 j) = β0 +β1x2 j = β0 +β1 ×0 = β0

and for females
μ1 ≡ E(y1 j) = β0 +β1x1 j = β0 +β1 ×1 = β0 +β1.

It follows that
μ1 − μ2 = β1.

Fitting the simple linear regression model gives

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 139.000 6.753 20.58 0.000
x −11.045 8.758 −1.26 0.216

Note that β̂0 is the sample mean for the females and the standard error is the same as that reported
in Section 4.2. The test of H0 : β̂0 = 0 is not terribly interesting.
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Table 6.4: Coleman Report data.

School y x1 x2 x3 x4 x5

1 37.01 3.83 28.87 7.20 26.60 6.19
2 26.51 2.89 20.10 −11.71 24.40 5.17
3 36.51 2.86 69.05 12.32 25.70 7.04
4 40.70 2.92 65.40 14.28 25.70 7.10
5 37.10 3.06 29.59 6.31 25.40 6.15
6 33.90 2.07 44.82 6.16 21.60 6.41
7 41.80 2.52 77.37 12.70 24.90 6.86
8 33.40 2.45 24.67 −0.17 25.01 5.78
9 41.01 3.13 65.01 9.85 26.60 6.51

10 37.20 2.44 9.99 −0.05 28.01 5.57
11 23.30 2.09 12.20 −12.86 23.51 5.62
12 35.20 2.52 22.55 0.92 23.60 5.34
13 34.90 2.22 14.30 4.77 24.51 5.80
14 33.10 2.67 31.79 −0.96 25.80 6.19
15 22.70 2.71 11.60 −16.04 25.20 5.62
16 39.70 3.14 68.47 10.62 25.01 6.94
17 31.80 3.54 42.64 2.66 25.01 6.33
18 31.70 2.52 16.70 −10.99 24.80 6.01
19 43.10 2.68 86.27 15.03 25.51 7.51
20 41.01 2.37 76.73 12.77 24.51 6.96

The estimate of β1 is just the difference in the means between the females and the males; up
to round-off error, the standard error and the t statistic are exactly as reported in Section 4.2 for
inferences related to Par = μ1−μ2. Moreover, the MSE as reported in the ANOVA table is precisely
the pooled estimate of the variance with the appropriate degrees of freedom.

Analysis of Variance
Source df SS MS F P
Regression 1 1088.1 1088.1 1.59 0.216
Error 35 23943.0 684.1
Total 36 25031.1

6.9 A multiple regression

In our discussion of simple linear regression, we considered data from The Coleman Report. The
data given were only two of six variables reported in Mosteller and Tukey (1977). We now begin
our consideration of the entire collection of variables. (Chapter 9 provides a detailed examination
of the data.) Recall that the data are from schools in the New England and Mid-Atlantic states. The
variables are y, the mean verbal test score for sixth graders; x1, staff salaries per pupil; x2, percentage
of sixth graders whose fathers have white-collar jobs; x3, a composite measure of socioeconomic
status; x4, the mean score of a verbal test given to the teachers; and x5, the mean educational level
of the sixth graders’ mothers (one unit equals two school years). The dependent variable y is the
same as in the simple linear regression example and the variable x3 was used as the sole predictor
variable in the earlier analysis. The data are given in Table 6.4.

We assume the data satisfy the multiple regression model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi, (6.9.1)

i = 1, . . . ,20, where the εis are unobservable independent N(0,σ2) random variables and the β s are
fixed unknown parameters. Fitting Model (6.9.1) with a computer program typically yields a table
of coefficients and an analysis of variance table.
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Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 19.95 13.63 1.46 0.165
x1 −1.793 1.233 −1.45 0.168
x2 0.04360 0.05326 0.82 0.427
x3 0.55576 0.09296 5.98 0.000
x4 1.1102 0.4338 2.56 0.023
x5 −1.811 2.027 −0.89 0.387

Analysis of Variance
Source df SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

From just these two tables of statistics much can be learned. As will be illustrated in Chapter 9,
using the single parameter methods of Chapter 3 we can produce a variety of inferential results for
the β j coefficients from the table of coefficients. Moreover, the estimated regression equation is

ŷ = 19.9− 1.79x1+0.0436x2+0.556x3+1.11x4−1.81x5,

which provides us with both our fitted values and our residuals. The analysis of variance table F test
is a test of the full model (6.9.1) versus the reduced model yi = β0 +εi. In Chapter 9 we will use the
Error line from the ANOVA table to construct other model tests. Similar ideas will be exploited in
the next two chapters for special cases of multiple regression.

6.10 Estimation formulae for simple linear regression

In this age of computing, most people are content to have a computer program give them the es-
timates and standard errors needed to analyze a simple linear regression model. However, some
people might still be interested in the process.

The unknown parameters in the simple linear regression model are the slope, β1, the intercept,
β0, and the variance, σ2. All of the estimates β̂1, β̂0, and MSE , can be computed from just six
summary statistics

n, x̄·, s2
x , ȳ·, s2

y ,
n

∑
i=1

xiyi,

i.e., the sample size, the sample mean and variance of the xis, the sample mean and variance of the
yis, and ∑n

i=1 xiyi. The only one of these that is any real work to obtain on a decent hand calculator
is ∑n

i=1 xiyi. The standard estimates of the parameters are, respectively,

β̂1 =
∑n

i=1 (xi − x̄·)yi

∑n
i=1 (xi − x̄·)

2 ,

β̂0 = ȳ·− β̂1x̄·,

and the mean squared error

MSE =
∑n

i=1

(
yi − β̂0 − β̂1xi

)2

n−2

=
1

n−2

[
n

∑
i=1

(yi − ȳ·)
2 − β̂ 2

1

n

∑
i=1

(xi − x̄·)
2

]

=
1

n−2

[
(n−1)s2

y − β̂ 2
1 (n−1)s2

x

]
.
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The slope estimate β̂1 given above is the form that is most convenient for deriving its statistical
properties. In this form it is just a linear combination of the yis. However, β̂1 is commonly written in
a variety of ways to simplify various computations and, unfortunately for students, they are expected
to recognize all of them. Observing that 0 = ∑n

i=1 (xi − x̄·) so that 0 = ∑n
i=1 (xi − x̄·) ȳ·, we can also

write

β̂1 =
∑n

i=1 (xi − x̄·)(yi − ȳ·)

∑n
i=1 (xi − x̄·)

2 =
sxy

s2
x
=

(∑n
i=1 xiyi)−nx̄·ȳ·
(n−1)s2

x
, (6.10.1)

where sxy =∑n
i=1 (xi − x̄·) (yi − ȳ·)/(n−1) is the sample covariance between x and y. The last equal-

ity on the right of

EXAMPLE 6.10.1. For the simple linear regression on the Coleman Report data,

n = 20, x̄· = 3.1405, s2
x = 92.64798395,

ȳ· = 35.0825, s2
y = 33.838125,

n

∑
i=1

xiyi = 3189.8793 .

The estimates are

β̂1 =
3189.8793−20(3.1405)(35.0825)

(20−1)92.64798395
= 0.560325468,

β̂0 = 35.0825−0.560325468(3.1405)= 33.32279787

and

MSE

=
1

20−2

[
(20−1)33.838125− (0.560325468)2(20−1)92.64798395

]

=
1

18
[642.924375−552.6756109] (6.10.2)

=
90.2487641

18
= 5.01382.

Up to round-off error, these are the same results as tabled in Section 6.1. �

It is not clear that these estimates of β0, β1, and σ2 are even reasonable. The estimate of the slope
β1 seems particularly unintuitive. However, from Proposition 6.2.1, the estimates are unbiased, so
they are at least estimating what we claim that they estimate.

The parameter estimates are unbiased but that alone does not ensure that they are good estimates.
These estimates are the best estimates available in several senses as discussed in Section 6.2.

To draw statistical inferences about the regression parameters, we need standard errors for the
estimates. To find the standard errors we need to know the variance of each estimate.

Proposition 6.10.1.

Var
(

β̂1

)
=

σ2

∑n
i=1 (xi − x̄·)

2 =
σ2

(n−1)s2
x

and

Var
(

β̂0

)
= σ2

[
1
n
+

x̄2·
∑n

i=1 (xi − x̄·)
2

]
= σ2

[
1
n
+

x̄2·
(n−1)s2

x

]
.

The proof is given in the appendix at the end of the section. Note that, except for the unknown
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Table 6.5: Analysis of Variance.

Source df SS MS F

Intercept(β0) 1 nȳ2· ≡C nȳ2·

Regression(β1) 1 β̂ 2
1 (n− 1)s2

x SSReg MSReg
MSE

Error n− 2 ∑n
i=1

(
yi − β̂0 − β̂1xi

)2
SSE/(n− 2)

Total n ∑n
i=1 y2

i

parameter σ2, the variances can be computed using the same six numbers we used to compute β̂0,
β̂1, and MSE . Using MSE to estimate σ2 and taking square roots, we get the standard errors,

SE
(

β̂1

)
=

√
MSE

(n−1)s2
x

and

SE
(

β̂0

)
=

√
MSE

[
1
n
+

x̄2·
(n−1)s2

x

]
.

EXAMPLE 6.10.2. For the Coleman Report data, using the numbers n, x̄·, and s2
x ,

Var
(

β̂1

)
=

σ2

(20−1)92.64798395
=

σ2

1760.311695

and

Var
(

β̂0

)
= σ2

[
1

20
+

3.14052

(20−1)92.64798395

]
= σ2 [0.055602837].

The MSE is 5.014, so the standard errors are

SE
(

β̂1

)
=

√
5.014

1760.311695
= 0.05337

and
SE
(

β̂0

)
=
√

5.014 [0.055602837]= 0.5280.

�

We always like to have estimates with small variances. The forms of the variances show how
to achieve this. For example, the variance of β̂1 gets smaller when n or s2

x gets larger. Thus, more
observations (larger n) result in a smaller slope variance and more dispersed xi values (larger s2

x)
also result in a smaller slope variance. Of course all of this assumes that the simple linear regression
model is correct.

The ANOVA tables Table 6.2 and Table 6.3 can be rewritten now in terms of the parameter
estimates as Tables 6.5 and 6.6, respectively. The more commonly used form for the analysis of
variance table is given as Table 6.6. It eliminates the line for the intercept and corrects the total line
so that the degrees of freedom and sums of squares still add up.

EXAMPLE 6.10.3. Consider again simple linear regression on the Coleman Report data. The
analysis of variance table was given in Section 6.1; Table 6.7 illustrates the necessary computations.
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Table 6.6: Analysis of Variance.

Source df SS MS F

Regression(β1) 1 β̂ 2
1 (n− 1)s2

x SSReg MSReg
MSE

Error n− 2 ∑n
i=1

(
yi − β̂0 − β̂1xi

)2
SSE/(n− 2)

Total n− 1 (n− 1)s2
y

Table 6.7: Analysis of Variance.

Source df SS MS F

Regression(β1 ) 1 0.5603252(20− 1)92.64798 552.6756109 552.68
5.014

Error 20− 2 90.2487641 90.2487641/18

Total 20− 1 (20− 1)33.838125

Most of the computations were made earlier in Equation (6.10.2) during the process of obtaining
the MSE and all are based on the usual six numbers, n, x̄·, s2

x , ȳ·, s2
y , and ∑xiyi. More directly, the

computations depend on n, β̂1, s2
x , and s2

y . Note that the SSE is obtained as SSTot − SSReg. The
correction factor C in Tables 6.2 and 6.5 is 20(35.0825)2 but it is not used in these computations for
Table 6.7. �

Finally, from Table 6.6 and (6.10.1)

R2 =
β̂ 2

1 (n−1)s2
x

(n−1)s2
y

= β̂ 2
1

s2
x

s2
y
= r2.

Appendix: simple linear regression proofs

PROOF OF UNBIASEDNESS FOR THE REGRESSION ESTIMATES.
As established earlier, the β s and xis are all fixed numbers, so

E(yi) = E(β0 +β1xi + εi) = β0 +β1xi +E(εi) = β0 +β1xi .

Also note that ∑n
i=1 (xi − x̄·) = 0, so ∑n

i=1 (xi − x̄·) x̄· = 0. It follows that

n

∑
i=1

(xi − x̄·)
2
=

n

∑
i=1

(xi − x̄·)xi −
n

∑
i=1

(xi − x̄·) x̄· =
n

∑
i=1

(xi − x̄·)xi .

Now consider the slope estimate.

E
(

β̂1

)
= E

(
∑n

i=1 (xi − x̄·)yi

∑n
i=1 (xi − x̄·)

2

)

=
∑n

i=1 (xi − x̄·)E(yi)

∑n
i=1 (xi − x̄·)

2

=
∑n

i=1 (xi − x̄·)(β0 +β1xi)

∑n
i=1 (xi − x̄·)

2
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= β0
∑n

i=1 (xi − x̄·)

∑n
i=1 (xi − x̄·)

2 +β1
∑n

i=1 (xi − x̄·)xi

∑n
i=1 (xi − x̄·)

2

= β0
0

∑n
i=1 (xi − x̄·)

2 +β1
∑n

i=1 (xi − x̄·)
2

∑n
i=1 (xi − x̄·)

2

= β1.

The proof for the intercept goes as follows:

E
(

β̂0

)
= E

(
ȳ·− β̂1x̄·

)

= E

(
1
n

n

∑
i=1

yi

)
−E
(

β̂1

)
x̄·

=
1
n

n

∑
i=1

E(yi)−β1x̄·

=
1
n

n

∑
i=1

(β0 +β1xi)−β1x̄·

= β0 +β1
1
n

n

∑
i=1

(xi)−β1x̄·

= β0 +β1x̄·−β1x̄·
= β0 .

PROOF OF VARIANCE FORMULAE. As established earlier,

Var(yi) = Var(β0 +β1xi + εi) = Var(εi) = σ2.

Now consider the slope estimate. Recall that the yis are independent.

Var
(

β̂1

)
= Var

(
∑n

i=1 (xi − x̄·)yi

∑n
i=1 (xi − x̄·)

2

)

=
1[

∑n
i=1 (xi − x̄·)

2
]2 Var

(
n

∑
i=1

(xi − x̄·)yi

)

=
1[

∑n
i=1 (xi − x̄·)

2
]2

n

∑
i=1

(xi − x̄·)
2 Var(yi)

=
1[

∑n
i=1 (xi − x̄·)

2
]2

n

∑
i=1

(xi − x̄·)
2 σ2

=
σ2

∑n
i=1 (xi − x̄·)

2

=
σ2

(n−1)s2
x
.

Rather than establishing the variance of β̂0 directly, we find Var(β̂0 + β̂1x) for an arbitrary value
x. The variance of β̂0 is the special case with x = 0. A key result is that ȳ· and β̂1 are independent.
This was discussed in relation to the alternative regression model of Section 6.6. The independence
of these estimates is based on the errors having independent normal distributions with the same
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Table 6.8: Age and maintenance costs of truck tractors.

Age Cost Age Cost Age Cost

0.5 163 4.0 495 5.0 890
0.5 182 4.0 723 5.0 1522
1.0 978 4.0 681 5.0 1194
1.0 466 4.5 619 5.5 987
1.0 549 4.5 1049 6.0 764

4.5 1033 6.0 1373

variance. More generally, if the errors have the same variance and zero covariance, we still get
Cov(ȳ·, β̂1) = 0; see Exercise 6.11.6.

Var
(

β̂0 + β̂1x
)

= Var
(

ȳ·− β̂1x̄·+ β̂1x
)

= Var
(

ȳ·+ β̂1(x− x̄·)
)

= Var(ȳ·)+Var
(

β̂1

)
(x− x̄·)2 −2(x− x̄·)Cov

(
ȳ·, β̂1

)

=
1
n2

n

∑
i=1

Var(yi)+Var
(

β̂1

)
(x− x̄·)2

=
1
n2

n

∑
i=1

σ2 +
σ2(x− x̄·)2

(n−1)s2
x

= σ2
[

1
n
+

(x− x̄·)2

(n−1)s2
x

]
.

In particular, when x = 0 we get

Var
(

β̂0

)
= σ2

[
1
n
+

x̄2
·

(n−1)s2
x

]
.

6.11 Exercises

EXERCISE 6.11.1. Draper and Smith (1966, p. 41) considered data on the relationship between
the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six-month
period. The data are given in Table 6.8. Plot cost versus age and fit a regression of cost on age. Give
95% confidence intervals for the slope and intercept. Give a 99% confidence interval for the mean
cost of maintaining tractors that are 2.5 years old. Give a 99% prediction interval for the cost of
maintaining a particular tractor that is 2.5 years old.

Reviewing the plot of the data, how much faith should be placed in these estimates for tractors
that are 2.5 years old?

EXERCISE 6.11.2. Stigler (1986, p. 6) reported data from Cassini (1740) on the angle between
the plane of the equator and the plane of the Earth’s revolution about the Sun. The data are given in
Table 6.9. The years −229 and −139 indicate 230 B.C. and 140 B.C. respectively. The angles are
listed as the minutes above 23 degrees.

Plot the data. Are there any obvious outliers (weird data)? If outliers exist, compare the fit of the
line with and without the outliers. In particular, compare the different 95% confidence intervals for
the slope and intercept.

EXERCISE 6.11.3. Mulrow et al. (1988) presented data on the calibration of a differential scan-
ning calorimeter. The melting temperatures of mercury and naphthalene are known to be 234.16
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Table 6.9: Angle between the plane of the equator and the plane of rotation about the Sun.

Year Angle Year Angle Year Angle Year Angle

−229 51.333̄ 880 35.000 1500 28.400 1600 31.000
−139 51.333̄ 1070 34.000 1500 29.266̄ 1656 29.033̄

140 51.166̄ 1300 32.000 1570 29.916̄ 1672 28.900
390 30.000 1460 30.000 1570 31.500 1738 28.333̄

Table 6.10: Melting temperatures.

Chemical x y

Naphthalene 353.24 354.62
353.24 354.26
353.24 354.29
353.24 354.38

Mercury 234.16 234.45
234.16 234.06
234.16 234.61
234.16 234.48

and 353.24 Kelvin, respectively. The data are given in Table 6.10. Plot the data. Fit a simple linear
regression y = β0 +β1x+ ε to the data. Under ideal conditions, the simple linear regression should
have β0 = 0 and β1 = 1; test whether these hypotheses are true using α = 0.05. Give a 95% confi-
dence interval for the population mean of observations taken on this calorimeter for which the true
melting point is 250. Give a 95% prediction interval for a new observation taken on this calorimeter
for which the true melting point is 250.

Is there any way to check whether it is appropriate to use a line in modeling the relationship
between x and y? If so, do so.

EXERCISE 6.11.4. Exercise 6.11.3 involves the calibration of a measuring instrument. Often,
calibration curves are used in reverse, i.e., we would use the calorimeter to measure a melting point
y and use the regression equation to give a point estimate of x. If a new substance has a measured
melting point of 300 Kelvin, using the simple linear regression model, what is the estimate of the true
melting point? Use a prediction interval to determine whether the measured melting point of y= 300
is consistent with the true melting point being x = 300. Is an observed value of 300 consistent with
a true value of 310?

EXERCISE 6.11.5. Working–Hotelling confidence bands are a method for getting confidence
intervals for every point on a line with a guaranteed simultaneous coverage. The method is essen-
tially the same as Scheffé’s method for simultaneous confidence intervals discussed in Section 13.3.
For estimating the point on the line at a value x, the endpoints of the (1−α)100% simultaneous
confidence intervals are

(β̂0 + β̂1x)±
√

2F(1−α,2,dfE)SE(β̂0 + β̂1x).

Using the Coleman Report data of Table 6.1, find 95% simultaneous confidence intervals for the
values x = −17,−6,0,6,17. Plot the estimated regression line and the Working–Hotelling confi-
dence bands. We are 95% confident that the entire line β0 +β1x lies between the confidence bands.
Compute the regular confidence intervals for x = −17,−6,0,6,17 and compare them to the results
of the Working–Hotelling procedure.

EXERCISE 6.11.6. Use part (4) of Proposition 1.2.11 to show that Cov(ȳ·, β̂1) = 0 whenever
Var(εi) = σ2 for all i and Cov(εi,ε j) = 0 for all i �= j. Hint: write out ȳ· and β̂1 in terms of the yis.





Chapter 7

Model Checking

In this chapter we consider methods for checking model assumptions and the use of transformations
to correct problems with the assumptions. The primary method for checking model assumptions
is the use of residual plots. If the model assumptions are valid, residual plots should display no
detectable patterns. We begin in Section 7.1 by familiarizing readers with the look of plots that
display no detectable patterns. Section 7.2 deals with methods for checking the assumptions made
in simple linear regression (SLR). If the assumptions are violated, we need alternative methods of
analysis. Section 7.3 presents methods for transforming the original data so that the assumptions
become reasonable on the transformed data. Chapter 8 deals with tests for lack of fit. These are
methods of constructing more general models that may fit the data better. Chapters 7 and 8 apply
quite generally to regression, analysis of variance, and analysis of covariance models. They are not
restricted to simple linear regression.

7.1 Recognizing randomness: Simulated data with zero correlation

Just as it is important to be able to look at a plot and tell when the x and y variables are related,
it is important to be able to look at a plot and tell that two variables are unrelated. In other words,
we need to be able to identify plots that only display random variation. This skill is of particular
importance in Section 7.2 where we use plots to evaluate the assumptions made in simple linear
regression. To check the assumptions of the regression model, we use plots that should display only
random variation when the assumptions are true. Any systematic pattern in the model checking plots
indicates a problem with our assumed regression model.

EXAMPLE 7.1.1. Simulated data with zero correlation
We now examine data on five uncorrelated variables, y1 through y5. Figures 7.1 and 7.2 contain
various plots of the variables. Since all the variable pairs have zero correlation, i.e., ρ = 0, any
‘patterns’ that are recognizable in these plots are due entirely to random variation. In particular,
note that there is no real pattern in the y2-y3 plot.

The point of this example is to familiarize the reader with the appearance of random plots. The
reader should try to identify systematic patterns in these plots, remembering that there are none.
This suggests that in the model checking plots that appear later, any systematic pattern of interest
should be more pronounced than anything that can be detected in Figures 7.1 and 7.2.

Below are the sample correlations r for each pair of variables. Although ρ = 0, none of the r
values is zero and some of them are reasonably far from 0.

Sample correlations
y1 y2 y3 y4 y5

y1 1.000
y2 −0.248 1.000
y3 −0.178 0.367 1.000
y4 −0.163 0.130 0.373 1.000
y5 0.071 0.279 0.293 0.054 1.000

�
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Figure 7.1: Plots of data with ρ = 0.
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Figure 7.2: Plots of data with ρ = 0.
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7.2 Checking assumptions: Residual analysis

As in Chapter 3 our standard model is

yh = m(xh)+ εh, h = 1, . . . ,n,

εhs independent N(0,σ2).

For example, the simple linear regression model posits

m(xh) = β0 +β1xh.

The assumptions involved can all be thought of in terms of the errors. The assumptions are that

1. the εhs are independent,

2. E(εh) = 0 for all h,

3. Var(εh) = σ2 for all h,

4. the εhs are normally distributed.

To have faith in our analysis, we need to validate these assumptions as far as possible. These are
assumptions and cannot be validated completely, but we can try to detect gross violations of the
assumptions.

The first assumption, that the εhs are independent, is the most difficult to validate. If the ob-
servations are taken at regular time intervals, they may lack independence and standard time series
methods may be useful in the analysis. We will not consider this further; the interested reader can
consult the time series literature, e.g., Shumway and Stoffer (2000). More general methods for
checking independence were developed by Christensen and Bedrick (1997) and are reviewed in
Christensen (2011). In general, we rely on the data analyst to think hard about whether there are
reasons for the data to lack independence.

The second assumption is that E(εh) = 0. This is violated when we have the wrong model. The
simple linear regression model with E(εh) = 0 specifies that

E(yh) = β0 +β1xh.

If we fit this model when it is incorrect, we will not have errors with E(εh) = 0. More generally, if
we fit a mean model m(xh), then

E(yh) = m(xh),

and if the model is incorrect, we will not have errors with E(εh) = 0. Having the wrong model for
the means is called lack of fit.

The last two assumptions are that the errors all have some common variance σ2 and that they
are normally distributed. The term homoscedasticity refers to having a constant (homogeneous)
variance. The term heteroscedasticity refers to having nonconstant (heterogeneous) variances.

In checking the error assumptions, we are hampered by the fact that the errors are not observable;
we must estimate them. The SLR model involves

yh = β0 +β1xh + εh

or equivalently,
yh −β0 −β1xh = εh.

Given the fitted values ŷh = β̂0 + β̂1xh, we estimate εh with the residual

ε̂h = yh − ŷh.

Similarly, in Chapter 3 we defined fitted values and residuals for general models. I actually prefer
referring to predicting the error rather than estimating it. One estimates fixed unknown parameters



160 7. MODEL CHECKING

and predicts unobserved random variables. Our discussion depends only on having fitted values
and residuals; it does not depend specifically on the SLR model.

Two of the error assumptions are independence and homoscedasticity of the variances. Unfor-
tunately, even when these assumptions are true, the residuals are neither independent nor do they
have the same variance. For example, the SLR residuals all involve the random variables β̂0 and β̂1,
so they are not independent. Moreover, the ith residual involves β̂0 + β̂1xh, the variance of which
depends on (xh − x̄·). Thus the variance of ε̂h depends on xh. There is little we can do about the
lack of independence except hope that it does not cause severe problems. On the other hand, we can
adjust for the differences in variances. In linear models the variance of a residual is

Var(ε̂i) = σ2(1−hi)

where hi is the leverage of the ith case. Leverages are discussed a bit later in this section and more
extensively in relation to multiple regression. (In discussing leverages I have temporarily switched
from using the meaningless subscript h to identify individual cases to using the equally meaningless
subscript i. There are two reasons. First, many people use the notation hi for leverages, to the point
of writing it as “HI.” Second, hh looks funny. My preference would be to denote the leverages mhh,
cf. Chapter 11.)

Given the variance of a residual, we can obtain a standard error for it,

SE(ε̂i) =
√

MSE(1−hi).

We can now adjust the residuals so they all have a variance of about 1; these standardized residuals
are

ri =
ε̂i√

MSE(1−hi)
.

The main tool used in checking assumptions is plotting the residuals or, more commonly, the
standardized residuals. Normality is checked by performing a normal plot on the standardized resid-
uals. If the assumptions (other than normality) are correct, plots of the standardized residuals versus
any variable should look random. If the variable plotted against the ris is continuous with no major
gaps, the plots should look similar to the plots given in the previous section. In problems where
the predictor variables are just group indicators (e.g., two-sample problems like Section 6.8 or the
analysis of variance problems of Chapter 12), we often plot the residuals against identifiers of the
groups, so the discrete nature of the number of groups keeps the plots from looking like those of the
previous section. The single most popular diagnostic plot is probably the plot of the standardized
residuals against the predicted (fitted) values ŷi, however the ris can be plotted against any variable
that provides a value associated with each case.

Violations of the error assumptions are indicated by any systematic pattern in the residuals. This
could be, for example, a pattern of increased variability as the predicted values increase, or some
curved pattern in the residuals, or any change in the variability of the residuals.

A residual plot that displays an increasing variance looks roughly like a horn opening to the
right.

������

������

A residual plot indicating a decreasing variance is a horn opening to the left.
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Figure 7.3: Plot of the standardized residuals r versus ŷ, Coleman Report.
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Plots that display curved shapes typically indicate lack of fit. One example of a curve is given below.

��

� �

EXAMPLE 7.2.1. Coleman Report data
Figures 7.3 through 7.5 contain standardized residual plots for the simple linear regression on the
Coleman Report data. Figure 7.3 is a plot against the predicted values; Figure 7.4 is a plot against the
sole predictor variable x. The shapes of these two plots are identical. This always occurs in simple
linear regression because the predictions ŷ are a linear function of the one predictor x. The one caveat
to the claim of identical shapes is that the plots may be reversed. If the estimated slope is negative,
the largest x values correspond to the smallest ŷ values. Figures 7.3 and 7.4 look like random patterns
but it should be noted that if the smallest standardized residual were dropped (the small one on the
right), the plot might suggest decreasing variability. The normal plot of the standardized residuals
in Figure 7.5 does not look too bad. �
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Figure 7.4: Plot of the standardized residuals r versus x, Coleman Report.
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Figure 7.5: Normal plot, Coleman Report, W ′ = 0.966.
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Table 7.1: Hooker data.

Case Temperature Pressure Case Temperature Pressure
1 180.6 15.376 17 191.1 19.490
2 181.0 15.919 18 191.4 19.758
3 181.9 16.106 19 193.4 20.480
4 181.9 15.928 20 193.6 20.212
5 182.4 16.235 21 195.6 21.605
6 183.2 16.385 22 196.3 21.654
7 184.1 16.959 23 196.4 21.928
8 184.1 16.817 24 197.0 21.892
9 184.6 16.881 25 199.5 23.030

10 185.6 17.062 26 200.1 23.369
11 185.7 17.267 27 200.6 23.726
12 186.0 17.221 28 202.5 24.697
13 188.5 18.507 29 208.4 27.972
14 188.8 18.356 30 210.2 28.559
15 189.5 18.869 31 210.8 29.211
16 190.6 19.386

7.2.1 Another example

EXAMPLE 7.2.2. Hooker data.
Forbes (1857) reported data on the relationship between atmospheric pressure and the boiling point
of water that were collected in the Himalaya mountains by Joseph Hooker. Weisberg (1985, p. 28)
presented a subset of 31 observations that are reproduced in Table 7.1.

A scatter plot of the data is given in Figure 7.6. The data appear to fit a line very closely. The
usual summary tables follow for regressing pressure on temperature.

Table of Coefficients: Hooker data.
Predictor β̂k SE(β̂k) t P
Constant −64.413 1.429 −45.07 0.000
Temperature 0.440282 0.007444 59.14 0.000

Analysis of Variance: Hooker data.
Source df SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
Total 30 447.85

The coefficient of determination is exceptionally large:

R2 =
444.17
447.85

= 99.2%.

The plot of residuals versus predicted values is given in Figure 7.7. A pattern is very clear; the
residuals form something like a parabola. In spite of a very large R2 and a scatter plot that looks
quite linear, the residual plot shows that a lack of fit obviously exists. After seeing the residual
plot, you can go back to the scatter plot and detect suggestions of nonlinearity. The simple linear
regression model is clearly inadequate, so we do not bother presenting a normal plot. In the next
two sections, we will examine ways to deal with this lack of fit. �
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Figure 7.6: Scatter plot of Hooker data.
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Figure 7.7: Standardized residuals versus predicted values for Hooker data.
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7.2.2 Outliers

Outliers are bizarre data points. They are points that do not seem to fit with the other observations
in a data set. We can characterize bizarre points as having either bizarre x values or bizarre y values.
There are two valuable tools for identifying outliers.

Leverages are values between 0 and 1 that measure how bizarre an x value is relative to the other
x values in the data. A leverage near 1 is a very bizarre point. Leverages that are small are similar
to the other data. The sum of all the leverages in a simple linear regression is always 2, thus the
average leverage is 2/n. Points with leverages larger than 4/n cause concern and leverages above
6/n cause considerable concern.

For the more general models of Section 3.9 we used r to denote the number of uniquely defined
parameters in a model m(·). For general linear models the average leverage is r/n. Points with lever-
ages larger than 2r/n or 3r/n are often considered high-leverage points. The concept of leverage
will be discussed in more detail when we discuss multiple regression.

Outliers in the y values can be detected from the standardized deleted residuals. Standardized
deleted residuals are also called t residuals (in Minitab) and studentized residuals (in the R lan-
guage). Standardized deleted residuals are just standardized residuals, but the residual for the hth
case is computed from a regression that does not include the hth case. For example, in SLR the third
deleted residual is

ε̂[3] = y3 − β̂0[3]− β̂1[3]x3

where the estimates β̂0[3] and β̂1[3] are computed from a regression in which case 3 has been dropped
from the data. More generally, we could write this as

ε̂[3] = y3 − m̂[3](x3)

where m̂[3](·) is the estimate of the mean model based on all data except the third observation.
The third standardized deleted residual is simply the third deleted residual divided by its standard
error. The standardized deleted residuals, denoted th, really contain the same information as the
standardized residuals rh; the largest standardized deleted residuals are also the largest standardized
residuals. The main virtue of the standardized deleted residuals is that they can be compared to a
t(dfE −1) distribution to test whether they could reasonably have occurred when the model is true.
The degrees of freedom in the SLR test are n− 3 because the simple linear regression model was
fitted without the ith case, so there are only n− 1 data points in the fit and (n− 1)− 2 degrees of
freedom for error. If we had reason to suspect that, say, case 3 might be an outlier, we would reject
it being consistent with the model and the other data if for h = 3

|th| ≥ t
(

1− α
2
,dfE −1

)
.

If one examines the largest absolute standardized deleted residual, the appropriate α-level test
rejects if

max
h

|th| ≥ t
(

1− α
2n

,dfE −1
)
.

An unadjusted t(dfE −1) test is no longer appropriate. The distribution of the maximum of a group
of identically distributed random variables is not the same as the original distribution. For n vari-
ables, the true P value is no greater than nP∗ where P∗ is the “P value” computed by comparing the
maximum to the original distribution. This is known as a Bonferroni adjustment and is discussed in
more detail in Chapter 13.

EXAMPLE 7.2.3. The leverages and standardized deleted residuals are given in Table 7.2 for the
Coleman Report data with one predictor. Compared to the leverage rule of thumb 4/n= 4/20= 0.2,
only case 15 has a noticeably large leverage. None of the cases is above the 6/n rule of thumb. In
simple linear regression, one does not really need to evaluate the leverages directly because the
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Table 7.2: Outlier diagnostics for the Coleman Report data.

Std. del. Std. del.
Case Leverages residuals Case Leverages residuals

1 0.059362 −0.15546 11 0.195438 −1.44426
2 0.175283 −0.12019 12 0.052801 0.61394
3 0.097868 −1.86339 13 0.051508 −0.49168
4 0.120492 −0.28961 14 0.059552 0.14111
5 0.055707 0.10792 15 0.258992 −0.84143
6 0.055179 −1.35054 16 0.081780 0.19341
7 0.101914 0.63059 17 0.050131 −1.41912
8 0.056226 0.07706 18 0.163429 2.52294
9 0.075574 1.00744 19 0.130304 0.63836

10 0.055783 1.92501 20 0.102677 0.24410

necessary information about bizarre x values is readily available from the x,y plot of the data. In
multiple regression with three or more predictor variables, leverages are vital because no one scatter
plot can give the entire information on bizarre x values. In the scatter plot of the Coleman Report
data, Figure 6.1, there are no outrageous x values, although there is a noticeable gap between the
smallest four values and the rest. From Table 6.1 we see that the cases with the smallest x values are
2, 11, 15, and 18. These cases also have the highest leverages reported in Table 7.2. The next two
highest leverages are for cases 4 and 19; these have the largest x values.

For an overall α = 0.05 level test of the deleted residuals, the tabled value needed is

t

(
1− 0.05

2(20)
,17

)
= 3.54 .

None of the standardized deleted residuals (ths) approach this, so there is no evidence of any unac-
countably bizarre y values.

A handy way to identify cases with large leverages, residuals, standardized residuals, or stan-
dardized deleted residuals is with an index plot. This is simply a plot of the value against the case
number as in Figure 7.8 for leverages. �

7.2.3 Effects of high leverage

EXAMPLE 7.2.4. Figure 7.9 contains some data along with their least squares estimated line. The
four points on the left form a perfect line with slope 1 and intercept 0. There is one high-leverage
point far away to the right. The actual data are given below along with their leverages.

Case 1 2 3 4 5
y 1 2 3 4 −3
x 1 2 3 4 20
Leverage 0.30 0.26 0.24 0.22 0.98

The case with x= 20 is an extremely high-leverage point; it has a leverage of nearly 1. The estimated
regression line is forced to go very nearly through this high-leverage point. In fact, this plot has two
clusters of points that are very far apart, so a rough approximation to the estimated line is the line
that goes through the mean x and y values for each of the two clusters. This example has one cluster
of four cases on the left of the plot and another cluster consisting solely of the one case on the right.
The average values for the four cases on the left give the point (x̄, ȳ) = (2.5,2.5). The one case on the
right is (20,−3). A little algebra shows the line through these two points to be ŷ = 3.286−0.314x.
The estimated line using least squares turns out to be ŷ = 3.128−0.288x, which is not too different.
The least squares line goes through the two points (2.5,2.408) and (20,−2.632), so the least squares
line is a little lower at x = 2.5 and a little higher at x = 20.
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Figure 7.8: Index plot of leverages for Coleman Report data.
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Obviously, the single point on the right of Figure 7.9 dominates the estimated straight line.
For example, if the point on the right was (20,15), the estimated line would go roughly through
that point and (2.5,2.5). Substantially changing the y value at x = 20 always gives an extremely
different estimated line than the ones we just considered. Wherever the point on the right is, the
estimated line follows it. This happens regardless of the fact that the four cases on the left follow a
perfect straight line with slope 1 and intercept 0. The behavior of the four points on the left is almost
irrelevant to the fitted line when there is a high-leverage point on the right. They have an effect on
the quality of the rough two-point approximation to the actual estimated line but their overall effect
is small.

To summarize what can be learned from Figure 7.9, we have a reasonable idea about what
happens to y for x values near the range 1 to 4, and we have some idea of what happens when x
is 20, but, barring outside information, we have not the slightest idea what happens to y when x is
between 4 and 20. Fitting a line to the complete data suggests that we know something about the
behavior of y for any value of x between 1 and 20. That is just silly! We would be better off to
analyze the two clusters of points separately and to admit that learning about y when x is between 4
and 20 requires us to obtain data on y when x is between 4 and 20. In this example, the two separate
statistical analyses are trivial. The cluster on the left follows a perfect line so we simply report that
line. The cluster on the right is a single point so we report the point.

This example also illustrates a point about good approximate models. A straight line makes a
great approximate model for the four points on the left but a straight line is a poor approximate
model for the entire data. �

7.3 Transformations

If the residuals show a problem with lack of fit, heteroscedasticity, or nonnormality, one way to deal
with the problem is to try transforming the yhs. Typically, this only works well when ymax/ymin is
reasonably large. The use of transformations is often a matter of trial and error. Various transforma-
tions are tried and the one that gives the best-fitting model is used. In this context, the best-fitting
model should have residual plots indicating that the model assumptions are reasonably valid. The
first approach to transforming the data should be to consider transformations that are suggested by
any theory associated with the data collection. Another approach to choosing a transformation is
to try a variance-stabilizing transformation. These were discussed in Section 2.5 and are repeated
below for data yh with E(yh) = μh and Var(yh) = σ2

h .

Variance-stabilizing transformations
Mean, variance

Data Distribution relationship Transformation
Count Poisson μh ∝ σ2

h
√

yh

Amount Gamma μh ∝ σh log(yh)

Proportion Binomial/N μh(1− μh)/N ∝ σ2
h sin−1(√yh

)

Whenever the data have the indicated mean-variance relationship, the corresponding variance-
stabilizing transformation is supposed to work reasonably well.

Personally, I usually start by trying the log or square root transformations and, if they do not
work, then I worry about how to find something better.

7.3.1 Circle of transformations

For a simple linear regression that displays lack of fit, the curved shape of an x,y plot suggests
possible transformations to straighten it out. We consider power transformations of both y and x,
thus y is transformed into, say, yλ and x is transformed into xγ . Note that λ = 1 and γ = 1 indicate
no transformation. As we will justify later, we treat λ = 0 and γ = 0 as log transformations.
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Figure 7.11: Curved x,y plot.

Figure 7.10 indicates the kinds of transformations appropriate for some different shapes of x,y
curves. For example, if the x,y curve is similar to that in quadrant I, i.e., the y values decrease as x
increases and the curve opens to the lower left, appropriate transformations involve increasing λ or
increasing γ or both. Here we refer to increasing λ and γ relative to the no transformation values of
λ = 1 and γ = 1. In particular, Figure 7.11 gives an x,y plot for part of a cosine curve that is shaped
like the curve in quadrant I. Figure 7.12 is a plot of the numbers after x has been transformed into
x1.5 and y has been transformed into y1.5. Note that the curve in Figure 7.12 is much straighter than
the curve in Figure 7.11. If the x,y curve increases and opens to the lower right, such as those in
quadrant II, appropriate transformations involve increasing λ or decreasing γ or both. An x,y curve
similar to that in quadrant III suggests decreasing λ or decreasing γ or both. The graph given in
Figure 7.10 is often referred to as the circle of x,y transformations.
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Figure 7.12: Plot of x1.5,y1.5.

We established in the previous section that the Hooker data does not fit a straight line and that
the scatter plot in Figure 7.6 increases with a slight tendency to open to the upper left. This is the
same shaped curve as in quadrant IV of Figure 7.10. The circle of x,y transformations suggests
that to straighten the curve, we should try transformations with decreased values of λ or increased
values of γ or both. Thus we might try transforming y into y1/2, y1/4, log(y), or y−1. Similarly, we
might try transforming x into x1.5 or x2.

To get a preliminary idea of how well various transformations work, we should do a series of
plots. We might begin by examining the four plots in which y1/2, y1/4, log(y), and y−1 are plotted
against x. We might then plot y against both x1.5 and x2. We should also plot all possibilities involv-
ing one of y1/2, y1/4, log(y), and y−1 plotted against one of x1.5 and x2 and we may need to consider
other choices of λ and γ . For the Hooker data, looking at these plots would probably only allow
us to eliminate the worst transformations. Recall that Figure 7.6 looks remarkably straight and it is
only after fitting a simple linear regression model and examining residuals that the lack of fit (the
curvature of the x,y plot) becomes apparent. Evaluating the transformations would require fitting a
simple linear regression for every pair of transformed variables that has a plot that looks reasonably
straight.

Observe that many of the power transformations considered here break down with values of x
or y that are negative. For example, it is difficult to take square roots and logs of negative numbers.
Fortunately, data are often positive or at least nonnegative. Measured amounts, counts, and propor-
tions are almost always nonnegative. When problems arise, a small constant is often added to all
cases so that they all become positive. Of course, it is unclear what constant should be added.

Obviously, the circle of transformations, just like the variance-stabilizing transformations, pro-
vides only suggestions on how to transform the data. The process of choosing a particular transfor-
mation remains one of trial and error. We begin with reasonable candidates and examine how well
these transformations agree with the simple linear regression model. When we find a transformation
that agrees well with the assumptions of simple linear regression, we proceed to analyze the data.
Obviously, an alternative to transforming the data is to change the model. In Chapter 8 we consider
a new class of models that incorporate transformations of the x variable. In the remainder of this
section, we focus on a systematic method for choosing a transformation of y.
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7.3.2 Box–Cox transformations

We now consider a systematic method, introduced by Box and Cox (1964), for choosing a power
transformation for general models. Consider the family of power transformations, say, yλ

h . This
includes the square root transformation as the special case λ = 1/2 and other interesting transfor-
mations such as the reciprocal transformation y−1

h . By making a minor adjustment, we can bring log
transformations into the power family. Consider the transformations

y(λ )h =

{(
yλ

h −1
)
/λ λ �= 0

log(yh) λ = 0
.

For any fixed λ �= 0, the transformation y(λ )h is equivalent to yλ
h , because the difference between the

two transformations consists of subtracting a constant and dividing by a constant. In other words,
for λ �= 0, fitting the model

yλ
h = m(xh)+ εh

is equivalent to fitting the model

y(λ )h = m(xh)+ εh,

in that fitted values ŷλ
h satisfy ŷ(λ )h =

(
ŷλ

h −1
)
/λ . (This happens whenever m(x) is a linear model

that includes an intercept or terms equivalent to fitting an intercept.) Parameters in the two models
have slightly different meanings. While the transformation

(
yλ

h −1
)
/λ is undefined for λ = 0, as λ

approaches 0,
(
yλ

h − 1
)
/λ approaches log(yh), so the log transformation fits in naturally.

Unfortunately, the results of fitting models to y(λ )h with different values of λ are not directly
comparable. Thus it is difficult to decide which transformation in the family to use. This problem is
easily evaded (cf. Cook and Weisberg, 1982) by further modifying the family of transformations so
that the results of fitting with different λ s are comparable. Let ỹ be the geometric mean of the yhs,
i.e.,

ỹ =

[
n

∏
i=1

yh

]1/n

= exp

[
1
n

n

∑
i=1

log(yh)

]

and define the family of transformations

z(λ )h =

{[
yλ

h −1
]/[

λ ỹλ−1
]

λ �= 0
ỹ log(yh) λ = 0

.

The results of fitting the model

z(λ )h = m(xh)+ εh

can be summarized via SSE(λ ). These values are directly comparable for different values of λ . The
choice of λ that yields the smallest SSE(λ ) is the best-fitting model. (It maximizes the likelihood
with respect to λ .)

Box and Draper (1987, p. 290) discuss finding a confidence interval for the transformation pa-
rameter λ . An approximate (1−α)100% confidence interval consists of all λ values that satisfy

logSSE(λ )− logSSE(λ̂)≤ χ2(1−α,1)/dfE

where λ̂ is the value of λ that minimizes SSE(λ ). When ymax/ymin is not large, the interval tends to
be wide.

EXAMPLE 7.3.1. Hooker data
In the previous section, we found that Hooker’s data on atmospheric pressure and boiling points
displayed a lack of fit when regressing pressure on temperature. We now consider using power
transformations to eliminate the lack of fit.
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Table 7.3: Choice of power transformation.

λ 1/2 1/3 1/4 0 −1/4 −1/2
SSE(λ) 1.21 0.87 0.78 0.79 1.21 1.98
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Figure 7.13: Plot of log(Pres) versus Temp.

Table 7.3 contains SSE(λ ) values for some reasonable choices of λ . Assuming that SSE(λ ) is
a very smooth (convex) function of λ , the best λ value is probably between 0 and 1/4. If the curve
being minimized is very flat between 0 and 1/4, there is a possibility that the minimizing value is
between 1/4 and 1/3. One could pick more λ values and compute more SSE(λ )s but I have a bias
towards simple transformations. (They are easier to sell to clients.)

The log transformation of λ = 0 is simple (certainly simpler than the fourth root) and λ = 0 is
near the optimum, so we will consider it further. We now use the simple log transformation, rather
than adjusting for the geometric mean. The data are displayed in Figure 7.13. The usual summary
tables follow.

Table of Coefficients: Log Hooker data.
Predictor β̂k SE(β̂k) t P
Constant −1.02214 0.03365 −30.38 0.000
Temp. 0.0208698 0.0001753 119.08 0.000

Analysis of Variance: Log Hooker data.
Source df SS MS F P
Regression 1 0.99798 0.99798 14180.91 0.000
Error 29 0.00204 0.00007
Total 30 1.00002

The plot of the standardized residuals versus the predicted values is given in Figure 7.14. There
is no obvious lack of fit or inconstancy of variances. Figure 7.15 contains a normal plot of the
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Figure 7.14: Standardized residuals versus predicted values, logs of Hooker data.
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Figure 7.15: Normal plot for logs of Hooker data, W ′ = 0.961.
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standardized residuals. The normal plot is not horrible but it is not wonderful either. There is a
pronounced shoulder at the bottom and perhaps even an S shape.

If we are interested in the mean (or median) value of log pressure for a temperature of 205◦F,
the estimate is 3.2562 = −1.02214+ 0.0208698(205) with a standard error of 0.00276 and a
95% confidence interval of (3.2505,3.2618). Back transforming to the original units, the esti-
mate is e3.2562 = 25.95 and the confidence interval becomes (e3.2505,e3.2618) or (25.80,26.10).
The mean value of the line at 205◦F is also the median value of the line, the point that has
50% of the data above it and 50% below it. After back transforming, the regression surface, say,
m̂∗(x) = e−1.02214+0.0208698x, is no longer a line and the value 25.95 is no longer an estimate of
the mean, but it is still an estimate of the median of the regression surface at 205◦F and the back
transformed confidence interval also applies to the median.

The point prediction for a new log observation at 205◦F has the same value as the point estimate
and has a 95% prediction interval of (3.2381,3.2742). In the original units, the prediction is again
25.95 and the prediction interval becomes (e3.2381,e3.2742) or (25.49,26.42).

The coefficient of determination is again extremely high,

R2 =
0.99798
1.00002

= 99.8%,

although because of the transformation this number is not directly comparable to the R2 of 0.992
for the original SLR. As discussed in Section 3.9, to measure the predictive ability of this model
on the original scale, we back transform the fitted values to the original scale and compute the
squared sample correlation between the original data and these predictors on the original scale. For
the Hooker data this also gives R2 = 0.998, which is larger than the original SLR R2 of 0.992. (It
is a mere quirk that the R2 on the log scale and the back transformed R2 happen to agree to three
decimal places.) �

7.3.3 Constructed variables

One way to test whether a transformation is needed is to use a constructed variable as introduced
by Atkinson (1973). Using the geometric mean ỹ, let

wh = yh [log(yh/ỹ)−1] . (7.3.1)

For the Hooker data, fit the multiple regression model

yh = β0 +β1xh +β2wh + εh.

As illustrated in Section 6.9, multiple regression gives results similar to those for simple linear
regression; typical output includes a table of coefficients and an ANOVA table. A test of H0 : β2 = 0
from the table of coefficients gives an approximate test that no transformation is needed. The test is
performed using the standard methods of Chapter 3. Details are illustrated in the following example.
In addition, the estimate β̂2 provides, indirectly, an estimate of λ ,

λ̂ = 1− β̂2.

Frequently, this is not a very good estimate of λ but it gives an idea of where to begin a search for
good λ s.

EXAMPLE 7.3.2. Hooker data
Performing the multiple regression of pressure on both temperature and the constructed variable w
gives the following results.
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Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant −43.426 2.074 −20.94 0.000
Temperature 0.411816 0.004301 95.75 0.000
w 0.80252 0.07534 10.65 0.000

The t statistic is 10.65= 0.80252/.07534 for testing that the regression coefficient of the constructed
variable is 0. The P value of 0.000 strongly indicates the need for a transformation. The estimate of
λ is

λ̂ = 1− β̂2 = 1−0.80= 0.2,

which is consistent with what we learned from Table 7.3. From Table 7.3 we suspected that the best
transformation would be between 0 and 0.25. Of course this estimate of λ is quite crude; finding
the ‘best’ transformation requires a more extensive version of Table 7.3. I limited the choices of λ
in Table 7.3 because I was unwilling to consider transformations that I did not consider simple. �

In general, to test the need for a transformation in a linear model

yh = m(xh)+ εh, (7.3.2)

we add the constructed variable wh from (7.3.1) to get the model

yh = m(xh)+ γwh + εh, (7.3.3)

and test H0 : γ = 0. This gives only an approximate test of whether a power transformation is needed.
The usual t distribution is not really appropriate. The problem is that the constructed variable w
involves the ys, so the ys appear on both sides of the equality in Model (7.3.3). This is enough to
invalidate the theory behind the usual test.

It turns out that this difficulty can be avoided by using the predicted values from Model (7.3.2).
We write these as ŷh(2)s, where the subscript (2) is a reminder that the predicted values come from
Model (7.3.2). We can now define a new constructed variable,

w̃h = ŷh(2) log(ŷh(2)),

and fit
yh = m(xh)+ γw̃h + εh. (7.3.4)

The new constructed variable w̃h simply replaces yh with ŷh(2) in the definition of wh and deletes
some terms made redundant by using the ŷh(2)s. If Model (7.3.2) is valid, the usual test of H0 : γ = 0
from Model (7.3.4) has the standard t distribution in spite of the fact that the w̃hs depend on the
yhs. By basing the constructed variable on the ŷh(2)s, we are able to get an exact t test for γ = 0 and
restrict the weird behavior of the test statistic to situations in which γ �= 0.

Tukey (1949) uses neither the constructed variable wh nor w̃h but a third constructed variable
that is an approximation to w̃h. Using a method from calculus known as Taylor’s approximation
(expanding about ȳ·) and simplifying the approximation by eliminating terms that have no effect on
the test of H0 : γ = 0, we get ŷ2

h(2) as a new constructed variable. This leads to fitting the model

yh = m(xh)+ γ ŷ2
h(2)+ εh, (7.3.5)

and testing the need for a transformation by testing H0 : γ = 0. When applied to an additive two-
way model as discussed in Chapter 14 (without replication), this is Tukey’s famous one degree of
freedom test for nonadditivity. Recall that t tests are equivalent to F tests with one degree of freedom
in the numerator, hence the reference to one degree of freedom in the name of Tukey’s test.
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Models (7.3.3), (7.3.4), and (7.3.5) all provide rough estimates of the appropriate power transfor-
mation. From models (7.3.3) and (7.3.4), the appropriate power is estimated by λ̂ = 1− γ̂. In Model
(7.3.5), because of the simplification employed after the approximation, the estimate is λ̂ = 1−2ȳ·γ̂ .

Atkinson (1985, Section 8.1) gives an extensive discussion of various constructed variables for
testing power transformations. In particular, he suggests (on page 158) that while the tests based on
w̃h and ŷ2

h(2) have the advantage of giving exact t tests and being easier to compute, the test using
wh may be more sensitive in detecting the need for a transformation, i.e., may be more powerful.

The tests used with models (7.3.4) and (7.3.5) are special cases of a general procedure intro-
duced by Rao (1965) and Milliken and Graybill (1970); see also Christensen (2011, Section 9.5). In
addition, Cook and Weisberg (1982), and Emerson (1983) contain useful discussions of constructed
variables and methods related to Tukey’s test.

EXAMPLE 7.3.3. Hooker data
Fitting the simple linear regression while adding the alternative constructed variables gives

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 184.67 22.84 8.09 0.000
temp −1.1373 0.1446 −7.86 0.000
w̃ 0.88557 0.08115 10.91 0.000

and
Table of Coefficients

Predictor β̂k SE(β̂k) t P
Constant 1.696 6.069 0.28 0.782
temp 0.05052 0.03574 1.41 0.169
ŷ2 0.020805 0.001899 10.95 0.000

Not surprisingly, the t statistics for both constructed variables are huge. �

Transforming a predictor variable

Weisberg (1985, p. 156) suggests applying a log transformation to the predictor variable x in simple
linear regression whenever xmax/xmin is larger than 10 or so. There is also a procedure, originally due
to Box and Tidwell (1962), that is akin to the constructed variable test but that is used for checking
the need to transform x. As presented by Weisberg, this procedure consists of fitting the original
model

yh = β0 +β1xh + εh

to obtain β̂1 and then fitting the model

yh = η0 +η1xh +η2xh log(xh)+ εh.

Here, xh log(xh) is just an additional predictor variable that we compute from the values of xh. The
test of H0 : η2 = 0 is a test for whether a transformation of x is needed. If η2 �= 0, transforming x
into xγ is suggested where a rough estimate of γ is

γ̂ =
η̂2

β̂1
+1

and γ = 0 is viewed as the log transformation. Typically, only γ values between about −2 and 2
are considered useable. Of course, none of this is going to make any sense if x takes on negative
values, and if xmax/xmin is not large, computational problems may occur when trying to fit a model
that contains both xh and xh log(xh).

In multiple regression, to test the need for transforming any particular predictor variable, just
add another variable that is the original variable times its log.
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Table 7.4: Acreage in corn for different farm acreages.

Farm Corn Farm Corn Farm Corn
x y x y x y

80 25 160 45 320 110
80 10 160 40 320 30
80 20 240 65 320 55
80 32 240 80 320 60
80 20 240 65 400 75

160 60 240 85 400 35
160 35 240 30 400 140
160 20 320 70 400 90

400 110

7.4 Exercises

EXERCISE 7.4.1. Using the complete data of Exercise 6.11.2, test the need for a transformation
of the simple linear regression model. Repeat the test after eliminating any outliers. Compare the
results.

EXERCISE 7.4.2. Snedecor and Cochran (1967, Section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of acres
planted in corn. The data are given in Table 7.4.

Plot the data. Fit a simple linear regression to the data. Examine the residuals and discuss what
you find. Test the need for a power transformation. Is it reasonable to examine the square root or log
transformations? If so, do so.

EXERCISE 7.4.3. Repeat Exercise 7.4.2 but instead of using the number of acres of corn as the
dependent variable, use the proportion of acreage in corn as the dependent variable. Compare the
results to those given earlier.





Chapter 8

Lack of Fit and Nonparametric Regression

In analyzing data we often start with an initial model that is relatively complicated, that we hope fits
reasonably well, and look for simpler versions that still fit the data adequately. Lack of fit involves
an initial model that does not fit the data adequately. Most often, we start with a full model and look
at reduced models. When dealing with lack of fit, our initial model is the reduced model, and we
look for models that fit significantly better than the reduced model. In this chapter, we introduce
methods for testing lack of fit for a simple linear regression model. As with the chapter on model
checking, these ideas translate with (relatively) minor modifications to testing lack of fit for other
models. The issue of testing lack of fit will arise again in later chapters.

The full models that we create in order to test lack of fit are all models that involve fitting more
than one predictor variable. These are multiple regression models. Multiple regression was intro-
duced in Section 6.9 and special cases were applied in Section 7.3. This chapter makes extensive
use of special cases of multiple regression. The general topic, however, is considered in Chapter 9.

We illustrate lack-of-fit test testing methods by testing for lack of fit in the simple linear regres-
sion on the Hooker data of Table 7.1 and Example 7.2.2. Figure 8.1 displays the data with the fitted
line and we again provide the ANOVA table for this (reduced) model.

Analysis of Variance: Hooker data SLR.
Source df SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
Total 30 447.85

Section 8.1 considers extending the simple linear regression model by fitting a polynomial in
the predictor x. Section 2 considers some strange things that can happen when fitting high-order
polynomials. Section 3 introduced the idea of extending the model by using functions of x other
than polynomials. Section 4 looks at fitting the model to disjoint subsets of the data. Section 5 ex-
amines how the partitioning ideas of Section 4 lead naturally to the idea of fitting “splines.” Finally,
Section 6 gives a brief introduction of Fisher’s famous lack-of-fit test. The ideas of fitting models
based on various functions of x and fitting models on subsets of the data (and then recombining the
results) are fundamental in the field of nonparametric regression.

8.1 Polynomial regression

With Hooker’s data, the simple linear regression of pressure on temperature shows a lack of fit.
The residual plot in Figure 7.7 clearly shows nonrandom structure. In Section 7.3, we used a power
transformation to eliminate the lack of fit. In this section we introduce an alternative method called
polynomial regression. Polynomial regression is a special case of the multiple regression model that
was introduced in Section 6.9 and is discussed more fully in Chapter 9.

With a single predictor variable x, we can try to eliminate lack of fit in the simple linear regres-
sion yi = β0 +β2xi + εi by fitting larger models. In particular, we can fit the quadratic (parabolic)

179



180 8. LACK OF FIT AND NONPARAMETRIC REGRESSION

180 185 190 195 200 205 210

16
18

20
22

24
26

28

Temp

Pr
es

Figure 8.1: Hooker data, linear fit.

model
yi = β0 +β1xi +β2x2

i + εi.

We could also try a cubic model

yi = β0 +β1xi +β2x2
i +β3x3

i + εi,

the quartic model
yi = β0 +β1xi +β2x2

i +β3x3
i +β4x4

i + εi,

or higher-degree polynomials. If we view our purpose as finding good, easily interpretable approx-
imate models for the data, high-degree polynomials can behave poorly. As we will see later, the
process of fitting the observed data can cause high-degree polynomials to give very erratic results
in areas very near the observed data. A good approximate model should work well, not only at the
observed data, but also near it. Thus, we focus on low-degree polynomials. The problem of erratic
fits is addressed in the next section. We now examine issues related to fitting polynomials.

EXAMPLE 8.1.1. Computer programs give output for polynomial regression that is very similar
to that for simple linear regression. We fit a fifth-degree (quintic) polynomial to Hooker’s data,

yi = γ0 + γ1xi + γ2x2
i + γ3x3

i + γ4x4
i + γ5x5

i + εi. (8.1.1)

Actually, we tried fitting a cubic model to these data and encountered numerical instability. (Some
computer programs object to fitting it.) This may be related to the fact that the R2 is so high. To help
with the numerical instability of the procedure, before computing the powers of the x variable we
subtracted the mean x̄· = 191.787. Thus, we actually fit,

yi = β0 +β1(xi − x̄·)+β2(xi − x̄·)2 +β3(xi − x̄·)3 +β4(xi − x̄·)4 +β5(xi − x̄·)5 + εi. (8.1.2)

These two models are equivalent in that they always give the same fitted values, residuals, and
degrees of freedom. Moreover, γ5 ≡ β5 but none of the other γ js are equivalent to the corresponding
β js. (The equivalences are obtained by the rather ugly process of actually multiplying out the powers
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of (xi − x̄·) in Model (8.1.2) so that the model can be rewritten in the form of Model (8.1.1).) The
fitted model, (8.1.2), is summarized by the table of coefficients and the ANOVA table.

Table of Coefficients: Model (8.1.2).
Predictor β̂k SE(β̂k) t P
Constant 19.7576 0.0581 340.19 0.000
(x− x̄·) 0.41540 0.01216 34.17 0.000
(x− x̄·)2 0.002179 0.002260 0.96 0.344
(x− x̄·)3 0.0000942 0.0001950 0.48 0.633
(x− x̄·)4 0.00001522 0.00001686 0.90 0.375
(x− x̄·)5 −0.00000080 0.00000095 −0.84 0.409

Analysis of Variance: Model (8.1.2).
Source df SS MS F P
Regression 5 447.175 89.435 3315.48 0.000
Error 25 0.674 0.027
Total 30 447.850

The most important things here are that we now know the SSE , dfE , and MSE from the fifth-degree
polynomial. The ANOVA table also provides an F test for comparing the fifth-degree polynomial
against the reduced model yi = β0 + εi, not a terribly interesting test.

Usually, the only interesting t test for a regression coefficient in polynomial regression is the
one for the highest term in the polynomial. In this case the t statistic for the fifth-degree term is
−0.84 with a P value of 0.409, so there is little evidence that we need the fifth-degree term in the
polynomial. All the t statistics are computed as if the variable in question was the only variable
being dropped from the fifth-degree polynomial. For example, it usually makes little sense to have
a quintic model that does not include a quadratic term, so there is little point in examining the t
statistic for testing β2 = 0. One reason for this is that simple linear transformations of the predictor
variable change the roles of lower-order terms. For example, something as simple as subtracting
x̄· completely changes the meaning of γ2 from Model (8.1.1) to β2 in Model (8.1.2). Another way
to think about this is that the Hooker data uses temperature measured in Fahrenheit as a predictor
variable. The quintic model, (8.1.2), for the Hooker data is consistent with β2 = 0 with a P value
of 0.344. If we changed to measuring temperature in Celsius, there is no reason to believe that
the new quintic model would still be consistent with β2 = 0. When there is a quintic term in the
model, a quadratic term based on Fahrenheit measurements has a completely different meaning
than a quadratic term based on Celsius measurements. The same is true for all the other terms
except the highest-order term, here the quintic term. On the other hand, the Fahrenheit and Celsius
quintic models that include all lower-order terms are equivalent, just as the simple linear regressions
based on Fahrenheit and Celsius are equivalent. Of course these comments apply to all polynomial
regressions. Exercise 8.7.7 explores the relationships among regression parameters for quadratic
models that have and have not adjusted the predictor for its sample mean.

A lack-of-fit test is provided by testing the quintic model against the original simple linear
regression model. The F statistic is

Fobs =
(3.68−0.674)/(29−25)

0.027
= 27.83

which is much bigger than 1 and easily significant at the 0.01 level when compared to an F(4,25)
distribution. The test suggests lack of fit (or some other problem with the assumptions). �

8.1.1 Picking a polynomial

We now consider the problem of finding a small-order polynomial that fits the data well.
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The table of coefficients for the quintic polynomial on the Hooker data provides a t test for
whether we can drop each variable out of the model, but for the most part these tests are uninter-
esting. The only t statistic that is of interest is that for x5. It makes little sense, when dealing with
a fifth-degree polynomial, to worry about whether you can drop out, say, the quadratic term. The
only t statistic of interest is the one that tests whether you can drop x5 so that you could get by
with a quartic polynomial. If you are then satisfied with a quartic polynomial, it makes sense to
test whether you can get by with a cubic. In other words, what we would really like to do is fit the
sequence of models

yi = β0 + εi, (8.1.3)

yi = β0 +β1xi + εi, (8.1.4)

yi = β0 +β1xi +β2x2
i + εi, (8.1.5)

yi = β0 +β1xi +β2x2
i +β3x3

i + εi, (8.1.6)

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi, (8.1.7)

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i +β5x5

i + εi, (8.1.8)

and find the smallest model that fits the data. It is equivalent to fit the sequence of polynomials with
x adjusted for its mean, x̄·. In subsequent discussion we refer to SSEs and other statistics for models
(8.1.3) through (8.1.8) as SSE(3) through SSE(8) with other similar notations that are obvious.
Recall that models (8.1.1), (8.1.2), and (8.1.8) are equivalent.

Many regression programs fit an overall model by fitting a sequence of models and provide
key results from the sequence. Most often the results are the sequential sums of squares, which are
simply the difference in error sums of squares for consecutive models in the sequence. Note that
you must specify the variables to the computer program in the order you want them fitted. For the
Hooker data, sequential fitting of models (8.1.3) through (8.1.8) gives

Model
Source Comparison df Seq SS F
(x− x̄·) SSE(3)−SSE(4) 1 444.167 16465.9
(x− x̄·)2 SSE(4)−SSE(5) 1 2.986 110.7
(x− x̄·)3 SSE(5)−SSE(6) 1 0.000 0.0
(x− x̄·)4 SSE(6)−SSE(7) 1 0.003 0.1
(x− x̄·)5 SSE(7)−SSE(8) 1 0.019 0.7

Using these and statistics reported in Example 8.1.1, the F statistic for dropping the fifth-degree
term from the polynomial is

Fobs =
SSE(7)−SSE(8)

MSE(8)
=

0.019
0.027

= 0.71 = (−0.84)2.

The corresponding t statistic reported earlier for testing H0 : β5 = 0 in Model (8.1.2) was −0.84.
The data are consistent with a fourth-degree polynomial.

The F test for dropping to a third-degree polynomial from a fourth-degree polynomial is

Fobs =
SSE(6)−SSE(7)

MSE(8)
=

0.003
0.027

= 0.1161.

In the denominator of the test we again use the MSE from the fifth-degree polynomial. When do-
ing a series of tests on related models one generally uses the MSE from the largest model in the
denominator of all tests, cf. Subsection 3.1.1. The t statistic corresponding to this F statistic is√

0.1161
.
= 0.341, not the value 0.90 reported earlier for the fourth-degree term in the table of coef-

ficients for the fifth-degree model, (8.1.2). The t value of 0.341 is a statistic for testing β4 = 0 in the
fourth-degree model. The value tobs = 0.341 is not quite the t statistic (0.343) you would get in the
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Figure 8.2: Hooker data with quadratic fit.

table of coefficients for fitting the fourth-degree polynomial (8.1.7) because the table of coefficients
would use the MSE from Model (8.1.7) whereas this statistic is using the MSE from Model (8.1.8).
Nonetheless, tobs provides a test for β4 = 0 in a model that has already specified that β5 = 0 whereas
t = 0.90 from the table of coefficients for the fifth-degree model, (8.1.2), is testing β4 = 0 without
specifying that β5 = 0.

The other F statistics listed are also computed as Seq SS/MSE(8). From the list of F statistics,
we can clearly drop any of the polynomial terms down to the quadratic term.

8.1.2 Exploring the chosen model

We now focus on the polynomial model that fits these data well: the quadratic model

yi = β0 +β1xi +β2x2
i + εi.

We have switched to fitting the polynomial without correcting the predictor for its mean value.
Summary tables for fitting the quadratic model are

Table of Coefficients: Hooker data, quadratic model.
Predictor β̂k SE(β̂k) t P
Constant 88.02 13.93 6.32 0.000
x −1.1295 0.1434 −7.88 0.000
x2 0.0040330 0.0003682 10.95 0.000

Analysis of Variance: Hooker data, quadratic model.
Source df SS MS F P
Regression 2 447.15 223.58 8984.23 0.000
Error 28 0.70 0.02
Total 30 447.85

The MSE , regression parameter estimates, and standard errors are used in the usual way. The t
statistics and P values are for the tests of whether the corresponding β parameters are 0. The t
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Figure 8.3: Standardized residuals versus predicted values, quadratic model.

statistics for β0 and β1 are of little interest. The t statistic for β2 is 10.95, which is highly significant,
so the quadratic model accounts for a significant amount of the lack of fit displayed by the simple
linear regression model. Figure 8.2 gives the data with the fitted parabola.

We will not discuss the ANOVA table in detail, but note that with two predictors, x and x2, there
are 2 degrees of freedom for regression. In general, if we fit a polynomial of degree a, there will be
a degrees of freedom for regression, one degree of freedom for every term other than the intercept.
Correspondingly, when fitting a polynomial of degree a, there are n−a−1 degrees of freedom for
error. The ANOVA table F statistic provides a test of whether the polynomial (in this case quadratic)
model explains the data better than the model with only an intercept.

The fitted values are obtained by substituting the xi values into

ŷ = 88.02−1.1295x+0.004033x2.

The residuals are ε̂i = yi − ŷi.
The coefficient of determination is computed and interpreted as before. It is the squared corre-

lation between the pairs (ŷi,yi) and also SSReg divided by the SSTot, so it measures the amount of
the total variability that is explained by the predictor variables temperature and temperature squared.
For these data, R2 = 99.8%, which is an increase from 99.2% for the simple linear regression model.
It is not appropriate to compare the R2 for this model to the R2 from the log transformed model of
Section 7.3 because they are computed from data that use different scales. However, if we back
transform the fitted log values to the original scale to give ŷi� values and compute R2

� as the squared
correlation between the (ŷi�,yi) values, then R2

� and R2 are comparable.
The standardized residual plots are given in Figures 8.3 and 8.4. The plot against the predicted

values looks good, just as it did for the transformed data examined in the Section 7.3. The normal
plot for this model has a shoulder at the top but it looks much better than the normal plot for the
simple linear regression on the log transformed data.

If we are interested in the mean value of pressure for a temperature of 205◦F, the quadratic
model estimate is (up to a little round-off error)

ŷ = 25.95 = 88.02−1.1295(205)+0.004033(205)2.
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Figure 8.4: Normal plot for quadratic model, W ′ = 0.966.

The standard error (as reported by the computer program) is 0.0528 and a 95% confidence interval
is (25.84,26.06). This compares to a point estimate of 25.95 and a 95% confidence interval of
(25.80,26.10) obtained in Section 7.3 from regressing the log of pressure on temperature and back
transforming. The quadratic model prediction for a new observation at 205◦F is again 25.95 with a
95% prediction interval of (25.61,26.29). The corresponding back transformed prediction interval
from the log transformed data is (25.49,26.42). In this example, the results of the two methods for
dealing with lack of fit are qualitatively very similar, at least at 205◦F.

Finally, consider testing the quadratic model for lack of fit by comparing it to the quintic model
(8.1.2). The F statistic is

Fobs =
(0.70−0.674)/(28−25)

0.027
= 0.321,

which is much smaller than 1 and makes no suggestion of lack of fit.
One thing we have not addressed is why we chose a fifth-degree polynomial rather than a fourth-

degree or a sixth-degree or a twelfth-degree. The simplest answer is just to pick something that
clearly turns out to be large enough to catch the important features of the data. If you start with too
small a polynomial, go back and pick a bigger one. �

8.2 Polynomial regression and leverages

We now present a simple example that illustrates two points: that leverages depend on the model
and that high-order polynomials can fit the data in very strange ways.

EXAMPLE 8.2.1. The data for the example follow. They were constructed to have most observa-
tions far from the middle.

Case 1 2 3 4 5 6 7
y 0.445 1.206 0.100 −2.198 0.536 0.329 −0.689
x 0.0 0.5 1.0 10.0 19.0 19.5 20.0
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Figure 8.5: Plot of y versus x.

I selected the x values. The y values are a sample of size 7 from a N(0,1) distribution. Note that
with seven distinct x values, we can fit a polynomial of degree 6.

The data are plotted in Figure 8.5. Just by chance (honest, folks), I observed a very small y value
at x = 10, so the data appear to follow a parabola that opens up. The small y value at x = 10 totally
dominates the impression given by Figure 8.5. If the y value at x = 10 had been near 3 rather than
near −2, the data would appear to be a parabola that opens down. If the y value had been between 0
and 1, the data would appear to fit a line with a slightly negative slope. When thinking about fitting
a parabola, the case with x = 10 is an extremely high-leverage point.

Depending on the y value at x = 10, the data suggest a parabola opening up, a parabola opening
down, or that we do not need a parabola to explain the data. Regardless of the y value observed at
x = 10, the fitted parabola must go nearly through the point (10,y). On the other hand, if we think
only about fitting a line to these data, the small y value at x = 10 has much less effect. In fitting
a line, the value y = −2.198 will look unusually small (it will have a very noticeable standardized
residual), but it will not force the fitted line to go nearly through the point (10,−2.198).

Table 8.1 gives the leverages for all of the polynomial models that can be fitted to these data.
Note that there are no large leverages for the simple linear regression model (the linear polynomial).
For the quadratic (parabolic) model, all of the leverages are reasonably small except the leverage
of 0.96 at x = 10 that very nearly equals 1. Thus, in the quadratic model, the value of y at x = 10
dominates the fitted polynomial. The cubic model has extremely high leverage at x = 10, but the
leverages are also beginning to get large at x = 0,1,19,20. For the quartic model, the leverage at
x = 10 is 1, to two decimal places; the leverages for x = 0,1,19,20 are also nearly 1. The same
pattern continues with the quintic model but the leverages at x = 0.5,19.5 are also becoming large.
Finally, with the sixth-degree (hexic) polynomial, all of the leverages are exactly one. This indicates
that the sixth-degree polynomial has to go through every data point exactly and thus every data point
is extremely influential on the estimate of the sixth-degree polynomial. (It is fortunate that there are
only seven distinct x values. This discussion would really tank if we had to fit a seventh-degree
polynomial. [Think about it: quartic, quintic, hexic, ... tank.])

As we fit larger polynomials, we get more high-leverage cases (and more numerical instability).
Actually, as in our example, this occurs when the size of the polynomial nears one less than the num-
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Table 8.1: Leverages.

Model
x Linear Quadratic Cubic Quartic Quintic Hexic

0.0 0.33 0.40 0.64 0.87 0.94 1.00
0.5 0.31 0.33 0.33 0.34 0.67 1.00
1.0 0.29 0.29 0.55 0.80 0.89 1.00

10.0 0.14 0.96 0.96 1.00 1.00 1.00
19.0 0.29 0.29 0.55 0.80 0.89 1.00
19.5 0.31 0.33 0.33 0.34 0.67 1.00
20.0 0.33 0.40 0.64 0.87 0.94 1.00

ber of distinct x values and nearly all data points have distinct x values. The estimated polynomials
must go very nearly through all high-leverage cases. To accomplish this the estimated polynomials
may get very strange. We now give all of the fitted polynomials for these data.

Model Estimated polynomial
Linear ŷ = 0.252−0.029x
Quadratic ŷ = 0.822−0.536x+0.0253x2

Cubic ŷ = 1.188−1.395x+0.1487x2−0.0041x3

Quartic ŷ = 0.713−0.141x−0.1540x2+0.0199x3

−0.00060x4

Quintic ŷ = 0.623+1.144x−1.7196x2+0.3011x3

−0.01778x4+0.000344x5

Hexic ŷ = 0.445+3.936x−5.4316x2+1.2626x3

−0.11735x4+0.004876x5

−0.00007554x6

Figures 8.6 and 8.7 contain graphs of these estimated polynomials.
Figure 8.6 contains the estimated linear, quadratic, and cubic polynomials. The linear and

quadratic curves fit about as one would expect from looking at the scatter plot Figure 8.5. For x
values near the range 0 to 20, we could use these curves to predict y values and get reasonable, if
not necessarily good, results. One could not say the same for the estimated cubic polynomial. The
cubic curve takes on ŷ values near −3 for some x values that are near 6. The y values in the data are
between about −2 and 1.2; nothing in the data suggests that y values near −3 are likely to occur.
Such predicted values are entirely the product of fitting a cubic polynomial. If we really knew that a
cubic polynomial was correct for these data, the estimated polynomial would be perfectly appropri-
ate. But most often we use polynomials to approximate the behavior of the data and for these data
the cubic polynomial gives a poor approximation.

Figure 8.7 gives the estimated quartic, quintic, and hexic polynomials. Note that the scale on
the y axis has changed drastically from Figure 8.6. Qualitatively, the fitted polynomials behave like
the cubic except their behavior is even worse. These polynomials do very strange things everywhere
except near the observed data.

It is a theoretical fact that when the degrees of freedom for error get small, the MSE should
be an erratic estimate of σ2. In my experience, another phenomenon that sometimes occurs when
fitting large models to data is that the mean squared error gets unnaturally small. Table 8.2 gives the
analysis of variance tables for all of the polynomial models. Our original data were a sample from a
N(0,1) distribution. The data were constructed with no regression structure so the best estimate of
the variance comes from the total line and is 7.353/6 = 1.2255. This value is a reasonable estimate
of the true value 1. The MSE from the simple linear regression model also provides a reasonable
estimate of σ2 = 1. The larger models do not work as well. Most have variance estimates near
0.5, while the hexic model does not even allow an estimate of σ2 because it fits every data point
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Figure 8.6: Plots of linear (solid), quadratic (dashes), and cubic (dots) regression curves.
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Figure 8.7: Plots of quartic (solid), quintic (dashes), and hexic (dots) regression curves.

perfectly. By fitting models that are too large it seems that one can often make the MSE artificially
small. For example, the quartic model has a MSE of 0.306 and an F statistic of 5.51; if it were not
for the small value of dfE , such an F value would be highly significant. If you find a large model
that has an unnaturally small MSE with a reasonable number of degrees of freedom, everything can
appear to be significant even though nothing you look at is really significant.

Just as the mean squared error often gets unnaturally small when fitting large models, R2 gets
unnaturally large. As we have seen, there can be no possible reason to use a larger model than the
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Table 8.2: Analysis of variance tables.

Simple linear regression
Source df SS MS F P
Regression 1 0.457 0.457 0.33 0.59
Error 5 6.896 1.379
Total 6 7.353

Quadratic model
Source df SS MS F P
Regression 2 5.185 2.593 4.78 0.09
Error 4 2.168 0.542
Total 6 7.353

Cubic model
Source df SS MS F P
Regression 3 5.735 1.912 3.55 0.16
Error 3 1.618 0.539
Total 6 7.353

Quartic model
Source df SS MS F P
Regression 4 6.741 1.685 5.51 0.16
Error 2 0.612 0.306
Total 6 7.353

Quintic model
Source df SS MS F P
Regression 5 6.856 1.371 2.76 0.43
Error 1 0.497 0.497
Total 6 7.353

Hexic model
Source df SS MS F P
Regression 6 7.353 1.2255 — —
Error 0 0.000 —
Total 6 7.353

quadratic with its R2 of 0.71 for these 7 data points, but the cubic, quartic, quintic, and hexic models
have R2s of 0.78, 0.92, 0.93, and 1, respectively. �

8.3 Other basis functions

In a SLR, one method for testing lack of fit was to fit a larger polynomial model. In particular, for
the Hooker data we fit a fifth-degree polynomial,

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i +β5x5

i + εi.

There was no particularly good reason to fit a fifth-degree, rather than a third-degree or seventh-
degree polynomial. We just picked a polynomial that we hoped would be larger than we needed.

Rather than expanding the SLR model by adding polynomial terms, we can add other functions
of x to the model. Most commonly used functions are simplified if we rescale x into a new variable
taking values between 0 and 1, say, x̃. Commonly used functions are trig. functions, so we might fit
a full model consisting of

yi = β0 +β1xi +β2 cos(π x̃i)+β3 sin(π x̃i)+β4 cos(π2x̃i)+β5 sin(π2x̃i)+ εi (8.3.1)

or a full model

yi = β0 +β1xi +β2 cos(π x̃i)+β3 cos(π2x̃i)+β4 cos(π3x̃i)+β5 cos(π4x̃i)+ εi. (8.3.2)
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As with the polynomial models, the number of additional predictors to add depends on how com-
plicated the data are. For the purpose of testing lack of fit, we simply need the number to be large
enough to find any salient aspects of the data that are not fitted well by the SLR model.

Another approach is to add a number of indicator functions. An indicator function of a set A is
defined as

IA(θ ) =
{

1 if θ ∈ A
0 if θ �∈ A

. (8.3.3)

We can fit models like

yi = β0 +β1xi +β2I[0,.25)(x̃i)+β3I[.25,.5)(x̃i)+β4I[.5,.75)(x̃i)+β5I[.75,1](x̃i)+ εi.

Adding indicator functions of length 2− j defined on x̃ is equivalent to adding Haar wavelets to the
model, cf. Christensen (2001). Unfortunately, no regression programs will fit this model because it
is no longer a regression model. It is no longer a regression model because there is a redundancy in
the predictor variables. The model includes an intercept, which corresponds to a predictor variable
that always takes on the value 1. However, if we add together our four indicator functions, their sum
is also a variable that always takes on the value 1. To evade this problem, we need either to delete
one of the indicator functions (doesn’t matter which one) or remove the intercept from the model.
Dropping the last indicator is convenient, so we fit

yi = β0 +β1xi +β2I[0,.25)(x̃i)+β3I[.25,.5)(x̃i)+β4I[.5,.75)(x̃i)+ εi. (8.3.4)

Any continuous function defined on an interval [a,b] can be approximated arbitrarily well by a
sufficiently large polynomial. Similar statements can be made about the other classes of functions
introduced here. Because of this, these classes of functions are known as basis functions.

EXAMPLE 8.3.1. We illustrate the methods on the Hooker data. With x the temperature, we
defined x̃ = (x− 180.5)/30.5. Fitting Model (8.3.1) gives

Analysis of Variance: Sines and Cosines.
Source df SS MS F P
Regression 5 447.185 89.437 3364.82 0.000
Residual Error 25 0.665 0.0266
Total 30 447.850

A test of whether Model (8.3.1) fits significantly better than SLR has statistic

Fobs =
(3.68−0.665)/(29−25)

0.0266
= 28.4.

Clearly the reduced model of a simple linear regression fits worse than the model with two additional
sine and cosine terms.

Fitting Model (8.3.2) gives

Analysis of Variance: Cosines.
Source df SS MS F P
Regression 5 447.208 89.442 3486.60 0.000
Residual Error 25 0.641 0.0257
Total 30 447.850

A test of whether the cosine model fits significantly better than SLR has statistic

Fobs =
(3.68−0.641)/(29−25)

0.0257
= 29.6.

Clearly the reduced model of a simple linear regression fits worse than the model with four addi-
tional cosine terms.

Fitting Model (8.3.4) gives
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Figure 8.8: Plot of fifth-order cosine model.

Analysis of Variance: Haar Wavelets.
Source df SS MS F P
Regression 4 446.77 111.69 2678.37 0.000
Residual Error 26 1.08 0.0417
Total 30 447.85

A test of whether this Haar wavelet model fits significantly better than SLR has statistic

Fobs =
(3.68−1.08)/(29−26)

0.0417
= 20.8.

Clearly the reduced model of a simple linear regression fits worse than the model with three addi-
tional indicator functions. �

8.3.1 High-order models

For continuous basis functions like the trig functions, high-order models can behave as strangely
between the data points as polynomials. For example, Figure 8.8 contains a plot of the 7 data points
discussed in Section 8.2 and, using x̃ = x/20, a fitted cosine model with 5 terms and an intercept,

yi = β0 +β1 cos(π x̃i)+β2 cos(π2x̃i)+β3 cos(π3x̃i)+β4 cos(π4x̃i)+β5 cos(π5x̃i)+ εi.

The fit away from the data is even worse than for fifth- and sixth-order polynomials.

8.4 Partitioning methods

The basic idea of the partitioning method is quite simple. Suppose we are fitting a simple linear
regression but that the actual relationship between x and y is a quadratic. If you can split the x
values into two parts near the maximum or minimum of the quadratic, you can get a much better
approximate fit using two lines instead of one. More generally, the idea is that an approximate model
should work better on a smaller set of data that has predictor variables that are more similar. Thus, if
the original model is wrong, we should get a better approximation to the truth by fitting the original
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Figure 8.9: Hooker data, partition method.

model on a series of smaller subsets of the data. Of course if the original model is correct, it should
work about the same on each subset as it does on the complete data. The statistician partitions the
data into disjoint subsets, fits the original model on each subset, and compares the overall fit of
the subsets to the fit of the original model on the entire data. The statistician is free to select the
partitions, including the number of distinct sets, but the subsets need to be chosen based on the
predictor variable(s) alone.

EXAMPLE 8.4.1. We illustrate the partitioning method by splitting the Hooker data into two
parts. Our partition sets are the data with the 16 smallest temperatures and the data with the 15
largest temperatures. We then fit a separate regression line to each partition. The two fitted lines are
given in Figure 8.9. The ANOVA table is

Analysis of Variance: Partitioned Hooker data.
Source df SS MS F P
Regression 3 446.66 148.89 3385.73 0.000
Error 27 1.19 0.04
Total 30 447.85

A test of whether this partitioning fits significantly better than SLR has statistic

Fobs =
(3.68−1.19)/(29−27)

0.04
= 31.125.

Clearly the reduced model of a simple linear regression fits worse than the model with two SLRs.
Note that this is a simultaneous test of whether the slopes and intercepts are the same in each
partition. �

8.4.1 Fitting the partitioned model

We now consider three different ways to fit this partitioned model. Our computations will be subject
to some round-off error. One way to fit this model is simply to divide the data into two parts and fit
a simple linear regression to each one. Fitting the lowest 16 x (temperature) values gives
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Table of Coefficients: Low x values.
Predictor β̂k SE(β̂k) t P
Constant −50.725 2.596 −19.54 0.000
x-low 0.36670 0.01404 26.13 0.0001

Analysis of Variance: Low x values.
Source df SS MS F P
Regression 2 4687.1 2342.5 81269.77 0.000
Error 14 0.4 0.0
Total 16 4687.5

To get some extra numerical accuracy, from the F statistic we can compute MSE =
2342.5/81269.77= 0.028836 so SSE = 0.4037. Fitting the highest 15 x values gives

Table of Coefficients: High x values.
Predictor β̂k SE(β̂k) t P
Constant −74.574 2.032 −36.70 0.000
x-high 0.49088 0.01020 48.12 0.000

Analysis of Variance: High x values.
Source df SS MS F P
Regression 2 8193.9 4096.9 67967.66 0.000
Error 13 0.8 0.1
Total 15 8194.7

Again, from the F statistic MSE = 4096.9/67967.66 = 0.060277, so SSE = 0.7836. The fit of
the overall model is obtained by pooling the two Error terms to give dfE(Full) = 14+ 13 = 27,
SSE(Full) = 0.4037+ 0.7836= 1.1873, with MSE(Full) = 0.044.

A more efficient way to proceed is to fit both simple linear regressions at once. Construct a
variable h that identifies the 15 high values of x. In other words, h is 1 for the 15 highest temperature
values and 0 for the 16 lowest values. Define x1 = h× x, h2 = 1−h, and x2 = h2 × x. Fitting these
four variables in a regression through the origin, i.e., fitting

yi = β1hi2 +β2xi2 +β3hi +β4xi1 + εi,

gives

Table of Coefficients: Separate lines.
Predictor β̂k SE(β̂k) t P
h2 −50.725 3.205 −15.82 0.000
x2 0.36670 0.01733 21.16 0.000
h −74.574 1.736 −42.97 0.000
x1 0.490875 0.008712 56.34 0.000

Analysis of Variance: Separate lines.
Source df SS MS F P
Regression 4 12881.0 3220.2 73229.01 0.000
Error 27 1.2 0.0
Total 31 12882.2

Note that these regression estimates agree with those obtained from fitting each set of data sepa-
rately. The standard errors differ because here we are pooling the information in the error rather
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than using separate estimates of σ2 from each subset of data. Although the ANOVA table re-
ports MSE = 0.0, we can see that it actually agrees with earlier calculations by noting that
MSE = MSReg/F = 0.04397.

The way the model was originally fitted for our discussion was regressing on x, h, and x1, i.e.,
fitting

yi = β0 +β1xi +β2hi +β3xi1 + εi. (8.4.1)

This is a model that has the low group of temperature values as a baseline and for the high group
incorporates deviations from the baseline. The ANOVA table gives the same Error as the previous
table and the table of regression coefficients is

Table of Coefficients: Low group baseline.
Predictor β̂k SE(β̂k) t P
Constant −50.725 3.205 −15.82 0.000
x 0.36670 0.01733 21.16 0.000
h −23.849 3.645 −6.54 0.000
x1 0.12418 0.01940 6.40 0.000

The slope for the low group is 0.36670 and for the high group it is 0.36670+0.12418= 0.49088.
The t test for whether the slopes are different, in a model that retains separate intercepts, is based on
the x1 row of this table and has t = 6.40. The intercepts also look different. The estimated intercept
for the low group is −50.725 and for the high group it is −50.725+(−23.849)= −74.574. The t
test for whether the intercepts are different, in a model that retains separate slopes, is based on the h
row and has t =−6.54.

8.4.2 Output for categorical predictors*

In Section 3.9 we discussed the fact that predictor variables can be of two types: continuous or
categorical. Regression analysis and computer programs for regression analysis consider only con-
tinuous variables. Various programs for fitting linear models (as distinct from fitting regression)
handle both types of variables. Of the packages discussed on the website, R’s command lm and
SAS’s PROC GENMOD treat all (numerical) variables as continuous unless otherwise specified. In
particular, if no variables are specified as categorical, both lm and GENMOD act as regression pro-
grams. Minitab’s glm, on the other hand, treats all variables as categorical (factors) unless otherwise
specified. Not only are the defaults different, but how the programs deal with categorical variables
differs. Since partitioning the data defines categories, we have cause to introduce these issues here.
Categorical variables will become ubiquitous beginning in Chapter 12.

In our partitioning example, x is continuous but h is really a categorical variable indicating which
points are in the high group. When a categorical variable has only two groups, or more specifically,
if it is a 0-1 indicator variable like h (or h2), it can be treated the same way that continuous variables
are treated in regression software. Indeed, we have exploited that fact up to this point. The remainder
of this subsection discusses how various software treat variables that are identified as factors.

As indicated earlier, R’s lm command and SAS’s PROC GENMOD both have x defaulting to
a continuous variable but h can be specified as a factor. Minitab’s glm output has h defaulting to
a factor but x must be specified as a covariate. In all of them we fit a model that specifies effects
for each variable plus we fit an “interaction” between the two variables. To mimic these procedures
using regression, we need to construct and use variables h2, x1, x2 and two new variables h3, x3. One
advantage of specifying h as a factor variable is that you do not have to construct any new variables.

R’s lm program with h as a factor, essentially, fits Model (8.4.1), i.e., a model that uses the
low temperatures as a baseline. The output is the same as the regression output that we already
examined.

SAS’s PROC GENMOD with h as a classification variable (factor), essentially, fits a model that
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uses the high group as the baseline, that is, it fits

yi = β0 +β1xi +β2hi2 +β3xi2 + εi.

For the low group, the model incorporates deviations from the baseline. The three-line ANOVA
table does not change from Model (8.4.1) but the table of regression coefficients is

Table of Coefficients: High group baseline.
Predictor β̂k SE(β̂k) t P
Constant −74.574 1.736 −42.97 0.000
x 0.49088 0.00871 56.34 0.000
h2 23.849 3.645 6.54 0.000
x2 −0.12418 0.01940 −6.40 0.000

The estimated slope for the high group is 0.49088 and for the low group it is 0.49088+
(−0.12418) = 0.36670. The t test for whether the slopes are different, in a model that retains
separate intercepts, is based on the x2 row of this table and has t = −6.40. The intercepts also
look different. The estimated intercept for the high group is −74.574 and for the low group it is
−74.574+ 23.849= −50.725. The t test for whether the intercepts are different, in a model that
retains separate slopes, is based on the h2 row and has t = 6.54.

The following table is how PROC GENMOD reports these results.

Table of Coefficients: SAS PROC GENMOD.
95%

Predictor df β̂k SEm(β̂k) Conf. Limits t2 P
Intercept 1 −74.5741 1.6198 −77.7489 −71.3993 2119.55 < .0001
h 0 1 23.8490 3.4019 17.1815 30.5166 49.15 < .0001
h 1 0 0.0000 0.0000 0.0000 0.0000 .
x 1 0.4909 0.0081 0.4749 0.5068 3644.94 < .0001
x *h 0 1 −0.1242 0.0181 −0.1597 −0.0887 47.04 < .0001
x *h 1 0 0.0000 0.0000 0.0000 0.0000 .
Scale 1 0.1957 0.0249 0.1526 0.2510

While the parameter estimates agree in obvious ways, the standard errors are different from the
regression output. The coefficients for the highest level of the factor h are forced to be zero (R does
this for the lowest level of h) and the corresponding standard errors are 0 because estimates that
have been forced to be zero have no variability. The nonzero standard errors are also different in
GENMOD because they are not based on the MSE but rather the maximum likelihood estimate of
the variance,

σ̂2 ≡ SSE
n

.

We used the notation SEm(β̂k) with a subscript of m to indicate this difference. The relationship
between the standard errors is

SE(β̂k) =

√
n√

dfE
SEm(β̂k).

Note also that GENMOD gives t2 rather than t, provides 95% confidence intervals, and reports very
small P values in a more appropriate fashion than merely reporting 0.0000. SAS also has a PROC
GLM procedure that will fit the model, but it does not readily report parameter estimates.

R and SAS use variations on a theme, i.e., fix a baseline group. Minitab takes a different course.
Minitab, essentially, defines variables h3 = h2 −h and x3 = x×h3 and fits

yi = β0 +β1xi +β2hi3 +β3xi3 + εi.

This gives the regression coefficients
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Table of Coefficients.
Predictor β̂k SE(β̂k) t P
Constant −62.64962 1.82259 −34.374 0.000
x 0.42879 0.00970 44.206 0.000
h3 11.92452 1.82259 6.543 0.000
x3 −0.06209 0.00970 −6.401 0.000

Minitab’s glm yields the following output for coefficients.

Table of Coefficients: Minitab glm.
Predictor β̂k SE(β̂k) t P
Constant −62.650 1.823 −34.37 0.000
h

0 11.925 1.823 6.54 0.000
x 0.428787 0.009700 44.21 0.000
x*h

0 −0.062089 0.009700 −6.40 0.000
provided you ask Minitab for coefficients for all terms. (The default does not give coefficients associ-
ated with h.) The “constant” value of −62.650 is the average of the two intercept estimates that were
reported earlier for the separate lines. The intercept for the low group (h = 0) is −62.650+11.925
and the intercept for the high group is −62.650−11.925. Note that the t test for “h 0” is the same
6.54 that was reported earlier for testing whether the intercepts were different. Minitab is fitting
effects for both h = 0 and h = 1 but forcing them to sum to zero, rather than what R and SAS do,
which is picking a level of h and forcing the effect of that level to be zero (hence making it the base-
line). Similarly, the “x” value 0.428787 is the average of the two slope estimates reported earlier.
The slope for the low group (h = 0) is 0.428787+(−0.062089) and the slope for the high group is
0.428787−(−0.062089). The t test for “x*h 0” is the same −6.40 as that reported earlier for testing
whether the slopes were different. Minitab provides coefficient output that is more traditional than
either R or SAS, but is often more difficult to interpret. However, given the wide variety of software
and output that one may be confronted with, it is important to be able to cope with all of it.

Our discussion used the variable h that partitions the data into the smallest 16 observations and
the largest 15 observations. Minitab’s regression program provides a lack-of-fit test that partitions
the data into the 18 observations below x̄· = 191.79 and the 13 observations larger than the mean.
Their test gets considerably more complicated when there is more than one predictor variable. They
perform both this test (in more complicated situations, these tests) and a version of the test described
in the next subsection, and combine the results from the various tests.

8.4.3 Utts’ method

Utts (1982) proposed a lack-of-fit test based on comparing the original (reduced) model to a full
model that consists of fitting the original model on a subset of the original data. In other words, you
fit the model on all the data and test that against a full model that consists of fitting the model on
a subset of the data. The subset is chosen to contain the points closest to x̄·. Although it seems like
fitting the model to a reduced set of points should create a reduced model, just the opposite is true.
To fit a model to a reduced set of points, we can think of fitting the original model and then adding
a separate parameter for every data point that we want to exclude from the fitting procedure. In fact,
that is what makes this a partitioning method. There is one subset that consists of the central data
and the rest of the partition has every data point in a separate set.

The central subset is chosen to be a group of points close to x̄·. With only one predictor variable,
it is easy to determine a group of central points. It turns out that for models with an intercept, the
leverages are really measures of distance from x̄·; see Christensen (2011, Section 13.1), so even with
more predictor variables, one could choose a group of points that have the lowest leverages in the
original model.
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Figure 8.10: Hooker data, Utts’ method with 15 points.

EXAMPLE 8.4.1. We consider first the use of 15 central points with leverages below 0.05; about
half the data. We then consider a group of 6 central points; about a fifth of the data.

The ANOVA table when fitting a simple linear regression to 15 central points is

Analysis of Variance: 15 central points.
Source df SS MS F P
Regression 1 40.658 40.658 1762.20 0.000
Error 13 0.300 0.023
Total 14 40.958

The lack-of-fit test against a reduced model of simple linear regression on the entire data has

Fobs =
(3.68−0.300)/(29−13)

0.023
= 9.18,

which is highly significant. Figure 8.10 illustrates the fitting method.
When using 6 central points having leverages below 0.035, the ANOVA table is

Analysis of Variance: 6 central points.
Source df SS MS F P
Regression 1 1.6214 1.6214 75.63 0.001
Error 4 0.0858 0.0214
Total 5 1.7072

and the F statistic is

Fobs =
(3.68−0.0858)/(29−4)

0.0214
= 6.72.

This is much bigger than 1 and easily significant at the 0.05 level. Both tests suggest lack of fit.
Figure 8.11 illustrates the fitting method. �

My experience is that Utt’s test tends to work better with relatively small groups of central
points. (Even though the F statistic here was smaller for the smaller group.) Minitab’s regression
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Figure 8.11: Hooker data, Utts’ method with 6 points.

program incorporates a version of Utt’s test that defines the central region as those points with
leverages less than 1.1p/n where p is the number of regression coefficients in the model, so for a
simple linear regression p = 2. For these data, their central region consists of the 22 observations
with temperature between 183.2 and 200.6.

8.5 Splines

When fitting a polynomial to a single predictor variable, the partitioning method is extremely similar
to the nonparametric regression method known as fitting splines. When using partitioning to test for
lack of fit, our fitting of the model on each subset was merely a device to see whether the original
fitted model gave better approximations on smaller subsets of the data than it did overall. The only
difference when fitting splines is that we take the results obtained from fitting on the partition sets
seriously as a model for the regression function m(x). As such, we typically do not want to allow
discontinuities in m(x) at the partition points (known as “knots” in spline theory), so we include
conditions that force continuity. Typically when fitting splines one uses a large number of partition
sets, so there are a large number of conditions to force continuity. We illustrate the ideas on the
Hooker data with only two partition sets. Generalizations are available for more than one predictor
variable; see Wahba (1990).

EXAMPLE 8.5.1. Hooker data.
Again, our partition sets are the data with the 16 smallest temperatures and the data with the 15
largest temperatures. Referring back to Table 7.1 we see that the partition point must be somewhere
between 190.6 and 191.1. For convenience, let’s set the partition point at 191. We model a separate
regression line for each partition,

m(x) =

{
β1 +β2x if x ≤ 191
β3 +β4x if x > 191 .

Fitting two regression lines was discussed in Subsection 8.4.1 where we found the estimated lines

m̂(x) =
{−50.725+0.36670x if x ≤ 191
−74.574+0.490875x if x > 191 .
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The two fitted lines were displayed in Figure 8.9.
To change this into a linear spline model, we need the two lines to match up at the knot, that is,

we need to impose the continuity condition that

β1 +β2191 = β3 +β4191.

The condition can be rewritten in many ways but we will use

β3 = β1 +β2191−β4191.

You can see from Figure 8.9 that the two separate fitted lines are already pretty close to matching
up at the knot.

In Subsection 8.4.1 we fitted the partitioned model as a single linear model in two ways. The
first was more transparent but the second had advantages. The same is true about the modifications
needed to generate linear spline models. To begin, we constructed a variable h that identifies the 15
high values of x. In other words, h is 1 for the 15 highest temperature values and 0 for the 16 lowest
values. We might now write

h(x) = I(191,∞)(x),

where we again use the indicator function introduced in Section 8.3. With slightly different notation
for the predictor variables, we first fitted the two separate lines model as

yi = β1[1− h(xi)]+β2xi[1−h(xi)]+β3h(xi)+β4xih(xi)+ εi.

Imposing the continuity condition by substituting for β3, the model becomes

yi = β1[1− h(xi)]+β2xi[1−h(xi)]+ {β1 +β2191−β4191}h(xi)+β4xih(xi)+ εi

or

yi = β1 {[1− h(xi)]+ h(xi)}+β2{xi[1−h(xi)]+ 191h(xi)}+β4 [xih(xi)−191h(xi)]+ εi

or
yi = β1 +β2{xi[1−h(xi)]+ 191h(xi)}+β4 (xi −191)h(xi)+ εi, (8.5.1)

where now β1 is an overall intercept for the model.
As mentioned earlier, the two-lines model was originally fitted (with different symbols for the

unknown parameters) as
yi = β1 +β2xi + γ1h(xi)+ γ2xih(xi)+ εi.

This is a model that has the low group of temperature values as a baseline and for the high group
incorporates deviations from the baseline, e.g., the slope above 191 is β2 + γ2. For this model the
continuity condition is that

β1 +β2191 = β1 +β2191+ γ1+ γ2191

or that
0 = γ1 + γ2191

or that
γ1 =−γ2191.

Imposing this continuity condition, the model becomes

yi = β1 +β2xi − γ2191h(xi)+ γ2xih(xi)+ εi

or
yi = β1 +β2xi + γ2 (xi −191)h(xi)+ εi. (8.5.2)
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In discussions of splines, the function (xi −191)h(xi) is typically written (xi−191)+ where for any
scalar a,

(x−a)+ ≡
{

x−a if x > a
0 if x ≤ a.

Fitting models (8.5.1) and (8.5.2) to the Hooker data gives

Table of Coefficients: Model (8.5.1).
Predictor Est SE(Est) t P
Constant −48.70931 2.252956 −21.62 0.000
x[1−h(x)]+ 191h(x) 0.35571 0.012080 29.45 0.000
(x− 191)+ 0.48717 0.007619 63.95 0.000

and

Table of Coefficients: Model (8.5.2).
Predictor Est SE(Est) t P
Constant −48.70931 2.25296 −21.620 0.000
x 0.35571 0.01208 29.447 0.000
(x−191)+ 0.13147 0.01751 7.509 0.000

Notice that the slope for x values above 191, β̂4 = 0.48717, equals the slope below 191 plus the
change in slopes, β̂2 + γ̂2 = 0.35571+0.13147, there being round-off error in the last digit.

Both models give dfE = 28, SSE = 1.2220, and MSE = 0.04364. We can even use the linear
spline model as the basis for a lack-of-fit test of the simple linear regression on the Hooker data,

Fobs =
(3.6825−1.2220)/(29−28)

0.04364
= 56.38.

Obviously, fitting different lines on each partition set is a more general model than fitting the same
line on each partition set. But since fitting a single line to all the data gives continuity at each knot,
fitting different lines on each partition set and forcing them to be continuous is still a more general
model than fitting the same line on all the data. �

In general, to fit a linear spline model, you need to decide on a group of knots at which the slope
will change. Call these x̃ j, j = 1, . . . ,r. The linear spline model then becomes

yi = β0 +β1xi +
r

∑
j=1

γ j(xi − x̃ j)+ + εi.

Similar ideas work with higher-degree polynomials. The most popular polynomial to use is cubic;
see Exercise 8.7.8. The general cubic spline model is

yi = β0 +β1xi +β2x2
i +β3x3 +

r

∑
j=1

γ j[(xi − x̃ j)+]
3 + εi.

See Christensen (2001, Section 7.6) for more discussion in a similar vein.

8.6 Fisher’s lack-of-fit test

We now introduce Fisher’s lack-of-fit test for the Hooker data. The test is discussed in much more
detail in Chapter 12 and extended in Chapter 15. For now, notice that the predictor variable includes
two replicate temperatures: x = 181.9 with y values 15.106 and 15.928, and x = 184.1 with y values
16.959 and 16.817. In this case, the computation for Fisher’s lack-of-fit test is quite simple. We use
the replicated x values to obtain a measure of pure error. First, compute the sample variance of the
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Table 8.3: IQs and achievement scores.

IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev. IQ Achiev.
100 49 105 50 134 78 107 43 122 66
117 47 89 72 125 39 121 75 130 63
98 69 96 45 140 66 90 40 116 43
87 47 105 47 137 69 132 80 101 44

106 45 95 46 142 68 116 55 92 50
134 55 126 67 130 71 137 73 120 60
77 72 111 66 92 31 113 48 80 31

107 59 121 59 125 53 110 41 117 55
125 27 106 49 120 64 114 29 93 50

yis at each replicated x value. There are 2 observations at each replicated x, so the sample variance
computed at each x has 1 degree of freedom. Since there are two replicated xs each with one degree
of freedom for the variance estimate, the pure error has 1+1= 2 degrees of freedom. To compute the
sum of squares for pure error, observe that when x = 181.9, the mean y is 15.517. The contribution
to the sum of squares pure error from this x value is (15.106− 15.517)2+(15.928− 15.517)2. A
similar contribution is computed for x = 184.1 and they are added to get the sum of squares pure
error. The degrees of freedom and sum of squares for lack of fit are found by taking the values from
the original error and subtracting the values for the pure error. The F test for lack of fit examines
the mean square lack of fit divided by the mean square pure error.

Analysis of Variance.
Source df SS MS F P
Regression 1 444.17 444.17 3497.89 0.000
Error 29 3.68 0.13
(Lack of Fit) 27 3.66 0.14 10.45 0.091
(Pure Error) 2 0.03 0.01
Total 30 447.85

The F statistic for lack of fit, 10.45, seems substantially larger than 1, but because there are
only 2 degrees of freedom in the denominator, the P value is a relatively large 0.09. This method is
closely related to one-way analysis of variance as discussed in Chapter 12.

8.7 Exercises

EXERCISE 8.7.1. Dixon and Massey (1969) presented data on the relationship between IQ scores
and results on an achievement test in a general science course. Table 8.3 contains a subset of the data.
Fit the simple linear regression model of achievement on IQ and the quadratic model of achievement
on IQ and IQ squared. Evaluate both models and decide which is the best.

EXERCISE 8.7.2. In Exercise 7.4.2 we considered data on the relationship between farm sizes
and the acreage in corn. Fit the linear, quadratic, cubic, and quartic polynomial models to the logs
of the acreages in corn. Find the model that fits best. Check the assumptions for this model.

EXERCISE 8.7.3. Use two methods other than fitting polynomial models to test for lack of fit in
Exercise 8.7.1

EXERCISE 8.7.4. Based on the height and weight data given in Table 8.4, fit a simple linear
regression of weight on height for these data and check the assumptions. Give a 99% confidence
interval for the mean weight of people with a 72-inch height. Test for lack of fit of the simple linear
regression model.
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Table 8.4: Weights for various heights.

Ht. Wt. Ht. Wt.
65 120 63 110
65 140 63 135
65 130 63 120
65 135 72 170
66 150 72 185
66 135 72 160

Table 8.5: Jensen’s crank pin data.

Day Diameter Day Diameter Day Diameter Day Diameter
4 93 10 93 16 82 22 90
4 100 10 88 16 72 22 92
4 88 10 87 16 80 22 82
4 85 10 87 16 72 22 77
4 89 10 87 16 89 22 89

EXERCISE 8.7.5. Jensen (1977) and Weisberg (1985, p. 101) considered data on the outside
diameter of crank pins that were produced in an industrial process. The diameters of batches of
crank pins were measured on various days; if the industrial process is “under control” the diameters
should not depend on the day they were measured. A subset of the data is given in Table 8.5 in a
format consistent with performing a regression analysis on the data. The diameters of the crank pins
are actually .742+ yi j10−5 inches, where the yi js are reported in Table 8.5. Perform polynomial
regressions on the data. Give two lack-of-fit tests for the simple linear regression not based on
polynomial regression.

EXERCISE 8.7.6. Beineke and Suddarth (1979) and Devore (1991, p. 380) consider data on roof
supports involving trusses that use light-gauge metal connector plates. Their dependent variable is
an axial stiffness index (ASI) measured in kips per inch. The predictor variable is the length of the
light-gauge metal connector plates. The data are given in Table 8.6.

Fit linear, quadratic, cubic, and quartic polynomial regression models using powers of x, the
plate length, and using powers of x− x̄·, the plate length minus the average plate length. Compare
the results of the two procedures. If your computer program will not fit some of the models, report
on that in addition to comparing results for the models you could fit.

EXERCISE 8.7.7. Consider fitting quadratic models yi = γ0+γ1xi+γ2x2
i +εi and yi =β0+β1(xi−

x̄·)+β2(xi − x̄·)2 + εi. Show that γ2 = β2, γ1 = β1 −2β2x̄·, and γ0 = β0 −β1x̄·+β2x̄2
· .

EXERCISE 8.7.8. Cubic Splines.

Table 8.6: Axial stiffness index data.

Plate ASI Plate ASI Plate ASI Plate ASI Plate ASI
4 309.2 6 402.1 8 392.4 10 346.7 12 407.4
4 409.5 6 347.2 8 366.2 10 452.9 12 441.8
4 311.0 6 361.0 8 351.0 10 461.4 12 419.9
4 326.5 6 404.5 8 357.1 10 433.1 12 410.7
4 316.8 6 331.0 8 409.9 10 410.6 12 473.4
4 349.8 6 348.9 8 367.3 10 384.2 12 441.2
4 309.7 6 381.7 8 382.0 10 362.6 12 465.8
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To fit two cubic polynomials on the Hooker partition sets, we can fit the regression function

m(x) = β0 +β1x+β2x2 +β3x3 + γ0h(x)+ γ1xh(x)+ γ2x2h(x)+ γ3x3h(x)

=
(
β0 +β1x+β2x2 +β3x3)+h(x)

(
γ0 + γ1x+ γ2x2 + γ3x3) ,

where the polynomial coefficients below the knot are the β js and above the knot are the (β j + γ j)s.
Define the change polynomial as

C(x)≡ γ0 + γ1x+ γ2x2 + γ3x3.

To turn the two polynomials into cubic splines, we require that the two cubic polynomials be equal
at the knot but also that their first and second derivatives be equal at the knot. It is not hard to see
that this is equivalent to requiring that the change polynomial have

0 =C(191) =
dC(x)

dx

∣∣∣
x=191

=
d2C(x)

dx2

∣∣∣
x=191

,

where our one knot for the Hooker data is at x = 191. Show that imposing these three conditions
leads to the model

m(x) = β0 +β1x+β2x2 +β3x3 + γ3(x−191)3h(x)

= β0 +β1x+β2x2 +β3x3 + γ3[(x−191)+]3.

(It is easy to show that C(x) = γ3(x−191)3 satisfies the three conditions. It is a little harder to show
that satisfying the three conditions implies that C(x) = γ3(x−191)3.)





Chapter 9

Multiple Regression: Introduction

Multiple (linear) regression involves predicting values of a dependent variable from the values on a
collection of other (predictor) variables. In particular, linear combinations of the predictor variables
are used in modeling the dependent variable. For the most part, the use of categorical predictors in
multiple regression is inappropriate. To incorporate categorical predictors, they need to be replaced
by 0-1 indicators for the various categories.

9.1 Example of inferential procedures

In Section 6.9 we introduced Mosteller and Tukey’s Coleman Report data; see Table 6.4. The vari-
ables are y, the mean verbal test score for sixth graders; x1, staff salaries per pupil; x2, percentage
of sixth graders whose fathers have white-collar jobs; x3, a composite measure of socioeconomic
status; x4, the mean of verbal test scores given to the teachers; and x5, the mean educational level of
the sixth grader’s mothers (one unit equals two school years). Figures 9.1 through 9.4 plot all of the
variables.

It is of interest to examine the correlations between y and the predictor variables.

x1 x2 x3 x4 x5

Correlation with y 0.192 0.753 0.927 0.334 0.733

25 30 35 40

25
30

35
40

y

y

2.0 2.5 3.0 3.5

25
30

35
40

x1

y

20 40 60 80

25
30

35
40

x2

y

25 30 35 40

2.
0

2.
5

3.
0

3.
5

y

x1

2.0 2.5 3.0 3.5

2.
0

2.
5

3.
0

3.
5

x1

x1

20 40 60 80

2.
0

2.
5

3.
0

3.
5

x2

x1

25 30 35 40

20
40

60
80

y

x2

2.0 2.5 3.0 3.5

20
40

60
80

x1

x2

20 40 60 80

20
40

60
80

x2

x2

Figure 9.1: Scatterplot matrix for Coleman Report data.
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Figure 9.2: Scatterplot matrix for Coleman Report data.
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Figure 9.3: Scatterplot matrix for Coleman Report data.
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Figure 9.4: Scatterplot matrix for Coleman Report data.

Of the five variables, x3, the one used in the simple linear regression, has the highest correlation.
Thus it explains more of the y variability than any other single variable. Variables x2 and x5 also
have reasonably high correlations with y. Low correlations exist between y and both x1 and x4.
Interestingly, x1 and x4 turn out to be more important in explaining y than either x2 or x5. However,
the explanatory power of x1 and x4 only manifests itself after x3 has been fitted to the data.

The model is
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi, (9.1.1)

i = 1, . . . ,20, where the εis are unobservable independent N(0,σ2) random variables and the β s
are fixed unknown parameters. Fitting Model (9.1.1) with a computer program typically yields a
table of coefficients with parameter estimates, standard errors for the estimates, t ratios for testing
whether the parameters are zero, P values, and an analysis of variance table.

Table of Coefficients: Model (9.1.1)
Predictor β̂k SE(β̂k) t P
Constant 19.95 13.63 1.46 0.165
x1 −1.793 1.233 −1.45 0.168
x2 0.04360 0.05326 0.82 0.427
x3 0.55576 0.09296 5.98 0.000
x4 1.1102 0.4338 2.56 0.023
x5 −1.811 2.027 −0.89 0.387

Analysis of Variance: Model (9.1.1)
Source df SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92

From just these two tables of statistics much can be learned. In particular, the estimated regression
equation is

ŷ = 19.9− 1.79x1+0.0436x2+0.556x3+1.11x4−1.81x5.
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Substituting the observed values xi j, j = 1, . . . ,5 gives the fitted (predicted) values ŷi and the resid-
uals ε̂i = yi − ŷi.

As discussed in simple linear regression, this equation describes the relationship between y and
the predictor variables for the current data; it does not imply a causal relationship. If we go out and
increase the percentage of sixth graders whose fathers have white-collar jobs by 1%, i.e., increase
x2 by one unit, we cannot infer that mean verbal test scores will tend to increase by 0.0436 units.
In fact, we cannot think about any of the variables in a vacuum. No variable has an effect in the
equation apart from the observed values of all the other variables. If we conclude that some variable
can be eliminated from the model, we cannot conclude that the variable has no effect on y, we can
only conclude that the variable is not necessary to explain these data. The same variable may be very
important in explaining other, rather different, data collected on the same variables. All too often,
people choose to interpret the estimated regression coefficients as if the predictor variables cause
the value of y but the estimated regression coefficients simply describe an observed relationship.
Frankly, since the coefficients do not describe a causal relationship, many people, including the
author, find regression coefficients to be remarkably uninteresting quantities. What this model is
good at is predicting values of y for new cases that are similar to those in the current data. In
particular, such new cases should have predictor variables with values similar to those in the current
data.

The t statistics for testing H0 : βk = 0 were reported in the table of coefficients. For example, the
test of H0 : β4 = 0 has

tobs =
1.1102
.4338

= 2.56.

The P value is
P = Pr[|t(dfE)| ≥ 2.56] = 0.023.

The value 0.023 indicates a reasonable amount of evidence that variable x4 is needed in the model.
We can be reasonably sure that dropping x4 from the model harms the explanatory (predictive)
power of the model. In particular, with a P value of 0.023, the test of the null model with H0 : β4 = 0
is rejected at the α = 0.05 level (because 0.05 > 0.023), but the test is not rejected at the α = 0.01
level (because 0.023 > 0.01).

A 95% confidence interval for β3 has endpoints β̂3 ± t(0.975,dfE)SE(β̂3). From a t table,
t(0.975,14) = 2.145 and from the table of coefficients the endpoints are

0.55576±2.145(0.09296).

The confidence interval is (0.356,0.755), so the data are consistent with β3 between 0.356 and
0.755.

The primary value of the analysis of variance table is that it gives the degrees of freedom, the
sum of squares, and the mean square for error. The mean squared error is the estimate of σ2, and
the sum of squares error and degrees of freedom for error are vital for comparing various regression
models. The degrees of freedom for error are n−1− (the number of predictor variables). The minus
1 is an adjustment for fitting the intercept β0.

The analysis of variance table also gives the test for whether any of the x variables help to
explain y, i.e., of whether yi = β0 + εi is an adequate model. This test is rarely of interest because it
is almost always highly significant. It is a poor scholar who cannot find any predictor variables that
are related to the measurement of primary interest. (Ok, I admit to being a little judgmental here.)
The test of

H0 : β1 = · · ·= β5 = 0

is based on

Fobs =
MSReg
MSE

=
116.5
4.303

= 27.08

and (typically) is rejected for large values of F . The numerator and denominator degrees of freedom
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come from the ANOVA table. As suggested, the corresponding P value in the ANOVA table is
infinitesimal, zero to three decimal places. Thus these x variables, as a group, help to explain the
variation in the y variable. In other words, it is possible to predict the mean verbal test scores for a
school’s sixth grade class from the five x variables measured. Of course, the fact that some predictive
ability exists does not mean that the predictive ability is sufficient to be useful.

The coefficient of determination, R2, measures the predictive ability of the model. It is the
squared correlation between the (ŷi,yi) pairs and also is the percentage of the total variability in
y that is explained by the x variables. If this number is large, it suggests a substantial predictive
ability. In this example

R2 ≡ SSReg
SSTot

=
582.69
642.92

= 0.906,

so 90.6% of the total variability is explained by the regression model. This large percentage suggests
that the five x variables have substantial predictive power. However, we saw in Section 7.1 that a
large R2 does not imply that the model is good in absolute terms. It may be possible to show that
this model does not fit the data adequately. In other words, this model is explaining much of the
variability but we may be able to establish that it is not explaining as much of the variability as it
ought. Conversely, a model with a low R2 value may be the perfect model but the data may simply
have a great deal of variability. Moreover, even an R2 of 0.906 may be inadequate for the predictive
purposes of the researcher, while in some situations an R2 of 0.3 may be perfectly adequate. It
depends on the purpose of the research. Finally, a large R2 may be just an unrepeatable artifact of
a particular data set. The coefficient of determination is a useful tool but it must be used with care.
Recall from Section 7.1 that the R2 was 0.86 when using just x3 to predict y.

9.1.1 Computing commands

Performing multiple regression without a computer program is impractical. Mintab’s reg command
is menu driven, hence very easy to use. SAS’s regression procedures are a bit more complicated, but
the commands listed on my website are easily followed, as are the website commands for Minitab,
most of which can be avoided by using the menus. R, on the other hand, is really a programming lan-
guage and much more complicated to use. Because multiple regression is, arguably, the fundamental
model considered in this book, we include some R code for it.

The following R code should work for computing most of the statistics used in this chapter
and the next. Of course you have to replace the location of the data file C:\\tab9-1.dat with the
location where you stored the data.

coleman <- read.table("C:\\tab6-4.dat",

sep="",col.names=c("School","x1","x2","x3","x4","x5","y"))

attach(coleman)

coleman

summary(coleman)

#Coefficient and ANOVA tables

co <- lm(y ~ x1+x2+x3+x4+x5)

cop=summary(co)

cop

anova(co)

#Confidence intervals

confint(co, level=0.95)

#Predictions

new = data.frame(x1=2.07, x2=9.99,x3=-16.04,x4= 21.6, x5=5.17)
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predict(co,new,se.fit=T,interval="confidence")

predict(co,new,interval="prediction")

# Diagnostics table

infv = c(y,co$fit,hatvalues(co),rstandard(co),rstudent(co),cooks.distance(co))

inf=matrix(infv,I(cop$d \! f[1]+cop$d \! f[2]),6,dimnames = list(NULL,

c("y", "yhat", "lev","r","t","C")))

inf

# Normal and fitted values plots

qqnorm(rstandard(co),ylab="Standardized residuals")

plot(co$fit,rstandard(co),xlab="Fitted",

ylab="Standardized residuals",main="Residual-Fitted plot")

#Wilk-Francia Statistic

rankit=qnorm(ppoints(rstandard(co),a=I(3/8)))

ys=sort(rstandard(co))

Wprime=(cor(rankit,ys))^2

Wprime

9.1.2 General statement of the multiple regression model

In general we consider a dependent variable y that is a random variable of interest. We also consider
p− 1 nonrandom predictor variables x1, . . . ,xp−1. The general multiple (linear) regression model
relates n observations on y to a linear combination of the corresponding observations on the x js plus
a random error ε . In particular, we assume

yi = β0 +β1xi1 + · · ·+βp−1xi,p−1 + εi,

where the subscript i = 1, . . . ,n indicates different observations and the εis are independent N(0,σ2)
random variables. The β js and σ2 are unknown constants and are the fundamental parameters of
the regression model.

Estimates of the β js are obtained by the method of least squares. The least squares estimates are
those that minimize

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2
.

In this function the yis and the xi js are all known quantities. Least squares estimates have a number
of interesting statistical properties. If the errors are independent with mean zero, constant variance,
and are normally distributed, the least squares estimates are maximum likelihood estimates (MLEs)
and minimum variance unbiased estimates (MVUEs). If we keep the assumptions of mean zero
and constant variance but weaken the independence assumption to that of the errors being merely
uncorrelated and stop assuming normal distributions, the least squares estimates are best (minimum
variance) linear unbiased estimates (BLUEs).

In checking assumptions we often use the predictions (fitted values) ŷ corresponding to the
observed values of the predictor variables, i.e.,

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂p−1xi,p−1,

i = 1, . . . ,n. Residuals are the values
ε̂i = yi − ŷi.

The other fundamental parameter to be estimated, besides the β js, is the variance σ2. The sum
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of squares error is

SSE =
n

∑
i=1

ε̂2
i

and the estimate of σ2 is the mean squared error (residual mean square)

MSE = SSE/(n− p).

The MSE is an unbiased estimate of σ2 in that E(MSE)=σ2. Under the standard normality assump-
tions, MSE is the minimum variance unbiased estimate of σ2. However, the maximum likelihood
estimate of σ2 is σ̂2 = MSE/n, Unless discussing SAS’s PROC GENMOD, we will never use the
MLE of σ2.

Details of the estimation procedures are given in Chapter 11.

9.2 Regression surfaces and prediction

One of the most valuable aspects of regression analysis is its ability to provide good predictions
of future observations. Of course, to obtain a prediction for a new value y we need to know the
corresponding values of the predictor variables, the x js. Moreover, to obtain good predictions, the
values of the x js need to be similar to those on which the regression model was fitted. Typically, a
fitted regression model is only an approximation to the true relationship between y and the predictor
variables. These approximations can be very good, but, because they are only approximations, they
are not valid for predictor variables that are dissimilar to those on which the approximation was
based. Trying to predict for x j values that are far from the original data is always difficult. Even
if the regression model is true and not an approximation, the variance of such predictions is large.
When the model is only an approximation, the approximation is typically invalid for such predictor
variables and the predictions can be utter nonsense.

The regression surface for the Coleman data is the set of all values z that satisfy

z = β0 +β1x1 +β2x2 +β3x3 +β4x4 +β5x5

for some values of the predictor variables. The estimated regression surface is

z = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5.

There are two problems of interest. The first is estimating the value z on the regression surface for
a fixed set of predictor variables. The second is predicting the value of a new observation to be
obtained with a fixed set of predictor variables. For any set of predictor variables, the estimate of the
regression surface and the prediction are identical. What differs are the standard errors associated
with the different problems.

Consider estimation and prediction at

(x1,x2,x3,x4,x5) = (2.07,9.99,−16.04,21.6,5.17).

These are the minimum values for each of the variables, so there will be substantial variability in
estimating the regression surface at this point. The estimator (predictor) is

ŷ = β̂0 +
5

∑
j=1

β̂ jx j = 19.9− 1.79(2.07)+ 0.0436(9.99)

+0.556(−16.04)+ 1.11(21.6)−1.81(5.17)= 22.375.

For constructing 95% t intervals, the percentile needed is t(0.975,14) = 2.145.
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The 95% confidence interval for the point β0 +∑5
j=1 β jx j on the regression surface uses the

standard error for the regression surface, which is

SE(Sur f ace) = 1.577.

The standard error is obtained from the regression program and depends on the specific value of
(x1,x2,x3,x4,x5). The formula for the standard error is given in Section 11.4. This interval has
endpoints

22.375±2.145(1.577),

which gives the interval
(18.992,25.757).

The 95% prediction interval is
(16.785,27.964).

This is about 4 units wider than the confidence interval for the regression surface. The standard error
for the prediction interval can be computed from the standard error for the regression surface.

SE(Prediction) =
√

MSE +SE(Sur f ace)2.

In this example,

SE(Prediction) =
√

4.303+(1.577)2 = 2.606,

and the prediction interval endpoints are

22.375±2.145(2.606).

We mentioned earlier that even if the regression model is true, the variance of predictions is
large when the x j values for the prediction are far from the original data. We can use this fact to
identify situations in which the predictions are unreliable because the locations are too far away. Let
p− 1 be the number of predictor variables so that, including the intercept, there are p regression
parameters. Let n be the number of observations. A sensible rule of thumb is that we should start
worrying about the validity of the prediction whenever

SE(Sur f ace)√
MSE

≥
√

2p
n

and we should be very concerned about the validity of the prediction whenever

SE(Sur f ace)√
MSE

≥
√

3p
n
.

Recall that for simple linear regression we suggested that leverages greater than 4/n cause concern
and those greater than 6/n cause considerable concern. In general, leverages greater than 2p/n and
3p/n cause these levels of concern. The simple linear regression guidelines are based on having p =
2. We are comparing SE(Sur f ace)/

√
MSE to the square roots of these guidelines. In our example,

p = 6 and n = 20, so

SE(Sur f ace)√
MSE

=
1.577√
4.303

= 0.760 < 0.775 =

√
2p
n
.

The location of this prediction is near the boundary of those locations for which we feel comfortable
making predictions.
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9.3 Comparing regression models

A frequent goal in regression analysis is to find the simplest model that provides an adequate expla-
nation of the data. In examining the full model with all five x variables, there is little evidence that
any of x1, x2, or x5 are needed in the regression model. The t tests reported in Section 9.1 for the
corresponding regression parameters gave P values of 0.168, 0.427, and 0.387. We could drop any
one of the three variables without significantly harming the model. While this does not imply that
all three variables can be dropped without harming the model, dropping the three variables makes
an interesting point of departure.

Fitting the reduced model
yi = β0 +β3xi3 +β4xi4 + εi

gives

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 14.583 9.175 1.59 0.130
x3 0.54156 0.05004 10.82 0.000
x4 0.7499 0.3666 2.05 0.057

Analysis of Variance
Source df SS MS F P
Regression 2 570.50 285.25 66.95 0.000
Error 17 72.43 4.26
Total 19 642.92

We can test whether this reduced model is an adequate explanation of the data as compared
to the full model. The sum of squares for error from the full model was reported in Section 9.1 as
SSE(Full) = 60.24 with degrees of freedom dfE(Full) = 14 and mean squared error MSE(Full) =
4.30. For the reduced model we have SSE(Red.) = 72.43 and dfE(Red.) = 17. The test statistic for
the adequacy of the reduced model is

Fobs =
[SSE(Red.)− SSE(Full)]

/
[dfE(Red.)−dfE(Full)]

MSE(Full)
=

[72.43−60.24]
/
[17−14]

4.30
= 0.94.

F has [dfE(Red.)− dfE(Full)] and dfE(Full) degrees of freedom in the numerator and denom-
inator, respectively. Here F is about 1, so it is not significant. In particular, 0.94 is less than
F(0.95,3,14), so a formal α = .05 level one-sided F test does not reject the adequacy of the reduced
model. In other words, the .05 level one-sided test of the null model with H0 : β1 = β2 = β5 = 0 is
not rejected.

This test lumps the three variables x1, x2, and x5 together into one big test. It is possible that the
uselessness of two of these variables could hide the fact that one of them is (marginally) significant
when added to the model with x3 and x4. To fully examine this possibility, we need to fit three
additional models. Each variable should be added, in turn, to the model with x3 and x4. We consider
in detail only one of these three models, the model with x1, x3, and x4. From fitting this model, the
t statistic for testing whether x1 is needed in the model turns out to be −1.47. This has a P value of
0.162, so there is little indication that x1 is useful. We could also construct an F statistic as illustrated
previously. The sum of squares for error in the model with x1, x3, and x4 is 63.84 on 16 degrees of
freedom, so

Fobs =
[72.43−63.84]/[17−16]

63.84/16
= 2.16 .

Note that, up to round-off error, F = t2. The tests are equivalent and the P value for the F statistic is
also 0.162. F tests are only equivalent to a corresponding t test when the numerator of the F statistic
has one degree of freedom. Methods similar to these establish that neither x2 nor x5 are important
when added to the model that contains x3 and x4.
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Here we are testing two models: the full model with x1, x3, and x4 against a reduced model with
only x3 and x4. Both of these models are special cases of a biggest model that contains all of x1, x2,
x3, x4, and x5. In Subsection 3.1.1, for cases like this, we recommended an alternative F statistic,

Fobs =
[72.43−63.84]/[17−16]

4.30
= 2.00,

where the denominator MSE of 4.30 comes from the biggest model.
In testing the reduced model with only x3 and x4 against the full five-variable model, we observed

that one might miss recognizing a variable that was (marginally) significant. In this case we did not
miss anything important. However, if we had taken the reduced model as containing only x3 and
tested it against the full five-variable model, we would have missed the importance of x4. The F
statistic for this test turns out to be only 1.74.

In the model with x1, x3, and x4, the t test for x4 turns out to have a P value of 0.021. As seen in
the table given previously, if we drop x1 and use the model with only x3, and x4, the P value for x4

goes to 0.057. Thus dropping a weak variable, x1, can make a reasonably strong variable, x4, look
weaker. There is a certain logical inconsistency here. If x4 is important in the x1, x3, x4 model or the
full five-variable model (P value 0.023), it is illogical that dropping some of the other variables could
make it unimportant. Even though x1 is not particularly important by itself, it augments the evidence
that x4 is useful. The problem in these apparent inconsistencies is that the x variables are all related
to each other; this is known as the problem of collinearity. One reason for using the alternative F
tests that employ MSE(Big.) in the denominator is that it ameliorates this phenomenon.

Although a reduced model may be an adequate substitute for a full model on a particular set of
data, it does not follow that the reduced model will be an adequate substitute for the full model with
any data collected on the variables in the full model.

9.3.1 General discussion

Suppose that we want to compare two regression models, say,

yi = β0 +β1xi1 + · · ·+βq−1xi,q−1 + · · ·+βp−1xi,p−1 + εi (9.3.1)

and
yi = β0 +β1xi1 + · · ·+βq−1xi,q−1 + εi. (9.3.2)

For convenience, in this subsection we refer to equations such as (9.3.1) and (9.3.2) simply as
(1) and (2). The key fact here is that all of the variables in Model (2) are also in Model (1). In
this comparison, we dropped the last variables xi,q, . . . ,xi,p−1 for notational convenience only; the
discussion applies to dropping any group of variables from Model (1). Throughout, we assume that
Model (1) gives an adequate fit to the data and then compare how well Model (2) fits the data with
how well Model (1) fits. Before applying the results of this subsection, the validity of the model (1)
assumptions should be evaluated.

We want to know if the variables xi,q, . . . ,xi,p−1 are needed in the model, i.e., whether they are
useful predictors. In other words, we want to know if Model (2) is an adequate model; whether it
gives an adequate explanation of the data. The variables xq, . . . ,xp−1 are extraneous if and only if
βq = · · ·= βp−1 = 0. The test we develop can be considered as a test of

H0 : βq = · · ·= βp−1 = 0.

Parameters are very tricky things; you never get to see the value of a parameter. I strongly
prefer the interpretation of testing one model against another model rather than the interpretation of
testing whether βq = · · ·= βp−1 = 0. In practice, useful regression models are rarely correct models,
although they can be very good approximations. Typically, we do not really care whether Model (1)
is true, only whether it is useful, but dealing with parameters in an incorrect model becomes tricky.
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In practice, we are looking for a (relatively) succinct way of summarizing the data. The smaller
the model, the more succinct the summarization. However, we do not want to eliminate useful
explanatory variables, so we test the smaller (more succinct) model against the larger model to see
if the smaller model gives up significant explanatory power. Note that the larger model always has
at least as much explanatory power as the smaller model because the larger model includes all the
variables in the smaller model plus some more.

Applying our model testing procedures to this problem yields the following test: Reject the
hypothesis

H0 : βq = · · ·= βp−1 = 0

at the α level if

F ≡
[SSE(Red.)−SSE(Full)]

/
(p−q)

MSE(Full)
> F(1−α, p−q,n− p).

For p− q ≥ 3, this one-sided test is not a significance test, cf. Chapter 3.
The notation SSE(Red.)− SSE(Full) focuses on the ideas of full and reduced models. Other

notations that focus on variables and parameters are also commonly used. One can view the model
comparison procedure as fitting Model (2) first and then seeing how much better Model (1) fits.
The notation based on this refers to the (extra) sum of squares for regressing on xq, . . . ,xp−1 after
regressing on x1, . . . ,xq−1 and is written

SSR(xq, . . . ,xp−1|x1, . . . ,xq−1)≡ SSE(Red.)−SSE(Full).

This notation assumes that the model contains an intercept. Alternatively, one can think of fitting the
parameters βq, . . . ,βp−1 after fitting the parameters β0, . . . ,βq−1. The relevant notation refers to the
reduction in sum of squares (for error) due to fitting βq, . . . ,βp−1 after β0, . . . ,βq−1 and is written

R(βq, . . . ,βp−1|β0, . . . ,βq−1)≡ SSE(Red.)−SSE(Full).

Note that it makes perfect sense to refer to SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) as the reduction in sum of
squares for fitting xq, . . . ,xp−1 after x1, . . . ,xq−1.

It was mentioned earlier that the degrees of freedom for SSE(Red.)−SSE(Full) is p−q. Note
that p− q is the number of variables to the left of the vertical bar in SSR(xq, . . . ,xp−1|x1, . . . ,xq−1)
and the number of parameters to the left of the vertical bar in R(βq, . . . ,βp−1|β0, . . . ,βq−1).

A point that is quite clear when thinking of model comparisons is that if you change either
model, (1) or (2), the test statistic and thus the test changes. This point continues to be clear when
dealing with the notations SSR(xq, . . . ,xp−1|x1, . . . ,xq−1) and R(βq, . . . ,βp−1|β0, . . . ,βq−1). If you
change any variable on either side of the vertical bar, you change SSR(xq, . . . ,xp−1|x1, . . . ,xq−1).
Similarly, the parametric notation R(βq, . . . ,βp−1|β0, . . . ,βq−1) is also perfectly precise, but confu-
sion can easily arise when dealing with parameters if one is not careful. For example, when testing,
say, H0 : β1 = β3 = 0, the tests are completely different in the three models

yi = β0 +β1xi1 +β3xi3 + εi, (9.3.3)

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, (9.3.4)

and
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi . (9.3.5)

In Model (3) the test is based on SSR(x1,x3)≡ R(β1,β3|β0), i.e., the sum of squares for regres-
sion (SSReg) in the model with only x1 and x3 as predictor variables. In Model (4) the test uses

SSR(x1,x3|x2)≡ R(β1,β3|β0,β2).

Model (5) uses SSR(x1,x3|x2,x4)≡ R(β1,β3|β0,β2,β4). In all cases we are testing β1 = β3 = 0 after
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fitting all the other parameters in the model. In general, we think of testing H0 : βq = · · ·= βp−1 = 0
after fitting β0, . . . ,βq−1.

If the reduced model is obtained by dropping out only one variable, e.g., if q− 1 = p− 2, the
parametric hypothesis is H0 : βp−1 = 0. We have just developed an F test for this and we have
earlier used a t test for the hypothesis. In multiple regression, just as in simple linear regression,
the F test is equivalent to the t test. It follows that the t test must be considered as a test for the
parameter after fitting all of the other parameters in the model. In particular, the t tests reported in
the table of coefficients when fitting a regression tell you only whether a variable can be dropped
relative to the model that contains all the other variables. These t tests cannot tell you whether more
than one variable can be dropped from the fitted model. If you drop any variable from a regression
model, all of the t tests change. It is only for notational convenience that we are discussing testing
βp−1 = 0; the results hold for any βk.

The SSR notation can also be used to find SSEs. Consider models (3), (4), and (5) and suppose
we know SSR(x2|x1,x3), SSR(x4|x1,x2,x3), and the SSE from Model (5). We can easily find the
SSEs for models (3) and (4). By definition,

SSE(4) = [SSE(4)−SSE(5)]+ SSE(5)

= SSR(x4|x1,x2,x3)+ SSE(5).

Also

SSE(3) = [SSE(3)−SSE(4)]+ SSE(4)

= SSR(x2|x1,x3)+ {SSR(x4|x1,x2,x3)+ SSE(5)}.

Moreover, we see that

SSR(x2,x4|x1,x3) = SSE(3)−SSE(5)

= SSR(x2|x1,x3)+ SSR(x4|x1,x2,x3).

Note also that we can change the order of the variables.

SSR(x2,x4|x1,x3) = SSR(x4|x1,x3)+ SSR(x2|x1,x3,x4).

9.4 Sequential fitting

Multiple regression analysis is largely impractical without the aid of a computer. One specifies
a regression model and the computer returns the vital statistics for that model. Many computer
programs actually fit a sequence of models rather than fitting the model all at once.

EXAMPLE 9.4.1. Suppose you want to fit the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi.

Many regression programs actually fit the sequence of models

yi = β0 +β1xi1 + εi,

yi = β0 +β1xi1 +β2xi2 + εi,

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi,

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi.

The sequence is determined by the order in which the variables are specified. If the identical model
is specified in the form

yi = β0 +β3xi3 +β1xi1 +β4xi4 +β2xi2 + εi,
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the end result is exactly the same but the sequence of models is

yi = β0 +β3xi3 + εi,

yi = β0 +β3xi3 +β1xi1 + εi,

yi = β0 +β3xi3 +β1xi1 +β4xi4 + εi,

yi = β0 +β3xi3 +β1xi1 +β4xi4 +β2xi2 + εi.

Frequently, programs that fit sequences of models also provide sequences of sums of squares.
Thus the first sequence of models yields

SSR(x1), SSR(x2|x1), SSR(x3|x1,x2), and SSR(x4|x1,x2,x3)

while the second sequence yields

SSR(x3), SSR(x1|x3), SSR(x4|x3,x1), and SSR(x2|x3,x1,x4).

These can be used in a variety of ways. For example, as shown at the end of the previous section, to
test

yi = β0 +β1xi1 +β3xi3 + εi

against
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi

we need SSR(x2,x4|x3,x1). This is easily obtained from the second sequence as

SSR(x2,x4|x3,x1) = SSR(x4|x3,x1)+ SSR(x2|x3,x1,x4). �

EXAMPLE 9.4.2. If we fit the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi

to the Coleman Report data, we get the sequential sums of squares listed below.

Source df Seq SS Notation
x1 1 23.77 SSR(x1)
x2 1 343.23 SSR(x2|x1)
x3 1 186.34 SSR(x3|x1,x2)
x4 1 25.91 SSR(x4|x1,x2,x3)
x5 1 3.43 SSR(x5|x1,x2,x3,x4)

Recall that the MSE for the five-variable model is 4.30 on 14 degrees of freedom.
From the sequential sums of squares we can test a variety of hypotheses related to the full model.

For example, we can test whether variable x5 can be dropped from the five-variable model. The F
statistic is 3.43/4.30, which is less than 1, so the effect of x5 is insignificant. This test is equivalent
to the t test for x5 given in Section 9.1 when fitting the five-variable model. We can also test whether
we can drop both x4 and x5 from the full model. The F statistic is

Fobs =
(25.91+3.43)/2

4.30
= 3.41.

F(0.95,2,14) = 3.74, so this F statistic provides little evidence that the pair of variables is needed.
(The relative importance of x4 is somewhat hidden by combining it in a test with the unimportant
x5.) Similar tests can be constructed for dropping x3, x4, and x5, for dropping x2, x3, x4, and x5, and
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for dropping x1, x2, x3, x4, and x5 from the full model. The last of these is just the ANOVA table F
test.

We can also make a variety of tests related to ‘full’ models that do not include all five variables.
In the previous paragraph, we found little evidence that the pair x4 and x5 help explain the data in the
five-variable model. We now test whether x4 can be dropped when we have already dropped x5. In
other words, we test whether x4 adds explanatory power to the model that contains x1, x2, and x3. The
numerator has one degree of freedom and is SSR(x4|x1,x2,x3)= 25.91. The usual denominator mean
square for this test is the MSE from the model with x1, x2, x3, and x4, i.e., {14(4.303)+ 3.43}/15.
(For numerical accuracy we have added another significant digit to the MSE from the five-variable
model. The SSE from the model without x5 is just the SSE from the five-variable model plus the
sequential sum of squares SSR(x5|x1,x2,x3,x4).) Our best practice would be to construct the test
using the same numerator mean square but the MSE from the five-variable model in the denominator
of the test. Using this second denominator, the F statistic is 25.91/4.30 = 6.03. Corresponding F
percentiles are F(0.95,1,14) = 4.60 and F(0.99,1,14) = 8.86, so x4 may be contributing to the
model. If we had used the MSE from the model with x1, x2, x3, and x4, the F statistic would be
equivalent to the t statistic for dropping x4 that is obtained when fitting this four-variable model.

If we wanted to test whether x2 and x3 can be dropped from the model that contains x1, x2, and
x3, the usual denominator is [14(4.303)+25.91+3.43]/16= 5.60. (The SSE for the model without
x4 or x5 is just the SSE from the five-variable model plus the sequential sum of squares for x4 and
x5.) Again, we would alternatively use the MSE from the five-variable model in the denominator.
Using the first denominator, the test is

Fobs =
(343.23+186.34)/2

5.60
= 47.28,

which is much larger than F(0.999,2,16)= 10.97, so there is overwhelming evidence that variables
x2 and x3 cannot be dropped from the x1, x2, x3 model.

The argument for basing tests on the MSE from the five-variable model is that it is less subject to
bias than the other MSEs. In the test given in the previous paragraph, the MSE from the usual ‘full’
model incorporates the sequential sums of squares for x4 and x5. A reason for doing this is that we
have tested x4 and x5 and are not convinced that they are important. As a result, their sums of squares
are incorporated into the error. Even though we may not have established an overwhelming case for
the importance of either variable, there is some evidence that x4 is a useful predictor when added to
the first three variables. The sum of squares for x4 may or may not be large enough to convince us
of its importance but it is large enough to change the MSE from 4.30 in the five-variable model to
5.60 in the x1, x2, x3 model. In general, if you test terms and pool them with the Error whenever the
test is insignificant, you are biasing the MSE that results from this pooling. �

In general, when given the ANOVA table and the sequential sums of squares, we can test any
model in the sequence against any reduced model that is part of the sequence. We cannot use these
statistics to obtain a test involving a model that is not part of the sequence.

9.5 Reduced models and prediction

Fitted regression models are, not surprisingly, very dependent on the observed values of the predictor
variables. We have already discussed the fact that fitted regression models are particularly good for
making predictions but only for making predictions on new cases with predictor variables that are
similar to those used in fitting the model. Fitted models are not good at predicting observations with
predictor variable values that are far from those in the observed data. We have also discussed the
fact that in evaluating a reduced model we are evaluating whether the reduced model is an adequate
explanation of the data. An adequate reduced model should serve well as a prediction equation
but only for new cases with predictor variables similar to those in the original data. It should not
be overlooked that when using a reduced model for prediction, new cases need to be similar to
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the observed data on all predictor variables and not just on the predictor variables in the reduced
model.

Good prediction from reduced models requires that new cases be similar to observed cases on
all predictor variables because of the process of selecting reduced models. Predictor variables are
eliminated from a model if they are not necessary to explain the data. This can happen in two ways.
If a predictor variable is truly unrelated to the dependent variable, it is both proper and beneficial to
eliminate that variable. The other possibility is that a predictor variable may be related to the depen-
dent variable but that the relationship is hidden by the nature of the observed predictor variables. In
the Coleman Report data, suppose the true response depends on both x3 and x5. We know that x3 is
clearly the best single predictor but the observed values of x5 and x3 are closely related; the sample
correlation between them is 0.819. Because of their high correlation in these data, much of the ac-
tual dependence of y on x5 could be accounted for by the regression on x3 alone. Variable x3 acts as a
surrogate for x5. As long as we try to predict new cases that have values of x5 and x3 similar to those
in the original data, a reduced model based on x3 should work well. Variable x3 should continue to
act as a surrogate. On the other hand, if we tried to predict a new case that had an x3 value similar
to that in the observed data but where the pair x3, x5 was not similar to x3, x5 pairs in the observed
data, the reduced model that uses x3 as a surrogate for x5 would be inappropriate. Predictions could
be very bad and, if we thought only about the fact that the x3 value is similar to those in the original
data, we might expect the predictions to be good. Unfortunately, when we eliminate a variable from
a regression model, we typically have no idea if it is eliminated because the variable really has no
effect on y or because its effect is being masked by some other set of predictor variables. For further
discussion of these issues see Mandel (1989a, b).

Of course there is reason to hope that predictions will typically work well for reduced models.
If the data come from an observational study in which the cases are some kind of sample from a
population, there is reason to expect that future cases that are sampled in the same way will behave
similarly to those in the original study. In addition, if the data come from an experiment in which the
predictor variables are under the control of the investigator, it is reasonable to expect the investigator
to select values of the predictor variables that cover the full range over which predictions will be
made. Nonetheless, regression models give good approximations and good predictions only within
the range of the observed data and, when a reduced model is used, the definition of the range of
the observed data includes the values of all predictor variables that were in the full model. In fact,
even this statement is too weak. When using a reduced model or even when using the full model for
prediction, new cases need to be similar to the observed cases in all relevant ways. If there is some
unmeasured predictor that is related to y and if the observed predictors are highly correlated with this
unmeasured variable, then for good prediction a new case needs to have a value of the unmeasured
variable that is similar to those for the observed cases. In other words, the variables in any model
may be acting as surrogates for some unmeasured variables and to obtain good predictions the new
cases must be similar on both the observed predictor variables and on these unmeasured variables.

Prediction should work well whenever (xi1,xi2, . . . ,xi,p−1,yi), i = 1, . . . ,n constitutes a random
sample from some population and when the point we want to predict, say y0, corresponds to predic-
tor variables (x01,x02, . . . ,x0,p−1) that are sampled from the same population. In practice, we rarely
have this ideal, but the ideal illuminates what can go wrong in practice.

9.6 Partial correlation coefficients and added variable plots

Partial correlation coefficients measure the linear relationship between two variables after adjusting
for a group of other variables. The square of a partial correlation coefficient is also known as a
coefficient of partial determination. The squared sample partial correlation coefficient between y
and x1 after adjusting for x2, x3, and x4 is

r2
y1·234 =

SSR(x1|x2,x3,x4)

SSE(x2,x3,x4)
,
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where SSE(x2,x3,x4) is the sum of squares error from a model with an intercept and the three
predictors x2,x3,x4. The squared sample partial correlation coefficient between y and x2 given x1,
x3, and x4 is

r2
y2·134 =

SSR(x2|x1,x3,x4)

SSE(x1,x3,x4)
.

Alternatively, the sample partial correlation ry2·134 is precisely the ordinary sample correlation
computed between the residuals from fitting

yi = β0 +β1xi1 +β3xi3 +β4xi4 + εi (9.6.1)

and the residuals from fitting

xi2 = γ0 + γ1xi1 + γ3xi3 + γ4xi4 + εi. (9.6.2)

The information in r2
y2·134 is equivalent to the information in the F statistic for testing H0 : β2 = 0

in the model
yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi. (9.6.3)

To see this, observe that

F =
SSR(x2|x1,x3,x4)/1

{SSE(x1,x3,x4)− [SSE(x1,x3,x4)−SSR(x1,x2,x3,x4)]}/(n−5)

=
SSR(x2|x1,x3,x4)/1

[SSE(x1,x3,x4)−SSR(x2|x1,x3,x4)]/(n−5)

= (n−5)
SSR(x2|x1,x3,x4)/SSE(x1,x3,x4)

1−SSR(x2|x1,x3,x4)/SSE(x1,x3,x4)

= (n−5)
r2

y2·134

1− r2
y2·134

.

EXAMPLE 9.6.1. In the school data,

ry3·1245 = 0.8477.

Thus even after adjusting for all of the other predictor variables, socioeconomic status has major
predictive abilities for mean verbal test scores. �

Actually, the residuals from models (9.6.1) and (9.6.2) give the basis for the perfect plot to
evaluate whether adding variable x2 will improve Model (9.6.1). Simply plot the residuals yi −
ŷi from Model (9.6.1) against the residuals xi2 − x̂i2 from Model (9.6.2). If there seems to be no
relationship between the yi − ŷis and the xi2 − x̂i2s, x2 will not be important in Model (9.6.3). If the
plot looks clearly linear, x2 will be important in Model (9.6.3). When a linear relationship exists in
the plot but is due to the existence of a few points, those points are the dominant cause for x2 being
important in Model (9.6.3). The reason these added variable plots work is because the least squares
estimate of β2 from Model (9.6.3) is identical to the least squares estimate of β2 from the regression
through the origin

(yi − ŷi) = β2(xi2 − x̂i2)+ εi.

See Christensen (2011, Exercise 9.2).

EXAMPLE 9.6.2. For the school data, Figure 9.5 gives the added variable plot to determine
whether the variable x3 adds to the model that already contains x1, x2, x4, and x5. A clear linear
relationship exists, so x3 will improve the model. Here the entire data support the linear relation-
ship, but there are a couple of unusual cases. The second smallest x3 residual has an awfully large y
residual and the largest x3 residual has a somewhat surprisingly small y residual. �
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Figure 9.5: Added variable plot: y residuals versus x3 residuals; Coleman Report data.

9.7 Collinearity

Collinearity exists when the predictor variables x1, . . . ,xp−1 are correlated. We have n observations
on each of these variables, so we can compute the sample correlations between them. Typically, the
x variables are assumed to be fixed and not random. For data like the Coleman Report, we have
a sample of schools so the predictor variables really are random. But for the purpose of fitting the
regression we treat them as fixed. (Probabilistically, we look at the conditional distribution of y given
the predictor variables.) In some applications, the person collecting the data actually has control
over the predictor variables so they truly are fixed. If the x variables are fixed and not random,
there is some question as to what a correlation between two x variables means. Actually, we are
concerned with whether the observed variables are orthogonal, but that turns out to be equivalent
to having sample correlations of zero between the x variables. Nonzero sample correlations indicate
nonorthogonality, thus we need not concern ourselves with the interpretation of sample correlations
between nonrandom samples.

In regression, it is almost unheard of to have x variables that display no collinearity (correlation)
[unless the variables are constructed to have no correlation]. In other words, observed x variables are
almost never orthogonal. The key ideas in dealing with collinearity were previously incorporated
into the discussion of comparing regression models. In fact, the methods discussed earlier were built
around dealing with the collinearity of the x variables. This section merely reviews a few of the main
ideas.

1. The estimate of any parameter, say β̂2, depends on all the variables that are included in the model.

2. The sum of squares for any variable, say x2, depends on all the other variables that are included
in the model. For example, none of SSR(x2), SSR(x2|x1), and SSR(x2|x3,x4) would typically be
equal.

3. Suppose the model

yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi

is fitted and we obtain t statistics for each parameter. If the t statistic for testing H0 : β1 = 0 is
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small, we are led to the model

yi = β0 +β2xi2 +β3xi3 + εi.

If the t statistic for testing H0 : β2 = 0 is small, we are led to the model

yi = β0 +β1xi1 +β3xi3 + εi.

However, if the t statistics for both tests are small, we are not led to the model

yi = β0 +β3xi3 + εi.

To arrive at the model containing only the intercept and x3, one must at some point use the model
containing only the intercept and x3 as a reduced model.

4. A moderate amount of collinearity has little effect on predictions and therefore little effect on
SSE , R2, and the explanatory power of the model. Collinearity increases the variance of the
β̂ks, making the estimates of the parameters less reliable. (I told you not to rely on parameters
anyway.) Depending on circumstances, sometimes a large amount of collinearity can have an
effect on predictions. Just by chance, one may get a better fit to the data than can be justified
scientifically.

The complications associated with points 1 through 4 all vanish if the sample correlations between
the x variables are all zero.

Many computer programs will print out a matrix of correlations between the variables. One
would like to think that if all the correlations between the x variables are reasonably small, say less
than 0.3 or 0.4, then the problems of collinearity would not be serious. Unfortunately, that is simply
not true. To avoid difficulties with collinearity, not only do all the correlations need to be small but
all of the partial correlations among the x variables must be small. Thus, small correlations alone
do not ensure small collinearity.

EXAMPLE 9.7.1. The correlations among predictors for the Coleman data are given below.

x1 x2 x3 x4 x5

x1 1.000 0.181 0.230 0.503 0.197
x2 0.181 1.000 0.827 0.051 0.927
x3 0.230 0.827 1.000 0.183 0.819
x4 0.503 0.051 0.183 1.000 0.124
x5 0.197 0.927 0.819 0.124 1.000

A visual display of these relationships was provided in Figures 9.1–9.4.
Note that x3 is highly correlated with x2 and x5. Since x3 is highly correlated with y, the fact that

x2 and x5 are also quite highly correlated with y is not surprising. Recall that the correlations with y
were given at the beginning of Section 9.1. Moreover, since x3 is highly correlated with x2 and x5,
it is also not surprising that x2 and x5 have little to add to a model that already contains x3. We have
seen that it is the two variables x1 and x4, i.e., the variables that do not have high correlations with
either x3 or y, that have the greater impact on the regression equation.

Having regressed y on x3, the sample correlations between y and any of the other variables are no
longer important. Having done this regression, it is more germane to examine the partial correlations
between y and the other variables after adjusting for x3. However, as we will see in our discussion
of variable selection in Chapter 10, even this has its drawbacks. �

As long as points 1 through 4 are kept in mind, a moderate amount of collinearity is not a big
problem. For severe collinearity, there are four common approaches: a) classical ridge regression,
b) generalized inverse regression, c) principal components regression, and d) canonical regression.
Classical ridge regression is probably the best known of these methods. The other three methods
are closely related and seem quite reasonable. Principal components regression is discussed in Sec-
tion 11.6. Another procedure, lasso regression, is becoming increasingly popular but it is consider-
ably more difficult to understand how it works, cf. Section 10.5.
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Table 9.1: L. A. heart study data.

i x1 x2 x3 x4 x5 y i x1 x2 x3 x4 x5 y
1 44 124 80 254 70 190 31 42 136 82 383 69 187
2 35 110 70 240 73 216 32 28 124 82 360 67 148
3 41 114 80 279 68 178 33 40 120 85 369 71 180
4 31 100 80 284 68 149 34 40 150 100 333 70 172
5 61 190 110 315 68 182 35 35 100 70 253 68 141
6 61 130 88 250 70 185 36 32 120 80 268 68 176
7 44 130 94 298 68 161 37 31 110 80 257 71 154
8 58 110 74 384 67 175 38 52 130 90 474 69 145
9 52 120 80 310 66 144 39 45 110 80 391 69 159

10 52 120 80 337 67 130 40 39 106 80 248 67 181
11 52 130 80 367 69 162 41 40 130 90 520 68 169
12 40 120 90 273 68 175 42 48 110 70 285 66 160
13 49 130 75 273 66 155 43 29 110 70 352 66 149
14 34 120 80 314 74 156 44 56 141 100 428 65 171
15 37 115 70 243 65 151 45 53 90 55 334 68 166
16 63 140 90 341 74 168 46 47 90 60 278 69 121
17 28 138 80 245 70 185 47 30 114 76 264 73 178
18 40 115 82 302 69 225 48 64 140 90 243 71 171
19 51 148 110 302 69 247 49 31 130 88 348 72 181
20 33 120 70 386 66 146 50 35 120 88 290 70 162
21 37 110 70 312 71 170 51 65 130 90 370 65 153
22 33 132 90 302 69 161 52 43 122 82 363 69 164
23 41 112 80 394 69 167 53 53 120 80 343 71 159
24 38 114 70 358 69 198 54 58 138 82 305 67 152
25 52 100 78 336 70 162 55 67 168 105 365 68 190
26 31 114 80 251 71 150 56 53 120 80 307 70 200
27 44 110 80 322 68 196 57 42 134 90 243 67 147
28 31 108 70 281 67 130 58 43 115 75 266 68 125
29 40 110 74 336 68 166 59 52 110 75 341 69 163
30 36 110 80 314 73 178 60 68 110 80 268 62 138

9.8 More on model testing

In this section, we take the opportunity to introduce various methods of defining reduced models.
To this end we introduce some new data, a subset of the Chapman data.

EXAMPLE 9.8.1. Dixon and Massey (1983) report data from the Los Angeles Heart Study su-
pervised by J. M. Chapman. The variables are y, weight in pounds; x1, age in years; x2, systolic
blood pressure in millimeters of mercury; x3, diastolic blood pressure in millimeters of mercury; x4,
cholesterol in milligrams per dl; x5, height in inches. The data from 60 men are given in Table 9.1.

For now, our interest is not in analyzing the data but in illustrating modeling techniques. We
fitted the basic multiple regression model

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 + εi. (9.8.1)

The table of coefficients and ANOVA table follow.

Table of Coefficients: Model (9.8.1)
Predictor β̂k SE(β̂k) t P
Constant −112.50 89.56 −1.26 0.214
x1-age 0.0291 0.2840 0.10 0.919
x2-sbp 0.0197 0.3039 0.06 0.949
x3-dbp 0.7274 0.4892 1.49 0.143
x4-chol −0.02103 0.04859 −0.43 0.667
x5-ht 3.248 1.241 2.62 0.011
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Analysis of Variance: Model (9.8.1)
Source df SS MS F P
Regression 5 7330.4 1466.1 3.30 0.011
Residual Error 54 24009.6 444.6
Total 59 31340.0

One plausible reduced model is that systolic and diastolic blood pressure have the same regres-
sion coefficient, i.e, H0 : β2 = β3. Incorporating this into Model (9.8.1) gives

yi = β0 +β1xi1 +β2xi2 +β2xi3 +β4xi4 +β5xi5 + εi

= β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 +β5xi5 + εi, (9.8.2)

which involves regressing y on the four variables x1, x2 + x3, x4, x5. The fitted equation is

ŷ =−113+ 0.018x1+0.283(x2+ x3)−0.0178x4+3.31x5.

The ANOVA table

Analysis of Variance for Model (9.8.2).
Source df SS MS F P
Regression 4 6941.9 1735.5 3.91 0.007
Residual Error 55 24398.1 443.6
Total 59 31340.0

leads to the test statistic for whether the reduced model fits,

Fobs =
(24398.1−24009.6)/(55−54)

444.6
.
= 1.

The reduced model based on the sum of the blood pressures fits as well as the model with the
individual blood pressures.

The table of coefficients for Model (9.8.2)

Table of Coefficients: Model (9.8.2)
Predictor β̂k SE(β̂k) t P
Constant −113.16 89.45 −1.27 0.211
x1-age 0.0182 0.2834 0.06 0.949
x2 + x3 0.2828 0.1143 2.47 0.016
x4-chol −0.01784 0.04841 −0.37 0.714
x5-ht 3.312 1.237 2.68 0.010

shows a significant effect for the sum of the blood pressures. Although neither blood pressure looked
important in the table of coefficients for the full model, we find that the sum of the blood pressures
is a good predictor of weight, with a positive regression coefficient. Although high blood pressure is
not likely to cause high weight, there is certainly a correlation between weight and blood pressure, so
it is plausible that blood pressure could be a good predictor of weight. The reader should investigate
whether x2, x3, and x2 + x3 are all acting as surrogates for one another, i.e., whether it is sufficient
to include any one of the three in the model, after which the others add no appreciable predictive
ability.

Another plausible idea, perhaps more so for other dependent variables rather than weight, is that
it could be the difference between the blood pressure readings that is important. In this case, the
corresponding null hypothesis is H0 : β2 +β3 = 0. Writing β3 =−β2, the model becomes

yi = β0 +β1xi1 +β2xi2 −β2xi3 +β4xi4 +β5xi5 + εi

= β0 +β1xi1 +β2(xi2 − xi3)+β4xi4 +β5xi5 + εi. (9.8.3)

With
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Analysis of Variance for Model (9.8.3)
Source df SS MS F P
Regression 4 4575.5 1143.9 2.35 0.065
Residual Error 55 26764.5 486.6
Total 59 31340.0

the test statistic for whether the reduced model fits is

Fobs =
(26764.5−24009.6)/(55−54)

444.6
= 6.20.

The one-sided P value is 0.016, i.e., 6.20 = F(1− .016,1,54). Clearly the reduced model fits inad-
equately. Replacing the blood pressures by their difference does not predict as well as having the
blood pressures in the model.

It would have worked equally well to have written β3 =−β2 and fitted the reduced model

yi = β0 +β1xi1 +β3(xi3 − xi2)+β4xi4 +β5xi5 + εi.

Tests for proportional coefficients are similar to the previous illustrations. For example, we could
test if the coefficient for x2 (sbp) is 40 times smaller than for x3 (dbp). To test H0 : 40β2 = β3, the
reduced model becomes

yi = β0 +β1xi1 +β2xi2 +40β2xi3 +β4xi4 +β5xi5 + εi

= β0 +β1xi1 +β2(xi2 +40xi3)+β4xi4 +β5xi5 + εi.

We leave it to the reader to evaluate this hypothesis.
Now let’s test whether the regression coefficient for diastolic blood pressure is 0.5 units higher

than for systolic. The hypothesis is H0 : β2 +0.5 = β3. Substitution gives

yi = β0 +β1xi1 +β2xi2 +(β2 +0.5)xi3 +β4xi4 +β5xi5 + εi

= 0.5xi3 +β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 +β5xi5 + εi. (9.8.4)

The term 0.5xi3 is a known constant for each observation i, often called an offset. Such terms are
easy to handle in linear models, just take them to the other side of the equation,

yi − 0.5xi3 = β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 +β5xi5 + εi, (9.8.5)

and fit the model with the new dependent variable yi −0.5xi3.
The fitted regression equation is

ŷ− 0.5x3 =−113+0.026x1+0.097(x2+ x3)−0.0201x4+3.27x5

or
ŷ =−113+ 0.026x1+0.097x2+0.597x3−0.0201x4+3.27x5.

The ANOVA table for the reduced model (9.8.5) is

Analysis of Variance for Model (9.8.5)
Source df SS MS F P
Regression 4 3907.7 976.9 2.23 0.077
Residual Error 55 24043.1 437.1
Total 59 27950.8

It may not be obvious but Model (9.8.5) can be tested against the full model (9.8.1) in the usual way.
Since xi3 is already included in Model (9.8.1), subtracting 0.5 times it from yi has little effect on



226 9. MULTIPLE REGRESSION: INTRODUCTION

Model (9.8.1): the fitted values differ only by the constant 0.5xi3 being subtracted; the residuals and
degrees of freedom are identical. Performing the test of Model (9.8.5) versus Model (9.8.1) gives

Fobs =
(24043.1−24009.6)/(55−54)

444.6
= 0.075

for a one-sided P value of 0.79, so the equivalent reduced models (9.8.4) and (9.8.5) are consistent
with the data.

We could similarly test whether the height coefficient is 3.5 in Model (9.8.1), i.e., test H0 : β5 =
3.5 by fitting

yi = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +3.5xi5+ εi

or
yi − 3.5xi5 = β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 + εi. (9.8.6)

Fitting Model (9.8.6) gives the regression equation

ŷ−3.5x5 =−130+0.045x1+0.019x2+0.719x3−0.0203x4

or
ŷ =−130+0.045x1+0.019x2+0.719x3−0.0203x4+3.5x5.

The ANOVA table is

Analysis of Variance for Model (9.8.6)
Source df SS MS F P
Regression 4 3583.3 895.8 2.05 0.100
Residual Error 55 24027.9 436.9
Total 59 27611.2

and testing the models in the usual way gives

Fobs =
(24027.9−24009.6)/(55−54)

444.6
= 0.041

for a one-sided P value of 0.84. The reduced model (9.8.6) is consistent with the data.
Alternatively, we could test H0 : β5 = 3.5 from the original table of coefficients for Model (9.8.1)

by computing

tobs =
3.248−3.5

1.241
=−0.203

and comparing the result to a t(54) distribution. The square of the t statistic equals the F statistic.
Finally, we illustrate a simultaneous test of the last two hypotheses, i.e., we test H0 : β2 +0.5 =

β3; β5 = 3.5. The reduced model is

yi = β0 +β1xi1 +β2xi2 +(β2 +0.5)xi3 +β4xi4 +3.5xi5 + εi

= 0.5xi3 +3.5xi5 +β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 + εi

or
yi − 0.5xi3− 3.5xi5 = β0 +β1xi1 +β2(xi2 + xi3)+β4xi4 ++εi. (9.8.7)

The fitted regression equation is

ŷ− .5x3− 3.5x5 =−129+0.040x1+0.094(x2+ x3)−0.0195x4

or
ŷ =−129+0.040x1+0.094x2+0.594x3−0.0195x4+3.5x5.

The ANOVA table is
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Analysis of Variance for Model (9.8.7)
Source df SS MS F P
Regression 3 420.4 140.1 0.33 0.806
Residual Error 56 24058.8 429.6
Total 59 24479.2

and testing Model (9.8.7) against Model (9.8.1) in the usual way gives

Fobs =
(24058.8−24009.6)/(56−54)

444.6
= 0.055

for a one-sided P value of 0.95. In this case, the high one-sided P value is probably due less to
any problems with Model (9.8.7) and due more to me looking at the table of coefficients for Model
(9.8.1) and choosing a null hypothesis that seemed consistent with the data. Typically, hypotheses
should be suggested by previous theory or data, not inspection of the current data.

9.9 Additive effects and interaction

For the Coleman Report data, one of the viable models had two predictors: x3, socioeconomic status,
and x4, teacher’s verbal score. If the model displayed lack of fit, there are a number of ways that we
could expand the model.

In general, the simplest multiple regression model for E(y) based on two predictors is

m(x) = β0 +β1x1 +β2x2. (9.9.1)

This model displays additive effects. The relative effect of changing x1 into, say, x̃1 is the same for
any value of x2. Specifically,

[β0 +β1x̃1 +β2x2]− [β0+β1x1 +β2x2] = β2(x̃1 − x1).

This effect does not depend on x2, which allows us to speak about an effect for x1. If the effect of
x1 depends on x2, no single effect for x1 exists and we would always need to specify the value of
x2 before discussing the effect of x1. An exactly similar argument shows that in Model (9.9.1) the
effect of changing x2 does not depend on the value of x1.

Generally, for any two predictors x1 and x2, an additive effects (no-interaction) model takes the
form

m(x) = h1(x1)+ h2(x2) (9.9.2)

where x = (x1,x2) and h1(·) and h2(·) are arbitrary functions. In this case, the relative effect of
changing x1 to x̃1 is the same for any value of x2 because

m(x̃1,x2)−m(x1,x2) = [h1(x̃1)+ h2(x2)]− [h1(x1)+ h2(x2)] = h1(x̃1)−h1(x1),

which does not depend on x2. An exactly similar argument shows that the effect of changing x2 does
not depend on the value of x1. In an additive model, the effect as x1 changes can be anything at all;
it can be any function h1, and similarly for x2. However, the combined effect must be the sum of the
two individual effects. Other than Model (9.9.1), the most common no-interaction models for two
measurement predictors are probably a polynomial in x1 plus a polynomial in x2, say,

m(x) = β0 +
R

∑
r=1

βr0xr
1 +

S

∑
s=1

β0sx
s
2. (9.9.3)

An interaction model is literally any model that does not display the additive effects structure of
(9.9.2). When generalizing no-interaction polynomial models, cross-product terms are often added
to model interaction. For example, Model (9.9.1) might be expanded to

m(x) = β0 +β1x1 +β2x2 +β3x1x2.
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This is an interaction model because the relative effect of changing x1 to x̃1 depends on the value of
x2. Specifically,

[β0 +β1x̃1 +β2x2 +β3x̃1x2]− [β0 +β1x1 +β2x2 +β3x1x2] = β2(x̃1 − x1)+β3(x̃1 − x1)x2,

where the second term depends on the value of x2. To include interaction, the no-interaction poly-
nomial model (9.9.3) might be extended to an interaction polynomial model

m(x) =
R

∑
r=0

S

∑
s=0

βrsx
r
1xs

2. (9.9.4)

These devices are easily extended to more than two predictor variables, cf. Section 10.

EXAMPLE 9.9.1. Using the Coleman Report data, we begin by considering

yh = β0 +β3xh3 +β4xh4 + εh

which was earlier examined in Section 9.3. First we fit a simple quadratic additive model

yh = β0 +β10xh3 +β20x2
h3 +β01xh4 +β02x2

h4 + εh.

From the table of coefficients
Table of Coefficients

Predictor β̂k SE(β̂k) t P
Constant 38.0 106.5 0.36 0.726
x3 0.54142 0.05295 10.22 0.000
x2

3 −0.001892 0.006411 −0.30 0.772
x4 −1.124 8.602 −0.13 0.898
x2

4 0.0377 0.1732 0.22 0.831

we see that neither quadratic term is adding anything after the other terms because both quadratic
terms have large P values. To make a simultaneous test of dropping the quadratic terms, we need to
compare the error in the ANOVA table

Analysis of Variance
Source df SS MS F P
Regression 4 571.47 142.87 29.99 0.000
Residual Error 15 71.46 4.76
Total 19 642.92

to the error given in Section 9.3. The F statistic becomes

Fobs =
[72.43−71.46]/[17−15]

71.46/15
=

0.485
4.76

= 0.102,

so together the quadratic terms are contributing virtually nothing.
The simplest interaction model is

yh = β0 +β3xh3 +β4xh4 +β34xh3xh4 + εh.

Fitting gives the table of coefficients.

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 10.31 10.48 0.98 0.340
x3 1.900 1.569 1.21 0.244
x4 0.9264 0.4219 2.20 0.043
x3x4 −0.05458 0.06304 −0.87 0.399
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This shows no effect for adding the β34xh3xh4 interaction (P = 0.399). Alternatively, we could com-
pare the error from the ANOVA table

Analysis of Variance
Source df SS MS F P
Regression 3 573.74 191.25 44.23 0.000
Residual Error 16 69.18 4.32
Total 19 642.92

to that given in Section 9.3 to get the F statistic

Fobs =
[72.43− 69.18]/[17−16]

69.18/16
=

3.25
4.32

= 0.753 = (−0.87)2,

which also gives the P value 0.399. �

9.10 Generalized additive models

Suppose we wanted to fit a cubic interaction model to the Coleman Report data. With five predictor
variables, the model is

m(x) =
3

∑
r=0

3

∑
s=0

3

∑
t=0

3

∑
u=0

3

∑
v=0

βrstuvxr
1xs

2xt
3xu

4xv
5 (9.10.1)

and includes 54 = 625 mean parameters βrstuv. We might want to think twice about trying to estimate
625 parameters from just 20 schools.

This is a common problem with fitting polynomial interaction models. When we have even a
moderate number of predictor variables, the number of parameters quickly becomes completely un-
wieldy. And it is not only a problem for polynomial interaction models. In Section 8.3 we discussed
replacing polynomials with other basis functions φr(x). The polynomial models happen to have
φr(x) = xr. Other choices of φr include cosines, or both cosines and sines, or indicator functions,
or wavelets. Typically, φ0(x) ≡ 1. In the basis function approach, the additive polynomial model
(9.9.3) generalizes to

m(x) = β0 +
R

∑
r=1

βr0φr(x1)+
S

∑
s=1

β0sφs(x2) (9.10.2)

and the polynomial interaction model (9.9.4) generalizes to

m(x) =
R

∑
r=0

S

∑
s=0

βrsφr(x1)φs(x2). (9.10.3)

When expanding Model (9.10.3) to include more predictors, the generalized interaction model has
exactly the same problem as the polynomial interaction model (9.10.1) in that it requires fitting too
many parameters.

Generalized additive models provide a means for circumventing the problem. They do so by
restricting the orders of the interactions. In Model (9.10.1) we have five variables, all of which can
interact with one another. Instead, suppose variables x1 and x4 can interact with one another but with
no other variables and that variables x2, x3, and x5 can interact with one another but with no other
variables. We can then write a generalized additive model

m(x)≡ m(x1,x2,x3,x4,x5) = h1(x1,x4)+ h2(x2,x3,x5). (9.10.4)

Using the basis function approach to model each of the two terms on the right gives

m(x) =
R

∑
r=0

U

∑
u=0

βruφr(x1)φu(x4)+
S

∑
s=0

T

∑
t=0

V

∑
v=0

γstuφs(x2)φt(x3)φv(x5)− γ000.
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We subtracted γ000 from the model because both β00 and γ000 serve as intercept terms, hence they
are redundant parameters. This section started by considering the cubic interaction model (9.10.1)
for the Coleman Report data. The model has 3 = R = S = T = U = V and involves 625 mean
parameters. Using similar cubic polynomials to model the generalized additive model (9.10.4) we
need only 24 + 34 − 1 = 96 parameters. While that is still far too many parameters to fit to the
Coleman Report data, you can see that fitting generalized additive models are much more feasible
than fitting full interaction models.

Another generalized additive model that we could propose for five variables is

m(x) = h1(x1,x2)+ h2(x2,x3)+ h3(x4,x5).

A polynomial version of the model is

m(x) =
R

∑
r=0

S

∑
s=0

βrsx
r
1xs

2 +
S

∑
s=0

T

∑
t=0

γst x
s
2xt

3 +
U

∑
u=0

V

∑
v=0

δuvxu
4xv

5. (9.10.5)

In this case, not only are β00, γ00, and δ00 all redundant intercept parameters, but ∑S
s=0 β0sx0

1xs
2 and

∑S
s=0 γs0xs

2x0
3 are redundant simple polynomials in x2. In this case it is more convenient to write

Model (9.10.5) as

m(x) =
R

∑
r=0

S

∑
s=0

βrsx
r
1xs

2 +
S

∑
s=0

T

∑
t=1

γst x
s
2xt

3 +
U

∑
u=0

V

∑
v=0

δuvxu
4xv

5 − δ00.

Of course, the catch with generalized additive models is that you need to have some idea of
what variables may interact with one another. And the only obvious way to check that assumption
is to test the assumed generalized additive model against the full interaction model. But this whole
discussion started with the fact that fitting the full interaction model is frequently infeasible.

9.11 Final comment

The maxim for unbalanced data, and regression data are typically unbalanced, is that if you change
anything, you change everything. If you change a predictor variable in a model, you change the
meaning of the regression coefficients (to the extent that they have any meaning), you change the
estimates, the fitted values, the residuals, the leverages: everything! If you drop out a data point, you
change the meaning of the regression coefficients, the estimates, the fitted values, the residuals, the
leverages: everything! If you change anything, you change everything. There are a few special cases
where this is not true, but they are only special cases.

9.12 Exercises

EXERCISE 9.12.1. Younger (1979, p. 533) presents data from a sample of 12 discount department
stores that advertise on television, radio, and in the newspapers. The variables x1, x2, and x3 represent
the respective amounts of money spent on these advertising activities during a certain month while y
gives the store’s revenues during that month. The data are given in Table 9.2. Complete the following
tasks using multiple regression.

(a) Give the theoretical model along with the relevant assumptions.

(b) Give the fitted model, i.e., repeat (a) substituting the estimates for the unknown parameters.

(c) Test H0 : β2 = 0 versus HA : β2 �= 0 at α = 0.05.

(d) Test the hypothesis H0 : β1 = β2 = β3 = 0.

(e) Give a 99% confidence interval for β2.
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Table 9.2: Younger’s advertising data.

Obs. y x1 x2 x3 Obs. y x1 x2 x3

1 84 13 5 2 7 34 12 7 2
2 84 13 7 1 8 30 10 3 2
3 80 8 6 3 9 54 8 5 2
4 50 9 5 3 10 40 10 5 3
5 20 9 3 1 11 57 5 6 2
6 68 13 5 1 12 46 5 7 2

(f) Test whether the reduced model yi = β0 + β1xi1 + εi is an adequate explanation of the data as
compared to the full model.

(g) Test whether the reduced model yi = β0 + β1xi1 + εi is an adequate explanation of the data as
compared to the model yi = β0 +β1xi1 +β2xi2 + εi.

(h) Write down the ANOVA table for the ‘full’ model used in (g).

(i) Construct an added variable plot for adding variable x3 to a model that already contains variables
x1 and x2. Interpret the plot.

(j) Compute the sample partial correlation ry3·12. What does this value tell you?

EXERCISE 9.12.2. The information below relates y, a second measurement on wood volume, to
x1, a first measurement on wood volume, x2, the number of trees, x3, the average age of trees, and x4,
the average volume per tree. Note that x4 = x1/x2. Some of the information has not been reported,
so that you can figure it out on your own.

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 23.45 14.90 0.122
x1 0.93209 0.08602 0.000
x2 0.4721 1.5554 0.126
x3 −0.4982 0.1520 0.002
x4 3.486 2.274 0.132

Analysis of Variance
Source df SS MS F P
Regression 4 887994 0.000
Error
Total 54 902773

Sequential
Source df SS
x1 1 883880
x2 1 183
x3 1 3237
x4 1 694

(a) How many observations are in the data?

(b) What is R2 for this model?

(c) What is the mean squared error?

(d) Give a 95% confidence interval for β2.

(e) Test the null hypothesis β3 = 0 with α = 0.05.

(f) Test the null hypothesis β1 = 1 with α = 0.05.
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Table 9.3: Prater’s gasoline–crude oil data.

y x1 x2 x3 x4 y x1 x2 x3 x4

6.9 38.4 6.1 220 235 24.8 32.2 5.2 236 360
14.4 40.3 4.8 231 307 26.0 38.4 6.1 220 365
7.4 40.0 6.1 217 212 34.9 40.3 4.8 231 395
8.5 31.8 0.2 316 365 18.2 40.0 6.1 217 272
8.0 40.8 3.5 210 218 23.2 32.2 2.4 284 424
2.8 41.3 1.8 267 235 18.0 31.8 0.2 316 428
5.0 38.1 1.2 274 285 13.1 40.8 3.5 210 273

12.2 50.8 8.6 190 205 16.1 41.3 1.8 267 358
10.0 32.2 5.2 236 267 32.1 38.1 1.2 274 444
15.2 38.4 6.1 220 300 34.7 50.8 8.6 190 345
26.8 40.3 4.8 231 367 31.7 32.2 5.2 236 402
14.0 32.2 2.4 284 351 33.6 38.4 6.1 220 410
14.7 31.8 0.2 316 379 30.4 40.0 6.1 217 340
6.4 41.3 1.8 267 275 26.6 40.8 3.5 210 347
17.6 38.1 1.2 274 365 27.8 41.3 1.8 267 416
22.3 50.8 8.6 190 275 45.7 50.8 8.6 190 407

(g) Give the F statistic for testing the null hypothesis β3 = 0.

(h) Give SSR(x3|x1,x2) and find SSR(x3|x1,x2,x4).

(i) Test the model with only variables x1 and x2 against the model with all of variables x1, x2, x3,
and x4.

(j) Test the model with only variables x1 and x2 against the model with variables x1, x2, and x3.

(k) Should the test in part (g) be the same as the test in part (j)? Why or why not?

(l) For estimating the point on the regression surface at (x1,x2,x3,x4) = (100,25,50,4), the standard
error of the estimate for the point on the surface is 2.62. Give the estimated point on the surface,
a 95% confidence interval for the point on the surface, and a 95% prediction interval for a new
point with these x values.

(m) Test the null hypothesis β1 = β2 = β3 = β4 = 0 with α = 0.05.

EXERCISE 9.12.3. Atkinson (1985) and Hader and Grandage (1958) have presented Prater’s data
on gasoline. The variables are y, the percentage of gasoline obtained from crude oil; x1, the crude
oil gravity oAPI; x2, crude oil vapor pressure measured in lbs/in2; x3, the temperature, in oF, at
which 10% of the crude oil is vaporized; and x4, the temperature, in oF, at which all of the crude oil
is vaporized. The data are given in Table 9.3. Find a good model for predicting gasoline yield from
the other four variables.

EXERCISE 9.12.4. Analyze the Chapman data of Example 9.8.1. Find a good model for predict-
ing weight from the other variables.

EXERCISE 9.12.5. Table 9.4 contains a subset of the pollution data analyzed by McDonald and
Schwing (1973). The data are from various years in the early 1960s. They relate air pollution to mor-
tality rates for various standard metropolitan statistical areas in the United States. The dependent
variable y is the total age-adjusted mortality rate per 100,000 as computed for different metropoli-
tan areas. The predictor variables are, in order, mean annual precipitation in inches, mean January
temperature in degrees F, mean July temperature in degrees F, population per household, median
school years completed by those over 25, percent of housing units that are sound and with all facil-
ities, population per sq. mile in urbanized areas, percent non-white population in urbanized areas,
relative pollution potential of sulphur dioxide, annual average of percent relative humidity at 1 pm.
Find a good predictive model for mortality.
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Table 9.4: Pollution data.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y
36 27 71 3.34 11.4 81.5 3243 8.8 42.6 59 921.870
35 23 72 3.14 11.0 78.8 4281 3.5 50.7 57 997.875
44 29 74 3.21 9.8 81.6 4260 0.8 39.4 54 962.354
47 45 79 3.41 11.1 77.5 3125 27.1 50.2 56 982.291
43 35 77 3.44 9.6 84.6 6441 24.4 43.7 55 1071.289
53 45 80 3.45 10.2 66.8 3325 38.5 43.1 54 1030.380
43 30 74 3.23 12.1 83.9 4679 3.5 49.2 56 934.700
45 30 73 3.29 10.6 86.0 2140 5.3 40.4 56 899.529
36 24 70 3.31 10.5 83.2 6582 8.1 42.5 61 1001.902
36 27 72 3.36 10.7 79.3 4213 6.7 41.0 59 912.347
52 42 79 3.39 9.6 69.2 2302 22.2 41.3 56 1017.613
33 26 76 3.20 10.9 83.4 6122 16.3 44.9 58 1024.885
40 34 77 3.21 10.2 77.0 4101 13.0 45.7 57 970.467
35 28 71 3.29 11.1 86.3 3042 14.7 44.6 60 985.950
37 31 75 3.26 11.9 78.4 4259 13.1 49.6 58 958.839
35 46 85 3.22 11.8 79.9 1441 14.8 51.2 54 860.101
36 30 75 3.35 11.4 81.9 4029 12.4 44.0 58 936.234
15 30 73 3.15 12.2 84.2 4824 4.7 53.1 38 871.766
31 27 74 3.44 10.8 87.0 4834 15.8 43.5 59 959.221
30 24 72 3.53 10.8 79.5 3694 13.1 33.8 61 941.181
31 45 85 3.22 11.4 80.7 1844 11.5 48.1 53 891.708
31 24 72 3.37 10.9 82.8 3226 5.1 45.2 61 871.338
42 40 77 3.45 10.4 71.8 2269 22.7 41.4 53 971.122
43 27 72 3.25 11.5 87.1 2909 7.2 51.6 56 887.466
46 55 84 3.35 11.4 79.7 2647 21.0 46.9 59 952.529
39 29 75 3.23 11.4 78.6 4412 15.6 46.6 60 968.665
35 31 81 3.10 12.0 78.3 3262 12.6 48.6 55 919.729
43 32 74 3.38 9.5 79.2 3214 2.9 43.7 54 844.053
11 53 68 2.99 12.1 90.6 4700 7.8 48.9 47 861.833
30 35 71 3.37 9.9 77.4 4474 13.1 42.6 57 989.265
50 42 82 3.49 10.4 72.5 3497 36.7 43.3 59 1006.490
60 67 82 2.98 11.5 88.6 4657 13.5 47.3 60 861.439
30 20 69 3.26 11.1 85.4 2934 5.8 44.0 64 929.150
25 12 73 3.28 12.1 83.1 2095 2.0 51.9 58 857.622
45 40 80 3.32 10.1 70.3 2682 21.0 46.1 56 961.009
46 30 72 3.16 11.3 83.2 3327 8.8 45.3 58 923.234
54 54 81 3.36 9.7 72.8 3172 31.4 45.5 62 1113.156
42 33 77 3.03 10.7 83.5 7462 11.3 48.7 58 994.648
42 32 76 3.32 10.5 87.5 6092 17.5 45.3 54 1015.023
36 29 72 3.32 10.6 77.6 3437 8.1 45.5 56 991.290
37 38 67 2.99 12.0 81.5 3387 3.6 50.3 73 893.991
42 29 72 3.19 10.1 79.5 3508 2.2 38.8 56 938.500
41 33 77 3.08 9.6 79.9 4843 2.7 38.6 54 946.185
44 39 78 3.32 11.0 79.9 3768 28.6 49.5 53 1025.502
32 25 72 3.21 11.1 82.5 4355 5.0 46.4 60 874.281

Alternatively, you can obtain the complete data from the Internet statistical service STATLIB by
going to http://lib.stat.cmu.edu/datasets/ and clicking on “pollution.” The data consist
of 16 variables on 60 cases.

EXERCISE 9.12.6. Go to http://lib.stat.cmu.edu/datasets/ and click on “bodyfat.”
There are data for 15 variables along with a description of the data.

(a) Using the body density measurements as a dependent variable, perform a multiple regression
using all of the other variables except body fat as predictor variables. What variables can be
safely eliminated from the analysis? Discuss any surprising or expected results in terms of the
variables that seem to be most important.

(b) Using the body fat measurements as a dependent variable, perform a multiple regression using
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all of the other variables except density as predictor variables. What variables can be safely
eliminated from the analysis? Discuss any surprising or expected results in terms of the variables
that seem to be most important.



Chapter 10

Diagnostics and Variable Selection

In this chapter we continue our discussion of multiple regression. In particular, we focus on check-
ing the assumptions of regression models by looking at diagnostic statistics. If problems with as-
sumptions become apparent, one way to deal with them is to try transformations. The discussion
of transformations in Section 7.3 continues to apply. Among the methods discussed there, only the
circle of transformations depends on having a simple linear regression model. The other methods
apply with multiple regression as well as the analysis of variance models introduced in Chapter 12
and later. In particular, the discussion of transforming x at the end of Section 7.3 takes on new impor-
tance in multiple regression because multiple regression involves several predictor variables, each
of which is a candidate for transformation. Incidentally, the modified Box–Tidwell procedure eval-
uates each predictor variable separately, so it involves adding only one predictor variable xi j log(xi j)
to the multiple regression model at a time.

This chapter also examines methods for choosing good reduced models. Variable selection meth-
ods fall into two categories: best subset selection methods and stepwise regression methods. Both
are discussed. In Section 4 we examine the interplay between influential cases and model selection
techniques. Finally, Section 5 gives a brief introduction to lasso regression. We continue to illustrate
techniques on the data from the Coleman Report given in Section 6.9 (Table 6.4) and discussed in
Chapter 9.

10.1 Diagnostics

Table 10.1 contains a variety of measures for checking the assumptions of the multiple regression
model with five predictor variables that was fitted in Section 6.9 and Chapter 9 to the Coleman
Report data. The table includes case indicators, the data y, the predicted values ŷ, the leverages,
the standardized residuals r, the standardized deleted residuals t, and Cook’s distances C. All of
these, except for Cook’s distance, were introduced in Section 7.2. Recall that leverages measure the
distance between the predictor variables of a particular case and the overall center of those data.
Cases with leverages near 1 dominate any fitted regression. As a rule of thumb, leverages greater
than 2p/n cause concern and leverages greater than 3p/n cause (at least mild) consternation. Here
n is the number of observations in the data and p is the number of regression coefficients, including
the intercept. The standardized deleted residuals t contain essentially the same information as the
standardized residuals r but t values can be compared to a t(dfE −1) distribution to obtain a formal
test of whether a case is consistent with the other data. (A formal test based on the r values requires
a more exotic distribution than the t(dfE −1).) Cook’s distance for case i is defined as

Ci =
∑n

h=1

(
ŷh − ŷh[i]

)2
pMSE

, (10.1.1)

where ŷh is the predictor of the hth case and ŷh[i] is the predictor of the hth case when case i has been
removed from the data. Cook’s distance measures the effect of deleting case i on the prediction of
all of the original observations.

Figures 10.1 and 10.2 are plots of the standardized residuals versus normal scores and against

235
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Table 10.1: Diagnostics: Coleman Report, full data.

Case y ŷ Leverage r t C
1 37.01 36.66 0.482 0.23 0.23 0.008
2 26.51 26.86 0.486 −0.24 −0.23 0.009
3 36.51 40.46 0.133 −2.05 −2.35 0.107
4 40.70 41.17 0.171 −0.25 −0.24 0.002
5 37.10 36.32 0.178 0.42 0.40 0.006
6 33.90 33.99 0.500 −0.06 −0.06 0.001
7 41.80 41.08 0.239 0.40 0.38 0.008
8 33.40 33.83 0.107 −0.22 −0.21 0.001
9 41.01 40.39 0.285 0.36 0.34 0.008

10 37.20 36.99 0.618 0.16 0.16 0.007
11 23.30 25.51 0.291 −1.26 −1.29 0.110
12 35.20 33.45 0.403 1.09 1.10 0.133
13 34.90 35.95 0.369 −0.64 −0.62 0.040
14 33.10 33.45 0.109 −0.18 −0.17 0.001
15 22.70 24.48 0.346 −1.06 −1.07 0.099
16 39.70 38.40 0.157 0.68 0.67 0.014
17 31.80 33.24 0.291 −0.82 −0.81 0.046
18 31.70 26.70 0.326 2.94 4.56 0.694
19 43.10 41.98 0.285 0.64 0.63 0.027
20 41.01 40.75 0.223 0.14 0.14 0.001

the predicted values. The largest standardized residual, that for case 18, appears to be somewhat
unusually large. To test whether the data from case 18 are consistent with the other data, we can
compare the standardized deleted residual to a t(dfE −1) distribution. From Table 10.1, the t resid-
ual is 4.56. The corresponding P value is 0.0006. Actually, we chose to perform the test on the t
residual for case 18 only because it was the largest of the 20 t residuals. Because the test is based on
the largest of the t values, it is appropriate to multiply the P value by the number of t statistics con-
sidered. This gives 20×0.0006 = 0.012, which is still a very small P value. There is considerable
evidence that the data of case 18 are inconsistent, for whatever reason, with the other data. This fact
cannot be discovered from a casual inspection of the raw data.

The only point of any concern with respect to the leverages is case 10. Its leverage is 0.618,
while 2p/n = 0.6. This is only a mildly high leverage and case 10 seems well behaved in all other
respects; in particular, C10 is small, so deleting case 10 has very little effect on predictions.

We now reconsider the analysis with case 18 deleted. The regression equation is

y = 34.3− 1.62x1+0.0854x2+0.674x3+1.11x4−4.57x5

and R2 = 0.963. Table 10.2 contains the table of coefficients. Table 10.3 contains the analysis of
variance. Table 10.4 contains diagnostics. Note that the MSE is less than half of its previous value
when case 18 was included in the analysis. It is no surprise that the MSE is smaller, since the case
being deleted is often the single largest contributor to the SSE . Correspondingly, the regression
parameter t statistics in Table 10.2 are all much more significant. The actual regression coefficient
estimates have changed a bit but not greatly. Predictions have not changed radically either, as can be
seen by comparing the predictions given in Tables 10.1 and 10.4. Although the predictions have not
changed radically, they have changed more than they would have if we deleted any observation other
than case 18. From the definition of Cook’s distance given in Equation (10.1.1), C18 is precisely the
sum of the squared differences between the predictions in Tables 10.1 and 10.4 divided by 6 times
the MSE from the full data. From Table 10.1, Cook’s distance when dropping case 18 is much larger
than Cook’s distance from dropping any other case.

Consider again Table 10.4 containing the diagnostic statistics when case 18 has been deleted.
Case 10 has moderately high leverage but seems to be no real problem. Figures 10.3 and 10.4 give
the normal plot and the standardized residual versus predicted value plot, respectively, with case
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Figure 10.1: Normal plot, full data, W ′ = 0.903.
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Figure 10.2: Standardized residuals versus predicted values, full data.

Table 10.2: Table of Coefficients: Case 18 deleted.

Predictor β̂ SE(β̂) t P
Constant 34.287 9.312 3.68 0.003
x1 −1.6173 0.7943 −2.04 0.063
x2 0.08544 0.03546 2.41 0.032
x3 0.67393 0.06516 10.34 0.000
x4 1.1098 0.2790 3.98 0.002
x5 −4.571 1.437 −3.18 0.007
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Table 10.3: Analysis of Variance: Case 18 deleted.

Source df SS MS F P
Regression 5 607.74 121.55 68.27 0.000
Error 13 23.14 1.78
Total 18 630.88

Table 10.4: Diagnostics: Case 18 deleted.

Case y ŷ Leverage r t C
1 37.01 36.64 0.483 0.39 0.37 0.023
2 26.51 26.89 0.486 −0.39 −0.38 0.024
3 36.51 40.21 0.135 −2.98 −5.08 0.230
4 40.70 40.84 0.174 −0.12 −0.11 0.001
5 37.10 36.20 0.179 0.75 0.73 0.020
6 33.90 33.59 0.504 0.33 0.32 0.018
7 41.80 41.66 0.248 0.12 0.12 0.001
8 33.40 33.65 0.108 −0.20 −0.19 0.001
9 41.01 41.18 0.302 −0.15 −0.15 0.002

10 37.20 36.79 0.619 0.50 0.49 0.068
11 23.30 23.69 0.381 −0.37 −0.35 0.014
12 35.20 34.54 0.435 0.66 0.64 0.055
13 34.90 35.82 0.370 −0.87 −0.86 0.074
14 33.10 32.38 0.140 0.58 0.57 0.009
15 22.70 22.36 0.467 0.35 0.33 0.017
16 39.70 38.25 0.158 1.18 1.20 0.044
17 31.80 32.82 0.295 −0.91 −0.90 0.058
18 24.28 0.483
19 43.10 41.44 0.292 1.48 1.56 0.151
20 41.01 41.00 0.224 0.00 0.00 0.000

18 deleted. Figure 10.4 is particularly interesting. At first glance, it appears to have a horn shape
opening to the right. But there are only three observations on the left of the plot and many on the
right, so one would expect a horn shape because of the data distribution. Looking at the right of
the plot, we see that in spite of the data distribution, much of the horn shape is due to a single
very small residual. If we mentally delete that residual, the remaining residuals contain a hint of an
upward opening parabola. The potential outlier is case 3. From Table 10.4, the standardized deleted
residual for case 3 is −5.08, which yields a raw P value of 0.0001, and if we adjust for having 19
t statistics, the P value is 0.0019, still an extremely small value. Note also that in Table 10.1, when
case 18 was included in the data, the standardized deleted residual for case 3 was somewhat large
but not nearly so extreme.

With cases 3 and 18 deleted, the regression equation becomes

y = 29.8− 1.70x1+0.0851x2+0.666x3+1.18x4−4.07x5.

The R2 for these data is 0.988. The table of coefficients is in Table 10.5, the analysis of variance is
in Table 10.6, and the diagnostics are in Table 10.7.

Deleting the outlier, case 3, again causes a drop in the MSE , from 1.78 with only case 18 deleted
to 0.61 with both cases 3 and 18 deleted. This creates a corresponding drop in the standard errors for
all regression coefficients and makes them all appear to be more significant. The actual estimates of
the regression coefficients do not change much from Table 10.2 to Table 10.5. The largest changes
seem to be in the constant and in the coefficient for x5.

From Table 10.7, the leverages, t statistics, and Cook’s distances seem reasonable. Figures 10.5
and 10.6 contain a normal plot and a plot of standardized residuals versus predicted values. Both
plots look good. In particular, the suggestion of lack of fit in Figure 10.4 appears to be unfounded.
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Figure 10.3: Normal plot, case 18 deleted, W ′ = 0.852.
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Figure 10.4: Standardized residuals versus predicted values, case 18 deleted.

Table 10.5: Table of Coefficients: Cases 3 and 18 deleted.

Predictor β̂ SE(β̂) t P
Constant 29.758 5.532 5.38 0.000
x1 −1.6985 0.4660 −3.64 0.003
x2 0.08512 0.02079 4.09 0.001
x3 0.66617 0.03824 17.42 0.000
x4 1.1840 0.1643 7.21 0.000
x5 −4.0668 0.8487 −4.79 0.000
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Table 10.6: Analysis of Variance: Cases 3 and 18 deleted.

Source df SS MS F P
Regression 5 621.89 124.38 203.20 0.000
Error 12 7.34 0.61
Total 17 629.23

Table 10.7: Diagnostics: Cases 3 and 18 deleted.

Case y ŷ Leverage r t C
1 37.01 36.83 0.485 0.33 0.31 0.017
2 26.51 26.62 0.491 −0.20 −0.19 0.007
3 40.78 0.156
4 40.70 41.43 0.196 −1.04 −1.05 0.044
5 37.10 36.35 0.180 1.07 1.07 0.041
6 33.90 33.67 0.504 0.42 0.41 0.030
7 41.80 42.11 0.261 −0.46 −0.44 0.012
8 33.40 33.69 0.108 −0.39 −0.38 0.003
9 41.01 41.56 0.311 −0.84 −0.83 0.053

10 37.20 36.94 0.621 0.54 0.52 0.078
11 23.30 23.66 0.381 −0.58 −0.57 0.035
12 35.20 34.24 0.440 1.65 1.79 0.356
13 34.90 35.81 0.370 −1.47 −1.56 0.212
14 33.10 32.66 0.145 0.60 0.59 0.010
15 22.70 22.44 0.467 0.46 0.44 0.031
16 39.70 38.72 0.171 1.38 1.44 0.066
17 31.80 33.02 0.298 −1.85 −2.10 0.243
18 24.50 0.486
19 43.10 42.22 0.332 1.37 1.43 0.155
20 41.01 41.49 0.239 −0.70 −0.68 0.025

Once again, Figure 10.6 could be misinterpreted as a horn shape but the ‘horn’ is due to the distri-
bution of the predicted values.

Ultimately, someone must decide whether or not to delete unusual cases based on subject matter
considerations. There is only moderate statistical evidence that case 18 is unusual and case 3 does
not look severely unusual unless one previously deletes case 18. Are there subject matter reasons
for these schools to be unusual? Will the data be more or less representative of the appropriate
population if these data are deleted?

10.2 Best subset model selection

In this section and the next, we examine methods for identifying good reduced models relative to
a given (full) model. Reduced models are of interest because a good reduced model provides an
adequate explanation of the current data and, typically, the reduced model is more understandable
because it is more succinct. Even more importantly, for data collected in a similar fashion, a good
reduced model often provides better predictions and parameter estimates than the full model, cf. the
subsection below on Mallows’s Cp statistic and Christensen (2011, Section 14.7). Of course, diffi-
culties with predictions arise when a good reduced model is used with new cases that are not similar
to those on which the reduced model was fitted and evaluated. In particular, a good fitted reduced
model should not be used for prediction of a new case unless all of the predictor variables in the new
case are similar to those in the original data. It is not enough that new cases be similar on just the
variables in the reduced model. In fact it is not sufficient that they be similar on all of the variables
in the full model because some important variable may not have been measured for the full model,
yet a new case with a very different value of this unmeasured variable can act very differently.

This section presents three methods for examining all possible reduced models. These methods
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Figure 10.5: Normal plot, cases 3 and 18 deleted, W ′ = 0.979.
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Figure 10.6: Standardized residuals versus predicted values, cases 3 and 18 deleted.

are based on defining a criterion for a best model and then finding the models that are best by this
criterion. Section 10.3 considers three methods of making sequential selections of variables. Obvi-
ously, it is better to consider all reduced models whenever feasible rather than making sequential
selections. Sequential methods are flawed but they are cheap and easy.

10.2.1 R2 statistic

The fundamental statistic in comparing all possible reduced models is the R2 statistic. This is appro-
priate but we should recall some of the weaknesses of R2. The numerical size of R2 is more related
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Table 10.8: Best subset regression: R2 statistic.

Included variables
Vars. R2

√
MSE x1 x2 x3 x4 x5

1 86.0 2.2392 X
1 56.8 3.9299 X
2 88.7 2.0641 X X
2 86.2 2.2866 X X
3 90.1 1.9974 X X X
3 88.9 2.1137 X X X
4 90.2 2.0514 X X X X
4 90.1 2.0603 X X X X
5 90.6 2.0743 X X X X X

to predictive ability than to model adequacy. The perfect model can have small predictive ability
and thus a small R2, while demonstrably inadequate models can still have substantial predictive
ability and thus a high R2. Fortunately, we are typically more interested in prediction than in finding
the perfect model, especially since our models are typically empirical approximations for which no
perfect model exists. In addition, when considering transformations of the dependent variable, the
R2 values for different models are not comparable (unless predictions are back transformed to the
original scale and correlated with the original data to obtain R2).

In the present context, the most serious drawback of R2 is that it typically goes up when more
predictor variables are added to a model. (It cannot go down.) Thus it is not really appropriate to
compare the R2 values of two models with different numbers of predictors. However, we can use R2

to compare models with the same number of predictor variables. In fact, for models with the same
number of predictors, we can use R2 to order them from best to worse; the largest R2 value then
corresponds to the best model. R2 is the fundamental model comparison statistic for best subset
methods in that, for comparing models with the same number of predictors, the other methods
considered give the same relative orderings for models as R2. The essence of the other methods is to
develop a criterion for comparing models that have different numbers of predictors, i.e., the methods
incorporate penalties for adding more regression parameters.

Table 10.8 contains the two best models for the Coleman Report data based on the R2 statistic
for each number of predictor variables. The best single variable is x3; the second best is x2. This
information could be obtained from the correlations between y and the predictor variables given in
Section 9.1. Note the drastic difference between the R2 for using x3 and that for x2. The best pair
of variables for predicting y is x3 and x4, while the second best pair is x3 and x5. The best three-
variable model contains x1, x3, and x4. Note that the largest R2 values go up very little when a forth
or fifth variable is added. Moreover, all the models in Table 10.8 that contain three or more variables
include x3 and x4. We could conduct F tests to compare models with different numbers of predictor
variables, as long as the smaller models are contained in the larger ones.

Any models that we think are good candidates should be examined for influential and outlying
observations, consistency with assumptions, and subject matter implications. Any model that makes
particularly good sense to a subject matter specialist warrants special consideration. Models that
make particularly poor sense to subject matter specialists may be dumb luck but they may also
be the springboard for new insights into the process generating the data. We also need to concern
ourselves with the role of observations that are influential or outlying in the original (full) model. We
will examine this in more detail later. Finally, recall that when making predictions based on reduced
models, the point at which we are making the prediction generally needs to be consistent with the
original data on all variables, not just the variables in the reduced model. When we drop a variable,
we do not conclude that the variable is not important, we conclude that it is not important for this set
of data. For different data, a dropped variable may become important. We cannot presume to make
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predictions from a reduced model for new cases that are substantially different from the original
data.

10.2.2 Adjusted R2 statistic

The adjusted R2 statistic is simply an adjustment of R2 that allows comparisons to be made between
models with different numbers of predictor variables. Let p be the number of predictor variables in
a regression equation (including the intercept), then the adjusted R2 is defined to be

Adj R2 ≡ 1− n−1
n− p

(
1−R2) .

For the Coleman Report example with all predictor variables, this becomes

0.873 = 1− 20−1
20−6

(1−0.9063),

or, as it is commonly written, 87.3%.
It is not too difficult to see that

Adj R2 = 1− MSE
s2

y

where s2
y is the sample variance of the yis, i.e., s2

y = SSTot/(n−1). This is a much simpler statement
than the defining relationship. For the Coleman Report example with all predictor variables, this is

0.873 = 1− 4.30
(642.92)/19

.

Note that when comparing two models, the model with the smaller MSE has the larger adjusted R2.
R2 is always between 0 and 1, but while the adjusted R2 cannot get above 1, it can get below 0.

It is possible to find models that have MSE > s2
y . In these cases, the adjusted R2 is actually less than

0.
Models with large adjusted R2s are precisely models with small mean squared errors. At first

glance, this seems like a reasonable way to choose models, but upon closer inspection the idea seems
flawed. The problem is that when comparing some model with a reduced model, the adjusted R2 is
greater for the larger model whenever the mean squared error of the larger model is less than the
numerator mean square for testing the adequacy of the smaller model. In other words, the adjusted
R2 is greater for the larger model whenever the F statistic for comparing the models is greater than
1. Typically, we want the F statistic to be substantially larger than 1 before concluding that the extra
variables in the larger model are important.

To see that the adjusted R2 is larger for the larger model whenever F > 1, consider the simplest
example, that of comparing the full model to the model that contains just an intercept. For the
Coleman Report data, the mean squared error for the intercept model is

SSTot/19= 642.92/19= (SSReg+SSE)/19

= (5MSReg+14MSE)/19=
5
19

116.54+
14
19

4.30.

Thus SSTot/19 is a weighted average of MSReg and MSE . The MSReg is greater than the MSE
(F > 1), so the weighted average of the terms must be greater than the smaller term, MSE . The
weighted average is SSTot/19, which is the mean squared error for the intercept model, while MSE
is the mean squared error for the full model. Thus F > 1 implies that the mean squared error for the
smaller model is greater than the mean squared error for the larger model and the model with the
smaller mean squared error has the higher adjusted R2.
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Table 10.9: Best subset regression: Adjusted R2 statistic.

Adj. Included variables
Vars. R2

√
MSE x1 x2 x3 x4 x5

3 88.2 1.9974 X X X
4 87.6 2.0514 X X X X
4 87.5 2.0603 X X X X
2 87.4 2.0641 X X
5 87.3 2.0743 X X X X X
3 86.8 2.1137 X X X

In general, the mean squared error for the smaller model is a weighted average of the mean
square for the variables being added and the mean squared error of the larger model. If the mean
square for the variables being added is greater than the mean squared error of the larger model, i.e.,
if F > 1, the mean squared error for the smaller model must be greater than that for the larger model.
If we add variables to a model whenever the F statistic is greater than 1, we will include a lot of
unnecessary variables.

Table 10.9 contains the six best-fitting models as judged by the adjusted R2 criterion. As ad-
vertised, the ordering of the models from best to worst is consistent whether one maximizes the
adjusted R2 or minimizes the MSE (or equivalently,

√
MSE). The best model based on the adjusted

R2 is the model with variables x1, x3, and x4, but a number of the best models are given. Presenting
a number of the best models reinforces the idea that selection of one or more final models should be
based on many more considerations than just the value of one model selection statistic. Moreover,
the best model as determined by the adjusted R2 often contains too many variables.

Note also that the two models in Table 10.9 with three variables are precisely the two three-
variable models with the highest R2 values from Table 10.8. The same is true about the two four-
variable models that made this list. As indicated earlier, when the number of variables is fixed,
ordering models by their R2s is equivalent to ordering models by their adjusted R2s. The comments
about model checking and prediction made in the previous subsection continue to apply.

10.2.3 Mallows’s Cp statistic

Mallows’s Cp statistic estimates a measure of the difference between the fitted regression surface
from a reduced model and the actual regression surface. The idea is to compare the points

zi = β0 +β1xi1 +β2xi2 +β3xi3 + . . .+βp−1xi,p−1

on the actual regression surface of the full model (Full) to the corresponding predictions ŷiR from
some reduced model (Red.) with, say, r predictor variables (including the constant). The compar-
isons are made at the locations of the original data. The model comparison is based on the sum of
standardized squared differences,

κ ≡
n

∑
i=1

(ŷiR − zi)
2/σ2.

The term σ2 serves only to provide some standardization. Small values of κ indicate good reduced
models. Note that κ is not directly useful because it is unknown. It depends on the zi values and
they depend on the unknown full model regression parameters. However, if we think of the ŷiRs as
functions of the random variables yi, the comparison value κ is a function of the yis and thus is a
random variable with an expected value. Mallows’s Cp statistic is an estimate of the expected value
of κ . In particular, Mallows’s Cp statistic is

Cp =
SSE(Red.)
MSE(Full)

− (n−2r).
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Table 10.10: Best subset regression: Cp statistic.

Included variables
Vars Cp

√
MSE x1 x2 x3 x4 x5

2 2.8 2.0641 X X
3 2.8 1.9974 X X X
3 4.6 2.1137 X X X
4 4.7 2.0514 X X X X
3 4.8 2.1272 X X X
4 4.8 2.0603 X X X X

For a derivation of this statistic see Christensen (2011, Section 14.1). The smaller the Cp value, the
better the model (up to the variability of the estimation). If the Cp statistic is computed for the full
model, the result is always p, the number of predictor variables including the intercept. For general
linear models r is the number of functionally distinct mean parameters in the reduced model.

In multiple regression, estimated regression surfaces are identical to prediction surfaces, so mod-
els with Mallows’s Cp statistics that are substantially less than p can be viewed as reduced models
that are estimated to be better at prediction than the full model. Of course this comparison between
predictions from the full and reduced models is restricted to the actual combinations of predictor
variables in the observed data.

For the Coleman Report data, Table 10.10 contains the best six models based on the Cp statistic.
The best model is the one with variables x3 and x4, but the model including x1, x3, and x4 has
essentially the same value of Cp. There is a substantial increase in Cp for any of the other four
models. Clearly, we would focus attention on the two best models to see if they are adequate in terms
of outliers, influential observations, agreement with assumptions, and subject matter implications.
As always, predictions can only be made with safety from the reduced models when the new cases
are to be obtained in a similar fashion to the original data. In particular, new cases must have similar
values to those in the original data for all of the predictor variables, not just those in the reduced
model. Note that the ranking of the best models is different here than for the adjusted R2. The full
model is not included here, while it was in the adjusted R2 table. Conversely, the model with x2, x3,
and x4 is included here but was not included in the adjusted R2 table. Note also that among models
with three variables, the Cp rankings agree with the R2 rankings and the same holds for four-variable
models.

It is my impression that Mallows’s Cp statistic is the most popular method for selecting a best
subset of the predictor variables. It is certainly my favorite. Mallows’s Cp statistic is closely related
to Akaike’s information criterion (AIC), which is a general criterion for model selection. AIC and
the relationship between Cp and AIC are examined in Christensen (1997, Section 4.8).

10.2.4 A combined subset selection table

Table 10.11 lists the three best models based on R2 for each number of predictor variables. In
addition, the adjusted R2 and Cp values for each model are listed in the table. It is easy to identify
the best models based on any of the model selection criteria. The output is extensive enough to
include a few notably bad models. Rather than asking for the best 3, one might ask for the best 4,
or 5, or 6 models for each number of predictor variables but it is difficult to imagine a need for any
more extensive summary of the models when beginning a search for good reduced models.

Note that the model with x1, x3, and x4 is the best model as judged by adjusted R2 and is nearly
the best model as judged by the Cp statistic. (The model with x3 and x4 has a slightly smaller Cp

value.) The model with x2, x3, x4 has essentially the same Cp statistic as the model with x1, x2, x3,
x4 but the latter model has a larger adjusted R2.
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Table 10.11: Best subset regression.

Adj. Included variables
Vars. R2 R2 Cp

√
MSE x1 x2 x3 x4 x5

1 86.0 85.2 5.0 2.2392 X
1 56.8 54.4 48.6 3.9299 X
1 53.7 51.2 53.1 4.0654 X
2 88.7 87.4 2.8 2.0641 X X
2 86.2 84.5 6.7 2.2866 X X
2 86.0 84.4 6.9 2.2993 X X
3 90.1 88.2 2.8 1.9974 X X X
3 88.9 86.8 4.6 2.1137 X X X
3 88.7 86.6 4.8 2.1272 X X X
4 90.2 87.6 4.7 2.0514 X X X X
4 90.1 87.5 4.8 2.0603 X X X X
4 89.2 86.3 6.1 2.1499 X X X X
5 90.6 87.3 6.0 2.0743 X X X X X

10.3 Stepwise model selection

Best subset selection methods evaluate all the possible subsets of variables from a full model and
identify the best reduced regression models based on some criterion. Evaluating all possible mod-
els is the most reasonable way to proceed in variable selection but the computational demands of
evaluating every model can be staggering. Every additional variable in a model doubles the number
of reduced models that can be constructed. In our example with five variables, there are 25 = 32
reduced models to be considered; in an example with 8 variables there are 28 = 256 reduced models
to be fitted. Years ago, when computation was slow and expensive, fitting large numbers of models
was not practical, and even now, when one has a very large number of predictor variables, fitting
all models can easily overwhelm a computer. (Actually, improved computer algorithms allow us
to avoid fitting all models, but even with the improved algorithms, computational limits can be
exceeded.)

An alternative to fitting all models is to evaluate the variables one at a time and look at a sequence
of models. Stepwise variable selection methods do this. The best of these methods begin with a full
model and sequentially identify variables that can be eliminated. In some procedures, variables that
have been eliminated may be put back into the model if they meet certain criteria. The virtue of
starting with the full model is that if you start with an adequate model and only do reasonable
things, you should end up with an adequate model. A less satisfactory procedure is to begin with no
variables and see which ones can be added into the model. This begins with an inadequate model
and there is no guarantee that an adequate model will ever be achieved. We consider three methods:
backwards elimination in which variables are deleted from the full model, forward selection in
which variables are added to a model (typically the model that includes only the intercept), and
stepwise methods in which variables can be both added and deleted. Because these methods only
consider the deletion or addition of one variable at a time, they may never find the best models as
determined by best subset selection methods.

10.3.1 Backwards elimination

Backwards elimination begins with the full model and sequentially eliminates from the model the
least important variable. The importance of a variable is judged by the size of the t (or equivalent
F) statistic for dropping the variable from the model, i.e., the t statistic for testing whether the
corresponding regression coefficient is 0. After the variable with the smallest absolute t statistic is
dropped, the model is refitted and the t statistics recalculated. Again, the variable with the smallest
absolute t statistic is dropped. The process ends when all of the absolute values of the t statistics are
greater than some predetermined level. The predetermined level can be a fixed number for all steps
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Table 10.12: Backwards elimination of y on 5 predictors with N = 20.

Step Const. x1 x2 x3 x4 x5 R2
√

MSE

1 β̂ 19.95 −1.8 0.044 0.556 1.11 −1.8 90.63 2.07
tobs −1.45 0.82 5.98 2.56 −0.89

2 β̂ 15.47 −1.7 0.582 1.03 −0.5 90.18 2.05
tobs −1.41 6.75 2.46 −0.41

3 β̂ 12.12 −1.7 0.553 1.04 90.07 2.00
tobs −1.47 11.27 2.56

4 β̂ 14.58 0.542 0.75 88.73 2.06
10.82 2.05

or it can change depending on the step. When allowing it to change depending on the step, we could
set up the process so that it stops when all of the P values are below a fixed level.

Table 10.12 illustrates backwards elimination for the Coleman Report data. In this example, the
predetermined level for stopping the procedure is 2. If all |t| statistics are greater than 2, elimination
of variables halts. Step 1 includes all 5 predictor variables. The table gives estimated regression
coefficients, t statistics, the R2 value, and the square root of the MSE . In step 1, the smallest absolute
t statistic is 0.82, so variable x2 is eliminated from the model. The statistics in step 2 are similar to
those in step 1 but now the model includes only variables x1, x3, x4, and x5. In step 2, the smallest
absolute t statistic is |− 0.41|, so variable x5 is eliminated from the model. Step 3 is based on the
model with x1, x3, and x4. The smallest absolute t statistic is the |− 1.47| for variable x1, so x1 is
dropped. Step 4 uses the model with only x3 and x4. At this step, the t statistics are both greater than
2, so the process halts. Note that the intercept is not considered for elimination.

The final model given in Table 10.12 happens to be the best model as determined by the Cp

statistic and the model at stage 3 is the second-best model as determined by the Cp statistic. This is
a fortuitous event; there is no reason that this should happen other than these data being particularly
clear about the most important variables.

10.3.2 Forward selection

Forward selection begins with an initial model and adds variables to the model one at a time. Most
often, the initial model contains only the intercept, but many computer programs have options for
including other variables in the initial model. Another reasonable starting point is to include all vari-
ables with large t statistics when fitting the full model containing all predictors. Logically, variables
that are important in the full model should never lose their importance in reduced models.

To determine which variable to add at any step in the process, a candidate variable is added to
the current model and the t statistic is computed for the candidate variable. This is done for each
candidate variable and the candidate variable with the largest |t| statistic is added to the model.
The procedure stops when none of the absolute t statistics is greater than a predetermined level.
The predetermined level can be a fixed number for all steps or it can change with the step. When
allowing it to change depending on the step, we could set the process so that it stops when none of
the P values for the candidate variables is below a fixed level.

Table 10.13 gives an abbreviated summary of the procedure for the Coleman Report data using
2 as the predetermined |t| level for stopping the process and starting with the intercept-only model.
At the first step, the five models yi = γ0 j + γ jxi j + εi, j = 1, . . . ,5 are fitted to the data. The variable
x j with the largest absolute t statistic for testing γ j = 0 is added to the model. Table 10.13 indicates
that this was variable x3. At step 2, the four models yi = β0 j +β3 jxi3 +β jxi j + εi, j = 1,2,4,5 are
fitted to the data and the variable x j with the largest absolute t statistic for testing β j = 0 is added to
the model. In the example, the largest absolute t statistic belongs to x4. At this point, the table stops,
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Table 10.13: Forward selection of y on 5 predictors with N = 20.

Step Const. x1 x2 x3 x4 x5 R2
√

MSE
1 β̂ 33.32 0.560 85.96 2.24

tobs 10.50
2 β̂ 14.58 0.542 0.75 88.73 2.06

tobs 10.82 2.05

indicating that when the three models yi = η0 j +η3 jxi3 +η4 jxi4 +η jxi j + εi, j = 1,2,5 were fitted
to the model, none of the absolute t statistics for testing η j = 0 were greater than 2.

The final model selected is the model with predictor variables x3 and x4. This is the same model
obtained from backwards elimination and the model that has the smallest Cp statistic. Again, this is
a fortuitous circumstance. There is no assurance that such agreement between methods will occur.

Rather than using t statistics, the decisions could be made using the equivalent F statistics. The
stopping value of 2 for t statistics corresponds to a stopping value of 4 for F statistics. In addition,
this same procedure can be based on sample correlations and partial correlations. The decision in
step 1 is equivalent to adding the variable that has the largest absolute sample correlation with y.
The decision in step 2 is equivalent to adding the variable that has the largest absolute sample partial
correlation with y after adjusting for x3. Step 3 is not shown in the table, but the computations for
step 3 must be made in order to know that the procedure stops after step 2. The decision in step 3 is
equivalent to adding the variable that has the largest absolute sample partial correlation with y after
adjusting for x3 and x4, provided this value is large enough.

The author has a hard time imagining any situation where forward selection from the intercept-
only model is a reasonable thing to do, except possibly as a screening device when there are more
predictor variables than there are observations. In such a case, the full model cannot be fitted mean-
ingfully, so best subset methods and backwards elimination do not work.

10.3.3 Stepwise methods

Stepwise methods alternate between forward selection and backwards elimination. Suppose you
have just arrived at a model by dropping a variable. A stepwise method will then check to see if
any variable can be added to the model. If you have just arrived at a model by adding a variable,
a stepwise method then checks to see if any variable can be dropped. The value of the absolute t
statistic required for dropping a variable is allowed to be different from the value required for adding
a variable. Stepwise methods often start with an initial model that contains only an intercept, but
many computer programs allow starting the process with the full model. In the Coleman Report
example, the stepwise method beginning with the intercept model gives the same results as forward
selection and the stepwise method beginning with the full model gives the same results as backwards
elimination. (The absolute t statistics for both entering and removing were set at 2.) Other initial
models can also be used. Christensen (2011, Section 14.2) discusses some alternative rules for
conducting stepwise regression.

10.4 Model selection and case deletion

In this section we examine how the results of the previous two sections change when influential
cases are deleted. Before beginning, we make a crucial point. Both variable selection and the elim-
ination of outliers cause the resulting model to appear better than it probably should. Both tend to
give MSEs that are unrealistically small. It follows that confidence and prediction intervals are un-
realistically narrow and test statistics are unrealistically large. Outliers tend to be cases with large
residuals; any policy of eliminating the largest residuals obviously makes the SSE , which is the sum
of the squared residuals, and the MSE smaller. Some large residuals occur by chance even when
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Table 10.14: Best subset regression: Case 18 deleted.

Adj. Included variables
Vars R2 R2 Cp

√
MSE x1 x2 x3 x4 x5

1 89.6 89.0 21.9 1.9653 X
1 56.0 53.4 140.8 4.0397 X
1 53.4 50.6 150.2 4.1595 X
2 92.3 91.3 14.3 1.7414 X X
2 91.2 90.1 18.2 1.8635 X X
2 89.8 88.6 23.0 2.0020 X X
3 93.7 92.4 11.4 1.6293 X X X
3 93.5 92.2 12.1 1.6573 X X X
3 92.3 90.8 16.1 1.7942 X X X
4 95.2 93.8 8.1 1.4766 X X X X
4 94.7 93.2 9.8 1.5464 X X X X
4 93.5 91.6 14.1 1.7143 X X X X
5 96.3 94.9 6.0 1.3343 X X X X X

the model is correct. Systematically eliminating these large residuals makes the estimate of the vari-
ance too small. Variable selection methods tend to identify as good reduced models those with small
MSEs. The most extreme case is that of using the adjusted R2 criterion, which identifies as the best
model the one with the smallest MSE . Confidence and prediction intervals based on models that
are arrived at after variable selection or outlier deletion should be viewed as the smallest reasonable
intervals available, with the understanding that more appropriate intervals would probably be wider.
Tests performed after variable selection or outlier deletion should be viewed as giving the greatest
reasonable evidence against the null hypothesis, with the understanding that more appropriate tests
would probably display a lower level of significance.

Recall that in Section 10.1, case 18 was identified as an influential point in the Coleman Report
data and then case 3 was identified as highly influential. Table 10.14 gives the results of a best subset
selection when case 18 has been eliminated. The full model is the best model as measured by either
the Cp statistic or the adjusted R2 value. This is a far cry from the full data analysis in which the
models with x3, x4 and with x1, x3, x4 had the smallest Cp statistics. These two models are only
the seventh and fifth best models in Table 10.14. The two closest competitors to the full model in
Table 10.14 involve dropping one of variables x1 and x2. The fourth and fifth best models involve
dropping x2 and one of variables x1 and x5. In this case, the adjusted R2 ordering of the five best
models agrees with the Cp ordering.

Table 10.15 gives the best subset summary when cases 3 and 18 have both been eliminated.
Once again, the best model as judged by either Cp or adjusted R2 is the full model. The second
best model drops x1 and the third best model drops x2. However, the subsequent ordering changes
substantially.

Now consider backwards elimination and forward selection with influential observations
deleted. In both cases, we continue to use the |t| value 2 as the cutoff to stop addition and removal
of variables.

Table 10.16 gives the results of a backwards elimination when case 18 is deleted and when cases
3 and 18 are deleted. In both situations, all five of the variables remain in the model. The regression
coefficients are similar in the two models with the largest difference being in the coefficients for
x5. Recall that when all of the cases were included, the backwards elimination model included only
variables x3 and x4, so we see a substantial difference due to the deletion of one or two cases.

The results of forward selection are given in Table 10.17. With case 18 deleted, the process stops
with a model that includes x3 and x4. With case 3 also deleted, the model includes x1, x3, and x4.
While these happen to agree quite well with the results from the complete data, they agree poorly
with the results from best subset selection and from backwards elimination, both of which indicate
that all variables are important. Forward selection gets hung up after a few variables and cannot deal
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Table 10.15: Best subset regression: Cases 3 and 18 deleted.

Adj. Included variables
Vars R2 R2 Cp

√
MSE x1 x2 x3 x4 x5

1 92.2 91.7 66.5 1.7548 X
1 57.9 55.3 418.8 4.0688 X
1 55.8 53.0 440.4 4.1693 X
2 95.3 94.7 36.1 1.4004 X X
2 93.2 92.2 58.3 1.6939 X X
2 92.3 91.2 67.6 1.8023 X X
3 96.6 95.8 25.2 1.2412 X X X
3 96.1 95.2 30.3 1.3269 X X X
3 95.3 94.3 38.0 1.4490 X X X
4 97.5 96.8 17.3 1.0911 X X X X
4 97.2 96.3 20.8 1.1636 X X X X
4 96.6 95.6 27.0 1.2830 X X X X
5 98.8 98.3 6.0 0.78236 X X X X X

Table 10.16: Backwards elimination.

Case 18 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 34.29 −1.62 0.085 0.674 1.11 −4.6 96.33 1.33
tobs −2.04 2.41 10.34 3.98 −3.18

Cases 18 and 3 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 29.76 −1.70 0.085 0.666 1.18 −4.07 98.83 0.782
tobs −3.64 4.09 17.42 7.21 −4.79

with the fact that adding several variables (rather than one at a time) improves the fit of the model
substantially.

10.5 Lasso regression

An alternative to least squares estimation that has become quite popular is lasso regression, which
was proposed by Tibshirani (1996). “Lasso” stands for least absolute shrinkage and selection op-

Table 10.17: Forward selection.

Case 18 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 32.92 0.604 89.59 1.97
tobs 12.10

2 β̂ 14.54 0.585 0.74 92.31 1.74
tobs 13.01 2.38

Cases 18 and 3 deleted
Step Const. x1 x2 x3 x4 x5 R2

√
MSE

1 β̂ 33.05 0.627 92.17 1.75
tobs 13.72

2 β̂ 13.23 0.608 0.79 95.32 1.40
tobs 16.48 3.18

3 β̂ 10.86 −1.66 0.619 1.07 96.57 1.24
tobs −2.26 18.72 4.23
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Table 10.18: Lasso and least squares estimates: The Coleman Report data.

Lasso λ Reduced Model
Predictor 1 0.6 0.56348 0.5 0 Least Squares
Constant 19.95 18.79306 20.39486 26.51564 35.0825 12.1195 14.58327
x1 −1.793 −0.33591 0.00000 0.00000 0.0000 −1.7358 0.00000
x2 0.04360 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000
x3 0.55576 0.51872 0.51045 0.47768 0.0000 0.5532 0.54156
x4 1.1102 0.62140 0.52194 0.28189 0.0000 1.0358 0.74989
x5 −1.811 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000

erator. The interesting thing about lasso, and the reason for its inclusion in this chapter, is that it
automatically performs variable selection while it is estimating the regression parameters.

As discussed in Subsection 9.1.2, the least squares estimates β̂ j satisfy

n

∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 −·· ·− β̂p−1xi,p−1

)2
=

min
β0,...,βp−1

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2
.

There are various ways that one can present the lasso criterion for estimation. One of them is to
minimize the least squares criterion

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2

subject to an upper bound on the sum of the absolute values of the regression coefficients. We define
the upper bound in terms of the least squares estimates so that the lasso estimates must satisfy

p−1

∑
j=1

|β j| ≤ λ
p−1

∑
j=1

|β̂ j| (10.5.1)

for some λ with 0 ≤ λ ≤ 1. The lasso estimates depend on the choice of λ . The least squares
estimates obviously satisfy the inequality when λ = 1, so λ = 1 gives least squares estimates. When
λ = 0, all the regression coefficients in the inequality must be zero, but notice that the intercept
is not subject to the upper bound in (10.5.1). Thus, λ = 0 gives the least squares estimates for the
intercept-only model, i.e., it zeros out all the regression coefficients except the intercept, which it
estimates with ȳ·.

EXAMPLE 10.5.1. We examine the effect of lasso regression on The Coleman Report data. Ta-
ble 10.18 contains results for five values of λ and least squares estimates for two reduced models.
For λ = 1, the estimates are identical to the least squares estimates for the full model.

R’s lasso2 package has a default value of λ = 0.5, which zeros out the coefficients for x1, x2,
and x5. The reduced model that only includes x3 and x4 is the model that we liked in Section 9.3.
The lasso estimates of β3 and β4 are noticeably smaller than the least squares estimates from the
reduced model given in the last column of Table 10.18. I also found the largest value of λ that zeros
out the coefficients for x1, x2, and x5. That value is λ = 0.56348. With this larger value of λ , the
lasso estimates are closer to the reduced model least squares estimates but still noticeably different.

For λ ≥ 0.56349, lasso produces a nonzero coefficient for x1. From Section 9.3, if we were
going to add another variable to the model containing only x3 and x4, the best choice is to add x1.
Table 10.18 includes results for λ = 0.6 and least squares on the three-variable model. λ = 0.6 still
has the coefficients for x2 and x5 zeroed out. Again, the nonzero lasso estimates for β1, β3, and β4

are all closer to zero than the least squares estimates from the model with just x1, x3, and x4. �
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Lasso seems to do a good job of identifying the important variables and it does it pretty automat-
ically. That can be both a blessing and a curse. It is far less obvious how well lasso is estimating the
regression coefficients. The least squares estimates seem more stable across reduced models than
do the lasso estimates. And there is the whole issue of choosing λ .

Notice that the inequality (10.5.1) uses the same weight λ on all of the regression coefficients.
That is not an obviously reasonable thing to do when the predictor variables are measured in differ-
ent units, so lasso is often applied to standardized predictor variables, i.e., variables that have their
sample mean subtracted and are then divided by their standard deviation. (This is the default in R’s
lasso2 package.) The regression estimates can then be transformed back to their original scales to be
comparable to the least squares estimates. Section 11.6 illustrates this standardization procedure for
another regression technique, principal components regression. Lasso applied to the unstandardized
Coleman Report data gives very different, and less appealing, results.

10.6 Exercises

EXERCISE 10.6.1. Reconsider the advertising data of Exercise 9.12.1.

(a) Are there any high-leverage points? Why or why not?

(b) Test whether each case is an outlier using an overall significance level no greater than α = 0.05.
Completely state the appropriate reference distribution.

(c) Discuss the importance of Cook’s distances in regard to these data.

(d) Using only analysis of variance tables, compute R2, the adjusted R2, and the Cp statistic for
yi = β0 +β1xi1 +β2xi2 + εi. Show your work.

(e) In the three-variable model, which if any variable would be deleted by a backwards elimination
method? Why?

EXERCISE 10.6.2. Consider the information given in Table 10.19 on diagnostic statistics for the
wood data of Exercise 9.12.2.

(a) Are there any outliers in the predictor variables? Why are these considered outliers?

(b) Are there any outliers in the dependent variable? If so, why are these considered outliers?

(c) What are the most influential observations in terms of the predictive ability of the model?

EXERCISE 10.6.3. Consider the information in Table 10.20 on best subset regression for the
wood data of Exercise 9.12.2.

(a) In order, what are the three best models as measured by the Cp criterion?

(b) What is the mean squared error for the model with variables x1, x3, and x4?

(c) In order, what are the three best models as measured by the adjusted R2 criterion? (Yes, it is
possible to distinguish between the best four!)

(d) What do you think are the best models and what would you do next?

EXERCISE 10.6.4. Consider the information in Table 10.21 on stepwise regression for the wood
data of Exercise 9.12.2.

(a) What is being given in the rows labeled x1, x2, x3, and x4? What is being given in the rows labeled
t?

(b) Is this table for forward selection, backwards elimination, stepwise regression, or some other
procedure?

(c) Describe the results of the procedure.
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Table 10.19: Diagnostics for wood data.

Obs. Leverage r t C Obs. Leverage r t C
1 0.085 −0.25 −0.25 0.001 29 0.069 0.27 0.26 0.001
2 0.055 1.34 1.35 0.021 30 0.029 0.89 0.89 0.005
3 0.021 0.57 0.57 0.001 31 0.204 0.30 0.30 0.005
4 0.031 0.35 0.35 0.001 32 0.057 0.38 0.37 0.002
5 0.032 2.19 2.28 0.032 33 0.057 0.05 0.05 0.000
6 0.131 0.20 0.19 0.001 34 0.085 −2.43 −2.56 0.109
7 0.027 1.75 1.79 0.017 35 0.186 −2.17 −2.26 0.215
8 0.026 1.23 1.24 0.008 36 0.184 1.01 1.01 0.046
9 0.191 0.52 0.52 0.013 37 0.114 0.85 0.85 0.019

10 0.082 0.47 0.46 0.004 38 0.022 0.19 0.19 0.000
11 0.098 −3.39 −3.82 0.250 39 0.022 −0.45 −0.45 0.001
12 0.066 0.32 0.32 0.001 40 0.053 −1.15 −1.15 0.015
13 0.070 −0.09 −0.09 0.000 41 0.053 0.78 0.78 0.007
14 0.059 0.08 0.08 0.000 42 0.136 −0.77 −0.76 0.018
15 0.058 −0.91 −0.91 0.010 43 0.072 −0.78 −0.77 0.009
16 0.085 −0.09 −0.09 0.000 44 0.072 −0.27 −0.26 0.001
17 0.113 1.28 1.29 0.042 45 0.072 −0.40 −0.40 0.002
18 0.077 −1.05 −1.05 0.018 46 0.063 −0.62 −0.62 0.005
19 0.167 0.38 0.38 0.006 47 0.025 0.46 0.46 0.001
20 0.042 0.24 0.23 0.000 48 0.021 0.18 0.18 0.000
21 0.314 −0.19 −0.19 0.003 49 0.050 −0.44 −0.44 0.002
22 0.099 0.56 0.55 0.007 50 0.161 −0.66 −0.66 0.017
23 0.093 0.47 0.46 0.004 51 0.042 −0.44 −0.43 0.002
24 0.039 −0.60 −0.60 0.003 52 0.123 −0.26 −0.26 0.002
25 0.098 −1.07 −1.07 0.025 53 0.460 1.81 1.86 0.558
26 0.033 0.14 0.13 0.000 54 0.055 0.50 0.50 0.003
27 0.042 1.19 1.19 0.012 55 0.093 −1.03 −1.03 0.022
28 0.185 −1.41 −1.42 0.090

Table 10.20: Best subset regression of wood data.

Adj. Included variables
Vars R2 R2 Cp

√
MSE x1 x2 x3 x4

1 97.9 97.9 12.9 18.881 X
1 63.5 62.8 1064.9 78.889 X
1 32.7 31.5 2003.3 107.04 X
2 98.3 98.2 3.5 17.278 X X
2 97.9 97.8 14.3 18.969 X X
2 97.9 97.8 14.9 19.061 X X
3 98.3 98.2 5.3 17.419 X X X
3 98.3 98.2 5.4 17.430 X X X
3 98.0 97.9 13.7 18.763 X X X
4 98.4 98.2 5.0 17.193 X X X X

Table 10.21: Stepwise regression on wood data.

STEP 1 2 3
Constant 23.45 41.87 43.85
x1 0.932 1.057 1.063
t 10.84 38.15 44.52
x2 0.73 0.09
t 1.56 0.40
x3 −0.50 −0.50 −0.51
t −3.28 −3.27 −3.36
x4 3.5
t 1.53√

MSE 17.2 17.4 17.3
R2 98.36 98.29 98.28
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EXERCISE 10.6.5. Reanalyze the Prater data of Atkinson (1985) and Hader and Grandage (1958)
from Exercise 9.12.3. Examine residuals and influential observations. Explore the use of the various
model selection methods.

EXERCISE 10.6.6. Reanalyze the Chapman data of Exercise 9.12.4. Examine residuals and in-
fluential observations. Explore the use of the various model selection methods.

EXERCISE 10.6.7. Reanalyze the pollution data of Exercise 9.12.5. Examine residuals and influ-
ential observations. Explore the use of various model selection methods.

EXERCISE 10.6.8. Repeat Exercise 9.12.6 on the body fat data with special emphasis on diag-
nostics and model selection.



Chapter 11

Multiple Regression: Matrix Formulation

In this chapter we use matrices to write regression models. Properties of matrices are reviewed in
Appendix A. The economy of notation achieved through using matrices allows us to arrive at some
interesting new insights and to derive several of the important properties of regression analysis.

11.1 Random vectors

In this section we discuss vectors and matrices that are made up of random variables rather than just
numbers. For simplicity, we focus our discussion on vectors that contain 3 rows, but the results are
completely general.

Let y1, y2, and y3 be random variables. From these, we can construct a 3×1 random vector, say

Y =

⎡
⎣

y1

y2

y3

⎤
⎦ .

The expected value of the random vector is just the vector of expected values of the random vari-
ables. For the random variables write E(yi) = μi, then

E(Y )≡

⎡
⎣

E(y1)
E(y2)
E(y3)

⎤
⎦=
⎡
⎣

μ1

μ2

μ3

⎤
⎦≡ μ .

In other words, expectation of a random vector is performed elementwise. In fact, the expected
value of any random matrix (a matrix consisting of random variables) is the matrix made up of the
expected values of the elements in the random matrix. Thus if wi j, i = 1,2,3, j = 1,2 is a collection
of random variables and we write

W =

⎡
⎣

w11 w12

w21 w22

w31 w33

⎤
⎦ ,

then

E(W )≡

⎡
⎣

E(w11) E(w12)
E(w21) E(w22)
E(w31) E(w33)

⎤
⎦ .

We also need a concept for random vectors that is analogous to the variance of a random variable.
This is the covariance matrix, sometimes called the dispersion matrix, the variance matrix, or the
variance-covariance matrix. The covariance matrix is simply a matrix consisting of all the variances
and covariances associated with the vector Y . Write

Var(yi) = E(yi − μi)
2 ≡ σii

and
Cov(yi,y j) = E[(yi − μi)(y j − μ j)]≡ σi j.

255
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Two subscripts are used on σii to indicate that it is the variance of yi rather than writing Var(yi)=σ2
i .

The covariance matrix of our 3×1 vector Y is

Cov(Y ) =

⎡
⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ .

When Y is 3× 1, the covariance matrix is 3× 3. If Y were 20× 1, Cov(Y ) would be 20× 20. The
covariance matrix is always symmetric because σi j = σ ji for any i, j. The variances of the individual
random variables lie on the diagonal that runs from the top left to the bottom right. The covariances
lie off the diagonal.

In general, if Y is an r×1 random vector and E(Y ) = μ , then Cov(Y ) = E[(Y − μ)(Y − μ)′]. In
other words, Cov(Y ) is the expected value of the random matrix (Y − μ)(Y − μ)′.

11.2 Matrix formulation of regression models

11.2.1 Simple linear regression in matrix form

The usual model for simple linear regression is

yi = β0 +β1xi + εi i = 1, . . . ,n , (11.2.1)

E(εi) = 0, Var(εi) = σ2, and Cov(εi,ε j) = 0 for i �= j. In matrix terms this can be written as

⎡
⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x1

1 x2
...

...
1 xn

⎤
⎥⎥⎦
[

β0

β1

]
+

⎡
⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎦ .

Yn×1 = Xn×2 β2×1 + en×1

Multiplying and adding the matrices on the right-hand side gives

⎡
⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

β0 +β1x1 + ε1

β0 +β1x2 + ε2
...

β0 +β1xn + εn

⎤
⎥⎥⎦ .

These two vectors are equal if and only if the corresponding elements are equal, which occurs if and
only if Model (11.2.1) holds. The conditions on the εis translate into matrix terms as

E(e) = 0

where 0 is the n× 1 matrix containing all zeros and

Cov(e) = σ2I

where I is the n× n identity matrix. By definition, the covariance matrix Cov(e) has the variances
of the εis down the diagonal. The variance of each individual εi is σ2, so all the diagonal elements
of Cov(e) are σ2, just as in σ2I. The covariance matrix Cov(e) has the covariances of distinct εis as
its off-diagonal elements. The covariances of distinct εis are all 0, so all the off-diagonal elements
of Cov(e) are zero, just as in σ2I.
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Table 11.1: Weights for various heights.

Ht. Wt. Ht. Wt.
65 120 63 110
65 140 63 135
65 130 63 120
65 135 72 170
66 150 72 185
66 135 72 160

EXAMPLE 11.2.1. Height and weight data are given in Table 11.1 for 12 individuals. In matrix
terms, the SLR model for regressing weights (y) on heights (x) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 65
1 65
1 65
1 65
1 66
1 66
1 63
1 63
1 63
1 72
1 72
1 72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
β0

β1

]
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The observed data for this example are
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

120
140
130
135
150
135
110
135
120
170
185
160

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We could equally well rearrange the order of the observations to write
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y7

y8

y9

y1

y2

y3

y4

y4

y6

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 63
1 63
1 63
1 65
1 65
1 65
1 65
1 66
1 66
1 72
1 72
1 72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
β0

β1

]
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε7

ε8

ε9

ε1

ε2

ε3

ε4

ε5

ε6

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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in which the xi values are ordered from smallest to largest. �

11.2.2 The general linear model

The general linear model is a generalization of the matrix form for the simple linear regression
model. The general linear model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ2I.

Y is an n× 1 vector of observable random variables. X is an n× p matrix of known constants. β
is a p× 1 vector of unknown (regression) parameters. e is an n×1 vector of unobservable random
errors. It will be assumed that n ≥ p. Regression is any general linear model where the rank of X is
p. In a general linear model, the number of functionally distinct mean parameters is the rank of X ,
cf. Section 3.1.

EXAMPLE 11.2.2. Multiple regression
In non-matrix form, the multiple regression model is

yi = β0 +β1xi1 +β2xi2 + · · ·+βp−1xi,p−1 + εi, i = 1, . . . ,n , (11.2.2)

where
E(εi) = 0, Var(εi) = σ2, Cov(εi,ε j) = 0, i �= j.

In matrix terms this can be written as

⎡
⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x11 x12 · · · x1,p−1

1 x21 x22 · · · x2,p−1
...

...
...

. . .
...

1 xn1 xn2 · · · xn,p−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

β0

β1

β2
...

βp−1

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎦ .

Yn×1 = Xn×p βp×1 + en×1

Multiplying and adding the right-hand side gives

⎡
⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

β0 +β1x11 +β2x12 + · · ·+βp−1x1,p−1 + ε1

β0 +β1x21 +β2x22 + · · ·+βp−1x2,p−1 + ε2
...

β0 +β1xn1 +β2xn2 + · · ·+βp−1xn,p−1 + εn

⎤
⎥⎥⎥⎦ ,

which holds if and only if (11.2.2) holds. The conditions on the εis translate into

E(e) = 0,

where 0 is the n× 1 matrix consisting of all zeros, and

Cov(e) = σ2I,

where I is the n× n identity matrix. �

EXAMPLE 11.2.3. In Example 11.2.1 we illustrated the matrix form of a SLR using the data on
heights and weights. We now illustrate some of the models from Chapter 8 applied to these data.

The cubic model
yi = β0 +β1xi +β2x2

i +β3x3
i + εi (11.2.3)
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is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 65 652 653

1 65 652 653

1 65 652 653

1 65 652 653

1 66 662 663

1 66 662 663

1 63 632 633

1 63 632 633

1 63 632 633

1 72 722 723

1 72 722 723

1 72 722 723

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β0

β1

β2

β3

β4

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Some of the numbers in X are getting quite large, i.e., 653 = 274,625. The model has better
numerical properties if we compute x̄· = 69.41666̄ and replace Model (11.2.3) with the equivalent
model

yi = γ0 + γ1(xi − x̄·)+ γ2(xi − x̄·)2 +β3(xi − x̄·)3 + εi

and its matrix form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (65− x̄·) (65− x̄·)2 (65− x̄·)3

1 (66− x̄·) (66− x̄·)2 (66− x̄·)3

1 (66− x̄·) (66− x̄·)2 (66− x̄·)3

1 (63− x̄·) (63− x̄·)2 (63− x̄·)3

1 (63− x̄·) (63− x̄·)2 (63− x̄·)3

1 (63− x̄·) (63− x̄·)2 (63− x̄·)3

1 (72− x̄·) (72− x̄·)2 (72− x̄·)3

1 (72− x̄·) (72− x̄·)2 (72− x̄·)3

1 (72− x̄·) (72− x̄·)2 (72− x̄·)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

γ0

γ1

γ2

β3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This third-degree polynomial is the largest polynomial that we can fit to these data. Two points
determine a line, three points determine a quadratic, and with only four district x values in the data,
we cannot fit a model greater than a cubic.

Define x̃ = (x− 63)/9 so that

(x1, . . . ,x12) = (65,65,65,65,66,66,63,63,63,72,72,72)

transforms to

(x̃1, . . . , x̃12) = (2/9,2/9,2/9,2/9,1/3,1/3,0,0,0,1,1,1).

The basis function model based on cosines

yi = β0 +β1xi +β2 cos(π x̃i)+β3 cos(π2x̃i)+ εi
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becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 65 cos(2π/9) cos(4π/9)
1 65 cos(2π/9) cos(4π/9)
1 65 cos(2π/9) cos(4π/9)
1 65 cos(2π/9) cos(4π/9)
1 66 cos(π/3) cos(2π/3)
1 66 cos(π/3) cos(2π/3)
1 63 cos(0) cos(0)
1 63 cos(0) cos(0)
1 63 cos(0) cos(0)
1 72 cos(π) cos(2π)
1 72 cos(π) cos(2π)
1 72 cos(π) cos(2π)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

β0

β1

β2

β3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The “Haar wavelet” model

yi = β0 +β1xi +β2I[0,.50)(x̃i)+β3I[.5,1](x̃i)+ εi

becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 65 1 0
1 65 1 0
1 65 1 0
1 65 1 0
1 66 1 0
1 66 1 0
1 63 1 0
1 63 1 0
1 63 1 0
1 72 0 1
1 72 0 1
1 72 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

β0

β1

β2

β3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that the last two columns of the X matrix add up to a column of 1s, like the first column.
This causes the rank of the 12× 4 model matrix X to be only 3, so the model is not a regression
model. Dropping either of the last two columns (or the first column) does not change the model in
any meaningful way but makes the model a regression.

If we partition the SLR model into points below 65.5 and above 65.5, the matrix model becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
0 0 1 66
0 0 1 66
1 63 0 0
1 63 0 0
1 63 0 0
0 0 1 72
0 0 1 72
0 0 1 72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

β1

β2

β3

β4

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Alternatively, we could rewrite the model as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y7

y8

y9

y1

y2

y3

y4

y4

y6

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 63 0 0
1 63 0 0
1 63 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
0 0 1 66
0 0 1 66
0 0 1 72
0 0 1 72
0 0 1 72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

β1

β2

β3

β4

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε7

ε8

ε9

ε1

ε2

ε3

ε4

ε5

ε6

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This makes it a bit clearer that we are fitting a SLR to the points with small x values and a separate
SLR to cases with large x values. The pattern of 0s in the X matrix ensure that the small x values
only involve the intercept and slope parameters β1 and β2 for the line on the first partition set and
that the large x values only involve the intercept and slope parameters β3 and β4 for the line on the
second partition set.

Fitting this model can also be accomplished by fitting the model

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y7

y8

y9

y1

y2

y3

y4

y4

y6

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 63 0 0
1 63 0 0
1 63 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 65 0 0
1 66 1 66
1 66 1 66
1 72 1 72
1 72 1 72
1 72 1 72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

β0

β1

γ0

γ1

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε7

ε8

ε9

ε1

ε2

ε3

ε4

ε5

ε6

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here we have changed the first two columns to make them agree with the SLR of Example 11.2.1.
However, notice that if we subtract the third column from the first column we get the first column
of the previous version. Similarly, if we subtract the fourth column from the second column we get
the second column of the previous version. This model has intercept and slope parameters β0 and
β1 for the first partition and intercept and slope parameters (β0 + γ0) and (β1 + γ1) for the second
partition.

Because of the particular structure of these data with 12 observations but only four distinct
values of x, except for the Haar wavelet model, all of these models are equivalent to one another and
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all of them are equivalent to a model with the matrix formulation
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

β0

β1

β2

β3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The models are equivalent in that they all give the same fitted values, residuals, and degrees of
freedom for error. We will see in the next chapter that this last matrix model has the form of a
one-way analysis of variance model. �

Other models to be discussed later such as analysis of variance and analysis of covariance mod-
els can also be written as general linear models. However, they are frequently not regression models
in that they frequently have the rank of X less than the number of columns p.

11.3 Least squares estimation of regression parameters

The regression estimates given by standard computer programs are least squares estimates. For
simple linear regression, the least squares estimates are the values of β0 and β1 that minimize

n

∑
i=1

(yi −β0 −β1xi)
2
. (11.3.1)

For multiple regression, the least squares estimates of the β js minimize

n

∑
i=1

(yi −β0 −β1xi1 −β2xi2 −·· ·−βp−1xi,p−1)
2
.

In matrix terms these can both be written as minimizing

(Y −Xβ )′(Y −Xβ ). (11.3.2)

The form in (11.3.2) is just the sum of the squares of the elements in the vector (Y −Xβ ). See also
Exercise 11.7.1.

We now give the general form for the least squares estimate of β in regression problems.

Proposition 11.3.1. If r(X) = p, then β̂ = (X ′X)
−1 X ′Y is the least squares estimate of β .

PROOF: The proof is optional material.
Note that (X ′X)

−1 exists only because in a regression problem the rank of X is p. The proof
stems from rewriting the function to be minimized.

(Y −Xβ )′ (Y −Xβ ) =
(

Y −X β̂ +X β̂ −Xβ
)′(

Y −X β̂ +X β̂ −Xβ
)

(11.3.3)

=
(

Y −X β̂
)′(

Y −X β̂
)
+
(

Y −X β̂
)′(

X β̂ −Xβ
)

+
(

X β̂ −Xβ
)′(

Y −X β̂
)
+
(

X β̂ −Xβ
)′(

X β̂ −Xβ
)
.
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Consider one of the two cross-product terms from the last expression, say
(

X β̂ −Xβ
)′(

Y −X β̂
)

.

Using the definition of β̂ given in the proposition,
(

X β̂ −Xβ
)′(

Y −X β̂
)

=
[
X
(

β̂ −β
)]′(

Y −X β̂
)

=
(

β̂ −β
)′

X ′
(

Y −X (X ′X)
−1

X ′Y
)

=
(

β̂ −β
)′

X ′
(

I −X (X ′X)
−1

X ′
)

Y

but
X ′
(

I −X (X ′X)
−1

X ′
)
= X ′− (X ′X)(X ′X)

−1
X ′ = X ′−X ′ = 0.

Thus (
X β̂ −Xβ

)′(
Y −X β̂

)
= 0

and similarly (
Y −X β̂

)′(
X β̂ −Xβ

)
= 0.

Eliminating the two cross-product terms in (11.3.3) gives

(Y −Xβ )′ (Y −Xβ ) =
(

Y −X β̂
)′(

Y −X β̂
)
+
(

X β̂ −Xβ
)′(

X β̂ −Xβ
)
.

This form is easily minimized. The first of the terms on the right-hand side does not depend
on β , so the β that minimizes (Y −Xβ )′ (Y −Xβ ) is the β that minimizes the second term(

X β̂ −Xβ
)′(

X β̂ −Xβ
)

. The second term is non-negative because it is the sum of squares of

the elements in the vector X β̂ −Xβ and it is minimized by making it zero. This is accomplished by
choosing β = β̂ . �

EXAMPLE 11.3.2. Simple linear regression
We now show that Proposition 11.3.1 gives the usual estimates for simple linear regression. Readers
should refamiliarize themselves with the results in Section 6.10. They should also be warned that
the algebra in the first half of the example is a bit more sophisticated than that used elsewhere in
this book.

Assume the model
yi = β0 +β1xi + εi i = 1, . . . ,n.

and write

X =

⎡
⎢⎢⎣

1 x1

1 x2
...

...
1 xn

⎤
⎥⎥⎦

so

X ′X =

[
n ∑n

i=1 xi

∑n
i=1 xi ∑n

i=1 x2
i

]
.

Inverting this matrix gives

(X ′X)
−1

=
1

n∑n
i=1 x2

i − (∑n
i=1 xi)

2

[
∑n

i=1 x2
i −∑n

i=1 xi

−∑n
i=1 xi n

]
.

The denominator in this term can be simplified by observing that

n
n

∑
i=1

x2
i −
(

n

∑
i=1

xi

)2

= n

(
n

∑
i=1

x2
i −nx̄2

·

)
= n

n

∑
i=1

(xi − x̄·)
2
.
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Note also that

X ′Y =

[
∑n

i=1 yi

∑n
i=1 xiyi

]
.

Finally, we get

β̂ = (X ′X)
−1

X ′Y

=
1

n∑n
i=1 (xi − x̄·)

2

[
∑n

i=1 x2
i ∑n

i=1 yi −∑n
i=1 xi ∑n

i=1 xiyi

−∑n
i=1 xi ∑n

i=1 yi +n∑n
i=1 xiyi

]

=
1

∑n
i=1 (xi − x̄·)

2

[
ȳ∑n

i=1 x2
i − x̄·∑n

i=1 xiyi

(∑n
i=1 xiyi)−nx̄·ȳ

]

=
1

∑n
i=1 (xi − x̄·)

2

[
ȳ∑n

i=1 x2
i −nx̄2

· ȳ−
{

x̄· (∑n
i=1 xiyi)−

(
nx̄2

· ȳ
)}

β̂1 ∑n
i=1 (xi − x̄·)

2

]

=
1

∑n
i=1 (xi − x̄·)

2

[
ȳ
(
∑n

i=1 x2
i −nx̄2

·
)
− x̄· (∑n

i=1 xiyi −nx̄·ȳ)
β̂1 ∑n

i=1 (xi − x̄·)
2

]

=

[
ȳ− β̂1x̄·

β̂1

]
=

[
β̂0

β̂1

]
.

As usual, the alternative regression model

yi = β∗0 +β1 (xi − x̄·)+ εi i = 1, . . . ,n

is easier to work with. Write the model in matrix form as

Y = Zβ∗+ e

where

Z =

⎡
⎢⎢⎣

1 (x1 − x̄·)
1 (x2 − x̄·)
...

...
1 (xn − x̄·)

⎤
⎥⎥⎦

and

β∗ =
[

β∗0

β1

]
.

We need to compute β̂∗ = (Z′Z)−1 Z′Y . Observe that

Z′Z =

[
n 0
0 ∑n

i=1 (xi − x̄·)
2

]
,

(Z′Z)−1
=

[ 1
n 0

0 1
/

∑n
i=1 (xi − x̄·)

2

]
,

Z′Y =

[
∑n

i=1 yi

∑n
i=1 (xi − x̄·)yi

]
,

and

β̂∗ = (Z′Z)−1
Z′Y =

[
ȳ

∑n
i=1 (xi − x̄·)yi

/
∑n

i=1 (xi − x̄·)
2

]
=

[
β̂∗0

β̂1

]
.

These are the usual estimates. �
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Recall that least squares estimates have a number of other properties. If the errors are indepen-
dent with mean zero, constant variance, and are normally distributed, the least squares estimates are
maximum likelihood estimates, cf. Subsection 23.2.2, and minimum variance unbiased estimates. If
the errors are merely uncorrelated with mean zero and constant variance, the least squares estimates
are best (minimum variance) linear unbiased estimates.

In multiple regression, simple algebraic expressions for the parameter estimates are not possible.
The only nice equations for the estimates are the matrix equations.

We now find expected values and covariance matrices for the data Y and the least squares esti-
mate β̂ . Two simple rules about expectations and covariance matrices can take one a long way in
the theory of regression. These are matrix analogues of Proposition 1.2.11. In fact, to prove these
matrix results, one really only needs Proposition 1.2.11, cf. Exercise 11.7.3.

Proposition 11.3.3. Let A be a fixed r× n matrix, let c be a fixed r× 1 vector, and let Y be an
n× 1 random vector, then

1. E(AY + c) = AE(Y )+ c

2. Cov(AY + c) = ACov(Y )A′.

Applying these results allows us to find the expected value and covariance matrix for Y in a linear
model. The linear model has Y = Xβ + e where Xβ is a fixed vector (even though β is unknown),
E(e) = 0, and Cov(e) = σ2I. Applying the proposition gives

E(Y ) = E(Xβ + e) = Xβ +E(e) = Xβ +0 = Xβ

and
Cov(Y ) = Cov(e) = σ2I.

We can also find the expected value and covariance matrix of the least squares estimate β̂ . In
particular, we show that β̂ is an unbiased estimate of β by showing

E
(

β̂
)
= E
(
(X ′X)

−1
X ′Y
)
= (X ′X)

−1
X ′E(Y ) = (X ′X)

−1
X ′Xβ = β .

To find variances and standard errors we need Cov
(

β̂
)

. To obtain this matrix, we use the rules in

Proposition A.7.1. In particular, recall that the inverse of a symmetric matrix is symmetric and that
X ′X is symmetric.

Cov
(

β̂
)

= Cov
[
(X ′X)

−1
X ′Y
]

=
[
(X ′X)

−1
X ′
]

Cov(Y )
[
(X ′X)

−1
X ′
]′

=
[
(X ′X)

−1
X ′
]

Cov(Y )X
[
(X ′X)

−1
]′

= (X ′X)
−1

X ′Cov(Y )X (X ′X)
−1

= σ2 (X ′X)
−1

X ′X (X ′X)
−1

= σ2 (X ′X)
−1

.

EXAMPLE 11.3.2 CONTINUED. For simple linear regression the covariance matrix becomes

Cov
(

β̂
)

= σ2 (X ′X)
−1
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= σ2 1

n∑n
i=1 (xi − x̄·)

2

[
∑n

i=1 x2
i −∑n

i=1 xi

−∑n
i=1 xi n

]

= σ2 1

n∑n
i=1 (xi − x̄·)

2

[
∑n

i=1 x2
i −nx̄2· +nx̄2· −nx̄·
−nx̄· n

]

= σ2 1

n∑n
i=1 (xi − x̄·)

2

[
∑n

i=1 (xi − x̄·)
2 +nx̄2

· −nx̄·
−nx̄· n

]

= σ2

⎡
⎣

1
n +

x̄2·
∑n

i=1(xi−x̄·)2
−x̄·

∑n
i=1(xi−x̄·)2

−x̄·
∑n

i=1(xi−x̄·)2
1

∑n
i=1(xi−x̄·)2

⎤
⎦ ,

which agrees with results given earlier for simple linear regression.

11.4 Inferential procedures

We begin by examining the analysis of variance table for the regression model (11.2.2). We then
discuss tests, confidence intervals, and prediction intervals.

There are two frequently used forms of the ANOVA table:

Source d f SS MS

β0 1 nȳ2 ≡C nȳ2

Regression p−1 β̂ ′X ′X β̂ −C SSReg/(p−1)
Error n− p Y ′Y −C−SSReg SSE/(n− p)
Total n Y ′Y

and the more often used form

Source d f SS MS

Regression p−1 β̂ ′X ′X β̂ −C SSReg/(p−1)
Error n− p Y ′Y −C−SSReg SSE/(n− p)
Total n−1 Y ′Y −C

Note that Y ′Y = ∑n
i=1 y2

i , C = nȳ2 = (∑n
i=1 yi)

2
/n, and β̂ ′X ′X β̂ = β̂ ′X ′Y . The difference between

the two tables is that the first includes a line for the intercept or grand mean while in the second the
total has been corrected for the grand mean.

The coefficient of determination can be computed as

R2 =
SSReg

Y ′Y −C
.

This is the ratio of the variability explained by the predictor variables to the total variability of the
data. Note that (Y ′Y −C)/(n− 1) = s2

y , the sample variance of the ys without adjusting for any
structure except the existence of a possibly nonzero mean.

EXAMPLE 11.4.1. Simple linear regression
For simple linear regression, we know that

SSReg= β̂ 2
1

n

∑
i=1

(xi − x̄·)
2
= β̂1

n

∑
i=1

(xi − x̄·)
2 β̂1.

We will examine the alternative model

yi = β∗0 +β1 (xi − x̄·)+ εi.
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Note that C = nβ̂ 2
∗0, so the general form for SSReg reduces to the simple linear regression form

because

SSReg = β̂ ′
∗Z′Zβ̂∗−C

=

[
β̂∗0

β̂1

]′ [
n 0
0 ∑n

i=1 (xi − x̄·)
2

][
β̂∗0

β̂1

]
−C

= β̂ 2
1

n

∑
i=1

(xi − x̄·)
2
.

The same result can be obtained from β̂ ′X ′X β̂ −C but the algebra is more tedious. �

To obtain tests and confidence regions we need to make additional distributional assumptions.
In particular, we assume that the yis have independent normal distributions. Equivalently, we take

ε1, . . . ,εn indep. N(0,σ2).

To test the hypothesis
H0 : β1 = β2 = · · ·= βp−1 = 0,

use the analysis of variance table test statistic

F =
MSReg
MSE

.

Under H0,
F ∼ F(p−1,n− p).

We can also perform a variety of t tests for individual regression parameters βk. The procedures
fit into the general techniques of Chapter 3 based on identifying 1) the parameter, 2) the estimate,
3) the standard error of the estimate, and 4) the distribution of (Est −Par)/SE(Est). The parameter
of interest is βk. Having previously established that

E

⎡
⎢⎢⎢⎣

β̂0

β̂1
...

β̂p−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

β0

β1
...

βp−1

⎤
⎥⎥⎦ ,

it follows that for any k = 0, . . . , p−1,

E
(

β̂k

)
= βk.

This shows that β̂k is an unbiased estimate of βk. Before obtaining the standard error of β̂k, it is
necessary to identify its variance. The covariance matrix of β̂ is σ2 (X ′X)

−1, so the variance of
β̂k is the (k+ 1)st diagonal element of σ2 (X ′X)

−1. The (k+ 1)st diagonal element is appropriate
because the first diagonal element is the variance of β̂0 not β̂1. If we let ak be the (k+1)st diagonal
element of (X ′X)−1 and estimate σ2 with MSE , we get a standard error for β̂k of

SE
(

β̂k

)
=
√

MSE
√

ak.

Under normal errors, the appropriate reference distribution is

β̂k −βk

SE(β̂k)
∼ t(n− p).
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Standard techniques now provide tests and confidence intervals. For example, a 95% confidence
interval for βk has endpoints

β̂k ± t(.975,n− p)SE(β̂k)

where t(.975,n− p) is the 97.5th percentile of a t distribution with n− p degrees of freedom.
A (1−α)100% simultaneous confidence region for β0,β1, . . . ,βp−1 consists of all the β vectors

that satisfy (
β̂ −β

)′
X ′X
(

β̂ −β
)/

p

MSE
≤ F(1−α, p,n− p).

This region also determines joint (1−α)100% confidence intervals for the individual βks with limits

β̂k ±
√

pF(1−α, p,n− p)SE(β̂k).

These intervals are an application of Scheffé’s method of multiple comparisons, cf. Section 13.3.
We can also use the Bonferroni method to obtain joint (1−α)100% confidence intervals with

limits

β̂k ± t

(
1− α

2p
,n− p

)
SE(β̂k).

Finally, we consider estimation of the point on the surface that corresponds to a given set of
predictor variables and the prediction of a new observation with a given set of predictor variables.
Let the predictor variables be x1,x2, . . . ,xp−1. Combine these into the row vector

x′ = (1,x1,x2, . . . ,xp−1) .

The point on the surface that we are trying to estimate is the parameter x′β = β0 +∑p−1
j=1 β jx j. The

least squares estimate is x′β̂ , which can be thought of as a 1×1 matrix. The variance of the estimate
is

Var
(

x′β̂
)
= Cov

(
x′β̂
)
= x′Cov

(
β̂
)

x = σ2x′ (X ′X)
−1

x,

so the standard error is

SE
(

x′β̂
)
=
√

MSE
√

x′ (X ′X)
−1 x ≡ SE(Sur f ace).

This is the standard error of the estimated regression surface. The appropriate reference distribution
is

x′β̂ − x′β

SE
(

x′β̂
) ∼ t(n− p)

and a (1−α)100% confidence interval has endpoints

x′β̂ ± t
(

1− α
2
,n− p

)
SE(x′β̂ ).

When predicting a new observation, the point prediction is just the estimate of the point on
the surface but the standard error must incorporate the additional variability associated with a new
observation. The original observations were assumed to be independent with variance σ2. It is rea-
sonable to assume that a new observation is independent of the previous observations and has the
same variance. Thus, in the prediction we have to account for the variance of the new observation,
which is σ2, plus the variance of the estimate x′β̂ , which is σ2 x′ (X ′X)

−1 x. This leads to a variance
for the prediction of σ2 +σ2 x′ (X ′X)

−1 x and a standard error of

√
MSE +MSE x′ (X ′X)−1 x =

√
MSE

[
1+ x′ (X ′X)−1 x

]
≡ SE(Prediction).
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Note that

SE(Prediction) =
√

MSE +[SE(Sur f ace)]2.

The (1−α)100% prediction interval has endpoints

x′β̂ ± t
(

1− α
2
,n− p

)√
MSE

[
1+ x′ (X ′X)

−1 x
]
.

Results of this section constitute the theory behind most of the applications in Sections 9.1 and
9.2.

11.5 Residuals, standardized residuals, and leverage

Let x′i = (1,xi1, . . . ,xi,p−1) be the ith row of X , then the ith fitted value is

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂p−1xi,p−1 = x′i β̂

and the corresponding residual is
ε̂i = yi − ŷi = yi − x′iβ̂ .

The vector of predicted (fitted) values is

Ŷ =

⎡
⎢⎣

ŷ1
...

ŷn

⎤
⎥⎦=

⎡
⎢⎣

x′1β̂
...

x′nβ̂

⎤
⎥⎦= X β̂ .

The vector of residuals is

ê = Y − Ŷ

= Y −X β̂
= Y −X(X ′X)−1X ′Y
=
(
I−X(X ′X)−1X ′)Y

= (I−M)Y

where
M ≡ X(X ′X)−1X ′.

M is called the perpendicular projection operator (matrix) onto C(X), the column space of X . M
is the key item in the analysis of the general linear model, cf. Christensen (2011). Note that M is
symmetric, i.e., M = M′, and idempotent, i.e., MM = M, so it is a perpendicular projection operator
as discussed in Appendix A. Using these facts, observe that

SSE =
n

∑
i=1

ε̂2
i

= ê′ê
= [(I −M)Y ]′ [(I−M)Y ]

= Y ′(I −M′−M+M′M)Y

= Y ′(I −M)Y.

Another common way of writing SSE is

SSE =
[
Y −X β̂

]′ [
Y −X β̂

]
.
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Having identified M, we can define the standardized residuals. First we find the covariance
matrix of the residual vector ê:

Cov(ê) = Cov([I−M]Y )

= [I −M]Cov(Y )[I −M]′

= [I −M]σ2I[I−M]′

= σ2 (I −M−M′+MM′)
= σ2 (I −M) .

The last equality follows from M = M′ and MM = M. Typically, the covariance matrix is not diag-
onal, so the residuals are not uncorrelated.

The variance of a particular residual ε̂i is σ2 times the ith diagonal element of (I −M). The ith
diagonal element of (I −M) is the ith diagonal element of I, 1, minus the ith diagonal element of
M, say, mii. Thus

Var(ε̂i) = σ2(1−mii)

and the standard error of ε̂i is
SE(ε̂i) =

√
MSE(1−mii).

The ith standardized residual is defined as

ri ≡
ε̂i√

MSE(1−mii)
.

The leverage of the ith case is defined to be mii, the ith diagonal element of M. Some people
like to think of M as the ‘hat’ matrix because it transforms Y into Ŷ , i.e., Ŷ = X β̂ = MY . More
common than the name ‘hat matrix’ is the consequent use of the notation hi for the ith leverage.
This notation was used in Chapter 7 but the reader should realize that hi ≡ mii. In any case, the
leverage can be interpreted as a measure of how unusual x′i is relative to the other rows of the X
matrix, cf. Christensen (2011, Section 13.1).

Christensen (2011, Chapter 13) discusses the computation of standardized deleted residuals and
Cook’s distance.

11.6 Principal components regression

In Section 9.7 we dealt with the issue of collinearity. Four points were emphasized as the effects of
collinearity.

1. The estimate of any parameter, say β̂2, depends on all the variables that are included in the model.

2. The sum of squares for any variable, say x2, depends on all the other variables that are included
in the model. For example, none of SSR(x2), SSR(x2|x1), and SSR(x2|x3,x4) would typically be
equal.

3. In a model such as yi = β0 +β1xi1 +β2xi2 +β3xi3 + εi, small t statistics for both H0 : β1 = 0 and
H0 : β2 = 0 are not sufficient to conclude that an appropriate model is yi = β0 + β3xi3 + εi. To
arrive at a reduced model, one must compare the reduced model to the full model.

4. A moderate amount of collinearity has little effect on predictions and therefore little effect on
SSE , R2, and the explanatory power of the model. Collinearity increases the variance of the β̂ js,
making the estimates of the parameters less reliable. Depending on circumstances, sometimes
a large amount of collinearity can have an effect on predictions. Just by chance one may get a
better fit to the data than can be justified scientifically.

At its worst, collinearity involves near redundancies among the predictor variables. An exact
redundancy among the predictor variables occurs when we can find a p× 1 vector d �= 0 so that
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Table 11.2: Eigen analysis of the correlation matrix.

Eigenvalue 2.8368 1.3951 0.4966 0.2025 0.0689
Proportion 0.567 0.279 0.099 0.041 0.014
Cumulative 0.567 0.846 0.946 0.986 1.000

Xd = 0. When this happens the rank of X is not p, so we cannot find (X ′X)−1 and we cannot find
the estimates of β in Proposition 11.3.1. Near redundancies occur when we can find a vector d
that is not too small, say with d′d = 1, having Xd

.
= 0. Principal components (PC) regression is

a method designed to identify near redundancies among the predictor variables. Having identified
near redundancies, they can be eliminated if we so choose. In Section 10.7 we mentioned that having
small collinearity requires more than having small correlations among all the predictor variables, it
requires all partial correlations among the predictor variables to be small as well. For this reason,
eliminating near redundancies cannot always be accomplished by simply dropping well-chosen pre-
dictor variables from the model.

The basic idea of principal components is to find new variables that are linear combinations
of the x js and that are best able to (linearly) predict the entire set of x js; see Christensen (2001,
Chapter 3). Thus the first principal component variable is the one linear combination of the x js
that is best able to predict all of the x js. The second principal component variable is the linear
combination of the x js that is best able to predict all the x js among those linear combinations having
a sample correlation of 0 with the first principal component variable. The third principal component
variable is the best predictor that has sample correlations of 0 with the first two principal component
variables. The remaining principal components are defined similarly. With p−1 predictor variables,
there are p− 1 principal component variables. The full collection of principal component variables
always predicts the full collection of x js perfectly. The last few principal component variables are
least able to predict the original x j variables, so they are the least useful. They are also the aspects
of the predictor variables that are most redundant; see Christensen (2011, Section 15.1). The best
(linear) predictors used in defining principal components can be based on either the covariances
between the x js or the correlations between the x js. Unless the x js are measured on the same scale
(with similarly sized measurements), it is generally best to use principal components defined using
the correlations.

For The Coleman Report data, a matrix of sample correlations between the x js was given in
Example 9.7.1. Principal components are derived from the eigenvalues and eigenvectors of this
matrix, cf. Section A.8. (Alternatively, one could use eigenvalues and eigenvectors of the matrix
of sample covariances.) An eigenvector corresponding to the largest eigenvalue determines the first
principal component variable.

The eigenvalues are given in Table 11.2 along with proportions and cumulative proportions. The
proportions in Table 11.2 are simply the eigenvalues divided by the sum of the eigenvalues. The
cumulative proportions are the sum of the first group of eigenvalues divided by the sum of all the
eigenvalues. In this example, the sum of the eigenvalues is

5 = 2.8368+1.3951+0.4966+0.2025+0.0689.

The sum of the eigenvalues must equal the sum of the diagonal elements of the original matrix.
The sum of the diagonal elements of a correlation matrix is the number of variables in the matrix.
The third eigenvalue in Table 11.2 is .4966. The proportion is .4966/5 = .099. The cumulative
proportion is (2.8368+ 1.3951+ 0.4966)/5= 0.946. With an eigenvalue proportion of 9.9%, the
third principal component variable accounts for 9.9% of the variance associated with predicting the
x js. Taken together, the first three principal components account for 94.6% of the variance associated
with predicting the x js because the third cumulative eigenvalue proportion is 0.946.

For the school data, the principal component (PC) variables are determined by the coefficients
in Table 11.3. The first principal component variable is
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Table 11.3: Principal component variable coefficients.

Variable PC1 PC2 PC3 PC4 PC5
x1 −0.229 −0.651 0.723 0.018 −0.024
x2 −0.555 0.216 0.051 −0.334 0.729
x3 −0.545 0.099 −0.106 0.823 −0.060
x4 −0.170 −0.701 −0.680 −0.110 0.075
x5 −0.559 0.169 −0.037 −0.445 −0.678

Table 11.4: Table of Coefficients: Principal component regression.

Predictor γ̂ SE(γ̂) t P
Constant 35.0825 0.4638 75.64 0.000
PC1 −2.9419 0.2825 −10.41 0.000
PC2 0.0827 0.4029 0.21 0.840
PC3 −2.0457 0.6753 −3.03 0.009
PC4 4.380 1.057 4.14 0.001
PC5 1.433 1.812 0.79 0.442

PC1i =−0.229(xi1− x̄·1)/s1 −0.555(xi2− x̄·2)/s2

−0.545(xi3− x̄·3)/s3 −0.170(xi4− x̄·5)/s4 −0.559(xi5− x̄·5)/s5 (11.6.1)

for i = 1, . . . ,20 where s1 is the sample standard deviation of the xi1s, etc. The columns of coeffi-
cients given in Table 11.3 are actually eigenvectors for the correlation matrix of the x js. The PC1
coefficients are an eigenvector corresponding to the largest eigenvalue, the PC2 coefficients are an
eigenvector corresponding to the second largest eigenvalue, etc.

We can now perform a regression on the new principal component variables. The table of coef-
ficients is given in Table 11.4. The analysis of variance is given in Table 11.5. The value of R2 is
0.906. The analysis of variance table and R2 are identical to those for the original predictor variables
given in Section 9.1. The plot of standardized residuals versus predicted values from the principal
component regression is given in Figure 11.1. This is identical to the plot given in Figure 10.2 for
the original variables. All of the predicted values and all of the standardized residuals are identical.

Since Table 11.5 and Figure 11.1 are unchanged, any usefulness associated with principal
component regression must come from Table 11.4. The principal component variables display no
collinearity. Thus, contrary to the warnings given earlier about the effects of collinearity, we can
make final conclusions about the importance of variables directly from Table 11.4. We do not have
to worry about fitting one model after another or about which variables are included in which mod-
els. From examining Table 11.4, it is clear that the important variables are PC1, PC3, and PC4. We
can construct a reduced model with these three; the estimated regression surface is simply

ŷ = 35.0825− 2.9419(PC1)−2.0457(PC3)+ 4.380(PC4), (11.6.2)

where we merely used the estimated regression coefficients from Table 11.4. Refitting the reduced
model is unnecessary because there is no collinearity.

Table 11.5: Analysis of Variance: Principal component regression.

Source d f SS MS F P
Regression 5 582.69 116.54 27.08 0.000
Error 14 60.24 4.30
Total 19 642.92
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Figure 11.1: Standardized residuals versus predicted values for principal component regression.

To get predictions for a new set of x js, just compute the corresponding PC1, PC3, and PC4
variables using formulae similar to those in Equation (11.6.1) and make the predictions using the
fitted model in Equation (11.6.2). When using equations like (11.6.1) to obtain new values of the
principal component variables, continue to use the x̄· js and s js computed from only the original
observations.

As an alternative to this prediction procedure, we could use the definitions of the principal
component variables, e.g., Equation (11.6.1), and substitute for PC1, PC3, and PC4 in Equation
(11.6.2) to obtain estimated coefficients on the original x j variables.

ŷ = 35.0825+[−2.9419,−2.0457,4.380]

⎡
⎣

PC1
PC3
PC4

⎤
⎦

= 35.0825+[−2.9419,−2.0457,4.380]×
⎡
⎣
−0.229 −0.555 −0.545 −0.170 −0.559
0.723 0.051 −0.106 −0.680 −0.037
0.018 −0.334 0.823 −0.110 −0.445

⎤
⎦

⎡
⎢⎢⎢⎣

(x1 − x̄·1)/s1

(x2 − x̄·2)/s2

(x3 − x̄·3)/s3

(x4 − x̄·4)/s4

(x5 − x̄·5)/s5

⎤
⎥⎥⎥⎦

= 35.0825+[−0.72651,0.06550,5.42492,1.40940,−0.22889]×⎡
⎢⎢⎢⎣

(x1 − 2.731)/0.454
(x2 − 40.91)/25.90
(x3 − 3.14)/9.63
(x4 − 25.069)/1.314
(x5 − 6.255)/0.654

⎤
⎥⎥⎥⎦ .

Obviously this can be simplified into a form ŷ = β̃0 + β̃1x1 + β̃2x2 + β̃3x3 + β̃4x4 + β̃5x5, which
in turn simplifies the process of making predictions and provides new estimated regression coeffi-
cients for the x js that correspond to the fitted principal component model. In this case they become
ŷ = 12.866− 1.598x1+ 0.002588x2+ 0.5639x3 + 1.0724x4 − 0.3484x5. These PC regression esti-
mates of the original β js can be compared to the least squares estimates. Many computer programs
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for performing PC regression report these estimates of the β js and their corresponding standard
errors. A similar method is used to obtain lasso estimates when the lasso procedure is performed on
standardized predictor variables, cf. Section 10.5.

It was mentioned earlier that collinearity tends to increase the variance of regression coeffi-
cients. The fact that the later principal component variables are more nearly redundant is reflected
in Table 11.4 by the fact that the standard errors for their estimated regression coefficients increase
(excluding the intercept).

One rationale for using PC regression is that you just don’t believe in using nearly redundant
variables. The exact nature of such variables can be changed radically by small errors in the x js. For
this reason, one might choose to ignore PC5 because of its small eigenvalue proportion, regardless
of any importance it may display in Table 11.4. If the t statistic for PC5 appeared to be significant,
it could be written off as a chance occurrence or, perhaps more to the point, as something that is un-
likely to be reproducible. If you don’t believe redundant variables, i.e., if you don’t believe that they
are themselves reproducible, any predictive ability due to such variables will not be reproducible
either.

When considering PC5, the case is pretty clear. PC5 accounts for only about 1.5% of the vari-
ability involved in predicting the x js. It is a very poorly defined aspect of the predictor variables
x j and, anyway, it is not a significant predictor of y. The case is less clear when considering PC4.
This variable has a significant effect for explaining y, but it accounts for only 4% of the variability
in predicting the x js, so PC4 is reasonably redundant within the x js. If this variable is measuring
some reproducible aspect of the original x j data, it should be included in the regression. If it is not
reproducible, it should not be included. From examining the PC4 coefficients in Table 11.3, we see
that PC4 is roughly the average of the percent white-collar fathers x2 and the mothers’ education
x5 contrasted with the socio- economic variable x3. (Actually, this comparison is between the vari-
ables after they have been adjusted for their means and standard deviation as in Equation (11.6.1).)
If PC4 strikes the investigator as a meaningful, reproducible variable, it should be included in the
regression.

In our discussion, we have used PC regression both to eliminate questionable aspects of the
predictor variables and as a method for selecting a reduced model. We dropped PC5 primarily
because it was poorly defined. We dropped PC2 solely because it was not a significant predictor.
Some people might argue against this second use of PC regression and choose to take a model based
on PC1, PC2, PC3, and possibly PC4.

On occasion, PC regression is based on the sample covariance matrix of the x js rather than the
sample correlation matrix. Again, eigenvalues and eigenvectors are used, but in using relationships
like Equation (11.6.1), the s js are deleted. The eigenvalues and eigenvectors for the covariance ma-
trix typically differ from those for the correlation matrix. The relationship between estimated prin-
cipal component regression coefficients and original least squares regression coefficient estimates
is somewhat simpler when using the covariance matrix.

It should be noted that PC regression is just as sensitive to violations of the assumptions as reg-
ular multiple regression. Outliers and high-leverage points can be very influential in determining
the results of the procedure. Tests and confidence intervals rely on the independence, homoscedas-
ticity, and normality assumptions. Recall that in the full principal components regression model,
the residuals and predicted values are identical to those from the regression on the original predic-
tor variables. Moreover, highly influential points in the original predictor variables typically have a
large influence on the coefficients in the principal component variables.

11.7 Exercises

EXERCISE 11.7.1. Show that the form (11.3.2) simplifies to the form (11.3.1) for simple linear
regression.

EXERCISE 11.7.2. Show that Cov(Y ) = E[(Y − μ)(Y − μ)′].
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EXERCISE 11.7.3. Use Proposition 1.2.11 to show that E(AY + c) = AE(Y )+ c and Cov(AY +
c) = ACov(Y )A′.

EXERCISE 11.7.4. Using eigenvalues, discuss the level of collinearity in:

(a) the Younger data from Exercise 9.12.1,

(b) the Prater data from Exercise 9.12.3,

(c) the Chapman data of Exercise 9.12.4,

(d) the pollution data from Exercise 9.12.5,

(e) the body fat data of Exercise 9.12.6.

EXERCISE 11.7.5. Do a principal components regression on the Younger data from Exer-
cise 9.12.1.

EXERCISE 11.7.6. Do a principal components regression on the Prater data from Exercise 9.12.3.

EXERCISE 11.7.7. Do a principal components regression on the Chapman data of Exer-
cise 9.12.4.

EXERCISE 11.7.8. Do a principal components regression on the pollution data of Exercise 9.12.5.

EXERCISE 11.7.9. Do a principal components regression on the body fat data of Exercise 9.12.6.





Chapter 12

One-Way ANOVA

Analysis of variance (ANOVA) involves comparing random samples from several populations
(groups). Often the samples arise from observing experimental units with different treatments ap-
plied to them and we refer to the populations as treatment groups. The sample sizes for the groups
are possibly different, say, Ni and we assume that the samples are all independent. Moreover, we
assume that each population has the same variance and is normally distributed. Assuming different
means for each group we have a model

yi j = μi + εi j, εi js independent N(0,σ2)

or, equivalently,
yi js independent N(μi,σ2),

where with a groups, i = 1, . . . ,a, and with Ni observations in the ith group, j = 1, . . . ,Ni. There is
one mean parameter μi for each group and it is estimated by the sample mean of the group, say, ȳi·.
Relating this model to the general models of Section 3.9, we have replaced the single subscript h that
identifies all observations with a double subscript i j in which i identifies a group and j identifies an
observation within the group. The group identifier i is our (categorical) predictor variable. The fitted
values are ŷh ≡ ŷi j = ȳi·, i.e., the point prediction we make for any observation is just the sample
mean from the observation’s group. The residuals are ε̂h ≡ ε̂i j = yi j − ȳi·. The total sample size is
n=N1+ · · ·+Na. The model involves estimating a mean values, one for each group, so dfE = n−a.
The SSE is

SSE =
n

∑
h=1

ε̂2
h =

a

∑
1=1

Ni

∑
j=1

ε̂2
i j,

and the MSE is SSE/dfE .

12.1 Example

EXAMPLE 12.1.1. Table 12.1 gives data from Koopmans (1987, p. 409) on the ages at which
suicides were committed in Albuquerque during 1978. Ages are listed by ethnic group. The data
are plotted in Figure 12.1. The assumption is that the observations in each group are a random
sample from some population. While it is not clear what these populations would be, we proceed to
examine the data. Note that there are fewer Native Americans in the study than either Hispanics or
non-Hispanic Caucasians (Anglos); moreover the ages for Native Americans seem to be both lower
and less variable than for the other groups. The ages for Hispanics seem to be a bit lower than for
non-Hispanic Caucasians. Summary statistics follow for the three groups.

Sample statistics: Suicide ages
Group Ni ȳi· s2

i si

Caucasians 44 41.66 282.9 16.82
Hispanics 34 35.06 268.3 16.38
Native Am. 15 25.07 74.4 8.51

277
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Table 12.1: Suicide ages.

Non-Hispanic Native
Caucasians Hispanics Americans

21 31 28 52 50 27 45 26 23
55 31 24 27 31 22 57 17 25
42 32 53 76 29 20 22 24 23
25 43 66 44 21 51 48 22 22
48 57 90 35 27 60 48 16
22 42 27 32 34 15 14 21
42 34 48 26 76 19 52 36
53 39 47 51 35 24 29 18
21 24 49 19 55 24 21 48
21 79 53 27 24 18 28 20
31 46 62 58 68 43 17 35

38

.

. . : . :

.:.:::. : : . :: ::..: ... . . . . .

---+---------+---------+---------+---------+---------+---Caucasians

. .

....:::: :: . : . .. :... .. . . .

---+---------+---------+---------+---------+---------+---Hispanics

:

:...:.: .. .

---+---------+---------+---------+---------+---------+---Nat. Am.

15 30 45 60 75 90

Figure 12.1: Dot plots of suicide age data.

The sample standard deviation for the Native Americans is about half the size of the others.
To evaluate the combined normality of the data, we did a normal plot of the standardized residu-

als. One normal plot for all of the yi js would not be appropriate because they have different means,
μi. The residuals adjust for the different means. Of course with the reasonably large samples avail-
able here for each group, it would be permissible to do three separate normal plots, but in other
situations with small samples for each group, individual normal plots would not contain enough
observations to be of much value. The normal plot for the standardized residuals is given as Fig-
ure 12.2. The plot is based on n = 44+34+15= 93 observations. This is quite a large number, so
if the data are normal the plot should be quite straight. In fact, the plot seems reasonably curved.

In order to improve the quality of the assumptions of equal variances and normality, we consider
transformations of the data. In particular, consider taking the log of each observation. Figure 12.3
contains the plot of the transformed data. The variability in the groups seems more nearly the same.
This is confirmed by the following sample statistics.

Sample statistics: Log of suicide ages
Group Ni ȳi· s2

i si

Caucasians 44 3.6521 0.1590 0.3987
Hispanics 34 3.4538 0.2127 0.4612
Native Am. 15 3.1770 0.0879 0.2965

The largest sample standard deviation is only about 1.5 times the smallest. The normal plot of stan-
dardized residuals for the transformed data is given in Figure 12.4; it seems considerably straighter
than the normal plot for the untransformed data.
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Figure 12.2: Normal plot of suicide residuals, W ′ = 0.945.
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Figure 12.3: Dotplots of log suicide age data.

All in all, the logs of the original data seem to satisfy the assumptions reasonably well and
considerably better than the untransformed data. The square roots of the data were also examined
as a possible transformation. While the square roots seem to be an improvement over the original
scale, they do not seem to satisfy the assumptions nearly as well as the log transformed data.

A basic assumption in analysis of variance is that the variance is the same for all groups. Al-
though we can find the MSE as the sum of the squared residuals divided by the degrees of freedom
for error, equivalently, as we did for two independent samples with the same variance, we can also
compute it as a pooled estimate of the variance. This is a weighted average of the variance estimates
from the individual groups with weights that are the individual degrees of freedom. For the logs of
the suicide age data, the mean squared error is

MSE =
(44− 1)(0.1590)+ (34−1)(0.2127)+(15−1)(0.0879)

(44−1)+ (34−1)+(15−1)
= 0.168.

The degrees of freedom for this estimate are the sum of the degrees of freedom for the individual
variance estimates, s2

i , so the degrees of freedom for error are

dfE = (44− 1)+ (34−1)+(15−1)= (44+34+15)−3= 90.
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Figure 12.4: Normal plot of suicide residuals, log data, W ′ = 0.986.
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Figure 12.5: Suicide residuals versus fitted values, log data.

This is also the total number of observations, n = 93, minus the number of mean parameters we
have to estimate, a = 3. The data have an approximate normal distribution, so we can use t(90) as
the reference distribution for statistical inferences on a single parameter. The sum of squares error
is SSE ≡ dfE ×MSE .

For completeness, we also include the residual-fitted value plot as Figure 12.5.
We can now perform statistical inferences for a variety of parameters using our standard pro-

cedure involving a Par, an Est, a SE(Est), and a t(dfE) distribution for [Est −Par]/SE(Est). In
this example, perhaps the most useful things to look at are whether there is evidence of any age
differences in the three groups. Let μC ≡ μ1, μH ≡ μ2, and μN ≡ μ3 denote the population means
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for the log ages of the non-Hispanic Caucasian (Anglo), Hispanic, and Native American groups,
respectively. First, we briefly consider inferences for one of the group means. Our most lengthy dis-
cussion is for differences between group means. We then discuss more complicated linear functions
of the group means. Finally, we discuss testing μC = μH = μN .

12.1.1 Inferences on a single group mean

In constructing confidence intervals, prediction intervals, or tests for an individual mean μi, we
use the methods of Chapter 2 except that the variance is estimated with MSE so that the ref-
erence distribution is the t(dfE). In particular we might choose Par = μH ≡ μ2, Est = ȳ2· =
3.4538, SE(ȳ2·) =

√
MSE/34=

√
0.168/34, and a t(90) distribution because dfE = 90. The value

t(0.995,90) = 2.631 is needed for α = 0.01 tests and 99% confidence intervals. This t table value
appears repeatedly in our discussion.

The endpoints of a 99% confidence interval for μH , the mean of the log suicide age for this
Hispanic population, are

3.4538±2.631

√
0.168

34

for an interval of (3.269,3.639). Transforming the interval back to the original scale gives
(e3.269,e3.639) or (26.3,38.1), i.e., we are 99% confident that the median age of suicides for this
Hispanic population is between 26.3 years old and 38.1 years old. By assumption, μH is the mean
of the Hispanic log-suicide ages but, under normality, it is also the median. (The median has half
the observations above it and half below.) The interval (e3.269,e3.639) = (26.3,38.1) is a 99% confi-
dence interval for eμH , which is the median of the Hispanic suicide ages, even though eμH is not the
mean of the Hispanic suicide ages. (99% confident means that the values in the interval would not
be rejected by an α = 0.01 test.)

A 99% prediction interval for the age of a future log-suicide from this Hispanic population has
endpoints

3.4538±2.631

√
0.168+

0.168
34

for an interval of (2.360,4.548). Transforming the interval back to the original scale gives
(10.6,94.4), i.e., we are 99% confident that a future suicide from this Hispanic population would
be between 10.6 years old and 94.4 years old. This interval happens to include all of the observed
suicide ages for Hispanics in Table 12.1; that seems reasonable, if not terribly informative.

12.1.2 Inference on pairs of means

The primary parameters of interest for these data are probably the differences between the group
population means. These parameters, with their estimates and the variances of the estimates, are
given below.

Par Est Var(Est)

μC − μH 3.6521−3.4538 σ2
(

1
44 +

1
34

)

μC − μN 3.6521−3.1770 σ2
( 1

44 +
1

15

)

μH − μN 3.4538−3.1770 σ2
(

1
34 +

1
15

)

The estimates and variances are obtained exactly as in Section 4.2. The standard errors of the esti-
mates are obtained by substituting MSE for σ2 in the variance formula and taking the square root.
Below are given the estimates, standard errors, the tobs values for testing H0 : Par = 0, the P values,
and the 99% confidence intervals for Par. Computing the confidence intervals requires the value
t(0.995,90) = 2.632.
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Table of Coefficients
Par Est SE(Est) tobs P 99% CI

μC − μH 0.1983 0.0936 2.12 0.037 (−0.04796,0.44456)
μC − μN 0.4751 0.1225 3.88 0.000 (0.15280,0.79740)
μH − μN 0.2768 0.1270 2.18 0.032 (−0.05734,0.61094)

While the estimated difference between Hispanics and Native Americans is half again as large as
the difference between non-Hispanic Caucasians and Hispanics, the tobs values, and thus the sig-
nificance levels of the differences, are almost identical. This occurs because the standard errors are
substantially different. The standard error for the estimate of μC − μH involves only the reasonably
large samples for non-Hispanic Caucasians and Hispanics; the standard error for the estimate of
μH −μN involves the comparatively small sample of Native Americans, which is why this standard
error is larger. On the other hand, the standard errors for the estimates of μC − μN and μH − μN are
very similar. The difference in the standard error between having a sample of 34 or 44 is minor by
comparison to the effect on the standard error of having a sample size of only 15.

The hypothesis H0 : μC − μN = 0, or equivalently H0 : μC = μN , is the only one rejected at the
0.01 level. Summarizing the results of the tests at the 0.01 level, we have no strong evidence of a
difference between the ages at which non-Hispanic Caucasians and Hispanics commit suicide, we
have no strong evidence of a difference between the ages at which Hispanics and Native Americans
commit suicide, but we do have strong evidence that there is a difference in the ages at which non-
Hispanic Caucasians and Native Americans commit suicide. Of course, all of these statements about
null hypotheses presume that the underlying model is correct.

Establishing a difference between non-Hispanic Caucasians and Native Americans does little to
explain why that difference exists. The reason that Native Americans committed suicide at younger
ages could be some complicated function of socio-economic factors or it could be simply that there
were many more young Native Americans than old ones in Albuquerque at the time. The test only
indicates that the two groups were different; it says nothing about why the groups were different.

The confidence interval for the difference between non-Hispanic Caucasians and Native Amer-
icans was constructed on the log scale. Back transforming the interval gives (e0.1528,e0.7974) or
(1.2,2.2). We are 99% confident that the median age of suicides is between 1.2 and 2.2 times higher
for non-Hispanic Caucasians than for Native Americans. Note that examining differences in log
ages transforms to the original scale as a multiplicative factor between groups. The parameters μC

and μN are both means and medians for the logs of the suicide ages. When we transform the interval
(0.1528,0.7974) for μC − μN into the interval (e0.1528,e0.7974), we obtain a confidence interval for
eμC−μN or equivalently for eμC/eμN . The values eμC and eμN are median values for the age distri-
butions of the non-Hispanic Caucasians and Native Americans although they are not the expected
values (population means) of the distributions. Obviously, eμC = (eμC/eμN )eμN , so eμC/eμN is the
number of times greater the median suicide age is for non-Hispanic Caucasians. That is the basis
for the interpretation of the interval (e0.1528,e0.7974).

With these data, the tests for differences in means do not depend crucially on the log trans-
formation but interpretations of the confidence intervals do. For the untransformed data, the mean
squared error is MSEu = 245 and the observed value of the test statistic for comparing non-Hispanic
Caucasians and Native Americans is

tu = 3.54 =
41.66−25.07√

245
( 1

44 +
1

15

) ,

which is not far from the transformed value 3.88. However, the untransformed 99% confidence in-
terval is (4.3,28.9), indicating a 4-to-29-year-higher age for the mean non-Hispanic Caucasian sui-
cide, rather than the transformed interval (1.2,2.2), indicating that typical non-Hispanic Caucasian
suicide ages are 1.2 to 2.2 times greater than those for Native Americans.
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12.1.3 Inference on linear functions of means

The data do not strongly suggest that the means for Hispanics and Native Americans are different,
so we might wish to compare the mean of the non-Hispanic Caucasians with the average of these
groups. Typically, averaging means will only be of interest if we feel comfortable treating those
means as the same. The parameter of interest is Par = μC − (μH + μN)/2 or

Par = μC − 1
2

μH − 1
2

μN

with

Est = ȳC − 1
2

ȳH − 1
2

ȳN = 3.6521− 1
2

3.4538− 1
2

3.1770 = 0.3367.

It is not really appropriate to use our standard methods to test this contrast between the means
because the contrast was suggested by the data. Nonetheless, we will illustrate the standard methods.
From the independence of the data in the three groups and Proposition 1.2.11, the variance of the
estimate is

Var

(
ȳC − 1

2
ȳH − 1

2
ȳN

)
= Var(ȳC)+

(
−1
2

)2

Var(ȳH)+

(
−1
2

)2

Var(ȳN)

=
σ2

44
+

(
−1
2

)2 σ2

34
+

(
−1
2

)2 σ2

15

= σ2

[
1

44
+

(
−1
2

)2 1
34

+

(
−1
2

)2 1
15

]
.

Substituting the MSE for σ2 and taking the square root, the standard error is

0.0886 =

√√√√0.168

[
1
44

+

(
−1
2

)2 1
34

+

(
−1
2

)2 1
15

]
.

Note that the standard error happens to be smaller than any of those we have considered when
comparing pairs of means. To test the null hypothesis that the mean for non-Hispanic Caucasians
equals the average of the other groups, i.e., H0 : μC − 1

2 μH − 1
2 μN = 0, the test statistic is

tobs =
0.3367−0

0.0886
= 3.80,

so the null hypothesis is easily rejected. This is an appropriate test statistic for evaluating H0, but
when letting the data suggest the parameter, the t(90) distribution is no longer appropriate for quan-
tifying the level of significance. Similarly, we could construct the 99% confidence interval with
endpoints

0.3367±2.631(0.0886)

but again, the confidence coefficient 99% is not really appropriate for a parameter suggested by the
data.

While the parameter μC − 1
2 μH − 1

2 μN was suggested by the data, the theory of inference in
Chapter 3 assumes that the parameter of interest does not depend on the data. In particular, the
reference distributions we have used are invalid when the parameters depend on the data. Moreover,
performing numerous inferential procedures complicates the analysis. Our standard tests are set up
to check on one particular hypothesis. In the course of analyzing these data we have performed
several tests. Thus we have had multiple opportunities to commit errors. In fact, the reason we have
been discussing 0.01 level tests rather than 0.05 level tests is to help limit the number of errors made
when all of the null hypotheses are true. In Chapter 13, we discuss methods of dealing with the
problems that arise from making multiple comparisons among the means.
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Table 12.2: Analysis of Variance: Logs of suicide age data.

Source df SS MS F P
Groups 2 2.655 1.328 7.92 0.001
Error 90 15.088 0.168
Total 92 17.743

12.1.4 Testing μ1 = μ2 = μ3

To test H0 : μ1 = μ2 = μ3 we test the one-way ANOVA model against the reduced model that fits
only the grand mean (intercept), yi j = μ + εi j . The results are summarized in Table 12.2. Subject to
round-off error, the information for the Error line is as given previously for the one-way ANOVA
model, i.e., dfE = 90, MSE = 0.168, and SSE = 90(0.168) = 15.088. The information in the Total
line is the dfE and SSE for the grand-mean model. For the grand-mean model, dfE = n− 1 =
92, MSE = s2

y = 0.193, i.e., the sample variance of all n = 93 observation, and the SSE is found
by multiplying the two, SSE = 92(0.193) = 17.743. The dfE and SSE for Groups are found by
subtracting the entries in the Error line from the Total line, so the df and SS are precisely what
we need to compute the numerator of the F statistic, df Grps = 92− 90 = 2, SSGrps = 17.743−
15.008 = 2.655. The reported F statistic

7.92 =
1.328
0.168

=
MSGrps

MSE
=

[SSTot−SSE]/[df Tot−dfE]
MSE

is the statistic for testing our reduced (null) model.
The extremely small P value for the analysis of variance F test, as reported in Table 12.2, es-

tablishes clear differences among the mean log suicide ages. More detailed comparisons are needed
to identify which particular groups are different. We established earlier that at the 0.01 level, only
non-Hispanic Caucasians and Native Americans display a pairwise difference.

12.2 Theory

In analysis of variance, we assume that we have independent observations on, say, a different normal
populations with the same variance. In particular, we assume the following data structure.

Sample Data Distribution
1 y11,y12, . . . ,y1N1 iid N(μ1,σ2)
2 y21,y22, . . . ,y2N2 iid N(μ2,σ2)
...

...
...

...
a ya1,ya2, . . . ,yaNa iid N(μa,σ2)

Here each sample is independent of the other samples. These assumptions are written more suc-
cinctly as the one-way analysis of variance model

yi j = μi + εi j, εi js independent N(0,σ2) (12.2.1)

i = 1, . . . ,a, j = 1, . . . ,Ni. The εi js are unobservable random errors. Alternatively, Model (12.2.1) is
often written as

yi j = μ +αi + εi j, εi js independent N(0,σ2) (12.2.2)

where μi ≡ μ +αi. The parameter μ is viewed as a grand mean, while αi is an effect for the ith
group. The μ and αi parameters are not well defined. In Model (12.2.2) they only occur as the sum
μ +αi, so for any choice of μ and αi the choices, say, μ +5 and αi −5, are equally valid. The 5 can
be replaced by any number we choose. The parameters μ and αi are not completely specified by the
model. There would seem to be little point in messing around with Model (12.2.2) except that it has
useful relationships with other models that will be considered later.
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Alternatively, using the notation of Chapter 3, we could write the model

yh = m(xh)+ εh, h = 1, . . . ,n, (12.2.3)

where n ≡ N1 + · · ·+Na. In this case the predictor variable xh takes on one of a distinct values to
identify the group for each observation. Suppose xh takes on the values 1,2, . . . ,a, then we identify

μ1 ≡ m(1), . . . , μa ≡ m(a).

The model involves a distinct mean parameters, so dfE = n−a. Switching from the h subscripts to
the i j subscripts gives Model (12.2.1) with xh = i.

To analyze the data, we compute summary statistics from each sample. These are the sample
means and sample variances. For the ith group of observations, the sample mean is

ȳi· ≡
1
Ni

Ni

∑
j=1

yi j

and the sample variance is

s2
i ≡

1
Ni −1

Ni

∑
j=1

(yi j − ȳi·)
2
.

With independent normal errors having the same variance, all of the summary statistics are indepen-
dent of one another. Except for checking the validity of our assumptions, these summary statistics
are more than sufficient for the entire analysis. Typically, we present the summary statistics in tab-
ular form.

Sample statistics
Group Size Mean Variance

1 N1 ȳ1· s2
1

2 N2 ȳ2· s2
2

...
...

...
...

a Na ȳa· s2
a

The sample means, the ȳi·s, are estimates of the corresponding μis and the s2
i s all estimate the

common population variance σ2. With unequal sample sizes an efficient pooled estimate of σ2 must
be a weighted average of the s2

i s. The weights are the degrees of freedom associated with the various
estimates. The pooled estimate of σ2 is the mean squared error (MSE),

MSE ≡ s2
p ≡ (N1 −1)s2

1 +(N2 −1)s2
2 + · · ·+(Na −1)s2

a

∑a
i=1(Ni −1)

=
1

(n−a)

a

∑
i=1

Ni

∑
j=1

(yi j − ȳi·)
2
.

The degrees of freedom for the MSE are the degrees of freedom for error,

dfE ≡ n−a =
a

∑
i=1

(Ni −1).

This is the sum of the degrees of freedom for the individual variance estimates. Note that the MSE
depends only on the sample variances, so, with independent normal errors having the same variance,
MSE is independent of the ȳi·s.

A simple average of the sample variances s2
i is not reasonable. If we had N1 = 1,000,000 ob-

servations in the first sample and only N2 = 5 observations in the second sample, obviously the
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variance estimate from the first sample is much better than that from the second and we want to give
it more weight.

In Model (12.2.3) the fitted values for group i are

ŷh ≡ m̂(i) = μ̂i = ȳi·

and the residuals are
ε̂h = yh − ŷh = yi j − ȳi· = ε̂i j .

As usual,

MSE =
∑n

h=1 ε̂2
h

n−a
=

∑a
i=1 ∑Ni

j=1 ε̂2
i j

n−a
=

1
(n−a)

a

∑
i=1

Ni

∑
j=1

(yi j − ȳi·)
2
.

We need to check the validity of our assumptions. The errors in models (12.2.1) and (12.2.2)
are assumed to be independent normals with mean 0 and variance σ2, so we would like to use them
to evaluate the distributional assumptions, e.g., equal variances and normality. Unfortunately, the
errors are unobservable; we only see the yi js and we do not know the μis, so we cannot compute
the εi js. However, since εi j = yi j − μi and we can estimate μi, we can estimate the errors with the
residuals, ε̂i j = yi j − ȳi·. The residuals can be plotted against fitted values ȳi· to check whether the
variance depends in some way on the means μi. They can also be plotted against rankits (normal
scores) to check the normality assumption. More often we use the standardized residuals,

ri j =
ε̂i j√

MSE
(

1− 1
Ni

) ,

see Sections 7.2 and 11.5.
If we are satisfied with the assumptions, we proceed to examine the parameters of interest. The

basic parameters of interest in analysis of variance are the μis, which have natural estimates, the ȳi·s.
We also have an estimate of σ2, so we are in a position to draw a variety of statistical inferences. The
main problem in obtaining tests and confidence intervals is in finding appropriate standard errors.
To do this we need to observe that each of the a samples are independent. The ȳi·s are computed
from different samples, so they are independent of each other. Moreover, ȳi· is the sample mean of
Ni normal observations, so

ȳi· ∼ N

(
μi,

σ2

Ni

)
.

For inferences about a single mean, say, μ2, use the general procedures with Par = μ2 and
Est = ȳ2·. The variance of ȳ2· is σ2/N2, so SE(ȳ2·) =

√
MSE/N2. The reference distribution is

[ȳ2·−μ2]/SE(ȳ2·)∼ t(dfE). Note that the degrees of freedom for the t distribution are precisely the
degrees of freedom for the MSE . The general procedures also provide prediction intervals using the
MSE and t(dfE) distribution.

For inferences about the difference between two means, say, μ2−μ1, use the general procedures
with Par = μ2 −μ1 and Est = ȳ2·− ȳ1·. The two means are independent, so the variance of ȳ2·− ȳ1·
is the variance of ȳ2· plus the variance of ȳ1·, i.e., σ2/N2 +σ2/N1. The standard error of ȳ2·− ȳ1· is

SE(ȳ2·− ȳ1·) =
√

MSE
N2

+
MSE
N1

=

√
MSE

[
1

N1
+

1
N2

]
.

The reference distribution is

(ȳ2·− ȳ1·)− (μ2 − μ1)√
MSE

[
1

N1
+ 1

N2

] ∼ t(dfE).
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We might wish to compare one mean, μ1, with the average of two other means, (μ2 + μ3)/2. In
this case, the parameter can be taken as Par = μ1 − (μ2 +μ3)/2 = μ1 − 1

2 μ2 − 1
2 μ3. The estimate is

Est = ȳ1·− 1
2 ȳ2·− 1

2 ȳ3·. By the independence of the sample means, the variance of the estimate is

Var

(
ȳ1·−

1
2

ȳ2·−
1
2

ȳ3·

)
= Var(ȳ1·)+Var

(
−1
2

ȳ2·

)
+Var

(
−1
2

ȳ3·

)

=
σ2

N1
+

(
−1
2

)2 σ2

N2
+

(
−1
2

)2 σ2

N3

= σ2
[

1
N1

+
1
4

1
N2

+
1
4

1
N3

]
.

The standard error is

SE

(
ȳ1·−

1
2

ȳ2·−
1
2

ȳ3·

)
=

√
MSE

[
1

N1
+

1
4N2

+
1

4N3

]
.

The reference distribution is
(
ȳ1·− 1

2 ȳ2·− 1
2 ȳ3·
)
−
(
μ1 − 1

2 μ2 − 1
2 μ3
)

√
MSE

[
1

N1
+ 1

4N2
+ 1

4N3

] ∼ t(dfE).

In general, we are concerned with parameters that are linear combinations of the μis. For known
coefficients λ1, . . . ,λa, interesting parameters are defined by

Par = λ1μ1 + · · ·+λaμa =
a

∑
i=1

λiμi.

For example, μ2 has λ2 = 1 and all other λis equal to 0. The difference μ2−μ1 has λ1 =−1, λ2 = 1,
and all other λis equal to 0. The parameter μ1 − 1

2 μ2 − 1
2 μ3 has λ1 = 1, λ2 =−1/2, λ3 =−1/2, and

all other λis equal to 0.
The natural estimate of Par = ∑a

i=1 λiμi substitutes the sample means for the population means,
i.e., the natural estimate is

Est = λ1ȳ1·+ · · ·+λaȳa· =
a

∑
i=1

λiȳi·.

In fact, Proposition 1.2.11 gives

E

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λiE(ȳi·) =
a

∑
i=1

λiμi,

so by definition this is an unbiased estimate of the parameter.
Using the independence of the sample means and Proposition 1.2.11,

Var

(
a

∑
i=1

λiȳi·

)
=

a

∑
i=1

λ 2
i Var(ȳi·)

=
a

∑
i=1

λ 2
i

σ2

Ni

= σ2
a

∑
i=1

λ 2
i

Ni
.
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The standard error is

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

[
λ 2

1

N1
+ · · ·+ λ 2

a

Na

]
=

√
MSE

a

∑
i=1

λ 2
i

Ni

and the reference distribution is

(∑a
i=1 λiȳi·)− (∑a

i=1 λiμi)√
MSE ∑a

i=1 λ 2
i /Ni

∼ t(dfE),

see Exercise 12.8.14. If the independence and equal variance assumptions hold, then the central
limit theorem and law of large numbers can be used to justify a N(0,1) reference distribution even
when the data are not normal as long as all the Nis are large, although I would continue to use the t
distribution since the normal is clearly too optimistic.

In analysis of variance, we are most interested in contrasts (comparisons) among the μis. These
are characterized by having ∑a

i=1 λi = 0. The difference μ2 − μ1 is a contrast as is the parameter
μ1 − 1

2 μ2 − 1
2 μ3. If we use Model (12.2.2) rather than Model (12.2.1) we get

a

∑
i=1

λiμi =
a

∑
i=1

λi (μ +αi) = μ
a

∑
i=1

λi +
a

∑
i=1

λiαi =
a

∑
i=1

λiαi,

thus contrasts in Model (12.2.2) involve only the group effects. This is of some importance later
when dealing with more complicated models.

Having identified a parameter, an estimate, a standard error, and an appropriate reference distri-
bution, inferences follow the usual pattern. A 95% confidence interval for ∑a

i=1 λiμi has endpoints

a

∑
i=1

λiȳi·± t(0.975,dfE)

√
MSE

a

∑
i=1

λ 2
i /Ni .

An α = .05 test of H0 : ∑a
i=1 λiμi = 0 rejects H0 if

|∑a
i=1 λiȳi·−0|√

MSE ∑a
i=1 λ 2

i /Ni

> t(0.975,dfE). (12.2.4)

An equivalent procedure to the test in (12.2.4) is often useful. If we square both sides of (12.2.4),
the test rejects if ⎛

⎝ |∑a
i=1 λiȳi·−0|√

MSE ∑a
i=1 λ 2

i /Ni

⎞
⎠

2

> [t(0.975,dfE)]2 .

The square of the test statistic leads to another common statistic, the sum of squares for the param-
eter. Rewrite the test statistic as

⎛
⎝ |∑a

i=1 λiȳi·−0|√
MSE ∑a

i=1 λ 2
i /Ni

⎞
⎠

2

=
(∑a

i=1 λiȳi·−0)2

MSE ∑a
i=1 λ 2

i /Ni

=
(∑a

i=1 λiȳi·)
2/∑a

i=1 λ 2
i /Ni

MSE

and define the sum of squares for the parameter as

SS

(
a

∑
i=1

λiμi

)
≡ (∑a

i=1 λiȳi·)
2

∑a
i=1 λ 2

i /Ni
. (12.2.5)
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The α = .05 t test of H0 : ∑a
i=1 λiμi = 0 is equivalent to rejecting H0 if

SS (∑a
i=1 λiμi)

MSE
> [t(0.975,dfE)]2 .

It is a mathematical fact that for any α between 0 and 1 and any dfE ,

[
t
(

1− α
2
,dfE
)]2

= F(1−α,1,dfE).

Thus the test based on the sum of squares is an F test with 1 degree of freedom in the numerator.
Any parameter of this type has 1 degree of freedom associated with it.

In Section 12.1 we transformed the suicide age data so that they better satisfy the assumptions of
equal variances and normal distributions. In fact, analysis of variance tests and confidence intervals
are frequently useful even when these assumptions are violated. Scheffé (1959, p. 345) concludes
that (a) nonnormality is not a serious problem for inferences about means but it is a serious problem
for inferences about variances, (b) unequal variances are not a serious problem for inferences about
means from samples of the same size but are a serious problem for inferences about means from
samples of unequal sizes, and (c) lack of independence can be a serious problem. Of course, any
such rules depend on just how bad the nonnormality is, how unequal the variances are, and how bad
the lack of independence is. My own interpretation of these rules is that if you check the assumptions
and they do not look too bad, you can probably proceed with a fair amount of assurance.

12.2.1 Analysis of variance tables

To test the (null) hypothesis
H0 : μ1 = μ2 = · · ·= μa,

we test Model (12.2.1) against the reduced model

yi j = μ + εi j, εi js independent N(0,σ2) (12.2.6)

in which each group has the same mean. Recall that the variance estimate for this model is the
sample variance, i.e., MSE(Red.) = s2

y , with dfE(Red.) = n−1.
The computations are typically summarized in an analysis of variance table. The commonly

used form for the analysis of variance table is given below.

Analysis of Variance
Source df SS MS F

Groups a− 1 ∑a
i=1 Ni (ȳi·− ȳ··)2 SSGrps/(a− 1) MSGrps

MSE

Error n− a ∑a
i=1 ∑Ni

j=1

(
yi j − ȳi·

)2
SSE/(n− a)

Total n− 1 ∑a
i=1 ∑Ni

j=1

(
yi j − ȳ··

)2

The entries in the Error line are just dfE , SSE , and MSE for Model (12.2.1). The entries for the
Total line are dfE and SSE for Model (12.2.6). These are often referred to as dfTot and SSTot and
sometimes as dfTot−C and SSTot−C. The Groups line is obtained by subtracting the Error df and
SS from the Total df and SS, respectively, so that MSGroups ≡ SSGrps/df Grps gives precisely the
numerator of the F statistic for testing our hypothesis. It is some work to show that the algebraic
formula given for SSGrps is correct.

The total line is corrected for the grand mean. An obvious meaning for the phrase “sum of
squares total” would be the sum of the squares of all the observations, ∑i j y2

i j. The reported sum of

squares total is SSTot = ∑a
i=1 ∑Ni

j=1 y2
i j −C, which is the sum of the squares of all the observations

minus the correction factor for fitting the grand mean, C ≡ nȳ2··. Similarly, an obvious meaning
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for the phrase “degrees of freedom total” would be n, the number of observations: one degree of
freedom for each observation. The reported df Tot is n−1, which is corrected for fitting the grand
mean μ in Model (12.2.6).

EXAMPLE 12.2.1. We now illustrate direct computation of SSGrps, the only part of the analysis
of variance table computations that we have not illustrated for the logs of the suicide data. The
sample statistics are repeated below.

Sample statistics: Log of suicide ages
Group Ni ȳi· s2

i
Caucasians 44 3.6521 0.1590
Hispanics 34 3.4538 0.2127
Native Am. 15 3.1770 0.0879

The sum of squares groups is

SSGrps = 2.655 = 44(3.6521−3.5030)2+34(3.4538−3.5030)2+15(3.1770−3.5030)2

where

3.5030 = ȳ·· =
44(3.6521)+ 34(3.4538)+15(3.1770)

44+34+15
.

The ANOVA table was presented as Table 12.2. �

If the data happen to be balanced in the sense that N1 = · · · = Na ≡ N, a convenient way to
compute the mean square for groups is as

MSGrps = Ns2
ȳ ,

where s2
ȳ is the sample variance of the group means, i.e.,

s2
ȳ ≡

1
a−1

a

∑
i=1

(ȳi·− ȳ··)2.

This idea can be used as the basis for analyzing virtually any balanced multifactor ANOVA. Re-
call from Section 3.9 that a multifactor ANOVA is simply a model that involves more than one
categorical predictor variable. Christensen (1996) examined this idea in detail.

12.3 Regression analysis of ANOVA data

We now discuss how to use multiple regression to analyze ANOVA data. Table 12.3 presents the
suicide age data with the categorical predictor variable “Group” taking on the values 1, 2, 3. The
predictor Group identifies which observations belong to each of the three groups. To analyze the
data as a regression, we need to replace the three-category (factor) predictor Group with a series of
three indicator variables, x1,x2, and x3; see Table 12.3. Each of these x variables consist of 0s and
1s, with the 1s indicating membership in one of the three groups. Thus, for any observation that is in
group 1 (Anglo), x1 = 1 and for any observation that is in group 2 (Hisp.) or group 3 (N.A.), x1 = 0.
Similarly, x2 is a 0-1 indicator variable that is 1 for Hispanics and 0 for any other group. Finally,
x3 is the indicator variable for Native Americans. Many computer programs will generate indicator
variables like x1,x2,x3 corresponding to a categorical variable like Group.

We fit the multiple regression model without an intercept

yh = μ1xh1 + μ2xh2 + μ3xh3 + εh, h = 1, . . . ,n. (12.3.1)
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Table 12.3: Suicide age data file.

Indicator Variables
Age Group x1 = Anglo x2 = Hisp. x3 = N.A.
21 1 1 0 0
55 1 1 0 0
42 1 1 0 0
...

...
...

...
...

19 1 1 0 0
27 1 1 0 0
58 1 1 0 0
50 2 0 1 0
31 2 0 1 0
29 2 0 1 0
...

...
...

...
...

21 2 0 1 0
28 2 0 1 0
17 2 0 1 0
26 3 0 0 1
17 3 0 0 1
24 3 0 0 1
...

...
...

...
...

23 3 0 0 1
25 3 0 0 1
23 3 0 0 1
22 3 0 0 1

It does not matter that we are using Greek μs for the regression coefficients rather than β s. Model
(12.3.1) is precisely the same model as

yi j = μi + εi j, i = 1,2,3, j = 1,2, . . . ,Ni,

i.e., Model (12.2.1). They give the same fitted values, residuals, and dfE .
Model (12.3.1) is fitted without an intercept (constant). Fitting the regression model to the log

suicide age data gives a Table of Coefficients and an ANOVA table. The tables are adjusted for
the fact that the model was fitted without an intercept. Obviously, the Table of Coefficients cannot
contain a constant term, since we did not fit one.

Table of Coefficients: Model (12.3.1)
Predictor μ̂i SE(μ̂i) t P
Anglo 3.65213 0.06173 59.17 0.000
Hisp. 3.45377 0.07022 49.19 0.000
N.A. 3.1770 0.1057 30.05 0.000

The estimated regression coefficients are just the group sample means as displayed in Section 12.1.
The reported standard errors are the standard errors appropriate for performing confidence intervals
and tests on a single population mean as discussed in Subsection 12.1.1, i.e., μ̂i = ȳi· and SE(μ̂i) =√

MSE/Ni. The table also provides test statistics and P values for H0 : μi = 0 but these are not
typically of much interest. The 95% confidence interval for, say, the Hispanic mean μ2 has endpoints

3.45377±2.631(0.0.07022)

for an interval of (3.269, 3.639), just as in Subsection 12.1.1. Prediction intervals are easily obtained
from most software by providing the corresponding 0-1 input for x1, x2, and x3, e.g., to predict a
Native American log suicide age, (x1,x2,x3) = (0,0,1).

In the ANOVA table
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Analysis of Variance: Model (12.3.1)
Source df SS MS F P
Regression 3 1143.84 381.28 2274.33 0.000
Error 90 15.09 0.17
Total 93 1158.93

The Error line is the same as that given in Section 12.1, up to round-off error. Without fitting an
intercept (grand mean) in the model, most programs report the Total line in the ANOVA table with-
out correcting for the grand mean. Here the Total line has n = 93 degrees of freedom, rather than
the usual n− 1. Also, the Sum of Squares Total is the sum of the squares of all 93 observations,
rather than the usual corrected number (n−1)s2

y . Finally, the F test reported in the ANOVA table is
for testing the regression model against the relatively uninteresting model yh = 0+ εh. It provides a
simultaneous test of 0 = μC = μH = μN rather than the usual test of μC = μH = μN .

12.3.1 Testing a pair of means

In Subsection 12.1.2, we tested all three of the possible pairs of means. By reintroducing an intercept
into the multiple regression model, we can get immediate results for testing any two of them. Rewrite
the multiple regression model as

yh = μ +α1xh1 +α2xh2 +α3xh3 + εh, (12.3.2)

similar to Model (12.2.2). Remember, the Greek letters we choose to use as regression coefficients
make no difference to the substance of the model. Model (12.3.2) is no longer a regression model
because the parameters are redundant. The data have three groups, so we need no more than three
model parameters to explain them. Model (12.3.2) contains four parameters. To make it into a
regression model, we need to drop one of the predictor variables. In most important ways, which
predictor variable we drop makes no difference. The fitted values, the residuals, the dfE , SSE , and
MSE all remain the same. However, the meaning of the parameters changes depending on which
variable we drop.

At the beginning of this section, we dropped the constant term from Model (12.3.2) to get
Model (12.3.1) and discussed the parameter estimates. Now we leave in the intercept but drop
one of the other variables. Let’s drop x3, the indicator variable for Native Americans. This makes
the Native Americans into a baseline group with the other two groups getting compared to it. As
mentioned earlier, we will obtain two of the three comparisons from Subsection 12.1.2, specifically
the comparisons between Anglo and N.A., μC − μN , and Hisp. and N.A., μH − μN . Fitting the
regression model with an intercept but without x3, i.e.,

yh = β0 +β1xh1 +β2xh2 + εh, (12.3.3)

gives the Table of Coefficients and ANOVA table.

Table of Coefficients: Model (12.3.3)
Predictor β̂k SE(β̂k) t P
Constant 3.1770 0.1057 30.05 0.000
Anglo 0.4752 0.1224 3.88 0.000
Hisp. 0.2768 0.1269 2.18 0.032

Analysis of Variance: Model (12.3.3)
Source df SS MS F P
Regression 2 2.6553 1.3276 7.92 0.001
Error 90 15.0881 0.1676
Total 92 17.7434
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The estimate for the Constant is just the mean for the Native Americans and the rest of the Constant
line provides results for evaluating μN . The results for the Anglo and Hisp. lines agree with the
results from Subsection 12.1.2 for evaluating μC − μN and μH − μN , respectively. Up to round-off
error, the ANOVA table is the same as presented in Table 12.2.

Fitting Model (12.3.3) gives us results for inference on μN , μC − μN , and μH − μN . To make
inferences for μC − μH , the estimate is easily obtained as 0.4752− 0.2768 but the standard error
and other results are not easily obtained from fitting Model (12.3.3).

We can make inferences on μC − μH by fitting another model. If we drop x2, the indicator for
Hispanics, and fit

yh = γ0 + γ1xh1 + γ3xh3 + εh,

Hispanic becomes the baseline group, so the constant term γ0 corresponds to μH , the Anglo term
γ1 corresponds to μC − μH , and the N.A. term γ3 corresponds to μN − μH . Similarly, if we drop the
Anglo predictor and fit

yh = δ0 + δ2xh2 + δ3xh3 + εh,

the constant term δ0 corresponds to μC, the Hisp. term δ2 corresponds to μH − μC, and the N.A.
term δ3 corresponds to μN − μC.

Dropping a predictor variable from Model (12.3.2) is equivalent to imposing a side condition on
the parameters μ , α1, α2, α3. In particular, dropping the intercept corresponds to assuming μ = 0,
dropping x1 amounts to assuming α1 = 0, dropping x2 amounts to assuming α2 = 0, and dropping x3

amounts to assuming α3 = 0. In Subsection 12.3.3 we will look at a regression model that amounts
to assuming that α1 +α2 +α3 = 0.

12.3.2 Model testing

It will not always be possible or convenient to manipulate the model as we did here so that the Table
of Coefficients gives us interpretable results. Alternatively, we can use model testing to provide a
test of, say, μC − μN = 0. Begin with our original no-intercept model (12.3.1), i.e.,

yh = μ1xh1 + μ2xh2 + μ3xh3 + εh.

To test μ1 − μ3 ≡ μC − μN = 0, rewrite the hypothesis as μ1 = μ3 and substitute this relation into
Model (12.3.1) to get a reduced model

yh = μ1xh1 + μ2xh2 + μ1xh3 + εh

or
yh = μ1(xh1 + xh3)+ μ2xh2 + εh.

The Greek letters change their meaning in this process, so we could just as well write the model as

yh = γ1(xh1 + xh3)+ γ2xh2 + εh. (12.3.4)

This reduced model still only involves indicator variables: x2 is the indicator variable for group 2
(Hisp.) but x1 + x3 is now an indicator variable that is 1 if an individual is either Anglo or N.A. and
0 otherwise. We have reduced our three-group model with Anglos, Hispanics, and Native Amer-
icans to a two-group model that lumps Anglos and Native Americans together but distinguishes
Hispanics. The question is whether this reduced model fits adequately relative to our full model that
distinguishes all three groups. Fitting the model gives a Table of Coefficients and an ANOVA table.

Table of Coefficients: Model (12.3.4)
Predictor γ̂k SE(γ̂k) t P
x1 + x3 3.53132 0.05728 61.65 0.000
Hisp. 3.45377 0.07545 45.78 0.000
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The Table of Coefficients is not very interesting. It gives the same mean for Hisp. as Model (12.3.1)
but provides a standard error based on a MSE from Model (12.3.4) that does not distinguish be-
tween Anglos and N.A.s. The other estimate in the table is the average of all the Anglos and N.A.s.
Similarly, the ANOVA table is not terribly interesting except for its Error line.

Analysis of Variance: Model (12.3.4)
Source df SS MS F P
Regression 2 1141.31 570.66 2948.27 0.000
Error 91 17.61 0.19
Total 93 1158.93

From this Error line and the Error for Model (12.3.1), the model testing statistic for the hypoth-
esis μ1 − μ3 ≡ μC − μN = 0 is

Fobs =
[17.61−15.09]/[91−90]

15.09/90
= 15.03

.
= (3.88)2.

The last (almost) equality between 15.03 and (3.88)2 demonstrates that this F statistic is the square
of the t statistic reported in Subsection 12.1.2 for testing μ1 − μ3 ≡ μC − μN = 0. Rejecting an
F(1,90) test for large values of Fobs is equivalent to rejecting a t(90) test for tobs values far from
zero. The lack of equality between 15.03 and (3.88)2 is entirely due to round-off error. To reduce
round-off error, in computing Fobs we used MSE(Full) = 15.09/90 as the full model mean squared
error, rather than the reported value from Model (12.3.1) of MSE(Full) = 0.17. To further reduce
round-off error, we could use even more accurate numbers reported earlier for Model (12.3.3),

Fobs =
[17.61−15.0881]/[91−90]

15.0881/90
= 15.04

.
= (3.88)2.

Two final points. First, 17.61−15.0881= SS(μ1−μ3), the sum of squares for the contrast as defined
in (12.2.5). Second, to test μ1 − μ3 = 0, rather than manipulating the indicator variables, the next
section discusses how to get the same results by manipulating the group subscript.

Similar to testing μ1 − μ3 = 0, we could test μ1 − 1
2 μ2 − 1

2 μ3 = 0. Rewrite the hypothesis as
μ1 =

1
2 μ2 +

1
2 μ3 and obtain the reduced model by substituting this relationship into Model (12.3.1)

to get

yh =

(
1
2

μ2 +
1
2

μ3

)
xh1 + μ2xh2 + μ3xh3 + εh

or

yh = μ2

(
1
2

xh1 + xh2

)
+ μ3

(
1
2

xh1 + xh3

)
+ εh.

This is just a no-intercept regression model with two predictor variables x̃1 =
( 1

2 x1 + x2
)

and x̃2 =( 1
2 x1 + x3

)
, say,

yi = γ1x̃i1 + γ2x̃i2 + εi.

Fitting the reduced model gives the usual tables. Our interest is in the ANOVA table Error line.

Table of Coefficients
Predictor γ̂k SE(γ̂k) t P
x̃1 3.55971 0.06907 51.54 0.000
x̃2 3.41710 0.09086 37.61 0.000

Analysis of Variance
Source df SS MS F P
Regression 2 1141.41 570.71 2965.31 0.000
Error 91 17.51 0.19
Total 93 1158.93
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From this Error line and the Error for Model (12.3.1), the model testing statistic for the hypoth-
esis μ1 − 1

2 μ2 − 1
2 μ3 = 0 is

Fobs =
[17.51−15.09]/[91−90]

15.09/90
= 14.43

.
= (3.80)2.

Again, 3.80 is the tobs that was calculated in Subsection 12.1.3 for testing this hypothesis.
Finally, suppose we wanted to test μ1 − μ3 ≡ μC − μN = 1.5. Using results from the Table of

Coefficients for fitting Model (12.3.3), the t statistic is

tobs =
0.4752−1.5

0.1224
=−8.3725.

The corresponding model-based test reduces the full model (12.3.1) by incorporating μ1 = μ3 +1.5
to give the reduced model

yh = (μ3 +1.5)xh1+ μ2xh2 + μ3xh3 + εh

or
yh = 1.5xh1 + μ2xh2 + μ3(xh1 + xh3)+ εh.

The term 1.5xi1 is completely known (not multiplied by an unknown parameter) and is called an
offset. To analyze the model, we take the offset to the left-hand side of the model, rewriting it as

yh − 1.5xh1 = μ2xh2 + μ3(xh1 + xh3)+ εh. (12.3.5)

This regression model has a different dependent variable than Model (12.3.1), but because the offset
is a known multiple of a variable that is in Model (12.3.1), the offset model can be compared to
Model (12.3.1) in the usual way, cf. Christensen (2011, Subsection 3.2.1). The predictor variables
in the reduced model (12.3.5) are exactly the same as the predictor variables used in Model (12.3.4)
to test μ1 − μ3 ≡ μC − μN = 0.

Fitting Model (12.3.5) gives the usual tables. Our interest is in the Error line.

Table of Coefficients: Model (12.3.5)
Predictor γ̂k SE(γ̂k) t P
Hisp. 3.45377 0.09313 37.08 0.000
x1 + x3 2.41268 0.07070 34.13 0.000

Analysis of Variance: Model (12.3.5)
Source df SS MS F P
Regression 2 749.01 374.51 1269.87 0.000
Error 91 26.84 0.29
Total 93 775.85

From this Error line and the Error for Model (12.3.1), the F statistic for the hypothesis μ1 − μ3 ≡
μC − μN = 1.5 is

Fobs =
[26.84−15.09]/[91−90]

15.09/90
= 70.08

.
= (−8.3725)2.

Again, the lack of equality is entirely due to round-off error and rejecting the F(1,90) test for large
values of Fobs is equivalent to rejecting the t(90) test for tobs values far from zero.

Instead of writing μ1 = μ3 +1.5 and substituting for μ1 in Model (12.3.1), we could just as well
have written μ1 −1.5 = μ3 and substituted for μ3 in Model (12.3.1). It is not obvious, but this leads
to exactly the same test. Try it!
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12.3.3 Another choice

Another variation on fitting regression models involves subtracting out the last predictor. In some
programs, notably Minitab, the overparameterized model

yh = μ +α1xh1 +α2xh2 +α3xh3 + εh,

is fitted as the equivalent regression model

yh = γ0 + γ1(xh1 − xh3)+ γ2(xh2 − xh3)+ εh. (12.3.6)

Up to round-off error, the ANOVA table is the same as Table 12.2. Interpreting the Table of Coeffi-
cients is a bit more complicated.

Table of Coefficients: Model (12.3.6)
Predictor γ̂k SE(γ̂k) t P
Constant (γ0) 3.42762 0.04704 72.86 0.000
Group
C (γ1) 0.22450 0.05902 3.80 0.000
H (γ2) 0.02615 0.06210 0.42 0.675

The relationship between this regression model (12.3.6) and the easiest model

yh = μ1xh1 + μ2xh2 + μ3xh3 + εh

is

γ0 + γ1 = μ1, γ0 + γ2 = μ2, γ0 − (γ1 + γ2) = μ3,

so

γ̂0 + γ̂1 = 3.42762+0.22450= 3.6521 = ȳ1· = μ̂1,

γ̂0 + γ̂2 = 3.42762+0.02615= 3.4538 = ȳ2· = μ̂2,

and

γ̂0 − (γ̂1 + γ̂2) = 3.42762− (0.22450+0.02615)= 3.1770 = ȳ3· = μ̂3.

Alas, this table of coefficients is not really very useful. We can see that γ0 = (μ1 + μ2 + μ3)/3.
The table of coefficients provides the information needed to perform inferences on this not very
interesting parameter. Moreover, it allows inference on

γ1 = μ1 − γ0 = μ1 −
μ1 + μ2 + μ3

3
=

2
3

μ1 +
−1
3

μ2 +
−1
3

μ3,

another, not tremendously interesting, parameter. The interpretation of γ2 is similar to γ1.
The relationship between Model (12.3.6) and the overparameterized model (12.3.2) is

γ0 + γ1 = μ +α1, γ0 + γ2 = μ +α2, γ0 − (γ1 + γ2) = μ +α3,

which leads to

γ0 = μ , γ1 = α1, γ2 = α2, −(γ1 + γ2) = α3,

provided that the side conditions α1 +α2 +α3 = 0 hold. Under this side condition, the relationship
between the γs and the parameters of Model (12.3.2) is very simple. That is probably the motivation
for considering Model (12.3.6). But the most meaningful parameters are clearly the μis, and there
is no simple relationship between the γs and them.



12.4 MODELING CONTRASTS 297

Table 12.4: Subscripts for ANOVA on log(y): Mandel data.

Columns
1 2 3 4 5 6 7 8 9

133 1 1 1 1 1 1 1 1
129 1 1 1 1 1 1 1 1
123 1 1 1 1 1 1 1 1
156 1 1 1 1 1 1 1 1
129 2 1 2 1 1 2 2 1
125 2 1 2 1 1 2 2 1
136 2 1 2 1 1 2 2 1
127 2 1 2 1 1 2 2 1
121 3 3 3 3 1 3 3 1
125 3 3 3 3 1 3 3 1
109 3 3 3 3 1 3 3 1
128 3 3 3 3 1 3 3 1
57 4 4 3 3 1 4 4 1
58 4 4 3 3 1 4 4 1
59 4 4 3 3 1 4 4 1
67 4 4 3 3 1 4 4 1

122 5 5 5 5 5 5 5 2
98 5 5 5 5 5 5 5 2

107 5 5 5 5 5 5 5 2
110 5 5 5 5 5 5 5 2
109 6 6 6 6 6 6 5 2
120 6 6 6 6 6 6 5 2
112 6 6 6 6 6 6 5 2
107 6 6 6 6 6 6 5 2
80 7 7 7 7 7 6 5 2
72 7 7 7 7 7 6 5 2
76 7 7 7 7 7 6 5 2
64 7 7 7 7 7 6 5 2
y i 1 = 2; 1 = 2 = 1 = 2 = 3 = 4;

1 = 2 3 = 4 3 = 4 3 = 4 6 = 7 5 = 6 = 7 5 = 6 = 7

12.4 Modeling contrasts

In one-way ANOVA we have simple methods available for examining contrasts. These were dis-
cussed in Sections 1 and 2. However, in more complicated models, like the unbalanced multifactor
ANOVAs discussed in Chapters 14 and 16 and the models for count data discussed later, these sim-
ple methods do not typically apply. In fact, we will see that in such models, examining a series of
contrasts can be daunting. We now introduce modeling methods, based on relatively simple manip-
ulations of the group subscript, that allow us to test a variety of interesting contrasts in some very
general models. In fact, what this section does is present ways to manipulate the indicator variables
of the previous section without ever actually defining the indicator variables.

EXAMPLE 12.4.1. Mandel (1972) and Christensen (1996, Chapter 6) presented data on the stress
at 600% elongation for natural rubber with a 40-minute cure at 140oC. Stress was measured in 7
laboratories and each lab measured it four times. The dependent variable was measured in kilograms
per centimeter squared (kg/cm2). Following Christensen (1996) the analysis is conducted on the
logs of the stress values. The data are presented in the first column of Table 12.4 with column 2
indicating the seven laboratories. The other seven columns will be discussed later.

The model for the one-way ANOVA is

yi j = μi + ei j (12.4.1)

= μ +αi + ei j i = 1,2,3,4,5,6,7, j = 1,2,3,4.

The ANOVA table is given as Table 12.5. Clearly, there are some differences among the laboratories.
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Table 12.5: Analysis of Variance: Model (12.4.1), C2, seven groups.

Source df SS MS F P
Groups 6 2.26921 0.37820 62.72 0.000
Error 21 0.12663 0.00603
Total 27 2.39584

If these seven laboratories did not have any natural structure to them, about the only thing of
interest would be to compare all of the pairs of labs to see which ones are different. This involves
looking at 7(6)/2 = 21 pairs of means, a process discussed more in Chapter 13.

As in Christensen (1996), suppose that the first two laboratories are in San Francisco, the second
two are in Seattle, the fifth is in New York, and the sixth and seventh are in Boston. This structure
suggests that there are six interesting questions to ask. On the West Coast, is there any difference
between the San Francisco labs and is there any difference between the Seattle labs? If there are
no such differences, it makes sense to discuss the San Francisco and Seattle population means, in
which case, is there any difference between the San Francisco labs and the Seattle labs? On the East
Coast, is there any difference between the Boston labs and if not, do they differ from the New York
lab? Finally, if the West Coast labs have the same mean, and the East Coast labs have the same
mean, is there a difference between labs on the West Coast and labs on the East Coast?

12.4.1 A hierarchical approach

We present what seems like a reasonable approach to looking at the six comparisons discussed
earlier. For this, we use columns 3 through 9 in Table 12.4. Every column from 2 to 9 in Table 12.4
can be used as the index to define a one-way ANOVA for these data. Each column incorporates
different assumptions (null hypotheses) about the group means.

Columns 3 through 6 focus attention on the West Coast labs. Column 3 has the same index for
both the San Francisco labs so it defines a one-way ANOVA that incorporates μ1 = μ2, i.e, that
the San Francisco labs have the same mean. Column 4 has the same index for both Seattle labs and
gives a model that incorporates μ3 = μ4, i.e, that the Seattle labs have the same mean. Using column
5 gives a model that simultaneously incorporates equality of the San Francisco labs and the Seattle
labs, i.e., μ1 = μ2 and μ3 = μ4. Using column 6 goes a step further to give a model that has equality
among all of the West Coast labs, i.e., μ1 = μ2 = μ3 = μ4.

With column 7 attention switches to the East Coast labs. It gives a model that incorporates
μ6 = μ7, i.e, that the Boston labs have the same mean. Using column 8 goes a step further to give
a model that incorporates equality among all of the East Coast labs, i.e., μ5 = μ6 = μ7. Finally,
column 9 is a model in which all West Coast labs have the same mean and all East Coast labs have
the same mean, i.e., μ1 = μ2 = μ3 = μ4 and μ5 = μ6 = μ7.

Many of these models are not comparable, but we can view them as a structured hierarchy of
models as indicated below. All models assume the validity of Model (12.4.1). Any assumption of
pairwise equality is evaluated relative to the original model (12.4.1), so these three noncomparable
models are in the second row, just beneath Model (12.4.1). We then build more structured reduced
models from these initial pairwise equalities.

(12.4.1)
μ1 = μ2 μ3 = μ4 μ6 = μ7

μ1 = μ2; μ3 = μ4

μ1 = μ2 = μ3 = μ4 μ5 = μ6 = μ7

μ1 = μ2 = μ3 = μ4; μ5 = μ6 = μ7

μ1 = · · · = μ7

Models separated by vertical bars are not comparable, but other than that, models in any row can be
tested against as a full model against a reduced model in a lower row or as a reduced model against
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a full model in a higher row. The last model in the hierarchy is just the grand-mean (intercept-only)
model.

The hierarchy has six rows. In the second row down, primary interest is in comparing the models
to Model (12.4.1) in the top row.

The third row involves a semicolon! Comparing the third row to the first row merely involves
doing a simultaneous test of two hypotheses that we have already looked at. By involving the second
row, we can look at these hypotheses in different orders. But the real interest in a row with a semi-
colon is in comparing it to the model below it. The real interest in looking at the model with both
μ1 = μ2 and μ3 = μ4 is to see if it fits better than the model in row four with μ1 = μ2 = μ3 = μ4.

Similarly, the other model that involves a semicolon is in row five, i.e., μ1 = μ2 = μ3 = μ4;
μ5 = μ6 = μ7, and the real interest is in whether it fits better than the model below it, the row six
grand-mean model. This is not to say that there are not worthwhile comparisons to be made between
the model in row five and models in higher rows.

As a shorthand, it is convenient to refer to the models in the hierarchy by their column numbers
from Table 12.4. This makes the hierarchy

C2
C3 C4 C7

C5
C6 C8

C9
GM

While this hierarchy of models was designed in response to the structure of our specific treat-
ments, the hierarchical approach is pretty general. Suppose our groups were five diets: Control, Beef
A, Beef B, Pork, and Beans. With five diets, we might be interested in four comparisons suggested
by the structure of the diets. First, we might compare the two beef diets. Second, compare the beef
diets with the pork diet. (If the beef diets are the same, are they different from pork?) Third, compare
the meat diets with the Bean diet. (If the meat diets are the same, are they different from beans?)
Fourth, is the control different from the rest? These four comparisons suggest a hierarchy of models,
cf. Exercise 12.7.15. Other nonhierarchical options would be to compare the control to each of the
other diets or to compare each diet with every other diet.

Now suppose our five diets are: Control, Beef, Pork, Lima Beans, and Soy Beans. Again, we
could compare the control to each of the other diets or compare all pairs of diets, but the structure
of the treatments suggests the four comparisons 1) beef with pork, 2) lima beans with soy beans,
3) meat with beans, and 4) control with the others, which suggests a hierarchy of models, cf. Exer-
cise 12.7.16.

12.4.2 Evaluating the hierarchy

With seven groups, there are six degrees of freedom for groups. The structure of the groups has
suggested a hierarchy of models, which in turn suggests six F tests, each with one degree of freedom
in the numerator.

To start off our analysis of Mandel’s data, suppose we wanted to evaluate whether there is any
demonstrable difference between labs 1 and 2 (the two in San Francisco). From a modeling point
of view, this is very easy. We currently have Model (12.4.1) that distinguishes between all 7 labs.
To test whether there are differences between labs 1 and 2, all we have to do is compare Model
(12.4.1) to a model in which there are no differences between labs 1 and 2. In other words, our
reduced model makes no distinction between labs 1 and 2. To perform such an ANOVA, rather than
using the indices in column 2 of Table 12.4, the reduced model is an ANOVA using the indices in
column 3. The fact that labs 1 and 2 are being equated is indicated at the bottom of column 3 with
the notation 1 = 2. The ANOVA table for this reduced model is
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Table 12.6: West Coast.

Analysis of Variance: H0 : μ1 = μ2, C3
Source df SS MS F P
Groups, 1=2 5 2.26572 0.45314 76.61 0.000
Error 22 0.13012 0.00591
Total 27 2.39584

Analysis of Variance: H0 : μ3 = μ4, C4
Source df SS MS F P
Groups, 3=4 5 1.30194 0.26039 5.24 0.003
Error 22 1.09390 0.04972
Total 27 2.39584

Analysis of Variance: H0 : μ1 = μ2; μ3 = μ4, C5
Source df SS MS F P
Groups, 1=2,3=4 4 1.29844 0.32461 6.80 0.001
Error 23 1.09740 0.04771
Total 27 2.39584

Analysis of Variance: H0 : μ1 = μ2 = μ3 = μ4, C6
Source df SS MS F P
Groups, 1=2=3=4 3 0.53108 0.17703 2.28 0.105
Error 24 1.86476 0.07770
Total 27 2.39584

Analysis of Variance: H0 : μ1 = μ2, C3
Source df SS MS F P
Groups, 1=2 5 2.26572 0.45314 76.61 0.000
Error 22 0.13012 0.00591
Total 27 2.39584

Comparing the reduced model C3 to the full model C2 [equivalently, Model (12.4.1)] whose
ANOVA table is given as Table 12.5, we get the F statistic

[SSE(C3)− SSE(C2)]
[dfE(C3)−dfE(C2)]

/
MSE(C2) =

[0.13012−0.12663]/[22−21]
0.00603

= 0.58.

There is no evidence of differences between the San Francisco labs. Note that the numerator sum of
squares is 0.13012− 0.12663= 0.00349= SS(μ1 − μ2) as defined in (12.2.5).

When fitting an intermediate ANOVA model from our hierarchy, like C3, our primary interest
is in using the Error line of the fitted model to construct the F statistic that is our primary interest.
But the ANOVA table for model C3 also provides a test of the intermediate model against the
grand-mean model. In the case of fitting model C3: μ1 = μ2, the F statistic of 76.61 reported in
the ANOVA table with 5 numerator degrees of freedom suggests that, even when the first two labs
are treated as the same, differences exist somewhere among this pair and the other five labs for
which we have made no assumptions. We probably would not want to perform this 5 df test if
we got a significant result in the test of model C3 versus model C2 because the 5 df test would
then be based on an assumption that is demonstrably false. (Ok, “demonstrably false” is a little
strong.) Also, since we are looking at a variety of models, all of which are special cases of model
C2, our best practice uses MSE(C2) in the denominator of all tests, including this 5 df test. In
particular, it would be better to replace F = 0.45314/0.00591= 76.61 from the C3 ANOVA table
with F = 0.45314/0.00603= 75.15 having 5 and 21 degrees of freedom.

Table 12.6 contains ANOVA tables for the models that impose restrictions on the West Coast
labs. The reduced models have all incorporated some additional conditions on the μis relative to
model C2 and these are given at the top of each ANOVA table. The first model is the one we have
just examined, the model in which no distinction is made between labs 1 and 2.

The second ANOVA table in Table 12.6 is based on the model in which no distinction is made
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between labs 3 and 4, the two in Seattle. (This is model C4.) A formal test for equality takes the
form

[SSE(C4)− SSE(C2)]
[dfE(C4)− dfE(C2)]

/
MSE(C2) =

[1.09390−0.12663]/[22−21]
0.00603

= 155.26

There is great evidence for differences between the two Seattle labs. At this point, it does not make
much sense to look further at any models that incorporate μ3 = μ4, but we plunge forward just to
demonstrate the complete process.

The third ANOVA table in Table 12.6 is based on the model in which no distinction is made
between the two labs within San Francisco and also no distinction is made between the two labs
within Seattle. (This model uses index column 5.) The difference in SSE between this ANOVA
model and the SSE for model C2 is 1.09740− 0.12663 = 0.97077. The degrees of freedom are
23− 21= 2. A formal test of H0 : μ1 = μ2; μ3 = μ4 takes the form

[SSE(C5)− SSE(C2)]/[dfE(C5)−dfE(C2)]
MSE(C2)

=
[1.09740−0.12663]/[23−21]

0.00603
=

0.97077/2
0.00603

= 80.50 .

This is compared to an F(2,21) distribution and provides a simultaneous test for no differences in
San Francisco as well as no differences in Seattle. Note that we could also test full models C3 and
C4 against the reduced model C5. We leave it to the reader to see that when using MSE(C2) in the
denominator these comparisons agree with the tests for H0 : μ3 = μ4 and H0 : μ1 = μ2 given earlier.

To test for no differences between San Francisco and Seattle, compare the full model C5 that
has no differences within either city but distinguishes labs in the two cities to the reduced model C6
that makes no distinctions between any labs on the West Coast. The ANOVA table for the model
with no distinctions between any of the labs on the West Coast is the last one in Table 12.6. The sum
of squares for the test is 1.86476− 1.09740= .76736. This is obtained from the last two ANOVA
tables in Table 12.6. A formal test takes the form

[SSE(C6)− SSE(C5)]/[dfE(C6)−dfE(C5)]
MSE(C2)

=
[1.86476−1.09740]/[24−23]

0.00603
=

0.76736
0.00603

= 127.26 .

In the denominator of the test we have incorporated our best practice of using the mean square
error from model C2, which is a more general model than either the reduced or full models being
compared, cf. Subsection 3.1.1.

We can make similar comparisons for the East Coast laboratories. Table 12.7 gives ANOVA
tables. The first table is for a model that incorporates no distinctions between the two labs in Boston,
i.e., uses column 7 as subscripts. To test for no differences, compare that model to model C2.

[SSE(C7)− SSE(C2)]/[dfE(C7)−dfE(C2)]
MSE(C2)

=
[0.49723−0.12663]/[22−21]

0.00603
=

0.3706
0.00603

= 61.46 .

There is clear evidence for a difference between the labs in Boston, so it makes little sense to
consider any models that incorporate μ6 = μ7, but, as we did for the West Coast labs, we carry on
to illustrate the process.

The second ANOVA table in Table 12.7 is for a model that incorporates no distinctions between
any of the labs on the East Coast (column 8). To test for no differences between any of the three,
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Table 12.7: East Coast.

Analysis of Variance: H0 : μ6 = μ7, C7
Source df SS MS F P
Groups, 6=7 5 1.89861 0.37972 16.80 0.000
Error 22 0.49723 0.02260
Total 27 2.39584

Analysis of Variance: H0 : μ5 = μ6 = μ7, C8
Source df SS MS F P
Groups, 5=6=7 4 1.80410 0.45102 17.53 0.000
Error 23 0.59174 0.02573
Total 27 2.39584

Table 12.8: West Coast versus East Coast.

Analysis of Variance: H0 : μ1 = μ2 = μ3 = μ4; μ5 = μ6 = μ7, C9
Source df SS MS F P
Groups, 1=2=3=4, 5=6=7 1 0.06597 0.06597 0.74 0.399
Error 26 2.32987 0.08961
Total 27 2.39584

compare the model to model C2.

[SSE(C8)− SSE(C2)]/[dfE(C8)−dfE(C2)]
MSE(C2)

=
[0.59174−0.12663]/[23−21]

0.00603
=

0.46511/2
0.00603

= 38.57.

In addition, one can test the full model that has no differences between labs in Boston but has
distinctions with New York against the model that has no distinctions between any of the three labs.
The test uses both ANOVAs in Table 12.7 and is

[SSE(C8)− SSE(C7)]/[dfE(C8)−dfE(C7)]
MSE(C2)

=
[0.59174−0.49723]/[23−22]

0.00603
=

0.09451
0.00603

= 15.67.

Once again we are using a denominator from model C2.
Table 12.8 contains an ANOVA table based on a model that includes only two treatments, one

for the West Coast and one for the east. The indices are in column 9 of Table 12.4. Table 12.8 also
illustrates the condition on the μis that is incorporated into model C2 to get the ANOVA table for
this reduced model, i.e., the ANOVA table F test with value Fobs = 0.74 examines whether there
is any difference between the West and East Coast labs, implicitly treating all labs on each coast
the same. However, this test is biased by the fact that there really are differences among the East
Coast labs and among the West Coast labs. A better test would use MSE(C2) in the denominator,
hence F = 0.06597/0.00603= 10.94 with 1 and 21 degrees of freedom, which provides a hugely
different result, but then neither test is easily interpretable since both are based on an assumption
that is pretty clearly false, i.e., that the means on each coast are all the same.

The methods illustrated in this section are useful regardless of whether the ANOVA is balanced
or unbalanced. Moreover, the methods can be easily extended to two-factor ANOVAs, higher-order
ANOVAs, and count data.

Altogether, we have looked primarily at six F tests to go along with our six degrees of freedom
for groups. To test H0 : μ1 = μ2 we compared model C3 to model C2. To test H0 : μ3 = μ4 we
compared models C4 and C2. To test H0 : μ6 = μ7 we compared models C7 and C2. To test H0 :
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μ1 = μ2 = μ3 = μ4 we assumed μ1 = μ2 and μ3 = μ4 and compared model C6 to model C5.
Normally, to test H0 : μ5 = μ6 = μ7, we would assume μ6 = μ7 and test model C8 against C7, but I
deviated from the traditional path and tested model C8 against model C2, a test that has two degrees
of freedom in the numerator, while all these others only have one. Finally, to test H0 : μ1 = μ2 =
μ3 = μ4; μ5 = μ6 = μ7 we assumed μ1 = μ2 = μ3 = μ4 and μ5 = μ6 = μ7 and compared model
C9 to the grand-mean model. The only other test we did was the somewhat redundant test of model
C5 versus C2, which was a simultaneous test of H0 : μ1 = μ2, μ3 = μ4 and also had two degrees of
freedom in the numerator.

12.4.3 Regression analysis

The key to performing analysis of variance as regression is creating indicator variables. For Man-
del’s data, we need seven indicator variables, one for each lab: x1,x2,x3,x4,x5,x6,x7. There is a very
simple relationship between the hierarchy of models we have considered in this section and these
indicator variables. Each ANOVA model defined by a column of Table 12.4, i.e.,

(12.4.1)
μ1 = μ2 μ3 = μ4 μ6 = μ7

μ1 = μ2; μ3 = μ4

μ1 = μ2 = μ3 = μ4 μ5 = μ6 = μ7

μ1 = μ2 = μ3 = μ4; μ5 = μ6 = μ7

μ1 = · · ·= μ7

has a corresponding model defined by adding together the indicators that correspond to any means
that have been set equal.

x1, . . . ,x7

x1 + x2,x3, . . . ,x7 x1,x2,x3 + x4,x5,x6,x7 x1, . . . ,x5,x6 + x7

x1 + x2,x3 + x4,x5,x6,x7

x1 + · · ·+ x4,x5,x6,x7 x1, . . . ,x4,x5 + x6 + x7

x1 + · · ·+ x4,x5 + x6 + x7

x1 + · · ·+ x7

In each case, we fit a regression through the origin (no intercept) using all of the variables indicated.

12.4.4 Relation to orthogonal contrasts

The maxim in unbalanced analyses is that if you change anything, you change everything. The
beauty of balanced analyses is that the maxim does not apply. A great many things remain invariant
to changes in balanced analyses.

Mandel’s data are balanced, with equal numbers of observations on each group and normally dis-
tributed data, so there is a beautiful analysis that can be made using orthogonal contrasts, cf. Chris-
tensen (1996, Chapter 7). It was long my intention to demonstrate how the hierarchical approach
displayed here relates to the balanced analysis. Everything that one would look at when exploiting
the balance of Mandel’s data also appears in our hierarchical analysis. But after writing the next
subsection, I have come to realize just how exceptional the balanced analysis is. It is so exceptional,
that I no longer think it is worth the effort to relate it to the unbalanced analysis that is our focus.
Christensen (1996) treats balanced analyses in great detail, so if you want to learn about them, you
could look there.

12.4.5 Theory: Difficulties in general unbalanced analyses

We have presented a reasonable model-based method for exploring group effects that would tradi-
tionally be explored by examining a series of contrasts in an unbalanced one-way ANOVA. To keep
the discussion as simple as possible, I have been hiding how complicated these issues can really
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be. Fortunately, we will see in Chapters 14 and 15 and later chapters that when examining real data
we can often find good-fitting models without subjecting ourselves to the pain suggested by the
remainder of this subsection.

When looking at unbalanced analyses, if you change anything, you change everything. In Sub-
section 12.1.3 we looked at inference for the parameter μ1 − (μ2 +μ3)/2, which has an estimate of
ȳ1·− (ȳ2·+ ȳ3·)/2. This uses the standard method for looking at contrasts, which is pretty much the
only one ever taught. This contrast is of primary interest when μ2 = μ3 because otherwise you are
comparing μ1 to an average that does not represent any particular group. What almost never gets
pointed out is that if you actually incorporate μ2 = μ3 for unbalanced data it changes the estimate
of the contrast. For the unbalanced suicide data, if we look at the same parameter μ1 − (μ2 +μ3)/2
after incorporating μ2 = μ3, the estimate changes to ȳ1·− (34ȳ2·+15ȳ3·)/(34+15). If you change
anything, you change everything.

If Mandel’s seven laboratories did not have any natural structure to them, we would compare
all of the pairs of labs to see which ones are different. But in complicated unbalanced models this
activity can be surprisingly difficult because the results can depend on the order in which you do
the comparisons. The number of pairwise comparisons of 7 labs is 21. The number of orders in
which you can choose to look at these 21 comparisons is huge, 5× 1019, and for unbalanced data
the results can depend on the order in which you choose to look at the pairwise comparisons. For
example, when we compare μ1 with μ2 we typically do not modify the estimates of these parameters
based on what we have previously decided about whether the two means equal μ3 or μ4 because it
is much simpler if we do not worry about such things. In more complicated models, we have to pick
some method that we think is reasonable and not worry about the fact that we cannot examine every
possible method for evaluating all the pairs. In a one-way ANOVA, the accepted process of testing
21 pairs of means is to look at each one of them as if they were the only thing being tested, which
is what we will do in the next chapter. The same device works pretty well in more general models.

Fortunately, we have a structure to the 7 groups in Mandel’s data that allows us to focus on just
6 comparisons rather than the 21 pairs of means. Nonetheless, for complicated models in which
results depend on the order in which we evaluate things, there could be 720 different orderings to
consider. For example, there are two obvious but different tests for μ1 = μ2. It can be tested by
comparing Model (12.4.1) to model C3 that only incorporates μ1 = μ2 but it can also be tested by
comparing model C4 that assumes μ3 = μ4 to model C5 with both μ1 = μ2 and μ3 = μ4. Other tests
could also be constructed for μ1 = μ2 that depend on other relationships among our six contrasts of
interest. For example, we could test a reduced model with μ1 = μ2 and μ5 = μ6 = μ7 against a model
with just μ5 = μ6 = μ7. In a one-way ANOVA, if we always use MSE(C2) in the denominator, the
tests will remain the same, but if we use different denominators or in more complicated models than
one-way ANOVA, the tests can differ; see Subsection 14.2.1

In complicated unbalanced models, these orderings typically lead to different tests, cf. Sec-
tion 14.2. The 720 orderings are far too many for us to evaluate them all. We need to pick some
reasonable method and not worry about the fact that we cannot examine every ordering. The hi-
erarchical approach displayed earlier provides one such method. Moreover, the exact results for
examining a hierarchy of complicated unbalanced models depend on the exact way in which we
have modeled other aspects of the problem that are not directly related to the hierarchy.

12.5 Polynomial regression and one-way ANOVA

We now exploit the relationships between polynomial regression and analysis of variance. In some
analysis of variance problems, the treatment groups are determined by quantitative levels of a factor.
For example, one might take observations on the depth of hole made by a drill press in a given
amount of time with 20, 30, or 40 pounds of downward thrust applied. The groups are determined
by the quantitative levels, 20, 30, and 40. In such a situation we could fit a one-way analysis of
variance with three groups, or we could fit a simple linear regression model. Simple linear regression
is appropriate because all the data come as pairs. The pairs are (xi,yi j), where xi is the numerical



12.5 POLYNOMIAL REGRESSION AND ONE-WAY ANOVA 305

Table 12.9: Axial stiffness index data.

Plate ASI Plate ASI Plate ASI Plate ASI Plate ASI
4 309.2 6 402.1 8 392.4 10 346.7 12 407.4
4 409.5 6 347.2 8 366.2 10 452.9 12 441.8
4 311.0 6 361.0 8 351.0 10 461.4 12 419.9
4 326.5 6 404.5 8 357.1 10 433.1 12 410.7
4 316.8 6 331.0 8 409.9 10 410.6 12 473.4
4 349.8 6 348.9 8 367.3 10 384.2 12 441.2
4 309.7 6 381.7 8 382.0 10 362.6 12 465.8

Table 12.10: ASI summary statistics.

Plate N ȳi· s2
i si

4 7 333.2143 1338.6981 36.59
6 7 368.0571 816.3629 28.57
8 7 375.1286 433.7990 20.83

10 7 407.3571 1981.1229 44.51
12 7 437.1714 675.8557 26.00

level of thrust and yi j is the depth of the hole on the jth trial with xi pounds of downward thrust. Not
only can we fit a simple linear regression, but we can fit polynomials to the data. In this example, we
could fit no polynomial above second-degree (quadratic), because three points determine a parabola
and we only have three distinct x values. If we ran the experiment with 20, 25, 30, 35, and 40 pounds
of thrust, we could fit at most a fourth-degree (quartic) polynomial because five points determine a
fourth-degree polynomial and we would only have five x values.

In general, some number a of distinct x values allows fitting of an a− 1 degree polynomial.
Moreover, fitting the a − 1 degree polynomial is equivalent to fitting the one-way ANOVA with
groups defined by the a different x values. However, as discussed in Section 8.2, fitting high-degree
polynomials is often a very questionable procedure. The problem is not with how the model fits
the observed data but with the suggestions that a high-degree polynomial makes about the behavior
of the process for x values other than those observed. In the example with 20, 25, 30, 35, and 40
pounds of thrust, the quartic polynomial will fit as well as the one-way ANOVA model but the quar-
tic polynomial may have to do some very weird things in the areas between the observed x values.
Of course, the ANOVA model gives no indications of behavior for x values other than those that
were observed. When performing regression, we usually like to have some smooth-fitting model
giving predictions that, in some sense, interpolate between the observed data points. High-degree
polynomials often fail to achieve this goal.

Much of the discussion that follows, other than observing the equivalence of fitting a one-way
ANOVA and an a− 1 degree polynomial, is simply a discussion of fitting a polynomial. It is very
similar to the discussion in Section 8.1 but with fewer possible values for the predictor variable x.
However, we will find the concept of replacing a categorical variable with a polynomial to be a very
useful one in higher-order ANOVA and in modeling count data.

EXAMPLE 12.5.1. Beineke and Suddarth (1979) and Devore (1991, p. 380) consider data on roof
supports involving trusses that use light-gauge metal connector plates. Their dependent variable is
an axial stiffness index (ASI) measured in kips per inch. The predictor variable is the length of the
light-gauge metal connector plates. The data are given in Table 12.9.

Viewed as regression data, we might think of fitting a simple linear regression model

yh = β0 +β1xh + εh,

h = 1, . . . ,35. Note that while h varies from 1 to 35, there are only five distinct values of xh that
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Figure 12.6: ASI data versus plate length.

occur in the data. The data could also be considered as an analysis of variance with plate lengths
being different groups and with seven observations on each treatment. Table 12.10 gives the usual
summary statistics for a one-way ANOVA. As an analysis of variance, we usually use two subscripts
to identify an observation: one to identify the group and one to identify the observation within the
group. The ANOVA model is often written

yi j = μi + εi j, (12.5.1)

where i = 1,2,3,4,5 and j = 1, . . . ,7. We can also rewrite the regression model using the two
subscripts i and j in place of h,

yi j = β0 +β1xi + εi j,

where i = 1,2,3,4,5 and j = 1, . . . ,7. Note that all of these models account for exactly 35 observa-
tions.

Figure 12.5 contains a scatter plot of the data. With multiple observations at each x value, the
regression is really only fitted to the mean of the y values at each x value. The means of the ys
are plotted against the x values in Figure 12.6. The overall trend of the data is easier to evaluate in
this plot than in the full scatter plot. We see an overall increasing trend that is very nearly linear
except for a slight anomaly with 6-inch plates. We need to establish if these visual effects are real
or just random variation, i.e., we would also like to establish whether the simple regression model
is appropriate for the trend that exists.

A more general model for trend is a polynomial. With only five distinct x values, we can fit at
most a quartic (fourth-degree) polynomial, say,

yi j = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi j. (12.5.2)

We would prefer a simpler model, something smaller than a quartic, i.e., a cubic, quadratic, or a
linear polynomial.

Table 12.11 contains ANOVA tables for fitting the linear, quadratic, cubic, and quartic polyno-
mial regressions and for fitting the one-way ANOVA model. From our earlier discussion, the F test
in the simple linear regression ANOVA table strongly suggests that there is an overall trend in the
data. From Figure 12.6 we see that this trend must be increasing, i.e., as lengths go up, by and large
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Figure 12.7: ASI means versus plate length.

the ASI readings go up. ANOVA tables for higher-degree polynomial models have been discussed in
Chapter 8 but for now the key point to recognize is that the ANOVA table for the quartic polynomial
is identical to the ANOVA table for the one-way analysis of variance. This occurs because models
(12.5.1) and (12.5.2) are equivalent, i.e. they have the same fitted values, residuals, SSE , dfE , and
MSE . Note however that the ANOVA model provides predictions (fitted values) only for the five
plate lengths in the data whereas the polynomial models provide predictions for any plate length,
although predictions that have dubious value when fitting high-order polynomials at lengths other
than those in the data.

The first question of interest is whether a quartic polynomial is needed or whether a cubic model
would be adequate. This is easily evaluated from the Table of Coefficients for the quartic fit that
follows. For computational reasons, the results reported are for a polynomial involving powers of
x− x̄· rather than powers of x, cf. Section 8.1. This has no effect on our subsequent discussion.

Table of Coefficients
Predictor β̂k SE(β̂k) t P
Constant 375.13 12.24 30.64 0.000
(x− x̄·) 8.768 5.816 1.51 0.142
(x− x̄·)2 3.983 4.795 0.83 0.413
(x− x̄·)3 0.2641 0.4033 0.65 0.517
(x− x̄·)4 −0.2096 0.2667 −0.79 0.438

There is little evidence (P = 0.438) that β4 �= 0, so a cubic polynomial seems to be an adequate
explanation of the data.

This Table of Coefficients is inappropriate for evaluating β3 in the cubic model (even the cubic
model based on x − x̄·). To evaluate β3, we need to fit the cubic model. If we then decide that
a parabola is an adequate model, evaluating β2 in the parabola requires one to fit the quadratic
model. In general, regression estimates are only valid for the model fitted. A new model requires
new estimates and standard errors.

If we fit the sequence of polynomial models: intercept-only, linear, quadratic, cubic, quartic, we
could look at testing whether the coefficient of the highest-order term is zero in each model’s Table
of Coefficients or we could compare the models by comparing SSEs. The latter is often more con-
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Table 12.11: Analysis of variance tables for ASI data.

Analysis of Variance: simple linear regression
Source df SS MS F P
Regression 1 42780 42780 43.19 0.000
Error 33 32687 991
Total 34 75468

Analysis of Variance: quadratic polynomial
Source df SS MS F P
Regression 2 42894 21447 21.07 0.000
Error 32 32573 1018
Total 34 75468

Analysis of Variance: cubic polynomial
Source df SS MS F P
Regression 3 43345 14448 13.94 0.000
Error 31 32123 1036
Total 34 75468

Analysis of Variance: quartic polynomial
Source df SS MS F P
Regression 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

Analysis of Variance: one-way ANOVA
Source df SS MS F P
Trts(plates) 4 43993 10998 10.48 0.000
Error 30 31475 1049
Total 34 75468

venient. The degrees of freedom and sums of squares for error for the four polynomial regression
models and the model with only an intercept β0 (grand mean) follow. The differences in sums of
squares error for adjacent models are also given as sequential sums of squares (Seq. SS), cf. Sec-
tion 9.4; the differences in degrees of freedom error are just 1.

Model comparisons
(Difference)

Model dfE SSE Seq. SS
Intercept 34 75468 —-
Linear 33 32687 42780
Quadratic 32 32573 114
Cubic 31 32123 450
Quartic 30 31475 648

Note that the dfE and SSE for the intercept model are those from the corrected Total lines in the
ANOVAs of Table 12.11. The dfEs and SSEs for the other models also come from Table 12.11. One
virtue of using this method is that many regression programs will report the Seq. SS when fitting
Model (12.5.2), so we need not fit all four polynomial models, cf. Subsection 8.1.1.

To test the quartic model against the cubic model we take

Fobs =
648/1

31475/30
= 0.62 = (−0.79)2.

This is just the square of the t statistic for testing β4 = 0 in the quartic model. The reference distri-
bution for the F statistic is F(1,30) and the P value is 0.438, as it was for the t test.
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If we decide that we do not need the quartic term, we can test whether we need the cubic term.
We can test the quadratic model against the cubic model with

Fobs =
450/1

32123/31
= 0.434.

The reference distribution is F(1,31). This test is equivalent to the t test of β3 = 0 in the cubic
model. The t test of β3 = 0 in the quartic model is inappropriate.

Our best practice is an alternative to this F test. The denominator of this test is 32123/31, the
mean squared error from the cubic model. If we accepted the cubic model only after testing the
quartic model, the result of the quartic test is open to question and thus using the MSE from the
cubic model to estimate of σ2 is open to question. It might be better just to use the estimate of σ2

from the quartic model, which is the mean squared error from the one-way ANOVA. If we do this,
the test statistic for the cubic term becomes

Fobs =
450/1

31475/30
= 0.429.

The reference distribution for the alternative test is F(1,30). In this example the two F tests give
essentially the same answers. This should, by definition, almost always be the case. If, for example,
one test were significant at 0.05 and the other were not, they are both likely to have P values near
0.05 and the fact that one is a bit larger than 0.05 and the other is a bit smaller than 0.05 should not
be a cause for concern. The only time these tests would be very different is if we performed them
when there was considerable evidence that β4 �= 0, something that would be silly to do.

As originally discussed in Subsection 3.1.1, when making a series of tests related to Model
(12.5.2), we recommend using its mean squared error, say MSE(2), as the denominator of all the
F statistics. We consider this preferable to actually fitting all four polynomial models and looking
at the Table of Coefficients t statistics for the highest-order term, because the tables of coefficients
from the four models will not all use MSE(2).

If we decide that neither the quartic nor the cubic terms are important, we can test whether we
need the quadratic term. Testing the quadratic model against the simple linear model gives

Fobs =
114/1

32573/32
= 0.112,

which is compared to an F(1,32) distribution. This test is equivalent to the t test of β2 = 0 in the
quadratic model. Again, we prefer the quadratic term test statistic

Fobs =
114/1

31475/30
= 0.109

with a reference distribution of F(1,30).
If we decide that we need none of the higher-order terms, we can test whether we need the linear

term. Testing the intercept model against the simple linear model gives

Fobs =
42780/1
32687/33

= 43.190.

This is just the test for zero slope in the simple linear regression model. Again, the preferred test for
the linear term has

Fobs =
42780/1
31475/30

= 40.775.

Table 12.12 contains an expanded analysis of variance table for the one-way ANOVA that in-
corporates the information from this sequence of comparisons.
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Table 12.12: Analysis of Variance: ASI data.

(Seq.)
Source df SS MS F P
Treatments 4 43993 10998 10.48 0.000
(linear) (1) (42780) (42780) (40.78)
(quadratic) (1) ( 114) ( 114) (0.11)
(cubic) (1) ( 450) ( 450) (0.43)
(quartic) (1) ( 648) ( 648) (0.62)
Error 30 31475 1049
Total 34 75468
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Figure 12.8: ASI SLR standardized residuals versus plate length.

From Table 12.12, the P value of 0.000 indicates strong evidence that the five groups are differ-
ent, i.e., there is strong evidence for the quartic polynomial helping to explain the data. The results
from the sequential terms are so clear that we did not bother to report P values for them. There is a
huge effect for the linear term. The other three F statistics are all much less than 1, so there is no
evidence of the need for a quartic, cubic, or quadratic polynomial. As far as we can tell, a line fits the
data just fine. For completeness, some residual plots are presented as Figures 12.7 through 12.12.
Note that the normal plot for the simple linear regression in Figure 12.8 is less than admirable, while
the normal plot for the one-way ANOVA in Figure 12.12 is only slightly better. It appears that one
should not put great faith in the normality assumption. �

12.5.1 Fisher’s lack-of-fit test

We now give a more extensive discussion of Fisher’s lack-of-fit test that was introduced in Sec-
tion 8.6.

Comparing one of the reduced polynomial models against the one-way ANOVA model is often
referred to as a test of lack of fit. This is especially true when the reduced model is the simple linear
regression model. In these tests, the degrees of freedom, sums of squares, and mean squares used
in the numerator of the tests are all described as being for lack of fit. The denominator of the test
is based on the error from the one-way ANOVA. The mean square, sum of squares, and degrees of
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Figure 12.9: ASI SLR standardized residuals normal plot, W ′ = 0.961.
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Figure 12.10: ASI ANOVA standardized residuals versus plate length.

freedom for error in the one-way ANOVA are often referred to as the mean square, sum of squares,
and degrees of freedom for pure error. This lack-of-fit test can be performed whenever the data
contain multiple observations at any x values. Often the appropriate unbalanced one-way ANOVA
includes groups with only one observation on them. These groups do not provide an estimate of σ2,
so they simply play no role in obtaining the mean square for pure error. In Section 8.6 the Hooker
data had only two x values with multiple observations and both groups only had two observations
in them. Thus, the n = 31 cases are divided into a = 29 groups but only four cases were involved in
finding the pure error.

For testing lack of fit in the simple linear regression model with the ASI data, the numerator
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Figure 12.11: ASI ANOVA standardized residuals versus predicted values.
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Figure 12.12: ASI ANOVA standardized residuals normal plot, W ′ = 0.965.

sum of squares can be obtained by differencing the sums of squares for error in the simple linear
regression model and the one-way ANOVA model. Here the sum of squares for lack of fit is 32687−
31475 = 1212 and the degrees of freedom for lack of fit are 33−30= 3. The mean square for lack
of fit is 1212/3 = 404. The pure error comes from the one-way ANOVA table. The lack-of-fit test
F statistic for the simple linear regression model is

Fobs =
404

1049
= 0.39
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which is less than 1, so there is no evidence of a lack of fit in the simple linear regression model. If
an α = 0.05 test were desired, the test statistic would be compared to F(0.95,3,30).

A similar lack-of-fit test is available for any of the reduced polynomial models relative to the
one-way ANOVA model.

12.5.2 More on R2

Consider a balanced one-way ANOVA,

yi j = μi + εi j, E(εi j) = 0, Var(εi j) = σ2,

i = 1, . . . ,a, j = 1, . . . ,N, wherein all observations are independent and group i is associated with a
scalar xi. Now consider the simple linear regression model

yi j = β0 +β1xi + εi j (12.5.3)

and the model obtained by averaging within groups

ȳi· = β0 +β1xi + ε̄i·. (12.5.4)

The two regression models give the same least squares estimates and predictions.
Exercise 12.7.17 is to show that R2 is always at least as large for Model (12.5.4) as for Model

(12.5.3) by showing that for Model (12.5.3),

R2 =
[N ∑a

i=1(xi − x̄·)(ȳi·− ȳ··)]
2

[N ∑a
i=1(xi − x̄·)2]

[
N ∑a

i=1(ȳi·− ȳ··)2 +∑i j(yi j − ȳi·)2
] (12.5.5)

and for Model (12.5.4),

R2 =
[∑a

i=1(xi − x̄·)(ȳi·− ȳ··)]
2

[∑a
i=1(xi − x̄·)2] [∑a

i=1(ȳi·− ȳ··)2]
.

The two regressions are equivalent in terms of finding a good model but it is easier to predict
averages than individual observations because averages have less variability. R2 for a model depends
both on how good the model is relative to a perfect prediction model and how much variability there
is in y when using a perfect model. Remember, perfect models can have low R2 when there is much
variability and demonstrably wrong models can have high R2 when the variability of a perfect model
is small, but the wrong model captures the more important features of a perfect model in relating x
to y.

Discussing R2 in the context of one-way ANOVA is useful because the one-way ANOVA pro-
vides a perfect model for predicting y based on x, whereas the simple linear regression model may
or may not be a perfect model. For a given value of SSTot = ∑i j(yi j − ȳ··)2, the size of R2 for the
one-way ANOVA depends only on the within-group variability, that is, the variability of y in the
perfect model. The size of R2 for the simple linear regression depends on both the variability of y in
the perfect model as well as how well the simple linear regression model approximates the perfect
model. The term ∑i j(yi j − ȳi·)2 in the denominator of (12.5.5) is the sum of squares error from the
one-way ANOVA, so it is large precisely when the variability in the perfect model is large. (The
one-way ANOVA’s MSE is an estimate of the variance from a perfect prediction model.) Averaging
observations within a group makes the variability of a perfect model smaller, i.e., the variance is
smaller in

ȳi· = μi + ε̄i·, E(ε̄i·) = 0, Var(ε̄i·) = σ2/N,

so the R2 of Model (12.5.4) is larger because, while the component of R2 due to approximating the
perfect model remains the same, the component due to variability in the perfect model is reduced.
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12.6 Weighted least squares

In general, weighted regression is a method for dealing with observations that have nonconstant
variances and nonzero correlations. In this section, we deal with the simplest form of weighted
regression in which we assume zero correlations between observations. Weighted regression has
some interesting connections to fitting polynomials to one-way ANOVA data that we will examine
here, and it has connections to analyzing the count data considered later.

Our standard regression model from Chapter 11 has

Y = Xβ + e, E(e) = 0, Cov(e) = σ2I.

We now consider a model for data that do not all have the same variance. In this model, we assume
that the relative sizes of the variances are known but that the variances themselves are unknown.
In this simplest form of weighted regression, we have a covariance structure that changes from
Cov(e) = σ2I to Cov(e) = σ2D(w)−1. Here D(w) is a diagonal matrix with known weights w =
(w1, . . . ,wn)

′ along the diagonal. The covariance matrix involves D(w)−1, which is just a diagonal
matrix having diagonal entries that are 1/w1, . . . ,1/wn. The variance of an observation yi is σ2/wi.
If wi is large relative to the other weights, the relative variance of yi is small, so it contains more
information than other observations and we should place more weight on it. Conversely, if wi is
relatively small, the variance of yi is large, so it contains little information and we should place little
weight on it. For all cases, wi is a measure of how much relative weight should be placed on case i.
Note that the weights are relative, so we could multiply or divide them all by a constant and obtain
essentially the same analysis. Obviously, in standard regression the weights are all taken to be 1.

In matrix form, our new model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ2D(w)−1. (12.6.1)

In this model all the observations are uncorrelated because the covariance matrix is diagonal. We
do not know the variance of any observation because σ2 is unknown. However, we do know the
relative sizes of the variances because we know the weights wi. It should be noted that when Model
(12.6.1) is used to make predictions, it is necessary to specify weights for any future observations.

Before giving a general discussion of weighted regression models, we examine some examples
of their application. A natural application of weighted regression is to data for a one-way analysis
of variance with groups that are quantitative levels of some factor. With a quantitative factor, we can
perform either a one-way ANOVA or a regression on the data. However, if for some reason the full
data are not available, we can still obtain an appropriate simple linear regression by performing a
weighted regression analysis on the treatment means. The next examples explore the relationships
between regression on the full data and weighted regression on the treatment means.

In the weighted regression, the weights turn out to be the treatment group sample sizes from
the ANOVA. In a standard unbalanced ANOVA yi j = μi + εi j, i = 1, . . . ,a, j = 1, . . . ,Ni, the sample
means have Var(ȳi·) = σ2/Ni. Thus, if we perform a regression on the means, the observations
have different variances. In particular, from our earlier discussion of variances and weights, it is
appropriate to take the sample sizes as the weights, i.e., wi = Ni.

EXAMPLE 12.6.1. In Section 12.5 we considered the axial stiffness data of Table 12.9. A simple
linear regression on the full data gives the following:

Table of Coefficients: SLR
Predictor β̂k SE(β̂k) t P
Constant 285.30 15.96 17.88 0.000
x (plates) 12.361 1.881 6.57 0.000

The analysis of variance table for the simple linear regression is given below. The usual error
line would have 33 degrees of freedom but, as per Subsection 12.5.1, we have broken this into two
components, one for lack of fit and one for pure error.
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Analysis of Variance: SLR
Source df SS MS
Regression 1 42780 42780
Lack of fit 3 1212 404
Pure error 30 31475 1049
Total 34 75468

In Section 12.5 we presented group summary statistics, ȳi· and s2
i , for the four plate lengths. The

mean squared pure error is just the pooled estimate of the variance and the sample sizes and sample
means are given below.

Plate 4 6 8 10 12
N 7 7 7 7 7
ȳi· 333.2143 368.0571 375.1286 407.3571 437.1714

As mentioned in Section 12.5, one can get the same estimated line by just fitting a simple linear
regression to the means. For an unbalanced ANOVA, getting the correct regression line from the
means requires a weighted regression. In this balanced case, if we use a weighted regression we get
not only the same fitted line but also some interesting relationships in the ANOVA tables. Below
are given the Table of Coefficients and the ANOVA table for the weighted regression on the means.
The weights are the sample sizes for each mean.

Table of Coefficients: Weighted SLR
Predictor β̂k SE(β̂k) t P
Constant 285.30 10.19 27.99 0.000
x (plates) 12.361 1.201 10.29 0.002

Analysis of Variance: Weighted SLR
Source df SS MS F P
Regression 1 42780 42780 105.88 0.002
Error 3 1212 404
Total 4 43993

The estimated regression coefficients are identical to those given in Section 12.5. The standard errors
and thus the other entries in the table of coefficients differ. In the ANOVA tables, the regression
lines agree while the error line from the weighted regression is identical to the lack-of-fit line in
the ANOVA table for the full data. In the weighted regression, all standard errors use the lack of fit
as an estimate of the variance. In the regression on the full data, the standard errors use a variance
estimate obtained from pooling the lack of fit and the pure error. The ultimate point is that by using
weighted regression on the summarized data, we can still get most relevant summary statistics for
simple linear regression. Of course, this assumes that the simple linear regression model is correct,
and unfortunately the weighted regression does not allow us to test for lack of fit.

If we had taken all the weights to be one, i.e., if we had performed a standard regression on the
means, the parameter estimate table would be the same but the ANOVA table would not display the
identities discussed above. The sums of squares would all have been off by a factor of 7. �

Unbalanced weights

We now examine an unbalanced one-way ANOVA and again compare a simple linear regression
including identification of pure error and lack of fit to a weighted regression on sample means.

EXAMPLE 12.6.2. Consider the data of Exercise 6.11.1 and Table 6.8. These involve ages of
truck tractors and the costs of maintaining the tractors. A simple linear regression on the full data
yields the tables given below.
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Table of Coefficients: SLR
Predictor β̂k SE(β̂k) t P
Constant 323.6 146.9 2.20 0.044
Age 131.72 35.61 3.70 0.002

Analysis of Variance: SLR
Source df SS MS
Regression 1 1099635 1099635
Lack of fit 5 520655 104131
Pure error 10 684752 68475
Total 16 2305042

The weighted regression analysis is based on the sample means and sample sizes given below.
The means serve as the y variable, the ages are the x variable, and the sample sizes are the weights.

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Ni 2 3 3 3 3 1 2
ȳi· 172.5 664.3 633.0 900.3 1202.0 987.0 1068.5

The Table of Coefficients and ANOVA table for the weighted regression are

Table of Coefficients: Weighted SLR
Predictor β̂k SE(β̂k) t P
Constant 323.6 167.3 1.93 0.111
Age 131.72 40.53 3.25 0.023

and
Analysis of Variance: Weighted SLR

Source df SS MS F P
Regression 1 1099635 1099635 10.56 0.023
Error 5 520655 104131
Total 6 1620290

Note that, as in the previous example, the regression estimates agree with those from the full data,
that the regression sum of squares from the ANOVA table agrees with the full data, and that the lack
of fit line from the full data ANOVA agrees with the error line from the weighted regression. For an
unbalanced ANOVA, you cannot obtain a correct simple linear regression analysis from the group
means without using weighted regression. �

12.6.1 Theory

The analysis of the weighted regression model (12.6.1) is based on changing it into a standard
regression model. The trick is to create a new diagonal matrix that has entries

√
wi. In a minor

abuse of notation, we write this matrix as D(
√

w). We now multiply Model (12.6.1) by this matrix
to obtain

D(
√

w)Y = D(
√

w)Xβ +D(
√

w)e. (12.6.2)

It is not difficult to see that

E
(
D(

√
w)e
)
= D(

√
w)E(e) = D(

√
w)0 = 0

and
Cov
(
D(

√
w)e
)
= D(

√
w)Cov(e)D(

√
w)′ = D(

√
w)
[
σ2D(w)−1]D(

√
w) = σ2I.

Thus Equation (12.6.2) defines a standard regression model. For example, by Proposition 11.3.1,
the least squares regression estimates from Model (12.6.2) are

β̂ =
(
[D(

√
w)X ]′[D(

√
w)X ]
)−1

[D(
√

w)X ]′[D(
√

w)Y ]

= (X ′D(w)X)−1X ′D(w)Y.
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Table 12.13: Rubber stress at five laboratories.

Sample Sample Sample
Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

The estimate of β given above is referred to as a weighted least squares estimate because rather than
minimizing [Y −Xβ ]′ [Y −Xβ ], the estimates are obtained by minimizing

[
D(

√
w)Y −D(

√
w)Xβ

]′ [
D(

√
w)Y −D(

√
w)Xβ

]
= [Y −Xβ ]′ D(w) [Y −Xβ ] .

Thus the original minimization problem has been changed into a similar minimization problem that
incorporates the weights. The sum of squares for error from Model (12.6.2) is

SSE =
[
D(

√
w)Y −D(

√
w)X β̂

]′ [
D(

√
w)Y −D(

√
w)X β̂

]
=
[
Y −X β̂

]′
D(w)

[
Y −X β̂

]
.

The dfE are unchanged from a standard model and MSE is simply SSE divided by dfE . Standard
errors are found in much the same manner as usual except now

Cov
(

β̂
)
= σ2(X ′D(w)X)−1.

Because the D(w) matrix is diagonal, it is very simple to modify a computer program for stan-
dard regression to allow the analysis of models like (12.6.1). Of course, to make a prediction, a
weight must now be specified for the new observation. Essentially the same idea of rewriting Model
(12.6.1) as the standard regression model (12.6.2) works even when D(w) is not a diagonal matrix,
cf. Christensen (2011, Sections 2.7 and 2.8).

12.7 Exercises

EXERCISE 12.7.1. In addition to the data in Table 12.4, Mandel (1972) reported stress test data
from five additional laboratories. Summary statistics are given in Table 12.13. Based on just these
five additional labs, compute the analysis of variance table and test for differences in means between
all pairs of labs. Use α = .01. Is there any reason to worry about the assumptions of the analysis of
variance model?

EXERCISE 12.7.2. Snedecor and Cochran (1967, Section 6.18) presented data obtained in 1942
from South Dakota on the relationship between the size of farms (in acres) and the number of acres
planted in corn. Summary statistics are presented in Table 12.14. Note that the sample standard
deviations rather than the sample variances are given. In addition, the pooled standard deviation is
0.4526.

(a) Give the one-way analysis of variance model with all of its assumptions. Can any problems with
the assumptions be identified?

(b) Give the analysis of variance table for these data. Test whether there are any differences in corn
acreages due to the different sized farms. Use α = 0.01.

(c) Test for differences between all pairs of farm sizes using α = 0.01 tests.

(d) Find the sum of squares for the contrast defined by the following coefficients:
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Table 12.14: Acreage in corn for different sized farms.

Farm Sample Sample Sample
acres size mean std. dev.

80 5 2.9957 0.4333
160 5 3.6282 0.4056
240 5 4.1149 0.4169
320 5 4.0904 0.4688
400 5 4.4030 0.5277

Table 12.15: Weights (in pounds) for various heights (in inches).

Sample Sample Sample
Height size mean variance

63 3 121.66̄ 158.333̄
65 4 131.25 72.913̄
66 2 142.50 112.500
72 3 171.66̄ 158.333̄

Farm 80 160 240 320 400
Coeff. −2 −1 0 1 2

What percentage is this of the treatment sum of squares?

(e) Give 95% confidence and prediction intervals for the number of acres in corn for each farm size.

EXERCISE 12.7.3. Table 12.15 gives summary statistics on heights and weights of people. Give
the analysis of variance table and test for differences among the four groups. Give a 99% confidence
interval for the mean weight of people in the 72-inch height group.

EXERCISE 12.7.4. In addition to the data discussed earlier, Mandel (1972) reported data from
one laboratory on four different types of rubber. Four observations were taken on each type of
rubber. The means are given below.

Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600

The sample variance of the 16 observations is 14.730793. Compute the analysis of variance table,
the overall F test, and test for differences between each pair of rubber types. Use α = .05.

EXERCISE 12.7.5. In Exercise 12.7.4 on the stress of four types of rubber, the observations on
material B were 22.96, 22.93, 22.49, and 35.71. Redo the analysis, eliminating the outlier. The
sample variance of the 15 remaining observations is 9.3052838.

EXERCISE 12.7.6. Bethea et al. (1985) reported data on an experiment to determine the effec-
tiveness of four adhesive systems for bonding insulation to a chamber. The data are a measure of the
peel-strength of the adhesives and are presented in Table 12.16. A disturbing aspect of these data is
that the values for adhesive system 3 are reported with an extra digit.

(a) Compute the sample means and variances for each group. Give the one-way analysis of variance
model with all of its assumptions. Are there problems with the assumptions? If so, does an
analysis on the square roots or logs of the data reduce these problems?

(b) Give the analysis of variance table for these (possibly transformed) data. Test whether there are
any differences in adhesive systems. Use α = 0.01.
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Table 12.16: Peel-strength of various adhesive systems.

Adhesive
system Observations

1 60 63 57 53 56 57
2 57 52 55 59 56 54
3 19.8 19.5 19.7 21.6 21.1 19.3
4 52 53 44 48 48 53

Table 12.17: Weight gains of rats.

Thyroxin Thiouracil Control
132 68 68 107 115
84 63 52 90 117

133 80 80 91 133
118 63 61 91 115
87 89 69 112 95
88

119

(c) Test for differences between all pairs of adhesive systems using α = 0.01 tests.

(d) Find the sums of squares i) for comparing system 1 with system 4 and ii) for comparing system
2 with system 3.

(e) Assuming that systems 1 and 4 have the same means and that systems 2 and 3 have the same
means, perform a 0.01 level F test for whether the peel-strength of systems 1 and 4 differs from
the peel-strength of systems 2 and 3.

(f) Give a 99% confidence interval for the mean of every adhesive system.

(g) Give a 99% prediction interval for every adhesive system.

(h) Give a 95% confidence interval for the difference between systems 1 and 2.

EXERCISE 12.7.7. Table 12.17 contains weight gains of rats from Box (1950). The rats were
given either Thyroxin or Thiouracil or were in a control group. Do a complete analysis of variance
on the data. Give the model, check assumptions, make residual plots, give the ANOVA table, and
examine appropriate relationships among the means.

EXERCISE 12.7.8. Aitchison and Dunsmore (1975) presented data on Cushing’s syndrome.
Cushing’s syndrome is a condition in which the adrenal cortex overproduces cortisol. Patients are
divided into one of three groups based on the cause of the syndrome: a—adenoma, b— bilateral
hyperplasia, and c—carcinoma. The data are amounts of tetrahydrocortisone in the urine of the
patients. The data are given in Table 12.18. Give a complete analysis.

EXERCISE 12.7.9. Draper and Smith (1966, p. 41) considered data on the relationship between

Table 12.18: Tetrahydrocortisone values for patients with Cushing’s syndrome.

a b c
3.1 8.3 15.4 10.2
3.0 3.8 7.7 9.2
1.9 3.9 6.5 9.6
3.8 7.8 5.7 53.8
4.1 9.1 13.6 15.8
1.9
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Table 12.19: Age and costs of maintenance for truck tractors.

Age Costs
0.5 163 182
1.0 978 466 549
4.0 495 723 681
4.5 619 1049 1033
5.0 890 1522 1194
5.5 987
6.0 764 1373

the age of truck tractors (in years) and the cost (in dollars) of maintaining them over a six-month
period. The data are given in Table 12.19.

Note that there is only one observation at 5.5 years of age. This group does not yield an estimate
of the variance and can be ignored for the purpose of computing the mean squared error. In the
weighted average of variance estimates, the variance of this group is undefined but the variance gets
0 weight, so there is no problem.

Give the analysis of variance table for these data. Does cost differ with age? Is there a significant
difference between the cost at 0.5 years as opposed to 1.0 year? Determine whether there are any
differences between costs at 4, 4.5, 5, 5.5, and 6 years. Are there differences between the first two
ages and the last five? How well do polynomials fit the data?

EXERCISE 12.7.10. Lehmann (1975), citing Heyl (1930) and Brownlee (1960), considered data
on determining the gravitational constant of three elements: gold, platinum, and glass. The data
Lehmann gives are the third and fourth decimal places in five determinations of the gravitational
constant. Analyze the following data.

Gold Platinum Glass
83 61 78
81 61 71
76 67 75
79 67 72
76 64 74

EXERCISE 12.7.11. Shewhart (1939, p. 69) also presented the gravitational constant data of Heyl
(1930) that was considered in the previous problem, but Shewhart reports six observations for gold
instead of five. Shewhart’s data are given below. Analyze these data and compare your results to
those of the previous exercise.

Gold Platinum Glass
83 61 78
81 61 71
76 67 75
79 67 72
78 64 74
72

EXERCISE 12.7.12. Recall that if Z ∼ N(0,1) and W ∼ χ2(r) with Z and W independent, then
by Definition 2.1.3, Z

/√
W/r has a t(r) distribution. Also recall that in a one-way ANOVA with

independent normal errors, a contrast has

a

∑
i=1

λiȳi· ∼ N

(
a

∑
i=1

λiμi,σ2
a

∑
i=1

λ 2
i

Ni

)
,
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SSE
σ2 ∼ χ2(dfE),

and MSE independent of all the ȳi·s. Show that

∑a
i=1 λiȳi·−∑a

i=1 λiμi√
MSE ∑a

i=1 λ 2
i /Ni

∼ t(dfE).

EXERCISE 12.7.13. Suppose a one-way ANOVA involves four diet treatments: Control, Beef A,
Beef B, Pork, and Beans. As in Subsection 12.4.1, construct a reasonable hierarchy of models to
examine that involves five rows and no semicolons.

EXERCISE 12.7.14. Suppose a one-way ANOVA involves four diet treatments: Control, Beef,
Pork, Lima Beans, and Soy Beans. As in Subsection 12.4.1, construct a reasonable hierarchy of
models that involves four rows, one of which involves a semicolon.

EXERCISE 12.7.15. Conover (1971, p. 326) presented data on the amount of iron found in the
livers of white rats. Fifty rats were randomly divided into five groups of ten and each group was
given a different diet. We analyze the logs of the original data. The total sample variance of the 50
observations is 0.521767 and the means for each diet are given below.

Diet A B C D E
Mean 1.6517 0.87413 0.89390 0.40557 0.025882

Compute the analysis of variance table and test whether there are differences due to diet.
If diets A and B emphasize beef and pork, respectively, diet C emphasizes poultry, and diets D

and E are based on dried beans and oats, the following contrasts may be of interest.

Diet
Contrast A B C D E
Beef vs. pork 1 −1 0 0 0
Mammals vs. poultry 1 1 −2 0 0
Beans vs. oats 0 0 0 1 −1
Animal vs. vegetable 2 2 2 −3 −3

Compute sums of squares for each contrast. Construct a hierarchy of models based on the diet labels
and figure out how to test them using weighted least squares and the mean squared error for pure
error that you found to construct the ANOVA table. What conclusions can you draw about the data?

EXERCISE 12.7.16. Prove formulas (12.5.3) and (12.5.4).





Chapter 13

Multiple Comparison Methods

As illustrated in Chapter 12, the most useful information from a one-way ANOVA is obtained
through examining contrasts. That can be done either by estimating contrasts and performing tests
and confidence intervals or by incorporating contrasts directly into reduced models. The first tech-
nique is convenient for one-way ANOVA and also for balanced multifactor ANOVA but it is difficult
to apply to unbalanced multifactor ANOVA or to models for count data. In the latter cases, modeling
contrasts is easier. In either case, the trick is in picking interesting contrasts to consider. Interesting
contrasts are determined by the structure of the groups or are suggested by the data.

The structure of the groups often suggests contrasts that are of interest. We introduced this idea
in Section 12.4. For example, if one of the groups is a standard group or a control, it is of interest to
compare all of the other groups to the standard. With a groups, this leads to a− 1 contrasts. Later
we will consider factorial group structures. These include situations such as four fertilizer groups,
say,

n0 p0 n0 p1 n1 p0 n1 p1

where n0 p0 is no fertilizer, n0 p1 consists of no nitrogen fertilizer but application of a phosphorous
fertilizer, n1 p0 consists of a nitrogen fertilizer but no phosphorous fertilizer, and n1 p1 indicates both
types of fertilizer. Again the group structure suggests contrasts to examine. One interesting contrast
compares the two groups having nitrogen fertilizer against the two without nitrogen fertilizer, an-
other compares the two groups having phosphorous fertilizer against the two without phosphorous
fertilizer, and a third contrast compares the effect of nitrogen fertilizer when phosphorous is not
applied with the effect of nitrogen fertilizer when phosphorous is applied. Again, we have a groups
and a− 1 contrasts. Even when there is an apparent lack of structure in the groups, the very lack
of structure suggests a set of contrasts. If there is no apparent structure, the obvious thing to do is
compare all of the groups with all of the other groups. With three groups, there are three distinct
pairs of groups to compare. With four groups, there are six distinct pairs of groups to compare. With
five groups, there are ten pairs. With seven groups, there are 21 pairs. With 13 groups, there are 78
pairs.

One problem is that, with a moderate number of groups, there are many contrasts to examine.
When we do tests or confidence intervals, there is a built-in chance for error. The more statistical
inferences we perform, the more likely we are to commit an error. The purpose of the multiple
comparison methods examined in this chapter is to control the probability of making a specific
type of error. When testing many contrasts, we have many null hypotheses. This chapter considers
multiple comparison methods that control (i.e., limit) the probability of making an error in any
of the tests, when all of the null hypotheses are correct. Limiting this probability is referred to as
weak control of the experimentwise error rate. It is referred to as weak control because the control
only applies under the very stringent assumption that all null hypotheses are correct. Some authors
consider a different approach and define strong control of the experimentwise error rate as control
of the probability of falsely rejecting any null hypothesis. Thus strong control limits the probability
of false rejections even when some of the null hypotheses are false. Not everybody distinguishes
between weak and strong control, so the definition of experimentwise error rate depends on whose
work you are reading. One argument against weak control of the experimentwise error rate is that in
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designed experiments, you choose groups that you expect to have different effects. In such cases, it
makes little sense to concentrate on controlling the error under the assumption that all groups have
the same effect. On the other hand, strong control is more difficult to establish.

Our discussion of multiple comparisons focuses on testing whether contrasts are equal to 0. In
all but one of the methods considered in this chapter, the experimentwise error rate is (weakly)
controlled by first doing a test of the hypothesis μ1 = μ2 = · · · = μa. If this test is not rejected, we
do not claim that any individual contrast is different from 0. In particular, if μ1 = μ2 = · · ·= μa, any
contrast among the means must equal 0, so all of the null hypotheses are correct. Since the error rate
for the test of μ1 = μ2 = · · ·= μa is controlled, the weak experimentwise error rate for the contrasts
is also controlled.

Many multiple testing procedures can be adjusted to provide multiple confidence intervals that
have a guaranteed simultaneous coverage. Several such methods will be presented in this chapter.

Besides the group structure suggesting contrasts, the other source of interesting contrasts is
having the data suggest them. If the data suggest a contrast, then the ‘parameter’ in our standard
theory for statistical inferences is a function of the data and not a parameter in the usual sense of
the word. When the data suggest the parameter, the standard theory for inferences does not apply.
To handle such situations we can often include the contrasts suggested by the data in a broader
class of contrasts and develop a procedure that applies to all contrasts in the class. In such cases
we can ignore the fact that the data suggested particular contrasts of interest because these are still
contrasts in the class and the method applies for all contrasts in the class. Of the methods considered
in the current chapter, only Scheffé’s method (discussed in Section 13.3) is generally considered
appropriate for this kind of data dredging.

A number of books have been published on multiple comparison methods, e.g., Hsu (1996),
Hochberg and Tamhane (1987). A classic discussion is Miller (1981), who also focuses on weak
control of the experimentwise error rate, cf. Miller’s Section 1.2.

We present multiple comparison methods in the context of the one-way ANOVA model (12.2.1)
but the methods extend to many other situations. We will use Mandel’s (1972) data from Sec-
tion 12.4 to illustrate the methods.

13.1 “Fisher’s” least significant difference method

The easiest way to adjust for multiple comparisons is to use the least significant difference method.
To put it as simply as possible, with this method you first look at the analysis of variance F test for
whether there are differences between the groups. If this test provides no evidence of differences,
you quit and go home. If the test is significant at, say, the α = 0.05 level, you just ignore the multiple
comparison problem and do all other tests in the usual way at the 0.05 level. This method is generally
considered inappropriate for use with contrasts suggested by the data. While the theoretical basis
for excluding contrasts suggested by the data is not clear (at least relative to weak control of the
experimentwise error rate), experience indicates that the method rejects far too many individual null
hypotheses if this exclusion is not applied. In addition, many people would not apply the method
unless the number of comparisons to be made was quite small.

EXAMPLE 13.1.1. For Mandel’s laboratory data, Subsection 12.4.2 discussed six F tests to go
along with our six degrees of freedom for groups. To test H0 : μ1 = μ2 we compared model C3
to model C2. To test H0 : μ3 = μ4 we compared models C4 and C2. To test H0 : μ6 = μ7 we
compared models C7 and C2. To test H0 : μ1 = μ2 = μ3 = μ4, we assumed μ1 = μ2 and μ3 = μ4 and
compared model C6 to model C5. Normally, to test H0 : μ5 = μ6 = μ7, we would assume μ6 = μ7

and test model C8 against C7. Finally, to test H0 : μ1 = μ2 = μ3 = μ4 = μ5 = μ6 = μ7 we assumed
μ1 = μ2 = μ3 = μ4 and μ5 = μ6 = μ7 and compared model C9 to the grand-mean model.

Under the least significant difference method with α = 0.05, first check that the P value in
Table 12.5 is no greater than 0.05, and, if it is, perform the six tests in the usual way at the 0.05
level. In Subsection 12.4.2 we did not test model C8 against C7, we tested model C8 against C2,
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and we also performed a test of model C4 against C2. These changes in what were tested cause no
change in procedure. However, if the P value in Table 12.5 is greater than 0.05, you simply do not
perform any of the other tests. �

The name “least significant difference” comes from comparing pairs of means in a balanced
ANOVA. With N observations in each group, there is a number, the least significant difference
(LSD), such that the difference between two means must be greater than the LSD for the corre-
sponding groups to be considered significantly different. Generally, we have a significant difference
between μi and μ j if

|ȳi·− ȳ j·|√
MSE

[
1
N + 1

N

] > t
(

1− α
2
,dfE
)
.

Multiplying both sides by the standard error leads to rejection if

|ȳi·− ȳ j·|> t
(

1− α
2
,dfE
)√

MSE

[
1
N
+

1
N

]
.

The number on the right is defined as the least significant difference,

LSD ≡ t
(

1− α
2
,dfE
)√

MSE
2
N
.

Note that the LSD depends on the choice of α but does not depend on which means are being
examined. If the absolute difference between two sample means is greater than the LSD, the popu-
lation means are declared significantly different. Recall, however, that these comparisons are never
attempted unless the analysis of variance F test is rejected at the α level. The reason that a single
number exists for comparing all pairs of means is that in a balanced ANOVA the standard error is
the same for any comparison between a pair of means.

EXAMPLE 13.1.1 CONTINUED. For Mandel’s laboratory data, the analysis of variance F test is
highly significant, so we can proceed to make individual comparisons among pairs of means. With
α = 0.05,

LSD = t(0.975,39)

√
0.00421

[
1
4
+

1
4

]
= 2.023(0.0459) = 0.093.

Means that are greater than 0.093 apart are significantly different. Means that are less than 0.093
apart are not significantly different. We display the results visually. Order the sample means from
smallest to largest and indicate groups of means that are not significantly different by underlining
the group. Such a display follows for comparing laboratories 1 through 7.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

Laboratories 4 and 7 are distinct from all other laboratories. All the other consecutive pairs of labs
are insignificantly different. Thus labs 5 and 6 cannot be distinguished. Similarly, labs 6 and 3
cannot be distinguished, 3 and 2 cannot be distinguished, and labs 2 and 1 cannot be distinguished.
However, lab 5 is significantly different from labs 3, 2, and 1. Lab 6 is significantly different from
labs 2 and 1. Also, lab 3 is different from lab 1.

An alternative display is often used by computer programs.
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Lab. Mean
4 4.0964 A
7 4.2871 B
5 4.6906 C
6 4.7175 C D
3 4.7919 E D
2 4.8612 E F
1 4.9031 F

Displays such as these may not be possible when dealing with unbalanced data. What makes
them possible is that, with balanced data, the standard error is the same for comparing every pair of
means. To illustrate their impossibility, we modify the log suicide sample means while leaving their
standard errors alone. Suppose that the means are

Sample statistics: log of suicide ages
modified data

Group Ni ȳi·
Caucasians 44 3.6521
Hispanics 34 3.3521
Native Am. 15 3.3321

(The fact that all three sample means have the same last two digits are a clue that the data are made
up.) Now if we test whether all pairs of differences are zero, at α = 0.01 the critical value is 2.632.

Table of Coefficients
Par Est SE(Est) tobs

μC − μH 0.3000 0.0936 3.21
μC − μN 0.3200 0.1225 2.61
μH − μN 0.0200 0.1270 0.16

The Anglo mean is farther from the Native American mean than it is from the Hispanic mean, but
the Anglos and Hispanics are significantly different whereas the Anglos and the Native Americans
are not. �

Apparently some people have taken to calling this method the Fisher significant difference
(FSD) method. One suspects that this is a reaction to another meaning commonly associated with
the letters LSD. I, for one, would never suggest that only people who are hallucinating would believe
all differences declared by LSD are real.

The least significant difference method has traditionally been ascribed to R. A. Fisher and is
often called “Fisher’s least significant difference method.” However, from my own reading of Fisher,
I am unconvinced that he either suggested the method or would have approved of it.

13.2 Bonferroni adjustments

The Bonferroni method is the one method we consider that does not stem from a test of μ1 = μ2 =
· · ·= μa. Rather, it controls the experimentwise error rate by employing a simple adjustment to the
significance level of each individual test. If you have planned to do s tests, you just perform each test
at the α/s level rather than at the α level. This method is absolutely not appropriate for contrasts
that are suggested by the data.

The justification for Bonferroni’s method relies on a very simple result from probability: for two
events, the probability that one or the other event occurs is no more than the sum of the probabilities
for the individual events. Thus with two tests, say A and B, the probability that we reject A or reject B
is less than or equal to the probability of rejecting A plus the probability of rejecting B. In particular,
if we fix the probability of rejecting A at α/2 and the probability of rejecting B at α/2, then the
probability of rejecting A or B is no more than α/2+α/2 = α . More generally, if we have s tests
and control the probability of type I error for each test at α/s, then the probability of rejecting any
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of the tests when all s null hypotheses are true is no more than α/s+ · · ·+α/s=α . This is precisely
what we did in Subsection 7.2.2 to deal with testing multiple standardized deleted (t) residuals.

EXAMPLE 13.2.1. For Mandel’s laboratory data, using the structure exploited in Section 12.4,
we had six F tests to go along with our six degrees of freedom for groups. To test H0 : μ1 = μ2 we
compared model C3 to model C2. To test H0 : μ3 = μ4 we compared models C4 and C2. To test
H0 : μ6 = μ7 we compared models C7 and C2. To test H0 : μ1 = μ2 = μ3 = μ4, we assumed μ1 = μ2

and μ3 = μ4 and compared model C6 to model C5. Normally, to test H0 : μ5 = μ6 = μ7, we would
assume μ6 = μ7 and test model C8 against C7. Finally, to test H0 : μ1 = μ2 = μ3 = μ4 = μ5 =
μ6 = μ7 we assumed μ1 = μ2 = μ3 = μ4 and μ5 = μ6 = μ7 and compared model C9 to the grand-
mean model. Under the Bonferroni method with α = 0.05 and six tests to perform, you simply
perform each one at the α/6 = 0.05/6 = 0.0083 level. Personally, with six tests, I would instead
pick α = 0.06 so that α/6 = 0.06/6 = 0.01. Rather than these six tests, in Subsection 12.4.2 we
actually performed seven tests, so for an α = 0.05 Bonferroni procedure we need to perform each
one at the α/7 = 0.05/7 = 0.0071 level. Again, I would personally just raise the Bonferroni level
to 0.07 and do all the tests at the 0.01 level. If I had nine tests, I would not raise the Bonferroni level
all the way to 0.09, but I might lower it to 0.045 so that I could do the individual tests at the 0.005
level. �

To compare pairs of means in a balanced ANOVA, as with the least significant difference
method, there is a single number to which we can compare the differences in means. For a fixed
α , this number is called the Bonferroni significant difference and takes on the value

BSD ≡ t
(

1− α
2s

,dfE
)√

MSE

[
1
N
+

1
N

]
.

Recall, for comparison, that with the least significant difference method, the necessary tabled value
is t(1−α/2,dfE), which is always smaller than the tabled value used in the BSD. Thus the BSD is
always larger than the LSD and the BSD tends to display fewer differences among the means than
the LSD.

Bonferroni adjustments can also be used to obtain confidence intervals that have a simultaneous
confidence of (1−α)100% for covering all of the contrasts. The endpoints of these intervals are

a

∑
i=1

λiȳi·± t
(

1− α
2s

,dfE
)

SE

(
a

∑
i=1

λiȳi·

)
.

Recall that for an unbalanced ANOVA,

SE

(
a

∑
i=1

λiȳi·

)
=

√
MSE

a

∑
i=1

λ 2
i

Ni
.

Only the t distribution value distinguishes this interval from a standard confidence interval for
∑a

i=1 λiμi. In the special case of comparing pairs of means in a balanced ANOVA, the Bonferroni
confidence interval for, say, μi − μ j reduces to

(ȳi·− ȳ j·)±BSD.

For these intervals, we are (1−α)100% confident that the collection of all such intervals simulta-
neously contain all of the corresponding differences between pairs of population means.

EXAMPLE 13.2.1. In comparing Mandel’s 7 laboratories, we have
(7

2

)
= 21 pairs of laboratories
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to contrast. The Bonferroni significant difference for α = 0.05 is

BSD = t

(
1− 0.025

21
,39

)√
0.00421

[
1
4
+

1
4

]

= t(0.99881,39)0.04588= 3.2499(0.04588)= 0.149 .

Means that are greater than 0.149 apart are significantly different. Means that are less than 0.149
apart are not significantly different. Once again, we display the results visually. We order the sample
means from smallest to largest and indicate groups of means that are not significantly different by
underlining the group.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

Laboratories 4 and 7 are distinct from all other laboratories. Labs 5, 6, and 3 cannot be distinguished.
Similarly, labs 6, 3, and 2 cannot be distinguished; however, lab 5 is significantly different from lab
2 and also lab 1. Labs 3, 2, and 1 cannot be distinguished, but lab 1 is significantly different from
lab 6. Remember there is no assurance that such a display can be constructed for unbalanced data.

The Bonferroni simultaneous 95% confidence interval for, say, μ2 − μ5 has endpoints

(4.8612−4.6906)±0.149,

which gives the interval (0.021,0.320). Transforming back to the original scale from the logarithmic
scale, we are 95% confident that the median for lab 2 is being between e0.021 = 1.02 and e0.320 =
1.38 times greater than the median for lab 5. Similar conclusions are drawn for the other twenty
comparisons between pairs of means. �

13.3 Scheffé’s method

Scheffé’s method is very general. Suppose we have some hierarchy of models that includes a biggest
model (Big.), some full model (Full), a reduced model (Red.), and a smallest model (Sml.). In most
hierarchies of models, there are many choices for Full and Red. but Big. and Sml. are fixed. Scheffé’s
method can be used to perform tests on a fixed set of choices for Full and Red., or on all possible
choices for Full and Red., or on a few choices determined by the data.

In Chapter 3, we introduced model testing for a full and reduced model using the F statistic

F =
[SSE(Red.)−SSE(Full)]/[dfE(Red.)−dfE(Full)]

MSE(Full)

with reference distribution F(dfE(Red.)− dfE(Full),dfE(Full)). As we got into hierarchies of
models, we preferred the statistic

F =
[SSE(Red.)−SSE(Full)]/[dfE(Red.)−dfE(Full)]

MSE(Big.)

with reference distribution F(dfE(Red.)−dfE(Full),dfE(Big.)). Scheffé’s method requires a fur-
ther modification of the test statistic.

If the smallest model is true, then all of the other models are also true. The experimentwise error
rate is the probability of rejecting any reduced model Red. (relative to a full model Full) when model
Sml. is true. Scheffé’s method allows us to compare any and all full and reduced models, those we
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even pick by looking at the data, and controls the experimentwise error rate at α by rejecting the
reduced model only when

F =
[SSE(Red.)− SSE(Full)]/[dfE(Sml.)−dfE(Big.)]

MSE(Big.)

> F(1−α,dfE(Sml.)−dfE(Big.),dfE(Big.).

To justify this procedure, note that the test of the smallest model versus the biggest model rejects
when

F =
[SSE(Sml.)− SSE(Big.)]/[dfE(Sml.)−dfE(Big.)]

MSE(Big.)

> F(1−α,dfE(Sml.)−dfE(Big.),dfE(Big.)

and when the smallest model is true, this has only an α chance of occurring. Because

SSE(Sml.)≥ SSE(Red.)≥ SSE(Full)≥ SSE(Big.),

we have
[SSE(Sml.)−SSE(Big.)]≥ [SSE(Red.)−SSE(Full)]

and

[SSE(Sml.)− SSE(Big.)]/[dfE(Sml.)−dfE(Big.)]
MSE(Big.)

≥ [SSE(Red.)−SSE(Full)]/[dfE(Sml.)−dfE(Big.)]
MSE(Big.)

.

It follows that you cannot reject Red. relative to Full unless you have already rejected Big. relative
to Sml., and rejecting Big. relative to Sml. occurs only with probability α when Sml. is true. In
other words, there is no more than an α chance of rejecting any of the reduced models when they
are true.

Scheffé’s method is valid for examining any and all contrasts simultaneously. This method is
primarily used with contrasts that were suggested by the data. Scheffé’s method should not be used
for comparing pairs of means in a balanced ANOVA because the HSD method presented in the next
section has properties comparable to Scheffé’s but is better for comparing pairs of means.

In one-way ANOVA, the analysis of variance F test is rejected when

SSGrps/(a−1)
MSE

> F(1−α,a−1,dfE). (13.3.1)

It turns out that for any contrast ∑i λiμi,

SS

(
∑

i
λiμi

)
≤ SSGrps. (13.3.2)

It follows immediately that

SS (∑i λiμi)/(a−1)
MSE

≤ SSGrps/(a−1)
MSE

.

Scheffé’s method is to replace SSGrps in (13.3.1) with SS (∑i λiμi) and to reject H0 : ∑i λiμi = 0 if

SS (∑i λiμi)/(a−1)
MSE

> F(1−α,a−1,dfE).
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From (13.3.1) and (13.3.2), Scheffé’s test cannot possibly be rejected unless the ANOVA test is
rejected. This controls the experimentwise error rate for multiple tests. Moreover, there always
exists a contrast that contains all of the SSGrps, i.e., there is always a contrast that achieves equality
in relation (13.3.2), so if the ANOVA test is rejected, there is always some contrast that can be
rejected using Scheffé’s method. This contrast may not be interesting but it exists.

Scheffé’s method can be adapted to provide simultaneous (1−α)100% confidence intervals for
contrasts. These have the endpoints

a

∑
i=1

λiȳi·±
√
(a−1)F(1−α,a−1,dfE) SE

(
a

∑
i=1

λiȳi·

)
.

13.4 Studentized range methods

Studentized range methods are generally used only for comparing pairs of means in balanced anal-
ysis of variance problems. (This includes the balanced multifactor ANOVAs to be discussed later.)
They are not based on the analysis of variance F test but on an alternative test of μ1 = μ2 = · · ·= μa.
The method is not really appropriate for unbalanced data, but it is so common that we discuss it any-
way.

The range of a random sample is the difference between the largest observation and the smallest
observation. For a known variance σ2, the range of a random sample from a normal population has a
distribution that can be worked out. This distribution depends on σ2 and the number of observations
in the sample. It is only reasonable that the distribution depend on the number of observations
because the difference between the largest and smallest observations ought to be larger in a sample
of 75 observations than in a sample of 3 observations. Just by chance, we would expect the extreme
observations to become more extreme in larger samples.

Knowing the distribution of the range is not very useful because the distribution depends on σ2,
which we do not know. To eliminate this problem, divide the range by an independent estimate of
the standard deviation, say, σ̂ having rσ̂2/σ2 ∼ χ2(r). The distribution of such a studentized range
no longer depends on σ2 but rather it depends on the degrees of freedom for the variance estimate.
For a sample of n observations and a variance estimate with r degrees of freedom, the distribution
of the studentized range is written as

Q(n,r).

Tables are given in Appendix B.5. The α percentile is denoted Q(α,n,r).
If μ1 = μ2 = · · · = μa in a balanced ANOVA, the ȳi·s form a random sample of size a from a

N(μ1,σ2/N) population. Looking at the range of this sample and dividing by the natural indepen-
dent chi-squared estimate of the standard deviation leads to the statistic

Q =
max ȳi·−min ȳi·√

MSE/N
.

If the observed value of this studentized range statistic Q is consistent with its coming from a
Q(a,dfE) distribution, then the data are consistent with the null hypothesis of equal means μi. If the
μis are not all equal, the studentized range Q tends to be larger than if the means were all equal; the
difference between the largest and smallest observations will involve not only random variation but
also the differences in the μis. Thus, for an α = 0.05 level test, if the observed value of Q is larger
than Q(0.95,a,dfE), we reject the claim that the means are all equal.

In applying these methods to a higher-order ANOVA, the key ideas are to compare a set of
sample means using the MSE appropriate to the model and taking N as the number of observations
that go into each mean.

The studentized range multiple comparison methods discussed in this section begin with this
studentized range test.
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13.4.1 Tukey’s honest significant difference

John Tukey’s honest significant difference method is to reject the equality of a pair of means, say,
μi and μ j at the α = 0.05 level, if

|ȳi·− ȳ j·|√
MSE/N

> Q(0.95,a,dfE).

Obviously, this test cannot be rejected for any pair of means unless the test based on the maximum
and minimum sample means is also rejected. For an equivalent way of performing the test, reject
equality of μi and μ j if

|ȳi·− ȳ j·|> Q(0.95,a,dfE)
√

MSE/N.

With a fixed α , the honest significant difference is

HSD ≡ Q(1−α,a,dfE)
√

MSE
/

N.

For any pair of sample means with an absolute difference greater than the HSD, we conclude that the
corresponding population means are significantly different. The HSD is the number that an observed
difference must be greater than in order for the population means to have an ‘honestly’ significant
difference. The use of the word ‘honest’ is a reflection of the view that the LSD method allows ‘too
many’ rejections.

Tukey’s method can be extended to provide simultaneous (1−α)100% confidence intervals for
all differences between pairs of means. The interval for the difference μi − μ j has end points

ȳi·− ȳ j·±HSD

where HSD depends on α . For α = 0.05, we are 95% confident that the collection of all such
intervals simultaneously contains all of the corresponding differences between pairs of population
means.

EXAMPLE 13.4.1. For comparing the 7 laboratories in Mandel’s data with α = 0.05, the honest
significant difference is approximately

HSD = Q(0.95,7,40)
√

MSE/4 = 4.39
√

0.00421/4= 0.142.

Here we have used Q(0.95,7,40) rather than the correct value Q(0.95,7,39) because the correct
value was not available in the table used. Group means that are more than 0.142 apart are signif-
icantly different. Means that are less than 0.142 apart are not significantly different. Note that the
HSD value is similar in size to the corresponding BSD value of 0.149; this frequently occurs. Once
again, we display the results visually.

Lab. 4 7 5 6 3 2 1
Mean 4.0964 4.2871 4.6906 4.7175 4.7919 4.8612 4.9031

These results are nearly the same as for the BSD except that labs 6 and 2 are significantly different
by the HSD criterion. Many Statistics packages will either perform Tukey’s procedure or allow you
to find Q(1−α,a,dfE).

The HSD simultaneous 95% confidence interval for, say, μ2 − μ5 has endpoints

(4.8612−4.6906)±0.142,

which gives the interval (0.029, 0.313). Transforming back to the original scale from the logarithmic
scale, we are 95% confident that the median for lab 2 is between e0.029 = 1.03 and e0.313 = 1.37 times
greater than the median for lab 5. Again, there are 20 more intervals to examine. �

The Newman–Keuls multiple range method involves repeated use of the honest significant dif-
ference method with some minor adjustments; see Christensen (1996) for an example.
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Table 13.1: Rubber stress at five laboratories.

Sample Sample Sample
Lab. size mean variance
1 4 57.00 32.00
2 4 67.50 46.33
3 4 40.25 14.25
4 4 56.50 5.66
5 4 52.50 6.33

13.5 Summary of multiple comparison procedures

The least significant difference, the Bonferroni, and the Scheffé methods can be used for arbitrary
sets of preplanned hypotheses. They are listed in order from least conservative (most likely to reject
an individual null hypothesis) to most conservative (least likely to reject). Scheffé’s method can also
be used for examining contrasts suggested by the data. Bonferroni’s method has the advantage that
it can easily be applied to almost any multiple testing problem.

To compare all of the groups in a balanced analysis of variance, we can use the least signif-
icant difference, the Bonferroni, and the Tukey methods. Again, these are (roughly) listed in the
order from least conservative to most conservative. In some cases, for example when comparing
Bonferroni and Tukey, an exact statement of which is more conservative is not possible.

To decide on a method, you need to decide on how conservative you want to be. If it is very
important not to claim differences when there are none, you should be very conservative. If it is
most important to identify differences that may exist, then you should choose less conservative
methods.

Many methods other than those discussed have been proposed for balanced ANOVA models.
Some of those are discussed in Christensen (1996, Chapter 6).

Note that methods for balanced ANOVA models are much better developed than for unbalanced
models, so with our emphasis on unbalanced models, our discussion is relatively short. Also, multi-
ple comparison methods seem to be closely tied to Neyman–Pearson theory, something I sought to
avoid. Fisher used similar adjustments, but apparently for different philosophical reasons, cf. Fisher
(1935, Section 24).

13.6 Exercises

EXERCISE 13.6.1. Exercise 12.7.1 involved measurements from different laboratories on the
stress at 600% elongation for a certain type of rubber. The summary statistics are repeated in Ta-
ble 13.1. Ignoring any reservations you may have about the appropriateness of the analysis of vari-
ance model for these data, compare all pairs of laboratories using α = 0.10 for the LSD, Bonferroni,
Tukey, and Newman–Keuls methods. Give joint 95% confidence intervals using Tukey’s method for
all differences between pairs of labs.

EXERCISE 13.6.2. Use Scheffé’s method with α = 0.01 to test whether the contrast in Exer-
cise 12.7.2d is zero.

EXERCISE 13.6.3. Use Bonferroni’s method with an α near 0.01 to give simultaneous confidence
intervals for the mean weight in each height group for Exercise 12.7.3.

EXERCISE 13.6.4. Exercise 12.7.4 contained data on stress measurements for four different types
of rubber. Four observations were taken on each type of rubber; the means are repeated below,
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Material A B C D
Mean 26.4425 26.0225 23.5325 29.9600

and the sample variance of the 16 observations is 14.730793. Test for differences between all pairs
of materials using α = 0.05 for the LSD, Bonferroni, and Tukey methods. Give 95% confidence
intervals for the differences between all pairs of materials using the BSD method.

EXERCISE 13.6.5. In Exercise 12.7.5 on the stress of four types of rubber, an outlier was noted
in material B. Redo the multiple comparisons of the previous problem eliminating the outlier and
using only the methods that are still applicable.

EXERCISE 13.6.6. In Exercise 12.7.6 on the peel-strength of different adhesive systems, parts
(b) and (c) amount to doing LSD multiple comparisons for all pairs of systems. Compare the LSD
results with the results obtained using Tukey’s methods with α = .01.

EXERCISE 13.6.7. For the weight gain data of Exercise 12.7.7, use the LSD, Bonferroni, and
Scheffé methods to test whether the following contrasts are zero: 1) the contrast that compares the
two drugs and 2) the contrast that compares the control with the average of the two drugs. Pick an
α level but clearly state the level chosen.

EXERCISE 13.6.8. For the Cushing’s syndrome data of Exercise 12.7.8, use all appropriate meth-
ods to compare all pairwise differences among the three groups. Pick an α level but clearly state the
level chosen.

EXERCISE 13.6.9. Use Scheffé’s method with α = 0.05 and the data of Exercise 12.7.9 to test
the significance of the contrast

Age 0.5 1.0 4.0 4.5 5.0 5.5 6.0
Coeff. −5 −5 2 2 2 2 2

EXERCISE 13.6.10. Restate the least significant difference method in terms of testing Biggest,
Full, Reduced, and Smallest models.





Chapter 14

Two-Way ANOVA

This chapter involves many model comparisons, so, for simplicity within a given section, say 14.2,
equation numbers such as (14.2.1) that redundantly specify the section number are referred to in the
text without the section number, hence simply as (1). When referring to an equation number outside
the current section, the full equation number is given.

14.1 Unbalanced two-way analysis of variance

Bailey (1953), Scheffé (1959), and Christensen (2011) examined data on infant female rats that were
given to foster mothers for nursing. The variable of interest was the weight of the rat at 28 days.
Weights were measured in grams. Rats are classified into four genotypes: A, F, I, and J. Specifically,
rats from litters of each genotype were given to a foster mother of each genotype. The data are
presented in Table 14.1.

Table 14.1: Infant rats weight gain with foster mothers.

Genotype of Genotype of Foster Mother
Litter A F I J

A 61.5 55.0 52.5 42.0
68.2 42.0 61.8 54.0
64.0 60.2 49.5 61.0
65.0 52.7 48.2
59.7 39.6

F 60.3 50.8 56.5 51.3
51.7 64.7 59.0 40.5
49.3 61.7 47.2
48.0 64.0 53.0

62.0

I 37.0 56.3 39.7 50.0
36.3 69.8 46.0 43.8
68.0 67.0 61.3 54.5

55.3
55.7

J 59.0 59.5 45.2 44.8
57.4 52.8 57.0 51.5
54.0 56.0 61.4 53.0
47.0 42.0

54.0

335
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14.1.1 Initial analysis

One way to view these data is as a one-way ANOVA with 4×4 = 16 groups. Specifically,

yhk = μh + εhk,

with h= 1, . . . ,16, k = 1, . . . ,Nh. It is convenient to replace the subscript h with the pair of subscripts
(i, j) and write

yi jk = μi j + εi jk, (14.1.1)

εi jks independent N(0,σ2),

where i = 1, . . . ,4 indicates the litter genotype and j = 1, . . . ,4 indicates the foster mother geno-
type so that, together, i and j identify the 16 groups. The index k = 1, . . . ,Ni j indicates the various
observations in each group.

Equivalently, we can write an overparameterized version of Model (1) called the interaction
model,

yi jk = μ +αi +η j + γi j + εi jk. (14.1.2)

The idea is that μ is an overall effect (grand mean) to which we add αi, an effect for the ith litter
genotype, plus η j, an effect for the j foster mother genotype, plus an effect γi j for each combination
of a litter genotype and foster mother genotype. Comparing the interaction model (2) with the one-
way ANOVA model (1), we see that the γi js in (2) play the same role as the μi js in (1), making
all of the μ , αi and η j parameters completely redundant. There are 16 groups so we only need 16
parameters to explain the group means and there are 16 γi js. In particular, all of the μ , αi and η j

parameters could be 0 and the interaction model would explain the data exactly as well as Model
(1). In fact, we could set these parameters to be any numbers at all and still have a free γi j parameter
to explain each group mean. It is equally true that any data features that the μ , αi and η j parameters
could explain could already be explained by the γi js.

So why bother with the interaction model? Simply because dropping the γi js out of the model
gives us a much simpler, more interpretable no-interaction model

yi jk = μ +αi +η j + εi jk, εi js independent N(0,σ2) (14.1.3)

in which we have structured the effects of the litter and foster mother genotypes so that each adds
some fixed amount to our observations. Model (3) is actually a special case of the general additive-
effects model (9.9.2), which did not specify whether predictors were categorical or measurement
variables. In Model (3), the population mean difference between litter genotypes A and F must be
the same, regardless of the foster mother genotype, i.e.,

(μ +α1 +η j)− (μ +α2 +η j) = α1 −α2.

Similarly, the difference between foster mother genotypes F and J must be the same regardless of
the litter genotype, i.e.,

(μ +αi +η2)− (μ +αi +η4) = η2 −η4.

Model (3) has additive effects for the two factors: litter genotype and foster mother genotype. The
effect for either factor is consistent across the other factor. This property is also referred to as the
absence of interaction or as the absence of effect modification. Model (3) requires that the effect
of any foster mother genotype be the same for every litter genotype, and also that the effect of any
litter genotype be the same for every foster mother genotype. Without this property, one could not
meaningfully speak about the effect of a litter genotype, because it would change from foster mother
genotype to foster mother genotype. Similarly, foster mother genotype effects would depend on the
litter genotypes.

Model (2) imposes no such restrictions on the factor effects. Model (2) would happily allow the
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Table 14.2: Statistics from fitting models to the data of Table 14.1.

Model Model SSE df Cp

(14.1.2): G+L+M+LM [LM] 2440.82 45 16.0
(14.1.3): G+L+M [L][M] 3264.89 54 13.2
(14.1.4): G+L [L] 4039.97 57 21.5
(14.1.5): G+M [M] 3328.52 57 8.4
(14.1.6): G [G] 4100.13 60 16.6

foster mother genotype that has the highest weight gains for litter type A to be also the foster mother
genotype that corresponds to the smallest weight gains for Litter J, a dramatic interaction. Model
(2) does not require that the effect of a foster mother genotype be consistent for every litter type or
that the effect of a litter genotype be consistent for every foster mother genotype. If the effect of a
litter genotype can change depending on the foster mother genotype, the model is said to display
effect modification or interaction.

The γi js in Model (2) are somewhat erroneously called interaction effects. Although they can
explain much more than interaction, eliminating the γi js in Model (2) eliminates any interaction.
(Whereas eliminating the equivalent μi j effects in Model (1) eliminates far more than just interac-
tion; it leads to a model in which every group has mean 0.)

The test for whether interaction exists is simply the test of the full, interaction, model (2) against
the reduced, no-interaction, model (3). Remember that Model (2) is equivalent to the one-way
ANOVA model (1), so models (1) and (2) have the same fitted values ŷi jk and residuals ε̂i jk and
dfE(1) = dfE(2). The analysis for models like (1) was given in Chapter 12. While it may not be
obvious that Model (3) is a reduced model relative to Model (1), Model (3) is obviously a reduced
model relative to the interaction model (2). Computationally, the fitting of Model (3) is much more
complicated than fitting a one-way ANOVA.

If Model (3) does not fit the data, there is often little one can do except go back to analyzing
Model (1) using the one-way ANOVA techniques of Chapters 12 and 13. In later chapters, depending
on the nature of the factors, we will explore ways to model interaction by looking at models that are
intermediate between (2) and (3).

Table 14.2 contains results for fitting models (2) and (3) along with results for fitting other
models to be discussed anon. In our example, a test of whether Model (3) is an adequate substitute
for Model (2) rejects Model (3) if

F =
[SSE(3)−SSE(2)]

/
[dfE(3)−dfE(2)]

SSE(2)
/

dfE(2)

is too large. The F statistic is compared to an F(dfE(3)−dfE(2),dfE(2)) distribution. Specifically,
we get

Fobs =
[3264.89−2440.82]/[54−45]

2440.82/45
=

91.56
54.24

= 1.69,

with a one-sided P value of 0.129, i.e., 1.69 is the 0.871 percentile of an F(9,45) distribution
denoted 1.69 = F(.871,9,45).

If Model (3) fits the data adequately, we can explore further to see if even simpler models
adequately explain the data. Using Model (3) as a working model, we might be interested in whether
there are really any effects due to Litters, or any effects due to Mothers. Remember that in the
interaction model (2), it makes little sense even to talk about a Litter effect or a Mother effect
without specifying a particular level for the other factor, so this discussion requires that Model (3)
be reasonable.

The effect of Mothers can be measured in two ways. First, by comparing the no-interaction
model (3) with a model that eliminates the effect for Mothers

yi jk = μ +αi + εi jk. (14.1.4)
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This model comparison assumes that there is an effect for Litters because the αis are included in
both models. Using Table 14.2, the corresponding F statistic is

Fobs =
[4039.97−3264.89]/[57−54]

3264.89/54
=

258.36
60.46

= 4.27,

with a one-sided P value of 0.009, i.e., 4.27 = F(.991,3,54). There is substantial evidence for
differences in Mothers after accounting for any differences due to Litters. We constructed this
F statistic in the usual way for comparing the reduced model (4) to the full model (3) but when
examining a number of models that are all smaller than a largest model, in this case Model (2), our
preferred practice is to use the MSE from the largest model in the denominator of all the F statistics,
thus we compute

Fobs =
[4039.97−3264.89]/[57−54]

2440.82/45
=

258.36
54.24

= 4.76

and compare the result to an F(3,45) distribution.
An alternative test for Mother effects assumes that there are no Litter effects and bases our

evaluation of Mother effects on comparing the model with Mother effects but no Litter effects,

yi jk = μ +η j + εi jk (14.1.5)

to the model that contains no group effects at all,

yi jk = μ + εi jk. (14.1.6)

In this case, using Table 14.2 gives the appropriate F as

Fobs =
[4100.13−3328.52]/[57−54]

2440.82/45
=

257.20
54.24

= 4.74,

so there is substantial evidence for differences in Mothers when ignoring any differences due to
Litters. The two F statistics for Mothers, 4.74 and 4.76, are very similar in this example, but the
difference is real; it is not round-off error. Special cases exist where the two F statistics will be
identical, cf. Christensen (2011, Chapter 7).

Similarly, the effect of Litters can be measured by comparing the no-interaction model (3) with
Model (5) that eliminates the effect for Litters. Here Mothers are included in both the full and
reduced models, because the η js are included in both models. Additionally, we could assume that
there are no Mother effects and base our evaluation of Litter effects on comparing Model (4) with
Model (6). Using Table 14.2, both of the corresponding F statistics turn out very small, below 0.4,
so there is no evidence of a Mother effect whether accounting for or ignoring effects due to Litters.

In summary, both of the tests for Mothers show Mother effects and neither test for Litters shows
Litter effects, so the one-way ANOVA model (5), the model with Mother effects but no Litter effects,
seems to be the best-fitting model. Of course the analysis is not finished by identifying Model
(5). Having identified that the Mother effects are the interesting ones, we should explore how the
four foster mother groups behave. Which genotype gives the largest weight gains? Which gives
the smallest? Which genotypes are significantly different? If you accept Model (5) as a working
model, all of these issues can be addressed as in any other one-way ANOVA. However, it would be
good practice to use MSE(2) when constructing any standard errors, in which case the t(dfE(2))
distribution must be used. Moreover, we have done nothing yet to check our assumptions. We should
have checked assumptions on Model (2) before doing any tests. Diagnostics will be considered in
Subsection 14.1.4.

All of the models considered have their SSE , dfE , and Cp statistic (cf. Subsection 10.2.3) re-
ported in Table 14.2. Tests of various models constitute the traditional form of analysis. These tests
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are further summarized in the next subsection. But all of this testing seems like a lot of work to
identify a model that the Cp statistic immediately identifies as the best model. Table 14.2 also in-
corporates some shorthand notations for the models. First, we replace the Greek letters with Roman
letters that remind us of the effects being fitted, i.e., G for the grand mean, L for Litter effects, M
for Mother effects, and LM for interaction effects. Model (2) is thus rewritten as

yi jk = G+Li +Mj +(LM)i j + εi jk.

A second form of specifying models eliminates any group of parameters that is completely redun-
dant and assumes that distinct terms in square brackets are added together. Thus, Model (2) is [LM]
because it requires only the (LM)i j terms and Model (3) is written [L][M] because in Model (3) the
G (μ) term is redundant and the L (α) and M (η) terms are added together. Model (3) is the most
difficult to fit of the models in Table 14.2. Model (6) is a one-sample model, and models (1)=(2),
(4), and (5) are all one-way ANOVA models. When dealing with Model (3), you have to be able
to coax a computer program into giving you all the results that you want and need. With the other
models, you could easily get what you need from a hand calculator.

14.1.2 Hierarchy of models

All together we fitted a hierarchy of models that we can display from the largest model to the
smallest as

[LM]

[L][M]

[L] [M]

[G]

or, in terms of numbered models,

(1) = (2)

(3)

(4) (5)

(6).

Models (4) and (5) are not directly comparable, but both are reductions of (3) and both contain (6)
as a special case. Any model in a row of this hierarchy can be tested as a full model relative to
any (reduced) model in a lower row or tested as a reduced model relative to any (full) model in a
higher row. However, we typically modify our testing procedure so that in the denominator of the F
statistic we always use MSE(2), the MSE from the model at the top of the hierarchy, i.e., the MSE
from the largest model being considered. In other words,

F =
[SSE(Full)−SSE(Red.)]

/
[dfE(Full)−dfE(Red.)]

SSE(2)
/

dfE(2)

and is compared to an F(dfE(Full)−dfE(Red.),dfE(2)) distribution.
With this hierarchy of models, there are only two sequences of models that go from the smallest

model to the largest model. We can fit the sequence (6), (5), (3), (2) or fit the sequence (6), (4), (3),
(2). Table 14.3 provides results from doing model comparisons in both of the two sequential fitting
schemes. The first ANOVA table results from fitting the sequence of models (6), (5), (3), (2). The
second ANOVA results from fitting (6), (4), (3), (2). Together, they provide all of the tests that we
performed in Subsection 14.1.1. The first ANOVA table looks at Mothers (ignoring Litters), Litters
(after Mothers), and interaction, while the second looks at Litters (ignoring Mothers), Mothers (after
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Table 14.3: Analyses of variance for rat weight gains.

Source df Seq SS MS F P
Mothers 3 771.61 257.20 4.74 0.006
Litters 3 63.63 21.21 0.39 0.761
Mothers∗Litters 9 824.07 91.56 1.69 0.120
Error 45 2440.82 54.24
Total 60 4100.13

Source df Seq SS MS F P
Litters 3 60.16 20.05 0.37 0.776
Mothers 3 775.08 258.36 4.76 0.006
Litters∗Mothers 9 824.07 91.56 1.69 0.120
Error 45 2440.82 54.24
Total 60 4100.13

Litters), and interaction. In the first ANOVA table, Mothers are fitted to the data before Litters. In
the second table, Litters are fitted before Mothers.

Although models are fitted from smallest to largest and, in ANOVA tables, results are reported
from smallest model to largest, a sequence of models is evaluated from largest model to smallest.
Thus, we begin the analysis of Table 14.3 at the bottom, looking for interaction. The rows for
Mother∗Litter interaction are identical in both tables. The sum of squares and degrees of freedom
for Mother∗Litter interaction in the table is obtained by differencing the error sums of squares and
degrees of freedom for models (3) and (2). If the interaction is significant, there is little point in
looking at the rest of the ANOVA table. One can either analyze the data as a one-way ANOVA or, as
will be discussed in later chapters, try to model the interaction by developing models intermediate
between models (2) and (3), cf. Subsection 15.3.2.

Our interaction F statistic is quite small, so there is little evidence of interaction and we proceed
with an analysis of Model (3). In particular, we now examine the main effects. Table 14.3 shows
clear effects for both Mothers ignoring Litters (F = 4.74) and Mothers after fitting Litters (F = 4.76)
with little evidence for Litters fitted after Mothers (F = 0.39) or Litters ignoring Mothers (F = 0.37).

The difference in the error sums of squares for models (4) [L] and (3) [L][M] is the sum of
squares reported for Mothers in the second of the two ANOVA tables in Table 14.3. The difference
in the error sums of squares for models (6) [G] and (5) [M] is the sum of squares reported for
Mothers in the first of the two ANOVA tables in Table 14.3. The difference in the error sums of
squares for models (5) [M] and (3) [L][M] is the sum of squares reported for Litters in the first of
the two ANOVA tables in Table 14.3. The difference in the error sums of squares for models (6)
[G] and (4) [L] is the sum of squares reported for Litters in the second of the ANOVA tables in
Table 14.3.

Balanced two-way ANOVA is the special case where Ni j = N for all i and j. For balanced
ANOVA the two ANOVA tables (cf. Table 14.3) would be identical.

14.1.3 Computing issues

Many computer programs for fitting general linear models readily provide the ANOVA tables in
Table 14.3. Recall that the interaction model (2) was written

yi jk = μ +αi +η j + γi j + εi jk

where μ is an overall effect (grand mean), the αis are effects for litter genotype, the η js are effects
for foster mother genotype, and the γi js are effects for each combination of a litter genotype and
foster mother genotype. Just like regression programs, general linear models programs typically fit
a sequence of models where the sequence is determined by the order in which the terms are specified.
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Thus, specifying Model (2) causes the sequence (6), (4), (3), (2) to be fitted and the second ANOVA
table in Table 14.3 to be produced. Specifying the equivalent but reordered model

yi jk = μ +η j +αi + γi j + εi jk

causes the sequence (6), (5), (3), (2) to be fitted and the first ANOVA table in Table 14.3 to be
produced.

When obtaining an analysis of Model (2), many computer programs give ANOVA tables with
either the sequential sums of squares or “adjusted” sums of squares. Adjusted sums of squares are
for adding a term to the model last. Thus, in Model (2) the adjusted sums of squares for Litters is
the sum of squares for dropping Litters out of the model

yi jk = μ +η j + γi j +αi + εi jk.

This is idiotic! As we have mentioned, the γi j terms can explain anything the αi or η j terms can
explain, so the model without Litter main effects

yi jk = μ +η j + γi j + εi jk

is equivalent to Model (2).
What do these adjusted sums of squares really mean? Unfortunately, you have to enter the bow-

els of the computer program to find out. Most computer programs build in side conditions that allow
them to give some form of parameter estimates. Only Model (1) really allows all the parameters to
be estimated. In any of the other models, parameters cannot be estimated without imposing some
arbitrary side conditions. In the interaction model (2) the adjusted sums of squares for main effects
depend on these side conditions, so programs that use different side conditions (and programs DO
use different side conditions) give different adjusted sums of squares for main effects after interac-
tion. These values are worthless! Unfortunately, many programs, by default, produce mean squares,
F statistics, and P values using these adjusted sums of squares. The interaction sum of squares and
F test are not affected by this issue.

To be fair, if you are dealing with Model (3) instead of Model (2), the adjusted sums of squares
are perfectly reasonable. In Model (3),

yi jk = μ +αi +η j + εi jk,

the adjusted sum of squares for Litters just compares Model (3) to Model (5) and the adjusted sum of
squares for Mothers compares Model (3) to Model (4). Adjusted sums of squares are only worthless
when you fit main effects after having already fit an interaction that involves the main effect.

14.1.4 Discussion of model fitting

If there is no interaction but an effect for Mothers after accounting for Litters and an effect for Litters
after accounting for Mothers, both Mothers and Litters would have to appear in the final model, i.e.,

yi jk = μ +αi +η j + εi jk,

because neither effect could be dropped.
If there were an effect for Mothers after accounting for Litters, but no effect for Litters after

accounting for Mothers, we could drop the effect of Litters from the model. Then if the effect for
Mothers was still apparent when Litters were ignored, a final model

yi jk = μ +αi + εi jk

that includes Mother effects but not Litter effects would be appropriate. Similar reasoning with the
roles of Mothers and Litters reversed would lead one to the model

yi jk = μ +η j + εi jk.
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Unfortunately, except in special cases, it is possible to get contradictory results. If there were an
effect for Mothers after accounting for Litters but no effect for Litters after accounting for Mothers
we could drop the effect of Litters from the model and consider the model

yi jk = μ +αi + εi jk.

However, it is possible that in this model there may be no apparent effect for Mothers (when Litters
are ignored), so dropping Mothers is suggested and we get the model

yi jk = μ + εi jk.

This model contradicts our first conclusion that there is an effect for Mothers, albeit one that only
shows up after adjusting for Litters. These issues are discussed more extensively in Christensen
(2011, Section 7.5).

14.1.5 Diagnostics

It is necessary to consider the validity of our assumptions. Table 14.4 contains many of the standard
diagnostic statistics used in regression analysis. They are computed from the interaction model
(2). Model (2) is equivalent to a one-way ANOVA model, so the leverage associated with yi jk in
Table 14.3 is just 1/Ni j.

Figures 14.1 and 14.2 contain diagnostic plots. Figure 14.1 contains a normal plot of the stan-
dardized residuals, a plot of the standardized residuals versus the fitted values, and boxplots of the
residuals versus Litters and Mothers, respectively. Figure 14.2 plots the leverages, the t residuals,
and Cook’s distances against case numbers. The plots identify one potential outlier. From Table 14.4
this is easily identified as the observed value of 68.0 for Litter I and Foster Mother A. This case has
by far the largest standardized residual r, standardized deleted residual t, and Cook’s distance C. We
can test whether this case is consistent with the other data. The t residual of 4.02 has an unadjusted
P value of 0.000225. If we use a Bonferroni adjustment for having made n = 61 tests, the P value is
61× 0.000225

.
= 0.014. There is substantial evidence that this case does not belong with the other

data.

14.1.6 Outlier deleted analysis

We now consider the results of an analysis with the outlier deleted. Fitting the interaction model (2)
we get

dfE(2) = 44, SSE(2) = 1785.60, MSE(2) = 40.58

and fitting the additive model (3) gives

dfE(3) = 53, SSE(3) = 3049,

so

Fobs =
1263.48/9

40.58
=

140.39
40.58

= 3.46,

with a one-sided P value of .003. The interaction in significant, so we could reasonably go back to
treating the data as a one-way ANOVA with 16 groups. Typically, we would print out the 16 group
means and try to figure out what is going on. But in this case, most of the story is determined by the
plot of the standardized residuals versus the fitted values for the deleted data, Figure 14.3.

Case 12 was dropped from the Litter I, Mother A group that contained three observations. After
dropping case 12, that group has two observations and, as can been seen from Figure 14.3, that
group has a far lower sample mean and has far less variability than any other group. In this example,
deleting the one observation that does not seem consistent with the other data makes the entire group
inconsistent with the rest of the data.
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Table 14.4: Diagnostics for rat weight gains: Model (14.1.2).

Case Litter Mother y ŷ Leverage r t C
1 A A 61.5 63.680 0.20 −0.33 −0.33 0.002
2 A A 68.2 63.680 0.20 0.69 0.68 0.007
3 A A 64.0 63.680 0.20 0.05 0.04 0.000
4 A A 65.0 63.680 0.20 0.20 0.20 0.001
5 A A 59.7 63.680 0.20 −0.60 −0.60 0.006
6 F A 60.3 52.325 0.25 1.25 1.26 0.033
7 F A 51.7 52.325 0.25 −0.10 −0.10 0.000
8 F A 49.3 52.325 0.25 −0.47 −0.47 0.005
9 F A 48.0 52.325 0.25 −0.68 −0.67 0.010

10 I A 37.0 47.100 0.33 −1.68 −1.72 0.088
11 I A 36.3 47.100 0.33 −1.89 −1.84 0.101
12 I A 68.0 47.100 0.33 3.48 4.02 0.377
13 J A 59.0 54.350 0.25 0.73 0.73 0.011
14 J A 57.4 54.350 0.25 0.48 0.47 0.005
15 J A 54.0 54.350 0.25 −0.05 −0.05 0.000
16 J A 47.0 54.350 0.25 −1.15 −1.16 0.028
17 A F 55.0 52.400 0.33 0.43 0.43 0.006
18 A F 42.0 52.400 0.33 −1.73 −1.77 0.093
19 A F 60.2 52.400 0.33 1.30 1.31 0.053
20 F F 50.8 60.640 0.20 −1.49 −1.52 0.035
21 F F 64.7 60.640 0.20 0.62 0.61 0.006
22 F F 61.7 60.640 0.20 0.16 0.16 0.000
23 F F 64.0 60.640 0.20 0.51 0.51 0.004
24 F F 62.0 60.640 0.20 0.21 0.20 0.001
25 I F 56.3 64.367 0.33 −1.34 −1.35 0.056
26 I F 69.8 64.367 0.33 0.90 0.90 0.026
27 I F 67.0 64.367 0.33 0.44 0.43 0.006
28 J F 59.5 56.100 0.33 0.57 0.56 0.010
29 J F 52.8 56.100 0.33 −0.55 −0.54 0.009
30 J F 56.0 56.100 0.33 −0.02 −0.02 0.000
31 A I 52.5 54.125 0.25 −0.25 −0.25 0.001
32 A I 61.8 54.125 0.25 1.20 1.21 0.030
33 A I 49.5 54.125 0.25 −0.73 −0.72 0.011
34 A I 52.7 54.125 0.25 −0.22 −0.22 0.001
35 F I 56.5 53.925 0.25 0.40 0.49 0.003
36 F I 59.0 53.925 0.25 0.80 0.79 0.013
37 F I 47.2 53.925 0.25 −1.05 −1.06 0.023
38 F I 53.0 53.925 0.25 −0.15 −0.14 0.000
39 I I 39.7 51.600 0.20 −1.81 −1.85 0.051
40 I I 46.0 51.600 0.20 −0.85 −0.85 0.011
41 I I 61.3 51.600 0.20 1.47 1.49 0.034
42 I I 55.3 51.600 0.20 0.56 0.56 0.005
43 I I 55.7 51.600 0.20 0.62 0.62 0.006
44 J I 45.2 54.533 0.33 −1.55 −1.58 0.075
45 J I 57.0 54.533 0.33 0.41 0.41 0.005
46 J I 61.4 54.533 0.33 1.14 1.15 0.041
47 A J 42.0 48.960 0.20 −1.06 −1.06 0.017
48 A J 54.0 48.960 0.20 0.77 0.76 0.009
49 A J 61.0 48.960 0.20 1.83 1.88 0.052
50 A J 48.2 48.960 0.20 −0.12 −0.11 0.000
51 A J 39.6 48.960 0.20 −1.42 −1.44 0.032
52 F J 51.3 45.900 0.50 1.04 1.04 0.067
53 F J 40.5 45.900 0.50 −1.04 −1.04 0.067
54 I J 50.0 49.433 0.33 0.09 0.09 0.000
55 I J 43.8 49.433 0.33 −0.94 −0.94 0.027
56 I J 54.5 49.433 0.33 0.84 0.84 0.022
57 J J 44.8 49.060 0.20 −0.65 −0.64 0.007
58 J J 51.5 49.060 0.20 0.37 0.37 0.002
59 J J 53.0 49.060 0.20 0.60 0.59 0.006
60 J J 42.0 49.060 0.20 −1.07 −1.07 0.018
61 J J 54.0 49.060 0.20 0.75 0.75 0.009
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Figure 14.1: Residual plots for rat weight data, W ′ = 0.960.
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Figure 14.2: Diagnostic index plots for rat weight data.

The small mean value for the Litter I, Mother A group after deleting case 12 is causing the
interaction. If we delete the entire group, the interaction test becomes

Fobs =
578.74/8

1785.36/43
= 1.74, (14.1.7)

which gives a P value of 0.117. Note that by dropping the Litter I, Mother A group we go from
our original 61 observations to 58 observations, but we also go from 16 groups to 15 groups, so
dfE(2)= 58−15= 43. On the other hand, the number of free parameters in Model (3) is unchanged,
so dfE(3) = 58− 7= 51, which leaves us 8 degrees of freedom in the numerator of the test.
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Figure 14.3: Standardized residuals versus predicted values: Case 12 deleted.

The Litter I, Mother A group is just weird. It contains three cases, the two smallest along with
the third largest case out of 61 total cases. It is weird if we leave case 12 in the data and it is weird
if we take case 12 out of the data. With all the data, the best-fitting model is (5). Deleting the Litter
I, Mother A group, the best-fitting model again turns out to be (5).

For the full data and Model (5), LSD at the 5% level can be summarized as

Mother Mean
F 58.700 A
A 55.400 A
I 53.362 A B
J 48.680 B

The residual plots and diagnostics look reasonably good for this model. The plots and diagnostics
are different from those given earlier for Model (2).

For Model (5) with the Litter I, Mother A group removed, LSD at the 5% level can be summa-
rized as

Mother Mean
F 58.700 A
A 57.315 A B
I 53.362 C B
J 48.680 C

(These are unbalanced one-way ANOVAs, so there is no guarantee that such displays can be con-
structed.) Again, the residual plots and diagnostics look reasonably good but are different from those
for the full data models (2) and (5).

The main difference between these two analyses is that one has Mothers F and I significantly
different and the other does not. Given that the change to the analysis consisted of deleting ob-
servations from Mother A leaving groups F and I alone, that is somewhat strange. The confidence
intervals for μI − μF are (−10.938,0.263) for the full data and (−10.248,−0.427) for the deleted
data, so one is just barely insignificant for testing H0 : μI −μF = 0 and the other is just barely signif-
icant. The discrepancy comes from using different MSEs. Both are based on Model (5) but they are
based on different data. It would be preferable to base the LSDs on MSEs from Model (2), but the
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results would still be different for the different data. For all of the weirdness of the Litter I, Mother
A group, in the end, the results are remarkably consistent whether we delete the group or not.

Finally, we have enough information to test whether the three observations in the Litter I, Mother
A group are collectively a group of outliers. We do that by testing a full model that is Model (2)
defined for the deleted data against a reduced model that is Model (2) for the full data. This may
seem like a backwards definition of a full and reduced model, but the deleted data version of Model
(2) can be obtained from the full data Model (2) by adding a separate parameter for each of the three
points we want to delete. Using information from Equation (7) and either of Table 14.2 or 14.3,

Fobs =
[2440.82−1785.36]/[45−43]

1785.36/43
= 7.89,

which is highly significant: statistical evidence that Litter I, Mother A is a weird group. The numer-
ator degrees of freedom is 2. Model (2) for the full data already has one parameter for the Litter I,
Mother A group, so we need add only two more free parameters to have a separate parameter for
every observation in the group.

14.2 Modeling contrasts

The interesting part of any analysis is figuring out how the groups really differ. To do that, you need
to look at contrasts. We examined contrasts for one-way ANOVA models in Chapter 12, and all the
models we have looked at in this chapter, except the additive-effects model, have been essentially
one-way ANOVA models. In particular, our final conclusions about Mothers in the previous section
came from the one-way ANOVA that ignored Litters.

But what if we could not ignore Litters? What if we needed to see how Mothers differed in the
additive-effects model rather than a one-way ANOVA? As mentioned earlier, when dealing with the
additive-effects model you cannot just compute what you want on a hand calculator. You have to be
able to coax whatever information you need out of a computer program. These issues are addressed
in this section and the next. You can generally get everything you need by fitting equivalent models
in a regression program as discussed in the next section. Here we focus on extracting information
from an ANOVA program, i.e., we focus on manipulating the subscripts that are fed into an ANOVA
program.

When the treatments have no structure to exploit, one way to start is by looking for evidence of
differences between all pairs of means.

Bonferroni
Parameter Est SE(Est) t P
ηF −ηA 3.516 2.862 1.229 1.0000
ηI −ηA −1.832 2.767 −0.662 1.0000
ηJ −ηA −6.755 2.810 −2.404 0.1182
ηI −ηF −5.35 2.863 −1.868 0.4029
ηJ −ηF −10.27 2.945 −3.488 0.0059
ηJ −ηI −4.923 2.835 −1.736 0.5293

If there are b levels of the second factor, as there are 4 levels of Mother, there are b(b− 1)/2 =
4(3)/2 = 6 pairwise comparisons to make. Of these, we will see in the next section that we can get
b−1 = 4−1 = 3 of them by fitting a regression model. Some programs, like Minitab, will provide
all of these pairwise comparisons.

It is tempting to just summarize these results and be done with them. For an LSD procedure with
α = 0.05 (actually specified in Minitab as a Bonferonni procedure with α = 0.3), these results can
be summarized by
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Mother Mean
F 58.8 A
A 55.2 A
I 53.4 A B
J 48.5 B

It is by no means clear what the “Mean” values are. (They are explained in the next section.) But
what is important, and is reported correctly, are the relative differences among the “Mean” values.
From the display, we see no differences among Mothers F, A, and I and no difference between
Mothers I and J. We do see differences between F and J and between A and J.

Unfortunately, as discussed in Chapter 13, it is possible that no such display can be generated be-
cause it is possible to have, say, a significant difference between F and A but no significant difference
between F and I. This is possible, for example, if SE(η̂F − η̂A) is much smaller than SE(η̂F − η̂I).

Based on the pairwise testing results, one could perform a backwards elimination. The pair of
means with the least evidence for a difference from 0 is ηI −ηA with tobs = −0.662. We could
incorporate the assumption ηI = ηA into the model and look for differences between the remaining
three groups: Mothers F, Mothers J, and the combined group Mothers A or I and continue the process
of finding groups that could be combined. If we followed this procedure, at the next step we would
combine Mothers A, F and I and then finally conclude that J was different from the other three.
Another plausible model might be to combine J with A and I and leave F separate. These additive
models with ηA = ηI , ηA = ηI = ηF , and ηA = ηI = ηJ have respective Cp values of 11.7, 13.2, and
16.0. Only ηA = ηI is a minor improvement over the full two-factor additive-effects model, which
has Cp = 13.2 as reported in Table 14.2.

The other methods of Section 12.4 extend easily to two-factor models but the results depend on
the specific model in which we incorporate the hypotheses.

14.2.1 Nonequivalence of tests

The general rule for unbalanced data is that if you change anything about a model you change
everything about the model. We illustrate this by showing that the tests for ηF = ηA change between
the one-way model (14.1.5), the additive two-way model (14.1.3), and Model (14.1.3) with the
additional assumption that ηJ = ηI , even when we use the same denominator for all three F tests,
namely the MSE from the interaction model (14.1.2).

The pairwise comparison estimates are determined as though the parameter is the last thing being
added to the model. If we assumed that ηJ −ηI = 0, it could effect the estimate of the completely
unrelated parameter ηF −ηA, something that does not happen in one-way ANOVA. In fact, we will
show that for the rat data the test for ηF = ηA in the additive-effects model is different depending
on whether you assume ηJ = ηI . First we illustrate that the test depends on whether or not we keep
Litters in the model.

Assuming that there is no interaction, we might want to test that Mothers A and F have the same
effect, i.e., ηA = ηF or η1 = η2. We can incorporate this hypothesis into either the additive model
(14.1.3) or the Mothers-only model (14.1.5). As is good practice, our tests will all use the MSE from
Model (14.1.2).

To incorporate ηA = ηF , when using a data file like the first four columns of Table 14.4, we
merely change the Mother column so that it contains the same symbol for Mothers A and F. I just
changed all the Fs to As. Now we refit models (14.1.3) and (14.1.5) using this new “subscript” for
the Mothers.

Refitting the one-way model (14.1.5) incorporating ηA = ηF leads to the ANOVA table

Analysis of Variance
Source df SS MS F P
Mother A=F 2 690.29 345.15 5.87 0.005
Error 58 3409.83 58.79
Total 60 4100.13
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Using results from Table 14.2, to test ηA = ηF in Model (14.1.5) the statistic is

Fobs =
[3409.83−3328.52]/[58−57]

2440.82/45
=

81.31
54.24

= 1.50,

so the data are consistent with ηA = ηF in Model (14.1.5). If we used the MSE from Model (14.1.5)
rather than Model (14.1.2), this would be equivalent to performing the LSD test as we did in Sub-
section 14.1.5. The ANOVA table F test for Mother A=F (Fobs = 5.87) suggests that even when
treating Mothers A and F as the same group, there remain noticeable differences in the three re-
maining groups: A=F, I, and J.

To test ηA = ηF in the additive-effects model (14.1.3) we must refit the model incorporating
ηA = ηF . As in Table 14.3, refitting could lead to either the ANOVA table

Analysis of Variance
Source df SS MS F P
Mother A=F 2 690.29 345.15 5.66 0.006
Litter 3 53.69 17.90 0.29 0.830
Error 55 3356.15 61.02
Total 60 4100.13

or
Analysis of Variance

Source df SS MS F P
Litter 3 60.16 20.05 0.33 0.805
Mother A=F 2 683.82 341.91 5.60 0.006
Error 55 3356.15 61.02
Total 60 4100.13

All we really care about is the Error term, and that is the same in both tables. Using results from
Table 14.2, to test ηA = ηF in Model (14.1.3) the statistic is

Fobs =
[3356.15−3264.89]/[55−54]

2440.82/45
=

91.26
54.24

= 1.68,

so the data are again consistent with ηA = ηF , but now the result is for Model (14.1.3). The ANOVA
table F statistic for Mother A=F after fitting Litters (Fobs = 5.60) suggests that even when treating
Mothers A and F as the same group, there remain noticeable differences in the three remaining
groups: A=F, I, and J.

The key point is that, as expected, the two F statistics for testing ηA = ηF in models (14.1.5) and
(14.1.3) are noticeably different (even using the same denominator). In the former, it is 1.50 and in
the latter it is 1.68. Note however that if we modify the denominator of the test for Model (14.1.3)
by using its own MSE , we get

Fobs =
[3356.15−3264.89]/[55−54]

3264.89/54
= 1.509 = (1.2286)2,

which agrees with the (paired comparisons) t test given earlier for ηF = ηA in Model (14.1.3).
Unlike the one-way model, in the two-way additive model even the test for ηA = ηF depends on

our assumptions about the other Mother effects. To demonstrate, we show that the test for ηA = ηF

changes when we assume ηI = ηJ . Building ηI = ηJ into the additive model (14.1.3) yields an
ANOVA table

Analysis of Variance
Seq.

Source df SS MS F P
Litter 3 60.16 20.05 0.32 0.811
Mother I=J 2 592.81 296.41 4.73 0.013
Error 55 3447.16 62.68
Total 60 4100.13
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Now, if we also incorporate our hypothesis ηA = ηF we get an ANOVA table

Analysis of Variance
Seq.

Source df SS MS F P
Litter 3 60.16 20.05 0.32 0.813
Mother A=F;I=J 1 505.27 505.27 8.00 0.006
Error 56 3534.70 63.12
Total 60 4100.13

Comparing the error terms and using our usual denominator gives a different F statistic for testing
ηA = ηF assuming ηI = ηJ in the additive model,

Fobs =
[3534.70−3447.16]/[56−55]

2440.82/45
=

87.54
54.24

= 1.61,

rather than the 1.68 we got from the additive model without assuming that ηI = ηJ .
In this example, the test statistics are noticeably, but not substantially, different. With other data,

the differences can be much more substantial.
In a balanced ANOVA, the numerators for these three tests would all be identical and the only

differences in the tests would be due to alternative choices of a MSE for the denominator.

14.3 Regression modeling

The additive-effects model
yi jk = μ +αi +η j + εi jk

is the only new model that we have considered in this chapter. All of the other models reduce
to fitting a one-way ANOVA. If we create four 0-1 indicator variables, say, x1,x2,x3,x4 for the
four Litter categories and another four indicator variables, say, x5,x6,x7,x8 for the four Mother
categories, we can rewrite the additive model as

yi jk = μ +α1xi j1 +α2xi j2 +α3xi j3 +α4xi j4 +η1xi j5 +η2xi j6 +η3xi j7 +η4xi j8 + εi jk.

The model is overparameterized; largely because for any i j,

xi j1 + xi j2 + xi j3 + xi j4 = 1 = xi j5 + xi j6 + xi j7 + xi j8.

Also, associated with the grand mean μ is a predictor variable that always takes the value 1, say, x0 ≡
1. To make a regression model out of the additive-effects model we need to drop one variable from
two of the three sets of variables {x0}, {x1,x2,x3,x4}, {x5,x6,x7,x8}. We illustrate the procedures
by dropping two of the three variables, x0, x2 (the indicator for Litter F), and x8 (the indicator for
Mother J).

If we drop x2 and x8 the model becomes

yi jk = δ + γ1xi j1 + γ3xi j3 + γ4xi j4 +β1xi j5 +β2xi j6 +β3xi j7 + εi jk. (14.3.1)

In this model, the Litter F, Mother J group becomes a baseline group and

δ = μ +α2 +η4, γ1 = α1 −α2, γ3 = α3 −α2, γ4 = α4 −α2,

β1 = η1 −η4, β2 = η2 −η4, β3 = η3 −η4.

After fitting Model (1), the Table of Coefficients gives immediate results for testing whether differ-
ences exist between Mother J and each of Mothers A, F, and I. It also gives immediate results for
testing no difference between Litter F and each of Litters A, I, and J.
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If we drop x0, x8 the model becomes

yi jk = γ1xi j1 + γ2xi j2 + γ3xi j3 + γ4xi j4 +β1xi j5 +β2xi j6 +β3xi j7 + εi jk

but now

γ1 = μ +α1 +η4, γ2 = μ +α2 +η4, γ3 = μ +α3 +η4, γ4 = μ +α4 +η4,

β1 = η1 −η4, β2 = η2 −η4, β3 = η3 −η4,

so the Table of Coefficients still gives immediate results for testing whether differences exist be-
tween Mother J and Mothers A, F, and I.

If we drop x0, x2 the model becomes

yi jk = γ1xi j1 + γ3xi j3 + γ4xi j4 +β1xi j5 +β2xi j6 +β3xi j7 +β4xi j8 + εi jk.

Now

β1 = μ +η1 +α2, β2 = μ +η2 +α2, β3 = μ +η3 +α2, β4 = μ +η4 +α2,

γ1 = α1 −α2, γ3 = α3 −α2, γ4 = α4 −α2.

The Table of Coefficients still gives immediate results for testing whether differences exist between
Litter F and Litters A, I, and J.

To illustrate these claims, we fit Model (1) to the rat data to obtain the following Table of
Coefficients.

Table of Coefficients
Predictor Est SE(Est) t P
Constant (δ ) 48.129 2.867 16.79 0.000
x1:L-A (γ1) 2.025 2.795 0.72 0.472
x3:L-I (γ3) −0.628 2.912 −0.22 0.830
x4:L-J (γ4) 0.004 2.886 0.00 0.999
x5:M-A (β1) 6.755 2.810 2.40 0.020
x6:M-F (β2) 10.271 2.945 3.49 0.001
x7:M-I (β3) 4.923 2.835 1.74 0.088

If, for example, you ask Minitab’s GLM procedure to test all pairs of Mother effects using a
Bonferroni adjustment, you get the table reported earlier,

Bonferroni
Parameter Est SE(Est) t P
ηF −ηA 3.516 2.862 1.229 1.0000
ηI −ηA −1.832 2.767 −0.662 1.0000
ηJ −ηA −6.755 2.810 −2.404 0.1182
ηI −ηF −5.35 2.863 −1.868 0.4029
ηJ −ηF −10.27 2.945 −3.488 0.0059
ηJ −ηI −4.923 2.835 −1.736 0.5293

Note that the estimate, say, β̂2 = η̂2 − η̂4 = η̂F − η̂J = 10.271, is the negative of the estimate of
ηJ −ηF , that they have the same standard error, that the t statistics are the negatives of each other,
and that the Bonferroni P values are 6 times larger than the Table of Coefficients P values. Similar
results hold for β1 = η1 −η4 = ηA −ηJ and β3 = η3 −η4 = ηI −ηJ .

A display of results given earlier was

Mother Mean
F 58.8 A
A 55.2 A
I 53.4 A B
J 48.5 B
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The problems with the display are that the column of “Mean” values has little meaning and that
no meaningful display may be possible because standard errors depend on the difference being
estimated. As for the Mean values, the relative differences among the Mother effects are portrayed
correctly, but the actual numbers are arbitrary. The relative sizes of Mother effects must be the
same for any Litter, but there is nothing one could call an overall Mother effect. You could add any
constant to each of these four Mean values and they would be just as meaningful.

To obtain these “Mean” values as given, fit the model

yi jk = δ + γ1(xi j1 − xi j4)+ γ2(xi j2 − xi j4)+ γ3(xi j3 − xi j4)

+β1(xi j7 − xi j8)+β2(xi j6 − xi j8)+β3(xi j7 − xi j8)+ εi jk (2)

to get the following Table of Coefficients.

Table of Coefficients
Predictor Est SE(Est) t P
Constant (δ ) 53.9664 0.9995 53.99 0.000
Litter

A (γ1) 1.675 1.675 1.00 0.322
F (γ2) −0.350 1.763 −0.20 0.843
I (γ3) −0.979 1.789 −0.55 0.587

Mother
A (β1) 1.268 1.702 0.75 0.459
F (β2) 4.784 1.795 2.66 0.010
I (β3) −0.564 1.712 −0.33 0.743

The “Mean” values in the display are obtained from the Table of Coefficients, wherein the estimated
effect for Mother F is 58.8= δ̂ + β̂2 = 53.9664+4.784, for Mother A is 55.2= δ̂ + β̂1 = 53.9664+
1.268, for Mother I is 53.4 = δ̂ + β̂3 = 53.9664−0.564, and for Mother J is 48.5 = δ̂ − (β̂1 + β̂2 +

β̂3) = 53.9664− (1.268+4.784−0.564).
Dropping the two indicator variables is equivalent to imposing side conditions on the parameters.

Dropping x2 and x8 amounts to assuming α2 = 0 = η4. Dropping the intercept x0 and x8 amounts to
assuming that μ = 0= η4. Dropping x0 and x2 amounts to assuming that μ = 0=α2. The regression
model (2) is equivalent to assuming that α1 +α2 +α3 +α4 = 0 = η1 +η2 +η3 +η4.

14.4 Homologous factors

An interesting aspect of having two factors is dealing with factors that have comparable levels. For
example, the two factors could be mothers and fathers and the factor levels could be a categorization
of their educational level, perhaps: not a high school graduate, high school graduate, some college,
college graduate, post graduate work. In addition to the issues raised already, we might be interested
in whether fathers’ education has the same effect as mothers’ education. Alternatively, the two
factors might be a nitrogen-based fertilizer and a phosphorus-based fertilizer and the levels might be
multiples of a standard dose. In that case we might be interested in whether nitrogen and phosphorus
have the same effect. Factors with comparable levels are called homologous factors. Example 14.1.1
involves genotypes of mothers and genotypes of litters where the genotypes are identical for the
mothers and the litters, so it provides an example of homologous factors.

14.4.1 Symmetric additive effects

We have talked about father’s and mother’s educational levels having the same effect. To do this
we must have reasonable definitions of the effects for a father’s educational level and a mother’s
educational level. As discussed in Section 1, factor level effects are used in the additive two-way
model

yi jk = μ +αi +η j + ei jk. (14.4.1)
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Here the αis represent, say, father’s education effects or litter genotype effects and the η js represent
mother’s education effects or foster mother genotype effects. Most often with homologous factors
we assume that the number of levels is the same for each factor. For the education example, fathers
and mothers both have 5 levels. For the rat genotypes, both factors have 4 levels. We call this number
t. (Occasionally, we can extend these ideas to unequal numbers of levels.)

If fathers’ and mothers’ educations have the same effect, or if litters’ and foster mothers’ geno-
types have the same effect, then

α1 = η1, . . . ,αt = ηt .

Incorporating this hypothesis into the additive-effects model (1) gives the symmetric-additive-effects
model

yi jk = μ +αi +α j + ei jk. (14.4.2)

Alas, not many ANOVA computer programs know how to fit such a model, so we will have to do it
ourselves in a regression program. The remainder of the discussion in this subsection is for the rat
weight data.

We begin by recasting the additive-effects model (1) as a regression model just as we did in
Section 14.3 but now relabeling the indicator variables. The factor variable Litters has 4 levels, so
we can replace it with 4 indicator variables, say, LA, LF , LI , LJ . We can also replace the 4 level
factor variable Mothers with 4 indicator variables, MA, MF , MI , MJ . Now the no-interaction model
(1) can be written

yh = μ +α1LhA +α2LhF +α3LhI +α4LhJ +η1MhA +η2MhF +η3MhI +η4MhJ + εh, (14.4.3)

h = 1, . . . ,61. This model is overparameterized. If we just run the model, most good regression
programs are smart enough to throw out redundant parameters (predictor variables). Performing
this operation ourselves, we fit the model

yh = μ +α1LhA +α2LhF +α3LhI +η1MhA +η2MhF +η3MhI + εh (14.4.4)

that eliminates LJ and MJ . Remember, Model (4) is equivalent to (1) and (3). Fitting Model (4), we
have little interest in the Table of Coefficients but the ANOVA table follows.

Analysis of Variance: Model (14.4.4)
Source df SS MS F P
Regression 6 835.24 139.21 2.30 0.047
Error 54 3264.89 60.46
Total 60 4100.13

As advertised, the Error line agrees with the results given for the no-interaction model (14.1.2) in
Section 1.

To fit the symmetric-additive-effects model (2), we incorporate the assumption α1 =
η1, . . . ,α4 = η4 into Model (3) getting

yh = μ +α1LhA +α2LhF +α3LhI +α4LhJ +α1MhA +α2MhF +α3MhI +α4MhJ + εh

or
yh = μ +α1(LhA +MhA)+α2(LhF +MhF)+α3(LhI +MhI)+α4(LhJ +MhJ)+ εh.

Fitting this model requires us to construct new regression variables, say,

A = LA +MA

F = LF +MF

I = LI +MI

J = LJ +MJ.
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The symmetric-additive-effects model (2) is then written as

yh = μ +α1Ah +α2Fh +α3Ih +α4Jh + εh,

or, emphasizing that the parameters mean different things,

yh = γ0 + γ1Ah + γ2Fh + γ3Ih + γ4Jh + εh.

This model is also overparameterized, so we actually fit

yh = γ0 + γ1Ah + γ2Fh + γ3Ih + εh, (14.4.5)

giving

Table of Coefficients: Model (14.4.5)
Predictor γ̂k SE(μ̂k) t P
Constant 48.338 2.595 18.63 0.000
A 4.159 1.970 2.11 0.039
F 5.049 1.912 2.64 0.011
I 1.998 1.927 1.04 0.304

and
Analysis of Variance: Model (14.4.5)

Source df SS MS F P
Regression 3 513.64 171.21 2.72 0.053
Error 57 3586.49 62.92
Total 60 4100.13

We need the ANOVA table Error line to test whether the symmetric-additive-effects model (2)
fits the data adequately relative to the additive-effects model (1). The test statistic is

Fobs =
[3586.49−3264.89]/[57−54]

60.46
= 1.773

with P = 0.164, so the model seems to fit. As discussed in Section 14.1, it would be reasonable to
use the interaction model MSE in the denominator of the F statistic, which makes

Fobs =
[3586.49−3264.89]/[57−54]

54.24
= 1.976,

but the P value remains a relatively high 0.131.
Presuming that the symmetric-additive-effects model (4) fits, we can interpret the Table of Co-

efficients. We dropped variable J in the model, so the constant term γ̂0 = 48.338 estimates the effect
of having genotype J for both Litters and Mothers, i.e., γ0 = μ +2α4. The estimated regression co-
efficient for A, γ̂1 = 4.159, is the estimated effect for the difference between the genotype A effect
and the genotype J effect. The P value of 0.039 indicates weak evidence for a difference between
genotypes A and J. Similarly, there is pretty strong evidence for a difference between genotypes F
and J (P = 0.011) but little evidence for a difference between genotypes I and J (P = 0.304). From
the table of coefficients, the estimated effect for having, say, litter genotype A and mother genotype I
is 48.338+4.159+1.998= 54.495, which is that same as for litter genotype I and mother genotype
A.

14.4.2 Skew symmetric additive effects

Thinking of parents’ education and genotypes, it is possible that fathers’ and mothers’ education
could have exact opposite effects or that litters’ and mothers’ genotypes could have exact opposite
effects, i.e.,

α1 =−η1, . . . ,αt =−ηt .
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Incorporating this hypothesis into the additive-effects model (1) gives the skew-symmetric-additive-
effects model

yi jk = μ +αi −α j + ei jk. (14.4.6)

Sometimes this is called the alternating-additive-effects model.
In Model (6), μ is a well-defined parameter and it is the common mean value for the four groups

that have the same genotype for litters and mothers. Nonetheless, the skew symmetric additive
model is overparameterized but only in that the αs are redundant, i.e., (LhA−MhA)+(LhF −MhF)+
(LhI −MhI)+ (LhJ −MhJ) = 0 for all h.

To fit the model, we write it in regression form

yh = μ +α1(LhA −MhA)+α2(LhF −MhF)+α3(LhI −MhI)+α4(LhJ −MhJ)+ εh (14.4.7)

and drop the last predictor LJ −MJ , i.e., fit

yh = γ0 + γ1(LhA −MhA)+ γ2(LhF −MhF)+ γ3(LhI −MhI)+ εh.

This yields standard output:

Table of Coefficients: Model (14.4.7)
Predictor γ̂k SE(μ̂k) t P
Constant 53.999 1.048 51.54 0.000
(LA −MA) −2.518 2.098 −1.20 0.235
(LF −MF) −4.917 2.338 −2.10 0.040
(LI −MI) −2.858 2.273 −1.26 0.214

Analysis of Variance: Model (14.4.7)
Source df SS MS F P
Regression 3 297.73 99.24 1.49 0.228
Error 57 3802.39 66.71
Total 60 4100.13

If the model fitted the data, we could interpret the table of coefficients. Relative to Model (7), the
parameter estimates are γ̂0 = μ̂ , γ̂1 = α̂1 − α̂4 ≡ α̂A − α̂J , γ̂2 = α̂3 − α̂4 ≡ α̂F − α̂J , γ̂3 = α̂3 − α̂4 ≡
α̂I − α̂J ; see Exercise 14.7. But the skew symmetric additive model does not fit very well because,
relative to the additive model (1),

Fobs =
[3802.39−3264.89]/[57−54]

60.46
= 2.93,

which gives P = 0.042.
It is of some interest to note that the model that includes both symmetric additive effects and

skew symmetric additive effects,

yh = μ +α1Ah +α2Fh +α3Ih +α4Jh + α̃1(LhA −MhA)

+ α̃2(LhF −MhF)+ α̃3(LhI −MhI)+ α̃4(LhJ −MhJ)+ εh

is actually equivalent to the no-interaction model (1). Thus, our test for whether the symmetric
additive model fits can also be thought of as a test for whether skew symmetric additive effects
exist after fitting symmetric additive effects and our test for whether the skew symmetric additive
model fits can also be thought of as a test for whether symmetric additive effects exist after fitting
skew symmetric additive effects. Neither the symmetric additive model (2) nor the skew symmetric
additive model (6) is comparable to either of the single-effects-only models (14.1.4) and (14.1.5).



14.4 HOMOLOGOUS FACTORS 355

Table 14.5: Symmetric and symmetric additive education effects.

Symmetric Additive Effects
Educ. Level Education Level of Mother Father
of Fathers <HS HS Grad <Coll Coll Grad Post Effect
<HS 10 12 13 15 15 0

HS Grad 12 14 15 17 17 2
<Coll 13 15 16 18 18 3

Coll Grad 15 17 18 20 20 5
Post 15 17 18 20 20 5

Mother Effect 0 2 3 5 5

Symmetric Nonadditive Effects
Educ. Level Education Level of Mother
of Fathers <HS HS Grad <Coll Coll Grad Post
<HS 8 10 13 15 15

HS Grad 10 12 15 17 17
<Coll 13 15 19 21 21

Coll Grad 15 17 21 23 23
Post 15 17 21 23 23

14.4.3 Symmetry

The assumption of symmetry is that the two factors are interchangeable. Think again about our
fathers’ and mothers’ education. Under symmetry, there is no difference between having a college
graduate father and postgraduate mother as opposed to having a postgraduate father and college
graduate mother. Symmetric additive models display this symmetry but impose the structure that
there is some consistent effect for, say, being a college graduate and for being a high school graduate.
But symmetry can exist even when no overall effects for educational levels exist. For overall effects
to exist, the effects must be additive.

Table 14.5 gives examples of symmetric additive and symmetric nonadditive effects. The sym-
metric additive effects have a “grand mean” of 10, an effect of 0 for being less than a HS Grad, an
effect of 2 for a HS Grad, an effect of 3 for some college, and an effect of 5 for both college grad
and postgrad. The nonadditive effects were obtained by modifying the symmetric additive effects.
In the nonadditive effects, any pair where both parents have any college is up 3 units and any pair
where both parents are without any college is down 2 units.

In Subsection 14.4.1 we looked carefully at the symmetric-additive-effects model, which is a
special case of the additive-effects (no-interaction) model. Now we impose symmetry on the inter-
action model.

Rather than the interaction model (14.1.2) we focus on the equivalent one-way ANOVA model
(14.1.1), i.e.,

yi jk = μi j + εi jk. (14.4.8)

For rat genotypes, i = 1, . . . ,4 and j = 1, . . . ,4 are used together to indicate the 16 groups. Alterna-
tively, we can replace the pair of subscripts i j with a single subscript r = 1, . . . ,16,

yrk = μr + εrk. (14.4.9)

The top half of Table 14.6 shows how the subscripts r identify the 16 groups. The error for this
model should agree with the error for Model (14.1.2), which was given in Section 1. You can see
from the ANOVA table that it does.

Analysis of Variance: Model (14.4.9)
Source df SS MS F P
Rat groups 15 1659.3 110.6 2.04 0.033
Error 45 2440.8 54.2
Total 60 4100.1
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Table 14.6: Rat indices.

One-Way ANOVA: subscripts r
Genotype of Genotype of Foster Mother

Litter A F I J
A 1 5 9 13
F 2 6 10 14
I 3 7 11 15
J 4 8 12 16

Symmetric group effects: subscripts s
Genotype of Genotype of Foster Mother

Litter A F I J
A 1 2 3 4
F 2 6 7 8
I 3 7 11 12
J 4 8 12 16

To impose symmetry, in Model (8) we require that for all i and j,

μi j = μ ji.

This places no restrictions on the four groups with i = j. Translating the symmetry restriction into
Model (9) with the identifications of Table 14.6, symmetry becomes

μ2 = μ5,μ3 = μ9,μ4 = μ13,μ7 = μ10,μ8 = μ14,μ12 = μ15.

Imposing these restrictions on the one-way ANOVA model (9) amounts to constructing a new one-
way ANOVA model with only 10 groups. Symmetry forces the 6 pairs of groups for which i �= j and
(i, j) = ( j, i) to act like 6 single groups and the 4 groups with i = j are unaffected by symmetry. The
bottom half of Table 14.6 provides subscripts s for the one-way ANOVA model that incorporates
symmetry

ysm = μs + εsm. (14.4.10)

Note that in the nonadditive symmetry model (10), the second subscript for identifying observations
within a group also has to change. There are still 61 observations, so if we use fewer groups, we
must have more observations in some groups.

Fitting the nonadditive symmetry model gives

Analysis of Variance: Model (14.4.10)
Source df SS MS F P
Symmetric groups 9 1159.4 128.8 2.23 0.034
Error 51 2940.8 57.7
Total 60 4100.1

Testing this against the interaction model (6) provides

Fobs =
[2940.8−2440.8]/[51−45]

54.24
= 1.54

with P = 0.188. The nonadditive symmetry model is consistent with the data.
We can also test the symmetry model (10) versus the reduced symmetric-additive-effects model

(1) giving

Fobs =
[3264.89−2940.8]/[54−51]

54.24
= 1.99

with P = 0.129, so there is no particular reason to choose the nonadditive symmetry model over the
additive symmetry model.
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Finally, it would also be possible to define a skew symmetry model. With respect to Model (8),
skew symmetry imposes

μi j =−μ ji,

which implies that μii = 0. To fit this model we would need to construct indicator variables for all
16 groups, say I1, . . . , I16. From these we can construct both the symmetric model and the skew
symmetric model. Using the notation of the top half of Table 14.6, the symmetry model would have
10 indicator variables

I1, I6, I11, I16, I2 + I5, I3 + I9, I4 + I13, I7 + I10, I8 + I14, I12 + I15.

The skew symmetric model would use the 6 predictor variables

I2 − I5, I3 − I9, I4 − I13, I7 − I10, I8 − I14, I12 − I15.

If we used all 16 of the predictor variables in the symmetry and skew symmetry model, we would
have a model equivalent to the interaction model (8), so the test for the adequacy of the symmetry
model is also a test for whether skew symmetry adds anything after fitting symmetry.

It is hard to imagine good applications of skew symmetry. Perhaps less so if we added an inter-
cept to the skew symmetry variables, since that would make it a generalization of the skew symmet-
ric additive model. In fact, to analyze homologous factors without replications, i.e., when Model (8)
has 0 degrees of freedom for error, McCullagh (2000) suggests using the MSE from the symmetry
model as a reasonable estimate of error, i.e., take as error the mean square for skew symmetry after
fitting symmetry.

14.4.4 Hierarchy of models

The most interesting hierarchy of models involving symmetric effects is

Interaction
Nonadditive Symmetry Additive Effects

Symmetric Additive
Intercept-Only

or, in terms of numbered models,

(14.1.2) = (14.4.9)

(14.4.10) (14.1.3)

(14.4.2)

(14.1.6).

If the additive two-factor model does not fit, we might try the symmetry model. The symmetry
model is a reduced model relative to the interaction model but is not comparable to the additive two-
factor model. As in Subsection 14.1.2, there are two sequences of models that go from the smallest
model to the largest and we could use an ANOVA table similar to Table 14.3.

Rather than doing all this testing, we could look at Cp statistics as given in Table 14.7. The
model with only Mother effects is still looking good.

14.5 Exercises

EXERCISE 14.5.1. Cochran and Cox (1957) presented data from Pauline Paul on the effect of
cold storage on roast beef tenderness. Treatments are labeled A through F and consist of 0, 1, 2, 4, 9,
and 18 days of storage, respectively. The data are tenderness scores and are presented in Table 14.8.
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Table 14.7: Cp statistics for fitting models to the data of Table 14.1.

Model Model SSE df Cp

(14.1.2) [LM] 2440.82. 45 16.0
(14.1.3) [L][M] 3264.89 54 13.2
(14.1.4) [L] 4039.97 57 21.5
(14.1.5) [M] 3328.52 57 8.4
(14.1.6) [G] 4100.13 60 16.6
(14.4.2) Symmetric Additive 3586.49 57 13.1
(14.4.6) Skew Symmetric Additive 3802.39 57 17.1
(14.4.10) Symmetric Nonadditive 2940.8 51 13.2

Table 14.8: Beef tenderness scores.

Block Trt, Score Block Trt, Score
1 A, 7 B, 17 9 A, 17 C, 27
2 C, 26 D, 25 10 B, 23 E, 27
3 E, 33 F, 29 11 D, 29 F, 30
4 A, 25 E, 40 12 A, 11 F, 27
5 B, 25 D, 34 13 B, 24 C, 21
6 C, 34 F, 32 14 D, 26 E, 32
7 A, 10 D, 25 15 B, 26 F, 37
8 C, 24 E, 26

Analyze the data using a additive two-way ANOVA model involving blocks and treatments. Focus
your analysis on identifying differences between treatments.

EXERCISE 14.5.2. Inman et al. (1992) report data on the percentages of Manganese (Mn) in
various samples as determined by a spectrometer. Ten samples were used and the percentage of
Mn in each sample was determined by each of 4 operators. The data are given in Table 14.9. The
operators actually made two readings; the data presented are the averages of the two readings for
each sample–operator combination.

Using an additive two-way ANOVA model, analyze the data. Include in your analysis an eval-
uation of whether any operators are significantly different. Identify a potential outlier, delete that
outlier, reanalyze the data, and compare the results of the two analyses.

EXERCISE 14.5.3. Nelson (1993) presents data on the average access times for various disk
drives. The disk drives are five brands of half-height fixed drives. The performance of disk drives
depends on the computer in which they are installed. The computers could only hold four disk

Table 14.9: Percentage of manganese concentrations.

Operator
Sample 1 2 3 4
1 0.615 0.620 0.600 0.600
2 0.635 0.635 0.660 0.630
3 0.590 0.605 0.600 0.590
4 0.745 0.740 0.735 0.745
5 0.695 0.695 0.680 0.695
6 0.640 0.635 0.635 0.630
7 0.655 0.665 0.650 0.650
8 0.640 0.645 0.620 0.610
9 0.670 0.675 0.670 0.665
10 0.655 0.660 0.645 0.650
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Table 14.10: Access times (ms) for disk drives.

Brand
Computer 1 2 3 4 5
A 35 42 31 30 —
B 41 45 — 32 40
C — 40 42 33 39
D 32 — 33 35 36
E 40 38 35 — 37

Table 14.11: Tensile strength of uniform twill.

Fabric Machines
strips m1 m2 m3 m4

s1 18 7 5 9
s2 9 11 12 3
s3 7 11 11 1
s4 6 4 10 8
s5 10 8 6 10
s6 7 12 3 15
s7 13 5 15 16
s8 1 11 8 12

drives. The data are given in Table 14.10. Analyze the data using an additive two-factor model.
Focus your analysis on identifying differences among brands.

EXERCISE 14.5.4. Garner (1956) presented data on the tensile strength of fabrics. Here we con-
sider a subset of the data. The complete data and a more extensive discussion of the experimental
procedure are given in Exercise 18.7.2. The experiment involved testing fabric strengths on four
different machines. Eight homogeneous strips of cloth were divided into four samples. Each sample
was tested on one of four machines. The data are given in Table 14.11.

(a) Analyze the data using an additive two-way model focusing on machine differences. Give an
appropriate analysis of variance table. Examine appropriate contrasts using Bonferroni’s method
with α = 0.05.

(b) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 14.5.5. Repeat the analyses of this chapter after eliminating Litter I and Mother I
from the data in Table 14.1.

EXERCISE 14.5.6. Repeat the analyses of this chapter after eliminating Litter I and Mother J
from the data in Table 14.1.

EXERCISE 14.5.7. Repeat the analyses of this chapter after eliminating Litter I from the data
in Table 14.1. This requires extending the ideas on homologous factors to situations with unequal
numbers of factor levels.

EXERCISE 14.5.8. Explain how dropping the last term out of Model (14.4.7) gives results that
are different from dropping the indicator for the last factor level out of a one-way ANOVA model
with four groups. Focus on the intercept.





Chapter 15

ACOVA and Interactions

Analysis of covariance (ACOVA) incorporates one or more regression variables into an analysis of
variance. As such, we can think of it as analogous to the two-way ANOVA of Chapter 14 except that
instead of having two different factor variables as predictors, we have one factor variable and one
continuous variable. The regression variables are referred to as covariates (relative to the dependent
variable), hence the name analysis of covariance. Covariates are also known as supplementary or
concomitant observations. Cox (1958, Chapter 4) gives a particularly nice discussion of the experi-
mental design ideas behind analysis of covariance and illustrates various useful plotting techniques;
also see Figure 15.4 below. In 1957 and 1982, Biometrics devoted entire issues to the analysis of
covariance. We begin our discussion with an example that involves a two-group one-way analysis
of variance and one covariate. Section 15.2 looks at an example where the covariate can also be
viewed as a factor variable. Section 15.3 uses ACOVA to look at lack-of-fit testing.

15.1 One covariate example

Fisher (1947) gives data on the body weights (in kilograms) and heart weights (in grams) for domes-
tic cats of both sexes that were given digitalis. A subset of the data is presented in Table 15.1. Our
primary interest is to determine whether females’ heart weights differ from males’ heart weights
when both have received digitalis.

As a first step, we might fit a one-way ANOVA model with sex groups,

yi j = μi + εi j (15.1.1)

= μ +αi + εi j,

where the yi js are the heart weights, i = 1,2, and j = 1, . . . ,24. This model yields the analysis of

Table 15.1: Body weights (kg) and heart weights (g) of domestic cats.

Females Males
Body Heart Body Heart Body Heart Body Heart
2.3 9.6 2.0 7.4 2.8 10.0 2.9 9.4
3.0 10.6 2.3 7.3 3.1 12.1 2.4 9.3
2.9 9.9 2.2 7.1 3.0 13.8 2.2 7.2
2.4 8.7 2.3 9.0 2.7 12.0 2.9 11.3
2.3 10.1 2.1 7.6 2.8 12.0 2.5 8.8
2.0 7.0 2.0 9.5 2.1 10.1 3.1 9.9
2.2 11.0 2.9 10.1 3.3 11.5 3.0 13.3
2.1 8.2 2.7 10.2 3.4 12.2 2.5 12.7
2.3 9.0 2.6 10.1 2.8 13.5 3.4 14.4
2.1 7.3 2.3 9.5 2.7 10.4 3.0 10.0
2.1 8.5 2.6 8.7 3.2 11.6 2.6 10.5
2.2 9.7 2.1 7.2 3.0 10.6 2.5 8.6

361
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Table 15.2: One-way analysis of variance on heart weights: Model (15.1.1).

Source df SS MS F P
Sex 1 56.117 56.117 23.44 0.0000
Error 46 110.11 2.3936
Total 47 166.223

Table 15.3: Analysis of variance for heart weights: Model (15.1.2).

Source df Adj. SS MS F P
Body weights 1 37.828 37.828 23.55 0.000
Sex 1 4.499 4.499 2.80 0.101
Error 45 72.279 1.606
Total 47 166.223

variance given in Table 15.2. Note the overwhelming effect due to sexes. We now develop a model
for both sex and weight that is analogous to the additive model (14.1.3).

15.1.1 Additive regression effects

Fisher provided both heart weights and body weights, so we can ask a more complex question, “Is
there a sex difference in the heart weights over and above the fact that male cats are naturally larger
than female cats?” To examine this we add a regression term to Model (15.1.1) and fit the traditional
analysis of covariance model,

yi j = μi + γzi j + εi j (15.1.2)

= μ +αi + γzi j + εi j.

Here the zs are the body weights and γ is a slope parameter associated with body weights. For this
example the mean model is

m(sex,z) =

{
μ1 + γz, if sex = female
μ2 + γz if sex = male.

Model (15.1.2) is a special case of the general additive-effects model (9.9.2). It is an extension
of the simple linear regression between the ys and the zs in which we allow a different intercept μi

for each sex but the same slope. In many ways, it is analogous to the two-way additive-effects model
(14.1.3). In Model (15.1.2) the effect of sex on heart weight is always the same for any fixed body
weight, i.e.,

(μ1 + γz)− (μ2 + γz) = μ1 − μ2.

Thus we can talk about μ1 − μ2 being the sex effect regardless of body weight. The means for
females and males are parallel lines with common slope γ and |μ1 − μ2| the distance between the
lines.

An analysis of variance table for Model (15.1.2) is given as Table 15.3. The interpretation of
this table is different from the ANOVA tables examined earlier. For example, the sums of squares
for body weights, sex, and error do not add up to the sum of squares total. The sums of squares in
Table 15.3 are referred to as adjusted sums of squares (Adj. SS) because the body weight sum of
squares is adjusted for sexes and the sex sum of squares is adjusted for body weights.

The error line in Table 15.3 is simply the error from fitting Model (15.1.2). The body weights
line comes from comparing Model (15.1.2) with the reduced model (15.1.1). Note that the only
difference between models (15.1.1) and (15.1.2) is that (15.1.1) does not involve the regression on
body weights, so by testing the two models we are testing whether there is a significant effect due
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to the regression on body weights. The standard way of comparing a full and a reduced model is
by comparing their error terms. Model (15.1.2) has one more parameter, γ , than Model (15.1.1), so
there is one more degree of freedom for error in Model (15.1.1) than in Model (15.1.2), hence one
degree of freedom for body weights. The adjusted sum of squares for body weights is the difference
between the sum of squares error in Model (15.1.1) and the sum of squares error in Model (15.1.2).
Given the sum of squares and the mean square, the F statistic for body weights is constructed in
the usual way and is reported in Table 15.3. We see a major effect due to the regression on body
weights.

The Sex line in Table 15.3 provides a test of whether there are differences in sexes after adjusting
for the regression on body weights. This comes from comparing Model (15.1.2) to a similar model in
which sex differences have been eliminated. In Model (15.1.2), the sex differences are incorporated
as μ1 and μ2 in the first version and as α1 and α2 in the second version. To eliminate sex differences
in Model (15.1.2), we simply eliminate the distinctions between the μs (the αs). Such a model can
be written as

yi j = μ + γzi j + εi j. (15.1.3)

The analysis of covariance model without treatment effects is just a simple linear regression of heart
weight on body weight. We have reduced the two sex parameters to one overall parameter, so the
difference in degrees of freedom between Model (15.1.3) and Model (15.1.2) is 1. The difference in
the sums of squares error between Model (15.1.3) and Model (15.1.2) is the adjusted sum of squares
for sex reported in Table 15.3. We see that the evidence for a sex effect over and above the effect
due to the regression on body weights is not great.

While ANOVA table Error terms are always the same for equivalent models, the table of coef-
ficients depends on the particular parameterization of a model. I prefer the ACOVA model parame-
terization

yi j = μi + γzi j + εi j.

Some computer programs insist on using the equivalent model

yi j = μ +αi + γzi j + εi j, (15.1.4)

which is overparameterized. To get estimates of the parameters in Model (15.1.4), one must impose
side conditions on them. My choice would be to make μ = 0 and get a model equivalent to the first
one. Other common choices of side conditions are: (a) α1 = 0, (b) α2 = 0, and (c) α1+α2 = 0. Some
programs are flexible enough to let you specify the side conditions yourself. Minitab, for example,
uses the side conditions (c) and reports

Covariate γ̂ SE(γ̂) t P
Constant 2.755 1.498 1.84 0.072
Sex

1 −0.3884 0.2320 −1.67 0.101
Body Wt 2.7948 0.5759 4.85 0.000

Relative to Model (15.1.4) the parameter estimates are μ̂ = 2.755, α̂1 = −0.3884, α̂2 = 0.3884,
γ̂ = 2.7948, so the estimated regression line for females is

E(y) = [2.755+(−0.3884)]+2.7948z= 2.3666+2.7948z

and for males
E(y) = [2.755− (−0.3884)]+2.7948z= 3.1434+2.7948z,

e.g., the predicted values for females are

ŷ1 j = [2.755+(−0.3884)]+2.7948z1 j = 2.3666+2.7948z1 j

and for males are

ŷ2 j = [2.755− (−0.3884)]+2.7948z2 j = 3.1434+2.7948z2 j.
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Note that the t statistic for sex 1 is the square root of the F statistic for sex in Table 15.3. The
P values are identical. Similarly, the tests for body weights are equivalent. Again, we find clear
evidence for the effect of body weights after fitting sexes.

A 95% confidence interval for γ has end points

2.7948±2.014(0.5759),

which yields the interval (1.6,4.0). We are 95% confident that, for data comparable to the data in
this study, an increase in body weight of one kilogram corresponds to a mean increase in heart
weight of between 1.6g and 4.0g. (An increase in body weight corresponds to an increase in heart
weight. Philosophically, we have no reason to believe that increasing body weights by one kg will
cause an increase in heart weight.)

In Model (15.1.2), comparing treatments by comparing the treatment means ȳi· is inappropriate
because of the complicating effect of the covariate. Adjusted means are often used to compare
treatments. The formula and the actual values for the adjusted means are given below along with the
raw means for body weights and heart rates.

Adjusted means ≡ ȳi·− γ̂(z̄i·− z̄··)

Sex N Body Heart Adj. Heart
Female 24 2.333 8.887 9.580
Male 24 2.829 11.050 10.357
Combined 48 2.581 9.969

Note that the difference in adjusted means is

9.580−10.357= α̂1 − α̂2 = 2(−0.3884).

We have seen previously that there is little evidence of a differential effect on heart weights due to
sexes after adjusting for body weights. Nonetheless, from the adjusted means what evidence exists
suggests that, even after adjusting for body weights, a typical heart weight for males, 10.357, is
larger than a typical heart weight for females, 9.580.

Figures 15.1 through 15.3 contain residual plots for Model (15.1.2). The plot of residuals versus
predicted values looks exceptionally good. The plot of residuals versus sexes shows slightly less
variability for females than for males. The difference is probably not enough to worry about. The
normal plot of the residuals is alright with W ′ above the appropriate percentile.

The models that we have fitted form a hierarchy similar to that discussed in Chapter 14. The
ACOVA model is larger than both the one-way and simple linear regression models, which are not
comparable, but both are larger than the intercept-only model.

ACOVA
One-Way ANOVA Simple Linear Regression

Intercept-Only

In terms of numbered models the hierarchy is

(15.1.2)

(15.1.1) (15.1.3)

(14.1.6).

Such a hierarchy leads to two sequential ANOVA tables that are displayed in Table 15.4. All of the
results in Table 15.3 appear in Table 15.4.

15.1.2 Interaction models

With these data, there is little reason to assume that when regressing heart weight on body weight the
linear relationships are the same for females and males. Model (15.1.2) allows different intercepts
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Figure 15.1: Residuals versus predicted values, cat data.
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Figure 15.2: Residuals versus sex, cat data.

for these regressions but uses the same slope γ . We should test the assumption of a common slope
by fitting the more general model that allows different slopes for females and males, i.e.,

yi j = μi + γizi j + εi j (15.1.5)

= μ +αi + γizi j + εi j.

In Model (15.1.5) the γs depend on i and thus the slopes are allowed to differ between the sexes.
While Model (15.1.5) may look complicated, it consists of nothing more than fitting a simple linear
regression to each group: one to the female data and a separate simple linear regression to the male
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Figure 15.3: Normal plot for cat data, W ′ = 0.970.

Table 15.4: Analyses of variance for rat weight gains.

Source df Seq SS MS F P
Body weights 1 89.445 89.445 55.69 0.000
Sex 1 4.499 4.499 2.80 0.101
Error 45 72.279 1.606
Total 47 166.223

Source df Seq SS MS F P
Sex 1 56.117 56.117 39.94 0.000
Body Weights 1 37.828 37.828 23.55 0.000
Error 45 72.279 1.606
Total 47 166.223

data. The means model is

m(sex,z) =

{
μ1 + γ1z, if sex = female
μ2 + γ2z if sex = male.

Figure 15.4 contains some examples of how Model (15.1.2) and Model (15.1.5) might look when
plotted. In Model (15.1.2) the lines are always parallel. In Model (15.1.5) they can have several
appearences.

The sum of squares error for Model (15.1.5) can be found directly but it also comes from adding
the error sums of squares for the separate female and male simple linear regressions. It is easily seen
that for females the simple linear regression has an error sum of squares of 22.459 on 22 degrees of
freedom and the males have an error sum of squares of 49.614 also on 22 degrees of freedom. Thus
Model (15.1.5) has an error sum of squares of 22.459+49.614= 72.073 on 22+22 = 44 degrees
of freedom. The mean squared error for Model (15.1.5) is

MSE(5) =
72.073

44
= 1.638
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Figure 15.4 Patterns of interaction (effect modification) between a continuous predictor x1 and a binary pre-
dictor x2.

and, using results from Table 15.3, the test of Model (15.1.5) against the reduced model (15.1.2) has

F =
[72.279−72.073]/ [45−44]

1.638
=

0.206
1.638

= 0.126.

The F statistic is very small; there is no evidence that we need to fit different slopes for the two
sexes. Fitting Model (15.1.5) gives us no reason to question our analysis of Model (15.1.2). The
interaction model is easily incorporated into our previous hierarchy of models.

Interaction
ACOVA

One-Way ANOVA Simple Linear Regression
Intercept-Only

or, in terms of numbered models,

(15.1.5)

(15.1.2)

(15.1.1) (15.1.3)

(14.1.6).

The hierarchy leads to the two ANOVA tables given in Table 15.5. We could also report Cp statistics
for all five models relative to the interaction model (15.1.5).
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Table 15.5: Analyses of variance for rat weight gains.

Source df Seq SS MS F P
Body weights 1 89.445 89.445 54.61 0.000
Sex 1 4.499 4.499 2.75 0.105
Sex*Body Wt 1 0.206 0.206 0.13 0.725
Error 44 72.073 1.638
Total 47 166.223

Source df Seq SS MS F P
Sex 1 56.117 56.117 34.26 0.000
Body Weights 1 37.828 37.828 23.09 0.000
Sex*Body Wt 1 0.206 0.206 0.13 0.725
Error 44 72.073 1.638
Total 47 166.223

The table of coefficients depends on the particular parameterization of a model. I prefer the
interaction model parameterization

yi j = μi + γizi j + εi j,

in which all of the parameters are uniquely defined. Some computer programs insist on using the
equivalent model

yi j = μ +αi +β zi j + γizi j + εi j (15.1.6)

which is overparameterized. To get estimates of the parameters, one must impose side conditions
on them. My choice would be to make μ = 0 = β and get a model equivalent to the first one.
Other common choices of side conditions are: (a) α1 = 0 = γ1, (b) α2 = 0 = γ2, and (c) α1 +α2 =
0 = γ1 + γ2. Some programs are flexible enough to let you specify the model yourself. Minitab, for
example, uses the side conditions (c) and reports

Covariate γ̂ SE(γ̂) t P
Constant 2.789 1.516 1.84 0.072
Sex

1 0.142 1.516 0.09 0.926
Body Wt 2.7613 0.5892 4.69 0.000
Body Wt*Sex

1 −0.2089 0.5892 −0.35 0.725

Relative to Model (15.1.6) the parameter estimates are μ̂ = 2.789, α̂1 = 0.142, α̂2 = −0.142, β̂ =
2.7613, γ̂1 =−0.2089, γ̂2 = 0.2089, so the estimated regression line for females is

E(y) = (2.789+ 0.142)+ [2.7613+(−0.2089)]z= 2.961+2.5524z

and for males

E(y) = (2.789− 0.142)+ [2.7613− (−0.2089)]z= 2.647+2.7613z,

i.e., the fitted values for females are

ŷ1 j = (2.789+0.142)+ [2.7613+(−0.2089)]z1 j = 2.961+2.5524z1 j

and for males

ŷ2 j = (2.789− 0.142)+ [2.7613− (−0.2089)]z2 j = 2.647+2.7613z2 j.
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15.1.3 Multiple covariates

In our cat example, we had one covariate, but it would be very easy to extend Model (15.1.2) to
include more covariates. For example, with three covariates, x1, x2, x3, the ACOVA model becomes

yi j = μi + γ1xi j1 + γ2xi j2 + γ3xi j3 + εi j.

We could even apply this idea to the cat example by considering a polynomial model. Incorporating
into Model (15.1.2) a cubic polynomial for one predictor z gives

yi j = μi + γ1zi j + γ2z2
i j + γ3z3

i j + εi j.

The key point is that ACOVA models are additive-effects models because none of the γ parameters
depend on sex (i). If we have three covariates x1, x2, x3, an ACOVA model has

yi j = μi +h(xi j1,xi j2,xi j3)+ εi j,

for some function h(·). In this case μ1 −μ2 is the differential effect for the two groups regardless of
the covariate values.

One possible interaction model allows completely different regressions functions for each group,

yi j = μi + γi1xi j1 + γi2xi j2 + γi3xi j3 + εi j.

Here we allow the slope parameters to depend on i. For the cat example we might consider separate
cubic polynomials for each sex, i.e.,

yi j = μi + γi1zi j + γi2z2
i j + γi3z3

i j + εi j.

15.2 Regression modeling

Consider again the ACOVA model (15.1.2) based on the factor variable sex (i) and the measurement
variable body weight (z). To make life more interesting, let’s consider a third sex category, say, herm
(for hermaphrodite). If we create 0-1 indicator variables for each of our three categories, say, x1, x2,
x3, we can rewrite both the one-way ANOVA model (15.1.1) and Model (15.1.2) as linear models.
(The SLR model (15.1.3) is already in linear model form.) The first form for the means of Model
(15.1.1) becomes a no-intercept multiple regression model

m(x1,x2,x3) = μ1x1 + μ2x2 + μ3x3 (15.2.1)

=

{μ1, female
μ2, male
μ3, herm

and the second form for the means is the overparameterized model

m(x1,x2,x3) = μ +α1x1 +α2x2 +α3x3 (15.2.2)

=

⎧
⎨
⎩
(μ +α1), female
(μ +α2), male
(μ +α3), herm.

The first form for the means of Model (15.1.2) is the parallel lines regression model

m(x1,x2,x3,z) = μ1x1 + μ2x2 + μ3x3 + γz (15.2.3)

=

{μ1 + γz, female
μ2 + γz, male
μ3 + γz, herm
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and the second form is the overparameterized parallel lines model

m(x1,x2,x3,z) = μ +α1x1 +α2x2 +α3x3 + γz (15.2.4)

=

⎧
⎨
⎩
(μ +α1)+ γz, female
(μ +α2)+ γz, male
(μ +α3)+ γz, herm.

Similarly, we could have “parallel” polynomials. For quadratics that would be

m(x1,x2,x3,z) = μ1x1 + μ2x2 + μ3x3 + γ1z+ γ2z2

=

⎧
⎨
⎩

μ1 + γ1z+ γ2z2, female
μ2 + γ1z+ γ2z2, male
μ3 + γ1z+ γ2z2, herm

wherein only the intercepts are different.
The interaction model (15.1.5) gives separate lines for each group and can be written as

m(x1,x2,x3,z) = μ1x1 + μ2x2 + μ3x3 + γ1zx1 + γ2zx2 + γ3zx3

=

{μ1 + γ1z, female
μ2 + γ2z, male
μ3 + γ3z, herm

and the second form is the overparameterized model

m(x1,x2,x3,z) = μ +α1x1 +α2x2 +α3x3 +β z+ γ1zx1 + γ2zx2 + γ3zx3

=

⎧
⎨
⎩
(μ +α1)+ (β + γ1)z, female
(μ +α2)+ (β + γ2)z, male
(μ +α3)+ (β + γ3)z, herm.

Every sex category has a completely separate line with different slopes and intercepts. Interaction
parabolas would be completely separate parabolas for each group

m(x1,x2,x3,z) = μ1x1 + μ2x2 + μ3x3 + γ11zx1 + γ21z2x1

+γ12zx2 + γ22z2x2 + γ13zx3 + γ23z2x3

=

⎧
⎨
⎩

μ1 + γ11z+ γ21z2, female
μ2 + γ12z+ γ22z2, male
μ3 + γ13z+ γ23z2, herm.

15.2.1 Using overparameterized models

As discussed in Chapter 12, Model (15.2.2) can be made into a regression model by dropping any
one of the predictor variables, say x1,

m(x1,x2,x3) = μ +α2x2 +α3x3 (15.2.5)

=

⎧
⎨
⎩

μ , female
(μ +α2), male
(μ +α3), herm.

Using an intercept and indicators x2 and x3 for male and herm makes female the baseline category.
Similarly, if we fit the ACOVA model (15.2.4) but drop out x1 we get parallel lines

m(x1,x2,x3,z) = μ +α2x2 +α3x3 + γz (15.2.6)

=

⎧⎨
⎩

μ + γz, female
(μ +α2)+ γz, male
(μ +α3)+ γz, herm.
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If, in the one-way ANOVA, we thought that males and females had the same mean, we could
drop both x1 and x2 from Model (15.2.2) to get

m(x1,x2,x3) = μ +α3x3 =

{
μ , female or male
μ +α3, herm.

If we thought that males and herms had the same mean, since neither male nor herm is the baseline,
we could replace x2 and x3 with a new variable x̃ = x2+x3 that indicates membership in either group
to get

m(x1,x2,x3) = μ +α x̃ =

{
μ , female
μ +α, male or herm.

We could equally well fit the model

m(x1,x2,x3) = μ1x1 + μ3x̃ =

{
μ1, female
μ3, male or herm.

In these cases, the analysis of covariance (15.2.4) behaves similarly. For example, without both x1

and x2 Model (15.2.4) becomes

m(x1,x2,x3,z) = μ +α3x3 + γz (15.2.7)

=

{
μ + γz, female or male
(μ +α3)+ γz, herm

and involves only two parallel lines, one that applies to both females and males, and another one for
herms.

Dropping both x1 and x2 from Model (15.2.2) gives very different results than dropping the
intercept and x2 from Model (15.2.2). That statement may seem obvious, but if you think about
the fact that dropping x1 alone does not actually affect how the model fits the data, it might be
tempting to think that further dropping x2 could have the same effect after dropping x1 as dropping
x2 has in Model (15.2.1). We have already examined dropping both x1 and x2 from Model (15.2.2),
now consider dropping both the intercept and x2 from Model (15.2.2), i.e., dropping x2 from Model
(15.2.1). The model becomes

m(x) = μ1x1 + μ3x3 =

{μ1, female
0, male
μ3, herm.

This occurs because all of the predictor variables in the model take the value 0 for male. If we
incorporate the covariate age into this model we get

m(x) = μ1x1 + μ3x3 + γz =

{μ1 + γz, female
0+ γz, male
μ3 + γz, herm,

which are three parallel lines but male has an intercept of 0.

15.3 ACOVA and two-way ANOVA

The material in Section 15.1 is sufficiently complex to warrant another example. This time we use
a covariate that also defines a grouping variable and explore the relationships between fitting an
ACOVA and fitting a two-way ANOVA.

EXAMPLE 15.3.1. Hopper Data.
The data in Table 15.6 were provided by Schneider and Pruett (1994). They were interested in



372 15. ACOVA AND INTERACTIONS

Table 15.6: Multiple weighings of a hopper car.

Day First Second Third Day First Second Third
1 5952 5944 6004 11 5986 5920 5944
2 5930 5873 5895 12 6036 6084 6054
3 6105 6113 6101 13 6035 6136 6128
4 5943 5878 5931 14 6070 6016 6111
5 6031 6009 6000 15 6015 5990 5950
6 6064 6030 6070 16 6049 5988 6000
7 6093 6129 6154 17 6139 6153 6151
8 5963 5978 5966 18 6077 6012 6005
9 5982 6005 5970 19 5932 5899 5944

10 6052 6046 6029 20 6115 6087 6078

Table 15.7: Summary statistics for hopper data.

DAY N MEAN STDEV DAY N MEAN STDEV
1 3 5966.7 32.6 11 3 5950.0 33.4
2 3 5899.3 28.7 12 3 6058.0 24.2
3 3 6106.3 6.1 13 3 6099.7 56.1
4 3 5917.3 34.6 14 3 6065.7 47.6
5 3 6013.3 15.9 15 3 5985.0 32.8
6 3 6054.7 21.6 16 3 6012.3 32.3
7 3 6125.3 30.7 17 3 6147.7 7.6
8 3 5969.0 7.9 18 3 6031.3 39.7
9 3 5985.7 17.8 19 3 5925.0 23.3

10 3 6042.3 11.9 20 3 6093.3 19.3

whether the measurement system for the weight of railroad hopper cars was under control. A stan-
dard hopper car weighing about 266,000 pounds was used to obtain the first 3 weighings of the day
on each of 20 days. The process was to move the car onto the scales, weigh the car, move the car
off, move the car on, weigh the car, move it off, move it on, and weigh it a third time. The tabled
values are the weight of the car minus 260,000.

As we did with the cat data, the first thing we might do is treat the three repeat observations as
replications and do a one-way ANOVA on the days,

yi j = μi + εi j, i = 1, . . . ,20, j = 1,2,3.

Summary statistics are given in Table 15.7 and the ANOVA table follows.

Analysis of Variance
Source df SS MS F P
Day 19 296380 15599 18.25 0.000
Error 40 34196 855
Total 59 330576

Obviously, there are differences in days.

15.3.1 Additive effects

The three repeat observations on the hopper could be subject to trends. Treat the three observations
as measurements of time with values 1, 2, 3. This now serves as a covariate z. With three distinct
covariate values, we could fit a parabola.

yi j = μi + γ1zi j + γ2z2
i j + εi j, i = 1, . . . ,20, j = 1,2,3.
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The software I used actually fits

yi j = μ +αi + γ1zi j + γ2z2
i j + εi j, i = 1, . . . ,20, j = 1,2,3

with the additional constraint that α1 + · · ·+α20 = 0, so that α̂20 = −(α̂1 + · · ·+ α̂19). The output
then only presents α̂1, . . . , α̂19

Table of Coefficients
Predictor Est SE(Est) t P
Constant 6066.10 28.35 213.98 0.000
z −49.50 32.19 −1.54 0.132
z2 11.850 7.965 1.49 0.145
Day
1 −55.73 16.37 −3.41 0.002
2 −123.07 16.37 5.13 0.000
4 −105.07 16.37 −6.42 0.000
5 −9.07 16.37 −0.55 0.583
6 32.27 16.37 1.97 0.056
7 102.93 16.37 6.29 0.000
8 −53.40 16.37 −3.26 0.002
9 −36.73 16.37 −2.24 0.031
10 19.93 16.37 1.22 0.231
11 −72.40 16.37 −4.42 0.000
12 35.60 16.37 2.18 0.036
13 77.27 16.37 4.72 0.000
14 43.27 16.37 2.64 0.012
15 −37.40 16.37 −2.29 0.028
16 −10.07 16.37 −0.62 0.542
17 125.27 16.37 7.65 0.000
18 8.93 16.37 0.55 0.588
19 −97.40 16.37 −5.95 0.000

The table of coefficients is ugly, especially because there are so many days, but the main point is
that the z2 term in not significant (P = 0.145).

The corresponding ANOVA table is a little strange. The only really important thing is that it
gives the Error line. There is also some interest in the fact that the F statistic reported for z2 is the
square of the t statistic, having identical P values.

Analysis of Variance
Source df SS MS F P
z 1 176 176 2.36 0.132
Day 19 296380 15599 18.44 0.000
z2 1 1872 1872 2.21 0.145
Error 38 32147 846
Total 59 330576

Similar to Section 12.5, instead of fitting a maximal polynomial (we only have three times so can
fit at most a quadratic in time), we could alternatively treat z as a factor variable and do a two-way
ANOVA as in Chapter 14, i.e., fit

yi j = μ +αi +η j + εi j, i = 1, . . . ,20, j = 1,2,3.

The quadratic ACOVA model is equivalent to this two-way ANOVA model, so the two-way ANOVA
model should have an equivalent ANOVA table.
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Analysis of Variance
Source df SS MS F P
Day 19 296380 15599 18.44 0.000
Time 2 2049 1024 1.21 0.309
Error 38 32147 846
Total 59 330576

This has the same Error line as the quadratic ACOVA model.
With a nonsignificant z2 term in the quadratic model, it makes sense to check whether we need

the linear term in z. The model is

yi j = μi + γ1zi j + εi j, i = 1, . . . ,20, j = 1,2,3

or
yi j = μ +αi + γ1zi j + εi j, i = 1, . . . ,20, j = 1,2,3

subject to the constraint that α1 + · · ·+α20 = 0. The table of coefficients is

Table of Coefficients
Predictor Est SE(Est) t P
Constant 6026.60 10.09 597.40 0.000
Time −2.100 4.670 −0.45 0.655
Day
1 −55.73 16.62 −3.35 0.002
2 −123.07 16.62 −7.40 0.000
3 83.93 16.62 5.05 0.000
4 −105.07 16.62 −6.32 0.000
5 −9.07 16.62 −0.55 0.588
6 32.27 16.62 1.94 0.059
7 102.93 16.62 6.19 0.000
8 −53.40 16.62 −3.21 0.003
9 −36.73 16.62 −2.21 0.033
10 19.93 16.62 1.20 0.238
11 −72.40 16.62 −4.36 0.000
12 35.60 16.62 2.14 0.038
13 77.27 16.62 4.65 0.000
14 43.27 16.62 2.60 0.013
15 −37.40 16.62 −2.25 0.030
16 −10.07 16.62 −0.61 0.548
17 125.27 16.62 7.54 0.000
18 8.93 16.62 0.54 0.594
19 −97.40 16.62 −5.86 0.000

and we find no evidence that we need the linear term (P = 0.655). For completeness, an ANOVA
table is

Analysis of Variance
Source df SS MS F P
z 1 176 176 0.20 0.655
Day 19 296380 15599 17.88 0.000
Error 39 34020 872
Total 59 330576

It might be tempting to worry about interaction in this model. Resist the temptation! First, there
are not enough observations for us to fit a full interaction model and still estimate σ2. If we fit
separate quadratics for each day, we would have 60 mean parameters and 60 observations, so zero
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Table 15.8: Hooker data.

Near Near
Case Temperature Pressure Rep. Case Temperature Pressure Rep.

1 180.6 15.376 1 17 191.1 19.490 9
2 181.0 15.919 1 18 191.4 19.758 9
3 181.9 16.106 2 19 193.4 20.480 10
4 181.9 15.928 2 20 193.6 20.212 10
5 182.4 16.235 2 21 195.6 21.605 11
6 183.2 16.385 3 22 196.3 21.654 12
7 184.1 16.959 4 23 196.4 21.928 12
8 184.1 16.817 4 24 197.0 21.892 13
9 184.6 16.881 4 25 199.5 23.030 14

10 185.6 17.062 5 26 200.1 23.369 15
11 185.7 17.267 5 27 200.6 23.726 15
12 186.0 17.221 5 28 202.5 24.697 16
13 188.5 18.507 6 29 208.4 27.972 17
14 188.8 18.356 6 30 210.2 28.559 18
15 189.5 18.869 7 31 210.8 29.211 19
16 190.6 19.386 8

degrees of freedom for error. Exactly the same thing would happen if we fit a standard interaction
model from Chapter 14. But more importantly, it just makes sense to think of interaction as error for
these data. What does it mean for there to be a time trend in these data? Surely we have no interest
in time trends that go up one day and down another day without any rhyme or reason. For a time
trend to be meaningful, it needs to be something that we can spot on a consistent basis. It has to be
something that is strong enough that we can see it over and above the natural day-to-day variation
of the weighing process. Well, the natural day-to-day variation of the weighing process is precisely
the Day-by-Time interaction, so the interaction is precisely what we want to be using as our error
term. In the model

yi j = μ +αi + γ1zi j + γ2z2
i j + εi j,

changes that are inconsistent across days and times, terms that depend on both i and j, are what we
want to use as error. (An exception to this claim is if, say, we noticed that time trends go up one
day, down the next, then up again, etc. That is a form of interaction that we could be interested in,
but its existence requires additional structure for the Days because it involves modeling effects for
alternate days.)

15.4 Near replicate lack-of-fit tests

In Section 8.6 and Subsection 12.5.1 we discussed Fisher’s lack-of-fit test. Fisher’s test is based
on there being duplicate cases among the predictor variables. Often, there are few or none of these.
Near replicate lack-of-fit tests were designed to ameliorate that problem by clustering together cases
that are nearly replicates of one another.

With the Hooker data of Table 7.1, Fisher’s lack-of-fit test suffers from few degrees of freedom
for pure error. Table 15.8 contains a list of near replicates. These were obtained by grouping together
cases that were within 0.5 degrees F. We then construct an F test by fitting 3 models. First, reindex
the observations yi, i = 1, . . . ,31 into y jk with j = 1, . . . ,19 identifying the near replicate groups
and k = 1, . . . ,Ni identifying observations within the near replicate group. Thus the simple linear
regression model

yi = β0 +β1xi + εi

can be rewritten as
y jk = β0 +β1x jk + ε jk.

The first of the three models in question is the simple linear regression performed on the near
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replicate cluster means x̄ j·
y jk = β0 +β1x̄ j·+ ε jk. (15.4.1)

This is sometimes called the artificial means model because it is a regression on the near replicate
cluster means x̄ j· but the clusters are artificially constructed. The second model is a one-way analysis
of variance model with groups defined by the near replicate clusters,

y jk = μ j + ε jk. (15.4.2)

As a regression model, define the predictor variables δh j for h = 1, . . . ,19, that are equal to 1 if h= j
and 0 otherwise. Then the model can be rewritten as a multiple regression model through the origin

y jk = μ1δ1 j + μ2δ2 j + · · ·+ μ19δ19, j + ε jk.

The last model is called an analysis of covariance model because it incorporates the original predic-
tor (covariate) x jk into the analysis of variance model (15.4.2). The model is

y jk = μ j +β1x jk + ε jk, (15.4.3)

which can alternatively be written as a regression

y jk = μ1δ1 j + μ2δ2 j + · · ·+ μ19δ19, j +β1x jk + ε jk.

Fitting these three models gives

Analysis of Variance: Artificial means model (15.4.1).
Source df SS MS F P
Regression 1 444.05 444.05 3389.06 0.000
Error 29 3.80 0.13
Total 30 447.85

Analysis of Variance: Near replicate groups (15.4.2).
Source df SS MS F P
Near Reps 18 447.437 24.858 722.79 0.000
Error 12 0.413 0.034
Total 30 447.850

Analysis of Covariance: (15.4.3).
Source df SS MS F P
x 1 444.167 0.118 4.43 0.059
Near Reps 18 3.388 0.188 7.04 0.001
Error 11 0.294 0.027
Total 30 447.850

The lack-of-fit test uses the difference in the sums of squares error for the first two models in
the numerator of the test and the mean squared error for the analysis of covariance model in the
denominator of the test. The lack-of-fit test statistic is

F =
(3.80−0.413)/(29−12)

0.027
= 7.4.

This can be compared to an F(17,11) distribution, that yields a P value of 0.001. This procedure is
known as Shillington’s test, cf. Christensen (2011).
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Table 15.9: Compressive strength of hoop pine trees (y) with moisture contents (z).

Temperature
−20◦ C 0◦ C 20◦ C 40◦ C 60◦ C

Tree z y z y z y z y z y
1 42.1 13.14 41.1 12.46 43.1 9.43 41.4 7.63 39.1 6.34
2 41.0 15.90 39.4 14.11 40.3 11.30 38.6 9.56 36.7 7.27
3 41.1 13.39 40.2 12.32 40.6 9.65 41.7 7.90 39.7 6.41
4 41.0 15.51 39.8 13.68 40.4 10.33 39.8 8.27 39.3 7.06
5 41.0 15.53 41.2 13.16 39.7 10.29 39.0 8.67 39.0 6.68
6 42.0 15.26 40.0 13.64 40.3 10.35 40.9 8.67 41.2 6.62
7 40.4 15.06 39.0 13.25 34.9 10.56 40.1 8.10 41.4 6.15
8 39.3 15.21 38.8 13.54 37.5 10.46 40.6 8.30 41.8 6.09
9 39.2 16.90 38.5 15.23 38.5 11.94 39.4 9.34 41.7 6.26

10 37.7 15.45 35.7 14.06 36.7 10.74 38.9 7.75 38.2 6.29

15.5 Exercises

EXERCISE 15.5.1. Table 15.9 contains data from Sulzberger (1953) and Williams (1959) on y,
the maximum compressive strength parallel to the grain of wood from ten hoop pine trees. The data
also include the temperature of the evaluation and a covariate z, the moisture content of the wood.
Analyze the data. Examine polynomials in the temperatures.

EXERCISE 15.5.2. Smith, Gnanadesikan, and Hughes (1962) gave data on urine characteristics
of young men. The men were divided into four categories based on obesity. The data contain a
covariate z that measures specific gravity. The dependent variable is y1; it measures pigment crea-
tinine. These variables are included in Table 15.10. Perform an analysis of covariance on y1. How
do the conclusions about obesity effects change between the ACOVA and the results of the ANOVA
that ignores the covariate?

EXERCISE 15.5.3. Smith, Gnanadesikan, and Hughes (1962) also give data on the variable y2

that measures chloride in the urine of young men. These data are also reported in Table 15.10. As
in the previous problem, the men were divided into four categories based on obesity. Perform an
analysis of covariance on y2 again using the specific gravity as the covariate z. Compare the results
of the ACOVA to the results of the ANOVA that ignores the covariate.

EXERCISE 15.5.4. The data of Exercise 14.5.1 and Table 14.8 involved two factors, one of which
had unequally spaced quantitative levels. Find the smallest polynomial that gives an adequate fit in
place of treating “days in storage” as a factor variable.

EXERCISE 15.5.5. Apply Shillington’s test to the data of Exercise 9.12.3 and Table 9.3. The
challenge is to come up with some method of identifying near replicates. (A clustering algorithm is
a good idea but beyond the scope of this book.)

EXERCISE 15.5.6. Referring back to Subsection 7.3.3, test the need for a power transformation
in each of the following problems from the previous chapter. Use all three constructed variables on
each data set and compare results.

(a) Exercise 14.5.1.

(b) Exercise 14.5.2.

(c) Exercise 14.5.3.

(d) Exercise 14.5.4.
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Table 15.10: Excretory characteristics.

Group I Group II
z y1 y2 z y1 y2

24 17.6 5.15 31 18.1 9.00
32 13.4 5.75 23 19.7 5.30
17 20.3 4.35 32 16.9 9.85
30 22.3 7.55 20 23.7 3.60
30 20.5 8.50 18 19.2 4.05
27 18.5 10.25 23 18.0 4.40
25 12.1 5.95 31 14.8 7.15
30 12.0 6.30 28 15.6 7.25
28 10.1 5.45 21 16.2 5.30
24 14.7 3.75 20 14.1 3.10
26 14.8 5.10 15 17.5 2.40
27 14.4 4.05 26 14.1 4.25

24 19.1 5.80
16 22.5 1.55

Group III Group IV
z y1 y2 z y1 y2

18 17.0 4.55 32 12.5 2.90
10 12.5 2.65 25 8.7 3.00
33 21.5 6.50 28 9.4 3.40
25 22.2 4.85 27 15.0 5.40
35 13.0 8.75 23 12.9 4.45
33 13.0 5.20 25 12.1 4.30
31 10.9 4.75 26 13.2 5.00
34 12.0 5.85 34 11.5 3.40
16 22.8 2.85
31 16.5 6.55
28 18.4 6.60

(e) Exercise 14.5.5.

(f) Exercise 14.5.6.

EXERCISE 15.5.7. Write models (15.1.1), (15.1.2), and (15.1.3) in matrix form. For each model
use a regression program on the heart weight data of Table 15.1 to find 95% and 99% prediction
intervals for a male and a female each with body weight of 3.0. Hint: Use models without intercepts
whenever possible.

EXERCISE 15.5.8. Consider the analysis of covariance for a one-way ANOVA with one covari-
ate. Find the form for a 99% prediction interval for an observation, say, from the first treatment
group with a given covariate value z.

EXERCISE 15.5.9. Assume that in Model (15.1.2), Cov(ȳi·, γ̂) = 0. Show that

Var

(
a

∑
i=1

λi (ȳi·− z̄i·γ̂)

)
= σ2

[
∑a

i=1 λ 2
i

b
+

(∑a
i=1 λiz̄i·)

2

SSEzz

]

where SSEzz is the sum of squares error from doing a one-way ANOVA on z.



Chapter 16

Multifactor Structures

In this chapter we introduce analysis of variance models that involve more than two factors and
examine interactions between two factors.

16.1 Unbalanced three-factor analysis of variance

Most of the material of this section was originally published as Example 7.6.1 in Christensen (1987).
It is reprinted with the kind permission of Springer-Verlag.

Table 16.1 is derived from Scheffé (1959) and gives the moisture content (in grams) for samples
of a food product made with three kinds of salt (A), three amounts of salt (B), and two additives (C).
The amounts of salt, as measured in moles, are equally spaced. The two numbers listed for some
treatment combinations are replications. We wish to analyze these data.

We will consider these data as a three-factor ANOVA. From the structure of the replications the
ANOVA has unequal numbers. The general model for a three-factor ANOVA with replications is

yi jkm = G+Ai+B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm.

Our first priority is to find out which interactions are important.
Table 16.2 contains the sum of squares for error and the degrees of freedom for error for all the

ANOVA models that include all of the main effects. Each model is identified in the table by the
highest-order terms in the model. For example, [AB][AC] indicates the model

yi jkm = G+Ai+B j +Ck +[AB]i j +[AC]ik + ei jkm

with only the [AB] and [AC] interactions. In [AB][AC], the grand mean and all of the main effects
are redundant; it does not matter whether these terms are included in the model. Similarly, [AB][C]
indicates the model

yi jkm = G+Ai+B j +Ck +[AB]i j + ei jkm

with the [AB] interaction and the C main effect. In [AB][C], the grand mean and the A and B main
effects are redundant. Readers familiar with methods for fitting log-linear models (cf. Christensen,
1997 or Fienberg, 1980) will notice a correspondence between Table 16.2 and similar displays used

Table 16.1: Moisture content of a food product.

A (salt) 1 2 3
B (amount salt) 1 2 3 1 2 3 1 2 3

1 8 17 22 7 26 34 10 24 39
13 20 10 24 9 36

C (additive)
2 5 11 16 3 17 32 5 16 33

4 10 15 5 19 29 4 34

379
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Table 16.2: Statistics for fitting models to the data of Table 16.1.

Model SSE dfE F* Cp

[ABC] 32.50 14 18.0
[AB][AC][BC] 39.40 18 .743 13.0
[AB][AC] 45.18 20 .910 11.5
[AB][BC] 40.46 20 .572 9.4
[AC][BC] 333.2 22 16.19 131.5
[AB][C] 45.75 22 .713 7.7
[AC][B] 346.8 24 13.54 133.4
[BC][A] 339.8 24 13.24 130.4
[A][B][C] 351.1 26 11.44 131.2

The F statistics are for testing each model against the model
with a three-factor interaction, i.e., [ABC]. The denominator
of each F statistic is MSE([ABC]) = 32.50/14 = 2.3214.

in fitting three-dimensional contingency tables. The analogies between selecting log-linear models
and selecting models for unbalanced ANOVA are pervasive.

All of the models have been compared to the full model using F statistics in Table 16.2. It takes
neither a genius nor an F table to see that the only models that fit the data are the models that include
the [AB] interaction. The Cp statistics tell the same story.

In addition to testing models against the three-factor interaction model, there are a number of
other comparisons that can be made among models that include [AB]. These are [AB][AC][BC] versus
[AB][AC], [AB][AC][BC] versus [AB][BC], [AB][AC][BC] versus [AB][C], [AB][AC] versus [AB][C], and
[AB][BC] versus [AB][C]. None of the comparisons show any lack of fit. The last two comparisons
are illustrated below.

[AB][AC] versus [AB][C]

R(AC|AB,C) = 45.75−45.18= 0.57

Fobs = (0.57/2)/2.3214= 0.123

[AB][BC] versus [AB][C]

R(BC|AB,C) = 45.75−40.46= 5.29

Fobs = (5.29/2)/2.3214= 1.139.

Here we use the R(·|·) notation introduced in Subsection 9.3.1 that is similar to the SSR(·|·) notation.
The denominator in each test is MSE([ABC]), i.e., the variance estimate from the biggest model
under consideration.

The smallest model that seems to fit the data adequately is [AB][C]. This is indicated by the Cp

statistic but also the F statistics for comparing [AB][C] to the larger models are all extremely small.
Writing out the model [AB][C], it is

yi jkm = G+Ai+B j +Ck +[AB]i j + ei jkm.

We need to examine the [AB] interaction. Since the levels of B are quantitative, a model that is equiv-
alent to [AB][C] is a model that includes the main effects for C, but, instead of fitting an interaction
in A and B, fits a separate regression equation in the levels of B for each level of A. Let x j, j = 1,2,3
denote the levels of B. There are three levels of B, so the most general polynomial we can fit is a
second-degree polynomial in x j. Since the amounts of salt were equally spaced, it does not matter
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Table 16.3: Additional statistics for data of Table 16.1.

Model SSE dfE

[A0][A1][A2][C] 45.75 22
[A0][A1][C] 59.98 25
[A0][A1] 262.0 26
[A0][C] 3130. 28

much what we use for the x js. The computations were performed using x1 = 1, x2 = 2, x3 = 3. In
particular, the model [AB][C] was reparameterized as

yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm. (16.1.1)

The nature of this model is that for a fixed additive, the three curves for the three salts can take any
shapes at all. However, if you change to the other additive all three of the curves will shift, either
up or down, exactly the same amount due to the change in additive. The shapes of the curves do not
change.

With a notation similar to that used in Table 16.2, the SSE and the dfE are reported in Table 16.3
for Model (16.1.1) and three reduced models. Note that the SSE and dfE reported in Table 16.3 for
[A0][A1][A2][C] are identical to the values reported in Table 16.2 for [AB][C]. This, of course, must be
true if the models are merely reparameterizations of one another. First we want to establish whether
the quadratic effects are necessary in the regressions. To do this we drop the Ai2 terms from Model
(16.1.1) and test

[A0][A1][A2][C] versus [A0][A1][C]

R(A2|A1,A0,C) = 59.98−45.75= 14.23

Fobs = (14.23/3)/2.3214= 2.04.

Since F(.95,3,14) = 3.34, there is no evidence of any nonlinear effects.
At this point it might be of interest to test whether there are any linear effects. This is done by

testing [A0][A1][C] against [A0][C]. The statistics needed for this test are in Table 16.3. Instead of
actually doing the test, recall that no models in Table 16.2 fit the data unless they included the [AB]
interaction. If we eliminated the linear effects we would have a model that involved none of the
[AB] interaction. (The model [A0][C] is identical to the ANOVA model [A][C].) We already know
that such models do not fit.

Finally, we have never explored the possibility that there is no main effect for C. This can be
done by testing

[A0][A1][C] versus [A0][A1]

R(C|A1,A0) = 262.0−59.98= 202

Fobs = (202/1)/2.3214= 87.

Obviously, there is a substantial main effect for C, the type of food additive.
Our conclusion is that the model [A0][A1][C] is the smallest model that has been considered that

adequately fits the data. This model indicates that there is an effect for the type of additive and a
linear relationship between amount of salt and moisture content. The slope and intercept of the line
may depend on the type of salt. (The intercept of the line also depends on the type of additive.)
Table 16.4 contains parameter estimates and standard errors for the model. All estimates in the
example use the side condition C1 = 0.

Note that, in lieu of the F test given earlier, the test for the main effect C could be performed
from Table 16.4 by looking at t =−5.067/.5522=−9.176. Moreover, we should have t2 = F . The
t statistic squared is 84, while the F statistic reported earlier is 87. The difference is due to the fact
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Table 16.4: yi jkm = Ai0 +Ai1x j +Ck + ei jkm.

Table of Coefficients
Parameter Estimate SE
A10 3.35 1.375
A11 5.85 .5909
A20 −3.789 1.237
A21 13.24 .5909
A30 −4.967 1.231
A31 14.25 .5476
C1 0. none
C2 −5.067 .5522

Table 16.5: yi jkm = Ai0 +Ai1x j +Ck + ei jkm, A21 = A31, A20 = A30.

Table of Coefficients
Parameter Estimate SE
A10 3.395 1.398
A11 5.845 .6008
A20 −4.466 .9030
A21 13.81 .4078
C1 0. none
C2 −5.130 .5602

that the SE reported in Table 16.4 uses the MSE for the model being fitted, while in performing the
F test we used MSE([ABC]).

Are we done yet? No. The parameter estimates suggest some additional questions. Are the slopes
for salts 2 and 3 the same, i.e., is A21 = A31? In fact, are the entire lines for salts 2 and 3 the same,
i.e., are A21 = A31, A20 = A30? We can fit models that incorporate these assumptions.

Model SSE dfE
[A0][A1][C] 59.98 25
[A0][A1][C], A21 = A31 63.73 26
[A0][A1][C], A21 = A31, A20 = A30 66.97 27

It is a small matter to check that there is no lack of fit displayed by any of these models. The
smallest model that fits the data is now [A0][A1][C], A21 = A31, A20 = A30. Thus there seems to be
no difference between salts 2 and 3, but salt 1 has a different regression than the other two salts.
(We did not actually test whether salt 1 is different, but if salt 1 had the same slope as the other two
then there would be no [AB] interaction and we know that interaction exists.) There is also an effect
for the food additives. The parameter estimates and standard errors for the final model are given in
Table 16.5.

Figure 16.1 shows the fitted values as functions of the amount of salt for each combination of
a salt (with salts 2 and 3 treated as the same) and the additive. The fact that the slope for salt 1
is different from the slope for salts 2 and 3 constitutes an AB interaction. The vertical distances
between the two lines for each salt are the same due to the simple main effect for C (additive).
The two lines are shockingly close at B = x1 = 1, which makes one wonder if perhaps B = 1 is an
indication of no salt being used.

If the level B = 1 really consists of not adding salt, then, when B = 1, the means should be
identical for the three salts. The additives can still affect the moisture contents and positive salt
amounts can affect the moisture contents. To incorporate these ideas, we subtract one from the salt
amounts and eliminate the intercepts from the lines in the amount of salt. That makes the effects for
the additive the de facto intercepts, and they are no longer overparameterized,

yi jkm =Ck +Ai1(x j −1)+ ei jkm, A21 = A31.
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Figure 16.1: Fitted values for moisture content data treating salts 2 and 3 as the same.

Table 16.6: yi jkm =Ck +Ai1(x j − 1)+ ei jkm, A21 = A31.

Table of Coefficients
Parameter Estimate SE tobs

C1 9.3162 0.5182 17.978
C2 4.1815 0.4995 8.371
A11 5.8007 0.4311 13.456
A21 13.8282 0.3660 37.786

This model has dfE = 28 and SSE = 67.0 so it fits the data almost as well as the previous model
but with one less parameter. The estimated coefficients are given in Table 16.6 and the results are
plotted in Figure 16.2. The figure is almost identical to Figure 16.1. Note that the vertical distances
between the two lines with “the same” salt in Figure 16.2 are 5.1347 = 9.3162− 4.1815, almost
identical to the 5.130 in Figure 16.1.

Are we done yet? Probably not. We have not even considered the validity of the assumptions.
Are the errors normally distributed? Are the variances the same for every treatment combination?
Technically, we need to ask whether C1 =C2 in this new model. A quick look at the estimates and
standard errors answers the question in the negative.

Exercise 16.4.7 examines the process of fitting the more unusual models found in this section.

16.1.1 Computing

Because it is the easiest program I know, most of the analyses in this book were done in Minitab. We
now present and contrast R and SAS code for fitting [AB][C] and discuss the fitting of other models
from this section. Table 16.7 illustrates the variables needed for a full analysis. The online data file
contains only the y values and indices for the three groups. Creating X and X2 is generally easy.
Creating the variable A2 that does not distinguish between salts 2 and 3 can be trickier. If we had a
huge number of observations, we would want to write a program to modify A into A2. With the data
we have, in Minitab it is easy to make a copy of A and modify it appropriately in the spreadsheet.
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Figure 16.2: Fitted values for moisture content data treating salts 2 and 3 as the same and B = 1 as 0 salt.

Table 16.7: Moisture data, indices, and predictors.

A B C X X2 A2 A B C X X2 A2
y i j k x x2 y i j k x x2

8 1 1 1 1 1 1 11 1 2 2 2 4 1
17 1 2 1 2 4 1 16 1 3 2 3 9 1
22 1 3 1 3 9 1 3 2 1 2 1 1 2
7 2 1 1 1 1 2 17 2 2 2 2 4 2

26 2 2 1 2 4 2 32 2 3 2 3 9 2
34 2 3 1 3 9 2 5 3 1 2 1 1 2
10 3 1 1 1 1 2 16 3 2 2 2 4 2
24 3 2 1 2 4 2 33 3 3 2 3 9 2
39 3 3 1 3 9 2 4 1 1 2 1 1 1
13 1 2 1 2 4 1 10 1 2 2 2 4 1
20 1 3 1 3 9 1 15 1 3 2 3 9 1
10 2 1 1 1 1 2 5 2 1 2 1 1 2
24 2 2 1 2 4 2 19 2 2 2 2 4 2
9 3 1 1 1 1 2 29 2 3 2 3 9 2

36 3 3 1 3 9 2 4 3 1 2 1 1 2
5 1 1 2 1 1 1 34 3 3 2 3 9 2

Similarly, it is easy to create A2 in R using A2=A followed by A2[(A2 == 3)] <- 2. For SAS, I
would probably modify the data file so that I could read A2 with the rest of the data.

An R script for fitting [AB][C] follows. R needs to locate the data file, which in this case is
located at E:\Books\ANREG2\DATA2\tab16-1.dat.

scheffe <- read.table("E:\\Books\\ANREG2\\DATA2\\tab16-1.dat",

sep="",col.names=c("y","a","b","c"))

attach(scheffe)

scheffe

summary(scheffe)

#Summary tables

A=factor(a)
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B=factor(b)

C=factor(c)

X=b

X2=X*X

sabc <- lm(y ~ A:B + C)

coef=summary(sabc)

coef

anova(sabc)

SAS code for fitting [AB][C] follows. The code assumes that the data file is the same directory
(folder) as the SAS file.

options ps=60 ls=72 nodate;

data anova;

infile ’tab16-1.dat’;

input y A B C;

X = B;

X2=X*X;

proc glm data=anova;

class A B C ;

model y = A*B C ;

means C / lsd alpha=.01 ;

output out=new r=ehat p=yhat cookd=c h=hi rstudent=tresid student=sr;

proc plot;

plot ehat*yhat sr*R/ vpos=16 hpos=32;

proc rank data=new normal=blom;

var sr;

ranks nscores;

proc plot;

plot sr*nscores/vpos=16 hpos=32;

run;

To fit the other models, one needs to modify the part of the code that specifies the model. In R
this involves changes to “sabc <- lm(y ∼ A:B + C)” and in SAS it involves changes to “model
y = A*B C;”. Alternative model specifications follow.

Model Minitab R SAS
[ABC] A|B|C A:B:C A*B*C
[AB][BC] A|B B|C A:B+B:C A*B B*C
[AB][C] A|B C A:B+C A*B C
[A0][A1][A2][C] A|X A|X2 C A+A:X+A:X2+C A A*X A*X2 C
[A0][A1][C], A21 = A31 A A2|X C A+A2:X+C-1 A A2*X C
[A0][A1][C], A21 = A31, A20 = A30 A2 A2|X C A2+A2:X+C-1 A2 A2*X C

16.1.2 Regression fitting

We start by creating 0-1 indicator variables for the factor variables A, B, and C. Call these, A1,
A2, A3, B1, B2, B3, C1, C2, respectively. The values used to identify groups in factor variable B
are measured quantities, so create a measurement variable x ≡ B and another x2. We can construct
all of the models from these 10 predictor variables by multiplying them together judiciously. Of
course there are many equivalent ways of specifying these models; we present only one. None of
the models contain an intercept.
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Table 16.8: Abrasion resistance data.

Surface treatment
Yes No

Proportions 25% 50% 75% 25% 50% 75%
A 194 233 265 155 198 235
A 208 241 269 173 177 229

Fill
B 239 224 243 137 129 155
B 187 243 226 160 98 132

Model Variables
[ABC] A1B1C1,A1B1C2,A1B2C1,A1B2C2,A1B3C1, . . . ,A3B3C1,A3B3C2
[AB][AC][BC] A1B1,A1B2, . . . ,A3B3,A1C2,A2C2,A3C2,B2C2,B3C2
[AB][BC] A1B1,A1B2, . . . ,A3B3,B1C2,B2C2,B3C2
[AB][C] A1B1,A1B2, . . . ,A3B3,C2
[A][B][C] A1,A2,A3,B2,B3,C2

[A0][A1][A2][C] A1,A2,A3,A1x,A2x,A3x,A1x2,A2x2,A3x2,C2
[A0][A1][C] A1,A2,A3,A1x,A2x,A3x,C2
[A0][A1] A1,A2,A3,A1x,A2x,A3x
[A0][C] A1,A2,A3,C2

Constructing the models in which salts 2 and 3 are treated alike requires some additional algebra.
Model Variables
[A0][A1][C], A21 = A31 A1,A2,A3,A1x,(A2 +A3)x,C2
[A0][A1][C], A21 = A31, A20 = A30 A1,(A2 +A3),A1x,(A2 +A3)x,C2

16.2 Balanced three-factors

In this section we consider another three-way ANOVA. This time the data are balanced, but we will
not let that affect our analysis very much.

EXAMPLE 16.2.1. Box (1950) considers data on the abrasion resistance of a fabric. The data
are weight loss of a fabric that occurs during the first 1000 revolutions of a machine designed to
test abrasion resistance. A piece of fabric is weighed, put on the machine for 1000 revolutions, and
weighed again. The measurement is the change in weight. Fabrics of several different types are
compared. They differ by whether a surface treatment was applied, the type of filler used, and the
proportion of filler used. Two pieces of fabric of each type are examined, giving two replications
in the analysis of variance. The data, given in Table 16.8, are balanced because they have the same
number of observations for each group.

The three factors are referred to as “surf ,” “ f ill,” and “prop,” respectively. The factors have
2, 2, and 3 levels, so there are 2× 2× 3 = 12 groups. This can also be viewed as just a one-way
ANOVA with 12 groups. Using the three subscripts i jk to indicate a treatment by indicating the
levels of surf , f ill, and prop, respectively, the one-way ANOVA model is

yi jkm = μi jk + εi jkm (16.2.1)

i = 1,2, j = 1,2, k = 1,2,3, m = 1,2. Equivalently, we can break the treatment effects into main
effects for each factor, interactions between each pair of factors, and an interaction between all three
factors, i.e.,

yi jkm = G+Si +F j +Pk +(SF)i j +(SP)ik +(FP) jk +(SFP)i jk + εi jkm. (16.2.2)

Here the S, F, and P effects indicate main effects for surf , f ill, and prop, respectively. (We hope no
confusion occurs between the factor F and the use of F statistics or between the factor P and the use
of P values!) The (SF)s are effects that allow for the two-factor interaction between surf and f ill;
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Figure 16.3: Plot of residuals versus predicted values, 1000-rotation Box data.

(SP) and (FP) are defined similarly. The (SFP)s are effects that allow for three-factor interaction.
A three-factor interaction can be thought of as a two-factor interaction that changes depending on
the level of the third factor. The main effects, two-factor interactions, and three-factor interaction
simply provide a structure that allows us to proceed in a systematic fashion.

We begin by considering the one-way analysis of variance.

Analysis of Variance
Source df SS MS F
Treatments 11 48183 4380 16.30
Error 12 3225 269
Total 23 51408

The F statistic is very large. If the standard one-way ANOVA assumptions are reasonably valid,
there is clear evidence that not all of the 12 treatments have the same effect.

Now consider the standard residual checks for a one-way ANOVA. Figure 16.3 contains the
residuals plotted against the predicted values. The symmetry of the plot about a horizontal line at 0
is due to the model fitting, which forces the two residuals in each group to add to 0. Except for one
pair of observations, the variability seems to decrease as the predicted values increase. The residual
pattern is not one that clearly suggests heteroscedastic variances. We simply note the pattern and
would bring it to the attention of the experimenter to see if it suggests something to her. In the
absence of additional information, we proceed with the analysis. Figure 16.4 contains a normal plot
of the residuals. It does not look too bad. Note that with 24 residuals and only 12 dfE , we may want
to use dfE as the sample size should we choose to perform a W ′ test.

Table 16.9 results from fitting a variety of models to the data. It is constructed just like Ta-
ble 16.2. From the Cp statistics and the tests of each model against the three-factor interaction model,
the obvious candidate models are [SF][SP][FP] and its reduced model [SF][FP]. Using MSE([SFP])
in the denominator, testing them gives

Fobs =
[4889.7−3703.6]/[16−14]

3225.0/12
=

593.05
268.75

= 2.21,
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Figure 16.4: Normal plot of residuals, W ′ = 0.97, 1000-rotation Box data.

Table 16.9: Statistics for fitting models to the 1000-rotation abrasion resistance data of Table 16.8.

Model SSE dfE F* Cp

[SFP] 3225.0 12 — 12.0
[SF][SP][FP] 3703.6 14 0.89 9.8
[SF][SP] 7232.7 16 3.73 18.9
[SF][FP] 4889.7 16 1.55 10.2
[SP][FP] 7656.3 15 5.50 22.5
[SF][P] 8418.7 18 3.22 19.3
[SP][F] 11185.3 17 5.92 31.6
[FP][S] 8842.3 17 4.18 22.9
[S][F][P] 12371.4 19 4.86 32.0

which has a P value of 0.153. This is a test for whether we need the [SP] interaction in a model that
already includes [SF][FP]. We will tentatively go with the smaller model,

yi jkm = [SF]i j +[FP] jk + ei jkm

or its more overparameterized version,

yi jkm = G+Si+F j +Pk +[SF]i j +[FP] jk + ei jkm.

The test for adding the [SP] interaction to this model was the one test we really needed to per-
form, but there are several tests available for [SP] interaction. In addition to the test we performed,
one could test [SF][SP] versus [SF][P] as well as [SP][FP] versus [S][FP]. Normally, these would
be three distinct tests but with balanced data like the 1000-rotation data, the tests are all identical.
Because of this and similar simplifications due to balanced data, we can present a unique ANOVA
table, in lieu of Table 16.9, that provides a comprehensive summary of all ANOVA model tests. This
is given as Table 16.10. Note that the F statistic and P value for testing surf ∗ prop in Table 16.10
agree with our values from the previous paragraph. For a two-factor model, we presented ANOVA
tables like Table 14.3 that depended on fitting both of the two reasonable sequences of models. In an
unbalanced three-factor ANOVA, there are too many possible model sequences to present them all,
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Table 16.10: Analysis of Variance: Abrasion resistance.

Source df SS MS F P
surf 1 26268.2 26268.2 97.74 0.000
f ill 1 6800.7 6800.7 25.30 0.000
prop 2 5967.6 2983.8 11.10 0.002
surf ∗ f ill 1 3952.7 3952.7 14.71 0.002
surf ∗ prop 2 1186.1 593.0 2.21 0.153
f ill ∗ prop 2 3529.1 1764.5 6.57 0.012
surf ∗ f ill ∗ prop 2 478.6 239.3 0.89 0.436
Error 12 3225.0 268.8
Total 23 51407.8

Table 16.11: Abrasion resistance under [SF][F1][F2].

Analysis of Variance
Source df SS MS F P
[SF] 4 977126 244281 799.3393 0.000
[F1] 2 9114 4557 14.9117 0.000
[F2] 2 383 191 0.6259 0.547
Error 16 4890 306

so we use tables like 16.2 and 16.9, except in the balanced case where everything can be summarized
as in Table 16.10.

In the previous section, our best model for the moisture data had only one two-factor term. For
the abrasion data our working model has two two-factor terms: [SF] and [FP]. Both two-factor terms
involve F, so if we fix a level of f ill, we will have an additive model in surf and prop. In other
words, for each level of f ill there will be some effect for surf that is added to some effect for the
proportions. The interaction comes about because the surf effect can change depending on the f ill,
and the prop effects can also change depending on the f ill. Moreover, prop is a quantitative factor
with three levels, so an equivalent model will be to fit separately, for each level of fill, the surface
effects as well as a parabola in proportions. Let pk, k = 1,2,3 denote the levels of prop. Since the
proportions were equally spaced, it does not matter much what we use for the pks. We take p1 = 1,
p2 = 2, p3 = 3, although another obvious set of values would be 25, 50, 75. The model, equivalent
to [SF][FP], is

yi jkm = SFi j +F j1 pk +F j2 p2
k + ei jkm.

Denote this model [SF][F1][F2]. An ANOVA table is given as Table 16.11. Note that the Error line
agrees, up to round-off error, with the Error information on [SF][FP] in Table 16.9.

Table 16.12: [SF][F1][F2].

Table of Coefficients
Parameter Estimate SE t P
SF11 180.50 38.43 4.696 0.000
SF21 140.00 38.43 3.643 0.002
SF12 256.67 38.43 6.678 0.000
SF22 164.83 38.43 4.289 0.001
F11 18.50 43.27 0.428 0.675
F21 −41.38 43.27 −0.956 0.353
F12 3.75 10.71 0.350 0.731
F22 11.38 10.71 1.063 0.304
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Figure 16.5: [SF][F1][F2], 1000-rotation Box data.

The table of coefficients for [SF][F1][F2] is given as Table 16.12. It provides our fitted model

m̂(i, j, p) =

⎧⎪⎪⎨
⎪⎪⎩

180.50+18.50p+3.75p2 Surf = Yes, Fill = A
140.00+18.50p+3.75p2 Surf = No, Fill = A
256.67−41.38p+11.38p2 Surf = Yes, Fill = B
164.83−41.38p+11.38p2 Surf = No, Fill = B,

which is graphed in Figure 16.5. The two parabolas for Fill = A are parallel and remarkably straight.
The two parabolas for Fill = B are also parallel and not heavily curved. That the curves are parallel
for a fixed Fill is indicative of there being no [SP] or [SFP] interactions in the model. The fact
that the shapes of the Fill = A parabolas are different from the shapes of the Fill = B parabolas
is indicative of the [FP] interaction. The fact that the distance between the two parallel Fill = A
parabolas is different from the distance between the two parallel Fill = B parabolas is indicative of
the [SF] interaction.

Both quadratic terms have large P values in Table 16.12. We might consider fitting a reduced
model that eliminates the curvatures, i.e., fits straight lines. The reduced model is

yi jkm = SFi j +F j1 pk + ei jkm

denoted [SF][F1]. Table 16.13 gives the ANOVA table which, when compared to Table 16.11, allows
us to test simultaneously whether we need the two quadratic terms. With

Fobs =
[5272−4890]/[18−16]

3225.0/12
=

191
268.75

= 0.71,

we have no evidence of curvature.
The table of coefficients in Table 16.14 provides us with our fitted model for [SF][F1],

m̂(i, j, p) =

⎧
⎪⎨
⎪⎩

168.000+33.50p Surf = Yes, Fill = A
127.500+33.50p Surf = No, Fill = A
218.750+4.125p Surf = Yes, Fill = B
126.917+4.125p Surf = No, Fill = B.
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Table 16.13: Abrasion resistance under [SF][F1].

Analysis of Variance
Source df SS MS F P
S:F 4 977126 244281 834.008 0.000
F:p 2 9114 4557 15.558 0.000
Error 18 5272 293

Table 16.14: Abrasion resistance under [SF][F1].

Table of Coefficients
Parameter Estimate SE t P
SF11 168.000 13.974 12.023 0.000
SF21 127.500 13.974 9.124 0.000
SF12 218.750 13.974 15.654 0.000
SF22 126.917 13.974 9.082 0.000
F11 33.500 6.051 5.536 0.000
F21 4.125 6.051 0.682 0.504

This is graphed in Figure 16.6. The difference in the slopes for Fills A and B indicate the [FP]
interaction. The fact that the distance between the two parallel lines for Fill A is different from
the distance between the two parallel lines for Fill B indicates the presence of [SF] interaction. The
nature of this model is that for a fixed Fill the proportion curves will be parallel but when you change
fills both the shape of the curves and the distance between the curves can change.

The slope for Fill B looks to be nearly 0. The P value in Table 16.14 is 0.504. We could incor-
porate F21 = 0 into a model yi jkm = m(i, j, pk)+ εi jkm so that

m(i, j, p) =

⎧
⎪⎨
⎪⎩

[SF]11 +F11p Surf = Yes, Fill = A
[SF]21 +F11p Surf = No, Fill = A
[SF]12 Surf = Yes, Fill = B
[SF]22 Surf = No, Fill = B.
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Figure 16.6: [SF][F1], Box data.
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Table 16.15: Abrasion resistance under [SF][F11].

Analysis of Variance
Source df SS MS F P
F11 1 524966 524966 1844.26 0.000
S:F 4 461138 115284 405.01 0.000
Error 19 5408 285

Table 16.16: Abrasion resistance coefficients under [SF][F11].

Table of Coefficients
Parameter Estimate SE t P
F11 33.500 5.965 5.616 0.000
SF11 168.000 13.776 12.196 0.000
SF21 127.500 13.776 9.256 0.000
SF12 227.000 6.888 32.957 0.000
SF22 135.167 6.888 19.624 0.000

Denote this [SF][F11]. The ANOVA table and the Table of Coefficients are given as Tables 16.15
and 16.16. The fitted model is

m̂(i, j, p) =

⎧
⎪⎨
⎪⎩

168.000+33.500p Surf = Yes, Fill = A
127.500+33.500p Surf = No, Fill = A
227.000 Surf = Yes, Fill = B
135.167 Surf = No, Fill = B,

which is graphed as Figure 16.7.

Finally, we could take the modeling another step (too far) by noticing that in Table 16.15 the es-
timated effects of [SF]21 and [SF]22 are close. Incorporating their equality into a model [SF(3)][F11]
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Figure 16.7: [SF][F11], Box data.
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Table 16.17: Abrasion resistance under [SF(3)][F11].

Analysis of Variance
Source df SS MS F P
SF 3 966564 322188 1176.112 0.000
F11 1 19469 19469 71.069 0.000
Error 20 5479 274

Table 16.18: Abrasion resistance coefficients under [SF(3)][F11].

Table of Coefficients
Parameter Estimate SE t P
SF11 172.600 10.022 17.22 0.000
SF12 227.000 6.757 33.59 0.000
SF21 133.633 6.044 22.11 0.000
F11 31.200 3.701 8.43 0.000

with

m(i, j, p) =

⎧⎪⎨
⎪⎩

[SF]11 +F11p Surf = Yes, Fill = A
[SF]21 +F11p Surf = No, Fill = A
[SF]12 Surf = Yes, Fill = B
[SF]21 Surf = No, Fill = B

fits well but is rather dubious. Extrapolating to 0% fill, the estimated weight losses would be the
same for no surface treatment and both fills. But as the proportion increases, the weight loss remains
flat for Fill B but increases for Fill A. With a surface treatment, the extrapolated weight losses at 0%
fill are different, but for Fill B it remains flat while for Fill A it increases. The ANOVA table and
Table of Coefficients are given as Tables 16.17 and 16.18.

16.3 Higher-order structures

Unbalanced data with four or more factors are difficult because there are too many ANOVA type
models even to make tables like Table 14.2, Table 16.2, or Table 16.9 (much less list all sequences
of models like Table 14.3). Various methods developed for log-linear models can be exploited in
the analysis, cf. Christensen (1997, Chapter 6). Balanced data can provide an ANOVA table like
Table 16.10 to identify important effects for a reduced model. A four-factor model will be examined
in Chapter 19 in conjunction with a split-plot analysis.

16.4 Exercises

EXERCISE 16.4.1. Baten (1956) presented data on lengths of steel bars. An excessive number
of bars had recently failed to meet specifications and the experiment was conducted to identify the
causes of this problem. The bars were made with one of two heat treatments (W, L) and cut on one
of four screw machines (A, B, C, D) at one of three times of day (8 am, 11 am, 3 pm). The three
times were used to investigate the possibility of worker fatigue during the course of the day. The
bars were intended to be between 4.380 and 4.390 inches long. The data presented in Table 16.19
are thousandths of an inch in excess of 4.380. Treating the data as a 2× 3× 4 ANOVA, give an
analysis of the data.

EXERCISE 16.4.2. Bethea et al. (1985) reported data on an experiment to determine the effec-
tiveness of four adhesive systems for bonding insulation to a chamber. The adhesives were applied
both with and without a primer. Tests of peel-strength were conducted on two different thicknesses
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Table 16.19: Steel bar lengths.

Heat treatment W Heat treatment L
Machine A B C D A B C D

6 7 1 6 4 6 −1 4
Time 1 9 9 2 6 6 5 0 5

1 5 0 7 0 3 0 5
3 5 4 3 1 4 1 4
6 8 3 7 3 6 2 9

Time 2 3 7 2 9 1 4 0 4
1 4 1 11 1 1 −1 6

−1 8 0 6 −2 3 1 3
5 10 −1 10 6 8 0 4

Time 3 4 11 2 5 0 7 −2 3
9 6 6 4 3 10 4 7
6 4 1 8 7 0 −4 0

Table 16.20: Peel-strength of various adhesive systems.

Adhesive Adhesive
1 2 3 4 1 2 3 4
60 57 19.8 52 73 52 32.0 77
63 52 19.5 53 79 56 33.0 78

With 57 55 19.7 44 76 57 32.0 70
Primer 53 59 21.6 48 69 58 34.0 74

56 56 21.1 48 78 52 31.0 74
57 54 19.3 53 74 53 27.3 81
59 51 29.4 49 78 52 37.8 77
48 44 32.2 59 72 42 36.7 76

Without 51 42 37.1 55 72 51 35.4 79
Primer 49 54 31.5 54 75 47 40.2 78

45 47 31.3 49 71 57 40.7 79
48 56 33.0 58 72 45 42.6 79

Thickness A Thickness B

of rubber. Using two thicknesses of rubber was not part of the original experimental design. The
existence of this factor was only discovered by inquiring about a curious pattern of numbers in the
laboratory report. The data are presented in Table 16.20. Another disturbing aspect of these data is
that the values for adhesive system 3 are reported with an extra digit. Presumably, a large number of
rubber pieces were available and the treatments were randomly assigned to these pieces, but, given
the other disturbing elements in these data, I wouldn’t bet the house on it. A subset of these data
was examined earlier in Exercise 12.7.6.

(a) Give an appropriate model. List all the assumptions made in the model.

(b) Check the assumptions of the model and adjust the analysis appropriately.

(c) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts.

EXERCISE 16.4.3. The data of Table 16.21 were presented in Finney (1964) and Bliss (1947).
The observations are serum calcium values of dogs after they have been injected with a dose of
parathyroid extract. The doses are the treatments and they have factorial structure. One factor in-
volves using either the standard preparation (S) or a test preparation (T). The other factor is the
amount of a dose; it is either low (L) or high (H). Low doses are 0.125cc and high doses are 0.205cc.
Each dog is subjected to three injections at about 10 day intervals. Serum calcium is measured on
the day after an injection. Analyze the data using a three-factor model with dogs, preparations, and
amounts but do not include any interactions involving dogs. Should day effects be incorporated?
Can this be done conveniently? If so, do so.
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Table 16.21: Serum calcium for dogs.

Day
Dog I II III
1 TL, 14.7 TH, 15.4 SH, 14.8
2 TL, 15.1 TH, 15.0 SH, 15.8
3 TH, 14.4 SH, 13.8 TL, 14.4
4 TH, 16.2 TL, 14.0 SH, 13.0
5 TH, 15.8 SH, 16.0 TL, 15.0
6 TH, 15.8 TL, 14.3 SL, 14.8
7 TH, 17.0 TL, 16.5 SL, 15.0
8 TL, 13.6 SL, 15.3 TH, 17.2
9 TL, 14.0 TH, 13.8 SL, 14.0

10 TL, 13.0 SL, 13.4 TH, 13.8
11 SL, 13.8 SH, 17.0 TH, 16.0
12 SL, 12.0 SH, 13.8 TH, 14.0
13 SH, 14.6 TH, 15.4 SL, 14.0
14 SH, 13.0 SL, 14.0 TH, 14.0
15 SH, 15.2 TH, 16.2 SL, 15.0
16 SH, 15.0 SL, 14.5 TL, 14.0
17 SH, 15.0 SL, 14.0 TL, 14.6
18 SL, 15.8 TL, 15.0 SH, 15.2
19 SL, 13.2 SH, 16.0 TL, 14.9
20 SL, 14.2 TL, 14.1 SH, 15.0

EXERCISE 16.4.4. Using the notation of Section 16.1, write the models [A0][A1][C],
[A0][A1][C] A21 = A31, and [A0][A1][C] A21 = A31,A20 = A30 in matrix form. (Hint: To obtain
[A0][A1][C] A21 = A31 from [A0][A1][C], replace the two columns of X corresponding to A21 and A31

with one column consisting of their sum.) Use a regression program to fit these three models. (Hint:
Eliminate the intercept, and to impose the side condition C1 = 0, drop the column corresponding to
C1.)





Chapter 17

Basic Experimental Designs

In this chapter we examine basic experimental designs: completely randomized designs (CRDs),
randomized complete block (RCB) designs, Latin square (LS) designs, balanced incomplete block
(BIB) designs, and more. The focus of this chapter is on ideas of experimental design and how they
determine the analysis of data. We have already examined in the text and in the exercises data from
many of these experimental designs.

17.1 Experiments and causation

The basic object of running an experiment is to determine causation. Determining causation is dif-
ficult. We regularly collect data and find relationships between “dependent” variables and predictor
variables. But this does not imply causation. One can predict air pressure extremely well from the
boiling point of water, but does the boiling point of water cause the air pressure? Isn’t it the other
way around? We found that females scored lower in a particular Statistics class than males, but does
being female cause that result? Doesn’t it seem plausible that something that is correlated with sexes
might cause the result? Interest in Statistics? Time devoted to studying Statistics? Understanding the
instructor’s teaching style? Being Native American in Albuquerque in 1978 was highly associated
with lower suicide ages. But to claim that being Native American caused lower suicide ages would
be incredibly simplistic. Causation is fundamentally tied to the idea that if you change one thing
(the cause), you will change something else (the result). If that is true, can sex or race ever cause
anything, since we cannot really change them?

In constructing an experiment we randomly assign treatments to experimental units. For exam-
ple, we can randomly assign (many kinds of) drugs to people. We can randomly assign which em-
ployee will operate a particular machine or use a particular process. Unfortunately, there are many
things we cannot perform experiments on. We cannot randomly assign sexes or races to people. As
a practical matter, we cannot assign the use of illegal drugs to people.

The key point in determining causation is randomization. If we have a collection of experimental
units and randomly assign the treatments to them, then (on average) there can be no systematic
differences between the treatment groups other than the treatments. Therefore, any differences we
see among the treatment groups must be caused by the treatments.

Alas, there are still problems. The randomization argument works on average. Experimental
units, whether they be people, rats, or plots of ground, are subject to variability. One can get unlucky
with a particular assignment of treatments to experimental units. If by chance one treatment happens
to get far more of the “bad” experimental units it will look like a bad treatment. For example, if we
want to know whether providing milk to elementary school students improves their performances,
we cannot let the teachers decide who gets the milk. The teachers may give it to the poorest students
in which case providing milk could easily look like it harms student performances. Similar things
can happen by chance when randomly assigning treatments. To infer causation, the experiment
should be repeated often enough that chance becomes a completely implausible explanation for the
results.

Moreover, if we measure a huge number of items on each experimental unit, there is a good

397
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chance that one of the treatment groups will randomly have an inordinate number of good units for
some variable, and hence show an effect that is really due to chance. In other words, if we measure
enough variables, just by chance, some of them will display a relationship to the treatment groups,
regardless of how the treatment groups were chosen.

A particularly disturbing problem is that the experimental treatments are often not what we think
they are. An experimental treatment is everything we do differently to a group of experimental units.
If we give a drug to a bunch of rats and then stick them into an asbestos filled attic, the fact that
those rats have unusually high cancer rates does not mean that the drug caused it. The treatment
caused it, but just because we call the treatment by the name of the drug does not make the drug the
treatment.

Alternatively, suppose we want to test whether artificial sweeteners made with a new chemical
cause cancer. We get some rats, randomly divide them into a treatment group and a control. We
inject the treatment rats with a solution of the sweetener combined with another (supposedly benign)
chemical. We leave the control rats alone. For simplicity we keep the treatment rats in one cage and
the control rats in another cage. Eventually, we find an increased risk of cancer among the treatment
rats as compared to the control rats. We can reasonably conclude that the treatments caused the
increased cancer rate. Unfortunately, we do not really know whether the sweetener or the supposedly
benign chemical or the combination of the two caused the cancer. In fact, we do not really know
that it was the chemicals that caused the cancer. Perhaps the process of injecting the rats caused the
cancer or perhaps something about the environment in the treatment rats’ cage caused the cancer.
A treatment consists of all the ways in which a group is treated differently from other groups. It
is crucially important to treat all experimental units as similarly as possible so that (as nearly as
possible) the only differences between the units are the agents that were meant to be investigated.

Random assignment of treatments is fundamental to conducting an experiment but it does not
mean haphazard assignment of treatments to experimental units. Haphazard assignment is subject to
the (unconscious) biases of the person making the assignments. Random assignment uses a reliable
table of random numbers or a reliable computer program to generate random numbers. It then uses
these numbers to assign treatments. For example, suppose we have four experimental units labeled
u1, u2, u3, and u4 and four treatments labeled A, B, C, and D. Given a program or table that provides
random numbers between 0 and 1 (i.e., random samples from a Uniform(0,1) distribution), we
associate numbers between 0 and .25 with treatment A, numbers between .25 and .50 with treatment
B, numbers between .50 and .75 with treatment C, and numbers between .75 and 1 with treatment
D. The first random number selected determines the treatment for u1. If the first number is .6321,
treatment C is assigned to u1 because .50 < .6321 < .75. If the second random number is .4279,
u2 gets treatment B because .25 < .4279 < .50. If the third random number is .2714, u3 would get
treatment B, but we have already assigned treatment B to u2, so we throw out the third number. If the
fourth number is .9153, u3 is assigned treatment D. Only one unit and one treatment are left, so u4

gets treatment A. Any reasonable rule (decided ahead of time) can be used to make the assignment
if a random number hits a boundary, e.g., if a random number comes up, say, .2500.

By definition, treatments must be amenable to change. As discussed earlier, things like sex and
race are not capable of change, but in addition many viable treatments cannot be randomly assigned
for social reasons. If we want to know if smoking causes cancer in humans, running an experiment
is difficult. In our society we cannot force some people to smoke a specific amount for a long period
of time and force others not to smoke at all. Nonetheless, we are very interested in whether smoking
causes cancer. What are we to do?

When experiments cannot be run, the other common method for inferring causation is the “What
else could it be?” approach. For smoking, the idea is that we measure everything else that could pos-
sibly be causing cancer and appropriately adjust for those measurements. If, after fitting all of those
variables, smoking still has a significant effect on predicting cancer, then smoking must be caus-
ing the cancer. The catch is that this is extremely difficult to do. How do we even identify, much
less measure, everything else that could be causing cancer? And even if we do measure everything,
how do we know that we have adjusted for those variables appropriately? The key to this argument
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is independent replication of the studies! If there are many such observational studies with many
different ideas of what other variables could be causing the effect (cancer) and many ways of ad-
justing for those variables, and if the studies consistently show that smoking remains an important
predictor, at some point it would seem foolish to ignore the possibility that smoking causes cancer.

I have long contended that one cannot infer causation from data analysis. Certainly data analysis
speaks to the relative validity of competing causal models but that is a far cry from actually deter-
mining causation. I believe that causation must be determined by some external argument. I find
randomization to be the most compelling external argument. In “What else can it be?” the external
argument is that all other variables of importance have been measured and appropriately considered.

My contention that data analysis cannot lead to causation may be wrong. I have not devoted
my life to studying causal models. And I know that people study causation by the consideration of
counterfactuals. But for now, I stand by my contention.

Although predictive ability does not imply causation, for many (perhaps most) purposes, pre-
dictive ability is more important. Do we really care why the lights go on when we flip a switch? Or
do we care that our prediction comes true? We probably only care about causation when the lights
stop working. How many people really understand the workings of an automobile? How many can
successfully predict how automobiles will behave?

17.2 Technical design considerations

As a technical matter, the first object in designing an experiment is to construct one that allows for
a valid estimate of σ2, the variance of the observations. Without a valid estimate of error, we cannot
know whether the treatment groups are exhibiting any real differences. Obtaining a valid estimate of
error requires appropriate replication of the experiment. Having one observation on each treatment
is not sufficient. All of the basic designs considered in this chapter allow for a valid estimate of the
variance. (In my experience, failure to replicate is the most common sin committed on the television
show Mythbusters.)

The simplest experimental design is the completely randomized design (CRD). With four drug
treatments and observations on eight animals, a valid estimate of the error can be obtained by ran-
domly assigning each of the drugs to two animals. If the treatments are assigned completely at
random to the experimental units (animals), the design is a completely randomized design. The fact
that there are more animals than treatments provides our replication.

It is not crucial that the design be balanced, i.e., it is not crucial that we have the same number
of replications on each treatment. But it is useful to have more than one observation on each unit to
help check our assumption of equal variances.

A second important consideration is to construct a design that yields a small variance. A smaller
variance leads to sharper statistical inferences, i.e., narrower confidence intervals and more power-
ful tests. The basic idea is to examine the treatments on homogeneous experimental material. The
people of Bergen, Norway are probably more homogenous than the people of New York City. It will
be easier to find treatment effects when looking at people from Bergen. Of course the downside is
that we end up with results that apply to the people of Bergen. The results may or may not apply to
the people of New York City.

A fundamental tool for reducing variability is blocking. The people of New York City may be
more variable than the people of Bergen but we might be able to divide New Yorkers into subgroups
that are just as homogeneous as the people of Bergen. With our drugs and animals illustration, a
smaller variance for treatment comparisons is generally obtained when the eight animals consist
of two litters of four siblings and each treatment is applied to one randomly selected animal from
each litter. With each treatment applied in every litter, all comparisons among treatments can be
performed within each litter. Having at least two litters is necessary to get a valid estimate of the
variance of the comparisons. Randomized complete block designs (RCBs) : 1) identify blocks of
homogeneous experimental material (units) and 2) randomly assign each treatment to an experi-



400 17. BASIC EXPERIMENTAL DESIGNS

mental unit within each block. The blocks are complete in the sense that each block contains all of
the treatments.

The key point in blocking on litters is that, if we randomly assigned treatments to experimental
units without consideration of the litters, our measurements on the treatments would be subject
to all of the litter-to-litter variability. By blocking on litters, we can eliminate the litter-to-litter
variability so that our comparisons of treatments are subject only to the variability within litters
(which, presumably, is smaller). Blocking has completely changed the nature of the variability in
our observations.

The focus of block designs is in isolating groups of experimental units that are homogeneous:
litters, identical twins, plots of ground that are close to one another. If we have three treatments
and four animals to a litter, we can simply not use one animal. If we have five treatments and four
animals to a litter, a randomized complete block experiment becomes impossible.

A balanced incomplete block (BIB) design is one in which every pair of treatments occur to-
gether in a block the same number of times. For example, if our experimental material consists of
identical twins and we have the drugs A, B, and C, we might give the first set of twins drugs A and
B, the second set B and C, and the third set C and A. Here every pair of treatments occurs together
in one of the three blocks.

BIBs do not provide balanced data in our usual sense of the word “balanced” but they do have a
relatively simple analysis. RCBs are balanced in the usual sense. Unfortunately, losing any observa-
tions from either design destroys the balance that they display. Our focus is in analyzing unbalanced
data, so we use techniques for analyzing block designs that do not depend on any form of balance.

The important ideas here are replication and blocking. RCBs and BIBs make very efficient
designs but keeping their balance is not crucial. In olden days, before good computing, the simplicity
of their analyses was important. But simplicity of analysis was never more than a side effect of the
good experimental designs.

Latin squares use two forms of blocking at once. For example, if we suspect that birth order
within the litter might also have an important effect on our results, we continue to take observations
on each treatment within every litter, but we also want to have each treatment observed in every
birth order. This is accomplished by having four litters with treatments arranged in a Latin square
design. Here we are simultaneously blocking on litter and birth order.

Another method for reducing variability is incorporating covariates into the analysis. This topic
is discussed in Section 17.8.

Ideas of blocking can also be useful in observational studies. While one cannot really create
blocks in observational studies, one can adjust for important groupings.

EXAMPLE 17.2.1. If we wish to run an experiment on whether cocaine users are more paranoid
than other people, we may decide that it is important to block on socioeconomic status. This is
appropriate if the underlying level of paranoia in the population differs by socioeconomic status.
Conducting an experiment in this setting is difficult. Given groups of people of various socioeco-
nomic statuses, it is a rare researcher who has the luxury of deciding which subjects will ingest
cocaine and which will not. �

The seminal work on experimental design was written by Fisher (1935). It is still well worth
reading. My favorite source on the ideas of experimentation is Cox (1958). The books by Cochran
and Cox (1957) and Kempthorne (1952) are classics. Cochran and Cox is more applied. Kempthorne
is more theoretical. Kempthorne has been supplanted by Hinkelmann and Kempthorne (2008, 2005).
There is a huge literature in both journal articles and books on the general subject of designing ex-
periments. The article by Coleman and Montgomery (1993) is interesting in that it tries to formalize
many aspects of planning experiments that are often poorly specified. Two other useful books are
Cox and Reid (2000) and Casella (2008).
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17.3 Completely randomized designs

In a completely randomized design, a group of experimental units are available and the experimenter
randomly assigns treatments to the experimental units. The data consist of a group of observations
on each treatment. Typically, these groups of observations are subjected to a one-way analysis of
variance.

EXAMPLE 17.3.1. In Example 12.4.1, we considered data from Mandel (1972) on the elasticity
measurements of natural rubber made by 7 laboratories. While Mandel did not discuss how the data
were obtained, it could well have been the result of a completely randomized design. For a CRD,
we would need 28 pieces of the type of rubber involved. These should be randomly divided into
7 groups (using a table of random numbers or random numbers generated by a reliable computer
program). The first group of samples is then sent to the first lab, the second group to the second lab,
etc. For a CRD, it is important that a sample is not sent to a lab because the sample somehow seems
appropriate for that particular lab.

Personally, I would also be inclined to send the four samples to a given lab at different times. If
the four samples are sent at the same time, they might be analyzed by the same person, on the same
machines, at the same time. Samples sent at different times might be treated differently. If samples
are treated differently at different times, this additional source of variation should be included in
any predictive conclusions we wish to make about the labs.

When samples sent at different times are treated differently, sending a batch of four samples at
the same time constitutes subsampling. There are two sources of variation to deal with: variation
from time to time and variation within a given time. The values from four samples at a given time
collectively help reduce the effect on treatment comparisons due to variability at a given time, but
samples analyzed at different times are still required if we are to obtain a valid estimate of the
error. In fact, with subsampling, a perfectly valid analysis can be based on the means of the four
subsamples. In our example, such an analysis gives only one ‘observation’ at each time, so the need
for sending samples at more than one time is obvious. If the four samples were sent at the same
time, there would be no replication, hence no estimate of error. Subsection 19.4.1 and Christensen
(2011, Section 9.4) discuss subsampling in more detail. �

EXAMPLE 17.3.2. In Chapter 12, we considered suicide age data. A designed experiment would
require that we take a group of people who we know will commit suicide and randomly assign one
of the ethnic groups to the people. Obviously a difficult task. �

17.4 Randomized complete block designs

In a randomized complete block design the experimenter obtains (constructs) blocks of homoge-
neous material that contain as many experimental units as there are treatments. The experimenter
then randomly assigns a different treatment to each of the units in the block. The random assign-
ments are performed independently for each block. The advantage of this procedure is that treatment
comparisons are subject only to the variability within the blocks. Block-to-block variation is elimi-
nated in the analysis. In a completely randomized design applied to the same experimental material,
the treatment comparisons would be subject to both the within-block and the between-block vari-
ability.

The key to a good blocking design is in obtaining blocks that have little within-block variability.
Often this requires that the blocks be relatively small. A difficulty with RCB designs is that the
blocks must be large enough to allow all the treatments to be applied within each block. This can
be a serious problem if there is a substantial number of treatments or if maintaining homogeneity
within blocks requires the blocks to be very small. If the treatments cannot all be fitted into each
block, we need some sort of incomplete block design.
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Table 17.1: Spectrometer data.

Block
Treatment 1 2 3
New-clean 0.9331 0.8664 0.8711
New-soiled 0.9214 0.8729 0.8627
Used-clean 0.8472 0.7948 0.7810
Used-soiled 0.8417 0.8035

Table 17.2: Analysis of Variance: Spectrometer data.

Source df SS MS F P
Block 2 0.0063366 0.0031683 62.91 0.000
Treatments 3 0.0166713 0.0055571 110.34 0.000
Error 5 0.0002518 0.0000504
Total 10 0.0232598

The typical analysis of a randomized complete block design is a two-way ANOVA without
replication or interaction. Except for the experimental design considerations, the analysis is like
that of the Hopper Data from Example 15.3.1. A similar analysis is illustrated below. As with the
Hopper data, block-by- treatment interaction is properly considered to be error. If the treatment
effects are not large enough to be detected above any interaction, then they are not large enough to
be interesting.

EXAMPLE 17.4.1. Inman, Ledolter, Lenth, and Niemi (1992) studied the performance of an
optical emission spectrometer. Table 17.1 gives some of their data on the percentage of manganese
(Mn) in a sample. The data were collected using a sharp counterelectrode tip with the sample to
be analyzed partially covered by a boron nitride disk. Data were collected under three temperature
conditions. Upon fixing a temperature, the sample percentage of Mn was measured using 1) a new
boron nitride disk with light passing through a clean window (new-clean), 2) a new boron nitride
disk with light passing through a soiled window (new-soiled), 3) a used boron nitride disk with light
passing through a clean window (used-clean), and 4) a used boron nitride disk with light passing
through a soiled window (used-soiled). The four conditions, new-clean, new-soiled, used-clean, and
used-soiled are the treatments. The temperature was then changed and data were again collected for
each of the four treatments. A block is always made up of experimental units that are homogeneous.
The temperature conditions were held constant while observations were taken on the four treatments
so the temperature levels identify blocks. Presumably, the treatments were considered in random
order. Christensen (1996) analyzed these data including the data point for Block 3 and used-soiled.
We have dropped that point to illustrate an analysis for unbalanced data.

The two-factor additive-effects model for these data is

yi j = μ +βi +η j + εi j,

i = 1,2,3, j = 1,2,3,4; however, the i = 3, j = 4 observation is missing. Here βi denotes a block
effect and η j a treatment effect. As usual, we assume the errors are independent and N(0,σ2).

Unlike the analysis for two factors in Chapter 14, in blocking experiments we always examine
the treatments after the blocks. We constructed the blocks, so we know they should have effects.
The only relevant ANOVA table is given as Table 17.2.

For now, we just perform all pairwise comparisons of the treatments.
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Figure 17.1: Plot of residuals versus predicted values, spectrometer data.

Bonferroni
Parameter Est SE(Est) t P
η2 −η1 −0.00453 0.005794 −0.78 1.0000
η3 −η1 −0.08253 0.005794 −14.24 0.0002
η4 −η1 −0.07906 0.006691 −11.82 0.0005
η3 −η2 −0.07800 0.005794 −13.46 0.0002
η4 −η2 −0.07452 0.006691 −11.14 0.0006
η4 −η3 0.003478 0.006691 0.5198 1.000

The one missing observation is from treatment 4 so the standard errors that involve treatment 4 are
larger. Although we have different standard errors, the results can be summarized as follows.

New-clean New-soiled Used-soiled Used-clean
η̂1 η̂2 η̂4 η̂3

0 −0.00453 −0.07906 −0.08253

The new disk treatments are significantly different from the used disk treatments but the new disk
treatments are not significantly different from each other nor are the used disk treatments signifi-
cantly different from each other. The structure of the treatments suggests an approach to analyzing
the data that will be exploited in the next chapter. Here we used a side condition of η1 = 0 because
it made the estimates readily agree with the table of pairwise comparisons.

Table 17.2 contains an F test for blocks. In a true blocking experiment, there is not much interest
in testing whether block means are different. After all, one chooses the blocks so that they have
different means. Nonetheless, the F statistic MSBlks/MSE is of some interest because it indicates
how effective the blocking was, i.e., it indicates how much the variability was reduced by blocking.
For this example, MSBlks is 63 times larger than MSE , indicating that blocking was definitely
worthwhile. In our model for block designs, there is no reason not to test for blocks, but some
models used for block designs do not allow a test for blocks.

Residual plots for the data are given in Figures 17.1 through 17.4. Figure 17.1 is a plot of
the residuals versus the predicted values. Figure 17.2 plots the residuals versus indicators of the
treatments. While the plot looks something like a bow tie, I am not overly concerned. Figure 17.3
contains a plot of the residuals versus indicators of blocks. The residuals look pretty good. From
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Figure 17.2: Plot of residuals versus treatment groups, spectrometer data.
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Figure 17.3: Plot of residuals versus blocks, spectrometer data.

Figure 17.4, the residuals look reasonably normal. In the normal plot there are 11 residuals but the
analysis has only 5 degrees of freedom for error. If we want to do a W ′ test for normality, we might
use a sample size of 11 and compare the value W ′ = 0.966 to W ′(α,11), but it may be appropriate
to use the dfE as the sample size for the test and use W ′(α,5).

The leverages (not shown) are all reasonable. The largest t residual is −3.39 for Block 2, Treat-
ment 1, which gives a Bonferonni adjusted P value of 0.088. �
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Figure 17.4: Normal plot of residuals, spectrometer data, W ′ = 0.966.

17.4.1 Paired comparisons

An interesting special case of complete block data is paired comparison data as discussed in Sec-
tion 4.1. In paired comparison data, there are two treatments to contrast and each pair constitutes a
complete block.

EXAMPLE 17.4.2. Shewhart’s hardness data.
In Section 4.1, we examined Shewhart’s data from Table 4.1 on hardness of two items that were
welded together. In this case, it is impossible to group arbitrary formless pairs of parts and then
randomly assign a part to be either part 1 or part 2, so the data do not actually come from an RCB
experiment. Nonetheless, the two-way ANOVA model remains reasonable with pairs playing the
role of blocks.

The data were given in Section 4.1 along with the means for each of the two parts. The two-
way ANOVA analysis also requires the mean for each pair of parts. The analysis of variance table
for the blocking analysis is given in Table 17.3. In comparing the blocking analysis to the paired
comparison analysis given earlier, allowance for round-off errors must be made. The MSE is exactly
half the value of s2

d = 17.77165 given in Section 4.1. The Table of Coefficients (from Minitab) gives
a test for no Part effects of

tobs =
6.3315
0.4057

= 15.61 .

This is exactly the same t statistic as obtained in Section 4.1. The reference distribution is t(26),
again exactly the same. The analysis of variance F statistic is just the square of the tobs and gives
equivalent results for two-sided tests. Confidence intervals for the difference in means are also
exactly the same in the blocking analysis and the paired comparison analysis. The one real difference
between this analysis and the analysis of Section 4.1 is that this analysis provides an indication of
whether the effort used to account for pairing was worthwhile. In this case, with a P value of 0.006,
it was worthwhile to account for pairing. �
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Table 17.3: Analysis of Variance: Hardness data.

Source df SS MS F P
Pairs(Blocks) 26 634.94 24.42 2.75 0.006
Parts(Trts) 1 2164.73 2164.73 243.62 0.000
Error 26 231.03 8.89
Total 53 3030.71

Table 17.4: Mangold root data.

Columns
Rows 1 2 3 4 5
1 D(376) E(371) C(355) B(356) A(335)
2 B(316) D(338) E(336) A(356) C(332)
3 C(326) A(326) B(335) D(343) E(330)
4 E(317) B(343) A(330) C(327) D(336)
5 A(321) C(332) D(317) E(318) B(306)

17.5 Latin square designs

Latin square designs involve two simultaneous but distinct definitions of blocks. The treatments are
arranged so that every treatment is observed in every block for both kinds of blocks.

EXAMPLE 17.5.1. Mercer and Hall (1911) and Fisher (1925, Section 49) consider data on the
weights of mangold roots. They used a Latin square design with 5 rows, columns, and treatments.
The rectangular field on which the experiment was run was divided into five rows and five columns.
This created 25 plots, arranged in a square, on which to apply the treatments A, B, C, D, and E.
Each row of the square was viewed as a block, so every treatment was applied in every row. The
unique feature of Latin square designs is that there is a second set of blocks. Every column was
also considered a block, so every treatment was also applied in every column. The data are given in
Table 17.4, arranged by rows and columns with the treatment given in the appropriate place and the
observed root weight given in parentheses.

Table 17.5 contains the analysis of variance table including the analysis of variance F test for the
null hypothesis that the effects are the same for every treatment. The F statistic MSTrts/MSE is very
small, 0.56, so there is no evidence that the treatments behave differently. Blocking on columns was
not very effective as evidenced by the F statistic of 1.20, but blocking on rows was very effective,
F = 7.25.

Many experimenters are less than thrilled when told that there is no evidence for their treatments
having any differential effects. Inspection of the table of coefficients (not given) leads to an obvious
conclusion that most of the treatment differences are due to the fact that treatment D has a much
larger effect than the others, so we look at this a bit more.

We created a new factor variable called “Contrast” that has the same code for all of treatments
A, B, C, E but a different code for D. Fitting a model with Columns and Rows but Contrast in lieu

Table 17.5: Analysis of Variance: Mangold root data.

Source df SS MS F P
Columns 4 701.8 175.5 1.20 .360
Rows 4 4240.2 1060.1 7.25 .003
Trts 4 330.2 82.6 0.56 .696
Error 12 1754.3 146.2
Total 24 7026.6
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Table 17.6: Analysis of Variance: Mangold root data.

Source df SS MS F P
Columns 4 701.8 175.5 1.47 0.260
Rows 4 4240.2 1060.1 8.89 0.001
Contrast 1 295.8 295.8 2.48 0.136
Error 15 1788.7 119.2
Total 24 7026.6

of Treatments gives the ANOVA table in Table 17.6. The ANOVA table F statistic for Contrast is
295.8/119.2 = 2.48 with a P value of 0.136. It provides a test of whether treatment D is different
from the other treatments, when the other treatments are taken to have identical effects. Using our
best practice, we would actually compute the F statistic with the MSE from Table 17.5 in the
denominator giving Fobs = 295.8/146.2 = 2.02, which looks even less significant. This contrast
was chosen by looking at the data so as to appear as significant as possible and yet it still has a large
P value. Testing the two models against each other by using Tables 17.5 and 17.6 provides a test
of whether there are any differences among treatments A, B, C, and E. The F statistic of 0.08 is
so small that it would be suspiciously small if it had not been chosen, by looking at the data, to be
small.

The standard residual plots were given in Christensen (1996). They look quite good.
If these data were unbalanced, i.e., if we lost some observations, it would be important to look

at an ANOVA table that fits Treatments after both Columns and Rows. Fitted in the current order,
the F test for Rows indicates that blocking on rows after blocking on Columns was worthwhile but
the F test for Columns indicates that blocking on Columns alone would have been a waste of time.
In an unbalanced experiment, if we cared enough, we might fit Columns after Rows to see whether
blocking on Columns was a complete waste of time. Because the data are balanced, the two tests
for Columns are the same and we can safely say from Table 17.5 that blocking on Columns was a
waste of time. �

17.5.1 Latin square models

The model for an r× r Latin square design is a three-way analysis of variance,

yi jk = μ +κi+ρ j + τk + εi jk, εi jks independent N(0,σ2). (17.5.1)

The parameter μ is viewed as a grand mean, κi is an effect for the ith column, ρ j is an effect for the
jth row, and τk is an effect for the kth treatment. The subscripting for this model is peculiar. All of
the subscripts run from 1 to r but not freely. If we specify a row and a column, the design tells you
the treatment. Thus, if we know j and i, the design tells you k. If we specify a row and a treatment,
the design tells you the column, so j and k dictate i. In fact, if we know any two of the subscripts,
the design tells you the third.

17.5.2 Discussion of Latin squares

The idea of simultaneously having two distinct sets of complete blocks is quite useful. For example,
suppose we wish to compare the performance of four machines in producing something. Produc-
tivity is notorious for depending on the day of the week, with Mondays and Fridays often having
low productivity; thus we may wish to block on days. The productivity of the machine is also likely
to depend on who is operating the machine, so we may wish to block on operators. Thus we may
decide to run the experiment on Monday through Thursday with four machine operators and using
each operator on a different machine each day. One possible design is
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Operator
Day 1 2 3 4
Mon A B C D
Tue B C D A
Wed C D A B
Thu D A B C

where the numbers 1 through 4 are randomly assigned to the four people who will operate the
machines and the letters A through D are randomly assigned to the machines to be examined. More-
over, the days of the week should actually be randomly assigned to the rows of the Latin square. In
general, the rows, columns, and treatments should all be randomized in a Latin square.

Another distinct Latin square design for this situation is

Operator
Day 1 2 3 4
Mon A B C D
Tue B A D C
Wed C D B A
Thu D C A B

This square cannot be obtained from the first one by any interchange of rows, columns, and treat-
ments. Typically, one would randomly choose a possible Latin square design from a list of such
squares (see, for example, Cochran and Cox, 1957) in addition to randomly assigning the numbers,
letters, and rows to the operators, machines, and days.

The use of Latin square designs can be extended in numerous ways. One modification is the
incorporation of a third kind of block; such designs are called Graeco-Latin squares. The use of
Graeco-Latin squares is explored in the exercises for this chapter. A problem with Latin squares is
that small squares give poor variance estimates because they provide few degrees of freedom for
error. For example, a 3×3 Latin square gives only 2 degrees of freedom for error. In such cases, the
Latin square experiment is often performed several times, giving additional replications that provide
improved variance estimation. Section 18.6 presents an example in which several Latin squares are
used.

17.6 Balanced incomplete block designs

Balanced incomplete block (BIB) designs are not balanced in the same way that balanced ANOVAs
are balanced. Balanced incomplete block designs are balanced in the sense that every pair of treat-
ments occurs together in the same block some fixed number of times, say, λ . In a BIB the analysis of
blocks is conducted ignoring treatments and the analysis of treatments is conducted after adjusting
for blocks. This is the only order of fitting models that we need to consider. Blocks are designed to
have effects and these effects are of no intrinsic interest, so there is no reason to worry about fitting
treatments first and then examining blocks after adjusting for treatments. Blocks are nothing more
than an adjustment factor.

The analysis being discussed here is known as the intrablock analysis of a BIB; it is appropriate
when the block effects are viewed as fixed effects. If the block effects are viewed as random effects
with mean 0, there is an alternative analysis that is known as the recovery of interblock information.
Cochran and Cox (1957) and Christensen (2011, Section 12.11) discuss this analysis; we will not.

EXAMPLE 17.6.1. A simple balanced incomplete block design is given below for four treatments
A, B, C, D in four blocks of three units each.
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Block Treatments
1 A B C
2 B C D
3 C D A
4 D A B

Note that every pair of treatments occurs together in the same block exactly λ = 2 times. Thus,
for example, the pair A, B occurs in blocks 1 and 4. There are b = 4 blocks each containing k = 3
experimental units. There are t = 4 treatments and each treatment is observed r = 3 times. �

There are two relationships that must be satisfied by the numbers of blocks, b, units per block, k,
treatments, t, replications per treatment, r, and λ . Recall that λ is the number of times two treatments
occur together in a block. First, the total number of observations is the number of blocks times the
number of units per block, but the total number of observations is also the number of treatments
times the number of replications per treatment, thus

bk = rt.

The other key relationship in balanced incomplete block designs involves the number of compar-
isons that can be made between a given treatment and the other treatments within the same block.
Again, there are two ways to count this. The number of comparisons is the number of other treat-
ments, t − 1, multiplied by the number of times each other treatment is in the same block as the
given treatment, λ . Alternatively, the number of comparisons within blocks is the number of other
treatments within each block, k−1, times the number of blocks in which the given treatment occurs,
r. Thus we have

(t −1)λ = r(k−1).

In Example 17.6.1, these relationships reduce to

(4)3 = 3(4)

and
(4−1)2 = 3(3−1).

The nice thing about balanced incomplete block designs is that the theory behind them works
out so simply that the computations can all be done on a hand calculator. I know, I did it once; see
Christensen (2011, Section 9.4). But once was enough for this lifetime! We will rely on a computer
program to provide the computations. We illustrate the techniques with an example.

EXAMPLE 17.6.2. John (1961) reported data on the number of dishes washed prior to losing
the suds in the wash basin. Dishes were soiled in a standard way and washed one at a time. Three
operators and three basins were available for the experiment, so at any one time only three treatments
could be applied. Operators worked at the same speed, so no effect for operators was necessary nor
should there be any effect due to basins. Nine detergent treatments were evaluated in a balanced
incomplete block design. The treatments and numbers of dishes washed are given in Table 17.7.
There were b = 12 blocks with k = 3 units in each block. Each of the t = 9 treatments was replicated
r = 4 times. Each pair of treatments occurred together λ = 1 time. The three treatments assigned
to a block were randomly assigned to basins as were the operators. The blocks were run in random
order.

The analysis of variance is given in Table 17.8. The F test for treatment effects is clearly signif-
icant. We now need to examine contrasts in the treatments.

The treatments were constructed with a structure that leads to interesting effects. Treatments
A, B, C, and D all consisted of detergent I using, respectively, 3, 2, 1, and 0 doses of an additive.
Similarly, treatments E, F, G, and H used detergent II with 3, 2, 1, and 0 doses of the additive.
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Table 17.7: Balanced incomplete block design investigating detergents; data are numbers of dishes washed.

Block Treatment, Observation

1 A, 19 B, 17 C, 11
2 D, 6 E, 26 F, 23
3 G, 21 H, 19 J, 28
4 A, 20 D, 7 G, 20
5 B, 17 E, 26 H, 19
6 C, 15 F, 23 J, 31
7 A, 20 E, 26 J, 31
8 B, 16 F, 23 G, 21
9 C, 13 D, 7 H, 20

10 A, 20 F, 24 H, 19
11 B, 17 D, 6 J, 29
12 C, 14 E, 24 G, 21

Table 17.8: Analysis of Variance: BIB.

Source df Seq SS MS F P
Blocks 11 412.750 37.523 45.54 0.000
Trts 8 1086.815 135.852 164.85 0.000
Error 16 13.185 0.824
Total 35 1512.750

Treatment J was a control. We return to this example for a more detailed analysis of the treatments
in the next chapter.

As always, we need to evaluate our assumptions. The normal plot looks less than thrilling but
is not too bad. The fifth percentile of W ′ for 36 observations is .940, whereas the observed value is
.953. Alternatively, the residuals have only 16 degrees of freedom and W ′(.95,16) = .886. The data
are counts, so a square root or log transformation might be appropriate, but we continue with the
current analysis. A plot of standardized residuals versus predicted values looks good.

Table 17.9 contains diagnostic statistics for the example. Note that the leverages are all identical
for the BIB design. Some of the standardized deleted residuals (ts) are near 2 but none are so large
as to indicate an outlier. The Cook’s distances bring to one’s attention exactly the same points as the
standardized residuals and the ts. �

The data in Exercises 14.5.1, 14.5.3, and 16.4.3 were all balanced incomplete block designs.
Note that in those exercises we specifically indicated that block-by-treatment interactions should
not be entertained.

17.6.1 Special cases

Balanced lattice designs are BIBs with t = k2, r = k+ 1, and b = k(k+ 1). Table 17.10 gives an
example for k = 3. These designs can be viewed as k+ 1 squares in which each treatment occurs
once. Each row of a square is a block, each block contains k units, there are k rows in a square, so
all of the t = k2 treatments can appear in each square. To achieve a BIB, k+1 squares are required,
so there are r = k+ 1 replications of each treatment. With k+ 1 squares and k blocks (rows) per
square, there are b = k(k+1) blocks. The analysis follows the standard form for a BIB. In fact, the
design in Example 17.6.2 is a balanced lattice with k = 3.

Youden squares are a generalization of BIBs that allows a second form of blocking and a very
similar analysis. These designs are discussed in the next section.
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Table 17.9: Diagnostics for the detergent data.

Block Trt. y ŷ Leverage r t C
1 A 19 18.7 0.56 0.49 0.48 0.01
1 B 17 16.1 0.56 1.41 1.46 0.12
1 C 11 12.1 0.56 −1.90 −2.09 0.22
2 D 6 6.6 0.56 −0.98 −0.98 0.06
2 E 26 25.4 0.56 1.04 1.04 0.07
2 F 23 23.0 0.56 −0.06 −0.06 0.00
3 G 21 20.5 0.56 0.86 0.85 0.05
3 H 19 18.6 0.56 0.67 0.66 0.03
3 J 28 28.9 0.56 −1.53 −1.60 0.15
4 A 20 19.6 0.56 0.61 0.60 0.02
4 D 7 6.4 0.56 0.98 0.98 0.06
4 G 20 21.0 0.56 −1.59 −1.68 0.16
5 B 17 17.3 0.56 −0.49 −0.48 0.01
5 E 26 25.4 0.56 0.98 0.98 0.06
5 F 19 19.3 0.56 −0.49 −0.48 0.01
6 C 15 14.3 0.56 1.16 1.18 0.08
6 F 23 24.1 0.56 −1.77 −1.92 0.20
6 J 31 30.6 0.56 0.61 0.60 0.02
7 A 20 20.6 0.56 −0.92 −0.91 0.05
7 E 26 26.1 0.56 −0.18 −0.18 0.00
7 J 31 30.3 0.56 1.10 1.11 0.08
8 B 16 16.8 0.56 −1.29 −1.31 0.10
8 F 23 22.6 0.56 0.73 0.72 0.03
8 G 21 20.7 0.56 0.55 0.54 0.02
9 C 13 13.6 0.56 −0.92 −0.91 0.05
9 D 7 6.9 0.56 0.18 0.18 0.00
9 H 20 19.6 0.56 0.73 0.72 0.03

10 A 20 20.1 0.56 −0.18 −0.18 0.00
10 F 24 23.3 0.56 1.10 1.11 0.08
10 H 19 19.6 0.56 −0.92 −0.91 0.05
11 B 17 16.8 0.56 0.37 0.36 0.01
11 D 6 6.1 0.56 −0.18 −0.18 0.00
11 J 29 29.1 0.56 −0.18 −0.18 0.00
12 C 14 13.0 0.56 1.65 1.76 0.17
12 E 24 25.1 0.56 −1.84 −2.00 0.21
12 G 21 20.9 0.56 0.18 0.18 0.00

Table 17.10: Balanced lattice design for 9 treatments.

Block Block
1 A B C 7 A H F
2 D E F 8 D B I
3 G H I 9 G E C

4 A D G 10 A E I
5 B E H 11 G B F
6 C F I 12 D H C
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Table 17.11: Mangold root data.

Columns
Row 1 2 3 4
1 D(376) E(371) C(355) B(356)
2 B(316) D(338) E(336) A(356)
3 C(326) A(326) B(335) D(343)
4 E(317) B(343) A(330) C(327)
5 A(321) C(332) D(317) E(318)

Table 17.12: Analysis of Variance.

Source df Seq SS MS F P
Rows 4 4247.2 1061.8 6.87
Column 3 367.0 122.3 0.79
Trts 4 224.1 56.0 0.36 0.829
Error 8 1236.7 154.6
Total 19 6075.0

17.7 Youden squares

Consider the data on mangold roots in Table 17.11. There are five rows, four columns, and five
treatments. If we ignore the columns, the rows and the treatments form a balanced incomplete block
design, in which every pair of treatments occurs together three times. The key feature of Youden
squares is that additionally the treatments are also set up in such a way that every treatment occurs
once in each column. Since every row also occurs once in each column, the analysis for columns can
be conducted independently of the analysis for rows and treatments. Columns are balanced relative
to both treatments and rows.

Table 17.12 contains the analysis of variance for these data. Rows need to be fitted before Treat-
ments. As long as balance is maintained, it does not matter where Columns are fitted. If the data
become unbalanced, Treatments need to be fitted last. From the ANOVA table, there is no evidence
for a difference between treatments.

Evaluation of assumptions is carried out as in all unbalanced ANOVAs. Diagnostic statistics are
given in Table 17.13. The diagnostic statistics look reasonably good.

A normal plot looks very reasonable. A predicted value plot may indicate increasing variability
as predicted values increase. One could attempt to find a transformation that would improve the plot
but there is so little evidence of any difference between treatments that it hardly seems worth the
bother.

The reader may note that the data in this section consist of the first four columns of the Latin
square examined in Example 17.5.1. Dropping one column (or row) from a Latin square is a simple
way to produce a Youden square. As Youden square designs do not give a square array of numbers
(our example had 4 columns and 5 rows), one presumes that the name Youden square derives from
this relationship to Latin squares. Table 17.14 presents an alternative method of presenting the data
in Table 17.11 that is often used. �

17.7.1 Balanced lattice squares

The key idea in balanced lattice square designs is that if we look at every row as a block, the
treatments form a balanced incomplete block design and simultaneously if every column is viewed
as a block, the treatments again form a balanced incomplete block design. In other words, each
pair of treatments occurs together in the same row or column the same number of times. Of course
every row appears with every column and vice versa. Balanced lattice square designs are similar to
balanced lattices in that the number of treatments is t = k2 and that the treatments are arranged in
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Table 17.13: Diagnostics.

Row Col Trt y ŷ Leverage r t C
1 1 D 376 364.5 0.6 1.46 1.59 0.27
2 1 B 316 326.8 0.6 −1.37 −1.47 0.24
3 1 C 326 323.9 0.6 0.27 0.25 0.01
4 1 E 317 322.0 0.6 −0.64 −0.61 0.05
5 1 A 321 318.8 0.6 0.28 0.26 0.01
1 2 E 371 367.7 0.6 0.42 0.40 0.02
2 2 D 338 345.9 0.6 −1.01 −1.01 0.13
3 2 A 326 340.3 0.6 −1.81 −2.21 0.41
4 2 B 343 332.1 0.6 1.38 1.48 0.24
5 2 C 332 324.0 0.6 1.02 1.02 0.13
1 3 C 355 360.8 0.6 −0.74 −0.71 0.07
2 3 E 336 330.9 0.6 0.65 0.63 0.05
3 3 B 335 326.1 0.6 1.14 1.16 0.16
4 3 A 330 331.5 0.6 −0.19 −0.18 0.00
5 3 D 317 323.7 0.6 −0.86 −0.84 0.09
1 4 B 356 365.0 0.6 −1.14 −1.17 0.16
2 4 A 356 342.4 0.6 1.73 2.04 0.37
3 4 D 343 339.8 0.6 0.41 0.38 0.02
4 4 C 327 331.3 0.6 −0.55 −0.53 0.04
5 4 E 318 321.5 0.6 −0.44 −0.42 0.02

Table 17.14: Mangold root data: Column (observation).

Treatments
Row A B C D E
1 4(356) 3(355) 1(376) 2(371)
2 4(356) 1(316) 2(338) 3(336)
3 2(326) 3(335) 1(326) 4(343)
4 3(330) 2(343) 4(327) 1(317)
5 1(321) 2(332) 3(317) 4(318)

k× k squares. Table 17.15 gives an example for k = 3. If k is odd, one can typically get by with
(k+ 1)/2 squares. If k is even, k+ 1 squares are generally needed.

17.8 Analysis of covariance in designed experiments

In Section 17.2 we discussed blocking as a method of variance reduction. Blocks were then incorpo-
rated as a factor variable into an additive-effects model with blocks and treatments, cf. Chapter 14.
An alternative method of variance reduction is to incorporate a properly defined covariate into an
additive ACOVA model with treatments and the covariate, cf. Chapter 15. This section focuses on
choosing proper covariates.

In designing an experiment to investigate a group of treatments, concomitant observations can
be used to reduce the error of treatment comparisons. One way to use the concomitant observations
is to define blocks based on them. For example, income, IQ, and heights can all be used to collect

Table 17.15: Balanced lattice square design for 9 treatments.

Column Column
Row 1 2 3 Row 4 5 6
1 A B C 4 A F H
2 D E F 5 I B D
3 G H I 6 E G C
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people into similar groups for a block design. In fact, any construction of blocks must be based on
information not otherwise incorporated into the ANOVA model, so any experiment with blocking
uses concomitant information. In analysis of covariance we use the concomitant observations more
directly, as regression variables in the statistical model.

Obviously, for a covariate to help our analysis it must be related to the dependent variable. Un-
fortunately, improper use of concomitant observations can invalidate, or at least alter, comparisons
among the treatments. In the example of Section 15.1, the original ANOVA demonstrated an effect
on heart weights associated with sex but after adjusting for body weights, there was little evidence
for a sex difference. The very nature of what we were comparing changed when we adjusted for
body weights. Originally, we investigated whether heart weights were different for females and
males. The analysis of covariance examined whether there were differences between female heart
weights and male heart weights beyond what could be accounted for by the regression on body
weights. These are very different interpretations. In a designed experiment, we want to investigate
the effects of the treatments and not the treatments adjusted for some covariates. To this end, in a
designed experiment we require that the covariates be logically independent of the treatments. In
particular, we require that

the concomitant observations be made before assigning the treatments to the experimental units,

the concomitant observations be made after assigning treatments to experimental units but before
the effect of the treatments has developed, or

the concomitant observations be such that they are unaffected by treatment differences.

For example, suppose the treatments are five diets for cows and we wish to investigate milk
production. Milk production is related to the size of the cow, so we might pick height of the cow as
a covariate. For immature cows over a long period of time, diet may well affect both height and milk
production. Thus to use height as a covariate we should measure heights before treatments begin or
we could measure heights, say, two days after treatments begin. Two days on any reasonable diet
should not affect a cow’s height. Alternatively, if we use only mature cows their heights should be
unaffected by diet and thus the heights of mature cows could be measured at any time during the
experiment. Typically, one should be very careful when claiming that a covariate measured near
the end of an experiment is unaffected by treatments.

The requirements listed above on the nature of covariates in a designed experiment are imposed
so that the treatment effects do not depend on the presence or absence of covariates in the analysis.
The treatment effects are logically identical regardless of whether covariates are actually measured
or incorporated into the analysis. Recall that in the observational study of Section 15.1, the nature
of the group (sex) effects changed depending on whether covariates were incorporated in the model.
(Intuitively, the covariate body weight depends on the sex “treatment.”) The role of the covariates
in the analysis of a designed experiment is solely to reduce the error. In particular, using good
covariates should reduce both the variance of the observations σ2 and its estimate, the MSE . On
the other hand, one pays a price for using covariates. Variances of treatment comparisons are σ2

times a constant. With covariates in the model, the constant is larger than when they are not present.
However, with well-chosen covariates the appropriate value of σ2 should be sufficiently smaller
that the reduction in MSE overwhelms the increase in the multiplier. Nonetheless, in designing
an experiment we need to play these aspects off against one another. We need covariates whose
reduction in MSE more than makes up for the increase in the constant.

The requirements imposed on the nature of the covariates in a designed experiment have little
affect on the analysis illustrated in Section 15.1. The analysis focuses on a model such as (15.1.2). In
Section 15.1, we also considered Model (15.1.3) that has different slope parameters for the different
treatments (sexes). The requirements on the covariates in a designed experiment imply that the
relationship between the dependent variable y and the covariate z cannot depend on the treatments.
Thus with covariates chosen for a designed experiment it is inappropriate to have slope parameters
that depend on the treatment. There is one slope that is valid for the entire analysis and the treatment
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effects do not depend on the presence or absence of the covariates. If a model such as (15.1.3) fits
better than (15.1.2) when the covariate has been chosen appropriately, it suggests that the effects of
treatments may differ from experimental unit to experimental unit. In such cases a treatment cannot
really be said to have an effect, it has a variety of effects depending on which units it is applied to.
A suitable transformation of the dependent variable may alleviate the problem.

17.9 Discussion of experimental design

Data are frequently collected with the intention of evaluating a change in the current system of
doing things. If we really want to know the effect of a change in the system, we have to execute
the change. It is not enough to look at conditions in the past that were similar to the proposed
change because, along with the past similarities, there were dissimilarities. For example, suppose
we think that instituting a good sex education program in schools will decrease teenage pregnancies.
To evaluate this, it is not enough to compare schools that currently have such programs with schools
that do not, because along with the differences in sex education programs there are other differences
in the schools that affect teen pregnancy rates. Such differences may include parents’ average socio-
economic status and education. While adjustments can be made for any such differences that can
be identified, there is no assurance that all important differences can be found. Moreover, initiating
the proposed program involves making a change and the very act of change can affect the results.
For example, current programs may exist and be effective because of the enthusiasm of the school
staff that initiated them. Such enthusiasm is not likely to be duplicated when the new program is
mandated from above.

To establish the effect of instituting a sex education program in a population of schools, we
really need to (randomly) choose schools and actually institute the program. The schools at which
the program is instituted should be chosen randomly, so no (unconscious) bias creeps in due to
the selection of schools. For example, the people conducting the investigation are likely to favor
or oppose the project. They could (perhaps unconsciously) choose the schools in such a way that
makes the evaluation likely to reflect their prior attitudes. Unconscious bias occurs frequently and
should always be assumed. Other schools without the program should be monitored to establish a
base of comparison. These other schools should be treated as similarly as possible to the schools
with the new program. For example, if the district school administration or the news media pay a lot
of attention to the schools with the new program but ignore the other schools, we will be unable to
distinguish the effect of the program from the effect of the attention. In addition, blocking similar
schools together can improve the precision of the experimental results.

One of the great difficulties in learning about human populations is that obtaining the best data
often requires morally unacceptable behavior. We object to having our lives randomly changed for
the benefit of experimental science and typically the more important the issue under study, the more
we object to such changes. Thus we find that in studying humans, the best data available are often
historical. In our example we might have to accept that the best data available will be an historical
record of schools with and without sex education programs. We must then try to identify and adjust
for all differences in the schools that could potentially affect our conclusions. It is the extreme
difficulty of doing this that leads to the relative unreliability of many studies in the social sciences.
On the other hand, it would be foolish to give up the study of interesting and important phenomena
just because they are difficult to study.

Analytic and enumerative studies

In one-sample, two-sample, and one-way ANOVA problems, we assume that we have random sam-
ples from various populations. In more sophisticated models we continue to assume that at least the
errors are a random sample from a N(0,σ2) population. The statistical inferences we draw are valid
for the populations that were sampled. Often it is not clear what the sampled populations are. What
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Table 17.16: Dead adult flies.

Units of active
ingredient

Medium 0 4 8 16
A 423 445 414 247
B 326 113 127 147
C 246 122 206 138
D 141 227 78 148
E 208 132 172 356
F 303 31 45 29
G 256 177 103 63

are the populations from which the Albuquerque suicide ages were sampled? Presumably, our data
were all of the suicides reported in 1978 for these ethnic groups.

When we analyze data, we assume that the measurements are subject to errors and that the
errors are consistent with our models. However, the populations from which these samples are taken
may be nothing more than mental constructs. In such cases, it requires extrastatistical reasoning to
justify applying the statistical conclusions to whatever issues we really wish to address. Moreover,
the desire to predict the future underlies virtually all studies and, unfortunately, one can never be
sure that data collected now will apply to the conditions of the future. So what can we do? Only our
best. We can try to make our data as relevant as possible to our anticipation of future conditions. We
can try to collect data for which the assumptions will be reasonably true. We can try to validate our
assumptions. Studies in which it is not clear that the data are random samples from the population
of immediate interest are often called analytic studies.

About the only time one can be really sure that statistical conclusions apply directly to the
population of interest is when one has control of the population of interest. If we have a list of all
the elements in the population, we can choose a random sample from the population. Of course,
choosing a random sample is still very different from obtaining a random sample of observations.
Without control or total cooperation, we may not be able to take measurements on the sample.
(Even when we can find people that we want for a sample, many will not submit to a measurement
process.) Studies in which one can arrange to have the assumptions met are often called enumerative
studies. See Hahn and Meeker (1993) and Deming (1986) for additional discussion of these issues.

17.10 Exercises

EXERCISE 17.10.1. Snedecor (1945b) presented data on a spray for killing adult flies as they
emerged from a breeding medium. The data were numbers of adults found in cages that were set
over the medium containers. The treatments were different levels of the spray’s active ingredient,
namely 0, 4, 8, and 16 units. (Actually, it is not clear whether a spray with 0 units was actually
applied or whether no spray was applied. The former might be preferable.) Seven different sources
for the breeding mediums were used and each spray was applied on each distinct breeding medium.
The data are presented in Table 17.16.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Ccompare the treatment with no
active ingredient to the average of the three treatments that contain the active ingredient. Ignoring
the treatment with no active ingredient, the other three treatments are quantitative levels of the
active ingredient. On the log scale, these levels are equally spaced.

(c) Check the assumptions of the model and adjust the analysis appropriately.
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Table 17.17: Cornell’s scaled vinyl thickness values.

Production setting
Formulation 1 2 3 4 5 6 7 8
1 8 7 12 10 7 8 12 11
2 6 5 9 8 7 6 10 9
3 10 11 13 12 9 10 14 12
4 4 5 6 3 5 4 6 5
5 11 10 15 11 9 7 13 9

Table 17.18: Phosphorous fertilizer data.

Laboratory
Fertilizer 1 2 3 4 5
F 20.20 19.92 20.91 20.65 19.94
G 30.20 30.09 29.10 29.85 30.29
H 31.40 30.42 30.18 31.34 31.11
I 45.88 45.48 45.51 44.82 44.63
J 46.75 47.14 48.00 46.37 46.63

EXERCISE 17.10.2. Cornell (1988) considered data on scaled thickness values for five formula-
tions of vinyl designed for use in automobile seat covers. Eight groups of material were prepared.
The production process was then set up and the five formulations run with the first group. The pro-
duction process was then reset and another group of five was run. In all, the production process was
set eight times and a group of five formulations was run with each setting. The data are displayed in
Table 17.17.

(a) From the information given, identify the design for this experiment and give an appropriate
model. List all the assumptions made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using the Bonferroni method with an α of about .05.

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 17.10.3. In data related to that of the previous problem, Cornell (1988) has scaled
thickness values for vinyl under four different process conditions. The process conditions were A,
high rate of extrusion, low drying temperature; B, low rate of extrusion, high drying temperature; C,
low rate of extrusion, low drying temperature; D, high rate of extrusion, high drying temperature.
An initial set of data with these conditions was collected and later a second set was obtained. The
data are given below.

Treatments
A B C D

Rep 1 7.8 11.0 7.4 11.0
Rep 2 7.6 8.8 7.0 9.2

Identify the design, give the model, check the assumptions, give the analysis of variance table and
interpret the F test for treatments. The structure of the treatments suggests looking at average rates,
average temperatures, and interaction between rates and temperatures.

EXERCISE 17.10.4. Johnson (1978) and Mandel and Lashof (1987) present data on measure-
ments of P2O5 (phosphorous pentoxide) in fertilizers. Table 17.18 presents data for five fertilizers,
each analyzed in five labs. Our interest is in differences among the labs. Analyze the data.
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Table 17.19: Cowpea hay yields.

Block Trt.
Treatment 1 2 3 means
I4 45 43 46 44.666̄
I8 50 45 48 47.666̄
II4 61 60 63 61.333̄
II8 58 56 60 58.000
Block means 53.50 51.00 54.25 52.916̄

Table 17.20: Hydrostatic pressure tests: Operator, yield.

A B C D
40.0 43.5 39.0 44.0

B A D C
40.0 42.0 40.5 38.0

C D A B
42.0 40.5 38.0 40.0

D C B A
40.0 36.5 39.0 38.5

EXERCISE 17.10.5. Table 17.19 presents data on yields of cowpea hay. Four treatments are of
interest, variety I of hay was planted 4 inches apart (I4), variety I of hay was planted 8 inches apart
(I8), variety II of hay was planted 4 inches apart (II4), and variety II of hay was planted 8 inches
apart (II8). Three blocks of land were each divided into four plots and one of the four treatments
was randomly applied to each plot. These data are actually a subset of a larger data set given by
Snedecor and Cochran (1980, p. 309) that involves three varieties and three spacings in four blocks.
Analyze the data. Check your assumptions. Examine appropriate contrasts.

EXERCISE 17.10.6. In the study of the optical emission spectrometer discussed in Exam-
ple 17.4.1 and Table 17.1, the target value for readings was 0.89. Subtract 0.89 from each ob-
servation and repeat the analysis. What new questions are of interest? Which aspects of the analysis
have changed and which have not?

EXERCISE 17.10.7. An experiment was conducted to examine differences among operators of
Suter hydrostatic testing machines. These machines are used to test the water repellency of squares
of fabric. One large square of fabric was available but its water repellency was thought to vary along
the length (warp) and width (fill) of the fabric. To adjust for this, the square was divided into four
equal parts along the length of the fabric and four equal parts along the width of the fabric, yielding
16 smaller pieces. These pieces were used in a Latin square design to investigate differences among
four operators: A, B, C, D. The data are given in Table 17.20. Construct an analysis of variance
table. What, if any, differences can be established among the operators? Compare the results of
using the Tukey and Bonferroni methods for comparing the operators.

EXERCISE 17.10.8. Table 17.21 contains data similar to that in the previous exercise except
that in this Latin square differences among four machines: 1, 2, 3, 4, were investigated rather than
differences among operators. Machines 1 and 2 were operated with a hand lever, while machines
3 and 4 were operated with a foot lever. Construct an analysis of variance table. What, if any,
differences can be established among the machines?

EXERCISE 17.10.9. Table 17.21 is incomplete. The data were actually obtained from a Graeco-
Latin square that incorporates four different operators as well as the four different machines. The



17.10 EXERCISES 419

Table 17.21: Hydrostatic pressure tests: Machine, yield.

2 4 3 1
39.0 39.0 41.0 41.0

1 3 4 2
36.5 42.5 40.5 38.5

4 2 1 3
40.0 39.0 41.5 41.5

3 1 2 4
41.5 39.5 39.0 44.0

Table 17.22: Hydrostatic pressure tests: Operator, machine.

B,2 A,4 D,3 C,1
A,1 B,3 C,4 D,2
D,4 C,2 B,1 A,3
C,3 D,1 A,2 B,4

Operators are A, B, C, D.
Machines are 1, 2, 3, 4.

correct design is given in Table 17.22. Note that this is a Latin square for machines when we ignore
the operators and a Latin square for operators when we ignore the machines. Moreover, every op-
erator works once with every machine. Give the new analysis of variance table. How do the results
on machines change? What evidence is there for differences among operators? Was the analysis for
machines given earlier incorrect or merely inefficient?

EXERCISE 17.10.10. Table 17.23 presents data given from Nelson (1993) on disk drives from
a Graeco-Latin square design (see Exercise 17.10.9). The experiment was planned to investigate
the effect of four different substrates on the drives. The dependent variable is the amplitude of a
signal read from the disk where the signal written onto the disk had a fixed amplitude. Blocks were
constructed from machines, operators, and day of production. (In Table 17.23, days are indicated by
lower case Latin letters.) The substrata consist of A, aluminum; B, nickel-plated aluminum; and two
types of glass, C and D. Analyze the data. In particular, check for differences between aluminum
and glass, between the two types of glass, and between the two types of aluminum. Check your
assumptions.

EXERCISE 17.10.11. George Snedecor (1945a) asked for the appropriate variance estimate in
the following problem. One of six treatments was applied to the 10 hens contained in each of 12
cages. Each treatment was randomly assigned to two cages. The data were the number of eggs laid
by each hen.

(a) What should you tell Snedecor? Were the treatments applied to the hens or to the cages? How
will the analysis differ depending on the answer to this question?

Table 17.23: Amplitudes of disk drives.

Machine
Operator 1 2 3 4
I Aa 8 Cd 7 Db 3 Bc 4
II Cc 11 Ab 5 Bd 9 Da 5
III Dd 2 Ba 2 Ac 7 Cb 9
IV Bb 8 Dc 4 Ca 9 Ad 3
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(b) The mean of the 12 sample variances computed from the 10 hens in each cage was 297.8. The
average of the 6 sample variances computed from the two cage means for each treatment was
57.59. The sample variance of the 6 treatment means was 53.725. How should you construct an
F test? Remember that the numbers reported above are not necessarily mean squares.

EXERCISE 17.10.12. The data in Exercises 14.5.1, 14.5.3, and 16.4.3 were all balanced incomplete
block designs. Determine the values of t, r, b, k, and λ for each experiment.



Chapter 18

Factorial Treatments

Factorial treatment structures are simply an efficient way of defining the treatments used in an ex-
periment. They can be used with any of the standard experimental designs discussed in Chapter 17.
Factorial treatment structures have two great advantages, they give information that is not readily
available from other methods and they use experimental material very efficiently. Section 18.1 intro-
duces factorial treatment structures with an examination of treatments that involve two factors. Sec-
tion 18.2 illustrates the analysis of factorial structures on the data of Example 17.4.1. Section 18.3
addresses some modeling issues involved with factorial structures. Section 18.4 looks at modeling
interaction in the context of a designed experiment. Section 18.5 looks at a treatment structure that
is slightly more complicated than factorial structure. Section 18.6 examines extensions of the Latin
square designs that were discussed in Section 17.5.

18.1 Factorial treatment structures

The effect of alcohol and sleeping pills taken together is much greater than one would suspect
based on examining the effects of alcohol and sleeping pills separately. If we did one experiment
with 20 subjects to establish the effect of a ‘normal’ dose of alcohol and a second experiment with
20 subjects to establish the effect of a ‘normal’ dose of sleeping pills, the temptation would be to
conclude (incorrectly) that the effect of taking a normal dose of both alcohol and sleeping pills
would be just the sum of the individual effects. Unfortunately, the two separate experiments provide
no basis for either accepting or rejecting such a conclusion.

We can redesign the investigation to be both more efficient and more informative by using a
factorial treatment structure. The alcohol experiment would involve 10 people getting no alcohol
(a0) and 10 people getting a normal dose of alcohol (a1). Similarly, the sleeping pill experiment
would have 10 people given no sleeping pills (s0) and 10 people getting a normal dose of sleeping
pills (s1). The two factors in this investigation are alcohol (A) and sleeping pills (S). Each factor is at
two levels, no drug (a0 and s0, respectively) and a normal dose (a1 and s1, respectively). A factorial
treatment structure uses treatments that are all combinations of the different levels of the factors.
Thus a factorial experiment to investigate alcohol and sleeping pills might have 5 people given no
alcohol and no sleeping pills (a0s0), 5 people given no alcohol but a normal dose of sleeping pills
(a0s1), 5 people given alcohol but no sleeping pills (a1s0), and 5 people given both alcohol and
sleeping pills (a1s1).

Assigning the treatments in this way has two major advantages. First, it is more informative in
that it provides direct evidence about the effect of taking alcohol and sleeping pills together. If the
joint effect is different from the sum of the effect of alcohol plus the effect of sleeping pills, the
factors are said to interact. If the factors interact, there does not exist a single effect for alcohol; the
effect of alcohol depends on whether the person has taken sleeping pills or not. Similarly, there is
no one effect for sleeping pills; the effect depends on whether a person has taken alcohol or not.
Note that if the factors interact, the separate experiments described earlier have very limited value.

The second advantage of using factorial treatments is that if the factors do not interact, the fac-
torial experiment is more efficient than performing the two separate experiments. The two separate
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Table 18.1: Spectrometer data.

Block
Treatment 1 2 3
New-clean 0.9331 0.8664 0.8711
New-soiled 0.9214 0.8729 0.8627
Used-clean 0.8472 0.7948 0.7810
Used-soiled 0.8417 0.8035

experiments involve the use of 40 people, the factorial experiment involves the use of only 20 peo-
ple, yet the factorial experiment contains just as much information about both alcohol effects and
sleeping pill effects as the two separate experiments. The effect of alcohol can be studied by con-
trasting the 5 a0s0 people with the 5 a1s0 people and also by comparing the 5 a0s1 people with the 5
a1s1 people. Thus we have a total of 10 no-alcohol people to compare with 10 alcohol people, just
as we had in the separate experiment for alcohol. Recall that with no interaction, the effect of factor
A is the same regardless of the dose of factor S, so we have 10 valid comparisons of the effect of
alcohol. A similar analysis shows that we have 10 no-sleeping-pill people to compare with 10 peo-
ple using sleeping pills, the same as in the separate experiment for sleeping pills. Thus, when there
is no interaction, the 20 people in the factorial experiment are as informative about the effects of
alcohol and sleeping pills as the 40 people in the two separate experiments. Moreover, the factorial
experiment provides information about possible interactions between the factors that is unavailable
from the separate experiments.

The factorial treatment concept involves only the definition of the treatments. Factorial treat-
ment structure can be used in any design, e.g., completely randomized designs, randomized block
designs, and in Latin square designs. All of these designs allow for arbitrary treatments, so the
treatments can be chosen to have factorial structure.

Experiments involving factorial treatment structures are often referred to as factorial experi-
ments or factorial designs. A useful notation for factorial experiments identifies the number of fac-
tors and the number of levels of each factor. For example, the alcohol–sleeping pill experiment has
4 treatments because there are 2 levels of alcohol times 2 levels of sleeping pills. This is described
as a 2× 2 factorial experiment. If we had 3 levels of alcohol and 4 doses (levels) of sleeping pills
we would have a 3×4 experiment involving 12 treatments.

18.2 Analysis

A CRD is analyzed as a one-way ANOVA with the treatments defining the groups. However, if
the CRD has treatments defined by two factors, it can also be analyzed as a two-way ANOVA
with interaction. Similarly, if the CRD has treatments defined by three factors, it can be analyzed
as a three-way ANOVA as illustrated in Chapter 16. Similarly, an RCB design uses a two-way
model with no interaction between treatments and blocks. For treatments based on two factors, an
equivalent model for an RCB is a three-way model but the only interaction is between the two
treatment factors. We now illustrate a two-factor treatment structure in a randomized block design.

EXAMPLE 18.2.1. A 2×2 factorial in 3 randomized blocks
Consider again the spectroscopy data of Example 17.4.1. The treatments were all combinations of
two disks (new, used) and two windows (clean, soiled), so the treatments have a 2× 2 factorial
structure. The data are repeated in Table 18.1. The analysis of variance table for the four treatments
is
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Analysis of Variance
Source df Seq SS MS F P
Blocks 2 0.0063366 0.0031683 62.91 0.000
Treatments 3 0.0166713 0.0055571 110.34 0.000
Error 5 0.0002518 0.0000504
Total 10 0.0232598

In Chapter 14, when analyzing the rat weights, we replaced the 15 degrees of freedom for the
4×4= 16 Litter–Mother treatments with 3 degrees of freedom for Litters, 3 degrees of freedom for
Mothers, and 9 degrees of freedom for Litter–Mother interaction. Employing the current factorial
structure, we can similarly replace the three degrees of freedom for the four treatments with one
degree of freedom for Disks, one degree of freedom for Windows, and one degree of freedom for
Disk–Window interaction. Since the data are unbalanced, we should look at Disks fitted before
Windows

Analysis of Variance
Source df Seq SS MS F P
Blocks 2 0.0063366 0.0031683 62.91 0.000
Disk 1 0.0166269 0.0166269 330.14 0.000
Window 1 0.0000032 0.0000032 0.06 0.812
Disk*Window 1 0.0000413 0.0000413 0.82 0.407
Error 5 0.0002518 0.0000504
Total 10 0.0232598

as well as Windows fitted before Disks.

Analysis of Variance
Source df Seq SS MS F P
Blocks 2 0.0063366 0.0031683 62.91 0.000
Window 1 0.0002059 0.0002059 4.09 0.099
Disk 1 0.0164241 0.0164241 326.12 0.000
Window*Disk 1 0.0000413 0.0000413 0.82 0.407
Error 5 0.0002518 0.0000504
Total 10 0.0232598

The procedure is analogous to Chapter 14 except that we fit blocks prior to considering the other
effects.

The F statistic for Disk–Window interaction is not significant. This indicates a lack of evidence
that Disks behave differently with clean windows than with soiled windows. In examining the four
Disk–Window effects in Example 17.4.1 we considered the paired comparisons

New-clean New-soiled Used-soiled Used-clean
η̂1 η̂2 η̂4 η̂3

0 −0.00453 −0.07906 −0.08253

The estimated difference between clean and soiled windows differs in sign between new and used
disks. Clean windows give higher readings for new disks but soiled windows give higher readings for
used disks. Although this is some indication of interaction, the ANOVA table F test for interaction
makes it clear that the effect is not significant.

The F statistics for Windows show little evidence in either ANOVA table that the window types
affect yield. If interaction existed, this would be merely an artifact. Windows would have to be
important because the interaction would imply that disks behave differently with the different types
of windows. However, we possess no evidence of interaction.

The F statistics for Disks indicate that disk types have different effects. From the table of co-
efficients for either the no Disk–Window interaction model or the model that completely ignores
Windows, the positive coefficient for “New” (or negative coefficient for “Used”) indicates that new
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disks give greater yields than used disks. In fact, that is even clear from the pairwise comparisons
given earlier for the interaction model.

If the effects contain multiple degrees of freedom, it would be wise to investigate the components
of the ANOVA table (Interaction, Disks, and Windows) further as we illustrated in Chapter 16.
However, for these data each source has only one degree of freedom, thus the analysis of variance
table provides F statistics for all the interesting effects and the analysis given is complete.

The factorial treatment structure also suggests two residual plots that were not examined earlier.
These are plots of the residuals versus Disks and the residuals versus Windows. The plots give no
particular cause for alarm. �

18.3 Modeling factorials

The general model for a block design is

yi j = μ +βi+ τ j + εi j, εi js independent N(0,σ2),

i = 1, . . . ,b, j = 1, . . . ,a, where i denotes the blocks and j denotes treatments. In incomplete block
designs, not all combinations of i and j appear in the data. For a factorial treatment structure involv-
ing two factors, one factor with levels g = 1, . . . ,G and the other with levels h = 1, . . . ,H, we must
have a = GH and we can replace the single subscript j for treatments with the pair of subscripts gh.
For example, with G = 3 and H = 2 we might use the following correspondence.

j 1 2 3 4 5 6
(g,h) (1,1) (1,2) (2,1) (2,2) (3,1) (3,2)

We can now rewrite the block model as an equivalent model,

yigh = μ +βi+ τgh + εgh j, εighs independent N(0,σ2), (18.3.1)

i = 1, . . . ,b, g = 1, . . . ,G, h = 1, . . . ,H, where τgh is the effect due to the treatment combination
having level g of the first factor and level h of the second. Changing the subscripts really does
nothing to the model; the subscripting is merely a convenience.

We can also rewrite the model to display factorial effects similar to those used earlier. This is
done by expanding the treatment effects into effects corresponding to the ANOVA table lines. Write

yigh = μ +βi+ γg + ξh +(γξ )gh + εigh, (18.3.2)

where the γgs are main effects for the first factor, the ξhs are main effects for the second factor, and
the (γξ )ghs are effects that allow interaction between the factors.

Changing from Model (18.3.1) to Model (18.3.2) is accomplished by making the substitution

τgh ≡ γg + ξh +(γξ )gh.

There is less going on here than meets the eye. The only difference between the parameters τgh

and (γξ )gh is the choice of Greek letters and the presence of parentheses. They accomplish exactly
the same things for the two models. The parameters γg and ξh are completely redundant. Anything
one could explain with these parameters could be explained equally well with the (γξ )ghs. As they
stand, models (18.3.1) and (18.3.2) are equivalent. The point of using Model (18.3.2) is that it lends
itself nicely to an interesting reduced model. If we drop the τghs from Model (18.3.1), we drop all
of the treatment effects, so testing Model (18.3.1) against this reduced model is a test of whether
there are any treatment effects. If we drop the (γξ )ghs from Model (18.3.2), we get

ygh j = μ +βi + γg + ξh + εigh. (18.3.3)
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This still has the γgs and the ξhs in the model. Thus, dropping the (γξ )ghs does not eliminate all of
the treatment effects, it only eliminates effects that cannot be explained as the sum of an effect for
the first factor plus an effect for the second factor. In other words, it only eliminates the interaction
effects. The reduced model (18.3.3) is the model without interaction and consists of additive fac-
tor effects. The test for interaction is the test of Model (18.3.3) against the larger model (18.3.2).
By definition, interaction is any effect that can be explained by Model (18.3.2) but not by Model
(18.3.3).

As discussed, testing for interaction is a test of whether the (γξ )ghs can be dropped from Model
(18.3.2). If there is no interaction, a test for main effects, say the γgs after fitting the ξhs, examines
whether the γgs can be dropped from Model (18.3.3), i.e., whether the factor has any effect or
whether γ1 = γ2 = · · · = γG in a model with the ξhs. If the interaction terms (γξ )gh are present,
there is no test of main effects. Dropping the γgs from Model (18.3.2) leaves a model equivalent
to Model (18.3.2). Any test that a computer program might report for γ1 = γ2 = · · · = γG in Model
(18.3.2) will depend crucially on arbitrary side conditions that the program has imposed to obtain
estimates of parameters that cannot otherwise be estimated. Different programs that use different
side conditions will give different results. Never trust “adjusted” F tests for main effects in models
with interaction.

If interactions are important, they must be dealt with. Either we give up on Model (18.3.2), go
back to Model (18.3.1), and simply examine the various treatments as best we can, or we examine
the nature of the interaction directly. Note that we did not say that whenever interactions are signif-
icant they must be dealt with. Whether an interaction is important or not depends on the particular
application. For example, if interactions are statistically significant but are an order of magnitude
smaller than the main effects, one might be able to draw useful conclusions while ignoring the
interactions.

The procedure for incorporating factorial treatment structures is largely independent of the ex-
perimental design. The basic Latin square model is

yi jk = μ +κi+ρ j + τk + εi jk, εi jks independent N(0,σ2),

where the subscripts i, j, and k indicate columns, rows, and treatments, respectively. With two
factors, we can again replace the treatment subscript k with the pair (g,h) and write

yi jgh = μ ++κi+ρ j + τgh + εi jgh, εi jghs independent N(0,σ2).

Again, we can expand the treatment effects τgh to correspond to the factorial treatment structure as

yi jgh = μ +κi+ρ j + γg + ξh +(γξ )gh + εgh jk.

18.4 Interaction in a Latin square

We have examined the process of modeling interactions earlier, but for completeness we reexamine
the process in a designed experiment with factorial treatment structure.

EXAMPLE 18.4.2. A 2× 3 factorial in a 6×6 Latin square.
Fisher (1935, Sections 36, 64) presented data on the pounds of potatoes harvested from a piece of
ground that was divided into a square consisting of 36 plots. Six treatments were randomly assigned
to the plots in such a way that each treatment occurred once in every row and once in every column of
the square. The treatments involved two factors, a nitrogen-based fertilizer (N) and a phosphorous-
based fertilizer (P). The nitrogen fertilizer had two levels, none (n0) and a standard dose (n1). The
phosphorous fertilizer had three levels, none (p0), a standard dose (p1), and double the standard
dose (p2). We identify the six treatments for this 2×3 experiment as follows:

A B C D E F
n0 p0 n0 p1 n0 p2 n1 p0 n1 p1 n1 p2
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Table 18.2: Potato data: Treatment(Yield).

Column
Row 1 2 3 4 5 6
1 E(633) B(527) F(652) A(390) C(504) D(416)
2 B(489) C(475) D(415) E(488) F(571) A(282)
3 A(384) E(481) C(483) B(422) D(334) F(646)
4 F(620) D(448) E(505) C(439) A(323) B(384)
5 D(452) A(432) B(411) F(617) E(594) C(466)
6 C(500) F(505) A(259) D(366) B(326) E(420)

Table 18.3: Analysis of Variance: Potato data.

Source df SS MS F P
Rows 5 54199 10840 7.10 .001
Columns 5 24467 4893 3.20 .028
Treatments 5 248180 49636 32.51 .000
Error 20 30541 1527
Total 35 357387

The data are presented in Table 18.2. The basic ANOVA table is presented as Table 18.3. The
ANOVA F test indicates substantial differences between the treatments. Blocking on rows of the
square was quite effective with an F ratio of 7.10. Blocking on columns was considerably less
effective with an F of only 3.20, but it was still worthwhile. For unbalanced data, the rows and
columns can be fitted in either order (with appropriate interpretations of test results) but the treat-
ments should be fitted last.

We begin by fitting the Latin square model for six treatments k = 1, . . . ,6,

yi jk = μ +ρi +κ j + τk + εi jk.

Switching to factorial subscripts k → gh gives the model

yi jgh = μ +ρi+κ j + τgh + εi jgh,

g = 0,1 and h = 0,1,2. Adding main effect parameters for nitrogen and phosphorous leads to

yi jgh = μ +ρi+κ j +Ng +Ph +(NP)gh + εi jgh (18.4.1)

and fitting a sequence of models that successively adds each term from left to right in Model
(18.4.1), we get the following ANOVA table.

Analysis of Variance: Model (18.4.1)
Source df SS MS F P
Rows 5 54199 10840 7.10 0.001
Columns 5 24467 4893 3.20 0.028
N 1 77191 77191 50.55 0.000
P 2 164872 82436 53.98 0.000
N∗P 2 6117 3059 2.00 0.161
Error 20 30541 1527
Total 35 357387

The Error line is the same as in Table 18.3, as should be the case for equivalent models. There does
not seem to be much evidence for interaction with a P value of 0.161. (But we may soon change our
minds about that.)
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The three levels of phosphorous are quantitative, so we can fit separate quadratic models in lieu
of fitting interaction. Letting ph = 0,1,2 be the known quantitative levels, an equivalent model is

yi jgh = μ +ρi +κ j +Ng + δg1 ph + δg2 p2
h + εi jgh.

An alternative parameterization of this model is

yi jgh = μ +ρi +κ j +Ng + γ1 ph + δg1 ph + γ2 p2
h + δg2 p2

h + εi jgh, (18.4.2)

which provides the ANOVA table

Analysis of Variance: Model (18.4.2)
Source df SS MS F P
Rows 5 54199 10840 7.10 0.001
Columns 5 24467 4893 3.20 0.028
N 1 77191 77191 50.55 0.000
p 1 162855 162855 106.65 0.000
N∗ p 1 6112 6112 4.00 0.059
p2 1 2016 2016 1.32 0.264
N∗ p2 1 5 5 0.00 0.955
Error 20 30541 1527
Total 35 357387

Again, there is no change in the Error line as the models are equivalent. The ANOVA table comes
from fitting the terms in (18.4.2) successively, thus determining a sequence of models.

The P value for the last line of the ANOVA table, N ∗ p2, is 0.955 and suggests that we do not
need different quadratic terms for the two levels of nitrogen. The terms are fitted sequentially, so
the large P value for p2, 0.264, suggests that there is no quadratic effect at all in phosphorous, i.e.,
neither quadratic term is significant. Finally, the P value for N∗ p is a relatively small 0.059, which
suggests that perhaps there is some interaction between phosphorous and nitrogen in that the linear
coefficients (slopes) are different for n0 and n1. Although the parameterization of Model (18.4.2)
may seem awkward, sequential fitting of terms leads to a very useful ANOVA table.

Incorporating these suggestions, we fit separate straight lines in phosphorous for each level of
nitrogen,

yi jgh = μ +ρi +κ j +Ng + γ1 ph + δg1 ph + εi jgh. (18.4.3)

This gives the following ANOVA table.

Analysis of Variance: Model (18.4.3)
Source df SS MS F P
Rows 5 54199 10840 7.32 0.000
Columns 5 24467 4893 3.31 0.022
N 1 77191 77191 52.15 0.000
p 1 162855 162855 110.03 0.000
N∗ p 1 6112 6112 4.13 0.054
Error 22 32562 1480
Total 35 357387

With sequential fitting, the ANOVA table provides no new information; however, a table of coeffi-
cients is presented as Table 18.4. What we care about are the differential effects of the treatments.
Using Table 18.4 in which 0 = N̂0 + N̂1 = δ̂01 + δ̂11, we can summarize the fitted model as two
lines in the amount of phosphorous, one line for no nitrogen and another line for a single dose of
nitrogen,

m̂(i, j,g, p) =

{
μ̂i j −30.35+(82.375−15.958)p for n0

μ̂i j +30.35+(82.375+15.958)p for n1.
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Table 18.4: Table of Coefficients: Model (18.4.3).

Predictor Est SE t P
Constant 380.37 10.14 37.52 0.000
Rows
1 57.58 14.34 4.02 0.001
2 −9.42 14.34 −0.66 0.518
3 −4.42 14.34 −0.31 0.761
4 −9.58 14.34 −0.67 0.511
5 32.58 14.34 2.27 0.033
Columns
1 50.25 14.34 3.50 0.002
2 15.25 14.34 1.06 0.299
3 −8.58 14.34 −0.60 0.556
4 −9.08 14.34 −0.63 0.533
5 −20.75 14.34 −1.45 0.162
N
0 −30.35 10.14 −2.99 0.007
p 82.375 7.853 10.49 0.000
p*N
0 −15.958 7.853 −2.03 0.054
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Figure 18.1: Residual plots for potato data.

Of course the predicted lines also depend on the row i and the column j. For no phosphorous, no
nitrogen is estimated to yield 60.70 = 2(30.35) pounds less than a dose of nitrogen. For a single
dose of phosphorous, no nitrogen is estimated to yield 2(30.35+ 15.958)

.
= 93 pounds less than a

dose of nitrogen. For a double dose of phosphorous, no nitrogen is estimated to yield 2(30.35+
15.958× 2)

.
= 125 pounds less than a dose of nitrogen. Estimated yields go up as you add more

phosphorous, but estimated yields go up faster (at a rate of about 32
.
= 2(15.958) pounds per dose)

if you are also applying nitrogen.

Figures 18.1 and 18.2 contain residual plots from the full interaction model. They show some
interesting features but nothing so outstanding that I, personally, find them disturbing.



18.5 A BALANCED INCOMPLETE BLOCK DESIGN 429

−2 −1 0 1 2

−2
−1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

St
an

da
rd

ize
d r

es
idu

als

Figure 18.2: Normal plot for potato data, W ′ = 0.967.

Table 18.5: Balanced incomplete block design investigating detergents; data are numbers of dishes washed.

Block Treatment, Observation

1 A, 19 B, 17 C, 11
2 D, 6 E, 26 F, 23
3 G, 21 H, 19 J, 28
4 A, 20 D, 7 G, 20
5 B, 17 E, 26 H, 19
6 C, 15 F, 23 J, 31
7 A, 20 E, 26 J, 31
8 B, 16 F, 23 G, 21
9 C, 13 D, 7 H, 20

10 A, 20 F, 24 H, 19
11 B, 17 D, 6 J, 29
12 C, 14 E, 24 G, 21

18.5 A balanced incomplete block design

In Example 17.6.2 we considered a balanced incomplete block design with an unusual structure to
the treatments. We now return to that example.

EXAMPLE 18.5.1. John (1961) reported data on the number of dishes washed prior to losing
the suds in the wash basin. Dishes were soiled in a standard way and washed one at a time. Three
operators and three basins were available for the experiment, so at any one time only three treatments
could be applied. Operators worked at the same speed, so no effect for operators was necessary nor
should there be any effect due to basins. Nine detergent treatments were evaluated in a balanced
incomplete block design. The treatments and numbers of dishes washed are repeated in Table 18.5.
There were b = 12 blocks with k = 3 units in each block. Each of the t = 9 treatments was replicated
r = 4 times. Each pair of treatments occurred together λ = 1 time. The three treatments assigned
to a block were randomly assigned to basins as were the operators. The blocks were run in random
order. The analysis of variance is given in Table 18.6. The F test for treatment effects is clearly
significant. We now examine the treatments more carefully.



430 18. FACTORIAL TREATMENTS

Table 18.6: Analysis of Variance: Model (18.5.1).

Source df Seq SS MS F P
Blocks 11 412.750 37.523 45.54 0.000
Treatments 8 1086.815 135.852 164.85 0.000
Error 16 13.185 0.824
Total 35 1512.750

The treatments were constructed with an interesting structure. Treatments A, B, C, and D all
consisted of detergent I using, respectively, 3, 2, 1, and 0 doses of an additive. Similarly, treatments
E, F, G, and H used detergent II with 3, 2, 1, and 0 doses of the additive. Treatment J was a control.
Except for the control, the treatment structure is factorial in detergents and amounts of additive. The
general blocking model is

yi j = μ +βi+ τ j + εi j, εi js independent N(0,σ2). (18.5.1)

Here i = 1, . . . ,12, j = 1, . . . ,9, where i denotes the blocks and j denotes treatments.

As a first step, I created three new factor variables to replace the treatment factor. Control (k)
takes the value 1 if a treatment is not the control and a value 2 if it is the control. Detergent (g) takes
the value 1 if a treatment involves detergent I, the value 2 if it involves detergent II, and the value 3
if it is the control. Amount (h) takes on the values 0 through 3 for the doses of additive with each
treatment other than the control and is 0 for the control. The correspondence between treatments
and subscripts is as follows.

Treatment j kgh
A 1 113
B 2 112
C 3 111
D 4 110
E 5 123
F 6 122
G 7 121
H 8 120
J 9 230

The three subscripts kgh uniquely identify the treatments so we can refit the original blocking
model (18.5.1) as

yikgh = μ +βi+ τkgh + εikgh.

Going a step further, we can identify Control effects, Detergent effects, Amount effects, and a
Detergent–Amount interaction,

yikgh = μ +βi+Ck +Dg +Ah +(DA)gh + εikgh. (18.5.2)

This is equivalent to Model (18.5.1), but is somewhat awkward to fit for many general linear model
programs because both the variable Control and the variable Detergent uniquely identify the control
treatment. For example, Minitab only gives the following output in the ANOVA table.
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Analysis of Variance: Model (18.5.2)
Seq.

Source df SS MS F P
Blocks 11 412.750
Control 1 345.042
Detergent 1 381.338
Amount 3 311.384
Det∗Amt 3 49.051
Error 16 13.185
Total 35 1512.750

As usual, this is obtained by sequentially fitting the terms in Model (18.5.2) from left to right.
Minitab is also somewhat dubious about the degrees of freedom. But never fear, all is well. The
Error line agrees with that in Table 18.6, which is good evidence for my claim of equivalence. On
the other hand, R just fills out the ANOVA table.

We now exploit the quantitative nature of the amounts by recasting our Amount factor variable
as a quantitative variable a, which we also square and cube. Fitting a separate cubic polynomial for
both detergents other than the control gives

yikgh = μ +βi +Ck + δg0 + δg1ah + δg2a2
h + δg3a3

h + εikgh, (18.5.3)

or the equivalent but even more overparameterized version,

yikgh = μ +βi+Ck + δg0 + γ1ah + δg1ah + γ2a2
h + δg2a2

h + γ3a3
h + δg3a3

h + εikgh. (18.5.4)

Models (18.5.3) and (18.5.4) should give us a model equivalent to Model (18.5.2). But these models
still involve both the Control (k) and Detergent (g) effects, so they remain computer unfriendly.
Sequentially fitting the terms in Model (18.5.4), gives

Analysis of Variance: Model (18.5.4)
Seq.

Source df SS MS F P
Blocks 11 412.750
Control 1 345.042
Detergent 1 381.338
a 1 306.134
Det*a 1 41.223
a2 1 5.042
Det*a2 1 7.782
a3 1 0.208
Det*a3 1 0.045
Error 16 13.185
Total 35 1512.750

Again, as should be the case for equivalent models, Model (18.5.4) gives the same Error term as
models (18.5.1) and (18.5.2). We could easily fill out the blank columns of the ANOVA table with
a hand calculator because all the difficult computations have been made. With MSE = 0.824 from
Table 18.6, and most of the terms having one degree of freedom, it is easy to glace at the ANOVA
table for Model (18.5.4) and see what effects are important. The Det*a3 term checks whether the
cubic coefficients are different for detergents I and II, and a3 checks whether the overall cubic
coefficient is different from 0. Both are small, so there is no evidence for any cubic effects. On the
other hand, Det*a2 is almost 10 times the size of MSE , so we need different parabolas for detergents
I and II.

Rather than continuing to work with a general linear model program, I refit Model (18.5.3) as a
regression. I used 11 indictor variables for blocks 2 through 12, B2, . . . ,B12, I created three indicator
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variables for detergents, d1,d2,d3, where d3 is the indicator of the control, and I used the quantitative
amount variable a to create variables to fit separate polynomials for detergents I and II by defining
the products d1a, d1a2, d1a3 and d2a, d2a2, d2a3. Fitting the regression model

yr = β0 +
12

∑
j=2

β0 jBr j + δ30dr3 + δ10dr1

+ δ11dr1ar + δ21dr2ar + δ12dr1a2
r + δ22dr2a2

r + δ13dr1a3
r + δ23dr2a3

r + εr, (18.5.5)

gives

Analysis of Variance: Model (18.5.5)
Source df SS MS F P
Regression 19 1499.56 78.924 95.774 0.000000
Error 16 13.19 0.824
Total 35 1512.75

from which, with the sequential sums of squares, we can construct

Analysis of Variance: Model (18.5.5)
Seq.

Source df SS MS F P
Blocks 11 412.75 37.523 45.533 0.000000
d3 1 345.04 345.042 418.702 0.000000
d1 1 381.34 381.338 462.747 0.000000
d1 ∗ a 1 286.02 286.017 347.076 0.000000
d2 ∗ a 1 61.34 61.341 74.436 0.000000
d1 ∗ a2 1 12.68 12.676 15.382 0.001216
d2 ∗ a2 1 0.15 0.148 0.180 0.677212
d1 ∗ a3 1 0.22 0.224 0.272 0.609196
d2 ∗ a3 1 0.03 0.030 0.036 0.851993
Error 16 13.19 0.824
Total 35 1512.75

Both of the cubic terms are small, so we need neither. This agrees with the Model (18.5.4) ANOVA
table where we had sequential sums of squares for a3 of 0.208 and for Det*a3 of 0.045, which add
to 0.253. The cubic terms here have sums of squares 0.22 and 0.03, which sum to the same thing
(except for round-off error). In the Model (18.5.4) ANOVA table we could only identify that there
was quadratic interaction. From the term d2 ∗ a2 we see that detergent II needs no quadratic term,
while from d1 ∗ a2 we see that detergent II does need such a term. This implies a difference in the
quadratic coefficients, hence the significant Det*a2 quadratic interaction in the ANOVA table of
Model (18.5.4). All of the other effects look important. The table of coefficients for Model (18.5.5)
[not given] actually has a large P value for d1 ∗a2 but that provides a test for dropping d1 ∗a2 out of
a model that still contains the cubic terms, so the result is irrelevant.

Incorporating these conclusions, the table of coefficients for fitting

yr = β0 +
12

∑
j=2

β0 jBr j + δ30dr3 + δ10dr1 + δ11(dr1ar)+ δ21(dr2ar)+ δ12(dr1a2
r )+ εr (18.5.6)

is given as Table 18.7. Alternatively, we present the fitted model as

m̂(i,k,g,a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

18.0796+10.4222= 28.5018 for Block 1, Control
18.0796+ β̂0i+10.4222 for Block i �= 1, Control
18.0796− 12.5167+7.4500a−1.0278a2 for Block 1, Det. I
18.0796+ β̂0i−12.5167+7.4500a−1.0278a2 for Block i �= 1, Det. I
18.0796+ 2.0222a for Block 1, Det. II
18.0796+ β̂0i+2.0222a for Block i �= 1, Det. II.
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Table 18.7: Table of Coefficients: Model (18.5.6).

Predictor μ̂k SE(μ̂k) t P
Constant 18.0796 0.695241 26.0049 0.000
blk
2 1.0556 0.790605 1.3351 0.198
3 0.4389 0.793114 0.5534 0.586
4 0.8907 0.750211 1.1873 0.250
5 1.1407 0.731441 1.5596 0.135
6 2.1296 0.747558 2.8488 0.010
7 1.8963 0.758112 2.5013 0.022
8 0.4741 0.731441 0.6481 0.525
9 1.4574 0.757238 1.9246 0.069
10 1.3778 0.749327 1.8387 0.082
11 0.5278 0.741332 0.7119 0.485
12 0.9222 0.745784 1.2366 0.231
d3 10.4222 0.636575 16.3723 0.000
d1 −12.5167 0.627143 −19.9582 0.000
d1 ∗a 7.4500 0.764202 9.7487 0.000
d2 ∗a 2.0222 0.218343 9.2617 0.000
d1 ∗a2 −1.0278 0.244115 −4.2102 0.000
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Figure 18.3 Predicted dishes washed for two detergents as a function of the amounts of an additive in Block 1.

Figure 18.3 displays the results for Block 1 and detergents I and II.
From inspection of Figure 18.3, suds last longer when there is more additive (up to a triple dose).

Detergent II works uniformly better than detergent I. The effect of a dose of the additive is greater
at low levels for detergent I than at high levels but the effect of a dose is steady for detergent II. The
control is easily better than any of the new treatments with m̂(1,2,3,a) = 28.5018.

18.6 Extensions of Latin squares

Section 17.5 discussed Latin square designs and mentioned that an effective experimental design
often requires the use of several small Latin squares. We now present an example of such a design.
The example does not actually involve factorial treatment structures but it uses many related ideas.
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Table 18.8: Milk production data.

Cow Cow
Period 1 2 3 4 5 6
1 A 768 B 662 C 731 A 669 B 459 C 624
2 B 600 C 515 A 680 C 550 A 409 B 462
3 C 411 A 506 B 525 B 416 C 222 A 426

Cow Cow
Period 7 8 9 10 11 12
1 A 1091 B 1234 C 1300 A 1105 B 891 C 859
2 B 798 C 902 A 1297 C 712 A 830 B 617
3 C 534 A 869 B 962 B 453 C 629 A 597

Cow Cow
Period 12 14 15 16 17 18
1 A 941 B 794 C 779 A 933 B 724 C 749
2 B 718 C 603 A 718 C 658 A 649 B 594
3 C 548 A 613 B 515 B 576 C 496 A 612

Table 18.9: Analysis of Variance: Model (18.6.1).

Source df SS
Latin squares 5 1392534
Cows(Squares) 12 318241
Periods(Squares) 12 872013
Trts 2 121147
Error 22 52770
Total 53 2756704

EXAMPLE 18.6.1. Patterson (1950) and John (1971) considered the milk production of cows
that were given three different diets. The three feed regimens were A, good hay; B, poor hay; and
C, straw. Eighteen cows were used and milk production was measured during three time periods
for each cow. Each cow received a different diet during each time period. The data are given in
Table 18.8. The cows were divided into six groups of 3. A 3× 3 Latin square design was used for
each group of three cows along with the three periods and the three feed treatments. Having eighteen
cows, we get 6 Latin squares. The six squares are clearly marked in Table 18.8 by double vertical
and horizontal lines. We will not do a complete analysis of these data, rather we point out salient
features of the analysis.

The basic model for multiple Latin squares is

yhi jk = μ +Sh +Chi +Ph j + τk + εhi jk, (18.6.1)

where S indicates the 6 Square effects, C and P indicate 3 Cow and 3 Period effects within a Latin
square, but the effects change between Latin squares (2 degrees of freedom per square times 6
squares), and τ indicates 3 treatment effects that do not change between Latin squares. The analysis
of variance table is presented in Table 18.9. In general, all the ANOVA tables should be obtained
by fitting a sequence of hierarchical models where the terms are added to the sequence in the same
order that we have placed them in the model. These data are balanced, which makes the order of
fitting less important.

So far we have acted as though the model presumes that the columns are different in every Latin
square, as are the rows. This is true for the columns, no cow is ever used in more than one square.
It is less clear whether, say, period 1 is the same in the first Latin square as it is in the second and
other squares. We will return to this issue later. It is clear, however, that the treatments are the same
in every Latin square.
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Table 18.10: Analysis of Variance: Model (18.6.2).

Source df SS
Squares 5 1392534
Cows(Squares) 12 318241
Periods 2 814222
Period∗Square 10 57790
Trts 2 121147
Error 22 52770
Total 53 2756704

From Table 18.9, mean squares and F statistics are easily obtained. If this was a classic applica-
tion of multiple Latin squares, the only F test of real interest would be that for treatments, since the
other lines of Table 18.9 denote various forms of blocking. The F statistic for treatments is about
25, so, with 22 degrees of freedom for Error, the test is highly significant. One should then compare
the three treatments using contrasts and check the validity of the assumptions using residual plots.

The basic model (18.6.1) and analysis of variance Table 18.9 can be modified in many ways. We
now present some of those ways.

As a standard practice, John (1971, Section 6.5) includes a square-by-treatment interaction to
examine whether the treatments behave the same in the various Latin squares,

yhi jk = μ +Sh +Chi+Ph j + τk +(Sτ)hk + εhi jk.

In our example with 6 squares and 3 treatments such a term would typically have (6−1)×(3−1)=
10 degrees of freedom.

We mentioned earlier that periods might be considered the same from square to square. If so,
we should fit

yhi jk = μ +Sh +Chi+Pj +(SP)h j + τk + εhi jk. (18.6.2)

We will want to test this against the no-interaction model to examine whether the periods behave the
same from square to square. The analysis of variance table incorporating this change is presented as
Table 18.10. Our current data are balanced but for unbalanced data one could debate whether the ap-
propriate test for square-by-period interaction should be conducted before or after fitting treatments.
I would always fit treatments after everything that involves blocks.

If the Latin squares were constructed using the complete randomization discussed in Sec-
tion 17.5, one could argue that the period-by-squares interaction must really be error and that the 10
degrees of freedom and corresponding sum of squares should be pooled with the current error. Such
an analysis is equivalent to simply thinking of the design as one large rectangle with three terms to
consider: the 3 periods (rows), the 18 cows (columns), and the 3 treatments. For this design,

yhi jk = μ +Chi+Pj + τk + εhi jk. (18.6.3)

Such an analysis is illustrated in Table 18.11. The sum of squares for Cows in Table 18.11 equals
the sum of squares for Cows within Squares plus the sum of squares for Squares from the earlier
ANOVA tables. The 17 degrees of freedom for Cows are also the 12 degrees of freedom for cows
within squares plus the 5 degrees of freedom for Squares.

In this example, choosing between the analyses of Tables 18.10 and 18.11 is easy because of
additional structure in the design that we have not yet considered. This particular design was chosen
because consuming a particular diet during one period might have an effect that carries over into the
next time period. In the three Latin squares on the left of Table 18.8, treatment A is always followed
by treatment B, treatment B is always followed by treatment C, and treatment C is always followed
by treatment A. In the three Latin squares on the right of Table 18.8, treatment A is always followed
by treatment C, treatment B is followed by treatment A, and treatment C is followed by treatment B.
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Table 18.11: Analysis of Variance: Model(18.6.3).

Source df SS
Cows 17 1710775
Periods 2 814222
Trts 2 121147
Error 32 110560
Total 53 2756704

This is referred to as a cross-over or change-over design. Since there are systematic changes in the
squares, it is reasonable to investigate whether the period effects differ from square to square and
so we should use Table 18.10. In particular, we would like to isolate 2 degrees of freedom from the
period-by-square interaction to look at whether the period effects differ between the three squares
on the left as compared to the three squares on the right. To do this, we replace the Squares subscript
h = 1, . . . ,6 with two subscripts: f = 1,2 and g = 1,2,3 where f identifies right and left squares.
We then fit the model

y f gi jk = μ +Cf gi+Pj +(SdP) f j + τk + ε f gi jk

where (SdP) f j is a side-by-period interaction. When the data are balanced, we don’t need to worry
about whether to fit this interaction before or after treatments. These issues are addressed in Exer-
cise 18.7.6. �

18.7 Exercises

EXERCISE 18.7.1. The process condition treatments in Exercise 17.11.3 on vinyl thickness had
factorial treatment structure. Give the factorial analysis of variance table for the data. The data are
repeated below.

Rate High Low Low High
Temp Low High Low High
Rep. 1 7.8 11.0 7.4 11.0
Rep. 2 7.6 8.8 7.0 9.2

EXERCISE 18.7.2. Garner (1956) presented data on the tensile strength of fabrics as measured
with Scott testing machines. The experimental procedure involved selecting eight 4×100-inch strips
from available stocks of uniform twill, type I. Each strip was divided into sixteen 4×6 inch samples
(with some left over). Each of three operators selected four samples at random and, assigning each
sample to one of four machines, tested the samples. The four extra samples from each strip were
held in reserve in case difficulties arose in the examination of any of the original samples. It was
considered that each 4× 100 inch strip constituted a relatively homogeneous batch of material.
Effects due to operators include differences in the details of preparation of samples for testing and
mannerisms of testing. Machine differences include differences in component parts, calibration, and
speed. The data are presented in Table 18.12. Entries in Table 18.12 are values of the strengths in
excess of 180 pounds.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table.

(c) Check the assumptions of the model and adjust the analysis appropriately.

EXERCISE 18.7.3. Consider the milk production data in Table 18.8 and the corresponding anal-
ysis of variance in Table 18.9. Relative to the periods, the squares on the left of Table 18.8 always
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Table 18.12: Tensile strength of uniform twill.

o1 o2 o3

m1 m2 m3 m4 m1 m2 m3 m4 m1 m2 m3 m4

s1 18 7 5 9 12 16 15 9 18 13 10 22
s2 9 11 12 3 16 4 21 19 25 13 19 12
s3 7 11 11 1 7 14 12 6 17 20 19 20
s4 6 4 10 8 15 10 16 12 10 16 12 18
s5 10 8 6 10 17 12 12 22 18 16 21 22
s6 7 12 3 15 18 22 14 19 18 23 22 14
s7 13 5 15 16 14 18 18 9 16 16 10 15
s8 1 11 8 12 7 13 11 13 15 14 14 11
o = operator, m = machine, s = strip

Table 18.13: Hydrostatic pressure tests: Operator, yield.

Square I Square II

C D A B D C B A
41.0 38.5 39.0 43.0 43.0 40.5 43.5 39.5

D C B A C D A B
41.0 38.5 41.5 41.0 41.0 39.0 39.5 41.5

A B C D B A D C
39.5 42.0 41.5 42.0 42.0 41.0 40.5 37.5

B A D C A B C D
41.5 41.0 40.5 41.5 40.5 42.5 44.0 41.0

Operators are A, B, C, D.

have treatment A followed by B, B followed by C, and C followed by A. The squares on the right
always have treatment A followed by C, B followed by A, and C followed by B. Test whether there
is an interaction between periods and left–right square differences.

EXERCISE 18.7.4. As in Exercise 17.11.7, we consider differences in hydrostatic pressure tests
due to operators. Table 18.13 contains two Latin squares. Analyzing these together, give an appro-
priate analysis of variance table and report on any differences that can be established among the
operators.

EXERCISE 18.7.5. Exercises 17.11.7, 17.11.8, 17.11.9, and the previous exercise used subsets
of data reported in Garner (1956). The experiment was designed to examine differences among
operators and machines when using Suter hydrostatic pressure-testing machines. No interaction
between machines and operators was expected.

A one-foot square of cloth was placed in a machine. Water pressure was applied using a lever
until the operator observed three droplets of water penetrating the cloth. The pressure was then
relieved using the same lever. The observation was the amount of water pressure consumed and it
was measured as the number of inches that water rose up a cylindrical tube with radial area of 1
square inch. Operator differences are due largely to differences in their ability to spot the droplets
and their reaction times in relieving the pressure. Machines 1 and 2 were operated with a hand lever.
Machines 3 and 4 were operated with at foot lever.

A 52× 200-inch strip of water-repellant cotton Oxford was available for the experiment. From
this, four 48× 48-inch squares were cut successively along the warp (length) of the fabric. It was
decided to adjust for heterogeneity in the application of the water repellant along the warp and fill
(width) of the fabric, so each 48× 48 square was divided into four equal parts along the warp and
four equal parts along the fill, yielding 16 smaller squares. The design involves four replications
of a Graeco-Latin square. In each 48×48 square, every operator worked once with every row and
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Table 18.14: Hydrostatic pressure tests: Operator, machine, yield.

Square 1 Square 2

A,1 B,3 C,4 D,2 B,2 A,4 D,3 C,1
40.0 43.5 39.0 44.0 39.0 39.0 41.0 41.0

B,2 A,4 D,3 C,1 A,1 B,3 C,4 D,2
40.0 42.0 40.5 38.0 36.5 42.5 40.5 38.5

C,3 D,1 A,2 B,4 D,4 C,2 B,1 A,3
42.0 40.5 38.0 40.0 40.0 39.0 41.5 41.5

D,4 C,2 B,1 A,3 C,3 D,1 A,2 B,4
40.0 36.5 39.0 38.5 41.5 39.5 39.0 44.0

Square 3 Square 4

C,3 D,1 A,2 B,4 D,4 C,2 B,1 A,3
41.0 38.5 39.0 43.0 43.0 40.5 43.5 39.5

D,4 C,2 B,1 A,3 C,3 D,1 A,2 B,4
41.0 38.5 41.5 41.0 41.0 39.0 39.5 41.5

A,1 B,3 C,4 D,2 B,2 A,4 D,3 C,1
39.5 42.0 41.5 42.0 42.0 41.0 40.5 37.5

B,2 A,4 D,3 C,1 A,1 B,3 C,4 D,2
41.5 41.0 40.5 41.5 40.5 42.5 44.0 41.0
Operators are A, B, C, D. Machines are 1, 2, 3, 4.

column of the larger square and once with every machine. Similarly, every row and column of the
48× 48 square was used only once on each machine. The data are given in Table 18.14.

Analyze the data. Give an appropriate analysis of variance table. Give a model and check your
assumptions. Use the Bonferonni method to determine differences among operators and to deter-
mine differences among machines.

The cuts along the warp of the fabric were apparently the rows. Should the rows be considered
the same from square to square? How would doing this affect the analysis?

Look at the means for each square. Is there any evidence of a trend in the water repellency as
we move along the warp of the fabric? How should this be tested?

EXERCISE 18.7.6. Consider the milk production data in Table 18.8 and the corresponding anal-
ysis of variance in Table 18.10. Relative to the periods, the squares on the left of Table 11.8 always
have treatment A followed by B, B followed by C, and C followed by A. The squares on the right
always have treatment A followed by C, B followed by A, and C followed by B. Test whether there
is an average difference between the squares on the left and those on the right. Test whether there is
an interaction between periods and left–right square differences.



Chapter 19

Dependent Data

In this chapter we examine methods for performing analysis of variance on data that are not com-
pletely independent. The two methods considered are appropriate for similar data but they are based
on different assumptions. All the data involved have independent groups of observations but the
observations within groups are not independent. In terms of analyzing unbalanced data, both of
these procedures easily handle unbalanced groups of observations but the statistical theory breaks
down when the observations within the groups become unbalanced. The first method was developed
for analyzing the results of split-plot designs. The corresponding models involve constant variance
for all observations and the lack of independence consists of a constant correlation between ob-
servations within each group. The second method is multivariate analysis of variance. Multivari-
ate ANOVA allows an arbitrary variance and correlation structure among the observations within
groups but assumes that the same structure applies for every group. These are two extremes in terms
of modeling dependence among observations in a group and many useful models can be fitted that
have other interesting variance-correlation structures, cf. Christensen et al. (2010, Section 10.3).
However, the two variance-correlation structures considered here are the most amenable to further
statistical analysis.

Section 19.1 introduces unbalanced split-plot models and illustrates the highlights of the analy-
sis. Section 19.2 gives a detailed analysis for a complicated balanced split-plot model using methods
that are applicable to unbalanced groups. Subsection 19.2.1 even discusses methods that apply for
unbalanced observations within the groups but such imbalance requires us to abandon comparisons
between groups. Section 19.3 introduces multivariate analysis of variance. Section 19.4 considers
some special cases of the model examined in Sections 19.1 and 19.2; these are subsampling models
and one-way analysis of variance models in which group effects are random.

19.1 The analysis of split-plot designs

Split-plot designs involve simultaneous use of different sized experimental units. The corresponding
models involve more than one error term. According to Casella (2008, p.171), “Split-plot experi-
ments are the workhorse of statistical design. There is a saying that if the only tool you own is a
hammer, then everything in the world looks like a nail. It might be fair to say that, from now on,
almost every design that you see will be some sort of split plot.”

Suppose we produce an agricultural commodity and are interested in the effects of two factors:
an insecticide and a fertilizer. The fertilizer is applied using a tractor and the insecticide is applied via
crop dusting. The method of applying the chemicals is part of the treatment. Crop dusting involves
using an airplane to spread the material. Obviously, you need a fairly large piece of land for crop
dusting, so the number of replications on the crop-dusted treatments will be relatively few. On the
other hand, different fertilizers can be applied with a tractor to reasonably small pieces of land, so
we can obtain more replications. If our primary interest is in the main effects of the crop-dusted
insecticides, we are stuck. Accurate results require a substantial number of large fields to obtain
replications on the crop-dusting treatments. However, if our primary interest is in the fertilizers or
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the interaction between fertilizers and insecticides, we can design a good experiment using only a
few large fields.

To construct a split-plot design, start with the large fields and design an experiment that is
appropriate for examining just the insecticides. Depending on the information available about the
fields, this can be a CRD, a RCB design, a Latin square design, or pretty much any design you think
is appropriate. Suppose there are three levels of insecticide to be investigated. If we have three fields
in the Gallatin Valley of Montana, three fields near Willmar, Minnesota, and three fields along the
Rio Grande River in New Mexico, it is appropriate to set up a block in each state so that we see
each insecticide in each location. Alternatively, if we have one field near Bozeman, MT, one near
Cedar City, UT, one near Twin Peaks, WA, one near Winters, CA, one near Fields, OR, and one near
Grand Marais, MN, a CRD seems more appropriate. We need a valid design for this experiment on
insecticides, but often it will not have enough replications to yield a very precise analysis. Each of
the large fields used for insecticides is called a whole plot. The insecticides are randomly applied to
the whole plots, so they are referred to as the whole-plot treatments. Any complete blocks used in
the whole-plot design are typically called “Replications” or just “Reps.”

Regardless of the design for the insecticides, the key to a split-plot design is using each whole
plot (large field) as a block for examining the subplot treatments (fertilizers). If we have four fertil-
izer treatments, we divide each whole plot into four subplots. The fertilizers are randomly assigned
to the subplots. The analysis for the subplot treatments is just a modification of the RCB analysis
with each whole plot treated as a block.

We have a much more accurate experiment for fertilizers than for insecticides. If, as alluded
to earlier, the insecticide (whole-plot) experiment was set up with 3 blocks (MT, MN, NM) each
containing 3 whole plots, we have just 3 replications on each insecticide, but each of the 9 whole
plots is a block for the fertilizers, so we have 9 replications of the fertilizers. Moreover, fertilizers
are compared within whole plots, so they are not subject to the whole-plot-to-whole-plot variation.

Perhaps the most important aspect of the design is the interaction. It is easy to set up a mediocre
design for insecticides and a good experiment for fertilizers; the difficulty is in getting to look at
them together and the primary point in looking at them together is to investigate interaction. The
most important single fact in the analysis is that the interaction between insecticides and fertilizers
is subject to exactly the same variability as fertilizer comparisons. Thus we have eliminated a major
source of variation, the whole-plot-to-whole-plot variability. Interaction effects are only subject to
the subplot variability, i.e., the variability within whole plots.

The basic idea behind split-plot designs is very general. The key idea is that an observational
unit (whole plot, large field) is broken up to allow several distinct measurements on the unit. These
are often called repeated measures. In an example in the next section, the weight loss due to abrasion
of one piece of fabric is measured after 1000, 2000, and 3000 revolutions of a machine designed to
cause abrasion. Another possibility is giving drugs to people and measuring their heart rates after 10,
20, and 30 minutes. When repeated measurements are made on the same observational unit, these
measurements are more likely to be similar than measurements taken on different observational
units. Thus the measurements on the same unit are correlated. This correlation needs to be modeled
in the analysis. Note, however, that with the weight loss and heart rate examples, the “treatments”
(rotations, minutes) cannot be randomly assigned to the units. In such cases the variance-correlation
structure of a split-plot model may be less appropriate than that of the multivariate ANOVA model
or various other models. In terms of balance, the methods of analysis presented hold if we lose all
data on an observational unit (piece of fabric, person) but break down if we lose some but not all of
the information on a unit.

We now consider an example of a simple split-plot design. Section 19.2 presents a second ex-
ample that considers the detailed analysis of a study with four factors.

EXAMPLE 19.1.1. Garner (1956) and Christensen (1996, Section 12.1) present data on the
amount of moisture absorbed by water-repellant cotton Oxford material. Two 24-yard strips of cloth
were obtained. Each strip is a replication and was divided into four 6-yard strips. The 6-yard strips
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Table 19.1: Garner’s dynamic absorption data.

Rep 1 Rep 2
Test Test

Laundry A B C D ȳ1 j· A B C D ȳ2 j·
1 7.20 11.70 15.12 8.10 10.5300 9.06 11.79 14.38 8.12 10.8375
2 2.40 7.76 6.13 2.64 4.7325 2.14 7.76 6.89 3.17 4.9900
3 2.19 4.92 5.34 2.47 3.7300
4 1.22 2.62 5.50 2.74 3.0200 2.43 3.90 5.27 2.31 3.4775

were randomly assigned to one of four laundries. After laundering and drying, the 6-yard strips
were further divided into four 1.5-yard strips and randomly assigned to one of four laboratories for
determination of dynamic water absorption. The data presented in Table 19.1 are actually the means
of two determinations of dynamic absorption made for each 1.5-yard strip. The label “Test” is used
to identify different laboratories (out of fear that the words laundry and laboratory might get con-
fused). To illustrate the analysis of unbalanced data we have removed the data for Laundry 3 from
the second replication.

First consider how the experimental design deals with laundries. There are two blocks (Reps) of
material available, the 24-yard strips. These are subdivided into four sections and randomly assigned
to laundries. Thus we have a randomized complete block (RCB) design for laundries with two
blocks and four treatments from which we are missing the information on the third treatment in
the second block. The 6-yard strips are the whole-plot experimental units, laundries are whole-plot
treatments, and the 24-yard strips are whole-plot blocks.

After the 6-yard strips have been laundered, they are further subdivided into 1.5-yard strips
and these are randomly assigned to laboratories for testing. In other words, each experimental unit
in the whole-plot design for laundries is split into subunits for further treatment. The whole-plot
experimental units (6-yard strips) serve as blocks for the subplot treatments. The 1.5-yard strips are
subplot experimental units and the tests are subplot treatments.

The peculiar structure of the design leads us to analyze the data almost as two separate experi-
ments. There is a whole-plot analysis focusing on laundries and a subplot analysis focusing on tests.
The subplot analysis also allows us to investigate interaction.

Consider the effects of the laundries. The analysis for laundries is called the whole-plot analysis.
We have a block design for laundries but a block analysis requires just one number for each laundry
observation (whole plot). The one number used for each whole plot is the mean absorption averaged
over the four subplots (tests) contained in the whole plot. These 7 mean values are reported in
Table 19.1. With two reps, four treatments, and a missing whole plot we get

Whole-plot ANOVA for laundries using subplot means.
Source df Seq. SS MS F P
Reps 1 1.489 1.488 274.83 0.004
Laundry (after Reps) 3 65.379 21.793 4023.34 0.000
Error 1 2 0.011 0.005
Total 6 66.879

As usual, we fit (whole-plot) treatments after reps (whole-plot blocks). With one minor exception,
this provides the whole-plot analysis section of a split-plot model ANOVA table. The degrees of
freedom are Reps, 1; Laundry, 3; and the whole-plot error, Error 1, with 2 df . The minor exception
is that when we present the combined split-plot model ANOVA in Table 19.2, the sums of squares
and mean squares presented here are all multiplied by the number of subplot treatments, four. This
multiplication has no effect on significance tests, e.g., in an F test the numerator mean square and
the denominator mean square are both multiplied by the same number, so the multiplications cancel.
Multiplying these mean squares and sums of squares by the number of subplot treatments maintains
consistency with the subplot model computations.
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Now consider the analysis of the subplot treatments, i.e., the absorption tests. The subplot anal-
ysis is largely produced by treating each whole plot as a block. Note that we observe every subplot
treatment within each whole plot, so the blocks are complete. There will be, however, one notable
exception to treating the subplot analysis as an RCB analysis, i.e., the identification of interaction
effects.

RCB ANOVA for tests: Whole plots as subplot blocks.
Source df Seq. SS MS F P
Whole plots 6 267.515 44.586 31.79 0.000
Test 3 105.290 35.097 25.02 0.000
Error 18 25.246 1.403
Total 27 398.050

In a blocking analysis with whole plots taken as subplot blocks there are 7 whole plots, so there are
6 degrees of freedom for subplot blocks. In addition there are 3 degrees of freedom for tests, so the
degrees of freedom for error are 28−6−3−1= (6)(3) = 18.

The subplot analysis differs from the standard blocking analysis in the handling of the 18 degrees
of freedom for error. A standard blocking analysis takes the block-by-treatment interaction as error.
This is appropriate because the extent to which treatment effects vary from block to block is an
appropriate measure of error for treatment effects. However, in a split-plot design the subplot blocks
are not obtained haphazardly, they have consistencies due to the whole-plot treatments. We can
identify structure within the subplot-block-by-subplot-treatment interaction. Some of the block-by-
treatment interaction can be ascribed to whole-plot-treatment-by-subplot-treatment interaction. In
this experiment, the laundry-by-test interaction has 3×3 = 9 degrees of freedom. This is extracted
from the 18 degrees of freedom for error in the subplot RCB analysis to give a subplot error term
(Error 2) with only 18−9= 9 degrees of freedom. Finally, it is of interest to note that the 6 degrees
of freedom for subplot blocks correspond to the 6 degrees of freedom in the whole-plot analysis: 1
for Reps, 3 for Laundries, and 2 for Whole Plot Error. In addition, up to round-off error, the sum of
squares for subplot blocks is also the total of the sums of squares for Reps, Laundries (after fitting
Reps), and Whole-plot Error (Error 1) reported earlier after multiplying those sums of squares by
the number of subplot treatments.

Table 19.2 combines the whole-plot analysis and the subplot analysis into a common analysis
of variance table. Error 1 indicates the whole-plot error term and its mean square is used for in-
ferences about laundries and Reps (if you think it is appropriate to draw inferences about Reps).
Error 2 indicates the subplot error term and its mean square is used for inferences about tests and
laundry-by-test interaction. A subplot blocks line does not appear in the table; the whole-plot anal-
ysis replaces it. Note that for the given whole-plot design, Error 1 is computationally equivalent
to a Rep ∗ Laundry interaction. Again, the sums of squares and mean squares for Reps, Laundry,
and Error 1 in Table 19.2 are, up to round-off error, equal to 4 times the values given earlier in the
analysis based on the 7 Rep–Laundry means.

As for comparing the “whole plots as subplot blocks” ANOVA table given earlier to Table 19.2,
in the first row the whole plots degrees of freedom and sums of squares are the sums of the Reps,
Laundry, and Error 1 degrees of freedom and sum of squares in Table 19.2. The Test lines in
the second row are identical. The “whole plots as subplot blocks” Error term is broken into the
Laundry∗Test interaction and Error 2 degrees of freedom and sum of squares of Table 19.2. The
Total lines are identical.

From Table 19.2 the Laundry ∗ Test interaction is clearly significant, so the analysis would typ-
ically focus there. On the other hand, while the interaction is statistically important, its F statistic is
an order of magnitude smaller than the F statistic for tests, so the person responsible for the exper-
iment might decide that interaction is not of practical importance. The analysis might then ignore
the interaction and focus on the main effects for tests and laundries. Since I am not responsible for
the experiment (only for its inclusion in this book), I will not presume to declare a highly significant
interaction unimportant. Modeling the interaction will be considered in the next subsection. �
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Table 19.2: Analysis of Variance: Dynamic absorption data.

Source df Seq. SS MS F P

Reps 1 5.955 5.955 275.60 0.004
Laundry 3 261.517 87.172 4036.04 0.000
Error 1 2 0.043 0.021
Test 3 105.290 35.097 92.876 0.000
Laundry ∗ Test 9 21.845 2.427 6.423 0.005
Error 2 9 3.401 0.378

Total 27 398.050

We now examine the assumptions behind this analysis. The basic split-plot model for a whole-
plot design with Reps is

yi jk = μ + ri +wj +ηi j + sk +(ws) jk + εi jk (19.1.1)

where i = 1, . . . ,a indicates the replication, j = 1, . . . ,b indicates the whole-plot treatment, k =
1, . . . ,c indicates the subplot treatment, μ is a grand mean, ri, wj , and sk indicate Rep, whole-
plot treatment, and subplot treatment effects, and (ws) jk indicates whole-plot treatment–subplot
treatment effects that allow whole-plot treatment–subplot treatment interaction in the model. Note
that in our example we do not have data for all combinations of i and j but for every pair i j that we
observe, we have all c of the observations indexed by k. The model has two sets of random error
terms: the ηi js, that are errors specific to a given whole plot, and the εi jks, that are errors specific to
a given subplot. All of the errors are assumed to be independent with the ηi js distributed N(0,σ2

w)
and the εi jks distributed N(0,σ2

s ).
As advertised earlier, Var(yi jk) = σ2

w +σ2
s is the same for all observations and for k �= k′ within

a group, Corr(yi jk,yi jk′) = σ2
w/(σ2

w+σ2
s ) is constant. Observations in different groups have both ηi j

and εi jk different, so are independent.
The trick to split-plot models is that (for theoretical reasons related to seeing every subplot

treatment exactly once within every whole plot) for any model that includes whole-plot treatments,
subplot treatments and their interaction, the analysis can proceed by treating the whole-plot error
terms, the ηi js, as though they were standard fixed effects. We then fit the model sequentially to
give us an overall ANOVA table. That is how Table 19.2 was constructed except we relabeled the
Reps∗Laundry interaction as Error 1 and the usual Error as Error 2. Inferences largely follow the
usual patterns. There are two exceptions. First, in any modeling of whole-plot treatments, or other
whole-plot effects like replications, we need to replace our usual MSE , SSE , and dfE with the cor-
responding values from fitting the ηi js after all the whole-plot effects. This gives Error 1. Second, in
modeling subplot treatments or interactions between subplot effects and whole-plot effects, we can
create models for relationships between subplot treatments (tests) for fixed whole-plot treatments
(laundries) and we can contrast these for different whole-plot treatments, but the mathematics does
not allow us to look at relationships between whole-plot treatments for a fixed subplot treatment.
This is discussed in more detail later.

As always with models for two grouping factors, the first thing to do is check for interaction by
testing the reduced model

yi jk = μ + ri +wj +ηi j + sk + εi jk. (19.1.2)

This test is executed as if the ηi j terms were fixed effects, rather than random, in both models
(19.1.1) and (19.1.2), so the test is just our usual test of two linear models, i.e., is based on Error 2.

If interaction exists, we need to explore the relationships between all 16 treatments. Because of
its mathematical tractability, a useful approach is to look at the relationships between subplot treat-
ments for each fixed whole-plot treatment. Interactions involve seeing whether such relationships
change from whole-plot treatment to whole-plot treatment. For example, if the subplot treatments



444 19. DEPENDENT DATA

have quantitative levels, we can fit a polynomial for each whole-plot treatment. Any comparisons
among polynomial coefficients other than the intercepts are subject to the subplot Error 2. Compar-
isons among the intercepts are subject to the whole-plot Error 1. These issues are treated in detail in
Subsection 19.1.1.

If we decide that interaction is not important, we can look at relationships between the sub-
plot treatments, which will be performed in the usual way treating the ηi js as fixed. Indeed, this
amounts to analyzing the RCB with whole plots as subplot blocks but using Error 2 rather than the
full subplot-block-by-subplot-treatment interaction as the error term. Moreover, we can examine
the whole-plot treatments (and other whole-plot effects) in the usual way but using results for the
whole-plot Error 1 rather than the usual Error 2. Alternatively, the entire analysis for the whole-plot
treatments could be obtained from a reanalysis of the ȳi j·s. In other words, to examine the relation-
ships among whole-plot treatments (something that is of little interest if we believe that interaction
exists), we simply replace the usual MSE with the mean square for fitting the ηi j whole-plot error
terms after fitting any fixed effects that occur in the whole-plot analysis. In this example it is the
mean square for fitting the ηi js after fitting the Reps and the whole-plot treatments.

The model assumes normality and equal variances for each set of error terms. These assumptions
should be checked using residual plots. We can get Error 2 residuals as in the usual way by treating
the ηi js as fixed. We can get Error 1 residuals from doing the whole-plot analysis on the ȳi j·s.

The MSE(1) turns out to be an estimate of

E[MSE(1)] = σ2
s + cσ2

w

and MSE(2) is an estimate of
E[MSE(2)] = σ2

s .

If there is no whole-plot-to-whole-plot variability over and above the variability due to the subplots
within the whole plots, i.e., if σ2

w = 0, then the two error terms are estimating the same thing and
their ratio has an F distribution. In other words, we can test H0 : σ2

w = 0 by rejecting H0 when

MSE(1)/MSE(2)> F(1−α,dfE(1),dfE(2)).

In the laundries example we get 0.011/0.378= 0.029 on 2 and 9 degrees of freedom and a P value
of 0.97, which may be suspiciously large. This is rather like testing for blocks in a randomized
complete block design. Both tests merely tell you if you wasted your time. An insignificant test for
blocks indicates that blocking was a waste of time. Similarly, an insignificant test for whole-plot
variability indicates that forming a split-plot design was a waste of time. In each case, it is too late
to do anything about it. The analysis should follow the design that was actually used. However, the
information may be of value in designing future studies.

EXAMPLE 19.1.1 CONTINUED.
Figure 19.1 contains a series of Error 1 residual plots. These were obtained from averaging

Model (19.1.1) over the subplot treatments and fitting

ȳi j· = μ + ri +wj +ηi j + s̄·+(ws) j·+ ε̄i j·
= μ + ri +wj +ηi j + ε̄i j·,

where we drop s̄· and (ws) j· because they are indistinguishable from the μ and wj effects. The
top left panel of Figure 19.1 contains a normal plot for the Error 1 residuals; it looks reasonably
straight. The top right panel has the Error 1 residuals versus predicted values. Note the wider spread
for predicted values near 3. The bottom left panel plots the Error 1 residuals against Reps and
shows nothing startling. The bottom right panel is a plot against Laundries in which we see that
the spread for Laundry 4 is much wider than the spread for the other laundries. This seems to be
worth discussing with the experimenter. Of course there are only 6 residuals (with only 2 degrees of
freedom), so it is difficult to draw any firm conclusions.
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Figure 19.1 Normal plot of whole-plot residuals. Whole-plot residuals versus predicted values, replications,
and laundries. Absorption data.
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Figure 19.2: Normal plot of subplot residuals, absorption data.

There are seven whole plots, so why are there only six whole-plot residuals in the graphs? Rep
2, Laundry 3 is missing, so the only observation on Laundry 3 is that from Rep 1, Laundry 3. It
follows that Rep 1, Laundry 3 has a leverage of one and the fitted value always equals the data
point. There is little value to a residual that the model forces to be zero.

Figures 19.2 and 19.3 contain a series of Error 2 residual plots obtained from Model (19.1.1)
fitted with η fixed. Figure 19.2 contains the normal plot; it looks alright. The top left panel of
Figure 19.3 plots Error 2 residuals versus predicted values (treating the ηs as fixed). The other
panels are plots against Reps, Laundries, and Tests. There is nothing startling. �
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Figure 19.3: Subplot residuals versus predicted values, replications, laundries, and tests. Absorption data.

Neither the fitted (predicted) values in Figure 19.1 nor the fitted values in Figure 19.3 are the
fitted values from the split-plot model.

Table 19.3 contains the usual diagnostics (treating the ηs as fixed). All the observations on
Laundry 3 have leverage 1 because Rep 2, Laundry 3 is missing.

19.1.1 Modeling with interaction

To construct an interaction plot for Model (19.1.1) with unbalanced data, we plot the pairs (k, ŷi jk)
where k = 1, . . . ,c is the subplot treatment index. We do this for every value of the whole-plot
treatment index j = 1, . . . ,b but for some fixed value of i. Figure 19.4 gives the interaction plot for
the dynamic absorption data computed from the fitted values ŷi jk with i = 1. (In our example with
Rep 2, Laundry 3 missing, if we chose to fix i = 2, we would not have “fitted” values when j = 3 but
we could find predicted values and use them in the plot.) Tests A and D behave very similarly and
they behave quite differently from Tests B and C. Tests B and C also behave somewhat similarly.
This suggests looking at models that incorporate A = D or B =C.

The basic split-plot model for these data,

yi jk = μ + ri +wj +ηi j + sk +(ws) jk + εi jk,

i = 1,2, j = 1,2,3,4, k = 1,2,3,4, (i, j) �= (2,3) can conveniently be switched to a model that
recasts the pairs of numbers jk (that identify all treatment combinations) as integers h = 1, . . . ,16.
The equivalent model is then

yih = μ + ri +wj +ηi j +(ws)h + εih, j = mod4(h−1)+ 1. (19.1.3)

(The moda(b) function for integers a and b is the remainder when b is divided by a, thus mod4(7) =
3.) The data are presented again in Table 19.4 in a form suitable for modeling. Rep, Laundry, and
Test correspond to i, j, k while “inter” corresponds to h.

We fit two hierarchies of four models for each Laundry. First, we successively fit models that
incorporate A = D; A = D and B =C; A = D = B =C for one laundry at a time. The other hierarchy
successively incorporates B =C; A = D and B =C; A = D = B =C. In these two hierarchies, only
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Table 19.3: Diagnostics for dynamic absorption data.

Rep Laundry Test y ŷ leverage r t C

1 1 1 7.20 7.97625 0.625 −2.062 −2.677 0.373
1 2 1 2.40 2.14125 0.625 0.687 0.666 0.041
1 3 1 2.19 2.19000 1.000
1 4 1 1.22 1.59625 0.625 −1.000 −0.999 0.088
1 1 2 11.70 11.59125 0.625 0.289 0.274 0.007
1 2 2 7.76 7.63125 0.625 0.342 0.325 0.010
1 3 2 4.92 4.92000 1.000
1 4 2 2.62 3.03125 0.625 −1.093 −1.106 0.105
1 1 3 15.12 14.59625 0.625 1.391 1.481 0.170
1 2 3 6.13 6.38125 0.625 −0.667 −0.645 0.039
1 3 3 5.34 5.34000 1.000
1 4 3 5.50 5.15625 0.625 0.913 0.904 0.073
1 1 4 8.10 7.95625 0.625 0.382 0.363 0.013
1 2 4 2.64 2.77625 0.625 −0.362 −0.344 0.011
1 3 4 2.47 2.47000 1.000
1 4 4 2.74 2.29625 0.625 1.179 1.209 0.122
2 1 1 9.06 8.28375 0.625 2.062 2.677 0.373
2 2 1 2.14 2.39875 0.625 −0.687 −0.666 0.041
2 4 1 2.43 2.05375 0.625 1.000 0.999 0.088
2 1 2 11.79 11.89875 0.625 −0.289 −0.274 0.007
2 2 2 7.76 7.88875 0.625 −0.342 −0.325 0.010
2 4 2 3.90 3.48875 0.625 1.093 1.106 0.105
2 1 3 14.38 14.90375 0.625 −1.391 −1.481 0.170
2 2 3 6.89 6.63875 0.625 0.667 0.645 0.039
2 4 3 5.27 5.61375 0.625 −0.913 −0.904 0.073
2 1 4 8.12 8.26375 0.625 −0.382 −0.363 0.013
2 2 4 3.17 3.03375 0.625 0.362 0.344 0.011
2 4 4 2.31 2.75375 0.625 −1.179 −1.209 0.122
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Figure 19.4: Interaction plot for dynamic absorption data. Plot of ŷ1 jk versus k for each j.
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Table 19.4: Model fitting for dynamic absorption data.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

i j k h L1 L1 L1 L1 L:2-4
Rep Laundry Test y inter A=D B=C both ABCD T:B-C

1 1 1 7.20 1 1 1 1 1 1
1 1 2 11.70 2 2 2 2 1 2
1 1 3 15.12 3 3 2 2 1 3
1 1 4 8.10 4 1 4 1 1 4
2 1 1 9.06 1 1 1 1 1 1
2 1 2 11.79 2 2 2 2 1 2
2 1 3 14.38 3 3 2 2 1 3
2 1 4 8.12 4 1 4 1 1 4
1 2 1 2.40 5 5 5 5 5 5
1 2 2 7.76 6 6 6 6 6 6
1 2 3 6.13 7 7 7 7 7 7
1 2 4 2.64 8 8 8 8 8 8
2 2 1 2.14 5 5 5 5 5 5
2 2 2 7.76 6 6 6 6 6 6
2 2 3 6.89 7 7 7 7 7 7
2 2 4 3.17 8 8 8 8 8 8
1 3 1 2.19 9 9 9 9 9 9
1 3 2 4.92 10 10 10 10 10 10
1 3 3 5.34 11 11 11 11 11 11
1 3 4 2.47 12 12 12 12 12 12
1 4 1 1.22 13 13 13 13 13 13
1 4 2 2.62 14 14 14 14 14 6
1 4 3 5.50 15 15 15 15 15 7
1 4 4 2.74 16 16 16 16 16 16
2 4 1 2.43 13 13 13 13 13 13
2 4 2 3.90 14 14 14 14 14 6
2 4 3 5.27 15 15 15 15 15 7
2 4 4 2.31 16 16 16 16 16 16

Table 19.5: SSE and dfE for dynamic absorption hierarchical models.

Laundry A = D B = C dfE A = D B =C Laundry

3.401 12.431 10 3.804 4.963
Laundry 1 12.431 11 5.366 Laundry 2

65.014 12 46.726

3.440 3.489 10 3.891 7.916
Laundry 3 3.528 11 8.406 Laundry 4

11.368 12 17.630

the first model changes. Fitting these four models for Laundry 1 involves fitting a Reps-Laundry
effect along with fitting an effect for one of the other columns from Table 19.4. The first models in
the two hierarchies replace h in Model (19.1.3) with C6 and C7, respectively, in which to incorporate
A = D in Laundry 1 we have replaced the index for Laundry 1—Test D by the index for Laundry
1—Test A and to get B = C in Laundry 1 we have replaced the index for Laundry 1—Test C by
the index for Laundry 1—Test B. The second model in each hierarchy uses C8. The last uses C9.
We refer to Model (19.1.4) as the C5 model and the models that incorporate A = D; B =C; A = D
and B = C; and A = D = B = C for Laundry 1 as the C6, C7, C8, and C9 models, respectively.
Similar data columns must be constructed if we want to fit the hierarchies to each of the other three
Laundries. Table 19.5 contains the results of fitting the 16 models that incorporate A = D; B = C;
A = D and B =C; A = D = B =C for each laundry (leaving the other laundries unmodeled).

The sums of squares for various model tests are obtained by comparing the error sums of squares
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with each other and with that from the interaction model (19.1.1) given in Table 19.2. Consider
modeling the Laundry 1 behavior. Note that, to three decimal places, the SSE is the same regardless
of whether we incorporate A = D for Laundry 1. The sum of squares for testing A = D in Laundry
1 can be obtained by comparing the full model (19.1.1), i.e., model C5, to the C6 model. With the
subplots balanced in each laundry, the same sum of squares for testing A=D is obtained after fitting
B =C by comparing the C7 model to the C8 model. Similarly, B = C can be tested by comparing
models C5 and C7 or models C6 and C8. We can also test A = D = B = C after fitting A = D and
B = C by comparing the full model C8 to the reduced model C9. Again, all of these models also
include a Reps-Laundry effect. These comparisons give the Laundry 1 sums of squares that follow.

Sums of squares for testing reduced models
A = D B =C A = D = B =C

Laundry 1 0.000 9.030 52.583
Laundry 2 0.403 1.563 41.360
Laundry 3 0.039 0.088 7.840
Laundry 4 0.490 4.516 9.224

From these sums of squares there is little evidence against A = D for any laundry. For every laundry
there is considerable evidence against B = C except for Laundry 3, where we have half as much
data. There is very considerable evidence against all four tests being equal (given that A = D and
B = C, the latter of which is unlikely to be true). Except for the Laundry 3 results, these sums of
squares agree, up to round-off error, with the balanced analysis presented in Christensen (1996,
Section 12.2). These sums of squares can be compared with MSE(2) = 0.378 from Table 19.2 to
obtain tests with a null F(1,9) distribution. Unfortunately, similar techniques for comparing the
Laundries for each fixed Test will not lead to a test statistic that can be compared to a known F
distribution. [Actually, such a test is possible by refitting the whole-plot model but eliminating the
data from all Tests except the one of interest. This leads to different error terms for each fixed Test.
This possibility is again mentioned in the next section.]

Finally, we can formally examine interactions. Since there is no evidence against A = D for any
laundry, we will not find evidence that the differential effect of A versus D changes from laundry
to laundry. Let’s examine the interaction effect of whether the difference between tests B and C is
the same for Laundry 2 as it is for Laundry 4. We can test this by fitting a model with main effects
for Laundries 2 and 4 and main effects for Tests B and C, but that allows every other combination
of a laundry and test to have its own effect. Comparing this reduced model to the full model gives
the desired test for interaction. However, since the model we are fitting already (implicitly) contains
main effects for Laundries, the first step of fitting main effects for Laundries 2 and 4 is redundant.
Fitting the model using column C10 after Rep-Laundry effects accomplishes our goal of having
main effects only for Tests B and C in Laundries 2 and 4 but possible interaction for any other factor
combination and gives dfE = 10 and SSE = 9.096. Comparing this to the full model (19.1.1) with
dfE = 9 and SSE = 3.401, the test mean square is 9.096−3.401 = 5.695 on 1 degree of freedom,
which is much larger than MSE(2) = 0.378, so there is substantial evidence that the B-C effect
changes from Laundry 2 to Laundry 4. Note that C10 is similar to the full interaction model C5
except that for Laundry 4, instead of having distinct indices for Tests B and C, C10 uses the same
indices for Tests B and C as were used for them with Laundry 2.

One last note. Because the whole-plot design is allowed to be unbalanced, rather than just having
one whole-plot ANOVA table as in Table 19.2, we might need to consider fitting different sequences
of models for the whole plots, similar to Chapters 14 and 16. However, because the subplots are
balanced within whole plots, typically there will be only one form for the subplot entries in ANOVA
tables like Table 19.2.
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Table 19.6: Abrasion resistance data.

Proportions
Surf. 25% 50% 75%
treat. Fill 1000 2000 3000 1000 2000 3000 1000 2000 3000

A 194 192 141 233 217 171 265 252 207
A 208 188 165 241 222 201 269 283 191

Yes
B 239 127 90 224 123 79 243 117 100
B 187 105 85 243 123 110 226 125 75
A 155 169 151 198 187 176 235 225 166
A 173 152 141 177 196 167 229 270 183

No
B 137 82 77 129 94 78 155 76 91
B 160 82 83 98 89 48 132 105 67

19.2 A four-factor example

We now consider a split-plot analysis involving four factors, detailed examination of three-factor
interactions, and a whole-plot design that is a CRD. Christensen (1996, Section 12.2) uses contrasts
to analyze these balanced data. We use model fitting ideas that apply to unbalanced data.

The illustration in this section is a split-plot analysis because it is based on split-plot mod-
els; however, the data are clearly not collected from a split-plot experimental design because the
“subplot treatments” cannot be randomly assigned to subplot units. More properly, this is called a
repeated measures design because it is an experiment in which multiple measurements were taken
on the experimental units. Because the multiple measurements are similar (all involve weight loss
on a piece of fabric), a split-plot model provides a viable, if not necessarily laudable, analysis. Our
purpose is to illustrate such an analysis. We begin this section by introducing the data and the bal-
anced analysis. In Subsection 19.2.1 we discuss an analysis of subplot effects that remains valid
even when the subplots are unbalanced. In Subsection 19.2.2 we discuss the whole-plot analysis,
that allows unbalanced whole plots but requires balanced subplots. Subsection 19.2.3 looks at the
useful device of fixing the level for one factor and examining relationships among the other factors.
Subsection 19.2.4 draws some final conclusions. These data are reanalyzed in Section 19.3 with the
more appropriate multivariate ANOVA model.

EXAMPLE 19.2.1. In Section 16.2 we considered data from Box (1950) on fabric abrasion. The
data consisted of three factors: Surface treatment (yes, no), Fill (A, B), and Proportion of fill (25%,
50%, 75%). These are referred to as S, F, and P, respectively. (Again, we hope no confusion occurs
between the factor F and the use of F statistics or between the factor P and the use of P values!)
In Section 16.2 we restricted our attention to the weight loss that occurred during the first 1000
revolutions of a machine designed for evaluating abrasion resistance, but data are also available
on each piece of cloth for weight loss between 1000 and 2000 rotations and weight loss occurring
between 2000 and 3000 rotations. The full data are given in Table 19.6. In analyzing the full data,
many aspects are just simple extensions of the analysis given earlier in Section 16.2. There are now
four factors, S, F, P, and one for rotations, say, R. With four factors, there are many more effects
to deal with. There is one more main effect, R, three more two-factor interactions, S∗R, F∗R,
and P∗R, three more three-factor interactions, S∗F∗R, S∗P∗R, and F∗P∗R, and a four-factor
interaction, S∗F∗P∗R.

In addition to having more factors than we have considered before, what makes these data wor-
thy of our further attention is the fact that not all of the observations are independent. Observations
on different pieces of fabric may be independent, but the three observations on the same piece of
fabric, one after 1000, one after 2000, and one after 3000 revolutions, should behave similarly as
compared to observations on different pieces of fabric. In other words, the three observations on one
piece of fabric should display positive correlations. The analysis considered in this section assumes
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that the correlation is the same between any two of the three observations on a piece of fabric. To
achieve this, we consider a model that includes two error terms,

yhi jkm = μ + sh + fi + p j (19.2.1)

+(s f )hi +(sp)h j +( f p)i j +(s f p)hi j

+ηhi jk

+ rm +(sr)hm +( f r)im +(pr) jm

+(s f r)him +(spr)h jm +( f pr)i jm +(s f pr)hi jm

+ εhi jkm.

h= 1,2, i = 1,2, j = 1,2,3, k = 1,2, m = 1,2,3. The error terms are the ηhi jks and the εhi jkms. These
are all assumed to be independent of each other with

ηhi jk ∼ N(0,σ2
w) and εhi jkm ∼ N(0,σ2

s ).

The ηhi jks are error terms due to the use of a particular piece of fabric and the εhi jkms are error
terms due to taking the observations after 1000, 2000, and 3000 rotations. While we have two error
terms, and thus two variances, the variances are assumed to be constant for each error term, so
that all observations have the same variance, σ2

w +σ2
s . Observations on the same piece of fabric

are identically correlated because they all involve the same fabric error term ηhi jk. Note that Model
(19.2.1) could also be written in a form more similar to the previous section as

yhi jkm = μ +(s f p)hi j +ηhi jk + rm +(s f pr)hi jm + εhi jkm,

where the terms (s f p)hi j are whole-plot treatment effects.
Split plot terminology devolves from analyses on plots of ground. In this application, a whole

plot is a piece of fabric. The subplots correspond to the three observations on each piece of fabric.
The S, F, and P treatments are all applied to an entire piece of fabric, so they are referred to as
whole-plot treatment factors. The three levels of rotation are “applied” within a piece of fabric and
are called subplot treatments.

Our data are weight losses due to the first, second, and third 1000 rotations. The split-plot model
seems at least plausible for the differences. Another possible model, one that we will not address,
uses an ‘autoregressive’ correlation structure, cf. Christensen et al. (2010, Section 10.3.1). In Sec-
tion 19.3 we will briefly consider a more general (multivariate) model that can be applied and in-
cludes both the split-plot model and the autoregressive structure as special cases. Of course when the
split-plot model is appropriate, the split-plot analysis is more powerful than the general multivariate
analysis.

We will concern ourselves with checking the assumptions of equal variances and normality
later. We now consider the analysis of variance given in Table 19.7. Because the whole-plot model
is balanced, we do not have to worry about alternative orders for fitting the terms. The rotation
effects should be fitted after the whole-plot terms as should the interactions that involve rotations.
Again, due to balance we do not need to consider alternative orders for fitting the interaction effects
that include rotations. Just as there are two error terms in Model (19.2.1), there are two error terms
in the analysis of variance table. Both error terms are used to construct tests and it is crucial to
understand which error term is used for which tests. The mean square from Error 1 is the whole-
plot error term and is used for any inferences that exclusively involve whole-plot treatments and
their interactions. Thus, in Table 19.7, the MSE(1) from the Error 1 line is used for all inferences
relating exclusively to the whole-plot treatment factors S, F, and P. This includes examination of
interactions. The Error 2 line that yields MSE(2) is used for all inferences involving the subplot
treatments. This includes all effects involving R: the main effects and all interactions.

Because the data are balanced, we have a unique ANOVA in Table 19.7 on which we could
base the entire analysis, cf. Christensen (1996, Section 12.2). As always, the analysis proceeds from
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Table 19.7: Analysis of Variance.

Source df SS MS F P

S 1 24494.2 24494.2 78.58 0.000
F 1 107802.7 107802.7 345.86 0.000
P 2 13570.4 6785.2 21.77 0.000
S∗F 1 1682.0 1682.0 5.40 0.039
S∗P 2 795.0 397.5 1.28 0.315
F∗P 2 9884.7 4942.3 15.86 0.000
S∗F∗P 2 299.3 149.6 0.48 0.630
Error 1 12 3740.3 311.7
R 2 60958.5 30479.3 160.68 0.000
S∗R 2 8248.0 4124.0 21.74 0.000
F∗R 2 18287.7 9143.8 48.20 0.000
P∗R 4 1762.8 440.7 2.32 0.086
S∗F∗R 2 2328.1 1164.0 6.14 0.007
S∗P∗R 4 686.0 171.5 0.90 0.477
F∗P∗R 4 1415.6 353.9 1.87 0.149
S∗F∗P∗R 4 465.9 116.5 0.61 0.657
Error 2 24 4552.7 189.7

Total 71 260973.9

examining the highest-order interactions down to the two-factor interactions and main effects. From
Table 19.7 we see that the four-factor interaction has a test statistic of 0.61 and a very large P value,
0.657. We will see that the same results arise from methods for unbalanced data. Even if all of the
four-factor interaction sum of squares was ascribed to one degree of freedom, an unadjusted F test
would not be significant. There is no evidence for a four-factor interaction.

The next step is to consider three-factor interactions. There is one three-factor interaction in the
whole plots and three of them in the subplots. We need different methods to evaluate these. Nonethe-
less, in this balanced case we easily see that the only clearly important three-factor interaction is
S∗F∗R whereas the F∗P∗R interaction, with 4 degrees of freedom, has a P value that is small
enough that we might want to investigate whether some interesting, interpretable interaction effect
is being hidden by the overall test. In the absence of F∗P∗R interaction, we would want to explore
all of the corresponding two-factor effects, in particular the F∗P and P∗R interactions, which Ta-
ble 19.7 tells us are clearly significant and marginally significant, respectively. The other two-factor
effect subsumed by F∗P∗R is F∗R, but that is also subsumed by the significant S∗F∗R effects,
so F∗R does not warrant separate consideration. However, our goal is to illustrate techniques that
can be used for unbalanced observations, and we examine these interactions using such methods (as
opposed to using contrasts, which is what one would traditionally do for a balanced analysis).

19.2.1 Unbalanced subplot analysis

The strength of split-plot designs/models is their ability to analyze the subplot effects and interac-
tions between subplot effects and whole-plot effects. Typically, there is less information available
on the whole-plot effects (including their interactions among themselves). If the subplots are unbal-
anced, it is not possible to perform a clean analysis of the whole-plot effects (regardless of whether
the whole plots are balanced). The methods illustrated earlier in Section 19.1 and later in Subsec-
tion 19.2.2 require balanced subplots, i.e., no missing subplots (but missing an entire whole plot is
OK). The discussion in this subsection provides methods that can be used to analyze just the subplot
effects and interactions between subplot effects and whole-plot effects for unbalanced subplots and
also gives the correct analysis for balanced subplots, cf. Christensen (2011, Chapter 11). As alluded
to earlier, for balanced subplots, simpler analyses that exploit the balance can be used.

To analyze the subplot effects and interactions between subplot effects and whole-plot effects,
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Table 19.8: Subplot high-order interaction models for data of Table 19.6.

Model SSE dfE F* Cp

[SFPW][SFPR] 4552.7 24 48.0

[SFPW][SFR][SPR][FPR] 5018.6 28 0.61 42.5

[SFPW][SFR][SPR] 6434.2 32 1.24 41.9
[SFPW][SFR][FPR] 5704.6 32 0.76 38.1
[SFPW][SPR][FPR] 7346.7 30 2.45 50.7

[SFPW][SFR][PR] 7120.2 36 1.13 37.5
[SFPW][FPR][SR] 8032.6 34 1.83 46.3
[SFPW][SPR][FR] 8762.3 34 2.22 50.2

[SFPW][SR][PR][FR] 9448.3 38 1.84 45.8

*The F statistics are for testing each model against the model
with whole-plot effects and a four-factor interaction, i.e., [SFPW][SFPR].
The denominator of each F statistic is
MSE(2)≡ MSE([SFPW][SFPR]) = 4552.7/24 = 189.696.

we examine models that include a separate fixed effect for each whole plot, i.e., we treat the η terms
as fixed effects. We label these effects as SFPW. Rotations are the only effect not included in this
term, so any interesting additional effects must include rotations. The model with all the subplot
effects and subplot–whole-plot interactions is

yhi jkm = (s f pw)hi jk + rm +(sr)hm +( f r)im +(pr) jm

+(s f r)him +(spr)h jm +( f pr)i jm +(s f pr)hi jm + εhi jkm. (19.2.2)

Table 19.8 gives results for fitting this model and various reduced models using shorthand notation
to denote models. Note the similarity between the models considered in Table 19.8 and the models
considered in Table 16.2. The models in Table 19.8 all include [SFPW] and the other terms all
include an R but otherwise the nine models are similar. For balanced subplots, the information
in Table 19.8 can be obtained from Table 19.7, but Table 19.8 is also appropriate for unbalanced
subplots. Table 19.8 also includes the Cp statistics for these models. The Cp statistics can be treated
in the usual way but would not be appropriate for comparing models that do not have a separate fixed
effect for each whole plot. The best-fitting models are [SFPW][SFR][FPR] and [SFPW][SFR][PR],
both of which include the S∗F∗R interaction between surface treatments, fills, and rotations.

The two best Cp models are hierarchical and the test of them, that is, of [SFPW][SFR][FPR]
versus [SFPW][SFR][PR], provides a test of F∗P∗R interaction with statistic

Fobs =
[7120.2−5704.6]/[36−32]

189.696
= 1.87,

which, when compared to an F(4,24) distribution, gives a one-sided P value of 0.149 as reported in
Table 19.7 for these balanced data. There is no strong evidence for an F∗P∗R interaction, but that
is not proof that it does not exist.

In our analysis from Section 16.2 of the 1000-rotation data, we found an S∗F interaction but
similar analyses for the 2000 and 3000 rotation data show no S∗F interaction. (All three ANOVA
tables are given in Section 19.3.) Tables 19.7 and 19.8 confirm the importance of fitting an S∗F∗R
interaction. Assuming no four-factor interaction, the three different tests for S∗F∗R available from
Table 19.8 give

Fobs =
[7346.7− 5018.6]/[30−28]

189.696
=

[8762.3−6434.2]/[34−32]
189.696

=
[9448.3−7120.2]/[38−35]

189.696
=

[2328.1]/2
189.696

= 6.14,
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Table 19.9: Subplot interaction models for examining S∗F∗R interaction.

Model SSE dfE SS Diff. Cp

[SFPW][SFR][SPR][FPR] 5018.6 28 42.5
[SFPW][SFR2=3][SPR][FPR] 5042.7 29 24.1 40.6
[SFPW][SPR][FPR] 7346.7 30 2304.0 50.7

[SFPW][SFR][FPR] 5704.6 32 38.1
[SFPW][SFR2=3][FPR][SR] 5728.6 33 24.0 36.2
[SFPW][FPR][SR] 8032.6 34 2304.0 46.3

[SFPW][SFR][PR] 7120.2 36 37.5
[SFPW][SFR2=3][SR][FR][PR] 7144.3 37 24.1 35.7
[SFPW][SR][PR][FR] 9448.3 38 2304.0 45.8

which all agree because of subplot balance. Thus the S∗F interaction depends on the number of
rotations. It might be of interest if we could find a natural interpretation for this interaction. We
now proceed to examine what is driving the S∗F∗R interaction and the more dubious F∗P∗R
interaction.

We begin by looking at the S∗F∗R interaction. Normally, with rotations at quantitative levels,
we would use linear and quadratic models in rotations to examine interaction. However, we previ-
ously analyzed the data from each number of rotations separately and discovered no S∗F interaction
at 2000 and 3000 rotations, so we will use a model that does not distinguish between these levels of
rotations, i.e., in a new categorical variable that we will call R2=3, 2000 and 3000 rotations have the
same index. These models continue to include terms (sr)hm +( f r)im +(pr) jm or their equivalents
but replace (s f r)him with (s f r)him̃, which uses a new index variable m̃ that does not distinguish
between rotations 2000 and 3000. These models do not incorporate the idea that there is no S∗F
interaction at 2000 or 3000 rotations, but they do incorporate the idea that the S∗F interaction is
the same at 2000 and 3000 rotations yet is possibly different from the S∗F interaction at 1000 ro-
tations. We can investigate these terms in any model that includes the S∗F∗R interaction but not
the four-factor interaction. The most reasonable choices for evaluating S∗F∗R with unbalanced
subplot data are in the model with all of the three-factor interactions or in the two good models
identified by the Cp statistic.

Table 19.9 gives the model fitting information. In particular, Table 19.9 gives three sets of three
models, one that includes the S∗F∗R interaction, one that posits no change in the S∗F interac-
tion for rotations 2000 and 3000, and one that eliminates the S∗F∗R interaction. It also gives the
differences in sums of squares for the three models. The models that posit no change in the S∗F
interaction for rotations 2000 and 3000 fit the data well with a difference in sums of squares of
24.1. Because of subplot balance, these numbers do not depend on which of the three particular
sets of model comparisons are being made. (The value of 24.0 rather than 24.1 is round-off er-
ror.) However, models that posit no difference between the S∗F interaction at 1000 rotations and
the common S∗F interaction at 2000 and 3000 rotations have a substantial difference in sums of
squares of 2304.0, which leads to a significant F test. Using Scheffé’s multiple comparison method
is appropriate because the data suggested the model. (Previous analysis showed no S∗F interaction
for 2000 or 3000 rotations but some for 1000.) The test statistic that compares the S∗F interaction
at 1000 rotations with the others is

Fobs =
2304/2
189.7

= 6.07,

which is significant at the 0.01 level because F(0.99,2,24) = 5.61. Again, for unbalanced data the
three model comparisons could differ. This model-based analysis that is applicable to unbalanced
subplot data reproduces the results in Christensen (1996, Section 12.2) that examine orthogonal
contrasts in the S∗F∗R interaction for balanced data.
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Table 19.10: Subplot interaction models for examining F∗P∗R interaction.

Model SSE dfE SS Diff. Cp

[SFPW][SFR][FPR] 5704.6 32 38.1

[SFPW][SFR][PR][FP1R1][FP1R2][FP2R1][FP2R2] 5704.6 32 38.1
[SFPW][SFR][PR][FP1R1][FP1R2][FP2R1] 6364.6 33 660.0 39.6
[SFPW][SFR][PR][FP1R1][FP1R2] 6404.7 34 40.1 37.8
[SFPW][SFR][PR][FP1R1] 6899.7 35 495.0 38.4
[SFPW][SFR][PR] 7120.2 36 220.5 37.5

[SFPW][SFR][PR][FP1R1][FP1R2][FP2R1][FP2R2] 5704.6 32 38.1
[SFPW][SFR][PR][FP1R1][FP1R2][FP2R1] 6364.6 33 660.0 39.6
[SFPW][SFR][PR][FP1R1][FP2R1] 6859.7 34 495.1 40.2
[SFPW][SFR][PR][FP1R1] 6899.7 35 40.0 38.4
[SFPW][SFR][PR] 7120.2 36 220.5 37.5

Recall that in our earlier analysis from Section 16.2 based on just the 1000-rotation data, we
also found an F∗P interaction. An F∗P∗R interaction indicates that the F∗P interaction changes
with the number of rotations. If we conclude that no F∗P∗R interaction exists, we need to consider
the corresponding two-factor interactions involving P. We need to focus on P because it is the only
factor that is not included in the significant S∗F∗R interaction. The possible two-factor interactions
are F∗P and P∗R.

It is not clear that an F∗P∗R interaction exists but, to be safe, we will examine some reason-
able reduced interaction models. If some interpretable interaction effect has a large sum of squares,
it suggests that an important interaction may be hidden within the 4-degree-of-freedom interac-
tion test. To examine F∗P∗R interaction, we consider polynomial models in both proportions and
rotations,

yhi jkm =(s f pw)hi jk+(s f r)him+(pr) jm+β11i jm+β12i jm2+β21i j2m+β22i j2m2+εhi jkm. (19.2.3)

Relative to this quadratic-by-quadratic interaction model, the first reduced model fitted drops the
term β22i j2m2. From the model without β22i j2m2, we can drop either β21i j2m or β12i jm2 deter-
mining two hierarchies of models. The last reduced model in the hierarchy will include only the
linear-by-linear interaction term β11i jm. Dropping this term leads to a model without F∗P∗R in-
teraction.

The results of fitting the two hierarchies are given in Table 19.10. Because these subplot data are
balanced, the differential effects for the intermediate regression terms are identical (up to round-off
error) in the two hierarchies, i.e., 660 for fitting a quadratic-by-quadratic term after fitting the others,
495 for fitting a proportion-linear-by-rotation-quadratic term, regardless of whether a proportion-
quadratic-by-rotation-linear term has already been fitted, 40 for fitting a proportion-quadratic-by-
rotation-linear term, regardless of whether a proportion-linear-by-rotation-quadratic term has al-
ready been fitted, and 220.5 for fitting a proportion-linear-by-rotation-linear term. These results
provide a model-based reproduction of results obtained using orthogonal interaction contrasts for
balanced data in Christensen (1996, Section 12.2). Note also that these hierarchies involve dropping
pairs of regression coefficients, e.g., β22i, i = 1,2, but dropping these pairs only reduces the error
degrees of freedom by 1. This is a result of having (s f pw)hi jk in every model.

These models were not chosen by looking at the data, so less stringent multiple comparison
methods than Scheffé’s can be used on them. On the other hand, the models are not particularly
informative. None of these models suggests a particularly strong source of interaction. F tests are
constructed by dividing each of the four sums of squares by MSE(2). None of the F ratios is signif-
icant when compared to F(0.95,1,24) = 4.26. This analysis seems consistent with the hypothesis
of no F∗P∗R interaction.

If we accept the working assumption of no F∗P∗R interaction, we need to examine the two-
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Table 19.11: Subplot interaction models for examining P∗R interaction.

Model SSE dfE SS Diff. Cp

[SFPW][SFR][PR] 7120.2 36 — 37.5

[SFPW][SFR][P1R1][P1R2][P2R1][P2R2] 7120.2 36 — 37.5
[SFPW][SFR][P1R1][P1R2][P2R1] 7121.9 37 1.7 35.5
[SFPW][SFR][P1R1][P1R2] 7415.9 38 294.0 35.1
[SFPW][SFR][P1R1] 8141.9 39 726.0 36.9
[SFPW][SFR] 8883.0 40 741.1 38.8

[SFPW][SFR][P1R1][P1R2][P2R1][P2R2] 7120.2 36 — 37.5
[SFPW][SFR][P1R1][P1R2][P2R1] 7121.9 37 1.7 35.5
[SFPW][SFR][P1R1][P2R1] 7847.9 38 726.0 37.5
[SFPW][SFR][P1R1] 8141.9 39 294.0 36.9
[SFPW][SFR] 8883.0 40 741.1 38.8

factor interactions that can be constructed from the three factors. These are F∗P, F∗R, and P∗R.
The F∗R effects are, however, not worth further consideration because they are subsumed within
the S∗F∗R effects that have already been established as important. Another way of looking at this
is that in Model (19.2.1), the ( f r)im effects are unnecessary in a model that already has (s f r)him

effects. Thus we focus our attention on F∗P and P∗R. The F∗P interaction is a whole-plot effect,
so it will be considered in the next subsection.

We now examine the P∗R interaction. Information for testing whether [PR] can be dropped
from [SFPW][SFR][PR] is given at the top and bottom of Table 19.11. The F statistic becomes,

Fobs =
[8883.0−7120.2]/[40−36]

189.7
= 2.32,

which agrees with Table 19.7.
The 4 degrees of freedom for P∗R in the interaction test have the potential of hiding one or

two important, interpretable interaction effects. We explore this possibility by investigating P∗R
interaction models based on the linear and quadratic effects in both P and R.

We used Model (19.2.3) to examine F∗P∗R interaction; if there is no F∗P∗R interaction, a
similar model can be used to examine the P∗R interaction,

yhi jkm = (s f pw)hi jk +(s f r)him +β11 jm+β12 jm2 +β21 j2m+β22 j2m2 + εhi jkm. (19.2.4)

Results for fitting reduced models are given in Table 19.11. There are two hierarchies but due to
subplot balance they give the same results. We find that the sequential sum of squares for dropping
β12 is 726.0 and for dropping β11 is 741.1. Comparing them to MSE(2), these sums of squares are
not small but neither are they clearly significant. The interaction plot in Figure 19.5 of ŷ11 j1m values
from Model (19.2.4) seems to confirm that there is no obvious interaction being overlooked by the
four degrees of freedom test. We remain unconvinced that there is any substantial P∗R interaction.
These are exact analogues to results in Christensen (1996, Section 12.2.).

19.2.2 Whole-plot analysis

There is no simple whole-plot analysis unless the subplots are balanced. Losing any subplot ob-
servations (short of losing an entire whole plot) causes mathematical difficulties that preclude a
simple whole-plot analysis. With balanced subplots, we can perform the whole-plot analysis on the
subplot means or, as demonstrated here, we can accomplish the same thing by simply ignoring the
subplot effects. We cannot overemphasize that the methods in this subsection are inappropriate for
unbalanced subplots. The analysis is appropriate for unbalanced whole plots.
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Figure 19.5: Proportion—Rotation interaction plot for abrasion data. Plot of ŷ11 j1m versus m for each j.

We begin by dropping all the subplot effects out of Model (19.2.2) and fitting

yhi jkm = (s f pw)hi jk + εhi jkm,

cf. Table 19.12. To obtain the whole-plot Error, we compare this to a model with all whole-plot
effects but no subplot effects.

yhi jkm = μ + sh + fi + p j (19.2.5)

+(s f )hi +(sp)h j +( f p)i j +(s f p)hi j + εhi jkm.

From Table 19.12, MSE(1) = [102446−98705]/[60−48]= 3741/12 = 311.7, which agrees with
Table 19.7.

As we create reduced models relative to Model (19.2.5) in the whole plots we can get test
degrees of freedom and sums of squares by differencing the errors of various reduced models in the
usual way. Table 19.12 includes the usual 9 models for 3 factors and modified CP statistics. From
Table 19.12 we can reproduce the whole-plot tests of Table 19.7. For example, SS(S∗F∗P) =
102745− 102446= 299 with df (S∗F∗P) = 62−60 = 2. Moreover, one sum of squares for S∗P
is

R
(
[SP]
∣∣∣[FP][SF]

)
≡ SSE([SP][FP][SF])−SSE([FP][SF]) = 103540−102745= 795

with
dfE ([SP][FP][SF])−dfE ([FP][SF]) = 64−62 = 2.

The best among the usual 9 models appears to be [SF][FP], which is equivalent to a quadratic
model in proportions

yhi jkm = (s f )hi + p j +β1i j+β2i j2 + εhi jkm,

a model that we denote [SF][P][FP1][FP2]. Dropping the quadratic terms in proportions gives
[SF][P][FP1] and dropping the linear term reduces us to [SF][P]. The sum of squares for the quadratic
F∗P interaction term is

R
(
[FP2]

∣∣∣[SF][P][FP1]
)

≡ SSE([SF][P][FP1])−SSE([SF][P][FP1][FP2])

= 103563−103540= 23
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Table 19.12: Whole-plot interaction models.

Model SSE dfE Cp∗
[SFPW] 98705 48 —

[SFP] 102446 60 12.0
[SF][SP][FP] 102745 62 8.9
[SF][SP] 112630 64 36.7
[SF][FP] 103540 64 7.5
[SP][FP] 104427 63 12.4
[P][SF] 113425 66 35.2
[F][SP] 114312 65 40.1
[S][FP] 105222 65 10.9
[S][F][P] 115107 67 38.6

[SF][P][FP1][FP2] 103540 64 7.5
[SF][P][FP1] 103563 65 5.6
[SF][P] 113425 66 35.2

Cp∗ = [SSE − 98705]/[3741/12]− 2(dfE − 48))+ 24 where
n = 72 observations, N = 3 observations per whole plot,
24 = n/N and 48 = n− n/N.

and the sum of squares for the linear F∗P interaction term is

R
(
[FP1]

∣∣∣[SF][P]
)

≡ SSE([SF][P])−SSE([SF][P][FP1])

= 113425−103563= 9862,

each on 1 degree of freedom. The F∗P interaction is a whole-plot effect, so the appropriate error is
MSE(1) = 311.7 and the F ratios are 0.075 and 31.64, respectively. There is no evidence that the
curvatures in proportions are different for Fills A and B. However, there is evidence that the slopes
are different for Fills A and B.

In fact, we can take this further. The data are consistent with there being not only no change
in curvature but no curvature at all and, although the slopes are different, there is no evidence of a
nonzero slope for Fill B.

To fit separate quadratic models in j for each fill, we need to manipulate the indices. A 0-1
indicator variable for Fill B is fB ≡ i− 1 and an indicator variable for Fill A is fA ≡ 2− i. Define
a linear term in proportions for Fill A only as pA ≡ j ∗ fA and the quadratic term is p2

A ≡ j2 ∗ fA.
Similarly, the linear and quadratic terms for Fill B are pB ≡ j ∗ fB and p2

B ≡ j2 ∗ fB. The following
model is equivalent to [SF][FP],

yhi jkm = (s f )hi +βA1pA +βA2p2
A +βB1pB +βB2p2

B + εhi jkm.

As expected, it has dfE = 64 and SSE = 103540, just like [SF][FP].
Dropping the quadratic term for Fill B gives

yhi jkm = (s f )hi +βA1 pA +βA2p2
A +βB1pB + εhi jkm,

with dfE = 65 and SSE = 103652 for a difference in sums of squares of 103652− 103540= 112
for the Fill B quadratic term. Further dropping the linear term for Fill B gives

yhi jkm = (s f )hi +βA1pA +βA2p2
A + εhi jkm,

with dfE = 66 and SSE = 103793 for a difference in sums of squares of 103793− 103652= 141
due to the Fill B linear term. As far as we can tell, the weight loss does not change as a function of
proportion of filler when using Fill B.
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A similar analysis for Fill A shows that weight loss increases with proportion and there is again
no evidence of curvature. In particular, for Fill A, the quadratic term has a sum of squares of 14. For
Fill A, the linear term has sum of squares 23202.

The other significant whole-plot effect is the S∗F interaction but those effects are subsumed by
incorporating the S∗F∗R subplot effects.

19.2.3 Fixing effect levels

In a split-plot model, we can examine subplot effects for fixed levels of the whole-plot effects but,
within the model, we cannot examine whole-plot effects for fixed levels of a subplot effect. For
example, when investigating the S∗F∗R interaction, within a split-plot model, we can fix the Fill
as A (i = 1) and examine the corresponding S∗R interaction, but we cannot, without going outside
the split-plot model, fix the Rotation at 1000 (m = 1) and examine the S∗F interaction.

Continuing these examples, if we fix i = 1 in Model (19.2.2), the model becomes

yh1 jkm = (s f pw)h1 jk + rm +(sr)hm +( f r)1m +(pr) jm

+(s f r)h1m +(spr)h jm +( f pr)1 jm +(s f pr)h1 jm + εh1 jkm,

or equivalently,

yh1 jkm = (spw)h jk + rm +(sr)hm +(pr) jm +(sr)hm +(spr)h jm + εh jkm,

which is a perfectly reasonable model to fit and one that allows exploration of S∗R interaction for
Fill A. Any inferences we choose to make can continue to be based on MSE(2) as our estimate of
variance. Similarly, there is no problem with fixing the level of a whole-plot effect in the whole-plot
analysis, similar to what we did in the previous subsection.

On the other hand, if we fix m = 1 in Model (19.2.2), the subplot model becomes

yhi jk1 = (s f pw)hi jk + r1 +(sr)h1 +( f r)i1 +(pr) j1

+(s f r)hi1 +(spr)h j1 +( f pr)i j1 +(s f pr)hi j1 + εhi jk1,

or equivalently,
yhi jk1 = (s f pw)hi jk + εhi jk1,

which is not a model that allows us to examine S∗F interaction.
Fortunately, we can examine S∗F interaction for a fixed level of m; we just cannot do it in the

split-plot model context. If we go back to the original split-plot model (19.2.1) and fix m = 1 we get

yhi jk1 = μ + sh + fi + p j

+(s f )hi +(sp)h j +( f p)i j +(s f p)hi j

+ηhi j1

+ r1 +(sr)h1 +( f r)i1 +(pr) j1

+(s f r)hi1 +(spr)h j1 +( f pr)i j1 +(s f pr)hi j1

+ εhi jk1

or equivalently

yhi jk1 = μ + sh + fi + p j +(s f )hi +(sp)h j +( f p)i j +(s f p)hi j +ηhi j1 + εhi jk1,

which is really just the model that we analyzed in Section 16.2 where the two independent error
terms ηhi jk and εhi jk1 are added and treated as a single error term. Our test in Section 16.2 of
the S∗F interaction using just the 1000-rotation data is perfectly appropriate and similar tests using
just the 2000-rotation data and just the 3000-rotation data would also be appropriate. ANOVA tables
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for the separate analyses of the 1000-, 2000-, and 3000-rotation data are given in Section 19.3 as
Tables 19.14, 19.15, and 19.16. Note, though, that the separate analyses are not independent, because
the observations at 2000 rotations are not independent of the observations at 3000 rotations, etc.

On occasion, when examining models for a fixed subplot treatment, rather than using the MSEs
from the separate analyses, the degrees of freedom and sums of squares for Error 1 and Error 2
are pooled and these are used instead. This is precisely the error estimate obtained by pooling the
error estimates from the three separate ANOVAs. Such a pooled estimate should be better than the
estimates from the separate analyses but it is difficult to quantify the effect of pooling. The three
separate ANOVAs are not independent, so pooling the variance estimates does not have the nice
properties of the pooled estimate of the variance used in, say, one-way ANOVA. As alluded to
above, we cannot get exact F tests based on the pooled variance estimate. If the three ANOVA’s
were independent, the pooled error would have 12+ 12+ 12 = 36 degrees of freedom, but we do
not have independence, so we do not even know an appropriate number of degrees of freedom to
use with the pooled estimate, much less the appropriate distribution.

19.2.4 Final models and estimates

If the subplots are unbalanced, the final models and estimates are whatever comes out of the analysis
of Subsection 19.2.1. If we have balanced subplots, we can also incorporate a whole-plot analysis
in our final results.

We have found two important interaction effects, S∗F∗R from the subplot analysis and F∗P
from the whole-plot analysis. These two interactions are the highest-order terms that are significant
and they include all four of the factors. The only factor contained in both interactions is F, so the
simplest overall explanation of the data can be arrived at by giving separate explanations for the two
fills. To do this, we need to re-evaluate the S∗F∗R interaction in terms of how the S∗R interaction
changes from Fill A to Fill B; previously, we focused on how the S∗F interaction changed with
rotations. One benefit of this change in emphasis is that, as discussed earlier, we can use MSE(2)
for valid tests of the S∗R interactions effects for a fixed level of F because we are fixing a whole-
plot factor, not a subplot factor.

Separate the data into Fill A and Fill B and fit models by rewriting

yhi jkm = ( f p)i j +ηhi jk +(s f r)him + εhi jkm

as
yh1 jkm = p j +ηh1 jk +(sr)hm + εh1 jkm (19.2.6)

and
yh2 jkm = p j +ηh2 jk +(sr)hm + εh2 jkm. (19.2.7)

Models (19.2.6) and (19.2.7) can be written in split plot form as

yh1 jkm = sh + p j +ηh1 jk + rm +(sr)hm + εh1 jkm

and
yh2 jkm = sh + p j +ηh2 jk + rm +(sr)hm + εh2 jkm.

In the S∗F∗R interaction, rotations 2000 and 3000 are similar, so, as alternates to models
(19.2.6) and (19.2.7), we could fit models that do not distinguish between them using the index m̃,

yh1 jkm = sh + p j +ηh1 jk + rm +(sr)hm̃ + εh1 jkm (19.2.8)

and
yh2 jkm = sh + p j +ηh2 jk + rm +(sr)hm̃ + εh2 jkm. (19.2.9)
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And we can also fit the no-interaction models

yh1 jkm = sh + p j +ηh1 jk + rm + εh1 jkm (19.2.10)

and
yh2 jkm = sh + p j +ηh2 jk + rm + εh2 jkm. (19.2.11)

The sum of squares for comparing models (19.2.6) and (19.2.8) is

SS(S ∗ (2000 vs 3000)R; f ill A) = 165.69

and for comparing models (19.2.8) and (19.2.10) is

SS(S ∗ (1000 vs others)R; f ill A) = 754.01.

The sum of squares for comparing models (19.2.7) and (19.2.9) is

SS(S ∗ (2000 vs 3000)R; f ill B) = 391.72

and for comparing models (19.2.8) and (19.2.10) is

SS(S ∗ (1000 vs others)R; f ill B) = 9225.35.

All of these are compared to MSE(2) = 189.7. There is no evidence of interactions involving 2000
and 3000 rotations with surface treatments, regardless of fill type. With Fill A, there is marginal
evidence of an interaction in which the effect of S is different at 1000 rotations than at 2000 and
3000 rotations. With Fill B, there is clear evidence of an interaction where the effect of S is different
at 1000 rotations than at 2000 and 3000 rotations.

We earlier established that there is no quadratic effect in proportions for fill A, so Model (19.2.6)
can be replaced by

yh1 jkm = γ j+ηh1 jk +(sr)hm + εh1 jkm.

We earlier showed that there is no linear or quadratic effects in proportions for fill B so Model
(19.2.7) can be replaced by

yh2 jkm = ηh2 jk +(sr)hm + εh2 jkm.

Incorporating the earlier subplot models gives us the split-plot models

yh1 jkm = sh + γ j+ηh1 jk + rm +(sr)hm̃ + εh1 jkm (19.2.12)

and
yh2 jkm = sh +ηh2 jk + rm +(sr)hm̃ + εh2 jkm. (19.2.13)

Parameter estimates can be obtained by least squares, i.e., by fitting the models ignoring the η errors.
The fitted values are given in Table 19.13. Note that the rows and columns have been rearranged
from those used for the data in Table 19.6.

For Fill A, either surface treatment and any level of rotation, estimated weight loss increases by
31.08 as the proportion goes up.

For Fill A, the effect of going from 1000 to 2000 rotations is an estimated decrease in weight
loss of 12.0 units with a surface treatment but an estimated increase in weight loss of 8.0 units
without the surface treatment. The estimated effect of going from 2000 to 3000 rotations is a drop
of 41.1 units in weight loss regardless of the surface treatment.

For Fill A, the estimated effect of the surface treatment is an additional 20.6 units in weight loss
at either 2000 or 3000 rotations but it is an additional 40.5 units at 1000 rotations.

For Fill B, the estimated weight loss does not depend on proportions.
For Fill B, the effect of going from 1000 to 2000 rotations is an estimated decrease in weight

loss of 111.0 units with a surface treatment but only an estimated decrease in weight loss of 43.2
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Table 19.13: Abrasion resistance data fitted values: Final model.

Rotations
Surf. 1000 2000 3000

Fill treat. 25% 50% 75% 25% 50% 75% 25% 50% 75%
Yes 203.9 235.0 266.1 192.0 223.0 254.1 150.9 182.0 213.0
Yes 203.9 235.0 266.1 192.0 223.0 254.1 150.9 182.0 213.0

A
No 163.4 194.5 225.6 171.4 202.5 233.5 130.3 161.4 192.5
No 163.4 194.5 225.6 171.4 202.5 233.5 130.3 161.4 192.5
Yes 227.0 227.0 227.0 116.0 116.0 116.0 93.9 93.9 93.9
Yes 227.0 227.0 227.0 116.0 116.0 116.0 93.9 93.9 93.9

B
No 135.2 135.2 135.2 92.0 92.0 92.0 70.0 70.0 70.0
No 135.2 135.2 135.2 92.0 92.0 92.0 70.0 70.0 70.0

without the surface treatment. The estimated effect of going from 2000 to 3000 rotations is a drop
of 22.1 units in weight loss regardless of the surface treatment.

For Fill B, the estimated effect of the surface treatment is an additional 24.0 units in weight loss
at either 2000 or 3000 rotations but it is an additional 91.8 units at 1000 rotations.

Most of these estimates are identical to estimates based on the balanced analysis presented in
Christensen (1996, Section 12.2). The exceptions are the estimates that compare results for 1000
and 2000 rotations for fixed levels of surface treatment, and fill (proportions being irrelevant). The
estimates in Christensen (1996, Section 12.2) were somewhat more naive in that they did not incor-
porate the lack of S∗F interaction at 2000 and 3000 rotations.

The same information can be obtained from the tables of coefficients for models (19.2.12) and
(19.2.13) but it is much more straightforward to get the estimates from the table of fitted values. In
particular, fitting the models (with intercepts but without the whole-plot error terms) in R gives

Table of Coefficients
Fill A: Model (19.2.12) Fill B: Model (19.2.13)

Predictor Est Predictor Est
(Intercept) 172.833 (Intercept) 227.000
Sa2 −40.500 Sb2 −91.833
pa 31.083
RTa2 7.958 RTb2 −43.125
RTa3 −33.125 RTb3 −65.208
Sa1:Mtildea2 −19.917 Sb1:Mtildeb2 −67.917
Sa2:Mtildea2 NA Sb2:Mtildeb2 NA

The whole-plot errors were not included in the fitted models so the standard errors, t statistics, and
P values are all invalid and not reported.

The estimates for Fill A that we obtained from Table 19.13 can now be found as

31.083 = pa

−11.959 = −19.917+7.958= Sa1:Mtildea2+RTa2

7.958 = RTa2

−41.083 = −33.125−7.958= RTa3−RTa2

20.583 = 40.500−19.917= 20.583 =−Sa2+Sa1:Mtildea2

40.500 = −Sa2

and the estimates for Fill B are

−111.042 = −67.917−43.125= Sb1:Mtildeb2+RTb2
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Figure 19.6: Normal plot of whole-plot residuals, W ′ = 0.98, Box data.

−43.125 = RTb2

−22.083 = −65.208+43.125= RTb3−RTb2

23.916 = 91.833−67.917=−Sb2+Sb1:Mtildeb2

91.833 = −Sb2.

The down side of looking at the coefficients is that it is by no means clear how to figure out that these
parameter estimates, and linear combinations of parameter estimates, are what one wants to look at.
It is much easier to look at the table of fitted values to isolate features of interest corresponding to
the fitted model.

If you were to include fixed η effects when fitting models (19.2.12) and (19.2.13), you would get
the same estimates of any terms that involve the subplot treatments. In this example those would be
RTa2, RTb2, RTa3, RTb3, Sa1:Mtildea2, and Sb1:Mtildeb2. Moreover, the reported standard errors
for these parameter estimates would be appropriate. (Although even better standard errors could
be constructed by pooling the error estimates from models (19.2.12) and (19.2.13).) With fixed η
effects in the models, estimates of any whole-plot terms (any terms not previously listed) depend
entirely on the side conditions used to fit the model.

Finally, we examine residual plots for Model (19.2.1). The Error 1 plots are based on a model
for the whole plots that averages observations in subplots. Figures 19.6 and 19.7 contain residual
plots for the Error 1 residuals. The Error 2 plots are based on Model (19.2.2). Figures 19.8 and 19.9
contain residual plots for the Error 2 residuals. We see no serious problems in any of the plots. �

19.3 Multivariate analysis of variance

The multivariate approach to analyzing data that contain multiple measurements on each subject
involves using the multiple measures as separate dependent variables in a collection of standard
analyses. The method of analysis, known as multivariate analysis of variance (MANOVA) or more
generally as multivariate linear models, then combines results from the several linear models. A de-
tailed discussion of MANOVA is beyond the scope of this book, but we present a short introduction
to some of the underlying ideas.

For simplicity, we focus on a balanced analysis but there is nothing in the general theory that
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Figure 19.7: Whole-plot residuals plots, Box data.
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Figure 19.8 Normal plot of subplot residuals, W ′ = 0.98 and subplot residuals versus predicted values, Box
data.
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Figure 19.9: Subplot residuals versus factor values, Box data.

requires balance except that there be no missing observations among the multiple measures on
a subject. Entirely missing a subject causes few problems. The discussion in Christensen (2001,
Section 1.5) is quite general and particularly relevant in that it makes extensive comparisons to
split-plot analyses. Unfortunately, the mathematical level of Christensen (2001) is much higher than
the level of this book. Almost all Statistics books on multivariate analysis deal with MANOVA.
Johnson and Wichern (2007) or Johnson (1998) are reasonable places to look for more information
on the subject.

The discussion in this section makes some use of matrices. Matrices are reviewed in Ap-
pendix A.

EXAMPLE 19.3.1. Consider again the Box (1950) data on the abrasion resistance of a fabric. We
began in Section 16.2 by analyzing the weight losses obtained after 1000 revolutions of the testing
machine. In the split-plot analysis we combined these data for 1000 rotations with the data for 2000
and 3000 rotations. In the multivariate approach, we revert to the earlier analysis and fit separate
ANOVA models for the data from 1000 rotations, 2000 rotations, and 3000 rotations. Again, the
three factors are referred to as S, F, and P, respectively. The variables yhi jk,1, yhi jk,2, and yhi jk,3

denote the data from 1000, 2000, and 3000 rotations, respectively. We fit the models

yhi jk,1 = μhi jk,1 + εhi jk,1

= μ1 + sh,1 + fi,1 + p j,1

+(s f )hi,1 +(sp)h j,1 +( f p)i j,1 +(s f p)hi j,1 + εhi jk,1,

yhi jk,2 = μhi jk,2 + εhi jk,2

= μ2 + sh,2 + fi,2 + p j,2

+(s f )hi,2 +(sp)h j,2 +( f p)i j,2 +(s f p)hi j,2 + εhi jk,2,

and

yhi jk,3 = μhi jk,3 + εhi jk,3

= μ3 + sh,3 + fi,3 + p j,3

+(s f )hi,3 +(sp)h j,3 +( f p)i j,3 +(s f p)hi j,3 + εhi jk,3
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Table 19.14: Analysis of variance for y1.

Source df SS MS F P

S 1 26268.2 26268.2 97.74 0.000
F 1 6800.7 6800.7 25.30 0.000
P 2 5967.6 2983.8 11.10 0.002
S∗F 1 3952.7 3952.7 14.71 0.002
S∗P 2 1186.1 593.0 2.21 0.153
F∗P 2 3529.1 1764.5 6.57 0.012
S∗F∗P 2 478.6 239.3 0.89 0.436
Error 12 3225.0 268.8

Total 23 51407.8

Table 19.15: Analysis of variance for y2.

Source df SS MS F P

S 1 5017.0 5017.0 25.03 0.000
F 1 70959.4 70959.4 353.99 0.000
P 2 7969.0 3984.5 19.88 0.000
S∗F 1 57.0 57.0 0.28 0.603
S∗P 2 44.3 22.2 0.11 0.896
F∗P 2 6031.0 3015.5 15.04 0.001
S∗F∗P 2 14.3 7.2 0.04 0.965
Error 12 2405.5 200.5

Total 23 92497.6

h = 1,2, i = 1,2, j = 1,2,3, k = 1,2.

As in standard ANOVA models, we assume that the individuals (on which the repeated measures
were taken) are independent. Thus, for fixed m = 1,2,3, the εhi jk,ms are independent N(0,σmm) ran-
dom variables. We are now using a double subscript in σmm to denote a variance rather than writing
σ2

m. As usual, the errors on a common dependent variable, say εhi jk,m and εh′i′ j′k′,m, are independent
when (h, i, j,k) �= (h′, i′, j′,k′), but we also assume that the errors on different dependent variables,
say εhi jk,m and εh′i′ j′k′,m′ , are independent when (h, i, j,k) �= (h′, i′, j′,k′). However, not all of the er-
rors for all the variables are assumed independent. Two observations (or errors) on the same subject
are not assumed to be independent. For fixed h, i, j, k the errors for any two variables are possibly
correlated with, say, Cov(εhi jk,m,εhi jk,m′) = σmm′ .

The models for each variable are of the same form but the parameters differ for the different
dependent variables yhi jk,m. All the parameters have an additional subscript to indicate which de-
pendent variable they belong to. The essence of the procedure is simply to fit each of the models
individually and then to combine results. Fitting individually gives three separate sets of residuals,
ε̂hi jk,m = yhi jk,m − ȳhi j·,m for m = 1,2,3, so three separate sets of residual plots and three separate
ANOVA tables. The three ANOVA tables are given as Tables 19.14, 19.15, and 19.16. (Table 19.14
reproduces Table 16.10.) Each variable can be analyzed in detail using the ordinary methods for
multifactor models illustrated in Section 16.2. Residual plots for y1 were previously given in Sec-
tion 16.2 as Figures 16.3 and 16.4 with additional plots given here. The top left residual plot for y1

in Figure 19.10 was given as Figure 16.3. Residual plots for the analyses on y2 and y3 are given in
Figures 19.11 through 19.14.

The key to multivariate analysis of variance is to combine results across the three variables y1,
y2, and y3. Recall that the mean squared errors are just the sums of the squared residuals divided by



19.3 MULTIVARIATE ANALYSIS OF VARIANCE 467

Table 19.16: Analysis of variance for y3.

Source df SS MS F P

S 1 1457.0 1457.0 6.57 0.025
F 1 48330.4 48330.4 217.83 0.000
P 2 1396.6 698.3 3.15 0.080
S∗F 1 0.4 0.4 0.00 0.968
S∗P 2 250.6 125.3 0.56 0.583
F∗P 2 1740.3 870.1 3.92 0.049
S∗F∗P 2 272.2 136.1 0.61 0.558
Error 12 2662.5 221.9

Total 23 56110.0
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Figure 19.10: Residual plots for y1.

the error degrees of freedom, i.e.,

MSEmm ≡ smm =
1

dfE ∑
hi jk

ε̂2
hi jk,m.

This provides an estimate of σmm. We can also use the residuals to estimate covariances between
the three variables. The estimate of σmm′ is

MSEmm′ ≡ smm′ =
1

dfE ∑
hi jk

ε̂hi jk,mε̂hi jk,m′ .

We now form the estimates into a matrix of estimated covariances

S =

⎡
⎣

s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤
⎦ .
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Figure 19.11: Normal plot for y2, W ′ = 0.97.
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Figure 19.12: Residual plots for y2.

Note that smm′ = sm′m, e.g., s12 = s21. The matrix S provides an estimate of the covariance matrix

Σ ≡

⎡
⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ .

The key difference between this analysis and the split-plot analysis is that this analysis makes no
assumptions about the variances and covariances in Σ. The split-plot analysis assumes that

σ11 = σ22 = σ33 = σ2
w +σ2

s
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Figure 19.13: Normal plot for y3, W ′ = 0.94.
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Figure 19.14: Residual–prediction plot for y3.

and that for m �= m′,

σmm′ = σ2
w.

Similarly, we can construct a matrix that contains sums of squares error and sums of cross
products error. Write

emm′ ≡ ∑
hi jk

ε̂hi jk,mε̂hi jk,m′
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where emm = SSEmm and

E ≡

⎡
⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦ .

Obviously, E = (dfE)S. For Box’s fabric data,

E =

⎡
⎣

3225.00 −80.50 1656.50
−80.50 2405.50 −112.00
1656.50 −112.00 2662.50

⎤
⎦ .

The diagonal elements of this matrix are the error sums of squares from Tables 19.14, 19.15, and
19.16.

We can use similar methods for every line in the three analysis of variance tables. For example,
each variable m = 1,2,3 has a sum of squares for S∗P, say,

SS(S∗P)mm ≡ h(S∗P)mm = 4
2

∑
h=1

3

∑
j=1

(
ȳh· j·,m − ȳh···,m− ȳ·· j·,m+ ȳ····,m

)2
.

We can also include cross products using SS(S∗P)mm′ ≡ h(S∗P)mm′ , where

h(S∗P)mm′ = 4
2

∑
h=1

3

∑
j=1

(
ȳh· j·,m− ȳh···,m− ȳ·· j·,m+ ȳ····,m

)(
ȳh· j·,m′ − ȳh···,m′ − ȳ·· j·,m′ + ȳ····,m′

)

and create a matrix

H(S∗P)≡

⎡
⎣

h(S∗P)11 h(S∗P)12 h(S∗P)13

h(S∗P)21 h(S∗P)22 h(S∗P)23

h(S∗P)31 h(S∗P)32 h(S∗P)33

⎤
⎦ .

(The nice algebraic formulae only exist because the entire model is balanced.) For the fabric data

H(S∗P) =

⎡
⎣

1186.0833 −33.166667 526.79167
−33.166667 44.333333 −41.583333

526.79167 −41.583333 250.58333

⎤
⎦ .

Note that the diagonal elements of H(S∗P) are the S∗P interaction sums of squares from Ta-
bles 19.14, 19.15, and 19.16. Table 19.17 contains the H matrices for all of the sources in the
analysis of variance.

In the standard (univariate) analysis of y1 that was performed in Section 16.2, the test for S∗P
interactions was based on

F =
MS(S∗P)11

MSE11
=

SS(S∗P)11

SSE11

1/df (S∗P)
1/dfE

=
h(S∗P)11

e11

dfE
df (S∗P)

.

The last two equalities are given to emphasize that the test depends on the yhi jk,1s only through

h(S∗P)11 [e11]
−1. Similarly, a multivariate test of S∗P is a function of the matrices

H(S∗P)E−1,

where E−1 is the matrix inverse of E . A major difference between the univariate and multivariate
procedures is that there is no uniform agreement on how to use H(S∗P)E−1 to construct a test. The
generalized likelihood ratio test, also known as Wilks’ lambda, is

Λ(S∗P)≡ 1
|I +H(S∗P)E−1|
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Table 19.17: MANOVA statistics.

H(GRANDMEAN) =

⎡
⎣

940104.17 752281.25 602260.42
752281.25 601983.37 481935.13
602260.42 481935.13 385827.04

⎤
⎦

H(S) =

⎡
⎣

26268.167 11479.917 6186.5833
11479.917 5017.0417 2703.7083
6186.5833 2703.7083 1457.0417

⎤
⎦

H(F) =

⎡
⎣

6800.6667 21967.500 18129.500
21967.500 70959.375 58561.875
18129.500 58561.875 48330.375

⎤
⎦

H(P) =

⎡
⎣

5967.5833 6818.2500 2646.9583
6818.2500 7969.0000 3223.7500
2646.9583 3223.7500 1396.5833

⎤
⎦

H(S∗F) =

⎡
⎣

3952.6667 474.83333 38.500000
474.83333 57.041667 4.6250000
38.500000 4.6250000 0.37500000

⎤
⎦

H(S∗P) =

⎡
⎣

1186.0833 −33.166667 526.79167
−33.166667 44.333333 −41.583333

526.79167 −41.583333 250.58333

⎤
⎦

H(F∗P) =

⎡
⎣

3529.0833 4275.5000 2374.1250
4275.5000 6031.0000 2527.2500
2374.1250 2527.2500 1740.2500

⎤
⎦

H(S∗F∗P) =

⎡
⎣

478.58333 4.4166667 119.62500
4.4166667 14.333333 −57.750000
119.62500 −57.750000 272.25000

⎤
⎦

E =

⎡
⎣

3225.00 − 80.50 1656.50
−80.50 2405.50 −112.00
1656.50 −112.00 2662.50

⎤
⎦

where I indicates a 3 × 3 identity matrix and |A| denotes the determinant of a matrix A. Roy’s
maximum root statistic is the maximum eigenvalue of H(S∗P)E−1, say, φmax(S∗P). On occasion,
Roy’s statistic is taken as

θmax(S∗P)≡ φmax(S∗P)
1+φmax(S∗P)

.

A third statistic is the Lawley–Hotelling trace,

T 2(S∗P)≡ dfE tr
[
H(S∗P)E−1] ,

and a final statistic is Pillai’s trace,

V (S∗P)≡ tr
[
H(S∗P)(E +H(S∗P))−1

]
.

Similar test statistics Λ, φ , θ , T 2 and V can be constructed for all of the other main effects and
interactions. It can be shown that for H terms with only one degree of freedom, these test statistics
are equivalent to each other and to an F statistic. In such cases, we only present T 2 and the F value.

Table 19.18 presents the test statistics for each term. When the F statistic is exactly correct, it is
given in the table. In other cases, the table presents F statistic approximations. The approximations
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Table 19.18: Multivariate statistics.

Effect Statistics F df P

GRAND MEAN T 2 = 6836.64 1899.07 3, 10 0.000
S T 2 = 137.92488 38.31 3, 10 0.000
F T 2 = 612.96228 170.27 3, 10 0.000
P Λ = 0.13732 5.66 6, 20 0.001

T 2 = 65.31504 8.16 6, 18 0.000
V = 0.97796 3.51 6, 22 0.014
φmax = 5.28405

S∗F T 2 = 21.66648 6.02 3, 10 0.013
S∗P Λ = 0.71068 0.62 6, 20 0.712

T 2 = 4.76808 0.60 6, 18 0.730
V = 0.29626 0.64 6, 22 0.699
φmax = 0.37102

F∗P Λ = 0.17843 4.56 6, 20 0.005
T 2 = 46.03092 5.75 6, 18 0.002
V = 0.95870 3.38 6, 22 0.016
φmax = 3.62383

S∗F∗P Λ = 0.75452 0.50 6, 20 0.798
T 2 = 3.65820 0.46 6, 18 0.831
V = 0.26095 0.55 6, 22 0.765
φmax = 0.20472

are commonly used and discussed; see, for example, Rao (1973, chapter 8) or Christensen (2001,
Section 1.2). Degrees of freedom for the F approximations and P values are also given.

Each effect in Table 19.18 corresponds to a combination of a whole-plot effect and a whole-plot-
by-subplot interaction from the split-plot analysis Table 19.7. For example, the multivariate effect
S corresponds to combining the effects S and S∗R from the univariate analysis. The highest-order
terms in the table that are significant are the F∗P and the S∗F terms. Relative to the split-plot
analysis, these suggest the presence of F∗P interaction or F∗P∗R interaction and S∗F interaction
or S∗F∗R interaction. In Section 19.2, we found the merest suggestion of an F∗P∗R interaction
but clear evidence of an F∗P interaction; we also found clear evidence of an S∗F∗R interaction.
However, the split-plot results were obtained under different, and perhaps less appropriate, assump-
tions.

�

To complete a multivariate analysis, additional modeling is needed (or MANOVA contrasts for
balanced data). The MANOVA assumptions also suggest some alternative residual analysis. We
will not discuss either of these subjects. Moreover, our analysis has exploited the balance in S, F,
and P so that we have not needed to examine various sequences of models that would, in general,
determine different H matrices for the effects. (Balance in R is required for the MANOVA).

Finally, a personal warning. One should not underestimate how much one can learn from simply
doing the analyses for the individual variables. Personally, I would look thoroughly at each indi-
vidual variable (number of rotations in our example) before worrying about what a multivariate
analysis can add.

19.4 Random effects models

In this section we consider two special cases of split-plot models. First we consider a model in
which several “identical” measurements are taken on the same subject. These measurements on
a unit involve some random errors but they do not involve the error associated with unit-to-unit
variation. (Generally, these measurements are taken at essentially the same time so that trends over
time are irrelevant.) Such models are called subsampling models. The second class of models are
those in which some treatment effects in an ANOVA can actually be considered as random. For
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simplicity, both discussions are restricted to balanced models. Unbalanced models are much more
difficult to deal with and typically require a knowledge of linear model theory, cf. Christensen (2011,
especially Chapter 12).

19.4.1 Subsampling

It is my impression that many of the disasters that occur in planning and analyzing studies occur
because people misunderstand subsampling. The following is both a true story and part of the folk-
lore of the Statistics program at the University of Minnesota. A graduate student wanted to study
the effects of two drugs on mice. The student collected 200 observations in the following way. Two
mice were randomly assigned to each drug. From each mouse, tissue samples were collected at 50
sites. The subjects were the mice because the drugs were applied to the mice, not to the tissue sites.
There are two sources of variation: mouse-to-mouse variation and within-mouse variation. The 50
observations (subsamples) on each mouse are very useful in reducing the within-mouse variation but
do nothing to reduce mouse-to-mouse variation. Relative to the mouse-to-mouse variation, which
is likely to be larger than the within-mouse variation, there are only two observations that have the
same treatment. As a result, each of the two treatment groups provides only one degree of freedom
for estimating the variance that applies to treatment comparisons. In other words, the experiment
provides two degrees of freedom for (the appropriate) error. Obviously a lot of work went into col-
lecting the 200 observations. The work was wasted! Moreover, the problem in the design of this
experiment could easily have been compounded by an analysis that ignored the subsampling prob-
lem. If subsampling is ignored in the analysis of such data, the MSE is inappropriately small and
effects look more significant than they really are. (Fortunately, none of the many Statistics students
that were approached to analyze these data were willing to do it incorrectly.)

Another example comes from Montana State University. A Range science graduate student
wanted to compare two types of mountain meadows. He had located two such meadows and was
planning to take extensive measurements on each. It had not occurred to him that this procedure
would look only at within-meadow variation and that there was variation between meadows that he
was ignoring.

Consider the subsampling model

yi jk = μi +ηi j + εi jk (19.4.1)

where i= 1, . . . ,a is the number of treatments, j = 1, . . . ,ni is the number of replications on different
subjects, and k = 1, . . . ,N is the number of subsamples on each subject. We assume that the εi jks
are independent N(0,σ2

s ) random variables, that the ηi js are independent N(0,σ2
w), and that the ηi js

and εi jks are independent. The ηs indicate errors (variability) that occur from subject to subject,
whereas the εs indicate errors (variability) that occur in measurements taken on a given subject.
Model (19.4.1) can be viewed as a special case of a split-plot model in which there are no subplot
treatments. If there are no subplot treatments, interest lies exclusively in the whole-plot analysis.
The whole-plot analysis can be conducted in the usual way by taking the data to be the averages
over the subsamples (subplots).

We can be more formal by using Model (19.4.1) to obtain

ȳi j· = μi + ei j (19.4.2)

where we define
ei j ≡ ηi j + ε̄i j·

and have i = 1, . . . ,a, j = 1, . . . ,ni. Using Proposition 1.2.11, it is not difficult to see that the ei js
are independent N(0,σ2

w +σ2
s /N), so that Model (19.4.2) is just an unbalanced one-way ANOVA

model and can be analyzed as such. If desired, the methods of the next subsection can be used to
estimate the between-unit (whole-plot) variance σ2

w and the within-unit (subplot) variance σ2
s . Note
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that our analysis in Example 19.1.1 was actually on a model similar to (19.4.2). The data analyzed
were averages of two repeat measurements of dynamic absorption.

Model (19.4.2) also helps to formalize the benefits of subsampling. We have N subsamples
that lead to Var(ei j) = σ2

w +σ2
s /N. If we did not take subsamples, the variance would be σ2

w +σ2
s ,

so we have reduced one of the terms in the variance by subsampling. If the within-unit variance
σ2

s is large relative to the between-unit variance σ2
w, subsampling can be very beneficial. If the

between-unit variance σ2
w is substantial when compared to the within-unit variance σ2

s , subsampling
has very limited benefits. In this latter case, it is important to obtain a substantial number of true
replications involving the between-unit variability with subsampling based on convenience (rather
than importance).

Model (19.4.1) was chosen to have unequal numbers of units on each treatment but a balanced
number of subsamples. This was done to suggest the generality of the procedure. Subsamples can
be incorporated into any linear model and, as long as the number of subsamples is constant for each
unit, a simple analysis can be obtained by averaging the subsamples for each unit and using the
averages as data. Christensen (2011, Section 11.4) provides a closely related discussion that is not
too mathematical.

19.4.2 Random effects

We begin with an example.

EXAMPLE 19.4.1. Ott (1949) presented data on an electrical characteristic associated with ce-
ramic components for a phonograph (one of those ancient machines that played vinyl records). Ott
and Schilling (1990) and Ryan (1989) have also considered these data. Ceramic pieces were cut
from strips, each of which could provide 25 pieces. It was decided to take 7 pieces from each strip,
manufacture the 7 ceramic phonograph components, and measure the electrical characteristic on
each. The data from 4 strips are given below. (These are actually the third through sixth of the strips
reported by Ott.)

Strip Observations
1 17.3 15.8 16.8 17.2 16.2 16.9 14.9
2 16.9 15.8 16.9 16.8 16.6 16.0 16.6
3 15.5 16.6 15.9 16.5 16.1 16.2 15.7
4 13.5 14.5 16.0 15.9 13.7 15.2 15.9

The standard analysis looks for differences between the means of these four specific ceramic
strips. An alternative approach to these data is to think of the four ceramic strips as being a random
sample from the population of ceramic strips that are involved in making the assemblies. If we do
that, we have two sources of variability, variability among the observations on a given strip and
variability between different ceramic strips. Our goal in this subsection is to estimate the variances
and test whether there is any variability between strips. �

Consider a balanced one-way ANOVA model

yi j = μ +αi + εi j

where i = 1, . . . ,a and j = 1, . . . ,N. As usual, we assume that the εi js are independent N(0,σ2)
random variables, but now, rather than assuming that the αis are fixed treatment effects, we assume
that they are random treatment effects. In particular, assume that the αis are independent N(0,σ2

A)
random variables that are also independent of the εi js. This model can be viewed as a split-plot
model in which there are no whole-plot factors or subplot factors.

The analysis revolves around the analysis of variance table and the use of Proposition 1.2.11. As
usual in a one-way ANOVA, begin with the summary statistics ȳi· and s2

i , i = 1, . . . ,a. In comparing
the observations within a single strip, there is no strip-to-strip variability. The sample variances s2

i
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each involve comparisons only within a given strip, so each provides an estimate of the within-strip
variance, σ2. In particular, E

(
s2

i

)
= σ2. Clearly, if we pool these estimates we continue to get an

estimate of σ2. In particular,
E(MSE) = σ2.

We now examine MSGrps. Before proceeding note that by independence of the αis and the εi js,

Var(yi j) = Var(μ +αi + εi j)

= Var(αi)+Var(εi j)

= σ2
A +σ2.

Thus Var(yi j) is the sum of two variance components σ2
A and σ2. Moreover,

Var(ȳi·) = Var(μ +αi + ε̄i·)
= Var(αi)+Var(ε̄i·)

= σ2
A +

σ2

N

because ε̄i· is the sample mean of N independent random variables that have variance σ2. It is easily
seen that E(ȳi·) = μ . The ȳi·s form a random sample of size a, cf. Christensen (1996, Chapter 5).
The population that they are sampled from is N

(
μ ,σ2

A +σ2/N
)
. Clearly, the sample variance of the

ȳi·s provides an estimate of σ2
A +σ2/N. The MSGrps is N times the sample variance of the ȳi·s, so

MSGrps provides an unbiased estimate of Nσ2
A +σ2.

We already have an estimate of σ2. To obtain an estimate of σ2
A use the results of the previous

paragraph and take

σ̂2
A =

MSGrps−MSE
N

.

It is a simple exercise to show that
E
(
σ̂2

A

)
= σ2

A.

Note, however, that the quality of this estimate depends crucially on a, the number of groups.
To see this, note that the best estimate we could get for σ2

A would be if we actually got to see the
αis. In that case, ∑a

i=1 α2
i /a is the best estimate we could get of σ2

A; an estimate that has a degrees
of freedom. If a is small, the estimate will be lousy. But we cannot even do as well as this. We don’t
get to see the αis, we have to estimate them with ȳi·− ȳ·· and then ∑a

i=1(ȳi· − ȳ··)2/(a− 1) gives
us an a− 1 degree-of-freedom estimate of σ2

A +σ2/N; not even an estimate of σ2
A . To get a good

estimate of σ2
A , we need a large; not N.

The usual F statistic is MSGrps/MSE . Clearly, it is a (biased) estimate of

Nσ2
A +σ2

σ2 = 1+
Nσ2

A

σ2 .

If H0 : σ2
A = 0 holds, the F statistic should be about 1. In general, if H0 holds,

MSGrps
MSE

∼ F(a−1,dfE),

and the usual F test can be interpreted as a test of H0 : σ2
A = 0. Interestingly, however, for this test

to be good, we need N large; not a. Typically, it is easier to get N large than it is to get a large, so
typically it is easier to tell whether σ2

A �= 0 than it is to tell what σ2
A actually is.

EXAMPLE 19.4.1 CONTINUED. For the electrical characteristic data, the analysis of variance
table is given below.
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Analysis of Variance: Electrical characteristic data
Source df SS MS F P
Treatments 3 10.873 3.624 6.45 0.002
Error 24 13.477 0.562
Total 27 24.350

The F statistic shows strong evidence that variability exists between ceramic strips. The estimate of
within-strip variability is MSE = 0.562. With 7 observations on each ceramic strip, the estimate of
between-strip variability is

σ̂2
A =

MSGrps−MSE
N

=
3.624−0.562

7
= 0.437,

but it is not a very good estimate, being worse than an estimate based on 3 degrees of freedom.
While in many ways this random effects analysis seems more appropriate for the relatively

undifferentiated strips being considered, this analysis also seems less informative for these data
than the fixed effects analysis. It is easy to see that most of the between-strip “variation” is due to a
single strip, number 4, being substantially different from the others. Are we to consider this strip an
outlier in the population of ceramic strips? Having three sample means that are quite close and one
that is substantially different certainly calls into question the assumption that the random treatment
effects are normally distributed. Most importantly, some kind of analysis that looks at individual
sample means is necessary to have any chance of identifying an odd strip. �

While the argument given here works only for balanced data, the corresponding model fitting
ideas give similar results for unbalanced one-way ANOVA data. In particular,

σ̂2
A =

SSGrps−MSE(a−1)

n−∑a
i=1 N2

i /n
,

and the usual F test gives an appropriate test of H0 : σ2
A = 0. Christensen (2011, Section 12.9, Sub-

section 12.10.11) provides theoretical justification for these claims but does not treat this particular
example.

The ideas behind the analysis of the balanced one-way ANOVA model generalize nicely to other
balanced models. Consider the balanced two-way with replication,

yi jk = μ +αi +β j + γi j + εi jk,

where i = 1, . . . ,a, j = 1, . . . ,b, and k = 1, . . . ,N. Assume that the εi jks are independent N(0,σ2)
random variables, that the γi js are independent N(0,σ2

γ ), and that the εi jks and γi js are independent.
This model involves two variance components, σ2

γ and σ2.
The theory alluded to earlier leads to the following results. MSE still estimates σ2. MS(γ) esti-

mates
E[MS(γ)] = σ2 +Nσ2

γ .

The usual interaction test is a test of H0 : σ2
γ = 0.

In addition, for main effects, MS(β ) estimates

E[MS(β )] = σ2 +Nσ2
γ +

aN
b−1

b

∑
j=1

(β j − β̄·)2.

When the β js are all equal, MS(β ) estimates σ2 +Nσ2
γ . It follows that to obtain an F test for

equality of the β js, the test must reject when MS(β ) is much larger than MS(γ). In particular, an
α-level test rejects if

MS(β )
MS(γ)

> F(1−α,a−1, [a−1][b−1]).
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Table 19.19: Cornell’s scaled vinyl thickness values.

Replication 1 Replication 2

Rate High Low Low High High Low Low High

Temp Low High Low High Low High Low High

1 8 12 7 12 7 10 8 11
2 6 9 7 10 5 8 6 9

Blend 3 10 13 9 14 11 12 10 12
4 4 6 5 6 5 3 4 5
5 11 15 9 13 10 11 7 9

This is just the usual result except that the MSE has been replaced by the MS(γ). The analysis of
effects, i.e., further modeling or contrasts, involving the β js also follows the standard pattern but
with MS(γ) used in place of MSE . Similar results hold for investigating the αis. Basically, you can
think of the εi jks as subsampling errors and do the analysis on the ȳi j·s.

The moral of this analysis is that one needs to think very carefully about whether to model inter-
actions as fixed effects or random effects. It would seem that if you do not care about interactions,
if they are just an annoyance in evaluating the main effects, you probably should treat them as ran-
dom and use the interaction mean square as the appropriate estimate of variability. A related way of
thinking is to stipulate that you do not care about any main effects unless they are large enough to
show up above any interaction. In particular, that is essentially what is done in a randomized com-
plete block design. An RCB takes the block-by-treatment interaction as the error and only treatment
effects that are strong enough to show up over and above any block-by-treatment interaction are
deemed significant. On the other hand, if interactions are something of direct interest, they should
typically be treated as fixed effects.

19.5 Exercises

EXERCISE 19.5.1. In Exercises 17.11.3, 17.11.4, and 18.7.1, we considered data from Cornell
(1988) on scaled vinyl thicknesses. Exercise 17.11.3 involved five blends of vinyl and we discussed
the fact that the production process was set up eight times with a group of five blends run on each
setting. The eight production settings were those in Exercise 17.11.4. The complete data are dis-
played in Table 19.19.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts
using the LSD method with an α of .05.

(c) Check the assumptions of the model and adjust the analysis appropriately.

(d) Discuss the relationship between the current analysis and those conducted earlier.

EXERCISE 19.5.2. Wilm (1945) presented data involving the effect of logging on soil moisture
deficits under a forest. Treatments consist of five intensities of logging. Treatments were identified
as the volume of the trees left standing after logging that were larger than 9.6 inches in diameter. The
logging treatments were uncut, 6000 board-feet, 4000 board-feet, 2000 board-feet, 0 board-feet. The
experiment was conducted by selecting four blocks (A,B,C,D) of forest. These were subdivided into
five plots. Within each block each of the treatments were randomly assigned to a plot. Soil moisture
deficits were measured in each of three consecutive years, 1941, 1942, and 1943. The data are
presented in Table 19.20.
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Table 19.20: Soil moisture deficits as affected by logging.

Block
Treatment Year A B C D

41 2.40 0.98 1.38 1.37
Uncut 42 3.32 1.91 2.36 1.62

43 2.59 1.44 1.66 1.75
41 1.76 1.65 1.69 1.11

6000 42 2.78 2.07 2.98 2.50
43 2.27 2.28 2.16 2.06
41 1.43 1.30 0.18 1.66

4000 42 2.51 1.48 1.83 2.36
43 1.54 1.46 0.16 1.84
41 1.24 0.70 0.69 0.82

2000 42 3.29 2.00 1.38 1.98
43 2.67 1.44 1.75 1.56
41 0.79 0.21 0.01 0.16

None 42 1.70 1.44 2.65 2.15
43 1.62 1.26 1.36 1.87

Treatments are volumes of timber left standing
in trees withdiameters greater than 9.6 inches.
Volumes are measured in board-feet.

(a) Identify the design for this experiment and give an appropriate model. List all the assumptions
made in the model.

(b) Analyze the data. Give an appropriate analysis of variance table. Examine appropriate contrasts.
In particular, compare the uncut plots to the average of the other plots and use polynomials to ex-
amine differences among the other four treatments. Discuss the reasonableness of this procedure
in which the ‘uncut’ treatment is excluded when fitting the polynomials.

(c) Check the assumptions of the model and adjust the analysis appropriately. What assumptions are
difficult to check? Identify any such assumptions that are particularly suspicious.

EXERCISE 19.5.3. Day and del Priore (1953) report data from an experiment on the noise gen-
erated by various reduction gear designs. The data were collected because of the Navy’s interest in
building quiet submarines. Primary interest focused on the direction of lubricant application. Lubri-
cants were applied either inmesh (I) or tangent (T) and either at the top (T) or the bottom (B). Thus
the direction TB indicates tangent, bottom while IT is inmesh, top.

Four additional factors were considered. Load was 25%, 100%, or 125%. The temperature of
the input lubricant was 90, 120, or 160 degrees F. The volume of lubricant flow was 0.5 gpm, 1 gpm,
or 2 gpm. The speed was either 300 rpm or 1200 rpm. Temperature and volume were of less interest
than direction; speed and load were of even less interest. It was considered that load, temperature,
and volume would not interact but that speed might interact with the other factors. There was little
idea whether direction would interact with other factors. As a result, a split-plot design with whole
plots in a 3×3 Latin square was used. The factors used in defining the whole-plot Latin square were
load, temperature, and volume. The subplot factors were speed and the direction factors.

The data are presented in Table 19.21. The four observations with 100% load, 90-degree tem-
perature, 0.5-gpm volume, and lubricant applied tangentially were not made. Substitutes for these
values were used. As an approximate analysis, treat the substitute values as real values but subtract
four degrees of freedom from the subplot error. Analyze the data.

EXERCISE 19.5.4. In Exercise 16.4.1 and Table 16.19 we presented Baten’s (1956) data on
lengths of steel bars. The bars were made with one of two heat treatments (W, L) and cut on one
of four screw machines (A, B, C, D) at one of three times of day (8 am, 11 am, 3 pm). There are
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Table 19.21: Gear test data.

Volume
Load Direction .5 gpm 1 gpm 2 gpm

Temp 120 Temp 90 Temp 160
TB 92.7 81.4 91.3 68.0 86.9 78.2

25% IT 95.9 79.2 87.7 77.7 90.7 97.9
IB 92.7 85.5 93.6 76.2 92.1 80.2
TT 92.2 81.4 92.9 72.2 90.6 85.8

Temp 90 Temp 160 Temp 120
TB 94.2* 80.2* 89.7 86.0 91.9 84.8

100% IT 88.6 83.7 87.8 86.6 85.4 79.5
IB 89.8 83.9 90.4 79.3 85.7 86.9
TT 89.8* 75.4* 90.4 85.0 82.6 79.0

Temp 160 Temp 120 Temp 90
TB 88.7 94.2 90.3 86.7 88.4 75.8

125% IT 92.1 91.1 90.3 83.5 86.3 71.2
IB 91.7 89.2 90.4 86.6 88.3 87.9
TT 93.4 86.2 89.7 83.0 88.6 84.5

300 1200 300 1200 300 1200
Speed Speed Speed

* indicates a replacement for missing data.

distressing aspects to Baten’s article. First, he never mentions what the heat treatments are. Second,
he does not discuss how the four screw machines differ or whether the same person operates the
same machine all the time. If the machines were largely the same and one specific person always
operates the same machine all the time, then machine differences would be due to operators rather
than machines. If the machines were different and one person operates the same machine all the
time, it becomes impossible to tell whether machine differences are due to machines or operators.
Most importantly, Baten does not discuss how the replications were obtained. In particular, consider
the role of day-to-day variation in the analysis.

If the 12 observations on a heat treatment–machine combination are all taken on the same day,
there is no replication in the experiment that accounts for day-to-day variation. In that case the av-
erage of the four numbers for each heat treatment–machine–time combination gives essentially one
observation and for each heat treatment–machine combination the three time means are correlated.
To obtain an analysis, the heat–machine interaction and the heat–machine–time interaction would
have to be used as the two error terms.

Suppose the 12 observations on a heat treatment–machine combination are taken on four differ-
ent days with one observation obtained on each day for each time period. Then the three observations
on a given day are correlated but the observations on different days are independent. This leads to a
traditional split-plot analysis.

Finally, suppose that the 12 observations on a heat treatment–machine combination are all taken
on 12 different days. Yet another analysis is appropriate.

Compare the results of these three different methods of analyzing the experiment. If the day-to-
day variability is no larger than the within-day variability, there should be little difference. When
considering the analysis that assumes 12 observations taken on four different days, treat the order
of the four heat treatment–machine–time observations as indicating the day. For example, with heat
treatment W and machine A, take 9, 3, and 4 as the three time observations on the second day.

EXERCISE 19.5.5. Reanalyze Mandel’s (1972) data from Example 12.4.1 and Table 12.4 as-
suming that the five laboratories are a random sample from a population of laboratories. Include
estimates of both variance components.

EXERCISE 19.5.6. Reanalyze the data of Example 17.4.1 assuming that the Disk-by-Window
interaction is a random effect. Include estimates of both variance components.



480 19. DEPENDENT DATA

Table 19.22: Snedecor and Haber (1946) cutting dates on asparagus.

Treatments
Year a b c a b c a b c

29 201 301 362 185 236 341 209 226 357
30 230 296 353 216 256 328 219 212 354
31 324 543 594 317 397 487 357 358 560
32 512 778 755 448 639 622 496 545 685
33 399 644 580 361 483 445 344 415 520
34 891 1147 961 783 998 802 841 833 871
35 449 585 535 409 525 478 418 451 538
36 595 807 548 566 843 510 622 719 578
37 632 804 565 629 841 576 636 735 634
38 527 749 353 527 823 299 530 731 413

29 219 330 427 225 307 382 219 342 464
30 222 301 391 239 297 321 216 287 364
31 348 521 599 347 463 502 356 557 584
32 487 742 802 512 711 684 508 768 819
33 372 534 573 405 577 467 377 529 612
34 773 1051 880 786 1066 763 780 969 1028
35 382 570 540 415 610 468 407 526 651
36 505 737 577 549 779 548 595 772 660
37 534 791 524 559 741 621 626 826 673
38 434 614 343 433 706 352 518 722 424

Blocks are indicated by vertical and horizontal lines.

EXERCISE 19.5.7. People who really want to test their skill may wish to examine the data pre-
sented in Snedecor and Haber (1946) and repeated in Table 19.22. The experiment was to examine
the effects of three cutting dates on asparagus. Six blocks were used. One plot was assigned a cut-
ting date of June 1 (a), one a cutting date of June 15 (b), and the last a cutting date of July 1 (c).
Data were collected on these plots for 10 years.

Try to come up with an intelligible summary of the data that would be of use to someone growing
asparagus. In particular, the experiment was planned to run for the effective lifetime of the planting,
normally 20 years or longer. The experiment was cut short due to lack of labor but interest remained
in predicting behavior ten years after the termination of data collection. As most effects seem to
be significant, I would be inclined to focus on effects that seem relatively large rather than on
statistically significant effects.

EXERCISE 19.5.8. Reconsider the data of Exercises 15.5.2, 15.5.3, and Table 15.10 from Smith,
Gnanadesikan, and Hughes (1962). Perform a multivariate ACOVA on the data. Are the data re-
peated measures data? Is it reasonable to apply a split-plot model to the data? If so, do so.



Chapter 20

Logistic Regression: Predicting Counts

For the most part, this book concerns itself with measurement data and the corresponding analyses
based on normal distributions. In this chapter and the next we consider data that consist of counts.
Elementary count data were introduced in Chapter 5.

Frequently, data are collected on whether or not a certain event occurs. A mouse dies when
exposed to a dose of chloracetic acid or it does not. In the past, O-rings failed during a space shuttle
launch or they did not. Men have coronary incidents or they do not. These are modeled as random
events and we collect data on how often the event occurs. We also collect data on potential predictor
(explanatory) variables. For example, we use the size of dose to estimate the probability that a
mouse will die when exposed. We use the atmospheric temperature at launch time to estimate the
probability that O-rings fail. We may use weight, cholesterol, and blood pressure to estimate the
probability that men have coronary incidents. Once we have estimated the probability that these
events will occur, we are ready to make predictions. In this chapter we investigate the use of logistic
models to estimate probabilities. Logistic models (also known as logit models) are linear models for
the log-odds that an event will occur. For a more complete discussion of logistic and logit models
see Christensen (1997).

Section 20.1 introduces models for predicting count data. Section 20.2 presents a simple model
with one predictor variable where the data are the proportions of trials that display the event. It also
discusses the output one typically obtains from running a logistic regression program. Section 20.3
discusses how to perform model tests with count data. Section 20.4 discusses how logistic models
are fitted. Section 20.5 introduces the important special case in which each observation is a separate
trial that either displays the event or does not. Section 20.6 explores the use of multiple continuous
predictors. Section 20.7 examines ANOVA type models with Section 20.8 examining ACOVA type
models.

20.1 Models for binomial data

Logistic regression is a method of modeling the relationships between probabilities and predictor
variables. We begin with an example.

EXAMPLE 20.1.1. Woodward et al. (1941) reported data on 120 mice divided into 12 groups of
10. The mice in each group were exposed to a specific dose of chloracetic acid and the observations
consist of the number in each group that lived and died. Doses were measured in grams of acid per
kilogram of body weight. The data are given in Table 20.1, along with the proportions yh of mice
who died at each dose xh.

We could analyze these data using the methods discussed earlier in Chapter 5. We have samples
from twelve populations. We could test to see if the populations are the same. We don’t think they
are because we think survival depends on dose. More importantly, we want to try to model the rela-
tionship between dose level and the probability of dying, because that allows us to make predictions
about the probability of dying for any dose level that is similar to the doses in the original data. �

In Section 3.1 we talked about models for measurement data yh, h = 1, . . . ,n with E(yh) ≡ μh

481
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Table 20.1: Lethality of chloracetic acid.

Dose (xh) Group (h) Died Survived Total Proportion (yh)
.0794 1 1 9 10 0.1
.1000 2 2 8 10 0.2
.1259 3 1 9 10 0.1
.1413 4 0 10 10 0.0
.1500 5 1 9 10 0.1
.1588 6 2 8 10 0.2
.1778 7 4 6 10 0.4
.1995 8 6 4 10 0.6
.2239 9 4 6 10 0.4
.2512 10 5 5 10 0.5
.2818 11 5 5 10 0.5
.3162 12 8 2 10 0.8

and Var(yh) = σ2. For testing models, we eventually assumed

yhs independent N(μh,σ2),

with some model for the μhs. In Section 3.9 we got more specific about models, writing

yhs independent N[m(xh),σ2],

where xh is the value of some predictor variable or vector and m(·) is the model for the means, i.e.,

μh ≡ m(xh).

We then discussed a variety of models m(·) that could be used for various types of predictor variables
and exploited those models in subsequent chapters.

In this chapter, we discuss similar models for data that are binomial proportions. In Section 1.4
we discussed binomial sampling. In particular, if we have N independent trials of whether some
event occurs (e.g., flipping a coin and seeing heads) and if each trial has the same probability p that
the event occurs, then the number of occurrences is a binomial random variable W , say

W ∼ Bin(N, p),

with
E(W ) = N p and Var(W ) = N p(1− p).

We will be interested in binomial proportions

y ≡ W
N
,

with
E(y) = p

and

Var(y) =
p(1− p)

N
,

see Proposition 1.2.11. In applications, N is known and p is an unknown parameter to be modeled
and estimated.

In general, we assume n independent binomial proportions yh for which we know the number of
trials Nh, i.e.,

Nhyh independent Bin(Nh, ph), h = 1, . . . ,n.
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With E(yh) = ph, much like we did for measurement data, we want to create a model for the phs that
depends on a predictor xh. In fact, we would like to use the same models, simple linear regression,
multiple regression, one-way ANOVA and multifactor ANOVA, that we used for measurement data.
But before we can do that, we need to deal with a problem.

We want to create models for ph = E(yh), but with binomial proportions this mean value is
always a probability and probabilities are required to be between 0 and 1. If we wrote a simple
linear regression model such as ph = β0 + β1xh for some predictor variable x, nothing forces the
probabilities to be between 0 and 1. When modeling probabilities, it seems reasonable to ask that
they be between 0 and 1.

Rather than modeling the probabilities directly, we model a function of the probabilities that is
not restricted between 0 and 1. In particular, we model the log of the odds, rather than the actual
probabilities. The odds Oh are defined to be the probability that the event occurs, divided by the
probability that it does not occur, thus

Oh ≡
ph

1− ph
.

Probabilities must be between 0 and 1, so the odds can take any values between 0 and +∞. Taking
the log of the odds permits any values between −∞ and +∞, so we consider models

log

(
ph

1− ph

)
= m(xh), (20.1.1)

where m(·) is any of the models that we considered earlier.
Two different names have been used for such models. If m(xh) corresponds to a one-sample,

two-sample, one-way ANOVA, or multifactor ANOVA, these models have often been called logit
models. The name stems from using the transformation

η = f (p)≡ log

(
p

1− p

)
,

which is known as the logit transform. It maps the unit interval into the real line. On the other hand, if
the model m(xh) corresponds to any sort of regression model, models like (20.1.1) are called logistic
regression models. These models are named after the logistic transform, which is the inverse of the
logit transform,

p = g(η)≡ eη

1+ eη .

The functions are inverses in the sense that g( f (p)) = p and f (g(η)) = η . To perform any worth-
while data analysis requires using both the logit transform and the logistic transform, so it really
does not matter what you call the models. These days, any model of the form (20.1.1) is often called
logistic regression, regardless of whether m(xh) corresponds to a regression model.

In Chapter 3, to perform tests and construct confidence intervals, we assumed that the yh obser-
vations were independent, with a common variance σ2, and normally distributed. In this chapter,
to perform tests and construct confidence intervals similar to those used earlier, we need to rely on
having large amounts of data. That can happen in two different ways. The best way is to have the
Nh values large for every value of h. In the chloracetic acid data, each Nh is 10, which is probably
large enough. Unfortunately, this best way to have the data may be the least common way of ac-
tually obtaining data. The other and more common way to get a lot of data is to have the number
of proportions n reasonably large but the Nhs possibly small. Frequently, the Nhs all equal 1. When
worrying about O-ring failure, each shuttle launch is a separate trial, Nh = 1, but we have n = 23
launches to examine. When examining coronary incidents, each man is a separate trial, Nh = 1, but
we have n = 200 men to examine. In other words, if the Nhs are all large, we don’t really care if n is
large or not. If the Nhs are not all large, we need n to be large. A key point is that n needs to be large
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relative to the number of parameters we fit in our model. For the O-ring data, we will only fit two
parameters, so n = 23 is probably reasonable. For the coronary incident data, we have many more
predictors, so we need many more subjects. In fact, we will need to resist the temptation to fit too
many parameters to the data.

20.2 Simple linear logistic regression

In simple linear logistic regression we use a single measurement variable to predict probabilities.

EXAMPLE 20.2.1. In Example 20.1.1 and Table 20.1 we presented the data of Woodward et
al. (1941) on the slaughter of mice. These data are extremely well behaved in that they all have the
same reasonably large number of trials Nh = 10, h = 1, . . . ,12, and there is only one measurement
predictor variable, the dose xh.

A simple linear logistic regression model has

log

(
ph

1− ph

)
= β0 +β1xh, (20.2.1)

so our model fits a straight line in dose to the log-odds. Alternatively,

ph =
eβ0+β1xh

1+ eβ0+β1xh
.

Indeed, for an arbitrary dose x we can write

p(x) =
eβ0+β1x

1+ eβ0+β1x
. (20.2.2)

Standard computer output involves a table of coefficients:

Table of Coefficients: Model (20.2.1).
Predictor β̂k SE(β̂k) t P
Constant −3.56974 0.705330 −5.06 0.000
Dose 14.6369 3.33248 4.39 0.000

The validity of everything but the point estimates relies on having large amounts of data. Using the
point estimates gives the linear predictor

η̂(x) = β̂0 + β̂1x =−3.56974+14.6369x.

Applying the logistic transformation to the linear predictor gives the estimated probability for any
x,

p̂(x) =
eη̂(x)

1+ eη̂(x) .

This function is plotted in Figure 20.1. The approximate model is unlikely to fit well outside the
range of the xh values that actually occurred in Table 20.1, although since this range of xh values
gets the fitted values reasonably close to both zero and one, predicting outside the range of the
observed doses may be less of a problem than in regression for measurement data.

The table of coefficients is used exactly like previous tables of coefficients, e.g., β̂1 = 14.64
is the estimated slope parameter and SE(β̂1) = 3.326 is its standard error. The t values are simply
the estimates divided by their standard errors, so they provide statistics for testing whether the
regression coefficient equals 0. The P values are based on large sample normal approximations, i.e.,
the t statistics are compared to a t(∞) distribution. Clearly, there is a significant effect for fitting the
dose, so we reject the hypothesis that β1 = 0. The dose helps explain the data.

Many computer programs expand the table of coefficients to include odds ratios, defined as
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Figure 20.1: Fitted probabilities as a function of dose.

ξk ≡ eβk , and a confidence interval for the odds ratio. The (1−α) confidence interval for ξk is
typically found by exponentiating the limits of the confidence interval for βk, i.e., it is (eLk ,eUk )

where Lk ≡ β̂k−t(1−α/2,∞)SE(β̂k) and Uk ≡ β̂k+t(1−α/2,∞)SE(β̂k) provide the (1−α)100%
confidence limits for βk.

Additional standard output includes the Log-Likelihood=−63.945 (explained in Section 20.4)
and a model-based χ2 test for β1 = 0 that is explained in Section 20.3. The model-based test for
β1 = 0 has G2 = 23.450 with df = 1 and a P value of 0.000, obtained by comparing 23.450 to a
χ2(1) distribution. This test provides substantial evidence that death is related to dose. �

20.2.1 Goodness-of-fit tests

Computer programs written specifically for logistic regression frequently report goodness-of-fit
tests. If a valid goodness-of-fit test is rejected, it suggests that the fitted model is wrong. Typical
output is

Goodness-of-Fit Tests.
Method Chi-Square df P
Pearson (X2) 8.7421 10 0.557
Deviance (G2) 10.2537 10 0.419
Hosmer–Lemeshow 6.7203 4 0.151

There are problems with this output. First of all, as Hosmer, Lemeshow, and colleagues estab-
lished in Hosmer et al. (1997), their χ2 test isn’t worth the toner it takes to print it. It amazes me that
so many programs persist in computing it. (It is not a bad idea for a test statistic, but there was never
any reason to think the statistic had a χ2 distribution.) Indeed, for many data (perhaps most), even
the Pearson and deviance statistics do not have χ2 distributions, because the Nhs are not all large.
The mouse data do not have this problem. Finally, the deviance reported in the table is often prob-
lematic in many specialized programs for doing logistic regression. The deviance is well-defined
for the mouse data because all the xhs are distinct, but as we will see later, specialized programs for
logistic regression frequently pool cases together to increase the size of the Nhs, which can destroy
the usefulness of the numbers reported as the deviance.
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If the fitted model is correct and all of the Nh values are large, the Pearson and deviance statistics
should have χ2 distributions with df degrees of freedom. So the question becomes, “Do X2 = 8.7421
and G2 = 10.254 look like they could reasonably come from a χ2(10) distribution?” To answer that
question, check whether the P values are small. Alternatively, we could compare the test statistics
to values from a table of percentiles for the χ2(10) distribution; see Appendix B.2. However, since
the mean of a χ2(df ) distribution is df , our values of 8.7421 and 10.254 are very close to the mean
of the distribution, which is 10, so it is pretty obvious that the data are consistent with the simple
linear logistic regression model even if we did not have the P values given to us. The Pearson and
deviance statistics are computed as in Chapter 5 for the 12× 2 table of 12 rows (dose groups) and
2 columns (Died and Survived), except that to make the computations one must define the observed
counts as Oh1 = Nhyh, Oh2 = Nh(1− yh) and define the (estimated) expected counts as Êh1 = Nh p̂h,
and Êh2 = Nh(1− p̂h). The 10 degrees of freedom are the number of rows n = 12 minus the number
of parameters we fit in the model, p = 2.

The reason that the deviance and Pearson tests work as advertised is because the fitted regression
model provides reasonable estimates of the probabilities for each case, i.e., for h = 1, . . . ,n Model
(20.2.1) provides good estimates of the linear predictor

η̂h ≡ β̂0 + β̂1xh

and

p̂h ≡
eη̂h

1+ eη̂h
= p̂(xh),

but in addition with large Nhs the values yh from Table 20.1 provide reasonable estimates for the
twelve death probabilities without fitting any obvious model. The problem with the Pearson and
deviance goodness-of-fit tests is that when some of the Nhs are small, the yhs no longer provide
good estimates of the case probabilities, whence the χ2(df ) is no longer an appropriate reference
distribution for the Pearson and deviance statistics.

As we will see in Section 20.5, in an attempt to get valid goodness-of-fit tests, many computer
programs for logistic regression redefine the Nhs to make them larger (and n smaller). They do
this by pooling together any cases that have exactly the same predictor variables x. With continu-
ous predictors I have never seen this pooling procedure get the Nhs large enough to validate a χ2

distribution but we will see that it is certainly possible.
Although the deviance G2 may or may not provide a valid goodness-of-fit test, ideally the de-

viance is extremely useful for constructing model tests. Unfortunately, different models with differ-
ent predictors typically have different poolings, which destroys the usefulness of the deviance as a
tool for comparing models. When using logistic regression programs, one must compare models by
constructing the likelihood ratio test statistic from the reported log-likelihoods, rather than the de-
viance. It is also possible to fit logistic regression models by using programs for fitting generalized
linear models. (“Generalized linear models” are something distinct from “general linear models.”)
Generalized linear model programs rarely indulge in the pooling silliness that logistic regression
programs often display, so their reported deviance values can be used to compare models.

20.2.2 Assessing predictive ability

We can measure the predictive ability of the model through R2, which is the squared correlation be-
tween the yh values and the p̂h values. For these data R2 = 0.759, which is quite high for a logistic
regression. The high value is related to the fact that we have 10 observations in each binomial pro-
portion. We are evaluating the model on its ability to predict the outcome of 10 trials, not predicting
the outcome of one trial.

Frequently, with dose-response data like the Woodward data, one uses the log-dose as a predic-
tor, i.e., the model becomes

log

(
ph

1− ph

)
= β0 +β1 log(xh).
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For these data we get R2 = 0.760 based on the log dose, which indicates that log-dose is not much
of an improvement over dose.

Suppose we want to predict a new value y0 that is the binomial proportion from N0 trials ob-
served at x0. The predictive ability of a model depends a great deal on where the predictor variables
are located. At x0 = −β0/β1, from Equation (20.2.2) the probability is p(x0) = 0.5. If N0 = 1,
nobody can predict well an individual 50:50 outcome like a coin toss, but, as N0 increases, the bino-
mial proportion y0 has less variability, so ideally it can be predicted better. As x0 gets further from
−β0/β1, p(x0) gets further from 0.5, so closer to 0 or 1. When the probability is close to 0 or 1,
predicting the outcome is relatively easy for any value of N0.

For these data, −β0/β1 is called the LD50, which denotes the lethal dose 50 and is defined to be
the dose at which lethality is 50%. In other contexts this number might be called the effective dose
50, denoted ED50.

Any overall measure of the predictive ability of a model, like R2, compares the yh values to the
p̂(xh) values, h = 1, . . . ,n. Any such measure depends a great deal on the extent to which the xh

values have true probabilities close to 0 or 1, which can always be predicted well, or xh values with
true probabilities close to 0.5, where predictability depends crucially on Nh. For the mouse data,
we defined n = 12 groups with Nh = 10, h = 1, . . . ,12, but at the other extreme we could redefine
the data based on the n = 120 individual mice with Nh = 1, h = 1, . . . ,120. These give the same
p̂(x) but lead to different prediction problems with the former predicting group proportions and the
latter predicting individual outcomes. It is easier to do the former problem well. R2 differs for the
two problems with R2 = 0.191 in the n = 120, 0-1 data. A similar phenomenon was explored in
Subsection 12.5.2 and those results are extended in Exercise 20.9.4.

To use R2 in this context, the (xh,yh) pairs should be a random sample from some population
and we should be thinking about predicting a new value y0 after observing x0 from that population.
The criterion seems plausible as long as the Nhs are all the same for h = 0,1, . . . ,n, even if some
creativity might be needed to imagine the distribution on x0.

Many programs for fitting logistic regression report other values that can be used to assess the
predictive ability of the model. Typical output includes:

Measures of Association
between the Response Variable and Predicted Probabilities

Pairs Number Percent Summary Measures
Concordant 2326 73.6 Somers’ D 0.53
Discordant 636 20.1 Goodman–Kruskal Gamma 0.57
Ties 197 6.2 Kendall’s Tau-a 0.24
Total 3159 100.0

This table is based on looking at pairs of 0-1 observations. For these mouse data, that involves
looking at the 0-1 scores for each of the n= 120 mice. Here 1 indicates that a mouse died. With n the
total number of subjects, let n1 and n0 be the number of subjects scoring 1 and 0, respectively. For
each pair i, j with i �= j, we are going to look at the sign of (yi − y j)(p̂i − p̂ j). The total number of
pairs is

(n
2

)
, of these we will ignore the

(n1
2

)
pairs that have (yi−y j) = (1−1) = 0 and the

(n2
2

)
pairs

that have (yi − y j) = (0−0) = 0. For the mouse data with 39 mice having died, the total number of
pairs that we will consider are

(
120
2

)
−
(

39
2

)
−
(

81
2

)
= 7140−741−3240= 3159.

• The number of concordant pairs is C; the number of pairs with (yi − y j)(p̂i − p̂ j)> 0.

• The number of discordant pairs is D; the number of pairs with (yi − y j)(p̂i − p̂ j)< 0.

• The number of ties is T ; the number of pairs with (p̂i − p̂ j) = 0.

The idea is that the higher the percentage of concordant pairs, the better the predictive ability of the
model.
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The 197 ties occur because many of the 120 cases have the same predictor variable. In particular,
the number of ties in these data is the sum over the 12 categories of the number died times the
number survived.

The three summary measures of association commonly given are

Somers’ D ≡ C−D
C+D+T =

C −D(n
2

)
−
(n1

2

)
−
(n2

2

) ,

Goodman–Kruskal Gamma ≡ C−D
C+D ,

and

Kendall’s Tau-a ≡ C−D(n
2

) .

Other versions of Kendall’s Tau make adjustments for the number of ties. It is pretty obvious that

Goodman–Kruskal Gamma ≥ Somers’ D ≥ Kendall’s Tau-a.

For the same yhs, increasing the Nhs by a constant multiple does not affect any of the measures
of predictive ability but it does increase the goodness-of-fit statistics and also makes them more
valid.

20.2.3 Case diagnostics

Diagnostic quantities that are similar to those for standard regression can be computed. Raw resid-
uals, yh − p̂h, are not of much interest. The Pearson residuals are just the observations minus their
estimated probability divided by the standard error of the observation, i.e.,

rh =
yh − p̂h√

p̂h(1− p̂h)/Nh
.

This SE does not really account for the process of fitting the model, i.e., estimating ph. We can in-
corporate the fitting process by incorporating the leverage, say, ah. A standardized Pearson residual
is

r̃h =
yh − p̂h√

p̂h(1− p̂h)(1−ah)/Nh
.

Leverages for logistic regression are similar in spirit to those discussed in Chapters 7 and 11, but
rather more complicated to compute. Values near 1 are still high-leverage points and the 2r/n and
3r/n rules of thumb can be applied where r is the number of (functionally distinct) parameters in
the model. Table 20.2 contains diagnostics for the mouse data. Nothing seems overly disturbing.

I prefer using the standardized Pearson residuals, but the Pearson residuals often get used be-
cause of their simplicity. When all Nhs are large, both residuals can be compared to a N(0,1) dis-
tribution to assess whether they are consistent with the model and the other data. In this large Nh

case, much like the spirit of Chapter 5, we use the residuals to identify cases that cause problems
in the goodness-of-fit test. Even with small Nhs, where no valid goodness-of-fit test is present, the
residuals are used to identify potential problems.

With measurement data, residuals are used to check for outliers in the dependent variable, i.e.,
values of the dependent variable that do not seem to belong with the rest of the data. With count
data it is uncommon to get anything that is really an outlier in the counts. The yhs are proportions,
so outliers would be values that are not between 0 and 1. With count data, large residuals really
highlight areas where the model is not fitting the data very well. If you have a high dose of poison
but very few mice die, something is wrong. The problem is often something that we have left out of
the model.
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Table 20.2: Diagnostics for mouse data.

Group yh p̂h rh r̃h Leverage Cook
1 0.1 0.083 0.200 0.218 0.161 0.005
2 0.2 0.109 0.930 1.012 0.156 0.095
3 0.1 0.151 −0.450 −0.486 0.141 0.019
4 0.0 0.182 −1.493 −1.600 0.130 0.191
5 0.1 0.202 −0.803 −0.858 0.123 0.052
6 0.2 0.223 −0.178 −0.190 0.117 0.002
7 0.4 0.275 0.882 0.933 0.106 0.052
8 0.6 0.343 1.712 1.810 0.106 0.194
9 0.4 0.427 −0.175 −0.188 0.129 0.003

10 0.5 0.527 −0.169 −0.188 0.186 0.004
11 0.5 0.635 −0.889 −1.044 0.275 0.207
12 0.8 0.742 0.417 0.525 0.370 0.081

20.3 Model testing

Based on the results of a valid goodness-of-fit test, we already have reason to believe that a sim-
ple linear logistic regression fits the chloracetic acid data reasonably well, but for the purpose of
illustrating the procedure for testing models, we will test the simple linear logistic model against a
cubic polynomial logistic model. This section demonstrates the test. In the next section we discuss
the motivation for it.

In Section 20.2 we gave the table of coefficients and the table of goodness-of-fit tests for the
simple linear logistic regression model

log

(
ph

1− ph

)
= β0 +β1xh. (20.3.1)

The table of coefficients along with the deviance information follows.

Table of Coefficients: Model (20.3.1).
Predictor β̂k SE(β̂k) t P
Constant −3.56974 0.705330 −5.06 0.000
Dose 14.6369 3.33248 4.39 0.000

Deviance: G2 = 10.254 df = 10

Additional standard output includes the Log-Likelihood=−63.945 (explained in Section 20.4) and
a model-based test for β1 = 0 (that is also discussed in Section 20.4), for which the test statistic is
G2 = 23.450 with df = 1 and a P value of 0.000.

The cubic polynomial logistic regression is

log

(
ph

1− ph

)
= γ0 + γ1 xh + γ2 x2

h + γ3 x3
h. (20.3.2)

with

Table of Coefficients: Model (20.3.2).
Predictor γ̂k SE(γ̂k) t P
Constant −2.47396 4.99096 −0.50 0.620
dose −5.76314 83.1709 −0.07 0.945
x2 114.558 434.717 0.26 0.792
x3 −196.844 714.422 −0.28 0.783

and goodness-of-fit tests
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Goodness-of-Fit Tests: Model (20.3.2).
Method Chi-Square df P
Pearson 8.7367 8 0.365
Deviance 10.1700 8 0.253
Hosmer–Lemeshow 6.3389 4 0.175

Additional standard output includes the Log-Likelihood =−63.903 and a model-based test that all
slopes are zero, i.e., 0 = γ1 = γ2 = γ3, that has G2 = 23.534 with df = 3, and a P value of 0.000.

To test the full cubic model against the reduced simple linear model, we compute the likelihood
ratio test statistic from the log-likelihoods,

G2 =−2[(−63.903)− (−63.945)]= 0.084.

There are 4 parameters in Model (20.3.2) and only 2 parameters in Model (20.3.1) so there are
4− 2 = 2 degrees of freedom associated with this test. When the total number of cases n is large
compared to the number of parameters in the full model, we can compare G2 = 0.084 to a χ2(4−2)
distribution. This provides no evidence that the cubic model fits better than the simple linear model.
Note that the validity of this test does not depend on having the Nhs large.

For these data, we can also obtain G2 by the difference in deviances reported for the two models,

G2 = 10.254−10.1700= 0.084.

The difference in the deviance degrees of freedom is 10− 8 = 2, which is also the correct degrees
of freedom.

Although finding likelihood ratio tests by subtracting deviances and deviance degrees of free-
dom is our preferred computational tool, unfortunately, subtracting the deviances and the deviance
degrees of freedom cannot be trusted to give the correct G2 and degrees of freedom when using
programs designed for fitting logistic models (as opposed to programs for fitting generalized linear
models). As discussed in Section 20.5, many logistic regression programs pool cases with identical
predictor variables prior to computing the deviance and when models use different predictors, the
pooling often changes, which screws up the test. Subtracting the deviances and deviance degrees of
freedom does typically give the correct result when using programs for generalized linear models.

The standard output for Model (20.3.1) also included a model-based test for β1 = 0 with G2 =
23.450, df = 1, and a P value of 0.000. This is the likelihood ratio test for comparing the full model
(20.3.1) with the intercept-only model

log

(
ph

1− ph

)
= δ0. (20.3.3)

Alas, many logistic regression programs do not like to fit Model (20.3.3), so we take the program’s
word for the result of the test. (Programs for generalized linear models are more willing to fit Model
(20.3.3).) Finding the test statistic is discussed in Section 20.5.

The usual output for fitting Model (20.3.2) has a model-based test that all slopes are zero, i.e.,
that 0 = γ1 = γ2 = γ3, for which G2 = 23.534 with df = 3 and a P value of 0.000. This is the
likelihood ratio test for the full model (20.3.2) against the reduced “intercept-only” model (20.3.3).
Generally, when fitting a model these additional reported G2 tests are for comparing the current
model to the intercept-only model (20.3.3).

20.4 Fitting logistic models

In this section we discuss the ideas behind our methods for estimating parameters and for testing
models. First we define the likelihood function. Our point estimates are maximum likelihood esti-
mates (MLEs), which are the parameter values that maximize the likelihood function. We compare
models by comparing the maximum value that the likelihood function achieves under each model.
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Such tests are (generalized) likelihood ratio tests for binomial count data. While we did not present
the likelihood function for normal data, least squares estimates are also MLEs and F tests are also
equivalent to (generalized) likelihood ratio tests.

Our logistic models take the form

log

(
ph

1− ph

)
= m(xh), (20.4.1)

where xh is a vector of measurement or categorical variables and m(·) is any of the models that
we have considered earlier for such predictor variables. The model m(xh) can correspond to a one-
sample, two-sample, one-way ANOVA, or multifactor ANOVA model or any sort of regression
model. We can solve (20.4.1) for ph by writing

ph =
em(xh)

1+ em(xh)
. (20.4.2)

Given the estimate m̂(x) we get

p̂(x) =
em̂(x)

1+ em̂(x)
.

For example, given the estimates β̂0 and β̂1 for a simple linear logistic regression, we get

p̂(x) =
exp(β̂0 + β̂1x)

1+ exp(β̂0 + β̂1x)
. (20.4.3)

In particular, this formula provides the p̂hs when doing predictions at the xhs.
Estimates of coefficients are found by maximizing the likelihood function. The likelihood func-

tion is the probability of getting the data that were actually observed. It is a function of the unknown
model parameters contained in m(·). Because the Nhyhs are independent binomials, the likelihood
function is

L(p1, . . . , pn) =
n

∏
h=1

(
Nh

Nhyh

)
pNhyh

h (1− ph)
Nh−Nhyh . (20.4.4)

For a particular proportion yh, Nhyy is Bin(Nh, ph) and the probability from Section 1.4 is an indi-
vidual term on the right. We multiply the individual terms because the Nhyhs are independent.

If we substitute for the phs using (20.4.2) into the likelihood function (20.4.4), the likelihood
becomes a function of the model parameters. For example, if m(xh) = β0 +β1xh the likelihood be-
comes a function of the model parameters β0 and β1 for known values of (xh,yh,Nh), h = 1, . . . ,n.
Computer programs maximize this function of β0 and β1 to give maximum likelihood estimates β̂0

and β̂1 along with approximate standard errors. The estimates have approximate normal distribu-
tions for large sample sizes. For the large sample approximations to be valid, it is typically enough
that the total number of trials in the entire data n be large relative to the number of model param-
eters; the individual sample sizes Nh need not be large. The normal approximations also hold if all
the Nhs are large regardless of the size of n.

In Section 11.3 we found the least squares estimates for linear regression models. Although we
did not explicitly give the likelihood function for regression models with normally distributed data,
we mentioned that the least squares estimates were also maximum likelihood estimates. Unfortu-
nately, for logistic regression there are no closed-form solutions for the estimates and standard errors
like those presented for measurement data in Chapter 11. For logistic regression, different computer
programs may give slightly different results because the computations are more complex.

Maximum likelihood theory also provides a (generalized) likelihood ratio (LR) test for a full
model versus a reduced model. Suppose the full model is

log

(
pFh

1− pFh

)
= mF(xh).
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Fitting the model leads to estimated probabilities p̂Fh. The reduced model must be a special case of
the full model, say,

log

(
pRh

1− pRh

)
= mR(xh),

with fitted probabilities p̂Rh. The commonly used form of the likelihood ratio test statistic is,

G2 = −2log

(
L(p̂R1, . . . , p̂Rn)

L(p̂F1, . . . , p̂Fn)

)

= 2
n

∑
h=1

{Nhyh log(p̂Fh/ p̂Rh)+Nh(1− yh) log[(1− p̂Fh)/(1− p̂Rh)]} ,

where the second equality is based on Equation (20.4.4). An alternative to the LR test statistic is the
Pearson test statistic, which is

X2 =
n

∑
h=1

(Nh p̂Fh −Nh p̂Rn)
2

Nh p̂Rn(1− p̂Rn)
=

n

∑
h=1

[
p̂Fh − p̂Rn√

p̂Rn(1− p̂Rn)/Nh

]2

.

We make minimal use of X2 in our discussions.
If the reduced model is true and the sample size n is large relative to the number of parameters

in the full model, G2 and X2 have asymptotic χ2 distributions where the degrees of freedom is the
difference in the number of (functionally distinct) parameters between the two models. The same
χ2 distribution holds even if n is not large when the Nhs are all large.

Many computer programs for fitting a model report the value of the log-likelihood,

�(p̂1, . . . , p̂n)≡ log [L(p̂1, . . . , p̂n)] .

To compare a full and reduced model, G2 is twice the absolute value of the difference between these
values. When using logistic regression programs (as opposed to generalized linear model programs),
this is how one needs to compute G2.

The smallest interesting logistic model that we can fit to the data is the intercept-only model

log

(
ph

1− ph

)
= β0. (20.4.5)

The largest logistic model that we can fit to the data is the saturated model that has a separate
parameter for each case,

log

(
ph

1− ph

)
= γh. (20.4.6)

Interesting models tend to be somewhere between these two. Many computer programs automati-
cally report the results of testing the fitted model against both of these.

For standard simple linear regression, we have two tests for H0 : β1 = 0, a t test and an F test, and
the two tests are equivalent, e.g., always give the same P value, cf. Section 6.1. For simple linear
logistic regression we have a t test for H0 : β1 = 0, and testing against the intercept-only model
provides a G2 test for H0 : β1 = 0. As will be seen in Section 20.5 for the O-ring data, these tests
typically do not give the same P values. The two tests are not equivalent. For the mouse data, both
P values were reported as 0.000, so one could not see that the two P values were different beyond
the three decimal points reported.

Testing a fitted model m(·) against the saturated model (20.4.6) is called a goodness-of-fit test.
The fitted probabilities under Model (20.4.6) are just the observed proportions for each case, the
yhs. The deviance for a fitted model is defined as G2 for testing the fitted model against the saturated
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model (20.4.6),

G2 = −2log

(
L(p̂1, . . . , p̂n)

L(y1, . . . ,yn)

)
(20.4.7)

= 2
n

∑
h=1

[Nhyh log(yh/ p̂h)+ (Nh −Nhyh) log((1− yh)/(1− p̂h))] .

In this formula, if a = 0, then a log(a) is taken as zero. The degrees of freedom for the deviance
are n (the number of parameters in Model (20.4.6)) minus the number of (functionally distinct)
parameters in the fitted model.

The problem with the goodness-of-fit test is that the number of parameters in Model (20.4.6)
is the sample size n, so the only way for G2 to have an asymptotic χ2 distribution is if all the Nhs
are large. For the mouse death data, the Nhs are all 10, which is probably fine, but for a great many
data sets, all the Nhs are 1, so a χ2 test of the goodness-of-fit statistic is not appropriate. A similar
conclusion holds for the Pearson statistic.

As also discussed in the next section, in an effort to increase the size of the Nhs, many logistic
regression computer programs pool together any cases for which xh = xi. Thus, instead of having
two cases with Nhyh ∼ Bin(Nh, ph) and Niyi ∼ Bin(Ni, pi), the two cases get pooled into a single
case with (Nhyh +Niyi)∼ Bin(Nh +Ni, ph). Note that if xh = xi, it follows that ph = pi and the new
proportion would be (Nhyh +Niyi)/(Nh +Ni). I have never encountered regression data with so few
distinct xh values that this pooling procedure actually accomplished its purpose of making all the
group sizes reasonably large, but if the mouse data were presented as 120 mice that either died or
not along with their dose, such pooling would work fine.

Ideally, the deviance G2 of (20.4.7) could be used analogously to the SSE in normal theory and
the degrees of freedom for the deviance of (20.4.7) would be analogous to the dfE . To compare a full
and reduced model you just subtract their deviances (rather than their SSEs) and compare the test
statistic to a χ2 with degrees of freedom equal to the difference in the deviance degrees of freedom
(rather than differencing the dfEs). This procedure works just fine when fitting the models using
programs for fitting generalized linear models. The invidious thing about the pooling procedure of
the previous paragraph is that when you change the model from reduced to full, you often change
the predictor vector xh in such a way that it changes which cases have xh = xi. When comparing a
full and a reduced model, the models may well have different cases pooled together, which means
that the difference in deviances no longer provides the appropriate G2 for testing the models. In such
cases G2 needs to be computed directly from the log-likelihood.

After discussing the commonly reported goodness-of-fit statistics in the next section, we will
no longer discuss any deviance values that are obtained by pooling. After Subsection 20.5.1, the
deviances we discuss may not be those reported by a logistic regression program but they should be
those obtained by a generalized linear models program.

20.5 Binary data

Logistic regression is often used when the binomial sample sizes are all 1. The resulting binary data
consist entirely of 0s and 1s.

EXAMPLE 20.5.1. O-ring Data.
Table 20.3 presents data from Dalal, Fowlkes, and Hoadley (1989) on field O-ring failures in the
23 pre-Challenger space shuttle launches. Challenger was the shuttle that blew up on take-off.
Atmospheric temperature is the predictor variable. The Challenger explosion occurred during a
takeoff at 31 degrees Fahrenheit. Each flight is viewed as an independent trial. The result of a trial
is 1 if any field O-rings failed on the flight and 0 if all the O-rings functioned properly. A simple
linear logistic regression uses temperature to model the probability that any O-ring failed. Such a
model allows us to predict O-ring failure from temperature.
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Table 20.3: O-ring failure data.

Case Flight Failure Temperature Case Flight Failure Temperature
1 14 1 53 13 2 1 70
2 9 1 57 14 11 1 70
3 23 1 58 15 6 0 72
4 10 1 63 16 7 0 73
5 1 0 66 17 16 0 75
6 5 0 67 18 21 1 75
7 13 0 67 19 19 0 76
8 15 0 67 20 22 0 76
9 4 0 68 21 12 0 78

10 3 0 69 22 20 0 79
11 8 0 70 23 18 0 81
12 17 0 70

Let pi be the probability that any O-ring fails in case i. The simple linear logistic regression
model is

logit(pi)≡ log

(
pi

1− pi

)
= β0 +β1xi,

where xi is the known temperature and β0 and β1 are unknown intercept and slope parameters
(coefficients).

Maximum likelihood theory gives the coefficient estimates, standard errors, and t values as

Table of Coefficients: O-rings
Predictor β̂k SE(β̂k) t P
Constant 15.0429 7.37862 2.04 0.041
Temperature −0.232163 0.108236 −2.14 0.032

The t values are the estimate divided by the standard error. For testing H0 : β1 = 0, the value t =
−2.14 yields a P value that is approximately 0.03, so there is evidence that temperature does help
predict O-ring failure. Alternatively, a model-based test of β1 = 0 compares the simple linear logistic
model to an intercept-only model and gives G2 = 7.952 with df = 1 and P = 0.005. These tests
should be reasonably valid because n = 23 is reasonably large relative to the 2 parameters in the
fitted model. The log-likelihood is �=−10.158.

Figure 20.2 gives a plot of the estimated probabilities as a function of temperature,

p̂(x) =
e15.0429−0.232163x

1+ e15.0429−0.232163x .

The Challenger was launched at x= 31 degrees, so the predicted log odds are 15.04−0.2321(31)=
7.8449 and the predicted probability of an O-ring failure is e7.8449/(1+e7.8449) = 0.9996. Actually,
there are problems with this prediction because we are predicting very far from the observed data.
The lowest temperature at which a shuttle had previously been launched was 53 degrees, very far
from 31 degrees. According to the fitted model, a launch at 53 degrees has probability 0.939 of
O-ring failure, so even with the caveat about predicting beyond the range of the data, the model
indicates an overwhelming probability of failure.

20.5.1 Goodness-of-fit tests

Many specialized logistic regression computer programs report the following goodness-of-fit statis-
tics for the O-ring data.



20.5 BINARY DATA 495

30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Temperature

Fi
tte

d

Figure 20.2: O-ring estimated failure probabilities.

Goodness-of-Fit Tests
Method Chi-Square df P
Pearson 11.1303 14 0.676
Deviance 11.9974 14 0.607
Hosmer–Lemeshow 9.7119 8 0.286

For 0-1 data, these are all useless. The Hosmer–Lemeshow statistic does not have a χ2 distribution.
For computing the Pearson and deviance statistics the 23 original cases have been pooled into ñ= 16
new cases based on duplicate temperatures. This gives binomial sample sizes of Ñ6 = 3, Ñ9 = 4,
Ñ12 = Ñ13 = 2, and Ñh = 1 for all other cases. With two parameters in the fitted model, the reported
degrees of freedom are 14 = 16−2. To have a valid χ2(14) test, all the Ñhs would need to be large,
but none of them are. Pooling does not give a valid χ2 test and it also eliminates the deviance as a
useful tool in model testing.

Henceforward, we only report deviances that are not obtained by pooling. These are the
likelihood ratio test statistics for the fitted model against the saturated model with the correspond-
ing degrees of freedom. Test statistics for any full and reduced models can then be obtained by
subtracting the corresponding deviances from each other just as the degrees of freedom for the test
can be obtained by subtraction. These deviances can generally be found by fitting logistic models
as special cases in programs for fitting generalized linear models. When using specialized logistic
regression software, great care must be taken and the safest bet is to always use log-likelihoods to
obtain test statistics.

EXAMPLE 20.5.1 CONTINUED. For the simple linear logistic regression model

log

(
pi

1− pi

)
= β0 +β1xi. (20.5.1)

Without pooling, the deviance is G2 = 20.315 with 21 = 23−2= n−2 degrees of freedom. For the
intercept-only model

log

(
pi

1− pi

)
= β0 (20.5.2)
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Table 20.4: Diagnostics for Challenger data: Generalized linear modeling program.

Case yh p̂h Leverage rh r̃h Cook
1 1 0.939 0.167 0.254 0.279 0.0078
2 1 0.859 0.208 0.405 0.455 0.0271
3 1 0.829 0.209 0.454 0.511 0.0345
4 1 0.603 0.143 0.812 0.877 0.0641
5 0 0.430 0.086 −0.8694 −0.910 0.0391
6 0 0.375 0.074 −0.7741 −0.805 0.0260
7 0 0.375 0.074 −0.7741 −0.805 0.0260
8 0 0.375 0.074 −0.7741 −0.805 0.0260
9 0 0.322 0.067 −0.6893 −0.714 0.0183

10 0 0.274 0.063 −0.6138 −0.634 0.0136
11 0 0.230 0.063 −0.5465 −0.564 0.0107
12 0 0.230 0.063 −0.5465 −0.564 0.0107
13 1 0.230 0.063 1.830 1.890 0.1196
14 1 0.230 0.063 1.830 1.890 0.1196
15 0 0.158 0.066 −0.4333 −0.448 0.0071
16 0 0.130 0.068 −0.3858 −0.400 0.0058
17 0 0.086 0.069 −0.3059 −0.317 0.0037
18 1 0.086 0.069 3.270 3.389 0.4265
19 0 0.069 0.068 −0.2723 −0.282 0.0029
20 0 0.069 0.068 −0.2723 −0.282 0.0029
21 0 0.045 0.063 −0.2159 −0.223 0.0017
22 0 0.036 0.059 −0.1922 −0.198 0.0012
23 0 0.023 0.051 −0.1524 −0.156 0.0007

the deviance is G2 = 28.267 with 22 = 23− 1 = n− 1 degrees of freedom. Since Ni = 1 for all i,
neither of these G2s is compared directly to a chi-squared distribution. However, the model-based
test for H0 : β1 = 0 has G2 = 28.267− 20.315 = 7.952 on df = 22− 21 = 1, which agrees with
the test reported earlier even though the deviance for Model (20.5.1) is different from that reported
earlier. Comparing G2 = 7.952 to a χ2(1) distribution, the P value for the test is approximately
0.005. It is considerably smaller than the P value for the t test of H0. �

It can be difficult to get even generalized linear model programs to fit the intercept-only model
but the deviance G2 can be obtained from the formula in Section 20.4. Given the estimate β̂0 for

Model (20.5.2), we get p̂i = eβ̂0/(1 + eβ̂0) for all i, and apply the formula. In general, for the
intercept-only model p̂i = ∑n

i=1 Niyi/∑n
i=1 Ni, which, for binary data, reduces to p̂i = ∑n

i=1 yi/n.
The degrees of freedom are the number of cases minus the number of fitted parameters, n−1.

20.5.2 Case diagnostics

The residuals and leverages in Table 20.4 have been computed from a program for generalized linear
modeling. The residuals and leverages have also been computed in Table 20.5 using pooling, which
is why some values are missing. Cases 6, 7, 8, cases 11, 12, 13, 14, cases 17, 18, and cases 19,
20 all have duplicated temperatures with residuals and leverages reported only for the first case. In
Table 20.5 the reported leverage for case 6 is 0.22. Without pooling in Table 20.4 this leverage is
distributed as 0.22/3 = 0.074 for each of cases 6, 7, and 8.

20.5.3 Assessing predictive ability

In any predictive model, a reasonable measure of the predictive ability of a model is the squared
correlation between the actual observations and the predicted (fitted) values. For the challenger
data, this number is

R2 = 0.346.
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Table 20.5: Diagnostics for Challenger data: Logistic regression program.

Case yh p̂h Leverage rh r̃h

1 1 0.939 0.167 0.254 0.279
2 1 0.859 0.208 0.405 0.455
3 1 0.829 0.209 0.454 0.511
4 1 0.603 0.143 0.812 0.877
5 0 0.430 0.086 −0.869 −0.910
6 0 0.375 0.223 −1.341 −1.521
7 0 0.375 * * *
8 0 0.375 * * *
9 0 0.322 0.067 −0.689 −0.714

10 0 0.274 0.063 −0.614 −0.634
11 0 0.230 0.251 1.283 1.483
12 0 0.230 * * *
13 1 0.230 * * *
14 1 0.230 * * *
15 0 0.158 0.066 −0.433 −0.448
16 0 0.130 0.068 −0.386 −0.400
17 0 0.086 0.138 2.096 2.258
18 1 0.086 * * *
19 0 0.069 0.136 −0.385 −0.414
20 0 0.069 * * *
21 0 0.045 0.063 −0.216 −0.223
22 0 0.036 0.059 −0.192 −0.198
23 0 0.023 0.051 −0.152 −0.156

This may seem like a small number, but it is difficult to predict well in 0-1 logistic regression even
when you know the perfect model p(x). The predictive ability of the model depends on the x values
one is likely to see. For x values that correspond to p(x) close to 0 or 1, the model will make
very good predictions. But for x values with p(x)

.
= 0.5, we will never be able to make reliable

predictions. Those predictions will be no better than predictions for the flip of a coin.

The other commonly used predictive measures for these data are given below.

Measures of Association
Between the Response Variable and Predicted Probabilities

Pairs Number Percent Summary Measures
Concordant 85 75.9 Somers’ D 0.56
Discordant 22 19.6 Goodman–Kruskal Gamma 0.59
Ties 5 4.5 Kendall’s Tau-a 0.25
Total 112 100.0

20.6 Multiple logistic regression

This section examines regression models for the log-odds of a two-category response variable in
which we use more than one predictor variable. The discussion is centered around an example.

EXAMPLE 20.6.1. Chapman Data.
Dixon and Massey (1983) and Christensen (1997) present data on 200 men taken from the Los
Angeles Heart Study conducted under the supervision of John M. Chapman, UCLA. The data
consist of seven variables:
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Figure 20.3: Coronary incident scatterplot matrix.

Abbreviation Variable Units
Ag Age: in years
S Systolic Blood Pressure: millimeters of mercury
D Diastolic Blood Pressure: millimeters of mercury
Ch Cholesterol: milligrams per DL
H Height: inches
W Weight: pounds
CN Coronary incident: 1 if an incident had

occurred in the previous
ten years; 0 otherwise

Of the 200 cases, 26 had coronary incidents. The data are available on the Internet, like all the data
in this book, through the webpage:

http://stat.unm.edu/~fletcher.

The data are part of the data that go along with both this book and the book Log-Linear Models and
Logistic Regression. They are also available on the Internet via STATLIB. Figure 20.3 plots each
variable against y = CN. Figures 20.4 through 20.7 provide a scatterplot matrix of the predictor
variables.

Let pi be the probability of a coronary incident for the ith man. We begin with the logistic
regression model

log[pi/(1− pi)] = β0 +β1Agi +β2Si +β3Di +β4Chi +β5Hi +β6Wi (20.6.1)

i = 1, . . . ,200. The maximum likelihood fit of this model is given in Table 20.6. The deviance df
is the number of cases, 200, minus the number of fitted parameters, 7. Based on the t values, none
of the variables really stand out. There are suggestions of age, cholesterol, and weight effects. The
(unpooled) deviance G2 would look good except that, as discussed earlier, with Ni = 1 for all i there
is no basis for comparing it to a χ2(193) distribution.

Prediction follows as usual,

log[p̂i/(1− p̂i)] = β̂0 + β̂1Agi + β̂2Si + β̂3Di + β̂4Chi + β̂5Hi + β̂6Wi .
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Figure 20.4: Coronary incident scatterplot matrix.
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Figure 20.5: Coronary incident scatterplot matrix.

Table 20.6: Table of Coefficients: Model (20.6.1).

Predictor β̂k SE(β̂k) t
Constant −4.5173 7.481 −0.60

Ag 0.04590 0.02354 1.95
S 0.00686 0.02020 0.34
D −0.00694 0.03835 −0.18
Ch 0.00631 0.00363 1.74
H −0.07400 0.10622 −0.70
W 0.02014 0.00987 2.04

Deviance: G2 = 134.9 df = 193
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Figure 20.6: Coronary incident scatterplot matrix.
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Figure 20.7: Coronary incident scatterplot matrix.

For a 60-year-old man with blood pressure of 140 over 90, a cholesterol reading of 200, who is 69
inches tall and weighs 200 pounds, the estimated log odds of a coronary incident are

log[p̂/(1− p̂)] =−4.5173+ 0.04590(60)+0.00686(140)−0.00694(90)

+0.00631(200)−0.07400(69)+0.02014(200)=−1.2435.

The probability of a coronary incident is estimated as

p̂ =
e−1.2435

1+ e−1.2435 = 0.224 .



20.6 MULTIPLE LOGISTIC REGRESSION 501

20 30 40 50 60 70

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Age

Fi
tte

d

Chol
300
200

Figure 20.8 Coronary incident probabilities as a function of age for S = 140, D = 90, H = 69, W = 200. Solid
Ch = 200, dashed Ch = 300.

Figure 20.8 plots the estimated probability of a coronary incident as a function of age for people
with S = 140, D = 90, H = 69, W = 200 and either Ch = 200 (solid line) or Ch = 300 (dashed line).

Diagnostic quantities for the cases with the largest Cook’s distances are given in Table 20.7.
They include 19 of the 26 cases that had coronary incidents. The large residuals are for people who
had low probabilities for a coronary incident but had one nonetheless. High leverages correspond to
unusual data. For example, case 41 has the highest cholesterol. Case 108 is the heaviest man in the
data.

We now consider fitting some reduced models. Simple linear logistic regressions were fitted for
each of the variables with high t values, i.e., Ag, Ch, and W. Regressions with variables that seem
naturally paired were also fitted, i.e., S,D and H,W. Table 20.8 contains the models along with df ,
G2, A− q, and A∗. The first two of these are the deviance degrees of freedom and the deviance.
No P values are given because the asymptotic χ2 approximation does not hold. Also given are two
analogues of Mallow’s Cp statistic, A− q and A∗. A− q ≡ G2 − 2(df ) is the Akaike information
criterion (AIC) less twice the number of trials (q ≡ 2n). A∗ is a version of the Akaike information
criterion defined for comparing Model (20.6.1) to various submodels. It gives numerical values
similar to the Cp statistic and is defined by

A∗ = (G2 −134.9)− (7−2p) .

Here 134.9 is the deviance G2 for the full model (20.6.1), 7 comes from the degrees of freedom
for the full model (6 explanatory variables plus an intercept), and p comes from the degrees of
freedom for the submodel (p = 1+number of explanatory variables). The information in A−q and
A∗ is identical, A∗ = 258.1+(A− q). (The value 258.1 = 2n−G2[full model]− p[full model] =
400− 134.9− 7 does not depend on the reduced model.) A∗ is listed because it is a little easier to
look at since it takes values similar to Cp. Computer programs rarely report A−q or A∗. (The glm
procedure in the R language provides a version of the AIC.) A−q is very easy to compute from the
deviance and its degrees of freedom.

Of the models listed in Table 20.8,

log[pi/(1− pi)] = γ0 + γ1Agi (20.6.2)
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Table 20.7: Diagnostics for Chapman data. Cases with high Cook’s distances.

Case yh p̂h Leverage rh r̃h Cook
5 1 0.36 0.13 1.32 1.42 0.043

19 1 0.46 0.15 1.08 1.17 0.036
21 1 0.08 0.02 3.34 3.37 0.028
27 1 0.21 0.03 1.97 1.99 0.016
29 1 0.11 0.01 2.73 2.75 0.016
39 1 0.16 0.03 2.33 2.36 0.022
41 1 0.31 0.15 1.46 1.59 0.065
42 1 0.12 0.03 2.60 2.63 0.027
44 1 0.41 0.09 1.19 1.24 0.021
48 1 0.18 0.06 2.14 2.21 0.045
51 1 0.34 0.06 1.39 1.44 0.019
54 1 0.19 0.03 2.07 2.09 0.017
55 1 0.52 0.08 0.96 1.00 0.012
81 1 0.32 0.06 1.44 1.49 0.021
84 0 0.36 0.20 -0.74 -0.83 0.026
86 1 0.03 0.01 5.95 5.98 0.052

108 0 0.45 0.17 -0.91 -1.00 0.029
111 1 0.56 0.11 0.89 0.95 0.015
113 0 0.37 0.21 -0.76 -0.85 0.027
114 0 0.46 0.14 -0.93 -1.00 0.024
116 0 0.41 0.10 -0.84 -0.89 0.013
123 1 0.36 0.07 1.35 1.40 0.022
124 1 0.12 0.02 2.70 2.72 0.019
126 1 0.13 0.04 2.64 2.70 0.047

Table 20.8: Models for Chapman data.

Variables df G2 A− q A∗
Ag,S,D,Ch,H,W 193 134.9 −251.1 7

Ag 198 142.7 −253.3 4.8
W 198 150.1 −245.9 12.2

H,W 197 146.8 −247.2 10.9
Ch 198 146.9 −249.1 9.0
S,D 197 147.9 −246.1 12.0

Intercept 199 154.6 −243.4 14.7

is the only model that is better than the full model based on the information criterion, i.e., A∗ is 4.8
for this model, less than the 7 for Model (20.6.1).

Asymptotically valid tests of submodels against Model (20.6.1) are available. These are per-
formed in the usual way, i.e., the differences in deviance degrees of freedom and deviance G2s give
the appropriate values for the tests. For example, the test of Model (20.6.2) versus Model (20.6.1)
has G2 = 142.7− 134.9= 7.8 with df = 198−193= 5. This and other tests are given below.

Tests against Model (20.6.1)
Model df G2

Ag 5 7.8
W 5 15.2**

H,W 4 11.9*
Ch 5 12.0*
S,D 4 13.0*

Intercept 6 19.7**

All of the test statistics are significant at the 0.05 level, except for that associated with Model
(20.6.2). This indicates that none of the models other than (20.6.2) is an adequate substitute for
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Table 20.9: Chapman data models that include Age.

Variables df G2 A∗
Ag,S,D,Ch,H,W 193 134.9 7.0

Ag,S,D 196 141.4 7.5
Ag,S,Ch 196 139.3 5.4
Ag,S,H 196 141.9 8.0
Ag,S,W 196 138.4 4.5
Ag,D,Ch 196 139.0 5.1
Ag,D,H 196 141.4 7.5
Ag,D,W 196 138.5 4.6
Ag,Ch,H 196 139.9 6.0
Ag,Ch,W 196 135.5 1.6
Ag,H,W 196 138.1 4.2

Ag,S 197 141.9 6.0
Ag,D 197 141.4 5.5
Ag,Ch 197 139.9 4.0
Ag,H 197 142.7 6.8
Ag,W 197 138.8 2.9

Ag 198 142.7 4.8

the full model (20.6.1). In this table, one asterisk indicates significance at the 0.05 level and two
asterisks denotes significance at the 0.01 level.

Our next step is to investigate models that include Ag and some other variables. If we can find
one or two variables that account for most of the value G2 = 7.8, we may have an improvement over
Model (20.6.2). If it takes three or more variables to explain the 7.8, Model (20.6.2) will continue to
be the best-looking model. (Note that χ2(.95,3) = 7.81, so a model with three more variables than
Model (20.6.2) and the same G2 fit as Model (20.6.1) would still not demonstrate a significant lack
of fit in Model (20.6.2).)

Fits for all models that involve Ag and either one or two other explanatory variables are given
in Table 20.9. Based on the A∗ values, two models stand out:

log[pi/(1− pi)] = γ0 + γ1Agi + γ2Wi (20.6.3)

with A∗ = 2.9 and
log[pi/(1− pi)] = η0 +η1Agi +η2Wi +η3Chi (20.6.4)

with A∗ = 1.6.
The estimated parameters and standard errors for model (20.6.3) are

Table of Coefficients: Model (20.6.3).
Variable γ̂k SE(γ̂k)
Intercept −7.513 1.706

Ag 0.06358 0.01963
W 0.01600 0.00794

For Model (20.6.4), these are

Table of Coefficients: Model (20.6.4).
Variable η̂k SE(η̂k)
Intercept −9.255 2.061

Ag 0.05300 0.02074
W 0.01754 0.003575
Ch 0.006517 0.008243

The coefficients for Ag and W are quite stable in the two models. The coefficients of Ag, W, and
Ch are all positive, so that a small increase in age, weight, or cholesterol is associated with a small
increase in the odds of having a coronary incident. Note that we are establishing association, not
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causation. The data tell us that higher cholesterol is related to higher probabilities, not that it causes
higher probabilities.

As in standard regression, interpreting regression coefficients can be very tricky. The fact that
the regression coefficients are all positive conforms with the conventional wisdom that high values
for any of these factors is associated with increased chance of heart trouble. However, as in standard
regression analysis, correlations between predictor variables can make interpretations of individual
regression coefficients almost impossible.

It is interesting to note that from fitting Model (20.6.1) the estimated regression coefficient
for D, diastolic blood pressure, is negative, cf. Table 20.6. A naive interpretation would be that
as diastolic blood pressure goes up, the probability of a coronary incident goes down. (If the log
odds go down, the probability goes down.) This is contrary to common opinion about how these
things work. Actually, this is really just an example of the fallacy of trying to interpret regression
coefficients. The regression coefficients have been determined so that the fitted model explains these
particular data as well as possible. As mentioned, correlations between the predictor variables can
have a huge effect on the estimated regression coefficients. The sample correlation between S and
D is 0.802, so estimated regression coefficients for these variables are unreliable. Moreover, it is not
even enough just to check pairwise correlations between variables; any large partial correlations will
also adversely affect coefficient interpretations. Fortunately, such correlations should not normally
have an adverse affect on the predictive ability of the model; they only adversely affect attempts to
interpret regression coefficients. Another excuse for the D coefficient β̂3 being negative is that, from
the t value, β3 is not significantly different from 0.

The estimated blood pressure coefficients from Model (20.6.1) also suggest an interesting hy-
pothesis. (The hypothesis would be more interesting if the individual coefficients were significant,
but we wish to demonstrate a modeling technique.) The coefficient for D is −0.00694, which is
approximately the negative of the coefficient for S, 0.00686. This suggests that perhaps β3 = −β2

in Model (20.6.1). If we incorporate this hypothesis into Model (20.6.1) we get

log[pi/(1− pi)]

= β0 +β1Agi +β2Si +(−β2)Di +β4Chi +β5Hi +β6Wi (20.6.5)

= β0 +β1Agi +β2(Si −Di)+β4Chi +β5Hi +β6Wi,

which gives deviance G2 = 134.9 on df = 194. This model is a reduced model relative to Model
(20.6.1), so from Table 20.9 a test of it against Model (20.6.1) has

G2 = 134.9−134.9= 0.0,

with df = 194−193= 1. The G2 is essentially 0, so the data are consistent with the reduced model.
Of course this reduced model was suggested by the fitted full model, so any formal test would be
biased—but then one does not accept null hypotheses anyway, and the whole point of choosing
this reduced model was that it seemed likely to give a G2 close to that of Model (20.6.1). We
note that the new variable S−D is still not significant in Model (20.6.5); it only has a t value of
0.006834/0.01877= 0.36.

If we wanted to test something like H0 : β3 =−0.005, the reduced model is

log[pi/(1− pi)] = β0 +β1Agi +β2Si +(−0.005)Di+β4Chi +β5Hi +β6Wi

and involves a known term (−0.005)Di in the linear predictor. This known term is called an offset.
To fit a model with an offset, most computer programs require that the offset be specified separately
and that the model be specified without it, i.e., as

log[pi/(1− pi)] = β0 +β1Agi +β2Si +β4Chi +β5Hi +β6Wi.

The use of an offset is illustrated in Section 21.6.
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Table 20.10: Muscle tension change data.

Drug (k)
Tension (h) Weight (i) Muscle ( j) Drug 1 Drug 2

High Type 1 3 21
Type 2 23 11

High
Low Type 1 22 32

Type 2 4 12
High Type 1 3 10

Type 2 41 21
Low

Low Type 1 45 23
Type 2 6 22

We learned earlier that, relative to Model (20.6.1), either model (20.6.3) or (20.6.4) does an
adequate job of explaining the data. This conclusion was based on looking at A∗ values, but would
also be obtained by doing formal tests of models.

Christensen (1997, Section 4.4) discusses how to perform best subset selection, similar to Sec-
tion 10.2, for logistic regression. His preferred method requires access to a standard best subset
selection program that allows weighted regression. He does not recommend the score test proce-
dure used by SAS in PROC LOGISTIC. Stepwise methods, like backward elimination and forward
selection, are relatively easy to apply.

20.7 ANOVA type logit models

In this section, analysis-of-variance-type models for the log odds of a two-category response vari-
able are discussed. For ANOVA models, binary data can often be pooled to obtain reasonably large
group sizes. More often, the data come presented in groups. We begin with a standard example.

EXAMPLE 20.7.1. A study on mice examined the relationship between two drugs and muscle
tension. Each mouse had a muscle identified and its tension measured. A randomly selected drug
was administered to the mouse and the change in muscle tension was evaluated. Muscles of two
types were used. The weight of the muscle was also measured. Factors and levels are as follow.

Factor Abbreviation Levels
Change in muscle tension T High, Low

Weight of muscle W High, Low
Muscle type M Type 1, Type 2

Drug D Drug 1, Drug 2

The data in Table 20.10 are counts (rather than proportions) for every combination of the factors.
Probabilities phi jk can be defined for every factor combination with p1i jk + p2i jk = 1, so the odds of
a high tension change are p1i jk/p2i jk.

Change in muscle tension is a response factor. Weight, muscle type, and drug are all predictor
variables. We model the log odds of having a high change in muscle tension (given the levels of the
explanatory factors), so the observed proportion of, say, high change for Weight = Low, Muscle =
2, Drug = 1 is, from Table 20.10, 4/(4+ 6). The most general ANOVA model (saturated model)
includes all main effects and all interactions between the explanatory factors, i.e.,

log(p1i jk/p2i jk) = G+Wi+Mj +Dk (20.7.1)

+(WM)i j +(WD)ik +(MD) jk

+(WMD)i jk .



506 20. LOGISTIC REGRESSION: PREDICTING COUNTS

Table 20.11: Statistics for muscle tension logit models.

Logit Model df G2 P A− q
[W M][W D][MD] 1 0.111 0.7389 −1.889
[W M][W D] 2 2.810 0.2440 −1.190
[W M][MD] 2 0.1195 0.9417 −3.8805
[W D][MD] 2 1.059 0.5948 −2.941
[W M][D] 3 4.669 0.1966 −1.331
[W D][M] 3 3.726 0.2919 −2.274
[MD][W ] 3 1.060 0.7898 −4.940
[W ][M][D] 4 5.311 0.2559 −2.689
[W ][M] 5 11.35 0.0443 1.35
[W ][D] 5 12.29 0.0307 2.29
[M][D] 5 7.698 0.1727 −2.302

Table 20.12: Estimated odds of high tension change for [MD][W].

Drug
Weight Muscle Drug 1 Drug 2
High Type 1 0.625 1.827

Type 2 0.590 .592
Low Type 1 0.512 1.496

Type 2 0.483 .485

As usual, this is equivalent to a model with just the highest-order effects,

log(p1i jk/p2i jk) = (W MD)i jk .

As introduced in earlier chapters, we denote this model [WMD] with similar notations for other
models that focus on the highest-order effects.

Models can be fitted by maximum likelihood. Reduced models can be tested. Estimates and
asymptotic standard errors can be obtained. The analysis of model (20.7.1) is similar to that of an
unbalanced three-factor ANOVA model as illustrated in Chapter 16.

Table 20.11 gives a list of ANOVA type logit models, deviance df , deviance G2, P values for
testing the fitted model against Model (20.7.1), and A−q values. Clearly, the best-fitting logit mod-
els are the models [MD][W] and [WM][MD]. Both involve the muscle-type-by-drug interaction and
a main effect for weight. One of the models includes the muscle-type-by-weight interaction. Note
that P values associated with saturated model goodness-of-fit tests are appropriate here because we
are not dealing with 0-1 data. (The smallest group size is 3+3 = 6.)

The estimated odds for a high tension change using [MD][W] are given in Table 20.12. The
estimated odds are 1.22 times greater for high-weight muscles than for low-weight muscles. For
example, in Table 20.12, 0.625/0.512 = 1.22 but also 1.22 = 0.590/0.483 = 1.827/1.495 =
0.592/0.485. This corresponds to the main effect for weight in the logit model. The odds also
involve a muscle-type-by-drug interaction. To establish the nature of this interaction, consider the
four estimated odds for high weights with various muscles and drugs. These are the four values at
the top of Table 20.12, e.g., for muscle type 1, drug 1 this is 0.625. In every muscle type–drug com-
bination other than type 1, drug 2, the estimated odds of having a high tension change are about 0.6.
The estimated probability of having a high tension change is about 0.6/(1+ 0.6) = 0.375. How-
ever, for type 1, drug 2, the estimated odds are 1.827 and the estimated probability of a high tension
change is 1.827/(1+ 1.827)= 0.646. The chance of having a high tension change is much greater
for the combination muscle type 1, drug 2 than for any other muscle type–drug combination. A
similar analysis holds for the low-weight odds p̂12 jk/(1− p̂12 jk) but the actual values of the odds
are smaller by a multiplicative factor of 1.22 because of the main effect for weight.

The other logit model that fits quite well is [WM][MD]. Tables 20.13 and 20.14 both contain
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Table 20.13: Estimated odds for [WM][MD].

Drug
Weight Muscle Drug 1 Drug 2
High Type 1 0.809 2.202

Type 2 0.569 0.512
Low Type 1 0.499 1.358

Type 2 0.619 0.557

Table 20.14: Estimated odds for [WM][MD].

Drug
Muscle Weight Drug 1 Drug 2
Type 1 High 0.809 2.202

Low 0.499 1.358
Type 2 High 0.569 0.512

Low 0.619 0.557

the estimated odds of high tension change for this model. The difference between Tables 20.13 and
20.14 is that the rows of Table 20.13 have been rearranged in Table 20.14. This sounds like a trivial
change, but examination of the tables shows that Table 20.14 is easier to interpret. The reason for
changing from Table 20.13 to Table 20.14 is the nature of the logit model. The model [WM][MD]
has M in both terms, so it is easiest to interpret the fitted model when fixing the level of M. For
a fixed level of M, the effects of W and D are additive in the log odds, although the size of those
effects change with the level of M.

Looking at the type 2 muscles in Table 20.14, the high-weight odds are 0.919 times the low-
weight odds. Also, the drug 1 odds are 1.111 times the drug 2 odds. Neither of these are really
very striking differences. For muscle type 2, the odds of a high tension change are about the same
regardless of weight and drug. Contrary to our previous model, they do not seem to depend much on
weight and to the extent that they do depend on weight, the odds go down rather than up for higher
weights.

Looking at the type 1 muscles, we see the dominant features of the previous model reproduced.
The odds of high tension change are 1.622 times greater for high weights than for low weights. The
odds of high tension change are 2.722 times greater for drug 2 than for drug 1.

Both models indicate that for type 1 muscles, high weight increases the odds and drug 2 in-
creases the odds. Both models indicate that for type 2 muscles, drug 2 does not substantially change
the odds. The difference between the models [MD][W] and [WM][MD] is that [MD][W] indicates
that for type 2 muscles, high weight should increase the odds, but [WM][MD] indicates little change
for high weight and, in fact, what change there is indicates a decrease in the odds.

20.8 Ordered categories

In dealing with ANOVA models for measurement data, when one or more factors had quantitative
levels, it was useful to model effects with polynomials. Similar results apply to logit models.

EXAMPLE 20.8.1. Consider data in which there are four factors defining a 2× 2× 2× 6 table.
The factors are
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Table 20.15: Abortion opinion data.

AGE
RACE SEX OPINION 18–25 26–35 36–45 46–55 56–65 66+

Male Yes 96 138 117 75 72 83
No 44 64 56 48 49 60

White
Female Yes 140 171 152 101 102 111

No 43 65 58 51 58 67

Male Yes 24 18 16 12 6 4
No 5 7 7 6 8 10

Nonwhite
Female Yes 21 25 20 17 14 13

No 4 6 5 5 5 5

Abbrev-
Factor iation Levels
Race (h) R White, Nonwhite
Sex (i) S Male, Female
Opinion ( j) O Yes = Supports Legalized Abortion

No = Opposed to Legalized Abortion
Age (k) A 18–25, 26–35, 36–45, 46–55, 56–65, 66+ years

Opinion is the response factor. Age has ordered categories. The data are given in Table 20.15.
The probability of a Yes opinion for Race h, Sex i, Age k is phik ≡ phi1k. The corresponding No
probability has 1− phik ≡ phi2k.

As in the previous section, we could fit a three-factor ANOVA type logit model to these data.
Table 20.16 contains fitting information for standard three-factor models wherein [] indicates the
intercept (grand mean) only model. From the deviances and A−q in Table 20.16 a good-fitting logit
model is

log[phik/(1− phik)] = (RS)hi +Ak. (20.8.1)

Fitting this model gives the estimated odds of supporting relative to opposing legalized abortion that
follow.

Odds of Support versus Opposed: Model (20.8.1)
Age

Race Sex 18–25 26–35 36–45 46–55 56–65 65+
White Male 2.52 2.14 2.09 1.60 1.38 1.28

Female 3.18 2.70 2.64 2.01 1.75 1.62
Nonwhite Male 2.48 2.11 2.06 1.57 1.36 1.26

Female 5.08 4.31 4.22 3.22 2.79 2.58

The deviance G2 is 9.104 with 15 df . The G2 for fitting [R][S][A] is 11.77 on 16 df . The difference
in G2s is not large, so the reduced logit model log[phik/(1− phik)] = Rh+Si+Ak may fit adequately,
but we continue to examine Model (20.8.1).

The odds suggest two things: 1) odds decrease as age increases, and 2) the odds for males
are about the same, regardless of race. We fit models that incorporate these suggestions. Of course,
because the data are suggesting the models, formal tests of significance will be even less appropriate
than usual but G2s still give a reasonable measure of the quality of model fit.

To model odds that are decreasing with age we incorporate a linear trend in ages. In the absence
of specific ages to associate with the age categories we simply use the scores k = 1,2, . . . ,6. These
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Table 20.16: Logit models for the abortion opinion data.

Model df G2 A− q
[RS][RA][SA] 5 4.161 −5.839
[RS][RA] 10 4.434 −15.566
[RS][SA] 10 8.903 −11.097
[RA][SA] 6 7.443 −4.557
[RS][A] 15 9.104 −20.896
[RA][S] 11 7.707 −14.23
[SA][R] 11 11.564 −10.436
[R][S][A] 16 11.772 −20.228
[R][S] 21 40.521 −1.479
[R][A] 17 21.605 −12.395
[S][A] 17 14.084 −19.916
[R] 22 49.856 5.856
[S] 22 43.451 −0.549
[A] 18 23.799 −12.201
[] 23 52.636 6.636

quantitative levels suggest fitting the ACOVA model

log[phik/(1− phik)] = (RS)hi+ γk . (20.8.2)

The deviance G2 is 10.18 on 19 df , so the linear trend in coded ages fits very well. Recall that
Model (20.8.1) has G2 = 9.104 on 15 df , so a test of Model (20.8.2) versus Model (20.8.1) has
G2 = 10.18− 9.104= 1.08 on 19−15= 4 df .

To incorporate the idea that males have the same odds of support, recode the indices for races
and sexes. The indices for the (RS)hi terms are (h, i) = (1,1),(1,2),(2,1),(2,2). We recode with
new indexes ( f ,e) having the correspondence

(h, i) (1,1) (1,2) (2,1) (2,2)
( f ,e) (1,1) (2,1) (1,2) (3,1).

The model
log[p f ek/(1− p f ek)] = (RS) f e +Ak

gives exactly the same fit as Model (20.8.1). Together, the subscripts f , e, and k still distinguish
all of the cases in the data. The point of this recoding is that the single subscript f distinguishes
between males and the two female groups but does not distinguish between white and nonwhite
males, so now if we fit the model

log[p f ek/(1− p f ek)] = (RS) f +Ak, (20.8.3)

we have a model that treats the two male groups the same. To fit this, you generally do not need to
define the index e in your data file, even though it will implicitly exist in the model.

Of course, Model (20.8.3) is a reduced model relative to Model (20.8.1). Model (20.8.3) has
deviance G2 = 9.110 on 16 df , so the comparison between models has G2 = 9.110−9.104= 0.006
on 16− 15 = 1 df . We have lost almost nothing by going from Model (20.8.1) to Model (20.8.3).

Finally, we can write a model that incorporates both the trend in ages and the equality for males

log[p f ek/(1− p f ek)] = (RS) f + γk . (20.8.4)

This has G2 = 10.19 on 20 df . Thus, relative to Model (20.8.1), we have dropped 5 df from the
model, yet only increased the G2 by 10.19−9.10= 1.09. Rather than fitting Model (20.8.4), we fit
the equivalent model that includes an intercept (grand mean) μ . The estimates and standard errors
for this model, using the side condition (RS)1 = 0, are
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Table 20.17: French convictions.

Year Convictions Accusations
1825 4594 7234
1826 4348 6988
1827 4236 6929
1828 4551 7396
1829 4475 7373
1830 4130 6962

Table of Coefficients: Model related to (20.8.4)
Parameter Est SE t

μ 1.071 0.1126 9.51
(RS)1 0 — —
(RS)2 0.2344 0.09265 2.53
(RS)3 0.6998 0.2166 3.23

γ −0.1410 0.02674 −5.27

All of the terms seem important. With this side condition, (R̂S)2 is actually an estimate of (RS)2 −
(RS)1, so the t score 2.53 is an indication that white females have an effect on the odds of support
that is different from males. Similarly, (R̂S)3 is an estimate of the difference in effect between
nonwhite females and males.

The estimated odds of support are

Odds of Support: Model (20.8.4).
Age

Race-Sex 18–25 26–35 36–45 46–55 56–65 65+
Male 2.535 2.201 1.912 1.661 1.442 1.253
White female 3.204 2.783 2.417 2.099 1.823 1.583
Nonwhite female 5.103 4.432 3.850 3.343 2.904 2.522

The odds can be transformed into probabilities of support. To most people, probabilities are easier
to interpret than odds. The estimated probability that a white female between 46 and 55 years of age
supports legalized abortion is 2.099/(1+2.099) = 0.677. The odds are about 2, so the probability
is about twice as great that such a person will support legalized abortion rather than oppose it.

20.9 Exercises

EXERCISE 20.9.1. Fit a logistic model to the data of Table 20.17 that relates probability of
conviction to year. Is there evidence of a trend in the conviction rates over time? Is there evidence
for a lack of fit?

EXERCISE 20.9.2. Stigler (1986, p. 208) reports data from the Edinburgh Medical and Surgical
Journal (1817) on the relationship between heights and chest circumferences for Scottish militia
men. Measurements were made in inches. We concern ourselves with two groups of men, those
with 39-inch chests and those with 40-inch chests. The data are given in Table 20.18. Test whether
the distribution of heights is the same for these two groups, cf. Chapter 5.

Is it reasonable to fit a logistic regression to the data of Table 20.18? Why or why not? Explain
what such a model would be doing. Whether reasonable or not, fitting such a model can be done.
Fit a logistic model and discuss the results. Is there evidence for a lack of fit?

EXERCISE 20.9.3. Chapman, Masinda, and Strong (1995) give the data in Table 20.19. These
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Table 20.18: Heights and chest circumferences.

Heights
Chest 64–65 66–67 68–69 70–71 71–73 Total
39 142 442 341 117 20 1062
40 118 337 436 153 38 1082
Total 260 779 777 270 58 2144

Table 20.19: Unpopped kernels.

Trials
Time 1 2 3

30 144 145 141
45 125 125 118
60 101 138 119
120 197 112 92
150 109 101 61
165 64 54 78
180 34 23 50
210 25 31 36
225 25 27 8
240 11 12 27
255 3 0 2

are the number out of 150 popcorn kernels that fail to pop when microwaved for a given amount of
time. There are three replicates. Fit a logistic regression with time as the predictor.

EXERCISE 20.9.4. Use the results of Subsection 12.5.2 and the not-so-obvious fact that
∑n

i=1 p̂i/n = ∑n
i=1 yi/n ≡ ȳ to show that, for the mouse data of Section 20.1, the formula for R2

when n = 12, Nh ≡ N = 10 is

R2 =
[∑n

i=1(p̂i − ȳ)(yi − ȳ)]2

[∑n
i=1(p̂i − ȳ)2] [∑n

i=1(yi − ȳ)2]

but that for 0-1 data we get the smaller value

R2 =
[N ∑n

i=1(p̂i − ȳ)(yi − ȳ)]2

[N ∑n
i=1(p̂i − ȳ)2] [N ∑n

i=1(yi − ȳ)2 +N ∑n
i=1 yi(1− yi)]

.

EXERCISE 20.9.5. For the n = 12 version of the mouse data, reanalyze it using the log of the
dose as a predictor variable. Create a version of the data with n = 120 and reanalyze both the x and
log(x) versions. Compare. Among other things compare the deviances and R2 values.





Chapter 21

Log-Linear Models: Describing Count Data

In a longitudinal study discussed by Christensen (1997), 2121 people neither exercised regularly
nor developed cardiovascular disease during the study. These subjects were cross-classified by three
factors: Personality type (A,B), Cholesterol level (normal, high), and Diastolic Blood Pressure (nor-
mal, high). The data are given in Table 21.1.

Table 21.1 is a three-way table of counts. The three factors are Personality, Cholesterol level,
and Diastolic Blood Pressure. Each factor happens to be at two levels, but that is of no particular
consequence for our modeling of the data. We can analyze the data by fitting three-way ANOVA
type models to it. However, count data are not normally distributed, so standard ANOVA methods
are inappropriate. In particular, random variables for counts tend to have variances that depend on
their mean values. Standard sampling schemes for count data are multinomial sampling and Poisson
sampling. In this case, we can think of the data as being a sample of 2121 from a multinomial
distribution, cf. Section 1.5.

In general we assume that our data are independent Poisson random variables, say,

yh ∼ Pois(μh), h = 1, . . . ,n

and create models
log(μh) = m(xh)

where xh is a predictor variable or vector associated with case h. Most often xh contains factor vari-
ables. Our standard models m(·) are all linear in their parameters, so these are called log-linear
models. Rather than Poisson sampling, most of our data are multinomial or a combination of inde-
pendent multinomials. For models with an intercept (or ANOVA models), the analysis for Poisson
data is the same as the analysis for multinomial data. A similar statement holds for independent
multinomial data provided appropriate group effects are included in the model. For a complete dis-
cussion of fitting log-linear models with various sampling schemes and the relationship between
this approach and ANOVA modeling for normal data; see Christensen (1997).

Log-linear models are more often used for exploring relationships between factors than for pre-
diction. In prediction, one tends to focus on a particular factor (variable) of interest, called the
response factor, and use the other factors (variables) to predict or explain the response. If a factor of
interest has only two possible outcomes, the logistic models of Chapter 21 can be used for predic-
tion. Log-linear models are more often used to model independence relationships between factors.

Table 21.1: Personality, cholesterol, blood pressure data.

yi jk Diastolic Blood Pressure
Personality Cholesterol Normal High

A Normal 716 79
High 207 25

B Normal 819 67
High 186 22

513
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Table 21.2: Religion and occupations.

Occupation
Religion A B C D Total
Protestant 210 277 254 394 1135
Roman Catholic 102 140 127 279 648
Jewish 36 60 30 17 143
Total 348 477 411 690 1926

In this chapter we examine log-linear models, we also relate them to logistic regression models and
show how to use log-linear models to develop prediction models for factors that have more than two
possible outcomes.

21.1 Models for two-factor tables

Consider a 3× 4 table such as that given in Table 21.2. These are data extracted from Lazerwitz
(1961) and were considered in Chapter 5. The data are from three religious groups and give the
numbers of people who practice various occupations. The occupations are A, professions; B, own-
ers, managers, and officials; C, clerical and sales; and D, skilled workers.

Consider fitting ANOVA type models to the logs of the expected cell counts. Let yi j denote the
observed count in row i and column j of the table and let μi j denote the expected count in the i, j
cell. The two-way model with interaction can be written

log(μi j) = μ +αi +η j + γi j, i = 1, . . .3 ; j = 1, . . . ,4.

An alternative notation is often used for log-linear models that merely changes the names of the
parameters,

log(μi j) = u+u1(i)+u2( j)+u12(i j). (21.1.1)

This log-linear model imposes no constraints on the table of cell means because it includes a separate
parameter for every cell in the table. Actually, the u, u1(i), and u2( j) terms are all redundant because
the u12(i j) terms alone provide a parameter for explaining every expected cell count in the table. This
model will fit the data for any two-factor table perfectly! In other words, it will lead to μ̂i j = yi j.
Because it has a parameter for every cell, this model is referred to as the saturated model.

The log-linear model that includes only main effects is

log(μi j) = u+u1(i)+u2( j). (21.1.2)

In terms of Table 21.2, if this model fits the data, it says the data are explained adequately by a model
in which religion and occupation are independent, cf. Christensen (1997). If religion and occupation
are independent, knowing one’s religion gives no new information about a person’s occupation. That
makes sense relative to the model involving only main effects, because then religion affects only the
terms u1(i) and has no effect on the contribution from occupation, which is the additive term u2( j).
On the other hand, if Model (21.1.1) applies to the data, the interaction terms u12(i j) allow the
possibility of different occupation effects for every religious group. (It turns out that the model of
independence does not fit these data well.)

21.1.1 Lancaster–Irwin partitioning

Lancaster–Irwin partitioning was illustrated in Section 5.6. We now demonstrate how to accomplish
such partitions using log-linear models. In particular, we fit the reduced and collapsed tables given
in Table 5.10. The religion and occupations data of Table 21.2 are rewritten in Table 21.3 in a
form suitable for computing the fits to models (21.1.1) and (21.1.2). The table also includes new
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Table 21.3 Religion and occupations: i is Religion, j is Occupation, k collapses Roman Catholic and Protes-
tant, k and m together uniquely define religions.

y i j k m
210 1 1 0 1
277 1 2 0 1
254 1 3 0 1
394 1 4 0 1
102 2 1 0 2
140 2 2 0 2
127 2 3 0 2
279 2 4 0 2
36 3 1 3 0
60 3 2 3 0
30 3 3 3 0
17 3 4 3 0

subscripts k and m that replace i and can be used to fit the reduced table. The full interaction model
(21.1.1) can be written as

log(μkm j) = u+u1(km) +u2( j)+u12(km j), (21.1.3)

whereas the main-effects model (21.1.2) can be rewritten as

log(μkm j) = u+u1(km)+u2( j). (21.1.4)

The reduced table of Tables 5.10 and 5.11 can be fitted using the model

log(μkm j) = u+u1(km) +u2(k j). (21.1.5)

This model has a separate parameter for each Jewish occupation, so it effectively leaves them alone,
and fits an independence model to the Roman Catholics and Protestants, cf. Christensen (1997,
Exercise 8.4.3). The pair of subscripts km uniquely define the three religious groups, so in Model
(21.1.5) the term u1(km) is really a main effect for religions. The terms u2(k j) define main effects
for occupations when k = 0, i.e., for Roman Catholics and Protestants, but the terms u2(k j) define
separate effects for each Jewish occupation when k = 3. The key ideas are that k has a unique
value for each religious category except it does not distinguish between the categories that are to
be collapsed, and that k and m uniquely define the religions. Thus m needs to have different values
for each religion that is to be collapsed. In particular, assuming i never takes on the value 0, we can
define the new variables as

k =

{
0 if row i is collapsed
i if row i is not collapsed

m =

{
i if row i is collapsed
0 if row i is not collapsed.

Note that Model (21.1.5) is a special case of the full interaction model (21.1.3) but is more general
than the independence model (21.1.4).

For fitting Model (21.1.5), G2 = 12.206 on df = 3, which are the deviance and degrees of
freedom for the reduced table. For fitting models (21.1.2) and (21.1.4) the deviance is G2 = 64.342
on df = 6. The deviance and degrees of freedom for the collapsed table are obtained by subtraction,
G2 = 64.342−12.206= 52.136 on df = 6−3 = 3. These are roughly similar to the corresponding
Pearson χ2 statistics discussed in Chapter 5.

21.2 Models for three-factor tables

Consider a three-factor table of counts such as Table 21.1. The saturated model is the model with
three-factor interaction terms,

log(μi jk) = u+ u1(i)+u2( j)+u3(k) +u12(i j)+u13(ik) +u23( jk) +u123(i jk).
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This model has a separate u123(i jk) parameter for each cell in the table, so this model will fit any
three-factor table perfectly. Note that the model is grossly overparameterized; an equivalent model
is simply

log(μi jk) = u123(i jk).

We abbreviate this model as [123]. The only reason for using the overparameterized model is that it
is suggestive of some interesting submodels. In the following discussion, statements are made about
log-linear models implying independence relationships. See Christensen (1997, Chapter 3) for the
validity of these claims.

The model with main effects only is

log(μi jk) = u+u1(i)+u2( j)+u3(k). (21.2.1)

This model implies complete independence of the three factors in the table. Note that a less overpa-
rameterized version of Model (21.2.1) is

log(μi jk) = u1(i) +u2( j) +u3(k).

We can abbreviate the model as [1][2][3].
We can also look at models that include main effects and only one two-factor interaction, for

example,
log(μi jk) = u+u1(i)+u2( j) +u3(k) +u23( jk). (21.2.2)

This model implies that factor 1 is independent of factors 2 and 3. We can also get two other
models with similar interpretations by including all the main effects but only the u12(i j) interaction
(factor 3 independent of factors 1 and 2) or the main effects and only the u13(ik) interaction (factor 2
independent of factors 1 and 3). Note that a less overparameterized version of Model (21.2.2) is

log(mi jk) = u1(i) +u23( jk).

We can abbreviate the model as [1][23].
Now consider models that include two two-factor interactions, for example,

log(μi jk) = u+u1(i)+u2( j)+u3(k) +u13(ik) +u23( jk). (21.2.3)

This model implies that factor 1 is independent of factor 2 given factor 3. Note that factor 3 is in
both interaction terms, which is why the model has 1 and 2 independent given 3. We can also get
two other models with similar interpretations by including only the u12(i j) and u23( jk) interactions
(factors 1 and 3 independent given factor 2) or only the u12(i j) and u13(ik) interactions (factors 2 and
3 independent given factor 1). Note that a less overparameterized version of Model (21.2.3) is

log(μi jk) = u13(ik) +u23( jk).

We abbreviate the model as [13][23].
The no three-factor interaction model is

log(μi jk) = u+ u1(i)+u2( j)+u3(k) +u12(i j) +u13(ik)+u23( jk).

A less overparameterized version is

log(μi jk) = u12(i j) +u13(ik) +u23( jk),

which we can abbreviate as [12][13][23]. This model has no nice interpretation in terms of indepen-
dence.
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21.2.1 Testing models

Testing models works much the same as it does for linear models except with Poisson or multi-
nomial data there is no need to estimate a variance. Thus, the tests are similar to looking at only
the numerator sums of squares for an analysis of variance or regression test. (This would be totally
appropriate in ANOVA and regression if we ever actually knew the value of σ2.) The deviance of a
model is

G2 = 2 ∑
all cells

yi jk log
(
yi jk/μ̂i jk

)
,

where μ̂i jk is the (maximum likelihood) estimated expected cell count based on the model we are
testing. The subscripts in G2 are written for a three-dimensional table, but the subscripts are irrele-
vant. What is relevant is summing over all cells.

G2 gives a test of whether the model gives an adequate explanation of the data relative to the
saturated model. (Recall that the saturated model always fits the data perfectly because it has a
separate parameter for every cell in the table. Thus the estimated cell counts for a saturated model
are always just the observed cell counts.) The deviance degrees of freedom (df ) for G2 are the
degrees of freedom for the (interaction) terms that have been left out of the saturated model. So in
an I × J ×K table, the model that drops out the three-factor interaction has (I − 1)(J − 1)(K − 1)
degrees of freedom for G2. If we drop out the [12] interaction as well as the three-factor interaction,
G2 has (I − 1)(J− 1)(K − 1)+ (I−1)(J−1) degrees of freedom. If the observations y in each cell
are reasonably large, the G2 statistics can be compared to a χ2 distribution with the appropriate
number of degrees of freedom. A large G2 indicates that the model fits poorly as compared to the
saturated model.

Alternatively, one can use the Pearson statistic,

X2 = ∑
all cells

(yi jk − μ̂i jk)
2

μ̂i jk

for testing the model. It has the same degrees of freedom as G2.
To test a full model against a reduced model (Red.), we compare deviance G2s. In particular, the

test statistic is

G2(Red. versus Full) ≡ G2(Red.)−G2(Full)

= 2 ∑
all cells

yi jk log
(
yi jk/μ̂Ri jk

)
−2 ∑

all cells
yi jk log

(
yi jk/μ̂Fi jk

)

= 2 ∑
all cells

yi jk log
(
μ̂Fi jk/μ̂Ri jk

)

= 2 ∑
all cells

μ̂Fi jk log
(
μ̂Fi jk/μ̂Ri jk

)

where μ̂Ri jk and μ̂Fi jk are the maximum likelihood estimates from the reduced and full models,
respectively, and showing the last equality is beyond the scope of this book. The degrees of freedom
for the test is the difference in deviance degrees of freedom, df (Red.)−df (Full).

In Chapter 20 we introduced AIC as a tool for model selection. For log-linear models, maximiz-
ing Akaike’s information criterion amounts to choosing the model “M” that minimizes

AM = G2(M)− [q−2r] ,

where G2(M) is the deviance for testing the M model against the saturated model, r is the number
of degrees of freedom for the M model (not the degrees of freedom for the model’s deviance), and
there are q ≡ n degrees of freedom for the saturated model, i.e., q ≡ n cells in the table.
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Given a list of models to be compared along with their G2 statistics and the degrees of freedom
for the tests, a slight modification of AM is easier to compute,

AM −q = G2(M)−2[q− r]

= G2(M)−2df (M) .

Because q does not depend on the model M, minimizing AM − q is equivalent to minimizing AM .
Note that for the saturated model, A−q ≡ 0.

EXAMPLE 21.2.1. For the personality (1), cholesterol (2), blood pressure (3) data of Table 21.1,
testing models against the saturated model gives deviance and AIC values

Model df G2 A−q
[12][13][23] 1 0.613 −1.387
[12][13] 2 2.062 −1.938
[12][23] 2 2.980 −1.020
[13][23] 2 4.563 0.563
[1][23] 3 7.101 1.101
[2][13] 3 6.184 0.184
[3][12] 3 4.602 −1.398
[1][2][3] 4 8.723 0.723

Comparing the G2 values to 95th percentiles of χ2 distributions with the appropriate number of
degrees of freedom, all of the models seem to explain the data adequately.

To test, for example, the reduced model [1][2][3] against a full model [12][13], the test statistic
is

G2([1][2][3] versus [12][13]) = G2([1][2][3])−G2([12][13]) = 8.723−2.062= 6.661,

on df ([1][2][3])−df ([12][13]) = 4−2 = 2. The test statistic is greater than χ2(.95,2) = 5.991, so
we can reject the model of complete independence [1][2][3]. Complete independence fits the data
significantly worse than the model [12][13] in which cholesterol and blood pressure are independent
given personality type. So even though [1][2][3]fits adequately relative to the saturated model [123],
it fits the data inadequately relative to [12][13].

For the personality data, AIC suggests three attractive models: [3][12], [12][13], and
[12][13][23]. Model [12][23] is also not bad. �

With only three factors it is easy to look at all possible models. Model selection procedures
become more important when dealing with tables having more than three factors, cf. Christensen
(1997) and Section 21.4.

21.3 Estimation and odds ratios

For log-linear models, the primary goal of estimation is to obtain the estimated expected cell counts
μ̂h. Iterative computing methods are needed to find these. The Newton–Raphson method (itera-
tively reweighted least squares) provides an estimate of the model parameters. The other estimation
method is iterative proportional fitting (the Deming–Stephans algorithm) most often used only for
ANOVA type models. This directly provides estimates μ̂h from which parameter estimates can be
back calculated; see Christensen (1997) for details. Programs for fitting generalized linear models
typically use Newton–Raphson. The BMDP procedure 4F is restricted to ANOVA type models but
uses iterative proportionalfitting, and as a result it provides some nice features not available in many
other programs. (Over the years, BMDP 4F has become an obscure piece of software, but I know of
nothing that approximates its capabilities. It is now available through z/OS mainframe versions of
SAS.)



21.3 ESTIMATION AND ODDS RATIOS 519

EXAMPLE 21.3.1. Kihlberg, Narragon, and Campbell (1964), Fienberg (1980), and Christensen
(1997) present data on automobile injuries. The model of no three-factor interaction

log(μi jk) = u+ u1(i)+u2( j) +u3(k) +u12(i j)+u13(ik) +u23( jk)

fits the data very well. Below are given the data and the estimated expected cell counts based on the
model.

yi jk(μ̂i jk) Accident Type (k)
Collision Rollover

Injury ( j) Not Severe Severe Not Severe Severe
Driver No 350 (350.49) 150 (149.51) 60 (59.51) 112 (112.49)
Ejected (i) Yes 26 ( 25.51) 23 ( 23.49) 19 (19.49) 80 ( 79.51)

One way to examine a fitted model is to look at the estimated odds ratios. For multinomial
sampling we first use the unrestricted estimates of the probabilities pi jk ≡ μi jk/μ··· = μi jk/y···,
which are p̂i jk = yi jk/y···. The estimated odds of a not-severe injury when the driver is not ejected
in a collision are

y111/y···
y121/y···

=
y111

y121
=

y111

y121
=

350
150

= 2.333.

The estimated odds of a not-severe injury when the driver is ejected in a collision are

26
23

= 1.130

In a collision, the odds of a not-severe injury are

2.064 =
2.333
1.130

=
350(23)
26(150)

times greater if one is not ejected from the car. This is known as an odds ratio. Similarly, in a
rollover, the odds of a not-severe injury are

2.256 =
60(80)

19(112)

times greater if one is not ejected from the car. These odds ratios are quite close to one another.
In the no-three-way-interaction model, these odds ratios are forced to be the same. If we make the
same computations using the estimated expected cell counts, we get

2.158 =
350.49(23.49)
25.51(149.51)

=
59.51(79.51)

14.49(112.49)
.

For both collisions and rollovers, the odds of a severe injury are about twice as large if the driver
is ejected from the vehicle than if not. Equivalently, the odds of having a not-severe injury are about
twice as great if the driver is not ejected from the vehicle than if the driver is ejected. It should
be noted that the odds of being severely injured in a rollover are consistently much higher than in
a collision. What we have concluded in our analysis is that the relative effect of the driver being
ejected is the same for both types of accident and that being ejected substantially increases one’s
chances of being severely injured. �

All of the models discussed in Section 21.2 have interpretations in terms of odds ratios. An odds
ratio keeps one of the three indexes fixed, say, k, and looks at quantities like

p̂i jk p̂i′ j′k
p̂i j′k p̂i′ jk

=
μ̂i jkμ̂i′ j′k
μ̂i j′kμ̂i′ jk

.
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In the model of complete independence (21.2.1), these values will always be 1, no matter how they
are constructed. In Model (21.2.2) where factor 1 is independent of factors 2 and 3, any estimated
odds ratio that fixes either the level k or the level j will equal one, and all odds ratios that fix i will be
the same regardless of the value of i. In Model (21.2.3) where factors 1 and 2 are independent given
3, any estimated odds ratio that fixes the level k will equal one and all odds ratios that fix i will be
the same regardless of the value of i; similarly all odds ratios that fix j will be the same regardless of
the value of j. Odds ratios that equal one are directly related to certain interaction contrasts equaling
zero, cf. Christensen (1997)

EXAMPLE 21.3.2. Consider data from Everitt (1977) and Christensen (1997) on classroom be-
havior. The three factors are Classroom Behavior (Deviant or Nondeviant), Risk of the home situa-
tion: not at risk (N) or at risk (R), and Adversity of the school situation (Low, Medium, or High). The
data and estimated expected cell counts for the model log(μi jk) = u+u1(i) +u2( j) +u3(k) +u23( jk),
in which behavior is independent of risk and adversity, are given below.

yi jk Adversity (k)
(μ̂i jk) Low Medium High

Risk ( j) N R N R N R
Non. 16 7 15 34 5 3

Classroom (14.02) (6.60) (14.85) (34.64) (4.95) (4.95)
Behavior (i) Dev. 1 1 3 8 1 3

(2.98) (1.40) (3.15) (7.36) (1.05) (1.05)

Subject to round-off error, the estimate of the odds of nondeviant behavior is

μ̂1 jk

μ̂2 jk
=

14.02
2.98

=
6.60
1.40

= · · ·= 4.95
1.05

= 4.702 = e1.548.

Thus, any odds ratio in which either j or k is held fixed always equals 1. The estimate of the log
odds of nondeviant behavior is

log(μ̂1 jk/μ̂2 jk) = log(μ̂1 jk)− log(μ̂2 jk)

= û1(1)− û1(2) = 1.548 .

The odds of having a home situation that is not at risk depend on the adversity level. Up to
round-off error, the odds satisfy

μ̂i1k

μ̂i2k
=

⎧
⎨
⎩

14.02/6.60= 2.98/1.40= 2.125 k = 1
14.85/34.64= 3.15/7.36= 0.428 k = 2
4.95/4.95= 1.05/1.05= 1 k = 3

.

The odds ratios do not depend on i, so any odds ratios that fix i (but change k) will equal each other,
but will not necessarily equal 1; whereas odds ratios that fix k (but change i) will always equal 1.

21.4 Higher-dimensional tables

Tables with four or more factors can also be modeled. The basic ideas from three-dimensional tables
continue to apply, but the models become more complicated.

EXAMPLE 21.4.1. Consider again the data of Example 20.7.1 and Table 20.10 on muscle tension
change. Here we examine models for expected cell counts but do not identify tension as a response.

The log-linear model of all main effects is

log(μhi jk) = γ + τh +ωi + μ j + δk. (21.4.1)
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The model of all two-factor interactions is

log(μhi jk) = γ + τh +ωi+ μ j + δk +(τω)hi +(τμ)h j +(τδ )hk

+(ωμ)i j +(ωδ )ik +(μδ ) jk. (21.4.2)

The model of all three-factor interactions is

log(μhi jk) = γ + τh +ωi+ μ j + δk +(τω)hi +(τμ)h j +(τδ )hk

+(ωμ)i j +(ωδ )ik +(μδ ) jk (21.4.3)

+(τωμ)hi j +(τωδ )hik +(τμδ )h jk +(ωμδ )i jk.

Removing some redundant parameters gives

log(μhi jk) = τh +ωi + μ j + δk, (21.4.1)

log(μhi jk) = (τω)hi +(τμ)h j +(τδ )hk +(ωμ)i j +(ωδ )ik +(μδ ) jk, (21.4.2)

and
log(μhi jk) = (τωμ)hi j +(τωδ )hik +(τμδ )h jk +(ωμδ )i jk . (21.4.3)

Corresponding shorthand notations are

[T][W][M][D] (21.4.1)

[TW][TM][WM][TD][WD][MD] (21.4.2)

[TWM][TWD][TMD][WMD] . (21.4.3)

Statistics for testing models against the saturated model are given below. The only model
considered that fits these data has all three-factor interactions.

Model df G2 P A−q
[TWM][TWD][TMD][WMD] 1 0.11 0.74 −1.89
[TW][TM][WM][TD][WD][MD] 5 47.67 0.00 37.67
[T][W][M][D] 11 127.4 0.00 105.4

To test reduced models, say, [TWM][TWD][TMD][WMD] against the reduced model of all two-
factor terms [TW][TM][WM][TD][WD][MD], compute G2 = 47.67−0.11= 47.56 with df = 5−
1 = 4. Clearly, the reduced model does not fit. A reasonable beginning for modelling these data
would be to find which, if any, three-factor interactions can be removed without harming the model
significantly. �

EXAMPLE 21.4.2. In later sections we will consider an expanded version of the abortion opinion
data of Example 20.8.1 and Table 20.15 that includes another opinion category that was ignored in
Chapter 20. The four factors now define a 2×2×3×6 table. The factors and levels are

Factor Abbreviation Levels
Race R White, Nonwhite
Sex S Male, Female
Opinion O Yes = Supports Legalized Abortion

No = Opposed to Legalized Abortion
Und = Undecided

Age A 18–25, 26–35, 36–45, 46–55, 56–65, 66+ years

The data are given in Table 21.4. �
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Table 21.4: Abortion opinion data.

AGE (k)
RACE (h) SEX (i) OPINION ( j) 18–25 26–35 36–45 46–55 56–65 66+

Yes 96 138 117 75 72 83
Male No 44 64 56 48 49 60

Und 1 2 6 5 6 8
White

Yes 140 171 152 101 102 111
Female No 43 65 58 51 58 67

Und 1 4 9 9 10 16

Yes 24 18 16 12 6 4
Male No 5 7 7 6 8 10

Und 2 1 3 4 3 4
Nonwhite

Yes 21 25 20 17 14 13
Female No 4 6 5 5 5 5

Und 1 2 1 1 1 1

21.5 Ordered categories

In ANOVA models with one or more factors having quantitative levels, it is useful to model effects
with polynomials. Similar results apply to log-linear models.

EXAMPLE 21.5.1. Men from Framingham, Massachusetts were categorized by their serum
cholesterol and systolic blood pressure. Consider the subsample that did not develop coronary heart
disease during the follow-up period. The data are as follows.

Cholesterol Blood Pressure (in mm Hg)
(in mg/100 cc) <127 127–146 147–166 167+ Totals

<200 117 121 47 22 307
200–219 85 98 43 20 246
220–259 119 209 68 43 439
≥260 67 99 46 33 245
Totals 388 527 204 118 1237

Both factors have ordered levels, although there is no one number associated with each level.
We consider quantitative levels 1, 2, 3, 4 for both factors. Obviously, this is somewhat arbitrary. An
alternative approach that involves nonlinear modeling is to estimate the quantitative levels for each
factor, cf. Christensen (1997) for more information.

Now consider four models that involve the quantitative levels:

Abbreviation Model
[C][P][C1] log(μi j) = u+uC(i)+uP( j)+C1i · j
[C][P][P1] log(μi j) = u+uC(i)+uP( j)+P1 j · i
[C][P][γ] log(μi j) = u+uC(i)+uP( j)+ γ · i · j
[C][P] log(μi j) = u+uC(i)+uP( j).

These are called the row effects, column effects, uniform association, and independence models,
respectively. The fits for the models relative to the saturated model are
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Model df G2 A−q
[C][P][C1] 6 7.404 −4.596
[C][P][P1] 6 5.534 −6.466
[C][P][γ] 8 7.429 −8.571
[C][P] 9 20.38 2.38

The best-fitting model is the uniform association model

log(μi j) = u+uC(i)+uP( j)+ γ · i · j .

Using the side conditions uC(1) = uP(1) = 0, the parameter estimates and large sample standard
errors are

Parameter Estimate Standard Error
u 4.614 0.0699

uC(1) 0 —
uC(2) −0.4253 0.1015
uC(3) −0.0589 0.1363
uC(4) −0.8645 0.1985
uP(1) 0 —
uP(2) 0.0516 0.0965
uP(3) −1.164 0.1698
uP(4) −1.991 0.2522

γ 0.1044 0.0293

The estimated cell counts are

Estimated Cell Counts μ̂i j: Uniform Association
Blood Pressure

Cholesterol <127 127–146 147–166 167+
<200 112.0 131.0 43.1 20.9

200–219 81.3 105.4 38.5 20.8
220–259 130.1 187.4 76.0 45.5
≥260 64.5 103.2 46.4 30.8

Because these are obtained from the uniform association model, the odds ratios for consecutive
table entries are identical. For example, the odds of blood pressure < 127 relative to blood pressure
127–146 for men with cholesterol < 200 are 1.11 times the similar odds for men with cholesterol
of 200–219; up to round-off error

112.0/131.0
81.3/105.4

=
112.0(105.4)
81.3(131.0)

= e0.1044 = 1.11

where 0.1044= γ̂ . Similarly, the odds of blood pressure 127–146 relative to blood pressure 147–166
for men with cholesterol < 200 are 1.11 times the odds for men with cholesterol of 200–219:

131.0(38.5)
105.4(43.1)

= e0.1044 = 1.11 .

Also the odds of blood pressure < 127 relative to blood pressure 127–146 for men with cholesterol
200–219 are 1.11 times the odds for men with cholesterol of 220–259:

81.3(187.4)
130.1(105.4)

= e0.1044 = 1.11 .
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For consecutive categories, the odds of lower blood pressure are 1.11 times greater with lower blood
cholesterol than with higher blood cholesterol.

Of course, we can also compare nonconsecutive categories. For categories that are one step away
from consecutive, the odds of lower blood pressure are 1.23 = e2(0.1044) times greater with lower
cholesterol than with higher cholesterol. For example, the odds of having blood pressure <127
compared to having blood pressure of 147–166 with cholesterol <200 are 1.23 = e2(0.1044) times
those for cholesterol 200–219. To check this observe that

112.0(38.5)
81.3(43.1)

= 1.23.

Similarly, the odds of having blood pressure <127 compared to having blood pressure of 127–
146 with cholesterol <200 are 1.23 times those for cholesterol 220–259. Extending this leads to
observing that the odds of having blood pressure <127 compared to having blood pressure of 167+
with cholesterol <200 are 2.559 = e9(0.1044) times those for cholesterol ≥ 260.

It is of interest to compare the estimated cell counts obtained under uniform association with
the estimated cell counts under independence. The estimated cell counts under independence are

Estimated Cell Counts μ̂i j: Independence
Blood Pressure

Cholesterol <127 127–146 147–166 167+
<200 96.3 130.8 50.6 29.3

200–219 77.2 104.8 40.6 23.7
220–259 137.7 187.0 72.4 41.9
≥260 76.85 104.4 40.4 23.4

All of the estimated odds ratios from the independence model are 1. Relative to independence,
with γ > 0, the uniform association model increases the estimated cell counts for cells with 1) high
cholesterol and high blood pressure and 2) low cholesterol and low blood pressure. Also, the uniform
association model decreases the estimated cell counts for cells with 1) high cholesterol and low
blood pressure and 2) low cholesterol and high blood pressure.

EXAMPLE 21.5.2. For the Abortion Opinion data of Table 21.4, the model [RSO][OA] fits well.
The ages are quantitative levels. We consider whether using the quantitative nature of this factor
leads to a more succinct model. The age categories are 18–25, 26–35, 36–45, 46–55, 56–65, and
66+. For lack of a better idea, the category scores were taken as 1, 2, 3, 4, 5, and 6. Since the first
and last age categories are different from the other four, the use of the scores 1 and 6 are particularly
open to question. Two new models were considered:

Abbreviation Model
[RSO][OA] log(μhi jk) = uRSO(hi j) +uOA( jk)

[RSO][A][O1] log(μhi jk) = uRSO(hi j) +uA(k) +O1 jk
[RSO][A][O1][O2] log(μhi jk) = uRSO(hi j) +uA(k) +O1 jk+O2 jk2

Both of these are reduced models relative to [RSO][OA]. To compare models, we need the
following statistics

Model df G2 A−q
[RSO][OA] 45 24.77 −65.23
[RSO][A][O1][O2] 51 26.99 −75.01
[RSO][A][O1] 53 29.33 −76.67

Comparing [RSO][A][O1] versus [RSO][OA] gives G2 = 29.33− 24.77 = 4.56 with degrees of
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Table 21.5: Textile faults.

Roll Length (l) Faults (y) Roll Length (l) Faults (y)
1 551 6 17 543 8
2 651 4 18 842 9
3 832 17 19 905 23
4 375 9 20 542 9
5 715 14 21 522 6
6 868 8 22 122 1
7 271 5 23 657 9
8 630 7 24 170 4
9 491 7 25 738 9

10 372 7 26 371 14
11 645 6 27 735 17
12 441 8 28 749 10
13 895 28 29 495 7
14 458 4 30 716 3
15 642 10 31 952 9
16 492 4 32 417 2

freedom 53− 45 = 8. The G2 value is not significant. Similarly, [RSO][A][O1][O2] is an adequate
model relative to [RSO[OA]. The test for [O2] has G2 = 29.33−27.99= 1.34 on 2 df , which is not
significant. The model with only [O1] fits the data well.

I should perhaps mention that, although it fits very well, [RSO][OA] is a strange model for these
data. The model suggests that race–sex combinations are independent of age given one’s opinions.
One would not expect something as ephemeral as an opinion to affect things as concrete as race,
sex, and age.

21.6 Offsets

Most of our examples have involved multinomial data with ANOVA type models. Now we consider
a regression with Poisson data. This example also involves a term in the linear predictor that is
known.

EXAMPLE 21.6.1. Consider the data in Table 21.5. This is data from Bissell (1972) on the number
of faults in pieces of fabric. It is reasonable to model the number of faults in any piece of fabric as
Poisson and to use the length of the fabric as a predictor variable for the number of faults.

In general, we assume the existence of n independent random variables yh with yh ∼ Pois(μh).
In this example, a reasonable model might be that the expected number of faults μh is some number
λ times the length of the piece of fabric, say lh, i.e.,

μh = λ lh. (21.6.1)

Such a model assumes that the faults are being generated at a constant rate, and therefore the ex-
pected number of faults is proportional to the length. We can rewrite Model (21.6.1) as a log-linear
model

log(μh) = log(λ )+ log(lh)

or
log(μh) = β0 +(1) log(lh), (21.6.2)

where β0 ≡ log(λ ). If we generalize Model (21.6.2) it might look a bit more familiar. Using a simple
linear regression structure with log(lh) as a predictor variable, we have the more general model

log(μh) = β0 +β1 log(lh). (21.6.3)
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Table 21.6: Model fits: Textile fault data.

Model df Deviance
(21.6.2) 31 64.538
(21.6.3) 30 64.537

Table 21.7: Tables of Coefficients: Models (21.6.1) and (21.6.2).

Model (21.6.2)
Parameter Estimate SE
β0 −4.193 0.05934

Model (21.6.3)
Parameter Estimate SE
β0 −4.173 1.135
β1 0.9969 0.1759

On the original scale, this model has
μh = λ lβ1

h .

Model (21.6.2) is the special case of Model (21.6.3) with β1 = 1, and we would like to test the
models. Model (21.6.2) includes a term log(lh) that is not multiplied by an unknown parameter.
We encountered such terms in normal theory linear models, and dealt with them by constructing
a new dependent variable. Dealing with such terms in nonnormal models is more complicated but
many computer programs handle them easily. A term like log(lh) that is used in the linear predictor
of a model like (21.6.2) that is not multiplied by an unknown parameter is often called an offset.
Different computer programs have different ways of specifying an offset.

Fitting models (21.6.2) and (21.6.3) gives the results in Table 21.6. The test statistic for the
adequacy of Model (21.6.2) relative to Model (21.6.3) is

G2 = 64.538−64.537= 0.001

on 31− 30 = 1 df . Clearly, Model (21.6.3) adds little to (21.6.2). The parameter estimates for both
models are given in Table 21.7. The estimated slope in Model (21.6.3) is remarkably close to 1.

Of course it is not clear that either of these models fit well. The squared correlation between the
observations and the predicted values is only R2 = 0.34 and if we think the sample sizes are large in
each of the 32 cells, the deviance would give a highly significate result when testing for lack of fit.

�

21.7 Relation to logistic models

All of the logistic models used in Chapter 20 are equivalent to log-linear models. This is discussed
in detail in Christensen (1997). Here, we merely show that log-linear models imply standard logis-
tic models. (It is considerably harder to show that a logistic model implies a particular log-linear
model.) A logistic regression involves I independent binomial random variables. We can think of
this as determining an I×2 table, where the 2 columns indicate successes and failures.

Note that in this chapter, n denotes the entire number of cells being considered, whereas in
Chapter 20, n denoted the number of independent binomials being considered. Thus, in Chapter 20,
n ≡ I but in this chapter n = 2I, and later, when we consider more than two possible responses, n
will be a larger multiple of I.

Consider a log-linear model for a two-dimensional table that involves the use of a continuous
predictor variable x to model interaction. The row effects model of Section 21.5 for the ith individual
(or group) having the jth response is

log(μi j) = u1(i) +u2( j)+η jxi
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where the usual interaction term u12(i j) is replaced in the model by a more specific interaction term,
η jxi. Of course, xi is the known predictor variable and η j is an unknown parameter. This is an
interaction term because it involves both the i and j subscripts, just like u12(i j). The relationship
between the logistic model and the log-linear model is that, with j = 1 denoting “success” and pi

denoting the probability of success,

log

(
pi

1− pi

)
= log

(
μi1

μi2

)

= log(μi1)− log(μi2)

=
[
u1(i) +u2(1)+η1xi

]
−
[
u1(i) +u2(2) +η2xi

]

=
[
u2(1)−u2(2)

]
+[η1xi −η2xi]

≡ β0 +β1xi

where β0 ≡
[
u2(1)− u2(2)

]
and β1 ≡ [η1 −η2].

Similarly, the log-linear model with two predictor variables

log(μi j) = u1(i) +u2( j) +η1 jxi1 +η2 jxi2

implies

log

(
pi

1− pi

)
= log

(
μi1

μi2

)

= log(μi1)− log(μi2)

=
[
u1(i) +u2(1) +η11xi1 +η21xi2

]

−
[
u1(i) +u2(2)+η12xi1 +η22xi2

]

=
[
u2(1)−u2(2)

]
+[η11xi1 −η12xi1]+ [η21xi2 −η22xi2]

≡ β0 +β1xi1 +β2xi2

where β0 ≡
[
u2(1)− u2(2)

]
, β1 ≡ [η11 −η12], and β2 ≡ [η21 −η22].

Similar results apply to ANOVA type models. The logit model from Equation (20.8.1)

log[phik/(1− phik)] = (RS)hi +Ak.

is equivalent to the log-linear model

log(μhi jk) = [RSA]hik +[RSO]hi j +[OA] jk

in which the terms of the logit model become terms in the log-linear model except that the response
factor O with subscript j is incorporated into the terms, e.g., (RS)hi becomes [RSO]hi j and Ak be-
comes [OA] jk. Also, the log-linear model has an effect for every combination of the explanatory
factors, e.g., it includes [RSA]hik.

The logit model

log(μhi1k/μhi2k) = (RS)hi + γk

corresponds to the log-linear model

log(μhi jk) = [RSA]hik +[RSO]hi j + γ jk

where we have added the highest-order interaction term not involving O, [RSA], and made the (RS)
and γ terms depend on the opinion level j.
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Table 21.8: Log-linear models for the abortion opinion data.

Model df G2 A− q
[RSA][RSO][ROA][SOA] 10 6.12 −13.88
[RSA][RSO][ROA] 20 7.55 −32.45
[RSA][RSO][SOA] 20 13.29 −26.71
[RSA][ROA][SOA] 12 16.62 − 7.38
[RSA][RSO][OA] 30 14.43 −45.57
[RSA][ROA][SO] 22 17.79 −26.21
[RSA][SOA][RO] 22 23.09 −20.91
[RSA][RO][SO][OA] 32 24.39 −39.61
[RSA][RO][SO] 42 87.54 3.54
[RSA][RO][OA] 34 34.41 −33.59
[RSA][SO][OA] 34 39.63 −28.37
[RSA][RO] 44 97.06 9.06
[RSA][SO] 44 101.9 13.9
[RSA][OA] 36 49.37 −22.63
[RSA][O] 46 111.1 19.1

21.8 Multinomial responses

Logistic regression is used to predict a dependent variable with binary responses. Binary responses
involve only two outcomes, either “success” or “failure.” On occasion, we need to predict a depen-
dent variable that has more than two possible outcomes. This can be done by performing a sequence
of logistic regressions, although there are several different ways to define such sequences. Another
approach is to realize, as in the previous section, that logistic models are equivalent to log-linear
models and to use log-linear models to deal with multiple response categories. Christensen (1997)
presents a more systematic approach to these problems. Here, we restrict ourselves to presenting
some examples.

EXAMPLE 21.8.1. We now examine fitting models to the data from Table 21.4 on race, sex,
opinions on abortion, and age. We treat opinions as a three-category response variable. In a log-
linear model, the variables are treated symmetrically. The analysis looks for relationships among
any of the variables. Here we consider opinions as a response variable. This changes the analysis
in that we think of having separate independent samples from every combination of the predictor
variables. Under this sampling scheme, the interaction among all of the predictors, [RSA], must be
included in all models. Table 21.8 presents fits for all the models that include [RSA] and correspond
to ANOVA-type logit models.

Using AIC, the best-fitting model is clearly [RSA][RSO][OA]. The fitted values for
[RSA][RSO][OA] are given in Table 21.9.

This log-linear model can be used directly to fit multiple logit models that address specific
issues related to the multinomial responses. The method of identifying these logit models is pre-
cisely as illustrated in the previous section. For these data we might consider two logit models, one
that examines the odds of the first category (supporting legalized abortion) to the second category
(opposing legalized abortion) and another that examines the second category (odds of opposing
legalized abortion) to the third (being undecided),

log(μhi1k/μhi2k) = w1
RS(hi) +w1

A(R)

log(μhi2k/μhi3k) = w2
RS(hi) +w2

A(k) .

Alternatively, we might examine the odds of each of the first two categories relative to the third, i.e.,
the odds of supporting legalized abortion to undecided and the odds of opposing to undecided:

log(μhi1k/μhi3k) = v1
RS(hi) + v1

A(k)

log(μhi2k/μhi3k) = v2
RS(hi) + v2

A(k) .
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Table 21.9: Fitted values for [RSA][RSO][OA].

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 65+

Support 100.1 137.2 117.5 75.62 70.58 80.10
Male Oppose 39.73 64.23 56.17 47.33 50.99 62.55

Undec. 1.21 2.59 5.36 5.05 5.43 8.35
White

Support 138.4 172.0 152.4 101.8 101.7 110.7
Female Oppose 43.49 63.77 57.68 50.44 58.19 68.43

Undec. 2.16 4.18 8.96 8.76 10.08 14.86

Support 21.19 16.57 15.20 11.20 8.04 7.80
Male Oppose 8.54 7.88 7.38 7.11 5.90 6.18

Undec. 1.27 1.54 3.42 3.69 3.06 4.02
Nonwhite

Support 21.40 26.20 19.98 16.38 13.64 12.40
Female Oppose 4.24 6.12 4.77 5.12 4.92 4.83

Undec. 0.36 0.68 1.25 1.50 1.44 1.77

Table 21.10: Estimated odds of Support versus Oppose.

Legalized Abortion
(Based on the log-linear model [RSA][RSO][OA])

Age
Race Sex 18–25 26–35 36–45 46–55 56–65 65+
White Male 2.52 2.14 2.09 1.60 1.38 1.28

Female 3.18 2.70 2.64 2.02 1.75 1.62
Nonwhite Male 2.48 2.10 2.06 1.57 1.36 1.26

Female 5.05 4.28 4.19 3.20 2.77 2.57

Other possibilities exist. Of those mentioned, the only odds that seem particularly interesting to the
author are the odds of supporting to opposing. In the second pair of models, the category “unde-
cided” is being used as a standard level to which other levels are compared. This seems a particularly
bad choice in the context of these data. The fact that undecided happens to be the last opinion cate-
gory listed in the table is no reason for it to be chosen as the standard of comparison. Either of the
other categories would make a better standard.

Neither of these pairs of models are particularly appealing for these data, so we only illustrate a
few salient points before moving on. Consider the odds of support relative to opposed. The odds can
be obtained from the fitted values in Table 21.9. For example, the odds for young white males are
100.1/39.73 = 2.52. The full table of odds is given in Table 21.10. Except for nonwhite females,
the odds of support are essentially identical to those obtained in Section 20.8 in which undecideds
were excluded. The four values vary from age to age by a constant multiple depending on the ages
involved. The odds of support decrease steadily with age. The model has no inherent structure
among the four race–sex categories; however, the odds for white males and nonwhite males are
surprisingly similar. Nonwhite females are most likely to support legalized abortion, white females
are next, and males are least likely to support legalized abortion. Confidence intervals for log odds
or log odds ratios can be found using methods in Christensen (1997).

Another approach to modeling is to examine the set of three models that consists of the odds
of supporting, the odds of opposing, and the odds of undecided (in each case, the odds are defined
relative to the union of the other categories).

Finally, we could examine two models, one for the odds of supporting to opposing and one
for the odds of undecided to having an opinion. (Note the similarity to Lancaster–Irwin partition-
ing.) Fitting these two models involves fitting log-linear models to two sets of data. Eliminating all
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undecideds from the data, we fit [RSA][RSO][OA] to the 2× 2× 2× 6 table containing only the
“support” and “oppose” categories. We essentially did this already in Section 20.8.

We now pool the support and oppose categories to get a 2×2×2×6 table in which the opinions
are “support or oppose” and “undecided.” Again, the model [RSA][RSO][OA] is fitted to the data.
For this model, we report only the estimated odds.

Odds of Being Decided on Abortion
Age

Race Sex 18–25 26–35 36–45 46–55 56–65 65+
White Male 116.79 78.52 32.67 24.34 22.26 16.95

Female 83.43 56.08 23.34 17.38 15.90 12.11
Nonwhite Male 23.76 15.97 6.65 4.95 4.53 3.45

Female 68.82 46.26 19.25 14.34 13.12 9.99

The estimated odds vary from age to age by a constant multiple. The odds decrease with age,
so older people are less likely to take a position. White males are most likely to state a position.
Nonwhite males are least likely to state a position. (Recall from Section 20.8 that white and non-
white males take nearly the same positions but now we see that they state positions very differently.)
White and nonwhite females have odds of being decided that are somewhat similar.

With support and opposed collapsed, the G2 for [RSA][RSO][OA] turns out to be 5.176 on
15 df . The G2 for the smaller model [RSA][RO][SO][OA] is 12.71 on 16 df . The difference is
very large. Although, as seen in Section 20.8 and specifically Table 20.15, a main-effects-only logit
model fits the support–opposition data quite well, to deal with the undecided category requires a
race–sex interaction.

Additional modeling similar to that in Section 20.8 can be applied to the odds of having made a
decision on legalized abortion.

21.9 Logistic discrimination and allocation

Consider four populations of people determined by age: adult, adolescent, child, infant. These are
common distinctions, but the populations are not clearly defined. It is not clear when infants be-
come children, when children become adolescents, nor when adolescents become adults. Nonethe-
less, most people can clearly be identified as members of one of these four groups. It might be
of interest to see whether one can discriminate between these populations on the basis of various
measurements like height and weight. Another interesting problem is predicting the population of a
new individual given only the measurements like height and weight. The problem of predicting the
population of a new case is referred to as allocation. In a standard discrimination–allocation prob-
lem, independent samples are taken from each population. The factor of interest in these problems
is the population, but it is not a response factor in the sense used elsewhere in this book. The logis-
tic regression approach (or as presented here, the log-linear model approach so as to handle more
than two populations) to discrimination treats the distribution for each population as a multinomial.
While the procedures illustrated are quite straightforward, their philosophical justification is more
complex, cf. Christensen (1997).

EXAMPLE 21.9.1. Aitchison and Dunsmore (1975, p. 212) consider 21 individuals with one of
3 types of Cushing’s syndrome. Cushing’s syndrome involves overproduction of cortisol. The three
types considered are

A−adenoma
B−bilateral hyperplasia
C−carcinoma

The case variables considered are the rates at which two steroid metabolites are excreted in the
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Table 21.11: Cushing’s syndrome data.

Case Type TETRA PREG Case Type TETRA PREG
1 A 3.1 11.70 12 B 15.4 3.60
2 A 3.0 1.30 13 B 7.7 1.60
3 A 1.9 0.10 14 B 6.5 0.40
4 A 3.8 0.04 15 B 5.7 0.40
5 A 4.1 1.10 16 B 13.6 1.60
6 A 1.9 0.40 17 C 10.2 6.40
7 B 8.3 1.00 18 C 9.2 7.90
8 B 3.8 0.20 19 C 9.6 3.10
9 B 3.9 0.60 20 C 53.8 2.50

10 B 7.8 1.20 21 C 15.8 7.60
11 B 9.1 0.60

urine. (These are measured in milligrams per day.) The two steroids are
TETRA —Tetrahydrocortisone

and
PREG —Pregnanetriol.

The data are listed in Table 21.11. Note the strange PREG value for Case 4.
The data determine the 3× 21 table

Case( j)
Type(i) 1 2 3 4 5 6 7 8 · · · 16 17 18 19 20 21

A 1 1 1 1 1 1 0 0 · · · 0 0 0 0 0 0
B 0 0 0 0 0 0 1 1 · · · 1 0 0 0 0 0
C 0 0 0 0 0 0 0 0 · · · 0 1 1 1 1 1

to which we fit a log-linear model.
The case variables TETRA and PREG are used to model the interaction in this table. The case

variables are highly skewed, so, following Aitchison and Dunsmore, we analyze the transformed
variables TL ≡ log(TETRA) and PL ≡ log(PREG). The transformed data are plotted in Figure 21.1.

The evaluation of the relationship is based on the relative likelihoods of the three syndrome
types. Thus with i denoting the population for any case j, our interest is in the relative sizes of
p1 j, p2 j, and p3 j. Estimates of these quantities are easily obtained from the μ̂i js. Simply take the
fitted mean value μ̂i j and divide by the number of observations from population i,

p̂i j =
μ̂i j

yi·
. (21.9.1)

For a new patient of unknown syndrome type but whose values of T L and PL place them in cat-
egory j, the most likely type of Cushing’s syndrome is that with the largest value among p1 j, p2 j,
and p3 j. In practice, new patients are unlikely to fall into one of the 21 previously observed cate-
gories but the modeling procedure is flexible enough to allow allocation of individuals having any
values of T L and PL.

Discrimination

The main effects model is

log(μi j) = αi +β j i = 1,2,3 j = 1, . . . ,21 .

We want to use T L and PL to help model the interaction, so fit

log(μi j) = αi +β j + γ1i(T L) j + γ2i(PL) j , (21.9.2)
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Figure 21.1: Cushing’s syndrome data.

i = 1,2,3, j = 1, . . . ,21. Taking differences gives, for example,

log(μ1 j/μ2 j) = (α1 −α2)+ (γ11 − γ12)(T L) j +(γ21 − γ22)(PL) j,

which can be written as
log(μ1 j/μ2 j) = δ0 + δ1(T L) j + δ2(PL) j .

Although this looks like a logistic regression model, it has a fundamentally different interpreta-
tion. A value pi j is the likelihood within population i of observing category j. Having fitted Model
(21.9.2), the estimate of the log of the likelihood ratio is

log

(
p̂1 j

p̂2 j

)
= log

(
μ̂1 j/y1·
μ̂2 j/y2·

)
= log

(
μ̂1 j

μ̂2 j

)
− log

(
y1·
y2·

)
.

The ratio p1 j/p2 j is not an odds of Type A relative to Type B. Both numbers are probabilities but they
are probabilities from different populations. The correct interpretation of p1 j/p2 j is as a likelihood
ratio, specifically the likelihood of Type A relative to Type B.

The G2 for Model (21.9.2) is 12.30 on 36 degrees of freedom. As in logistic regression, although
G2 is a valid measure of goodness of fit, G2 cannot legitimately be compared to a χ2 distribution.
However, we can test reduced models. The model

log(μi j) = αi +β j + γ1i(TL) j

has G2 = 21.34 on 38 degrees of freedom, and

log(μi j) = αi +β j + γ2i(PL) j
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Table 21.12: Estimated probabilities for the three multinomials.

Group Group
Case A B C Case A B C

1 0.1485 0.0012 0.0195 12 0.0000 0.0295 0.1411
2 0.1644 0.0014 0.0000 13 0.0000 0.0966 0.0068
3 0.1667 0.0000 0.0000 14 0.0001 0.0999 0.0000
4 0.0842 0.0495 0.0000 15 0.0009 0.0995 0.0000
5 0.0722 0.0565 0.0003 16 0.0000 0.0907 0.0185
6 0.1667 0.0000 0.0000 17 0.0000 0.0102 0.1797
7 0.0000 0.0993 0.0015 18 0.0000 0.0060 0.1879
8 0.1003 0.0398 0.0000 19 0.0000 0.0634 0.0733
9 0.0960 0.0424 0.0000 20 0.0000 0.0131 0.1738

10 0.0000 0.0987 0.0025 21 0.0000 0.0026 0.1948
11 0.0000 0.0999 0.0003

has G2 = 37.23 on 38 degrees of freedom. Neither of the reduced models provides an adequate fit.
(Recall that χ2 tests of model comparisons like these were also valid for logistic regression.)

Table 21.12 contains estimated probabilities for the three populations. The probabilities are com-
puted using Equation (21.9.1) and Model (21.9.2).

Table 21.13 illustrates two Bayesian analyses. For each case j, it gives the estimated posterior
probability that the case belongs to each of the three syndrome types. The data consist of the ob-
served T L and PL values in category j. Given that the syndrome type is i, the estimated probability
of observing data in category j is p̂i j. Let π(i) be the prior probability that the case is of syndrome
type i. Bayes theorem gives

π̂(i|Data) =
p̂i jπ(i)

∑3
i=1 p̂i jπ(i)

.

Two choices of prior probabilities are used in Table 21.13: probabilities proportional to sample sizes,
i.e., π(i) = yi·/y··, and equal probabilities π(i) = 1

3 . Prior probabilities proportional to sample sizes
are rarely appropriate, but they relate in simple ways to standard output, so they are often given
more prominence than they deserve. Both of the sets of posterior probabilities are easily obtained.
The table entries for proportional probabilities are just the μ̂i j values from fitting the log-linear
model in the usual way. This follows from two facts: first, μ̂i j = yi· p̂i j, and second, the model fixes
the column totals so μ̂· j = 1 = y· j. To obtain the equal probabilities values, simply divide the entries
in Table 21.12 by the sum of the three probabilities for each case. Cases that are misclassified by
either procedure are indicated with a double asterisk in Table 21.13.

Allocation

Model (21.9.2) includes a separate term β j for each case so it is not clear how Model (21.9.2) can
be used to allocate future cases. We begin with logit models and work back to an allocation model.
From (21.9.2), we can model the probability ratio of type A relative to type B

log(p1 j/p2 j)

= log(μ1 j/μ2 j)− log(y1·/y2·) (21.9.3)

= (α1 −α2)+ (γ11 − γ12)(T L) j +(γ21 − γ22)(PL) j − log(y1·/y2·) .

The log-likelihoods of A relative to C are

log(p1 j/p3 j)

= log(μ1 j/μ3 j)− log(y1·/y3·) (21.9.4)

= (α1 −α3)+ (γ11 − γ13)(T L) j +(γ21 − γ23)(PL) j − log(y1·/y3·) .

Fitting Model (21.9.2) gives the estimated parameters.
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Table 21.13: Estimated posterior probabilities of classification.

Proportional Equal Prior
Prior Probabilities Probabilities

Case Group A B C A B C
1 A .89 .01 .10 .88 .01 .12
2 A .99 .01 .00 .99 .01 .00
3 A 1.00 .00 .00 1.00 .00 .00
4 A .50 .50 .00 .63 .37 .00
5 ** A .43 .57 .00 .56 .44 .00
6 A 1.00 .00 .00 1.00 .00 .00
7 B .00 .99 .01 .00 .99 .01
8 ** B .60 .40 .00 .72 .28 .00
9 ** B .58 .42 .00 .69 .31 .00

10 B .00 .99 .01 .00 .97 .03
11 B .00 1.00 .00 .00 1.00 .00
12 ** B .00 .29 .71 .00 .17 .83
13 B .00 .97 .03 .00 .93 .07
14 B .00 1.00 .00 .00 1.00 .00
15 B .01 .99 .00 .01 .99 .00
16 B .00 .91 .09 .00 .83 .17
17 C .00 .10 .90 .00 .05 .95
18 C .00 .06 .94 .00 .03 .97
19 ** C .00 .63 .37 .00 .46 .54
20 C .00 .13 .87 .00 .07 .93
21 C .00 .03 .97 .00 .01 .99

Par. Est. Par. Est. Par. Est.
α1 0.0 γ11 −16.29 γ21 −3.359
α2 −20.06 γ12 −1.865 γ22 −3.604
α3 −28.91 γ13 0.0 γ23 0.0

where the estimates with values of 0 are really side conditions imposed on the collection of estimates
to make it unique.

For a new case with values TL and PL, we plug estimates into equations (21.9.3) and (21.9.4)
to get

log(p̂1/ p̂2) = 20.06+(−16.29+1.865)TL+(−3.359+3.604)PL− log(6/10)

and
log(p̂1/ p̂3) = 28.91−16.29(TL)−3.359(PL)− log(6/5) .

For example, if the new case has a tetrahydrocortisone reading of 4.1 and a pregnanetriol reading
of 1.10 then log(p̂1/ p̂2) = 0.24069 and log(p̂1/ p̂3) = 5.4226. The likelihood ratios are

p̂1/ p̂2 = 1.2721
p̂1/ p̂3 = 226.45

and by division
p̂2/ p̂3 = 226.45/1.2721= 178.01 .

It follows that Type A is a little more likely than Type B and that both are much more likely than
Type C.

One can also obtain estimated posterior probabilities for a new case. The posterior odds are

π̂(1|Data)
π̂(2|Data)

=
p̂1

p̂2

π(1)
π(2)

≡ Ô2

and
π̂(1|Data)
π̂(3|Data)

=
p̂1

p̂3

π(1)
π(3)

≡ Ô3 .
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Using the fact that π̂(1|Data)+ π̂(2|Data)+ π̂(3|Data) = 1, we can solve for π̂(i|Data), i = 1,2,3,

π̂(1|Data) =

[
1+

1

Ô2
+

1

Ô3

]−1

=
Ô2Ô3

Ô2Ô3 + Ô3 + Ô2

π̂(2|Data) =
1

Ô2

[
1+

1

Ô2
+

1

Ô3

]−1

=
Ô3

Ô2Ô3 + Ô3 + Ô2

π̂(3|Data) =
1

Ô3

[
1+

1

Ô2
+

1

Ô3

]−1

=
Ô2

Ô2Ô3 + Ô3 + Ô2
.

Using TETRA = 4.10 and PREG = 1.10, the assumption π(i) = yi·/y·· and more numerical
accuracy in the parameter estimates than was reported earlier,

π̂(1|Data) = 0.433
π̂(2|Data) = 0.565
π̂(3|Data) = 0.002 .

Assuming π(i) = 1/3 gives

π̂(1|Data) = 0.560
π̂(2|Data) = 0.438
π̂(3|Data) = 0.002 .

Note that the values of tetrahydrocortisone and pregnanetriol used are identical to those for case 5;
thus the π̂(i|Data)s are identical to those listed in Table 21.13 for case 5.

To use the log-linear model approach illustrated here, one needs to fit a 3×21 table. Typically,
a data file of 63 entries is needed. Three rows of the data file are associated with each of the 21
cases. Each data entry has to be identified by case and by type. In addition, the case variables should
be included in the file in such a way that all three rows for a case include the corresponding case
variables, T L and PL. Model (21.9.2) is easily fitted using R or SAS PROC GENMOD.

It is easy just to fit log-linear models to data such as that in Table 21.11 and get μ̂i js, or, when
there are only two populations, fit logistic models and get p̂i js. If you treat these values as estimated
probabilities for being in the various populations, you are doing a Bayesian analysis with prior
probabilities proportional to sample sizes. This is rarely an appropriate methodology.

21.10 Exercises

EXERCISE 21.10.1. Watkins, Bergman, and Horton (1994) presented data on a complicated de-
signed experiment that generated counts. The dependent variable is the number of ends cut by a tool.
The experiment was a half replication of an experiment with five factors each at two levels, i.e., a
half rep. of a 25 or a 25−1. The factors in the design of the experiment were the first five factors listed
in Table 21.14. There are two different chasers, two different coolants, the two speeds were coded
as intermediate (1) and high (2), two different pipes, and two different rake angles. In addition, two
covariates were observed. On each run it was noted whether the spindle was left (1) or right (2). In
the course of the experiment, two new heads were installed. A new head was installed prior to run
number 8 and also prior to the second observation of run 15. The data are given in Table 21.15. It
seems reasonable to treat all of the observations as independent Poisson random variables. Analysis
of variance type models on seven factors can be performed. Analyze the data.

EXERCISE 21.10.2. Bisgaard and Fuller (1995) give the data in Table 21.16 on the numbers of
defectives per grille in a process examined by Chrysler Motors Engineering. The data are from a
fractional factorial design. The factors are: A, Mold Cycle; B, Viscosity; C, Mold Temp; D, Mold
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Table 21.14: Tool life factors.

Run Chaser Coolant Speed Pipe Rak e Angle Spindle Head
Run Ch Cl Spd P RA Spn H

Table 21.15: Poisson data.

Run Ch Cl Spd P RA Spn H Ends cut
1 1 1 1 1 1 1 1 137 24 58
2 1 1 1 2 2 2 1 89 41 26
3 1 1 2 1 2 1 1 56 34 199
4 1 1 2 2 1 1 1 545 105 106
4 1 1 2 2 1 1 1 122 132 168
4 1 1 2 2 1 2 1 74 66 49
5 1 2 1 1 2 1 1 428 157 188
6 1 2 1 2 1 2 1 352 68 97
7 1 2 2 1 1 1 1 320 750 988
8 1 2 2 2 2 2 2 632 73 529
9 2 1 1 1 2 2 2 44 41 7
10 2 1 1 2 1 2 2 2 3 4
11 2 1 2 1 1 2 2 112 64 59
12 2 1 2 2 2 2 2 59 45 9
13 2 2 1 1 1 2 2 40 7 32
14 2 2 1 2 2 2 2 21 42 120
15 2 2 2 1 2 2 2 14 19 28
15 2 2 2 1 2 2 3 168 34 58
16 2 2 2 2 1 2 3 70 57 18

Pressure; E, Weight; F, Priming; G, Thickening Process; H, Glass Type; J, Cutting Pattern. Fit a
main-effects-only model. Try to fit a model with all main effects and all two-factor interactions.

EXERCISE 21.10.3. Reanalyze the data of Table 21.11 using a model based on TETRA and
PREG rather than T L and PL. How much does deleting Case 4 affect the conclusions in either
analysis?

EXERCISE 21.10.4. Find two data sets from earlier chapters that are good candidates for analysis
by log-linear models and reanalyze them. (There are many data sets that consist of counts.)

Table 21.16: Grille defectives.

Treatment subscripts
Case a b c d e f g h j Defectives

1 0 0 0 0 1 0 1 0 1 56
2 1 0 0 0 1 0 0 1 0 17
3 0 1 0 0 0 1 1 0 0 2
4 1 1 0 0 0 1 0 1 1 4
5 0 0 1 0 1 1 0 1 1 3
6 1 0 1 0 1 1 1 0 0 4
7 0 1 1 0 0 0 0 1 0 50
8 1 1 1 0 0 0 1 0 1 2
9 0 0 0 1 0 1 1 1 1 1

10 1 0 0 1 0 1 0 0 0 0
11 0 1 0 1 1 0 1 1 0 3
12 1 1 0 1 1 0 0 0 1 12
13 0 0 1 1 0 0 0 0 1 3
14 1 0 1 1 0 0 1 1 0 4
15 0 1 1 1 1 1 0 0 0 0
16 1 1 1 1 1 1 1 1 1 0



Chapter 22

Exponential and Gamma Regression:
Time-to-Event Data

Time-to-event data is just that: measurements of how long it takes before some event occurs. If that
event involves a machine or a machine component, analyzing such data has traditionally been called
reliability analysis. If that event is the death of a medical patient, the analysis is called survival
analysis. More generally, survival analysis is used to describe any analysis of time-to-event data in
the biological or medical fields and reliability analysis is used for applications in the physical and
engineering sciences.

Traditionally, a major distinction between reliability and survival analysis was that survival anal-
ysis dealt with lost (partially observed) observations and reliability did not. By lost observations we
mean, say, patients who began the study but then were lost to the study. For such patients, the exact
time of survival is unknown; one only knows at what time the patient was last contacted alive. This
form of partial information is known as censoring. These days censoring seems to come up often
in reliability also. The examples presented in this chapter do not involve censoring, but the use of
linear structures for modeling the data depends little on whether the data are censored or not. To
introduce a detailed discussion of censoring would take us too far afield.

Another traditional difference between reliability and survival analysis has been that people
doing reliability have been happy to assume parametric models for the distribution of the data, while
survival analysis has focused strongly on nonparametric models, in which no specific distributional
assumptions are made. Personally, I think that the least important assumption one typically makes in
a data analysis is the distributional assumption. I think that the assumptions of independence, having
an appropriate mean structure (no lack of fit), and the assumption of an appropriate variability model
(e.g., equal variances for normal data), are all more important than the distributional assumption.
Moreover, if residuals are available, it is pretty easy to check the distributional assumption. For what
little it is worth, my personal opinion is that the emphasis on nonparametric methods in survival
analysis is often misplaced. (This is not to be confused with nonparametric regression methods in
which one makes no strong assumption about the functional form of the mean structure.)

In this chapter we examine two parametric approaches that are specific to the analysis of time-
to-event data. (Another parametric approach is just to take logarithms of the times and go on your
merry way.) The first parametric approach is probably the oldest, exponential regression. In stan-
dard regression, we assume that each observation has a normal distribution but that the expected
value of an observation follows some linear model. In exponential regression we assume that each
observation follows an exponential distribution but that the log of the expected value follows a linear
model. The second method is a generalization of the first. The exponential distribution is a special
case of the gamma distribution. We can assume that each observation follows a gamma distribution
but that the log of the expected value follows a linear model. A nonparametric method that involves
the use of linear structures is the Cox proportional hazards model, but that will not be discussed. As
always, this book is less concerned with data analysis, or even the basis for these models, than with
the fact that the same linear structures illustrated in earlier chapters can still be used to analyze such
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Table 22.1: Leukemia survival data.

y WBC AG y WBC AG y WBC AG y WBC AG
65 2300 1 143 7000 1 56 4400 2 2 27000 2

156 750 1 56 9400 1 65 3000 2 3 28000 2
100 4300 1 26 32000 1 17 4000 2 8 31000 2
134 2600 1 22 35000 1 7 1500 2 4 26000 2
16 6000 1 1 100000 1 16 9000 2 3 21000 2

108 10500 1 1 100000 1 22 5300 2 30 79000 2
121 10000 1 5 52000 1 3 10000 2 4 100000 2

4 17000 1 65 100000 1 4 19000 2 43 100000 2
39 5400 1

data. Censoring and Cox models are discussed in a wide variety of places including Christensen et
al. (2011).

22.1 Exponential regression

Feigl and Zelen (1965) examined data on y, the number of weeks a patient survived after diagnosis
of acute myelogenous leukemia. A predictor variable is the white blood cell count at diagnosis
(WBC) and a grouping variable is whether the patient was AG positive (coded here as 1) or AG
negative (2). The data are given in Table 22.1.

We assume that times to survival have exponential distributions. The exponential distribution
depends on only one parameter. Often, if y ∼ Exp(λ ), the density of y is written

f (y|λ ) = λe−λ y

for y > 0 and λ > 0. It can be shown that E(y) ≡ μ = 1/λ and that Var(y) = 1/λ 2. Sometimes the
density is written in terms of the parameter μ .

In exponential regression, y1, . . . ,yn are independent Exp(λi). Each yi has an associated vector
of predictor variables, xi. We assume a linear structure

log

(
1
λi

)
≡ log(μi) = x′iβ .

Taking exponents gives
1
λi

= μi = exp(x′iβ )

or
λi = e−x′i β .

Substituting into the density, the yis are independent with densities

f (yi|β ) = exp
(
−x′iβ − ye−x′iβ

)
.

As in previous chapters, for any model the deviance statistic is used as the basis for checking model
fits.

EXAMPLE 22.1.1 The structure of the Feigl and Zelen data is exactly similar to an analysis of
covariance. We use similar models except that the yis have exponential distributions rather than
normal distributions. In other words, we use exactly the same kinds of linear structures to model
these data as were used in Chapter 15. Let i indicate the AG status and let j denote the observations
within each AG status. Also, we use the base 10 log of the white blood cell count (lw) as a predictor
variable. Begin by fitting a model that includes just an overall mean,

log(μi j) = ν. (22.1.1)
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Table 22.2: Model fits: Exponential regression.

Model # Model Deviance df
(22.1.1) ν 58.138 32
(22.1.2) νi 46.198 31
(22.1.3) ν + γ(lw)i j 47.808 31
(22.1.4) νi + γ(lw)i j 40.319 30
(22.1.5) νi + γi(lw)i j 38.555 29

Table 22.3: Tables of Coefficients: Exponential regression.

Model (22.1.4) Model (22.1.5)
Parameter Parameter Estimate SE Parameter Parameter Estimate SE
A(1) ν1 6.8331 1.2671 A(1) ν1 8.4782 1.7120
A(2) ν2 5.8154 1.2932 A(2) ν2 4.3433 1.6382
LW γ −0.7009 0.3036 A(1).LW γ1 −1.1095 0.4138

A(2).LW γ2 −0.3546 0.3874

Next fit a model that includes effects for AG group,

log(μi j) = νi . (22.1.2)

Alternatively, fit a simple linear regression model in the predictor variable,

log(μi j) = ν + γ(lw)i j . (22.1.3)

Next fit an analysis of covariance model,

log(μi j) = νi + γ(lw)i j . (22.1.4)

Finally, fit a model with separate regressions for each group,

log(μi j) = νi + γi(lw)i j . (22.1.5)

Recall that models (22.1.2) and (22.1.3) are not comparable, so this hierarchy defines two sequences
of models. Table 22.2 gives the fits for all the models.

As with (most) logistic regression and unlike (most) log-linear models for count data, the de-
viances cannot be used directly as lack-of-fit tests for the models. However, as with both logis-
tic regression and log-linear models, we can use differences in deviances to compare models. For
large samples, these differences are compared to a χ2 distribution with degrees of freedom equal to
the difference in deviance degrees of freedom. For example, testing Model (22.1.1) against Model
(22.1.3) gives

D = 58.138−47.808= 10.33,

on 32−31= 1 df . This is highly significant when compared to a χ2(1) distribution suggesting that
the slope of the log10 WBC count is important when ignoring AG. Similarly, testing Model (22.1.2)
versus Model (22.1.4) yields a P value just larger than 0.01, which is evidence for the importance
of WBC after fitting AG. Model (22.1.4) is significantly better than all of the smaller models and
Model (22.1.5) is not significantly better than Model (22.1.4). We present parameter estimates for
models (22.1.4) and (22.1.5) in Table 22.3.

The methods illustrated in earlier chapters can all be used to continue the modeling process.
For example, in Model (22.1.5), to test ν1 = 2ν2 we need to replace the factor AG by a regression
variable that will take the value 2 in the first AG group and the value 1 in the second AG group.
(Relative to Table 22.1, such a variable can be created as NAG = 3−AG.) The model is not allowed
to have an intercept, so it is

log(μi j) = β (nag)i j + γi (lw)i j .
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Figure 22.1 Exponential regression estimated survival functions for lw = 5. Top, Model (22.1.4); bottom,
Model (22.1.5).

Fitting gives a deviance of 38.5578 on 30 df . Comparing this to Model (22.1.5) gives

D = 38.558−38.555= 0.003

on 30−29= 1 df . It fits remarkably well, as it should since we used the data to suggest the reduced
model! �

Perhaps the most useful end result from an exponential regression is a plotted cumulative distri-
bution function, F(y), or plotted survival function, S(y)≡ 1−F(y). Such plots are made for specific
values of the vector x using the estimate of β . For exponential regression, the survival function for
given x and β is

S(y|x,β ) = exp
(
−ye−x′β

)
. (22.1.6)

Figure 22.1 plots the maximum likelihood estimated survival curves for lw = 5 and both AG = 1,2.
The top panel is from Model (22.1.4) and the bottom is Model (22.1.5). They simply substitute into
Equation (22.1.6) the appropriate x vectors and estimate of β from Table 22.3. The point estimates
seem to give very different pictures of the importance of AG but remember that there is no significant
difference between the models. These pictures ignore the variability in the estimates.

22.1.1 Computing issues

Unfortunately, different computer programs can give different results for exponential regression.
Point estimates typically agree, but programs can use different procedures for finding standard er-
rors. Minitab’s “Regression with Life Data” and SAS’s PROC GENMOD give results that agree.
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Table 22.4: Table of Coefficients: Model (22.1.7).

Exponential regression
Minitab/SAS R

Variable β̂k SE(β̂k) SE(β̂k)
Intercept 8.4782 1.7120 1.6555
a −4.1349 2.3695 2.5703
lw −1.1095 0.4138 0.3998
a*lw 0.7548 0.5668 0.6145

R’s “glm” procedure gives different results. Because Minitab will not fit Model (22.1.5), to demon-
strate the issue I created a regression version of Model (22.1.5) by defining a 0-1 indicator variable
a ≡ AG− 1 that identifies individuals with AG = 2. I fitted the model

log(μi j) = β0 +β1ai j +β2(lw)i j +β3[ai j × (lw)i j] . (22.1.7)

The correspondence between the parameters in models (22.1.7) and (22.1.5) is: β0 = ν1, β1 = ν2 −
ν1, β2 = γ1, and β3 = γ2−γ1. Table 22.4 gives the results. The standard errors for β̂0 and β̂2 are larger
in GENMOD and Minitab than in R but the reverse is true for β̂1 and β̂3. Note that the relatively
small t values for β3, 0.7548/0.5668 and 0.7548/0.6145, confirm the earlier deviance test that there
is not much need to use Model (22.1.5) rather than Model (22.1.4).

Actually, neither SAS nor R actually fits exponential regression. They both fit gamma regres-
sion (as in the next section), but they let one specify the scale parameter, which allows one to fit
exponential regression. Minitab does exponential regression but not gamma regression.

22.2 Gamma regression

A generalization of exponential regression involves using the gamma distribution. A random vari-
able y has a gamma distribution with parameters α and λ , written y ∼ Gamma(α,λ ), if it has the
probability density function

f (y|α,λ ) =
λ α

Γ(α)
e−λ yyα−1

for y > 0, λ > 0, α > 0. The expected value is

E(y)≡ μ =
α
λ

and the variance is
Var(y) =

α
λ 2 .

The special case of α = 1 gives the exponential distribution.
In gamma regression we assume n independent observations yi with

yi ∼ Gamma(α,λi), E(yi)≡ μi =
α
λi
, log(μi) = x′iβ .

EXAMPLE 22.2.1 We can also use gamma regression to model the Feigl and Zelen data. The lin-
ear models we consider are exactly the same as those given in the previous section. Moreover,fitting
these models gives exactly the same deviances, degrees of freedom, and parameter estimates as in
exponential regression. What differs from exponential regression are the standard errors of param-
eter estimates and how the deviances are used. For example, Table 22.5 gives parameter estimates
and standard errors for fitting Model (22.1.5) using gamma regression. The parameter estimates are
identical to those from Section 22.1 but the standard errors are different. In exponential regression,
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Table 22.5: Table of Coefficients: Model (22.1.5).

Gamma regression
Parameter Estimate SE
A(1) 8.4782 1.7212
A(2) 4.3433 1.6470
A(1).LW −1.1095 0.4160
A(2).LW −0.3546 0.3895
Scale 0.9894 0.2143
The scale parameter was estimated by maximum likelihood.

the variance of an observation is a direct function of the mean. Thus in exponential regression,
deviances are used in ways similar to those used for binomial, multinomial, and Poisson data as
illustrated in Chapters 20 and 21. The gamma distribution has two parameters, like a normal dis-
tribution, and deviances in gamma regression are used like sums of squares error in normal theory
models.

In gamma regression, as in normal theory regression, when testing models, we must adjust for
the scale parameter. As in normal theory, the largest model fitted must be assumed to fit the data.
Thus, to test Model (22.1.4) against the larger model (22.1.5), we construct a pseudo F statistic,

Fobs =
40.319−38.555

30−29

/
38.555

29
= 1.33

and compare the statistic to an F(1,29) distribution. Unlike normal theory, the F distribution is
merely an approximate distribution that is valid for large samples. Clearly, the test provides no
evidence that we need separate regressions over and above the ACOVA model.

As always, we can use advanced ideas of linear modeling. Suppose that in Model (22.1.4) we
want to incorporate the hypothesis that the slope of lw is −1. That gives us the model

log(μi j) = νi +(−1)(lw)i j .

In normal theory, we would just use (−1)(lw)i j to alter the dependent variable. Here, the procedure
is a bit more complex, but standard computer programs accommodate such models by using an
offset. An offset is just a term in a linear model that is not multiplied by an unknown parameter.
Computer commands are illustrated on the website. For now, merely note that the deviance of the
model is 41.407 on 31 df . Testing the model against (22.1.4) gives

Fobs =
41.407−40.319

31−30

/
40.319

30
= 0.81

and no evidence against H0 : γ = −1. Alternatively, for this simple hypothesis we could compute
the “Wald” statistic, which is [γ̂ − (−1)]/SE(γ̂), from the table of coefficients for gamma regression
with Model (22.1.4), cf. Exercise 22.3.1. �

Rather than using a model with log(μi) = x′iβ , some people prefer a model that involves as-
suming −1/μi = x′iβ . This is the canonical link function and is the default link in some programs.
However, in such models not all β vectors are permissible, because β must be restricted so that
x′iβ < 0 for all i.

In addition to being an approach to modeling time-to-event data, gamma regression is often
used to model situations in which the data have a constant coefficient of variation. The coefficient
of variation is √

Var(yi)

E(yi)
=

√
α/λ 2

i

α/λi
=

1√
α
.

In such cases, gamma regression is an alternative to doing a standard linear model analysis on the
logs of the data, cf. Section 7.3.
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Table 22.6: Table of Coefficients: Model (22.1.7).

Gamma regression
SAS R

Variable β̂k SE(β̂k) SE(β̂k)
Intercept 8.4782 1.7212 1.7490
a −4.1349 2.3822 2.7155
lw −1.1095 0.4160 0.4224
a*lw 0.7548 0.5699 0.6492
SAS Scale 0.9894 0.2143
R Scale 1.116173 —-

22.2.1 Computing issues

As with exponential regression, different computer programs give different results for gamma re-
gression. Again, point estimates of regression parameters typically agree, but programs can use dif-
ferent procedures for finding standard errors and estimating the scale parameter. Again, we demon-
strate by fitting (22.1.7) with results now in Table 22.6. As suggested, the regression point estimates
are fine; they agree with each other and with exponential regression. The SAS GENMOD standard
errors are obtained by dividing the exponential regression standard errors by the square root of the
SAS scale parameter, e.g., 1.7212= 1.7120/

√
0.9894. The R “glm” standard errors are obtained by

multiplying the R exponential regression standard errors by the square root of the R scale parameter,
e.g., 1.7490= 1.6555×

√
1.116173. Unfortunately, 1/

√
0.9894 �=

√
1.116173, so the programs not

only have different definitions of the scale parameter but actually have different estimates of the
scale parameter even if we made the definitions agree. And even if the scale estimates agreed, the
standard errors would not because they do not agree for exponential regression. Some programs,
like GLIM, use the deviance divided by its degrees of freedom as a “scale” parameter.

22.3 Exercises

EXERCISE 22.3.1. Fit Model (22.1.4) to the Feigl-Zelen data using gamma regression and com-
pare the Wald test of H0 : γ =−1 to the deviance (generalized likelihood ratio) test.

EXERCISE 22.3.2. Reanalyze the Feigl-Zelen data by taking a log transform and using the meth-
ods of Chapter 15. How do the results change? Do you have any way to decide which analysis is
superior?

EXERCISE 22.3.3. The time to an event is a measurement of time. Can you think of any reasons
why time measurements should be treated differently from other measurements?

EXERCISE 22.3.4. How would you define fitted values, residuals, and “crude” standardized resid-
uals (ones that do not account for variability associated with fitting the model) in gamma regression?

EXERCISE 22.3.5. One way to compare the predictive ability of models is to compute R2 as
the squared sample correlation betweens the values (yh, ŷh). Based on this criterion, will gamma
regression always look better than its special case exponential regression?





Chapter 23

Nonlinear Regression

Most relationships between predictor variables and the mean values of observations are nonlin-
ear. Fortunately, the “linear” in linear models refers to how the coefficients are incorporated into the
model, not to having a linear relationship between the predictor variables and the mean values of ob-
servations. In Chapter 8 we discussed methods for fitting nonlinear relationships using models that
are linear in the parameters. Moreover, Taylor’s theorem from calculus indicates that even simple
linear models and low-order polynomial models can make good approximate models to nonlinear
relationships. Nonetheless, when we have special knowledge about the relationship between mean
values and predictor variables, nonlinear regression provides a way to use that knowledge and thus
can provide much better models. The biggest difficulty with nonlinear regression is that to use it you
need detailed knowledge about the process generating the data, i.e., you need a good idea about the
appropriate nonlinear relationship between the parameters associated with the predictor variables
and the mean values of the observations. Nonlinear regression is a technique with wide applicability
in the biological and physical sciences.

From a statistical point of view, nonlinear regression models are much more difficult to work
with than linear regression models. It is harder to obtain estimates of the parameters. It is harder to
do good statistical inference once those parameter estimates are obtained. Section 1 introduces non-
linear regression models. In section 2 we discuss parameter estimation. Section 3 examines methods
for statistical inference. Section 4 considers the choice that is sometimes available between doing
nonlinear regression and doing linear regression on transformed data. For a much more extensive
treatment of nonlinear regression; see Seber and Wild (1989).

23.1 Introduction and examples

We have considered linear regression models

yi = β0 +β1xi1 + · · ·+βp−1xi p−1 + εi (23.1.1)

i = 1, . . . ,n that we can write with vectors as

yi = x′iβ + εi (23.1.2)

where x′i = (1,xi1, . . . ,xi p−1) and β = (β0, . . . ,βp−1)
′ These models are linear in the sense that

E(yi) = x′iβ where the unknown parameters, the β js, are multiplied by known constants, the xi js,
and added together. In this chapter we consider an important generalization of this model, nonlinear
regression. A nonlinear regression model is simply a model for E(yi) that does not combine the
parameters of the model in a linear fashion.

EXAMPLE 23.1.1. Some nonlinear regression models
Almost any nonlinear function can be made into a nonlinear regression model. Consider the follow-
ing four nonlinear functions of parameters β j and a single predictor variable x:

f1(x;β0,β1,β2) = β0 +β1 sin(β2x)

545
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f2(x;β0,β1,β2) = β0 +β1eβ2x

f3(x;β0,β1,β2) = β0
/
[1+β1eβ2x]

f4(x;β0,β1,β2,β3) = β0 +β1[e
β2x − eβ3x].

Each of these can be made into a nonlinear regression model. Using f4, we can write a model for
data pairs (yi,xi), i = 1, . . . ,n:

yi = β0 +β1[e
β2xi − eβ3xi ]+ εi

≡ f4(xi;β0,β1,β2,β3)+ εi .

Similarly, for k = 1,2,3 we can write models

yi = fk(xi;β0,β1,β2)+ εi.

As usual, we assume that the εis are independent N(0,σ2) random variables. As alluded to earlier,
the problem is to find an appropriate function f (·) for the data at hand. �

In general, for s predictor variables and p regression parameters we can write a nonlinear re-
gression model that generalizes Model (23.1.1) as

yi = f (xi1, . . . ,xis;β0,β1, . . . ,βp−1)+ εi, εis indep. N(0,σ2)

i = 1, . . . ,n. This is quite an awkward way to write f (·), so we write the model in vector form as

yi = f (xi;β )+ εi, εis indep. N(0,σ2) (23.1.3)

where xi = (xi1, . . . ,xis)
′ and β = (β0,β1, . . . ,βp−1)

′ are vectors defined similarly to Model (23.1.2).
Note that

E(yi) = f (xi;β ).

EXAMPLE 23.1.2. Pritchard, Downie, and Bacon (1977) reported data from Jaswal et al. (1969)
on the initial rate r of benzene oxidation over a vanadium pentoxide catalyst. The predictor variables
involve three levels of the temperature, T , for the reactions, different oxygen and benzene concen-
trations, x1 and x2, and the observed number of moles of oxygen consumed per mole of benzene, x4.
Based on chemical theory, a steady state adsorption model was proposed. One algebraically simple
form of this model is

yi = exp[β0 +β1xi3]
1

xi2
+ exp[β2 +β3xi3]

xi4

xi1
+ εi, (23.1.4)

where y = 100/r and the temperature is involved through x3 = 1/T −1/648. The data are given in
Table 23.1.

The function giving the mean structure for Model (23.1.4) is

f (x;β ) ≡ f (x1,x2,x3,x4;β0,β2,β3,β4) = exp[β0 +β1x3]
1
x2

+ exp[β2 +β3x3]
x4

x1
. (23.1.5)

�

23.2 Estimation

We used least squares estimation to obtain the β̂ js in linear regression; we will continue to use least
squares estimation in nonlinear regression. For the linear regression Model (23.1.2), least squares
estimates minimize

SSE(β )≡
n

∑
i=1

[yi −E(yi)]
2
=

n

∑
i=1

[yi − x′iβ ]
2
.
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Table 23.1: Benzene oxidation data.

Obs. x1 x2 T x4 r = 100/y Obs. x1 x2 T x4 r = 100/y
1 134.5 19.1 623 5.74 218 28 30.0 20.0 648 5.64 294
2 108.0 20.0 623 5.50 189 29 16.3 20.0 648 5.61 233
3 68.6 19.9 623 5.44 192 30 16.5 20.0 648 5.63 222
4 49.5 20.0 623 5.55 174 31 20.4 12.5 648 5.70 188
5 41.7 20.0 623 5.45 152 32 20.5 16.6 648 5.67 231
6 29.4 19.9 623 6.31 139 33 20.8 20.0 648 5.63 239
7 22.5 20.0 623 5.39 118 34 21.3 30.0 648 5.63 301
8 17.2 19.9 623 5.60 120 35 19.6 43.3 648 5.62 252
9 17.0 19.7 623 5.61 122 36 20.6 20.0 648 5.72 217

10 22.8 20.0 623 5.54 132 37 20.5 30.0 648 5.43 276
11 41.3 20.0 623 5.52 167 38 20.3 42.7 648 5.60 467
12 59.6 20.0 623 5.53 208 39 16.0 19.1 673 5.88 429
13 119.7 20.0 623 5.50 216 40 23.5 20.0 673 6.01 475
14 158.2 20.0 623 5.48 294 41 132.8 20.0 673 6.48 1129
15 23.3 20.0 648 5.65 229 42 107.7 20.0 673 6.26 957
16 40.8 20.0 648 5.95 296 43 68.5 20.0 673 6.40 745
17 140.3 20.0 648 5.98 547 44 47.2 19.7 673 5.82 649
18 140.8 19.9 648 5.96 582 45 42.5 20.3 673 5.86 742
19 141.2 20.0 648 5.64 480 46 30.1 20.0 673 5.87 662
20 140.0 19.7 648 5.56 493 47 11.2 20.0 673 5.87 373
21 121.2 19.96 648 6.06 513 48 17.1 20.0 673 5.84 440
22 104.7 19.7 648 5.63 411 49 65.8 20.0 673 5.85 662
23 40.8 20.0 648 6.09 349 50 108.2 20.0 673 5.86 724
24 22.6 20.0 648 5.88 226 51 123.5 20.0 673 5.85 915
25 55.2 20.0 648 5.64 338 52 160.0 20.0 673 5.81 944
26 55.4 20.0 648 5.64 351 53 66.4 20.0 673 5.87 713
27 29.5 20.0 648 5.63 295 54 66.5 20.0 673 5.88 736

For the nonlinear regression Model (23.1.3), least squares estimates minimize

SSE(β )≡
n

∑
i=1

[yi −E(yi)]
2
=

n

∑
i=1

[yi − f (xi;β )]2 . (23.2.1)

As shown below, in nonlinear regression with independent N(0,σ2) errors, the least squares esti-
mates are also maximum likelihood estimates. Not surprisingly, finding the minimum of a function
like (23.2.1) involves extensive use of calculus. We present in detail the Gauss–Newton algorithm
for finding the least squares estimates and briefly mention an alternative method for finding the
estimates.

23.2.1 The Gauss–Newton algorithm

The Gauss–Newton algorithm produces a series of vectors β r that we hope converge to the least
squares estimate β̂ . The algorithm requires an initial value for the vector β , say β 0. This can be
thought of as a guess for β̂ . We use matrix methods similar to those in Chapter 11 to present the
algorithm.

In matrix notation write Y = (y1, . . . ,yn)
′, e = (ε1, . . . ,εn)

′, and

F(X ;β )≡

⎡
⎢⎣

f (x1;β )
...

f (xn;β )

⎤
⎥⎦ .

We can now write Model (23.1.3) as

Y = F(X ;β )+ e, εis indep. N(0,σ2) . (23.2.2)
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Given β r, the algorithm defines β r+1. Define the matrix Zr as the n× p matrix of partial deriva-
tives ∂ f (xi;β )

/
∂β j evaluated at β r. Note that to find the ith row of Zr, we need only differentiate to

find the p partial derivatives ∂ f (x;β )
/

∂β j and evaluate these p functions at x = xi and β = β r. For
β values that are sufficiently close to β r, a vector version of Taylor’s theorem from calculus gives
the approximation

F(X ;β ) .
= F(X ;β r)+Zr(β −β r) . (23.2.3)

Here, because β r is known, F(X ;β r) and Zr are known. Substituting the approximation (23.2.3)
into Equation (23.2.2), we get the approximate model

Y = F(X ;β r)+Zr(β −β r)+ e

= F(X ;β r)+Zrβ −Zrβ r + e .

Rearranging terms gives
[Y −F(X ;β r)+Zrβ r] = Zrβ + e . (23.2.4)

If Zr has full column rank, this is simply a linear regression model. The dependent variable vector
is Y −F(X ;β r)+Zrβ r, the matrix of predictor variables (model matrix) is Zr, the parameter vector
is β , and the error vector is e. Using least squares to estimate β gives us

β r+1 = (Z′
rZr)

−1Z′
r[Y −F(X ;β r)+Zrβ r]

= (Z′
rZr)

−1Z′
r[Y −F(X ;β r)]+ (Z′

rZr)
−1Z′

rZrβ r

= (Z′
rZr)

−1Z′
r[Y −F(X ;β r)]+β r. (23.2.5)

From linear regression theory, the value β r+1 minimizes the function

SSEr(β )≡ [{Y −F(X ;β r)+Zrβ r}−Zrβ ]′ [{Y −F(X ;β r)+Zrβ r}−Zrβ ] .

Actually, we wish to minimize the function defined in (23.2.1). In matrix form, (23.2.1) is

SSE(β ) = [Y −F(X ;β )]′ [Y −F(X ;β )] .

From (23.2.3), we have SSEr(β )
.
= SSE(β ) for β s near β r. If β r is near the least squares estimate

β̂ , the minimum of SSEr(β ) should be close to the minimum of SSE(β ). While β r+1 minimizes
SSEr(β ) exactly, β r+1 is merely an approximation to the estimate β̂ that minimizes SSE(β ). How-
ever, when β r is close to β̂ , the approximation (23.2.3) is good. At the end of this subsection, we
give a geometric argument that β r converges to the least squares estimate.

EXAMPLE 23.2.1. Multiple linear regression
Suppose we treat Model (23.1.2) as a nonlinear regression model. Then f (xi;β ) = x′iβ , F(X ;β ) =
Xβ , ∂ f (xi;β )

/
∂β j = xi j, where xi0 = 1, and Zr = X . From standard linear regression theory we

know that β̂ = (X ′X)−1X ′Y . Using the Gauss–Newton algorithm (23.2.5) with any β 0,

β 1 = (Z′
rZr)

−1Z′
r[Y −F(X ;β 0)+Z0β 0]

= (X ′X)−1X ′[Y −Xβ 0 +Xβ 0]

= (X ′X)−1X ′Y

= β̂ .

Thus, for a linear regression problem, the Gauss–Newton algorithm arrives at β̂ in only one iteration.
�

EXAMPLE 23.2.2. To perform the analysis on the benzene oxidation data, we need the partial



23.2 ESTIMATION 549

derivatives of the function (23.1.5):

∂ f (x;β )
∂β0

= exp[β0 +β1x3]
1
x2

∂ f (x;β )
∂β1

= exp[β0 +β1x3]
x3

x2

∂ f (x;β )
∂β2

= exp[β2 +β3x3]
x4

x1

∂ f (x;β )
∂β3

= exp[β2 +β3x3]
x3x4

x1
.

With β 1 = (0.843092,11427.598,0.039828,2018.7689)′, we illustrate one step of the algo-
rithm. The dependent variable in Model (23.2.4) is

Y −F(X ;β 1)+Z1β 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.458716
0.529101
0.520833
0.574713
0.657895

...
0.140252
0.135870

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.297187
0.295806
0.330450
0.367968
0.389871

...
0.142284
0.142300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.391121
0.375497
0.382850
0.387393
0.391003

...
0.005125
0.005123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.552649
0.608792
0.573233
0.594137
0.659027

...
0.003093
−0.001307

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The model matrix in Model (23.2.4) is

Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.246862 0.0000153 0.050325 0.0000031
0.235753 0.0000146 0.060052 0.0000037
0.236938 0.0000147 0.093512 0.0000058
0.235753 0.0000146 0.132214 0.0000082
0.235753 0.0000146 0.154117 0.0000095

...
...

...
...

0.060341 −0.0000035 0.081942 −0.0000047
0.060341 −0.0000035 0.081958 −0.0000047

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Fitting Model (23.2.4) gives the estimate β 2 = (1.42986,12717,−0.15060,9087.3)′. Eventually,
the sequence converges to β̂ ′ = (1.3130,11908,−0.23463,10559.5). �

In practice, methods related to Marquardt (1963) are often used to find the least squares esti-
mates. These involve use of a statistical procedure known as ridge regression, cf. Seber and Wild
(1989, p. 624). Marquardt’s method involves modifying Model (23.2.4) to estimate β −β r by sub-
tracting Zrβ r from both sides of the equality. Now, rather than using the least squares estimate
β r+1−β r = (Z′

rZr)
−1Z′

r[Y −F(X ;β r)], the simplest form of ridge regression (cf. Christensen, 2011)
uses the estimate

β r+1 −β r = (Z′
rZr + kIp)

−1Z′
r[Y −F(X ;β r)],

where Ip is a p× p identity matrix and k is a number that needs to be determined. More complicated
forms of ridge regression involve replacing Ip with a diagonal matrix.

When the sequence of values β r stops changing (converges), β r is the least squares estimate.
We will use a geometric argument to justify this statement. The argument applies to both the Gauss–
Newton algorithm and the Marquardt method. By definition, SSE(β ) is the squared length of the
vector Y −F(X ;β ), i.e., it is the square of the distance between Y and F(X ;β ). Geometrically, β̂
is the value of β that makes Y −F(X ;β ) as short a vector as possible. Y can be viewed as either a
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Y

F(X;β)

F(X;βr)

Zr(β-βr) + F(X;βr)Z1(β-β1) + F(X;β1)

F(X;β1)

Figure 23.1: The geometry of nonlinear least squares estimation.

point in Rn or as a vector in Rn. For now, think of it as a point. Y −F(X ;β ) is as short as possible
when the line connecting Y and F(X ;β ) is perpendicular to the surface F(X ;β ). By definition, a
line is perpendicular to a surface if it is perpendicular to the tangent plane of the surface at the point
of intersection between the line and the surface. Thus in Figure 23.1, β r has Y −F(X ;β r) as short
as possible but β 1 does not have Y −F(X ;β 1) as short as possible. We will show that when β r

converges, the line connecting Y and F(X ;β r) is perpendicular to the tangent plane at β r and thus
Y −F(X ;β r) is as short as possible. To do this technically, i.e., using vectors, we need to subtract
F(X ;β r) from everything. Thus we want to show that Y −F(X ;β r) is a vector that is perpendicular
to the surface F(X ;β )−F(X ;β r). From (23.2.3), the tangent plane to the surface F(X ;β ) at β r is
F(X ;β r)+Zr(β −β r), so the tangent plane to the surface F(X ;β )−F(X ;β r) is just Zr(β −β r).
Thus we need to show that when β r converges, Y −F(X ;β r) is perpendicular to the plane defined
by Zr. Algebraically, this means showing that

0 = Z′
r[Y −F(X ;β r)].

From the Gauss–Newton algorithm, at convergence we have β r+1 = β r and by (23.2.5) β r+1 =
(Z′

rZr)
−1Z′

r[Y −F(X ;β r)]+β r, so we must have

0 = (Z′
rZr)

−1Z′
r[Y −F(X ;β r)]. (23.2.6)

This occurs precisely when 0= Z′
r[Y −F(X ;β r)] because you can go back and forth between the two

equations by multiplying with (Z′
rZr) and (Z′

rZr)
−1, respectively. Thus β r is the value that makes

Y −F(X ;β ) as short a vector as possible and β r = β̂ . Essentially the same argument applies to the
Marquardt method except Equation (23.2.6) is replaced by 0 = (Z′

rZr + kIp)
−1Z′

r[Y −F(X ;β r)].

The problem with this geometric argument—and indeed with the algorithms themselves—is that
sometimes there is more than one β for which Y −F(X ;β ) is perpendicular to the surface F(X ;β ).
If you start with an unfortunate choice of β 0, the sequence might converge to a value that does not
minimize SSE(β ) over all β but only in a region around β 0. In fact, sometimes the sequence β r

might not even converge.
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23.2.2 Maximum likelihood estimation

Nonlinear regression is a problem in which least squares estimates are maximum likelihood esti-
mates. We now show this. The density of a random variable y with distribution N(μ ,σ2) is

φ(y) =
1√

2π
√

σ2
exp[−(y− μ)2/2σ2].

The joint density of independent random variables is obtained by multiplying the densities of the
individual random variables. From Model (23.1.3), the yis are independent N[ f (xi;β ),σ2] random
variables, so

φ(Y ) ≡ φ(y1, . . . ,yn) =
n

∏
i=1

φ(yi)

=
n

∏
i=1

1√
2π

√
σ2

exp[−{yi − f (xi;β )}2/2σ2]

=

[
1√
2π

]n [√
σ2
]−n

exp

[
− 1

2σ2

n

∑
i=1

{yi − f (xi;β )}2

]

=

[
1√
2π

]n [√
σ2
]−n

exp

[
− 1

2σ2 SSE(β )
]
.

The density is a function of Y for fixed values of β and σ2. The likelihood is exactly the same
function except that the likelihood is a function of β and σ2 for fixed values of the observations yi.
Thus, the likelihood function is

L(β ,σ2) =

[
1√
2π

]n [√
σ2
]−n

exp

[
− 1

2σ2 SSE(β )
]
.

The maximum likelihood estimates of β and σ2 are those values that maximize L(β ,σ2). For any
given value of σ2, the likelihood is a simple function of SSE(β ). In fact, the likelihood is maximized
by whatever value of β that minimizes SSE(β ), i.e., the least squares estimate β̂ . Moreover, the
function SSE(β ) does not involve σ2, so β̂ does not involve σ2 and the maximum of L(β ,σ2) occurs
wherever the maximum of L(β̂ ,σ2) occurs. This is now a function of σ2 alone. Differentiating with
respect to σ2, it is not difficult to see that the maximum likelihood estimate of σ2 is

σ̂2 =
SSE(β̂)

n
=

1
n

n

∑
i=1

[
yi − f (xi; β̂ )

]2
.

Alternatively, by analogy to linear regression, an estimate of σ2 is

MSE =
SSE(β̂)

n− p
=

1
n− p

n

∑
i=1

[
yi − f (xi; β̂ )

]2
.

Incidentally, these exact same arguments apply to linear regression, showing that least squares
estimates are also maximum likelihood estimates in linear regression.

23.3 Statistical inference

Statistical inference for nonlinear regression is based entirely on versions of the central limit theo-
rem. It requires a large sample size for the procedures to be approximately valid. The entire analysis
can be conducted as if the multiple linear regression model

[
Y −F(X ; β̂ )+Z∗β̂

]
= Z∗β + e, εis indep. N(0,σ2) (23.3.1)
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were valid. Here Z∗ is just like Zr from the previous section except that the partial derivatives
are evaluated at β̂ rather than β r. In other words, Z∗ is the n × p matrix of partial derivatives
∂ f (xi;β )

/
∂β j evaluated at β̂ . Actually, Model (23.3.1) is simply the linear model (23.2.4) from

the Gauss–Newton algorithm evaluated when β r has converged to β̂ .

EXAMPLE 23.3.1. Inference on regression parameters
For the benzene oxidation data, β̂ ′ = (1.3130,11908,−.23463,10559.5). It follows that the depen-
dent variable for Model (23.3.1) is

Y −F(X ; β̂)+Z∗β̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.458716
0.529101
0.520833
0.574713
0.657895

...
0.140252
0.135870

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.471786
0.466022
0.511129
0.559092
0.587341

...
0.132084
0.132091

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.86150
0.82922
0.85132
0.86824
0.88009

...
0.02715
0.02714

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.84843
0.89230
0.86102
0.88386
0.95064

...
0.03532
0.03092

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the model matrix for Model (23.3.1) is

Z∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.406880 0.0000252 0.064906 0.0000040
0.388570 0.0000241 0.077452 0.0000048
0.390523 0.0000242 0.120606 0.0000075
0.388570 0.0000241 0.170522 0.0000106
0.388570 0.0000241 0.198771 0.0000123

...
...

...
...

0.093918 −0.0000054 0.038166 −0.0000022
0.093918 −0.0000054 0.038174 −0.0000022

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The size of the values in the second and fourth columns could easily cause numerical instability,
but there were no signs of such problems in this analysis. Note also that the two small columns of
Z∗ correspond to the large values of β̂ . Fitting this model gives SSE = 0.0810169059 with dfE =
54− 4 = 50, so MSE = 0.0016203381. The parameters, estimates, large sample standard errors, t
statistics, P values, and 95% confidence intervals for the parameters are given below.

Table of Coefficients
Asymptotic

Par Est SE(Est) t P 95% Confidence interval
β0 1.3130 0.0600724 21.86 0.000 (1.1923696,1.433687)
β1 11908 1118.1335 10.65 0.000 (9662.1654177,14153.831076)
β2 −.23463 0.0645778 −3.63 0.001 (−0.3643371,−0.104921)
β3 10559.5 1311.4420 8.05 0.000 (7925.4156062,13193.622791)

Generally, Cov(β̂ ) is estimated with

MSE(Z′
∗Z∗)−1 = 0.0016203381

⎡
⎢⎣

2 −30407 −2 24296
−30407 771578688 24805 −720666240

−2 24805 3 −30620
24296 −720666240 −30620 1061435136

⎤
⎥⎦ ;

however, here we begin to see some numerical instability, at least in the reporting of this matrix.
For example, using this matrix, SE(β̂0)

.
= .0569 =

√
0.0016203381(2). The 2 in the matrix has

been rounded off because of the large numbers in other entries of the matrix. In reality, SE(β̂0) =
.0600724=

√
0.0016203381(2.22712375). �
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The primary complication from using Model (23.3.1) involves forming confidence intervals
for points on the regression surface and prediction intervals. Suppose we want to predict a new
value y0 for a given vector of predictor variable values, say x0. Unfortunately, Model (23.3.1) is
not set up to predict y0 but rather to provide a prediction of y0 − f (x0; β̂ ) + z′∗0β̂ , where z′∗0 is
(∂ f (x0;β )

/
∂β0, . . . ,∂ f (x0;β )

/
∂βp−1) evaluated at β̂ . Happily, a simple modification of the pre-

diction interval for y0 − f (x0; β̂ )+ z′∗0β̂ produces a prediction interval for y0. As in Section 11.4,
the (1−α)100% prediction interval has endpoints z′∗0β̂ ±Wp, where

Wp ≡ t
(

1− α
2
,n− p

)√
MSE

[
1+ z′∗0(Z

′∗Z∗)−1z∗0
]
.

In other words, the prediction interval is

z′∗0β̂ −Wp < y0 − f (x0; β̂ )+ z′∗0β̂ < z′∗0β̂ +Wp.

To make this into an interval for y0, simply add f (x0; β̂ )− z′∗0β̂ to each term, giving the interval

f (x0; β̂ )−Wp < y0 < f (x0; β̂ )+Wp.

Similarly, the (1−α)100% confidence interval from Model (23.3.1) for a point on the surface
gives a confidence interval for z′∗0β rather than for f (x0;β ). Defining

Ws ≡ t
(

1− α
2
,n− p

)√
MSE z′∗0(Z

′∗Z∗)−1z′∗0,

the confidence interval for z′∗0β is

z′∗0β̂ −Ws < z′∗0β < z′∗0β̂ +Ws.

As in (23.2.3), f (x0;β ) .
= f (x0; β̂ )+ z′∗0(β − β̂), or equivalently,

f (x0;β )− f (x0; β̂ )+ z′∗0β̂ .
= z′∗0β .

We can substitute into the confidence interval to get

z′∗0β̂ −Ws < f (x0;β )− f (x0; β̂ )+ z′∗0β̂ < z′∗0β̂ +Ws

and again, adding f (x0; β̂ )− z′∗0β̂ to each term gives

f (x0; β̂ )−Ws < f (x0;β )< f (x0; β̂ )+Ws.

EXAMPLE 23.3.2. Prediction
For the benzene oxidation data, we choose to make a prediction at x′0 = (x01,x02,x03,x04) =

(100,20,0,5.7). Using x0 and β̂ to evaluate the partial derivatives, the vector used for making pre-
dictions in Model (23.3.1) is z′∗0 = (0.185871,0,0.0450792,0) and the prediction, i.e. the estimate
of the value on the surface at z∗0, for Model (23.3.1) is z′∗0β̂ = 0.233477. The standard error of
the surface is 0.00897 and the standard error for prediction is

√
0.0016203381+0.008972. Model

(23.3.1) gives the 95% confidence interval for the surface as (0.21545,0.25150) and the 95% pre-
diction interval as (0.15062,0.31633). The actual prediction (estimate of the value on the surface at
x0) is f (x0; β̂ ) = 0.230950. The confidence interval and prediction interval need to be adjusted by
f (x0; β̂ )−z′∗0β̂ = 0.230950−0.233477=−0.002527. This term needs to be added to the endpoints
of the intervals, giving a 95% confidence interval for the surface of (0.21292,0.24897) and a 95%
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prediction interval of (0.14809,0.31380). Actually, our interest is in r = 100/y rather than y, so a
95% prediction interval for r is (100/.31380,100/.14809), which is (318.7,675.3). �

We can also test full models against reduced models. Again, write the full model as

yi = f (xi;β )+ εi, εis indep. N(0,σ2), (23.3.2)

which, when fitted, gives SSE(β̂), and write the reduced model as

yi = f0(xi;γ)+ εi (23.3.3)

with γ ′ = (γ0, . . . ,γq−1). When fitted, Model (23.3.3) gives SSE(γ̂). The simplest way of ensuring
that Model (23.3.3) is a reduced model relative to Model (23.3.2) is by specifying constraints on the
parameters.

EXAMPLE 23.3.3. In Section 1 we considered the model yi = β0 + β1[eβ2xi − eβ3xi ] + εi with
p = 4. If we specify H0 : β1 = 4; 2β2 = β3, the reduced model is yi = β0 +4[eβ2xi − e2β2xi ]+ εi. The
parameters do not mean the same things in the reduced model as in the original model, so we can
rewrite the reduced model as yi = γ0+4[eγ1xi −e2γ1xi ]+εi with q = 2. This particular reduced model
can also be rewritten as yi = γ0 + 4[eγ1xi(1− eγ1xi)]+ εi, which is beginning to look quite different
from the full model. �

Corresponding to Model (23.3.3), there is a linear model similar to Model (23.3.1),

[Y −F0(X ; γ̂)+Z∗0γ̂ ] = Z∗0γ + e.

Alas, this model will typically not be a reduced model relative to Model (23.3.1). In fact, the depen-
dent variables (left-hand sides of the equations) are not even the same. Nonetheless, because Model
(23.3.3) is a reduced version of Model (23.3.2), we can test the models in the usual way by using
sums of squares error. Reject the reduced model with an α-level test if

[SSE(γ̂)−SSE(β̂)]/(p−q)

SSE(β̂)/(n− p)
> F(1−α, p−q,n− p). (23.3.4)

Of course, as in all of inference for nonlinear regression, the test is only a large sample approxima-
tion. The test statistic does not have exactly an F distribution when the reduced model is true.

EXAMPLE 23.3.4. Testing a reduced model
Consider the reduced model obtained from (23.1.4) by setting β0 = β2 and β1 = β3. We can rewrite
the model as

yi = exp[γ0 + γ1xi3]
1

xi2
+ exp[γ0 + γ1xi3]

xi4

xi1
+ εi.

This model has q = 2 parameters. The partial derivatives of the function

f0(x;γ)≡ f (x1,x2,x3,x4;γ0,γ1) = exp[γ0 + γ1x3]
1
x2

+ exp[γ0 + γ1x3]
x4

x1

are

∂ f0(x;γ)
∂γ0

= exp[γ0 + γ1x3]
1
x2

+ exp[γ0 + γ1x3]
x4

x1

∂ f0(x;γ)
∂γ1

= exp[γ0 + γ1x3]
x3

x2
+ exp[γ0 + γ1x3]

x3x4

x1
.

Fitting the model gives estimated parameters γ̂ ′ = (9.267172,12155.54478) with SSE =
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Figure 23.2: Rankit plot of standardized residuals, W ′ = .965.

0.4919048545 on dfE = 54− 2 = 52 for MSE = 0.0094597087. From Inequality (23.3.4) and Ex-
ample 23.3.1, the test statistic is

[0.4919048545−0.0810169059]/[4−2]
0.0016203381

= 126.79.

With an F statistic this large, the test will be rejected for any reasonable α level. �

EXAMPLE 23.3.5. Diagnostics
Model (23.3.1) is a linear regression model so we can do the usual things to it. Figure 23.2 contains
a normal plot of the standardized residuals. This does not look too bad to me and the Wilk–Francia
statistic of W ′ = .965 is not significantly low.

The fitted values from Model (23.3.1) are denoted d̂i whereas more intuitive fitted values are
ŷi ≡ f (xi, β̂ ). The residuals from fitting Model (23.3.1) equal yi − ŷi. Figure 23.3 contains plots of
the standardized residuals versus both types of fitted values. The plot versus d̂ is most notable for
the large empty space in the middle. The plot against ŷ has some suggestion of increasing variance
especially as there are fewer points on the right but they are more spread out than the many points
on the left.

Figure 23.4 contains plots of the standardized residuals versus the predictor variables x1, x2, T ,
x4. To some extent in the plot versus x1 and very clearly in the plots versus T and x4, we see a
traditional horn shape associated with heteroscedastic variances. However, in the plot of x4, there
are many points on the left and only four points on the right, so some additional spread on the left
is to be expected. On the other hand, if not for the one point in the bottom right, the plot versus x1

would be a classic horn shape. These plots call in question all of the inferential procedures that we
have illustrated because the analysis assumes that the variance is the same for each observation.
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Figure 23.3: Standardized residuals versus fitted values.

Table 23.2 contains standard diagnostic quantities from fitting Model (23.3.1). We use these
quantities in the usual way but possible problems are discussed at the end of the section. Given
that there are 54 cases, none of the standardized residuals r or standardized deleted residuals t look
exceptionally large.

Figure 23.5 contains index plots of the leverages and Cook’s distances. They simply plot the
value against the observation number for each case. Neither plot looks too bad to me (at least at
12:15 a.m. while I am doing this). However, there are some leverages that exceed the 3p/n =
3(4)/54 = 0.222 rule.

For more on how to analyze these data, see Pritchard et al. (1977) and Carroll and Ruppert
(1984). �

Unlike linear regression, where the procedure is dominated by the predictor variables, nonlinear
regression is very parameter oriented. This is perhaps excusable because in nonlinear regression
there is usually some specific theory suggesting the regression model and that theory may give
meaning to the parameters. Nonetheless, one can create big statistical problems or remove statis-
tical problems simply by the choice of the parameterization. For example, Model (23.1.4) can be
rewritten as

yi = γ0 exp[γ1xi3]
1
x2

+ γ2 exp[γ3xi3]
x4

x1
+ εi. (23.3.5)

If, say, γ0 = 0, the entire term γ0 exp[γ1xi3]/x2 vanishes. This term is the only place in which the
parameter γ1 appears. So if γ0 = 0, it will be impossible to learn about γ1. More to the point, if γ0

is near zero, it will be very difficult to learn about γ1. (Of course, one could argue that from the
viewpoint of prediction, one may not care much what γ1 is if γ0 is very near zero and x3 is of moder-
ate size.) In any case, unlike linear regression, the value of one parameter can affect what we learn
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Table 23.2: Diagnostic statistics.

Obs. ê d̂ Leverage r t C
1 −0.01307 0.86148 0.15936 −0.35412 −0.35103 0.005944
2 0.06308 0.82920 0.13152 1.68152 1.71375 0.107045
3 0.00971 0.85129 0.10156 0.25436 0.25195 0.001828
4 0.01562 0.86822 0.07718 0.40396 0.40054 0.003412
5 0.07055 0.88006 0.07046 1.81795 1.86227 0.062624
6 0.00248 0.93759 0.09688 0.06491 0.06427 0.000113
7 0.09455 0.94948 0.12257 2.50767 2.65506 0.219614
8 −0.05236 1.00834 0.27329 −1.52579 −1.54686 0.218863
9 −0.07670 1.01929 0.28149 −2.24800 −2.34713 0.494925

10 −0.00054 0.95166 0.12675 −0.01435 −0.01419 0.000007
11 0.00696 0.88195 0.06980 0.17923 0.17748 0.000603
12 −0.04892 0.85589 0.08901 −1.27316 −1.28133 0.039595
13 0.00451 0.82602 0.13811 0.12073 0.11951 0.000584
14 −0.10112 0.81881 0.15431 −2.73157 −2.93174 0.340371
15 0.05903 0.19905 0.03341 1.49170 1.51071 0.019231
16 0.03663 0.21699 0.02807 0.92310 0.92172 0.006153
17 −0.03676 0.23614 0.05558 −0.93981 −0.93868 0.012994
18 −0.04846 0.23742 0.05636 −1.23931 −1.24613 0.022932
19 −0.00913 0.23663 0.05675 −0.23346 −0.23122 0.000820
20 −0.01727 0.24039 0.05887 −0.44225 −0.43864 0.003058
21 −0.03085 0.23526 0.05273 −0.78755 −0.78450 0.008630
22 0.01208 0.23778 0.05285 0.30838 0.30559 0.001327
23 −0.01739 0.21635 0.02775 −0.43803 −0.43446 0.001369
24 0.05084 0.19577 0.03765 1.28753 1.29625 0.016213
25 0.02918 0.22509 0.03552 0.73818 0.73478 0.005018
26 0.01852 0.22516 0.03561 0.46839 0.46472 0.002025
27 0.00218 0.20863 0.02682 0.05485 0.05430 0.000021
28 0.00558 0.20916 0.02671 0.14058 0.13920 0.000136
29 −0.02888 0.18018 0.07150 −0.74455 −0.74120 0.010672
30 −0.00527 0.18073 0.06992 −0.13582 −0.13450 0.000347
31 0.01355 0.33863 0.06789 0.34853 0.34546 0.002212
32 −0.00978 0.24271 0.04494 −0.24865 −0.24631 0.000727
33 0.01847 0.19382 0.04064 0.46855 0.46486 0.002325
34 −0.00073 0.11365 0.04625 −0.01853 −0.01836 0.000004
35 0.08420 0.05952 0.07329 2.17301 2.26054 0.093364
36 0.05536 0.19252 0.04282 1.40571 1.41991 0.022102
37 0.02892 0.11355 0.04651 0.73583 0.73239 0.006603
38 −0.09110 0.06312 0.06575 −2.34133 −2.45639 0.096455
39 −0.02390 -0.07127 0.09852 −0.62540 −0.62158 0.010687
40 0.00620 -0.03354 0.04176 0.15727 0.15571 0.000269
41 −0.02641 0.04151 0.04883 −0.67271 −0.66896 0.005807
42 −0.01452 0.03812 0.04522 −0.36911 −0.36588 0.001613
43 −0.00003 0.02532 0.03438 −0.00065 −0.00063 0.000000
44 0.00550 0.01539 0.02983 0.13875 0.13740 0.000148
45 −0.01729 0.00833 0.02610 −0.43515 −0.43159 0.001268
46 −0.02705 -0.01152 0.02799 −0.68170 −0.67801 0.003346
47 −0.05209 -0.13085 0.26019 −1.50456 −1.52442 0.199053
48 −0.01409 -0.06464 0.08364 −0.36561 −0.36245 0.003051
49 0.01876 0.02696 0.03552 0.47447 0.47078 0.002073
50 0.02082 0.03956 0.04672 0.52980 0.52598 0.003439
51 −0.00508 0.04202 0.04941 −0.12939 −0.12809 0.000217
52 −0.00366 0.04603 0.05414 −0.09355 −0.09259 0.000125
53 0.00817 0.02714 0.03565 0.20665 0.20468 0.000395
54 0.00378 0.02714 0.03565 0.09558 0.09465 0.000084
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Figure 23.4: Standardized residuals versus predictor variables.

about other parameters. (In linear regression, the values of some predictor variables affect what we
can learn about the parameters for other predictor variables, but it is not the parameters themselves
that create the problem. In fact, in nonlinear regression, as the benzene example indicates, the pre-
dictor variables are not necessarily associated with any particular parameter.) In Model (23.1.4) we
have ameliorated the problem of γ0 near 0 by using the parameter β0. When γ0 approaches zero, β0

approaches negative infinity, so this problem with the coefficient of xi3, i.e. γ1 or β1, will not arise
for finite β0. However, unlike (23.3.5), Model (23.1.4) cannot deal with the possibility of γ0 < 0.
Similar problems can occur with γ2.

All of the methods in this section depend crucially on the quality of the approximation in (23.2.3)
when β r = β̂ . If this approximation is poor, these methods can be very misleading. In particular,
Cook and Tsai (1985, 1990) discuss problems with residual analysis when the approximation is
poor and discuss diagnostics for the quality of the normal approximation. St. Laurent and Cook
(1992) discuss concepts of leverage for nonlinear regression. For large samples, the true value of
β should be close to β̂ and the approximation should be good. (This conclusion also depends on
having the standard errors for functions of β̂ small in large samples.) But it is very difficult to tell
what constitutes a ‘large sample.’ As a practical matter, the quality of the approximation depends a
great deal on the amount of curvature found in f (x;β ) near β = β̂ . This curvature is conveniently
measured by the second partial derivatives ∂ 2 f (x;β )

/
∂β j∂βk evaluated at β̂ . A good analysis of

nonlinear regression data should include an examination of curvature, but such an examination is
beyond the scope of this book, cf. Seber and Wild (1989, Chapter 4).
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Figure 23.5: Index plots of diagnostics.

23.4 Linearizable models

Some nonlinear relationships can be changed into linear relationships. The nonlinear regression
model (23.1.3) indicates that

E(yi) = f (xi;β ).

Sometimes f (xi;β ) can be written as

f (xi;β ) = f (x′iβ ).

If f is invertible, we get
f−1[E(yi)] = x′iβ .

Often it is not too clear whether we should be modeling f−1[E(yi)] = x′iβ or E[ f−1(yi)] = x′iβ . As
we saw, the first of these comes from nonlinear regression. The second equality suggests the linear
regression model,

f−1(yi) = x′iβ + εi . (23.4.1)

It can be very difficult to choose between analyzing the nonlinear model (23.1.3) and the linear
model (23.4.1). The decision is often based on which model gives better approximations to the
assumption of independent identically distributed mean zero normal errors.

EXAMPLE 23.4.1. In Section 7.3 we analyzed the Hooker data using a linear model log(yi) =
β0 + β1xi + εi. Exponentiating both sides gives yi = exp[β0 + β1xi + εi], which we can rewrite as
yi = exp[β0 + β1xi]ξi, where ξi is a multiplicative error term with ξi = exp(εi). Alternatively, we
could fit a nonlinear regression model

yi = exp[β0 +β1xi]+ εi. (23.4.2)
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Table 23.3: Day (1966) data.

Week Weight Week Weight
8 140.50 34 163.75

12 139.25 35 168.75
14 138.75 36 170.00
15 140.00 37 171.25
19 147.25 38 173.00
23 150.50 39 174.00
27 156.75 40 174.00
31 162.75 42 174.50

Table 23.4: Bliss and James (1966) data.

x z x z
.200 99 .0150 172
.100 115 .0100 188
.075 119 .0075 284
.050 112 .0070 227
.0375 126 .0060 275
.0250 149 .0050 525
.0200 152 .0025 948

The difference between these two models is that in the first model (the linearized model) the er-
rors on the original scale are multiplied by the regression structure exp[β0 + β1xi], whereas in
the nonlinear model the errors are additive, i.e., are added to the regression structure. To fit the
nonlinear model (23.4.2), we need the partial derivatives of f (x;β0,β1) ≡ exp[β0 + β1x], namely
∂ f (x;β0,β1)/∂β0 = exp[β0 +β1x] and ∂ f (x;β0,β1)/∂β1 = exp[β0 +β1x]x. As mentioned earlier,
the choice between using the linearized model from Section 7.3 or the nonlinear regression model
(23.4.2) is often based on which model seems to have better residual plots, etc. Exercise 23.5.1 asks
for this comparison. �

23.5 Exercises

EXERCISE 23.5.1. Fit the nonlinear regression (23.4.2) to the Hooker data and compare the fit
of this model to the fit of the linearized model described in Section 7.3.

EXERCISE 23.5.2. For pregnant women, Day (1966) modeled the relationship between weight z
and week of gestation x with

E(y) = β0 + exp[β1 +β2x]

where y = 1/
√

z− z0 and z0 is the initial weight of the woman. For a woman with initial weight of
138 pounds, the data in Table 23.3 were recorded.

Fit the model yi = β0 + exp[β1 +β2xi]+ εi. Test whether each parameter is equal to zero, give
95% confidence intervals for each parameter, give 95% prediction intervals and surface confidence
intervals for x = 21 weeks, and check the diagnostic quantities. Test the reduced model defined by
H0 : β0 = 0; β1 = 0.

EXERCISE 23.5.3. Following Bliss and James (1966), fit the model yi = (xiβ0)
/
(xi +β1)+ εi to

the following data on the relationship between reaction velocity y and concentration of substrate x.

x .138 .220 .291 .560 .766 1.460
y .148 .171 .234 .324 .390 .493
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Test whether each parameter is equal to zero, give 99% confidence intervals for each parameter,
give 99% prediction intervals and surface confidence intervals for x = .5, and check the diagnostic
quantities.

EXERCISE 23.5.4. Bliss and James (1966) give data on the median survival time z of house flies
following application of the pesticide DDT at a level of molar concentration x. Letting y = 100/z,
fit the model yi = β0 +β1xi

/
(xi +β2)+ εi to the data given in Table 23.4.

Test whether each parameter is equal to zero, give 99% confidence intervals for each parameter,
give 95% prediction intervals and surface confidence intervals for a concentration of x = .03, and
check the diagnostic quantities. Find the SSE and test the reduced model defined by H0 : β0 =
0,β2 = .0125. Test H0 : β2 = .0125.





Appendix A: Matrices

A matrix is a rectangular array of numbers. Such arrays have rows and columns. The numbers of
rows and columns are referred to as the dimensions of a matrix. A matrix with, say, 5 rows and 3
columns is referred to as a 5× 3 matrix.

EXAMPLE A.0.1. Three matrices are given below along with their dimensions.

⎡
⎣

1 4
2 5
3 6

⎤
⎦ ,
[

20 80
90 140

]
,

⎡
⎢⎣

6
180
−3
0

⎤
⎥⎦

3×2 2×2 4×1

.

�

Let r be an arbitrary positive integer. A matrix with r rows and r columns, i.e., an r× r matrix,
is called a square matrix. The second matrix in Example A.0.1 is square. A matrix with only one
column, i.e., an r × 1 matrix, is a vector, sometimes called a column vector. The third matrix in
Example A.0.1 is a vector. A 1× r matrix is sometimes called a row vector.

An arbitrary matrix A is often written

A = [ai j]

where ai j denotes the element of A in the ith row and jth column. Two matrices are equal if they have
the same dimensions and all of their elements (entries) are equal. Thus for r× c matrices A = [ai j]
and B = [bi j], A = B if and only if ai j = bi j for every i = 1, . . . ,r and j = 1, . . . ,c.

EXAMPLE A.0.2. Let

A =

[
20 80
90 140

]
and B =

[
b11 b12

b21 b22

]
.

If B = A, then b11 = 20,b12 = 80,b21 = 90, and b22 = 140. �

The transpose of a matrix A, denoted A′, changes the rows of A into columns of a new matrix
A′. If A is an r×c matrix, the transpose A′ is a c× r matrix. In particular, if we write A′ = [ãi j], then
the element in row i and column j of A′ is defined to be ãi j = a ji.

EXAMPLE A.0.3. ⎡
⎣

1 4
2 5
3 6

⎤
⎦
′

=

[
1 2 3
4 5 6

]

and [
20 80
90 140

]′
=

[
20 90
80 140

]
.

563
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The transpose of a column vector is a row vector,

⎡
⎢⎣

6
180
−3
0

⎤
⎥⎦

′

= [6 180 −3 0 ] . �

A.1 Matrix addition and subtraction

Two matrices can be added (or subtracted) if they have the same dimensions, that is, if they have the
same number of rows and columns. Addition and subtraction is performed elementwise.

EXAMPLE A.1.1.
⎡
⎣

1 4
2 5
3 6

⎤
⎦+
⎡
⎣

2 8
4 10
6 12

⎤
⎦=

⎡
⎣

1+2 4+8
2+4 5+10
3+6 6+12

⎤
⎦=

⎡
⎣

3 12
6 15
9 18

⎤
⎦ .

[
20 80
90 140

]
−
[
−15 −75
80 130

]
=

[
35 155
10 10

]
.

�

In general, if A and B are r× c matrices with A = [ai j] and B = [bi j], then

A+B = [ai j +bi j] and A−B = [ai j −bi j] .

A.2 Scalar multiplication

Any matrix can be multiplied by a scalar. Multiplication by a scalar (a real number) is elementwise.

EXAMPLE A.2.1. Scalar multiplication gives

1
10

[
20 80
90 140

]
=

[
20/10 80/10
90/10 140/10

]
=

[
2 8
9 14

]
.

2 [6 180 −3 0 ] = [12 360 −6 0 ] . �

In general, if λ is any number and A = [ai j], then

λA = [λai j] .

A.3 Matrix multiplication

Two matrices can be multiplied together if the number of columns in the first matrix is the same
as the number of rows in the second matrix. In the process of multiplication, the rows of the first
matrix are matched up with the columns of the second matrix.

EXAMPLE A.3.1.
⎡
⎣

1 4
2 5
3 6

⎤
⎦
[

20 80
90 140

]
=

⎡
⎣
(1)(20)+ (4)(90) (1)(80)+ (4)(140)
(2)(20)+ (5)(90) (2)(80)+ (5)(140)
(3)(20)+ (6)(90) (3)(80)+ (6)(140)

⎤
⎦

=

⎡
⎣

380 640
490 860
600 1080

⎤
⎦ .



A.3 MATRIX MULTIPLICATION 565

The entry in the first row and column of the product matrix, (1)(20)+ (4)(90), matches the
elements in the first row of the first matrix, (1 4), with the elements in the first column of the second

matrix,

(
20
90

)
. The 1 in (1 4) is matched up with the 20 in

(
20
90

)
and these numbers are multiplied.

Similarly, the 4 in (1 4) is matched up with the 90 in

(
20
90

)
and the numbers are multiplied. Finally,

the two products are added to obtain the entry (1)(20)+ (4)(90). Similarly, the entry in the third
row, second column of the product, (3)(80)+ (6)(140), matches the elements in the third row of

the first matrix, (3 6), with the elements in the second column of the second matrix,

(
80

140

)
. After

multiplying and adding we get the entry (3)(80)+(6)(140). To carry out this matching, the number
of columns in the first matrix must equal the number of rows in the second matrix. The matrix
product has the same number of rows as the first matrix and the same number of columns as the
second because each row of the first matrix can be matched with each column of the second.

�

EXAMPLE A.3.2. We illustrate another matrix multiplication commonly performed in Statistics,
multiplying a matrix on its left by the transpose of that matrix, i.e., computing A′A.

⎡
⎣

1 4
2 5
3 6

⎤
⎦
′⎡
⎣

1 4
2 5
3 6

⎤
⎦ =

[
1 2 3
4 5 6

]⎡
⎣

1 4
2 5
3 6

⎤
⎦

=

[
1+4+9 4+10+18

4+10+18 16+25+36

]

=

[
14 32
32 77

]
.

�

Notice that in matrix multiplication the roles of the first matrix and the second matrix are not
interchangeable. In particular, if we reverse the order of the matrices in Example A.3.1, the matrix
product

[
20 80
90 140

]⎡
⎣

1 4
2 5
3 6

⎤
⎦

is undefined because the first matrix has two columns while the second matrix has three rows. Even
when the matrix products are defined for both AB and BA, the results of the multiplication typically
differ. If A is r× s and B is s× r, then AB is an r× r matrix and BA is and s× s matrix. When r �= s,
clearly AB �= BA, but even when r = s we still can not expect AB to equal BA.

EXAMPLE A.3.3. Consider two square matrices, say,

A =

[
1 2
3 4

]
B =

[
0 2
1 2

]
.

Multiplication gives

AB =

[
2 6
4 14

]

and

BA =

[
6 8
7 10

]
,

so AB �= BA. �
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In general if A = [ai j] is an r× s matrix and B = [bi j] is a s× c matrix, then

AB = [di j]

is the r× c matrix with

di j =
s

∑
�=1

ai�b� j.

A useful result is that the transpose of the product AB is the product, in reverse order, of the
transposed matrices, i.e. (AB)′ = B′A′.

EXAMPLE A.3.4. As seen in Example A.3.1,

AB ≡

⎡
⎣

1 4
2 5
3 6

⎤
⎦
[

20 80
90 140

]
=

⎡
⎣

380 640
490 860
600 1080

⎤
⎦≡C.

The transpose of this matrix is

C′ =
[

380 490 600
640 860 1080

]
=

[
20 90
80 140

][
1 2 3
4 5 6

]
= B′A′.

�

Let a = (a1, . . . ,an)
′ be a vector. A very useful property of vectors is that

a′a =
n

∑
i=1

a2
i ≥ 0.

A.4 Special matrices

If A = A′, then A is said to be symmetric. If A = [ai j] and A = A′, then ai j = a ji. The entry in row i
and column j is the same as the entry in row j and column i. Only square matrices can be symmetric.

EXAMPLE A.4.1. The matrix

A =

⎡
⎣

4 3 1
3 2 6
1 6 5

⎤
⎦

has A = A′. A is symmetric about the diagonal that runs from the upper left to the lower right. �

For any r × c matrix A, the product A′A is always symmetric. This was illustrated in Exam-
ple 23.3.2. More generally, write A = [ai j], A′ = [ãi j] with ãi j = a ji, and

A′A = [di j] =

[
c

∑
�=1

ãi�a� j

]
.

Note that

di j =
c

∑
�=1

ãi�a� j =
c

∑
�=1

a�ia� j =
c

∑
�=1

ã j�a�i = d ji

so the matrix is symmetric.
Diagonal matrices are square matrices with all off-diagonal elements equal to zero.

EXAMPLE A.4.2. The matrices
⎡
⎣

1 0 0
0 2 0
0 0 3

⎤
⎦ ,

[
20 0
0 −3

]
, and

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦
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are diagonal. �

In general, a diagonal matrix is a square matrix A= [ai j] with ai j = 0 for i �= j. Obviously, diagonally
matrices are symmetric.

An identity matrix is a diagonal matrix with all 1s along the diagonal, i.e., aii = 1 for all i. The
third matrix in Example A.4.2 above is a 3× 3 identity matrix. The identity matrix gets it name
because any matrix multiplied by an identity matrix remains unchanged.

EXAMPLE A.4.3. ⎡
⎣

1 4
2 5
3 6

⎤
⎦
[

1 0
0 1

]
=

⎡
⎣

1 4
2 5
3 6

⎤
⎦ .

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

1 4
2 5
3 6

⎤
⎦=

⎡
⎣

1 4
2 5
3 6

⎤
⎦ .

�

An r× r identity matrix is denoted Ir with the subscript deleted if the dimension is clear.
A zero matrix is a matrix that consists entirely of zeros. Obviously, the product of any matrix

multiplied by a zero matrix is zero.

EXAMPLE A.4.4. ⎡
⎣

0 0
0 0
0 0

⎤
⎦ ,

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ .

�

Often a zero matrix is denoted by 0 where the dimension of the matrix, and the fact that it is a
matrix rather than a scalar, must be inferred from the context.

A matrix M that has the property MM =M is called idempotent. A symmetric idempotent matrix
is a perpendicular projection operator.

EXAMPLE A.4.5. The following matrices are both symmetric and idempotent:
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

⎤
⎦ ,

⎡
⎣
.5 .5 0
.5 .5 0
0 0 1

⎤
⎦ .

�

A.5 Linear dependence and rank

Consider the matrix

A =

⎡
⎣

1 2 5 1
2 2 10 6
3 4 15 1

⎤
⎦ .

Note that each column of A can be viewed as a vector. The column space of A, denoted C(A), is the
collection of all vectors that can be written as a linear combination of the columns of A. In other
words, C(A) is the set of all vectors that can be written as

λ1

⎡
⎣

1
2
3

⎤
⎦+λ2

⎡
⎣

2
2
4

⎤
⎦+λ3

⎡
⎣

5
10
15

⎤
⎦+λ4

⎡
⎣

1
6
1

⎤
⎦= A

⎡
⎢⎣

λ1

λ2

λ3

λ4

⎤
⎥⎦= Aλ
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for some vector λ = (λ1,λ2,λ3,λ4)
′.

The columns of any matrix A are linearly dependent if they contain redundant information.
Specifically, let x be some vector in C(A). The columns of A are linearly dependent if we can find
two distinct vectors λ and γ such that x = Aλ and x = Aγ . Thus two distinct linear combinations of
the columns of A give rise to the same vector x. Note that λ �= γ because λ and γ are distinct. Note
also that, using a distributive property of matrix multiplication, A(λ − γ) = Aλ −Aγ = 0, where
λ − γ �= 0. This condition is frequently used as an alternative definition for linear dependence, i.e.,
the columns of A are linearly dependent if there exists a vector δ �= 0 such that Aδ = 0. If the
columns of A are not linearly dependent, they are linearly independent.

EXAMPLE A.5.1. Observe that the example matrix A given at the beginning of the section has

⎡
⎣

1 2 5 1
2 2 10 6
3 4 15 1

⎤
⎦
⎡
⎢⎣

5
0

−1
0

⎤
⎥⎦=

⎡
⎣

0
0
0

⎤
⎦ ,

so the columns of A are linearly dependent. �

The rank of A is the smallest number of columns of A that can generate C(A). It is also the
maximum number of linearly independent columns in A.

EXAMPLE A.5.2. The matrix

A =

⎡
⎣

1 2 5 1
2 2 10 6
3 4 15 1

⎤
⎦

has rank 3 because the columns ⎡
⎣

1
2
3

⎤
⎦ ,
⎡
⎣

2
2
4

⎤
⎦ ,
⎡
⎣

1
6
1

⎤
⎦

generate C(A). We saw in Example A.5.1 that the column (5,10,15)′ was redundant. None of the
other three columns are redundant; they are linearly independent. In other words, the only way to
get ⎡

⎣
1 2 1
2 2 6
3 4 1

⎤
⎦δ =

⎡
⎣

0
0
0

⎤
⎦

is to take δ = (0,0,0)′. �

A.6 Inverse matrices

The inverse of a square matrix A is the matrix A−1 such that

AA−1 = A−1A = I.

The inverse of A exists only if the columns of A are linearly independent. Typically, it is difficult to
find inverses without the aid of a computer. For a 2×2 matrix

A =

[
a11 a12

a21 a22

]
,

the inverse is given by

A−1 =
1

a11a22 −a12a21

[
a22 −a12

−a21 a11

]
. (A.6.1)
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To confirm that this is correct, multiply AA−1 to see that it gives the identity matrix. Moderately
complicated formulae exist for computing the inverse of 3×3 matrices. Inverses of larger matrices
become very difficult to compute by hand. Of course computers are ideally suited for finding such
things.

One use for inverse matrices is in solving systems of equations.

EXAMPLE A.6.1. Consider the system of equations

2x+4y = 20

3x+4y = 10.

We can write this in matrix form as
[

2 4
3 4

][
x
y

]
=

[
20
10

]
.

Multiplying on the left by the inverse of the coefficient matrix gives

[
2 4
3 4

]−1 [
2 4
3 4

][
x
y

]
=

[
2 4
3 4

]−1 [
20
10

]
.

Using the definition of the inverse on the left-hand side of the equality and the formula in (A.6.1)
on the right-hand side gives

[
1 0
0 1

][
x
y

]
=

[
−1 1
3/4 −1/2

][
20
10

]

or [
x
y

]
=

[
−10

10

]
.

Thus (x,y) = (−10,10) is the solution for the two equations, i.e., 2(−10) + 4(10) = 20 and
3(−10)+ 4(10)= 10. �

More generally, a system of equations, say,

a11 y1 +a12 y2 +a13 y3 = c1

a21 y1 +a22 y2 +a23 y3 = c2

a31 y1 +a32 y2 +a33 y3 = c3

in which the ai js and cis are known and the yis are variables, can be written in matrix form as

⎡
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦
⎡
⎣

y1

y2

y3

⎤
⎦=

⎡
⎣

c1

c2

c3

⎤
⎦

or
AY =C.

To find Y simply observe that AY = C implies A−1AY = A−1C and Y = A−1C. Of course this ar-
gument assumes that A−1 exists, which is not always the case. Moreover, the procedure obviously
extends to larger sets of equations.

On a computer, there are better ways of finding solutions to systems of equations than finding the



570 APPENDIX A: MATRICES

inverse of a matrix. In fact, inverses are often found by solving systems of equations. For example,
in a 3× 3 case the first column of A−1 can be found as the solution to

⎡
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦
⎡
⎣

y1

y2

y3

⎤
⎦=

⎡
⎣

1
0
0

⎤
⎦ .

For a special type of square matrix, called an orthogonal matrix, the transpose is also the inverse.
In other words, a square matrix P is an orthogonal matrix if

P′P = I = PP′.

To establish that P is orthogonal, it is enough to show either that P′P= I or that PP′ = I. Orthogonal
matrices are particularly useful in discussions of eigenvalues and principal component regression.

A.7 A list of useful properties

The following proposition summarizes many of the key properties of matrices and the operations
performed on them.

Proposition A.7.1. Let A, B, and C be matrices of appropriate dimensions and let λ be a scalar.

A+B = B+A

(A+B)+C = A+(B+C)

(AB)C = A(BC)

C(A+B) = CA+CB

λ (A+B) = λA+λB

(A′)′ = A

(A+B)′ = A′+B′

(AB)′ = B′A′
(
A−1)−1

= A

(A′)−1
=
(
A−1)′

(AB)−1 = B−1A−1.

The last equality only holds when A and B both have inverses. The second-to-last property implies
that the inverse of a symmetric matrix is symmetric because then A−1 = (A′)−1 = (A−1)′. This is a
very important property.

A.8 Eigenvalues and eigenvectors

Let A be a square matrix. A scalar φ is an eigenvalue of A and x �= 0 is an eigenvector for A corre-
sponding to φ if

Ax = φx.

EXAMPLE A.8.1. Consider the matrix

A =

⎡
⎣

3 1 −1
1 3 −1

−1 −1 5

⎤
⎦ .
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The value 3 is an eigenvalue and any nonzero multiple of the vector (1,1,1)′ is a corresponding
eigenvector. For example,

⎡
⎣

3 1 −1
1 3 −1

−1 −1 5

⎤
⎦
⎡
⎣

1
1
1

⎤
⎦=

⎡
⎣

3
3
3

⎤
⎦= 3

⎡
⎣

1
1
1

⎤
⎦ .

Similarly, if we consider a multiple, say, 4(1,1,1)′,
⎡
⎣

3 1 −1
1 3 −1

−1 −1 5

⎤
⎦
⎡
⎣

4
4
4

⎤
⎦=
⎡
⎣

12
12
12

⎤
⎦= 3

⎡
⎣

4
4
4

⎤
⎦ .

The value 2 is also an eigenvalue with eigenvectors that are nonzero multiples of (1,−1,0)′.
⎡
⎣

3 1 −1
1 3 −1

−1 −1 5

⎤
⎦
⎡
⎣

1
−1

0

⎤
⎦=

⎡
⎣

2
−2

0

⎤
⎦= 2

⎡
⎣

1
−1

0

⎤
⎦ .

Finally, 6 is an eigenvalue with eigenvectors that are nonzero multiples of (1,1,−2)′. �

Proposition A.8.2. Let A be a symmetric matrix, then for a diagonal matrix D(φi) consisting
of eigenvalues there exists an orthogonal matrix P whose columns are corresponding eigenvectors
such that

A = PD(φi)P
′.

EXAMPLE A.8.3. Consider again the matrix

A =

⎡
⎣

3 1 −1
1 3 −1

−1 −1 5

⎤
⎦ .

In writing A = PD(φi)P′, the diagonal matrix is

D(φi) =

⎡
⎣

3 0 0
0 2 0
0 0 6

⎤
⎦ .

The orthogonal matrix is

P =

⎡
⎢⎣

1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

⎤
⎥⎦ .

We leave it to the reader to verify that PD(φi)P′ = A and that P′P = I.
Note that the columns of P are multiples of the vectors identified as eigenvectors in Exam-

ple A.8.1; hence the columns of P are also eigenvectors. The multiples of the eigenvectors were
chosen so that PP′ = I and P′P = I. Moreover, the first column of P is an eigenvector corresponding
to 3, which is the first eigenvalue listed in D(φi). Similarly, the second column of P is an eigenvector
corresponding to 2 and the third column corresponds to the third listed eigenvalue, 6.

With a 3× 3 matrix A having three distinct eigenvalues, any matrix P with eigenvectors for
columns would have P′P a diagonal matrix, but the multiples of the eigenvectors must be chosen so
that the diagonal entries of P′P are all 1. �
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EXAMPLE A.8.4. Consider the matrix

B =

⎡
⎣

5 −1 −1
−1 5 −1
−1 −1 5

⎤
⎦ .

This matrix is closely related to the matrix in Example A.8.1. The matrix B has 3 as an eigenvalue
with corresponding eigenvectors that are multiples of (1,1,1)′, just like the matrix A. Once again 6
is an eigenvalue with corresponding eigenvector (1,1,−2)′ and once again (1,−1,0)′ is an eigen-
vector, but now, unlike A, (1,−1,0) also corresponds to the eigenvalue 6. We leave it to the reader
to verify these facts. The point is that in this matrix, 6 is an eigenvalue that has two linearly inde-
pendent eigenvectors. In such cases, any nonzero linear combination of the two eigenvectors is also
an eigenvector. For example, it is easy to see that

3

⎡
⎣

1
−1

0

⎤
⎦+2

⎡
⎣

1
1

−2

⎤
⎦=
⎡
⎣

5
−1
−4

⎤
⎦

is an eigenvector corresponding to the eigenvalue 6.
To write B = PD(φ)P′ as in Proposition A.8.2, D(φ) has 3, 6, and 6 down the diagonal and one

choice of P is that given in Example A.8.3. However, because one of the eigenvalues occurs more
than once in the diagonal matrix, there are many choices for P. �

Generally, if we need eigenvalues or eigenvectors we get a computer to find them for us.
Two frequently used functions of a square matrix are the determinant and the trace.

Definition A.8.5.
a) The determinant of a square matrix is the product of the eigenvalues of the matrix.
b) The trace of a square matrix is the sum of the eigenvalues of the matrix.

In fact, one can show that the trace of a square matrix also equals the sum of the diagonal elements
of that matrix.
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B.1 Tables of the t distribution

Table B.1: Percentage points of the t distribution.

α levels
Two-
sided .20 .10 .05 .04 .02 .01 .002 .001
One-
sided .10 .05 .025 .02 .01 .005 .001 .0005

Percentiles
d f 0.90 0.95 0.975 0.98 0.99 0.995 0.999 0.9995

1 3.078 6.314 12.7062 15.8946 31.8206 63.6570 318.317 636.607
2 1.886 2.920 4.3027 4.8487 6.9646 9.9248 22.327 31.598
3 1.638 2.353 3.1824 3.4819 4.5407 5.8409 10.215 12.924
4 1.533 2.132 2.7764 2.9985 3.7470 4.6041 7.173 8.610
5 1.476 2.015 2.5706 2.7565 3.3649 4.0322 5.893 6.869
6 1.440 1.943 2.4469 2.6122 3.1427 3.7075 5.208 5.959
7 1.415 1.895 2.3646 2.5168 2.9980 3.4995 4.785 5.408
8 1.397 1.860 2.3060 2.4490 2.8965 3.3554 4.501 5.041
9 1.383 1.833 2.2622 2.3984 2.8214 3.2499 4.297 4.781

10 1.372 1.812 2.2281 2.3593 2.7638 3.1693 4.144 4.587
11 1.363 1.796 2.2010 2.3281 2.7181 3.1058 4.025 4.437
12 1.356 1.782 2.1788 2.3027 2.6810 3.0546 3.930 4.318
13 1.350 1.771 2.1604 2.2816 2.6503 3.0123 3.852 4.221
14 1.345 1.761 2.1448 2.2638 2.6245 2.9769 3.787 4.140
15 1.341 1.753 2.1315 2.2485 2.6025 2.9467 3.733 4.073
16 1.337 1.746 2.1199 2.2354 2.5835 2.9208 3.686 4.015
17 1.333 1.740 2.1098 2.2239 2.5669 2.8982 3.646 3.965
18 1.330 1.734 2.1009 2.2137 2.5524 2.8784 3.611 3.922
19 1.328 1.729 2.0930 2.2047 2.5395 2.8610 3.579 3.883
20 1.325 1.725 2.0860 2.1967 2.5280 2.8453 3.552 3.850
21 1.323 1.721 2.0796 2.1894 2.5176 2.8314 3.527 3.819
22 1.321 1.717 2.0739 2.1829 2.5083 2.8188 3.505 3.792
23 1.319 1.714 2.0687 2.1769 2.4999 2.8073 3.485 3.768
24 1.318 1.711 2.0639 2.1716 2.4922 2.7969 3.467 3.745
25 1.316 1.708 2.0595 2.1666 2.4851 2.7874 3.450 3.725
26 1.315 1.706 2.0555 2.1620 2.4786 2.7787 3.435 3.707
27 1.314 1.703 2.0518 2.1578 2.4727 2.7707 3.421 3.690
28 1.313 1.701 2.0484 2.1539 2.4671 2.7633 3.408 3.674
29 1.311 1.699 2.0452 2.1503 2.4620 2.7564 3.396 3.659
30 1.310 1.697 2.0423 2.1470 2.4573 2.7500 3.385 3.646
31 1.309 1.696 2.0395 2.1438 2.4528 2.7441 3.375 3.633
32 1.309 1.694 2.0369 2.1409 2.4487 2.7385 3.365 3.622
33 1.308 1.692 2.0345 2.1382 2.4448 2.7333 3.356 3.611
34 1.307 1.691 2.0323 2.1356 2.4412 2.7284 3.348 3.601
35 1.306 1.690 2.0301 2.1332 2.4377 2.7238 3.340 3.591
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Table B.2: Percentage points of the t distribution.

α levels
Two-
sided .20 .10 .05 .04 .02 .01 .002 .001
One-
sided .10 .05 .025 .02 .01 .005 .001 .0005

Percentiles
d f 0.90 0.95 0.975 0.98 0.99 0.995 0.999 0.9995
36 1.306 1.688 2.0281 2.1309 2.4345 2.7195 3.333 3.582
37 1.305 1.687 2.0262 2.1287 2.4314 2.7154 3.326 3.574
38 1.304 1.686 2.0244 2.1267 2.4286 2.7116 3.319 3.566
39 1.304 1.685 2.0227 2.1247 2.4258 2.7079 3.313 3.558
40 1.303 1.684 2.0211 2.1229 2.4233 2.7045 3.307 3.551
41 1.303 1.683 2.0196 2.1212 2.4208 2.7012 3.301 3.544
42 1.302 1.682 2.0181 2.1195 2.4185 2.6981 3.296 3.538
43 1.302 1.681 2.0167 2.1179 2.4163 2.6951 3.291 3.532
44 1.301 1.680 2.0154 2.1164 2.4142 2.6923 3.286 3.526
45 1.301 1.679 2.0141 2.1150 2.4121 2.6896 3.281 3.520
46 1.300 1.679 2.0129 2.1136 2.4102 2.6870 3.277 3.515
47 1.300 1.678 2.0117 2.1123 2.4083 2.6846 3.273 3.510
48 1.299 1.677 2.0106 2.1111 2.4066 2.6822 3.269 3.505
49 1.299 1.677 2.0096 2.1099 2.4049 2.6800 3.265 3.500
50 1.299 1.676 2.0086 2.1087 2.4033 2.6778 3.261 3.496
51 1.298 1.675 2.0076 2.1076 2.4017 2.6757 3.258 3.492
52 1.298 1.675 2.0067 2.1066 2.4002 2.6737 3.255 3.488
53 1.298 1.674 2.0058 2.1055 2.3988 2.6718 3.251 3.484
54 1.297 1.674 2.0049 2.1046 2.3974 2.6700 3.248 3.480
55 1.297 1.673 2.0041 2.1036 2.3961 2.6682 3.245 3.476
56 1.297 1.673 2.0033 2.1027 2.3948 2.6665 3.242 3.473
57 1.297 1.672 2.0025 2.1018 2.3936 2.6649 3.239 3.470
58 1.296 1.672 2.0017 2.1010 2.3924 2.6633 3.237 3.466
59 1.296 1.671 2.0010 2.1002 2.3912 2.6618 3.234 3.463
60 1.296 1.671 2.0003 2.0994 2.3902 2.6604 3.232 3.460
70 1.294 1.667 1.9944 2.0927 2.3808 2.6480 3.211 3.435
80 1.292 1.664 1.9901 2.0878 2.3739 2.6387 3.195 3.416
90 1.291 1.662 1.9867 2.0840 2.3685 2.6316 3.183 3.402

100 1.290 1.660 1.9840 2.0809 2.3642 2.6259 3.174 3.391
110 1.289 1.659 1.9818 2.0784 2.3607 2.6213 3.166 3.381
120 1.289 1.658 1.9799 2.0763 2.3578 2.6174 3.160 3.373
150 1.287 1.655 1.9759 2.0718 2.3515 2.6090 3.145 3.357
200 1.286 1.653 1.9719 2.0672 2.3451 2.6006 3.131 3.340
250 1.285 1.651 1.9695 2.0645 2.3414 2.5956 3.123 3.330
300 1.284 1.650 1.9679 2.0627 2.3388 2.5923 3.118 3.323
350 1.284 1.649 1.9668 2.0614 2.3371 2.5900 3.114 3.319
400 1.284 1.649 1.9659 2.0605 2.3357 2.5882 3.111 3.315
∞ 1.282 1.645 1.9600 2.0537 2.3263 2.5758 3.090 3.291
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B.2 Tables of the χ2 distribution

Table B.3: Percentage points of the χ2 distribution.

α levels
Two-
sided 0.002 0.01 0.02 0.04 0.05 0.10 0.20 0.40
One-
sided 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20

Percentiles
d f 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20

1 0.000 0.000 0.000 0.001 0.001 0.004 0.016 0.064
2 0.002 0.010 0.020 0.040 0.051 0.103 0.211 0.446
3 0.024 0.072 0.115 0.185 0.216 0.352 0.584 1.005
4 0.091 0.207 0.297 0.429 0.484 0.711 1.064 1.649
5 0.210 0.412 0.554 0.752 0.831 1.145 1.610 2.343
6 0.381 0.676 0.872 1.134 1.237 1.635 2.204 3.070
7 0.598 0.989 1.239 1.564 1.690 2.167 2.833 3.822
8 0.857 1.344 1.646 2.032 2.180 2.733 3.490 4.594
9 1.152 1.735 2.088 2.532 2.700 3.325 4.168 5.380

10 1.479 2.156 2.558 3.059 3.247 3.940 4.865 6.179
11 1.834 2.603 3.053 3.609 3.816 4.575 5.578 6.989
12 2.214 3.074 3.571 4.178 4.404 5.226 6.304 7.807
13 2.617 3.565 4.107 4.765 5.009 5.892 7.042 8.634
14 3.041 4.075 4.660 5.368 5.629 6.571 7.790 9.467
15 3.483 4.601 5.229 5.985 6.262 7.261 8.547 10.307
16 3.942 5.142 5.812 6.614 6.908 7.962 9.312 11.152
17 4.416 5.697 6.408 7.255 7.564 8.672 10.085 12.002
18 4.905 6.265 7.015 7.906 8.231 9.390 10.865 12.857
19 5.407 6.844 7.633 8.567 8.907 10.117 11.651 13.716
20 5.921 7.434 8.260 9.237 9.591 10.851 12.443 14.578
21 6.447 8.034 8.897 9.915 10.283 11.591 13.240 15.445
22 6.983 8.643 9.542 10.600 10.982 12.338 14.041 16.314
23 7.529 9.260 10.196 11.293 11.689 13.091 14.848 17.187
24 8.085 9.886 10.856 11.992 12.401 13.848 15.659 18.062
25 8.649 10.520 11.524 12.697 13.120 14.611 16.473 18.940
26 9.222 11.160 12.198 13.409 13.844 15.379 17.292 19.820
27 9.803 11.808 12.879 14.125 14.573 16.151 18.114 20.703
28 10.391 12.461 13.565 14.847 15.308 16.928 18.939 21.588
29 10.986 13.121 14.256 15.574 16.047 17.708 19.768 22.475
30 11.588 13.787 14.953 16.306 16.791 18.493 20.599 23.364
31 12.196 14.458 15.655 17.042 17.539 19.281 21.434 24.255
32 12.811 15.134 16.362 17.783 18.291 20.072 22.271 25.148
33 13.431 15.815 17.074 18.527 19.047 20.867 23.110 26.042
34 14.057 16.501 17.789 19.275 19.806 21.664 23.952 26.938
35 14.688 17.192 18.509 20.027 20.569 22.465 24.797 27.836
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Table B.4: Percentage points of the χ2 distribution.

α levels
Two-
sided .40 .20 .10 .05 .04 .02 .01 .002
One-
sided .20 .10 .05 .025 .02 .01 .005 .001

Percentiles
d f 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999

1 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.828
2 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.816
3 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.266
4 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.467
5 7.289 9.236 11.070 12.833 13.388 15.086 16.750 20.515
6 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.458
7 9.803 12.017 14.067 16.013 16.622 18.475 20.278 24.322
8 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.125
9 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877

10 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588
11 14.631 17.275 19.675 21.920 22.618 24.725 26.757 31.264
12 15.812 18.549 21.026 23.337 24.054 26.217 28.300 32.910
13 16.985 19.812 22.362 24.736 25.471 27.688 29.819 34.528
14 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.124
15 19.311 22.307 24.996 27.488 28.259 30.578 32.801 37.697
16 20.465 23.542 26.296 28.845 29.633 32.000 34.267 39.254
17 21.615 24.769 27.587 30.191 30.995 33.409 35.718 40.789
18 22.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312
19 23.900 27.204 30.143 32.852 33.687 36.191 38.582 43.819
20 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.315
21 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.797
22 27.301 30.813 33.924 36.781 37.660 40.290 42.796 48.270
23 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.726
24 29.553 33.196 36.415 39.364 40.270 42.980 45.559 51.179
25 30.675 34.382 37.653 40.647 41.566 44.314 46.928 52.622
26 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.054
27 32.912 36.741 40.113 43.195 44.140 46.963 49.645 55.477
28 34.027 37.916 41.337 44.461 45.419 48.278 50.994 56.893
29 35.139 39.087 42.557 45.722 46.693 49.588 52.336 58.303
30 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.703
31 37.359 41.422 44.985 48.232 49.226 52.192 55.003 61.100
32 38.466 42.585 46.194 49.480 50.487 53.486 56.328 62.486
33 39.572 43.745 47.400 50.725 51.743 54.775 57.648 63.868
34 40.676 44.903 48.602 51.966 52.995 56.061 58.964 65.246
35 41.778 46.059 49.802 53.204 54.244 57.342 60.275 66.622
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Table B.5: Percentage points of the χ2 distribution.

α levels
Two-
sided 0.002 0.01 0.02 0.04 0.05 0.10 0.20 0.40
One-
sided 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20

Percentiles
d f 0.001 0.005 0.01 0.02 0.025 0.05 0.10 0.20
36 15.32 17.887 19.233 20.783 21.336 23.269 25.64 28.74
37 15.96 18.586 19.960 21.542 22.106 24.075 26.49 29.64
38 16.61 19.289 20.691 22.304 22.878 24.884 27.34 30.54
39 17.26 19.996 21.426 23.069 23.654 25.695 28.20 31.44
40 17.92 20.707 22.164 23.838 24.433 26.509 29.05 32.34
41 18.58 21.421 22.906 24.609 25.215 27.326 29.91 33.25
42 19.24 22.138 23.650 25.383 25.999 28.144 30.76 34.16
43 19.91 22.859 24.398 26.159 26.785 28.965 31.62 35.06
44 20.58 23.584 25.148 26.939 27.575 29.787 32.49 35.97
45 21.25 24.311 25.901 27.720 28.366 30.612 33.35 36.88
46 21.93 25.041 26.657 28.504 29.160 31.439 34.22 37.80
47 22.61 25.775 27.416 29.291 29.956 32.268 35.08 38.71
48 23.30 26.511 28.177 30.080 30.755 33.098 35.95 39.62
49 23.98 27.249 28.941 30.871 31.555 33.930 36.82 40.53
50 24.67 27.991 29.707 31.664 32.357 34.764 37.69 41.45
51 25.37 28.735 30.475 32.459 33.162 35.600 38.56 42.36
52 26.06 29.481 31.246 33.256 33.968 36.437 39.43 43.28
53 26.76 30.230 32.018 34.055 34.776 37.276 40.31 44.20
54 27.47 30.981 32.793 34.856 35.586 38.116 41.18 45.12
55 28.17 31.735 33.570 35.659 36.398 38.958 42.06 46.04
56 28.88 32.490 34.350 36.464 37.212 39.801 42.94 46.96
57 29.59 33.248 35.131 37.270 38.027 40.646 43.82 47.88
58 30.30 34.008 35.913 38.078 38.843 41.492 44.70 48.80
59 31.02 34.770 36.698 38.888 39.662 42.339 45.58 49.72
60 31.74 35.535 37.485 39.699 40.482 43.188 46.46 50.64
70 39.04 43.275 45.442 47.893 48.758 51.739 55.33 59.90
80 46.52 51.172 53.540 56.213 57.153 60.391 64.28 69.21
90 54.16 59.196 61.754 64.635 65.647 69.126 73.29 78.56

100 61.92 67.328 70.065 73.142 74.222 77.930 82.36 87.94
110 69.79 75.550 78.458 81.723 82.867 86.792 91.47 97.36
120 77.76 83.852 86.923 90.367 91.573 95.705 100.62 106.81
150 102.11 109.142 112.668 116.608 117.984 122.692 128.28 135.26
200 143.84 152.241 156.432 161.100 162.728 168.279 174.84 183.00
250 186.55 196.161 200.939 206.249 208.098 214.392 221.81 231.01
300 229.96 240.663 245.972 251.864 253.912 260.878 269.07 279.21
350 273.90 285.608 291.406 297.831 300.064 307.648 316.55 327.56
400 318.26 330.903 337.155 344.078 346.482 354.641 364.21 376.02
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Table B.6: Percentage points of the χ2 distribution.

α levels
Two-
sided .40 .20 .10 .05 .04 .02 .01 .002
One-
sided .20 .10 .05 .025 .02 .01 .005 .001

Percentiles
d f 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999
36 42.88 47.212 50.998 54.437 55.489 58.619 61.58 67.99
37 43.98 48.363 52.192 55.668 56.731 59.893 62.89 69.35
38 45.08 49.513 53.384 56.896 57.969 61.163 64.18 70.71
39 46.17 50.660 54.572 58.120 59.204 62.429 65.48 72.06
40 47.27 51.805 55.759 59.342 60.437 63.691 66.77 73.41
41 48.36 52.949 56.942 60.561 61.665 64.950 68.05 74.75
42 49.46 54.090 58.124 61.777 62.892 66.207 69.34 76.09
43 50.55 55.230 59.303 62.990 64.115 67.459 70.62 77.42
44 51.64 56.369 60.481 64.201 65.337 68.709 71.89 78.75
45 52.73 57.505 61.656 65.410 66.555 69.957 73.17 80.08
46 53.82 58.640 62.829 66.616 67.771 71.201 74.44 81.40
47 54.91 59.774 64.001 67.820 68.985 72.443 75.70 82.72
48 55.99 60.907 65.171 69.022 70.196 73.682 76.97 84.03
49 57.08 62.038 66.339 70.222 71.406 74.919 78.23 85.35
50 58.16 63.167 67.505 71.420 72.613 76.154 79.49 86.66
51 59.25 64.295 68.669 72.616 73.818 77.386 80.75 87.97
52 60.33 65.422 69.832 73.810 75.021 78.616 82.00 89.27
53 61.41 66.548 70.993 75.002 76.222 79.843 83.25 90.57
54 62.50 67.673 72.153 76.192 77.422 81.070 84.50 91.88
55 63.58 68.796 73.312 77.381 78.619 82.292 85.75 93.17
56 64.66 69.919 74.469 78.568 79.815 83.515 87.00 94.47
57 65.74 71.040 75.624 79.752 81.009 84.733 88.24 95.75
58 66.82 72.160 76.777 80.935 82.200 85.949 89.47 97.03
59 67.90 73.279 77.931 82.118 83.392 87.167 90.72 98.34
60 68.97 74.397 79.082 83.298 84.581 88.381 91.96 99.62
70 79.72 85.527 90.531 95.023 96.387 100.424 104.21 112.31
80 90.41 96.578 101.879 106.628 108.069 112.328 116.32 124.84
90 101.05 107.565 113.145 118.135 119.648 124.115 128.30 137.19

100 111.67 118.499 124.343 129.563 131.144 135.811 140.18 149.48
110 122.25 129.385 135.480 140.917 142.562 147.416 151.95 161.59
120 132.81 140.233 146.567 152.211 153.918 158.950 163.65 173.62
150 164.35 172.580 179.579 185.798 187.675 193.202 198.35 209.22
200 216.61 226.022 233.997 241.062 243.192 249.455 255.28 267.62
250 268.60 279.052 287.884 295.694 298.045 304.951 311.37 324.93
300 320.40 331.787 341.393 349.870 352.419 359.896 366.83 381.34
350 372.05 384.305 394.624 403.720 406.454 414.466 421.89 437.43
400 423.59 436.647 447.628 457.298 460.201 468.707 476.57 492.99
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B.3 Tables of the W ′ statistic

This table was obtained by taking the mean of ten estimates of the percentile, each based on a
sample of 500 observations. Estimates with standard errors of about .002 or less are reported to
three decimal places. The estimates reported with two decimal places have standard errors between
about .002 and .008.

Table B.7: Percentiles of the W ′ statistic.

n .01 .05 n .01 .05
5 0.69 0.77 36 0.91 0.940
6 0.70 0.79 38 0.915 0.942
7 0.72 0.81 40 0.918 0.946
8 0.75 0.82 45 0.928 0.951
9 0.75 0.83 50 0.931 0.952

10 0.78 0.83 55 0.938 0.958
11 0.79 0.85 60 0.943 0.961
12 0.79 0.86 65 0.945 0.961
13 0.81 0.870 70 0.953 0.966
14 0.82 0.877 75 0.954 0.968
15 0.82 0.883 80 0.957 0.970
16 0.83 0.886 85 0.958 0.970
17 0.84 0.896 90 0.960 0.972
18 0.85 0.896 95 0.961 0.972
19 0.86 0.902 100 0.962 0.974
20 0.86 0.902 120 0.970 0.978
22 0.87 0.910 140 0.973 0.981
24 0.88 0.915 160 0.976 0.983
26 0.89 0.923 180 0.978 0.985
28 0.89 0.924 200 0.981 0.986
30 0.89 0.928 250 0.984 0.988
32 0.90 0.933 300 0.987 0.991
34 0.91 0.936
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B.4 Tables of the Studentized range

These tables are largely those from May (1952) and are presented with the permission of the Trustees
of Biometrika. Comparisons with several other tables have been made and the values that appear to
be most accurate have been used. In doubtful cases, values have been rounded up.

Table B.8: Q(.95, r,d fE).

r
d fE 2 3 4 5 6 7 8 9 10 11

1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 50.6
2 6.09 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.39
3 4.50 5.91 6.83 7.50 8.04 8.48 8.85 9.18 9.46 9.72
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 7.00 7.17
6 3.46 4.34 4.90 5.31 5.63 5.90 6.12 6.32 6.49 6.65
7 3.34 4.17 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87

10 3.15 3.88 4.33 4.65 4.91 5.12 5.31 5.46 5.60 5.72
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51
13 3.06 3.74 4.15 4.45 4.69 4.89 5.05 5.19 5.32 5.43
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
17 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 5.21
18 2.97 3.61 4.00 4.28 4.50 4.67 4.82 4.96 5.07 5.17
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.64 4.74 4.82
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.64
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
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Table B.9: Q(.95, r,d fE).

r
d fE 12 13 14 15 16 17 18 19 20

1 52.0 53.2 54.3 55.4 56.3 57.2 58.0 58.8 59.6
2 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77
3 9.95 10.15 10.35 10.53 10.69 10.84 10.98 11.11 11.24
4 8.21 8.37 8.53 8.66 8.79 8.91 9.03 9.13 9.23
5 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21
6 6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59
7 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17
8 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87
9 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64

10 5.83 5.94 6.03 6.11 6.19 6.27 6.34 6.41 6.47
11 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33
12 5.62 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21
13 5.53 5.63 5.71 5.79 5.86 5.93 6.00 6.06 6.11
14 5.46 5.55 5.64 5.71 5.79 5.85 5.92 5.97 6.03
15 5.40 5.49 5.57 5.65 5.72 5.79 5.85 5.90 5.96
16 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90
17 5.31 5.39 5.47 5.54 5.61 5.68 5.73 5.79 5.84
18 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79
19 5.23 5.32 5.39 5.46 5.53 5.59 5.65 5.70 5.75
20 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71
24 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59
30 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.48
40 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36
60 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24

120 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13
∞ 4.62 4.69 4.74 4.80 4.85 4.89 4.93 4.97 5.01
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Table B.10: Q(.99, r,d fE).

r
d fE 2 3 4 5 6 7 8 9 10 11

1 90.0 135 164 186 202 216 227 237 246 253
2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6
3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.1
4 6.51 8.12 9.17 9.96 10.6 11.1 11.6 11.9 12.3 12.6
5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55
8 4.75 5.64 6.20 6.63 6.96 7.24 7.47 7.68 7.86 8.03
9 4.60 5.43 5.96 6.35 6.66 6.92 7.13 7.33 7.50 7.65

10 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.06 7.21 7.36
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79
14 4.21 4.90 5.32 5.63 5.88 6.09 6.26 6.41 6.54 6.66
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.56
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31
19 4.05 4.67 5.05 5.33 5.55 5.74 5.89 6.02 6.14 6.25
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19
24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02
30 3.89 4.46 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85
40 3.83 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60 5.69
60 3.76 4.28 4.60 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23
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Table B.11: Q(.99, r,d fE).

r
d fE 12 13 14 15 16 17 18 19 20

1 260 266 272 277 282 286 290 294 298
2 33.4 34.1 34.8 35.4 36.0 36.5 37.0 37.5 38.0
3 17.5 17.9 18.2 18.5 18.8 19.1 19.3 19.6 19.8
4 12.8 13.1 13.3 13.5 13.7 13.9 14.1 14.2 14.4
5 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.9
6 9.49 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.5
7 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65
8 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03
9 7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.50 8.57

10 7.49 7.60 7.71 7.81 7.91 7.99 8.08 8.15 8.23
11 7.25 7.36 7.47 7.56 7.65 7.73 7.81 7.88 7.95
12 7.06 7.17 7.27 7.36 7.44 7.52 7.59 7.67 7.73
13 6.90 7.01 7.10 7.19 7.27 7.35 7.42 7.49 7.55
14 6.77 6.87 6.96 7.05 7.13 7.20 7.27 7.33 7.40
15 6.66 6.76 6.85 6.93 7.00 7.07 7.14 7.20 7.26
16 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15
17 6.48 6.57 6.66 6.73 6.81 6.87 6.94 7.00 7.05
18 6.41 6.50 6.58 6.66 6.73 6.79 6.85 6.91 6.97
19 6.34 6.43 6.51 6.59 6.65 6.72 6.78 6.84 6.89
20 6.29 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82
24 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61
30 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41
40 5.76 5.84 5.90 5.96 6.02 6.07 6.12 6.17 6.21
60 5.60 6.67 5.73 5.79 5.84 5.89 5.93 5.97 6.02

120 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5.79 5.83
∞ 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65
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B.5 The Greek alphabet

Table B.12: The Greek alphabet.

[b] Capital Small Name Capital Small Name
A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
Δ δ ,∂ delta Π π pi
E ε ,ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta ϒ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M μ mu Ω ω omega
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B.6 Tables of the F distribution

Table B.13: 90th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 39.862 49.500 53.593 55.833 57.240 58.204 58.906 59.439
2 8.5263 9.0000 9.1618 9.2434 9.2926 9.3255 9.3491 9.3668
3 5.5383 5.4625 5.3908 5.3427 5.3092 5.2847 5.2662 5.2517
4 4.5449 4.3246 4.1909 4.1072 4.0506 4.0098 3.9790 3.9549
5 4.0604 3.7797 3.6195 3.5202 3.4530 3.4045 3.3679 3.3393
6 3.7760 3.4633 3.2888 3.1808 3.1075 3.0546 3.0145 2.9830
7 3.5895 3.2574 3.0741 2.9605 2.8833 2.8274 2.7849 2.7516
8 3.4579 3.1131 2.9238 2.8065 2.7265 2.6683 2.6241 2.5894
9 3.3603 3.0065 2.8129 2.6927 2.6106 2.5509 2.5053 2.4694

10 3.2850 2.9245 2.7277 2.6054 2.5216 2.4606 2.4140 2.3772
11 3.2252 2.8595 2.6602 2.5362 2.4512 2.3891 2.3416 2.3040
12 3.1765 2.8068 2.6055 2.4801 2.3941 2.3310 2.2828 2.2446
13 3.1362 2.7632 2.5603 2.4337 2.3467 2.2830 2.2341 2.1954
14 3.1022 2.7265 2.5222 2.3947 2.3069 2.2426 2.1931 2.1539
15 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 2.1582 2.1185
16 3.0481 2.6682 2.4618 2.3328 2.2438 2.1783 2.1280 2.0880
17 3.0263 2.6446 2.4374 2.3078 2.2183 2.1524 2.1017 2.0613
18 3.0070 2.6240 2.4160 2.2858 2.1958 2.1296 2.0785 2.0379
19 2.9899 2.6056 2.3970 2.2663 2.1760 2.1094 2.0580 2.0171
20 2.9747 2.5893 2.3801 2.2489 2.1583 2.0913 2.0397 1.9985
21 2.9610 2.5746 2.3649 2.2334 2.1423 2.0751 2.0233 1.9819
22 2.9486 2.5613 2.3512 2.2193 2.1279 2.0605 2.0084 1.9668
23 2.9374 2.5493 2.3387 2.2065 2.1149 2.0472 1.9949 1.9531
24 2.9271 2.5384 2.3274 2.1949 2.1030 2.0351 1.9826 1.9407
25 2.9177 2.5283 2.3170 2.1842 2.0922 2.0241 1.9714 1.9293
26 2.9091 2.5191 2.3075 2.1745 2.0822 2.0139 1.9610 1.9188
28 2.8939 2.5028 2.2906 2.1571 2.0645 1.9959 1.9427 1.9002
30 2.8807 2.4887 2.2761 2.1422 2.0492 1.9803 1.9269 1.8841
32 2.8693 2.4765 2.2635 2.1293 2.0360 1.9669 1.9132 1.8702
34 2.8592 2.4658 2.2524 2.1179 2.0244 1.9550 1.9012 1.8580
36 2.8504 2.4563 2.2426 2.1079 2.0141 1.9446 1.8905 1.8471
38 2.8424 2.4479 2.2339 2.0990 2.0050 1.9352 1.8810 1.8375
40 2.8354 2.4404 2.2261 2.0909 1.9968 1.9269 1.8725 1.8289
60 2.7911 2.3932 2.1774 2.0410 1.9457 1.8747 1.8194 1.7748
80 2.7693 2.3702 2.1536 2.0165 1.9206 1.8491 1.7933 1.7483

100 2.7564 2.3564 2.1394 2.0019 1.9057 1.8339 1.7778 1.7324
150 2.7393 2.3383 2.1207 1.9827 1.8861 1.8138 1.7572 1.7115
200 2.7308 2.3293 2.1114 1.9732 1.8763 1.8038 1.7470 1.7011
300 2.7224 2.3203 2.1021 1.9637 1.8666 1.7939 1.7369 1.6908
400 2.7182 2.3159 2.0975 1.9590 1.8617 1.7889 1.7319 1.6856
∞ 2.7055 2.3026 2.0838 1.9449 1.8473 1.7741 1.7167 1.6702
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Table B.14: 90th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 59.858 60.195 60.473 60.705 60.903 61.072 61.220 61.350
2 9.3805 9.3915 9.4005 9.4080 9.4144 9.4198 9.4245 9.4286
3 5.2401 5.2305 5.2226 5.2158 5.2098 5.2047 5.2003 5.1964
4 3.9357 3.9199 3.9067 3.8956 3.8859 3.8776 3.8704 3.8639
5 3.3163 3.2974 3.2816 3.2682 3.2568 3.2468 3.2380 3.2303
6 2.9577 2.9369 2.9195 2.9047 2.8920 2.8809 2.8712 2.8626
7 2.7247 2.7025 2.6839 2.6681 2.6545 2.6426 2.6322 2.6230
8 2.5613 2.5381 2.5186 2.5020 2.4876 2.4752 2.4642 2.4545
9 2.4404 2.4164 2.3961 2.3789 2.3640 2.3511 2.3396 2.3295

10 2.3473 2.3226 2.3018 2.2841 2.2687 2.2553 2.2435 2.2331
11 2.2735 2.2482 2.2269 2.2087 2.1930 2.1792 2.1671 2.1563
12 2.2135 2.1878 2.1660 2.1474 2.1313 2.1173 2.1049 2.0938
13 2.1638 2.1376 2.1155 2.0966 2.0802 2.0659 2.0532 2.0419
14 2.1220 2.0954 2.0730 2.0537 2.0370 2.0224 2.0095 1.9981
15 2.0862 2.0593 2.0366 2.0171 2.0001 1.9853 1.9722 1.9605
16 2.0553 2.0282 2.0051 1.9854 1.9682 1.9532 1.9399 1.9281
17 2.0284 2.0010 1.9777 1.9577 1.9404 1.9252 1.9117 1.8997
18 2.0047 1.9770 1.9535 1.9334 1.9158 1.9004 1.8868 1.8747
19 1.9836 1.9557 1.9321 1.9117 1.8940 1.8785 1.8647 1.8524
20 1.9649 1.9367 1.9129 1.8924 1.8745 1.8588 1.8450 1.8325
21 1.9480 1.9197 1.8957 1.8750 1.8570 1.8412 1.8271 1.8147
22 1.9328 1.9043 1.8801 1.8593 1.8411 1.8252 1.8111 1.7984
23 1.9189 1.8903 1.8659 1.8450 1.8267 1.8107 1.7964 1.7837
24 1.9063 1.8775 1.8530 1.8319 1.8136 1.7974 1.7831 1.7703
25 1.8947 1.8658 1.8412 1.8200 1.8015 1.7853 1.7708 1.7579
26 1.8841 1.8550 1.8303 1.8090 1.7904 1.7741 1.7596 1.7466
28 1.8652 1.8359 1.8110 1.7895 1.7708 1.7542 1.7395 1.7264
30 1.8490 1.8195 1.7944 1.7727 1.7538 1.7371 1.7223 1.7090
32 1.8348 1.8052 1.7799 1.7581 1.7390 1.7222 1.7072 1.6938
34 1.8224 1.7926 1.7672 1.7452 1.7260 1.7091 1.6940 1.6805
36 1.8115 1.7815 1.7559 1.7338 1.7145 1.6974 1.6823 1.6687
38 1.8017 1.7716 1.7459 1.7237 1.7042 1.6871 1.6718 1.6581
40 1.7929 1.7627 1.7369 1.7146 1.6950 1.6778 1.6624 1.6486
60 1.7380 1.7070 1.6805 1.6574 1.6372 1.6193 1.6034 1.5890
80 1.7110 1.6796 1.6526 1.6292 1.6087 1.5904 1.5741 1.5594

100 1.6949 1.6632 1.6360 1.6124 1.5916 1.5731 1.5566 1.5417
150 1.6736 1.6416 1.6140 1.5901 1.5690 1.5502 1.5334 1.5182
200 1.6630 1.6308 1.6031 1.5789 1.5577 1.5388 1.5218 1.5065
300 1.6525 1.6201 1.5922 1.5679 1.5464 1.5273 1.5102 1.4948
400 1.6472 1.6147 1.5868 1.5623 1.5408 1.5217 1.5045 1.4889
∞ 1.6315 1.5987 1.5705 1.5458 1.5240 1.5046 1.4871 1.4714
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Table B.15: 90th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 61.566 61.740 62.054 62.265 62.528 62.688 63.006 63.163
2 9.4354 9.4408 9.4513 9.4579 9.4662 9.4712 9.4812 9.4861
3 5.1900 5.1846 5.1747 5.1681 5.1597 5.1546 5.1442 5.1389
4 3.8531 3.8444 3.8283 3.8175 3.8037 3.7952 3.7781 3.7695
5 3.2172 3.2067 3.1873 3.1741 3.1573 3.1471 3.1263 3.1157
6 2.8481 2.8363 2.8147 2.8000 2.7812 2.7697 2.7463 2.7343
7 2.6074 2.5947 2.5714 2.5555 2.5351 2.5226 2.4971 2.4841
8 2.4381 2.4247 2.3999 2.3830 2.3614 2.3481 2.3208 2.3068
9 2.3123 2.2983 2.2725 2.2547 2.2320 2.2180 2.1892 2.1743

10 2.2153 2.2008 2.1739 2.1554 2.1317 2.1171 2.0869 2.0713
11 2.1380 2.1231 2.0953 2.0762 2.0516 2.0364 2.0050 1.9888
12 2.0750 2.0597 2.0312 2.0115 1.9861 1.9704 1.9379 1.9210
13 2.0227 2.0070 1.9778 1.9576 1.9315 1.9153 1.8817 1.8642
14 1.9785 1.9625 1.9326 1.9119 1.8852 1.8686 1.8340 1.8159
15 1.9407 1.9243 1.8939 1.8728 1.8454 1.8284 1.7928 1.7743
16 1.9079 1.8913 1.8603 1.8388 1.8108 1.7935 1.7570 1.7380
17 1.8792 1.8624 1.8309 1.8090 1.7805 1.7628 1.7255 1.7059
18 1.8539 1.8368 1.8049 1.7827 1.7537 1.7356 1.6976 1.6775
19 1.8314 1.8142 1.7818 1.7592 1.7298 1.7114 1.6726 1.6521
20 1.8113 1.7938 1.7611 1.7382 1.7083 1.6896 1.6501 1.6292
21 1.7932 1.7756 1.7424 1.7193 1.6890 1.6700 1.6298 1.6085
22 1.7768 1.7590 1.7255 1.7021 1.6714 1.6521 1.6113 1.5896
23 1.7619 1.7439 1.7101 1.6864 1.6554 1.6358 1.5944 1.5723
24 1.7483 1.7302 1.6960 1.6721 1.6407 1.6209 1.5788 1.5564
25 1.7358 1.7175 1.6831 1.6589 1.6272 1.6072 1.5645 1.5417
26 1.7243 1.7059 1.6712 1.6468 1.6147 1.5945 1.5513 1.5281
28 1.7039 1.6852 1.6500 1.6252 1.5925 1.5718 1.5276 1.5037
30 1.6862 1.6673 1.6316 1.6065 1.5732 1.5522 1.5069 1.4824
32 1.6708 1.6517 1.6156 1.5901 1.5564 1.5349 1.4888 1.4637
34 1.6573 1.6380 1.6015 1.5757 1.5415 1.5197 1.4727 1.4470
36 1.6453 1.6258 1.5890 1.5629 1.5282 1.5061 1.4583 1.4321
38 1.6345 1.6149 1.5778 1.5514 1.5163 1.4939 1.4453 1.4186
40 1.6249 1.6052 1.5677 1.5411 1.5056 1.4830 1.4336 1.4064
60 1.5642 1.5435 1.5039 1.4755 1.4373 1.4126 1.3576 1.3264
80 1.5340 1.5128 1.4720 1.4426 1.4027 1.3767 1.3180 1.2839

100 1.5160 1.4944 1.4527 1.4227 1.3817 1.3548 1.2934 1.2571
150 1.4919 1.4698 1.4271 1.3960 1.3534 1.3251 1.2595 1.2193
200 1.4799 1.4575 1.4142 1.3826 1.3390 1.3100 1.2418 1.1991
300 1.4679 1.4452 1.4013 1.3691 1.3246 1.2947 1.2236 1.1779
400 1.4619 1.4391 1.3948 1.3623 1.3173 1.2870 1.2143 1.1667
∞ 1.4439 1.4206 1.3753 1.3419 1.2951 1.2633 1.1850 1.1301
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Table B.16: 95th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88
2 18.513 19.000 19.164 19.247 19.296 19.329 19.353 19.371
3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072
11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641
16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447
21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420
22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397
23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375
24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355
25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337
26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321
28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291
30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266
32 4.149 3.295 2.901 2.668 2.512 2.399 2.313 2.244
34 4.130 3.276 2.883 2.650 2.494 2.380 2.294 2.225
36 4.113 3.259 2.866 2.634 2.477 2.364 2.277 2.209
38 4.098 3.245 2.852 2.619 2.463 2.349 2.262 2.194
40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180
60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097
80 3.960 3.111 2.719 2.486 2.329 2.214 2.126 2.056

100 3.936 3.087 2.696 2.463 2.305 2.191 2.103 2.032
150 3.904 3.056 2.665 2.432 2.274 2.160 2.071 2.001
200 3.888 3.041 2.650 2.417 2.259 2.144 2.056 1.985
300 3.873 3.026 2.635 2.402 2.244 2.129 2.040 1.969
400 3.865 3.018 2.627 2.394 2.237 2.121 2.032 1.962
∞ 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938
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Table B.17: 95th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 240.54 241.88 242.98 243.91 244.69 245.36 245.95 246.46
2 19.385 19.396 19.405 19.412 19.419 19.424 19.429 19.433
3 8.812 8.786 8.763 8.745 8.729 8.715 8.703 8.692
4 5.999 5.964 5.936 5.912 5.891 5.873 5.858 5.844
5 4.772 4.735 4.704 4.678 4.655 4.636 4.619 4.604
6 4.099 4.060 4.027 4.000 3.976 3.956 3.938 3.922
7 3.677 3.637 3.603 3.575 3.550 3.529 3.511 3.494
8 3.388 3.347 3.313 3.284 3.259 3.237 3.218 3.202
9 3.179 3.137 3.102 3.073 3.048 3.025 3.006 2.989

10 3.020 2.978 2.943 2.913 2.887 2.865 2.845 2.828
11 2.896 2.854 2.818 2.788 2.761 2.739 2.719 2.701
12 2.796 2.753 2.717 2.687 2.660 2.637 2.617 2.599
13 2.714 2.671 2.635 2.604 2.577 2.554 2.533 2.515
14 2.646 2.602 2.566 2.534 2.507 2.484 2.463 2.445
15 2.588 2.544 2.507 2.475 2.448 2.424 2.403 2.385
16 2.538 2.494 2.456 2.425 2.397 2.373 2.352 2.333
17 2.494 2.450 2.413 2.381 2.353 2.329 2.308 2.289
18 2.456 2.412 2.374 2.342 2.314 2.290 2.269 2.250
19 2.423 2.378 2.340 2.308 2.280 2.256 2.234 2.215
20 2.393 2.348 2.310 2.278 2.250 2.225 2.203 2.184
21 2.366 2.321 2.283 2.250 2.222 2.197 2.176 2.156
22 2.342 2.297 2.259 2.226 2.198 2.173 2.151 2.131
23 2.320 2.275 2.236 2.204 2.175 2.150 2.128 2.109
24 2.300 2.255 2.216 2.183 2.155 2.130 2.108 2.088
25 2.282 2.236 2.198 2.165 2.136 2.111 2.089 2.069
26 2.265 2.220 2.181 2.148 2.119 2.094 2.072 2.052
28 2.236 2.190 2.151 2.118 2.089 2.064 2.041 2.021
30 2.211 2.165 2.126 2.092 2.063 2.037 2.015 1.995
32 2.189 2.142 2.103 2.070 2.040 2.015 1.992 1.972
34 2.170 2.123 2.084 2.050 2.021 1.995 1.972 1.952
36 2.153 2.106 2.067 2.033 2.003 1.977 1.954 1.934
38 2.138 2.091 2.051 2.017 1.988 1.962 1.939 1.918
40 2.124 2.077 2.038 2.003 1.974 1.948 1.924 1.904
60 2.040 1.993 1.952 1.917 1.887 1.860 1.836 1.815
80 1.999 1.951 1.910 1.875 1.845 1.817 1.793 1.772

100 1.975 1.927 1.886 1.850 1.819 1.792 1.768 1.746
150 1.943 1.894 1.853 1.817 1.786 1.758 1.734 1.711
200 1.927 1.878 1.837 1.801 1.769 1.742 1.717 1.694
300 1.911 1.862 1.821 1.785 1.753 1.725 1.700 1.677
400 1.903 1.854 1.813 1.776 1.745 1.717 1.691 1.669
∞ 1.880 1.831 1.789 1.752 1.720 1.692 1.666 1.644
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Table B.18: 95th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 247.32 248.01 249.26 250.09 251.14 251.77 253.04 253.68
2 19.440 19.446 19.456 19.462 19.470 19.475 19.486 19.491
3 8.675 8.660 8.634 8.617 8.594 8.581 8.554 8.540
4 5.821 5.803 5.769 5.746 5.717 5.699 5.664 5.646
5 4.579 4.558 4.521 4.496 4.464 4.444 4.405 4.385
6 3.896 3.874 3.835 3.808 3.774 3.754 3.712 3.690
7 3.467 3.445 3.404 3.376 3.340 3.319 3.275 3.252
8 3.173 3.150 3.108 3.079 3.043 3.020 2.975 2.951
9 2.960 2.936 2.893 2.864 2.826 2.803 2.756 2.731

10 2.798 2.774 2.730 2.700 2.661 2.637 2.588 2.563
11 2.671 2.646 2.601 2.570 2.531 2.507 2.457 2.431
12 2.568 2.544 2.498 2.466 2.426 2.401 2.350 2.323
13 2.484 2.459 2.412 2.380 2.339 2.314 2.261 2.234
14 2.413 2.388 2.341 2.308 2.266 2.241 2.187 2.159
15 2.353 2.328 2.280 2.247 2.204 2.178 2.123 2.095
16 2.302 2.276 2.227 2.194 2.151 2.124 2.068 2.039
17 2.257 2.230 2.181 2.148 2.104 2.077 2.020 1.991
18 2.217 2.191 2.141 2.107 2.063 2.035 1.978 1.948
19 2.182 2.156 2.106 2.071 2.026 1.999 1.940 1.910
20 2.151 2.124 2.074 2.039 1.994 1.966 1.907 1.875
21 2.123 2.096 2.045 2.010 1.965 1.936 1.876 1.845
22 2.098 2.071 2.020 1.984 1.938 1.909 1.849 1.817
23 2.075 2.048 1.996 1.961 1.914 1.885 1.823 1.791
24 2.054 2.027 1.975 1.939 1.892 1.863 1.800 1.768
25 2.035 2.007 1.955 1.919 1.872 1.842 1.779 1.746
26 2.018 1.990 1.938 1.901 1.853 1.823 1.760 1.726
28 1.987 1.959 1.906 1.869 1.820 1.790 1.725 1.691
30 1.960 1.932 1.878 1.841 1.792 1.761 1.695 1.660
32 1.937 1.908 1.854 1.817 1.767 1.736 1.669 1.633
34 1.917 1.888 1.833 1.795 1.745 1.713 1.645 1.609
36 1.899 1.870 1.815 1.776 1.726 1.694 1.625 1.587
38 1.883 1.853 1.798 1.760 1.708 1.676 1.606 1.568
40 1.868 1.839 1.783 1.744 1.693 1.660 1.589 1.551
60 1.778 1.748 1.690 1.649 1.594 1.559 1.481 1.438
80 1.734 1.703 1.644 1.602 1.545 1.508 1.426 1.379

100 1.708 1.676 1.616 1.573 1.515 1.477 1.392 1.342
150 1.673 1.641 1.580 1.535 1.475 1.436 1.345 1.290
200 1.656 1.623 1.561 1.516 1.455 1.415 1.321 1.263
300 1.638 1.606 1.543 1.497 1.435 1.393 1.296 1.234
400 1.630 1.597 1.534 1.488 1.425 1.383 1.283 1.219
∞ 1.604 1.571 1.506 1.459 1.394 1.350 1.243 1.170
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Table B.19: 99th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 4052 5000 5403 5625 5764 5859 5928 5981
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17
32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13
34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09
36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69
150 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60
300 6.72 4.68 3.85 3.38 3.08 2.86 2.70 2.57
400 6.70 4.66 3.83 3.37 3.06 2.85 2.68 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51
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Table B.20: 99th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 6022 6056 6083 6106 6126 6143 6157 6170
2 99.39 99.40 99.41 99.42 99.42 99.43 99.43 99.44
3 27.35 27.23 27.13 27.05 26.98 26.92 26.87 26.83
4 14.66 14.55 14.45 14.37 14.31 14.25 14.20 14.15
5 10.16 10.05 9.96 9.89 9.82 9.77 9.72 9.68
6 7.98 7.87 7.79 7.72 7.66 7.60 7.56 7.52
7 6.72 6.62 6.54 6.47 6.41 6.36 6.31 6.28
8 5.91 5.81 5.73 5.67 5.61 5.56 5.52 5.48
9 5.35 5.26 5.18 5.11 5.05 5.01 4.96 4.92

10 4.94 4.85 4.77 4.71 4.65 4.60 4.56 4.52
11 4.63 4.54 4.46 4.40 4.34 4.29 4.25 4.21
12 4.39 4.30 4.22 4.16 4.10 4.05 4.01 3.97
13 4.19 4.10 4.02 3.96 3.91 3.86 3.82 3.78
14 4.03 3.94 3.86 3.80 3.75 3.70 3.66 3.62
15 3.89 3.80 3.73 3.67 3.61 3.56 3.52 3.49
16 3.78 3.69 3.62 3.55 3.50 3.45 3.41 3.37
17 3.68 3.59 3.52 3.46 3.40 3.35 3.31 3.27
18 3.60 3.51 3.43 3.37 3.32 3.27 3.23 3.19
19 3.52 3.43 3.36 3.30 3.24 3.19 3.15 3.12
20 3.46 3.37 3.29 3.23 3.18 3.13 3.09 3.05
21 3.40 3.31 3.24 3.17 3.12 3.07 3.03 2.99
22 3.35 3.26 3.18 3.12 3.07 3.02 2.98 2.94
23 3.30 3.21 3.14 3.07 3.02 2.97 2.93 2.89
24 3.26 3.17 3.09 3.03 2.98 2.93 2.89 2.85
25 3.22 3.13 3.06 2.99 2.94 2.89 2.85 2.81
26 3.18 3.09 3.02 2.96 2.90 2.86 2.81 2.78
28 3.12 3.03 2.96 2.90 2.84 2.79 2.75 2.72
30 3.07 2.98 2.91 2.84 2.79 2.74 2.70 2.66
32 3.02 2.93 2.86 2.80 2.74 2.70 2.65 2.62
34 2.98 2.89 2.82 2.76 2.70 2.66 2.61 2.58
36 2.95 2.86 2.79 2.72 2.67 2.62 2.58 2.54
38 2.92 2.83 2.75 2.69 2.64 2.59 2.55 2.51
40 2.89 2.80 2.73 2.66 2.61 2.56 2.52 2.48
60 2.72 2.63 2.56 2.50 2.44 2.39 2.35 2.31
80 2.64 2.55 2.48 2.42 2.36 2.31 2.27 2.23

100 2.59 2.50 2.43 2.37 2.31 2.27 2.22 2.19
150 2.53 2.44 2.37 2.31 2.25 2.20 2.16 2.12
200 2.50 2.41 2.34 2.27 2.22 2.17 2.13 2.09
300 2.47 2.38 2.31 2.24 2.19 2.14 2.10 2.06
400 2.45 2.37 2.29 2.23 2.17 2.13 2.08 2.05
∞ 2.41 2.32 2.25 2.18 2.13 2.08 2.04 2.00
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Table B.21: 99th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 6191 6209 6240 6261 6287 6302 6334 6350
2 99.44 99.45 99.46 99.46 99.47 99.48 99.49 99.49
3 26.75 26.69 26.58 26.50 26.41 26.35 26.24 26.18
4 14.08 14.02 13.91 13.84 13.75 13.69 13.58 13.52
5 9.61 9.55 9.45 9.38 9.29 9.24 9.13 9.08
6 7.45 7.40 7.30 7.23 7.14 7.09 6.99 6.93
7 6.21 6.16 6.06 5.99 5.91 5.86 5.75 5.70
8 5.41 5.36 5.26 5.20 5.12 5.07 4.96 4.91
9 4.86 4.81 4.71 4.65 4.57 4.52 4.41 4.36

10 4.46 4.41 4.31 4.25 4.17 4.12 4.01 3.96
11 4.15 4.10 4.01 3.94 3.86 3.81 3.71 3.66
12 3.91 3.86 3.76 3.70 3.62 3.57 3.47 3.41
13 3.72 3.66 3.57 3.51 3.43 3.38 3.27 3.22
14 3.56 3.51 3.41 3.35 3.27 3.22 3.11 3.06
15 3.42 3.37 3.28 3.21 3.13 3.08 2.98 2.92
16 3.31 3.26 3.16 3.10 3.02 2.97 2.86 2.81
17 3.21 3.16 3.07 3.00 2.92 2.87 2.76 2.71
18 3.13 3.08 2.98 2.92 2.84 2.78 2.68 2.62
19 3.05 3.00 2.91 2.84 2.76 2.71 2.60 2.55
20 2.99 2.94 2.84 2.78 2.69 2.64 2.54 2.48
21 2.93 2.88 2.79 2.72 2.64 2.58 2.48 2.42
22 2.88 2.83 2.73 2.67 2.58 2.53 2.42 2.36
23 2.83 2.78 2.69 2.62 2.54 2.48 2.37 2.32
24 2.79 2.74 2.64 2.58 2.49 2.44 2.33 2.27
25 2.75 2.70 2.60 2.54 2.45 2.40 2.29 2.23
26 2.72 2.66 2.57 2.50 2.42 2.36 2.25 2.19
28 2.65 2.60 2.51 2.44 2.35 2.30 2.19 2.13
30 2.60 2.55 2.45 2.39 2.30 2.25 2.13 2.07
32 2.55 2.50 2.41 2.34 2.25 2.20 2.08 2.02
34 2.51 2.46 2.37 2.30 2.21 2.16 2.04 1.98
36 2.48 2.43 2.33 2.26 2.18 2.12 2.00 1.94
38 2.45 2.40 2.30 2.23 2.14 2.09 1.97 1.90
40 2.42 2.37 2.27 2.20 2.11 2.06 1.94 1.87
60 2.25 2.20 2.10 2.03 1.94 1.88 1.75 1.68
80 2.17 2.12 2.01 1.94 1.85 1.79 1.65 1.58

100 2.12 2.07 1.97 1.89 1.80 1.74 1.60 1.52
150 2.06 2.00 1.90 1.83 1.73 1.66 1.52 1.43
200 2.03 1.97 1.87 1.79 1.69 1.63 1.48 1.39
300 1.99 1.94 1.84 1.76 1.66 1.59 1.44 1.35
400 1.98 1.92 1.82 1.75 1.64 1.58 1.42 1.32
∞ 1.93 1.88 1.77 1.70 1.59 1.52 1.36 1.25
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Table B.22: 99.9th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 1 2 3 4 5 6 7 8

1 405292 500009 540389 562510 576416 585949 592885 598156
2 998.54 999.01 999.18 999.26 999.31 999.35 999.37 999.39
3 167.03 148.50 141.11 137.10 134.58 132.85 131.59 130.62
4 74.138 61.246 56.178 53.436 51.712 50.526 49.658 48.997
5 47.181 37.123 33.203 31.085 29.753 28.835 28.163 27.650
6 35.508 27.000 23.703 21.924 20.803 20.030 19.463 19.030
7 29.245 21.689 18.772 17.198 16.206 15.521 15.019 14.634
8 25.415 18.494 15.830 14.392 13.485 12.858 12.398 12.046
9 22.857 16.387 13.902 12.560 11.714 11.128 10.698 10.368

10 21.040 14.905 12.553 11.283 10.481 9.926 9.517 9.204
11 19.687 13.812 11.561 10.346 9.578 9.047 8.655 8.355
12 18.643 12.974 10.804 9.633 8.892 8.379 8.001 7.710
13 17.816 12.313 10.209 9.073 8.354 7.856 7.489 7.206
14 17.143 11.779 9.729 8.622 7.922 7.436 7.077 6.802
15 16.587 11.339 9.335 8.253 7.567 7.092 6.741 6.471
16 16.120 10.971 9.006 7.944 7.272 6.805 6.460 6.195
17 15.722 10.658 8.727 7.683 7.022 6.563 6.223 5.962
18 15.379 10.390 8.488 7.459 6.808 6.355 6.021 5.763
19 15.081 10.157 8.280 7.265 6.623 6.175 5.845 5.590
20 14.819 9.953 8.098 7.096 6.461 6.019 5.692 5.440
21 14.587 9.772 7.938 6.947 6.318 5.881 5.557 5.308
22 14.380 9.612 7.796 6.814 6.191 5.758 5.438 5.190
23 14.195 9.469 7.669 6.696 6.078 5.649 5.331 5.085
24 14.028 9.339 7.554 6.589 5.977 5.550 5.235 4.991
25 13.877 9.223 7.451 6.493 5.885 5.462 5.148 4.906
26 13.739 9.116 7.357 6.406 5.802 5.381 5.070 4.829
28 13.498 8.931 7.193 6.253 5.657 5.241 4.933 4.695
30 13.293 8.773 7.054 6.125 5.534 5.122 4.817 4.581
32 13.118 8.639 6.936 6.014 5.429 5.021 4.719 4.485
34 12.965 8.522 6.833 5.919 5.339 4.934 4.633 4.401
36 12.832 8.420 6.744 5.836 5.260 4.857 4.559 4.328
38 12.714 8.331 6.665 5.763 5.190 4.790 4.494 4.264
40 12.609 8.251 6.595 5.698 5.128 4.731 4.436 4.207
60 11.973 7.768 6.171 5.307 4.757 4.372 4.086 3.865
80 11.671 7.540 5.972 5.123 4.582 4.204 3.923 3.705

100 11.495 7.408 5.857 5.017 4.482 4.107 3.829 3.612
150 11.267 7.236 5.707 4.879 4.351 3.981 3.706 3.493
200 11.155 7.152 5.634 4.812 4.287 3.920 3.647 3.434
300 11.044 7.069 5.562 4.746 4.225 3.860 3.588 3.377
400 10.989 7.028 5.527 4.713 4.194 3.830 3.560 3.349
∞ 10.828 6.908 5.422 4.617 4.103 3.743 3.475 3.266
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Table B.23: 99.9th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 9 10 11 12 13 14 15 16

1 602296 605634 608381 610681 612636 614316 615778 617058
2 999.40 999.41 999.42 999.43 999.44 999.44 999.45 999.45
3 129.86 129.25 128.74 128.32 127.96 127.65 127.38 127.14
4 48.475 48.053 47.705 47.412 47.163 46.948 46.761 46.597
5 27.245 26.917 26.646 26.418 26.224 26.057 25.911 25.783
6 18.688 18.411 18.182 17.989 17.825 17.683 17.559 17.450
7 14.330 14.083 13.879 13.707 13.561 13.434 13.324 13.227
8 11.767 11.540 11.353 11.195 11.060 10.943 10.841 10.752
9 10.107 9.894 9.718 9.570 9.443 9.334 9.238 9.154

10 8.956 8.754 8.587 8.445 8.325 8.220 8.129 8.048
11 8.116 7.922 7.761 7.626 7.510 7.409 7.321 7.244
12 7.480 7.292 7.136 7.005 6.892 6.794 6.709 6.634
13 6.982 6.799 6.647 6.519 6.409 6.314 6.231 6.158
14 6.583 6.404 6.256 6.130 6.023 5.930 5.848 5.776
15 6.256 6.081 5.935 5.812 5.707 5.615 5.535 5.464
16 5.984 5.812 5.668 5.547 5.443 5.353 5.274 5.205
17 5.754 5.584 5.443 5.324 5.221 5.132 5.054 4.986
18 5.558 5.390 5.251 5.132 5.031 4.943 4.866 4.798
19 5.388 5.222 5.084 4.967 4.867 4.780 4.704 4.636
20 5.239 5.075 4.939 4.823 4.724 4.637 4.562 4.495
21 5.109 4.946 4.811 4.696 4.598 4.512 4.437 4.371
22 4.993 4.832 4.697 4.583 4.486 4.401 4.326 4.260
23 4.890 4.730 4.596 4.483 4.386 4.301 4.227 4.162
24 4.797 4.638 4.505 4.393 4.296 4.212 4.139 4.074
25 4.713 4.555 4.423 4.312 4.216 4.132 4.059 3.994
26 4.637 4.480 4.349 4.238 4.142 4.059 3.986 3.921
28 4.505 4.349 4.219 4.109 4.014 3.932 3.859 3.795
30 4.393 4.239 4.110 4.001 3.907 3.825 3.753 3.689
32 4.298 4.145 4.017 3.908 3.815 3.733 3.662 3.598
34 4.215 4.063 3.936 3.828 3.735 3.654 3.583 3.520
36 4.144 3.992 3.866 3.758 3.666 3.585 3.514 3.451
38 4.080 3.930 3.804 3.697 3.605 3.524 3.454 3.391
40 4.024 3.874 3.749 3.642 3.551 3.471 3.400 3.338
60 3.687 3.541 3.419 3.315 3.226 3.147 3.078 3.017
80 3.530 3.386 3.265 3.162 3.074 2.996 2.927 2.867

100 3.439 3.296 3.176 3.074 2.986 2.908 2.840 2.780
150 3.321 3.180 3.061 2.959 2.872 2.795 2.727 2.667
200 3.264 3.123 3.005 2.904 2.816 2.740 2.672 2.612
300 3.207 3.067 2.950 2.849 2.762 2.686 2.618 2.558
400 3.179 3.040 2.922 2.822 2.735 2.659 2.592 2.532
∞ 3.097 2.959 2.842 2.742 2.656 2.580 2.513 2.453
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Table B.24: 99.9th percentiles of the F distribution.

Den. Numerator degrees of freedom
d f 18 20 25 30 40 50 100 200

1 619201 620922 624031 626114 628725 630301 633455 635033
2 999.46 999.46 999.47 999.48 999.49 999.49 999.50 999.50
3 126.74 126.42 125.84 125.45 124.96 124.67 124.07 123.77
4 46.322 46.101 45.699 45.429 45.089 44.884 44.470 44.261
5 25.568 25.395 25.080 24.869 24.602 24.441 24.115 23.951
6 17.267 17.120 16.853 16.673 16.445 16.307 16.028 15.887
7 13.063 12.932 12.692 12.530 12.326 12.202 11.951 11.824
8 10.601 10.480 10.258 10.109 9.919 9.804 9.571 9.453
9 9.012 8.898 8.689 8.548 8.369 8.260 8.039 7.926

10 7.913 7.804 7.604 7.469 7.297 7.193 6.980 6.872
11 7.113 7.008 6.815 6.684 6.518 6.417 6.210 6.105
12 6.507 6.405 6.217 6.090 5.928 5.829 5.627 5.524
13 6.034 5.934 5.751 5.626 5.467 5.370 5.172 5.070
14 5.655 5.557 5.377 5.254 5.098 5.002 4.807 4.706
15 5.345 5.248 5.071 4.950 4.796 4.702 4.508 4.408
16 5.087 4.992 4.817 4.697 4.545 4.451 4.259 4.160
17 4.869 4.775 4.602 4.484 4.332 4.239 4.049 3.950
18 4.683 4.590 4.418 4.301 4.151 4.058 3.868 3.770
19 4.522 4.430 4.259 4.143 3.994 3.902 3.713 3.615
20 4.382 4.290 4.121 4.005 3.856 3.765 3.576 3.478
21 4.258 4.167 3.999 3.884 3.736 3.645 3.456 3.358
22 4.149 4.058 3.891 3.776 3.629 3.538 3.349 3.251
23 4.051 3.961 3.794 3.680 3.533 3.442 3.254 3.156
24 3.963 3.873 3.707 3.593 3.447 3.356 3.168 3.070
25 3.884 3.794 3.629 3.516 3.369 3.279 3.091 2.992
26 3.812 3.723 3.558 3.445 3.299 3.208 3.020 2.921
28 3.687 3.598 3.434 3.321 3.176 3.085 2.897 2.798
30 3.581 3.493 3.330 3.217 3.072 2.981 2.792 2.693
32 3.491 3.403 3.240 3.128 2.983 2.892 2.703 2.603
34 3.413 3.325 3.163 3.051 2.906 2.815 2.625 2.524
36 3.345 3.258 3.096 2.984 2.839 2.748 2.557 2.456
38 3.285 3.198 3.036 2.925 2.779 2.689 2.497 2.395
40 3.232 3.145 2.984 2.872 2.727 2.636 2.444 2.341
60 2.912 2.827 2.667 2.555 2.409 2.316 2.118 2.009
80 2.763 2.677 2.518 2.406 2.258 2.164 1.960 1.846

100 2.676 2.591 2.431 2.319 2.170 2.076 1.867 1.749
150 2.564 2.479 2.319 2.206 2.056 1.959 1.744 1.618
200 2.509 2.424 2.264 2.151 2.000 1.902 1.682 1.552
300 2.456 2.371 2.210 2.097 1.944 1.846 1.620 1.483
400 2.429 2.344 2.184 2.070 1.917 1.817 1.589 1.448
∞ 2.351 2.266 2.105 1.990 1.835 1.733 1.495 1.338
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